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ABSTRACT

Originally designed to favour flexibility over packet processing performance, the future

of the programmable network processor is challenged by the need to meet both increas-

ing line rate as well as providing additional processing capabilities. To meet these re-

quirements, trends within networking research has tended to focus on techniques such as

offloading computation intensive tasks to dedicated hardware logic or through increased

parallelism. While parallelism retains flexibility, challenges such as load-balancing limit

its scope. On the other hand, hardware offloading allows complex algorithms to be imple-

mented at high speed but sacrifice flexibility. To this end, the work in this thesis is focused

on a more fundamental aspect of a network processor, the data-plane processing engine.

Performing both system modelling and analysis of packet processing functions; the goal

of this thesis is to identify and extract salient information regarding the performance of

multi-processor workloads. Following on from a traditional software based analysis of

programme workloads, we develop a method of modelling and analysing hardware ac-

celerators when applied to network processors. Using this quantitative information, this

thesis proposes an architecture which allows deeply pipelined micro-architectures to be

implemented on the data-plane while reducing the branch penalty associated with these

architectures.
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CHAPTER 1

Introduction

1.1 Network Processors

The Internet has grown to encompass the global networking system underlying modern

business, research, communication and collaboration. Developments in network tech-

nologies and fibre optics have allowed products and services to be developed on one con-

tinent, manufactured on another and serviced on yet another. The challenge of network

research is to expand these communications systems to allow more complex services at

ever faster speeds. To maximise the packet processing rate it is possible to implement

routing using highly tailored Application Specific Integrated Circuits (ASICs), but when

application flexibility is required a programmable platform such as a Network Processor

(NP) is required. Instead of utilising dedicated hardware logic for packet processing, a NP

system is organised around a software-based processing array, comprised of a number of

heterogeneous processors (Process Engine (PE)). With the ability to reprogram each PE,

software-based routers allow new functions to be deployed on existing network hardware

in order to meet changing network demands. Changes to Internet-based protocols, ser-

vices and applications no longer require extensive hardware changes. For research within

the network processor domain the challenge is retaining this flexibility while meeting the

needs of both additional processing requirements and ever increasing bandwidth demands.

This dissertation addresses some of the difficulties associated with these trends, propos-
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ing methods for analysing and improving the performance of the PEs within a network

processor.

1.2 Trends Within Networks

In this section some of the trends within network research are outlined, before an exami-

nation of the effect of these trends on the future for programmable routers.

1.2.1 Bandwidth Growth

During the 1990’s, developments within optical and switching technology, a boom in

computer usage in both the home and the office and the dot com bubble resulted in band-

width doubling on average every year ([1], [2] and [3]). Although growth in capacity

slowed down significantly at the beginning of the century, the under-utilised network in-

frastructure was quickly absorbed and the work in [4] found that between 2003 and 2008

average internet traffic increased by 50% to 60% per annum, with predictions for simi-

lar growth over the next three years [5]. This capacity has been utilised by two factors.

Firstly, the number of systems connected has increased substantially. Originally limited

to universities, governments and large corporations, Internet access is now almost uni-

versal in developed countries, with developing countries such as India and China rapidly

expanding domestic coverage. For example, the number of people in China with access

to the internet has increased from ∼50 million users in 2002 to over 250 million users in

2008 [6] but encompasses less than 20% of China’s population.

In addition to the total number of networked terminals, both home and corporate net-

work users have demanded faster connections, requiring large scale broadband networks

to be deployed. With an increasing amount of trade and commerce provided via electronic

systems, companies have become dependent on high bandwidth permanent Internet con-

nections. In countries around the world, broadband services such as Fiber-To-The-Home,

Cable or Digital Subscriber Line (DSL) are widely available to both homes and offices,

while wireless technologies provide broadband in more remote and mobile environments.
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1.2.2 Network Technologies

With the ability to accommodate arbitrary communication systems, IP switched networks

have grown from wired networks connected over existing circuit switching systems to

the broad Wide Area Network (WAN) which encompasses the modern Internet. Tradi-

tional circuit switched systems such as telephony networks are gradually being replaced

by packet switched equivalents [7]. Similarly, technologies such as Wireless Local Area

Network (WLAN), high speed broadband, mobile broadband and gigabit Ethernet have

either replaced existing standards or have been designed in such a way as to be accom-

modated within the existing infrastructure.

1.2.3 Application and Service Demands

Evolving from a system which provided simple services such as file transfer and email,

the Internet today supports applications which were deployed decades after the standard-

isation of the Internet protocols. Some of the more common applications are described

below.

1.2.3.1 World Wide Web

The most transparent Internet application, web browsing has evolved from simply ren-

dering text-based information to the provision of interactive services such as e-commerce

and content generation. While the original Web largely followed a simple one way dis-

semination technique (personal webpages), the modern Web involves more cooperative

and collaborative interaction, such as social networking or Wikipedia [8]. Modern devel-

opments have allowed applications to be offloaded from end terminals to more centralised

systems. A hot topic of research ([9],[10],[11],[12]), this trend is commonly referred to

by various terms (Virtualisation, Cloud Computing, Software-as-a-Service(SaaS)). The

goal of cloud computing is to allow the design and deployment of highly scalable and

highly redundant virtualised systems. Instead of end users, e.g. individuals and compa-

nies deploying expensive software and hardware on a per-node basis, a centralised system

is provided where the required service can be accessed remotely on-demand. For com-
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mercial and academic institutions requiring complex and high performance computing

resources, cloud computing allows the high capital costs associated with such systems to

be replaced with a service charge for access to the external hosting network.

1.2.3.2 Digital Media

Broadband connections, as well as improvements in the technologies associated with me-

dia streaming, have allowed vast amounts of digital media to be published on the Internet

at little capital cost. Video and music websites have become increasingly popular, with

Youtube [13] streaming over 100 million videos per day to users all over the world. Gill et

al. found that video streams from Youtube accounted for almost 5% of campus wide net-

work traffic [14]. In addition, interactive entertainment systems such as computer games

have become increasingly networked. Entire online environments have been constructed

[15], with systems such as Second Life available for entertainment, information and col-

laborative purposes [16]. In addition to streaming services used to disperse content is the

trend towards two way communication systems such as Voice Over IP (VOIP) or video

teleconferencing. Utilising similar algorithms to streaming applications it presents a num-

ber of additional challenges at a router level since latency, and therefore processing time,

is the primary difficulty in maintaining such services.

1.2.3.3 Peer To Peer

The most significant application in terms of bandwidth usage, Peer-to-Peer (P2P) has

evolved from small centralised systems to vast distributed networks, allowing large amounts

of data to be efficiently transferred across the Internet. Today, the most common P2P sys-

tem in operation is the BitTorrent protocol. Although it is difficult to characterise the

amount of Internet bandwidth absorbed by P2P applications, research in [17],[18] high-

lighted the sizeable resources utilised by P2P systems. For Internet Service Providers

(ISPs), the large volume of data transferred across Peer-to-Peer networks presents two

difficulties. Firstly, a small number of customers can monopolise large amounts of avail-

able bandwidth, severely reducing the service available to other customers. Secondly,
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the liability regarding the transport of copyrighted material across networks is yet to be

resolved. From a network provider’s perspective, Sen et al. found that despite the large

amounts of data transferred within a P2P system, the stability of P2P traffic lends itself

to flow level metering and traffic shaping [18]. Shaping techniques, however, require

network providers to implement packet classification as a means of detecting P2P traffic,

while more finely grained systems which attempt to filter only illegal material require that

routers must be both flow and content aware at a packet level.

