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Table-Top EUV Continuum  Light Source 

P. K. CARROLL, EUGENE T. KENNEDY, AND GERARD O’SULLIVAN 

Abstract-Work in  recent years on the  development of a convenient 
“table-top” source of continuum  radiation in the XUV and VUV from 
4 to 200 nm is summarized. It was found  that laser-produced plasmas 
on  targets of high atomic  number (62 < 2 < 74)  emitted  apparently 
line-free continua over  very  substantial  spectral  regions in  the XUV 
and VUV. The  continua are very  intense,  reproducible, and relatively 
insensitive to ambient pressure. The effective  absence  of  line emission 
can be  explained on  the basis of the electron configurations of the  ion- 
ized species responsible for  the emission. A high repetition  rate  modu- 
lar  version of  the source is described. Applications and advantages of 
the  light source are presented. 

T 
I.  INTRODUCTION 

HE development  of  the  synchrotron as a  source of  con- 
tinuum  radiation  has  led, in recent years, to a  consider- 

able growth of activity  in such areas  as absorption spectros- 
copy  and  photoionization  in  the VUV and  the XUV  regions. 
Although very effective as a  light source,  the  synchrotron  has 
the  extreme disadvantages of being very costly  and  nonporta- 
ble, and  the need for a much simpler and cheaper  light  source 
is very apparent. We believe that  the simple compact light 
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source  described  in the  present  paper  and which was developed 
initially  in the  Department  of Physics,  University College, 
Dublin,  Ireland,  has  much  to  offer  and  indeed  has been  used 
successfully on a routine basis as a table-top source  in our  lab- 
oratory [ l ]  , [2] . 

11. EARLY  EXPERIMENTS WITH 

LASER-PRODUCED  CONTINUA 

Shortly  after  the  development of the  giant pulse Q-switch 
laser it was found  that  when  its  output was focused  on a solid 
target material in vacuum, a dense,  high-temperature plasma 
was generated.  The  spectra of such plasmas were found  typi- 
cally to originate in species in high stages of  ionization. Many 
new spectra  were generated  and  studied in this  way; as typical 
examples, we quote  the  work  of  Fawcett [3] and Doschek 
et al. [4]. In all these cases the  spectra were dominated  by 
strong line emission and  the  thrust of the  work was on conven- 
tional  term analysis. To a  greater or lesser extent  continuum 
originating in recombination  and  bremsstrahlung  was always 
present. Because of  the  dominance  of  strong lines, however, 
the  continuum was quite  unsuitable as  a background  for ab- 
sorption studies. 

A systematic  study of target materials was undertaken in this 
laboratory  with  the  hope  of finding  a spectrum in which  the 
lines would  be, to a  greater or lesser degree,  suppressed with 
respect to  the  continuum.  In  the course of  this  work  almost 
all the heavier elements  from  strontium (Z= 38) to  uranium 
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(2 = 92) were investigated. The exciting laser was a  @switched 
ruby system  which gave an  output  of 1 J in  a pulse of about 
25 ns. In  the  early  experiments several target  materials were 
mounted in  a small chuck  which  could be rotated in front of 
the  spectrograph slit, so that a number of spectra  could be ob- 
tained in  a single experiment. Most of  the  observations were 
made in the region of 4-50 nm, as it was in  the range below 
50 nm  that  the greatest  need for a good  continuum source 
existed.  The  instrument used was a  2  m grazing incidence vac- 
uum  spectrograph  which  had a  grating with  1200 grooves/mm 
blazed at 6.5 nm. A number of the  more promising  spectra 
were also studied  in  the region of 50-280  nm  with a  3  m nor- 
mal incidence instrument blazed at  150  nm. 

Most of  the  spectra  studied showed strong line emission  ac- 
companied by the usual continuum  background. As one 
moved through  the rare earths, however, the  importance  of  the 
line contribution decreased and  the spectra  became more 
continuum-like.  In  particular,  the  spectra  from samarium to 
ytterbium were almost  completely  free  from lines throughout 
the vacuum region from 4 nm to longer  wavelengths [ l ]  , [2]. 
Such lines as did occur were relatively weak and lay for  the 
most  part  at  the longer  wavelength end of the  spectrum. 
Lutetium  and  hafnium also gave good  continua  but in  these  in- 
stances the  tendencies  for lines to appear  at longer  wavelengths 
became more  pronounced. In terms of freedom  from lines in 
the longer  wavelength  region, i.e., up  to  about  200  nm,  the 
best target material  in  our  experiments was samarium. In the 
shorter wavelength region (below 50 nm) the  elements  from 
terbium  to  ytterbium were particularly good. (It  should per- 
haps be mentioned  here  that below 12  nm  tungsten gave a 
good continuum  but  had  many  strong lines at longer wave- 
lengths.) The  spectra were almost  completely line  free over 
the regions mentioned  and also exhibited a smooth variation 
of spectral intensity  with some broad regions of  enhancement, 
particularly in the range  below 20  nm. 

