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Abstract
As one of the most useful sources of quantitative precipitation measurement, rainfall radar analysis can be a very
useful focus for research into developing methods for rainfall prediction. Because radar can estimate rainfall dis-
tribution over a wide range, it is thus very attractive for weather prediction over a large area. Short lead time
rainfall prediction is often needed in meteorological and hydrological applications where accurate prediction of
rainfall can help with flood relief, with agriculture and with event planning. A system of short-term rainfall predic-
tion over Ireland using rainfall radar image processing is presented in this paper. As the only input, consecutive
rainfall radar images are processed to predict the development of rainfall by means of morphological methods and
movement extrapolation. The results of a series of experimental evaluations demonstrate the ability and efficiency
of using our rainfall radar imaging in a nowcasting system.

Categories and Subject Descriptors (according to ACM CCS): Image Processing and Computer Vision [I.4.9]: Short-
Term Rainfall Prediction by Rainfall Image Processing

1. Introduction

Quantitative precipitation forecast (QPF) is widely used in
predicting the distribution of all kinds of precipitation, and is
especially valuable in flood forecasting to reduce the effects
of weather disasters [RGT∗03,FRS02]. Research on quanti-
tative rainfall prediction falls into two main sources, weather
radar and numerical weather prediction (NWP). Rainfall
radar can capture the real time distribution of precipitation,
and it could give fairly good short-term prediction, while the
NWP model usually has a longer lead time. Because of the
pros and cons both of the two sources have on their own,
some research has attempted to combine the two heteroge-
neous ways in order to explore the advantages of both and
has achieved better application in forecasting [IDCX06].

Radar and rain gauges are the most common measure-
ments for collecting rainfall data. Together with rainfall
radar, rain gauges are widely used to estimate the areal and
spatial distribution of rainfall. Unlike rainfall radar which
can estimate rainfall at a high resolution over a large area,
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rain gauges can only measure rainfall directly at point loca-
tions. Because of the advantages that weather radar has, it
is employed as an important tool to study a wide range of
hydrological applications [CIC04].

As a remote sensing observation, rainfall radar can allow
the prediction of short-term forecasts based on the current
weather situation, which can provide useful information on
rainfall distribution. Rainfall occurrence in a particular area
can be studied in order to provide the rainfall rate which
can then be used in the future for predicting rainfall levels
for similar weather situations. The aim of this paper is to
analyse rainfall radar imaging in Ireland in order to predict
the short-time rainfall rate in given areas and locations. The
overall range of our target area is about 250,000km2. The
longest prediction lead-time of our system is one hour, the
grid interval for each prediction is 1.5km, and our prediction
is updated at an interval of every 15 minutes.

Section 2 describes related work in rainfall prediction.
Section 3 describes problems with using radars to detect
rainfall. Subsequently, Sections 4 and 5 describe the rainfall
prediction algorithm and systems we employed using radar
images. In Section 6, rainfall prediction will be computed
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at 14 different locations around Ireland over varying time
periods. The results of the experiment are given and the per-
formances are analyzed and compared. We close the paper
with conclusion in Section 7 as well as future work.

2. Related Work

Quantitative rainfall radar prediction is a complex proce-
dure. Because of the numerous climatic variables associated
with the microphysics of precipitation systems and for other
complex reasons such as observational uncertainties directly
caused by radar problems, the prediction of precipitation us-
ing rainfall radar can vary to a large extent. Much previ-
ous research in meteorology has been carried out to predict
the weather using a combination of radar-based observations
and weather modeling, whereas our approach is to use radar
only.

One area used by QPF is time-series analysis techniques
[ETM00], such as Linear stochastic auto-regressive moving-
average models (ARMA) [PBLGC93], artificial neural net-
works (ANN) [RJK98, MNFC92] and K-nearest-neighbour
methods (K-NN) [GK93]. In [ETM00], the three methods
are compared and more light is shed on the usefulness of
ANN and K-NN because they are relatively new as applica-
tions in hydrology. Quite distinctly from the ARMA model,
ANN belongs to the class of non-linear, data-driven ap-
proaches. Due to the complexity of the various aspects of
precipitation ANN is employed by training with a set of in-
puts and outputs to perform prediction without identifying
any kind of relationship among the parameters. Without im-
plying any structured interaction, K-NN is a non-parametric
regression methodology. It exploits the identification of the
nearest neighbors from a large training sample [ETM00].

