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�Yesterday is history. Tomorrow is a mystery. Today is a
gift, that's why it is called the present �
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Abstract

With the emergence of video services on power limited platforms, it is neces-
sary to consider both performance-centric and constraint-centric signal process-
ing techniques. Traditionally, video applications have a bandwidth or computa-
tional resources constraint or both. The recent H.264/AVC video compression
standard o�ers signi�cantly improved e�ciency and �exibility compared to pre-
vious standards, which leads to less emphasis on bandwidth. However, its high
computational complexity is a problem for codecs running on power limited plat-
forms. Therefore, a technique that integrates both complexity and bandwidth
issues in a single framework should be considered.

In this thesis we investigate complexity adaptation of a video coder which fo-
cuses on managing computational complexity and provides signi�cant complex-
ity savings when applied to recent standards. It consists of three sub functions
specially designed for reducing complexity and a framework for using these sub
functions; Variable Block Size (VBS) partitioning, fast motion estimation, skip
macroblock detection, and complexity adaptation framework.

Firstly, the VBS partitioning algorithm based on the Walsh Hadamard Trans-
form (WHT) is presented. The key idea is to segment regions of an image as
edges or �at regions based on the fact that prediction errors are mainly af-
fected by edges. Secondly, a fast motion estimation algorithm called Fast Walsh
Boundary Search (FWBS) is presented on the VBS partitioned images. Its
results outperform other commonly used fast algorithms. Thirdly, a skip mac-
roblock detection algorithm is proposed for use prior to motion estimation by
estimating the Discrete Cosine Transform (DCT) coe�cients after quantisation.
A new orthogonal transform called the S-transform is presented for predicting
Integer DCT coe�cients from Walsh Hadamard Transform coe�cients. Com-
plexity saving is achieved by deciding which macroblocks need to be processed
and which can be skipped without processing. Simulation results show that
the proposed algorithm achieves signi�cant complexity savings with a negligible
loss in rate-distortion performance. Finally, a complexity adaptation framework
which combines all three techniques mentioned above is proposed for maximizing
the perceptual quality of coded video on a complexity constrained platform.
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RLC Run-Length Coding.

RMSE Root Mean Squared Error.

RSSD Root Sum of Squared Di�erences.

SAD Sum of Absolute Di�erence.

SATD Sum of Absolute Transform Di�erence.

SSD Sum of Squared Di�erences.

SSE Streaming SIMD Extensions.

SSE Sum of Squared Error.

SSIM Structural SIMilarity.

SWHT Sequency ordered Walsh Hadamard Trans-

form.

TSS Three Step Search.

VBS Variable Block Size.

VLC Variable Length Coding.

VOD Video-on-Demand.



Acronyms

WHM Walsh Hadamard Matrix.

WHT Walsh Hadamard Transform.

ZMD Zero Motion Detection.

ZQDCT Zero Quantized DCT coe�cients detection.
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� To know is nothing at all, to imagine is everything !

Anatole France

1
Introduction

1.1 Problem Statement

T
o realize video services on power limited platforms such as Personal Digital

Assistants (PDAs), Camera Sensor Networks (CSNs), and mobile phones, it

is necessary to leverage both performance-centric and constraint-centric signal

processing techniques. The problem of resource-constrained video compression

on power limited platforms has been the focus of much research for the last

decades. The resource constraints can be classi�ed as follows;

1. Bandwidth constraints : In traditional video applications, such as digi-

tal TV broadcasting and Video-on-Demand (VOD), content can be com-

pressed, stored on a server, and transmitted. In this case, the major con-

straint is in the form of bandwidth or storage space, which determines the

output bit-rate of the encoder. Therefore, the ultimate goal in this sit-

uation is to optimize the video quality under the bandwidth constraints.

Rate-Distortion (R-D) optimization has been developed to model the re-

lationship between the coding bit-rate and signal distortion. Various R-D

models have been proposed to deal with the trade-o� between bandwidth

and performance in recent decades [19, 25, 92, 103, 115].

2. Computational resource constraints : Mobile video applications, such as

CSNs and mobile TV, typically need to operate with limited energy. A pri-

mary factor in determining the utility or operational lifetime of the mobile
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devices is how e�ciently it manages its energy consumption, which is some-

times identi�ed as managing computational complexity. These kinds of ap-

plications are always a trade-o� between Complexity (C) and video quality

or distortion (D). Many algorithms have been reported in the literature to

reduce encoding computational complexity [13, 65, 100, 111, 112, 129].

3. Joint computational complexity-bandwidth constraints : In wireless video

applications on mobile devices, video encoding and transmission are the

two dominant power consuming operations. From a power consumption

perspective, video encoding presents an inherent dichotomy. First, e�cient

video compression signi�cantly reduces the amount of the video data to

be transmitted, which saves a signi�cant amount of energy. Second, more

e�cient video compression requires higher computational complexity and

thus high power consumption is needed in processing. Ideally, we could

use an analytic framework to �nd the best trade-o�. However, it is di�-

cult to �nd the theoretical optimum point since Complexity (C) and R-D

performance are concepts in totally unrelated area. However, in [100],

Complexity-Distortion (C-D) and R-D predict asymptotically the same

results assuming that the signal has stationary and ergodic properties.

Therefore, research has been performed on Complexity-Rate-Distortion

(C-R-D) models to satisfy joint computational complexity-bandwidth con-

straints [34, 42, 110].

All the approaches cited in the above handle either the optimization of video

quality of an encoder or the negotiation with bit-rate based on the estimated

complexity. Most common approaches are searching a R-D and a C-R-D con-

vex hull to �nd the best encoder parameters. Therefore, algorithms have been

proposed for non real-time applications such as two pass coding [111]. However,

the required complexity is very changeable depending on the video sequences

and user preferences of the encoder. For example, when a user installs a camera

sensor to detect people with a wireless function for generating alarms, power

constraints and bit-rate are more critical characteristics than distortion. On

the contrary, if a user wants to check who is approaching his/her property, the

critical characteristics may be reversed. Also more computational complexity

is required for complex scenes than static scenes, but in order to check scene

characteristics, additional computational complexity is inevitable.
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What contributive factors in video encoding are related to computational com-

plexity? To provide an answer, we need to analyze the encoding complexity. Let

us consider the inter coding function of an encoder. The total complexity of the

encoder in traditional video compression is given by [65]

Csum
def= CME +CTQ +CEC +CM (1.1)

where CSum denotes the total complexity, CME is the computational complex-

ity of Motion Estimation (ME), CTQ is the complexity of transform coding and

quantisation, CEC is the complexity of entropy coding including run-length cod-

ing, CM is the overhead complexity not controlled by the encoder such as mem-

ory accesses and bit parsers. The complexity of ME of Equation (1.1) can be

denoted as

CME=
X
i2A

N i
MEC

i
SAD +CSP (1.2)

where Ci
SAD represents the complexity of the Sum of Absolute Di�erence (SAD)

in block size i. For example, the elements of A are

=

8>>>><
>>>>:
ff16� 16g, f16� 8gg, (MPEG2)

ff16� 16g, f8� 8gg, (MPEG4)

ff16� 16g, f16� 8g, f8� 16g, f8� 8g, f8� 4g, f4� 8g, f4� 4gg, (H.264/AVC)

Note that SAD is one of the cost functions used to measure the distortion between

two images. This can be substituted for more accurate cost functions such as

Sum of Absolute Transform Di�erence (SATD) and Sum of Squared Di�erences

(SSD) (see Section 6.3). However, they introduce more computational complex-

ity than SAD. N i
ME is the number of partitioned blocks for a speci�c block

size i, and CSP denotes the complexity of sub pixel motion compensation (MC)

up to quarter-pel proposed in recent standards video coding [97, 123]. CTQ is

the computational complexity of DCT, IDCT, quantisation, and dequantization.

CTQ is only determined by the complexity of coding of Non Zero Macro Blocks

(NZMBs) if only the NZMBs can be detected before processing of transform and

quantisation:

CTQ=NNZMB �CNZMB (1.3)

where NTQ and CNZMB represent the number of NZMBs and computational

complexity of the coding operation respectively. The relationship between the

complexity of entropy coding and bit rate R is denoted as in Equation (1.4), and
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its computational complexity is a constant at a given bit rate.

CEC=R�CBit (1.4)

Equation (1.1)-Equation (1.4) show that the encoding complexity at a given

bit rate is a�ected by the number of SAD operations and the number of NZMB

of each video frame. The number of total blocks can be de�ned as

NT = NSKIP +NNZMB (1.5)

where NSKIP represents the number of skip Macroblock (MB) in a frame. The

total controllable computational complexity at a given bit rate is depicted in

Equation (1.1), which is rewritten as

Csum =
X
i2A

(NT �NSKIP )iCi
SAD + (NT �NSKIP )CNZMB. (1.6)

The key issues for computational complexity adaptation in a video coder are

how to cost e�ectively reduce the number of SAD operations and detect skip

MBs. Moreover, variable partitioned block sizes are introduced in the recent

video coding standards (increasing i in Equation (1.6)), which means that the

computational complexity of an encoder increases signi�cantly compared to pre-

vious standards even though new standards guarantee better R-D performance.

However skip MBs are dominant as the Quantization Parameter (QP) increases

(as shown in Figure 5.6). Thus there is much room for saving computational

complexity at high QP.

As a result, complexity can be controlled by early skip of MBs and by re-

ducing SAD operations to detect motion vectors. However, these algorithms

introduce computational complexity since additional procedures are needed to

classify blocks in advance. Therefore, low complexity algorithms for detecting

skip blocks and motion vectors are new requirements for realizing the com-

plexity adaptation in a video encoder.
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Figure 1.1: The probability of skip block of the News sequence with CIF
(352�288) resolution in H.264/AVC; JM reference software (Base-
line pro�le, 30fps)

1.2 Research Objective and Contributions

The demand for high quality and low complexity video compression increases

with emerging new applications such as mobile TV and mega-pixel network cam-

eras. The aim of this research is to present algorithms to adapt the complexity

of an encoder especially targeting power limited platforms. These algorithms en-

able the encoder to make use of available processing resources to maximize C-D

performance. The target video codec standard of this research is MPEG-4 PART

10 Advanced Video Coding (H.264/AVC) because it gives the best RD perfor-

mance among existing video standards [84]. But it also requires high complexity

processing and this is one of main challenges of this research. This research can

be partitioned into two parts.

1. The developement of low complexity video coding sub function blocks acts

on replacing complexity demanding functions such as motion estimation

and DCT.
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2. Complexity Adaption algorithm using proposed sub function blocks is pre-

sented as a framework.

The contributions of this research consists of four major parts depicted in

Figure 1.2.

1. Low complexity pre-processing: In this procedure, the gradient features

are detected by proposed low complexity algorithms. These algorithms

use the Walsh Hadamard Transform (WHT) that is a simple integer trans-

form. Furthermore these features are used for a block partitioning algo-

rithm. This procedure works with motion estimation to be achieved low

complexity sub functions of the encoder. The detail is explained in Chap-

ter 5.

2. Motion Estimation: The most time consuming function block of an encoder

is ME. It is impossible to achieve a complexity adapted video coder without

low complexity algorithms for ME. This research presents a ME algorithm

performed in Sequency ordered Walsh Hadamard Transform (SWHT) do-

main. This algorithm has computational cost e�ectiveness and no local

minimum. Details are provided in Chapter 6.

3. Skip block detection: As QP increases, the number of skip blocks increases

as well. It introduces complexity cost saving if skip blocks can be detected

prior to ME, transform, quantisation, and entropy coding. This research

shows that our SWHT based skip block detection algorithm is compara-

ble to the state of the art in skip block detection algorithms. Chapter 7

introduces the skip block detection algorithm.

4. Complexity adaptation framework : Rate Distortion Optimization (RDO)

introduces signi�cant complexity cost to detect motion vectors and mode

selection, and is often not feasible for real-time applications especially

working on a power limited platforms. C-D is a key contribution of this re-

search. This research focuses on managing complexity by controlling SAD

and the number of skip blocks as mentioned in Section 1.1. Details are

presented in Chapter 8.
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Figure 1.2: The scope of this research among all the functionalities of an en-
coder

1.3 Organization

The thesis is organized as follows:

� Chapter 2 - This chapter provides some essential background knowledge

on video compression. The key concepts and fundamental terms used in

video compression are introduced. The main functions of a typical block

based video compression are brie�y explained.

� Chapter 3 - Provides an overview of the experimental methods for a com-

plexity adaptation video encoder. The characteristics of the test sequences

and objective quality measure metrics used are explained. Moreover, the

overall structure of the proposed framework is explained to provide content

for Chapter 5-Chapter 8.

� Chapter 4 - An overview of the H.264/AVC video compression standard

in terms of computational complexity is provided. The contributive fac-

tors for high computational complexity, �exibility and performance are

explained. This chapter explains why a large amount of computational

resources are needed to implement a H.264/AVC encoder.
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� Chapter 5 - This chapter describes the Variable Block Size (VBS) parti-

tioning algorithm based on motion edge detection. This method incorpo-

rates with fast ME algorithms to obtain further computational complexity

savings.

� Chapter 6 - The fast ME algorithm called Fast sequency ordered Walsh

hadamard transform Bounding Search (FWBS) based on the WHT is pro-

posed. Moreover, the proposed method is compared with other fast ME

algorithms in terms of both performance and computational complexity.

� Chapter 7 - This chapter presents the performance of a MB skip prediction

algorithm where the relationship between the Integer Cosine Transform

(ICT) and the SWHT is used. This part of the work play a important role

in the complexity adaptation framework described in Chapter 8.

� Chapter 8 - Describes a framework for complexity adaption in a H.264/AVC

encoder. This new approach uses both a complexity model and the com-

plexity control algorithm.

� Chapter 9 - This �nal chapter contains the discussion and conclusion. A

summary of the algorithms and a critical review of the main results are

presented. Ideas for further investigation are also presented.

� Appendix A - Contains a mathematical derivation of the relationship

between a block and its sub-blocks' SWHT coe�cients. This is used for

the FWBS as a low complexity tool.

1.4 Summary

The main factors related to computational complexity in a video encoder are

the number of SAD operations, which could be replaced by other distortion

measurement tools, and the number of skip blocks. This thesis has a target with

both achieving complexity and adapting it in video encoding. Computational

cost e�ective ME algorithms aim at reducing the number of SAD operations.

On the contrary, C-D and skip block detection algorithms focus on controlling

the number of skip blocks. Low complexity pre-processing based on the WHT is

introduced as a basic tool underpinning the thesis contributions, which are a low
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complex ME, a skip block detection, and a C-D model. Note that all proposed

algorithms are performed in the WHT domain.
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�By doubting we come at truth.

Marcus Tullius Cicero

2
Digital Video Coding Principals

2.1 Introduction

V
ideo coding (sometimes called compression) refers to a process in which the

amount of data used to represent video is reduced to meet a bit rate require-

ment, while the quality of the reconstructed video satis�es speci�c requirements

for an application. The required quality of the reconstructed video is applica-

tion dependent; for example, we may need the reconstructed video exactly the

same as the original in medical diagnoses or scienti�c analysis, in which case

the process is named lossless video coding. However, other applications such as

broadcasting, video storage or transmission allow a certain amount of informa-

tion loss, corresponding to lossy video coding. Lossy video coding is the main

focus of this chapter. Video coding involves several fundamental concepts in-

cluding encoded bit rates, visual quality of video and computational complexity.

This chapter is concerned with brie�y reviewing fundamental concepts of video

coding.

2.2 Digital Video Representation

The representation of digital video from analog signal through sampling and

digitization is depicted in Figure 2.1(a). Necessary components or functions in

lossy coding are shown in Figure 2.1(b) In order to be processed by computers, an

analog video that is captured by a light sensor (charged coupling device (CCD))

must be digitized. Digital video representation consists of three steps: spatial
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Figure 2.1: Block diagram of the digital video representation (a) and block
based video coding (b)

sampling, temporal sampling, and discretization. After obtaining digitized video

sequences, colour sub-sampling is an optional procedure to reduce redundancy,

which is possible because the Human Visual System (HVS) is less sensitive to

colour than luminance information [114].

2.2.1 Spatial Sampling

Spatial sampling consists of taking measurements of the underlying analog signal

at a �nite set of sampling points in a frame. The two dimensional pixel data

at sampling points are transformed into a one dimensional set through raster

scanning. The two main methods to perform raster scanning are progressive

and interlaced as shown in Figure 2.2. In an interlaced scan, the points are

divided into odd and even scan lines which make up a �eld so that two �elds

make up a frame. However, interlaced scan has some drawbacks over progressive

scan such as:

� Freeze frames: Motion artifacts are accrued when an image is taken from a

moment of action, to produce a freeze frame. This is caused by both �elds

(odd and even �eld) being captured at slightly di�erent times. The �rst

drawn �eld is earlier than the second drawn �eld in time.

� Display problem on progressive monitors: When an interlaced image is

displayed on a progressive device such as a computer monitor, both �elds
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are displayed at once, which results in a jagged image. Therefore, a de-

interlace method is needed to obtain a clear looking image on a computer

monitor.

� Flickering on �ne spatial detail called Moiré Artifact (MA): This is of-

ten seen in �ne detail like a grille. However, these artifacts are greatly

diminished and not visible in High-De�nition (HD) interlaced video.

In progressive scanning, the sampling points are scanned one at a time from left

to right, then moving from one row to the next, from top to bottom. Progressive

scanning has been used in modern digital formats such as computer monitors,

�lm, and so on. Note that analog television systems (NTSC, PAL) commonly

use interlaced scanning, so require interlaced-progressive conversion (called de-

interlacing) to display progressive digital format.

Figure 2.2: Raster scanning (a) Interlaced scanning (b) Progressive scanning

2.2.2 Temporal Sampling

The HVS is relatively slow in responding to temporal changes. There is no

evidence that the HVS works in the same way as moving media with distinct

frames sampled at discrete points in time. Therefore, it is di�cult to express the

limitations of human perception as a given maximum frame rate [68]. However,

it may be possible to investigate the consequences of changes in frame rate for

human observers. Based on observations, at least 16 samples per second at each

grid point maintain an illusion of motion, which is the basis for motion pictures.

For a �lm, temporal sampling is performed at a rate of 24 frame/sec. On the

contrary, the sampling rate used for a television is 25 (PAL) or 30 (NTSC)

frame/sec. Therefore, a conversion method should be applied to display �lms
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on television called �Telecine� such as 3:2 pulldown for NTSC, which means 24

frame/sec is converted to 29.97 frame and 2:2 pulldown for PAL.

2.2.3 Discretization

After spatial and temporal sampling, the video signal consists of a sequence of

continuous intensity values. The continuous intensity values are incompatible

with digital possessing. Therefore, one more step called discretization is needed

to generate a discrete set of values. It is well know that SNR increases according

to increasing the number of sampling bits. Let the number of sampling bits be

de�ned as b, then the SNR can be calculated using a uniform distribution of

sampling step size as follows:

SNR = 10 log10(2
b) � 6� b(dB). (2.1)

This means that SNR increases by 6dB whenever the number of sampling bits

increases by 1. For example, a 10-bit discretization system shows 12dB SNR

enhancement compared to an 8-bit system. This process is often referred to as

Pulse Code Modulation (PCM). After discretization, N �M data points called

pixels or pels are obtained.

2.2.4 Colour Sampling

It is well known that the HVS is much more sensitive to luminance compo-

nents than to chrominance components [78, 113]. Mithell et al. [74] proposed

a quantitative illustration of the above statement. If luminance components is

separated from chrominance components, psycho visual redundancy can be also

removed from the original while keeping acceptable quality of an image. Lu-

minance components are decoupled with chrominance components in the YUV

and YCbCr colour models. The required bits for representing chrominance can

be reduced by colour subsampling.
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Colour model

The purpose of a colour model is to facilitate the speci�cation of colours in

some standard generally accepted way. A colour model is a speci�cation of a

3-D coordinate system. Each industry uses the most suitable colour model for

its usage. For example, the RGB colour model is used in computer graphics,

YUV for analog PAL TV systems, YIQ for analog NTSC TV systems, YCbCr

are mainly used in digital video systems, and so on. YCbCr has been commonly

used in digital video applications such as image/video compression and other

computer vision applications.

� RGB colour model: The Red-Green-Blue (RGB) colour system is the

best known of several color systems. This is due to the following feature of

human perception for colour. The colour sensitive area in the HVS consists

of three di�erent sets of cones. Each set is sensitive to the light of one of

the three primary colors: red, green, and blue. Consequently, any color

sensed by the HVS can be considered as a particular linear combination

of the three primary colors. Moreover, the captured image from a CCD,

referred to in Figure 2.1(a), has analogous data as represented by a RGB

model. However, RGB is not very e�cient when dealing with real images.

To generate any colour within the RGB color cube, all three RGB com-

ponents need to be of equal pixel depth and display resolution. Not most

modi�cation of the image requires all three colour planes. Therefore, other

colour models which provide decoupling luminance with chrominance have

been commonly used in image applications.

� YUV colour model: The YUV colour model is the basic colour model

used in analogue colour TV broadcasting. Originally YUV was a re-coding

of RGB for transmission e�ciency (minimizing bandwidth) and for back-

ward compatibility with black and white television. The YUV colour space

is derived from the RGB space. It comprises the luminance (Y) and two

colour di�erence (U,V) components. The luminance can be computed as a

weighted sum of red, green and blue components. The colour di�erence or

chrominance components are formed by subtracting luminance from blue

and red. The principal advantage of the YUV model in image process-

ing is decoupling of luminance and colour components. The importance
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of decoupling is that the luminance component of an image can be pro-

cessed without a�ecting its colour components. For example, the histogram

equalization of the colour image in YUV format may be performed simply

by applying histogram equalization to a Y component. YUV has a linear

transition relationship with gamma-corrected RGB components as follow.

2
6664
Y

U

V

3
7775 =

2
6664

0.299 0.587 0.114

�0.147 �0.289 0.436

0.615 �0.515 �0.100

3
7775
2
6664
R

G

B

3
7775 (2.2)

� YCbCr colour model: The YCbCr colour space is used for digital video

and was developed as part of the ITU-R BT.601 Recommendation. It

should be noted that U and V may be negative in the YUV model. There-

fore, it cannot be directly used in digital images. In order to make chromi-

nance components nonnegative, the Y, U, and V are scaled and shifted

to produce the YCbCr model. This model is widely used in the JPEG

and MPEG-series international coding standards. The conversion matrix

between gamma-corrected RGB and YCbCr is denoted as
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Figure 2.3: RGB colour cube [2] (a) in YUV (b) in YCbCr

Figure 2.3 represents the relationship between the RGB and YUV, YCbCr mod-

els. It shows that not all the possible values in YUV or YCbCr represent possible
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RGB colours. Therefore, special care must be taken regarding over�ow or un-

der�ow in RGB, when converted from YCbCr.

Colour subsampling

Figure 2.4 shows di�erent colour subsampling methods and associated memory

size. These colour subsampling methods are classi�ed as follows;

� 4:4:4 YCbCr: This is a format with no subsampling of Y, Cb and Cr

components, which are sampled at every pixel. If RGB pixels are used for

4:4:4 subsampling, no psycho visual redundancy is achieved.

� 4:2:2 YCbCr: This format uses 2:1 horizontal down sampling. This means

that the Y component is sampled at each pixel, while Cb and Cr compo-

nents are sampled at every two pixels in the horizontal direction. There-

fore, the total storage for Cb and Cr is reduced by 50%.

� 4:1:1 YCbCr: This uses 4:1 horizontal down sampling. This means that

the Y component is sampled at each pixel, while Cb and Cr components

are sampled every 4 pixels horizontally. The total storage of Cb and Cr

requires only 25% compared to the 4:4:4 YCbCr format.

� 4:2:0 YCbCr: This uses 2:1 horizontal down sampling and 2:1 vertical

down sampling. Y is sampled at each pixel, Cb and Cr are sampled at

every block of 2� 2 pixels. Total storage of Cb and Cr is the same as 4:1:1

YCbCr because only the sampling direction is changed. This format has

been widely used in video/image coding applications. 4:2:0 YCbCr has

been used as the main format tested in this thesis.

2.3 Block Based Video Coding

Traditional block based hybrid video coding has been widely used and adapted

by the international video coding standards. The idea is that a whole frame is

divided into blocks pre-de�ned size called macroblocks (16� 16 blocks are used

for Moving Picture Experts Group (MPEG) standards), and blocks are encoded

individually using prediction, transform and quantisation, and entropy coding.
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Figure 2.4: Colour subsampling (YCbCr format) in the case of progressive
image

However, block based coding approach su�ers from annoying blocking artifacts

especially when used at low bit rates [47]. Two adjacent blocks may lose the

original smoothness and continuity at the boundary. In spite of this problem, all

video/image coding standards except for JPEG 2000 have used the block based

hybrid coding because the block based video coding has shown excellent features;

easy to implement and supply backward compatibility. Blocking artifacts can

be overcome to some extend by applying an deblocking �lter [95, 130]. We only

overview block based video coding in this thesis.

2.3.1 Intra / Inter Prediction

Video coding has its own characteristics that make it quite di�erent from still

image compression. The major di�erence lies in the exploitation of inter-frame

correlation that exists between successive frames in video sequences. In addi-

tion to it, the intra-frame correlation exists within each frame. The inter-frame
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correlation is also referred to as temporal redundancy, while the intra-frame cor-

relation is referred to as spatial redundancy. As far as video coding is concerned,

two classes of techniques can be useful. The �rst class, which is also the most

straightforward way to handle video coding, is to code each frame separately.

Individual frames are coded independently. This is called �Intra Frame Cod-

ing� (I-Picture), where the target is the reduction of spatial redundancy. In

the second class of techniques, several successive frames are grouped and coded

together, referred to as �Inter Frame Coding� (B or P picture), whose ultimate

goal is the reduction of temporal redundancy.

