We focus on placing only accelerometers on the body, as they can be unobtrusively sown into clothing. Current IMU based systems require several days of manual work for 3D reconstruction of a play in ESPN’s Virtual Playbook. Our goal is to produce a cheap, unobtrusive and portable motion capture system that can provide precise athlete performance data in high level sports.

Optical motion capture systems – traditional approach for providing precise athlete performance data – can suffer from motion drift; size of units would impair the performance of high level athletes; speed of movement may result in poor motion reconstruction for the most critical movements. Large spatial volumes; areas with uncontrolled lighting; time-critical applications; manual correction of artifacts may be necessary due to incorrect tracking/occlusion of markers.

The proposed system has three main stages:

1. Offline stage
 - Motion capture database is created
 - Database contains a sample set of the types of motions that we expect to be performed at capture time
 - Motion graph constructed using database
 - Graph encodes how captured database clips may be reassembled in different ways

2. Pre-capture stage
 - Tailor the motion graph to different placements of accelerometers on players
 - Uses virtual accelerometers to generate accelerometer data for each node in the motion graph

3. Online motion reconstruction stage
 - Reproduces novel motions by finding paths in the motion graph that would produce similar accelerations to those measured at capture time
 - Dynamic Programming (DP) search strategy
 - Finds the optimal path through the graph
 - Results in a sequence of poses whose accelerations closely match the recorded accelerometer values
 - Dynamic Programming (DP) / A* search strategy
 - Incorporates root position and orientation into the search strategy
 - Positional information can be obtained from any external source
 - Segments a capture session into action and non-action segments
 - DP solution reconstructs motion during action segments
 - A* search strategy corrects the position and orientation drift of the actor during non-action times

![Diagram showing the proposed system](image)

Results

- Quantitative evaluation using 16 tennis motion sequences of different types – see Figure 1
 - Slyper Haar: Prior work in action capture using accelerometers
 - Viterbi (DP): Dynamic Programming
 - A*: Search: The two search strategies outlined in this work
 - Graph encodes how captured database clips may be reassembled in different ways
 - A* search keeps a relatively low error, while also improving upon the positional error of both DP and [1]

![Graph showing joint angle error and positional error comparison](image)

Acknowledgements

This work is supported by Science Foundation Ireland under grant 07/CE/I1147 and by the Tyndall National Institute under NAP Grant 209. The authors would also like to thank Moshe Mahler and Justin Macey from the Computer Graphics Lab in Carnegie Mellon University for contributing their time and considerable expertise in the areas of data capture and visualisation.

References