As a useful model for QPF, mesoscale weather models
[JDYRG00, IDCX06] are preferred in the use of numerical
weather prediction (NWP). In [IDCX06], a high resolution
mesoscale weather model (MM5) is set up to improve the
lead time and accuracy for prediction. The weather model
takes into account more detailed information such as mi-
crophysical data, the relations between weather variables as
well as the structure of the atmosphere and its dynamic char-
acteristics. The model has been simulated in a wide range
of mesoscale atmospheric processes including precipitation
studies [RTBH94, JT97b, JT97a]. However, unfortunately
this method seems hard to be able to provide satisfactory
forecasts for many hydrologic applications [ETM00, Bra99]
and in particular in Ireland where the weather is normally
quite unstable because of the influence of the Atlantic ocean.

Although radar detection is affected by problems such as
ground occlusion and altitude effects, it could be very useful
and efficient in short-term forecasting which is also called
nowcasting.

Weather radar data is one of the important remote-sensing

information sources providing information on the distribu-
tion of precipitation in rainfall prediction [TBTR03, Koj98,
CIC04]. Weather radars transmit a pulse of radio waves and
detect any rainfall mass through detection of electromag-
netic reflection. Thus the weather radars have the potential
to estimate the rainfall. A significant advantage has been
demonstrated by recent research using weather radar in pre-
diction [GN04]. In [CIC04], the prediction based on weather
radar yielded a satisfactory result with the average error rate
of 23%. In [PBBV00], the results from radar also proved to
be accurate, even more accurate in totaling rainfall than rain
gauge models in some cases.

Traditionally, a reflectivity-rainfall (Z-R) relationship is
built to produce reliable radar-based predictions of rainfall
intensities applying radar reflectivity data in hydrometeorol-
ogy [GJC99]. The rain intensity R is related to the radar re-
flection Z according to the power law [Bat73]. The rainfall
amounts can be estimated involving the use of reflection via
the Z-R relation. This relationship is particularly applied to
frontal rainfall prediction.

Heavy rainfall can cause flood disasters, as we know in
Ireland, which is why it is important to predict rainfall and
run-off discharge in advance. Radar-based nowcasting can
make valuable contributions according to hydrological ap-
plications, and it could be particularly used for flash flood
forecasting/monitoring [IDCX06, PBBV00, MBF00]. As a
useful nowcasting tool, rainfall radar readings shows great
value in flood prediction. With widely used weather radar
networks, the prediction of floods can be provided as severe
weather warnings, for water management, air and marine
traffic control, etc. The NEXRAD Radar system is a popular
Doppler weather radar system which is widely used to track
and predict precipitation and atmospheric movement. Ac-
cording to [FJPB98] the NEXRAD system has revolution-
ized weather forecasting in the United States and has greatly
improved the weather service’s hydrologic forecasting and
warning program. Numerous researchers have been doing
research on the prediction of rainfall using weather radar
[WFK02, PBBV00, CIC04], including some researchers us-
ing numerical weather prediction in addition to rainfall radar
[IDCX06, JT00].

3. Met Éireann Rainfall Radar

Rainfall radar is used to detect the reflection of precipitation.
The reflection is related to the size of the raindrops because a
larger droplet of rain backscatters more radiation. The radar
can provide reflectivity measurements at a sampling rate 5-
15 minutes, and with a spatial resolution between 1 and 5
km. With these, we can measure the reflectivity at a height
of 3000m–15000m above the surface.
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3.1. Met Éireann Radar Service

We have used Met Éireann in Ireland as the meteorologi-
cal service which uses two rainfall radar stations, at Dublin
and Shannon respectively. Figure 1(a) shows the composite
of the two radar detections when the images are merged to-
gether.

The radars scan every 15 minutes to a range of 240km
with a 1km resolution. The rainfall radar image is then con-
verted from reflectivity data in the form of a volume scan
which is a sequence of sweeps for increasing antenna eleva-
tion angles (see Figure 1(b)). The reflectivity is collected on
a polar grid with a resolution of 1km by 1km [WFK02]. Fig-
ure 1(b) is a demonstration of the data collection from the
Shannon radar. Every range cell contains 64 range elements
whose size is 250m by 0.1 degree.

Figure 1: Irish radar composite & Radar volume scan.

3.2. Rainfall Radar Problems

Although rainfall radar images can provide useful informa-
tion on precipitation patterns, the radar has problems in-
duced by the nature of its own mechanism. Among these
problems are the curvature of the earth and ground echoes,
which are are the most prominent of the problems.