While the future use of P2P is difficult to ascertain, a number of trends within Internet

based services indicate that P2P based protocols will remain over the medium term. For

open source software companies, P2P has become a major means of distributing software,

with the most common Linux Operating System (OS) versions utilising BitTorrent based

distribution. Secondly, for content and media generation companies, P2P networks pro-

vide an efficient means of dispersing files outside of real-time demands. For example, the

music service Spotify [19] utilises a P2P system to stream encrypted audio between users.

1.2.3.4 Future Demands

Extrapolating from current Internet trends it is possible to speculate on future Internet

demands. Firstly, with available bandwidth continually expanding, both personal and

commercial users will push additional functions onto networked systems. Ultra-high

bandwidth systems deployed at home will allow television and media to be delivered via

Internet Protocol (IP) networks, while commercial institutions can utilise services such

as external data-centres providing hosting, backup and storage functionality. Services

such as virtualisation will allow computing resources such as storage, bandwidth and pro-

cessing to be viewed as a commodity, available for varying amounts of time to bidders.

The separation between P2P systems and centralised media distribution is becoming in-

creasingly blurred, pushing the bandwidth requirements from the company generating the

content to the network providers which connect users.
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Figure 1.1: 7 Layer OSI Network Model [20]

1.3 Network Trends and Network Processors

While the discussion of network trends outlined in the previous section did not focus on

implementation details, the question for network researchers is how these trends affect

network designs, topologies and functionality. In the case of a distributed P2P system, the

trend has been to push bandwidth demands away from centralised systems to each node

of the network. On the other hand, the various aspects of a real-time Internet Protocol

Television (IPTV) system, such as Personal Recorders or Video on Demand, rely on a

centralised distribution network. For interactive web systems, such as social networks,

the data demands are small and not sensitive to security. For commercial operations,

which outsource data-processing to external networked sites, the volume of traffic can be

very large with security vital to communication. From a network design perspective, the

challenge is how these various demands can be met.

In general, these trends have been represented at a router level by an expansion of the

type of functions performed on a modern router. Mapped to the traditional Open Systems
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Interconnection (OSI) stack [20], the original task of a router has expanded from sim-

ple layer three routing and modification to complex application layer functions such as

deep packet inspection and intrusion detection. While an Application Specific Integrated

Circuit (ASIC)-based router can be developed to provide packet routing or classification

functionality, it is difficult to provide a cost-effective solution with many differing de-

mands. A router deployed by local Internet Service Providers (ISP) has little need for

packet encryption or intrusion detection, while a router deployed at the edge of a corpo-

rate network requires a mechanism for creating a secure Virtual Private Network (VPN)

and packet inspection. Quality of Service (QoS) systems require routers to differentiate

between ‘normal’ traffic and latency-sensitive traffic such as IPTV or VOIP. Legal re-

quirements increasingly require an ISP to detect illegal P2P data traversing the network

without affecting legal P2P systems.

With Internet based applications constantly evolving, it is increasingly difficult to im-

plement dedicated hardware capable of meeting all demands. While the protocols which

underlie the Internet are likely to remain in place for many years to come, the methods,

protocols and algorithms for performing applications such as queueing, metering, classi-

fication or payload inspection are constantly changing.

1.3.1 The Motivation for This Thesis

With ASIC-based routers lacking flexibility, the programmable NP architecture remains a

good alternative to an application-specific router. Unfortunately a replacement NP-based

architecture is not without limitations, especially when future requirements are consid-

ered. While technological evolution has allowed the performance (e.g. clock frequency,

transistors per chip) obtained from digital circuits to greatly increase, it has not been at the

growth rate experienced by network bandwidth, creating a performance gap between the

growth of bandwidth deployed and the processing capabilities available. Within micro-

processor design, the performance increases have been limited by factors such as dynamic

power consumption and memory access latency. Multiprocessing and cache hierarchies

have allowed performance increases to be obtained through methods other than increases
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in microprocessor operating frequency [21].

For an NP architecture, the performance gap between bandwidth and processing speed

has commonly been met using two techniques. The first method involves implementing

additional processing resources as a means of exploiting flow level parallelism. While

each additional PE does allow additional performance to be extracted, it is not a ‘for-

free’ solution and requires a redesign of the memory system, bus hierarchies and load

balancing mechanisms. Secondly, the demands for computationally intensive functions

such as packet classification, intrusion detection, encryption, etc., have generated scope

for extensive research on the topic of hardware accelerators for NP architectures. Instead

of implementing applications in software, algorithms are mapped to dedicated hardware

blocks. Similar to ASIC based routers, hardware acceleration favours packet process-

ing performance over flexibility. It remains unclear whether hardware acceleration is an

efficient solution for all NP applications.

In addition to these two solutions, another method of increasing NP performance in-

volves micro-architectural improvements in the underlying PE architecture. These micro-

architectural improvements involve investigating and implementing mechanisms for im-

proving the performance of the PEs. Techniques such as caching, multi-threading, instruc-

tion level parallelism (superscalar) or deeper pipelining represent four such mechanisms

which can be used to improve PE performance. The focus of this work is primarily on

the fourth of these micro-architectural techniques; namely the processor pipeline depth.

As with other micro-architectural design techniques, pipelining is not without significant

challenges.

To achieve optimum performance within a pipelined design the pipeline must remain

full at all times. For a microprocessor, the difficulty arises during conditional operations

which attempt to modify program flow. Since the conditional evaluation cannot be known

immediately, the processor must either wait while the instruction is evaluated or assume a

pre-determined course (typically assuming the branch will not be taken). If the assumed

path is incorrect the instructions which are misfetched must be flushed from the pipeline.
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Figure 1.2: Pipeline Depth Vs. Microprocessor Performance

For highly conditional code this branch penalty can become a significant loss of processor

cycles and it is possible that a deeper pipeline can actually decrease overall performance.

The most common solution to mitigate this problem is to implement a prediction scheme

which attempts to guess whether a conditional branch will be taken based on previous

run-time history.

With NPs requiring an increasing amount of processing capabilities, it is believed that

deeper pipelined processors will become one method of increasing performance. Examin-

ing commercial Reduced Instruction Set Computer (RISC) processors ([22],[23],[24],[25])

in Figure 1.2, it can be seen that significant increments in operating frequency can be

achieved by implementing a deeply pipelined design. For NP research, the goal is how

to harness the additional performance available without incurring the penalty associated

with conditional operations.

1.4 Research Objectives

The research goals of this thesis can be summarised as follows:

1. To investigate the current state of network processing modelling and simulation as

a method for investigating architectural aspects of network processor design.

2. To derive a simulation framework allowing effective benchmarking and analysis of

network processor applications.
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3. To undertake a comprehensive analysis of network processor workloads, charac-

terising those applications implemented completely in software, and examining the

effect of conditional branch instructions in NP applications.

4. To design and implement techniques for mitigating the branch penalty within NP

applications as a means of improving network processor performance.

1.5 Thesis Structure

The remainder of this thesis is structured as follows:

• Chapter 2 – Technical Background

The background section introduces the two main topics discussed in this thesis, i.e.,

programmable network processors and branch prediction for pipelined micropro-

cessors. Topics such as network architectures and applications are briefly covered,

highlighting trends within NP design. The second part of this chapter presents

a technical introduction to the aspects of microprocessor design which relates to

branch prediction, outlining the concepts of pipelining and branch penalties as well

as discussing existing methodologies for mitigating the penalty.

• Chapter 3 – Performance Evaluation Methods for Network Processors

Following on from the high level background information and state of the art survey

presented in Chapter 2, Chapter 3 presents a more detailed technical background

with regards to the topics of performance evaluation of NP and PE architectures.

