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Abstract

The bene ts of syntax-based approaches to data-driven maicte translation (MT)
are clear: given the right model, a combination of hierarcbal structure, constituent
labels and morphological information can be exploited to pduce more uent, gram-
matical translation output. This has been demonstrated by e recent shift in re-
search focus towards such linguistically motivated apprcaes. However, one issue
facing developers of such models that is not encountered ihet development of
state-of-the-art string-based statistical MT (SMT) systens is the lack of available
syntactically annotated training data for many languages.

In this thesis, we propose a solution to the problem of limitk resources for
syntax-based MT by introducing a novel sub-sentential aligment algorithm for the
induction of translational equivalence links between pasrof phrase structure trees.
This algorithm, which operates on a language pair-indeperdt basis, allows for the
automatic generation of large-scale parallel treebanks wh are useful not only for
machine translation, but also across a variety of natural leguage processing tasks.
We demonstrate the viability of our automatically generatd parallel treebanks by
means of a thorough evaluation process during which they acempared to a man-
ually annotated gold standard parallel treebank both intmsically and in an MT
task.

Following this, we hypothesise that these parallel treeb&s are not only useful
in syntax-based MT, but also have the potential to be exploéd in other paradigms
of MT. To this end, we carry out a large number of experimentsaoss a variety of
data sets and language pairs, in which we exploit the inforntian encoded within the
parallel treebanks in various components of phrase-basethtsstical MT systems.
We demonstrate that improvements in translation accuracy an be achieved by
enhancing SMT phrase tables with linguistically motivatedphrase pairs extracted
from a parallel treebank, while showing that a number of othefeatures in SMT can
also be supplemented with varying degrees of e ectivenedanally, we examine ways
in which synchronous grammars extracted from parallel tréanks can improve the
guality of translation output, focussing on real translaton examples from a syntax-
based MT system.
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Chapter 1

Introduction

Data-driven approaches have long succeeded rule-based moels as the primary
research direction when addressing the problem of machinanslation (MT). Such
approaches learn models of translation from large corporagarallel data. Statistical
MT (SMT) has been the dominant data-driven paradigm for a nurber of years and
this can be attributed in large part to the availability of free open-source software,
e.g. Gza++ (Och and Ney, 2003), Moses (Koehn et al., 2007), SRILM (Stoke,
2002), and parallel corpora, e.g. Europarl (Koehn, 2005)orf training. Another
aspect which has contributed to the popularity of SMT is thedct that, in terms of
parallel training corpora, unannotated "plain text' data s all that is required and
in today's multicultural climate, such bilingual data is abundant, at least for major
languages.

More recently, there has been widespread discussion as tcetvter pure statistical
approaches to MT have hit a ceiling with regards to the qualt of translations they
can achieve. As a consequence of this, there has been an alwimend towards the
development of more linguistically-aware models (predomantly syntax-based) of
translation. A prerequisite of such models is parallel dataith some level of a priori
analysis/annotation. While monolingual treebanks are wiely available thanks to
large-scale annotation projects (e.g. Marcus et al. (1994Civit and Mart (2004);
Telljohann et al. (2004) amongst others), bilingual paradll corpora with syntactic

annotation on both sides | so-called parallel treebanks | of any size are few and



far between. This can mainly be attributed to the huge e ort equired to produce
such a resource. Because of this, there has been a lot of regdeaarried out on
tree-to-string MT models! e.g. Yamada and Knight (2001), while the development
of tree-to-tree based models, despite their potential, hasi ered.

In this thesis, we seek to address the dearth of resources $gntax-based MT by
exploiting existing monolingual technologies as well as v techniques to develop
a methodology for the automatic generation of large-scaleallel treebanks. This

gives rise to our rst research question.

RQ1: Can we develop a method to facilitate the automatic generatn of

large-scale high-quality parallel treebanks for use in MT?

To this end, we design a novel algorithm for inducing sub-semtial translational
equivalence links between pairs of parallel trees produceding monolingual con-
stituent parsers. In order to address concerns regardingéhpropagation of errors
given the multiple automated processes involved in the gerag¢ion of parallel tree-
banks, we rigorously assess their viability by employing #m as training data in
series of tree-to-tree MT systems. Furthermore, we perforia detailed analysis of
the treebanks in two ways: intrinsically by comparing the atomatically generated
parallel treebanks to a manually crafted version of the samand by carrying out a
manual assessment of the induced sub-tree alignments.

Following on from this, we hypothesise that, despite their lvious applicability
for syntax-based MT, parallel treebanks also have the potgal to be exploited in

statistical paradigms of translation. This leads is to our axt two research questions.

RQ2: Can syntactically motivated phrase pairs extracted from a arallel tree-

bank be exploited to improve phrase-based SMT?

RQ3: What other features of the phrase-based model can be enhathdsy

exploiting the information encoded in parallel treebanks?

Tree-to-string models almost always include English on the'tree' side as it is heavily resourced
in terms of annotated data and annotation tools.

2



Taking advantage of the many open-source tools availablerf8MT, we design
an exhaustive set of experiments in which we supplement plsexbased translation
models with parallel treebank-induced phrase pairs and agrout further tests aimed
at discovering various ways in which parallel treebanks cabe used in SMT, for
example, using parallel treebank word alignments to seeddtSMT phrase extraction
process. Experiments are performed across a range of dates send language pairs
in order to ascertain the conditions under which parallel ebanks can be optimally
exploited in SMT.

Returning to our original problem, the lack of resources fosyntax-based MT,

we present an additional research question.

RQ4: To what extent are our automatically generated parallel trebanks use-

ful in syntax-based MT?

In addressing this question, we analyse the performance ofwntax-based MT
system when using a parallel treebank as training materialylperforming both an
automatic evaluation of translation quality plus a detailel manual assessment of

observed improvements in translation output.

Thesis structure  The remainder of this thesis is structured as follows. In Clm
ter 2, we present background information on relevant topicselated to this work. In
Chapter 3, we describe a novel algorithm for the induction cdub-sentential align-
ments between parallel trees. Chapters 4 and 5 detail a sexief experiments carried
out investigating the exploitability of automatically generated parallel treebanks in
both statistical MT and syntax-based MT respectively. Findly, in Chapter 6, we
conclude and present some avenues for future work. A more aiétd description of

the work is given in the following.

Chapter 2  Parallel treebanks are a relatively new concept in the ared pat-

ural language processing (NLP). In this chapter, we descebthe characteristics of



a parallel treebank and the challenges faced when building& particularly the is-
sue of sub-sentential alignment and how this di ers from “gular' word alignment.
Following this, we give an overview of the phrase-based SMPB-SMT) paradigm,
providing additional details on those aspects especiallyeginent to the experiments
presented in later chapters, i.e. the phrase extraction pecess and the translation and
log-linear models. We then present the concept of syntax-6ad MT and summarise
a number of techniques for incorporating linguistic inforration into the translation
process, e.g. tree-to-string and tree-to-tree models. $pe details are given for two
systems, the data-oriented translation (DOT) model (Poutsa, 2000; Hearne and
Way, 2003; Hearne, 2005) and the CMU statistical transfer {(&-XFER) framework
(Lavie, 2008; Hanneman et al., 2009) as we employ these systedirectly through-
out this thesis. Finally, we describe the automatic metricaised to evaluate the

translation quality of our various MT system con gurationsin this work.

Chapter 3 In this chapter, we present the novel sub-tree alignment abg
rithm we have developed in terms of design and performancei(§ley et al., 2007b;
Zhechev, 2009). Firstly, we describe the conditions to witiave endeavour to adhere
over the course of the development, namely language pair-catask-independence.
Following this, we present the notion of a well-formed alignent and our baseline
algorithm. A number of extensions and con gurations are inbduced to resolve var-
ious issues that arose during development and a descriptiohthe scoring functions
used to seed the greedy search algorithm is provided. We thga on to intrinsically
evaluate the performance of our algorithm by comparing theesulting alignments
to a set of manually inserted alignments, and we carry out arxginsic evaluation
using the automatically generated parallel treebanks to &in DOT systems. Finally,
we manually assess the performance of the sub-tree alignmalgorithm by exam-
ining its ability to capture a number of translational divergences present in the data

(Hearne et al., 2007).



Chapter 4 We hypothesise that automatically generated parallel trdmnks
may be of use beyond syntax-based approaches to MT. To thiscgkrnwe design a
number of experiments to investigate ways in which treebaskcan be exploited in
phrase-based SMT. In this chapter, we present initial piloexperiments in which
syntactically motivated phrase pairs extracted from pardél treebanks are used to
supplement the translation model of a PB-SMT system (Tinske et al., 2007a).
Following the success of these experiments, we build a paeatreebank almost two
orders of magnitude larger than that of Tinsley et al. (20074 to our knowledge,
the largest parallel treebank exploited for MT training at the time | and replicate
the pilot experiments, as well as investigating a number ohinovative techniques
for combining our syntax-based phrase pairs with non-syntic SMT phrases pairs
in the PB-SMT model (Tinsley et al.,, 2009). Additionally, we examine further
ways in which parallel treebanks can be exploited in the PBNBT pipeline. We use
the treebank-based word alignments to seed the phrase-edtion process and to
inform the lexical weighting feature in the log-linear mode In the remainder of
the chapter, we investigate the e ect the size of the trainig data set has on the
in uence of parallel treebank phrase pairs in the PB-SMT moel (Tinsley and Way,
2009) and describe our combination techniques as appliedthre shared translation
task at the International Workshop on Spoken Language Teclotogies (IWSLT-08)
(Ma et al., 2008). Finally, we present initial experiments dsigned to investigate the
feasibility of using our sub-tree alignment algorithm to agn dependency structures

for SMT phrase extraction (Hearne et al., 2008).

Chapter 5 In order to fully exploit the information encoded in parallé tree-
banks, we need to employ them in an appropriate syntax-bas®il system. Accord-
ingly, we build a parallel treebank | almost twice as large asthat of Tinsley et al.
(2009) | and evaluate its performance when used to train a St&e XFER system. We
observe improvements in translation quality, based on botaAutomatic and manual

analysis, when using a small-scale grammar extracted fromrgparallel treebanks.



We suggest there is signi cant research required to nd out &w best to extract
e cient grammars for syntax-based MT. Finally, for completeness we replicate the
phrase combination experiments of Chapter 4 with this largeparallel treebank. We
con rm our intuition that the in uence of syntax-based phrases pairs would dimin-
ish as the training set size grows and discuss the implicati® of this going forward.
However, we also address our ndings that the parsing formam has a telling e ect

on the set of extractable phrase pairs.

Chapter 6 Finally, we conclude and present a number of opportunitiesof
future work based on open research questions that have arigaroughout the course

of this thesis.

The work presented in Chapter 3 of this thesis (Tinsley et gl.2007b; Hearne
et al., 2007) was carried out as part of a joint project with Vetsislav Zhechev at the
National Centre for Language Technology at Dublin City Uniersity (DCU). Both
Ventsislav and the author contributed in equal part to the dsign, development
and evaluation of the alignment algorithm as described heréurther extensions to
the algorithm were made by Ventsislav in the pursuit of his PB thesis (Zhechev
and Way, 2008; Zhechev, 2009). Similarly, the experimentggsented in Section
4.5 (Hearne et al., 2008) were carried out in collaborationith Mary Hearne and
Sylwia Ozdowska at DCU. The author's principal contributios to this portion of
work were the design and execution of the MT experiments algrwith analysis
of the resulting translation performance. The conversionfaependency parses to
constituency structures was carried out by the collaborats. All other research

presented in this dissertation was the author's own work.



Chapter 2

Background and the Current

State-of-the-Art

In this chapter, we describe the state-of-the-art and relad research within the ar-
eas explored by this thesis, paying particular attention tathose aspects directly
related to our novel approaches. More speci cally, in secm 2.1, we discuss parallel
treebanks and the motivation behind our need to design a sugentential alignment
algorithm. In section 2.2, we present the various componenin a PB-SMT pipeline,
notably the phrase extraction process and the translation adel. Syntax-based ap-
proaches to MT are discussed in section 2.3 including the ZaOriented Translation
model and the Statistical Transfer engine used during our prriments in Chapters
3 and 5 respectively. Finally, in section 2.4, we describedhvarious metrics used to

carry out automatic evaluation of translation quality throughout this thesis.

2.1 Parallel Treebanks

Parallel treebanking is a relatively recent concept whichds stemmed from a combi-
nation of interest in the development of monolingual treeb#s and parallel corpora.
A parallel treebank is de ned as a sententially aligned paikel corpus in which both

the source and target sides are annotated with a syntacticde structure and the sen-



tences are aligned at sub-sentential level (word, phrasedlause level) (Volk and
Samuelsson, 2004; Samuelsson and Volk, 2006). The sub-satiel alignments hold
the implication of translational equivalence between theanstituents dominated by

the aligned node pair. An example parallel treebank entry iglustrated in Figure

2.1. L
N NP
D JJ N D N JJ
| | | | | |
the black box la  caja negra

Figure 2.1: An example English{Spanish parallel treebank atry depicting syntactically
annotated trees and sub-sentential alignments.

Parallel treebanks are a rich linguistic resource which cdre used across a vari-
ety of NLP tasks, e.g. MT, translation studies and grammar iference amongst oth-
ers, as demonstrated at the 2006 International Symposium dtarallel Treebanks!
Building parallel treebanks, however, is a non-trivial tas. Manual construction
IS an expensive, time-consuming and error-prone processiethrequires linguistic
expertise in all languages in questiof. Because of this, parallel treebanks are not
widely available in the NLP community, and those that are avéable tend to be too
small for tasks such as data-driven MT. Table 2.1 presents iatl of parallel treebanks
known to us at the time of writing along with further information on their makeup.

Recent advances in monolingual parsing e.g. Bikel (2002)jwe et al. (2007);
Petrov and Klein (2007), have paved the way for automatic gemation of parallel
treebanks by providing the necessary architecture for syattic annotation. What
still remains, however, is a means to automatically induceub-sentential relations
between parallel trees. For the remainder of this section,eandiscuss parallel tree-

banks and alignment in terms of context-free phrase structe trees.

Thttp://www.ling.su.se/DaLi/education/parallel _treebank symposium.2006

2As with parallel corpora (cf. Europarl (Koehn, 2005)), parallel treebanks can be built
across more than two languages e.g. the SMULTRON English{Geman{Swedish parallel treebank
(Gustafson-Capkowa et al., 2007).



Reference Languages #Treepairs

Cmejrek et al. (2004) Cz{En 21,600
GustafsonCapkowa et al. (2007) Sv{De{En 1,473
Han et al. (2002) Ko{En 5,083
Ahrenberg (2007) Sv{En 1,180
Megyesi et al. (2008) Sv{Tu n=a
Hansen-Schirra et al. (2006) De{En n=a

Table 2.1: Summary of reported parallel treebanks. This parallel treebank contains
140,000 Swedish tokens and 165,000 Turkish tokens, but no s were re-
ported on the number of tree pairs. YNo size of any kind was reported in the
literature for this parallel treebank.

2.1.1 Sub-sentential Alignment

The tree-to-tree alignment process assumes a parsed, triationally equivalent sen-
tence pair and involves introducing links between non-termal nodes in the source
and target trees. Inserting a link between a node pair indites that the substrings
dominated by those nodes are translationally equivalent,d. that all the meaning in
the source substring is encapsulated in the target string drvice versa. An exam-
ple aligned English{French tree pair is given in (2.1). Thisllustrates the simplest
possible scenario: the sentence lengths are equal, the worder is identical and the

tree structures are isomorphic.

JohnV NP JohnV NP

sees Mary voit Mary

However, most real-world examples do not align so neatly. example given
in Figure (2.2) illustrates some important points. Not evey node in each tree needs
to be aligned, e.g.es translates not asis, but as she is® yet each node is aligned
at most once. Additionally, as we do not link terminal nodesthe lowest links are

at the part-of-speech (POS) level. This allows for 1-to-manalignments between

3We can not align to she isas it does not correspond to a single constituent node in theree.
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single lexical items and phrasal constituents, e.g. the ghment betweenhousewife
and ama de casaFurthermore, depending on the parsing scheme, a phraseel&kma
de casamay be realised as a multi-word unit (MWU). Aligning at POS leel also

allows us to preserve such MWUSs during alignment.

S S
TN = N
NP VP -7 Vv NP
| -~ N B
she v NE/”’/(/ €S DT NP
IS DT N una _-N PP
| I | PR
a housewife ama P N

de casa

Figure 2.2: Example of a tree pair exhibiting lexical divergence.

Tree Alignment vs. Word Alignment

When deciding how to go about sub-sententially aligning aggn tree pair, the logical
starting point would seem to be with word alignment. Howeversome analysis
reveals the di erences between the tasks of tree alignmemdaé word alignment. We
illustrate the di erences by referring to the Blinker annotation guidelines (Melamed,
1998) which were used for the word alignment shared tasks dtet workshops on
Building and Using Parallel Textsat HLT-NAACL 2003“ and ACL 2005°
According to these guidlines, if a word is left unaligned onhe source side of a
sentence pair, it implies that the meaning it carries was natealised anywhere in the
target string. On the other hand, if a node remains unalignech a tree pair there
IS no equivalent implication. Because tree alignment is hirchical, many other
nodes can carry indirect information regarding how an unaned node (or group of
unaligned nodes) is represented in the target string, e.ghe is$ esin Figure 2.2.

Some consequences of this are as follows.

“http://www.cse.unt.edu/  rada/wpt
Shttp://www.cse.unt.edu/  rada/wpt05
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Firstly, the strategy in word alignment is to leave as few wats unaligned as
possible \even when non-literal translations make it di cult to nd corresponding
words" (Melamed, 1998). Contrast this with the more conseative guidelines for
tree alignment given in Samuelsson and Volk (2006): nodesdinked only when the
sub-strings they dominate \represent the same meaning: and could serve as trans-
lation units outside the current sentence context". This l#er strategy is a ordable
because alignments at higher levels in the tree pair will azgnt for the translational
equivalence. Secondly, word alignment allows many-to-maalignments at the word
level but not at the level of phrase alignments unless everyowd in the source phrase
is linked to every word in the target phrase and vice versa. @e alignment, on the
other hand, allows each node to be linked only once but fatdtes phrase alignment
by allowing links higher up in the tree pair.

The constrasting e ects of these guidelines are illustrateby the example given in
(2.2)° where the dashed links represent tree alignments and theigidinks represent
word alignments. We see that the word alignment must linkadder to both I' and
echelle whereas the tree alignment captures this with a single 1-tmany alignment

between the nodes dominating the substringadder and lechelle.

(2.2)

NP  POS NP

— 0O
Z
— 0
Z
i)

Jacob 's ladder |'echelle de Jacob

Note also that the word alignment explicitly links's with dewhere the tree align-
ment does not; it is arguable as to whether these strings réakepresent precisely
the same meaning. However, the relationship between theserds is not ignored

by the tree alignment; rather it is captured by the alignmens between the threenp

5The sentence pair and word alignments were taken directly fom Melamed (1998).
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links in combination.

In fact, many di erent pieces of information can be inferredrom the tree align-
ment given in (2.2) regarding the relationship betweers and de, despite the fact
that they are not directly linked. Examples exhibiting varying degrees of contextual

granularity are given in Figure 2.3.

'S ! de
X'sY ! Y de X
NP, 's NP, ! NP, de NP,
NP ! NP4 's NP, X NP ! NP, de NP,

NP NP

//‘N\‘\\A
NP POS NP NP---._ PP
| /N
's F" NP
de

Figure 2.3: Example of varying granularity of information encapsulated in a tree align-
ment.

The rules' in Figure 2.3 are representative of the type of iarmation encoded in
parallel treebanks that is exploitable in syntax-based MT ystems, as we will show

in section 2.3.1.

2.1.2  Automatic Approaches to Tree Alignment

There have been numerous approaches proposed for the auttimaduction of sub-
tree alignments. It should be noted, however, that none of #se approaches were
designed with the explicit intention of building parallel reebanks, but rather with
some other end-task in mind. An early algorithm was preserdéby Kaji et al. (1992)
who made use of bilingual dictionaries to infer correspondees between ambigu-

ous chart parses for the extraction of EBMT-style translabn templates. Imamura
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(2001) describes an approach to alignment which begins withatistically induced
word alignments and proceeds to align at phrase level usinguristics based on
lexical similarity and constituent labelling. Eisner (20@) describes an approach to
tree alignment for dependency structures which performs p&ctation maximisation
(Dempster et al., 1977) over all possible alignment hypotkes in order to select the
optimal set. However, this approach, which can also be apgdl to phrase-structure
trees, is very computationally expensive. An inspirationdr the work presented in
Chapter 3 of this thesis, the rule-based approach to Frenckfiglish sub-tree align-
ment of Groves et al. (2004) (which in turn is in uenced by thedependency-based
alignment approach of Menezes and Richardson (2003)), igtextracts a bilingual
dictionary automatically using statistical techniques. Te dictionary is then ap-
plied in conjunction with a number of hand-crafted rules tonduce alignments. This
method was employed to extract synchronous tree-substitioih grammars for data-
oriented translation (cf. section 2.3.2). A more recent appach is presented in
Lavie et al. (2008) who use a clever mathematical trick basexh prime factorisation
to induce sub-tree alignments in order to create training da for their statistical
transfer-based MT engine (cf. section 2.3.1). However, thapproach is superceded
by that of Ambati and Lavie (2008) who induce a statistical wod alignment between
the words in the tree pairs and then allow all hierarchical @inments which are con-
sistent with the word alignment. In addition to this, Ambati and Lavie present
an extension to this algorithm in which target trees are restictured in order to
increase isomorphism with the source tree. The intended ekof this is to increase
the number of alignments induced and consequently improvéné coverage of the
MT system trained directly on the aligned output. In his Ph.D thesis, Zhechev
(2009Y presents a detailed comparison of the approaches describeddmbati and
Lavie (2008) and our novel method presented in Chapter 3.

We take a somewhat di erent perspective on tree alignment #m that of Welling-

ton et al. (2006) for example, who view trees as constraint® @lignment. Our pur-

"Ventsislav Zhechev was a collaborator on the work presentedh Chapter 3 of this thesis.
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pose in aligning monolingual syntactic representations te build parallel treebanks

which make explicit the syntactic divergences between semice pairs rather than

homogenising them; signi cant structural and translatioral divergences are to be
expected across di erent languages. We are not seeking to xiraise the number of

links between a given tree pair, but rather nd the set of linls which most precisely
expresses the translational equivalences between the treair. In Chapter 3, we

present a novel algorithm for the automatic induction of sutsentential alignments

between parallel trees re ecting this philosophy.

Our motivation for developing such a tool stems from the de® to build large-
scale parallel treebanks for data-driven MT training. A futher requirement to this
end is that the algorithm is language pair-independent andrpferably makes use
of minimal external resources beyond (say) a statistical w aligner (cf. section
2.2.1). While the methods outlined above achieved compatie results in their
reported tasks, none of them met all of our prerequisites (aummarised in Table
2.2) and so we felt it better to develop our own approach in oedt to ensure that

our objectives were closely matched.

Prerequisite  Kaji..'92 Groves..'04 Imamura'01 Ambati&lLa vie'09
Preserve Trees X X
Language Indepdendent X X X
Labelling Indepedent X X
Task Independent X X
No External Resources X X

Table 2.2: Summary of previous approaches to sub-tree alignent relative to our needs.

2.2 Phrase-Based Statistical Machine Translation

Statistical Machine Translation (SMT) (Brown et al., 1990,1993) has dominated the
research landscape of MT for most of the last decade. Origllyabased on the noisy
channel approach for speech recognition, the SMT model egjis Bayes' Theorem,

given in (2.3), to reformulate the automatic translation poblem.
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p(sjt):p(t)

o) (2.3)

p(tjs) =

In (2.3), p(tjs) represents the likelihood that a target language translan t will
be produced given a source language input senterseAs p(s) is constant for each
value of t considered, we can nd the most likely translation by maxinsging the

probability of t in p(tjs) as shown by the equation in (2.4).

arg mtaxp(tj S) = arg max p(sjt):p(t) (2.4)

In this equation, we maximise the product of the two remainig probabilities:
p(sjt), the probability of a candidate translationt being translated ass,® and p(t),
the probability of the candidate translation t being produced in the target lan-
guage, known as thdranslation model (TM) and the language model (LM)
respectively in SMT nomenclature. We discuss these aspectsthe model further
in sections 2.2.2 and 2.2.4. Finding the value afwhich maximises (2.4) is thus a
search problem, referred to adecoding , and is discussed in more detail in section
2.2.5. Given these de nitions, we can further simplify the guation in (2.4) as shown

in (2.5).

arg mtaxp(tj S) = arg max pPrm pum (2.5)

In initial incarnations of SMT, the fundamental unit of translation was the word.
Given a parallel corpus of sententially aligned bilingual aa, word-to-word corre-
spondences were learned using algorithms which induced acfemappings, orword
alignments , between the source and target sentences (Brown et al., 1998{ow-
ever, these word-based models were inadequate as they warahle to translate well

between language pairs with high “fertility® Thus, word-based systems ran into dif-

8Note the translation direction is reversed from a modelling standpoint when using Bayes'
theorem.

9Fertility is the ratio of the lengths of sequences of transldaed words. A high fertility language
pair is one in which single source words often correspond to uitiple target words.
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culty if (say) a sequence of source language words mapped doly a single target
language word. This issue was overcome with the developmefiphrase-based SMT
(PB-SMT) models (Marcu and Wong, 2002; Koehn et al., 2003),hich allow for the
mapping of sequences af words in the source language, so-called phrases, to se-
quences ofm words in the target language. However, these phrase pairseastill
learned using the original word alignment techniques of Bnm et al. (1993). Decod-
ing for PB-SMT is carried out in much the same way as for worddsed models by
searching for the most likely sequence of target languagend&dates matching the
source language input, given a translation model and a langge model.

The end-to-end translation process of a PB-SMT system can lixroken down
into a number of sequential steps, forming a pipeline. Givea parallel corpus, this

process proceeds roughly as follows:

A set of word alignments are induced between the source and target sen-

tences in the parallel corpus (Brown et al., 1993; Och and Ne2003).

Phrase pair correspondences are learned given these alignta and used to

build a weighted translation model (Och and Ney, 2003, 2004).
A language model is estimated for the target language (Stolcke, 2002.

A decoder takes the translation and language model and searches foreth
optimal target language translation given some source langge input (Koehn

et al., 2007).

Obviously, some of the details of the various stages menteth above have been
underspeci ed here. In the remainder of this section, we dathe these steps in
the PB-SMT pipeline in greater detail, paying particular atention to those aspects

pertinent to our work in this thesis.

10This is sometimes estimated from the target language side ahe parallel training corpus, but
any amount of target language data can be used.
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2.2.1  Word Alignment

Word alignment { the task of determining translational corespondences at lexical
level in a parallel corpus { is not only the starting point in the PB-SMT pipeline,
but also a fundamental component in all SMT variants as wellsanumerous other

NLP tasks. An example word alignment is shown in Figure 2.4.

I live in a big house

vivo en una casa grande

Figure 2.4: An example of an English-to-Spanish word alignrant.

In this example, where the connecting lines between wordgresent alignments,
we can see some of the challenges of inducing word alignmerfesr instance, the
fertility issue mentioned previously where a single word ione language can align
to many words in the other is demonstrated where the Spanishond vivo aligns
to the two English wordsl live. The most common approach to word alignment is
to use generative models. The rst and most popular instancef generative word
alignment models are the so-called 'IBM Models' (Brown et al1990, 1993) which
describe a number of di erent models for the induction of wal alignments. The
rst two models, IBM Models 1 and 2, are non-fertility models they do not allow
for 1-to-many alignments. These models operate using expe®n maximisation,
rstly assuming a uniform distribution between all source ad target words, and then
learning a re ned distribution by iterating over the data. The remaining models,
IBM Models 3{5, are more complicated as they introduce fefiity. That is, these
models rst determine the fertility of each source word, e.gnot ! ne:: :paswould
meannot has a fertility of 2 (French words). The target words are themearranged to
produce a target string according to the model. This is knowas a "distortion' model.
In IBM Model 3, each target word aligned to a particular soure word is positioned
independently, whereas in IBM Model 4 target word positiomg has a rst-order

dependence, i.e. the context of the neighbouring previou®d is considered. These
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models allow for some target words to be assigned the sameipos in the target
string in order to simplify training. This so-called "de ciency' is resolved in IBM
Model 5.

All of these models are implemented in a freely available apesource toolkit
called Gza++ (Och and Ney, 2003)!! Throughout the course of this thesis, we
employ IBM Model 42 as implemented in Gza++ when we carry out word align-

ment.