• Earth’s curvature: Because the earth is curved, this cur-
vature makes the lowest ground point invisible to radar es-
pecially from a far off distance. For example, at a distance
of 250km, the lowest point visible to the radar (assuming a
flat surface) is 12,000 - 14,000 feet above the surface. The
beam will rise above the surface of the earth even though
it’s emitted horizontally. This means that detection will
be weaker at longer ranges and means we can only cap-
ture images of the top of clouds at this long distance. The
accuracy will also decrease as the range increases and the
radar is spread more. Thus the accuracy of radar detection
is range-dependent due to the elevation the radar scans,
and this will also be reflected by the analysis of our ex-
perimental results in Section 6.

• Ground Clutter: Ground clutter is formed by the signal
reflected by the ground and buildings which is caused by
power in the antenna side lobes. It will generally be much
worse within 10kms of the radar source. The clutter can

result in permanent echoes from mountains or tall build-
ings. Take Dublin Airport Radar for example, the reflec-
tions from from the Mourne mountains in Co. Down and
the Galtee mountains yield two main permanent echoes
in the radar image which is very evident, even when no
rainfall is present (see Figure 2).

Figure 2: Topographical explanation for ground clutter at
the Dublin Airport Radar.

The accuracy of prediction is limited due to high de-
pendence on the distance between the detection and radar
location as well as the distribution of the drop sizes be-
cause of the aforementioned problems rainfall radar has.
Errors increase with distance from the radar. Considering
the permanent echoes caused by mountains and high build-
ings, the best signal distance from rainfall radar is at about
75km. In addition, with considerable variations of atmo-
sphere the radar data can’t always provide a satisfactory as-
sessment of rain intensities [Krz95]. Heavy rain is usually
over-estimated, and light rain is easily under-estimated by
rainfall radar reflections.

4. Prediction Model of Rainfall Radar Imaging

To provide a nowcasting service and find out the effect of
rainfall radar problems on short term prediction, we built our
prediction model by using rainfall images. Our short-term
prediction model consists of rainfall radar image process-
ing, rainfall data extraction and short-term extrapolation, as
specified in the following sections.

4.1. Rainfall Radar Image Processing

Rainfall Radar image processing is used to demonstrate rain-
fall distribution and the current meteorological state at differ-
ent time nodes to prepare for prediction in the lead-time. The
aim of processing is to prepare for data extraction such as
gravity identification, velocity and intensity calculation, etc.
The results at each of the various end points of processing
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are stored in a database after being analyzed together with
the rainfall radar images. Users will be able to get snapshots
of the results and perform queries as well as obtain realtime
predictions later via the interface.

To identify the rainmass in each rainfall image, we first se-
lected the non-rainmass background image using color anal-
ysis (see Figure 2 left). Taking the newly scraped image from
the Met Eireann web page as the source image, the rainmass
is analyzed by the following procedures.

• Background Subtraction: Going through the back-
ground subtraction step, all non-rainmass candidate data
are removed from the source image. Only the rainmass
areas are left with a black background.

• Binarization and Non-Interest Reduction: Binarization
is implemented using an empirical threshold. After bina-
rizing the image produced by the last step, we remove
small pixel clusters and non-interest regions of the im-
age to help with the identification of pixel clusters cor-
responding to rain showers. This step combines the use
of low-pass filtering and macro-block expanding analysis.
All unnecessary regions are removed in this step.

• Rainmass Identification: The rainmass can finally be
identified as a coloured region, as shown in Figure 3(e).
The rainmass contains different levels of rainfall which
are used in data extraction, such as the identification of
centre of gravity and intensity of rain.

• Edge Detection: All image series used in prediction are
run through an edge detection algorithm to analyse the
overall shape of the rainmass. The outputs of the process
are black and white images where white pixels represent
the contour of the rainmass (see Figure 3(f)).

Figure 3: Rainfall Radar Image Processing.

4.2. Rainfall Data Extraction

While one image only contains the static distribution of the
rainmass such as the centre of gravity, the rainfall intensity

and size at a specified time node, further information can
be inferred from a series of consecutive images including
rainmass speed, direction and acceleration, etc. All this in-
formation, essential for rainfall prediction, is extracted from
the various characteristics associated with each rainmass.

We expand the research problem by defining the set of
rainmass as {Rm}, where Rm is the rainmass described by
the tuple as follows:

Rm = {Phy,Mor},

Where Phy,Mor stands for physical and morphological
characteristics respectively.