With research such as branch prediction requiring a means of modelling NP plat-

forms, a survey of the methods available to model an NP environment is presented.

The second part of this chapter examines the metrics and methodologies by which

branch prediction schemes can be examined within an NP environment.

• Chapter 4 – A New Simulator for Network Processors

There is no existing method of efficiently evaluating NP architectures, and so a new

simulation framework for NP systems is proposed. Designed to provide the high
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turn-around time of a functional simulator, it includes simulation blocks for devices

commonly incorporated on an NP System on Chip (SoC).

• Chapter 5 – Analysis of NP Workloads

Using common NP applications and algorithms, an examination and analysis of

network tasks is presented. While previous work has focused on complex super-

scalar designs, this thesis examines more fundamental design considerations, such

as parallelism, memory profile and the branch behaviour of NP applications.

• Chapter 6 – Branch Prediction in Process Engines

After identifying branch behaviour as a significant limitation to implementing deeply

pipelined PE architectures, Chapter 6 examines branch prediction techniques within

an NP environment in detail. Following on from the branch behaviour and analysis

presented in Chapter 5, the performance of existing prediction techniques is eval-

uated before proposing a new flow indexed branch prediction scheme specifically

designed for PEs. A complete analysis is provided, with the proposed architecture

compared to previous solutions in terms of cost, performance and scalability.

• Chapter 7 – Conclusions & Future Work

A summary of the contributions made in the thesis and the research objectives at-

tained is presented, as are plans for future work.
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CHAPTER 2

Technical Background

2.1 Overview

The topics discussed in this thesis span two engineering topics, network processors and

computer architecture. With this in mind, chapters 2 and 3 present a technical overview

of both of these topics. For network processors, this background information provides

a context for the current state of the art within NP design and research. An overview of

current networking topology (hierarchy, protocol and technology) is first presented before

describing how NP platforms fit into the modern Internet. A summary of the current

applications deployed on an NP platform is used to highlight some of the challenges to NP

development and design. Various methods by which NP performance can be improved are

examined in order to outline some of the strengths and disadvantages of each method. One

such way by which NP performance could be improved is by increasing the performance

of the individual PEs by implementing a deeper pipelined architecture. When compared to

other methods of scaling PE, it is argued that implementing a deeper pipelined architecture

represents a more efficient method of scaling PE performance, since neither flexibility nor

cost is greatly increased.

As was highlighted in Chapter 1 however, deeper micro-processor pipelines are not

without possible performance drawbacks. Despite typically increasing the operating fre-

quency of the underlying architecture, the increased number of pipeline stages can actu-

12



Technical Background

ally result in lower performance if the pipeline cannot be kept full at all times. The latter

half of this chapter presents an overview of the concepts of pipelined micro-processors

and branch penalties, along with a survey of the existing methods of branch prediction

which can be used to mitigate this branch penalty.

2.2 Networks

Within the OSI model (see Figure 1.1)1, a router has traditionally been defined as a layer

3 device. Unlike a layer 2 Media Access Controller (MAC) or network switch, a router

must be aware of the underlying protocol and, for more complex functions, must be aware

of higher-level application information. For example, a modern router may be used as a

web-switching platform, balancing HyperText Transfer Protocol (HTTP) requests across

a number of hosting systems. In general, a network such as the Internet can be divided

into three components which are briefly outlined.

2.2.1 Network Protocols

The Internet is comprised of a number of heterogeneous networks communicating within

a shared framework. Although many frameworks have been proposed and implemented,

the Transmission Control Protocol (TCP) and IP (TCP/IP) protocol suite [26] dominate

today’s computer networks. The ability to accommodate arbitrary network systems and

topologies is derived from the fact that the TCP/IP suite provides no specification regard-

ing hardware layers. Concerned only with transporting data, the TCP/IP suite begins at

layer 3 of the OSI model. Today the bulk of traffic found on the Internet is comprised

of the layer 3 IP protocol and two layer 4 transport protocols [27] [28] [29] (TCP and

User Datagram Protocol (UDP)). At the base, the IP protocol provides a data-orientated

connectionless means of routing packets from one network to another. As the Internet has

developed a number of changes to the IP protocol have been required, with IPv6 currently

1Although the traditional Transmission Control Protocol (TCP)/IP model does not utilise a strict layered
separation such as the OSI model, the OSI model is used as a conceptual framework for the remainder of
this thesis
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being rolled out as a replacement to the existing IPv4 platform. At a router level, the

major aspect of the change (aside from the new IP header) is the massive expansion in

the number of routable addresses provided by the IP specification. Whereas IPv4 utilises

a 32-bit address scheme, the newer IPv6 protocol uses 128-bit source and destination ad-

dresses. Because the IP protocol does not guarantee delivery and cannot be used to mul-

tiplex data from multiple network applications it is common for a higher level transport

protocol to be encapsulated within an IP packet. For applications requiring a session-

based connection, the TCP protocol can guarantee reliable transmission, creates unique

application-based sessions and provides mechanisms for congestion avoidance. For sys-

tems requiring multiplexing but without the overhead associated with a state-maintained

connection like TCP, the UDP protocol can be used to encapsulate data from the appli-

cation layer within an IP packet. In addition to these three protocols a number of other

protocols are used within the TCP/IP stack, providing functionality such as routing table

updates and secure communication.

At a router level, the dominance of IP, TCP and UDP present an advantage by limiting

the complexity of the network traffic. Applications such as session-based firewalling, re-

quiring 5-tuple classification (identification using Source Address, Destination Address,

Source Port, Destination Port and Protocol), can be efficiently implemented using the

knowledge that TCP-based data represents over 80% of the traffic [28] found on the In-

ternet. At a purely engineering level, protocol improvements such as IPv6 present a chal-

lenge in two ways. Firstly, routers must be able to support both protocol versions while

legacy systems are replaced. Secondly, packet processing techniques such as packet for-

warding and classification are optimised for 32-bit address and 32-bit architectures and

may not be directly compatible as the number of unique addresses is expanded.

2.2.2 Network Technologies

Lacking any specification of the hardware or link layer details of a network, the TCP/IP

suite allows arbitrary communication technologies to be incorporated within the existing
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framework. In Table 2.1 some of the communication standards currently in operation are

summarised. For local networks, communication can be achieved using both a wired and

wireless solution. Wired network technologies such as Ethernet 100 Mbps (100BASE-T)

and the state of the art Gigabit Ethernet provide a cheap method of transferring data over

short distances. For greater flexibility, wireless equivalents such as IEEE 802.11x can be

implemented. For bulk data transfer, optical technologies such as SONET/SDH [30][31]

allow network providers to transfer large quantities of data over optical fiber.

Table 2.1: Communication Technologies

Technology Standard Bit Rate (Mbps)

Wireless
IEEE 802.11b 11

IEEE 802.11g 54

IEEE 802.11n 600

Ethernet

10BASE-T 10

100BASE-T 100

1000BASE-T 1000

10000BASE-T 10000

SONET/SDH

OC-1 51.84

OC-3 155.52

OC-12 622.32

OC-48 2,488

OC-192 9,953

OC-768 39,813

In Figure 2.1, we use the network layering methodology outlined in [32] to describe

a sample WAN. At the access layer, residential and corporate networks use technologies

such as Ethernet, Wireless LAN and PPPoE to connect users. To connect various access

networks, the edge or distribution layer allows fast connection between regional networks

operating inside the WAN. From a router perspective, access layer data is multiplexed

before being transferred over high speed Gigabit Ethernet and OC-3/OC-12 data links.