2.2.2 Phrase Extraction and Translation Models

Phrase extraction is the process of learning translatiorglequivalent pairs which
may span sequences of words. As we mentioned previously, word-based SMT
systems learn lexical translation models describing one-bne mappings between a
given language pair. However, words are not the best units tfiinslation because
we can have fertility between languages. Furthermore, bydnslating word for word,
no contextual information is made use of during the translan process. In order
to overcome this, PB-SMT models translate together certaisequences of words,
so-called phrases (not phrases in the linguistic “constént' sense of the word). By
using phrases as the core translation unit in the model, it isossible to avoid many
cases of translational ambiguity and better capture instaces of local reordering. An
example of this is illustrated in Figure 2.5.

There are a number of ways to extract a phrase table from a pdia corpus.
In this section, we describe in detail the commonly used meaidd which we employ
throughout the course of this thesis, while providing a briesummary of alternative
approaches. The basis for phrase extraction from a parallebrpus is the word
alignment described in the previous section. For each woedigned sentence pair,

a set of phrase alignments that igonsistent with the word alignment is extracted.

Lhttp://www.fioch.com/GIZA++.htm

121BM Model 4 is the default setting for Giza++. Due to the large number of parameters which
must be estimated for IBM Model 5, it takes signi cantly long er to train than Model 4 yet the gains
in performance are not that much. For this reason, we believeviodel 4 is su cient to demonstrate
our hypotheses in this thesis.
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la bruja verde la bruja verde

vy s '

the | | witch green the green witch

Figure 2.5: In the word-based translation on the left we seetlie noun-adjective reordering
from Spanish into English is missed. On the right in the phrag-based transla-
tion, the noun and adjective are translated as a single phras and the correct
ordering is modelled.

Consider Figure 2.6, which illustrates the word alignmentfdrigure 2.4 as a matrix

in which the blackened squares represent alignments. If wake, for example, the

two word alignmentsbig ! grande and house! casg we can extract the phrase
pair big house$ casa grandeas the words in the source phrase are only aligned to
words in the target phrase and vice versa. Below the matrix ifrigure 2.6, we see
the entire set of phrase pairs extractable from this senteagair.

A more formal de nition of consistencyis as follows: a phrase pairgt) is
consistent with an alignmentA, if all words sg,...,s, in s that have alignment
points in A have these with wordst4,...,t, in t and vice versa (Koehn, 2009). The
phrase extraction process proceeds by extracting all phieapairs for a given sentence

pair that are consistent with the word alignment.

Re ned Word Alignments for Phrase Extraction

Both the quality and the quantity of word alignments have a gni cant e ect on

the extracted phrase translation model. Obviously, the mer accurate the word
alignments the better the quality of the subsequently extreted phrase pairs. Word
alignment is a directional task, and the IBM models allow foa target word to be
aligned to (at most) one source word. This is undesirable asmay be correct in
many instances to have a target word map to multiple source was. In order to
overcome this problem, we carry ousymmetrisation of the word alignments (Och

et al., 1999).
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Vivo
en

una
casa
grande

live
in
a
big
house
llive $ Vivo
llivein $ Vivo en
lliveina $ Vivo en una
| live in a big house $ Vivo en una casa grande
in $ en
ina $ enuna
in a big house $ en una casa grande
a $ una
a big house $ una casa grande
big $ grande
big house $ casa grande
house $ casa

Figure 2.6: English{Spanish word alignment matrix and the entire set of extractable
phrase pairs.
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michael
geht
davon
aus
dass

r

m

haus
bleibt
michael
geht
davon
aus
dass
er
im
haus
bleibt

michael michael
assumes assumes
that that

he he ..
will will
stay stay
in in
the the
house house

English to German German to English

michael
geht
davon
aus
dass

er

im
haus
bleibt

michael

assumes
that
he

will

stay

in
the

house

Intersection / Union

Figure 2.7: Merging source-to-target and target-to-soure alignment sets by taking their
union (from Koehn (2009)).

As illustrated in Figure 2.7, this process involves runningvord alignment in both
directions: source-to-target and target-to-source. Theesulting sets of alignments
are then merged by taking their union or intersection. Genaily, choosing between
the union and intersection of the word alignments involvesetiding whether we want
a high recall or a high precision word alignment. Koehn et a{2003) demonstrated
that for PB-SMT the best option is to explore the space betweethe union and the
intersection. This is done using heuristics initially propsed by Och et al. (1999)
and extended upon in Koehn et al. (2003), which begin with thalignment points
in the intersection and thengrow the alignment, progressively adding neighbouring
alignment points from the union. A neighbouring point, as lustrated by the shaded
squares in Figure 2.8, is any hypothetical alignment poinhithe matrix that occurs
in the direct vicinity of an existing alignment point. This stage of the heuristic
is known asgrow-diag It can be further extended by allowing additional points
from the union with the only restriction being that the sour@® and target words in

guestion must be heretofore unaligned. This extension is &wn as- nal .
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BT Bl

Figure 2.8: Example of neighbouring alignment points: the back square is the alignment
points in question and the shaded squares are its neighbourg points.

In all experiments in this thesis, we perform phrase extrain on the source{

target intersection re ned with the grow-diag- nal heuristic as implemented in the

Moses toolkit (Koehn et al., 2007)3

2.2.3 Scoring and the Log-Linear Model

A probability distribution is estimated over the set of phrase pairs, extracted using
the methods of the previous section, where the probabilityf@ phrase pairP (sjt)
is its relative frequency in the entire set of phrase pairssan 2.6:

o count(t; s)

P(sjt) = # —count(t: ) (2.6)

Traditionally, this function would be included in the noisy channel model along
with the language model. However, more recent research in $Mas departed from
this approach, adopting a more exible model structure know as a log-linear model
(Och and Ney, 2002; Och et al., 2004). This model is extensband allows for the
addition of new features to the system beyond the translatioand language models.
Furthermore, each featureh; is assigned a weight ; which can be optimised given
some objective function (normally BLEU score (Papineni etlg 2002), cf. Section
2.4.1) using a tuning algorithm, e.g. minimum error-rate taining (MERT) (Och,
2003) or the margin infused relaxed algorithm (MIRA) (Chialg et al., 2009). The

BMoses is a widely used, free and open-source SMT system whitmplements many of the
components described in this chapter. It is available from litp://www.statmt.org/moses/
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formula for the log-linear PB-SMT model is given in (2.7).

X
P(tjs) = arg m?xf mhm(t;S)g (2.7)

m=1
Theoretically, any number of feature functions can be used ithe log-linear
modell* e.g.(Chiang et al., 2009). However, in our experiments peged through-
out this thesis we make use of seven features as implementedMoses (unless

otherwise stated). These features are:

phrase translation probabilities, both source-to-targeaind target-to-source;
an n-gram language model, discussed in section 2.2.4;

a reordering model;

a phrase penalty;

lexical weights, again source-to-target and target-to-sioce.

The reordering model accounts for the movement of phrasesrahg translation.
For example, when translating from English into German, we ay want to move the
verb to the end of the translated sentence. Moses implemerdasdistance-based re-
ordering model which estimates, for each extracted phrasaip how often it occurred
out of continuous order in the aligned training data. Three derent orientations are
modelled: monotone, the phrase occurred in order; swap, tpbrase swapped one
position with another phrase; and discontinuous, the phrasoccurred completely
out of order with the rest of the extracted phrases.

The phrase penalty is a means to bias towards longer phraseangavhen building
translation hypotheses, the motivation being that the lessve segment an input
sentence in to phrases, the more reliable the longer phrasesl be as they will
contain more context. Thus, by penalising shorter phrase#, the model has the

choice of using a longer phrase during decoding, it will teno use it.

14 Although training may take some time if there are too many!
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The lexical weighting feature (Koehn et al., 2003) allows fdurther validation of
extracted phrase pairs by checking how well the words in th@srce and target sides
of a given phrase pair translate to one another. It helps to eare that good rare
phrases, which will have a low probability given the phraseanslation distribution,
can still be used, by exploiting richer lexical translatiorstatistics. This is done using
a lexical translation probability distribution lex(sjt) estimated by relative frequency

from the same set of word alignments used for phrase extramti, according to (2.8).

count(s; t)

lex(sjt) = P
(st cocount(sd t)

(2.8)

Then, given a phrase pair §;t) and a word alignmenta between source word
positionsi and target positionsj, a lexical weightpey is calculated via the equation

in (2.9).

length () 1 X
. [fiiGi]) 2 ag

lex(sijt;) (2.9)
8(i;j )2a

Pex (Sit; @) =

If multiple source words are aligned to a single target wordhe average word
translation probability is taken. In addition to this, to account for cases in which a
source word has no alignment on the target side, a speamlll word is added to the
target string and the probability of the source word transléing as null given the
distribution is calculated. This process is exempli ed in Egure 2.9, where we have
the English source phrasgou are a sailoraligned to the Spanish target phraseres
marinero. The two English wordsyou are are aligned to the Spanish wordres so
we calculate the average of both words translating as the et word. The English
word a has no alignment on the Spanish side, so we calculdex(ajnull ) from
the lexical translation distribution. Finally, the English word sailor is aligned to
marinero so we calculatdex(sailorjmarinero). We calculate this lexical weighting
feature in both translation directions { pex (Sjt) and pex (tjs) { using our source-to-
target and target-to-source word alignments, and these twadditional features are

added to the log-linear model.
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marinero
NULL

[77]
(]
_
(0]

you
are

a

sailor

Pex (Sit) = % (lex(youjeres) + lex(argjeres))
lex(ajnull )

lex(sailorjmarinero)

Figure 2.9: An example of how lexical weighting is calculatd for an English{Spanish sen-
tence pair.
As we mentioned earlier, the optimal weight for each of thedeatures, based on
some development corpus, is assigned using a tuning alglonit, optimising usually
on the BLEU metric. Throughout this thesis, we employ the MER optimisation

algorithm as implemented in the Moses toolkit.

2.2.4 Language Modelling

The language model featur@ y , mentioned at the beginning of this section in terms
of the noisy-channel model, measures how likely it is that aypothetical translation

proposed by the translation model exists in the target langqage. This is done by
calculating how likely a word is to occur given its history, .e. all the preceding

words in the string, as shown in (2.10).

P(W1; Wao; 0115 Wn) = P(W1)P(WojWi) @0 p(WnjW1; Wo; i2i Wy 1) (2.10)

However, calculating probabilities for all possible histies is impractical as sparse

data issues would lead to unreliable statistics. For this eson, the history is limited
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to n words, giving rise to the termn-gram language modelling. Most commonly,
values ofn between 3{5 are used for MT. In order to estimate trigram mod&

probabilities for a word sequence(wsjw;; W,), we count how oftenws is preceded
by the sequenceav,; w, in some training corpus. This is done according to maximum

likelihood estimation (Manning and Schatze, 1999, p. 1973s shown in (2.11).

gou Nt(wy; Wa; Ws)
w count(wq; wy)

P(Wajwy; Wp) = (2.11)

The example in (2.12) demonstrates how the probability of # sentence \you

are a sailor" is calculated given an English trigram languagmodel®

p(you,are,a,sailor) p(you <s> ,<s>)
arej <s>,you
p(are | you) (2.12)
p(aj you,are)

p(sailor j are,a)

Despite the fact that language models are often trained onrige amounts of
monolingual data, we still run into sparse data issues as thikelihood is high that
we will encounter somen-gram in our translation output that was not seen in our
training data. In order to counteract this problem, a numberof smoothing methods
are applied, for example weighted linear interpolation (Maning and Schatze, 1999,
p. 322). Taking this approach, we estimate probabilities @r all values ofn up to
our maximum (3) and take the sum of these values, weighting ¢hmodel orders as
required. For a trigram language model, this means calculag unigram, bigram,
and trigram scores for each input string including some smthong in the case a
word was not observed in the training data. This is illustragd in (2.13), whereV

is the vocabulary size and , is the weight assigned to each order of.

SFor clarity, we will explain language models in terms of trigrams for the remainder of this
section.
6The symbol <s> signi es the beginning of the sentence.
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P(W3jw1; Wo) = 3P(Wajwy; W) +
WsjW,) +
2P(W3jW3) (2.13)
1p(ws) +

1

Ov

The intend e ect of this approach is that, for a given input sting, if we have never
seen a particular trigram in our training data, rather than asigning it zero score,
we essentially backo and see if we have observed two of thena® cooccurring, or
even any of the words individually.

In our experiments in this thesis, we employ language modeds implemented
using the SRI Language Modelling (SRILM) toolkit (Stolcke 2002)” which also pro-
vides for the use of modi ed Kneser-Ney smoothing (Kneser driNey, 1995; Chen
and Goodman, 1996). In this approach to smoothing, which isiia similar vein
to weighted linear interpolation, rather than explicitly weighting the higher order
n-grams, a discount is subtracted based on estimation usinghald-out set. Further-
more, backing o to the lower-order models in the interpolabn is only considered
when the score for the higher order models is very low. Thislps to ensure that

the best tting model is chosen.

2.2.5 Decoding

The nal phase in the PB-SMT pipeline involves generating tk most likely target
language string given some source inptf. This process is known as decoding, and

involves searching through the phrase table to nd theP(tjs) that maximises the

ing the output translation based on some segmentation of theaput, incrementally

computing the translation probability. Evaluating all possible target strings, how-

http:/lwww.speech.sri.com/projects/srilm/
BWe note that up to this point in the pipeline, no actual transl ation has been carried out.
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ever, is an NP-complete problem (Knight, 1999) and so heutis methods must be
applied. The most common approach, as implemented in the Mes toolkit, is to
use a beam search algorithm.

Following this approach, partial translation hypotheses i@ arranged in stacks
based on the number of input words they cover, as illustrateith Figure 2.10. These
stacks are pruned as required in order to keep the search spaze manageable. Two
methods for pruning are commonly used: imistogram pruning a maximum ofn
hypotheses are stored in a stack at any one time (thehighest scoring hypotheses),
while in threshold pruning hypotheses with a running probability which di ers from
the current best hypothesis by more than a xed threshold vale are discarded.
Adjusting these values allows for some compromise betwegmeed and quality of
translation, e.g. the higher the value we have fon the larger the search space will

be, but the lower the chance we will have pruned out the bestadnslation.

2 3 5 6

4

—

Figure 2.10: Hypothesis stacks: Partial translations are paced in stacks based on the
number of input words covered (the indices below each stackand expanded
into new stacks (as indicated by the arrows) as new words areranslated
(from Koehn (2009)).

The translation process is initialised by creating an emptyjhypothesis stack.
Then, for all possible segmentations of the input string, &nslation options are
added to stacks and new stacks are created as hypotheses aqgarded to cover
more of the input string. Probabilities for the new hypothess are updated and
pruning of weak hypotheses is carried out as necessary. Asilom the probability
assigned according to the log-linear model, a future costase is estimated for each

hypothesis based on how di cult it will be to translate the remainder of the input
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string. The intended e ect of this is to balance the discrepacy in scores between
those hypotheses which have so far translated \easy" part$ the input and those
which have translated more di cult parts. The expansion of lypotheses continues
until the entire input string has been covered, at which pointhe most probable
hypothesis is output as the 1-best target language transian.

Throughout this thesis, we use the beam search decoder as lemented in Moses

in our PB-SMT systems

PB-SMT: Summary

In this section, we have described the principal elements wh comprise a PB-SMT
system, highlighting the process by which phrase pair cogpondences are extracted
and employed in the translation model. In Chapter 4, we prese experiments in
which we exploit syntax-based resources | namely, automatally generated parallel
treebanks | at various stages in the PB-SMT pipeline (particularly phrase extrac-
tion and in the log-linear model) in order to increase the syactic awareness of the

SMT framework.

2.3 Syntax-Based Machine Translation

From our description of phrase-based statistical MT as prested in previous section,
it may be apparent that the entire end-to-end translation pocess has no linguistic
motivation: word alignments are induced via statistical m#hods, phrase extraction
is heuristics-driven etc. Syntax-based paradigms of MT, othe other hand, com-
prise those approaches to MT which exploit syntactically amtated data directly
in training. There has been a signi cant amount of researchoncerning the in-
corporation of linguistic information into the PB-SMT process, e.g. Carpuat and
Wu (2007); Koehn and Hoang (2007); Haque et al. (2009a,b); skan et al. (2009),
and while many of these approaches have successfully achtevmprovements in

translation performance, they do not constitute fully synax-based systems and,
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thus remain restricted by the limitations of the PB-SMT framework, namely string-
based decoding. While the development of syntax-based s1$is is not necessarily
a new development | cf. the system of Yamada and Knight (2001) Germann et al.
(2001) | there has been a trend in recent years within the MT canmunity towards
the development of such systems. In this section, we give dé$ of the two syntax-
based systems used in this thesis and summarise other recdatelopments in the

area of syntax-based MT.

2.3.1 Statistical Transfer-Based MT

The CMU Statistical Transfer Framework (Stat-XFER) (Lavie, 2008) is a general
framework for developing syntax-driven MT systems. The pmicipal component of
the framework is a syntax-based transfer engine which expktwo language pair-
speci ¢ resources: a grammar of weighted synchronous coxitéree rules (SCFG),
and a probabilistic bilingual lexicon. Translation is carred out in two phases; rstly,
the lexicon and grammar are applied to synchronously parséd input sentence,
producing a lattice of translation options. Following this a monotonic decoder runs
over the resulting lattice of scored translation segment®tproduce the nal output.
The decoder is monotonic as all necessary reordering is @adrout based on the

syntactic grammar during the transfer phase.

Bilingual Lexicon

The bilingual lexicon of the Stat-XFER system is an extensio of the PB-SMT
phrase table (cf. section 2.2.2) in which each side of the soe&{target translation
pair is associated with a syntactic category. Each entry inhie lexicon can be de-
scribed formally as an SCFG expression, as demonstrated ti14), wherecs and ¢
represent source- and target-side syntactic category ldbeespectively, andws and

w; represent the source- and target-side phrase strings.

Cs G ! [ws] i [wi] (2.14)
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Entries are assigned two scoressy and r;, based on maximum-likelihood
estimates. Ther ) score, calculated as per (2.15), is a maximum-likelihoodtesate
of the distribution of target language (TL) translations ard source- and target-side
category labels given the source language (SL) string. Camsely, ther sy score is

calculated as in (2.16) over the SL translations and syntaict categories given the

TL string.
(oW G W)
M(tis) = Bwo) + 1 (2.15)
(oW G W) (2.16)

0T T (W) + 1
Add-one smoothing (Manning and Schatze, 1999, p. 202) is @ioyed in the

denominator to counteract overestimation of scores giveow counts forws and w.

Stat-XFER Grammar

The Stat-XFER grammar rules have a similar form to the bilingial lexicon entries,
as shown in (2.17). The SCFG rule can be lexicalised and maycinde both non-
terminals and pre-terminals. Constituent alignment infomation, shown in (2.17) as
co-indices on the nodes, indicate correspondences betwéan source- and target-
side constituents. Rule scoresjsy and rs; for the SCFG rules are calculated in

the same manner as the scores for the bilingual lexicon emtsi

NP NP ! [DIN2A%: [DTI3N? (2.17)

Both of the resources described above { bilingual lexicon drthe SCFG { can
be extracted from parallel treebanks as we mentioned in semt 2.1 (cf. Figure 2.3).

We will demonstrate this in practice in Chapter 5.
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Transfer Engine

The transfer engine, described in detail in (Peterson, 2002Zarries out the three
main processes involved in transfer-based MT: parsing ofdlSL input; transfer of
the parsed SL constituents to their corresponding TL struetres; and generation
of the TL output. All processes are carried out using the SCF@ an extended
chart parsing algorithm which operates by, rstly, populaing a chart with the SL
constituent using the left-hand side of the SCFG rules. A TL lart is constructed
in parallel using the right-hand sides of the correspondin§CFG rules. The TL
chart is then lexicalised by taking translation options forthe source words from the
bilingual lexicon. The TL chart maintains stacks of scoredranslation options for all
substrings in the SL input which are ultimately collated inb a lattice that is passed
on to the decoder. The decoder employed is akin to that dedeeid in section 2.2.5
without a reordering model. An illustration of the entire erd-to-end translation

process is shown in Figure 2.11.

SL Input

Target
Language Model

Bilingual Lexicon

Transfer Engine

SCFG Rules Decoder

) J

TL Output

Figure 2.11: Architecture of Stat-XFER translation framework (adapted from Lavie
(2008)).

The Stat-XFER framework has been used to build small-scale Msystems for

lesser resourced language by exploiting manually-crafteésources (Lavie, 2008;
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Monson et al., 2008), while also being employed in large-Be8MT evaluation tasks
(Hanneman et al., 2008, 2009), which demonstrates its sdailiy. Additionally,
there has been signi cant research in the area of resourceraction for Stat-XFER
systems from parallel treebanks (Lavie et al., 2008) and inde-to-string scenarios
(Ambati and Lavie, 2008; Ambati et al., 2009).

In Chapter 5, we describe the construction of a number of StFER systems
using bilingual lexicons and SCFGs extracted from automatally generated parallel

treebanks.

2.3.2 Data-Oriented Translation

Data-Oriented Translation (DOT) (e.g. (Poutsma, 2003; Heme and Way, 2006)),
which is based on Data-Oriented Parsing (DOP) (e.g. (Bod etla 2003)), combines
examples, linguistic information and a statistical transhtion model. Tree-DOT as-
sumes a sub-sententially aligned parallel treebank as ditdraining data, such as the
one given in Figure 2.12(a), from which it learns a generagvmodel of translation.
This model takes the form of a synchronous stochastic treakstitution grammar

(S-STSG) whereby pairs of linked generalised subtrees asgracted from the linked

tree pairs contained in the training data viaroot and frontier operations:

given a copy of tree pairhS; Ti called hS; T.i, select alinked node pair
hSy; Tni in KSg; Tl to be root nodes and delete all except these nodes, the

subtrees they dominate and the links between them, and

select a set ofinked node pairs inhS¢; T.i to be frontier nodes and delete the

subtrees they dominate.

Thus, every fragmenthfg; f.i is extracted such that the root nodes of s and f;
are linked, and every non-terminal frontier node irf 5 is linked to exactly one non-
terminal frontier node in f; and vice versa. Some fragments extracted from the tree

pair Figure 2.12(a) are given in Figure 2.12(b).
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During translation, fragments are merged in order to form aapresentation of
the source string within which a target translation is embeded. The composition
operation () is a leftmost substitution operation; where a fragment hasore than
one open substitution site, composition must take place ahe leftmost site on the
source subtree of the fragment. Furthermore, the synchrons target substitution
must take place at the sitelinked to the leftmost open substitution site on the source
side. This ensures (i) that each derivation is unique and Jiithat each translation
built adheres to the translational equivalences encoded ime example base. An

example composition sequence is given in Figure 2.12(c).

LN [

NP VP NP VP
€)) \ \ \ T~
John left John Aux \%
\

est parti

S s P VP 8 T ~7S . NP NP
LN TN \ T~ NG y
NP VP NP VP left Aux V NP~ VP NP VP John John

(b) \ \ \ \

John John est parti
S S
ST ., TSP R T T
S S NP NP VP VP NP VP NP VP
() TN N I | | |
NP VP NP VP John John left Aux V = John left John Aux \%
est parti est parti

Figure 2.12: Data-Oriented Translation: (a) gives an exampe representation, (b) gives a
subset of the possible fragments of (a) and (c) gives an exang composition
sequence yielding a bilingual representation.

Many di erent representations and translations can be gemated for a given in-
put string, and the alternatives are ranked using a probabty model. Although
there has been considerable research carried out into howsb® estimate the prob-
ability model (Johnson, 2002; Bonnema and Scha, 2003; Siema'and Buratto, 2003,
Galron et al., 2009), the version of the DOT system employed this thesis estimates
fragment probabilities using relative frequencies and deation probabilities com-

puted by multiplying the probabilities of the fragments use to build them. For each
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input string, the n-best derivations are generated and then reduced to tha-best
translations where the probability of translationt is computed by summing over the
probabilities of those derivations that yield it. Where no @rivation spanning the
full input string can be generated, then-best sequences of partial derivations are
generated instead and the translations ranked as above. Urdwn words are simply
left in their source form in the target string. Thus, every iput string is translated
but the system output indicates which strings achieved fultoverage.

While the DOT model has yet to scale to larger data sets (it hat® date been used
with parallel treebanks of up to 10,000 sentence pairs (Galn et al., 2009}°), we
exploit it in Chapter 3 to carry out an extrinsic evaluation d our sub-tree alignment

algorithm given a relatively small training set.

2.3.3  Other Approaches

Further approaches to syntax-based MT have been developedrecent years incor-
porating varying degrees of linguistic information. Chiag (2005, 2007) present a
hierarchical phrase-based model which allows for generalisations oveibgphrases
within a baseline phrase table. This model, formally a weiglsdd SCFG, can generate
phrases in the target language output that were not previolis seen in the training
data by combining generalised templates with existing phez table entries. Chiang
makes the distinction between this model beinfprmally rather than linguistically
syntax-based as the generalised templates are not informby any syntactic the-
ory. However, there have been some e orts centred on extendi the hierarchical
model with varying degrees of syntactic constraints, durgnboth the decoding phase
(Marton and Resnik, 2008) and directly into the log-linear model during training
(Vilar et al., 2008). Similarly, Zollmann and Venugopal (206) and Zollmann et al.
(2008) describe a \syntax-augmented" system in which the tget side of the hier-

archical translation model is syntacti ed and a number of ne features are added

9The parallel treebank used in the work of Galron et al. (2009)was produced using the methods
described in this thesis.
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to a log-linear model.

Tree-to-string models, popularised in the aforementionedork of Yamada and
Knight (2001), have also been widely developed. Aside fronxtensions to the
Yamada and Knight (2001, 2002) model as seen in the work of Gal et al. (2004,
2006), Liu et al. (2006) present a tree-to-string alignmertemplate model in which
syntactically annotated source-side data is word-alignetb plain target language
data and transformation templates are learned. At decodingme, the input sentence
is parsed and a search algorithm applies the most appropreaset of transformation
templates to generate the target language output. Similay] using the projection
technique of Ambati and Lavie (2008), as described in seati@.1.1, the Stat-XFER
framework can also be applied to the tree-to-string scenatri

Finally, aside from the Stat-XFER framework and the DOT modg direct tree-
to-tree models have also received some attention in recemsiays. Nesson et al. (2006)
describe such a system, modelled as a probabilistic synchoos tree-insertion gram-
mar, which e ciently translates via decisions trees duringparsing of the input sen-
tence. The authors espouse the exibility of their approachvith respect to linguistic
formalism and potential for hybridity with other MT models, e.g. example-based
MT. In addition to this, Bojar and Hajc (2008); Bojar et al. (2009) describe a
system for English{Czech tree-to-tree translation at a dgesyntactic (tectogram-
matical) layer. Using parallel trees annotated with deperehcy information to the
tectogrammatical layer, translation is modelled as an SCF@&imilar to DOT), de-
composing trees into a grammar of smaller treelets. Givendhnput, these trees are
then composed to build target language output.

In Chapter 5, we demonstrate the e ectiveness of paralleléebanks as a training
resource for syntax-based MT, while in section 6.1, we dissihow we could poten-
tially employ the techniques presented in this thesis to soenof these approaches to

syntax-based MT.
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2.4 MT Evaluation

Over the last decade, automatic evaluation metrics have b@me an integral com-
ponent in the development cycle of any MT system. They allowof fast, cheap and
large-scale analysis of MT systems by comparing the outputanslations to one or
more reference translations. This is based on the rationatleat the closer the out-
put translation is to the professionally produced referemctranslations, the better
it is. In this section, we describe the three metrics we userfautomatic evaluation
in this thesis. We chose multiple metrics for evaluation asmaimprovement in a
single metric cannot be guaranteed to indicate improved treslation accuracy, as
has been previously demonstrated (Callison-Burch et al.026; Chiang et al., 2008).
However, if we see correlations across multiple metrics, wan be more con dent in
our ndings. We chose these three metrics in particular as #y are used extensively
in large-scale MT evaluation campaigns and have become ttle factostandard for

the automatic evaluation of MT quality.

241 BLEU

The BLEU metric (Papineni et al., 2002) evaluates MT quality by compang trans-
lations output by the MT system against one or more referendeanslations in terms
of the number of co-occurringn-grams between the two strings. BLEU rewards
those candidate translations with longer contiguous sequees of matching words.
The main score calculated by this metric is anodi ed n-gram precision scorep,
for each candidate translation and its reference(s). It is adi ed in that it avoids
giving in ated precision to those candidates which overgeamate or repeat words.
For example, if ann-gram occurgj times in the candidate translation andi times in
a reference translation such that |, then this sequence is only counted times.
Thus, modi ed n-gram precisionp, is calculated according to the equation given in

(2.18):
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i\ roi
Pn = Jicnjcnj ) (2.18)

where
Cn is the multiset of n-grams occurring in the candidate translation,
rn is the multiset of n-grams occurring in the reference translation,

jcnj is the number of n-grams occurring in the candidate translation,

jcn \ rpj is the number of n-grams occurring in ¢, that also occur in
rn such that elements occurringj times in ¢, andi times in r, occur
maximally i times in jc, \ rpj.

