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Abstract

This paper presents an overview of a
project to acquire wide-coverage, prob-
abilistic Lexical-Functional Grammar
(LFG) resources from treebanks. Our
approach is based on an automatic an-
notation algorithm that annotates “raw”
treebank trees with LFG f-structure
information approximating to basic
predicate-argument/dependency structure.
From the f-structure-annotated tree-
bank we extract probabilistic unification
grammar resources. We present the
annotation algorithm, the extraction of
lexical information and the acquisition
of wide-coverage and robust PCFG-
based LFG approximations including
long-distance dependency resolution.
We show how the methodology can be
applied to multilingual, treebank-based
unification grammar acquisition. Finally
we show how simple (quasi-)logical
forms can be derived automatically from
the f-structures generated for the treebank
trees.

1 Introduction

Manually scaling modern unification/constraint-
based grammars such as LFG and HPSG to nat-
urally occurring free text is very time-consuming,
expensive and requires considerable linguistic and
computational expertise. Few hand-crafted, deep

grammars have in fact achieved the coverage and
robustness required to parse a corpus of, e.g., the
size and complexity of the Penn treebank: (Rie-
zler et al, 2002) show how a carefully hand-crafted
LFG is successfully scaled to parse the Penn-II
treebank (Marcus et al, 1994) with discrimina-
tive (log-linear) parameter estimation techniques,
providing deep linguistic analyses including long-
distance dependencies (LDDs) and basic predicate-
argument/dependency structure in the form of LFG
f-structures.

The last 20 years have seen continuously increas-
ing efforts in the construction of parse-annotated
corpora. Substantial treebanks1 are now available
for many languages (including English, Japanese,
Chinese, German, French, Czech, Turkish), others
are currently under construction (Bulgarian) or near
completion (Spanish). First generation treebanks
represented mainly surface syntactic information in
the form of CFG parse trees, while many second
generation treebanks also include “deep” informa-
tion such as LDDs, abstract syntactic function or
dependency information. This information is of-
ten provided expressly to support the computation
of meaning representations.

Treebanks have been enormously influential in
the development of robust, state-of-the-art pars-
ing technology: grammars (or grammatical infor-
mation) automatically extracted from treebank re-
sources provide the backbone of many state-of-
the-art probabilistic parsing approaches (Charniak,
1996; Collins, 1999; Clarket al., 2002; Klein and
Manning, 2003). Such approaches are attractive as

1Or dependency banks.



they achieve robustness, coverage and performance
while incurring very low grammar development
cost. However, with very few notable exceptions
(Collins model 3, Johnson (2002), CCG), treebank-
based probabilistic parsers return fairly simple “sur-
facy” CFG trees, without deep syntactic (LDD) or
semantic information. Because of the this, the gram-
mars used by such systems are sometimes referred to
as “half-grammars” (Johnson, 2002).

In this paper we provide an overview of a project
that in many respects is a natural development and
extension of the basic, automatic treebank PCFG ac-
quisition paradigm (Charniak, 1996; Johnson, 1998;
Klein and Manning, 2003). Rather than extracting
simple CFGs, however, our aim is a treebank-based
grammar acquisition methodology for deep, wide-
coverage unification grammars such as LFG. We
observed that many (second generation) treebanks
provide a certain amount of deep syntactic informa-
tion (e.g. Penn-II functional annotations and traces)
supporting the computation of deep linguistic infor-
mation. Exploiting this information we design and
implement an automatic f-structure annotation algo-
rithm that associates nodes in treebank trees with f-
structure annotations in the form of attribute-value
structure equations representing abstract predicate-
argument structure/dependency relations. From the
f-structure annotated treebank we automatically ex-
tract wide-coverage unification grammar resources
(subcategorisation frames and PCFG-based LFG ap-
proximations) for parsing new text into f-structures.

Some aspects of our approach and early results
have been published elsewhere (Cahillet al., 2002;
Cahill et al., 2004a). This paper gives, for the first
time, a comprehensive project overview, presents
new results and project extensions not reported else-
where. The paper is structured as follows: first, we
give a brief introduction to LFG. Second, we de-
tail the automatic f-structure annotation algorithm.
Third, we present our subcategorisation frame ex-
traction. Fourth, we present our PCFG-based LFG
grammar approximations and parsing architectures.
Fifth, while our original approach was developed
for English and the Penn-II treebank, we show how
it can be migrated successfully to a typologically
different language (German) and treebank encoding
(Brants et. al, 2002). Finally we show how sim-
ple (quasi-)logical forms can be derived from the f-

structures generated for the treebank trees. In each
case we provide results and extensive evaluation.