Finally, connection between distribution networks is provided via a core switching net-

work. In this example, the core switching network might represent the network used to

connect large metropolitan cities. As in the distribution layer, data is again multiplexed
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Figure 2.1: Network Layer Topology [32]

before being transferred over high speed links such as 10 Gigabit Ethernet or OC-48/OC-

192 connections.

Although a network is divided into three layers in the example outlined above, the

separation of layers is not definite and can be altered to accommodate even higher level

connections. For example, the TAT-14 OC-768 [33] optical link between the United States

of America and Europe provides a means of connecting two large WANs.

Again, from a router design perspective this layer model allows routers to be designed

which target specific network topologies. The core network provides maximal switching

speed with minimal packet processing. Services provided within the core network are

primarily data plane functions such as forwarding, while for routers located within the

distribution network, the services provided can be argued to be both data-plane functions

such as packet switching, as well as control plane tasks such as congestion avoidance, fire-

wall security and load balancing (e.g. domain name resolution). Finally, routers located

within the access network provide services such as web switching, metering, detection
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Figure 2.2: Router Line Card [34]

and prevention of network intrusion. The difficulty with such a layered model is that the

topology of the Internet is not static. Services such as QoS require routers to be able to

differentiate between certain types of traffic at both the access and distribution layer.

2.2.3 Router Architecture

To connect various nodes on a network, packet forwarding or routing devices are needed

to maintain paths between one node and another. At its most basic level, a routing node

must be able to receive incoming packets, determine the next hop which must be taken

and transmit the packet to the corresponding interface. For a programmable NP-based

router, a generic architecture might follow the system block diagram shown in Figure 2.2.

Packets arrive via a physical interface, in this case an SPI 4.2 optical interface [35].

Incoming packets are first buffered in the ingress packet memory. The ingress NP will

perform ingress tasks such as verification, next hop calculation and packet classification.

Once ingress packet processing is complete, the packet can either be transferred to an

egress line card on another line card via the switch fabric or it can be transferred to the res-

ident egress network processor. Packets buffered in the egress packet memory are queued
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Figure 2.3: Router Architecture

before being processed and transmitted via the physical interface back onto the network.

Typical egress processing includes functions such as metering, congestion avoidance, QoS

and statistical analysis. An example of such ingress and egress processing might be for

the router at the edge of a corporate network to filter unwanted attachments on incoming

emails while also removing specific outbound HTTP requests to certain websites.

With a large volume of packets arriving, buffering is commonly implemented with

cheap Dynamic Random Access Memory (DRAM) based technologies. To improve per-

formance, faster Static Random Access Memory (SRAM) technology is used to store

control information such as routing tables and classification rulesets. For control packets,

routing updates and other line card maintenance routines, a control (or Host) plane proces-

sor might be provided on the line card. Connection between the control plane processor

and the NP(s) is achieved with some form of external communication bus (e.g. Peripheral

Component Interconnect (PCI)) or by locating the control plane processor on-chip. The

line cards are then connected via the switching fabric, similar to the block diagram out-

lined in Figure 2.3. The advantage of such a configuration is the scalability which can be

achieved with larger switching subsystems and additional line cards.

The system outlined in Figure 2.2 represents just one possible NP line card configu-

ration. Certain architectures implement the control plane within the NP die, reducing the

line-card cost, while other NP designs implement an external bus connection, allowing
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the customer to decide the type of control plane architecture employed. Similarly, an NP

architecture can be designed to utilise a single type of memory while another design may

utilise a highly segmented memory architecture.

2.3 Network Processors

While the line card outlined in the previous section represents the most common method

of building a modern router, the underlying NP architecture on the line card varies greatly

from one device to another. In both academic and commercial research no single NP ar-

chitecture has emerged as the optimum configuration, but a number of traits have emerged

which can be argued to represent the most common features found within an NP architec-

ture. To highlight these features two commercial NP architectures are briefly examined in

this section.

2.3.1 Intel IXP-28XX Network Processor

One of the most flexible NP architectures, the IXP-28xx [34] line of network processors

incorporate a number of various architectural and technological improvements over the

legacy IXP-12xx NP. Utilising 16 ultra high performance PEs (labelled Micro-Engines

by Intel), each running at 1.4 GHz, the IXP-28xx platform includes a 700MHz on-chip

Xscale processor. With memory and I/O access speed failing to keep pace with micropro-

cessor development, a number of mechanisms have been employed to either mitigate or

hide this access latency. Firstly, the memory hierarchy employs multiple channels for both

control and packet memory. Secondly, each PE is hardware multi-threaded, supporting 8

threads. Connection to the external device can be achieved via three interfaces. Physical

devices are connected via the Serial Peripheral Interface (SPI) 4.2 [35], while the Com-

mon Switch Interface (CSIX) connects the NP to the switching fabric. Inter-process com-

munication is provided via the PCI bus. While communication between arbitrary MEs

remains, the IXP-28xx architecture favours either a pipeline or parallel-pipeline architec-

ture, with low latency communication possible between an ME and its ‘next neighbour’.

19



Technical Background

Figure 2.4: The Intel IXP 2805 (From [34])

Figure 2.5: Cavium Octeon Cn58XX (From [36])

For network applications requiring packet security, the IXP-28xx family of devices can

include on-board cryptographic blocks, allowing computational intensive encryption and

authentication to be offloaded to dedicated hardware.

2.3.2 Cavium OCTEON Cn58XX

Like the IXP-28xx platform, the Cavium OCTEON Cn58xx [36] NP represents a full

System on Chip (SoC) architecture. Supporting up to 10Gbps in full duplex mode, the

Cn58xx architecture includes a number of hardware accelerators aimed at mitigating some

of the performance loss associated with computational intensive tasks within a network

20



Technical Background

router. The NP can be interfaced to either a Reduced Gigabit Media Independent Interface

(RGMII) or SPI-4.2 physical device, with packets and control information stored in either

low latency second generation Reduced Latency DRAM (RLDRAM2) or higher latency

Double Data Rate DRAM (DDR2-DRAM). Data plane processing is provided by between

4 and 16 cnMIPS microprocessors.

Derived from the MIPS64 [22] RISC architecture, the Cavium architecture is unique

in that the data plane processing elements include a multi-level cache hierarchy. Along

with the cache structure, each cnMIPS core includes hardware accelerators for functions

such as encryption and authentication. Shared hardware accelerators include a TCP Unit

to offload TCP maintenance functions and a data compression/decompression unit con-

forming to RFC1950/51 [37]. Finally, the 32 Regular Expression engines allow parallel

deep packet inspection.

2.3.3 State of the Art NP Architectures

Summarising the two architectures outlined in previous section, it can be seen that the

major trade-off within NP design is how to maximise performance while maintaining

flexibility. Providing a purely PE-based dataplane would maximise flexibility but certain

tasks such as encryption are difficult to implement in software at the required performance

levels. On the other hand, an architecture in which the PE only provides basic functional-

ity in software with a large amount of hardware accelerated blocks would limit the ability

to update the services and algorithms implemented on the router. Both the Intel and Cav-

ium architectures utilise a RISC-based PE structure with hardware blocks augmenting the

programmable data plane. Examining other commercial architectures, the EZchip NP-1

[38] and Xelerated X11q [39] can be argued to represent two architectures in which design

flexibility is reduced in order to maximise performance. Both utilise a strictly pipelined

layout (in the case of EZchip the architecture is parallel-pipeline), with the PEs heav-

ily optimised for NP applications. Each stage of the Xelerated architecture can execute

only 4 instructions. Despite the large variation across commercial architectures, a num-

ber of architectural techniques have evolved to become common features within network
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processor design.