4.3. Physical Features

Physical features of each of the rainmass(es) in an im-
age are the attributes of rainmass which correspond to its
physical characters. Physical features are defined by Phy =
{LCoG,Vel ,Dir,Acel ,T},

where

LCoG refers to the location of the rainmass represented by
its centre of gravity (CoG) marked with coordinates x and y.

Vel ,Dir,Acel represents velocity, direction and the acceler-
ation of a rainmass respectively.

T is the time stamp of the rainmass. Because images are
processed every 15 minutes, the time stamp is marked in
one-quarter regulation.

Among the information related to the physical features
of the rainmass, LCoG,Vel and Dir are the most frequently
used to estimate the distribution of the rainfall cloud in two
dimensional domains. LCoG is identified by a weighted av-
erage in our approach. Vel is calculated using v = ∆d/∆t
from physics, where ∆d refers to the distance at which the
mass has moved based on the rainfall pattern assessment dur-
ing the time interval ∆t which is 15 minutes. Accordingly,
Dir ∈ [0,360] is denoted by a clockwise angle denoting the
direction of Vel , where 0, 90, 180, 270 mean "north", "east",
"south" and "west" respectively.

4.4. Morphological Features

In addition to physical features, we represent the morpho-
logical features related to the rainmass by defining Mor =
{Con,Area, I,Comp,Clu}

where

Con ≡ {(xi,yi);1≤ i≤ N} is determined by the sequence
of edge pixels (see Figue 3(f)).

Area is the rainmass area evaluated by the expression
Area = 1/2∑

N
i=1(xi−1yi− xiyi−1).

I ∈ {lig,mod,heav,vheav} is a set of rainfall inten-
tion levels, where lig,mod,heavy,vheavy, represent "light",
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"moderate", "heavy" and "very heavy" respectively which
are indicated by different colours in the original scraped
rainfall radar images.

Clu is defined to identify the clustering characteristics of
rainmass. It is determined by Clu = Area/Nblob, where Nblob
denotes the number of blobs. It reflects the assembling or
diffusing state of each rainmass.

Comp is the compactness of the rainfall mass. We define
∆si = 1/2(d(vi−1,vi) + d(vi,vi+1)), then Comp is reflected
by a rainmass boundary curvature and determined by the
form of Comp = ∑

N
i=1 ∆si/Rc(vi)2 , where Rc(vi) is the ra-

dius of the oscillating circle defined by every three consec-
utive vertices. The normalized Comp reflects the coherence
of the whole rainmass, smaller values indicate less compact
rainmass which is easy to diffuse in the next series of rainfall
radar images.

The characteristics extracted above are specific to each
rainmass and allow the rainmass to be uniquely identified
in succeeding images over time. Then the rainmass patterns
for a specified period can be recognized allowing behavioral
comparisons to be drawn between them. The use of a be-
havioral constant can then be applied to predict the likely
rainmass activity in next series of images.

4.5. Rainfall Short-Term Prediction

Rainfall prediction is performed after the rainmass has been
identified and the characteristics have been extracted. The
model of prediction compares each rainmass with those ex-
tracted from preceding radar images. Once the rainmass is
identified in preceding ones its activity in the next timeframe
can be estimated based on the calculated rainmass behavior
pattern. The schematic block diagram for rainfall prediction
is given in Figure 4.

Figure 4: Rainfall short-term prediction diagram.

Extrapolation is widely used and gives satisfying predic-
tion especially in very short lead time prediction [KTS00,
CLAK05]. Our method of extrapolation is run every 15 min-
utes after a new rainfall radar image is obtained. According
to the speed and direction of rainmasses analyzed from for-
mal consecutive images (e.g. images at t, t − ∆t, t − 2∆t,
etc.), the locations of the rainmasses are indicated as a pre-
diction at time t +∆t, t +2∆t, etc.

Although the likely error factor will increase while the
lead times become longer, the method is more effective when
performing short-term prediction for next one or two time
windows. Besides, using average smoothing velocity evalu-
ation, the displacement of rainmass the next time does not
show as abrupt, especially when rainmasses move in a reg-
ular route with respect to speed and direction. In most cir-
cumstances the predicted rainmass distribution fits well with
the actual one compared with the observed rainfall radar im-
age(see Figure 7). Where there is a shift in speed and/or di-
rection of the rainfall rainmasses these tend to be over sev-
eral time windows.

