
Better Training for Function Labeling

Grzegorz ChrupaÃla
Dublin City University

Dublin, Ireland
gchrupala@computing.dcu.ie

Nicolas Stroppa
Dublin City University

Dublin, Ireland
nstroppa@computing.dcu.ie

Josef van Genabith
Dublin City University

Dublin, Ireland
josef @computing.dcu.ie

Georgiana Dinu
Eberhard Karls Universität

Tübingen, Germany
gdinu@sfs.uni-tuebingen.de

Abstract
Function labels enrich constituency parse tree
nodes with information about their abstract syn-
tactic and semantic roles. A common way to ob-
tain function-labeled trees is to use a two-stage
architecture where first a statistical parser pro-
duces the constituent structure and then a sec-
ond component such as a classifier adds the miss-
ing function tags.

In order to achieve optimal results, training
examples for machine-learning-based classifiers
should be as similar as possible to the instances
seen during prediction. However, the method
which has been used so far to obtain training ex-
amples for the function labeling classifier suffers
from a serious drawback: the training examples
come from perfect treebank trees, whereas test
examples are derived from parser-produced, im-
perfect trees.

We show that extracting training instances from
the reparsed training part of the treebank re-
sults in better training material as measured
by similarity to test instances. We show that
our training method achieves statistically signif-
icantly higher f-scores on the function labeling
task for the English Penn Treebank. Currently
our method achieves 91.47% f-score on the sec-
tion 23 of WSJ, the highest score reported in the
literature so far.

Keywords

function labeling, machine-learning

1 Introduction

Treebanks such as the English or Chinese Penn Tree-
banks are collections of syntactic parse trees. The trees
include extra information in addition to constituent
bracketing and labeling. In this paper we focus on
the function labels (also known as function tags). The
function labels used in the Penn treebanks fall into
several types. Grammatical labels are used to encode
the grammatical function of the constituent. Form-
function labels are used to indicate the semantic class
of adjuncts and discrepancies between form and func-
tion. There is also a label used for topicalization, and

several other miscellaneous labels. Detailed informa-
tion about the label sets can be found in the annota-
tion guidelines for the respective treebanks (Bies, 1995;
Xue and Xia, 2000). Table 1 provides a summary of
labels used in the English and Chinese treebanks.

Widely used statistical parsers, such as those of
(Collins, 1999; Charniak, 2000), which use treebanks
as training data to parse unseen sentences, do not in-
clude function labels in the parse trees they produce.
However, pure constituency trees may be insufficient
for many NLP tasks - often something closer to se-
mantic information is required. Grammatical func-
tions and semantic roles such as those encoded in form-
function labels are a step towards this deeper, abstract
representation. Thus an important task is to be able
to produce parses which include the richer annotations
provided by function labels.

In this paper we review approaches to producing
parse trees with function labels and present our re-
search on the impact of different training methods in
a two-stage processing architecture where we use ma-
chine learning techniques to train classifiers which add
function labels to bare constituent trees such as those
output by Charniak’s or Collins’ parsers.

In a multi-stage processing pipeline the optimal
training input for the downstream stages is impor-
tant. Ideally the training at stage n + 1 should be
performed on input from stage n: e.g. a parsing model
which uses automatically POS-tagged input should be
trained on tags produced by the POS tagger used to
preprocess the raw input, rather than gold tags. In
practice pipeline architectures this has been violated.

For example, in the case of function labeling, the
two-stage models used in previous work have all used
“perfect” treebank trees to train the function labeler
even though the labeler operates on “imperfect” trees
output by the parser. This is presumably due to the
fact that the function labels we want to learn are
attached to nodes in the treebank trees. Unfortu-
nately, those nodes do not necessarily correspond to
constituents in the trees produced by the parser.

