Time Dependent Dielectric Breakdown and Stress Induced Leakage Current Characteristics of 8Å EOT HfO₂ N-MOSFETS

Robert O’Connor, Greg Hughes
School of the Physical Sciences, Dublin City University,
Dublin, Ireland.
+353 –1-700 5732, roc@physics.dcu.ie

Thomas Kauerauf, Lars-Ake Ragnarsson
CMOS Device Research Dept, IMEC,
Leuven, Belgium.

Abstract—In this work we present the time dependent dielectric breakdown (TDDB) characteristics of LaO capped HfO₂ layers with an equivalent oxide thickness of 8Å. The layers show maximum operating voltages in excess of 1V. Such high reliability can be attributed to very high Weibull slopes. We examine the origin of the high slopes by a detailed study of the evolution of the stress induced leakage current with time, temperature and stress voltage.

Keywords- Hafnium oxide; High-k dielectric; stress induced leakage current, CMOS reliability, time dependent dielectric breakdown.

I. INTRODUCTION

High-k dielectrics to replace SiO₂ have been successfully incorporated at the 45-nm complementary metal-oxide-semiconductor (CMOS) technology node. However, continued research into the scaling of the high-k layer below 1nm equivalent oxide thickness (EOT) is necessary in order to adhere to the technology roadmap. At present there appear to be several barriers to further scaling including film uniformity, significant negative bias temperature instability (NBTI), and uncertain time dependent dielectric breakdown (TDBB) and stress induced leakage current (SILC) characteristics [1,2,3].

This work focuses on the time dependent dielectric breakdown (TDBB) of LaO capped HfO₂ layers with an equivalent oxide thickness of 8Å. The layers show exceptionally high operating voltages, greater than 1V. In section III we show that this high reliability can be attributed to very high Weibull slopes. We examine the origin of the high slopes in section IV by a detailed study of the evolution of the stress induced leakage current behaviour, and evidence suggests that a defect level deep in the silicon bandgap is responsible for the breakdown in these layers.

II. EXPERIMENT

Two identical gate stacks were considered in this work with one having Si as the substrate material and the other SiGe. The dielectrics were grown on 300mm (100) Si-wafers using a metal inserted poly-Si process (MIPS). The gate stack was formed with an initial IMEC clean followed by 36 cycles of atomic layers deposition (ALD) HfO₂. A LaO capping layer was used to control the work function. The gate was formed by 5nm physical vapour deposition (PVD) TiN followed by 2nm PVD Si.

All experiments were performed on square gated transistors with areas of 1x10⁻⁸ cm² and 4x10⁻⁸ cm². This processing resulted in an EOT of 7.8Å and 8.1Å for the Si and SiGe substrates respectively. These values were extracted from Hauser fitting of C-V curves at 100 kHz to 100MHz [4]. The transmission electron microscope (TEM) image from a sample with almost identical processing in figure 1 shows no detectable interfacial layer and a physical thickness of ~2nm.

Figure 1. TEM image of a layer from the same lot as the wafers in this work with 2nm TiN gate. No interfacial SiO₂-like layer is observed.
III. TIME DEPENDENT DIELECTRIC BREAKDOWN

The initial TDDB evaluation was carried out at 125°C and voltages from 2.2-2.5V. The devices measured were 1μm x 1μm transistors. The time-to-breakdown (t_{BD}) Weibull distributions were fitted with the maximum likelihood method, to ensure accurate extraction of the Weibull slope (β) and the 63%-value (η). Figure 2a shows the resulting TDDB distributions. Using a soft breakdown criterion of a current jump of 10μA, a Weibull slope of 1.54 is extracted for the 7.8Å layer and 1.82 for the 8.1Å case. Such slopes are well in excess of the ~0.8-1 that is commonly reported in the literature for layers of similar thickness [5].

Due to the positive impact of a high Weibull slope when scaling the TDDB distribution to smaller device areas and to the low percentile failure region, the power-law reliability extrapolation in figure 2b shows 10-year maximum operating voltages of 1.24 and 1.3V for the Si and SiGe substrates respectively.