I, P and B Pictures (or Frame)

In I-Pictures, coding units are predicted using intra prediction without using

previously coded pictures for prediction. These are used for the �rst picture

of a sequence and random access pictures for reversing and forwarding. P-

Pictures are inter predicted pictures with the reference as the nearest previously

coded picture, which cannot be used as random acess due to the dependency

on previously coded pictures. B-pictures are bi-directionally predicted pictures

with two reference pictures (I or P-Pictures can be reference pictures), one from

past and one from future in display order. They have high compression e�ciency,

however they are not used for reference or random acess pictures.

Intra Prediction

Intra prediction is a key function in intra frame coding. It has been commonly

used to improve the coding e�ciency in video coding. It utilizes the spatial corre-

lation in an image to predict the block being encoded from its surrounding pixels.

Spatial domain intra prediction was �rst introduced in H.264/AVC [123]1. In the

H.264/AVC intra coding, two intra MB modes for luminance are supported. One

is Intra 4� 4 prediction mode, and the other is Intra 16� 16 prediction mode

depicted as in Figure 2.5. Intra 8� 8 is a new intra prediction type de�ned in

H.264/AVC FRExt (see Chapter 4). For Intra 4� 4, the MB is divided into 16

non-overlapping 4� 4 luminance blocks and each 4� 4 block can select one of

1There had been similar trials in the previous standards, MPEG-2 used a DC coe�cient and,
MPEG-4 Part 2 used several AC coe�cients of neighboring blocks. However, these approaches
represent not intra prediction but rather DPCM coding
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nine prediction modes. For Intra 16� 16, each MB can select one of the four

modes. Chrominance intra prediction is independent of that of luminance. Two

chrominance components are simultaneously predicted by one mode only. The

possible chrominance prediction modes are very similar to those of Intra 16� 16

except for di�erent block size (8� 8) and the index of DC mode. The Intra 4� 4

mode can predict a block more accurately but requires more bits to represent

the mode information than Intra 16� 16. So, Intra 4� 4 tends to be used for

highly textured regions while Intra 16� 16 tends to be chosen for plain regions.

Mode decision is not speci�ed in the H.264/AVC standard, but is arguably the

most important step at the encoder side because it has an in�uence on coding

e�ciency. On the contrary, it consumes signi�cant processing time and memory

accesses.

From a complexity point of view, intra prediction �nds the minimum cost by

iterating intra decisions for each possible mode. Therefore, the number of mode

combinations for luminance and chrominance components in a MB is given as

Nmode = C8� (L4� 16+ L16) = 4� (9� 16+ 4) = 592. (2.4)

Where C8, L4 and L16 represent the number of modes for chrominance predic-

tion, 4� 4 and 16� 16 luminance prediction respectively. 592 di�erent RDO

calculations have to be performed before a best RDO mode is determined per

MB.

Inter Prediction

Inter prediction is the main function of inter frame coding, which is a proce-

dure to �nd temporal redundancy in successive frames. Early approaches to

exploiting temporal redundancy may be traced back to the 1960s [94]. They

presented a frame replenishment technique, where each pixel in a frame is clas-

si�ed into changing or unchanging areas between the current and the previous

frame exceeds a threshold. For those unchanged pixels, nothing is coded. The

major drawback of this technique is that it is di�cult to handle frames con-

taining more rapid changes (motions). ME and MC have been proved to be

able to provide better performance than the replenishment technique in rapid

change situations [90]. ME and MC coding have been used as a main tool to

�nd temporal redundancy. In this technique, a motion model is assumed such
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Figure 2.5: Illustration of the intra prediction process in H.264/AVC; Intra
4� 4 consists of 9 modes, Intra 16� 16 has 4 modes. The mode
is chosen by �nding minimum cost among J4�4

M and J16�16

M

that the changes between successive frames are considered due to the transla-

tion of moving objects in the image plane. It consists of �nding a displacement

between the current and the previous frame, referred to as ME, and obtaining

compensated frame referred to as MC. Figure 2.7 illustrates the inter prediction

Figure 2.6: Illustration of inter prediction; motion vector (mvx,mvy) are ob-
tained by taking minimum distortion between the current macro-
block and search area. After motion compensation, a predicted
frame is obtained.
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procedure, which consists of both ME and MC. ME requires more computa-

tional complexity than MC. MC is a simple process to obtain a prediction frame

if motion vectors are available via ME. A commonly used ME method is the

Block Matching Algorithm (BMA), in which an image is partitioned into a set

of nonoverlapped, equally spaced, �xed size and small rectangular blocks. The

translation motion within each block is assumed to be uniform. This simple

model is a quite good approximation for other types of motion in a small block

size, including rotation and zooming. Motion vectors for blocks are estimated

by �nding their best matched counterparts in the previous frame. The simplest

approach to �nd motion vectors is the Full Search (FS), where the correlation

window is moved to each candidate position within the search area. It gives

good accuracy in ME while a large amount of computational complexity is in-

volved. In order to reduce computational complexity, fast searching algorithms

have been developed. Fast algorithms are explained in Chapter 6. Although the

BMA has been widely used in video coding because of its simplicity, straightfor-

ward method, and e�ciency, it has drawbacks due to simple motion model as

follows;

� The BMA mainly utilizes 2-D motion vector �eld, which is an unreliable

motion vector �eld compared to true motion.

� The BMA needs to encode and transmit motion vectors as an overhead, so

it is di�cult to use smaller block size for accuracy.

� The BMA causes blocking artifacts at the boundary of blocks, which is

especially severe at low bit rates.

Much research has been carried out to overcome the limitations of the BMA such

as Overlapped Block Matching (OBM) [64], and Multiresolution Block Matching

(MBM) [24]. Some improvements have been achieved. However, the BMA is still

the most popular and e�cient ME. Therefore, it has been adopted by almost all

international coding standards.

2.3.2 Transform and Quantisation

Images, in their raw form, are not careless collections of arbitrary intensity

transitions but embody some form of structure. As a result, there is correlation
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between neighboring pixels. If one can �nd a reversible transformation that de-

correlates data, an image can be coded more e�ciently by quantisation of the

data. Transform and quantisation is a necessary component in lossy coding and

has a direct impact on the bit rate and the distortion of reconstructed images

or videos.

Transform

Figure 2.7 depicts how an appropriate transform acts on correlated image data.

The frame is divided into non-overlapping two adjacent pixel pairs as shown

in Figure 2.7(a). In this example, we use the 1st frame of the Mother and

Daughter sequence with CIF (352� 288) resolution. The scatter plot of these

pairs is shown in Figure 2.7(b), where the strong diagonal relationship about

the line clearly shows the strong correlation between neighbouring pixels. The

distribution shown in Figure 2.7(b) is rotated by � about the centre, then new

axes (�1,�2) are depicted as follows;

2
4 �1

�2

3
5 =

2
4 cos � � sin �

sin � cos �

3
5
2
4 X

Y

3
5 (2.5)

The two components are de-correlated, which means knowing the value of the

�rst component (�1) does not help in estimating the value of the second (�2)

as shown in Figure 2.7(c). �1 is still quite similar to the original distribution.

On the contrary, �2 is quite di�erent, it is much narrower with a peak at 0.

Therefore, fewer bits are required to encode original values. This means that

the number of bits required for encoding an image can be reduced by simple

rotation of the axis.

The Karhunen Lòeve Transform (KLT) [43] has been shown to be the optimal

transform in the sense of energy compaction, i.e. it places as much energy as

possible in as few coe�cients. It is a linear transform where the basis functions

are taken from the statistics of the signal. Thus, it can be adaptive. The discrete

version of KLT is also referred to as the Hotelling Transform (HT) or Principal

Components Analysis (PCA). However, the KLT depends on the characteristics

of the input signal. Whenever the characteristics of the signal change, eigen-

vectors have to be recalculated (Transform matrix should be recalculated for

di�erent signal). A transform matrix may act on certain vectors by changing

22



Chapter 2. Digital Video Coding Principals

Figure 2.7: The principal of transform; test data are captured from 1st frame
of Mother and Daughter@352� 288.

only their magnitude, and leaving their direction unchanged. These vectors are

the eigenvectors of the transform matrix. Therefore, KLT is generally not fea-

sible in real applications due to its computational complexity. Other Discrete

Transforms (DTs) have been widely used instead of the KLT such as the Dis-

crete Cosine Transform (DCT), the WHT, and so on due to their fast algorithms.

The above mentioned DTs are called linear transforms, and provide the following

bene�ts;

� Transform coe�cients are less correlated than the original data.

� Some transform coe�cients are more signi�cant than others such that

transform coe�cients can be treated di�erently. Some coe�cients could

be discarded, coarsely quantised, or �nely quantised.

Let a 2-D transform kernel or matrix be Φ(x, y,u, v) and its two 1-D transform

kernel be Φ1 and Φ2, where (x, y) and (u, v) represents a 2-D data set in the

pixel and transform domain respectively. Characteristics of linear transform are

denoted as followings:

� Separability: A 2-D separable transform can be decomposed into two 1-D

transforms as follow;

Φ(x, y,u, v) = Φ1(x,u)�Φ2(y, v). (2.6)
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� Symmetry: The transform is symmetric if the kernel is separable and the

following condition is satis�ed.

Φ1(x,u) = Φ2(x,u) (2.7)

� Unitary: The transform is unitary satisfying the following condition,

where ΦT� is the conjugate transpose of Φ.

Φ�ΦT� = ΦT� �Φ = I (2.8)

� Orthogonality: An orthogonal transform is a special case of a unitary

transform, where only real values are involved.

Quantisation

Of course, simply transforming pixels does not actually yield compression. The

energy in both the pixel and the transform domains are equal. However the ma-

jority of energy is concentrated on a few coe�cients. Therefore, coe�cients with

little energy can be removed by quantisation. Moreover, by exploiting the hu-

man eye's characteristics, which are less sensitive to picture distortions at higher

frequencies, one can apply even coarser quantisation at higher frequencies to give

greater compression. Coarser quantisation step sizes force more coe�cients to

zero. As a result, more compression is gained. The principal of quantisation is

the same as that of discretization as explained in Section 2.2.3. Note that the

quantisation process of H.264/AVC is explained in Section 7.3.2 in detail.

2.3.3 Entropy Coding

The �nal step of an encoding system is entropy coding. Entropy encoding is

a lossless data compression that is independent of the speci�c characteristics

of the medium. One of the main types of entropy coding creates and assigns

a unique pre�x code to each unique symbol that occurs in the input. These

entropy encoders compress data by replacing each �xed-length input symbol

with the corresponding variable-length pre�x code word. The length of each code

word is approximately proportional to the probability. Therefore, the transform
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coe�cients and the coordinates of the motion vectors are entropy coded where

short code words are assigned to the highly probable values and long code words

to the less probable ones. Entropy coding commonly consists of Run-Length

Coding (RLC) and Variable Length Coding (VLC). Here we provide an overview

of an Content-Adaptive Variable Length Coding (CAVLC) which is one entropy

coder used in H.264/AVC. CAVLC is used as a mandatory tool for the RDO

procedure and thus related to the work on measuring bit-rates in this thesis.

CAVLC uses RLC to present strings of zeros compactly. CAVLC is developed

based on several observations; (1) The highest nonzero coe�cients after zigzag

scan are often �1 called �Trailing Ones�. (2) The number of nonzero coe�cients

in neighbouring blocks are correlated. (3) The magnitude of nonzero coe�cients,

called �Level�, tend to be larger near the DC coe�cient and smaller towards the

high frequencies.

An example of CAVLC is shown in Figure 2.8 and Table 2.1. Figure 2.8 shows

an example block and its information to be used in CAVLC encoding, whose

meanings are denoted as following;

� run_before: The number of zeros before a speci�c non-zero DCT coe�-

cient.

� Level: Magnitude of DCT coe�cient.

� TrailingOnes: Total number of �1.

� Totalcoe�s: Total number of non-zero DCT coe�cients.

� total_zeros: Total zeros before last non-zero DCT coe�cient.

Run and level are individually encoded using VLC tables in inverse order of

zigzag scan. Other information except run and level is adaptively encoded using

neighbouring MBs by selecting an appropriate VLC table. This is one of the

reasons why CAVLC shows good coding e�ciency over other VLCs. The VLC

table can be selected as an average of the number of DCT coe�cients of a left

and a upper block although there is no regulation for which VLC table is used.
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Figure 2.8: Notation of CAVLC example; (a) DCT coe�cients of a 4�4 block.
(b) Information of CAVLC encoding

Table 2.1: Example of encoding CAVLC with Figure 2.8

Element Value Code

coe�_token TotalCoe�s=5 0000100

TrailingOnes =3 (Table 1)

TrailingOne sign (1) + 0

TrailingOne sign (-1) - 1

TrailingOne sign (-1) - 1

Level (1) +1 (su�xLength=0) 1 (pre�x)

Level (3) +3 (su�xLength=1) 001(pre�x)+0(su�x)

total_zeros 3 111

run_before(1) ZerosLeft=3, run_before=1 10

run_before(-1) ZerosLeft=2, run_before=0 1

run_before(-1) ZerosLeft=2, run_before=0 1

run_before(1) ZerosLeft=2, run_before=1 01

run_before(3) ZerosLeft=1, run_before=1 No coded.

Encoded bitstream : 000010001110010111101101

2.4 Conclusion

Image/video coding is a process in which the amount of data are reduced to

meet a bit rate or complexity requirement for a given condition. In this chapter,

key functionalities of the digital video coding are brie�y overviewed. Prediction

plays a key role in reducing spatial or temporal redundancy. Transformation is

a series process to de-correlate the original correlated data, where quantisation

acts on removing less important information based on the fact that the HVS is

less sensitive to high frequency components. Finally, entropy coding based on

information theory makes use of the probability of occurrence to reduce redun-

dancy.
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�You will never �nd time for anything. If you want time you
must make it.

Charles Buxton

3
Experimental Method Used for Complexity

Adaptation in a Video Coder

3.1 Introduction

L
ow complexity in an encoder is especially useful for applications operating

on power limited platforms such as a wireless camera network and mobile

devices. The contribution of the complexity adaptation algorithm is to enable

control of the computational cost while ensuring a low complexity encoder. The

proposed complexity adaptation framework measures the level of complexity by

controlling the number of skipped macro-blocks. Computational savings are

achieved by early prediction of skipped macro-blocks prior to time consuming

functions of an encoder.

This chapter presents the experimental method used to design low complexity

sub function blocks and the complexity adaptation framework. The design and

validation of the complexity adaptation framework is presented in Chapter 8.

This is the ultimate goal of this thesis.

3.2 Experimental method

3.2.1 Test Sequences

The test video sequences used are mostly chosen from widely used test material

in video coding research. There include di�erent foreground and backgrounds,
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motion, detail, blurring, sharpening, and camera movements from resolutions of

176�144 to 1280�720. Table 3.1 shows the characteristics of the test sequences.

Sample frames and their features are brie�y overviewed in the following.

Table 3.1: Test sequences

Sequence title Foreman Mother&Daughter Rush hour Pedestrian Blue sky

Resolution 176�144, 352�288 720�576, 1280�720

Number of frames 300 100

Colour space 4:2:0 YUV

Frames per second 30 25

Source Uncompressed, progressive

Foreman

Figure 3.1: Foreman sequence; (a) 1st, (b) 100th, (c) 200th frame

This is one of the most well-known sequences. It includes a face with a very

rich variety of expression. The motion that is present is disordered and does not

have any forward characteristics. The complexity of the motion creates problems

for the motion compensation process. Moreover, the camera is shaking, which

makes the image unsteady. The camera suddenly turns to the building site at the

end of the sequence. Therefore, this sequence can be used to test the behavior

of the codec for a static scene followed by one with motion.

Mother and Daughter

This is a low complexity head and shoulders sequence with moderate amount of

detail. The camera is static with moderate movement. Moreover, large moving

areas correspond to shaking heads. This sequence is representative of static

camera applications such as surveillance or telephony.
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Figure 3.2: Mother& Daughter sequence; (a) 1st, (b) 100th, (c) 200th frame

Rush Hour

This correspond to a tra�c scene in rush hour. It has plenty of large motion

areas, and an image with refraction due to haze. Vehicles pass by close to the

camera in both forward and backward direction. This sequence is representative

for compression of complex moving objects.

Figure 3.3: Rush hour sequence; (a) 1st, (b) 50th frame

Pedestrian

This is a shot of a pedestrian area. This sequence has a low camera position,

people pass very close to the camera, with high depth of �eld and a static

camera. It is a suitably challenging rear sequence for compression, due to the

static camera and areas of di�erent focusing, blurring, and sharpening.
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Figure 3.4: Pedestrian sequence; (a) 1st, (b) 50th frame

Blue Sky

This is a shot of blue sky aimed directed at a tall tree. This sequence has a

camera rotation. The tree has a moderate amount of detail and camera rota-

tion generates a large global motion. The most common fast ME assumes that

dissimilarity monotonically increases as the search point moves away from the

point corresponding to the minimum dissimilarity. Fast ME is easily trapped in

a local minimum, which frequently occurs in a camera rotate.

Figure 3.5: Blue sky sequence; (a) 1st, (b) 50th frame
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3.2.2 Objective Test Metrics Description

Peak Signal-to-Noise Ratio (PSNR)

PSNR is often used in practice as a quality measure and its de�nition is given

by

PSNR = 10 log10

 
2552 �NPN

i=1(Xi � Yi)2
!

(3.1)

where Xi and Yi represent the pixel value for the ith position in frames X and Y .

N is the as total frame size. This metric has the same form as the Mean Squared

Error (MSE). However, it is more convenient to use due to its logarithmic scale.

It is sometimes inappropriate in terms of how it relates to the HVS. For example,

not all sequences that generate a high PSNR give good subjective quality.

Bjontegarrd's Delta Peak Signal to Noise (BDPSNR) and Bjontegarrd's

Delta Bit-rate (BDBR)

The di�erence of two R-D curves can be displayed using BDPSNR and BDBR [9]

as shown in Figure 3.6. In this case, the algorithm under evaluation is compared

to an anchor reference, then numerical averages between the R-D curves are

obtained via BDPSNR and BDBR. This is a more compact and accurate way to

represent R-D performance. Therefore, no distinction between total range and

local range is needed. From [9], the relationship between ∆SNR and ∆Bit-rate is

well represented by 0.5dB = 10% or 0.05dB = 1%. Therefore, the measurement

of R-D performance can be obtained to calculate either change in bit rates or

change in PSNR. Interpolated logarithmic bit-rate can be calculated with a third

order polynomial form given by

PSNR = a+ b� bit+ c� bit2 + d� bit3 (3.2)

where a, b, c, and d are �tting constants. After obtaining interpolated curves,

the average of PSNR is obtained by comparing by integrating the area of each

curve.
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Figure 3.6: The meaning of BDPSNR and BDBR

SSIM [122, 134]

This metric was presented motivated by the drawback of PSNR. The main idea

that underlies the Structural SIMilarity (SSIM) index is comparison of the dis-

tortion of three image components; (1) Luminance. (2) Contrast. (3) Structure.

The SSIM can be obtained via the following expression.

SSIM(X,Y ) =
(2�X�Y +C1)(2�XY +C2)

(�X + �Y +C1)(�X + �Y +C2)
(3.3)

where

�X =
NX
i=1

!iXi, �Y =
NX
i=1

!iYi

�X =
 

NX
i=1

!i(Xi � �X)
! 1

2

, �Y =
 

NX
i=1

!i(Yi � �Y )
! 1

2

�XY =
NX
i=1

!i(Xi � �X)(Yi � �Y ).

The constants C1 and C2 are de�ned as;

C1 = (K1L)2

C2 = (K2L)2
(3.4)

where L is 255 if 8-bit gray scale images are used. K1,K2 are constants rea-

sonably smaller than 1, which are selected as K = 0.01 in most cases. The

SSIM value corresponds to two sequences and its range is [�1, 1]. One of the

advantages of the SSIM metric is that it better represents the HVS than PSNR.

However it takes more time to calculate.
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Complexity measure metrics

In Chapter 1, we have outlined a parametric video encoding whose complexity

is fully a�ected by the number of SAD and skip macroblocks. To translate

the complexity into energy, we need to consider the energy in hardware design.

To dynamically control the energy consumption of the microprocessor on the

portable device, a CMOS circuits design technology, Dynamic Voltage Scaling

(DVS) has been developed [67]. In [32], lowering the supply voltage will reduce

the energy consumption of the system which is given by

P / f3clk (3.5)

where fclk is the clock frequency of the circuit. It can be seen that the CPU can

reduce its energy consumption substantially by running more slowly.

Therefore, a complexity metric can be modeled by measuring the running

frequency in the middle of the encoding processing. It can be simply obtained

by reading special register of the CPU. In this thesis, we use both running

frequency and total encoding time as a complexity metric. The former metric

can be used in the middle of encoding, the latter one is used after encoding

process.

3.2.3 Simulation Models

As part of our experimental procedure we use two software simulators; (1) a

modi�ed JM and (2) a complexity adaptation framework as shown in Figure 3.7.

In the modi�ed JM, low complexity sub functions are integrated into JM1 (see

Chapter 4). In a modi�ed JM, the VBS partitioning algorithm and fast ME

based on SWHT called FWBS are used as sub functions. Details are explained

in Chapter 5 and Chapter 6. In the complexity adaptation algorithm, skip

MB detection algorithm is proposed in order not to have to perform ME, ICT,

quantisation, and entropy coding. Finally, the complexity control algorithm for

adjusting the threshold value of skip MB is presented in Chapter 8. The R-

D and C-D performance of Figure 3.7(b) is compared with the JM reference

software (see Figure 3.7(a)). The performance of the complexity adaptation

1JM is the abbreviation of Joint Model, which is JVT reference software for H.264/AVC.
Source code is available at http://iphome.hhi.de/suehring/tml/
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framework (see Figure 3.7(c)) including low complexity sub functions such as

VBS , FWBS, and skip MB detection algorithm is compared to that of the

modi�ed JM (Figure 3.7(b)).

Figure 3.7: Flowchart of three di�erent schemes to compare performance; (a)
Functional �owchart of JM 11.0 reference software, (b) JM with
VBS and FWBS, (c) Complexity control algorithm. The di�er-
ent R-D and C-D performances between (a)&(b) is discussed in
Section 8.3, (c) is compared with the modi�ed JM (b).

3.3 Discussion

This chapter describes the test sequences, objective quality metrics, and the ex-

perimental method as used in this thesis. Test sequences are carefully selected

from QCIF to HD considering the presence of motion, detail, foreground, and

background. The �rst experimental procedure consists of testing the modi�ed

JM with proposed new sub functions such as VBS and fast ME. The next exper-

iment includes skip MB detection and a complexity adaptation algorithm in the

modi�ed JM. Figure 3.7 shows the �owchart of the three di�erent frameworks,
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where the modi�ed JM acts as an intermediate step to reach the complexity adap-

tation framework. An overview of complexity issues associated with H.264/AVC

is presented in the next chapter prior to presenting the key contributions of this

thesis.
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�Success is not a place at which one arrives but rather the
spirit with which one undertakes and continues the journey.

Alex Noble

4
An Overview of H.264/AVC : Complexity

Perspective

4.1 Introduction

J
oint e�ort by ITU-T's Video Coding Experts Group and ISO/IEC's Mov-

ing Picture Experts Group resulted in standardization for H.264/AVC in

2003 [123]. The speci�cation of the encoder is not de�ned because standardiza-

tion has focused on only a decoder. Therefore, there has been various H.264/AVC

encoders developed by individuals or organizations1. The encoder developed by

the Joint Video Team, known as the Joint Model (JM), has been used as a ref-

erence by encoder developers in enhancing existing algorithms. However, its use

has been limited due to its encoding speed. Another H.264/AVC open source

encoder is the x264 [3]. It has been used in many applications like �mpeg [1],

MEcoder, and �dshow. In a recent study, x264 showed better quality than

several commercial H.264/AVC encoders [53]. Moreover, x264 shows fast en-

coding time by a factor of ten over JM [73]. The high performance in terms of

encoding time is attributed to its algorithms (rate control, motion estimation,

and mode decision), called �algorithmic optimization� process, and optimized

code for many of the primitive operation using assemble code on a speci�c plat-

form,�platform optimization�. In the latter case, it is very platform-speci�c,

which normally produces the most e�cient code since optimization can take

advantage of the full repertoire of machine instruction. However, platform op-

timization causes several problems; (1) Development time is much longer than

1In [53], various performance comparisons are performed on various H.264/AVC encoders
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in a high level approach. (2) It is easy to make errors, which a�ects the relia-

bility and security. (3) Porting to a di�erent platform is di�cult. In the former

case, it is the optimization methods according to their algorithmic structure

and underlying principles from the viewpoint of theory, which gives a robust

and platform-independent solution. Therefore, in this thesis we consider a non-

optimized H.264/AVC encoder to show how much improvement is achieved by

applying the proposed algorithms in terms of complexity. In the following sec-

tions, an overview of H.264/AVC encoding process is suggested based on an

observation of which H.264/AVC encoding tools contribute most to the com-

plexity and bit-rates.

4.2 H.264/AVC standards

4.2.1 Standards History

In 1998, a call for proposals was issued by ITU-T Video Coding Expert Group

(VCEG) for a new video coding standard with the objective of doubling the

compression e�ciency compared to previously existing video coding standards.

The new proposal was known to as H.26L. However, as a result of similar interest

by ISO/IEC Moving Picture Experts group (MPEG), the Joint Video Team

(JVT), consisting of ITU-T VCEG and MPEG was formed in 2001 to develop

the new standard. The standard was �nalised and the draft was approved in

2003.

The H.264/AVC standard was originally developed for �entertainment quality�

video where sampling format is limited to 4:2:0 with 8 bit sample accuracy. An

amendment was added to the standard in July 2004 called the Fidelity Range

Extensions (FRExt) [104], where �High Pro�les" were provided in order to ad-

dress professional applications and to enhance the compression performance.

The high pro�les can support up to 4:4:4 sampling format and 12 bit sample

accuracy. Moreover, an advanced 4:4:4 Pro�le has been proposed to code 4:4:4

format video which includes coding of chroma components in 4:4:4 with luma

coding tools and is reported to outperforme the High 4:4:4 pro�le.
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The H.264/AVC standard was designed for high compression e�ciency, error

resilience and �exibility so that it could support a wide variety of applications

and di�erent transport environments such as wired and wireless networks.