2 Lexical-Functional Grammar

Lexical-Functional Grammar (Kaplan and Bresnan,
1982; Bresnan, 2001; Dalrymple, 2001) minimally
involves two levels of syntactic representation:2 c-
structure and f-structure. C(onstituent)-structure
represents the grouping of words and phrases into
larger constituents and is realised in terms of a
CF-PSG grammar. F(unctional)-structure repre-
sents abstract syntactic functions such asSUBJ(ect),
OBJ(ect), OBL(ique) argument, sentential and open
COMP/XCOMP(lement),ADJ(unct),APP(osition) etc.
and is implemented in terms of recursive feature
structures (attribute-value matrices, AVMs). C-
structure captures surface grammatical configura-
tions, f-structure encodes abstract syntactic informa-
tion approximating to predicate-argument-adjunct
structure or simple logical form (van Genabith and
Crouch, 1996). Alternatively, f-structures can be
regarded as AVM encodings of dependency rela-
tions. C-structures and f-structures are related (non-
transformationally) in terms of functional annota-
tions (constraints, attribute-value equations) on c-
structure rules (cf. Figure 1).
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Figure 1: Simple LFG c- and f-structure

3 Automatic F-Structure Annotation

The Penn-II treebank employs CFG trees with addi-
tional “functional” node annotations (such as -LOC,

2LFGs may also involve morphological and semantic levels
of representation.



-TMP, -SBJ, -LGS, . . . ) as well as traces and coin-
dexation (to indicate LDDs) as basic data structures.
The f-structure annotation algorithm exploits config-
urational, categorial, “functional” and head informa-
tion to annotate nodes with feature-structure equa-
tions. We adapt Magerman’s (1994) scheme to au-
tomatically head-lexicalise the Penn-II trees. This
partitions local subtrees of depth one (corresponding
to CFG rules) into left and right contexts (relative
to head). The annotation algorithm is modular with
four components (Figure 2): left-right (L-R) annota-
tion principles (e.g. leftmost NP to right of V head of
VP type rule is likely to be an object etc.); coordina-
tion annotation principles (separating these out sim-
plifies other components of the algorithm); traces
(translates traces and coindexation in trees into cor-
responding reentrancies in f-structure (1 in Figure
3)); catch all and clean-up. Lexical information is
provided via macros for POS tag classes.

L/R Context⇒ Coordination⇒ Traces⇒ Catch-All

Figure 2: Annotation Algorithm
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Figure 3: Penn-II style tree with LDD trace and cor-
responding reentrancy in f-structure

The f-structure annotations are passed to a con-
straint solver to produce f-structures. Annotation
is evaluated in terms of coverage and quality, sum-
marised in Table 1. Coverage is near complete
with 99.83% of the 48K Penn-II sentences receiv-
ing a single, connected f-structure. Annotation qual-
ity is measured in terms of precision and recall

(P&R) against manually constructed, gold-standard
f-structures for 105 randomly selected trees from
section 23 of the WSJ part of Penn-II. The algorithm
currently achieves an F-score of 96.3% for complete
f-structures and 93.6% for preds-only f-structures.3

# frags # sent percent
0 79 0.163
1 48343 99.833
2 2 0.004

all preds
P 96.07 93.38
R 96.44 93.97

Table 1: F-structure annotation results for Penn-II

A more detailed analysis of the f-structure quality
is shown in Table 2. Precision and recall results are
provided for selected features, e.g. the annotation
algorithm achieves an f-score of 96% for the subject
feature.

Feature Precision Recall F-S
adjunct 892/968 = 92 892/950 = 94 93
comp 88/92 = 96 88/102 = 86 91
coord 153/184 = 83 153/167 = 92 87
det 265/267 = 99 265/269 = 99 99
obj 442/459 = 96 442/461 = 96 96
obl 50/52 = 96 50/61 = 82 88
oblag 12/12 = 100 12/12 = 100 100
passive 76/79 = 96 76/80 = 95 96
relmod 46/48 = 96 46/50 = 92 94
subj 396/412 = 96 396/414 = 96 96
topic 13/13 = 100 13/13 = 100 100
topicrel 46/49 = 94 46/52 = 88 91
xcomp 145/153 = 95 145/146 = 99 97

Table 2: Annotation results for selected features

4 Subcategorisation Frame Extraction

LFG distinguishes between governable (arguments)
and nongovernable (adjuncts) grammatical func-
tions (GFs). Subcategorisation requirements are
stated in terms of GFs listed in what are referred to
as “semantic forms” (subcategorisation frames). For
example, the semantic form associated with tran-
sitive see is see([subj,obj]). If the automatic f-
structure annotation algorithm outlined in Section 3
generates high quality f-structures, reliable seman-
tic forms can be extracted (reverse-engineered) quite
simply following (van Genabith et al., 1999): “For
each f-structure generated, for each level of embed-
ding we determine the local PRED value and collect
the subcategorisable grammatical functions present

3Preds-only measures only paths ending inPRED:VALUE .