111. IMPROVED AUTOMATIC  LIGHT  SOURCE 

To render  the  operation  of  the source consistent,  it is de- 
sirable that a new element  of  target surface be presented to  the 
laser beam after a  limited number of shots. This is necessary 
because of pitting of the target surface;  the  number  of  shots 
which  can  be sustained,  typically 1-5, depends on  the laser 
power and  the  target  material.  An  automatic  target  chamber 
was developed to  meet these  needs. In the case of ytterbium, 
a foil of the  metal was wrapped  on a  cylindrical mandrel  about 
1.6 cm in diameter  and 5 cm long. By using a tapped flange 
on  top  of  the vacuum chamber  and a rotary vacuum seal on 
the  bottom,  the cylinder  was rotated  and  translated  by a 0.9" 
stepper  motor so that  the surface of  the target was scanned  in 
a  spiral of  pitch 0.64 mm.  The  motor was  triggered by a 
photoelectric signal picked  up  from  the  laser-produced plasma 
and processed by logic control  and driver circuitry.  The sys- 
tem  could be run  at  repetition  rates  up  to 50 pps  and provision 
was made in the logic circuitry to skip  the seam in each revolu- 
tion of the  target.  Some  details  of  the  target  chamber design 
are shown in Fig. 1. Preliminary experiments  with  this light 
source are described in [ 5 ] .  

C N+l 

D N 
I 

Fig. 1. Automatic pulsed  light source. (a) Back  view @) Side view. 
Some  detail  shown  in (a) is not repeated in (b). A: Aluminum cube 
(8.25 cm side) machined and drilled to house target. B: Cylindrical 
target mounted  on stainless steel drive shaft. C: Threaded flange for 
vertical translation. D: Rotary vacuum seal. E: Slot  in shaft. F: 
Driving pin. G :  Flexible lingage to stepper  motor. H: Vacuum cap. 
I: O-ring seals. J: Windows. K: Lens mount  attached rigidly to target 
chamber. L :  Moveable lens  holder. M: Lens to  focus laser beam. N: 
Bevelled ways attached  to target  chamber. 0: Bevelled plate  attached 
to spectrograph. P: Spectrograph wall. Q: Spectrograph slit. The 
plate 0 can be  rotated through 90" so that  the plasma plume may be 
viewed in a direction parallel,  as well as  perpendicular, to  the slit. 

IV. OPTIMIZATION OF LIGHT  OUTPUT 
It  has been demonstrated  that  the VUV output  from  the 

plasma depends  on  the angle of incidence @ and  the angle of 
observation $ measured with respect to  the target normal (Fig. 
2). For a  gadolinium target  irradiated by  a  2.2 J, 30 ns  ruby 
laser such that @ + $ = 90", the  output  at  138  nm was opti- 
mum  for @ = J /  = 45"  [6]. These results  are in general agree- 
ment  with  those  of  Breton  and  Papoular [7] who observed 
little difference in the  emitted energy for values of 9 of up to 
45" for $ = 30" with a 0.8 J ruby pulse, and  found  that  the 
plasma should  be viewed within 50" of  the target norma1 for 
optimum light output.  Thus,  for  maximum  output,  it is rec- 
ommended  that  the  incident laser light and viewing directions 
are each at -45" to the target normal as shown in Fig. 2. 