4.2.2 Features of H.264/AVC

Layer Structure

H.264/AVC was designed to be �exible and customizable to handle a variety

of applications and transport methods. To achieve the �exibility, the standard

contains two layers.

1. The Video Coding Layer (VCL) represents the core video encoding process

(which carries out actual video compression) and the VCL data consists of

coded bits.

2. The Network Abstraction Layer (NAL) handles the transportation of VCL

data and other header information by encapsulating them in NAL units.

The separation of video coding and transportation into two layers ensures that

the video coding layer provides an e�cient representation of video content, while

the network abstraction layer transports the coded data and other header infor-

mation in a �exible manner by adapting to a variety of delivery frameworks.

Pro�les and Levels

The standard includes the following set of capabilities referred to as pro�les,

which target speci�c classes of applications;

� Baseline Pro�le (BP): This is for lower cost applications with limited

resources. This pro�le is widely used in mobile applications.

� Main Pro�le (MP): This pro�le was intended for the mainstream con-

sumer for broadcast and storage applications.
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� Extended Pro�le (XP): Pro�le was intended for the streaming video. It

supports relatively high compression capability and some extra tricks for

robustness to data losses.

In addition, new pro�les were introduced in FRExt:

� High Pro�le (HiP): This was introduced for High-De�nition (HD) Tele-

vision applications both broadcast and disc storage applications.

� High 10 Pro�le (Hi10P): This pro�le built on top of the HiP by adding

support for up to 10bits per sample.

� High 4:2:2 Pro�le (Hi422P): This targets professional applications that

use interlaced video by adding 4:2:2 chroma subsampling format using

10bits per sample.

� High 4:4:4 Predictive Pro�le (Hi444PP): This pro�le built on top of

the Hi422P. This supports 4:4:4 chroma subsampling.

Moreover, in order to support professional applications such as camera and edit-

ing system, the standards contains additional all intra pro�les:

� High 10 Intra Pro�le: It is constrained to only intra use in Hi10P.

� High 4:2:2 Intra Pro�le: It is constrained to only intra use in Hi422P.

� High 4:4:4 Intra Pro�le: It is constrained to only intra use in Hi444PP.

� CAVLC 4:4:4 Intra Pro�le: It is constrained to only intra use in Hi444PP.

However it does not support CABAC.

As a result of Scalable Video Coding extension [93], the standards contains

additional scalable pro�les de�ned as a combination of the H.264/AVC pro�le;

� Scalable Baseline Pro�le: This pro�le targets for video conferencing,

mobile, and surveillance applications.

� Scalable High Pro�le: This pro�le targets for broadcast and streaming

applications based on HiP.
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� Scalable High Intra Pro�le: This pro�le is constrained to all intra use

only in Scalable High Pro�le.

H.264/AVC has 11 levels or degree of capability to limit performance, band-

width and memory requirements. Each level de�nes the bit rate and the encoding

rate in macroblock per second for resolutions ranging from QCIF to HDTV and

beyond. The higher the resolution, the higher the level required.

In this thesis, all tests are performed in the Baseline Pro�le which is target for

limited resources, however levels are used from QCIF (Level 1.x) to HD (Level

4.x).

4.3 Contributive Factors to H.264/AVC Complex-

ity

4.3.1 H.264/AVC Encoder Functionalities at Macro-block

Level

Figure 4.1 shows the block diagram of an H.264/AVC encoder at macro-block

level. A macro-block is divided into smaller partitions for VBS ME. For lumi-

nance, block sizes of 16� 16, 16� 8, 8� 16, and 8� 8 samples are supported,

where mode numbers are allocated from 0 to 4. Note that mode 0 means a

skip macro-block. In case of an 8� 8 sub macro-block, the corresponding 8� 8

is further divided into partitions with block sizes of 8 � 4, 4 � 8, and 4 � 4,

where modes numbers are also allocated 5 to 8. In addition to those block sizes,

two more modes are needed to make Mode Decision (MD), which are 16� 16

and 4� 4 intra blocks because each macro-block can be encoded in intra or inter

mode. Therefore, MD controls a combination of 8 di�erent block sizes and 2 intra

block sizes. In intra mode, prediction is formed from samples from macro-blocks

that have been previously encoded, decoded and reconstructed in the current

frame. In inter mode, motion prediction (pmv) is obtained via neighbouring

blocks' motion vector due to motion vectors close relationship with spatial cor-

relation. Prediction is formed by ME and MC from one or more reference frame

(RF) because H.264/AVC supports multi-frame ME and MC. The prediction

is subtracted from the current macro-block to produce a residual (R). This is
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transformed and quantised to give a set of quantised transform coe�cients, to-

gether with side information to decode the macro-block such as macro-block

motion prediction and motion vectors. The quantised macro-block coe�cients

are decoded in order to reconstruct a frame for encoding of further macro-blocks.

That is, the coe�cients undergo inverse quantisation (IQ) and inverse integer

DCT. After MC, macro-block reconstructed (MBR) data is obtained. A �lter is

applied to reduce the e�ects of blocking distortion and saved to RF bu�ers.

In the MD process, the above procedure is performed on di�erent modes. If

only luminance is considered, the number of modes is given by

Nmode =
Inter Mode (1-4)z}|{

4 +
Intraz}|{
2 +

Inter sub block combinationsz }| {
4� 4� 4� 4

= 262.

(4.1)

Therefore, MD �nds the argument i to satisfy the minimum value of Equa-

tion (4.2) of all combinations.

MB� = argmin
i

(Ji(QP ) = Di(QP ) + �Ri(QP )) (4.2)

It should be noted that only CAVLC is used to calculate Ri(QP ) in MD because

Context-Adaptive Binary Arithmetic Coding (CABAC) requires huge computa-

tional complexity compared to CAVLC. Finally, the MB�, which is a optimum

mode, is obtained.

4.3.2 Contributive Factors to Complexity

This research is aimed at a complexity adaptation framework which mandatorily

requires low complexity functionality. In order to address computational com-

plexity issues, we �rst need to know which functions generate computational

complexity by understanding the complexity of an encoder.

From Figure 4.2, MD requires the most complexity in an encoder, and ME is

the second most demanding. Moreover, ME is a sub function of MD because it

uses a ME. The above two functions occupy almost 79% in �Foreman� sequence.

When sub-pel ME is used, MC could be a part of motion estimation to obtain

sub-pel motion vector. Therefore, almost all complexity related factors have a

very close relation with mode decision and ME. Moreover, in a decoder, MC is
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Figure 4.1: H.264/AVC functional block diagram; marked yellow functions
require high computational complexity in the H.264/AVC encoder

(a) H.264/AVC encoder computational costs;
mode decision and ME occupy 79%

(b) H.264/AVC decoder computational costs; MC
is the most computationally demanding block

Figure 4.2: Computational costs of H.264/AVC tools
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also the most complexity demanding function. We would like to observe their

characteristics and a�ect on R-D and computational complexity. These factors

can be classi�ed as follows; (1) di�erent VBS partitioned ME, (2) sub-pel motion

vector resolution, (3) various search range, (4) the number of multiple reference

frames, (5) existence of RDO algorithm, (6) presence of Hadamard Transform,

and (7) CABAC2. Test conditions and their summarized procedures are denoted

in Table 4.1.

Table 4.1: Test conditions and procedures of contributive functions on com-
putational complexity of an encoder

Test Conditions

Sequences Foreman, Mother & Daughter @352x288 30Hz
GOP IPPP structure, I-frame at every 30frame

Evaluation Average PSNR, Bit-rate (BDPSNR, BDBR),and normalized complexity

Test Procedure

JM 11.0 Anchor (Baseline pro�le) Modi�ed JM with Encoding Parameters
VBS All modes (1) Group 1 : 16� 16 (mode 0,1)

(2) Group 2 : 16� 16, 8� 16, 16� 8, 8� 8

RDO RDO on RDO o�
Hadamard Hadamard on Hadamard o�

Sub-pel ME 1

4
-pel accuracy Integer-pel accuracy

Search Range �16 (1) �8
(SR) (2) �4

Multiple reference 5 (1) 3
frame (FR) (2) 1

CAVLC / CABAC CABAC CAVLC

VBS

H.264/AVC supports VBS ME, where macro-blocks are partitioned into di�erent

block sizes. However, to achieve high compression, the encoder needs to evaluate

all possible combinations of block size resulting in high computational complex-

ity. In order to evaluate the e�ect of VBS on R-D and C-D performance, macro-

block partition modes are grouped into two mode groups (see rightmost column

of Table 4.1) and sequences are encoded using each mode group. Figure 4.3

shows the R-D and C-D performance of the macro-block partition mode groups.

According to the results, compression e�ciency is improved as the number of

macro-block modes evaluated is increased. The BDPSNR, which is mentioned in

Section 3.2.2, of only 16�16 decreases by 0.663dB for �Foreman� and by 0.055dB

2CABAC is not used in this thesis, but its e�ect on performance is observed because it is one
of complexity required functions in the H.264/AVC encoder
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relative to using all modes for �Mother and Daughter�. It can be evaluated as a

equivalent index to the di�erence in R-D performance as follows [9];

∆bitrate = 20�BDPSNR. (4.3)

Therefore, bit-rate increases by 13.26% and 1.1% for �Foreman� and �Mother

and Daughter� respectively. The VBS signi�cantly a�ects R-D performance in

a sequence which has large motions such as �Foreman�. However, it does not

have much of an a�ect for a sequence that has relatively small motions or static

scenes such as �Mother and Daughter�. In the case of another test on VBS

partition Group 2 (not using sub macro-block modes), increase in bit-rate is not

signi�cant for both sequences (less than 1.5%). The normalized complexity is

reduced by 30% for 16� 16 only mode (Group1) and 20% when not using sub

modes (Group 2).

(a) R-D performance; R-D degradation is more se-
vere in Foreman than Mother and Daughter

(b) C-D performance; Group 1 and Group 2 re-
quires about 70%. 80% complexity compared to
JM which uses all modes

Figure 4.3: Rate-distortion performance and normalized complexity
(Targetcomplexity

JMcomplexity
) of di�erent macro-block partition mode

groups

In conclusion, VBS should be considered in the case of heavy or large motion

sequences in order to improve R-D performance.

Sub-pel motion vector resolution

Sub-pixel ME and MC plays an important role in compression e�ciency within

modern video codecs such as MPEG-2, MPEG-4 and H.264/AVC. Sub-pixel
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motion compensation is implemented within these standards using interpolated

pixel values at half-pel or quarter-pel accuracy. Such interpolation gives a good

reduction in residual energy for each predicted macro-block and therefore im-

proves compression. However, such interpolation is very computationally com-

plex for the encoder. This is especially true for H.264/AVC where the cost of

an exhaustive set of macro-block segmentations need to be estimated in order

to obtain an optimal mode for prediction. Therefore, we would like to observe

the e�ect of sub-pel ME and MC on both R-D and C-D performance in this sec-

tion. JM performs ME by separating integer-pel and sub-pel accuracy in order

to reduce complexity. In the integer-pel ME, predicted motion vectors (pmv)

are obtained taking median value of neighbouring blocks� motion vectors and

the centre of searching area is set as a pmv not a absolute position (0,0). Spiral

searching is performed from the pmv position to the whole search range.

Sub-pel accuracy ME is performed after �nding a location that generates min-

imum cost in the integer-pel position. The procedure of sub-pel ME consists of

two steps. Firstly, let E have minimum cost resulting from integer-pel ME at

[A�I] as depicted in Figure 4.4(a). Then, let the position that indicates minimum

cost out of nine half-pel positions denoted as [1�9] around E be 6. As the same

as �nding half-pel motion vectors, the optimal motion vector can be obtained

by comparing cost of 6 with those of nine quarter-pel positions represented [a�

h]. Secondly, MC interpolation procedure is needed to generate pixel values

of sub-pel positions as shown in Figure 4.4(b). In the luminance component,

the sub-pel samples at half-pel positions (denoted as under bar numbers) are

generated �rst and are interpolated from neighbouring integer-pel samples us-

ing a 6-tap Finite Impulse Response (FIR) �lter. This means that each half-pel

sample is a weighted sum of 6 neighbouring integer samples. For example, 3 is

obtained via FIR �ltering using horizontal 6 integer-pels [E�J], which is denoted

as (1) in Figure 4.4(b), in the following.

3 = (E � 5� F + 20�G+ 20�H � 5� I + J)/323 (4.4)

Moreover, 10 is interpolated using horizontal 6 integer-pels [A�S], which is de-

noted as (2) in Figure 4.4(b).

10 = (A� 5�C + 20�G+ 20�M � 5�Q+ S)/32 (4.5)

3Shift operartion is used in JM considering rounding. X
2n

= (X + 2n�1) >> n.
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Figure 4.4: Illustration of sub-pel ME and MC interpolation; upper-case let-
ters indicate the integer-pel position, under bar numbers or num-
bers indicate half-pel positions and remaining lower-case letters
indicate quarter-pel positions

The half-pel position (4) located in 4 integer-pels can be obtained via 6-tap FIR

�ltering in both horizontal or vertical directions shown in the following (see (3)

in Figure 4.4(b)).

4 = (1� 5� 2+ 20� 3+ 20� 5� 5� 6+ 7)/32

= (8� 5� 9+ 20� 10+ 20� 11� 5� 12+ 13)/32
(4.6)

Once all the half-pixel samples are available, each quarter-pixel sample is pro-

duced using bilinear interpolation between neighbouring half- or integer-pel sam-

ples as given by

a = (G+ 3)/2 { (4) in Figure 4.4(b)}

e = (3+ 4)/2 { (5) in Figure 4.4(b).}
(4.7)

In order to evaluate the improvement achieved using sub-pel accuracy ME, the

performance of only integer-pel ME is compared with the case of considering sub-

pel accuracy (denoted as JM Anchor in Figure 4.5). Figure 4.5 shows R-D and

C-D performance degradation caused by not using sub-pel accuracy. Results

indicate that the bit-rates are increased by 19.16% and 16.06% while decreasing

normalized complexity by 10% � 18%. Therefore, sub-pel accuracy ME should
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be considered in this thesis because it gives a great e�ect on R-D performance

of encoded frames.

(a) R-D performance; R-D degradation is severe
for both sequences

(b) C-D performance

Figure 4.5: Rate-distortion performance and normalized complexity of sub-pel
accuracy ME

Search Range

It is well known that motion search range is an important parameter in deter-

mining the coding e�ciency and the encoding computational cost [52]. The most

common idea to reduce search range of ME is that range is chosen on the basis

of either prediction error values or of the motion vectors previously obtained

for adjacent blocks. Figure 4.6 shows how much search range (SR) a�ects R-D

and C-D performance. As search range is reduced (SR=16 ) SR=8 ) SR=4),

BDPSNR is also decreased. The degradation of R-D is particularly appeared on

a sequence that has active motion such as �Foreman.� However, degradation of

R-D is negligible in static sequences such as �Mother and Daughter.�

Multiple Reference Frames

H.264/AVC allows the use of multiple reference frames, which means that the

video encoder chooses among more than one previously decoded frame on which

to base each macro-block in the next frame. It is common sense that the best

frame for the current frame is usually the previous frame. Multiple reference

frames can considerably increase encoding time because ME ordinarily carried

47



Chapter 4. An Overview of H.264/AVC : Complexity Perspective

(a) R-D performance; average bit-rates are in-
creased for Foreman by 0.6%, 2.64% at SR=8,
SR=4 respectively. They are almost the same for
Mother&Daughter

(b) C-D performance; complexity is considerably
reduced according to SR

Figure 4.6: Performance variation according to search range

out only on one reference frame has to be repeated on all of the reference frames.

Moreover, multiple reference frames must be stored in memory until they are no

longer needed for further usage. This requires a large amount of memory usage.

Based on the above two reasons, it is not feasible to consider multiple reference

frames encoding on power limited especially embedded platforms. Figure 4.7

indicates that complexity is exponentially increased as the number of reference

frame rises. Therefore, only single reference frame is considered in this thesis.

(a) R-D performance (b) C-D performance

Figure 4.7: Comparison of rate-distortion and normalized complexity accord-
ing to the number of reference frames
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RDO

In fact, RDO is not a part of the H.264/AVC standard, which means various RDO

algorithms can be used for evaluating the performance. In RDO mode of JM,

the encoder selects the best MB mode by evaluating a Lagrangian cost function

for each MB. Basically, the RDO requires the MB to be encoded and decoded

using all the possible modes before selecting the best mode, which increases the

computational complexity. Performance is compared with the set of sequences

encoded without using RDO (see Figure 4.8). Analysis reveals that the bit-rates

is increased by 6.52% and 5.46% using Equation (4.3) and the computational

complexity is decreased up to 30% for both sequences when RDO is not used.

(a) R-D performance (b) C-D performance; complexity is reduced up to
30% without RDO

Figure 4.8: Rate-distortion and normalized complexity performance without
RDO

Hadamard Transform

In order to understand e�ect of Hadamard Transform in ME, we take an example.

Let all pixel values of the 4� 4 reference block be 255, and those of the 4� 4

current block be 0 as shown in Figure 4.9. The SAD of prediction error becomes

a large value (4080). However, the SATD generates smaller value (1020) than

SAD, which reduces the required bits. However, SATD is much slower than the

SAD. Therefore, H.264/AVC optionally adopt SATD as a cost function in ME.

From an experiment, SATD does not give much bene�ts over SAD for both

sequences, in terms of R-D and C-D as depicted in Figure 4.10.
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Figure 4.9: The need of Hadamard Transform

(a) R-D performance; bit-rates are increased by
0.16%, 0.66% at Foreman, Mother&Daughter re-
spectively

(b) C-D performance; complexity is reduced by 5%
compared to JM

Figure 4.10: Rate-distortion and normalized complexity performance of using
Hadamard Transform in ME

CABAC instead of CAVLC

CABAC is a form of entropy coding used in H.264/AVC. It is notable for pro-

viding considerably better R-D performance than other encoding algorithms.

CABAC requires a considerable amount of processing. Therefore, CAVLC is

sometimes used instead of CABAC. Figure 4.11 reveals that CABAC gives a

better performance over CAVLC in terms of R-D. When CAVLC is used in the

JM main pro�les, the test performed in this section is performed with main

pro�le using B-frames. the bit-rates increase by 7.7%, 8.44% for both sequences
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respectively. CAVLC only is used in this thesis due to its computational e�-

ciency.

(a) R-D performance (b) C-D performance

Figure 4.11: R-D and C-D performance comparison with CAVLC and with
CABAC (JM Anchor)

4.4 Conclusion

H.264/AVC is an international video coding standard that was jointly developed

by the ITU-T and ISO/IEC. Like previous standards, H.264/AVC used block

based ME. Moreover, it yields a bit-rate saving of about 50% over all previous

standards as a result of its large number of encoding parameters and tools such

as VBS partitioned ME, sub-pel accuracy motion vector resolution, multiple

reference frames, and so on. In H.264/AVC encoders, the most computationally

intensive process tends to be ME and mode decision. Therefore the main focus

of recent research has been to reduce the complexity of this process.

In this chapter, encoding parameters and tools closely related to complexity

are investigated with experiments using the JM reference software. From ex-

periments, VBS , sub-pel accuracy motion vector resolution ME, and CABAC

give better R-D performance. However, search range, existence of Hadamard

Transform, and multiple reference frames do not give much bene�t in terms

of R-D and C-D performance. Based on the trade-o� between R-D and C-D

performance, the proposed complexity adaptation framework should consider

VBS and sub-pel accuracy motion vector resolution ME because these factors

51



Chapter 4. An Overview of H.264/AVC : Complexity Perspective

have signi�cant in�uence on R-D performance. Therefore, low computational

complexity version of those functions are suggested in the following chapters .
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�As long as you're going to think anyway, think big.

Donald Trump

5
Low Computational Complexity Variable Block

Size (VBS) Partitioning

5.1 Introduction

I
n recent years, the VBS ME technique has been widely employed to improve

the performance of the BMA. In VBS, the block size is varied according to

the type of motion. It is known to be very e�cient for areas containing com-

plex motions. However, it requires a large number of computational operations.

Therefore the traditional methods to decide VBS perform it after exhaustive

ME and R-D optimization. Clearly, this is not suitable for power limited plat-

forms. Recently, there have been several attempts to reduce the computational

complexity of VBS partitioning based on not performing ME in advance. In this

scenario, light segmentation of a block to determine the characteristics is used,

which introduces its own complexity. Therefore low complexity segmentation

algorithms have become an important requirement for an encoding process. In

[61], an edge block detection based subsampling method was proposed. They

used Robert cross convolution masks to detect if the block was either an �Edge

block� or a �Flat block�. However their approach requires 15 additions and 16

absolute di�erence operations per 4� 4 block. The approach presented in this

chapter requires only 8 additions per 2 � 2 block. Moreover, their threshold

value is decided empirically. In [51], a Cellular Nonlinear Network (CNN) type

segmentation algorithm was used for detecting edge information. They used an

edge enhancing low-pass �lter to �nd regions that contain remarkable features,

i.e. edges. Both prior works are performed in the pixel domain, so it is di�cult
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to reuse intermediate values obtained as part of segmentation. The VBS parti-

tion algorithm proposed in this chapter has two distinguishing features. Firstly,

all processing is performed in the WHT domain, making it is easy to predict

residue data's characteristics. Secondly, the intermediate value is reused in ME

process, which is explained in the next chapter. Moreover, a computationally

cost e�ective algorithm compared to the other related works to detect features

is presented.

5.2 Walsh Hadamard Transform (WHT)

Since it is simple and e�cient to execute, the WHT has been applied in many

�elds such as pattern matching [33], feature recognition [85, 91], wireless com-

munication [29], and image/video compression [22, 88]. It is attractive due to

the simplicity of implementation and to properties which are similar to familiar

DTs. Many DTs have been used in image processing such as DCT, Discrete

Fourier Transform (DFT) and Discrete Tchebichef Transform (DTT) that has

recently comes under the spotlight [38, 81]. However such transforms are often

hard to implement in real time in some applications due to their computational

complexity of �oating operations. Even when fast algorithms exist, their inverse

transforms do not generate the same image as the original, which can cause a

drift e�ect in image/video compression. In order to solve these problems, in-

teger algorithms were developed and deployed in recent video standards such

as H.264/AVC, combined with a quantisation procedure named ICT [69]. Also

recently the Integer Discrete Tchebichef Transform (IDTT) was proposed in [38].

However, they focus only on 4� 4 or 8� 8 block sizes which are not extensible to

arbitrary block sizes. Moreover, they still introduce computational complexity

even though they have multiplier free structures. Although the performance of

WHT is inferior to the other DTs in terms of energy compactness, it provides

comparable performance on images that show less gradient changes [37]. Its

computational e�ciency makes it attractive in image processing to be directly

applied in the transform domain since the elements of the basis kernels are or-

thogonal and contain only binary values (�1). Moreover, there has been often

the case that di�erent applications require di�erent block sizes. Therefore, e�-

cient techniques for conversion between a block and its sub-blocks are important

tasks for low complexity applications. This is mentioned in Chapter 6.
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The WHT has di�erent kinds of order at basis function; �natural order�,

�dyadic order�, and �sequency order�. The natural order of the WHT is equiva-

lent to the post-permutation algorithm of the fast Fourier transform (FFT) and

the dyadic order represents the machine-oriented algorithm of the FFT [75]. On

the contrary, sequency order is analogous to frequency in DFT. The row vectors

of an SWHT matrix are arranged in ascending order of sequencies which is suit-

able for image processing by virtue of the property as energy compaction. Thus

the SWHT has been used throughout this thesis1.

5.2.1 The Properties of the WHT

The lowest-order Walsh Hadamard Matrix (WHM) is of order two given as

H2 =

2
4 1 1

1 �1

3
5 . (5.1)

Its higher order can be obtained via a recursive method in the follow

HN =
nO
i=1

H2 =
nz }| {

H2 
 : : :
H2 . (5.2)

Let the array [f(x, y)] be the intensity pixels of an original image over an array

of N2, (N = 2k), then its 2-D Hadamard Transform [F (u, v)] is given as

[F (u, v)] = HN [f(x, y)]HT
N =

1

N
HN [f(x, y)]HN . (5.3)

The WHT has orthogonal, symmetric, and unitary properties mentioned in

Chapter 2.3 as

HNH
T
N = NI, HNH

�1
N = NI, H�1

N HT
N = NI (5.4)

1Note that WHT and SWHT are the same transform in the case of 2� 2 blocks
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where HT
N and H�1

N represent a transpose and an inverse matrix of HN respec-

tively, and I is an identity matrix. Its inverse transform is expressed as

HN [F (x, y)]HT
N = HNHN [f(x, y)]HT

NH
T
N

= N2[f(x, y)],

[f(x, y)] =
1

N2
HN [F (x, y)]HT

N .

(5.5)

The WHT has several interesting properties. The most important properties

from the standpoint of image coding are dynamic range, conservation of energy,

and energy compaction.

� Bounding Dynamic range: The DC coe�cient is a measure of the aver-

age brightness of a block. If the maximum possible value of the DC is N2A,

where A is the maximum value of f(x, y), the magnitude of other samples

in the WHT is bounded to �N2A/2 as mentioned in [88] and given by:

jF (u, v)j � F (0, 0)
2

for(u, v) 6= (0, 0). (5.6)

� Conservation of energy: This is sometimes called �Parserval Theorem�,

which means that the power of the spatial domain is the same as that of

the transform domain:

N�1X
x=0

N�1X
x=0

jf(x, y)j2 =
1

N2

N�1X
u=0

N�1X
v=0

jF (u, v)j2. (5.7)

� Energy compaction: Energy compaction capability of transforms means

the capability of the transform to redistribute signal energy into a small

number of transform coe�cients. It can be characterized by the fraction

of the total number of signal transform coe�cients that carry a certain

percentage of the signal energy. The lower this fraction is for a given

energy percentage, the better the transform energy compaction capability.