The main contribution of our paper consists in pre-
senting a theoretically sound method of training on
parser output rather than treebank trees for the func-
tion labeling task and investigating the effect of several
versions of this approach on the results as compared
against the baseline method which uses perfect tree-

Label Meaning ETB CTB
Clause types
IMP imperative

√
Q question

√
Syntactic labels
LGS logical subject

√ √
PRD predicate

√ √
PUT complement of put

√
SBJ surface subject

√ √
IO indirect object

√
OBJ direct object

√
FOC focus

√
Miscellaneous labels
CLF it-cleft

√
HLN headline

√ √
TTL title

√ √
CLR closely related

√
APP appositive

√
PN proper noun

√
SHORT short form

√
WH WH-phrases

√
Semantic (form-function) labels
ADV adverbial

√ √
BNF benefactive

√ √
DIR direction

√ √
EXT extent

√ √
LOC locative

√ √
MNR manner

√ √
NOM nominal

√
PRP purpose or reason

√ √
TMP temporal

√ √
CND condition

√
IJ interjective

√
VOC vocative

√ √
Topicalization
TPC topicalized

√ √

Table 1: Function labels in the English and Chinese
Penn Treebanks

bank trees. We show that using the better-motivated
methods helps to improve the quality and quantity of
training material available to the machine-learning al-
gorithm.

In Section 2 we describe previous approaches to the
function labeling task. In Section 3 we present our im-
proved method of obtaining appropriate training ma-
terial for function labeling. In Section 4 we present
experimental results for English and Chinese, and in
Section 5 we conclude and suggest possible future re-
search.

2 Previous Work

There are two main approaches to obtaining parse
trees with function label information:
• Two-stage systems, where “bare” parse trees are

enriched with function labels in a postprocess-
ing step (Blaheta and Charniak, 2000; Jijkoun
and de Rijke, 2004; ChrupaÃla and van Genabith,
2006),
• Modifying the parser’s internals to output func-

tion labels (Musillo and Merlo, 2005; Gabbard

et al., 2006).
Blaheta and Charniak (2000) use a probabilistic

model with feature dependencies encoded by means
of feature trees to add English Penn II Treebank func-
tion labels to the output of Charniak’s parser. They
report an f-score of 87.277% on correctly parsed con-
stituents, and 88.472% on original treebank trees from
WSJ section 23.

Jijkoun and de Rijke (2004) describe a method of
learning function labels, empty nodes and coindexa-
tions from the English Penn II Treebank trees. They
transform trees to dependencies and use memory-
based learning to transform the dependecy graphs.
One of the transformations is node renaming, which
adds function labels to parser output. They report an
f-score of 88.5% for the task of function tagging on
correctly parsed constituents on WSJ section 23.

ChrupaÃla and van Genabith (2006) compare the
performance of three machine learning algorithms on
function labeling of the Spanish Cast3LB treebank
(Civit and Mart́ı, 2004) against the baseline which uses
a modified version of Bikel’s parser (Bikel, 2002) to di-
rectly learn and output function-labeled nodes. They
evaluate their results in a task-based setting by using
the resulting function-labeled trees to produce LFG f-
structures, and report a 2.67% improvement in f-score
over the baseline for this task.

Musillo and Merlo (2005) extend the Henderson
parser (Henderson, 2003) and model function labels
as both expressions of the lexical semantics properties
of a constituent and as syntactic elements whose dis-
tribution is subject to structural locality constraints.
This improves their parsing score and function labeling
score on the grammatical and semantic label classes in
the English Penn II Treebank.

Gabbard et al. (2006) describe a two stage parser
which builds Penn Treebank analyses including both
function labels and empty categories and coindexa-
tions. Function labeling is performed during the first
stage: they modify Bikel’s implementation of Collins’
parsing model to enable it to output function labels.
They report 88.96% f-score on correctly parsed con-
stituents on WSJ section 23.

