Benzylammonium 2,4-bis(dicyanomethylene)-2,3-dihydroisoindolide
Shane P. Conway, Albert C. Pratt, Conor Long and R. Alan Howie
Benzylammonium 2,4-bis(dicyanomethylene)-2,3-dihydroisoindolide

The cation and anion of the title salt, C\textsubscript{7}H\textsubscript{10}N+:C\textsubscript{14}H\textsubscript{4}N\textsubscript{5}-, are both bisected by a crystallographic mirror plane. Extensive hydrogen bonding, with the \(R_6^2(28) \) graph-set motif, connects the ions into layers.

Comment

The title compound, (I), is a by-product of the reaction between ammonium salt (II) and benzylamine, producing the amidine, (III), in which the cation of the original salt has been replaced by benzylammonium. The anion and cation of (I), along with indications of the crystallographic symmetry to which they are subject, are shown in Figs. 1 and 2, respectively.

In the anion, the lengths of the N1—C1 and C1—C5 bonds and their symmetry-related equivalents [1.363 (2) and 1.382 (3) Å, respectively] are surprisingly long for their type, which is taken as an indication of their involvement in the delocalization of the negative charge on the anion. Another feature of the structure of the anion is the dihedral angle of 5.77 (15)° between the plane of the five-membered ring and...
that of the C(CN)2 group. In this case, the displacements of the atoms of both C(CN)2 groups are all in the same sense relative to the plane of the five-membered ring. The only notable feature of the structure of the cation is the dihedral angle of 90.00° between the plane defined by atoms N4/C8/C9 and that of the benzene ring. The most striking feature of the structure of (I) is the inter-ion connectivity created by the N—H···N hydrogen bonds given in Table 1. These hydrogen bonds, which involve all three of the H atoms of the NH2 group of the benzylammonium cation with three of the five N atoms of the anion as acceptors, create sheets of ions parallel to (101), interconnected as shown in Fig. 3. The hydrogen-bond motif, in the graph-set notation of Bernstein et al. (1995), which recurs throughout the layer is $R_2^0(28)$ and is exemplified in Fig. 3 by the connectivity of the species $A^{iv}/C^{iii}A^{i}/C^{iii}A^{i}C^{iv}$.

The disposition of the H atoms in the NH2 group demands some degree of depth or thickness within the layers, and this requirement is met in such a way as to accommodate the first of the π—π overlaps given in Table 2 and exemplified in Fig. 3 by the situation for C^{iii} and A^{i}. The second π—π overlap given in Table 2 occurs between layers and involves rings which are related to one another by a crystallographic twofold axis which, because of the crystallographic symmetry of the ring and the anion of which it is part, can be expressed equally as a crystallographic centre of symmetry. This last is also the relationship between neighbouring layers.

Experimental

Heating a solution of (II) (0.50 g, 1.9 mmol) and benzylamine (0.21 g, 1.9 mmol) in 1,4-dioxan (30 ml) under reflux for 4 h resulted in precipitation of an orange solid which, when filtered off, dried under vacuum and recrystallized from dimethylformamide–ethanol (10:90), yielded N-benzyl-2-cyano-2-(3-dicyanomethylene-2,3-dihydroisoindolylidene)acetamidine, (III) [0.81 g, 46%; m.p. 571—572 K (decomposition)]. Evaporation of the filtrate to dryness and recrystallization from acetonitrile gave (I) (0.19 g, 28%; m.p. 571—572 K). ν_{max}: 3134, 3094, 2612, 2209, 1596, 1586, 1504, 1381, 1310, 1248, 1129, 1098, 952, 848, 754 and 708 cm$^{-1}$; λ_{max} (CH2CN): 496 ($\epsilon = 32,597$ dm3 mol$^{-1}$ cm$^{-1}$), 464 (32,393), 342 (13,124) and 240 nm (28,786); 1H NMR (400 MHz, DMSO- d_6): 8.52 (br m, 5H, two benzo H and NH3), 7.45 (m, 5H, phenyl H) and 4.5 (s, 2H, CH2). On addition of D$_2$O to the NMR sample, the multiplet at 8.52 p.p.m. was no longer broad and integrated for 2 protons. 13C NMR (100 MHz, DMSO- d_6): 42.28 (CH2), 53.89 [C(CN)2], 116.24 and 117.19 (CN), 122.83, 128.45, 128.57, 128.76, 130.31, 131.06, 132.18, 134.21, 134.87, 136.21, 136.46, 138.13, 139.12, 141.35, 142.39, 143.11, 144.00, 144.53, 148.36, 149.87, 150.17, 150.35, 150.92, 151.66 and 152.71 ppm. η_0 and η_1 of the C(CN)2 at 89.10 (11) and 90.00 (11) for 1.0 cm. η_0 and η_1 of the benzene ring and the anion of which it is part, can be expressed equally as a crystallographic centre of symmetry. This last is also the relationship between neighbouring layers.