More details are mentioned in Section 5.2.2 in the case of the SWHT.

� Convolution theorem: It is well known for many orthogonal linear trans-

formations that the convolution of the image is equal to the product of their

transform. In the case of WHT, dyadic convolution is an analogous rule

for other DTs. The detailed mathematical proof was derivered in [30].
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The convolution property can be useful as a tool for image �ltering in the

transform domain, which is de�ned as follow

x(n) ? y(n) def=
1

N

N�1X
k=0

x(k)y(n� k) () X(n)Y (n) (5.8)

where X(n) and Y (n) represent the WHT of x(n), y(n) respectively, � is

dyadic xor sum denoted as

a� b =
1X
i=0

jai � bij2i, where a =
1X
i=0

ai2
i, b =

1X
i=0

bi2
i. (5.9)

5.2.2 Features of Sequency ordered Walsh Hadamard Ker-

nels

The SWHT kernels are shown in graphical form in Figure 5.1(a) where +1 is

denoted by black and -1 represented by white. The rows and columns are dis-

played in the ascending order of sequencies. The gain of DTs over PCM has been

shown to be the ratio between the arithmetic mean and the geometric mean of

the variances of all the components in the transform domain as proposed in [40],

which is de�ned as

GT =
1
N2

PN
i=1

PN
j=1 �

2(i, j)hQN
i,j=1 �

2(i, j)
i 1

N2

(5.10)

where N represents a block size to be transformed, �(i, j) is the variance of the
(i, j)th transformed coe�cient. Equation (5.10) shows the energy compactness

property of DTs, which means that the large value ofGT indicates few coe�cients

have most of the block's energy. Figure 5.1(b) shows that the KLT is the optimal

transform and the DCT performs slightly worse than KLT. The WHT shows a

comparable result compared to other DTs for natural images. For example,

when images are divided as 1� 32 1-D arrays, only 6 out of 32 coe�cients have

more than 90% of the signal energy of the 1-D arrays. Therefore, it is possible

to encode for 6 coe�cients not for 32 coe�cients with less than 10% signal

loss in the case of WHT. Moreover, only 4 coe�cients are needed to achieve

the same result in the case of KLT and DCT. Therefore, DCT and KLT show

better performance than WHT. However, the degradation of WHT over DCT

and KLT is not severe when WHT performs on the frame di�erencing or motion

compensated signal. Table 5.1 shows the GT for three di�erent test sequences;
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(a) Sequency ordered Walsh Hadamard Transform
kernel for N = 4

(b) Normalized transform gain of one dimensional
(1x32) block for natural images [63]

Figure 5.1: The transform kernel(a) and energy compactness(b) of the WHT

(1) Foreman, (2) Mother and Daughter, and (3) Hall Monitor. It is seen that the

WHT and the DCT perform very similarly for signals with low correlation such

as frame di�ering or motion compensated frames. Therefore when the WHT

is used instead of the DCT for the frame di�erencing image, the performance

degradation of WHT over DCT is negligible.

Table 5.1: Transform gain (GT ) between DCT and WHT on frame di�erencing
image (10th - 9th frame) divided in 16� 16 block size, all sequeces
are 30Hz.

Foreman@352� 288 Mother and Daughter@352� 288 Pedestrian@720� 576

DCT 1.31 2.31 2.12

WHT 1.23 2.27 1.98

5.3 Motion Edge Detection Algorithm

In this section, an algorithm for detecting motion edges using the lowest order

of the WHT (2� 2 block) is presented. A block with motion edges generates

more inter prediction error than a homogeneous block, which is veri�ed via

mathematical analysis. After, the edge detection algorithm is presented, its

results are discussed.
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5.3.1 Prediction Error Analysis of Edge Gradient

Lemma 5.1. Let ∆d be temporal displacement of image blocks sampled at

di�erent times. The spatial gradient is denoted as g
0
(s) at location s. The

prediction error �2 can be expressed as

�2 ' (1+E(∆2
d))� (g

0
1(s))

2 (5.11)

Proof. Two temporal and a spatial intensity function are de�ned as f1(x), f2(x)
and g1(y) respectively. These are image pixels sampled at time t and t� 1 as

shown in Figure 5.2. The prediction errors are denoted as in Equation (5.12),

Figure 5.2: Graphical notation of terms used in the inter prediction error anal-
ysis

and its variance (E(�21)) +E(�22)) represents the total energy of the prediction

errors.
�1 = f1(t)� f1(t� 1)

�2 = f2(t)� f2(t� 1)
(5.12)

The subtraction of each prediction error is denoted in Equation (5.13), where ∆d1

and ∆d2 represent the temporal displacement errors at each temporal intensity

function.
�1 � �2 = f1(t)� f1(t� 1)� f2(t) + f2(t� 1)

= f1(t)� ∆d1 � f1(t)� f2(t) + ∆d2 � f2(t)
(5.13)
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The temporal displacement errors of two blocks is the same if two pixels are

involved in the same block, which is denoted as

∆d = ∆d1 = ∆d2. (5.14)

Therefore, Equation (5.13) is rewritten as

�1 � �2 ' (1� ∆d)(f1(t)� f2(t)). (5.15)

When sampling times are su�ciently short periods, Equation (5.15) can be sim-

pli�ed to Equation (5.16), which has the same meaning with g
0
1(y), at y = s at

time t.

lim
t!0

(�1 � �2) = (1� ∆d)� g
0
1(s) (5.16)

The temporal displacement error ∆d is a random variable with zero mean in a

range of ∆d 2 [�search,+search]. It is assumed that the prediction errors �1
and �2 are a memory-less stationary Gaussian source of zero means and variances

(�21,�
2
2), the total energy of prediction error (�2) is expressed as follows;

�2 = �21 + �22 = E((�1 � �2)2) = E((�1 + �2)2) ' E((1� ∆d)2)� (g
0
1(s))

2

' (1+E(∆2
d))| {z }

motion

� (g
0
1(s))

2| {z }
edge

.

(5.17)

In Lemma 5.1, �2 should be linear to (g
0
1(s))2 and E((1+ ∆d)2), which means

that the prediction error is mainly determined by the edge gradient and motion

vectors. When the current frame contains a lot of edge information, its predic-

tion error from the previous frame will be signi�cant. Moreover, the prediction

errors are more severe if the block with edges also has motion. Therefore, VBS

partitioning of those kinds of blocks should be considered to reduce the pre-

diction errors. On the contrary, when a block is homogeneous, the redundant

computational complexity can be removed without increasing prediction errors.

As a result, blocks with edge information and motion (named motion edge in

this chapter) need to be detected before the encoding process to reduce inter

prediction error and redundant computational complexity.
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5.3.2 Motion Edge Detection

From Lemma 5.1, the prediction errors of a block with motion edges are poorly

estimated. VBS is the one of techniques to reduce predication errors. The recent

standards such as H.264/AVC can reduce prediction errors over the previous

standards to some degree by applying �nite kinds of VBS. The proposed VBS

partitioning has di�erent points of view compared to H.264/AVC. In H.264/AVC,

VBS is determined by selecting the block shown minimum cost after encoding

with all possible block sizes. This clearly introduces computational complexity.

In the proposed VBS partitioning algorithm, VBS is obtained by observing which

block has motion edges. If the block has at least one motion edge, it is divided

into a small size block.

The procedure of motion edge detection is as follows;

1. 2� 2 blocks are selected from the top and left position of the frame, and

WHT coe�cients of the blocks calculated.

2. From Equation (5.7), the total energy of the 2� 2 block is conserved in

the transform domain. Therefore, the edge information can be obtained

from the statistics of non zero sequency terms (F (1, 0),F (0, 1),F (1, 1)).
A good approximation of the distribution of non zero sequency terms is a

variance. However, its computational complexity is too high to be applied

for complexity constrained systems. Instead of obtaining the variance, the

maximum values of non zero sequence terms are used to obtain similar

characteristic to the variance since the dynamic range of WHT coe�cients

of non zero sequency term is limited by the zero sequency term as shown

in Equation (5.6). When the condition of Equation (5.18) is satis�ed, this

block is considered as containing an edge.

max
(u,v) 6=(0,0)

F (u, v) � � (5.18)

where � is threshold value, which can be determined by considering how

much pixel values are changed between the neighbouring pixels as an edge.

� is not particularly sensitive to the image characteristics since only a small

block (2� 2) is used.
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3. Motion edges are obtained in the same fashion with Equation (5.18), which

is slightly modi�ed as follows;

max
(u,v) 6=(0,0)

jF (u, v)t � F (u, v)t�1j � � (5.19)

where F (u, v)t and F (u, v)t�1 represent the transformed block at the same

location both in the current and the previous frame.

4. When a block has a motion edge, the 2� 2 block is mapped to one pixel,

so that a 4:1 down sampled motion edge frame (called binary motion edge

map) is obtained from the original image without any further processing.

It gives computational e�ciency when the VBS partitioning is performed

directly on the down sampled binary motion edge map.

Figure 5.3 illustrates output edge images obtained by the proposed edge and

motion edge detection in comparison with Canny edge detection [12], which gives

a very accurate single edge detection result. The proposed method shows more

edge pixels than Canny. Canny detects a single edge line when it performs on

the boundary of an object. The results of the method proposed here shows com-

parable edges over all image resolutions (352� 288! 1280� 720). The target of

the proposed edge and motion edge detections is not obtaining a single edge (see

Figure 5.3(d)) but acquiring useful regions (see Figure 5.3(b)(c)). Therefore,

the proposed approach is suitable for �nding remarkable region, which give a

bene�t for video compression. Note that edge and motion edge images are 4: 1

subsampled versions, which are intentionally displayed as the same size for clear

distinction in Figure 5.3(b)(c).

Figure 5.4 shows the e�ect of the threshold value, � . As � is increased, the

weak edge pixels move to background pixels. Therefore, when high QP is applied

on the image, motion edge detection on the reconstructed image is equivalent

to increasing � . This is an important concept for the video encoder proposed in

this thesis because we can estimate the reconstructed image without performing

whole encoding process.

From a computational complexity standpoint, Canny edge detection requires

several steps; 1) smoothness by applying a Gaussian �lter, 2) �nding gradients

for each direction using Sobel or Robert operator, 3) double thresholds. A Sobel

operator can be used for �nding the �rst order gradient in Canny, but it requires 7
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Figure 5.3: Motion edge and edge detection results (a) original image (all
images are the 46th frame ); (b) 4:1 down sampled binary edge
images; (c) 4:1 down sampled binary motion edge images; (d) bi-
nary edge images obtained by Canny edge detection, where double
threshold values are [100, 180]

additions, 4 shift operations, 2 square operations, and 1 square root operation for

every three pixels. On the contrary, the proposed method requires 8 additions

for every four pixels. Table 5.2 shows the computational complexity of each

method. The computational complexity of Canny edge is obtained both for a

non optimized version and a highly optimized version using the IPP2 library.

The proposed approach shows faster operation compared to Canny edge (non

optimized one) by a factor three. Moreover, when we apply to HD sequence, it

only requires 6�7ms per frame to detect motion edges. If we assume that the

proposed method operates on a general purpose CPU, optimization is one of the

2Intel Integrated Performance Primitives : details are available at
http://software.intel.com/en-us/intel-ipp/
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Figure 5.4: The e�ect of threshold value � ; (a) binary edge image (b) binary
motion edge image; from the left � is 0, 5, 10, 40 for Pedestrian
sequence 46th frame at 720x576

options to obtain fast operation. Sometimes it is hard on a CPU not equipped

with instruction such as the Streaming SIMD Extensions (SSE). Although the

proposed one shows similar performance compared to highly optimized version

of Canny, it de�nitely shows better performance on general purpose CPU. Note

that all tests are performed on an IntelTM Core 2 Duo 3.0GHz with 2GB RAM

using Window XP version 2002 with service pack 2 written in ANSI C++.

Table 5.2: Comparison of execution time of edge or motion edge detection;
the number in () in Canny Edge denotes optimized version using
IPP library.

Unit (10 � ms
frame

) Edge Motion Edge Canny Edge

Mother (352x288) 7.00 8.47 21.21 (7.54)

Mobile(352x288) 5.68 6.97 41.05 (15.54)

Pedestrian(720x576) 27.45 33.19 84.21 (28.29)

Pedestrian(1280x720) 63.20 77.02 152.35 (57.39)
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5.4 VBS Partitioning for ME

In this section, the VBS partitioning algorithm for ME is presented using the

approach in the previous section. The relationship between the threshold value

for generating a motion edge image and QP is obtained by simple mathematical

analysis. Then, the VBS partitioning algorithm is explained in detail and results

presented.

5.4.1 Relationship Between Threshold (�) and QP

A memory-less Laplacian source with zero mean may provide the governing dis-

tribution for non-DC DCT or high-frequency wavelet transform coe�cients [82,

96]. The characteristic of the WHT is similar to that of the other DTs. Let us

suppose that the 2� 2 non zero sequency WHT coe�cients' residues, which are

used for detecting a motion edge image as explained in Section 5.3.2, follow a

zero mean Laplace distribution, i.e.,

plap(x) =
Λ
2
e�Λjxj, Λ =

p
2

�
(5.20)

where x and � represent the WHT non zero sequencies and their standard devi-

ation respectively. For a given QP, the distortion is obtained as:

D(Q) = 2�
 Z Q

2

0
x2plap(x)dx

!
+ 2�

1X
i=1

 Z i+Q
2

i�Q
2

(x� iQ)plap(x)dx
!

(5.21)

A closed form of D(Q) can be derived as

D(Q) = 1/2
 p

2Qe

p
2Q
�

 
2�
p
2Q

�

!
��1 + 2� 2 e

p
2Q
�

!
�2
�
1� e

p
2Q
�

��1
(5.22)

Figure 5.5 shows the distortion against transformed coe�cients' variance �2. For

larger �2, the distortion is linear to Q2. Moreover, large value of �2 is used for

deciding edges. So, the distortion can be rewritten for a large � as

D(Q) �= kQ2 (5.23)

Distortion here has the same meaning as prediction errors denoted in Equa-

tion (5.17). From Equation (5.17) and Equation (5.23) , the following condition
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Figure 5.5: D(Q) vs. variable �; the relation D(Q) �= kQ2 is obtained for a
large �

is valid.

(1+E(∆d1)2))� (g
0
1(s))

2 �= kQ2. (5.24)

Assuming that the displacement error E(∆d1)2 is negligible, the edge gradient

is also proportional to the threshold value, � . Therefore the threshold value is

also linear to QP:

� �= (� �Q) (5.25)

where � =
p
k.

Equation (5.25) shows that the variations of QP are similar to those of � . The

proposed VBS partitioning algorithm does not perform encoding processing; we

need to estimate the output of quantised signal which is usually obtained after

the encoding processing. Moreover, it is di�cult to understand the behavior

of QP in the pixel domain because QP works on the transformed coe�cients.

However, the proposed approach enables the encoder to obtain a similar image

signal after QP by adjusting � not to encode directly.

5.4.2 VBS Partitioning Algorithm

Figure 5.6 shows R-D performance by applying VBSs in JM reference software.

The degradation in performance for choosing 16� 16, 8� 8 and 4� 4 is negligi-

ble compared to using all possible modes for both slow and fast motion video.

Therefore the proposed VBS partition algorithm focuses on these three kinds of

block sizes.
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(a) VBS performance on foreman@352x288 (b) VBS performance on mother@352x288

Figure 5.6: The R-D performance according to di�erent block sizes; maximum
deviation between all possible modes and 16� 16, 8� 8, 4� 4 is
less than 0.2dB

The VBS partitioning algorithm makes use of the binary motion image. The

procedure is as follows;

1. A 16� 16 MB is chosen from the top, left position of the frame.

2. When the MB has motion edges, the block is partitioned as 8� 8 or 4� 4

block size depends on the location of motion edges by a recursive method.

3. Perform above procedure on the rest of MBs with raster scan order.

Figure 5.7(a) shows the ratio of deciding on 16� 16 blocks out of all possible

block sizes, where � is the major criteria to decide block sizes. As � gets large,

block with weak motion edges becomes a homogeneous block. Clearly this en-

ables us to control computational complexity automatically by not considering

weak motion edges. For example, when � is 30, the ratio of 16� 16 block occu-

pies more than 70%. The graphical illustration of VBS partitioning is depicted

in Figure 5.7(b). For MB0, the fourth quadrant is partitioned into 4� 4 block

size because motion edge pixels appear in that area of the MB. The other areas

of the MB are partitioned into 8� 8 block size. Moreover, MB5 is partitioned

into 16� 16 block size because no motion edge appears in this MB.

Figure 5.8 shows the VBS partitioned image at di�erent threshold value (� ).

As � increases, more blocks are partitioned into 16� 16 block size. However,

the strong motion edges still remain at high threshold value. Therefore, it is

possible to decide automatically which motion edges are weak by adjusting � .
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(a) Decision of 16x16 block according to threshold
value(�); sequence is Pedestrian@720� 576; as �
increase, 16x16 blocks are dominant as the selected
block

(b) Illustration of VBS partitioning; MB0 and
MB4 involve the sub blocks, MB5 is considered
as a 16� 16 block on 4

th image in Figure 5.4(b)

Figure 5.7: Illustration and e�ect of the VBS partitioning

Figure 5.8: VBS partitioned results at various threshold value (� ); (a)(b)(c)
are Mother sequence@352� 288, (d)(e)(f) are Pedestrian@720�
576; threshold value (� ) are 5, 10, 20 respectively from left side
(Note that 4x4 blocks are not displayed intentionally for clear
view).
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5.4.3 VBS Partitioning Algorithm Performance by Choos-

ing Optimum Threshold

In the previous section, we showed that prediction errors are mainly a�ected by

gradients and motion vectors as represented in Lemma 5.1. Moreover, we intro-

duce threshold value � , which is linearly proportional to the QP by analyzing

the relationship between distortion and prediction error. The proposed VBS

partitioning algorithm is integrated into the JM reference software. R-D and

Complexity-Rate (C-R) performance is compared to those of JM by adjusting �

at given QP as shown in Equation (5.25).

(a) R-D performance of Foreman; Maximum devi-
ation of R-D � = 1.5 is 0.57dB at 600kbps

(b) C-D performance of Foreman; Minimum com-
plexity reduction ratio is 11% at high bit rate

(c) R-D performance of Mother and Daughter;
Maximum deviation of R-D at � = 1.5 is 0.19dB at
600kbps (black arrows), � = 0 represents 1.98dB
degradation of R-D (blue arrows)

(d) C-D performance of Mother and Daughter;
Minimum complexity reduction ratio is 14% at high
bit rate

Figure 5.9: R-D and C-D performance for various thresholds � = � �QP at
given QP; (a)&(b) Foreman@352� 288 and (c)&(d) Mother and
Daughter@352� 288
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Figure 5.9 show R-D and C-R performance at di�erent �. From Figure 5.9(a)(c),

� does not have much in�uence on R-D performance at high bit rates. How-

ever, � plays an important role in mid and low bit rates. For example, almost

2dB R-D degradation is shown for Mother and Daughter operating 100kbps at

� = 0. Moreover, � = 1.5 shows the best performance for both sequences in

R-D and C-R performance. Note that the maximum deviation of R-D perfor-

mance compared to JM is less than 0.57dB in Foreman, and the minimum C-D

improvement is about 11% on both sequences as shown in Figure 5.9(b)(d). We

choose � = 1.5 as the optimum value for VBS partitioning.

5.5 Discussion

Despite the fact that there is a large number of VBS partitioning algorithms

presented by various researches, few promising techniques can be identi�ed as

potentially useful approaches from a computational complexity perspective. In

this chapter, the fundamental features of the WHT are overviewed, that is, its

energy compactness, dynamic range, the conservation of energy and the convo-

lution theorem. From Lemma 5.1, inter prediction errors are mainly caused by

spatial gradients and temporal motion. Then, a computational e�cient binary

motion edge detection algorithm is presented in the WHT domain. The results

shows that it is computational cost e�ective compared to the other edge detec-

tion algorithms such as Canny and Sobel operator. Moreover, the relationship

between threshold value (� ) and QP is established. Finally, VBS partitioning

algorithms based on motion edge detection are presented. Results show that it

can be used as a basic tool for complexity adaptation in a video encoder de�ned

in Chapter 8. A fast ME algorithm based on VBS in the SWHT domain is

presented in the following chapter.
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�There is no education like adversity.

Benjamin Disraeli

6
Motion Estimation based on Fast Walsh Bound

Search (FWBS)

6.1 Introduction

M
E is the process which generates the temporal displacements (motion vec-

tors) that determine how each motion compensated prediction frame is cre-

ated from the previous frame. A video sequence can be considered to be a

discrete three-dimensional projection of the real four-dimensional continuous

space-time signal. The objects in the real world may move, rotate, or deform.

So the movements should be observed indirectly by projecting the light re�ected

from the object surfaces onto an image. However, light sources can be moved,

and the re�ected light varies depending on the angle between a surface and a

light source. There may be objects occluding the light rays and casting shadows.

Moreover, the objects may be transparent so that several independent motions

could be observed at the same location of an image, or there might be fog, rain

or snow blurring the observed image. In addition, the process of discretization

introduces noise into the video sequence from which the video encoder estimates

motions. There may also be noise in the image capture device or in the elec-

trical transmission lines. A perfect motion model would take all those factors

into account and �nd the motion that has the maximum likelihood from the

observed video sequence. However, no such model exists. Therefore, a simple

model has been applied in ME for several decades. In [90], displacement based

predictive coding was presented under the assumption that the changes between

successive frames are the result of the translation of moving objects in the image

plane, which is called a translational model. This model is very simple; many
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ME algorithms for 2-D images have been presented based on this simple motion

model.

Figure 6.1: The e�ect of displacement based predictive coding

Figure 6.1 shows the e�ect of displacement based predictive coding compared
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to simple frame di�erencing. Figure 6.1(a)&(b) indicate the successive frames

respectively, Figure 6.1(c) depicts motion vectors overlaid on the reconstructed

image. Figure 6.1(d) shows a prediction error which mainly comes from moving

objects boundaries. Figure 6.1(e) represents the motion compensated frame,

where the prediction error is clearly dramatically decreased. In order to reduce

the prediction error, ME is an essential procedure. However, ME drastically

increases the computational complexity of the encoding algorithm. Therefore,

many fast algorithms have been presented to reduce the heavy computational

complexity burden.

In this chapter, an overview of fast motion estimation algorithms is presented.

Then a fast ME algorithm named FWBS is proposed in the SWHT domain.

Finally, the R-D and C-D performance of this approach is compared to those of

the other well known fast ME algorithms.

6.2 Related Work

Figure 6.2: The classi�cation of fast motion estimation algorithms [52]

Many fast algorithms have been presented in the last few decades. Clearly this

is an extremely active �eld in the research area. The computational complexity

of a ME technique can be determined by several factors such as search algorithm,

search area, and cost function employed. Among them, the search algorithms

play a key role in controlling of overall computational complexity and accuracy

of motion. Therefore, fast ME mainly focuses on �nding searching algorithms

that e�ciently reduce the computational complexity whilst keeping reasonable

degradation of R-D performance in video compression. In Figure 6.2, the classi-

�cation of ME algorithm is shown both in the time and in the transform domain
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approaches suggested in [52]. More details of various fast ME algorithms are

explained in the following.

6.2.1 Time Domain Algorithms

BMAs

The BMA has been widely used in video coding. The main reason for its pop-

ularity is its simplicity. It is a procedure to �nd a sparse motion vector �eld

for a block. The idea behind the BMA is that the current frame is divided

into non-overlapping blocks. Then, blocks in a certain search window in the

previously reconstructed frame are compared to the current block and the one

which leads to the best match is selected. The main di�erence between BMA

lies in the matching criterion (cost function) and the search scheme employed

to �nd the minimum distortion. It has been shown that the SSD indicates the

best performance for ME [28]. A more comprehensive survey on BMA was given

in [35]. Several famous algorithms are selected and reviewed here.

� FS: This algorithm is the most computationally expensive of all BMAs. It

calculates the cost function at each possible location in the search window,

where it �nds the best possible match. It gives the lowest distortion error

amongst all BMAs. In order to reduce the computational complexity of the

FS, many fast BMAs have been presented, which try to achieve the same

distortion error with as little computation as possible. However, the perfor-

mance of fast algorithms is sometimes degraded since inappropriate initial

search points generate a local minimum not a global minimum in the dis-

tortion function. Nevertheless, fast BMA is an alternative to overcome the

disadvantage of the FS. Therefore fast algorithms mainly focus on reducing

computational complexity without signi�cantly sacri�cing performance.

� 2-D Logarithmic Search (2D-LOG): Jain and Jain developed a 2D-

LOG algorithm based on a 1-D logarithmic procedure [48]. Their algo-

rithm performs under the assumption that the dissimilarity monotonically

increases as the search point moves away from the point corresponding to

the minimum dissimilarity. Most fast BMA algorithms are based on this

assumption. The operating procedure is as follows;
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1. The central point and one of the four boundaries of the search win-

dow are selected as initial searching points. Among these �ve points,

the one corresponding to the minimum dissimilarity is picked as the

winner.

2. Surrounding this winner, another set of four points are selected in a

similar fashion.

3. The procedure continues until the �nal step, in which a set of candi-

date points are located within a 3� 3 2-D grid.

Three Step Search (TSS) [50] and New Three Step Search (NTSS) [57] are

very similar to the 2D-LOG, except these algorithms only require three

steps and initial search points (nine points). In addition, many algorithms

similar to 2D-LOG have been proposed, such as four step search algo-

rithm [87], Diamond Search (DS) [107, 133], and Orthogonal Direction

Search (OSA) [89]. Also the combination of these algorithms can be con-

sidered. Some of these algorithms have been adapted in the JM reference

software. In [132], UMHexagonS was presented combining prediction, DS,

hexagon search, partial distortion, and adaptive early termination. The

approach was proven to be more robust than a single search strategy. The

simpli�ed version was also presented in [125]. In [66], the Enhanced Pre-

dictive Zonal Search (EPZS) algorithm was proposed. The EPZS de�nes

some sets of predicted search points, which are likely to give the best match

using median and temporal predictors.

