organic papers

Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Colm Crean, John F. Gallagher* and Albert C. Pratt

School of Chemical Sciences, Dublin City University, Dublin 9, Ireland

Correspondence e-mail: john.gallagher@dcu.ie

Key indicators
Single-crystal X-ray study
T = 296 K
Mean σ(C–C) = 0.003 Å
R factor = 0.042
wR factor = 0.112
Data-to-parameter ratio = 13.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title compound, C_{23}H_{13}N_{5}, derived from cinnamyl alcohol and 2,2′-(isoindolin-1,3-diyldiene)bispropanedinitrile, is a heterocyclic TCNQ analogue of interest as an electron-deficient component in charge-transfer complexes. A small perturbation of the four C=C=N angles from linearity is observed, which are in the range 173.41 (18)–176.3 (2)°; the C≡N bond lengths are in the range 1.144 (2)–1.146 (2) Å. The terminal phenyl group is oriented at an angle of 77.17 (6)° to the C\textsubscript{6}N ring and the C≡C bond is short, 1.319 (2) Å. There are no classical hydrogen bonds, although intramolecular C–H···N and intermolecular C–H···π(arene) interactions influence the crystal-structure packing.

Comment

Organic conductors are currently an important research area in materials chemistry (Martin et al., 1997; Yamashita & Tomura, 1998), with special interest in the interaction of π-deficient and π-excessive materials in 1:1 complexes, e.g. TCNQ/TTF, where TCNQ is tetracyanoquinodimethane and TTF is tetrathiafulvalene.

![Diagram of the title compound](image)

The bond lengths and angles in the heterocyclic ring of the title compound, (I) (Fig. 1), are similar to those reported previously in related systems (McNab et al., 1997; Brady et al., 1998; Gallagher & Murphy, 1999; Brady & Gallagher, 2000). For TCNQ (tetracyanoquinodimethane) systems (280 examples), the average exocyclic C\textsubscript{sp}^2–C\textsubscript{sp}^2 and C\textsubscript{sp}^2–C\textsubscript{sp}^1 bond lengths are 1.392 (17) and 1.427 (10) Å, respectively; thus, in (I), the C\textsubscript{6}A–C\textsubscript{7}A, C\textsubscript{6}A–C\textsubscript{8}A, and C\textsubscript{6}B–C\textsubscript{7}B and C\textsubscript{6}B–C\textsubscript{8}B bond lengths in the range 1.425 (3)–1.436 (3) Å are normal (Orpen et al., 1994). The four nitrile C≡N values are from 1.144 (2) to 1.146 (2) Å, which compare with the average C≡N dimension from the literature, 1.144 (8) Å (Orpen et al., 1994). The exocyclic indolinyl ring C=C bond lengths are 1.372 (2) and 1.374 (2) Å, which are longer than typical double bonds. The four remaining exocyclic indolinyl cyano C=C bond lengths are in the range 1.425 (3)–1.436 (3) Å and similar.
to previously reported values. The angles which the C(C≡N)₂ groups make with the C₃N ring are 7.01 (10) (C₆A) and 2.33 (10)° (C₆B), demonstrating a small twist from planarity about the C₄—C₆(A/B) bonds.

The hydrogen bonding in (I) is dominated by intramolecular C—H···N interactions and close contacts (details in Table 2). There are two intramolecular C(arene)—H···π(C≡N) interactions with C12—H12···N2A and C15—H15···N2B C···N distances of 3.390 (3) and 3.390 (2) Å, respectively. A C1—H1B···N3A intramolecular contact is present [C1···N3A 3.401 (2) Å and C—H···N 139°]. A C—H···π(arene) interaction is also present, C14—H14···Cg1, where Cg1 is the centroid of [C21—C26] [symmetry code: (i) x/2, y, z; details in Table 2]. The closest C14···C26 contact distance is 3.696 (2) Å with a C14—H14···Cg1 angle of 121°.

Experimental

The title compound was prepared by the 5 d reaction under argon of DIAD (diisopropylazodicarboxylate) (0.37 g, 1.9 mmol), triphenylphosphine (0.49 g, 1.9 mmol), 2,2’-(isodolin-1,3-diylidene)bispropanedinitril (0.25 g, 1.9 mmol) (Farbenfabriken Bayer Aktiengesellschaft, 1968), cinnamyl alcohol (0.25 g, 1.9 mmol) in 40 ml tetrahydrofuran. 2,2’-(Cinnamylisoindolin-1,3-diylidene)bispropanedinitril, (I), was isolated as an orange crystalline material after column chromatography (m.p. 469–471 K uncorrected). IR (KBr, cm⁻¹): 3049, 2372, 2335, 2224, 1563, 1465, 1407, 1228, 1146, 1109, 983, 775, 723; UV–Vis (CH₂CN) λmax(ε): 552 (5250), 459 (6667), 414 (38333), 392 (39167), 249 (47083) nm; ¹H NMR (400 MHz, δ, CDCl₃): 8.75 (m, 2H, aromatic), 7.85 (m, 2H, aromatic), 7.37 (m, 2H, aromatic), 7.30 (m, 3H, aromatic); 6.50 (d, J = 16 Hz, 1H), 6.25 (m, 1H), 5.50 (m, 2H); ¹³C NMR (δC, CDCl₃): 158.7, 135.0, 134.8, 134.0, 130.9, 128.8, 128.7, 126.9, 126.0, 120.5, 113.1, 112.3, 62.1, 47.8.