Generally when automatically evaluating MT output, scoresre calculated over
a test set of sentences rather than on individual input strigs. In this scenariop, is
the proportion of co-occurringn-grams in the set over the total number oh-grams
in that set.

While p, can be calculated for any value af, Papineni et al. (2002) mention that
greater robustness can be achieved by combining scores fbvaues ofn into a single
metric. However, as the value oh increases, we see an almost exponential decrease
in pn, as longer matchingn-gram sequences are more di cult to nd. In order to
make BLEU more sensitive to longen-grams, a weighted average is calculated by
summing over the logarithm of eaclp, for a range of values of,?° and multiplying
by a uniform weight Ni This equation is given in (2.19):

X1 1
v =exp( < log(pn)) (2.19)
n=1

Candidate translations that are longer than their refereng(s) are implicitly pe-
nalised when calculatingp,. In order to compensate for this, a correspondinigrevity
penalty BP is imposed which penalises those candidate translatiostorter than

their reference(s). The nal BLEU score is calculated as thproduct of py and BP.

20while scores can be obtained for any value of, Papineni et al. (2002) found that considering
a maximum value for n of 4 was su cient for adequate correlation with human judgements.

38



Papineni et al. (2001) state that the BP is a decaying expongal in the length of
the reference sentence over the length of the candidate tsdation. This e ectively
means that if the candidate translation is the same length ¢(donger) than the ref-
erence, then BP is 1, and BP is greater than 1 if the candidats shorter than the

reference. Thus, BP is calculated according to equation gn):

length (R) '0)

BP - emax(l length (C)* (220)

In order to avoid punishing shorter candidates too harsh\BP is calculated over
the entire corpus rather than on a sentence-by-sentence Isaand taking the average.
That is, in equation (2.20), length(R) refers to the total number of words in the
reference set andength(C) refers to the total number of words in the candidate set.
The penalty is then applied to the modi ed precision score,a give a single score

for the entire candidate translation set, according to the guation in (2.21):

BLEU = BP py (2.21)

All BLEU score calculations in this thesis were made using EU as imple-
mented in the mteval-v11b.pl script?’ released as part of the annual NIST Open

MT evaluation campaign??

242 NIST

The NIST metric (Doddington, 2002) is a variation on the BLEU metric viich
makes three speci c alterations to the way in which scores arcalculated. The rst
change addresses the issuerefgram informativeness; when calculating the modi ed
n-gram precision, BLEU assigns equal weights to eachigram. NIST, on the other
hand, assigns more weight to co-occurring-grams that occur less frequently in the

reference corpus. The intuition here is that nding a co-oagring n-gram pair in

2pownloaded from ftp://jaguar.ncsl.nist.gov/mt/resourc es/mteval-vi1b.pl
22http://www.itl.nist.gov/iad/mig/tests/mt/
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the candidate and reference translations that occurs frequotly is not as indicative
of the quality of translation as nding a rare co-occurringn-gram pair. Information
weights are calculated over th&-gram counts in the reference sets according to the

equation in (2.22):

count(wy :::w, 1)
count(wy :::wy)

Info (wy:::wy) = log( ) (2.22)

This is then incorporated into the modi ed n-gram precision formula in (2.18)

as shown in (2.23):

Wi:iiiWh 2jC \ rpjinfo (wy:::iwy,)

2.23
JCn) ( )

Pn =

The second change deals with the way the precision scores #&irvalues ofn
are combined into a single scorpy. BLEU sums over the logarithm of each value
of p, and multiplies by a weight Ni in order to make py more sensitive to larger
values ofn. However, Doddington (2002) points out that this method of ®oring is
equally as sensitive to varying co-occurrence frequencregardless of the value af.
In order to overcome this, Doddington (2002) simply takes # arithmetic average

of the values ofp, as shown in equation (2.24):

W P . .
WiiiiWh 2)C, \ rpjinfo (wy::iwy)

2.24
JCn) ( )

Pn =

n 1

The nal change involves altering how the brevity penalty iscalculated. In
BLEU, BP is particularly sensitive to any variation in translation length. NIST
changes the calculation in order to minimise changes in sesrgiven small variations
in length. This is done by introducing a value , which is chosen such that BP is 0.5
when the number of words in all candidate translations C i§ the average length of
the number of words in all references R. Thus, NIST is calcu&d according to the

equation in (2.25):
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length(R)

length(c) " 1) (2.25)

BP = exp logz[min (

As with BLEU, all NIST score calculations in this thesis werenade using NIST

as implemented in the mteval-v11b.pl script.

243 METEOR

The METEOR (Banerjee and Lavie, 2005; Lavie and Agarwal, 2007) metrivadu-
ates MT output by placing high emphasis on the recall of the calidate translation
given the reference. The authors motivate this by pointing ut that recall \re ects
to what degree the translation covers the entire context ofhie translated sentence
[reference]’. METEOR computes a score for candidate traralons using a combi-
nation of unigram-precision, unigram-recall and a measurma fragmentation given
the candidate sentence, reference sentence and a set of gdised unigrams between
the two. This method is designed to overcome potential isssi@vith the BLEU and
NIST metrics such as the lack of recall, the use of higher-adn-grams to evaluate
grammaticality (or word order), and scores being calculateover the entire testset
as opposed to sentence-level.

Given a candidate translation and a reference, METEOR rst reates an align-
ment between the two strings such that every unigram in one shg maps to zero
or one unigrams in the other string. This alignment is perfened incrementally in
a series of stages, with each stage comprising two phases.

The rst phase creates all possible alignments between thaa strings. Align-

ments can be created based on three criteria:

(i) exact matcheshere the two unigrams are identical (e.g. \parliament” map to

\parliament" but not to \parliamentary");

(i) stemswhere the unigrams are identical after they are stemmed ugjrithe Porter
stemmer (Porter, 1980) (e.g. \parliament” maps to both \patiament" and

\parliamentary");
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(i) synonymswhere two unigrams are mapped if they are synonymous accargi

to WordNet (Miller, 1995).

The second phase selects the largest subset of these aligmnehat are well-
formed as the nal mapping. If there is more than one well-faned subset, METEOR
selects the set with the least number of crossing alignmenise. that set in which
the word order in the candidate is most similar to the refereze.

Once a nal alignment has been chosen, METEOR rst calculate unigram-
precision P and unigram-recall R of the candidate translatn, as shown in equations

(2.26) and (2.27) respectively:

a

P=— 2.26
5 (2.26)
a

R= — 2.27
5 2.27)

where
a is the number of candidate unigrams aligned to reference ugrams.

Uc is the total number of unigrams in the candidate translation.

ur is the total number of unigrams in the reference translation

METEOR then calculates the harmonic mearfFean Of P and R placing most of

the weight on recalf® using the formula in (2.28):

_(1+ ) PR

Frnean = 25 (2.28)

Fmean IS calculated based solely on unigram matches. To reward BT matches,
and provide a direct alternative to averaging over values @f, as is done in BLEU and
NIST, METEOR calculates a penalty based on the number of consecutive unigram
alignments (n-grams) between the sentences, chunks(ch). The longer then-gram
matches, the fewer chunks there are and consequently the &vthe penalty. In one

extreme case, the entire candidate string matches the ergireference and there is

23Lavie and Agarwal (2007) set to 9.0 based on previous experimentation, while alternatie
values have also been suggested, cf. (He and Way, 2009).
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one single chunk. In the other extreme, there are no bigram ¢éwnger matches so
the number of chunks is equal to the number of unigram alignmés. The penalty

is calculated according to the equation in (2.29):

Penalty = (%h) (2.29)

where
determines the maximum penalty possible (0 1).24

determines the functional relation between fragmentationand the penalty.?®

U, is the total number of unigrams in the reference translation

Thus, the nal METEOR score is calculated according to (2.3

METEOR = Fpean (1 Penalty) (2.30)

All METEOR scores presented in this thesis were calculatedsing METEOR

version 0.5.1%6

2.4.4 Drawbacks of Automatic Evaluation

In recent years, there has been considerable focus in the M@nemunity on the

perceived inadequacy of automatic evaluation metrics whehcomes to accurately
re ecting human judgements of translation quality (Zhang ¢é al., 2004; Callison-
Burch et al., 2006; Chiang et al., 2008; Owczarzak, 2008). &fe are many instances
in which the n-gram-based metrics will score translations poorly despithem being
perfectly acceptable. For example, in (2.31) the translatin will receive a low score
according to the metrics presented previously, despite Ibgj adequate output, as
it has only two of three unigram matches with the reference anhno higher order

n-gram matches.

24 is set to 0.5 by default in the literature.
25 is set to 3.0 by default in the literature.
26pownloaded from http://www.cs.cmu.edu/ alavie/METEOR/meteor-0.5.1.tar.gz .
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Translation John quit yesterda:
quty y (2.31)

Reference Yesterday John resigned

This may not be surprising to the developers of these metri@nd researchers
working in the area of MT evaluation, as one the earliest of #hevaluation metrics,
BLEU, was not intended to be a substitute for human assessntasf translation, but
rather as an \understudy" to human evaluators (Papineni et &, 2002). Additionally,
n-gram-based metrics have been shown to favour the output oM3 systems over
that of rule- and syntax-based ones (Callison-Burch et al2006).

For these reasons, particularly in Chapter 5, we endeavouo tsupplement the
automatic evaluation of our MT output with manual analysis n this thesis in order

to provide a clearer view of the relative merits and drawbaskof our methods.

2.4.5 Statistical Signi cance

Where stated, statistical signi cance was carried out on té results in this thesis,
for the BLEU and NIST metrics,?’ using bootstrap resampling (Koehn, 2004). A
con dence value of p=0.05 was used (unless otherwise statedth 1,000 resampled
test sets. If no explicit mention to statistical signi cance testing is made, the results

are statistically signi cant.

2.5 Summary

In this chapter, we have provided a general description of ¢hconcept of parallel
treebanks as well as our motivation for developing a new algihm for the automatic
induction of sub-sentential alignments between parallefée pairs. We described the
main components comprising a phrase-based statistical MYsgem, particularly the

phrase extraction process and various features of the lagdar model, demonstrating

2"The software we used to calculate statistical signicance | downloaded from
http://projectile.is.cs.cmu.edu/research/public/too Is/bootStrap/tutorial.ntm | did not facilitate
testing with the METEOR metric.
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the lack of linguistic motivation throughout which was our $imulus for investigat-
ing the exploitability of parallel treebanks in this paradgm. Following this, we
introduced syntax-based MT and provided detailed descripins of the systems in
which we employed our parallel treebanks as training data,sawvell as providing a
summary of alternative approaches. Finally, we describech¢ various automatic
measures used to evaluate the quality of MT output in the vadus experiments
presented in this thesis.

In the next chapter, we address the rst research questiorRQ1 ) posed in Chap-
ter 1 by describing the development of a sub-tree alignmenbol for the automatic

generation of parallel treebanks.
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Chapter 3

Sub-Tree Alignment: development

and evaluation

In the previous chapter, we described the current state-difie-art in PB-SMT and
the eld of parallel treebanking. We noted in our discussiorthat there existed no
adequate means by which we can automatically generate pdehltreebanks that
suited our requirements, thus providing the rationale for lte development of such
a technique. In this chapter, we document the novel sub-treglignment algorithm
(Hearne et al., 2007; Tinsley et al., 2007b; Zhechev, 2009 tave developed in terms
of design and performance. The design re ects our motivatido develop an e cient
tool for the automatic generation of parallel treebanks thiais language pair- and
task-independent and whose output may be useful in a varietyf natural language
applications. The alignment algorithm induces links betwen the nodes of paired
linguistic structures which indicate translational equialence between the surface
strings dominated by the linked node pairs. Accordingly, irsections 3.1.1 and 3.1.2
we outline our design principles and criteria for ensuring ell-formed alignments.
The main alignment algorithm constitutes the core of this bdy of work and is de-
tailed in section 3.2 along with a series of variations and #nsions. We then carry
out a systematic evaluation of the automatically induced anments produced using

our algorithm. Firstly, the quality of the alignments is asgssed against a set of man-
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ually annotated gold standard alignments. We then perform task-based evaluation
by employing parallel treebanks created with the aid of thelgnment algorithm as
training data for a Data-Oriented Translation (DOT) system (Hearne, 2005). Fi-
nally, we manually evaluate the alignments in terms of theiability to capture some
prede ned translational divergences between the languagmir in question. These

evaluations are presented in section 3.3 and discussed hat in section 3.3.5.

3.1 Prerequisites

In this section, we present a set of prerequisites we congiglgé when developing
our alignment algorithm. We describe some guiding principt and our motivation
behind them in section 3.1.1, while in section 3.1.2 we de ribe criteria to which

alignments must conform in order to be considered well-fored.

3.1.1 Alignment Principles

The novel algorithm we present in this chapter is designed tdiscover an optimal
set of alignments between a pair of parallel trees while adireg to the following

principles:

=

independence with respect to language pair and constititidabelling schema,;

N

. preservation of the given tree structures;
3. minimal external resources required;
4. word-level alignments not xeda priori.

The algorithm we will present makes use of a single externagource, namely
source-to-target and target-to-source word translation nebabilities generated by
performing statistical word alignment on the sentence pasrencoded in the paral-
lel treebank. The algorithm does not, however, xa priori on any proposed word

alignment at this juncture. Rather, these word translationprobabilities are used to

a7



calculate scores for possible node alignments as is desadibully in section 3.2.4.
The alignment algorithm does not edit or transform the treesas we discussed in
section 2.1.2, signi cant structural and translational dvergences are to be expected
and the aligned tree pair should encode these divergenceshisI may not be the
most appropriate approach for certain tasks, such as phrasetraction for MT, as
restricting the space of extractable phrases to those cosfonding to linked nodes
between tree pairs leads to sparseness issues as has beermgnated by Koehn
et al. (2003) and Ambati and Lavie (2008) amongst others. Haver, as we wish to
retain the linguistic integrity of the trees and develop a tak-independent algorithm,
we preserve the given tree structures. We demonstrate in &t chapters that the
resulting parallel treebanks can still be bene cial for théranslation process. How-
ever, there is one instance in which trees are altered frometn original structure.
This occurs when unary productions are collapsed into a siegnode. As links are
induced based on surface strings dominated by constituenbdes (as opposed to the
tree structures), unary productions would introduce redudancy into the alignment
process as there would be more than one node representing slaene sub-string in
the tree. We resolve this by collapsing unary productions ia a single node, as
illustrated in (3.1), packing su cient information into th e node such that it can
be expanded to the original structure based on the requiremts of any end task.
Finally, the algorithm accesses no language-speci ¢ infoation beyond the (auto-
matically induced) word-alignment probabilities and doesiot make use of the node

labels in the parse trees, so the labelling schema is irrede.

NP
A NP
DET NP
‘ ‘ =) DET NP:NN (3.1)
the NN ‘
the man
man
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3.1.2 Alignment Well-Formedness Criteria

Links are induced between tree pairs such that they meet thelfowing well-formedness

criteria;

1. a node can only be linked once;

2. descendants of a source linked node may only link to desdants of its target

linked counterpart;

3. ancestors of a source linked node may only link to ancesd@f its target linked

counterpart.

These criteria are in place in order to ensure the translatial equivalence impli-
cations of a link, as discussed in section 2.1. For exampléget rst criterion states
that a node can only be linked once. If we were to have two linksoming from
a particular source node it would imply that the string domirated by this node is
translationally equivalent to two distinct sub-phrases inthe target sentence, and
this is not desirable. This is illustrated in Figure 3.1(a).Given the existing dashed
link between nodesA and W the solid link from Cto Wis now illegal. Figure 3.1(b)
illustrates violations of the second and third constraints Given the dashed link be-
tween nodesCand W descendants of these two nodes may only link to one another;
that is, nodesD and E on the left tree may only link to nodesY and Z on the right
tree. Thus, the solid link betweenE and V is illegal. This link is also ill-formed in
that node Vis an ancestor of linked nod&Vand thus can only aligned to ancestors
of W& linked correspondantC which in this case is only nodeA The criteria are
akin to the \crossing constraints" described in (Wu, 1997) Wwich forbid alignments
that cross each other. Our criteria di er from those of Wu beause we impose them
on a pair of fully monolingually parsed trees, so our critesi are more strict. The
constraints in (Wu, 1997), on the other hand, are imposed imently during the
bilingual parsing and alignment phase.

In what follows, a hypothesised alignment is ill-formed wit respect to all existing

alignments if it violates any of these criteria.
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LT: C X Y (@)
b ¢ Xy
A V
N T e T
B C W X
\ | (b)
bl? E Y Z X
d &y &

Figure 3.1: Examples of ill-formed links given the well-fomedness criteria.

3.2  Algorithm

In this section, we present a precise description of our atiment algorithm, originally
introduced in Tinsley et al. (2007b), in terms of hypothesisitialisation, hypothesis
selection and hypothesis scoring. We introduce the basigyalithm in section 3.2.1
by describing how we initialise the process, and select be®n all hypothetical
alignment options. Following this, we discuss a number of ®nsions and alterations
to the basic algorithm, motivated by various consideratios, in sections 3.2.2 and
3.2.3. Finally in section 3.2.4, we describe how we use wordgament probabilities

to calculate scores for our alignment hypotheses.

3.2.1 Basic Con guration

For a given tree pairhS; Ti, the alignment process is initialised by proposing all lirk
hs; ti between nodes in S and T as hypotheses and assigning scofés; ti) to them.
All zero-scored hypotheses are blocked before the algonttproceeds. The selection
procedure then performs a greedy search by iteratively ximpon the highest-scoring
link, blocking all hypotheses that contradict this link andthe link itself, until no
non-blocked hypotheses remain. These initialisation ancelection procedures are

given in Algorithm 1  basic
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Algorithm 1  basic
Initialisation

for each source non-terminas do

for each target non-terminalt do
generate scored hypothesis(hs; ti)

end for

end for

block all zero-scored hypotheses

Selection underspeci ed

while non-blocked hypotheses remaido
link and block the highest-scoring hypothesis
block all contradicting hypotheses

end while

Figure 3.2 illustrates the Algorithm 1 Selection  basic procedure. The con-
stituents in the source and target tree pair are numbered. Téhnumbers down the
left margin of the grid correspond to the source constituestwhile the numbers
across the top correspond to the target constituents, and ea cell in the grid cor-
responds to a scored hypothesis. Within each cell, circlesrbte selected links and
brackets denote blocked links. The number inside a given celdicates the iteration
during which its link/block decision was made, with Os indiating hypotheses with
score zero. For example, hypothesidl; 1i (i.e. nhodesHEADER-and PP-1in the
English and French trees respectively) was linked duringatation 1, and hypothesis
h2; 1i was blocked, hypothesisb; 8i was linked during iteration 2 and hypotheses
h5; 61, h6; 71 and h9; 8i were blocked, and so on. There were 7 iterations in total, and
the last iteration linked the remaining non-zero hypothesihz; 11i. As reported in
Zhechev (2009), the complexity of the basic algorithm is qdaatic in the number

of source and target language tokens.
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HEADER-1 PP-1

PP-2 COLON-9 P-z/\NPJ
P-3/\NP-4 ‘ P3 D5 P6 D8 NP-9
from D—S/\NP—G a partir d(l, un‘e N-10 N-11
a N-7 N-8 application Win(‘jows
Win(‘alows Application

Figure 3.2: lllustration of how Algorithm 1 Selection  basicinduces links for the tree-
pair on the left.

3.2.2 Resolving Competing Hypotheses (skip)

The Selection procedure given inAlgorithm 1 Selection  basicis incomplete
as it does not specify how to proceed if two or more hypothesskare the same
highest score. We propose two alternative solutions to thigroblem. Firstly, we can
simply skip over tied hypotheses until we nd the highest-saring hypothesis with
no competitors of the same score, as given B\fgorithm 2 Selection  skipl

The skipped hypotheses will, of course, still be availableidng the next iteration,
assuming that they have not been ruled out by the newly selesd link. If all but one

of the tied hypotheses have been ruled out, the remaining omell be selected on
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Algorithm 2 Selection  skipl

while at least one non-blocked hypothesis with no tied competitos remainsdo

while the highest-scoring hypothesis has tied competitorgio
skip

end while
link and block the highest-scoring non-skipped hypothesis
block all contradicting hypotheses
re-enable all non-blocked skipped hypotheses

end while

the next iteration. If all remaining non-zero-scored hypdtesis have tied competitors
then no further links can be induced.

A second alternative is to skip over tied hypotheses until wend the highest-
scoring hypothesigs;ti with no competitors of the same scorand where neither s

nor t has been skippedas given inAlgorithm 3 Selection  skip2

Algorithm 3 Selection  skip2
while at least one non-blocked hypothesis with no tied competitos remainsdo
if the highest-scoring hypothesis has tied competitorghen
mark the constituents of all competitors as skipped
end if
while the highest-scoring hypothesis has a skipped constituentio
skip
end while
link and block highest-scoring not-skipped hypothesis
block all contradicting hypotheses
re-enable all non-blocked skipped hypotheses
end while

This alternative is proposed in order to avoid the situationn which a low-scoring
hypothesis for a given constituent is selected in the samesration as higher-scoring
hypotheses for the same constituent were skipped, therebyepenting one of the
higher-scoring competing hypotheses from being selecteddaresulting in an un-
desired link. The issue is illustrated in Figure 3.3. The béscoring hypotheses,
of which there are several, involve source constituent-21 and include the correct
hypothesishb-21, D-16i. The skiplsolution simply selects the best non-tied hypoth-
esis,D-21, D-4i, which is clearly incorrect. Theskip2 solution, however, skips over
all hypotheses involving skipped constituenb-21 and selectsD-16, D-4i as the best

hypothesis. On the next iteration, all hypotheses for souecconstituent D-21 are
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again skipped, and hypothesi¢PP-18, PP-13i is selected. This selection blocks all
but one hypothesis involving source constituenb-21, the correct hypothesishp-21,

D-16i, and so this link is selected on the following iteration.

ROOT-1 LISTITEM-1
VPv-2 PERIOD-23 Sl[decl]-2 SEMICOLON-31
—
V-3 AP-4 . NPdet-3 VPcop-6
| — e T —1 -
Make A-5 S-6 - D-4 N-5 Vcop-7 NPpp-8
| | | I
sure NP-7 le HomeCentre _est _ _ _ _ | N-9_ _ _ APvp-10
P — -7 | T =
the parallel cable V-13 ,7 NP-15 bien V-11 PP-13 PP-18
| L e N P
connects D-16 N-17 NP-20  _ _ _ _ _ _ _ _ _raccoré _P-14 NP-15 par ...le cdble parakle
| | P TP~
the HomeCentre to 21 N-22 a D-16N-17
| | |
the PC le PC

Figure 3.3: This example illustrates the di ering e ects of the Selection skipland Selec-
tion skip2 strategies: with skiplthe undesirable solid link is induced whereas
with skip2 the correct dashed links are induced.

3.2.3 Delaying Lexical Alignments (span)

It is frequently the case that the highest-scoring hypothes are at the word level,
i.e. a node has a span of 1 on the source and/or target side. Hower, selecting
links between frequently occurring lexical items at an earlstage is intuitively un-
appealing. Consider, for instance, the situation where sme terminal x most likely
translates as target terminaly but there is more than one occurrence of botlx
and y in a single sentence pair. It may be better to postpone the dsmon as to
which instance ofx corresponds to which instance of until links higher up in the
tree pair have been established, as given Agorithm 4 Selection spanl(where
span-1 hypotheses have span 1 on the source and/or targetesdand non-span-1
refers to all other hypotheses).

The e ects of the Selection spanlstrategy are illustrated by the example given
in Figure 3.4: without spanl, the English noderD-8 thei is immediately linked to
the French nodenD-13 lei rather than being correctly linked to the nodetD-4 lei and
also the English noderD-17 thei is linked to the French noderD-4 lei rather than

hD-13 lei. Not only are these alignments incorrect, but their preseecmeans that
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Algorithm 4 Selection  spanl
while non-blocked non-lexical hypotheses remaindo
link and block the highest-scoring hypothesis
block all contradicting hypotheses
if no non-blockednon-lexical hypotheses remainthen
while non-blocked lexical hypotheses remaindo
link and block the highest-scoring hypothesis
block all contradicting hypotheses
end while
end if
end while

the remaining desirable hypotheses are no longer well-faeth However, the correct
alignments are induced by rst allowing the English nodéNP-7 the scanneii to link to
the French nodenP-3 le scanneri and NP-16 the HomeCentré t0 HNP-12 le HomeCentrd ,

which is the case wherspanlis applied.

o I Nl L
,/NP-7 VPaux-10 TN NP-3 VPaux-6 ~~. T~
/\ // // \/\ /\ \\ N
D-8 N-9 AUX-11 VP-12 K /' D-4 N-5 A-7 V-8

\
scanner is V-13
\
connected D-15

1
scanner est V-9 P-10 \

connece P11~ NP-12

\

a D-13 D-14

HomeCentre HomeCentre

Figure 3.4: This example illustrates the e ects of the Seletion spanl strategy: without
spanl the solid links are induced whereas switching orspanl results in the
dashed alignments.

3.2.4  Calculating Hypothesis Scores

We will now describe the process by which we assign scoreshe hypothesised links.
Inserting a link between two nodes in a tree pair indicates #t (i) the substrings
dominated by those nodes are translationally equivalent an(ii) all meaning carried
by the remainder of the source sentence is encapsulated irethemainder of the
target sentence. The scoring method we propose accounts tloese indications.

Given a tree pairhS; Ti and hypothesists; ti, we compute the following strings:
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S| =SSk 5= S1'S; 1Six+1::Sh

t=tit 6= Tonty gt Ty

where s;::isic and t;:::itjx denote the terminal sequences dominated ks and t re-
spectively, andS;:::S,, and T,:::T, denote the terminal sequences dominated iy

and T respectively. These string computations are illustratechi Figure 3.5.

/\""/*/j\ s = bec
I tt = X
NN o)
YL e 6 -

b ¢ x vy T W2

Figure 3.5: Values forsy, t;, 57 and t; given a tree pair and a link hypothesis.

The score for the given hypothesiss;ti is computed according to (3.2).

(hs;ti) = (sijt)) (tjs) (sijt) (tjs) (3.2)

Individual string-correspondence scores(xjy) are computed using word transla-
tion probabilities retrieved using a statistical word aligner.! Two alternative scoring
functions are given byscore1(3.3) and score2(3.4), which are loosely based on IBM
Model 1 for word alignment as described in Brown et al. (1990)in scorel for a
given source wordx; we sum over the probabilities of it translating as each targe
word y; :::y;. This gives us the probability of the target string correspoding to
each source word. We take the product of these probabilitider each source word
to obtain a correspondence score for the entire string pair.

The alternative approach presented irscore2sums over the probability of each
source wordx, : ::X; translating as a given target wordy;. We then take the average
score, dividing by the number of words in the target stringi{. Following this, we
again take the product of these scores for each target word ¢ive us a correspon-

dence score for the entire string pair. The intended e ect ahe score2function, as

1We use Gza++ to calculate word translation scores throughout this the sis (cf. Section 2.2.1).
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with spani is to reduce any bias in favour of aligning shorter span cartsents over

longer ones.
Score scorel _ Wi i _
(xjy) = P(xiiy;) (3.3)
i=1 j=1
Score score2 i P iyi i
(Xjy) = — (3.4)
i=1 1y

Similar to the lexical weighting feature described in Sean 2.2.3, to account for
cases in which source and target words have no correspondestcording to the word
translation probability distribution, we add a specialnull word to the target string.
In the distribution estimated using Giza++, probabilities are calculated for words
translating to null , but this is not so for all words. In cases where no probabyit
is present for a word translating aswll , it receives a score of zero. If, for a given
hypothesis, a source-side word has no correspondents on thgyet side according
to the word translation distribution, we can safely assumehie overall hypothesis is
poor. In this case, the sum over this word will be zero and casguently the product
will also amount to zero for the hypothesis and thus we have ¢hdesirable e ect of

omitting this hypothesis from the selection process.