Semantic Form Occurrences Probability
accept([obj,subj]) 122 0.813
-accept([subj], p) 9 0.060
accept([comp,subj]) 5 0.033
accept([subj,obl:as], p) 3 0.020
accept([obj,subj,obl:as]) 3 0.020
accept([obj,subj,obl:from]) 3 0.020
-accept([subj]) 2 0.013
accept([obj,subj,obl:at]) 1 0.007
accept([obj,subj,obl:for]) 1 0.007
accept([obj,subj,xcomp]) 1 0.007

Table 3: Semantic forms for the verbaccept .

at that level of embedding.” For the f-structure in
Figure 3 we obtain the non-empty semantic forms
sign([subj,obj]) and say([subj,comp]).

We substantially extend and scale the approach
of (van Genabith et al., 1999), which was small-
scale and ‘proof of concept’ (100 trees). We ex-
tract frames from the full WSJ section of the Penn-
II Treebank with 48K trees. Unlike van Genabith
(1999) and many other approaches, our extraction
process fully reflects LDDs, indicated in terms of
traces in the Penn-II Treebank and corresponding
re-entrancies at f-structure (cf. Figure 3). We do
not predefine the frames to be extracted by our sys-
tem. We discriminate between active and passive
frames. We compute GF, GF:CFG category pair-
as well as CFG category-based subcategorisation
frames. Finally, we associate conditional probabil-
ities with frames. Given a lemmal and an argument
list s, the probability ofs given l is estimated as:

P(s|l) :=
count(l, s)

∑n

i=1
count(l, si)

We use relative thresholding to filter possible er-
ror judgements by our system. Table 3 shows
the attested semantic forms for the verbaccept
with their associated conditional probabilities. Note
that were the distinction between active and passive
not taken into account, the transitive occurrence of
accept would have been assigned an unmerited
probability. 4

4Given this distinction and the computed conditional proba-
bilities of frames, it is easy to condition frames on both lemma
(π) and voice (v: active/passive):

P(ArgList|π, v) =
count(π〈ArgList, v〉)

∑n

i=1
count(π〈ArgListi, v〉)

Without Prep/Part With Prep/Part
Lemmas 3586 3586
Sem. Forms 10969 14348
Frame Types 38 577
Active Frame Types 38 548
Passive Frame Types 21 177

Table 4: Verb Results

Table 13 indicates the scale of our induced lexical
resources. We extract non-empty semantic forms5

for 3586 verb lemmas, resulting in 10969 unique
verbal semantic form types (lemma followed by
non-empty argument list). Including prepositions
associated with theOBLs and particles, this number
goes up to 14348, an average of 4.0 per lemma. The
number of unique frame types (without lemma) is
38 without specific prepositions and particles, 577
with.

We carried out a comprehensive evaluation of
the automatically acquired verbal semantic forms
against the COMLEX Resource (MacLeod et al.,
1994) for the 2992 (actively used) verb lemmas that
both resources have in common. The manually-
constructed COMLEX entries provide a gold stan-
dard against which we evaluate the automatically
induced frames. No other approach for the extrac-
tion of English subcategorisation details conducts an
evaluation of this scale. The largest is that of (Car-
roll and Rooth, 1998) who evaluated 200 selected
verbs. Only the evaluation carried out by (Schulte
im Walde, 2002) for German is in anyway compara-
ble in scale to ours.

COMLEX lexical entries express subcategorisa-
tion information as a value of a :SUBC feature
in terms of surface syntactic constituents. How-
ever, what makes the COMLEX resource particu-
larly suitable for our evaluation is that each of the
complement types which make up the value of the
:SUBC feature is associated with a formal frame def-
inition encoding the functional arguments required
by the pred in question. Here we report on the
evaluation of GF-based frames only. In order to
carry out the evaluation we mapped COMLEX GFs
to LFG GFs.

We carried out three experiments. Experi-
ment 1 excludes prepositional phrases: e.g. the
frame [subj,obl:for] becomes [subj].Experiment

5Non-empty semantic forms contain at least one subcate-
gorised grammatical function.