Crystal data

C₂₃H₂₃N₅

Mᵡ = 359.38

Monoclinic, P2₁/n

a = 14.3872 (18) Å

b = 8.2696 (10) Å

c = 16.1442 (15) Å

β = 108.327 (7)°

V = 1823.4 (4) Å³

Z = 4

\[D_r = 1.309 \text{ Mg m}^{-3} \]

Mo Kα radiation

Cell parameters from 33 reflections

\[\theta = 7.1°–20.5° \]

\[\mu = 0.08 \text{ mm}^{-1} \]

\[T = 296 (1) \text{ K} \]

Block, orange

0.43 × 0.38 × 0.28 mm

Data collection

Bruker P4 diffractometer

\[h = -1 \rightarrow 17 \]

\[k = -1 \rightarrow 10 \]

4331 measured reflections

2630 reflections with \(I > 2\sigma(I) \)

\[R_{int} = 0.012 \]

\[\theta_{max} = 25.5° \]

Refinement

Refinement on \(F^2 \)

\[R(F^2) = 0.042 \]

\[wR(F^2) = 0.112 \]

\[S = 1.06 \]

3367 reflections

253 parameters

H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

N1—C1	1.469 (2)	C1—C2	1.495 (2)
C1—C2	1.388 (2)	C2—C3	1.319 (2)
N1—C5	1.388 (2)	C5—C6	1.471 (2)
C1—C7A	1.145 (2)	C4—C6A	1.374 (2)
N3A—C8A	1.146 (2)	C4—C11	1.460 (2)
N2B—C7B	1.144 (2)	C5—C6B	1.372 (2)
N3B—C8B	1.143 (2)	C5—C16	1.461 (2)
C1—N1—C4	125.99 (12)	N1—C5—C6B	125.80 (14)
C1—N1—C5	123.11 (12)	N1—C4—C11	107.12 (12)
C4—N1—C5	110.82 (12)	N1—C5—C16	106.81 (12)
C1—N1—C2	113.84 (13)	N2A—C7A—C6A	176.3 (2)
C1—C2—C3	126.34 (15)	N3A—C8A—C6B	175.3 (2)
C2—C3—C2	126.82 (16)	N2B—C7B—C6B	175.81 (18)
N1—C4—C6A	121.02 (15)	N3B—C8B—C6B	173.41 (18)
C4—N1—C1—C2	−102.16 (17)	C1—C2—C3—C21	−174.28 (16)
C5—N1—C1—C2	81.50 (18)	C2—C3—C2—C22	−1.5 (3)
N1—C1—C2—C3	6.6 (2)	C2—C3—C2—C26	176.66 (17)

Table 2

Hydrogen-bonding geometry (Å, °).

Cg1 is the centroid of [C21—C26].

D—H···A	D—H	H···A	D···A	D—H···A
C1—H1B···N3A	0.97	2.61	3.401 (2)	139
C1—H12···N2A	0.93	2.59	3.390 (3)	145
C1—H12···C7A	0.93	2.45	3.015 (2)	119
C1—H15···N2B	0.93	2.59	3.390 (2)	145
C1—H15···C7B	0.93	2.46	3.015 (2)	119
C1—H14···Cg1	0.93	3.20	3.984 (2)	143

Symmetry code: (i) \(x, y, z \).

Colm Crean et al. • C₂₃H₂₃N₅ o237
In (I), all H atoms bound to C atoms were treated as riding, with $U_{eq}(H) = 1.5U_{eq}(C)$ for methylene H atoms and $1.2U_{eq}(C)$ for the remainder. Examination of the structure with PLATON (Spek, 1998) showed that there were no solvent-accessible voids in the crystal lattice.

Data collection: XSCANS (Bruker, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: NRCVAX96 (Gabe et al., 1989) and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 1998); software used to prepare material for publication: NRCVAX96, SHELXL97 and WordPerfect macro PREP8 (Ferguson, 1998).

JFG. thanks Dublin City University for the purchase of a Bruker P4 diffractometer.

References