3.3 Aligner Evaluation

In section 3.3.1, we describe the dataset we used and the lbasxperimental set-up
for all experiments. Section 3.3.2 details experiments warced out in terms of

evaluating the alignment quality against gold-standard hman alignments. We then
perform a task-based evaluation of the alignments as dedx=d in section 3.3.3, and
nally in section 3.3.4 we manually investigate the qualityof the alignments in terms

of a number of translational divergences.
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3.3.1 Data

The experiments in sections 3.3.2 and 3.3.3 evaluate all gdde con gurations of the
aligner. When con guring the alignment algorithm, we must boose eitherskipl or
skip2 and we must choose eithescorel or score2 Using spanlis optional, so it can
be switched on or o. This gives us eight possible con guratns of the algorithm,

as shown in Figure 3.6:

skiplscorel skiplscorelspanl
skiplscore2 skiplscore2spanl
skip2.scorel skip2scorelspanl
skip2.score2 skip2score2spanl

Figure 3.6: The 8 possible con gurations of the alignment agjorithm.

The corpus we use for all evaluations is the English{Frenclestion of the Home-
Centre corpus, which contains 810 parsed, sentence-aligrteanslation pairs.2 This
corpus comprises a Xerox printer manual, which was transkad by professional trans-
lators and sentence-aligned and annotated at Xerox PARC. Asne would expect,
the translations it contains are of extremely high quality.

We produced a set of automatic alignments for each con gurain of the aligner?
Word alignment probabilities, used to calculate the hypotbsis scores for the aligner,
were obtained by running Gza++ (Och and Ney, 2003) on the 810 sentence pairs
in the corpus. The manual alignments were provided by a sirggannotator, who is

a native English speaker with pro ciency in French (Hearne2005).

3.3.2 Intrinsic Evaluation

In this section, we evaluate the precision and recall of inded alignments over
the 810 English{French tree pairs described previously, ig the manually aligned

version as a gold standard and discuss the results.

2The average numbers of English and French words per sentenege 8.83 and 10.05 respectively,
and the average numbers of English and French nodes per treee@15.33 and 17.52 respectively.

3Alignment took approximately 0.004 seconds per tree on an Aple machine with a 2.33GHz
dual-core processor and 2GB of RAM; time variations of aliger con gurations are insigni cant.
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all links non-lexical links

Con gurations Precision Recall F-score Precision Recall F-score
skipl.scorel 0.6096 0.7723  0.6814| 0.8424 0.7394  0.7875
skipl_score2 0.6192 0.7869  0.6931| 0.8107 0.7756  0.7928
skip2_scorel 0.6162 0.7783 0.6878| 0.8394 0.7486  0.7914
skip2_score2 0.6215 0.7867  0.6944| 0.8107 0.7756  0.7928

skipl_scorelspanl 0.6229 0.8101 0.7043 0.8137 0.7998  0.8067
skipl_score2spanl| 0.6220 0.7963  0.6984| 0.8027 0.7871  0.7948
skip2_scorelspanl| 0.6256 0.8100 0.7060 0.8139 0.8002 0.8070

skip2_score2spanl 0.6245 0.7962  0.7001| 0.8031 0.7871  0.7950

Table 3.1: Evaluation of the automatic alignments against the manual alignments.

Evaluation Metrics

Given a tree pairT, its automatically aligned versionT, and its manually aligned
versionTy, , we calculate precision according to the equation in (3.5 he precision
rate of a set of alignments is the proportion of automatic ajinments that correspond

to manual alignments in the gold standard.

ITa\ Tuij

P recision = P—
ITal

(3.5)

Recall is calculated according to equation (3.6), where thecall rate of a set of
alignments is the proportion of total number of automatic agnments corresponding
to a manual alignment with respect to total number of manual Bgnments.

JTa\ Twu]j

Recall = —_— 3.6
1Tm] (3.6)

In addition to calculating precision and recall over all liks, we also calculate
scores of non-lexical links only, where a non-lexical linkigns constituents which
both span more than one word. The motivation behind this is tallow us to deter-

mine how successful the algorithm is at inducing alignmentbove the word level.

Results

The results shown in Table 3.1 give precision and recall sesrfor all eight algorithm

con gurations against the gold standard for both the entireset of links and non-
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lexical links only. Looking rstly to the all links column, it is immediately apparent
that recall is signi cantly higher that precision for all con gurations. We note that

all aligner con gurations consistently induce more links han exist in the manually
aligned treebank, with the average number of links per treea ranging between
10.3 and 11 for the automatic alignments versus 8.3 links pieee pair for the manual
version. Regarding the di erences in performance betweehd aligner variants, we
observe that all con gurations which includespanl outperform all con gurations

which exclude it.

Looking now at the non-lexical links column, we observe that the balance be-
tween precision and recall is reversed and that precision i®w higher than recall
in all cases. This indicates that those phrase-level aligrents we induced were
reasonably accurate and conversely suggests that the acy of our lexical-level
alignments were relatively poor. Regarding the di erencem performance between
the aligner variants, we note that both the highest precisio and lowest recall were
achieved usingskiplscorel and skip2scorel However, the best balance between
precision and recall is again achieved when tlgpanl option is used. This is due to
the fact that spanlallows for increased recall by omitting instances in whichqor
lexical choice limits the number of available hypothesesnd subsequently recall.
The remaining decisions on word alignments are then easi@rmake and chances of

increased precision are improved.

3.3.3 Extrinsic Evaluation

In this section, we carry out a task-based evaluation of theutomatic alignments.
We use the manually aligned parallel treebank to train a DOT ystem (Hearne,
2005). We assess translation performance using a number stablished metrics for
automatic MT evaluation, described in section 2.4, to givesia baseline. We then use
the automatically aligned parallel treebanks produced byhe 8 con gurations of the
alignment algorithm to train a number of DOT systems and evalate performance

such that the only di erence across MT system con gurationss the sub-sentential
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alignments in the parallel treebank.

Experimental Setup

We used 9 versions of the HomeCentre parallel treebank to maDOT systems: one
aligned manually as described in Section 3.3.1, and the otkeusing the 8 aligner
con gurations speci ed in the same section. In order to makéull use of our limited
training resources, we generated 6 training/test splits fahe HomeCentre data such
that (i) all test words also appeared in the training set, (ij all splits have English
as the source language and French as the target language aiig €ach test set
contains 80 test sentences and each training set contains07Bee pairs. We then
applied the 6 splits to each of the 9 versions of the datasetained the MT system
on each training set and performed translation on each cosgonding test set. Final
evaluation scores are presented as the average over the Gtspl

For the MT experiments presented in this chapter and all sulegjuent chapters, we
evaluate translation performance using three automatic nécs described in section
2.4: BLEU, NIST and METEOR. Statistical signi cance testing was not carried out
for the experiments in this chapter due to the relatively smiasize of our test set
and the nature of our evaluation framework. Finally, an addional measure we use
to extrinsically evaluate the automatic alignments in thissection is the translation

coverage achieved by the DOT systerh.

DOT Coverage Measure

Recalling how the DOT system works from section 2.3.2, targlanguage translations
are built synchronously as the source input is parsed by the@I grammar. In some
cases, a full target-side parse tree cannot be built and sorheuristics are applied
to piece the tree fragments together. In cases where a fulkgget-side parse is built,
that sentence is said to have full coverage. Thus, when we @alate DOT coverage

we are measuring the percentage of translations that recetva full target-side parse.

4This measure is only applicable in this section and is not use for evaluation in subsequent
chapters.
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Obviously, the better the alignment quality, the better the extracted grammar and

consequently more target trees receive a full parse and thtise higher the DOT

coverage.

Results
Con gurations BLEU NIST METEOR Coverage
manual 0.5345 6.9590 0.7274 70.4167%
skiplscorel 0.5155 6.8706 0.7217 74.4792%
skipl score2 0.5342 6.9008 0.7300 75.2084%
skip2_.scorel 0.5167 6.8893 0.7256 74.5834%
skip2_score2 0.5346 6.9007 0.7309 75.2084%

skiplscorelspanl 0.5256 6.8751 0.7280 75.4167%
skiplscore2spanl 0.5337 6.9198 0.7314 74.7917%
skip2 scorelspanl 0.5257 6.8893 0.7295 75.4167%
skip2.score2spanl 0.5336 6.9201 0.7305 74.7917%

Table 3.2: Translation scores for DOT systems trained usingsarious alignment con gura-
tions.

Table 3.2 presents the translation scores for the 9 DOT systes we trained using
di erent parallel treebanks. Firstly, comparing the automatically derived treebanks
to the manual alignments, we see that the majority of the autmatic con gura-
tions lead to comparable or improved translation performaze. We also see that
translation coverage improves by up to 7.1% absolute imprement (5% relative
improvement) when using automatic alignments.

Comparing the automatically generated parallel treebankgo one another, no
one particular con guration consistently outperformed tre others. However, we do
obtain some insight as to the relative performance of the viaus alignment con g-
urations. When we observescore2and spanlin isolation,® they consistently lead
to improvements across all metrics. For instance, whescore2is used instead of

scorelwe see improvements, e.gkiplscore2> skiplscorelin Table 3.2, and when

Sscore2and spanlwere e ectively introduced to remedy the same problem: highscoring, low-
quality lexical alignments. When observed in isolation they consistently lead to improvements.
However, when applied together e.g. skipl score2spanl, the results produced are erratic. We
attribute this behaviour to an apparent con ict between the two options. We leave investigations
into the cause of this con ict for further research.
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the spanloption is turned on we again see improvements, e.gkiplscorelspanl
> skiplscorel in Table 3.2. Furthermore, con gurations in which skip2 is em-
ployed in place ofskipltend to have higher translation accuracy and coverage, e.g.
skip2scorelspanl> skiplscorelspanlin Table 3.2. We attribute these improve-
ments in DOT accuracy to the better hypothesis selections gy made given the
more intuitive selection processes applied when using tleeson gurations. In the
following section, we present examples of aligned paralleees produced by the

best-performing con gurations from this evaluation.

3.3.4 Manual Evaluation

In this section, we present an evaluation of our alignment gbrithm in which we
manually observed the quality of the sub-tree alignments iterms of the extent
to which they captured certain translational divergences déween the languages in
the parallel treebank (Hearne et al., 2007). The phenomenaevevaluated against
were all to be found in our HomeCentre data set which, as notdsy (Frank, 1999),
provides a rich source of both linguistic and translationatomplexity. The specic

phenomena we observed were:
nominalisation;
stylistic divergence;
head-switching;
lexical divergence.

For the purposes of this evaluation, we used two con guratits of the aligner:
skip2scorelspanland skip2score2 This choice was based on the evaluations of
the previous two sections in which we foundkip2 to outperform skipl, and spanl
and score2to perform best when not used in the same con guration. The eluation
carried out here is admittedly not as systematic as it might &ave been. Rather, it

was designed to give us a greater overall insight into the singths and weaknesses
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of the algorithm as well as helping us better understand theutomatic evaluation
scores (cf. (Hearne et al., 2007)).

Before looking at divergent cases, we rst observed that thalignment algorithm
generally produced accurate output for simple translatiocases with relatively iso-
morphic tree structures. Examples (3.7) and (3.8) illustree cases where aligner
con gurations correctly identi ed equivalent constituents where length, word order

and tree structure all match exactly. For short phrases, sticexamples are common.

reattach the scanner to the HomeCentrd  replacez le scanner sur le HomeCentre
NP NP

D N D N (3.7)

the scanner le scanner

o R
P NP P NP

‘ /\ /\ (3.8)
to [’) I]I surT I\\I

the I-;I;dr—r;léééﬁt/ré- - iéi o HomeCentre

Nominalisation

Instances of nominalisation are commonly presented to thdigner in the Home-
Centre data. Consider, for example, the alignments as givday both con gurations
in (3.9) where the English verb phrasgemoving the print headis realised as the
French noun phraseetraite de la téte d'impression As the algorithm does not take
into consideration the labels on the tree, but rather the liklihood that the surface
strings are translations of each other, there is no impedimeto the linking of the
English VPto the French NP Furthermore, the lowerNPalignment is straightforward.

Note, however, the (probably incorrect) alignment betweethe VPremovingand the
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Nretraite. This alignment did not appear in the manual alignment as th@nnotator

considered the meaning equivalence to be betwesmoving and retraite de.

removing the print head! retraite de la téte d'impression

NP

vﬂﬂ/ﬂmpx~”" //\\ (3.9)

[ retraiteP NP

removing
de

Stylistic Divergences

It is also common for sentences expressing the same conceptave di erent surface
representations for simply stylistic reasons. We see an exple of this in (3.10)
where the English section header is phrased as a question,endas in French the
correspondant is a declarative statement. The tree pair in3(10) also exempli es

the correct alignments as output by both aligner con guratons.

What if the scanner does not work? ! Le scanner ne fonctionne pas.
HEADER —
HEADER
CPint INT-MARK

S PERIOD

PREINT S P s

/\ NPdet VPverb .
what if NP VPau

(3.10)

Head-switching
Another complex translation case presented to the alignes that of head-switching
where the head word in the source language sentence corresjsoto a non-head

word in the target language realisation. An example of heaslwvitching is given in
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(3.11), where the dashed alignments represent the manuailgaments and the solid
link (between AUXis and A a clee ) represents an erroneous alignment introduced
by both aligner con gurations. Obviously we attribute this error to poor lexical
choice on the part of the algorithm where we nd it tends to hae di culty align-
ing frequently occurring lexical items, such ass, which may have many possible

translational equivalents given the available statistics

the calibration progress dialog box la bote de dialogue &bnnage de le scanner
is displayed while the scanner ! reste a chee pendant toute la duee
is being calibrated de I'etalonnage du scanner
é \/S\
NP VPaux NPdet VP

is \/ CONJPsub reste A PP

displayed aclee
(3.11)

Lexical Divergences

Lexical divergences, where a single word in the source laage can correspond to
many words in the target language and vice versa, occur frezntly in the data and

the algorithm captures them with regularity. For instance,skip2 score2produced

the output shown in example (3.12) by the dashed links, whiclexactly matches
the manual alignment produced for that tree pair. This outce is very desirable
because, as we described in Section 3.2.4, when calculatimg score for a particu-

lar alignment hypothesis, we not only consider the translanal equivalence of the
dominated substrings, but also the translational equivalece of the remainder of the
source and target sentences. In this way, links can be infedr even when constituent

substrings are lexically divergent. Furthermoreskip2score2normalises for length
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speci cally when scoring, which aids in capturing this aligment. skip2.scorelspanl

errs by introducing a 1-to-1 alignment as illustrated by thesolid link.

the scanner will move across ! le scanner se dceplace le long de la page au fur
the page as it scans eta mesure que il e ectue la nunerisatbn
14 - B e \\
CONJPsub CONJPsub

_ _ -

CONJsub S CONJsub S
as au fur et a mesure que
(3.12)
There are many other instances in the data of how frequentlycourring words
can vary greatly in terms of how they are translated. This ph@omenon is illustrated

for the English verbto needin examples (3.13) { (3.16).

you V VPinf o
need PART VPV ‘
‘ devez
to
S """""""""""""""""""""""""""""
S
PRON VPv

need PART  VPv

to
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CONJPsu

if PRON }’V\ s
you Y NP
need
""""" S
S
PRON et
PRON vp ‘

il NEG V PostNEG VPcop

you AUMV ‘ /\
‘ ‘ /\ ne devrait pas Vcop /AP\ (3.16)

do not V VPinf ‘

TN, etre. A PPinf
need PART VPV

‘ necessaire P VPverb
to

de

you need toX can be realised as bothvous devezX and il faut X in French,
as shown in examples (3.13) and (3.14). This di ers, howevewhen the object is
nominal rather than sentential: if you needXis shown in (3.15) to translate agour
X Finally, we show in example (3.16) that the negativeyou do not need toX can
translate asil ne devrait pas étre necessaire d¥, which literally means it should
not be necessary to X' in Englisi?.

These examples are handled reasonably well by both con gti@ns of the align-
ment algorithm, again due to the strength of the equivalenceelation between the
object constituents. For example, in (3.17) and (3.18) we stv the automatically

aligned versions of the tree pairs shown in (3.13) and (3.14Again we see lexi-

SWe note that this is just a subset of the French realisations ér the verb to needwhich occur
in the HomeCentre corpus.
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cal alignments in the automatic output not present in the manal alignments; the
annotator considered the equivalences to bexd¢ed tq devez and (you need to il
faut). While the case for linking need with devezis arguable, the link between
need and faut is incorrect. The alignments in (3.17) were produced by bothu-
tomatic con gurations. The tree in (3.18) show misalignmets produced by both
skip2scorelspanl(the solid link) and skip2score2(the dashed link). The dotted
links are those in common between the two con gurations. Theisalignment pro-
duced by skip2 score2is attributed simply to poor lexical choice, while the lexial
misalignment in skip2scorelspanlis due to the induction of an erroneous link at

a higher level in the tree pair which consequently caused thmor lexical selection.

i < -----.._PRO VPverb
you V VPinf /\ (3.17)
vous V VPverb

need PART VPV ‘
‘ devez
to
,,,,,,,,,,,,,,,,,,,,,,,,, S

PRON  VPv
/-\- ~_ _PRON VPverb
you V VPinf N (3.18)
‘ il Vv VPverb
need PART VPv
faut
to

3.3.5 Discussion and Conclusions

Given all evaluation scenarios it is clear we have developedviable alternative
to manual alignment when it comes to the contruction of par&l treebanks. As

we discussed in section 2.1.1, although the goals of manudigament may not
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ultimately be the same as those of automatic alignment, thegtill serve as a solid
baseline. To this e ect, we saw a good balance between préais and recall in
section 3.3.2 when comparing the automatically induced ghments against the
gold standard. This performance was also re ected in the treslation task in section
3.3.3, where translation scores for the automatically indied alignments were very
competitive and DOT translation coverage increased over ¢hmanual alignments.

One aspect of the alignments that was not re ected between ¢hexperiments
was the quality of the lexical alignments. We noticed in eayl experiments that
poor lexical choice was an issue, hence our introduction dfet featuresspanland
score2 Despite this, in Table 3.1 we saw a huge increase in precisiohen measured
only in terms of non-lexical links which told us that our wordalignments were
not so accurate. However, this did not necessarily carry avéo the translation
experiments as the evaluation scores for the automatic cogurations often improved
over the manual con guration. The explanation for this may ie in how the MT
system we used works; because DOT displays a preference gng larger fragments
when building translations wherever possible, the impactf ainconsistencies amongst
smaller fragments (i.e. word-level alignments) is miniméxl. The issue of poor-
quality lexical alignments was again highlighted in the mamal analysis where we
saw that the majority of errors, when capturing translatioral divergences, were due
to poor lexical choice.

Regarding the possible con gurations of the aligner, whileo single con guration
consistently outperformed the rest, it was clear that a numér of features introduced
consistently lead to better performance. For example, in Il the intrinsic and
extrinsic evaluations, skip2 outperformedskipl Furthermore, score2outperformed
scorel(when used withoutspanl), while turning on spanlalso lead to improvements.

It is clear that further improvements lie in improving word-alignment quality.
There are a number of possible avenues to explore to this etesuch as inferring
word-alignment probabilities from alternative alignmens techniques to Gza++,

e.g. (DeNero and Klein, 2007; Deng and Byrne, 2008; Lardile and Lepage, 2008;
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Lambert, 2008), or identifying particularly troublesome #ignments, such as those
between function words and punctuation, and dealing with tem as a pre-processing
step. However, this is beyond the scope of this thesis, andnrains for further

research (cf. section 6.1).

3.4 Summary

In this chapter, we presented the development and evaluatioof a novel algorithm

for automatically inducing sub-sentential alignments beteen context-free phrase-
structure trees in order to produce parallel treebanks. Thalgorithm, presented as
an alternative to the time-consuming and error-prone pross of manual alignment,
induces links regardless of the constituent labelling same of the trees and on a
language pair-independent basis. We have shown the algbrt to have a high

correlation with manual alignments in terms of precision ah recall, while allowing

enough leeway for it to build parallel treebanks which can a@perform manually

aligned treebanks when used as training data for a DOT systemWe have also
illustrated the algorithm's capability to capture complextranslational divergences
between English and French.

In the next two chapters, we depart from further developmenand evaluation of
the alignment algorithm. Rather, we use it as a tool for builohg parallel treebanks
and subsequently investigate how we can exploit them acrosther paradigms of
MT. However, we do see the alignment algorithm being used swssfully to align
larger volumes of data across a number of di erent languageips, thus consolidating
our claims and evaluations presented here.

Extensions, optimisations and additional evaluation of te alignment algorithm
can be found in the work and dissertation of Ventsislav Zheelr (Zhechev and Way,
2008; Zhechev, 2009) who pursued this line of research ovee tourse of his Ph.D

studies.
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Chapter 4

Exploiting Parallel Treebanks In

Phrase-based SMT

In the previous chapter, we described a sub-tree alignmengarithm which provides
us with a means for building large-scale parallel treebanksghich can be exploited
in MT. As we discussed in Section 2.2, translation models inBRPSMT systems
are estimated from statistical word alignments induced aoss sententially aligned
parallel corpora. They do not rely on linguistically motivded information in order
to extract phrase pair correspondences. It has been showrathrestricting the set of
phrase pairs, extracted in this way, to those that correspahto syntactic constituents
is harmful to translation accuracy (Koehn et al., 2003). Hoewer, these experiments
also demonstrated that there is a gap in the space of phraseigeextracted by PB-
SMT systems that could potentially be lled by constituent-based phrase pairs. In
our case, these constituent-based phrase pairs are extedttfrom parallel treebanks
built automatically using statistical parsers and the sultree alignment algorithm of
Chapter 3.

We hypothesise that adding linguistically motivated constuent-based phrase
pairs, extracted from a parallel treebank, to the translatbn model of a PB-SMT
system (where the parallel treebank was built over the sameagallel corpus from

which the phrase-based translation model was originally deed) may help to im-
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prove translation accuracy in two instances:

1. by introducing new phrase correspondences that were nottected by the

PB-SMT system, and

2. adding probability mass in the model to those potentiallynore reliable phrase

pairs that were extracted via both methods.

The second case occurs as those phrase pairs which have been & both the
parallel treebank and the baseline model will have increasdrequency and will
consequently be assigned higher probability by maximumkilihood estimation (cf.
section 2.2.3).

In the remainder of this chapter we investigate the extent tavhich phrase pair
correspondences derived from automatically built paralléreebanks can be exploited
within the PB-SMT framework. In contrast to those approache which aim to in-
duce phrase translation models exclusively from tree-bakdata, we will supplement
existing phrase-based models with the parallel treebank gse pairs. Following this
we explore a number of alternative methods for harnessingahnformation encoded

in parallel treebanks, such as word alignments, in this padigm of MT.

4.1 Supplementing PB-SMT with Syntax-Based
Phrases: pilot experiments

In this section we describe some small-scale pilot experint® we carried out (Tins-
ley et al., 2007a) in order to test our hypothesis: that suppimenting phrase-based
translation models with syntactically motivated phrase pas extracted from par-
allel treebanks, automatically generated over the same irang data, can lead to
improvements in translation accuracy. In order to do this, & carried out four
translation tasks: English-to-German, German-to-Englis, English-to-Spanish and

Spanish-to-English. For each task, a number of PB-SMT systes were built using
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various combinations of baseline SMT phrase pairs and symtdbased phrase pairs

extracted from parallel treebanks in the translation model.

4.1.1 Data Resources
Parallel Corpora

In the experiments we present here, two distinct data sets wee used. For the
English{Spanish language pair we randomly extracted a sef 4,911 sentence pairs
from version 2 of the Europarl parallel corpus (Koehn, 2005)Extraction was re-
stricted such that the English sentences were required to lbetween 5 and 30 words
in length. This was done in order to reduce the required parsy time as well as
increase the precision of the word alignment. The data set wahen randomly split
for training and testing with an approximate ratio of 10:1, eaving 4,411 sentence
pairs in the training set and 500 test sentences.

For the English{German language pair, the data set consigieof 10,000 sen-
tences pairs extracted randomly from version 2 of the Europgparallel corpus. The
restriction applied here again required English sentencés be between 5 and 30
words. Finally, this set was randomly split for training andtesting with a ratio of
10:1, giving us a training set comprising 9,000 sentence aand a test set of 1,000
sentences.

These data sets, while relatively small in terms of MT, congtited a signi cant
increase in the size of the alignment task for our algorithmiven building the parallel
treebanks. Based on the quality of alignment and translatio output in the pilot
experiments presented in this chapter, we were con dent weoald proceed with

much larger-scale tests as described later in this thesis.

Parallel Treebanks

In these experiments, and all subsequent experiments presal in this chapter, the

parallel treebanks we exploit for MT training and syntax-baed phrase extraction
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are derived from the original parallel corpora used to trairthe baseline PB-SMT
systems. Similarly, the word translation probabilities ued to calculate the hypoth-
esis scores for the sub-tree aligner (cf. section 3.2.4) aleo calculated from the
original parallel corpora in all cases.

The process of generating parallel treebanks from the palellcorpora described
previously was completely automated. Firstly, each monalgual corpus was parsed
using an o -the-shelf parser. The English corpus in both dat sets was parsed using
the parser of Bikel (2002) trained on the Penn Il treebank (Mcus et al., 1994). The
Spanish corpus was also parsed using Bikel's parser, thimé trained for Spanish
on the Cast3LB Treebank (Civit and Mart, 2004) as describd in (Chrupala and
van Genabith, 2006). Finally, the German corpus was parsedsing the BitPar
parser (Schmid, 2004) which was trained on the German TiGergebank (Brants
et al., 2002). The nal step in the annotation process was tolign the newly parsed
parallel corpora at sub-sentential level using the alignmeé algorithm of Chapter 3.
We did this using the algorithm con guration skip2.score2spani?

Given that our parallel treebanks here were automatically enerated | as they
were in all subsequent experiments presented in this thegithe question arises as
to their accuracy given the potential for error propagatiordue to the various auto-
matic processes employed. Of course, parsing errors can twenfl in the trees and
alignment errors do occur, but we are satis ed that the accacy of the automatic
tools we employ is su cient to demonstrate our hypothesis. &r instance, the three
parsers we use for these experiments have high reported aecy: 88.88% labelled
f-score for English (Bikel, 2002), 83.96% labelled f-scdie@ Spanish (Chrupala and
van Genabith, 2006) and 81.13% f-score for German (Schmid)(). Investigating

the impact of parse errors on alignment and subsequent trdaton tasks, while be-

LUsing this con guration is slightly counter-intuitive giv en the ndings in Chapter 3. However,
this decision was taken following discussions with my collague, Ventsislav Zhechev, who continued
research on the alignment tool whilst working towards his PhD. thesis (Zhechev, 2009). He
con rmed (personal communication, July 2007) that, based o empirical evidence given further
development on, and improvements to the alignment algorithm, this con guration consistently
performed most accurately. This was later reported in Zheckv and Way (2008).
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yond the scope of this work, is certainly an avenue for futuneesearch. Furthermore,
we have adopted a philosophy whereby we make use of whatewesaurces in terms
of parsers and corpora are available in order to produce p#ed treebanks. The al-
ternative to this is to manually craft parallel treebanks, vhich is wholly impractical

on the scale with which we are working in MT.

4.1.2 Phrase Extraction

In order to investigate our hypothesis, we must extract two ets of phrase pairs:
word alignment-based phrase paifsas used in PB-SMT systems, and syntax-based
phrase pairs as extracted from our parallel treebanks.

Baseline phrase pairs are extracted using the open sourcedds toolkit (Koehn
et al., 2007). During this process, the intersection of bicBctional Giza++ word
alignments are re ned using thegrow-diag- nal heuristic and extracted by Moses as
described in section 2.2.2. Syntax-based phrase pairs ax&r&cted from the parallel
treebanks according to the automatically induced sub-trealignments. These phrase
pairs correspond to the yields of all linked constituent pas in a given tree pair.

We will illustrate this process with an example. In Figure 4 we see an ex-
ample sentence pair from an English{French parallel corpusFigure 4.1(a) shows
the parallel treebank entry for this pair, while Figure 4.16) shows its re ned word
alignment according to the PB-SMT system. The combined sef extracted phrase
pairs to be added to the translation model is given in Figure.4(c). We can see
that while there is overlap between the two sets of phrase pai( ), there are also
a certain number of phrase pairs unique to the parallel trealnk ( ). These phrase
pairs represent the gap in the baseline phrase pairs we reést to at the beginning
of this chapter. Supplementing the baseline model with theystax-based phrase
pairs allows the gap to be somewhat lled, thus increasing thtranslation coverage
of the model. Additionally, the resulting modi ed combined probability model will

have a higher likelihood attached to these hypothetically ore reliable phrase pairs

2We will henceforth refer to these phrase pairs adaseline phrase pairs
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Training Sentence Pair
\O cial journal of the ~$ "Journal o ciel des
European Communities” Communauges europeennes\

NP PP N AP:A PP

N
NNP NNP IN NP
| | e T (@)
Ocial journal of DT JJ NNS des N AP:A
\ k. I A A
the European \Cgrpmunitiéé‘ Tt -Communaues europé@nnes

(b)

y Ocial journal $ Journal o ciel
y Ocial journal of ~$  Journal o ciel des
O cial journal of the/ $ Journal o ciel des/
European Communities Communauges europeennes
of $ des (c)
of the European Communities $ des Communaugs eurogeennes
the European Communities $ Communaues europennes
European $ europeennes
Communities $ Communaues
Ocial $ odciel
journal  $  Journal

Figure 4.1: Example of phrase extraction for the given sentece pair depicting: (a) the
aligned parallel tree pair; (b) the word alignment matrix (t he rectangled areas
represent extracted phrase pairs); (c) the combined set of racted phrase
pairs where: = only extracted from (a); y = only extracted from (b); =
extracted from both (a) and (b).
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occurring in the intersection of the two sets.