V. INTENSITY 
Laser-produced plasmas  have, when averaged over their  short 

pulse lengths, the highest spectral radiance of any  UV/soft X- 
ray  source.  The spectral  irradiances  were  measured with gado- 
linium and  ytterbium  targets in the  110-220  nm spectral re- 
gion [6] for plasmas generated by  a 2.2 J, 30 ns ruby laser 
pulse at a  distance of 50 cm  from  the source. For  ytterbium 
the measured irradiance was 2 X lo4 pW . cm-' . nm-' at 120 
nm  and decreased monotonically to 4 X lo3 pW . cm-' . nm-' 
at  200  nm.  For gadolinium it  had a similar distribution  but 
was on average greater  by  a factor  of  2. As the gadolinium tar- 
get was plane while the  ytterbium was cylindrical, the differ- 
ence in  measured  irradiance was attributed  to  the  different 
geometries. The plasma diameter  at 120 nm was estimated 
from  spectra  taken  with a 3 m normal incidence  spectrograph 
under astigmatic focal  conditions  and was found to  be -125 
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Fig. 2. Geometry of target illumination and observation. A: Target. 
B: Plasma. Cc Light from laser. D: Direction  of  light  entering spec- 
trograph. 

pm. Combining  these data we find  the  spectral radiance for 
ytterbium  at  120  pm  to  be 2 X lo5 W cm-2 . nm-' . sr-' or 
1 X photons . cm-2 . sr-l . s-' . The peak  emission from 
these  plasmas,  as determined  photographically,  occurs in the 
10-12 nm region, to which our  absolute irradiance  measure- 
ments  do  not  extend.  At  shorter wavelengths  still, however, 
Nicolosi e t  al. [8] measured  the spectral  radiance of plasmas 
generated on a  variety of target  materials  including tungsten 
using a 10 J, 15  ns  ruby laser. At  this increased laser power 
the values decrease  fairly smoothly  from a peak  of 6 X 10' 
W. cmw2 . sr-' . nm-' at 3 nm to 6 X lo7 W. cm-2 . sr-l . 
nm-' at 8 nm  which  corresponds to  photons * cm-2 * 

sr-l . nm-' . s-' throughout  this range. In  our  experiments 
the laser energy  was typically 1 J, and since above this energy 
the  output is relatively  insensitive to incident laser flux  (under 
constant  focus) [6],  a  radiance of  approximately lo7 W * 

nection  it  should be noted  that  the  output  does  not  depend 
strongly  on focusing conditions  (for  constant laser flux) [ 9 ] .  
We therefore  expect  the  conditions  for increased radiance to 
be  a simultaneous increase  in laser energy and focal spot size. 

cm-2 . . nm-l would be expected  at 8 nm.  In  this  con- 

VI. PHYSICS OF THE SOURCE 
Applications  of  the  Colombant  and  Tonon  model [ lo]   to  

the plasmas under discussion have shown  them to have an elec- 
tron  density close to  the  cutoff  density  of  ruby light (2 X 
IOz1 cm3) [I 11.  Under these conditions,  ion stages up  to 
and including the  sixteenth are present in the plasmas. Be- 
cause of  the  opacity of the plasma to line radiation, recom- 
bination  would  be  expected to be the  dominant radiative pro- 
cess, especially at  shorter wavelengths. (For C 0 2  plasmas, 
however,  because of  the  lower  ion  density,  line  radiation  pre- 
dominates).  Bremsstrahlung contributes 10-20 percent  of 
the overall continuum  intensity  and is most  important  at 
longer  wavelengths. The absence of lines from a ruby plasma 
generated  in rare earth  materials, however, cannot be explained 
completely  by  opacity  arguments since strong line radiation is 
always  observed from  targets  of  both  lower  and higher Z ma- 
terials. To  understand  the  apparent absence of line radiation 
in the cases mentioned  requires a detailed  consideration  of  the 
electron  configurations  of  the ions  involved. 

In  low  ion stages of  the  elements  62 < Z < 74  the 5s and  5p 
subshells  are complete while the 4f contain a  variable number 
of  electrons,  depending  on Z and  ion stage. With increasing 
ionization  the binding  energy of  the 4f level increases much 
more rapidly than  that  of  the  5p  or 5s so that  the 4f level 
crosses the 5 p  near to  the  sixth  ion stage and  the 5s past  the 
thirteenth  [12] . As a  result, each  of  the  elements  of  interest 