Crystal data

$\text{C}_9\text{H}_{14}\text{N}^+\text{C}_7\text{H}_{10}\text{N}^-$$

$M_r = 350.38$

Monoclinic, $I2/m$

$a = 11.46$ (2) A

$b = 13.094$ (5) A

$c = 13.563$ (9) A

$\beta = 114.22$ (5)$^\circ$

$V = 1857$ (4) A3

$Z = 4$

$D_x = 1.254$ Mg m$^{-3}$

Mo K radiation

Cell parameters from 14 reflections

$\theta = 8.5—12.4^\circ$

$\mu = 0.08$ mm$^{-1}$

$T = 295$ (2) K

Block, orange

0.44 × 0.44 × 0.30 mm

Shane P. Conway et al. • $\text{C}_9\text{H}_{14}\text{N}^+\text{C}_7\text{H}_{10}\text{N}^-$
organic papers

Data collection
Nicolet P3 four-circle diffractometer
ω-2θ scans
Absorption correction: none
1803 measured reflections
1714 independent reflections
1044 reflections with I > 2σ(I)
Rint = 0.017

Refinement
Refinement on F2
R[F2 > 2σ(F2)] = 0.051
wR(F2) = 0.127
S = 0.99
1714 reflections
138 parameters
H atoms treated by a mixture of independent and constrained refinement
Extinction correction: SHELXL97
Extinction coefficient: 0.0037 (9)

Table 1
Hydrogen-bonding geometry (Å, ‡).

<table>
<thead>
<tr>
<th>D—H···A</th>
<th>H···A</th>
<th>D···A</th>
<th>D—H···A</th>
</tr>
</thead>
<tbody>
<tr>
<td>N4—H4B···N1I</td>
<td>0.99 (4)</td>
<td>2.28 (4)</td>
<td>3.227 (6)</td>
</tr>
<tr>
<td>N4—H4A···N2II</td>
<td>1.02 (2)</td>
<td>2.02 (2)</td>
<td>3.024 (3)</td>
</tr>
</tbody>
</table>

Symmetry codes: (i) −x, −y, −z; (ii) 1/2 − x, −y, 1/2 + z.

Table 2
Parameters (Å, ‡) for π–π contacts in (I).

<table>
<thead>
<tr>
<th>Cg1···Cg2</th>
<th>Cg···Cg</th>
<th>a</th>
<th>β</th>
<th>γ</th>
<th>CgXπop</th>
<th>CgYπop</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.551</td>
<td>6.26</td>
<td>2.54</td>
<td>3.72</td>
<td>3.544</td>
<td>3.548</td>
<td></td>
</tr>
<tr>
<td>3.448</td>
<td>0.00</td>
<td>0.64</td>
<td>6.64</td>
<td>3.42</td>
<td>3.424</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Ring 1, with centroid Cg1, is defined by N1/C1/C2/C3/C4/C5; ring 2, with centroid Cg2, is defined by C9/C10/C11/C12/C11/C10. CgXπop (X = I or J) is the perpendicular distance of the centroid of ring X to the least squares plane of ring Y (X ≠ Y); α is the dihedral angle between the planes of the rings β and γ are the angles at CgX between Cg· · ·Cg and CgXπop, for X = I and J, respectively. Symmetry codes: (i) x, −y, z; (ii) 1 − x, y, −z.

In this structure, both ions are bisected by a crystallographic mirror plane. The only atoms in general positions and replicated therefore by crystallographic symmetry to complete the ions are, in the benzylammonium counter-cation, one H atom of each of the NH group and the methylene group and the C atoms, and the H atoms attached to them, ortho and meta to the methylene group, and in the anion, all atoms except the N atom in the five-membered ring. The somewhat extreme anisotropic displacement parameters associated with atoms C11 and C12 are attributed to a degree of disorder in these sites which has not been modelled in detail. Difference-map peaks provided approximate positions for the H atoms of the NH group. These H atoms were then refined with isotropic displacement parameters in the usual manner. H atoms attached to C atoms were placed in calculated positions, with C—H set at 0.93 and 0.97 Å for aryl and methylene H atoms, respectively, and refined using a riding model, with Uiso(H) = 1.2Ueq(C) in both cases.

Data collection: Nicolet P3 software (Nicolet, 1980); cell refinement: Nicolet P3 software; data reduction: RDNIC (Howie, 1980); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

SC thanks Dublin City University for a studentship.

References