4.1.3 MT System Setup

For each translation task, we created three translation maas comprising:
only baseline phrase pairs (Baseline);
only syntax-based phrase pairs (Syntaonly);
a direct combination of both sets of phrase pairs (Baselin&yntax).

Our PB-SMT systems were built using Moses for word alignmenbaseline phrase
extraction, model estimation and decoding. In the directio combination model
(Baseline+Syntax), probabilities were calculated via retive frequency | as de-
scribed in section 2.2.3 | using the combined phrase pair cauts from the baseline
and syntax-based sets. Trigram language modelling was dad out, on the target
side of the parallel corpora, using the SRI language modall toolkit (Stolcke, 2002).
We did not carry out any parameter tuning in these experimerst given the small
amount of training data. All translations were again evaluged using the metrics
BLEU (Papineni et al., 2002), NIST (Doddington, 2002) and MEEOR (Lavie and
Agarwal, 2007).

4.1.4 Results

The results for the four translation tasks are presented indbles 4.1{4.4. Look-
ing rstly at the smaller data set, the results for the Engliq{Spanish language
pair are given in Tables 4.1 and 4.2. Adding the syntax-basgehrase pairs (Base-
line+Syntax) leads to signi cant improvements over the basline across all three
evaluation metrics. For example, we see a 1.02% absolute7@% relative) increase
in BLEU score from English{Spanish® and a 1.26% absolute (7.18% relative) in-

crease from Spanish{English. Using syntax-based phrase pairs only in the transla-

SEn{Es: 4.36% relative NIST increase; 4.12% relative METEORincrease.
4Es{En: 4.92% relative NIST increase; 2.77% relative METEORIincrease.
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tion model does not improve over the baseline according to BU score, but results
for the other metrics vary.

Looking now at the results for the English{German languagegr presented in
Tables 4.3 and 4.4, we see less pronounced, but nonethelegs sant, improvements
across all three metrics when supplementing the baseline dab with syntax-based
phrase pairs. From English{German we observe a 0.73% abgel{6.16% relative)
increase in BLEU scoré, while from German{English we see a 0.65% absolute (4%
relative) increase® Again, using only syntax-based phrase pairs performs slifjh
worse than the baseline in terms of BLEU score while varyingceoss the other

metrics.

4.1.5 Discussion

The principal aim of these experiments was to investigate \ether phrase pairs
extracted from our parallel treebanks could impact positiely on translation accuracy
in PB-SMT. The ndings here suggest that this is indeed a viale hypothesis. If
we examine the sets of extracted phrase pairs further, we @it an indication as to
where the improvements are coming from. Looking at the fregacy information for
the English{German phrase pairs presented in Table 4.5, weesthat approximately
77.6% of the syntax-based phrase pairs were not extractedthre baseline model. In
the combined model (Baseline+Syntax), this constituted 2@2% of the total number
of phrase pairs. A further 7.63% of the phrase pairs were fadiin the intersection
of the two sets, with the remaining 65.9% extracted by the batine model only.

A similar situation is seen when we look at the English{Spash data in Table
4.5. Again, a large proportion | approximately 68% | of the sy ntax-based phrase
pairs were not found in the baseline model, and these constiéd 20.65% of the
total number of phrase pairs in the combined model. Just 9.8 of the phrase

pairs occurred in the intersection of the two sets. As we disssed previously, it

SEn{De: 4.56% relative NIST increase; 2.55% relative METEORincrease.
5De{En: 4.81% relative NIST increase; 3.41% relative METEORincrease.
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English{Spanish

Conguration BLEU NIST METEOR

Baseline 0.1765 4.8857 0.4515
+Syntax 0.1867 5.0898 0.4701
Syntax_only 0.1689 4.8662 0.4560

Table 4.1: English{Spanish translation scores.

Spanish{English

Conguration BLEU NIST METEOR

Baseline 0.1754  4.7582 0.4802
+Syntax 0.1880 4.9923 0.4935
Syntax_only 0.1708 4.8664 0.4659

Table 4.2: Spanish{English translation scores.

English{German

Conguration BLEU NIST METEOR

Baseline 0.1186 4.1168 0.3840
+Syntax 0.1259 4.3044 0.3938
Syntax_only 0.1055 4.1153 0.3796

Table 4.3: English{German translation scores.

German{English

Conguration BLEU NIST METEOR

Baseline 0.1622 4.9949 0.4344
+Syntax 0.1687 5.2474 0.4492
Syntax_only 0.1498 5.1720 0.4327

Table 4.4: German{English translation scores.
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iIs the combined e ect of these two elements | the proportion d novel phrases
being introduced into the model and the increased likelihabbeing placed on the
phrase pairs in the intersection | that yields improved tran slation accuracy over the
baseline. In Section 4.2.1, we describe experiments whiahegus further information

as to the role played by these two factors in the combined molde

Language Phrase Type #Phrases \
Baseline 104,839

En-De Syntax 48537 10879
Baseline 77,639

En-Es Syntax 29575 9374

Table 4.5: Frequency information regarding the number of pliase pairs extracted from the
baseline system and from the parallel treebank for the Engh{German and
English{Spanish data sets.\ is the number of phrase pairs in the intersection
of the two sets.

Figure 4.2 presents some examples of the type of phrase pdirat were unique
to the syntax-based set from the English{Spanish task. We t® that many of these
phrase pairs contain the possessive endilsgon the English sidé which is frequently
misaligned during statistical word alignment. We highligked this particular issue
in our discussion on tree alignment vs. word alignment in sééen 2.1.1 (cf. example
(2.2) on page 11). Additionally, we see instances of longehnase pairs which are
relatively easy to capture as constituents in the parallelreebank, but which require

a more precise word alignment for baseline phrase pair exttan.

the union's $ de la unon
the council 's $ del consejo
yesterday 's $ de ayer
the european union's/ $ las recomendaciones/

recommendations de la unbn europea
the joint debate on/ $ el debate conjunto de/
the following reports los siguientes informes

Figure 4.2: Phrase pairs unique to the syntax-based set.

Examples of how this gave rise to improvements in translatoaccuracy can be

"This possessive is analysed as a separate token during pargj alignment and translation.
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seen below, where we show output for the Baseline (Base) andsBline+Syntax
(B+S) models for English-to-Spanish translation (where tk vertical bars indicate
the segments used to build the translation during decoding)in (4.1), we see the
possessive phrasde la sra schroedtercaptured as a single constituent given the
addition of the syntax-based phrase pairs to the B+S model, hile the 's is trans-
lated out of context in the Baseline model. Turning to exam@ (4.2), we again
see the possessive phrase captured as a single unit in the Bm8del. Similar ex-
amples were found throughout the system output whereby botthe Baseline and
Baseline+Syntax models arrived at the same translation, liuthe Baseline+Syntax
model did so by using a single segment while the Baseline mbgeced together
smaller segments to form the nal translation. This is a desable property of the
model as we are more likely to achieve uent output if we expiblonger, previously
seen exemplars. Recalling the discussion in Section 2.7sttvas the motivation for

the introduction of the phrase penalty feature in the log-hear model.

Src:  Mrs Schroedter 's report::

Ref. El trabajo de la Sra Schroedter: :

(4.2)
Base: Semnora Schroedtey del j informe:::
B+S: El informe j de la Sra Schroedter.:
Src:  The commission 's proposals
Ref: Las propuestas de la comisbn
(4.2)

Base: La comisbn j propuestas de

B+S: Las propuestas de la comison

The "Syntax _only' Models

The experiments of Koehn et al. (2003) demonstrated that regcting baseline phrase
pairs to those corresponding to syntactic constituents ingrallel trees is harmful to
translation quality by as much as 0.04 BLEU points (a 17% relative decrease).

These results were attributed to the fact that many legitimae translation pairs ex-
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tracted in PB-SMT models which may be non-intuitive or non-gntax-based phrase
pairs, such ashouse theand there are do not correspond to syntactic constituents
and are consequently Itered out to the detriment of transléion performance. Thus,
if we were to employ only our syntax-based phrase pairs in aatnslation model, we
would expect to see similar results to the restricted modef &oehn et al. (2003)®
Looking at the translation performance of our Syntaxonly model, we can analyse
the performance of a syntax-only model in terms of our expenents and compare
our ndings to those of Koehn et al. (2003).

In Table 4.5, we see that there are signi cantly fewer syntakased phrase pairs
than baseline phrase pairs: 54% fewer for English{German and 63% fewer for
English{Spanish. Looking back at Tables 4.1 to 4.4, we seewhdhis relates to
translation quality. There are 12.4% and 8.27% relative dps in BLEU score from
the baseline, for English-to-German and German-to-Enghsrespectively, when us-
ing only syntax-based phrase pairs (Syntannly). However, this is not re ected in
the NIST or METEOR metrics, where scores range from insigntant di erences
compared to the baseline to statistically signi cant impreements over the baseline,
e.g. 3.54% relative increase in NIST for German-to-Englistror English-to-Spanish
and Spanish-to-English we observe a 4.5% and 2.7% drop in tlespective BLEU
scores, but again the NIST and METEOR scores vary. Even if wgnore the incon-
clusive results across the metrics, the decrease in trartgda performance according
to BLEU across the tasks is relatively small given the size tiie Syntax only phrase
table compared to the baseline. Furthermore, although theesults are not directly
comparable, they are a lot less pronounced than the deteraiion in performance
presented in the experiments of Koehn et al. (2003) | who meagred their trans-
lation using only BLEU score | while we do not see consistent dops across all of
our evaluation metrics.

From these results we would be inclined to believe that the stax-based phrase

8Similar, but not exactly the same, as in the experiments of Kahn et al. (2003) the syntax-
based phrase pairs are a subset of the baseline phrase pairgable 4.5 shows us that this is not
the case here.
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pairs extracted from parallel treebanks are more reliabldhain those baseline phrase
pairs learned without syntax. Despite there being considably fewer phrase pairs
in the Syntax_only model, translation performance is competitive with tle Baseline
model. Further analysis of the set of syntax-based phrase imreveals a large
proportion of them to be word alignments’ for English{German, 37.67% and for
English{Spanish, 38.12%. We attribute this to the structue of the parse trees in our
parallel treebanks. Of all the constituent nodes availablas alignment hypotheses
during the construction of the parallel treebanks, 63.69%noaverage were part-
of-speech tags which ultimately gives rise to a large numbef word alignments
in the set of syntax-based phrase pairs. As we discussed irctsm 3.3.5, word
alignment is a source of diculty for the sub-tree aligner, geci cally alignments
between pairs of function words and between punctuation mis. It is possible that
the presence of these high-frequency, potentially unretiee alignments in the model
could be hindering the potential of the syntax-based phraggirs to further improve

translation quality. We will address this issue later in Se®n 4.2.

41.6 Summary

In this section, we presented a set of proof-of-concept exmpeents designed to test
our hypothesis that baseline PB-SMT quality can be improvedy supplementing
the translation model with syntax-based phrase pairs. Ourndings show that this is
a viable hypothesis. The introduction of novel phrase painsito the baseline model,
along with increased likelihood attached to ‘reliable’ plase pairs extracted by both
methods, gives rise to signi cantly improved translation acuracy. We also suggest
that syntax-based phrase pairs are more reliable than based phrase pairs based on
the performance of a Syntaonly model. Finally, we suggest further improvements
may be obtained if we can deal with the problem of erroneous wbalignments
between the parallel trees.

In section 4.2, we scale these experiments up by almost twalers of magnitude

9A word alignment in this case is a 1n or n-1 alignment, wheren 1.
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to determine whether the hypothesis holds. In addition, weatry out a further series
of experiments in order to investigate alternative ways to@loit the information

encoded in parallel treebanks within the PB-SMT framework.

4.2 Supplementing PB-SMT with Syntax-Based
Phrases: scaling up

In the experiments presented in this section, we focus our@&ts on a single trans-
lation task, namely English-to-Spanish. The experimentainethodology employed
in the previous section is replicated here while increasinige size of the training set
by approximately two orders of magnitude. Following this, w carry out a series of
further tests in order to investigate alternative ways of eploiting parallel treebanks

in the PB-SMT framework (Tinsley et al., 2009).

4.2.1 Experimental Setup

For all translation experiments carried out in the remaindeof this chapter, we used
version 2 of the English{Spanish Europarl corpu¥ After cleaning the corpus |
which involved removal of erroneous sentential alignmentblank lines, sentences
of over 100 tokens in length and sentence pairs with lengthtia greater than 9:1
| there remained 729,891 aligned sentence pairs. These wetblen split into a
development set of 1,000 sentence pairs and a test set of B,@@ntence pairs, all
selected at random. Test sentences were restricted in lehgo between 5 and 30
tokens on the English side. This resulted in an average tesérgence length of
12.3 words. When building the parallel treebank from this da set, we used the
same parser for the Spanish corpus as in section 4.1.1, namBlkel (2002). For
the English corpus, we used the more accurateBerkeley parser (Petrov and Klein,

2007), again trained on the Penn Il treebank. To the best of elknowledge, at

1°Downloaded from http://www.statmt.org/europarl/
1The reported accuracy of the Berkeley parser is 90.05% labled f-score as opposed to Bikel's
88.88%. The Berkeley parser also runs signi cantly faster.
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the time these experiments were originally carried out, teiwas the largest reported
parallel treebank exploited for MT training.

The baseline MT system setup was again similar to that of sech 4.1.2. We used
the Moses (Koehn et al., 2007) toolkit for phrase extractigrscoring and decoding.
All translation systems were tuned to the BLEU metric on the @évelopment set
using minimum error-rate training (Och, 2003), as implemdrd in Moses. 5-gram
language modelling was carried out on the target side of theagllel corpus using
the SRI language modelling toolkit (Stolcke, 2002). All traslations were performed
from English into Spanish and were, again, evaluated usinge metrics BLEU, NIST
and METEOR. Statistical signi cance was tested using bootsap resampling, with

a con dence value of p=0.05 unless otherwise stated.

4.2.2 Direct Phrase Combination

The rst set of experiments we carried out replicated thoseni section 4.1.4. Again,
we built three models using only baseline phrase pairs (Bdise), only syntax-based
phrase pairs (Syntaxonly) and a direct combination of the two sets of phrase pairs
(Baseline+Syntax). The results of these translation exp@nents are presented in

Table 4.6.

Cong. BLEU NIST METEOR
Baseline 0.3341 7.0765 0.5739
+Syntax 0.3397 7.0891 0.5782
Syntax.only 0.3153 6.8187 0.5598

Table 4.6: Results of large-scale direct combination trankation experiments.

Our ndings here are similar to those of section 4.1.4. We sdbat adding the
syntax-based phrase pairs to the baseline model leads to dima but statistically
signi cantly improved translation accuracy acrossall metrics (0.56% absolute in-

crease in BLEU score, 1.56% relative incred$g As before, we attribute this to a

2\We quote these improvements for BLEU score as system paramets were optimised over this
metric and thus it is the most appropriate for analysis.
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combination of two factors: the introduction of novel phras pairs into the transla-
tion model, and the increased probability mass given to moneliable phrase pairs
found in the intersection of the two sets. Both of these elemts can be seen to good
e ect when we examine the sets of phrase pairs further. In theombined model,
16.79% of the entries are unique phrase pairs introduced rindhe parallel treebank,
while a further 4.87% obtain increased likelihood having lee introduced by both

the baseline and syntax-based sets of phrase pairs. The exagres are provided

in Table 4.7.
Resource #Phrase Tokens #Phrase Types \
Baseline 72,940,465 24,708,527
Syntax 21,123,732 6,432,771 1,447,505

Table 4.7: Frequency information regarding the number of phiase pairs extracted from
the baseline system and from the parallel treebank for the Eglish{Spanish
Europarl data set.

These ndings raise a further interesting question. Althogh the hypothesis that
supplementing the baseline model with syntax-based phragairs still holds, the
improvements are not as pronounced as those seen in sectioh.4, when smaller
training sets were used. This may be attributable to the deeased presence of
the syntax-based phrase pairs in the combined model. For erple, if we look at
Table 4.8, we see that the percentage of syntax-based phrgsars found overall
is considerably smaller given the larger data set. These ges are not directly
comparable given the di erent training corpora used. Howear, in section 4.2.6 we
describe an experiment whereby we increase the size of thaiting set incrementally
and analyse the e ect on translation performance (Tinsleyrad Way, 2009).

Looking back at Table 4.6, we again see that using the syntdbased phrase pairs
alone (Syntaxonly) does not lead to any improvements over the baseline,ithtime
across all three evaluation metrics. Once more, however, weuld interpret this
drop in accuracy (5.96% relative BLEU score) as being disgrortionate with the

considerably fewer number of phrase pairs in the Syntaonly model compared to
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Data Unique Syntax \ Syntax

5k 20.65% 9.58%
10k 26.42% 7.63%
730k 16.79% 4.87%

Table 4.8: Statistics of the prominence of syntax-based phase pairs in combined models
given training set size. Data = sentence pairs in training sés. Unique Syntax
= % of novel phrase pairs introduced from the parallel treebank. \ Syntax =
% of syntax-based phrase pairs also extracted in baseline mel.

the Baseline model | there are almost 4 times fewer phrase pes | thus lending
further credence to our suggestion in Section 4.1.5 that th&/ntax-based phrase
pairs are of higher quality than the baseline phrase pairs. dwever, as the overall
space of extractable phrase pairs is restricted by both syattic constituents and sub-
sentential alignments (as is the case in parallel treebarkghe Syntax_only model
simply lacks su cient coverage to improve upon the baseline

In section 4.1.1, we discussed the issue of parser qualityddrow we were satis ed
that their accuracy was su cient to demonstrate our hypothesis. We note at this
stage that improvements have been made on a large-scale bylexking parallel
treebanks despite some level of parser (and alignment) n@isGiven this, we suggest
that as parsing and alignment quality continue to improve, tanslation accuracy
will follow suit, and so we can consider our results here to ke lower bound on

improvements achievable using these automatic techniques

Further Experiments

As we suggested at the end of section 4.1.5, it is possible thegh-frequency, low-
quality word alignments found in the set of syntax-based plase pairs could be
adversely a ecting the quality of the combined translationmodel. In order to inves-
tigate this further, we carried out an additional experimetwhereby we restricted in
two ways the manner in which the syntax-based phrase pairs keintroduced into
the combined model in two ways. Firstly, we added only \stricphrase pairs" to the

baseline model. We de ne a strict phrase pair here as an-to-n alignment where
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both m and n are greater than 1. In doing this, all word alignments are reaved
from the set of syntax-based phrase pairs and the only cortitition to the combined
model is a set of reliable strict phrase pairs. This would gévus an indication as to
whether, in general, the word alignments were harming trafetion performance.
Our second method of restricting the syntax-based phrase ipaaims at re ning
the previous method. Rather than removing all word alignmes, we only remove
those which do not reach a certain threshold. This threshold is based on the lexical

translation probability table produced by Giza++. 13

Algorithm 5 Filtering Word Alignments
for all syntax-based word alignmentsdo
if word alignment is found in the t-table then
if it occurs above assigned threshold then
keepin the set of syntax-based phrase pairs
else
remove from the set of syntax-based phrase pairs
end if
else
keepin the set of syntax-based phrase pairs
end if
end for

Using this method, presented in Algorithm 5, a syntax-base@ord alignment
which occurs in the t-table is removed if it falls below the theshold. For the purposes
of this experiment, we arbitrarily set the threshold as the Bth percentile of entries
in the t-table. The intended e ect here is to retain the novelsyntax-based word
alignments while ltering out those \poor" alignments | eve n though they may be
frequently occurring in the set of syntax-based phrase paif according to G iza++
and our threshold.

The results of these experiments are presented in Table 4\®e see even further
signi cant improvements over the baseline for all three meics (0.73% absolute;
2.18% relative increase in BLEU) when using only strict syaix-based phrase pairs.
In this con guration, the translation model was reduced by %% compared to the

combined model having removed 1,308,577 entries in total.yBemoving the in u-

B3These are the same lexical translation probabilities usedd calculate the translational equiva-
lence scores for the sub-tree alignment algorithm of Chapte3.

89



ence of the unreliable word alignments, the overall probdly model was improved
while removing some redundancy and the potential for furthesearch errors during
decoding. When ltering the syntax-based phrase pairs usinthe threshold (Filter
Threshold), we still see a signi cant improvement over the &seline. However, the
di erence relative to the combined model (Baseline+Synta) while an improvement
across all three metrics, is not statistically signi cant. In total, only 10.55% of the

syntax-based word alignments were removed.

Cong. BLEU NIST METEOR
Baseline 0.3341 7.0765 0.5739
+Syntax 0.3397 7.0891 0.5782

Strict phrases 0.3414 7.1283 0.5798
Filter Threshold 0.3400 7.1093 0.5792

Table 4.9: E ect of restricting the set of syntax-based phrase pairs.

From these results, it is clear that unreliable word alignmas are still a ecting
translation as leaving them out gives rise to further improgments in translation
performance. In terms of ultimately overcoming this issueywe could potentially
investigate the use of an improved threshold, rather than # arbitrary value chosen
here, to nd the optimal set of syntax-based word alignmentso use. However, we
believe that this avenue of work has limited potential and tht future e orts in this
area would best served improving the word alignments withithe sub-tree alignment

algorithm.

4.2.3 Prioritised Phrase Combination

In all previous experiments, we directly combined the coustof the observed base-
line and syntax-based phrase pairs in the translation modeproducing modi ed
probabilities with higher likelihood assigned to those plase pairs in the intersec-
tion of the two sets, as well as introducing novel phrase pair In this section, we
examine an alternative approach to phrase combination | prioritised combination

| originally presented by Hanneman and Lavie (2009) in terms of incorporating
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non-syntax-based phrase pairs into a syntax-based MT syste

Following this method, given two sets of phrase pairs, for armple A and B,
we prioritise one set over the other. Assuming we have pritised set A, when
combining the two sets, we only add phrase pairs from sé& if their source-side
phrases are not already covered by some entries A1 For example, if the English
source phrasen the corner existed in the syntax-based set with the target siden el
rinon and in the baseline set with the target sideen la esquinaassuming we were
prioritising the syntax-based set, we would only addh the corner $ en el rinon
to the combined set (where in direct combination we would addoth).

The motivation behind this approach is that we may believe amset of phrase
pairs to be more reliable than the other: the prioritised setThus, when the priori-
tised set provides a translation for a particular source plase, we opt to trust it and
not introduce further ambiguity from the other set of phrasepairs.

In the experiments we present here, we build a model in whichewprioritise the
syntax-based phrase pairs over the baseline phrase pairs.urQdea here is that,
given our ndings in section 4.1.5, we believe the syntax-Bad phrase pairs to be
more reliable, and so by prioritising them, the overall e etis a syntax-based model
supplemented with non-constituent-based phrase pairs frothe baseline set. For
completeness, we also build a model in which the baseline pbe pairs are prioritised.

The results of these experiments are presented in Table 4.10

Cong. BLEU NIST METEOR
Baseline+Syntax 0.3397 7.0891 0.5782

Syntax Prioritised  0.3339  6.9887 0.5723
Baseline Prioritised 0.3381 7.0835 0.5789

Table 4.10: Translation results using a prioritised combiration of phrase pairs.

Prioritising the syntax-based phrase pairs leads to a sigoant drop in transla-
tion accuracy compared to the direct combination model (B&dine+Syntax). The
resulting translation model has 7.79% fewer entries than éhdirect combination. By

prioritising the syntax-based phrase pairs, we no longer & an overlap between the
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two sets of phrase pairs, and so we do not see the bene t of theieased likelihood
on those phrases in the intersection. It is the absence of shfactor that leads to
the drop in performance. These ndings are congruent with thse of Hanneman and
Lavie (2009), who also saw a drop in accuracy when employingngx prioritisation
over direct combination in the context of their statisticaltransfer-based MT system
(cf. Section 2.3.1).

Turning to the baseline-prioritised model, while we may hay expected similar
results to the syntax-prioritised model due to the absencd the phrase pairs in the
overlap, we see no signi cant di erence compared to the dice combination. This
lack of overlap phrases is compensated for by a reduction inet number of syntax-
based word alignments in the model. In the direct combinatromodel, 20.41% of the
syntax-based entries are word alignments. In the baselipeioritised model, only
1.93% of the syntax-based entries are word-alignments. Bhcan be attributed to
the baseline model containing many of the source sides of thdormed syntax-based
word alignments and, consequently, those alignments aretradded to the model.
Some examples of these syntax-based word alignments thatreveot included are

given in Figure 4.3.

I $ mi
am $ me
. %y

to $ que

was $ que
| $ de
to $ "

Figure 4.3: lll-formed syntax-based word alignments not ircluded in the baseline priori-
tised model.

Given these ndings, we believe the direct combination appiach to be the most
advantageous method for combining the two sets of phrase maand that its bene ts

will be further exempli ed when the syntax-based word aligments are improved.
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4.2.4 Weighting Syntax-Based Phrases

In section 4.2.2, we showed that we can improve baseline tsdation quality by
directly adding syntax-based phrase pairs into the model. i@&n this, our next
set of experiments investigates whether giving more weigho the syntax-based
phrase pairs in the translation model will yield further impovements. Based on
our previous suggestions that the syntax-based phrase pmiappear to be more
reliable, our motivation here is that if we further increasethe probability mass
assigned to them, they are more likely to be selected at dedogl time which would
consequently result in more accurate translations. In ordesarry this out, we built
three translation models | with a direct combination of baseline and syntax-based
phrase pairs | in which we counted the syntax-based phrase pes twice, three times
and ve times when estimating phrase translation probabities. The results of these

experiments are show in Table 4.11.

Conguration BLEU NIST METEOR

Baseline+Syntax 0.3397 7.0891 0.5782
+Syntax x2 0.3386 7.0813 0.5776
+Syntax x3 0.3361 7.0584 0.5756
+Syntax x5 0.3377 7.0829 0.5771

Table 4.11: E ect of increasing relative frequency of synta-based phrase pairs in the direct
combination model.

The ndings here are slightly erratic. Doubling the presene of the parallel tree-
bank phrase pairs (+Syntax x2) lead to statistically insigmcant di erences (albeit
lower) compared to the baseline across all metrics, whilewding them three times
(+Syntax x3) lead to a signi cant drop (p=0.02) in translati on accuracy. Counting
them ve times (+Syntax x5) again lead to insigni cant (yet | ower) di erences. We
suspect these results are due to the fact that, while incraag the likelihood of the
reliable phrase pairs, we are also increasing the in uencétbe unreliable translation
pairs, such as the word alignments discussed previously.

Given these negative results for weighting the syntax-bagehrase pairs more
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heavily, a natural follow-up experiment was to build a modein which we weighted
them less heavily. More speci cally, we built a direct comimiation model in which we
counted each syntax-based phrase pair 0.5 times when estiing phrase translation
probabilities. The results of this experiment, presenteddow in Table 4.12, show
a small, but not statistically signi cant, improvement over the direct combination

model.

Conguration BLEU NIST METEOR
Baseline+Syntax 0.3397 7.0891 0.5782

Half-weights 0.3404 7.1050 0.5792

Table 4.12: E ect of weighting syntax-based phrase pairs les heavily in the direct combi-
nation model.

Intuitively, this model is similar to the baseline prioritised model in that it will
most likely choose a baseline phrase pair where it exists, dadefault to syntax-
based phrase pairs when no baseline phrase pair exists. Have this model has
the additional advantage of increasing still further the kelihood of phrase pairs in
the intersection as we are not discarding anything. It is tls combination of factors
that ultimately results in improved translation accuracy wer the baseline prioritised
model.

To conclude our analysis of alternative weighting strategs for the syntax-based
phrase pairs, we carried out one nal experiment in which wexeloit the Moses
decoder's (Koehn et al., 2007) ability to employ twt# independently scored phrase
tables. Rather than combining the counts of the baseline arglyntax-based phrase
pairs, phrase translation probabilities are calculated foeach set of phrase pairs
individually and, in theory, the minimum error-rate training selects the optimal
weights for the features in each model given the developmesét. The decoder
then chooses the most likely target language translation bselecting phrases from
both phrase tables. Table 4.13 shows the performance of tisigstem relative to the

Baseline+Syntax con guration.