contain 4f electrons  in  their  ground  states  for all ion stages 
generated. Furthermore, because of  the  proximity  of  4f,  5p, 
and 5,s binding  energies,  a  large number  of  complex configura- 
tions  !containing variable numbers  of 5 p ,  5s, and  4felectrons 
lie within a narrow  energy  bandwidth.  Thus, a  simple xenon- 
like configuration  5s25p6  can,  further along the  isoelectronic 
sequence, give rise to a range of  configurations  of  the  type 
5 s m 5 p k 4 f n , m + k + n = 8 , m = 0 ,   1 7 2 ; O < k < 6 ; O < n < 8 ,  
Le., 21 closely  spaced configurations.  For  example,in  SmIX  the 
ground  state is calculated to  be  5s25p24f4  and  the  total  en- 
ergy spread  of  the  configurations  is 63 eV [ 131 . Transitions 
based on  these  states  are  extremely  complex  and  when  the full 
range of available low-lying states  are  included can give rise 
to hundreds of thousands  of lines. As a  result, the oscilla- 
tor  strength is so weakened that these  lines  are for  the  most 
part submerged in  the  background  continuum.  The strongest 
transitions are of  the  type  4d-4f  and  these overlap  in ion 
stages VII-XVI to yield an unresolved transition  array (UTA) 
about 30 eV wide superimposed  on  the  continuum  which 
causes some  intensity  modulation  in  the  70  nm region. Again, 
because of the  complexity of the  configurations,  no discrete 
lines  are  observed. To  illustrate  this  point,  the  total  number of 
allowed  lines predicted  for a 4d1'4f 6 -4d94f7  transition is 
83 024  and  for 4d1'4f 3-4d94f4 is 4574. 

VII. ADVANTAGES OF LASER-PRODUCED CONTINUA 
Before  proceeding to describe  some applications of the 

source we will briefly  summarize  some of  its advantages. 
Ease of Production:  The  continuum-emitting plasma is pro- 

duced simply by focusing  a Q-switched laser pulse into a suit- 
able target. (See Sections I1 and 111.) 

Ease of Location:  The beam-guiding optics  and focusing lens 
may be easily adjusted to  locate  the plasma exactly where 
desired. 

Purity: The  continua  in  particular  those  emitted  by  the 
higher Z rare earth plasmas are  remarkably  free  from undesir- 
able  line  emission. 

Wide Spectral Coverage: Rare  earth plasmas emit  continua 
covering the range 3-200  nm. (The short wavelength limit  in 
the  present  work was,  in fact, set by  the  performance  of  the 
spectrograph.) 

Noiseless: Since the energy is delivered to  the plasma in  the 
form of light  electrical pickup,  problems  can be eliminated. 

Short  Pulse  Duration:  The  continuum pulse profile closely 
follows the  exciting laser pulse profile having a FWHM of 30 
ns for a conventional @switched laser. 

Easy Synchronization: By directing  a small fraction  of  the 
laser pulse onto a fast  photodiode,  synchronization  of  the 
continuum-emitting plasma with  other  events can  be  achieved. 

Small Spatial Extent:  The  continuum  is  emitted  from a  very 
small volume close to  the  target  surface.  The  point-like  char- 
acter  of  the source is of value in experiments requiring spatial 
resolution. 

Insensitivity to Ambient Pressure: The insensitivity of  the 
laser-produced plasma source to ambient pressures up  to 
several torr  makes  it  unique  among  far  UV/soft X-ray sources 
and  eliminates  the need for  differential  pumping in many 
experiments. 
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Reproducibility: The source is very stable.  A  shot-to-shot 
reproducibility to  better  than  10  percent was measured  in 
early work [2] and  more  recently  a  reproducibility  to 5 per- 
cent was reported [9]. 

High Radiance: The laser-produced  plasma source  has  the 
highest instantaneous radiance of any far UV/soft X-ray 
source. 

VIII.  APPLICATIONS OF LASER-PRODUCED CONTINUA 
Because of  their  versatility,  laser-produced  continua have po- 

tential  applications  in  a  number of areas. 

A .  Absorption Spectroscopy 
The  continua proved  very satisfactory  for  absorption  studies 

and  spectra illustrating their use were presented in the original 
publications [ l ]  , [2].  They have been used in a  routine way 
in the  study  and analysis of new absorption  spectra, some of 
which are  displayed in Fig. 3. All the  spectra  shown were re- 
corded  on  a 2 m grazing incidence spectrograph.  The  absorp- 
tion  spectrum  of  freon  [14] in the  6-7  nm range and that  of 
methyl  iodide [ 151 in the  10-25  nm range were recorded  by 
simply introducing  the  appropriate gas into  the  spectrograph. 
No differential pumping  system was used, so the gases were at 
the same pressure in both  the target chamber and spectrograph. 
Such  a simple technique is only  made possible by the insensi- 
tivity of  the laser-produced continuum source to  ambient 
pressure. 