3 Methods

We use the two-stage architecture, in which the first
stage consists of bare constituency parsing using a sta-
tistical parsing model and the second stage decorates
constituent labels with function labels. The labeler
is a machine-learning classification model. Our focus
is to investigate ways of improving the performance
of the classifier by extracting more and better quality
training examples from the available resources.

By improving the quality of training material we
mean making it more similar to the instances that the
model has to classify during prediction, i.e. we will
try to better approximate the standard assumption
made in most machine-learning research that instances
(in training and test) are independently and identically
distributed (i.i.d.), in particular, they should be drawn
from the same probability distribution.

In the previous two-stage approaches (Blaheta and
Charniak, 2000; Jijkoun and de Rijke, 2004; ChrupaÃla

and van Genabith, 2006) this assumption is violated
in that the training instances are feature vectors ex-
tracted from nodes in the “perfect” parse trees from
the treebank, whereas at prediction time the model
has to classify instances extracted from nodes in im-
perfect parser output, which can and does contain a
certain proportion of errors (incorrect bracketings or
incorrect constituent labels).

We propose to alleviate this issue by using training
material which is extracted from the trees obtained by
reparsing the training portion of the treebank and us-
ing the (imperfect) trees output by the parser rather
than the original treebank trees. We still need the orig-
inal treebank trees in order to assign classes (function
labels) to the training instances extracted from parser
output. We do this by matching node-spans between
automatically parsed trees and gold trees in the train-
ing set. We only extract training instances from those
nodes in the automatically parsed tree for which there
is a node with the same span in the gold tree, from
which we can obtain the function label.

3.1 Baseline Method

Our baseline method uses a simple two-stage architec-
ture: constituency parsing, followed by function label-
ing. The first stage is performed by the constituency
parsing model, obtained by training a statistical parser
on the training portion of the treebank. The output
of this stage, sentences parsed into bare constituency
trees, are the input to the second stage component,
i.e. the function labeler. The labeler is trained, in the
baseline method, on the original “perfect” trees from
the training portion of the treebank.

3.1.1 Features

Each node to label is represented as a fixed-length vec-
tor of features encoding categorial, configurational and
lexical information about the node and its context. We
use the following features:

1. Node constituent label
2. Node head word’s part of speech tag
3. Node head word
4. Node’s head-sister’s constituent label
5. Node’s head-sister’s head word’s part of speech
6. Node’s head-sister’s head word
7. Node’s alternative head word’s part of speech tag

(alternative head is the head of the second child
for PPs)

8. Node’s alternative head word
9. Node’s yield length

10. Node’s mother’s constituent label
11. Node’s grandmother’s constituent label
12. Offset to node’s head sister
Plus the following:
• Features 1,2,3,7,8,9 for the preceding sister node
• Features 1,2,3,7,8,9 for the following sister node
Those features are binarized (i.e. each feature:value

pair is mapped to a new boolean feature), and the ex-
amples (i.e. the feature vectors) are used to train a
classifier. There is one minor complication: in princi-
ple a node can be decorated with more than one func-
tion label (although labels belonging to the same group
are (usually) mutually exclusive). Thus we could train

a separate classifier for each label, or a separate classi-
fier for each label group, or simply treat the label set
on the node as an atomic class. In the experiments
reported below we used the first method, i.e. we train
a separate binary classifier for each function label, and
combine their output to add a set of function labels to
each node.

3.2 Evaluation Metrics

Evaluating the performance of a function labeling sys-
tem is not entirely straightforward. Since the con-
stituency trees output by the parser are not identical
to the gold-standard treebank trees, one cannot re-
port simple labeling accuracy. Blaheta and Charniak
(2000) decide to measure accuracy (for their with-null
metric) and f-score (for the no-null metric) over the
correctly parsed subset of nodes, i.e. those nodes that
subtend the correct portion of the string and have the
correct constituent label. In this work we use the same
metric.