The predicted rainfall image is generated to show what the
behavior would look like, e.g. current rainmass over Dublin
will move in northeasterly direction out to sea at a speed of
40 km/h. As time progresses, the actual rainfall image for
that prediction is acquired analyzed and compared with the
predicted one, allowing the correction and assessment of the
rainfall predicting model. Figure 7 shows an historical series
of observed rainfall images and the generated rainfall pre-
diction comparing with the actual rainfall distribution image
at the same time.

5. Short-term Rainfall Prediction System

The system we built aggregates rainfall images as input pro-
duced from two rainfall radars. To give accurate prediction,
the system uses these radar images to monitor the location,
movement and intensity of all precipitation. Image process-
ing is implemented in the system to visually track rain clouds
in terms of mass, speed direction, etc. and predict rain/no
rain for any location.

As Figure 5 shows below, the rainfall prediction system
consists of five main components, rainfall image gathering,
image processing, data management, rainfall prediction and
a touch-sensitive application as the interface to supply users
with high-level data visualization.

Figure 5: Short-term rainfall nowcasting system architec-
ture.

• Rainfall Image Gathering: As the only input of the sys-
tem, rainfall radar images are gathered every 15 min-
utes. The rainfall image gathering application retrieves the
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newest radar image tagging it with a time stamp and sends
the image to the image processing module before it is
stored in the database with the results processed. The pre-
diction can thus be updated every 15 minutes after gather-
ing the new rainfall image data.

• Rainfall Image Processing: The rainfall radar images
are processed using image processing and morphologi-
cal methods to mine the data from images, such as the
edges of rainmass(es), center of rainfall distribution, rain-
fall intensity, and the velocity of rainfall development, etc.
The data inferred from image processing are stored in the
database.

• Rainfall Data Management: This is used to manage the
rainfall radar images of different periods both the histori-
cal and the predicted ones. As the advanced control of the
rainfall data, the management application is built to pro-
cess and manage the various data in the database. Using
the application the user can manage sequences of images,
view the mapping of rainfall all over the country, and re-
fer to rainfall characteristics and statistics on a specified
time segment e.g. the precipitation intensity for a week,
month, or a particular year. The locations are added or
deleted across Ireland at the user’s preference to retrieve
the rainfall states at specified locations.

• Rainfall Prediction: In terms of rainfall prediction model
and limits on prediction, the rainfall prediction is executed
using the processed images and associated information
gathered into the database. Then the predicted rainfall dis-
tribution images and rainfall information are also assimi-
lated in the database.

• Multi-Touch Rainfall Prediction Interface: Aiming to
exhibit an intuitive representation of rainmass distribu-
tion, an interface is implemented on a touch-sensitive in-
teractive table operating a 3D view of the earth (see Fig-
ure 6). Multi-touch interface is the software component
we developed to apply users’ two-handed gestures into
human-computer interaction. The movement of precipita-
tion is time-related and is a dynamic procedure depending
on spatial representation. Accordingly two-hand collabo-
rative actions are applied to manipulate the earth and a
one-hand movement along the axis of time is applied to
play forward or backward the rainmass distribution.

With the help of the multi-touch two-handed interaction
interface, the information is operated without the salient in-
terference of the keyboard and mouse. That means the gap
is well filled between the physical world and information
world. The way of interaction on this interface is described
in the Figure 6.

5.1. Results and Discussion

The proposed approach and system has been applied to rain-
fall prediction over Ireland, where 14 different locations are
used to predict rainfall likelihood every 15 minutes. About
34,528 predictions have been carried out on every location in

Figure 6: Bimanual natural action interface.

our experiments, which means that we implemented about
483,392 predictions in all. Figure 7 shows the difference
between the observed rainfall distribution and the predicted
one for a 30 minutes lead time. We use recall and precision

Figure 7: Rainfall radar nowcasting for half an hour (event:
08/12/2008).

to denote the accuracy of prediction, which are defined by

Precision = R/R
R/R+R/NR ,Recall = R/R

R/R+NR/R

where R/R is the number of predicted rains in a 15 min-
utes range and where rain actually fell as predicted, R/NR
stands for the number of times we predicted rain but it didn’t
rain, NR/R is the number of predictions of no rain but it
rained. The F-Score is calculated using the expression

F−Score = 2× Precision×Recall
Precision+Recall

Prediction results from each location are listed in detail
(see Table 1). The rainfall state is estimated over the 14 lo-
cations with an overall 0.709 precision. The overall recall
and F-Scores are 0.763 and 0.735 respectively.