The  absorption  spectrum of Li' is of  particular  interest as 
it was obtained using the laser-produced continuum in a 
time-resolved experiment  [16].  The laser beam  was divided 
optically  into  two  parts,  one  of  which  created  the  absorbing 
lithium plasma,  while the  other  produced  the  background 
continuum-emitting plasma via an  optical delay. The spatial 
resolution  attainable  due to  the  point-like  nature of the  con- 
tinuum source is particularly evident  in the  absorption  struc- 
ture  at  17  nm.  The  asymmetric  spectral  features  at 8 nm  cor- 
respond to  two-electron  autoionizing  transitions  and  illustrate 
the effectiveness of  the  two plasma techniques in studying 
ionic  absorption. 

In  the  normal incidence region continua  generated  on  lute- 
tium  and  ytterbium  targets have been used with  photoelectric 
detection  to  study  the  Lyman cy profile in  a  Z-pinch discharge 
~ 7 1 .  

B. Radiometric Standard 
The  peak emission of  the  continuum is known  to vary slower 

than linearly with  incident laser power. Furthermore, for laser 
fluxes > lolo w . cm-*  it is relatively insensitive to increases  in 
flux  of  almost an order of magnitude provided the  incident 
laser energy  remains constant.  Consequently,  the precise fo- 
cusing conditions and laser mode  structure  do  not greatly  af- 
fect  the  continuum  output. As a  result, laser-produced con- 
tinua have been  proposed [ 181 as W radiometric  standards, 
and, in particular, as transfer  standards [9]. At  present  the 
only available calibration source for  the  soft X-ray region is the 
synchrotron  which,  although providing an  absolute  standard, 
has  the disadvantage to  most  experimenters  of being inaccessible 
and expensive,  whereas the  laser-produced  continuum could 
provide a  cheap in situ method  of  calibration  source. 

x 100 150 200 - 4d -4f  Resonance - 
4d 'A, -np  'A, , ' E  

(a) 

7,O 

.U 2snp 
A 3  

oo 7 6 9 8 8  8 2 1 4 9 8  

(d) 
Fig. 3. ExdmpleS of absorption spectra obtained with  laser-produced 

plasmas. (a) L edge absorption of chlorine in freon; hafnium contin- 
uum [ 141.  (b)  Giant 4d-(e, 4)f  resonance in methyl  iodide; samar- 
ium continuum. (c) Ionic absorption:  the principle series of Li+ 
observed in a dual plasma time-correlated experiment [ 161. The 
vertical scale gives the distance from  the surface of the lithium target. 
The  experiment illustrates the use of the  continuum source to provide 
spatial resolution.  The background was generated on a tungsten  tar- 
get which,  although dominated by lines at longer wavelengths, pro- 
vides useful continuum in the region shown.  (d) Autoionizing reso- 
nances ( lsZ1S - 2snp 'P) in the  absorption spectrum of Li' [ 161. 

C. Calibration Testing of UV Soft X-Ray 
Detection  Systems 

Even if an  absolute  calibration is not  required,  for  example, 
in testing  the long term stability of XUV detection systems, 
the  reproducibility of the laser-produced plasma source  makes 
it suitable for relative intensity  measurements. The  installa- 
tion of such  a system  in  inertial confinement devices has been 
suggested for  the  monitoring of soft X-ray radiation losses-an 
essential  prerequisite to  their successful operation. 

D. Far UVlSoft  X-Ray Fluorescence 
The  intensity, wide spectral coverage, reproducibility,  and 

short pulse duration  of  the laser-produced continuum source 
makes  it suitable for  the  study  of  the fluorescence  efficiency 
of materials as a  function  of  irradiation wavelength. Two of 
the  present  authors  (Kennedy  and O'Sullivan) are currently 
using this  technique to investigate the luminescence of newly 
developed glasses under far  UV/soft  X-ray  (200-3  nm) excita- 
tion. Measurements of relative luminescent  efficiency, decay 
time,  and  spectral emission as functions of base glass composi- 
tion  and  activator  type are being performed. 
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E. Study of Irradiation Damage 
The very  high irradiance  obtainable  with laser-produced plas- 

mas means  that  they can be used to  study  the  deterioration in 
the  performance of materials when subject to far UV/soft X-ray 
radiation. When placed 1 cm away from  a  laser-produced 
plasma the spatial  irradiance at  the sample can be as high as 
2 X lo4 W . cm-2 . nm-‘ at 12 nm  and  the  total irradiance  be- 
tween  the wavelength  limits of 3 nm  and 200 nm may be 
greater than 2 X lo6 W . cm-2. 