2.3.3.1 Multicore Processing

At both a packet and flow level, parallelism provides a method of scaling performance

to meet higher bandwidth demands. Although the number of PEs in most NPs has been

around the order of 4-16 ([34],[36],[40]), a number of architectures stand out as employ-

ing a substantially higher degree of parallelism. Firstly, the Netronome NFP-3200 [41]

and Cisco QuantumFlow [42] utilise 40 processing engines. The superscalar design em-

ployed by EZchip in the NP-2 and NP-3 [43] NP also exploits large scale parallelism (the

number of PEs is not available in the public domain). The Xelerated X11 NP provides

neither flow nor packet level parallelism and instead uses 800 Packet Instruction Set Com-

puters (PISC) engines arranged in a linear pipeline [39]. Furthermore, the Silicon Packet

Processor (SPP) developed by Cisco includes 188 separate RISC engines per chip [44].

2.3.3.2 NP Interconnection

Despite NPs employing a multiprocessor architecture, there has been little research into

bus topologies for NP systems. Weng and Wolf proposed a mechanism for distributing

tasks across a parallel system but the underlying bus parameters were not examined [45],

while Karim et. al. is, to the author’s knowledge, the only published work to examine

bus topologies in NP systems [46]. For general purpose systems, communication systems

between processors, memory and external devices has undergone more extensive research,

with proposed and available bus systems optimised for low-cost [47], high performance

when streaming data [48] or universality [49].

2.3.3.3 Integrated Networking Interface

To reduce the latency associated with packet ingress and egress operations, networking in-

terfaces are integrated on-chip instead of being bridged to the network processor. Typical

implementations include a means of connecting the network processor to a physical layer

device such as a Gigabit Optical, Gigabit Media Independent Interface (GMII) or Packet
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Over SONET (POS) SPI-4.2 interface [50]. Along with this physical device interface,

some cases will include the Common Switch Interface (CSIX) to provide interconnection

of the NP and a router switching fabric.

2.3.3.4 Multithread Processing

Providing a cheap method of minimising the cost associated with long latency operations,

multi-threading lends itself to network processing in a number of ways. Firstly, the par-

allelism outlined in Section 2.3.3.1 can be extended to include multi-threads. Secondly,

applications suited to pipeline partitioning can be implemented as either a pipeline across

multiple PEs or as a conceptual pipeline located on a single PE. Finally, multiple threads

or contexts are reasonably cheap to implement. Requiring little interaction between the

programmer and application, a context swap can be achieved by a single register swap,

with only a small amount of control hardware needed to schedule each thread.

2.3.3.5 Control Plane (Host) Processing

In addition to the data-plane processing, routers also require a means of providing con-

trol plane functionality. At a fundamental level, these control plane tasks include func-

tions such as routing table updates, classification ruleset updates and adjustments to the

scheduling functions, as well as processing non-standard packets (e.g. control information

from other routers). More complex functions require implementing an operating system

on the host Central Processing Unit (CPU) as a means of providing system control across

the line card. While the Intel, Netronome and HIFN architectures implement an on-chip

control plane processor, the remaining NPs typically provide either a specific port or a

generic PCI interface between the NP(s) and a host CPU.

2.3.3.6 Integrated Memory Controller

For general purpose processing that is not sensitive to access latency, the memory subsys-

tem is optimised for bandwidth rather than latency. Due to the low latency requirements

of packet processing, NPs must perform fast memory operations in order to match the
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minimum packet inter-arrival time [51]. Therefore, most NPs have integrated memory

controllers in order to achieve lower latency. Furthermore, the low spatial locality of net-

work applications also suggests that the optimisation of bandwidth for memory subsystem

is not as effective in NP as in GPP architectures [52].

2.3.3.7 Hardware Accelerator

Offloading special applications that are relatively stable and suitable for hardware im-

plementation has been adopted as an important method to achieve high performance.

Hardware accelerators usually function as coprocessors and have the potential of being

executed concurrently with other parts of the program. They can be implemented either

private to or shared by the processing cores, or implemented as external devices interact-

ing with the NP. Hardware acceleration is covered in more detail in section 2.5.2.

2.4 Network Processor Based Applications

Following on from an overview of NP architectures, an overview of typical NP applica-

tions is presented in order to provide a context for NP development. As was mentioned

in Chapter 1, the field of NP-based applications is notable for its growth from simple

packet switching to the complex packet processing functions implemented today. In gen-

eral, the trend has been for applications to be pushed down the network stack, with the

router providing functions between layer 3 (packet forwarding) and layer 7 (web switch-

ing, Deep Packet Inspection (DPI)). Although it is more common to provide services such

as firewalling, classification and inspection at an access level, research within this topic

has largely been targeted at providing such functionality at routers located within both

the edge and core networks. For example, [53] and [54] are two works which have exam-

ined implementing five-tuple packet classification and deep packet inspection at ultra-high

speed OC-192 and OC-768 line rates respectively. In this section we present a detailed

analysis of how the application growth outlined in Section 1.2.3 affects NP research. In

general, NP applications can be divided into two basic classes. The first class comprises
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those applications which use only the packet header during processing (Header Process-

ing Applications). These applications include packet forwarding, packet classification and

packet metering. The second class of NP applications is comprised of those applications

which utilise both the header(s) of a packet and the packet payload (Payload Processing

Applications).

2.4.1 Packet Forwarding

Packet forwarding remains the fundamental task of any router, but the complexity asso-

ciated with packet forwarding has been increased by two trends. Firstly, global network

growth will quickly exhaust the 32-bit address space provided by the IPv4 protocol, with

IPv6 expanding IP address space to 128-bits. At a router level, the challenge will be how

longer addresses can be traversed and stored. Current longest prefix matching algorithms

have been optimised to process 32-bit network host addresses and 24-bit prefix masks,

utilising 32-bit memory to store each node of the routing table.

In parallel with the development of IPv6, the number of addressable networks de-

ployed has grown at a quadratic rate, with the number of Border Gateway Protocol (BGP)

entries in the Internet routing table expanding from 50,000 entries in 1998 [55] to almost

300,000 entries in the current table [56].

2.4.2 Quality of Service

Fundamental to providing high priority services such as VOIP is the ability to differen-

tiate various packet flows within IP traffic. A flow is defined as a sequence of packets

transferred between two computers. At a coarse level, a flow may be identified using

the source and destination addresses of these two nodes. With applications such as Net-

work Address Translation (NAT) [57] mapping multiple terminals to the same outgoing

IP address, it can be seen that such two tuple flow classification would be ineffective

at correctly identifying an application flow. A more finely grained solution exploits the

dominance of the TCP and UDP protocols to identify flows using both the IP addresses

and port addresses. Algorithms such as [58] [59] [60] [61] [62] allow five-tuple classifi-
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Figure 2.6: Classifying Router

cation to be implemented at router level. Five-tuple classification allows network service

providers to implement services such as QoS, session based firewalls or metering at wire

speed. Figure 2.6 describes a typical NP-based QoS system in which packets are classified

before being directed to either a fast or slow processing path. While latency dependent

Real Time Protocol (RTP) applications can be directed to the fast path, applications with

little or no need for low latency, such as Peer-To-Peer, can be directed to the slower path.

With future growth in mind, the question is whether such five-tuple solutions are scalable.