Threshold 1% Threshold 5%
P R F-Score P R F-Score

Exp. 1 79.0% 59.6% 68.0% 83.5% 54.7% 66.1%
Exp. 2 77.1% 50.4% 61.0% 81.4% 44.8% 57.8%
Exp. 2a 76.4% 44.5% 56.3% 80.9% 39.0% 52.6%
Exp. 3 73.7% 22.1% 34.0% 78.0% 18.3% 29.6%
Exp. 3a 73.3% 19.9% 31.3% 77.6% 16.2% 26.8%

Table 5: COMLEX Comparison (Threshold 1% and
5%)

Precision Recall F-Score
Exp. 3 81.7% 40.8% 54.4%
Exp. 3a 83.1% 35.4% 49.7%

Table 6: COMLEX Comparison using p-dir (Threshold of

1%)

2 includes prepositional phrases suppressing prepo-
sitions: [subj,obl:for] becomes [subj,obl]. Ex-
periment 3 evaluates the frames in full detail,
[subj,obl:for]. Experiments 2a and3a are the same
as Experiment 2 and 3, except that they include
the particle with eachPART function. We use con-
ditional probability thresholds to filter the selection
of semantic forms. Table 5 shows experiments with
threshold 1% and 5%. The effect of the threshold in-
crease is obvious in that Precision goes up for each
of the experiments while Recall goes down. Our re-
sults compare well with those of (Schulte im Walde,
2002) for German.

The low recall figure in the case ofExperiments
3 and3a can be accounted for by the fact that COM-
LEX errs on the side of overgeneration when it
comes to preposition assignment (Grishmanet al., ,
1994). This is particularly true of directional prepo-
sitions, a list of 31 of which has been prepared and is
assigned in its entirety by default to any verb which
can potentially appear with any directional prepo-
sition. In a subsequent experiment, we incorporate
this list of directional prepositions by default into
our semantic form induction process in the same
way as the creators of COMLEX have done. Table 6
shows the significant improvement in recall for this
experiment.
Table 7 presents the results of our evaluation of the
passive semantic forms we extract. It was carried out
for 1422 verbs which occur with passive frames and
are shared by the induced lexicon and COMLEX.
We applied Lexical Redundancy Rules (Kaplan and
Bresnan, 1982) to automatically convert the active

Passive Precision Recall F-Score
Exp. 2 80.2% 54.7% 65.1%
Exp. 2a 79.7% 46.2% 58.5%
Exp. 3 72.6% 33.4% 45.8%
Exp. 3a 72.3% 29.3% 41.7%

Table 7:Passive evaluation (Threshold of 1%)

COMLEX frames to their passive counterparts. The
resulting precision was very high and there was the
expected drop in recall when prepositional details
were included.

We tested the coverage of our system in a simi-
lar way to (Hockenmaier et al., 2002). We extracted
a verb-only reference lexicon from Sections 02-21
of the WSJ. We then compared this to a test lexi-
con constructed in the same way from Section 23.
89.89% of the entries in the test lexicon appeared in
the reference lexicon.

5 PCFG-Based LFG Approximations

Based on the resources described above we de-
veloped two parsing architectures. Both generate
PCFG-based approximations of LFG grammars.

In the pipeline architecture we first extract
a standard PCFG from the “raw” treebank to
parse unseen text. The resulting parse-trees are
then annotated by the automatic f-structure an-
notation algorithm and resolved into f-structures.
In the integrated architecture we first automati-
cally annotate the treebank with f-structure equa-
tions. We then extract an annotated PCFG
where each non-terminal symbol in the gram-
mar has been augmented with LFG f-equations:
NP[↑SUBJ=↓] → DT[↑SPEC=↓] NN[↑=↓] We
treat a node followed by annotations as a monadic
category for grammar extraction and parsing. Post-
parsing, equations are collected from parse trees and
resolved into f-structures. Both architectures parse
raw text into “proto” f-structures with LDDs unre-
solved.

In LFG, LDDs are resolved at the f-structure
level, obviating the need for empty productions and
traces in trees (Dalrymple, 2001), using functional
uncertainty (FU) equations. FUs are regular ex-
pressions specifying paths in f-structure between
a source (where linguistic material is encountered)
and a target (where linguistic material is interpreted



semantically). WeapproximateFUs by extracting
paths between co-indexed material occurring in the
automatically generated f-structures from sections
02-21 of the Penn-II treebank. We extract 26 unique
TOPIC, 60 TOPIC-REL and 13FOCUS path types,
each with an associated probability. Given a path
p and an LDD typet (either TOPIC, TOPIC-REL or
FOCUS), the probability ofp givent is estimated as:

P(p|t) :=
count(t, p)

∑n

i=1
count(t, pi)

For, say, a topicalised constituent to be resolved
as the argument of a predicate as specified by a
FU equation, the local predicate must (i) subcate-
gorise for the argument and (ii) the argument must
not be already filled locally. Subcategorisation re-
quirements are provided by semantic forms as ac-
quired in Section 4. The LDD resolution algorithm
traverses an f-structure along LDD paths and ranks
possible resolutions by multiplying path and seman-
tic form probabilities involved. It supports multiple,
interactingTOPIC, TOPIC-REL andFOCUSLDDs.