F. TransmissionlRefZection Measurements 
Because of its  stability  and wide spectral coverage, the laser- 

produced plasma continuum source  can  be  used  in  transmis- 
sion or  reflectance  studies  throughout  the  spectral range ex- 
tending  from 3 to  200 nm. 

ACKNOWLEDGMENT 
Some  of  the  work described here  (the design of the  auto- 

matic light source  and  the irradiance measurements) was  car- 
ried out while two  of  the  authors (P. K. Carroll and G. O’Sul- 
livan) were visiting the  Institute of Physical  Science and  Tech- 
nology, University of Maryland, College Park, MD. We are 
grateful to Professor M. L. Ginter  for  helpful discussions and 
to  R.  Naber, G.  Jellison, and J. Robinson  for  help in the light 
source construction. 

REFERENCES 
[ l ]  P. K. Carroll, E. T. Kennedy,  and G. O’Sullivan, “New continua 

for  absorption spectroscopy from  40  to  2000 A,’’ Opt.  Lett., 

[2]  -, “Laser-produced continua for absorption spectroscopy in 
the vacuum  ultraviolet and XUV,” Appl. Opt., vol. 19,  pp.  1454- 
1462,1980. 

[ 31  R.  C. Fawcett, “Classifications in the period  between calcium and 
iron of emission lines isoelectronic  with those of carbon,  nitro- 
gen,  oxygen  and  fluorine,”J. Phys. B., vol. 4,  pp.  981-985,  1971. 

[4]  G. A. Doschek U. Feldman, R. D. Cowan, and L. Cohen, “Tran- 
sitions 2s22pk:2s2pk+l of the  FI, 01 and  NI isoelectronic se- 
quences,” vol. 188,  pp.  417-422,  1974. 

[5] G. O’Sullivan, P. K. Carroll, T. J. Mcnrath,  and M. L. Ginter, 
“New continuum light  source  for VUV applications,” Appl.  Opt., 

[6]  G. O’Sullivan, J. R. Roberts, W. R. Ott, J. M. Bridges, T. L. Pitt- 
man,  and M. L. Ginter, “Spectral  irradiance  calibration  of con- 
tinuum  emitted  from rare earth plasmas,” Opt.  Lett., vol. 7,  pp. 

[7]  C. Breton and R. Papoular, “Vacuum-UV radiation of laser- 
produced plasmas,” Opt. SOC. Amer., vol. 63,  pp.  1225-1232, 
1972. 

[ 81 P. Nicolosi, E. Jannitti,  and G. Tondello, “Soft X-ray emission of 
continua  from laser-produced plasmas,” Appl. Phys., vol. B26, 
p.  117,1981. 

[ 91 M. Kiihne,  “Radiometric  comparison of a  laser-produced plasma 
and a BRV-source plasma at normal  incidence,” Appl.  Opt., vol. 

[ l o ]  D. Colombant  and G. F. Tonon, “X-ray emission in laser pro- 
duced  plasmas,”J. Appl. Phys., vol. 44,  pp.  3524-3527,  1973. 

[ 111 G. O’Sullivan and P. K. Carroll,  “4d-4f emission resonances in 
laser-produced plasmas,” J. Opt. Soc. Arner., vol. 71,  pp. 227- 
230,1981. 

[ 121 P. K. Carroll and  G. O’Sullivan, “Ground-state  configurations of 
ionic species I through XVI for 2 = 57-74 and  the  interpretation 
of 4d-4f emission resonances in laser-produced plasmas,” Phys. 
Rev. A ,  vol. 25,  pp.  275-286,1982. 

[ 131 G. O’Sullivan, “The origin of  line-free XUV continuum emission 
from laser-produced plasmas of the  elements 62  < 2 < 74,”  un- 
published work. 

V O ~ .  2,pp.  72-74,1978. 

VOI. 2 0 , ~ ~ .  3043-3046,1981. 

31-33,1982. 

2 1 , ~ ~ .  2124-2128,1980. 

181 1 

[14] -, “Chlorine L-edge  absorption in CC14 and CC12F2,”J. Phys. 