1n our case we are dealing with two sets of phrase pairs. The @deder can, in fact, employ

94



Conguration BLEU NIST METEOR
Baseline+Syntax 0.3397 7.0891 0.5782

Two Tables 0.3365 7.0812 0.5750

Table 4.13: E ect of using two separate phrase tables in the tanslation model.

We obtain no improvement over our baseline using this approh. Although
this method would appear to be the most intuitive way to combie the two sets
of phrase pairs, we suspect that by scoring them individugll we again lose the
increased probability mass on those phrase pairs in the imgection. As we have
previously demonstrated this to be and important factor in ahieving improvements

using the two sets of phrase pairs, the results here are notrgrising.

4.2.5 Filtering Treebank Data

Koehn et al. (2003) demonstrated that using longer phrase s does not yield

much improvement when translating, and they occasionallyeld to worse results.
For these reasons, a default setting in Moses when extraditbaseline phrase pairs
is to restrict their length to 7 tokens. We used this settingn all experiments carried

out thus far in this thesis, yet no restriction was placed onhe length of the syntax-

based phrase pairs. Therefore, it is possible that some oktlonger phrase pairs in
the syntax-based set were harming translation performaceén order to investigate

this, we built a direct combination model in which we Itered out all syntax-based

phrase pairs with more than 7 tokens.

The e ect of this Itering is shown in Table 4.14, where we seeénconsistent
uctuation in scores across the metrics. This indicates thahe longer syntax-based
phrase pairs were originally used only sparsely for transian in the Baseline+Syntax
model. We con rm this when analysing how the translation hyptheses were con-
structed. In the Baseline+Syntax model, only 18 phrases oémhgth greater than 7

tokens were used, which constituted 0.183% of the total nurab of phrases used.

more than two phrase tables, e.g (Srivastava et al., 2009).
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Thus, removing the 38.22% of syntax-based phrase pairs ovértokens in length
had negligible rami cations on translation. From this we ca conclude that when
combining the syntax-based phrase pairs with the baselindhg@ase pairs, they may
be restricted in length similar to the baseline phrase pairgesulting in a smaller

phrase table without loss of translation accuracy.

Cong. BLEU NIST METEOR
Baseline+Syntax 0.3397 7.0891 0.5782
-Filtered 0.3387 7.0926 0.5767

Table 4.14: E ect of ltering longer syntax-based phrase pairs.

4.2.6 Training Set Size: E ect on In uence of Syntax-Based

Phrase Pairs

From our ndings in Sections 4.1.4 and 4.2.2, it would appeathat the in uence

of the syntax-based phrase pairs in direct combination withbaseline phrase pairs
is reduced as the size of the training set increases. Howewse cannot be certain
of this as the experimental conditions were di erent for thewo sets of results. In
order to investigate this further, we designed an experimenusing the English{

Spanish parallel corpus and treebank of section 4.2.2, in ish we increased the
size of the training corpus incrementally and evaluated traslation performace on
a common test set (Tinsley and Way, 2009). Starting o with a gbset of 10,000
training sentence pairs, we built four MT systems with the ftlbowing combinations

of phrase pairs: Baseline, Syntawnly, Baseline+Syntax and Strict Phrases. We
then repeated this process, doubling the size of the trairgncorpus until we had

used the entire corpus. All other experimental conditionsra the same as those
experiments presented in section 4.2.2, including the déepment and test sets.
Having completed translation for these 28 system con gurains, we evaluated the
results and analysed the trends as the training corpus sizecreased. Figure 4.4

summarises the outcome of these experiments.
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Figure 4.4: E ect of increasing training corpus size on in uence of syntax-based phrase
pairs.
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The rst and most obvious point to note is that, in general, aexpected, transla-
tion performance increases as the training set size increas Aside from that, we see
that the gains achieved over the baseline by adding the syntdased phrase pairs
(+Syntax) steadily diminish as the training corpus size gras, with the greatest im-
provement being seen at 20,000 training pairs. We obtain filmer insight into this if
we examine the graph in Figure 4.5. As the training set growsjany of the phrase
pairs that were unigue to the syntax-based set are also extt@d by the baseline
method. As a consequence, each time we increment the numbérsentence pairs
in the training set, the percentage of phrase pairs in the dict combination (Base-
line+Syntax) unique to the syntax-based model decreases.ofversely, the number
of phrase pairs unique to the baseline model increases by eppmately 3% at each
increment, while the number of phrase pairs seen in the intction of the two sets
steadily drops by approximately 2%. This tells us that the baeline model is simul-
taneously introducing more novel phrase pairs into the comted model as well as
learning phrase pairs that may have previously been unique the syntax-based set.
It is a combination of these factors that ultimately diminides the complementary
e ect of the syntax-based phrase pairs in the combined moda$ the training corpus
increases.

Another potential contribution to the decreasing in uenceof the syntax-based
phrase pairs as the training set grows may be the increasekielihood of the afore-
mentioned unreliable word alignments. Looking back at thetsct phrase model
(+Phrases) in Figure 4.4, in which we remove syntax-based wb alignments, we
see that translation performance converges with, and everlly outperforms, the
Baseline+Syntax model as the training set approaches 730@sentence pairs. This
indicates to us that with larger training sets, we introducemore unreliable word
alignments into the translation model and subsequently, iis preferable to leave
them out.

Such a suggestion is corroborated by the work of Way and Gra/€2005) and

Groves (2007), who discovered that when building hybrid treslation models using
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Figure 4.5: Proportions of data in the Baseline+Syntax modd from the baseline and
syntax-based sets given the increasing training corpus séz
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EBMT chunks and baseline phrase pairs, low precision EBMT wt alignments were
harming translation performance and ultimately it was betér to omit them from
the hybrid model as the training set grew.

Given these ndings, we would expect this trend to continue pwards. That is,
if we were to double the size of the training set once more we ght assume that
no gains will be achieved by supplementing the baseline mddeth syntax-based
phrase pairs. We carry out some experiments in Chapter 5 whigive us further
insight into this. It may also be the case that this approachs best suited to MT
systems with smaller training sets, for example in scenasan which limited data
resources, or disc space, are available. Under such cormfi, more bene t from the
use of the syntax-based phrase pairs could be seen. We inigege this suggestion

in further in section 4.4.

4.3 Exploring Further Uses of Parallel Treebanks
in PB-SMT

The experiments described so far in this chapter have focesson investigating
whether supplementing baseline models with syntax-basetinase pairs can improve
translation accuracy. In this section, we consider alterniae ways in which the
information encoded in parallel treebanks can be incorpded into the PB-SMT

framework.

4.3.1 Treebank-Driven Phrase Extraction

One oft-cited reason for the inability of syntax-based MT sstems to improve upon
the state-of-the-art is that using only constituent-basedranslation units is too re-
strictive and leads to a reduction in the overall coverage die system (Koehn et al.,
2003; Chiang, 2005). Translation units such as the EnglisBferman pair there is

$ es gibtwill never be extracted as a stand-alone constituent phraggir despite
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being a perfectly acceptable translation pair as it will nesr be parsed as a single
constituent. In an attempt to overcome this problem, we soug some ways in which
we could exploit the linguistic information encoded in our atomatically generated
parallel treebanks to extract a set of non-constituent-ba&sl phrase pairs for use in
a PB-SMT system. The motivation behind this is that instead 6 only having a
set of restrictive syntax-based phrase pairs, or a set of sttically learned base-
line phrase pairs, we would have a set of \linguistically imirmed" phrase pairs that
would potentially be more reliable than either of the alteratives.

In all of our previous experiments, baseline phrase pairs Kgeextracted using the
method described in section 2.2.2. As we mentioned in sectié.1.2, the intersection
of birectional Giza++ alignments is re ned using the grow-diag- nal heuristic and
then used to seed the extraction of phrase pairs with Mosesistead of doing this, we
use the word alignments encoded in the parallel treebank teed the Moses phrase
extraction process and build a translation model. Additioally, we take the union
of the parallel treebank word alignments and the re ned @a++ word alignments
and again use this to seed Moses' phrase extraction procesBhis gives us two
translation models in which the phrases have been learnedtvsome input from the
\linguistically-aware" parallel treebank. Given these two models, we build a further
two models in which we supplement them with the actual syntakased phrase pairs
themselves. Using these four translation models (summaeds in Table 4.15), we
carry out translation experiments using the exact same datset and experimental
con guration as the previous English{Spanish experimentsf section 4.2.

Table 4.16 gives the results of these experiments. The rsib rows in the table,
showing the results from section 4.2.2, represent our basel here. In the third row
(Treebank ex), we see that seeding the phrase extraction with treebantord align-
ments leads to a large drop in translation accuracy compared the baseline. Sup-
plementing this model with the syntax-based phrase pairs (€ebankex+Syntax)
signi cantly improves performance, as we would expect gimeour previous ndings,

yet it still does not approach the accuracy of the baseline
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Treebank _ex Moses phrase extraction seeded with the word
alignments encoded in the parallel treebank.
Treebank _ex+Syntax | Direct combination of the model produced
by Treebankex and the syntax-based phras
pairs from the parallel treebank.

Union _ex Moses phrase extraction seeded with the unign
of the word alignments encoded in the parallel
treebank and the re ned Gza++ word align-
ments.

Union _ex+Syntax Direct combination of the model produced by
Union_ex and the syntax-based phrase pair
from the parallel treebank.

D

(7]

Table 4.15: Description of the 4 translation models producd using treebank-driven phrase
extraction.

Seeding the phrase extraction using the parallel treebankowd alignments leads
to an unwieldy amount of phrase pairs in the translation modg approximately
86.6 million (92.9 when including the syntax-based phrasejs) | many of which
are completely useless, e.gframework for olaf , in order that$ marco. This is
due to the fact that the parallel treebank word alignments hee quite low recall and
thus the phrase extraction algorithm is free to extract a lage number of phrase pairs
anchored by a single alignment> This situation does not occur with the baseline
as the word alignment re nements are designed to increaseethrecall of the word
alignments!® and the phrase extraction process is tailored to this. Thusn their
current format, the parallel treebank word alignments are do sparse to be used
alone for seeding the PB-SMT phrase extraction process.

The issue of word alignment recall in the parallel treebank & the motivation
for the next experiment: using the union of the treebank wordlignments and
the re ned Giza++ alignments. Our intuition underlying this experiment is that
we would simultaneously increase the recall of the statisal word alignments (by

introducing novel word alignments) and the precision of thearallel treebank word

51n the example framework for olaf , in order that $ marco, the only word alignment anchoring
the phrases was betweerframework and marco.

8The relates to creating a more densely populated word alignrant matrix as we saw in Figure
2.7 on page 21.
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Cong. BLEU NIST METEOR
Baseline 0.3341 7.0765 0.5739
+Syntax  0.3397 7.0891 0.5782
Treebankex 0.3102 6.6990 0.5564

+Syntax 0.3199 6.8517 0.5639
Union_ex 0.3277 6.9587 0.5679
+Syntax 0.3384 7.0508 0.5788

Table 4.16: Translation results using di erent word alignments to seed phrase extraction.
alignments.

alignments (by reinforcing them with statistical word aligiments), and create a more
robust, reliable word alignment for seeding phrase extraon.

Looking again at Table 4.16, we see from the fth row (Uniorex) that using the
union of the two word alignments led to a small, but signi caty drop in translation
accuracy compared to the baseline across all metrics. Morgerestingly, we note
from row six (Union_ex+Syntax) that when we supplemented this model with the
syntax-based phrase pairs we saw comparable performancehe Baseline+Syntax
model. This is particularly interesting as the Baseline+Sytax model contains ap-
proximately 29.7 million phrase pairs, whereas the Uniaax+Syntax model contains
only 13.1 million phrase pairs. This constitutes a 56% dea@se in translation model
size without any signi cant loss of translation accuracy. fiese gures, and those for
the other models described in this section, are given in TabK.17. Analysing these
ndings further, we note that the phrase pairs in the Unionex+Syntax model are
almost a complete subset of the phrase pairs in the BaselinByntax model, in that
all bar 170 of the 13.1 million phrase pairs in the Uniaex+Syntax are also found

in the Baseline+Syntax model.

Word Alignment #Phrases #Phrases+Syntax

Baseline 24,708,527 29,693,793
Treebank ex 86,629,635 92,889,746
Union_ex 7,476,227 13,105,420

Table 4.17: Comparison of the phrase table size for each molde#Phrase = number of
phrases extracted using a given word alignment. #Phrase+Syitax = size of
model when syntax-based phrases are included.
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This discovery is a very positive and interesting by-produ®f these experiments.
Filtering of PB-SMT translation models has been the focus cfubstantial research
in recent years as evidenced by the number of publications thfe topic: Eck et al.
(2005); Johnson et al. (2007); Lu et al. (2007); Sanchez-Maez and Way (2009)
to cite but a few. What we do here di ers from the conventionalapproach in that
rather than performing ltering as a post-processing steproas a dynamic process
during phrase extraction, we produce a reduced model laypriori constraining the
phrase extraction with a dense, but precise, word alignmentWhile investigating
these ndings further is beyond the scope of this thesis, isicertainly an area that
warrants more attention. There are also potentially more @ative ways in which we
could combine the two sets of word alignments for seeding @ise extraction. We
will discuss some of these approaches further in section.6.1

We can conclude from our experiments in this section that itsi best to use
re ned statistical word alignments rather than parallel treebank word alignments for
seeding PB-SMT phrase extraction. However, given a pardlieorpus and a parallel
treebank, we can use all information at our disposal | statigical word alignments,
parallel treebank word alignments and syntax-based phraggirs | to generate
concise translation models that achieve comparable traasion performance to much

larger baseline models.

4.3.2 Treebank-Based Lexical Weighting

In section 2.2.3 we described the lexical weighting featueenployed in the log linear
model of PB-SMT systems (Koehn et al., 2003). This feature ebks how well the
words on the source and target sides of a phrase pair transgdab one another. This
is done by scoring each phrase pair according to the statistil word alignments
calculated by Gza++.

Given the ndings of the previous section, we considered thgotential for using
the parallel treebank word alignments to calculate the legal weights for the phrase

pairs in our translation models. In order to do this, we rst @lculated a lexical
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translation probability distribution w(sjt) over the treebank word alignments, which

was estimated via relative frequency according to the forrfain (4.3)."

b count(s;t)

f(sit) = ¢ ocount(s® t)

(4.3)

We then used this distribution to assign two new sets of lexat weights to the
Baseline+Syntax model. One set of weights was calculateding the treebank lexical
probabilities only. The second set of weights was calculat®y combining the counts
of the treebank word alignments and the statistical word ajjnments in order to
calculate a combined lexical translation distribution, snilar to the union of the
word alignments in section 4.3.1. Translation results usinthe Baseline+Syntax

model with these sets of lexical weights are presented in Tab4.18.

Cong. BLEU NIST METEOR
Baseline+Syntax 0.3397 7.0891 0.5782

+Treebank weights  0.3356  7.0355 0.5732
+Combined_weights 0.3355 7.0272 0.5741

Table 4.18: Translation results using parallel treebank-nduced lexical translation proba-
bilities to calculate lexical weighting feature.

Translation performance degrades slightly compared to thikaseline across all
three metrics when using the new lexical weights, while thesults are almost iden-
tical when comparing the two new approaches. Aside from theotential issue of
alignment precision in the treebank word alignments, therare a number of possible
explanations for the ine ectiveness of this approach. The ajority of the phrase
pairs in the combined translation model (i.e. the baselinehpase pairs) were ex-
tracted according to the statistical word alignments and wold, therefore, have a
high word alignment recall between the source and target pases. To replace these
word alignments with the treebank word alignments gives aveer recall which leads

to less reliable lexical weights.

"We introduced this formula previously when discussing the €ature functions of the log-linear
model in Section 2.7.
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Another potentially signi cant reason why the treebank-baed lexical weights
were not successful is that, for a given sentence pair, theexists only a single
\hard" alignment for each aligned word. Conversely, the stigstical word alignments
estimated by EM see some probability mass given to word paim®t included in the

nal set of most likely alignments for a given sentence pair.

4.4  New Language Pairs: IWSLT Participation

In 2008, we participated in an evaluation task at the Internaonal Workshop for
Spoken Language Technology (IWSLT) (Ma et al., 2008). Thiswolved building a
number of MT systems for di erent language pairs and, in someases, translating
output produced by automatic speech recognition (ASR) systns. This campaign
was of particular interest to us for a number of reasons. Up tthis point, all of
our experiments concerning the combining of syntax-basedthqase pairs in PB-SMT
models have used only European language pairs as trainingalaFurthermore, one
of the language pairs has always been English. The IWSLT caaign presented
us with an opportunity to use our sub-tree aligner with a norEuropean language,
namely Chinese, while also a ording us the chance to train oa language pair not
including English, namely Chinese{Spanish.

By using these new languages, we were able to further evaleiahe language-
independent nature of our sub-tree aligner as well as testeahuality of the subse-
quent syntax-based phrase pairs in new translation tasks.his would also allow us
to con rm the cross-lingual applicability of our hypothess on the use of syntax-based
phrase pairs in PB-SMT.

Finally, as we mentioned at the end of section 4.2.6, this hgthesis may be
most appropriate in scenarios where only limited training @sources are available.
This case arises in the IWSLT task where the provided traingp corpora contain
approximately 20,000 sentence pairs, a ording us the opptoinity to substantiate

this claim.
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4.4.1 Task Description

We participated in a number of translation tasks for languag pairs and translation
directions. The main data resource for training and developent was the Basic
Travel Expression Corpus (BTEC) (Kikui et al., 2003), a multlingual parallel corpus
containing tourism-related sentences similar to those ually found in phrasebooks
for a tourist going abroad (Kikui et al., 2006). For each traslation task, we built
a parallel treebank and subsequently created two translaih models: Baseline and
Baseline+Syntax. All other con gurations of the MT system and evaluation setup
are the same as for the experiments presented earlier in thekapter (i.e. using
Moses to build the PB-SMT system and SRILM for 5-gram languagmodelling).
We describe the data specic to each translation task in theestions below and

summarise them in Table 4.19.

Chinese{English

For the Chinese{English task, the parallel training corpugsomprised 21,973 sentence
pairs. From this, we automatically generated a parallel trebank, parsing both sides
of the parallel corpus with the Berkeley parser (Petrov and kin, 2007) and aligning
the tree pairs with our sub-tree aligner (cf. Chapter 3). Theadevelopment set for
each direction comprised 489 sentences, and 6 referencengtations were used to

evaluate translation quality.

Chinese{Spanish

For the Chinese{Spanish task, the training corpus contairmk19,972 sentence pairs.
As in section 4.2.1, we used the parser of Bikel (2002) to parthe Spanish side of the
parallel corpus, while the Chinese side was again parsed lwihe Berkeley parser
(Petrov and Klein, 2007) and the trees were aligned using owub-tree aligner.
The development sets contained 506 sentences and we made afsé6 reference

translations to evaluate translation quality.
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Pivot Task: Chinese{English{Spanish

We also took part in a Chinese{Spanish translation task in wibh English was used
as a pivot language. To do this, we built two MT systems, for Ghese{English
and English{Spanish. For this task, each system had two disict training sets
comprising 20,000 sentence pairs, and developments setstaming 506 sentences
with 16 reference translations to evaluate translation qudy. The same monolingual
parsers as before, and the sub-tree aligner, were used tolthtine parallel treebanks.
Translation from Chinese into Spanish was then achieved byrst translating the
Chinese input into English using the rst half of the pivot system, and subsequently

translating the English output into Spanish using the Engkh{Spanish component.

Language Pair Training Set Dev Set References

Zh{En 21,973 489 6
Zh{Es 19,972 506 16
Zh{En (pivot) 20,000 506 16
En{Es (pivot) 20,000 506 16

Table 4.19: Summary of the training and development corporaused for the IWSLT trans-
lation tasks.

4.4.2 Results

Table 4.20 below presents the results of the translation tls in terms of BLEU score
achieved on the development set. We see signi cant improvemts in translation
accuracy across all tasks when supplementing the baselinedael with syntax-based
phrase pairs. For Chinese{English, we see a 1.9% absolute2@% relative) increase
in BLEU score, while for Chinese{Spanish we see a 2.31% ab$®I(8.57% relative)
increase. Finally, for the Chinese{Spanish{English pivotask, we observe a 4.6%
absolute (16.24% relative) increase in scores.

As before, these improvements can be attributed to the conghentary value of
the syntax-based phrase pairs in the combined model. The cbmation of novel

phrase pairs being introduced and the increased likeliho@ssigned to those phrase
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Languages
Cong. ZMEn Zh{Es Zh{Es{En
Baseline 0.3595 0.2693 0.2832
+Syntax \ 0.3785 0.2924 0.3292

Table 4.20: E ect of using syntax-based phrase pairs on IWST 2008 tasks.

pairs in the intersection of the two sets of phrase pairs lead improved translation
performance. The e ect of direct combination for each langage pair is summarised
in Table 4.21. We demonstrated in section 4.2.6 that the in ance of the syntax-
based phrase pairs was inversely proportional to the sizetbg training corpus and,
thus suggested that the direct combination method may be besuited to tasks in
which limited training resources are available. This is cormed by our ndings here.
We see that the increase in the model size | when adding the syax-based phrase
pairs | is greater than in the larger experiments of previoussections. We also see
that the percentage of phrase pairs in the intersection isightly lower con rming,
as we suggested, that as the training set grows, the baselimethod learns many of

the phrase pairs previously seen in the syntax-based set ynl

System Baseline Syntax Combo Coverage \
Zh{En 158,807 86,161 213,875 34.67% 14.54%
Zh{Es 101,593 68,870 151,446  49.06%  12.56%

Zh{En (pivot) 84,025 80,431 144,630 72.12%  13.70%
En{Es (pivot) 292,209 65,628 323,884  10.84%  10.48%

Table 4.21: Impact of adding syntax-based phrase pairs to th baseline model across the
IWSLT 2008 translation tasks. The Baseling Syntax and Combo columns
present the numbers of phrase pairs in each model for each lgnage pairs,
while the Coveragecolumn shows the percentage increase in the size of the
phrase table from the baseline to the combined model.

4.4.3 Conclusions

Given the ndings in this section, it is clear that the sub-tree alignment algorithm
is truly language-independent. We have demonstrated its gficability with a non-

European language (Chinese) and across a language pair maliiding English (Chi-
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nese and Spanish), neither of which were used during the ongl development of
the algorithm. We have also shown that our hypothesis regairdy the use of syntax-
based phrase pairs in PB-SMT has multilingual applicabilit also. Finally, we have
con rmed our suggestions | that using syntax-based phrase pirs in direct com-
bination with baseline phrase pairs is most bene cial whenndy limited training
resources are available | by presenting signi cantly improved translation perfor-
mance on three independent tasks with a training corpus of ZW0 sentences pairs

or fewer.

4.5 Comparing Constituency and Dependency Struc-
tures for Syntax-Based Phrase Extraction

All of our previous experiments in this chapter have used cetituency parses as the
basis for automatic generation of parallel treebanks and ¢hsubsequent extraction
of syntax-based phrase pairs. However, there may be othechaiques for syntactic
analysis of sentences that would provide an alternative, pentially improved, phrase
segmentation for translation. In this section, we investigte the impact of variation in
syntactic analysis type | speci cally, constituency parsing vs. dependency parsing
| on the extraction of syntax-based phrase tables. Our expeimental objective is to
compare the relative merits of each method of annotation by @asuring translation
accuracy (Hearne et al., 2008). In order to do this, we autortieally derive two
parallel treebanks, one constituency-based and one dependy-based, and extract
two sets of syntax-based phrase pairs. We then combine theleectly with baseline

phrase pairs and consider the value of each combined model.

4.5.1 Syntactic Annotations

The data annotation types we consider are constituency pas and dependency

parses. In both cases, each sentence is tagged with parispgech (POS) informa-
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VP
PP VP @
NP mp /\ADJP
DT/\NN VBN IN DTm VBZ JJ |
th‘e inform‘ation forwar‘ded by‘ the‘ Memb‘er State‘s is‘ satisfact‘ ory

subj

atts
b
P (b)

the information forwarded by the Member States is satisfact ory

Det;the Nom;information Ppa;forward Prep;by Detithe Nom; member Nom;state V;be Adj;satisfactory

Figure 4.6: Phrase-structure tree (a) and dependency relabns (b) for the same English
sentence.

tion, and in the case of dependency parses a lemma is also asged with each
word. Constituency parses, or context-free phrase-strugie tree, make explicit syn-
tactic constituents (such as noun phrases (NP), verb phras€VP) and prepositional
phrases (PP)) identi able in the sentence. An example of a ostituency parse is
given in Figure 4.6(a), where we see that the overall sentencomprises an NP fol-
lowed by a VP, each of which has some internal structure. Depa@ency parses make
explicit the relationships between the words in the senteecin terms of heads and
dependents. An example of a dependency parse is given in Fegdé.6(b), where an
arc from wordw; to word w; indicates that w; is w;'s head and, correspondinglyw;
is w;'s dependent. These arcs are labelled such that the label indtes the nature
of the dependency; in the given example, the label on the amoin is to information
is labelledSUBJ indicating that information is the subject ofis.

Our tree aligner of Chapter 3 has not previously been used tdign dependency
structures. These structures are not directly compatible ith the aligner because
the tool requires that the input trees be in labelled, bracked format. While the

labels themselves can be arbitrary and the branching-factand depth of the tree are
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irrelevant | for instance, a POS-tagged sentence with a sintg, arbitrary root label
is perfectly acceptable | it must be possible to associate ezh node in the tree with
its corresponding surface string. The output of the dependey parser, as shown in
Figure 4.6, does not directly meet this requirement. Therefe, we must convert the
dependency-parsed data into a bracketed format recognidalby the aligner. This
is done using the method presented in Algorithm 6, by creatina set of constituents
in which each constituent comprises a head and its dependsrarranged as siblings

in the order in which they occurred in the sentence.

Algorithm 6 Formal conversion of dependency parses.
Beginning with the head n of the dependency
CreateConstituent  (n);
if n has dependentghen

create new constituent nodec

add n as a child ofc

for each dependentd of n do

CreateConstituent(d)

end for

add c as child of previousc
else

add n as a child of parent ofn's head
end if

We note at this point that this conversion is purely formal raher than linguis-
tically motivated cf. the approach of Xia and Palmer (2001). As the alignment
algorithm is not concerned with the speci c constituent lakelling schema used, and
our translation experiments require only the extraction oktring-based phrase pairs
for the aligned output, we pack su cient information into th e node labels during
the dependency conversion such that the original dependgnmformation is fully
recoverable from the bracketed structure.

The bracketed representation for the dependency structuia Figure 4.6 is given
in Figure 4.7. In this representation, we see that each nodebel retains the de-
pendency information, indicating which child is head and té function of each of
its dependent children. The label formats for constituent&nd parts-of-speech are
index;head=index;fung =index;...;func ,=index and index;tag;lemmarespectively.

The single feature of dependency parses which cannot be skictorily encoded
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17;H=11,
subj=16;atts=12

16;H=5;

det=4;Adj=15
15;H=6;
prep=14
14;H=7;
cprep=13
13;H=10;
nn=9;det=8
T
4;Det; 5;Nom; 6;Ppa; 7;Prep; 8;Det; 9;Nom; 10;Nom; 11,V; 12 ;Adj;
th‘e inform‘ation forwa‘rd by the memb‘er state‘ be‘ satisfactory
I I
the information forwarded by the Member States is satisfact ory

Figure 4.7: Constituency structure derived from a dependeny parse.

in our bracketed representation is non-projectivity. An eample of a non-projective
dependency structure is given in Figure 4.8. In our brackalerepresentation, each
head and its direct dependents are grouped as siblings undesingle node according
to the surface word order. In Figure 4.8, the relationship leeen the dependent
not and its headhas been followeds correctly represented by the dashed line from
the root constituent 15 to constituent 12. However, as this branch crosses the one
between13 and has this structure is not acceptable to the aligner. This forcg us to
compromise by attaching the non-projective constituent tahe lowest non-crossing
parent constituent. Thus, the dashed line in Figure 4.8 is dpped and the dotted
line linking 12 to 13 is inserted instead. However, the true relationship is ended

in the node labelling: constituent15s label records the fact that13 is 12's head?®

4.5.2 Data and Experimental Setup

In order to investigate the relative merits of using constilency parsesv/s. depen-
dency parses for syntax-based phrase extraction, we cadieut a set of translation
experiments, similar to our previous experiments, in whictve directly combined the
two sets of syntax-based phrase pairs with baseline phraseins in a PB-SMT sys-

tem and evaluate translation accuracy. In the experiments @vpresent, we used the

8This analysis arises from the parser's pre- and post-procesg procedures, which result in
deviations from standard part-of-speech tagging. We discas which parser we use in the next
section.
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15;H=13;
subj=14;adv=12

~
~
~

14; Sl 13V,

H=11, ~ . _has been followed
det=10 ~.
10;Det; 11;Nom:; 12J;Adv
this approach not
|
this approach has not been followed

Figure 4.8: A non-projective converted structure.