Given a set of semantic formss with probabilities
P(s|l) (wherel is a lemma), a set of pathsp with
P(p|t) (wheret is eitherTOPIC, TOPIC-REL or FO-
CUS) and an f-structuref , the core of the algorithm
to resolve LDDs recursively traversesf to:

find TOPIC|TOPIC-REL|FOCUS:g pair; retrieve
TOPIC|TOPIC-REL|FOCUS paths; for each pathp
with GF1 : . . . : GFn : GF, traversef along GF1 : . . . :
GFn to sub-f-structureh; retrieve localPRED:l;

add GF:g to h iff

∗ GF is not present ath
∗ h together with GF is locally complete and co-

herent with respect to a semantic forms for l

rank resolution byP(s|l) × P(p|t)

We ran experiments with grammars in both the
pipeline and the integrated parsing architectures.
The first grammar is a basic PCFG, while A-PCFG
includes the f-structure annotations. We train on sec-
tions 02-21 (grammar, lexical extraction and LDD
paths) of the Penn-II Treebank and test on section
23. We evaluate the parse trees using evalb. Fol-
lowing (Riezleret al, 2002), we convert f-structures
into dependency triple format. Using their software
we evaluate the f-structure parser output against (i)
manuallyconstructed gold-standard f-structures for

Pipeline Integrated
PCFG A-PCFG

2416 Section 23 trees
# Parses 2410 2398
Lab. F-Score 75.46 80.01
Unlab. F-Score 77.91 81.95

105 F-Strs – pre LDD resolution
All GFs 74.2 79.23
Preds only 64.75 73.19

105 F-Strs – post LDD resolution
All GFs 78.67 84.93
Preds only 69.23 79.14

2416 F-Strs – pre LDD resolution
All GFs 76.75 80.73
Preds only 67.5 75

2416 F-Strs – post LDD resolution
All GFs 79.51 83.87
Preds only 70.23 78.24

Table 8: Parser Evaluation

105 randomly selected sentences from section 23
and (ii) in a CCG-style (Hockenmaier, 2003) eval-
uation experiment against the full 2,416 f-structures
automaticallygenerated by the f-structure annota-
tion algorithm for theoriginal Penn-II trees. The
results are given in Table 8. The integrated model
outperforms the pipeline model in all aspects of our
evaluation. In all cases, there is a marked improve-
ment (2.8-5.7%) in the f-structures after LDD reso-
lution. We achieve between 78.2 and 79.1% preds-
only and 83.9 to 84.9% all GF f-score, depending
on gold-standard, with the integrated model. In or-
der to measure how many of the LDD reentracies in
the gold-standard f-structures are captured correctly
by our parsers we developed evaluation software
for f-structure LDD reentracies (similar to Johnson’s
(2002) evaluation to capture traces and their an-
tecedents in trees). Table 9 show the results, with
the integrated model achieving more than 79% cor-
rect LDD reentrancies.

Our parsing architectures provide wide-coverage,
robust, and - with the addition of LDD resolution -
“deep” or “full”, PCFG-based LFGapproximations.
We do not claim to provide fully adequate statisti-
cal models. It is well known (Abney, 1997) that
PCFG-type approximations of full unification gram-
mars can yield inconsistent probability models due
to loss of probability mass: the parser successfully
returns the highest ranked parse tree but the con-
straint solver cannot resolve the f-equations (gen-
erated in the pipeline or “hidden” in the integrated



Pipeline Integrated
PCFG A-PCFG

TOPIC

precision 12/13 13/13
recall 12/13 13/13
f-score 92.31 1

FOCUS

precision 0/0 0/1
recall 0/1 0/1
f-score 0 0

TOPICREL

precision 19/32 29/35
recall 19/43 29/43
f-score 50.67 74.36
OVERALL 60.78 79.25

Table 9: LDD Evaluation on 105 Gold Standard F-
Structures

model) and the probability mass associated with that
tree is lost. This case, however, is surprisingly rare
for our grammars: only 0.0016% (79 out of 48424)
of the original Penn-II trees (without FRAGs) fail
to produce an f-structure due to inconsistent anno-
tations (Table 1), and, e.g., for parsing section 23
with the integrated model 24 sentences do not re-
ceive a parse, 18 of which because there is no span-
ning tree, 6 because no f-structure can be generated
for the highest ranked tree (0.25%).

6 Multilingual Grammar Acquisition

A number of strategies have been developed for
multilingual, wide-coverage grammar development.
The ParGram project (Buttet al., 2002), e.g., de-
velops wide-coverage (English, German, French,
Japanese, . . . ) LFG grammars with harmonised fea-
ture inventories and geometries. Grammar migra-
tion can sometimes be used to seed grammars for ty-
pologically similar languages, such as e.g. Japanese
and Korean (Kimet al., 2003).