� Conjugate Direction Search (CDS): The CDS is another fast search

algorithm presented in [59, 102]. This method can be implemented as a

one-at-a-time search method parallel to one of the coordinate axes, and

each variable is adjusted while the other is �xed. The procedure consists

of two parts. In the �rst part, it �nds the minimum dissimilarity along

the horizontal direction with the vertical coordinate �xed at an initial

position. In the second part, it �nds the minimum distortion along the

vertical direction with horizontal coordinate �xed position in the same

fashion as the �rst step.

� MBM: To save computation in block matching, MBM was proposed using

a pyramid structure, where typically a Gaussian pyramid is formed [109].

Motion search ranges are allocated among the di�erent pyramid levels,
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stating at the lowest resolution. Its computational complexity saves up to

67% without signi�cant degradation of a reconstructed image. However, it

still introduces high computational complexity compared to the other fast

algorithms.

Feature Matching

In [15], edge matching from frame to frame is used for choosing the start point

patterns of a search window. They used edge information to �nd the global

minimum, called an edge-assisted search algorithm. Image features such as lines

or curves are used for ME in [108]. Also background features are used in [131].

Generally speaking, feature matching algorithms are suitable for speci�c appli-

cations such as static scenes, video conference, and surveillance scenarios.

Gradients

The pel-recursive technique is an approach to 2-D motion estimation in image

planes. Conceptually, it is a type of region matching technique. It recursively

estimates motion vectors for each pixel to minimize a nonlinear function of dis-

similarity between two certain regions located in two consecutive frames. There

have been many enhanced versions since Netravali and Robbins published the

�rst pel recursive algorithm [83]. A comprehensive survey of various algorithms

using the pel-recursive technique can be found in [79]. Several new pel-recursive

algorithms have made further improvements in terms of the convergence rate and

the estimation accuracy through replacement of the �xed step size utilized in

the Netravali and Robbins algorithm, which make these algorithms more adap-

tive to the local statistics in image frames. However, its original formulation

was deterministic. The update of the ME was based on the minimization of the

displaced frame di�erence at a pixel. It is noted that pel-recursive ME is highly

sensitive to the presence of observation noise in video images. There has been

much research on fast ME algorithms based on image gradient information. In

[60], a Block based Gradient Descent Search (BBGDS) algorithm is presented,

where the direction in which minimum is expected to lie is used to determine

the search direction and the position of the next search block. In [8, 44], bidi-

rectional gradients are used to �nd motion vectors. Their methods estimate the
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motion between two images based on the local changes in the image intensities

while assuming image smoothness, which result in comparable performance in

the case of various motion models (translation, rotation, a�ne, and projective).

6.2.2 Frequency Domain Algorithms

Frequency-domain algorithms for motion estimation have been developed as an

alternative to block matching methods. This approach has several bene�ts.

The decoding part is no longer needed as a close-loop as in the spatial domain.

It gives good performance in terms of both objective and subjective quality

due to controlling higher spatial frequencies to which the HVS is less sensitive.

However, it de�nitely introduces additional computational complexity because

the recalculation of transform is performed at every shifted as part of ME.

� DCT based approaches: In most video standards, the feedback loop in

the coder for temporal prediction consists of a DCT, an Inverse Discrete

Cosine Transform (IDCT), and spatial-domain ME and motion compen-

sation. The feedback loop limits the throughput of the coder in addition

to the additional complexity attached to the overall architecture. In [49],

a fully DCT based motion compensated video coder was presented, E�ort

was made to ensure interpretability of the pixel and the DCT domain so

that DCT video codecs were fully compatible with the video coding stan-

dards. However, their algorithm introduces computational complexity for

performing the DCT at every search window. Therefore, many algorithms

have been presented for reducing the number of SAD in the DCT domain

by introducing cost functions [72], pseudophase technique [80], and phase

correlation [56].

� FFT based approaches: The FFT is used to obtain the frequency re-

sponse to a time domain signal. The phase correlation method has been

widely used for measuring motion vectors [10, 54]. It provides a very com-

putationally e�cient technique assuming a relative to large size of block.

However, performance on small blocks indicates that it introduces compu-

tational complexity. Therefore, �nding global motion vectors caused by

camera motion is one of the promising applications of these approaches.

In [45], the Windowed-Sum-Squared-Table algorithm was presented, where
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the FFT was used for reducing SAD operations in the block matching.

Their approaches extend a similar previous approach [26].

� WHT based approaches: Since the WHT consists of simple basis func-

tions (�1). There have been several attempts to use it in a complexity

restricted application. As our proposed method also uses WHT, related

work is reviewed in detail.

Gray Code Kernels [77]: In this approach, Gray Code Kernels are used

in �ltering an image. The distance between a pattern and an image window

is bounded by the projection value on the Walsh Hadamard basis functions.

They proved the lower bound can be inferred from normalized projection

kernels using a Cauchy-Schwartz inequality in the follow:

dE � b2

jjujj2 (6.1)

where b is a projection value on vector u. They only de�ned a lower bound

of SSD. On the contrary, our proposed method shows that lower and upper

bounds on distance are restricted by its norm operations as described in

Chapter 6.3.2.

Normalized Cross Correlation (NCC) [86]: The NCC is particularly

useful since it is insensitive to both signal strength and level even though

NCC is computationally expensive. In [86], a computationally e�cient

method is proposed to generate NCC using a coarse-to-�ne algorithm. As

mentioned before, the phase-correlation method is suitable only for a large

block size, they focused on a template matching approach using a reusable

intermediate value to ensure speed up.

Fast Walsh Search (FWS) [62] Motivated by [77], the Partial Absolute

Distance (PAD) based BMA was presented named FWS in [62]. Their

algorithm used block pyramid matching. For example, the zero sequency

term of the n � n block is the lower bound of the distance denoted as

in Equation (6.1). This block is further divided by n0, and its sum of

the zero sequency terms of sub blocks gives a tighter lower bound of the

distance as follows.

dE �
X
n0

b2n0

jjun0 jj2
: : : � b2

jjujj2 (6.2)
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As a result, they only use a zero sequency term of the WHT, which is equiv-

alent to use the sum of pixel values of a block in the pixel domain. The

FWS does not fully make use of the WHT properties such as the energy

compactness of DTs. Gray Code kernel and NCC required a large block

size to reduce ME error. On the contrary, FWS can be applied for small

block sizes without sacri�cing performance. Therefore, FWS is considered

as comparison with the proposed method in terms of the WHT approach

in this chapter.

6.3 Cost Functions

In order to measure the similarity between the block in the current frame and a

candidate block in the reference frame, various similarity measure metrics (cost

functions) are used. The SSD and the MSE are the most commonly used due to

its lacks of a multiplication operation. Moreover, the bound of the SSD in the

pixel domain is simply obtained by applying the L1-norm and in�nity-norm to

the SWHT coe�cients.

6.3.1 Similarity Measure Metrics (Cost Functions)

The goal of a ME procedure is to �nd the motion vector,
!
d = (dx, dy) for the

square current block, C(x, y), so that the error between the block C(x, y) and

searching block in the reference frame R(x� dx, y� dy) is minimized. Similarity

measure metrics are de�ned as a criterion which measures the goodness of ME

or how the estimation error is calculated. Several di�erent similarity measure

metrics have been proposed. Some give more robust ME and a high visual image

quality, whereas some focus on reducing the computational complexity load. The

computational complexity associated with some common metrics is described in

the following:
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� The NCC measurement between the two blocks is de�ned as follows [6],

where the block size is w� h.

NCC =
Pw
x=1

Ph
y=1C(x, y)R(x� dx, y� dy)qPw

x=1

Ph
y=1C(x, y)2

qPw
x=1

Ph
y=1R(x� dx, y� dy)2

(6.3)

To determine motion vectors, this cost function is evaluated for selected

candidate motion vectors and the maximum correlation value is chosen.

� The SSD usually yields very good performance [5], which is sometimes

called the Sum of Squared Error (SSE) [14]. Its square root is also widely

used as a cost function, which is called Root Sum of Squared Di�erences

(RSSD). The MSE of an estimator is one of many ways to quantify the

amount by which an estimator di�ers from the true value of the quantity

being estimated, as well as its square root is Root Mean Squared Error

(RMSE). These are all essentially minor variations of the same cost func-

tions given as

SSD = SSE =
wX
x=1

hX
y=1

(C(x, y)�R(x� dx, y� dy))2 = jjC �Rjj22

MSE =
1

w� h
wX
x=1

hX
y=1

(C(x, y)�R(x� dx, y� dy))2

RSSD =
p
SSD = jjC �Rjj12

RMSE =
p
MSE.

(6.4)

where jj jj2 is the L2-norm.

� The SAD is widely used due to its simplicity [79]. It is one of the simplest

possible metrics that takes into account every pixel in a block. However the

SSD is not the best option for taking into account human perception, so

the �nal re�nement of a ME process is often done with SSD or SATD (see

below). In order to compensate for degradation, a Sum of Approximate

Square Di�erence (SASD) was presented recently in [16]. However it also

introduces computational complexity compared to the SAD, even though

their approach reduces the complexity of SSD by 70%. The de�nition of

SAD is denoted as

SAD =
wX
x=1

hX
y=1

jC(x, y)�R(x� dx, y� dy)j = jjC �Rjj1 (6.5)
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where jj jj1 is L1-norm.

� The SATD is widely used for block matching in ME [105, 116]. It works

by taking the frequency transform of the di�erence between the pixels in

the current block and its corresponding pixel in a search window. The

SATD is less complex than the SAD, which is a critical drawback. The

bene�t of the SATD is that it more accurately predicts quality from both

the standpoint of objective and subjective metrics. The transform used

in H.264/AVC is usually the Hadamard transform for a small block (4� 4

block size), where computational complexity is not negligible even though

the Hadamard transform has simple basis kernels (�1). The de�nition

of the SATD depicted in the follows, where T represents the Hadamard

transform.

SATD =
wX
x=1

hX
y=1

jT (C(x, y)�R(x� dx, y� dy))j = jjT (C �R)jj1 (6.6)

6.3.2 Bound of RSSD (SSD) in the Transform Domain

For two dimensional Rn�n space, let I(x, y) and I
0
(x, y) represent intensity

functions at each pixel location (x, y) in the current and reference images. The

Euclidean distance (ED) is de�ned in Equation (6.7) as a SSD similarity measure

metric.

d2E(I, I
0
) =

nX
x,y=1

 
I(x, y)� I 0(x, y)

!2
(6.7)

Lemma 6.1. Let R = fr1, : : : , rn2g and C = fc1, : : : , cn2g be the n� n 2-D

vectors of the reference and the current block respectively. The transform

basis functions are B = fb1, : : : , bn2g, and the projection vectors on B of R

and C are UR = fuRi , : : : ,uRn2g and UC = fuCi , : : : ,uCn2g respectively. The

lower and upper bounds of dE(R,C) are expressed as

������UR �U c
������
1
� dE(R,C) �

������UR �U c
������
1

(6.8)

where jj jj1 is the in�nity norm satisfying jjXjj1 = max(jx1j, : : : , jxnj),
X = fx1, : : : ,xng, and jj jj1 is a L1-norm denoted as jjXjj1 =

Pn
i=1 jxij.

Proof. To simplify this proof, Figure 6.3 is introduced to help visualize the

problem. Firstly, we consider the projection of r1 onto two basis functions of an
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Figure 6.3: Illustration of projection of orthogonal transform onto the basis
functions; Projection of r1 2 R onto (a) two basis functions and
(b) three basis functions

orthogonal transform. The length from the origin to r1, dE(r1, 0) is de�ned as.

dE(r1, 0) =
q
r21 (6.9)

From the triangle inequality, Equation (6.10) is obtained.

dE(r1, 0) � juR1 j+ juR2 j (6.10)

In a right-angled triangle, the length of an oblique side is larger than the maxi-

mum value of the other sides. Therefore, the lower bound of dE(r1, 0) is obtained
as

dE(r1, 0) � max(uR1 ,u
R
2 ) (6.11)

From Figure 6.3(b), it can be seen that Equation (6.11) is also valid for projection

onto three basis functions. The x represents the projection vector on the b1, b2
plane. The lower and upper bounds are obtained as

max(uR1 ,u
R
2 ) � dE(x, 0) � juR1 j+ juR2 j (6.12)

From Equation (6.10), Equation (6.11), and Equation (6.12), the bounds of

dE(r1, 0) can be written as

max(uR1 ,u
R
2 ,u

R
3 ) � dE(r1, 0) � juR1 j+ juR2 j+ juR3 j (6.13)
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When r1 is extended to vector area R and the projection on basis functions UR,

the following is observed by recursion of the operations above.

������UR
������
1

= max(uR1 , : : : ,u
R
n ) � dE(R, 0) �

n2X
i=1

juRi j =
������UR

������
1

(6.14)

Finally, if two vectors R and C are considered, Equation (6.14) is extended to

the di�erence of two vectors.

������UR �UC
������
1

=max(uR1 � uC1 , : : : ,uRn � uCn )

� dE(R,C) �
n2X
i=1

juRi � uCi j =
������UR �UC

������
1

(6.15)

From Lemma 6.1, the lower bound of the SSD between two blocks' pixel

values is restricted by the maximum value of transformed coe�cient, and the

upper bound is also restricted by a L1-norm of the transformed coe�cients.

When transforms such as the DCT or the SWHT are used for calculating the

SSD, the DC or zero sequency term has a high probability to be a maximum

number. If the transformed coe�cients are ordered in decreasing energy, such

as a zigzag scan, the SSD of the pixel domain can be obtained by calculating

the most signi�cant coe�cient's SAD operations. Therefore, a small number of

operations give a good performance and low computational complexity according

due to the energy compactness characteristic of orthogonal transforms. For

example, when we choose two blocks, A,B, whose pixel values are the same,

i.e. jjA�Bjj1 = jjA�Bjj1, then dE(A,B) is the same as its in�nity-norm.

Therefore, we can easily calculate the RSSD only taking the absolute value of

the DC terms of the two blocks in the transform domain. This is a special case of

Lemma 6.1. This provides motivation for fast ME using SWHT in this chapter.

6.4 The FWBS Algorithm for Motion Estimation

In this section, we propose the FWBS algorithm that performs block matching

in the SWHT domain and provide its performance results. Using Lemma 6.1,

massive reduction of the SAD operations is achieved by adapting it to work in

the transform domain.
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6.4.1 Fast Sequency ordered Walsh Hadamard Transform

From Lemma 6.1, the RSSD is restricted from in�nite-norm to L1-norm of the

transformed coe�cients. The SWHT has an energy compactness property like

other orthogonal transforms explained in Section 5.2.1. Therefore, when SWHT

coe�cients of a 16� 16 block are used, the zero sequency term might be the

value of the in�nity-norm. Summing the rest of the coe�cients to the zero

sequency term makes the upper bound be close to the RSSD. 16 lower frequency

coe�cients out of 256 coe�cients are enough to obtain the upper bound of the

RSSD, which is the main way to reduce the number of SAD operations. However,

the SWHT of a whole block is required, which leads to high computational

complexity even though only 16 coe�cients of a block are needed. Therefore,

a computational cost e�ective algorithm for the SWHT is a crucial part of the

fast ME proposed here. A fast SWHT method is presented by utilizing the

relationship between a block and its sub-blocks in this section.

Lemma 6.2. Given a block of n� n Xnn, where n = 2k, divided into its

sub blocks n
2
� n

2
, four sub blocks' SWHT are denoted as X1,X2,X3 and X4.

The relationship of the SWHT between a block and its sub blocks can be

obtained as

Xnn = (I n

23

 S4)SWHT2�2(Qnn) (6.16)

where 
 is Kronecker multiplication, SWHT2�2 is a 2� 2 SWHT, I and

Qnn are a identity matrix and reordered sub blocks' SWHT coe�cients re-

spectively. Qnn is denoted as:

Qnn = fX1(0),X2(0),X3(0),X4(0), : : : ,X1(
n

2
� 1),X2(

n

2
� 1),X3(

n

2
� 1),X4(

n

2
� 1)g

(6.17)

and S4 is a reordering diagonal matrix de�ned as:

S4 =

2
6666664

I2 0 0 0

0 B2 0 0

0 0 I2 0

0 0 0 B2I

3
7777775 (6.18)
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where B2 and I2 are vertical transition matrix and reverse identify matrix

denoted as

2
4 x2 x1

x4 x3

3
5 = B2

2
4 x1 x2

x3 x4

3
5 , I2 =

2
4 0 1

1 0

3
5 . (6.19)

Proof. Detailed proof is presented in Appendix A.

Lemma 6.2 indicates that the transformed coe�cients of a n� n block could

be obtained via its sub partitioned four n
2
� n

2
SWHT coe�cients without an

inverse transform. It gives a hint to calculate the required coe�cients separately

since all the coe�cients can be calculated by 2� 2 order independently, which

gives additional bene�t for reducing computational complexity. Moreover, 2�
2 SWHTs of an image are already calculated as part of the VBS partitioning

procedure in Chapter 5. Therefore, the best option is that these values are

reused in the ME process.

Assume that the lower 4� 4 coe�cients of a 16� 16 block are needed to �nd

motion vectors in the search window. Figure 6.4 visualizes this assumption.

Let the search range be p, then the size search window becomes 2p+ 1 in the

reference frame as shown in Figure 6.4(a). Assuming a 16 � 16 block is the

required size for a matched block. The procedures of obtaining the lower 4� 4

coe�cients are as follows:

1. The searching window of 16� 16 in the reference frame is equally divided

into sixteen 4� 4 sub blocks as shown in Figure 6.4(b), and zero sequency

terms of each sub block are calculated.

2. Using four zero sequency terms in the �rst quadrant, 2 � 2 SWHT on

those 4 coe�cients makes 4 lower coe�cients of a 8� 8 block as shown in

Figure 6.4(c). The same procedures are performed in the other quadrants.

3. Using a reordering matrix mentioned in Lemma 6.2, the lower 4� 4 SWHT

coe�cients in a 16� 16 block are calculated as depicted in Figure 6.4(d).

4. Scan the coe�cients in zigzag order, which means that coe�cients are

considered in order its energy.
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Figure 6.4: The procedure for obtaining lower 4� 4 coe�cients in a 16� 16

block using sub-blocks' coe�cients using Lemma 6.2

For illustration, we compare the proposed fast SWHT with the fast algorithms

presented in [70, 71]. These existing fast algorithms the number of additions for

a n� n block transform is

Cexist = 2n2 log2(n). (6.20)

On the contrary, the proposed method requires

Cpropose =

# of additions for 4x4 zero sequency termsz}|{
n2 +

# of 2x2 SWHTz}|{
82 . (6.21)

For example, the proposed fast SWHT for a 16� 16 block shows a complexity

gain by 2048
320

= 6.7 times compared to existing fast algorithms.

6.4.2 The Proposed Fast Motion Estimation Algorithms

An illustration of the FWBS is depicted in Figure 6.5(a). ME begins with the

origin point (0, 0), which could be the same or the prediction position of the
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current block in the reference frame. The procedure is as follows:

1. Let the SWHT coe�cients of the search window matched with the cur-

rent block be uRi , the coe�cients of the current block be uCi . The initial

distortion dindex is obtained as in Equation (6.22), and saved as an index.

dindex =
16X
i=1

juRi � uCi j (6.22)

2. Using spiral search patterns (see numbers of Figure 6.5(a)), the distortion

for the next searching point is compared with an index. If the distortion

is larger than an index in the middle of performing Equation (6.22), no

more calculation is needed, and the routine is escaped. For some blocks

with little correlation a few sequency terms are needed instead of checking

all 16 coe�cients, which leads to computational complexity saving. Then

the search point moves to the next position, and the same processing is

performed in all searching positions.

3. Find the global minimum distortion in all search points, then save motion

vectors for a given block.

Note that the SWHT coe�cients obtained as part of the VBS partitioning could

be reused in the ME denoted as the even position in Figure 6.5(a).

To further reduce computational complexity, the FWBS is performed only on

even positions to �nd the minimum cost as shown in Figure 6.5(b), called Fast se-

quency ordered Walsh hadamard transform Bounding Search for Reusable block

(FWBSR) . It is a complexity e�cient method because the SWHT coe�cients

at even positions are already obtained in the middle of performing VBS. There-

fore, no further computational complexity is introduced except �nal re�nement

of integer-pel motion vectors. This approach has the same meaning as perform-

ing integer-pel ME on a 2:1 down scaled image. The procedure consists of two

steps. In the �rst step, the minimum cost is obtained and saved as an index after

searching all possible even positions in the search window. At the next step, the

minimum costs of eight integer-pels near the index position are calculated and

compared with each other. The position that indicates the minimum is taken as

the motion vector.
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(a) FWBS spiral search pattern and procedure for ME; Start from origin point, and �nd
the minimum cost of all positions

(b) FWBSR spiral search pattern and procedure for ME; Start from origin point. First,
�nd the minimum cost of all even positions. Second, �nd the global minimum of 9 points
(8 positions + minimum cost position)

Figure 6.5: The search pattern and procedure for FWBS and FWBSR. k rep-
resents 16 coe�cients from DC
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6.4.3 Results of Motion Estimation

Computational Complexity Analysis

The computational complexity of the FWBS is compared to the FS. Equa-

tion (6.23) shows the computational complexity of the FWBS. The �rst term

indicates the number of additions to obtain 16 coe�cients of the SWHT as shown

in Equation (6.21). The second term represents the number of searching points

(2p+ 1)2. The proposed method requires sub partitioned block size up to ( n
22

)2

for a given n2 block . When n is less than 8, no sub block partition is avail-

able, thus fast algorithms are used for obtaining a block's coe�cients, where the

number of additions is 2n2 log2 n.

NFWBS+ =

8><
>:

(n2 + 64)((2p+ 1)2 + 1) for n � 8 ,

(2n2 log2 n)((2p+ 1)2 + 1) for n < 8.
(6.23)

In the case of the FWBSR as shown in Equation (6.24), the number of additions

is only required at even positions and �nal re�nement of 8 integer-pels. More-

over, it can be reduced by reusing pre-calculated coe�cients as part of the VBS

partitioning. Therefore, the FWBSR gives computational complexity bene�ts

both in terms of the number of calculating SWHT coe�cients and the searching

points.

NFWBSR+ =

8><
>:

(n2 + 64)( (2p+1)2
4

+ 9) for n � 8 ,

(2n2 log2 n)( (2p+1)2
4

+ 9) for n < 8.
(6.24)

In terms of SAD operations, the FWBS and FWBSR performs an early termi-

nation if the current summing SAD is larger than the index distortion dindex

in Equation (6.25). For example, �� is one� means the �rst SAD is larger than

dindex, and no further processing is needed. The maximum value of � is 15.

NSAD =

8><
>:
E[(16� �)]� (2p+ 1)2 � 16(2p+ 1)2, for FWBS

E[(16� �)]� ( (2p+1)2
4

+ 8) � 16( (2p+1)2
4

+ 8), for FWBSR
(6.25)

where E[x] represents a expectation of x. For the FS, the total number of SAD

is denoted as:

NSAD = n2(2p+ 1)2 (6.26)
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In comparison with the FS, we should consider the complexity of the SAD op-

eration. The FWBS focuses on reducing the number of SAD operations. Before

analyzing the computational complexity, we note the di�erence between a SAD

operation and an addition. To perform a SAD operation on a general purpose

processor without speci�c mnemonics such as the SAD, more CPU clock cycles

are need compared to an addition or a subtraction which requires only one cycle

in most common CPU. The pseudo code of a SAD is depicted as follows;

1: move r, a

2: cmp r, 0

3: jge jump

4: neg r

jump:

5: mov return, r

Table 6.1: Equivalent complexity comparison between FWBS and FS for a
block; () indicates the complexity gain of the FWBSR, sr represents
search range

sr FS FWBS FWBSR Complexity gain

4 103,680 6,800 2,580 15.25(40.19)
n=16 8 369,920 23,440 6,740 15.78(54.88)

16 1,393,920 87,440 22,740 15.94(61.23)

4 25,920 6,608 2,388 3.92(10.85)
n=8 8 92,480 23,248 6,548 3.98(14.00)

16 348,480 87,248 22,548 3.99(15.46)

4 6,480 6,544 2,324 -0.01(2.79)
n=4 8 23,120 23,184 6,484 -0.01(3.57)

16 87,120 87,184 22,484 0(3.87)

To implement a SAD operation on a general purpose CPU, four CPU cycles

are needed at least. This shows that the maximum complexity cost of a SAD,

CSAD, is almost �ve times of that of an addition or subtraction. Thus, it is

unfair comparison if the computational complexity of the two methods is con-

sidered the same. We assume that the conversion relationship between a SAD

and an addition in terms of computational complexity is a factor of �ve as in

Equation (6.27).

CSAD ' 5Caddition (6.27)
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Table 6.1 shows the equivalent computational complexity. The FWBS and

FWBSR show high complexity gain. For example, the FWBS and FWBSR

are faster than the FS by a factor of 16 and 61 respectively. As the block size

is decreased, the complexity gain is also decreased. Search range does not sig-

ni�cantly a�ect the complexity gain at a �xed block size. When the FWBS is

applied to a large block, its complexity gain increases exponentially compared to

the FS. Template matching is a good candidate application of the FWBS since

it requires a large block.

