Browse DORAS
Browse Theses
Latest Additions
Creative Commons License
Except where otherwise noted, content on this site is licensed for use under a:

Stochastic delay difference and differential equations: applications to financial markets

Swords, Catherine (2009) Stochastic delay difference and differential equations: applications to financial markets. PhD thesis, Dublin City University.

Full text available as:

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader


This thesis deals with the asymptotic behaviour of stochastic difference and functional differential equations of Itˆo type. Numerical methods which both minimise error and preserve asymptotic features of the underlying continuous equation are studied. The equations have a form which makes them suitable to model financial markets in which agents use past prices. The second chapter deals with the behaviour of moving average models of price formation. We show that the asset returns are positively and exponentially correlated, while the presence of feedback traders causes either excess volatility or a market bubble or crash. These results are robust to the presence of nonlinearities in the traders’ demand functions. In Chapters 3 and 4, we show that these phenomena persist if trading takes place continuously by modelling the returns using linear and nonlinear stochastic functional differential equations (SFDEs). In the fifth chapter, we assume that some traders base their demand on the difference between current returns and the maximum return over several trading periods, leading to an analysis of stochastic difference equations with maximum functionals. Once again it is shown that prices either fluctuate or undergo a bubble or crash. In common with the earlier chapters, the size of the largest fluctuations and the growth rate of the bubble or crash is determined. The last three chapters are devoted to the discretisation of the SFDE presented in Chapter 4. Chapter 6 highlights problems that standard numerical methods face in reproducing long–run features of the dynamics of the general continuous–time model, while showing these standard methods work in some cases. Chapter 7 develops an alternative method for discretising the solution of the continuous time equation, and shows that it preserves the desired long–run behaviour. Chapter 8 demonstrates that this alternative method converges to the solution of the continuous equation, given sufficient computational effort.

Item Type:Thesis (PhD)
Date of Award:November 2009
Supervisor(s):Appleby, John
Subjects:Mathematics > Differential equations
Business > Finance
DCU Faculties and Centres:DCU Faculties and Schools > Faculty of Science and Health > School of Mathematical Sciences
Use License:This item is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 License. View License
Funders:Science Foundation Ireland
ID Code:14869
Deposited On:12 Nov 2009 16:16 by John Appleby. Last Modified 12 Nov 2009 16:16

Download statistics

Archive Staff Only: edit this record