If treebank resources are available, treebank-
based unification grammar acquisition can be a valu-
able alternative to traditional multilingual grammar
development. We applied our methodology to Ger-
man and the TIGER (Brants et. al, 2002) treebank.
German is typologically different from English, in
that it is much less configurational. The TIGER
treebank is a corpus of approximately 40,000 syn-
tactically annotated German newspaper sentences.
The TIGER treebank data structures differ substan-
tially from those in Penn-II: TIGER uses graphs

with crossing edges (rather than trees with traces) to
indicate non-local dependencies and provides con-
siderably richer functional annotations.

We first convert TIGER graphs into Penn-II style
trees with traces and coindexation encoding LDDs.
There are two main components in the algorithm to
automatically add f-structure information to TIGER
trees, with a pre- and post-processing stage. The
preprocessing is a simple walk through the tree in
order to build a lookup table for the trace nodes.
The first stage of the algorithm exploits the rich
TIGER functional annotations by associating default
f-structure equations with functional tags. Over-
generalisation is corrected in a second component
(mainly with respect to adpositional case marking,
complementisers and multiple coordinations). Fi-
nally, a post-processing stage explicitly links trace
nodes and the reference node, encoding LDDs.

We evaluate the f-structures produced both qual-
itatively and quantitatively. Table 10 illustrates the
coverage of the algorithm. Ideally we would like to
generate just one f-structure per sentence. There are
however, a number of sentences that receive more
than one f-structure fragment. This is mainly due
to sentences such asBonn, 7. September, where in
the source TIGER graphs there is no clear relation
between the elements of the “sentence” and where
we do not wish to enforce a relation for the sake of
having fewer fragments. We believe that these “sen-
tences” are in fact fragments and should be treated
accordingly. There are also a small number of sen-
tences which do not receive any f-structure. This is
as a result of feature clashes in the annotated trees,
most of which are caused by inconsistent annota-
tions. We also evaluate the quality of the annota-
tion against our manually constructed gold-standard
of 100 sentences. Table 11 shows that currently our
automatic annotation receives an f-score of 91.03%.

We extracted an annotated grammar (A-PCFG)
from the TIGER corpus (excluding 2000 sentences
set aside for testing). We parsed the 2000 raw sen-
tences using Helmut Schmid’s BitPar parser (p.c.).
The results are presented in Table 12. We evalu-
ate the quality of the trees produced by the parser
with results of f-score 67.91 (Labelled) and 72.63
(Unlabelled). 95.9% of the 2000 sentences pro-
duce one complete f-structure (Fragmentation). We
evaluate the quality of the f-structures produced in



# f-str. frags # sent percent
0 143 0.3573
1 38765 96.864
2 1032 2.5787
3 75 0.1874
5 1 0.0025
6 1 0.0025
7 3 0.0075

Table 10: Coverage & fragmentation results of Ger-
man Annotation Algorithm

Preds Only Evaluation
Precision 93.62
Recall 88.59
F-Score 91.03
Complete Match 25

Table 11: Evaluation of the f-structures produced by
automatically annotating the TIGER trees

two ways. First we evaluate against our 100 man-
ually constructed gold standard f-structures, achiev-
ing an f-score of 68.5. Second, in a manner similar
to (Hockenmaier, 2003), we automatically annotate
the 2000 trees to produce f-structures, and evaluate
the output of the parser against theseautomatically
produced f-structures. This experiment returns an f-
score 62.62.

A-PCFG
Lab. F-Score (2000 Trees) 67.91
Unlab. F-Score (2000 Trees) 72.63
Fragmenation (2000 f-structures) 95.9
F-Score(100 f-structures) 68.5
F-Score(2000 f-structures) 62.62

Table 12: Parsing Results

We automatically induce German subcategorisa-
tion frames using the methodology outlined in Sec-
tion 4. As Table 13 shows, we extract 8632 non-
empty semantic form types, 7081 of which are for
verbs. (We extract frames for 4331 verb lemmas.)
When the obliques are parameterised for preposi-
tions we found an average of 1.63 semantic forms
per verb. As for English, we also associate condi-
tional probabilities with the frames extracted. Ta-
ble 14 illustrates the most frequent subcategorisa-
tion frames for the verb aufhören with their associ-
ated conditional probabilities. We tested the cover-
age of our system in a similar way to that described
for English in Section 4. We extract a reference verb

Sem. Form Types 8632
Verbs Only 7081

Table 13: Non-empty Semantic Forms extracted

Semantic Form Conditional
Probability

aufh ören([subj]) 0.444
aufh ören([subj,xcomp]) 0.389
aufh ören([subj,obl:mit]) 0.111
aufh ören([comp,subj]) 0.056

Table 14: Semantic Forms with associated condi-
tional probability for the verbaufh ören

lexicon from trees 1–8000 and 10001–40020 of the
Tiger Treebank. We then compare this to a test lex-
icon from trees 8001–10000. For 86.75% of the en-
tries in the test lexicon the correseponding semantic
form exists in the reference lexicon.