A more significant challenge to both QoS and packet classification is the blurred na-

ture of how new applications are implemented on an IP switched network. The popular

YouTube video hosting website demonstrates this point. In the case of YouTube, videos

are ‘streamed’ to the user using HTTP as opposed to a streaming specific protocol such

as Real Time Streaming Protocol (RTSP) [14]. As such, a classification rule must be able

to differentiate between traditional HTTP traffic on port 80 and this streamed data. The

second difficulty with 5-tuple classification can be seen in an application such as Skype

[63] . Although a closed source protocol, the Skype protocol uses an RTP-based applica-

tion in which audio and video information are encapsulated using either TCP or UDP. At

runtime it is possible to configure Skype to utilise any port when communicating, making

even 5-tuple classification difficult. Given the availability of an option of securing pack-

ets between users, it was shown in [64] that identifying skype applications is a non-trivial

task, requiring deeper packet inspection.
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2.4.3 Security

In general, network security can be divided into two categories. The first aspect of net-

work security involves mechanisms for securing data transported over an open network.

As well as securing communication channels, network security also requires the detection

and prevention of attacks or infiltration by persons located outside the specific network.

2.4.3.1 Packet Security

The movement of functions such as communication and commerce to the Internet has

facilitated the need for secure channels between various networks. The channel can be

either between networks in which a VPN might be available or from one user to a secure

server in which personal data must be protected during transmission. Using the Inter-

net Protocol Security (IPsec) security suite [65] along with transport layer protocols such

as Secure Socket Layer (SSL) and Transport Layer Security (TSL) [66] it is possible to

provide secure data transmission, authentication and key exchange across an unsecured

network. For networks such as those employed by multi-national corporations the security

trade-off can be demonstrated when examining communication between two geograph-

ically separate networks. Security can be either be provided by each node within both

networks, (i.e. all nodes have access to the encryption keys) or both networks can be

configured with routers automatically securing data transmissions between both networks

in a fashion transparent to end users. With a high volume of traffic being sent between

these networks, the VPN performance provided by the routers must be significant. The

IPsec protocol commonly used to provide packet security is algorithm-agnostic; listing

many possible algorithms and allowing the user to select which security algorithms are

used. Common algorithms used for encryption and authentication include the Advanced

Encryption Standard (AES) [67] symmetric encryption algorithm and the Secure Hash

Algorithm (SHA) [68] hashing function.
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2.4.3.2 Network Security

Network security encompasses techniques aimed at protecting a network or computer

from infiltration. The most common example of this is the network firewall. While a

personal computer can be protected via a software firewall implemented on the com-

puter, protecting an entire network necessitates the implementation of a high performance

firewall on the edge router. Older firewalls attempted to filter unwanted traffic by apply-

ing broadly based rules on the incoming packets. More intelligent firewalls attempted

to retain state-based flow information when examining network data by using a 5-tuple

classification algorithm, such as those outlined in Section 2.4.2, to identify packet flows

before applying the matching rule. More modern firewalls have implemented deep packet

inspection techniques as a more finely grained means of matching packets and rulesets.

While a standard 5-tuple packet classification scheme can be used to identify mali-

cious flows, it does have some serious limitations when used to construct a layer 4 fire-

wall. For example, a firewall may implement a website blacklist which blocks outgoing

TCP connections to a known IP address, but techniques such as DNS misdirection, or

IP spoofing, can make a 5-tuple based ruleset cumbersome to implement, easy to bypass

and difficult to maintain. A more intelligent technique is to implement a payload based

detection system. Commonly referred to as DPI (or Network Intrusion Detection System

(NIDS)), the goal of such a system is to allow packets to be classified using both session

information and payload data. An example might include a rule which attempts to filter

incoming traffic containing a new virus. As in five-tuple schemes, packets arriving at the

network interface are examined against a predefined ruleset, with the payload examined

for a byte-string similar to the virus definition. Another use may be to detect unauthorised

access to the network, for example examining the commands issued during a telnet ses-

sion. This is a popular topic within current NP research and many methods and solutions

have been proposed, [69], [54], [70], [71], with certain algorithms tailored to hardware

implementations while others utilise a structure more suitable to software.
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2.4.4 Payload Based Applications

A number of other payload-based applications have been developed which might be im-

plemented at a packet level. Firstly, web or content switching provides a means of load-

balancing a web site which is hosted over a number of physical servers. With busy web-

sites processing millions of requests every second, the workload associated with these

connections is distributed over n hosts. The task of a content or web switch is to extract

important information from incoming data (HTTP Requests) as a means of balancing the

demands placed on each server. For popular websites, load-balancing can be seen as a

non-critical design aspect which aims to improve server utilisation while limiting access

latency, whereas a payment processing site would be highly sensitive to delayed transac-

tions during busy periods.

In addition to content aware switching is the possibility of implementing media transcod-

ing at a network level, although only a little research has been undertaken in this area [72].

For example, with an increasing amount of video information stored on social media sites,

a typical transcoding scheme might entail storing the videos in a high definition format

in the database. Once requested for streaming, the video is transcoded by the outgoing

network router, with the selection of the encoding bitrate dictated by network conditions.

2.5 Scalability of Network Processors

Given the growth in both NP application complexity and network demands, a fundamental

question is whether the NP-based solution can be scaled with future needs in mind. In

this section an outline of the current state of the art within NP research with respect to

scaling NP architectures is given. Some of this research can be argued to be at a macro

level, providing additional resources (e.g. more PEs, hardware acceleration) while other

methods typically focus on improving the performance on one module of the NP structure.
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2.5.1 PE Parallelism

Examining any commercial architecture, the most obvious performance increment which

could be investigated is to increase the number of PEs employed in the NP architecture.

With packet data well suited to parallelism, increasing the number of PEs has been well

exploited in both commercial and academic research. Within the commercial domain this

Packet Level Parallelism (PLP) can be seen in all NP architectures except Xelerated X10

and X11 NPs which implement a massively pipelined design. While the challenges re-

garding load-balancing and packet re-ordering are solved via on-board hardware acceler-

ators in the Cavium NP, the IXP based architectures (Intel, Netronome) leave scheduling

issues to be resolved in software via a number of ingress PEs.

In general, the amount of PLP available to a network processor designer is bounded

by two factors. At a hardware level, the provision of additional PEs requires changes

to the bus and memory structures. Additionally, the need to retain correct packet order

requires a router to retain a reordering mechanism. Research within the topic of PLP has

tended to give mixed results. In [73] it was found that multi-processor systems provide

additional performance, although the simulation was limited to 8 separate PEs. In [74],

Gries et al. demonstrated that a parallel architecture is both easier to programme and to

scale, with IP forwarding applications suited to parallel architectures. While [75] found

that PE utilisation falls off significantly as the number of PEs is increased, Thread Level

Parallelism (TLP) can provide more scope for performance improvements. Research by

Shi et al. [76] found that organising the PEs in a clustered format provides a mechanism

for increasing parallelism but requires additional logic to handle both the load-balancing

and packet reordering. The challenges involved in packet re-ordering at ultra high bitrates

has been extensively studied, with numerous papers highlighting the challenge as well as

proposing both hardware and software solutions (see [77], [78], [79] and [80]).

2.5.2 Hardware Acceleration

With dedicated logic able to maintain higher throughput when compared to a programmable

solution, another method of scaling performance is by offloading complex and computa-
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Table 2.2: Hardware Implementations of the AES Algorithm
Architecture Npipeline Aslices fmax(MHz) Tput(Gbps)

SBOX 1 1168 125.251 16.032

SBOX 2 1233 156.568 20.04

SBOX 3 1297 183.083 23.434

CFA 1 1306 100.766 12.899

CFA 2 1290 107.4 13.747

CFA 3 1148 136.036 17.412

CFA 4 1086 147.449 18.873

CFA 5 1121 159.363 20.398

tional intensive tasks to dedicated hardware. Traditionally, the offloading of network tasks

to hardware was limited to tasks requiring extensive processing in software, e.g. encryp-

tion and authentication. The hardware block can either be coupled to each PE to create

low contention co-processors or can be shared across all PEs. While co-processor based

architectures provide better performance, the additional silicon cost of per-PE solutions is

significant. For example, Table 2.2 summarises the performance of Field Programmable

Gate Array (FPGA)-based implementations of the AES algorithm [81].