IV. STRESS INDUCED LEAKAGE CURRENT ANALYSIS

The I-t traces used to evaluate the TDDB reliability in the SiGe devices are shown in figure 3 and display a significant SILC component which emerges during the device lifetime. To further investigate the possibility of a high defect generation rate in these devices we examined the I-t traces during stress.

Thus, a high Weibull slope is caused either by more traps being required to trigger the breakdown or a higher trap generation rate. The model suggests that for SiO₂ layers of equivalent physical thickness to those under consideration here, 3 traps should be required to cause breakdown [7]. If the percolation distance is taken to be the same for HfO₂ it would mean that for a 3-trap path (with β=1.82) the 8.1Å layer would have a defect generation rate of 0.61, much higher than the 0.35-0.4 commonly seen in the literature [8]. However, it is commonly accepted that due the reduced barrier height of the high-k compared with SiO₂ the effective capture cross section of a high-k defect is larger than that of an SiO₂ defect, meaning that the percolation distance is more likely to be reduced in the high-k [9]. If anything then, we should expect that 2 well placed traps or perhaps 3 poorly aligned traps is the maximum needed to cause breakdown in these layers.
correct because the I-t trace in this region is partly made up of SILC generated early in the stress from single traps; the region where the logarithmic trap generation rate and the SILC generation rate are the same. This is the reason why the power law fit in figure 4a fails in the low SILC regime.

Furthermore the possibility exists to perform a discharge between the stress and sense conditions to minimise the effect of oxide charging. The stress and sense method was employed for a range of gate voltages and temperatures up to 175°C. Fig. 6 shows the SILC in these thin layers is relatively unaffected by discharging steps indicating that it is largely an irreversible process. Nonetheless, in all stress-and-sense measurements detailed in this work, the discharge step is performed.

There still exists in the literature some confusion over whether SILC is mediated through empty states or if a site needs to trap a carrier to enable it to become involved in the SILC process [12]. In this work the thickness of the layers is such that one would not expect significant trapping, though the SILC component still remains after the discharge indicating that it is mediated through neutral electron traps. However, further work needs to be done to understand the link (if any) between the traps which cause SILC and those which contribute to BTI effects.

Commonly, SILC measurements involve stressing the dielectric at high field and measuring the increase in leakage current either ‘on the fly’ as detailed above, or by interrupting the stress and sensing at a fixed voltage close to the operation condition, which may or may not be favourable for tunneling through traps created during the stress. For an nMOSFET, the chosen voltage is typically ~0.5V, which represents a band alignment where resonant tunneling through defects at, or slightly below the silicon conduction band is the dominant trap assisted conduction mechanism. In such a case, the Fermi level is aligned with these defects whereas defects with other energy positions will not contribute significantly to the SILC at this gate voltage.

Measuring the SILC using a stress-and-sense methodology where the stress is interrupted and a full I_gV_g curve is taken allows sensing defects across the bandgap by direct tunneling where the on-the-fly method will only sense deeper defects by valence band tunneling and is insensitive to resonance effects [11], which is far removed from the operation condition as illustrated in fig. 5.

![Figure 5](image-url)
Figure 5. When sensing in the direct tunneling regime the Si Fermi level is resonant with defects in the HfO2 bandgap, whereas the band alignment when directly measuring from the I-t trace may not sense the created defects efficiently.

![Figure 6](image-url)
Figure 6. SILC profile for devices stressed with and without a 10s discharge at -1V prior to each stress phase. The discharge step removes less than 10% of the total ‘bulk’ SILC indicating that the SILC is mediated through empty defect states which remain in the oxide after the discharging step.
Figure 5 shows the evolution of the SILC as a function of time for several stress conditions at a sense voltage of 0.5V. In this case we see a strong dependence of the SILC generation rate on voltage (fig 5a) and indeed temperature (fig. 5b) which disagrees with the model proposed in [12]. However, even the gentlest stress in the single trap regime only yields a SILC generation rate of 0.32 which cannot explain the TDDB results and so an increased bulk HfO₂ trap generation rate seems unlikely.