3.3 Training on Parser Output

Using the metric described above, since we are eval-
uating only the correctly parsed subset of nodes, one
might naively expect that the score should be the same
for labeling both the parser output and the perfect
treebank trees. However, the results reported in (Bla-
heta and Charniak, 2000) show that the performance
is over 1% better for the treebank trees. The authors
convincingly explain that the likely cause is that al-
though the focus node to be labeled is correctly parsed,
the neighouring context nodes that some features de-
pend on may be incorrect.

This fact serves as our motivation for extracting
training examples from treebank sentences parsed by
the same parser that is used to parse unseen test data.
Our hypothesis is that training instances obtained in
this way are going to be more similar to test instances
than the ones extracted from perfect treebank trees
and thus will better approximate the i.i.d assumption.
We expect that the machine learning algorithm will
perform better on test instances which are more simi-
lar to those used for training; for example it might be
able to weight down features which depend on incor-
rect characteristics of the parse trees, as such features
will be less reliable as class predictors.

Our improved training example extraction proce-
dure is as follows: sentences in the training portion
of the treebank are reparsed. Then we follow the al-
gorithm presented in Figure 1 to extract training in-
stances. The function instances returns training in-
stances from a parse tree T given the reference tree-
bank gold tree T ′ for the same sentence. For each node
n in T we check whether there exist one or more nodes
with the same span and constituent label in the cor-
responding T ′ (line 3)1. The function instance takes
the union of the function label sets (funcLabels(n′))
found on the nodes in the gold tree T ′ and returns
this set (as a class C) together with the feature vector
features(n) corresponding to node n.

1 The square bracket notation denotes multisets.

1 instances(T, T ′) =
2 N ← { nodeSpec(n) | n ∈ nodeSet(T ′) }
3 I ← [instance(n, T ′) | n ∈ nodeMultiSet(T) ∧ nodeSpec(n) ∈ N]
4 return I
5 instance(n, T ′) =
6 C ← ⋃ { funcLabels(n′) | n′ ∈ nodeSet(T ′) ∧ nodeSpec(n′) = nodeSpec(n) }
7 return 〈features(n), C〉
8 nodeSpec(n) = 〈nodeSpan(n), nodeConstituentLabel(n)〉

Fig. 1: Algorithm for extracting training instances from a parser tree T and gold tree T ′

Gold tree Parser tree

S

NP-SBJ

NN

Factory

NNS

payrolls

VP

VBD

fell

PP-TMP

IN

in

NP

NNP

September

S

NP-SBJ

NN

Factory

NNS

payrolls

VP

VBD

fell

PRT

RP

in

NP

NNP

September

Fig. 2: Example gold and parser tree

Figure 2 illustrates this algorithm: in effect we
transfer function labels from nodes in the gold tree to
matching nodes in the parser tree. Matching nodes are
those whose constituent label and span are the same.
In the example tree the sbj function label is tranferred
but the tmp is not since there is no matching node in
the parser tree due to a parsing error.

A problem with our method as described so far is
that we use a constituency parsing model trained on
sections 2-21 of WSJ to reparse those same sections so
that we can extract training material from them. Ob-
viously it is very likely that the resulting parse trees
will be closer to gold trees than will be the case for
test sentences taken from WSJ section 23. It would
be advisable to extract input for our labeling model
from the treebank trees reparsed with parsing mod-
els trained on material from which those trees are ex-
cluded. We did not do this for the experiments on
the English data with Charniak’s parser, due to tech-
nical difficulties encountered when attempting to re-
train this parser. However, for the experiments on the
Chinese data with Bikel’s parser we did 10-fold-cross-
training, that is we divided the training material into
10 parts and parsed each part in turn with the model
trained on the remaining 9 parts. We report the re-
sults on the Chinese data in section 4.