Comparison with the Other Fast Motion Estimation Algo-

rithms

We simulate the performance of the FWBS under the condition that the block

size is chosen as 16� 16 pixels, the maximum displacement is �15, and the accu-
racy is integer-pixel. The test video sequences used are the �Foreman�, �Mother

and Daughter�, �Pedestrian�, �Rush Hour�, and �Blue Sky�. Their characteristics

are described in detail at Chapter 3. Objective criteria MSE are applied to mea-

sure the quality of ME. Three di�erent well known fast algorithms are chosen to

be compared to the FWBS, these are TSS, NTSS, and DS. In addition, the FWS

algorithm is also compared to the FWBS because they both use the WHT. The

main di�erence between the FWBS and fast ME algorithms is controlling not

the number of searching points but the number of SAD operations. It turns out

that the FWS gives the best accuracy as shown in Table 6.2. In particular, it

does not require a full WHT since Pseudo Sum of Absolute Di�erence (PSAD)

could be obtained using only zero sequency terms of separated blocks, which are

calculated just by summing up all pixels value in the blocks. All fast algorithms

are compared to the FS in terms of the MSE degradation, which is also rede�ned

as �PSNR drop", and execution time, named �Time Saving�. The FWBS pro-

vides quite accurate and reliable ME performance for most video sequences from

QCIF to HD and 30% faster compared to the other fast algorithms performed in

the pixel domain. The PSNR gain of the FWBS over the other fast algorithms is

shown from 0.9dB at �Pedestrian� to 0.1dB at �Mother and Daughter�. Clearly

this is not the case for FWBSR that shows drop o� greater than 2dB for �Pedes-

trian� and �Rush hour�. However, its computational complexity saving might be

a good attractive feature in some applications.
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Table 6.2: Comparison with other fast ME algorithms; FWBS shows a com-
parable performance both a search time and MSE error; yellow
highlight represents the result of the proposed method
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Table 6.3: The performance of the fast algorithms for camera rotation; the fast
algorithms NTSS and TSS do not �nd motion vectors properly, on
the contrary, FS, FWS, FWBS, FWBS, and DS shows comparable
results.

The TSS, the NTSS, and the DS show comparable performance. The reduction

in the number of search points is usually based on the assumption that the

MSE increases monotonically as the search point moves away from the global

minimum. However, in the �Blue Sky� sequence, which contains camera rotation,

the performance of TSS or NTSS shows a signi�cant degradation. TSS has been

the most popular approach due to its simplicity. However, TSS su�ers from two

problems: �rst, its PSNR is substantially lower than that of FS and second,

it can be easily trapped in a non-optimum solution especially not in translate

motion model. Table 6.3 show the performance of the TSS working on �Blue Sky�

sequences. The performance is degraded by almost 10dB, it is hard to adapt TSS

in these kinds of video sequences. However, the FWBS, FWBSR and the FWS

show good performance on these video sequences, since these algorithms focuses

not on reducing the number of searching points but eliminating the number of

SAD operations. Moreover, DS shows a comparable result. Therefore, search

patterns play an important role in ME for those sequences.

Performance comparison with Fast MEs in the JM reference

software

ME for H.264/AVC enables sub-pel accuracy motion vectors up to quarter-pel,

and two separated stages for ME was adapted in the JM. Firstly, integer-pel ME

is �nding a best matched integer pixel position in the reference frames. Following
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the integer-pel ME, sub-pel ME is performed around the best integer position

to further reduce the prediction error. The search range of sub-pel ME in JM is

limited not to reach other neighbouring integer-pel positions.

The FWBS is integrated into JM by replacing integer-pel ME of the JM, which

is compared to the other fast ME. Several fast ME algorithms were integrated

into JM reference software to reduce the encoding time of the ME process such

as UMHexagonS [132], Simpli�ed UMHexagonS [125], and EPZS pattern [66].

These algorithms show that more than 90% of ME time can be removed from FS

while very good R-D performance is still maintained. The FWBS is compared

to these algorithms in terms of R-D and C-R performance. We test FWBS al-

gorithm on Foreman and Mother and Daughter sequences. For the FWBS, the

PSNR drop is less than 0.29dB at 200kbps, which is the same as the PSNR

drop obtained by the other fast ME algorithm as shown in Figure 6.6(a). If

the FWBSR is used instead of the FWBS, PSNR drop is not severe or at least

the same as other fast algorithms at high bit rate (low QP). On the contrary, a

considerable PSNR drop occurs when high QP (low bit rate) is applied, 1.42dB

PSNR drop compared to the JM. Turning to C-R performance, the FWBS shows

slightly higher complexity compared to the other fast algorithms, but it is negligi-

ble. More computational complexity saving can be achieved when the FWBSR

is used. In a static sequences such as Mother and Daughter, the FWBS and

FWBSR show the almost same R-D performance in comparison with the other

fast MEs as shown in Figure 6.6(c). Therefore, FWBSR can be used for static

sequences without major degradation of the R-D.

6.5 Discussion

Block matching is used more frequently than any other ME technique in motion-

compensated coding. It works based on partitioning a frame into non-overlapped,

equally spaced, �xed size, small rectangular blocks and assuming that all pix-

els in a block experience the same translational motion. Consequently, block

matching is much simpler and involves less side information compared with ME

for arbitrarily shaped blocks. In this Chapter, various issues related to block

matching are discussed such as selection of block sizes, cost functions, and search

algorithms. The SAD is commonly used as a cost function, it also provides a

bottleneck for fast ME algorithm. We propose the FWBS algorithm based on
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(a) R-D performance comparison with the other
fast MEs implemented in the JM; VBS+FWBS
shows almost the same performance as the other
algorithms. VBS+FWBSR has considerable PSNR
drop of low bit rate; Red box represents PSNR drop
for VBS+FWBSR, yellow box represents PSNR
drop for VBS+FWBS compared to JM

(b) C-R performance comparison with the other
fast MEs ; VBS+FWBS shows slightly higher com-
plexity than the other algorithm. VBS+FWBSR
shows the minimum complexity among algorithms

(c) R-D performance comparison with the other
fast MEs implemented in the JM; VBS+FWBS and
VBS+FWBSR show almost the same performance
as the other algorithms in static sequences

(d) C-R performance comparison with the other
fast MEs

Figure 6.6: R-D and C-R performance comparison for (a)&(b)
Foreman@352� 288, (c)&(d) Mother and Daughter@352� 288

the fact that the SAD of pixels is bounded as a in�nity-norm and L-2-norm

of transformed coe�cients. Moreover, the relationship between a block and its

sub-blocks� coe�cients is presented, which gives an additional bene�t to obtain

transformed coe�cients of a large block without an inverse transform. More-

over, this approach improves a computational e�ciency by a factor 6.7 times

to obtain the lower 16 coe�cients of a 16� 16 block compared to the fast al-

gorithm. The FWBS outperforms over other commonly used fast algorithms

in both computational complexity and MSE. The computational e�ciency of

the FWBS mainly comes from reducing the number of SAD operations not the
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number of search points, which gives a good results on challenging data such as

camera rotation. In the next chapter, a skip MB detection algorithm based on

the FWBS is presented to further reduce computational complexity.
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�If a man takes no thought about what is distant, he will �nd
sorrow near at hand.

Confucius

7
Skip Macro-Block Detection

7.1 Introduction

T
he encoder normally skips a signi�cant proportion of MBs, especially for

sequences with low activity. Moreover, more skipped blocks appear as QP is

increased as shown in Figure 5.6. If a MB is classi�ed as a skipped MB, it means

that no further encoding is carried out and a signi�cant complexity reduction

is possible since it is not necessary to perform ME, DCT, IDCT, and entropy

coding. Skip MB detection algorithms have been researched for low complexity

encoding in H.263 [23, 101], and H.264/AVC [55, 120, 128]. Since H.264/AVC

in particular requires high computational complexity, skip MB detection is an

attractive technique for reducing the computational complexity. Therefore we

focus on a skip MB detection algorithm in the case of a H.264/AVC encoder in

this chapter. In a H.264/AVC encoder, such as the o�cial reference software

(JM reference software), skip MB detection is carried out after encoding all

the possible modes, this has no advantage in computational complexity. The

proposed skip MB detection algorithm works with the VBS partitioning and the

fast ME algorithm explained in Chapter 5 and Chapter 6. Our proposed skip

mode detection uses the model of motion compensated pixel value presented in

[18]. However, we cannot directly use it because our approach is performed in

the SWHT domain and thus this approach is modi�ed. The basic idea of the

algorithm can be summarized as follows with details explained in this chapter:

� We �rst derive the relationship between the ICT and the SWHT by intro-

ducing simple orthogonal transform (named S-transform).
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� Shifting the average value of motion compensated pixels by 3� in the pixel

domain. This only a�ects the DC coe�cients of the ICT.

� If pixel values are positive real, then the other AC samples of the SWHT

is bounded to �1
2
of the zero sequency term.

� In the ICT of 3� shifted pixel values, the DC value could be the maximum

value of the block. If the quantised DC is a zero, this block is considered

as a Zero Quantized DCT coe�cients detection (ZQDCT).

7.2 Related Work

The skip MB detection algorithm consists of two main components in general,

ZQDCT and Zero Motion Detection (ZMD). Pixels in the blocks of a motion

compensation frame are very close to zero. As expected, these blocks have great

probability to be all-zero DCT coe�cients blocks after DCT and quantisation.

ZQDCT mainly focuses on detecting all-zero DCT coe�cients blocks before DCT

and quantisation, which makes the encoder more e�cient. The ZMD is carried

out to �nd blocks with zero motion vector, mv(dx, dy) = (0, 0), which means

that the best matched MB of the current frame is the same location of the ref-

erence frame [127]. Although ZMD methods are developed for previous coding

schemes, such as H.263, they cannot be directly applied to H.264/AVC. This is

because compared to H.263, where only two block sizes (16� 16 and 8� 8) are

used, seven block sizes varying from 16� 16 to 4� 4 are used in H.264/AVC. In

order to adapt the ZMD algorithm to H.264/AVC, the most common approaches

focus on the pre-de�ned threshold empirically obtained based on R-D optimiza-

tion [20, 128]. This introduces computational complexity as well as the possi-

bility of quality degradation by selecting an inappropriate threshold. Moreover,

H.264/AVC adopts motion vector prediction using neighboring blocks based on

the fact that the motion vector has a close correlation with neighboring blocks

in the spatial domain. Thus research on skip MB has been more focused on

�nding ZQDCT blocks with accurate and low complexity algorithms.

In [124], an early detection method for ZQDCT was proposed by de�ning a

su�cient condition for quantising all DCT coe�cients to zero. Each block is

checked for this condition, and DCT and quantisation are skipped if it holds.

In [98, 118], the authors theoretically derived a precise condition and improved

98



Chapter 7. Skip Macro-Block Detection

[124]'s algorithms. Another ZQDCT algorithm was presented based on the the-

oretical analyzes of the ICT and quantisation in H.264/AVC [76], where they

proposed the relationship between SAD and threshold value. In [117, 119], an-

other su�cient condition related to SAD was presented for predicting ZQDCT

before DCT and quantisation to reduce redundant DCT and quantisation com-

putations. A spatiotemporal characteristic of the R-D cost function and SAD

was proposed in [39], where they used partially computed SAD to reduce compu-

tational complexity. A model-based skip MB detection algorithm was presented

in [18], where the pixel value of motion compensated blocks was modeled as a

generalized Gaussian distribution according to QP and selected threshold values.

H.264/AVC optionally supports SATD. It works by taking the SAD of the

WHT on 4� 4 blocks. The SATD is much slower than the SAD, which is a

critical drawback. The bene�t of the SATD is that it more accurately predicts

quality from both the standpoint of objective and subjective metrics. In this

case, the ZQDCT provided in [76, 117, 119] can not be applied. In [120], they

�rst presented a ZQDCT algorithm by utilizing the SATD, where a threshold

based criterion for ZQDCT prediction is used. Their results show a comparable

performance for both R-D and complexity savings. However, threshold values

should be obtained by calculating by �oating point matrix operations, where

the performance could be a�ected by the rounding error of threshold values.

Moreover, those thresholds are compared with all coe�cients in a block, which

introduces computational complexity.

7.3 Relationship Between the Integer DCT (ICT)

and the SWHT

7.3.1 Integer DCT

H.264/AVC uses 4� 4 or 8� 8 ICT instead of the 8� 8 DCT used in MPEG-

2. The ICT is another version of the DCT with lower complexity and little

performance degradation by introducing integer operations [69]. It only involves

additions and shift operations and no mismatch exists between the forward and

inverse transform. We consider the 4� 4 ICT in this section because the 8� 8

ICT is only used for the Fidelity Range Extensions [104].
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A 4� 4 DCT is given by

Y = DXDT =

2
6666664

a a a a

b c �c �b
a �a �a a

c �b b �c

3
7777775X

2
6666664

a b a c

a c �a �b
a �c �a b

a �b a �c

3
7777775 (7.1)

where :

a =
1

2
, b =

s
1

2
cos

��
8

�
, c =

s
1

2
cos

�3�
8

�
This matrix multiplication can be factorized to the following equivalent form:

Y = (CXCT )
E

=
 
2
6666664

1 1 1 1

1 d �d �1
1 �1 �1 1

d �1 1 �d

3
7777775X

2
6666664

1 1 1 d

1 d �1 �1
1 �d �1 1

1 �1 1 �d

3
7777775
!



2
6666664

a2 ab a2 ab

ab b2 ab b2

a2 ab a2 ab

ab b2 ab b2

3
7777775
(7.2)

where E is a matrix of scaling factors and the symbol 
 represents that each

element of CXCT is multiplied by the scaling factor in the same position in

matrix E, and d is c
b
. To simplify the implementation of the transform, d is

approximated by 0.5. In order to ensure that the transform remains orthogonal,

b and a should be chosen so that:

a =
1

2
, b =

s
2

5
, d =

1

2
(7.3)

Moreover, the post-scaling matrix E is scaled down in order to avoid multiplica-

tions in the transform CXCT . The �nal Integer DCT of a 4� 4 block becomes:

Y = (C 0XC 0T )
E0

=
 
2
6666664

1 1 1 1

2 1 �1 �2
1 �1 �1 1

1 �2 2 �1

3
7777775X

2
6666664

1 2 1 1

1 1 �1 �2
1 �1 �1 2

1 �2 1 �1

3
7777775
!



2
6666664

a2 ab
2

a2 ab
2

ab
2

b2

4
ab
2

b2

4

a2 ab
2

a2 ab
2

ab
2

b2

4
ab
2

b2

4

3
7777775
(7.4)

This transform is an approximation to the 4�4 DCT. The result of the transform

is not identical to the 4� 4 DCT because the DCT performs �oating point not

integer operations.
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7.3.2 Quantisation in H.264/AVC

The mechanism of the forward and inverse quantizers in H.264/AVC is imple-

mented by the requirements to avoid division and �oating point operations. It

incorporates the pre-scaling matrices, E0, described in Equation (7.4). If the

quantised coe�cients, Zij , and the transformed coe�cients, Yij , and quantizer

step size, Qstep are de�ned, the relationship between Zij and Yij is noted as

Zij = round

 
Yij

Qstep

!
. (7.5)

A total of 52 values of Qstep are supported by the standard, indexed by a QP.

The QP was designed to be doubled when the QP increases every 6. The wide

range of quantizer step sizes makes it possible for an encoder to control the

trade-o� between bit rate and quality accurately and �exibly. The post-scaling

factor (PF) is incorporated into the forward quantiser, thus Equation (7.5) can

be rewritten as

Zij = round

 
Cij

PF

Qstep

!
(7.6)

where Cij represents coe�cients of the core transform at position (i, j) denoted
as C 0X 0C 0T in Equation (7.4). In order to simplify, the factor PF

Qstep
, is imple-

mented as a multiplication by a factor MF and shift operations, avoiding any

division operation;

Zij = round

 
Cij

MF

2qbits

!
(7.7)

where
MF

2qbits
=

PF

Qstep
, qbits = 15+ floor(QP/6)

In integer operations, Equation (7.7) can be implemented as

Zij = sign(Cij)� (jCij j �MF + f) >> qbits (7.8)

where � indicates a binary shift operation. f is de�ned as 2qbits/3 for Intra blocks

or 2qbits/6 for Inter blocks in the JM reference software, where the quantisation

related variables are de�ned as a LookUp Table (LUT) as follows:

Zij = sign(Cij)� jCij j � 2qbits � qp_const
quant_coef [qp_rem][i][j]

(7.9)
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where qp_rem = QP%6, qbits = QP/6+ 15, qp_const = (1 << qbits)/6, and

quant_coef is the scaling matrix.

7.3.3 Relationship between ICT and SWHT

Let the matrices of the ICT and the SWHT be C 0 and W respectively, that is

C 0 =

2
6666664

1 1 1 1

2 1 �1 �2
1 �1 �1 1

1 �2 2 �1

3
7777775 , W =

2
6666664

1 1 1 1

1 1 �1 �1
1 �1 �1 1

1 �1 1 �1

3
7777775 . (7.10)

From their relationship, we obtain the S matrix, which also satis�es the orthog-

onal condition like the ICT.

C 0 = S �W , S =

2
6666664

4 0 0 0

0 6 0 2

0 0 4 0

0 �2 0 6

3
7777775 (7.11)

Equation (7.4) can be rewritten as

Y = C 0XC 0T 
E0 = SWX(SW )T 
E0

= SWXW TST 
E0

=
1

4
SXST 
E0

=
1

16
X 
E0

= X 
E00

(7.12)

where X is a SWHT of a 4� 4 block, X represents the S-transform of the SWHT

coe�cients, and E0 is scaled down to E00 by 1
16

due to the normalized factor of

the two transforms (SWHT and S-transform).

E00 =
1

16
E0 (7.13)
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7.4 Zero Quantised DCT Coe�cients Detection

Suppose the motion compensated residual pixel values xi at the input of the

ICT are approximated by a Gaussian distribution with zero mean and variance

�2 [18],

p(x) =
1p
2��

e
� x2

2�2 , �1 < x < +1. (7.14)

The expectation value of jxj can be calculated as

E[jxj] =
Z +1

�1
jxj 1p

2��
e
� x2

2�2 dx =

s
2

�
� (7.15)

Let the sum of the absolute value of a 4� 4 block be �, � = 1
16

P16
i=1 jxij, we

obtain � from the relationship between � and E[jxj], that is

� =
s
�

2
� (7.16)

Since SAD values are not used in our proposed method, we apply [119]'s method

to obtain � in the WHT domain, where � = 1
16

P16
i=1 jwij, wi is a ith SWHT

coe�cient in a 4� 4 block.

� = 2�
s
�

2
� =

p
2�� (7.17)

Let the Gaussian distribution be shifted by 3�, then the probability for pixel

values to be positive is

P (x > 0) =
Z +1

0

1p
2��

e
�

(x�3�)2

2�2 dx = 99.9% (7.18)

Note that adding 3� to a compensated residual data makes all data positive

with 99.9% probability, which only a�ects the DC or zero sequency term in the

ICT or the SWHT. Figure 7.1 illustrates this graphically. From Equation (A.6),

the ICT of the 4� 4 block can be obtained from the SWHT coe�cients (W =
fw0, : : : ,w15g) as shown in Figure 7.2. In order to show that the DC value of

Y is the maximum value, the DC value 16 � w0 is compared with the other

AC coe�cients considering scaling factor(E00(i, j)), where (i, j) is a position

corresponding to a row (i) and column (j) of E00. Firstly, the DC value of Y is
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Figure 7.1: 3� shifted motion compensated residue data; probability of pixel
value to be positive is 0.999

Figure 7.2: Illustration of comparison between DC and the other AC coe�-
cients
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compared with AC coe�cients located in

(i, j) 2 f(0, 1), (0, 3), (1, 0), (1, 2), (2, 1), (2, 3), (3, 0), (3, 2)g

denoted as a Group 1 in Figure 7.2. The scaling factor, E00(i,j)
E00(0,0) , at Group 1 can

be obtained as b
2a
� 0.63 by observing Equation (7.4). If x(i, j) is a positive real

value, then the maximum possible value for the zero sequency term is N2A where

A is the maximum value of x(i, j). All Hadamard domain samples other than

the zero sequency range between �N2A
2
. The magnitude of the zero sequency

term is a bound for the magnitude of all other Hadamard domain samples as

mentioned in [88] so that

wk �
�����w0

2

�����, k 6= 0. (7.19)

The comparison between the DC and the Group 1 coe�cients can be denoted as

(24wa � 8wb)� E00(i, j)
E00(0, 0)

� (24jwaj+ 8jwbj)� E00(i, j)
E00(0, 0)

�
 
24
���1
2
w0

���+ 8
���1
2
w0

���
!
� E00(i, j)
E00(0, 0)

= 10.08w0 < 16w0

(7.20)

where wa and wb represent the SWHT coe�cients of Group 1. Therefore, the DC

value is always larger than any other coe�cients involved in Group 1. Secondly,

we consider the other positions, (i, j) 2 f(1, 1), (1, 3), (3, 1), (3, 3)g, denoted as

Group 2 in Figure 7.2. The scaling factor,E
00(i,j)

E00(0,0) , is
b2

4a2
= 0.4. Therefore, the

comparison between the DC value and Group 2 AC coe�cients can be given as

(36wa � 12wb � 12wc � 4wd)� E00(i, j)
E00(0, 0)

� (36jwaj+ 12jwbj+ 12jwcj+ 4jwdj)� E00(i, j)
E00(0, 0)

� 32w0 � E00(i, j)
E00(0, 0)

= 12.8w0 < 16w0

(7.21)

Thus, the DC value is always larger than any other AC coe�cients of Group

2. Finally, the DC value is also larger than any other AC coe�cients of Group

3 from Equation (7.19). Therefore, the DC of Y is always greater than the

other coe�cients. When the DC of the ICT after quantisation is zero, this block

is considered as a zero coe�cients' block due to the fact that the DC is the

105



Chapter 7. Skip Macro-Block Detection

maximum coe�cient of the block by Equation (7.20) and Equation (7.21). The

overall procedure to obtain the ICT of 3� shifted motion compensated pixels is

summarized as

(x0, : : : ,x15) + (3�, : : : , 3�)www�
www�SWHT

(w0, : : : ,w15) + (4� 3�, 0, : : : , 0)www�S�transform
(16(w0 + 4� 3�), 24w1 + 8w3, : : : , 4w5 � 12w13 � 12w7 + 36w15) = Cij

(7.22)

where Cij represents the ICT coe�cient of a 4� 4 block at position (i, j). When

the DC coe�cient of the ICT after applying quantisation is a zero as shown in

Equation (7.23), this block is considered as a ZQDCT.

 
16w0 + 16� 4� 3�

!
Q0
00 =

 
w0 + 12

p
2�

15X
k=0

jwkj
!
Q00 = C00 �Q0

00 = 0

(7.23)

where Q0
00 is Q00

16
by observing that scaling factor E00 = E0

16
as shown in Equa-

tion (7.13), and Q00 is a quantisation step of DC coe�cient de�ned in JM as:

Q00 =
 

2qbits � qp_const
quant_coef [qp_rem][0][0]

!
.

7.5 Skip Macro-block Detection

7.5.1 Detection Algorithm

In H.264/AVC, the requirements to be a skipped block are as follows.

1. MB : The block must be a 16� 16 block.

2. ZMD : Motion vector are predictive motion vectors, pmv, using the median

value of neighboring blocks' motion vectors.

3. ZQDCT : All DCT coe�cients after quantisation are zeros.

The proposed skip MB detection algorithm works on a 16� 16 not a 4� 4 block.

It is possible to detect ZQDCT by dividing a MB to 4� 4 blocks. However,
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it requires recalculating the 4� 4 blocks' SWHT, which de�nitely introduces

computational complexity and more intermediate memory. Thus, we need to

modify Equation (7.23) to �t for a 16� 16 block. A 16� 16 block is considered

as a skip MB if all 4� 4 blocks in the 16� 16 block are ZQDCTs.

Let the SWHT coe�cients of a 16� 16 block be

W16 = fW 16(0),W 16(1), : : : ,W 16(16� 16� 1)g

and its ith sub partitioned 4� 4 sub-block' coe�cients be

W4
i = fW 4

i (0),W 4
i (1), : : : ,W 4

i (15)g

from the raster scan order. We assume that � of a 4� 4 block is the same as

that of a 16� 16 block given as:

� = �4�4 = �16�16 (7.24)

From Equation (7.23), ZQDCT is decided when all sub partitioned 4� 4 blocks'

coe�cients are zeros after quantisation. Thus, metric (M) is as follows;

M =
 

15X
k=0

W 4
k (0) + 16� 3�

!
Q00. (7.25)

From Equation (7.17), the � of a 16� 16 block can be obtained by using 16

lower coe�cients instead of using all coe�cients of a 16� 16 block because a few

coe�cients have most of the energy in a block, which is given as:

� =
p
2�

Pk=255
k=0

16� 16
jW 16(k)j

=
p
2�

Pk=15
k=0

16� 16
jW 16(k)j.

(7.26)

From Lemma 6.2 in Chapter 6, the zero sequency term of a 16� 16 WHT can

be obtained using sub blocks' zero sequency terms as follow;

W 16(0) =
P15
k=0W

4
k (0)

4
(7.27)
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From Equation (7.26) and Equation (7.27), Equation (7.25) can be rewritten as

follows;

M =
 

15X
k=0

W 4
k (0) + 16� 3�

!
Q00

=
 
4W 16(0) +

16� 3
p
2�

16� 16

k=15X
k=0

jW 16(k)j
!
Q00

=
 
4W 16(0) + 0.47�

k=15X
k=0

jW 16(k)j
!
Q00

�=
 
4W 16(0) +

�k=15X
k=0

jW 16(k)j
�
>> 1

!
Q00

(7.28)

When Equation (7.28) is zero, this block is considered as a skip MB, which

means that all coe�cients of a 16� 16 block are zeros. Therefore, after checking

the position at pmv in the middle of ME, the zero sequency term W 16(0), and
� are calculated. Finally, when M mentioned in Equation (7.28) is zero, this

block is classi�ed as a skip MB.

7.5.2 Results

In order to evaluate the proposed approach, the JM 11.0 is used for experi-

ments. Tests are performed with the following encoder con�guration; (1) GOP

has IPPP structures without B-frames, (2) The inter QPs are selected seven

values, 20,24,28,32,36,40, and 44, and the intra QP is the same as inter QP.

Four benchmark video sequences are used �Foreman�, �Mother and Daughter�,

�Pedestrian�, and �Rush hour� with QCIF to 720p-HD format.

The skip MB detection algorithm needs to begin with full ME, which is most

computationally complex function in the encoder side. skip MB detection is

performed only for 16 � 16 blocks. The skip MB is performed starting from

the pmv position. When Equation (7.28) is zero at this position, no further

processing including ME is needed.