1151 -, “The absorption spectrum of CH3I in  the  extreme VUV,” 

[ 161 P. K. Carroll and E. T. Kennedy, “Doubly excited  autoionization 
resonances in  the  absorption  spectrum of Li+  formed in a laser- 
produced plasma,” Phys. Rev. Lett., vol. 38, pp. 1068-1071, 
1977. 

[17] C.  G. Mahajan, E.A.M. Baker, and D. D. Burgess, “Use of  a laser- 
produced plasma as a source of focused  vacuum-ultraviolet  radia- 
tion,” Opt.  Lett., vol. 4 ,  pp. 283-284, 1979. 

[ 181 P. K. Carroll, E. T. Kennedy,  and G. O’Sullivan, “Laser-produced 
continua for absorption  spectroscopy  in  the vacuum  ultraviolet 
and  the XUV,” in Proc. 6th Int.  Conf. VUV Radiat. Phys., vol. 3,  
no. 56.1980. 

B ,  V O ~ .  15,  pp.  2385-2390,1982, 

J. Phy~. B ,  VOI. 15,  pp.  L237-L330,1982. 

P. K. Carroll was borninDublinJreland,  on April 
13,  1926. He received the B.Sc. degree from 
University College, Dublin in 1948,  the Ph.D. 
degree in  1953,  and  the D.Sc. degree in  1975. 

He lectured  in  the  Departments of Physics at 
the Queen’s University of Belfast (1951-1953) 
and University College, Dublin  (1955-1960). 
He did  postdoctoral  work at  the National Re- 
search Council  of  Canada, Ottawa (1953-1955) 
and  later  spent  three years at  the  Laboratory of 
Molecular Structure  and  Spectra, University of 

Chicago, IL (1960-1964). In  1965  he  returned  to University College, 
Dublin  where he is now Professor of Optical Physics. He has published 
about  thirty papers on high-resolution  molecular spectroscopy, which 
was his  main interest  for  many years. More recently he has  been  work- 
ing on  the emission and  absorption spectroscopy of hot dense  plasmas, 
in particular  laser-produced plasmas. 

Dr. Carroll is a member of the Royal Irish Academy and  the IUPAP 
Commission on Atomic and Molecular Physics and  Spectra,  and is a 
Fellow  of the  Institute of Physics (London). 

Eugene T. Kennedy was born  in Boyle, Ireland, 
in 1948. He received the B.Sc. degree in experi- 
mental physics and  the Ph.D. degree from Uni- 
versity College, Dublin in  1970  and  1977, 
respectively. 

From  1974  to  1977  he  worked as a Research 
Associate in  the  Department of Physics, Univer- 

‘<, sity College, Dublin, studying  the emission and 
; absorption spectroscopy  of  laser-produced 

,~, plasmas in the  UV/soft X-ray spectral regions. 
From  1977  to  1980  he held  a  lectureship at  the 

Regional Technical College, Cork. From  1980  to  the present he  has 
been  a  Lecturer in  the School  of Physical Sciences, National Institute 
for Higher Education, Dublin  where he has  been  Leader of the Laser/ 
Spectroscopy  Research  Group. His current  interests are in the develop- 
ment of  new glass scintillators for  the vacuum  ultraviolet and  the use of 
laser-produced plasmas to study  the  absorption  spectra of ions. 

Gerard O’Sullivan was born  in  Dublin, Ireland, 
on September 25,  1953. He received the B.Sc. 

’ degree in  experimental physics in 1975  and  the 
Ph.D. degree in  1980  from University College, 
Dublin. 

From  1980  to  1981  he worked  as  a  Post- 
doctoral Research Fellow at  the  Department of 
Physics, University College, Dublin on  the spec- 
troscopy of laser-produced plasmas and applica- 
tions of the laser-produced continuum  to XUV 
absorption studies  on polyatomic molecules. 

During this  time  he also spent brief periods at  the U.S. National Bureau 
of Standards, Washington, DC and  at  the University of  Maryland, College 
Park, MD, engaged in work  on intensity calibration  of  laser-produced 
plasma emission in the VUV. From 1981  to  the present he has  been a 
Lecturer in the School  of Physical Sciences, National Institute  for 
Higher Education, Dublin. His current research is devoted to  the analy- 
sis of  spectra of highly ionized, high 2 atoms  produced in laser plasmas. 

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on August 06,2010 at 12:57:43 UTC from IEEE Xplore.  Restrictions apply. 