3.3.1 Instance Similarity

We tried to verify our prediction that the instances
extracted using our method would be more similar to
test instances. As a simple metric of similarity, we
compare instance overlap between the training set and
the test set. Instance overlap is the cardinality of the
intersection of the multiset of instance feature vectors
used for training and the multiset of instance feature
vectors used for testing. For multisets defined as tuples
(A, f) with the underlying set A and the multiplicity
function f : A → N which assigns to each element
the number of times it occurs, multiset cardinality is

Instance count Overlap
Test 44,113 —
Baseline 741,833 9,067
Reparse 712,973 10,022

Table 2: Instance counts and instance overlap against
test for the English Penn Treebank training set

defined as:
|(A, f)| =

∑

a∈A

f(a),

and multiset intersection as:

(A, f) ∩ (B, g) = (A ∩B, a 7→ min(f(a), g(a))).

We use both the baseline method where examples
are extracted from gold trees, and our improved train-
ing method to obtain training examples from sections
2-21 of the Wall Street Journal part of the English
Penn Treebank and compare both against instances
extracted from the parsed sentences taken from sec-
tion 23. For parsing the test sentences and the training
sentences we used the Charniak parser.

Table 2 summarizes the comparison. Even though
our method produces a lower total number of instances
than the baseline (since we only extract instances from
correctly spanning nodes) it still shares 955 instances
more with the test set than the baseline.

To further test our conjecture about our method
giving better training examples we calculated mean
Hamming distance between training examples and test
examples. Hamming distance counts the number of
features at which two vectors differ:

dh(v,w) =
|v|∑

i=1

vi 6= wi . (1)

We calculate the mean distance between the collec-
tion of test instances T and the collection of training
instances U as:

d̄h(T,U) =
1

|T| × |U|
∑

t∈T

∑

u∈U

dh(t,u) . (2)

As shown in Table 3, against the test set derived
from section 23 of WSJ we get mean Hamming dis-
tance of 15.1483 for the baseline method and 15.1283
for our method (for comparison the mean distance of
the test set against itself is 15.099). According to this
metric examples obtained by our method are more
similar to test examples.

Mean distance to Test
Test 15.0999
Baseline 15.1483
Reparse 15.1283

Table 3: Mean Hamming distance scores for the En-
glish Penn Treebank training set

4 Experimental Results

In this section we present evaluation results on the
function labeling task for two datasets:
• Section 23 of the WSJ portion of the English

Penn II Treebank, with models trained on data
extracted from sections 2-21. Section 22 was used
for development. The Charniak parser2 was used
for constituency parsing.
• Articles 271 to 300 of the Penn Chinese Treebank

5, with models trained on data extracted from
articles 26 to 270. Articles 1-25 were used for de-
velopment. We follow (Levy and Manning, 2003)
in adopting this test/training/development split.
The Bikel parser 3 was used for constituency pars-
ing.

For both datasets we used the LIBSVM library (Chang
and Lin, 2001) which implements the Support Vector
Machines algorithm (Vapnik, 1998).

4.1 Experiments with the English
Penn Treebank

Table 4 summarizes evaluation results for the func-
tion labeling task on the English Penn II Treebank.
There is a clear increase in f-score over the baseline
for our method, which gives a relative error reduction
of almost 8.5% over the baseline. The approximate
randomization test (Noreen, 1989) with 106 shuffles
obtained a p-value of 10−7 for the baseline versus our
method, showing that the improvement is statistically
significant.

Our results (91.47% f-score) are the best scores pub-
lished to date on the function labeling task evaluated
on parser output on the section 23 of WSJ: 87.27% in
(Blaheta and Charniak, 2000), 88.5% in (Jijkoun and
de Rijke, 2004) and 88.96% in (Gabbard et al., 2006)4

Table 5 shows the performance broken down per
function label. Although performance on three la-
bels (LOC, LGS and PRP) drops, the rest of the la-
bels show the same score or benefit from our training
method.