JOC English{French parallel corpus provided within the franework of the ARCADE
sentence alignment evaluation campaign (\Veronis and Lamgs, 2000; Chiao et al.,
2006)¥° The JOC corpus is composed of texts published in 1993 as a sattof
the C Series of the O cial Journal of the European Community. It contains about
400,000 words corresponding to 8,722 aligned sentenceshvah average sentence
length of 23 words for English and 27.2 words for French.

We built our constituency-based parallel treebank using # parser of Bikel
(Bikel, 2002) trained on the Penn Il Treebank (Marcus et al.,1994) for English
and the same parser trained on the Modi ed French Treebank ¢(Bluter and van
Genabith, 2007) for French. For the dependency-based pdrllitreebank, the corpus
was parsed using the English and French versions of thgrfex parser (Bourigault
et al., 2005). The dependency structures were converted toaoketed format using
the method of the previous section and both pairs of trees vweealigned using our
sub-tree aligner.

In our experimental setup, we split the dataset into 1,000 &t/reference pairs
and 7,722 training pairs. Our PB-SMT system setup and evaltian framework
was exactly the same as that used in section 4.1.3, and all iglations were car-
ried out from French into English. We built a number of transhtion models using
baseline phrase pairs, the two sets of syntax-based phrasarp and various direct

combinations of the three.

9The JOC corpus is distributed by ELDA (http://www.elda.org ).
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45.3 Results

Cong. BLEU NIST METEOR

1 Baseline 0.3035 6.262 0.6432
2 Cononly 0.2997 6.319 0.6359
3 Deponly 0.2990 6.332 0.6411
4 Baseline+Con 0.3198 6.516 0.6561
5 Baseline+Dep 0.3203 6.528 0.6572

6 Con+Dep 0.3109 6.466 0.6467
7 Baseline+Con+Dep 0.3190 6.510 0.6556

Table 4.22: Evaluation of translation accuracy using the castituency- and dependency-
based phrase pairs.

The results of our experiments are presented in Table 4.2 &nalysing our re-
sults, we considered the relative merits of using constitney-annotatedvs. dependency-
annotated data, both individually and in combination with baseline phrase pairs.
Looking at the rst three rows of Table 4.22, we see that usingither set of syntax-
based phrase pairs (Camnly and Deponly) in place of the baseline phrase pairs
(Baseline) leads to lower translation accuracy accordingLlEEU and METEOR but
increased performance according to NIST. These results akin to our previous
ndings using similar size data sets (cf. section 4.1.4) avé¢ syntax-based models
have considerably less coverage than the baseline model | ¢hbaseline model is
2.97 times larger than the constituency-based model and 9.fimes larger than the
dependency-based model | yet the phrase pairs are more relie.

What is interesting to note here is that there is insigni can di erence between
the Con.only and Deponly models in terms of translation performance. Examining
the models more closely, we see that the constituency-basetdel is only 7.5%
larger than the dependency-based model. Furthermore, 65% of the phrase pairs
in the constituency-based model are also found in the depeamty-based model (this
intersection corresponds to 70.28% of the dependency-ldgghrase pairs). This
relative similarity in the make-up of the two models accourst for the comparable
translation accuracy. These gures are summarised in Tabk.23.

In order to further compare the two sets, we observed tranglan accuracy when
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Cong. #Phrases \
Constituency 79,720
Dependency 74,137 52,104

Table 4.23: Comparison of standalone constituency- and degndency-based models.

the respective sets of phrase pairs were directly combinedtiwthe baseline phrase
pairs. These results are shown in rows four and ve of Table22. We see that, indi-
vidually, directly combining constituency- and dependencbased phrase pairs with
the baseline phrase pairs (Baseline+Con and Baseline+Depgpectively) leads to
statistically signi cant (p=0.05) improvements over the baseline. For Baseline+Con
we obtain a 1.63% absolute (5.37% relative) improvement inLEEU, while for Base-
line+Dep we obtain a 1.68% absolute (5.54% relative) imprevnent. Again, this is
in line with our hypothesis of combining syntactic- and norsyntactic phrase pairs
to gain improvements. However, again there is an insigni ¢ca di erence between
the Baseline+Con and Baseline+Dep models.

Looking at Table 4.24 comparing the two combined phrase tads, we see sim-
ilar characteristics across both. In the Baseline+Con modtle7.39% of the phrase
pairs were in the intersection of the baseline and constitney-based sets, while a
further 19.66% of the phrase pairs were unique to the consténcy-based set. In
the Baseline+Dep model, 7.63% of the phrase pairs were in tiv@gersection of the
two sets of phrase pairs, while 18.03% were unique to the dagency-based set. We
attribute these similarities to the insigni cant di erenc es in translation performance

when comparing the two sets of syntax-based phrase pairs.

Cong. #Baseline #Syntax #Combo \
Constituency 236.789 79,720 294,728 21,781
Dependency ' 74,137 288,876 22,050

Table 4.24: Comparison of constituency- and dependency-ls@d models when used in
combined models.

Comparing the constituency- and dependency-based phrasarg further, we ob-

tain additional insight as to the similarity of the two sets d phrase pairs. Firstly,
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the average phrase length of the two sets of phrase pairs isitgusimilar, with
dependency phrases being slightly shorter on average (42 6.15 tokens). Sec-
ondly, we note that 48.96% of the constituency-based phragairs correspond to
word alignments? while this gure is 52.53% for dependency-based phrase mir
Of these word alignments for the constituency- and dependeyibased sets, 81.95%
and 82.15% are respectively are found in the intersection thfe two sets of phrase
pairs. As PB-SMT systems have a preference for shorter pheagairs (Koehn et al.,
2003), including word alignments, when analysing the phraspairs used to build
the translation hypotheses, we see that for the Baseline+@amodel, 71.54% of the
phrase pairs corresponded to word alignments, while 71.098f6the Baseline+Dep
phrase pairs used were word alignments. It is likely that manof the word align-
ments actually employed when building these translationsave in the intersection
of the two sets, and thus the resulting nal translations, ad subsequent results,
are similar. When looking at identical output produced by bth models, we see
that this is the case. For example, in (4.4) the underlined wds were translated as
single token segments and were found in both the constitugnand dependency set

of phrase pairs?!

Src: Ces chires doivent eétreevalles en tenant compte :

Ref: These gures must be assessed in the light of : (4.4)

Con/Dep:  These gures mustbe assessethearing in mind :

To complete this set of experiments, we built two further traslation models.
Firstly, we directly combined the constituency- and deperehcy-based phrase pairs
in to a single model, the translation result of which can be sa in row 7 (Con+Dep)
of Table 4.22. The Con+Dep model improves upon the baseling/ 19.74% BLEU

score (absolute, 2.44% relative). This result is achieve@spite the Con+Dep model

20Recall that a word alignment in this sense is any 1-ton, or n-to-1 alignment wheren 1.
21The remaining words were translated as part of phrasal segnmes.
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containing 57.02% fewer phrase pairs than the Baseline mddtaus further high-
lighting the redundancy in the set of baseline phrase pairsave originally demon-
strated in section 4.3.1 when using parallel treebank datatseed baseline phrase
extraction. We also attribute this outcome to the fact that the phrase pairs in the
Con+Dep mode are more reliable translation pairs given thesyntactic foundation.
We also note here that the Con+Dep model does not achieve tharse levels of
translation accuracy as the Baseline+Con and Baseline+Demodels (rows 4 and 5
of Table 4.22). The higher coverage of these models, whicltlides complementary
combination of precise syntax-based phrase pairs and ngymtactic phrase pairs not
found in the Con+Dep model, accounts for the greater transteon scores.

The nal model we built combined all three sets of phrase past baseline,
constituency-based and dependency based. The performarafethis model, seen
in row 7 of Table 4.22 (Baseline+Con+Dep), while improving eer the baseline
model as we would expect, shows insigni cant di erences irrdnslation accuracy
when compared to the Baseline+Con and Baseline+Dep. Examirg this set of
phrase pairs further, we see there are only 0.97% and 3.02%renphrase pairs than
in the Baseline+Con and Baseline+Dep models respectivelyery few novel phrases
are introduced and so what we are essentially doing is ince¥ag the frequency of

the syntax-based phrases which we already showed to be inetige in Section 4.2.4.

45.4 Conclusions

We observe that when incorporating syntax-based data intoB*SMT systems, con-
stituency and dependency representations for syntactic alysis and subsequent
phrase extraction perform equally as well (Hearne et al., @8). We could not distin-

guish between either set of syntax-based phrase pairs whetlthey were employed
in isolation or in direct combination with baseline phrase @irs. From this we can
conclude that when using these representations for phrasdraction, the two repre-

sentations are interchangeable and one should use whatet@ols are most accurate

for the language pair in question. For instance, if we werednslating between Irish

118



and Czech, and there were dependency parsers available foode languages that
were more accurate than constituency parsers for the sameg wuggest it may be
most appropriate to use those. Similarly, we have learned dh for a given lan-
guage, if there is only a dependency parser available, it islequate to use this in
place of a constituency parser for syntax-based phrase eattion without sacri cing
any potential improvements over a PB-SMT baseline.

While expanding on this particular line of research is beyahthe scope of this
thesis, further work has been carried out (Srivastava and Wa2009) which scales up
the experiments presented here and introduces additionatdhniques for syntactic

annotation and phrase extraction.

4.6 Summary

In this chapter, we examined the hypothesis that syntax-b&sl phrase pairs extracted
from a parallel treebank can be used to supplement the trargion model of a PB-
SMT system and give rise to improvements in translation accacy. We presented the
design and execution of a series experiments which con rméus hypothesis to be
true for data sets up to approximately 730,000 sentence psair We also discovered
that this hypothesis carries most weight with smaller traimg sets and that its
e ectiveness descreases somewhat as the training set sizeréases. However, we
suggest that it may eventually become ine ective as the traing set continues to
grow. Analysing our ndings further, we note that low-precsion word alignments
induced in the parallel treebanks have a negative impact omé contribution of the
syntax-based data to the point that, until such a time as thaiaccuracy is improved,
it may be desirable to omit them from the set of syntax-basedipase pairs.
In addition to substantiating our hypothesis, a number of fther important nd-

ings were made throughout the course of this chapter. We camed the language-
independent nature of our sub-tree aligner, as well as theass-lingual applicability

of our hypothesis, by successfully employing both on prewusly untested languages
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and language pairs. Furthermore, we demonstrated that depdency-based syntac-
tic analyses, along with constituency-based analyses, miag used with our sub-tree
aligner to produce parallel treebanks. These dependencgded parallel treebanks
can then be exploited to produce comparable sets of syntarded phrase tables
and, consequently, comparable translation performance asnstituency-based par-
allel treebanks.

In exploring alternative applications of our parallel trebanks in PB-SMT, we
discovered that they can be used to seed the PB-SMT phrase mdtion process to
produce translation models up to 56% smaller than baselineadels without any
signi cant reduction in translation accuracy.

In the following chapter, we investigate how our automatidéy generated parallel
treebanks can be exploited in a syntax-aware MT system by emaging some of the

successful techniques for phrase combination presentedlis chapter.
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Chapter 5

Exploiting Parallel Treebanks In

Syntax-Based MT

While PB-SMT systems have achieved state-of-the-art perimance in recent years,
there is no direct way to incorporate syntactic informationnto the framework with-

out signi cantly re-engineering some component(s) of theystem. While this has
been carried out with some success (Collins et al., 2005; @aat and Wu, 2007;
Hassan et al., 2007; Koehn and Hoang, 2007; Stroppa et al.0Z0 Haque et al.,
2009a,b), these modi cations still do not accommodate pallal treebanks directly
as training data. In the last chapter, we demonstrated a nundr of ways in which
parallel treebanks can be exploited within the PB-SMT framwork, for instance by
supplementing the translation model and constraining the lrase extraction pro-
cess. However, in order to fully exploit the linguistic infomation encoded in our
automatically-generated parallel treebanks | namely subtree alignments, syntactic
structure and node labels | we need to employ them in an MT sysém that inher-

ently makes use of this form of data. In this chapter, we desbe how we exploit
our parallel treebanks for use in the syntax-aware Statistal Transfer MT system
(Stat-XFER) (Lavie, 2008) described previously in sectior2.3.1. We stress at this

juncture that the goal of the experiments presented here wasot to improve over
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a baseline PB-SMT systent, but rather to demonstrate that our parallel treebanks
are viable as direct training resources and to evaluate theegetiveness of the deeper
syntax encoded within the treebanks in a syntax-aware MT fraework.

In section 5.1 of this chapter we describe the set-up of theéBtXFER translation
experiments and the new data set from which we build our paial treebank. In sec-
tion 5.2 we describe the bilingual phrase extraction proce$or syntax-based MT and
detail the grammars used in the experiments, including a maally-crafted gram-
mar and a grammar extracted automatically from the paralletreebank. Section 5.3
discusses the results of these experiments along with a dkgd qualitative analysis
of the translation output. Finally, in section 5.4 we repliate some of the PB-SMT

experiments of Chapter 4, using a larger data set, for compdive purposes.

5.1 Data and Experimental Setup

The data set we used for the experiments presented in this giter was the French{
English section of the Europarl corpus release?3This parallel corpus, used for the
2009 Workshop on Machine Translation (WMT'09) (Callison-Birch et al., 2009),
comprises 1,261,556 aligned sentence pairs. We automdtjcgenerated our parallel
treebank from this corpus using the Berkeley parser (Petrand Klein, 2007) to parse
both the English and French sides | the English parser was aga trained on the
Penn Il Treebank (Marcus et al., 1994) while the French parsavas trained on the
original French Treebank (Abeile et al., 2000) | and our sub-tree aligner (Tinsley
et al., 2007b) (cf. Chapter 3) to induce links between tree pa.

As all of our experiments perform translation from French ito English, we used
a su x-array language model (Zhang and Vogel, 2005, 2006)dm a corpus of 430

million words,? including the English side of our parallel corpus, the Englh side

1We were aware, based on previously published results (i.e Hanneman and Lavie, 2009; Ambati
and Lavie, 2008), that the Stat-XFER system was not yet capable of outperforming a PB-SMT
baseline, but could nevertheless carry out translation to asu cient standard as to serve as a useful
medium for evaluating the quality of our parallel treebanks.

2Downloaded from http://www.statmt.org/europarl/

3Thanks to the MT group at the LTI in CMU for providing the langu age model.
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of the Canadian Hansard corpué,and newswire data. All systems were tuned via
minimum error-rate training on the BLEU metric, using the neavs-dev2009a data
provided by the WMT'09 as the development set. This comprige600 sentences
with an average length of 32.4 tokens. Finally, we tested th&/stems on the news-
dev2009b set also from the workshop, which comprised 1,5Gfhtences with an
average length of 32.4 token, and used the BLEU, NIST and MET&R metrics for

automatic evaluation.

5.2 Stat-XFER: Exploiting Parallel Trees

As we described in Section 2.3.1, the Stat-XFER engine exftwo language pair-
dependent resources both extracted from parallel treebasika probabilistic bilingual
lexicon (phrase table) and, optionally, a grammar of weigltd synchronous context-

free grammar (SCFG) rules.

5.2.1 Phrase Extraction

The di erence between a Stat-XFER phrase table and that of a B-SMT system

is that each entry in the table also contains a syntactic cagory for the source and
target phrases. Thus, each entry is a fully lexicalised SCF@&xpression which can
later be used in conjunction with the weighted SCFG rules. Tik is an immediate
example of how the Stat-XFER engine exploits additional imrmation from the

parallel treebank that is not exploited in PB-SMT. Looking d Figure 5.1, we see an
illustration of how bilingual lexicon entries are extracte from a parallel treebank

for use in the Stat-XFER system.

Similar to parallel treebank phrase extraction for PB-SMT for each linked con-
stituent pair we extract the surface strings dominated by tk source and target

nodes. The dierence in the case of syntax-based MT here isahwe also extract

“4http://www.isi.edu/natural-language/download/hansar d/
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S P @)

NP PR~~~ - N "--PP
| s 7 | . \/\
resumption |\ NP reprise P NP
| T d| D/\N
of DT N € o
8 . [ _ _“la- “session
the . session = - - - - - - -~

NP N ! [ resumption ] [ reprise ]
IN P ! [of ] D [de]
DT = D ! [ the ] T [la]
N N ! [ session ] [ session ] (b)
NP ' NP ! [ the session ] o [le session ]
PP : PP ! [ of the session ] [ de la sesion ]
S P [ resumption of the session ] :: [ reprise de le session ]

Figure 5.1: An aligned English{French parallel tree pair (a) and set of extracted Stat-
XFER bilingual lexicon entries (b).
the constituent node labels. Using this method, we extraate5,461,912 bilingual

lexicon entries from the French{English Europarl corpus.

5.2.2 Grammar Extraction

Grammar rules in the Stat-XFER system take a similar form to he bilingual lexicon
entries. The di erence lies in the fact that the right-hand sdes of these SCFG
productions can contain both lexicalised items as well as mgerminals and pre-
terminals. This allows them to be used in conjunction with tle bilingual lexicon to
build full translations. For example, in Figure 5.2 we see aubset of the grammar
rules extractable from the parallel tree in Figure 5.1 (a).

Constituent alignment information, shown here as co-indes on the non-terminals,
indicates the correspondences between source and targetgaage constituents on
the right-hand sides of the SCFG rules as encoded in the pddltreebank. In the
experiments presented in this chapter, we made use of two graars: a manually-

crafted grammar and a grammar automatically derived one fro our parallel tree-
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S = P ! [NP'PP?] o [N PP?]

S = P ' [\resumption"PP1] : [\reprise" PP!]
PP = PP ! [IN!\the"N 2] o [PYVa" N 2]
NP = NP ! [DT!N?]  [DYN?]

Figure 5.2: A subset of the SCFG rules extractable from the paallel treebank entry in
Figure 5.1 (a).

bank. We discuss these two grammars in greater detail below.

Manually Crafted Grammar

We make use of a small, manually crafted grammar containingne SCFG rules. The
grammar presented in Figure 5.3 was created during the degpment of the Stat-
XFER system and used by Hanneman and Lavie (2009) in experinie on phrase
combination. It de nes a number of rules designed to addres=ertain local word
ordering phenomena between French and English (particulgirwithin noun phrases).
For example, we see that rules (1){(4) in Figure 5.3 deal withhe reordering of
adjectives and nouns, while rules (5) and (6) account for the deletion of the French
preposition de along with further nominal reordering. Finally, rules (7){(9) were
designed to be used in conjunction with rules (2) and (4) forocrect ordering of
larger adjectival phrases. In section 5.3, we will presentany examples of these

rules being used in actual translation cases.

Automatically Derived Grammar

The second grammar we employ in these experiments was extest automatically
from our parallel treebank. As an e cient solution has yet tobe found for exploiting
large-scale grammars in the Stat-XFER system, we make use afreduced gram-

mar comprising the top-forty most frequent SCFG rule$. In order to extract this

5The complete tag sets for the English and French parses are in in Appendices A and B
respectively.
5There were 8,233,480 SCFG rules extracted in total from the dta set.
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MNP = NP | [NTAZ] T [JPNT]

2 |NP = NP | [N!AP?] :: [ADJP2 N! ]
3)[NP = NP | [D!N2A3] . [DTJJ8 N2 ]

(4 |NP = NP | [D!N2AP3] - [ DT ADJP3 N2 ]

(5) | NP 2 NP I [N'\de"N?2]  [N2Nt]

6) NP = NP | [D'N2\de"N3] : [DT!N3N?]
(7)|AP = ADIP | [AlC2A3] - [JI CC? IR

@) |AP  : ADIP ! [AN\"AZ2C3A*] : [JI\"JII2CCPIN]
(9) | ADJP :: ADJP ! [ADV!A?] . [RB!JJ?]

Figure 5.3: The manually crafted nine-rule grammar from French-to-English.

grammar, we used a rule induction toolkit based on the work of Ambati and Lavie
(2008). The extraction process makes use of the word alignmte in our parallel

treebank to infer an alternative phrase-level alignment beeen the tree pairs and
induce an SCFG.

The automatic grammar contains a number of rules which, initively, are po-
tentially useful for translation. Some of these are shown iRigure 5.4. For example,
rule (1) in Figure 5.4 de nes an example of adjective/noun @dering, while rules
(2) and (3) allow for deletion of a preposition and article repectively, which can
often be necessary. As well as these rules capturing trarigtaal divergences, the
grammar contains rules such as (4) which accounts for straigorward mapping of
prepositional phrases. The full forty-rule grammar is praded in Appendix C. We
also demonstrate the application of many of the automatic gmmar rules in actual
translation cases in section 5.3 in addition to statisticsagarding how often each

rule was applied during translation.

"Downloaded from http://www.cs.cmu.edu/  vamshi/rulelearner.htm
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(O[NP = NP ! [DINZA3] = [DTIJP N?]
(2)|NP = NP ! [\des"N!] = [N!]
B)|NP = NP ! [\e"N1] o [N]
@) |PP : PP | [\de"NP1] :: [\of"NP1!]

Figure 5.4: Examples of SCFG rules in the automatic grammar.

5.3 Stat-XFER Results and Discussion

The results of our translation experiments with the Stat-XFEER system are given
in Table 5.1. The rst row of the table | Xfer-no _gra | shows the results for a
system con guration in which no grammar was used. In this coguration, only a
bilingual lexicon is used, so the translation process of treystem replicates that of

a monotonic SMT decode€f.

Cong. BLEU NIST METEOR
Xfer-no_gra 0.2437 6.6295 0.5446
Xfer-man.gra 0.2483 6.6558 0.5471

Table 5.1: Translation results using the Stat-XFER system and our parallel treebank as
training data.

Comparing the second row | Xfer-man_gra | we see the e ect of using the
nine-rule manual grammar on translation; improvements argeen across all three
translation metrics (0.46% absolute increase in BLEU scqr&.89% relative increase).
This con rms that, even with such a minimal grammar, we can irprove translation
accuracy by incorporating syntactic information. When traslating the 1,500 test
sentences, the nine rules in our manual grammar were appliadotal of 509 times.
A breakdown of how often each individual rule was used is peged in Figure 5.5.

From these numbers, we can see that rules (1){(4), concerginocal noun{
adjective reordering, are applied over 62% of the time demstnating how useful

it is to model such translational divergences. There are mgrexamples to be found

8A monotonic decoder is one in which no reordering model is ifaded as a feature in the
log-linear model (cf. section 2.2.3)
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Rule | Freq. Rule RHS
(1) | 126 |[NTAZ] o [JF NI
(2) 30 |[N!AP2] . [ ADJP2 N!]
(3) | 152 |[D! N2 A3] . [DT I N?]
(4) 19 | [ D! N2 AP3] . [DT! ADJIP3 N2 ]
(5) 56 | [N'\de"N?] o [N2N!]
(6) 62 |[D'N?\de"N3] = [DT!N®N?]
(7) 15 |[AIC?A%] S INNRN GOSN Ny
(8) 4 |[AY\"AZCPAY] & [J3\"JJ2cCcdu]
(9) 45 |[ADV!A?] . [RB!JJ?]

Figure 5.5: Nine rule grammar right-hand sides with frequerty information pertaining to
how often each rule was applied during translation.

in the output translations of these rules being applied to ge improved translations
over the Xfer-nagra con guration. Looking at the translation output in (5.1),° we
see an example of rule (3) being applied successfully to caa the correct reorder-
ing of the French noun{adjective pair in the phraseaine avanee fondamentalevhich

was not captured by the con guration using no grammat?®

Src: une avanece fondamentalgour la protection des droits des citoyens

Ref: a fundamental stepforward for the protection of citizen's rights

No _gra: a stepj fundamentalj to j the protection of citizen's rights

Man _gra: a basic stepj for j the protection of citizen's rights
(5.1)

Further examples of the usefulness of noun{adjective readng can be seen in

(5.2), where rule (1) applies to correctly reorder the Freinevenement historique as

9The vertical bars 'j' in the examples indicate the boundaries of the segments usefrom the
bilingual lexicon to build the translation hypothesis.

10This example is symptomatic of the drawbacks of the automatc evaluation measures that we
touched upon previously (cf. Section 2.4.4). In the referece translation we have the phrase \a
fundamental step”. In the No_gra output, the word order is wrong | \a step fundamental" | bu t
all the words in the reference are matched, so it achieves tlee unigram matches. In the Mangra
output, a valid translation is produced, but using alternative lexical choice to the reference: \a
basic step”. As a consequence, this translation has only two unigem matches for the translation
of this phrase and ultimately it may cause the entire sentene to receive a lower score.
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\historic event". The No_gra con guration carries out direct word-for-word trans-

lation and consequently gets the word order wrong.

Src: c'est ce formidableevwenement historiquequi: : :

Ref: this fantastic historic event which: : : 5.2)

No _gra: itis j this | greatj eventj historic j which:::

Man _gra: itis j this j greatj historic eventj which:::

In addition to this, example (5.3) demonstrates the applid#gon of two rules in
parallel to capture reordering of a noun and adjectival phise. Rule (8) applies
to capture the comma-separated adjectival phrase \admirti@tive , scal and judi-
cial", while rule (2) reorders this with the noun \structures". The No_gra con g-
uration correctly captures a more local noun{adjective radering with the phrase
pair \structures administratives ! administrative structures” but it fails to include

the other adjectives in the phrase.

Src: :::renforcer ses structures administratives , scales et jurilictionnelles
Ref: :::tighten up its administrative , scal and legal systems
No _gra: :::strengthenj its j administrative structures j , j tax j and j judicial
Man _gra: :::strengthenj its j administrative , scal and judicial structures
(5.3)

Finally, in examples (5.4) and (5.5) we see rules being apgdi which delete the
French prepositionde from the English translation and reorder the nouns in a noun
phrase. We see rule (5) being applied twice in example (5.4) translate dispositifs
de Itrage and sysemes de guidewhile example (5.5) shows rule (6) capturing
a noun phrase including an article | \the crisis situation" | where the Nagra
con guration carried out translation using two phrase pais which split the French
phrase la situation de crise and subsequently failed to capture the translational

divergence as a result.
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Src: :::.dispositifs de Itrage et aux sysemes de guide

Ref. :::ltering systems and programme classi cation systems (5.4)
No _gra: :::devicesj of j Itering j and to j systemsj of j guide
Man _gra: :::lter systems j and the | guidance systems
Src: :::la situation de criseau Rerou
Ref: :::the crisisin Peru
(5.5)
No _gra: :::the situation j of crisisj in Peru
Man _gra: :::the crisis situationj in Peru

Using even just this small grammar, we have demonstrated thanprovements
in translation quality can be made by employing SCFG rules ithe system. In the
following section we describe results from the experimenis which we used the

automatic grammar extracted from our parallel treebank.

5.3.1 Automatically Derived Grammar: Results

Table 5.2 presents the results of the translation experimenin which we employed
the automatically extracted grammar. We see from the third ew of the table |
Xfer-auto_gra | that we achieve even further improvements over the \no gammar”
baseline using the automatically extracted grammar acrosal evaluation metrics
(0.65% absolute increase in BLEU score; 2.67% relative irase). Even though
they are not directly comparable due to the di erent rule setsizes, by comparing
rows 2 and 3 we see that the automatic grammar performs sligytbetter than the
manual grammar. While these improvements are not statistadly signi cant, they
are encouraging insofar as we have yet to determine the mogipaopriate way to
automatically extract grammars. Despite this, using the tehnique described here,
we have achieved comparable results to a manual grammar ¢eaf speci cally for

the language pair and tagset in question, which is a time-ceaming task.
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Cong. BLEU NIST METEOR

Xfer-no_gra 0.2437 6.6295 0.5446
Xfer-man_gra 0.2483 6.6558 0.5471
Xfer-auto_gra 0.2502 6.7087 0.5506

Xfer-man+40_gra 0.2510 6.6804 0.5606

Table 5.2: Translation results using including the automatically extracted grammar.

In translating the 1,500 test sentences, rules from our autwatic grammar were
applied a total of 1,450 times, i.e. almost once per sentenc®f the 40 automatic
rules, 2 were also found in the manual grammar. They correspbto the two most
frequently used rules in Figure 5.5: rules (1) and (3). Theseles were also among
the most frequently applied rules from the automatic grammaa summary of which
is given in Figure 5.6 Examples of these rules ((4) and (7) in Figure 5.5) being
applied correctly | and exactly as they were applied in the sane examples using

the manual grammar | are shown below in (5.6) and (5.7).