7 Quasi-Logical Forms

F-structures encode mainly abstract syntactic infor-
mation with some semantic information in the form
of basic predicate-argument structure. Quasi-logical
forms, the semantic representation formalism of the
Core Language Engine (Alshawi & Crouch, 1992),
encode predominantly semantic with some syntac-
tic information (syntactic information is represented
as it constrains e.g. anaphora resolution and quan-
tifier scope possibilities). Despite clear differences
in approach and emphasis, unresolved QLFs and f-
structures bear a striking similarity and, for simple
cases at least, it is easy to see how to get from one to
the other in terms of a translation function(·)◦, cf.
(van Genabith and Crouch, 1996):








Γ1 γ1

. . .
PRED Π〈↑ Γ1, ., ↑ Γn〉
. . .
Γn γn









◦

= ?Scope: Π(γ◦1 , ., γ◦n)

The core of the(·)◦ mapping taking us from f-
structures to QLFs places the values of subcategoris-
able grammatical functions into their argument po-
sitions in the governing semantic formΠ and re-
curses on those arguments. From this rather general
perspective, the difference between f-structures and
QLF is one of information packaging and presenta-
tion rather than anything else.



In (Cahill et al., 2004b) we substantially extend
the coverage of the more theoretically oriented work
of (van Genabith and Crouch, 1996) to include pas-
sive constructions, wh-questions, relative clauses,
fronted material and subjects of participal clauses,
gerunds and infinitival clauses, modification (adjec-
tival, adverbial, prepositional, appositional and sen-
tential and non-sentential adjuncts as well as relative
clauses) and coordinate/subordinate constructions:

An agreement was brokered by the U.N.






















SUBJ

[

PRED ‘AGREEMENT’
NUM SG
SPEC A

]

PRED ‘BROKER〈↑SUBJ,↑OBJag〉’
PASSIVE +

OBLag







PRED ‘BY〈↑OBJ〉’

OBJ

[

PRED ‘U.N.’
NUM SG
SPEC THE

]





























?Scope:broker(term(+r,<num=sg,spec=the>,
U.N.,?Q,?S),

term(+g,<num=sg,spec=a>,
agreement,?P,?R))

Currently, the f-structure–QLF translation algo-
rithm associates 95.76% (46371) of the 48424 trees
(without FRAG and X constituents) in the Penn-II
treebank with a QLF based on the f-structure auto-
matically generated for the tree.

8 Conclusions

We have presented a method for treebank-based,
wide-coverage, deep unification grammar acquisi-
tion. The resulting PCFG-based LFG approxima-
tions parse unseen Penn-II treebank English newspa-
per or unseen TIGER German newspaper text with
wider coverage and results similar to those achieved
by the best hand-crafted grammars, with, we believe,
considerably less development effort. We have ex-
tracted wide-coverage lexical resources from the f-
structure annotated treebanks and showed how sim-
ple (quasi-)logical forms can be derived from the f-
structures generated. We believe that the approach
(with suitable adaptations for HPSG, PATR and
other constraint/unification based formalisms) can
provide an attractive, wide-coverage, multilingual
unification grammar acquisition paradigm, comple-
menting and, in certain cases, replacing more tradi-
tional, manual grammar development.

Acknowledgments

The work reported in the paper was funded by En-
terprise Ireland Basic Research Grant SC/2001/186
and by an IRCSET Ph.D. studentship.

References
Abney, S. P.; 1997; Stochastic attribute-value grammars;

Computational Linguistics, 23(4)

Alshawi, H. and R. Crouch. (1992) Monotonic Semantic Inter-
pretation, InProceedings 30th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 32–38

Brants, T., S. Dipper, S. Hansen, W. Lezius and G. Smith 2002.
The TIGER Treebank. In: Hinrichs and Simov (eds.),Pro-
ceedings of the first Workshop on Treebanks and Linguistic
Theories (TLT’02), Sozopol, Bulgaria

Bresnan, J. 2001.Lexical-Functional Syntax. Blackwell, Ox-
ford.

Butt, M., H. Dyvik, T.H. King, H. Masuichi and C. Rohrer,
2002. ‘The parallel grammar project.’Proceedings of COL-
ING 2002, Workshop on Grammar Engineering and Evalu-
ationpp. 1-7.

Cahill, A., M. McCarthy, J. van Genabith and A. Way; 2002.
Parsing with PCFGs and Automatic F-Structure Annotation.
In: M. Butt and T. Holloway-King (eds.)Proceedings of the
Seventh International Conference on LFG, CSLI Publica-
tions, Stanford, CA., pp.76–95.

Cahill, A., M. McCarthy, M. Burke, R. O’Donovan, J. van Gen-
abith and A. Way; 2004a.Evaluating Automatic F-Structure
Annotation for the Penn-II Treebank. In: Journal of Re-
search on Language and Computation, Kluwer Academic
Publishers; in press.