4.2 Experiments with the Penn Chi-
nese Treebank

For the Chinese Treebank we performed experiments
evaluating the impact of using our basic method and

2 Available at ftp://ftp.cs.brown.edu/pub/nlparser/
3 Available at http://www.cis.upenn.edu/∼dbikel/
software.html#stat-parser

4 Not all of those scores are exactly comparable to ours or to
each other. The score in (Jijkoun and de Rijke, 2004) is on
trees transformed into dependencies. Gabbard et al. (2006)
use Bikel’s parser to produce the trees whereas we use Char-
niak’s.

Precision Recall F-score
Baseline 92.28 89.14 90.68
Reparse 93.07 89.92 91.47

Table 4: Function labeling evaluation on parser out-
put for WSJ section 23

Label Freq. in test Baseline Reparse
SBJ 4148 98.27 98.27
TMP 1303 91.19 91.52
PRD 1025 68.35 91.26
LOC 1024 89.45 89.06
CLR 635 68.98 68.93
ADV 419 85.98 89.36
DIR 293 68.98 71.20
TPC 267 86.50 96.02
PRP 207 68.35 67.95
NOM 199 95.02 95.58
MNR 178 76.12 77.62
LGS 166 88.10 88.10
EXT 105 87.72 88.24
TTL 61 74.42 74.42
HLN 52 18.18 26.23
DTV 19 66.67 66.67
PUT 10 66.67 66.67
CLF 3 — —
BNF 2 — —
VOC 1 — —

Table 5: Per-tag performance of baseline and when
training on reparsed trees

also the variation with cross-training on the function
labeling task.

The results we obtained are somewhat contradic-
tory: we saw an improvement in performance using
both on the development set (articles 1-25), but on
the test set (articles 271-300) the basic method shows
practically no improvement whereas cross-training ac-
tually leads to results worse than for the baseline.

Table 6 shows the results for the development set
which are consistent with our findings so far: our
method outperforms the baseline by 0.18%. Addition-
ally, we observe that adding cross-training produces a
further increase in the f-score of 0.3%.

However, as can be seen in Table 7, for the test
set our predictions are not borne out: with cross-
training we actually obtain a lower score than the base-
line (−0.32%); without cross-training the score is only
marginally better than the baseline (+0.01%).

We performed an approximate randomization test
for both the development set and the set, testing the
baseline against our method with cross-training. For
the development set we obtained a p-value of 0.13; for
the test set the p-value was 0.08 — this suggests that
neither the improvement for the development set nor
the decrease in f-score for the test set are statistically
significant.

It would be interesting to repeat our experiments
for Chinese using larger data sets. There are two rea-
sons why we want to do that. First, testing on a larger
test set would offer a higher confidence in the signif-
icance of the observed performance scores. Second,
we suspect that one reason that our approach did not

Precision Recall F-score
Baseline 88.35 84.64 86.46
Reparse 88.54 84.82 86.64
Reparse + x-train 89.11 84.88 86.94

Table 6: Function labeling evaluation for the CTB on
the parser output for the development set

Precision Recall F-score
Baseline 91.46 90.13 90.79
Reparse 91.39 90.23 90.80
Reparse + x-train 91.53 89.43 90.47

Table 7: Function labeling evaluation for the CTB on
the parser output for the test set

show consistent improvement across both the devel-
opment set and the test set might be related to the
relatively small amount of training material we used,
for both training the parser and the function labeling
model. Thus parse quality is rather low, and since
we only exploit correctly parsed nodes in extracting
training instances for labeling, the amount of training
data available decreases even further. We also suspect
that parse quality for Chinese may be lower than for
English even while holding training set size constant,
reflecting the smaller amount of work which has gone
into research on parsing Chinese. Testing those con-
jectures remains an area for future investigation.

It remains to be seen whether using our approach
with training sets comparable in size with the one
we used for English would more show more consistent
benefits for Chinese.

5 Conclusions and Future Work

We have presented a method to perform training in a
sound manner in the two-stage function labeling model
and investigated the impact of our proposal on the
function labeling task. Our approach improves the
similarity of the training material to the test instances
as measured by instance overlap and mean Hamming
distance.