Peng Wang & Alan Smeaton et al. / Short-Term Rainfall Nowcasting

Table 1: Experimental results according to locations

Locations R/R NR/R R/NR Precision Recall

Belmullet 647 415 391 0.609 0.623
Birr 2475 1164 679 0.680 0.784
Casement 1908 766 611 0.714 0.757
Claremorris 1416 1333 391 0.515 0.784
Clones 2928 871 848 0.771 0.775
Cork 1797 651 565 0.734 0.761
Dublin 1470 800 405 0.648 0.784
Kilkenny 2345 713 601 0.767 0.796
Malin Head 596 512 164 0.538 0.784
Mullingar 2939 930 748 0.760 0.797
Roches 1861 558 562 0.769 0.768
Rosslare 1330 412 372 0.763 0.781
Shannon 2471 822 1047 0.750 0.702
Valentia 1559 626 627 0.713 0.713
Total 25742 10573 8011 0.709 0.763

From the results we can take the locations with lower F-
Score to uncover the effect of distance on the prediction ac-
curacy. Belmullet, Malin Head and Valentia are located on
the coast of Ireland and are far from the radars, and they have
lowest F-Scores far below 0.70. Kilkenny has the highest ac-
curacy among the 14 locations and it’s about 100 km east of
the Shannon Airport Radar and 100 km south-west of the
Dublin Airport Radar. The same case happens to Mullingar
and Rosslare with high accuracy. Because the Dublin and
Shannon prediction points are too near to their local radars
the accuracy is not very good in prediction (only slightly
higher than 0.70) though not as significant as the poor pre-
diction induced by much greater distances. The change of
accuracy depending on the distance demonstrates that radar
prediction is range-related, the estimation caused by the
radar problems introduced earlier.

Table 2: Experimental results according to time

Time Period R/R R/NR NR/R Precision Recall

00:00-01:59 1713 1152 735 0.598 0.700
02:00-03:59 1570 1568 899 0.500 0.636
04:00-05:59 1870 920 784 0.670 0.705
06:00-07:59 2032 837 740 0.708 0.733
08:00-09:58 2073 719 614 0.742 0.771
10:00-11:59 2326 537 588 0.812 0.798
12:00-13:59 2506 1051 725 0.705 0.776
14:00-15:59 2620 675 729 0.795 0.782
16:00-17:59 2546 709 657 0.782 0.795
18:00-19:59 2322 657 557 0.779 0.807
20:00-21:59 2181 629 473 0.776 0.822
22:00-23:59 1983 1119 510 0.639 0.795

Besides the geographic characters which can affect the ac-
curacy significantly, we also analysed the effect of time re-
lated to the experimental result. While the predictions are
performed according to the time of day, it can actually be

run at any period of a day. Table 2 shows the experimental
result accuracy every two hours while the accuracy results
every one hour are plotted in Figure 8. The comparison of
the performance in different periods shows that the factor of
time also affects the accuracy in our system. The best pre-
diction happens between 11:00 and 21:00 which remains at
about 0.80. After 23:00 we can see a significant drop until
04:00 at which the poorest performance occurs (see Figure
8), then the accuracy climes until 11:00 in the morning at
which the precision and recall are as high as 0.816 and 0.797
respectively.

Figure 8: Comparing in different time periods.

The experiment shows the ability of rainfall imaging now-
casting system. Based on the above experimental results, we
believe that this approach to predicting rainfall has consid-
erable potential. This effectiveness is prominent in the pre-
liminary experiment, especially in particular locations and
time periods. In addition, the approach can help to analyze
any performance or other problems with the radar system
both spatially and temporally. We are currently conducting
a more thorough experimental investigation using a lager set
of rainfall images including different styles of rain.

6. Conclusion

In this paper, we described a short-term rainfall prediction
method which a prediction system is built using rainfall
radar images. By image processing and morphologic anal-
ysis the rainmasses are identified and related information
is extracted, the distribution of precipitation in a given lead
time is estimated by an extrapolation algorithm. The effec-
tiveness of the model was demonstrated through a series of
experiments.

As the system demonstrates, this algorithm works well
in the circumstances of short-term. Because of the inherent
problems of rainfall radar, higher accuracy is not achieved
because of particular parts in the coverage area of radar and
the time of day period. Future work will explore the utiliza-
tion of microphysics of precipitation which will increase the
lead time and the accuracy as well. In our system the radar
images are the sole input and the only source of prediction.
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