Cahill, A., M. McCarthy, M. Burke, J. van Genabith and A.
Way; 2004b. Deriving Quasi-Logical Forms from F-
Structures for the Penn Treebank. In: H. Bunt and R.
Muskens (eds.)Computing Meaning, Vol-3, Kluwer Aca-
demic Publishers; in press.

Carroll, G. and M. Rooth. 1998. Valence Induction with a
Head-Lexicalised PCFG. InProceedings of the 3rd Confer-
ence on Empirical Methods in Natural Language Process-
ing, Granada, Spain, pp. 36–45.

Charniak, E. 1996. Tree-bank Grammars. inProceedings
of the Thirteenth National Conference on Artificial Intelli-
gence, AAAI Press/MIT Press, Menlo Park, pp.1031–1036

Clark, S., J. Hockenmaier and M. Steedman, 2002. Building
Deep Dependency Structures with a Wide-Coverage CCG
Parser Proceedings of the 40th Annual Meeting of the As-
sociation for Computational Linguistics (ACL’02) Philadel-
phia, PA.

Collins, M. 1999. Head-driven Statistical Models for Natural
Language Parsing. Ph.D. thesis, University of Pennsylvania,
Philadelphia.



Dalrymple, M. 2001. Lexical-Functional Grammar. San
Diego, Calif.; London : Academic Press

Grishman, R., C. MacLeod and A. Meyers. 1994. Comlex
Syntax: Building a Computational Lexicon. InProceedings
of the 15th International Conference on Computational Lin-
guistics, Kyoto, Japan, pp. 268–272.

Hockenmaier, J., G. Bierner and J. Baldridge. 2002. Extending
the Coverage of a CCG System.Journal of Language and
Computation

Hockenmaier, J. 2003. Parsing with Generative models of
Predicate-Argument Structure InProceedings of the 41st
Annual Conference of the Association for Computational
Linguistics (ACL-03), Sapporo, Japan

Johnson, M. 1998. PCFG models of linguistic tree representa-
tions. Computational Linguistics, 24(4):613–632.

Johnson, M. 2002. A simple pattern-matching algorithm for
recovering empty nodes and their antecedents. Proceedings
of the 40th Annual Meeting of the Association for Compu-
tational Linguistics.

Kaplan, R. and J. Bresnan 1982. Lexical-functional grammar:
a formal system for grammatical representation. In Bresnan,
J., editor 1982,The Mental Representation of Grammatical
Relations. MIT Press, Cambridge Mass. 173–281.

Kim, R., M. Dalrymple, R.M. Kaplan, T. Holloway King, H.
Masuichi and T. Ohkuma. 2003. ‘Multilingual Grammar
Development via Grammar Porting.’ InESSLLI 2003 Work-
shop on Ideas and Strategies for Multilingual Grammar De-
velopment, Vienna, Austria.

Klein, D. and C.D. Manning, 2003. Accurate Unlexicalized
Parsing Proceedings of the 41st Annual Meeting of the As-
sociation for Computational Linguistics (ACL’02) Sapporo,
Japan

MacLeod, C., R. Grishman and A. Meyers. 1994. The Comlex
Syntax Project: The First Year. InProceedings of the ARPA
Workshop on Human Language Technology, Princeton, NJ.

Magerman, D. 1994. Natural Language Parsing as Statistical
Pattern Recognition PhD Thesis, Stanford University, CA.

Marcus, M., G. Kim, M. A. Marcinkiewicz, R. MacIntyre, M.
Ferguson, K. Katz and B. Schasberger 1994. The Penn Tree-
bank: Annotating Predicate Argument Structure. In:Pro-
ceedings of the ARPA Human Language Technology Work-
shop.

Riezler, S. T.H. King, R.M. Kaplan, R.Crouch, J.T. Maxwell,
and M. Johnson. 2002. Parsing the Wall Street Journal us-
ing a Lexical-Functional Grammar and Discriminative Esti-
mation Techniques Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics (ACL’02)
Philadelphia, PA.

Schulte im Walde, S. 2002. Evaluating Verb Subcategorisation
Frames learned by a German Statistical Grammar against
Manual Definitions in the Duden Dictionary. InProceedings
of the 10th EURALEX International Congress, Copenhagen,
Denmark.

Van Genabith, J., A. Way and L. Sadler. 1999. Data-driven
Compilation of LFG Semantic Forms. InEACL-99 Work-
shop on Linguistically Interpreted Corpora, Bergen, Nor-
way, pp. 69–76.

Van Genabith, J. and D. Crouch 1996. Direct and Under-
specified Interpretations of LFG f-Structures. In:COLING
96, Copenhagen, Denmark, Proceedings of the Conference.
262–267.