Previous work [11] has shown that a sense voltage just below VFB is resonant with a defect band close to the Si/SiO₂ interface. In order to examine the degradation rate close to the interface, we took the same stresses as above but changed the sense voltage to -0.7V. The kinetics are compared in figure 8 for sense voltages of (a) 0.5V and (b) -0.7V. The SILC generation rate is found to be 0.59 even at the lowest stress condition in the -0.7V case where the leakage increase after 1000s is 2nA and single trap conduction is dominant, rising to 1.4 at very high stress conditions. As for the case of 0.5V sense voltage, the sensitivity to stressing gate voltage is evident showing the transition from one-trap to two-trap SILC during the stress.

As mentioned earlier, previous work has shown that SILC sensed at ~ -0.7V in high-k stacks with an SiO₂ interfacial region is linked to defects in the SiO₂. However the TEM image in figure 1 displays no visible interfacial region indicating that in this case, the defect level must result from the HfO₂ layer. Substrate hot electron stresses showed that the defect generation at -0.7V is not increased any more than elsewhere in the SILC spectrum for intensive interface stressing, indicating that the defect level is indeed present through the bulk HfO₂.

The TDDB statistics we have obtained can be explained if these traps are the ones responsible for the breakdown behavior. As shown in figure 8b, a trap generation rate of 0.6 is measured at the lowest stress condition. Thus a 3 trap breakdown path with this generation rate would result in a Weibull slope of 1.8, in line with the value we have measured.
Further investigation of this defect level shows an increased sensitivity to temperature. Measurements show an activation energy of 0.6 eV for a sense voltage of -0.7 V compared with 0.4 eV at 0.5 V sense. Figure 9 shows the SILC generation rate as a function of temperature for the two sense voltages during a 100 s stress at a number of stress conditions. At room temperature and the lowest stress condition, both sense voltages show a SILC generation rate of ~0.4. This consistent with the Weibull slope of a TDDDB distribution at room temperature of 1.22 and again indicates a 3-trap breakdown.

For the 125°C case, the single trap SILC generation rate at the lowest stress condition is again consistent with the defect at -0.7 V resulting in the breakdown of the oxide, and at 175°C we can see single trap SILC dominant for both sense conditions at low stress voltage, and the dominance of 2-trap SILC at V\text{stress}=1.4 V where the SILC generation rate in each case is 2x the trap generation rate. The emergence of new defect generation mechanisms at elevated temperature in high-k materials has previously been reported in [13] and the current results show the effect is still apparent in thinner high-k layers without an interfacial SiO₂.

The TEM results show the effect is still apparent in thinner high-k layers and indicate a 3-trap breakdown. The emergence of new defect generation mechanisms at elevated temperature in high-k materials has previously been reported in [13] and the current results show the effect is still apparent in thinner high-k layers without an interfacial SiO₂.

For the 125°C case, the single trap SILC generation rate at the lowest stress condition is again consistent with the defect at -0.7 V resulting in the breakdown of the oxide, and at 175°C we can see single trap SILC dominant for both sense conditions at low stress voltage, and the dominance of 2-trap SILC at V\text{stress}=1.4 V where the SILC generation rate in each case is 2x the trap generation rate. The emergence of new defect generation mechanisms at elevated temperature in high-k materials has previously been reported in [13] and the current results show the effect is still apparent in thinner high-k layers without an interfacial SiO₂.

The authors wish to acknowledge the IMEC pilot-line for sample processing and Robin Degraeve and Ben Kaczer for helpful discussions. R O’C acknowledges funding from the Irish Research Council for Science, Engineering and Technology under the Embark Initiative and from Science Foundation Ireland.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the IMEC pilot-line for sample processing and Robin Degraeve and Ben Kaczer for helpful discussions. R O’C acknowledges funding from the Irish Research Council for Science, Engineering and Technology under the Embark Initiative and from Science Foundation Ireland.

REFERENCES