Rule | Freq. Rule RHS
(1) 257 | [\des" N1!] o [NT]
(2) 231 | [\Vles" N1] o [NY]
(3) 175 |[a"NP 1] o [\to" NP 1]
4) 173 |[DTIN2J3%] : [DT'JBN?]
(5) 127 | [\ N 1] o [NY]
(6) 126 |[\la"N 1] o [NY]
(7) 110 | [ N1 JJ?] o [JJ% N

Figure 5.6: Most frequently applied rules from the automatic grammar.

10nly those rules from the automatic grammar which were appled more than 100 times during
translation of the test sentences are shown.
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Src: La seule instance europeenndirectement et cemocratiquementelue

Ref: The sole european bodyo be directly and democratically elected

No _gra: j The only bodyj union j directly and democratically elected

Auto _gra: The only j european institution j directly and democratically elected
(5.6)

Src: C' est une avanee particulerement importantepour les femmes

Ref: This is a particularly important advance for women

No _gra: Itis j a stepj particularly important j for women

Auto _gra: Itis j a vital step j for women
(5.7)

Numerous examples of the rules in Figure 5.6 being applied pooduce accurate
translations can be found in the output translations. In exenple (5.8) we see rule

(1) applied to correctly delete the French prepositionles from the translation.!?

Src: 1l est inadmissible : :que des personnesoient exclues de la vie sociale

Ref: We cannot accept: :peoplebeing excluded from society

No _gra: Itis unacceptable::that j of j peoplej are excluded from society

Auto _gra: It is unacceptable::that j peoplej are excluded from society
(5.8)

Similarly, rule (2) captures the deletion of the French de ite article les Such
articles are commonly used in French and when translatingtm English, it is often
acceptable to translate them in some cases and delete thenothers. This presents

a challenge for rules such as (2) which may over-apply. Forsiance, in example

2\We will not compare the output of the Man_gra and Auto_gra con gurations because it is
generally the case that if a rule was applied using the Autogra con guration to produce a correct
translation, and that rule did not exist in the Man _gra con guration, then the Man _gra con gu-
ration would produce the same output as the Nagra con guration and vice versa. We are simply
highlighting here that when a rule exists and is applied, it helps to produce improved translation
output over cases where it is not available.
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(5.9) we see the rule correctly applying to remove the artiet before \weapons
and \con icts". Conversely, in example (5.10), we see the ta applying three times
with contrasting e ects. It rst applies to incorrectly rem ove the clause initial
article before \discrimination” but then applies twice more to correctly remove the
unnecessary articles before \di culties” and \women". When using no grammar in
these examples, the article is always translated directlyp some cases word-for-word

and in others as part of a larger phrase pair.

Src:  Les armesalimentent les con its de par le monde.

Ref: Arms fuel con icts all over the world .

(5.9)

No _gra: The j weaponsj fuel j the j conict j in the world .

Auto _gra: Weaponsj fuel j conicts j in the world .

Src:  Les discriminations et les di cults auxquelles sont confrontes les femmegerdurent .

Ref:  The discrimination and di culties women face unfortunately persist .

No _gra: The discrimination j and jthe di culties j which j face thej womenj continue .

Auto _gra: Discrimination j and j di culties j which j facej womenj continue .

(5.10)

Following on from this, rules (5) and (6) behave similarly taule (2) in that they
model the deletion of morphological variants of the de niterticle. Finally, rule (3)
describes a direct mapping between prepositional phrases.

The remaining rules in our automatic grammar were applied $s frequently dur-
ing translation. In fact, 12 of the remaining 33 rule¥ extracted were not used at all
during translation. Those rules which did apply tended to mdel direct mappings
with no translational divergences, or broader, more gendreelations. It was often
the case that these rules produced similar translations tdé Nagra con guration
as they did not produce output that could not be modelled by dect word-for-word

translation. For example, in (5.11) below, we see the appditon of a very general

B3Excluding the 7 most frequently applied rules of Table 5.6.
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rule mapping a source NP VP pair to a target NP VP pair. This rué was applied

just a single time during the translation of the test set. Addionally, examples

(5.12)* and (5.13) show the application of rules which mapped dirdgt between

di erent variants of a prepositional phrase. These rules we applied 34 and 9 times

respectively.

Rule: SENT : S! [NP!VP2]: [NP!VP?]

Src: cette pro@dure n' a pas encoreet entanee

Ref: no such proceedings have been initiated as yet (5.11)

No _gra: this procedurej has not yet started

Auto _gra: | the process has not yet starteql

Rule: PP:PP! [\en"NP!]: [\in"NP !]
Src:  :::d' etre le plus rapidement possible_en mesurel' apporter les modi cations recessaires
Ref:  :::as quickly as possible , start making the necessary changes
No _gra: :::bej as soon as possiblg can providej the necessary changes
Auto _gra: :::bej quickly as possiblej in the position j to j make the necessary changes
(5.12)
Rule: PP : PP! [\de"NP?!]: [\of*NP?!]
Src:  Les propositions_de MGil-Robles sur la cooperation renforee: :
Ref: Mr Gil-Robles ' proposals on reinforced cooperation:
No_gra: The proposalsj of j Mr j Gil-Robles on close cooperation:
Auto _gra: The proposalsj of Mr j Gil-Robles on close cooperation:

(5.13)

Looking back at Table 5.2 (p.131), in row 4 we see the translah results for

a Stat-XFER system in which we combined the manual and autortia grammars.

14This example also demonstrates the rule VP::VP! [V NP] :: [VB NP] being applied to
translate the French VP apporter les modi cations recessaires and \make the necessary changes".
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This con guration amounted to the addition of 7 new SCFG rulse from the man-
ual grammar to the automatic grammar (2 of the manual rules we also found in
the automatic grammar). As expected given our previous rels, this con gura-
tion improved signi cantly over the No_gra baseline. However, when compared with
the Auto_gra con guration, we see an insigni cant improvement in BLEJ, an im-
provement in METEOR but a drop in NIST score. These results g1gest that the 7
new rules did not provide much bene t over what was already gsent in the manual
grammar. This is con rmed upon nding that the rules from this combined grammar
were applied 1,410 times when translating the 1,500 test $ences, as opposed to
1,450 times for the Autagra con guration. Furthermore, we noted earlier than there
were two rules in common between the manual and automatic gremars. These are
the two most frequent rules applied from the manual grammamnithe Man_gra MT
system con guration | rules (1) and (3) in Figure 5.5 | and acc ount for 54.62% of
all rules applied during translation with the Man.gra con guration. Thus, the novel
SCFG rules we introduced when combining the manual rules ‘itthe automatic
grammar were less useful and ultimately did not enhance theagnmar signi cantly

enough to lead to substantial improvements in translation @uracy.

5.4 Phrase-Based Translation Experiments

In the interest of completeness, we carried out a set of PB-SMexperiments using
the same data and experimental setup as the other experimann this chapter. As
in Chapter 4, we built our phrase-based systems using Moses phrase extraction
and decoding. A 5-gram language model was built using the SRinguage mod-
elling toolkit. Minimum Error-Rate Training was carried out, optimising parameters
on the BLEU metric and, nally, translations were evaluatedautomatically using
BLEU, NIST and METEOR. Three system con gurations were evalated in total
using the direct combination approach described in sectiet.2.2 and 4.2.3 respec-

tively. They were: Baseline phrase pairs only; Syntax-bagghrase pairs only and
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Baseline and Syntax, direct combination. The results of the® experiments are given

in Table 5.3.
Cong. BLEU NIST METEOR
Baseline 0.3115 7.4816 0.6087
Baseline+Syntax 0.3116 7.4985 0.6076
Syntax_only 0.2793 6.9982 0.5733

Table 5.3: Results of PB-SMT experiments using the larger Eglish{French data set.

Our ndings here di er from those of Chapter 4 in that we do notsee a signi cant
improvement in translation performance when supplementgq the baseline model
with syntax-based phrase pairs from the parallel treebank.In section 4.2.6, we
demonstrated that the in uence of the syntax-based phrasegirs in the combined
model decreased as the size of the training set grew (to a nrayim training set
size of approximately 730,000 sentence pairs). Furtherngrwe suggested that if
the size of the training set were to continue to increase, weight see the in uence
of the syntax-based phrase pairs diminish completely. As vae using more than
1,250,000 sentence pairs in these experiments | almost twécas many as the largest
experiments conducted previously | our aforementioned assmptions are con rmed
given these ndings.

However, upon examining the extracted phrase tables furtheve discovered that
the size of the training set is not the only factor at play in rducing the in uence of
the syntax-based phrase pairs. We observed that there aré9.times more baseline
phrase pairs than syntax-based phrase pairs for this datats@ his is interesting as
there were only 3.84 times as many baseline phrase pairs gitkee data set in section
4.2. In fact, there were fewer syntax-based phrase pairs etted from the larger
data set in this chapter than there were from the data set in séion 4.2, which was
almost half the size (the number of baseline phrase pairs neased proportionally).
The exact gures are shown in Table 5.4.

Investigating this further, we found the French parses in tese experiments to
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Language Resource #Phrases #Training Pairs
Baseline 24,708,527

En-Es (Sec.4.2) Syntax 6.432.771 729,891
Baseline 47,169,818
En-Fr Syntax 5,218,370 1,261,556

Table 5.4: A comparison of the number of syntax-based phraseairs extracted from dif-
fering data sets.

be relatively at compared to the Spanish parses of section2*® Looking at Table

5.5, we can analyse the parallel treebanks further.

French Spanish
Ave. Sentence Length 30.13 28.99
Ave. Nodes per Tree 44.50 48.25
Ave. %Linked nodes 59.3% 67.88%

Table 5.5: Comparing the French and Spanish sides of their mpective parallel treebanks.

We see the average length of the French sentences is 30.1 nskehich gives rise
to an average of 44.5 constituent nodes per tree when parsédf these 44.5 nodes,
approximately 59.3% are aligned on average during parallaleebank generation.
Comparing this to the data set of section 4.2, there are 8.42%o0re nodes in the
Spanish trees than the French tree and of these nodes a funtt®57% are aligned
in the English{Spanish parallel treebank® This ultimately results in atter French
trees, reducing the number of available sub-tree alignmentand subsequently the
number of extractable phrase pairs from the parallel trees.

We llustrate this further with an example from our data. Conparing the
English{Spanish and English{French tree pair fragment< | Figures 5.7 and 5.8
respectively | we can see the aforementioned di erences merclearly. The English

sides of each tree pair, which are identical as they come fraime same portion of

5The two data sets are roughly comparable as both were derivedrom the Europarl corpus.
The English side of the English{Spanish parallel corpus is aubset of the English side of the larger
English{French corpus. For the most part, the English parses produced in the respective parallel
treebanks are identical.

16To summarise, that is 59.5% of 44.5 French nodes aligned coraped to 67.9% of 48.3 Spanish
nodes aligned.

The full trees are provided in Appendix D.
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the parallel data, have 5 nodes. For the English{Spanish teepair in Figure 5.7, all
5 English nodes are aligned given 15 Spanish nodes. The Sphrtree is also quite
hierarchical and right-branching in nature, with a node deth of seven. Conversely,
for the English{French tree pair in Figure 5.8, only 3 of the Bglish nodes are aligned
to the French tree which has 9 nodes in total: 40% fewer noddsan in the Spanish
tree. We can also see that the French tree is relatively at, ith a node depth of
two. There are essentially two non-terminal nodes with theemainder being pre-
terminals descending from them. These factors have impadt®n the number of
alignment options available to the sub-tree aligner and caequently on the number
of extractable phrase pairs. It is a combination of this andhe larger training set
that has contributed to the diminished in uence of the syntx-based phrase pairs in

the combined models.

/(-\1/ -
IN-2 NP-3 P2 SN3 el
dur’i\ng DT—4/\NP—/5 en N Aﬁ@S N N
N \tbis? Tl part—stl.ssion e‘l NC—G/\\\\\‘SP«?\ _ \\\\
\\\\\::\‘\\\ /cu/l'so P—B/\SEQ\\\
\\\'--»::iizkz:i::\ d‘e AR-10 NOM-11
T ke neim eRas
percho P-14 SN-15
d'e sess‘iones

Figure 5.7: Example English{Spanish tree pair and alignmets: All English nodes are
aligned to the hierarchical Spanish tree.

) PP-1 PP
IN-2 NP-3 P-%\Ws
dur‘ing DT—4/\NP—5 au‘ cour‘s de. D—G/D—m
this~ - - part—sgésion _ . L/e/t‘te pario‘de de‘ ~ /ses/s1ion

Figure 5.8: Example English{French tree pair and alignmens: French tree is quite at
and not all English nodes are aligned.

This is further re ected in the translation performance of he remaining con-
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guration in Table 5.3. In row 3, we see the Syntaxonly con guration acheives
scores signi cantly lower than the baseline across all méts (3.23% absolute drop
in BLEU; 11.56% relative). This drop in translation perfornance is considerably
larger than in the experiments of section 4.2.2 where thereag/only a 5.96% relative

di erence in BLEU score.

5.5 Summary

As discussed, the potential of automatically generated paltel treebanks extends
beyond the extraction of string-based translation pairs. Anotated phrase tables
and transfer rules | combined as a synchronous context-fregrammar and extracted
from parallel treebanks | can be exploited to improve the translation accuracy of
a syntax-based MT system. We have shown competitive transian performance
when using an automatically extracted set of SCFG rules in @te of a manually
crafted grammar. This is particularly encouraging as one tiie challenges of syntax-
based MT is deciding how to re ne unwieldy grammars, removeedundancy and
ultimately improve e ciency. Thus, what has been demonstréed here serves as
a solid foundation for further investigation into the explatation of our parallel-
treebanks in syntax-based MT

In terms of PB-SMT, as we suggested may be the case in sectio® 4f the
previous chapter, supplementing the baseline model with yax-based phrase pairs
was ine ective given the much larger data set used here. Hoves, the structure of
the parallel trees we used also had a signi cant impact on thi Our French parses
were much atter than in previous parallel treebanks and thé had a substantial
impact on the number of extractable phrase pairs. While it ibeyond the scope of
this thesis, we believe there is value in investigating whieer the use of monolingual
parsers which produce more hierarchical structures is pezéble, or whether pairs
of monolingual parsers should be chosen whose resultingustures are more closely

related.
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Chapter 6

Conclusions

Phrase-based SMT, while the state-of-the-art in MT, is drign solely by statistics
and makes no use of linguistic information during the tranation process. Syntactic-
information has been shown to be useful when incorporatedanPB-SMT, and this
suggests there is potential in pursuing fully syntax-baseciodels. However, the
development of such models has been inhibited by the lack ofadlable syntacti-
cally annotated training resources. In this thesis, we addssed four main research

guestions, outlined in Chapter 1, relating to these issues:

RQ1. Can we develop a method to facilitate the automatic generatn of

large-scale high-quality parallel treebanks for use in MT?

RQ2: Can syntactically motivated phrase pairs extracted from a arallel tree-

bank be exploited to improve phrase-based SMT?

RQ3: What other features of the phrase-based model can be enhashdsy

exploiting the information encoded in parallel treebanks?

RQ4: To what extent are our automatically generated parallel trebanks use-

ful in syntax-based MT?

Interms of RQ1, in Chapter 3 we presented a novel algorithm for the inductioof

sub-sentential alignments between tree pairs, thus givirmurselves the ability to fully
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automate the process of building parallel treebanks. We de#ed the algorithm in
detail and performed intrinsic, extrinsic and manual analyis of the quality of the

resulting treebanks. From this evaluation we have drawn th&llowing conclusions:

we have developed a viable solution to the challenge of sule¢ alignment and,

consequently, the automatic generation of large-scale éiel treebanks;

the algorithm is language pair-independent and has demonated its e ective-

ness across several language pairs, including non-Eurapéanguages.

Following this, in Chapter 4 we investigated our hypothesishat parallel tree-
banks have use beyond syntax-based MT by addressiR2 and RQ3. Regarding
RQ2, we exploited parallel treebanks directly by using them toupplement the
translation models of a large number of PB-SMT systems. Thiwas done by ex-
tracting a set of syntax-based phrase pairs directly from pallel treebanks and using
various techniques to combine them with baseline PB-SMT phse pairs. Moving on
to RQ3, we carried out further experiments aimed at discovering t@rnative ways
in which the information encoded in parallel treebanks codlbe exploited to en-
hance the PB-SMT pipeline. In addition to these experimenisve investigated the
possibility of using our sub-tree alignment algorithm to agn dependency structures

for phrase extraction. Our principal ndings from this body of work were as follows:

signi cant improvements were achieved in the translation prformance of a
baseline PB-SMT system by supplementing the translation nuzl with syntax-

based phrase pairs extracted from a parallel treebank; theaallel treebank
was automatically generated over the same parallel data orhieh the baseline
system was trained. The direct approach to phrase combinatn performs

optimally;

while this hypothesis holds across various data sets and tarage pairs, we
note that the complementary e ect of the parallel treebank dta diminishes
as the training set size increases to the point where supplenting the model

becomes ine ective;
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this approach to supplementing PB-SMT models may be best etoged in
cases where limited training data is available or where rasmes dictate the

necessity for smaller phrase tables;

the quality of the word alignments encoded in the parallel #ebanks is some-
what inhibiting their ability to improve translation accur acy still further. Im-

provements to these alignments is key to future gains;

the parsing formalism used to build the parallel trees has @i cant e ect on
the quality of the resulting treebank and set of phrase pairsThe more hier-
archical the parse, the more nodes in the trees, the more strbe alignments.

We found this to be a desirable property;

it is quite di cult to improve upon the PB-SMT pipeline by mak ing minor

adjustments to certain features, such as lexical weighting

it is best to use re ned statistical word alignments rather han parallel treebank
word alignments to seed PB-SMT phrase extraction. Howevegjven a parallel
corpus and a parallel treebank, we can use all information aiur disposal
| statistical word alignments, parallel treebank word alig nments and syntax-
based phrase pairs | to generate concise translation mode(sip to 56% smaller
than pure baseline models) that achieve comparable trantilan performance

to much larger baseline models;

we can successfully align bracketed structures produced &yormal conversion

of dependency representations and extract phrase pairs 18B-SMT.

Finally, in terms of RQ4 , we deployed a parallel treebank as a training resource
for a syntax-based, Stat-XFER system in Chapter 5. We extraed a bilingual
lexicon directly from the treebank and used encoded word ghments to seed the
extraction of a synchronous context-free grammar. Compag a number of MT

systems, we drew the following conclusions:
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translation quality of a syntax-based MT system can indeedéimproved by
adding deeper syntactic knowledge into the process as derawated by the

use of a manually-crafted grammar;

using a very small percentage of transfer rules extracted tamatically from
a parallel treebank gives rise to comparable translation pgermance when

compared to a manually-crafted grammatr;

the main challenge facing syntax-based MT going forwards ew to extract
an e cient, re ned grammar from a parallel treebank given the millions of

extractable rules.

A nal trend we observed in the majority of translation experments carried out
in this thesis was the inconsistency in scores across the amnatic evaluation metrics.
It was often the case that one metric would report a signi canimprovement over
the baseline, while another would report an insigni cant dop in performance. As
a consequence of these ndings, we believe that despite thetility, the automatic
metrics do not necessarily facilitate a de nitive analysiof translation quality and
some degree of human judgement is still required. This waspesially the case in
this thesis, where many of the observed di erences betweeysgeems were small and,
consequently, the automatic metrics were unable to teasedin apart. Until such a
time as research into automatic evaluation of translation wgplity can demonstrate
consistentcorrelation with manual assessment, MT research such as thaesented

in this thesis will not be able to ourish.

6.1 Future Work

Drawing from the open research questions that have arisends on our experiments
throughout the course of this dissertation, we now presenbsie potential avenues
for future research which we believe warrant exploration.

In terms of sub-tree alignments, in section 3.3.3 we saw a cioh between the
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score2and spanloptions. Identifying the source of this con ict may provideuseful
information which could be applied in the development of aisgle, optimal con g-
uration for the alignment algorithm.

We noted throughout this thesis that the weakest facet of thalignment algo-
rithm was its induction of word-level alignments, which hadan adverse e ect on
many of the MT tasks we carried out. There are a number of ways iwhich this
issue could be addressed, for example, by using speci ¢ aoichlignments between
certain troublesome tokens such as function words and punettion. This would pre-
vent misalignment between these types of words and act as aidgifor the selection
process bya priori ruling out a number of ill-formed hypotheses.

In section 5.4, we saw that the structure of the parse trees the parallel treebank
had a signi cant e ect on sub-tree alignment and subsequentasks in which the
treebanks were exploited. Examining this further | for instance, between language
pairs with rich syntactic-annotation resources, such as éebanks and parsers |
could provide us with deeper insight as to the type of trees i@ tree pairs) most
suited to alignment and subsequent tasks. Furthermore, a glitative analysis of
the e ect of parser errors on alignment would be useful in indating whether it
would be worthwhile (in terms of resulting quality) spendiig time to resolve such
errors prior to sub-tree alignment. Without such an analys, the extent to which
the propagation of parsing and alignment errors carries avéo MT is unclear.

We discovered in section 4.3.1 that using treebank-basedrd@lignments to cre-
ate a re ned word alignment for phrase extraction can lead ta signi cantly reduced
phrase table without any loss of translation accuracy. Whal this was only observed
under a single experimental condition in this thesis, we hele further exploration
as to the extent to which this process can be applied is merite Additionally, more
creative ways of combining the various word alignments (e.gstatistical source{
target and treebank-based alignments) at our disposal cabi&lso be investigated for
phrase extraction.

Finally, the exploitation of our automatically generated arallel treebanks in
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syntax-based MT was discussed in Chapter 5. We used the worliljaments from a
parallel treebank to seed the grammar extraction process thfe Stat-XFER system.
The next logical step following these experiments, is to endct a grammar directly
from our parallel treebanks using both the word- and phrasievel alignments. How-
ever, the question still remains for syntax-based MT in gen& as to how we can
e ciently employ large-scale automatically extracted grammars to improve overall

translation quality.
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Appendix A

English Parser Tag Set

Tables A.1 and A.2 show the part-of-speech (POS) tags and @se labels respec-
tively for the Berkeley parser (Petrov and Klein, 2007) traned on the Penn-Il Tree-

bank (Marcus et al., 1994) for English, as used in Chapter 5.

POS Tag | Tag Description

CC Coordinating conjunction
CD Cardinal number

DT Determiner

EX Existential there

FW Foreign word

IN Preposition or subordinating conjunction
JJ Adjective

JIR Adjective, comparative
JJS Adjective, superlative
LS List item marker

MD Modal

N Noun, singular

PDT Predeterminer

POS Possessive ending
PRP Personal pronoun
PRP$ Possessive pronoun
RB Adverb

RBR Adverb, comparative
RBS Adverb, superlative
RP Particle

SYM Symbol

TO to

Continued on next page
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POS Tag | Tag Description
UH Interjection
VB Verb, base form
VBD Verb, preterite
VBG Verb, present participle
VBN Verb, past participle
VBP Verb, non-3rd person present singular
VBZ Verb, 3rd person present singular
WDT WH-determiner
WP WH-pronoun
WP$ possessive WH-pronoun
WRB WH-adverb
-LRB- Left bracket
-RRB- Right bracket
\ Open quotation
" Close quotation
, Comma
Full stop
Colon

Table A.1: Tag labels in the grammar of the English parser.
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Phrase Label

Phrase Description

ADJP
ADVP
CONJP
FRAG
INTJ
LST
NAC

NP

NX

PP

PRN

QP

RRC

S

SBAR
SBARQ
SINV
SQ

UCP

VP
WHADJP
WHADVP
WHNP
WHPP

X

Adjectival phrase

Adverbial phrase

Conjunction phrase
Fragment

Interjection ( POS tag UH)
List item marker, including surrounding punctuation
Not a constituent

Noun phrase

Noun phrase head (N-bar)
Prepositional phrase
Parenthetical

Quanti er phrase

Reduced relative clause
Declarative clause (sentence)
Subordinate clause

Direct question

Inverted declarative sentence
Inverted yes/no question
Unlike coordinated phrase
Verb phrase

WH-adjectival phrase
WH-adverbial phrase
WH-noun phrase
WH-prepositional phrase
Unknown, uncertain or unbracketable

Table A.2: Phrase labels in the grammar of the English parser
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Appendix B

French Parser Tag Set

Tables B.1 and B.2 show the POS tags and phrase labels respesy for the Berkeley
parser trained on the Modi ed French Treebank (Schluter andran Genabith, 2007)

for French, as used in Chapter 5.

POS Tag | Tag Description
A Ajective
ADV Adverb
C Coordinating conjunction
CL Clitic pronoun (weak)
D Determiner
ET Foreign word
I Interjection
N Noun
P Preposition
PC Prepositional clitic
PREF Pre x
PRO Pronoun (strong)
Vv Verb
X Unknown
-LRB- Left bracket
-RRB- Right bracket
: Comma

Full stop

Colon

Quotation

Table B.1: Tag labels in the grammar of the French parser.
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Phrase Label

Phrase Description

AP
AdP
NP
PP
SENT
Sint
Srel
Ssub
VN
VPinf
VPpart
X

Adjectival phrase
Adverbial phrase
Noun phrase
Prepositional phrase
Sentential clause
Internal clause
Relative clause
Subordinate clause
Verb nucleus

Verb phrase, in nitive
Verb phrase, participle
Unknown

Table B.2: Phrase labels in the grammar of the French parser.
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Appendix C

40-Rule Automatic Grammar

The full 40 rule automatic grammar used in the syntax-based ™M experiments of

section 5.2.2 is given below in Table C.1.

Rule | Src. Tag Tgt. Tag Src. RHS Tgt. RHS

(1) [ NP - NP I [DINP?] : [DTINP?]
2) | VP = VP I [VINP2] : [VB!NP?]
3) | NP NP I [W"NI] o [\the"N1!]
4) | NP NP LO[WN L] [N']

(5) | PP PP I [®"NP ] = [\o"NP!]
(6) | NP . NP I [\des"N'] = [N!']

(7) | PP . PP I [\de"NP!] = [\of"NP?1]
(8) | NP . NP I [AIN?] w [JITN?]
(9) | NP . NP I [Ves"N'] = [N!']

(10) | NP © WHNP | [PRO!] o [WP]
(11) | NP NP I [Ve"NZ] : [\the"N1!]
(12) | NP = NP I [D'N2A%] : [DT!JJBN?]
(13) | VP VP I [VY] = [VBN!]
(14) | PP PP I [WO"NP '] : [W"NP1!]
(15) | NP NP | [PRO!] . [PRP!]
(16) | NP . NP | [PRO'N2] : [PRP!NZ2]
(17) | NP 2 NP I [D'] o [DT!]

Continued on next page
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Rule | Src. Tag Tgt. Tag Src. RHS Tgt. RHS
(18) | NP : NP I [Va"'N 1] o [\the"N1]
(19) | NP NP I [Va"'N 1] [ N ]

(20) | NP NP I [D!NP?] [ DT NX?2]
(21) | NP WHNP I [D!] [ WDT!]
(22) | NP NP I [NYJ2?] [ JJ% Nt
(23) | S S I [NP!VP2?] [ NP VP2 ]
(24) | NP NP I [Va"NP 1] [ \the" NP 1]
(25) | AP ADJP I [A] [J3]

(26) | VP VP L[V [ VB!]

(27) | NP NP I [D!N?] [ DT N?]
(28) | PP PP I [\dans" NP1!] [\in" NP 1]
(29) | AdP ADVP I [ADV!] [ RB!]

(30) | PP PP I [\du" NP 1] [\of" NP 1]
(31) | AP ADJP I [ADV?!A?] [ RB! JJ?]
(32) | PP PP I [PYNP?] [ IN? NP?]
(33) | NP NP I [N [ CD!]

(34) | NP NP I [D!N2PP?] [ DT N2 PP3]
(35) | NP NP I [N [ \the" N 1]
(36) | NP NP I [N [ N']

(37) | NP NP I [\ce"N1] [ \this" N 1]
(38) | PP PP I [\en"N1] [\in" N 1]
(39) | AdP WHADVP | [ADV!] [ WRB? ]
(40) | PP PP I [\des" N1] [\of*" N 1]

Table C.1: Full 40 rule grammar for French{English
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Appendix D

Full Parse Trees

The following three gures illustrate the full trees for the tree fragments in the
examples of Figures 5.7 and 5.8 on 138. The trees in Figured.[dnd D.2 (on pages
155 and 156 respectively) represent the full English{Frehgoarallel treebank entry,
while the trees in Figures D.1 and D.3 (on pages 155 and 157pgestively) represent
the English{Spanish parallel treebank entry. As we mentiogd previously, the same

English parse tree is found in both parallel treebanks.
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Figure D.1: Full English parse tree from Figures 5.7 and 5.8.
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Figure D.2: Full French parse tree from Figure 5.8.
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Figure D.3: Full Spanish parse tree from Figure 5.7.
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