For evaluation, the Precision rate (PR) and the false acceptance rate (FAR)

are introduced as follows:

PR =
Ns

N 0
s

� 100%, FAR =
(Ns \N 0

ns)
Ns

� 100% (7.29)
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N 0
s and N 0

ns are the number of skip MBs and non skip MBs detected by the

reference software respectively. Ns is the number of skip MBs obtained by the

proposed method. It is desirable to have large PR and small FAR values for

an e�cient skip MB detection algorithm. In addition, the Percentage for Skip

Macro-Block (PSM) is de�ned as

PSM =
N 0
s

N 0
m

� 100% (7.30)

where N 0
m represents the total number of MB. The encoded video quality and

bit rates are objectively evaluated in terms of the PSNR (∆P (dB)) and bit rates

saving (∆R) presented in the following form:

∆P = PJM � Pproposed, ∆R =
Rproposed �RJM

RJM
� 100% (7.31)

where Pproposed and PJM are the PSNR of the proposed approach and the JM

reference encoder respectively; Rproposed and RJM are the encoded bit rates of

the proposed approach and the JM encoder respectively. Finally, the computa-

tional complexity of overall encoding time improvement ∆T is observed via the

following criteria:

∆T =
TJM � Tproposed

TJM
� 100% (7.32)

The PR and FAR results are given along with the PSM in Table 7.1. From

the results, the following conclusions can be drawn. Firstly, as skip MB occupy

a great portion of the whole sequence as QP increases, more blocks can be

determined as skip MBs as shown by PSM. Secondly, with an increase in QP,

the proposed approach is able to predict skip MBs more e�ciently-this can be

clearly seen by observing PR. However, PR does not increase according to QP

in high motion sequences such as Foreman because of the relatively low ratio of

skip MBs for the whole sequence (note that PR does not increase in accordance

with QP). Thirdly, as for the FAR result, the FAR becomes a little bit worse

with an increase of QP. However, since the value of (Ns \ N 0
ns) is relatively

small as compared with Ns, the improvement in terms of the PR becomes more

dominant. The FAR of the proposed approach results in insigni�cant video

quality degradation as seen by the noted ∆P . In a nutshell, the ∆T is an index

of how much the complexity of the encoder is reduced. On the contrary, the

∆P represents the degradation of encoded video quality. Finally, the video

quality is objectively evaluated in terms of the PSNR and bit-rate. From the
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Table 7.1: Performance comparison of proposed approach to JM
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results, the maximum PSNR loss is 0.59dB at 720p-HD Pedestrian sequence

at QP 44. Therefore, the PSNR drop of the proposed approach is negligible

for all sequences. From a complexity perspective, the proposed approach can

greatly reduce encoding time in accordance with QP since skip MBs are detected

before performing ME, DCT and IDCT. When the block's DC of WHT at the

initial position (mv = (pmvx, pmvy)) after quantisation is zero, no more ME

is needed, which is the main contributive factor for reducing encoding time.

As QP increases, more skip MBs are detected, further reducing computational

complexity. The proposed approach can reduce the overall encoding time by

1.2%-70.2% at various conditions as shown in Table 7.1.

The commonly used skip mode detection in H.264/AVC is performed after de-

ciding VBS partitioning based on a mode competition. It has no computational

advantage when an image is encoded with a high value of QP as shown in Fig-

ure 7.3(b)(d). When the proposed skip MB detection algorithm is applied to JM

for �Foreman� and �Mother and Daughter� sequence as shown in Figure 7.3, C-D

shows a good performance especially in high QP (see Figure 7.3(b)(d)) whilst

the degradation of R-D is negligible (see Figure 7.3(a)(c)).

7.6 Discussion

In video compression, ME, DCT and IDCT need large amounts of computation,

so it is desirable to reduce the time required for conducting ME, DCT and

IDCT for most video encoders, especially for power limited portable video codec

devices. Pixels in the blocks of motion compensation frame are very close to zero.

As expected, these blocks have great probability to be all-zero DCT coe�cients

after quantisation, which are classi�ed as skip MBs with two more conditions in

H.264/AVC; zero motion vector and a 16� 16 block. Skip MBs do not require

any encoding procedure, so huge computational complexity saving is possible if

they are detected accurately.

In this chapter, a skip MB detection algorithm based on the SWHT is pre-

sented. A simple transform (S-transform) is also proposed by observing the

relationship between ICT and SWHT. And 3� shifting of the mean value in mo-

tion compensated frame, which is modeled as a Gaussian Distribution, makes all
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(a) R-D performance comparison be-
tween JM and the proposed method

(b) Encoding time vs. PSNR; much
computational savings are achieved in
low PSNR (high QP)

(c) R-D performance (d) Encoding time vs. PSNR

Figure 7.3: R-D and C-D performance for �Foreman" and �Mother and Daugh-
ter" with CIF

pixel values of the compensated frame positive. The necessary and su�cient con-

dition to be a skip MB is derived by observing the relationship between ICT and

SWHT on the shifted values. As shown in Table 7.1, the proposed approach can

greatly reduce encoding time and achieves almost the same R-D performance as

the JM reference encoder. In the following chapter, a complexity adapted video

encoder framework is presented based on controlling the number of skip MBs.
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�Liberty without learning is always in peril and learning with-
out liberty is always in vain.

John F. Kennedy

8
A Framework for Complexity Adaptation in a

Video Encoder

8.1 Introduction

P
ower consumption is an important issue in a power limited platform. In the

case of multimedia applications, the battery life of such devices has been

shown to be directly connected to the computational complexity of the associ-

ated data processing function. However, computational complexity and video

quality are not comfortable bed-fellows. Therefore, for real-time video coding

applications, it is important to be able to control the complexity of the encoder

without signi�cantly a�ecting R-D performance. Moreover, a video coding algo-

rithm that gives excellent visual quality for a given bit rate might be impractical

if it requires too much computational complexity. In [99, 100], the characteris-

tics of R-D are shown to be almost equal to that of C-D for in�nite observed

stationary-ergodic sources. Therefore, optimization in terms of computational

complexity could be obtained via RDO techniques such as Lagrangian multiplier

method [58, 121] and Dynamic Programming (DP) [11]. Recent trends in video

codec design require a more �exible approach to trade-o�s between complexity

and quality especially for software or power limited video codecs. Of course

complexity has a close connection with bit rate which means that optimization

should be performed based on three terms: complexity, bit rate, and quality.

However, it is di�cult to �nd the theoretical optimum point since the relation-

ship between the three variables is a�ected by various factors such as coding pa-

rameters, and low complexity algorithms. Therefore, research mainly focuses on
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complexity and distortion whilst keeping reasonable R-D performance. Widely

used complexity control algorithms in H.264/AVC can be classi�ed as follows;

1. Frame skipping: Skipping frames is an e�ective way of reducing processor

utilization. When the frame rate is low, there will be a large di�erence

between successive frames, which leads to more bits on the residual frame

and to the degradation of video quality. Frame skipping is mainly used in

a static scene such as video telephony or surveillance applications.

2. Motion search range control: ME is the most time consuming function in

a video coder. If the search range increases, the residual data becomes

smaller. For some sequences, increasing the search range will not lead

to improved performance. The computational complexity savings of fast

algorithms are achieved by reducing the search range.

3. Multiple reference frame control: H.264/AVC uses multiple reference frames

to obtain good coding performance. However, complexity increases in pro-

portion to how many reference frames are used.

4. Skip MBs and zero motion detection: In a DCT-based codec at medium

or low bit rates, many blocks contain no AC or DC coe�cients after quan-

tisation. If zero quantised coe�cients are detected prior to ME, DCT and

IDCT, huge computational complexity saving can be achieved.

In Chapter 5 and Chapter 6, a FWBS algorithm based on VBS is presented. In

Chapter 7, a skip MB detection algorithm is also proposed. In this chapter, we

present the framework for complexity adaptation in a video coder by combining

the above techniques into the JM reference software. The FWBS based on

VBS, skip MB, and zero motion detection algorithm are integrated into the JM

reference software and tested. Finally, a C-D model is proposed for adapting the

computational complexity of a video coder.

8.2 Related Work

A complexity adaptation algorithm is typically based on a complexity reduction

algorithm, which achieves varying degrees of complexity savings depending on
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the statistics of the source video. In computation or power constrained appli-

cations, it is important to able to control and manage the computational com-

plexity of key components in the video encoder. Moreover, to maximize R-D

performance, the most commonly used method is a high complexity RDO mode

selection process, which includes encoding the MB in all possible modes and �nd-

ing the minimum R-D cost function. It gives signi�cant improvement in video

coding performance. However, it requires intensive computational complexity,

so it is di�cult to apply for real-time applications and video applications on

complexity constrained platform. A signi�cant amount of research has focused

on developing low complexity implementations of mode selection, ME and DCT,

which account for most of complexity of an encoder. Little research has been

carried out on issues of computational complexity management. Prior research

can be classi�ed in several ways;

1. Algorithms that achieve the required computational complexity by reduc-

ing the complexity of ME and DCT, which are the key burdens of an

encoder. Tai et al. [106] presented a software-based computation-aware

scheme that terminates the searching process if a pre-de�ned computation

has been reached, where more computation is allocated to the MB with

larger distortion in a step-by-step fashion. In [17], an extended version

of [106] was proposed to reduce the memory required and to use the con-

text information of neighboring blocks. In [4], a complexity scalable and

control algorithm in H.264/AVC was proposed. The complexity is adapted

jointly by parameters that determine the aggressiveness of an early stop-

ping criterion. Moreover, Ates et al. [7] presented a joint R-D and com-

plexity framework for ME using the spatiotemporal gradient of each MB.

They showed that coding performance in terms of R-D and complexity

could be reduced if prior knowledge of video characteristics such as gradi-

ents is available. This motivated our proposed VBS partitioning algorithm

and its results show reasonable performance as explained in Chapter 5.

The above approaches focused on reducing the number of SAD operations

during ME. They therefore provide computational complexity control over

full ME methods only. When a fast algorithm is applied, there is no scope

for controlling computational complexity. Unfortunately whilst fast algo-

rithms should be used for real-time or video applications for power limited

platforms, these algorithms cannot be adapted properly.
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2. Algorithms that maximize R-D performance for given complexity called

C-R-D or Power-Rate-Distortion (P-R-D). He et al. presented a P-R-D

model under a energy constraint especially targeting wireless video com-

munication. They determined R-D behavior at a given complexity control

parameter using the linear R-D model suggested in [32]. Computational

complexity control is achieved by �nding parameters using frame skipping

and controlling the SAD operations of ME. In [111], joint C-R-D analysis

of H.264/AVC was presented, where they suggested an algorithm called

GBFOS that chose the right set of encoder parameters. Their extended

research was also described in [112]. However, their algorithms fundamen-

tally require iterative operations to �nd suitable parameters. This means

that pre-decided parameters obtained by o�-line simulation are needed for

real-time operation.

3. Algorithms that control complexity using a Lagrangian cost function. A

Lagrangian cost based skip prediction algorithm was presented in [41],

where complexity management was performed by adjusting the cost of

skip prediction. The results show good complexity adaptation properties.

In [34], a joint C-R-D for ME was proposed by observing two Lagrange

parameters used to cut o� complexity ine�cient motion search. They

used �tting curves to represent the complexity-parameter, which controls

the Lagrange multiplier allowing complexity to be controlled.

The most common approaches to control complexity focus on ME, mode deci-

sion, and DCT. However, common approaches require pre-calculated parameters

or iterative operations to �nd the best parameter set. This is a key bottleneck

for real-time operation on power limited platforms, especially without prior-

knowledge of sequence. Therefore, a complexity adaptation algorithm based

on a complexity model is presented in this chapter. The proposed algorithm

has two distinctive characteristics; (1) A frame level complexity control algo-

rithm based on a complexity model. (2) No need for feedback information or

pre-de�ned parameters, which give a bene�t in case of managing unknown pa-

rameters of sequences. In [100], it was shown that R-D is almost surely equal

to C-D for stationary-ergodic sources. Moreover, He et al. [31] presented R-D

analysis by introducing the � domain. � is de�ned as the percentage of zero

DCT coe�cients in a frame. Motivated from [31, 100], the proposed algorithm

used a similar approach to build up a model. However, we would like to note
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that the proposed complexity adaptation algorithm uses totally di�erent param-

eters (bitrate (R)-zero coe�cient (�) vs. complexity (C)-skip block ratio (�) and

quantisation parameters (QP ) vs. threshold value for skip blocks (� )) compared

to the algorithm suggested in [31].

8.3 Structure of Proposed Video Coder Framework

Figure 8.1: Overall structure of complexity adapted video coder framework;

As shown in Figure 8.1, the structure of a complexity adapted video coder

consists of three parts; VBS partitioning, FWBS and controlling of C-D, where

a skip MB detection algorithm is integrated into the FWBS block. In the VBS

block, a 2� 2 SWHT is performed to determine whether a block has a motion

edge or represents a �at region. When the current MB to be encoded has no

motion edges, this block is classi�ed as 16� 16 block size. Otherwise, the block is
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further separated into several small block sizes such as 8� 8 and 4� 4 according

to location of motion edge pixels. The FWBS block performs fast ME for 16�16,

8� 8 and 4� 4 blocks. This simple process is as follows; (1) Calculate to absolute

di�erence between 16 lower frequency coe�cients of the current block (W ) and

its corresponding reference block (W p) in the previous frame at position p using

Lemma 6.2 (see Chapter 6.4.1). (2) Find the minimum value at position p, then p

becomes the motion vector (mvx,mvy). (3) p and residual (R) are transmitted

to an entropy encoding block, which is outside the scope of this thesis. For

a 16� 16 block, FWBS is slightly modi�ed by including a skip MB detection

algorithm. If condition of skip MB detection (Cs) ) is not zero, ME is performed

as for other small blocks. Otherwise, a block is considered as a skip MB, which

is the object of a C-D control block. Finally, Complexity-� and � � � lines are

used for complexity adaptation by controlling the threshold value (� ) of the skip

ME detection algorithm.

8.4 Complexity Control Algorithm

In the remainder of this chapter, the complexity control algorithm is presented.

The proposed algorithm consists of two parts; (1) Complexity-� model, (2) Com-

plexity adaption algorithm. Details are discussed in the following sections.

8.4.1 C-D optimization using Lagrangian Multiplier

R-D theory has been widely used in video compression to obtain minimum bit

rate at a given distortion constraint or vice versa. The Lagrangian multiplier

method has been applied to H.264/AVC [36, 121, 126] to solve constrained op-

timization problems. Moreover, the Lagrangian multiplier method can be used

for C-D based on complexity distortion theory [100] for both constrained and

unconstrained optimization problems. In a constrained optimization problem,

Problem 8.1 represents a general optimization procedure.

Problem 8.1. Given a set of coding parameters P = hp1, p2, : : : , pni, a sequence
of macro blocks hm1,m2, : : : ,mni, and a target complexity budget C, determine

an assignment of coding parameters to each block that minimizes a distortion

measure D(P ) using C(P ) � Ctarget .
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Problem 8.1 can be transformed to the following unconstrained optimization

problem.

Problem 8.2. Given a set of coding parameters P = hp1, p2, : : : , pni, a sequence
of macro blocks hm1,m2, : : : ,mni, and a Lagrangian multiplier �P , determine an

assignment of coding parameters to each block that minimizes the cost function

J(P ) = D(P ) + �PC(P ).

In R-D optimization, QP is the main coding parameter used to solve the

optimization problem. However, in C-D optimization, various coding parame-

ters a�ect computational complexity. For example in H.264/AVC, complexity is

greatly in�uenced by coding parameters such as search range, number of refer-

ence frames, presence of Hadamard transform, sub-pel accuracy ME and com-

pensation and so on. Therefore, it is di�cult to solve the C-D optimization using

the Lagrangian multiplier method because it is very di�cult to understand the

e�ect of various coding parameters according to various sequences. Therefore, a

more robust and simple C-D model is a mandatory tool to implement real-time

applications running on power limited platforms.

8.4.2 Complexity-� Model

To create the complexity model based on the skip MB and zero motion detection

algorithms mentioned above, we generate two curves according to their de�ni-

tions and plot them for various situations. There are denoted as �(� ) and C(�)
which is computational complexity at given �, where � is a control parameter

of skip MB detection algorithm by multiplying the threshold value for deciding

skip MBs. From Equation (7.28) (see Chapter 7.4), two control parameters are

de�ned as:

�(� ) =
ns

nt
, Th = � �

0
@4W 16(0) +

 
15X
k=0

jW 16(k)j
!
>> 1

1
AQ00 (8.1)

where ns and nt represent the number of skip and total MBs in a frame. In the

following, let us consider video sequences �Foreman� and �Mother and Daughter�

with CIF resolution. Figure 8.2 and Figure 8.3 show the relationship between

� and � , and complexity and � respectively. Each sampled picture is taken

at every fourth frame. The sample pictures from �Foreman� and �Mother and

Daughter� have di�erent characteristics. For example, the �Foreman� sequence
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has lots of motion with camera panning. On the contrary, the �Mother and

Daughter� sequence has a lot of plain area. However, their characteristic curves

for �(� ) represent very similar patterns, i.e. monotonic decrease over � . The

C(�) curve shows almost the same pattern as well; inverse relationship of �rst

order. From observations, the computational complexity (C(�)) is much more

closely related to the percentage of skip MBs, �. For each sampled picture, C(�)
shows a straight line. When � is 1, C(�) theoretically becomes zero because

all MBs are chosen as skip, which leads to no processing of an encoder except

for only copying the previous frame. Therefore, the line must pass through the

point (�,C(�)) = (1, 0). The following expression can be obtained from the

above observations.

C(�) = k(1� �) (8.2)

where k is a relative constant, which depends on picture characteristic as shown

in Figure 8.2 and Figure 8.3. Equation (8.2) has been validated in our extensive

simulation using various video sequences.

8.4.3 Complexity Adaptation Algorithm

If we estimate the complexity of an initial P-frame (�(1),C(�(1)) at � = 1, and

the other point for the complexity model is initially set to (�,C(�)) = (1, 0).
Then the complexity model denoted in Equation (8.2) becomes

C(�) =
 
C(�(1))
1� �(1)

!
(1� �). (8.3)

Figure 8.4 shows an example of how to determine � of the �rst P-frame. Firstly,

�initial = 1 is chosen as an initial step, which represents the maximum number

of skip MBs without a�ecting the R-D performance. For example, when � is k

after ME, DCT, and quantisation in a H.264/AVC, �(1) has the same value as

� = k if the skip MBs are perfectly detected using skip algorithms. Therefore, �

is a constant k in the case of � greater than �1�, so we only consider the range of

� 2 [0, 1]. Secondly, C(p(1)), which represents the maximum complexity Cmax,

is measured via encoding the �rst P-frame. Then we can draw the Complexity-�

line using two points; (�(1),C(�(1))), (1,0). Thirdly, the target (�target) can be

calculated corresponding to the target complexity (Ctarget) in the complexity-�

plot. Finally, �target is also obtained in the �-� plot. However, there remain
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(a) Plot of C(�) for the 9 sampled pictures from �Foreman.� The x axis rep-
resents the percentage of skip macro-blocks � while the y axis represents the
computational complexity C(�).

(b) Plot of �(� ) for the 9 sampled pictures from �Foreman.� The x axis rep-
resents the threshold value of decision skip macro-blocks � while the y axis
represents the percentage of skip macro-blocks �.

Figure 8.2: Plot of �(� ) and C(�) for �Foreman� at �xed Qp = 30.
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(a) Plot of C(�) for the 9 sampled pictures from �Mother and Daughter.� The x
axis represents the percentage of skip macro-blocks � while the y axis represents
the computational complexity C(�).

(b) Plot of �(� ) for the 9 sampled pictures from �Mother and Daughter.� The
x axis represents the threshold value of decision skip macro-blocks � while the
y axis represents the percentage of skip macro-blocks �.

Figure 8.3: Plot of �(� ) and C(�) for �Mother and Daughter� at �xed Qp =
30.
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some issues in obtaining �target; (1) we have no accurate relationship between

� and �, we only know it shows monotonic decrease and similar characteristics

among frames in the same sequence as denoted in Figure 8.2 and Figure 8.3.

(2) we need multi-path coding in order to obtain accurate � -� plot, which is

not realistic in complexity constrained applications such as real time on power

limited platforms. Therefore, we present frame level complexity adaptation by

updating parameters to solve the above problems.

Figure 8.4: Example of estimating of �target in Foreman sequence using
C(�) and �� ; (1) choose �initial = 1.0 and �nd �(1), which
means a marginal ratio of skip MBs, therefore constant � when
� � 1; (2)(3) obtain C(�)initial in Complexity-� plot. The
straight line can be calculated from the two points (�,C(�)) =
f(1, 0), (�(1),C(�)initial)g using Equation (8.3); (4)(5) calcu-
late required �(� ) at given target complexity C(�)target using
Complexity-�model. (6)(7) �nally, �target can be used as a thresh-
old for the decision of skip MBs in the current frame.

Frame Level Complexity Control Algorithm

The complexity model of Equation (8.3) is used for the �rst P-frame. It must

be noted that Equation (8.3) is based on the assumption that each frame has

similar characteristics to nearby frames. Thus, scene changes may cause an error

in the complexity-� model. Therefore, we need some assumptions to apply the

complexity-� model as follows.
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� P-frames between I-frames maintain the scene characteristics; i.e. keep the

same shape of �� � , which can be validated by observing Figure 8.2 and

Figure 8.3.

� The complexity of other functions such as skip MB detection and copy

operation is negligible; the Complexity-� plot has a junction point (0,1)

with the C(�) axis in Complexity-� line.

Figure 8.5 shows the frame level complexity control algorithm graphically. Since

only frame level complexity control method is used, several frames are needed

to stabilize complexity adaption.

(a) Illustration of the complexity control on the �rst P-frame; �(1) and Cmax

are obtained via marginally two point (0,1),(1,0). �target is calculated in linear
� � � line. Red box represents a passing parameter to the following P-frame

(b) Illustration of the complexity control on the following P-frame; the number
indicates the order of obtaining parameters. �update is passed to the following
P-frame

Figure 8.5: Graphical illustration of the frame level complexity control algo-
rithm

We introduce the linearly �tted � � � line using two points ((0,1), (1,�) as

follows,

� = (�(1)� 1)� + 1. (8.4)

124



Chapter 8. A Framework for Complexity Adaptation in a Video Encoder

An unknown actual � � � line is also shown as a monotonically decreasing func-

tion. We consider the scenario that the user wants to control computational

complexity by setting a reduction ratio (), given by

 =
Cmax �Ctarget

Cmax
. (8.5)

Figure 8.5(a) illustrates the complexity adaptation procedure for the �rst P-

frame. C(�) can be obtained using Equation (8.3). Moreover �target is calculated

via Complexity-� and expressed as follows:

�target = (�(1)� 1)� Ctarget

Cmax
+ 1

= (1� �(1))� ( � 1) + 1

(8.6)

�target is calculated using Equation (8.4), and passed through to the following

P-frame as an index threshold value.

Figure 8.5(b) shows how to determine �update to correct the error caused by

the unknown characteristic of �� � line in the following P-frame. We obtain

�actual by encoding a P-frame with threshold �target received from the previous

P-frame. The � � � line is calculated using two points, (�target, �actual),(0,1).

Equation (8.4) can be rewritten as follow:

� =
 
�actual � 1

�target

!
� + 1. (8.7)

�(1) can be obtained using Equation (8.7), which is given by

�(1) =
 
�actual � 1

�target

!
+ 1. (8.8)

From the Complexity-� line, Cmax is calculated by �nding the intersection point

with �(1) as follow:

Cmax =
Cactual

1� �actual (1� �(1)). (8.9)

Therefore, we calculate Ctarget using Equation (8.5) in the Complexity-� line

denoted by

Ctarget = (1� )Cmax. (8.10)
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Moreover, �target is also calculated in the Complexity-� line , which is given by

�target = (�actual � 1)
Ctarget

Cactual
+ 1. (8.11)

Finally, �update is calculated in the � � � line using Equation (8.12), and passed

to the following P-frame. This procedure repeats until an I-frame occurs.

�update =
 
1� �target
1� �actual

!
�target

= ��target

(8.12)

Where � represents a correction constant.

8.4.4 Results

In order to understand the relationship between �(1) and QP, a histogram of

threshold de�ned in Equation (8.1) at � = 1 for Foreman and Mother and

Daughter sequences as shown in Figure 8.6. As QP increases, the distribution

of Th becomes narrow. This means that a small variation of Th results in large

reduction of the computational complexity. Moreover, �(1) is also increased,

which lead to the limitation of a complexity control algorithm especially for

Mother and Daughter sequence because the �(1) is convergent to 1. This means

that all blocks are skipped as shown in Figure 8.6(e). In the Foreman sequence,

�(1) does not reach 1 even for high QP. The small variation of Th results in not

much a�ecting of the complexity control algorithm than Mother and Daughter

case. In a conclusion, there is much room for complexity control in low QP,

where the �(1) is far from convergent value denoted as 1.