When implemented in FPGA logic, it is possible to map the underlying non-linear

lookup functions to either local memory within each slice or to the global memory dis-

tributed throughout the FPGA. Each architecture is labelled to reflect the underlying ar-

chitecture and round latency per block. The SBOX architecture maps 256x8-bit tables to

local FPGA SRAM, while a description of the Composite Field Arithmetic (CFA) AES

architecture can be found in [82]. As can be seen from the results, only a small amount of

pipelining is required to obtain a throughput in excess of 20 Gbps. In general, the SBOX

architecture is well suited to modern FPGA since the on-board memory can be used to

store the substitution tables used during encryption. Requiring an average cost of ∼1200

Xilinx CLB slices to implement, the cost of employing dedicated on-chip hardware can

be expensive, especially when considered against the∼2500 CLB slice Leon2 5-stage mi-

croprocessor [83]. On an ASIC platform, the work in [84] outlined an architecture which

trades throughput for size, requiring approximately 58.5K transistors to implement, it can
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Table 2.3: Survey of Commercial Hardware Acceleration Solutions
Architecture Encrypt & Meter & Forward & Misc

Authenticate Queue Classify

IXP-2805
3DES,AES CRC1

SHA-1 HASH

Cavium CN58XX
3DES,AES Sched Regex
SHA/MD51 Sync TCP/Comp

AMCC np3710
WRED, WRR Policy Engine Hash

Shaping,Priority Stats

HIFN 5NP4G
TrTCM Classify VLAN

Trie CRC1

EZchip NP-2
LBM,WFQ Search

Priority,WRED

Bay Montego
LBM TCAM SAR

WRED

Xelerated X11d
Priority TCAM, Search

Look-Aside

Wintegra WinPath2
3DES,AES WRR CRC
SHA,MD5 Priority NIDS

LSI APP650
Cell,WRR Policy Engine SAR

WFQ, Priority Stats

provide peak performance of 2 Gbps. On the other hand, a full system on chip version of

the Leon2 core requires only 35K transistors to implement.

Table 2.3 presents a survey of the current state of the art in hardware acceleration

employed by commercial NP manufacturers. As can be seen in the table, metering, con-

gestion and queueing algorithms represent the most common functions to be implemented

in hardware. With the exception of Intel, all other manufacturers implement some config-

uration which may involve queue maintenance, metering or congestion avoidance.

Most architectures implement a hardware block which can be configured to process

either variable length traffic or cell basic protocols such as Asynchronous Transfer Mode

(ATM). Following on from this, datagrams can be queued using a load balancing algo-

rithm such as Weighted Round Robin (WRR) or by defining certain queues for higher pri-

ority traffic. While packet forwarding and classification schemes seem popular, it should

be noted that a number of accelerators amount to little more than a specific memory inter-
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face which can be connected to a high speed search device such as a Ternary Content Ad-

dressable Memory (TCAM). Uniquely among commercial solutions, Cavium implement

the encryption blocks as primitive functions on a per processor basis. With no access con-

tention, per processor designs allow high performance provided the packet data is stored

close to the PEs also. Only two architectures (Wintegra, Cavium) currently include a deep

packet matching scheme. Finally, marking and congestion avoidance algorithms such as

Three Color Marker (TCM) or Random Early Detection (RED) can be utilised to ensure

minimum performance under heavy network loads.

2.5.3 Technological Evolution

Alongside performance increases in parallelism, additional processing performance can

be achieved by harnessing the performance increases seen in each new Complementary

Metal Oxide Silicon (CMOS) generation. According to Intel, CMOS technology incre-

ments between one silicon generation and the next allow transistor performance to be

increased by approximately 1.5 [85]. With future demands in mind, two significant chal-

lenges are apparent. Firstly, the ability to scale CMOS technology is becoming increas-

ingly difficult with future CMOS generations requiring extensive structural and techno-

logical changes [86]. Along with these manufacturing challenges, the increase in clock

frequency associated with technology changes increase both static and dynamic power

consumption. With power consumption becoming ever more important in digital elec-

tronics, performance gains must be examined with respect to the additional energy-based

running costs associated with the device.

2.5.4 PE Specific Techniques

In addition to these macro level techniques there are a number of PE specific techniques

which could be either employed or optimised in order to improve NP performance. Clearly

one method of improving PE would be to utilise the technological evolution briefly out-

lined in the previous section, however there are a number of additional micro-architectural

techniques which can be employed at a PE design level.
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2.5.4.1 Instruction Level Parallelism (ILP)

Although computer programs execute in sequential order there remains some indepen-

dence between differing programs (or areas of the same program). Instruction Level Par-

allelism (ILP) attempts to exploit this independence by implementing a superscalar type

design within the CPU (a more in-depth background into superscalar CPU design can be

found in [87] and [88]). Superscalar designs typically implement a mechanism for dis-

patching multiple instructions at once provided there is no data dependency between the

instructions. There are, however, a number of limits to the degree of parallelism which

can be extracted. Firstly, clearly not all instructions will be independent, with data and

resource dependencies common to modern programs. Secondly, while out-of-order com-

pletion allows greater parallelism, issues regarding re-order buffers, register renaming,

virtual registers, etc. are introduced to the CPU design [89]. Finally, a coarse superscalar

design incurs a significant penalty during branch mispredictions. Within research target-

ing network processor performance, only a small amount of work has been undertaken in

the area of ILP for NP architectures. Memic et. al. found that network applications ex-

hibit a lower degree of ILP when compared to media based applications [90], while other

research found that ILP was better suited to control plane functions [91]. Within gen-

eral purpose processing, architectures such as the Intel Pentium 4 implement a dual speed

Arithmetic Logic Unit (ALU) design [92], in which instructions are dispatched to either

a fast ALU when only simple bitwise or arithmetic operations are required, or to a slower

ALU designed for operations such as multiplication or bit positioning and manipulation.

It remains unclear if such techniques are justified on NP platforms.

2.5.4.2 Thread Level Parallelism (TLP)

Within general purpose processing, thread level parallelism is typically implemented as

a microprocessor supporting multiple contexts or threads executing on the same proces-

sor. In [93] it was found that multi-threading allows greater microprocessor utilisation

provided enough bus and memory bandwidth is available. In a multi-processor environ-

ment this problem is compounded by the fact that an n-thread by m-processor system
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can easily saturate shared devices. Within network processing, thread level parallelism

can be implemented as either inter-packet level parallelism or intra-packet level paral-

lelism. Inter packet TLP operates by running the same application on all threads, while

intra-packet level parallelism involves exploiting operational independence within certain

network applications. An example of this independence can be seen in the address verifi-

cation routines required for IP forwarding, with separate threads created for verifying the

source and destination addresses.

Inter-packet TLP can be viewed as increasing the number of effective PEs by pro-

viding a framework for increasing PE utilisation. With m threads operating on n PEs

in parallel, the primary difficulty with inter-packet TLP is the higher device contention

triggered by each additional thread. On the other hand, the more finely grained intra-

packet TLP provides the programmer with a mechanism to balance contention issues and

utilisation at the cost of additional task partitioning. Within academic research, an ana-

lytical model developed in [94] found that the limit on TLP is bound by certain sections

of the underlying program, while [95] found that the limitation on TLP can only be lifted

through higher clock frequencies. In [96], a heuristic methodology for mapping network

applications to multi-processor and multi-threaded NPs was presented, with substantial

performance increases possible.