We have consitently found substantial statistically
significant improvements on the English Penn Tree-
bank data, and a more mixed picture for the Chinese
Penn Treebank sentences. We would like to better un-
derstand what factors influence the effect of our pro-
posed training methods on function labeling perfor-
mance: we plan to study this issue in more detail in
future.

It should also be possible to apply our findings to
other tasks where training examples are typically ex-
tracted from perfect trees whereas the test data is pro-
duced automatically and contains errors. Using parser
output instead and exploiting several of the most prob-
able trees could be beneficial in those situations.

Acknowledgements

We gratefully acknowledge support from Science Founda-
tion Ireland grant 04/IN/I527 for the research reported in
this paper.

References
Bies, Ann (1995). Bracketing guidelines for Treebank II style Penn

treebank project. Technical report, University of Pennsylvania.

Bikel, Dan (2002). Design of a multi-lingual, parallel-processing sta-
tistical parsing engine. In Human Language Technology Confer-
ence (HLT). San Diego, CA, USA.

Blaheta, Don and Charniak, Eugene (2000). Assigning function
tags to parsed text. In Proceedings of the first conference on
North American chapter of the Association for Computational
Linguistics, pages 234–240. San Francisco, CA, USA.

Chang, Chih-Chung and Lin, Chih-Jen (2001). LIBSVM: a library
for Support Vector Machines (version 2.31).

Charniak, Eugene (2000). A maximum-entropy-inspired parser. In
Proceedings of the first conference on North American chapter
of the Association for Computational Linguistics, pages 132–
139. San Francisco, CA, USA.

ChrupaÃla, Grzegorz and van Genabith, Josef (2006). Using machine-
learning to assign function labels to parser output for Spanish.
In Proceedings of the COLING/ACL 2006 Main Conference
Poster Sessions, pages 136–143. Sydney, Australia.

Civit, Montserrat and Mart́ı, Maria Antonia (2004). Building
Cast3LB: A Spanish treebank. Research on Language and Com-
putation, 2(4):549–574.

Collins, Michael (1999). Head-Driven Statistical Models for Natu-
ral Language Parsing. Ph.D. thesis, University of Pennsylvania.

Gabbard, Ryan, Kulick, Seth, and Marcus, Mitchell (2006). Fully
parsing the Penn treebank. In Proceedings of the Human Lan-
guage Technology Conference of the NAACL, Main Conference,
pages 184–191. New York City, USA.

Henderson, James (2003). Inducing history representations for
broad coverage statistical parsing. In NAACL ’03: Proceed-
ings of the 2003 Conference of the North American Chapter
of the Association for Computational Linguistics on Human
Language Technology, pages 24–31. Morristown, NJ, USA.

Jijkoun, Valentin and de Rijke, Maarten (2004). Enriching the out-
put of a parser using memory-based learning. In Proceedings of
the 42nd Annual Meeting of the Association for Computational
Linguistics, pages 311–318. Barcelona, Spain.

Levy, Roger and Manning, Christopher (2003). Is it harder to parse
Chinese, or the Chinese treebank? In ACL ’03: Proceedings
of the 41st Annual Meeting on Association for Computational
Linguistics, pages 439–446. Morristown, NJ, USA.

Musillo, Gabriele and Merlo, Paola (2005). Lexical and structural
biases for function parsing. In Proceedings of the Ninth Inter-
national Workshop on Parsing Technology, pages 83–92. Van-
couver, British Columbia.

Noreen, Eric W. (1989). Computer intensive methods for testing
hypotheses. A Wiley-Interscience Publication, New York.

Vapnik, Vladimir N. (1998). Statistical Learning Theory. Wiley-
Interscience.

Xue, Nianwen and Xia, Fei (2000). The bracketing guidelines for the
Penn Chinese treebank. Technical report, University of Pennsyl-
vania.

