Textile Sensors for Personalized Feedback

Shirley Coyle, Edmond Mitchell, Tomas E. Ward, Gregory May, Noel E. O’Connor, Dermot Diamond

CLARITY Centre for Sensor Web Technologies, Dublin City University, Glasnevin, Dublin 9, Ireland
Overview

Introduction to Smart Textiles

Healthcare applications
- Breathing feedback system
- Rehabilitation glove

Sports applications
- Smart insole
- TennisSense
Wearable sensors

Continuous monitoring of the wearer in a natural setting

Sensors should not interfere with the wearer’s daily activities and should be easy to use

Challenge to integrate sensors with textiles – must be comfortable, durable, washable

Conventional electronics are hard/brittle

-> Textile based sensors
Clothing essential for warmth, comfort, culture, aesthetics,

Technical textiles have been developed to improve performance, enhance wearer’s comfort

Kevlar® bulletproof, lightweight

Moisture management DriFit, Coolmax

Waterproof, breathable

Nano-coatings - self-cleaning, anti-bacterial

Next generation? “Smart” Textiles
Electronic Textiles

Metallic fabrics

WarmX
Heated textiles

Luminex - Woven optical fibres

Textile electrode, ECG Numetrex

Electrex Soft switches

Philips Lumalive Organic LEDs
Next-generation - “Smart Textiles”

Passive smart textile – senses a change in the wearer/environment

Active smart textile – inherent intelligence, responds to the change

Integration of:
- Sensors
- Actuators
- Interconnections, Control Electronics,
- Wireless Communications
Smart textiles - applications

Rehabilitation, Disease management Preventative healthcare Ambient Assisted Living

Sports performance, Sports physiology Exercise and fitness
Wearable sensors projects

Rehab glove

Breathing monitoring

Smart insole
Sensors – “Smart shirt”

Fabric stretch sensors monitor the expansion and contraction of the ribcage and abdomen during breathing.

Carbon-Elastomer (CE) sensors (piezo-resistive) are coated onto fabric.

Sensors interconnected by coating over conductive stainless steel thread.

Xbee platform for wireless data capture

Applications – biofeedback system for sports/respiratory rehabilitation
Importance of breathing technique

Sports performance

Use of full lung capacity to maximise oxygen delivery to muscles

Use of breathing techniques to calm and focus, e.g. before kicking a penalty in soccer or a serve in tennis

Clinical applications

Chronic Obstructive Pulmonary Disease (COPD)

Anxiety treatment

Cystic fibrosis

Respiratory rehabilitation

Sleep Apnea
Breathing Monitoring – System Requirements

Aim – to develop a feedback system for patients to improve their breathing technique, by monitoring thoracic and abdominal movements. Give feedback to the user graphically.

Sensor must be
- Comfortable
- Robust
- Straightforward to use

Wearable sensor/"Smart garment"

Feedback/Application must:
- Grab users attention
- Have a simple interface
- Focus user for the full duration of the program
- Encourage user to correct their breathing rate

and low cost, easy to install on computer systems
Breathing feedback system

Breathing Sensor → Data capture and wireless connection (Xbee) → Data processing and User feedback

Graph: Voltage (V) vs. Time (s)

0.4 0.9 1.4

0 10 20 30 40 50 60 70 80 90
Respiratory feedback system

Respiratory Monitor

Graphical user interface - real-time feedback of breathing exercises

Target users – children with Cystic Fibrosis
Rehab glove

Shapehand Data glove

Suitable for Virtual reality and motion capture

Awkward to set-up

Fibre optic sensors are rigid. Glove encourages finger flexion and impedes extension.

Very expensive ~$10,000

Textile based glove

Designed for home rehabilitation

Comfortable, familiar

Oedema glove often worn by stroke patients

Light material, allows natural joint movement

Low-cost, accessible to patients for home use.
Sensor glove

Glove for stroke rehabilitation

User feedback using BVH (Biovision Hierarchy) animation

Collaboration with National University of Ireland Maynooth, Carlow IT and Adelaide and Meath Hospital, Tallaght
Sensor glove

Patient performs exercises at home
- Real-time visual feedback
- Movement captured by glove and stored in BVH animation format
- Physiotherapist can play back and assess the patient’s performance remotely
Neoprene insole with textile pressure sensors in heel, forefoot and toe.
Xbee wireless connectivity – 1kHz sampling rate possible, suitable for high speed applications
Smart insole

Foot contact time with the ground, time between heel strike and toe off, investigate pronation/supination
Smart clothing and sport

Nike+ “more than 1.2 million runners have collectively tracked more than 130 million miles and burned more than 13 billion calories” (WIRED magazine, June 2009)

Adidas miCoach - analyze your stats and get coaching feedback online, pace and heart rate

polarpersonaltrainer.com – online training diary and interactive online community

GarminConnect - worldwide community of Garmin users who track, explore and share their activities.
TennisSense

Infrastructure to gather data – contextual, biomechanical and physiological

Real users - Feedback to athletes/coaches
 - Real-time feedback during training
 - Longer-term analysis: fitness levels, performance

Sports Performance **Research**
What factors lead to peak performance?

Platform for exciting research and new technology
Multi-source data-mining and data fusion
Wearable sensors
Foster Miller Vest
Physiological monitoring

Accelerometer, GPS

Heart-rate, respiration, temperature

Foster Miller Vests
Physiological Data

Foster-Miller physiological monitoring vest – measures heart rate (HR), respiration rate (RR)

Parameters of interest
- Heart rate and Respiration rate between shots
- Average HR and RR across sets
- Peak HR and RR
- Difference between training and matches
- Comparison on different surfaces (e.g. clay can have longer rallies)

A Sensing Platform for Physiological and Contextual Feedback to Tennis Athletes, Damien Connaghan, Sarah Hughes, Gregory May, Philip Kelly, Ciaran ´O Conaire, Noel E. O’Connor, Donal O’Gorman, Alan F. Smeaton and Niall Moyna, BSN 2009
Conclusions

Textile sensors used to find personalized information about the wearer’s activities, e.g. to track progress in prescribed rehabilitation exercises or fitness training plans

Vast amount of information can be harnessed with textile sensors, e.g. breathing, heart rate, movement

Need to present data in a beneficial way – personal archive and comparison with others