A number of test sequences from QCIF to SD are encoded using the pro-

posed complexity control algorithm. Table 8.1 shows the test conditions. The

sequences are coded at QPs (24 and 36) with complexity reductions from 0.1

(10%) to 0.5 (50%) of the JM modi�ed via inclusion of VBS, FWBS, and skip

MB. Table 8.2 shows the degradation caused by complexity reduction both in

terms of PSNR and Bit-rate at a given reduction ration as denoted in Equa-

tion (8.5). Moreover, the achieved complexity reductions are also shown with

0. The 0 shows some error at a given  because the proposed method is only

performed at the frame level. Thus, in order to adjust complexity with , the
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(a) �(1) = 0.23 at QP =20 (b) �(1) = 0.02 at QP=20

(c) �(1) = 0.66 at QP= 30 (d) �(1) = 0.13 at QP= 30

(e) �(1) = 0.90 at QP= 40 (f) �(1) = 0.37 at QP= 40

Figure 8.6: Histogram of Th value at � = 1 (see Equation (8.1)); (a)&(c)&(e)
Mother and Daughter, (b)&(d)&(f) Foreman. Complexity control
algorithm is limited at high QP for Mother and Daughter because
�(1) is convergent to 1, which means all blocks are skipped.
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Table 8.1: Test conditions of the complexity adapted video encoder framework

Test Condition (JM 11.0)

Sequences All sequences mentioned in Section 3.2.1

GOP IPPP structure, no B-frame

Evaluation PSNR, Bit-rate

Test Platform Intel dual core 3.0GHz, WinXP, Visual studio 6

Test Procedure

Encoding Parameters

VBS 16x16,8x8,4x4 mode, � = 1.5QP (see Chapter 5.4.3)

Hadamard On

Sub-pel ME 1/4-pel accuracy (replace integer-pel with FWBS)

Search Range 16

# reference frame 1

CAVLC / CABAC CAVLC

(a) Mother and Daughter@352� 288; R-D perfor-
mance for all 0 for a given 

(b) Foreman@352� 288; R-D performance for all
0 for a given 

Figure 8.7: R-D performance for all 

complexity adaptation algorithm should consider the MB level. However, this in-

troduces additional complexity because the adaptation procedures are performed

at every MB. In complex motion sequences such as �Foreman�, �Rush hour� and

�Pedestrian�, considerable PSNR degradation occurs at a high complexity re-

duction ratio such as 0.4 or 0.5. Those sequences have complex motions, which

generates large coe�cients values. When the complexity reduction is performed

on those coe�cients, lots of rounding errors occur, which represents consider-

able PSNR degradation. For ∆Bitrates, as  increase, required bit rates are

decreased due to more MBs are decided as skip ones. Moreover, the degradation

of the PSNR is more severe at low QP rather than in high QP due to rounding

errors caused by setting a non skip MB to a skip MB by compulsion. On the
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Table 8.2: Target and actual complexity reduction and R-D performance

129



Chapter 8. A Framework for Complexity Adaptation in a Video Encoder

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 8.8: Visual comparison between the proposed algorithm and the JM;
10th frame of the Mother and Daughter and the Foreman sequence;
all tests are done at QP=26.  is target complexity reduction
denoted in Equation (8.5). 0 is actual complexity reduction
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(a) PSNR for Mother and Daughter at QP=24
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(b) PSNR for Mother and Daughter at QP=36

(c) PSNR for Foreman at QP=24

0 1 0 2 0 3 0 4 0 5 0 6 0
2 3

2 4

2 5

2 6

2 7

2 8

2 9

3 0

3 1

3 2

 

 

PS
NR

 (d
B)

f r a m e  n u m b e r

 J M
 γ = 0
 γ = 0.1
 γ = 0.2
 γ = 0.3
 γ = 0.4
 γ = 0.5
 γ = 0.6
 γ = 0.7
 γ = 0.8

(d) PSNR for Foreman at QP=36

Figure 8.9: PSNR performance of the algorithm with the variation of 

contrary, not much degradation of the PSNR is shown for �Mother and Daugh-

ter� sequences. Figure 8.7 shows R-D performance between the JM and the

proposed approach at various . �Foreman� sequence shows a steep gradients

of R-D compared to �Mother and Daughter� sequences. Therefore, more com-

plexity reduction () leads to poorer R-D performance for a complex motion

sequence.

Figure 8.8 shows reconstructed frames from �Mother and Daughter� and �Fore-

man� sequence (frame 10th, QP =26) coded using the JM and the reduced

complexity encoder according to . In the �Mother and Daughter� sequence,

no signi�cant di�erence can be observed for all range of  as depicted in Fig-

ure 8.8(a)-(e). Note that 0 represents the actual reduction ration of complexity.

For �Foreman� sequence, no signi�cant di�erence is observed until  = 0.3(30%).
However, at  = 0.5 (50%), signi�cant PSNR degradation does occur. The re-

constructed frame contains a lots of blocking artifact in a complex motion area
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(see Figure 8.8(j)). The high reduction of complexity leads to signi�cant PSNR

drop for a complex motion sequences. Therefore, the complexity reduction ratio

() is limited for those sequences in terms of R-D performance.

Figure 8.9 shows the PSNR performance on a frame-by-frame basis for the

algorithm for a given complexity reduction ratio (), for the �Foreman� and

�Mother and Daughter� sequences encoded with QP values of 24 and 36. The

graph shows a small PSNR drop if  is less than 0.5. This small PSNR drop

could be attributed to the algorithm incorrectly skipping some MB that should

have been coded. Moreover, a large PSNR drop occur if  is more than 0.5 due to

rounding error for high frequency AC coe�cients (there occur in MB containing

edges of moving objects) using a large threshold.

Algorithm 1 Frame level complexity adaption

Require: Fi (ith frame s.t i � 0), Ctarget,, N is I-frame interval.
Ensure: �update
if Fi%N = 1 then
�  1

Obtain Complexity-� line using (�(1),C(�(1))), (1, 0)
Calculate Ctarget using Equation (8.5)
Calculate �target and �target using Equation (8.4)
�update  �target

else
repeat
Obtain �actual and Cactual at given �update
Obtain modi�ed Complexity-� line using (Cactual, �actual),(0,1)
Find �(1) in � � � line
Calculate Cmax

Calculate Ctarget
Obtain �update

until End of P-Frame
end if

8.5 Discussion

This chapter investigates a complexity adaptation algorithm for an H.264/AVC

encoder. The algorithm controls the number of skip MBs before performing

ME. MBs predicted as �skipped� are not processed further, saving all further

computation. The frame level complexity control algorithm is also presented by

introducing the Complexity-� model.
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Algorithm 1 provides a summary of the frame level complexity control algo-

rithm. The proposed algorithm focuses on real-time operation on power limited

platform, where some restrictions should be considered.

� Complexity adaptation without feedback information, which means that

only one-path encoding is allowed.

� The traditional RDO requires huge complexity, so it is di�cult to use in

complexity constrained platforms.

In order to address these restrictions, the proposed algorithm uses single-path

based complexity adaption, ME based on VBS by detecting edges, which gives

good R-D performance whilst not using RDO in ME and mode decision in

H.264/AVC.

133



�The magic of �rst love is our ignorance that it can ever end.

Benjamin Disraeli

9
Discussion and Conclusion

9.1 Introduction

T
his chapter presents conclusions and future work related to the research car-

ried out in this thesis. The algorithms and experimental results are critically

reviewed in Section 9.2. The main contributions of this research are summarized

in Section 9.3. Possible directions for further research in relation to the main

�ndings are also indicated in Section 9.4.

9.2 Thesis Review

The aim of this research has been to develop novel algorithms to adapt the com-

putational complexity of an encoder so that the available processing resources are

used e�ciently or user requirements in terms of complexity are satis�ed in order

to maximize video quality. The signi�cant contributions of this research can be

classi�ed into four algorithms and they have been presented in four chapters.

� Chapter 5 �! VBS partitioning algorithm based on motion edge detection.

� Chapter 6 �! Fast ME algorithm in the SWHT domain called FWBS.

� Chapter 7 �! A skip MB detection algorithm in conjunction with FWBS.

� Chapter 8�! A complexity adaptation framework presented by complexity-

� modeling.
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Moreover, the fundamentals of a digital video system and necessary background

for the research reported are overviewed in three chapters.

� Chapter 2 �! Overview of digital video representation.

� Chapter 3 �! Experimental method, test sequences, and quality measure

metrics are overviewed in order to give a clear understanding of the high

level system architecture used, and how performance results were com-

pared.

� Chapter 4 �! Simple testing of H.264/AVC using JM reference software

to �nd which encoding parameters have most e�ect on R-D and C-D per-

formance.

Chapter 1 presents an introduction to the thesis, including a description of

the motivation of the research, the problem statement of complexity adaptation

in a video encoder, and a summary of research challenges. It also presents the

objectives of the research, and a brief description of the key contributions arising

from the research.

In Chapter 2, a review of digital video representation is presented. The digital

video system described in this chapter reveals that there are two main functional

blocks; digital video representation and block based video coding. In digital

video representation, captured analog image pixels are converted to digital for

storage, compression, and transmission. Prediction, Transform, and Entropy

coding play a major role in block based video compression. Their concepts and

principles are also described in this chapter.

In Chapter 3, test sequences are selected and discussed in terms of their use-

fulness for video coding research. Moreover, the most common used objective

video quality metrics are brie�y reviewed. The test procedure of this research

is presented, where all the proposed low complexity algorithms are integrated

in H.264/AVC and experimental results are compared with the JM reference

software.

The encoding parameters of H.264/AVC that give a bit rate saving of about

50% over previous standards are reviewed and investigated in terms of computa-

tional complexity in Chapter 4. VBS, sub-pel accuracy motion vector resolution
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ME, and CABAC have an in�uence on enhancing R-D performance. On the con-

trary, search range, multiple reference frames, and existence of the WHT do not

give much bene�t considering both R-D and C-D performance. However, I would

like to note that these results are not de�nitive due to lack of test sequences,

thus, di�erent results may be apparent for some other sequences.

In Chapter 5, a VBS partitioning algorithm based on motion edge detection is

proposed. The binary edge map is obtained via low computational complexity

edge detection using the WHT for 2� 2 partitioned blocks. Two �ndings are

derived from mathematical analysis. Firstly, inter prediction errors are mainly

caused by the spatial gradients and their motion vectors. Therefore, the predic-

tion error near motion edges becomes serious. Secondly, the threshold value in

detecting motion edges is linearly related to QP, which gives a way to predict

the VBS partitioning in order not to perform compression at given QP.

A fast ME algorithm called FWBS based on the WHT is presented in Chap-

ter 6. The idea of this algorithm is based on a fundamental property of DTs,

i.e., energy compactness. Two lemmas are proved in order to use basic tools of

fast ME. One is that the RSSD in the pixel domain is bounded to the SAD in

the transform domain. Therefore, complexity saving is achieved via calculating

SAD on only a few transformed coe�cients. For example, let block size for ME

be a 16� 16 block, only 16 low frequency coe�cients occupy more than 95%

of the energy of all blocks. Therefore, SAD is performed not for 16� 16 whole

block but for 16 coe�cients. The other is that the relationship between a block

and its sub-blocks in the SWHT is used for calculating 16 lower frequency co-

e�cients using neighbouring blocks' coe�cients. This has several advantages;

(1) it requires less memory space, (2) the coe�cients of the desired area can be

obtained individually, which give a complexity saving.

In Chapter 7, a skip MB detection algorithm is proposed. A simple transform

called the S-transform is introduced to �nd the relationship between ICT and

SWHT. Moreover, the coe�cients of the SWHT are bounded as the average

maximum pixel values (called limitation of dynamic range ) if all pixel values are

positive. However, the motion compensated residuals could be negative values.

Therefore, the statistical approach suggested in [18] is used in order to make all

residues positive. Evenly adding or summing certain values to a block's pixels

does not a�ect the variation of AC coe�cients in the transform domain. Only

the DC coe�cient is changed. Therefore, we are justi�ed in classifying this as a
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skip MB if the compensated DC coe�cient is zero after quantisation. The skip

MB detection algorithm plays an important role in setting up the complexity

adaptation framework described in Chapter 8.

Finally, a complexity adaptation video encoder framework is proposed in

Chapter 8. The Complexity-� model is presented by observing the relation-

ship between the threshold value of skip MB and the ratio of skip MB out of

all candidate MBs. From simulation, the relationship between complexity and �

can be linearly modeled with a �rst order curve, C(�) = k(1� �). Moreover, an

automatic complexity adaptation algorithm based on the complexity-� model,

where the user can de�ne the required level of complexity is presented. The

results show that the complexity of an encoder is successfully adapted to user

de�ned complexity although this is based on the hypothesis that adjacent frames

have similar characteristics in terms of �� � shape and the processing power of

skip MB for memory copy is negligible.

9.3 Research Contributions

This thesis makes a number of research contributions related to complexity adap-

tation in video encoders. Novel algorithms were developed where building up

the complexity adaptation framework. Key contributions of this research to the

advancement of video coding or other applications can be summarized as follows:

� The development of a low computational complexity VBS algorithm: This

algorithm can be extended to many �elds such that (1) low complexity

edge detection [46], (2) moving region segmentation [21], (3) shot boundary

detection, and (4) video compression especially using sub-partition blocks

such as the H.264/AVC.

� Fast ME algorithm (FWBS): This algorithm can be adopted to any video

coding standard. H.264/AVC optionally support SATD. In this case, it

gives bene�ts for complexity issues because no other processing is needed

to �nd motion vectors. Moreover, it could be used in image matching

especially low computational cost template matching.
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� Skip MB detection algorithm: This algorithm can be applied to video cod-

ing standards in conjunction with FWBS. This algorithm is more e�ective

at high QP values because the number of skip MB increases as QP rises.

� Complexity adaptation framework: The framework is very useful for ap-

plications running on power limited platforms such as CSNs, surveillance,

and mobile video applications.

9.4 Challenges and Future Work

The algorithms developed during this research were summarized and critically

evaluated in the previous section. This section presents challenges and directions

for further research.

1. The proposed algorithms are integrated into the JM. However, its use has

been limited because the JM is not an optimized version of H.264/AVC.

Therefore, an optimized version of an encoder is necessary in order to apply

the proposed algorithms in a real time encoder working on a power limited

platform.

2. Only integer-pel accuracy ME is presented in this thesis. Sub-pel accu-

racy ME should be considered in further research. Interpolation �ltering

algorithms in the transform domain are one candidate to obtain sub-pel

accuracy.

3. The complexity adaptation uses a frame level control algorithm, which

requires several frames to reach the de�ned complexity. Therefore, more

robust control algorithms such as MB level complexity control should be

investigated.

4. In this research, baseline pro�le in H.264/AVC is considered, thus only P-

frames are the main interesting of the complexity adaptation framework.

In future research, we would like to turn to the main or high pro�le to

consider B-frames.
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A
Coe�cient Relationship of sequency ordered

Walsh Hadamard Transform (SWHT) between

a block and its sub-blocks

A.1 One dimensional SWHT block and its sub-

blocks

A radix-N point SWHT of signal x(n), n = 0, 1 : : : N � 1, where N is power of

2, is de�ned as [88]

X(k) =
1p
N

N�1X
n=0

x(n)
N�1Y
i=0

(�1)pi(n)�di(k) (A.1)

where pi(n) is the binary representative form of n, di(k) can be de�ned fol-

lowed by taking binary to gray-code (Equation (A.3)) and bit reversal conversion

(Equation (A.2)) of the binary representation of k as follows:

n = (pn�1pn�2 : : : p0)2 =
n�1X
i=0

pi2
i

k = (bn�1bn�2 : : : b0)2 =
n�1X
i=0

bi2
i

(A.2)
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d0 = bn�1

d1 = bn�1 + bn�2

... =
...

dn�1 = b1 + b0.

(A.3)

The widely-used matrix representation of a signal transform is given as

XN = TNx, TN =

2
6664
a0,0 � � � aN ,0

... . . . ...

a0,N � � � aN ,N

3
7775 . (A.4)

When the vector forms of the signal x = fx(0), : : : ,x(N � 1)gT and transformed

signal XN = fX(0), : : : ,X(N � 1)gT are used and the components of the N �N
SWHT matrix TN are obtained shown as in Equation (A.5) by observation of

Equation (A.1), Equation (A.2), and Equation (A.3).

From Equation (A.3), every two bits of di have been repeated by increasing

k = k+ 4 since it changes two successive bits of bi. We divide SWHT coe�cients

of XN for a multiple of 4s, that is SWHT coe�cients at k = 4m, k = 4m+ 1,

k = 4m+ 2, and k = 4m+ 3, where m = 0, 1, � � � , N
4
� 1. The N �N transform

matrix is divided by its two sub matrices of N
2
� N

2
and the relationship between

them can be observed as shown in Equation (A.6). where i, j represents row and

=
p
NT

i,j
N (A.5)
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column components of matrix T i.jN .

p
2T

i,4m
N =

8><
>:
T
i,2m
N/2 i 2 [0,N/2� 1]

T
i,2m
N/2 i 2 [N/2,N � 1]

p
2T

i,4m+1
N =

8><
>:
T
i,2m
N/2 i 2 [0,N/2� 1]

�T i,2mN/2 i 2 [N/2,N � 1]

p
2T

i,4m+2
N =

8><
>:
T
i,2m+1
N/2 i 2 [0,N/2� 1]

�T i,2m+1
N/2 i 2 [N/2,N � 1]

p
2T

i,4m+3
N =

8><
>:
T
i,2m+1
N/2 i 2 [0,N/2� 1]

T
i,2m+1
N/2 i 2 [N/2,N � 1]

(A.6)

Using the above results, we can derive the relationship of a block and its

sub-blocks by introducing natural ordered Hadamard Transform [27]. The 2� 2

Hadamard (H2) and the sequency ordered Walsh Hadamard matrix (T2) have

the same de�nition given by

T2 = H2 =
1p
2

2
4 1 1

1 �1

3
5 (A.7)

The natural order Hadamard transform is obtained by successive Kronecker

multiplication (
) of H2 as follows:

HN = H2 
HN/2 = HN/2 
H2

=

2
4 HN/2 HN/2

HN/2 �HN/2

3
5

=

2
4 HN/2 0

0 HN/2

3
5
2
4 IN/2 IN/2

IN/2 �IN/2

3
5 .

(A.8)

where IN/2 is a N/2�N/2 identity matrix, 0 represents a zero matrix. The

SWHT matrix of order N can be obtained by reordering sequency components

of HN . To convert a given sequency number of HN into the corresponding index

number of TN , the permutation matrix is introduced based on the observation

of the Equation (A.8), the SWHT transformation matrix TN can be decomposed

into combinations of sub matrix TN/2 as
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TN = PN

2
4 TN/2 0

0 TN/2

3
5
2
4 IN/2 IN/2

IN/2 �IN/2

3
5 (A.9)

where PN is a permutation matrix of N �N . N -point SWHT is decomposed

into two N/2-point SWHTs. It is clear how to obtain the N -point SWHT, XN ,

of x directly from the N/2-point SWHT, X1 = fX1(0), � � � ,X1(N/2� 1)g and
X2 = fX2(0), � � � ,X2(N/2� 1)g, of two sub-blocks; x1 and x2, where x1 =
fx(0), � � � ,x(N/2� 1)g and x2 = fx(N/2), � � � ,x(N � 1)g. After considering

scalar scaling
p
N in Equation (A.5), XN can be obtained as follows;

XN = TNx

= PN

2
4 TN/2 0

0 TN/2

3
5
2
4 IN/2 IN/2

IN/2 �IN/2

3
5
2
4 x1

x2

3
5

= PN
1p
2

2
4 X1 + X2

X1 �X2

3
5

= PN

0
@ 1p

2

2
4 1 1

1 �1

3
5
2
4 X1

X2

3
5
1
A

= PN

0
@T2

2
4 X1

X2

3
5
1
A

= PNQN

(A.10)

where QN is 2-point SWHT coe�cients obtained with the two SWHT coe�cients

of sub-blocks. Let RN perform reordering of a column vector by interleaving

points from the �rst and second halves de�ned as

RN =

2
66666666666666664

1 0 � � � 0 0 0 � � � 0

0 0 � � � 0 1 0 � � � 0

0 1 � � � 0 0 0 � � � 0

0 0 � � � 0 0 1 � � � 0

� � � � � �
0 0 � � � 1 0 0 � � � 0

0 0 � � � 0 0 0 � � � 1

3
77777777777777775

(A.11)

PN can be obtained using Equation (A.11) by order changing between the (4m+
2)th and (4m+ 3)th column vector of RN observing Equation (A.6)'s relationship
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between a block and its sub-blocks matrix. Thus PN can be seen that

PN =

2
66666666666666664

1 0 � � � 0 0 0 � � � 0

0 0 � � � 0 1 0 � � � 0

0 0 � � � 0 0 1 � � � 0

0 1 � � � 0 0 0 � � � 0

� � � � � �
0 0 � � � 0 0 0 � � � 1

0 0 � � � 1 0 0 � � � 0

3
77777777777777775

(A.12)

PN acts as a interleaving two sub-blocks components, and reordering the SWHT

coe�cients at 4m, 4m+ 1, 4m+ 2 and 4m+ 3. Let reordering vectors of QN be

QN = fX1(0),X2(0), : : : ,X1(N/2� 1),X2(N/2� 1)gT depicted in Figure A.1,

Equation (A.10) is simpli�ed to

XN = PNQN

= (IN/22 
 S2)QN

,S2 =

2
4 I2 0

0 I2

3
5 , I2 =

2
4 0 1

1 0

3
5

(A.13)

where 0 is zero matrix, I2 is a 2x2 identity matrix.

Figure A.1 illustrates a graphical relationship between N block and its N/2

sub-blocks denoted in Equation (A.13). X(4m), X(4m+ 1) are obtained the 2-

point SWHT (T2) between even number position of X1 and X2. On the contrary,

X(4m+ 2), X(4m+ 3) are also obtained by taking 2-point SWHT using odd

number position of X1 and X2 followed by 2� 2 re�ection matrix (I2), where

m = 0, 1, � � � ,N/4� 1. Equation (A.13) could be extended to arbitrary size of

sub-blocks (power of 2) by recursion as follows;

XN = (IN/2i+1 
 S2i)QN/2i

,S2i =

2
4 I2i 0

0 I2i

3
5 (A.14)

where X is divided by 2i sub-blocks and i = 1, � � � , log2(N)� 1. And QN/2i is

a interleaved 2i SWHT of transformed data of sub-blocks (X1,X2, � � � ,X2i).
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Figure A.1: Graphical representation of the relationship between N -point
SWHT (X) and N/2-point sub-blocks' SWHT (X1,X2)

A.2 Two dimensional SWHT block and its sub-

blocks

The relationship between a 2-D SWHT block, XNN , and its four sub-blocks can

be determined through a similar method so that given in Section A.1. The direct

relationship is given as

XNN = TN

2
4 x1 x2

x3 x4

3
5T TN (A.15)
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where xi = [xi(0), : : : ,xi(N/2� 1)]T , i represents the location of sub-blocks

from raster scan order. Using Equation (A.9), we can observe that Equa-

tion (A.15) holds following;

XNN =PN

2
4 TN/2 0

0 TN/2

3
5
2
4 IN/2 IN/2

IN/2 �IN/2

3
5
2
4 x1 x2

x3 x4

3
5

2
4 IN/2 IN/2

IN/2 �IN/2

3
5T

2
4 TN/2 0

0 TN/2

3
5T P T

N

=
1

2
PNQNN (PN )T .

(A.16)

Let components of QNN be denoted as Q1
NN ,Q2

NN ,Q3
NN ,Q4

NN , we can obtain

as follows;

Q1
NN = X1 + X2 + X3 + X4

Q2
NN = X1 �X2 + X3 �X4

Q3
NN = X1 + X2 �X3 �X4

Q4
NN = X1 �X2 �X3 + X4

(A.17)

where Xi is a 2-D SWHT of sub-blocks de�ned as TN/2xi(TN/2)T . From Equa-

tion (A.17), we can see the relationship between QNN and Xi is 2� 2 2-D SWHT

as follows;

QNN = T2

2
4 X1 X2

X3 X4

3
5T T2 (A.18)

From Equation (A.18) and Equation (A.13), we obtain a compact form of

Equation (A.16) using the property of permutation matrix ((P 4,m
N )T = (P 4,m

N )�1)
and Kronecker product ((a
 b)�1 = a�1 
 b�1, (a
 b)(c
 d) = (ac
 bd)) as
follows;

XNN = PNQNN (PN )T

= PNQNN (PN )�1

= (IN/22 
 S2)QNN (I�1
N/22 
 S�12 )

= (IN/22 
 S2)QNN (IN/22 
 S2)
= (IN/23 
 S�4)QNN

(A.19)
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where QNN is reordered 2� 2 SWHT of sub-blocks' coe�cients de�ned as

QNN = fX1(0),X2(0),X3(0),X4(0), : : : ,

X1(
N

2
� 1),X2(

N

2
� 1),X3(

N

2
� 1),X4(

N

2
� 1)g

(A.20)

and S�4 is a reordering matrix denoted as

S�4 =

2
6666664

I2 0 0 0

0 B2 0 0

0 0 I2 0

0 0 0 B2I2

3
7777775 (A.21)

and B2 is a vertical transition matrix satisfying the condition below.

2
4 x(1) x(0)
x(3) x(2)

3
5 = B2

2
4 x(0) x(1)
x(2) x(3)

3
5 (A.22)

Figure A.2: Graphical representation of relationship between N � N -point
SWHT (X) and N/2�N/2-point sub-blocks' SWHT
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Figure A.2 shows the graphical procedure of two dimensional SWHT coe�-

cients between a block and its sub-blocks described in Equation (A.19). We

reorder coe�cients of sub-blocks' SWHT so that coe�cients located in the �rst

quadrant of the Cartesian Coordinate System can be obtained only multiplying

by the identity matrix. In a similar fashion, the coe�cients of other quadrants

are calculated by multiplying the re�ection matrix (I2), horizontal transition

matrix (B2) and its multiplication (B2I2) respectively.

To provide a comprehensive illustration of the generalized linear relationship

between SWHT coe�cients of blocks, Figure A.3 presents a full coe�cients com-

position example between a 4� 4 block and its four 2� 2 sub-blocks. The sum-

marized composition procedures are as follows and decomposition is also possible

by inverse procedures.

1. Taking SWHT coe�cients of separated four 2 � 2 blocks independently

(Figure A.3(b)).

2. Reordering coe�cients according to its position as shown in Figure A.3(c).

3. Separating 4� 4 reordered block into four 2� 2 blocks, whose positions

are marked as Si,j (see Figure A.3(c)).

4. Calculating 4�4 block coe�cients (see Figure A.3(d)) using Equation (A.19)

Figure A.3: Comprehensive illustration of SWHT coe�cients relationship be-
tween four blocks of 2� 2 and one block of 4� 4 pixels
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