Within the commercial domain, various architectures demonstrate the difficulty in

using TLP as a means of hiding latency. While AMCC nPcore supports 24 threads, the

IXP family of network processors utilise 8 threads. On the other hand, the OCTEON

architecture employs a cache structure between the PEs and main memory, with no multi-

threading employed.

2.5.4.3 Caching

Another architectural aspect by which NP performance can be improved while retaining

programming flexibility is through a cache-like structure between the PE array and ex-

ternal system memory. Within general purpose processing caching has been increasingly

important as memory access speed has failed to keep up with CPU operating frequency.
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With operating systems already multi-threaded, more intelligent cache hierarchies pro-

vide one mechanism for reducing memory access latency. Only the Cavium architecture

employs a cache hierarchy on a per PE basis. Each cnMIPS engine employs a 32-KB

instruction cache, 16-KB data cache and a 2MB shared level 2 cache. Uniquely among

commercial NPs, Cavium does not couple the program memory close to the PEs, necessi-

tating a cache structure between the PE and memory in order to avoid long delays during

instruction fetch operations. Academic research within the topic of caching for NPs has

tended to give mixed results. While Lekkas [97], [98], Comer [91] and Zhen [99] either

find or state that the poor spatial and temporal locality of network traffic limits the perfor-

mance gain of a cache hierarchy, the work by Wolf and Franklin in [100] and Memik et.

al. [90] found that cache sizes up to 32-KB do provide adequate cache hit rates, although

only for certain network applications. On the other hand, the work in [51] (expanded in

[101]) found that cache can provide improvements in NP performance when coupled with

multi-threading.

Although it is difficult to ascertain the reason for wide variance across research, a

number of variables are possible. Firstly, locality within a network data stream will be

determined by the nature of the IP traffic traversing the router. The presence of either

large or small amounts of active flows, as well as the duration of the flows, will affect

data locality within the cache. Following on from this, the use of various microprocessor

architectures across studies limits the ability to make comparisons, with differing archi-

tectures providing different memory functions (e.g. multi-word operations) and different

register file sizes.

2.5.5 Summary of NP Scalability

This section outlined the various methods that are available by which future NP demands

could be met without having to return to an ASIC solution. Provided compiler and soft-

ware development can be improved to reflect parallel work flows, it is expected that in-

creasing parallelism will continue to provide one method of scaling NP performance,

within the bounds of Amdahl’s law [102]. At a PE level it is possible that existing CPU
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techniques such as ILP or caching could be modified to better perform on NP platforms.

Although not mentioned above, another method by which PE performance could be in-

creased is by implementing a deeper processor pipeline in order to increase the operating

frequency of the PE. With a large proportion of this thesis dealing specifically with this

branch penalty the next section presents a detailed background into the topic of micro-

processor pipelines, as well as outlining some of the penalties associated with a pipeline

microprocessor design.

2.6 Micro-Architectural Considerations of PE Design

In general, NP platforms have employed a RISC-based architecture for each of the PEs.

Although there are many advantages and disadvantages of a simpler RISC platform over a

more complex Instruction Set Architecture (ISA) for an NP platform, the primary benefit

remains the lower silicon cost. The provision of complex instructions typically requires

additional logic in silicon, for a parallel system such as an NP these additional transistors

scale with the degree of parallelism employed. Although the RISC architectural philos-

ophy originally proposed only simple instructions to be supported in hardware, modern

application and performance demands have required functions such as hardware multipli-

cation or multi-threading to be incorporated.

Summarising both commercial and academic research it is possible to define a PE

as being a Harvard-based, cache-less, integer-only RISC micro-processor, with design

aspects such as multi-threading or memory management varying between designs. Sim-

ilar to the engineering trade-offs within general purpose processing, an NP designer can

choose to either implement a proprietary ISA which requires extensive software develop-

ment (compilers, assemblers, etc), or take advantage of a new trend within microprocessor

design in which the base ISA of an architecture is specified but each customer is allowed

to add new instructions to this base ISA. Within the commercial domain, the Cavium and

Cisco NPs implement PE architectures derived from MIPS and Tensilica cores respec-

tively, while the Intel IXP, Netronome and AMCC implement custom RISC architectures.

In performance terms, the design and implementation of new ISA allows the architecture
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to be optimised for NP applications, adding instructions which are expected to be heav-

ily utilised. For example, two instructions important to NP platforms are the population

count POP, which returns the number of bits set in a data word, and the Count Leading

Zero CLZ instruction, which is used to determine the bit position of the first ‘one’ in a

data word.

While a new ISA provides some performance increases, the re-use of an existing ISA

allows the existing code base and toolset to be exploited. Today, a version of the Linux

OS has been ported to the ARM, MIPS and Tensilica architectures, allowing networking

libraries and routines to be re-used, while also providing mature development tools such as

the GNU Compiler Collection (GCC) [103]. In addition to this ISA architectural choice,

a second design consideration is how each instruction within the ISA can be efficiently

partitioned in order to take advantage of the performance benefits which can be obtained

through pipelining.

2.6.1 Pipelining

Within a combinational digital system the maximum operating frequency of the circuit

is defined by the slowest path between any two edge triggered registers. Assuming both

registers are triggered on the same clock edge (either rising or falling), the maximum

operating frequency can be determined using equation 2.1

fmax =
1

tco + twire + tlogic + tsu
(2.1)

where tco is the propagation delay between a registered input value and the time that

this value is carried to the register output, twire is the wire delay of the critical path, tlogic

is the logic delay of the critical path (typically the number of NAND gates located in the

path) and tsu is the amount of time the final value must be stable at the output register in

order to be registered correctly. While tco and tsu are technology defined limits, the wire

delay (twire) is determined after design by the layout or synthesis tools. As such, the only

mechanism for increasing performance is through a reduction in the logic delay. This con-
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Figure 2.7: Pipelining of a Combinational Circuit

cept is illustrated in Figure 2.7 where both the wire and logic delays are reduced through

the addition of a pipeline register. Obviously the goal of any additional pipeline registers

within a digital design should be to maximise the obtainable frequency by evenly dividing

the critical path either side of the register. A further example illustrating the benefits of

pipelining can be seen in the performance of complex algorithms when implemented in

hardware, such as encryption. Requiring n cycles to process p data blocks, a non-pipelined

device operating at frequency fclk incurs a latency given by equation 2.2.

tnon−pipe =
n ∗ p

fclk

(2.2)

While implemented as a non-interlocked pipeline (n=1) of s stages, the processing delay

for the same p blocks is calculated using Equation 2.3.

tpipe =
s + (p− 1)

fclk

(2.3)

When implemented at a micro-architectural level, instruction pipelining attempts to

divide a single operation, the instruction, into a number of smaller overlapping opera-

tions. Figure 2.8 demonstrates the common DLX 5-stage pipeline [52] 2. In this case the

instruction is divided into five separate operations, which can be implemented as an over-

lapping pipeline. To ensure maximum throughput, the goal of pipelining is to divide the

combinational operations so the delay of each stage is minimised. While the original ar-

2The remainder of this thesis uses this traditional 5-stage pipeline as a reference design.
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Figure 2.8: 5-Stage Integer Pipeline

chitecture outlined in [52] solved this problem by removing any instructions which could

not be efficiently divided into five stages, more modern architectures have accepted the

need to provide complex multi-cycle functions such as multiplication, shifting or address

generation. Pipelining is one architectural method of improving PE performance, pro-

vided a mechanism for controlling power consumption at higher frequencies is included

and the performance limitations associated with hazards are solved. The next section

presents an overview of these pipeline hazards.

2.6.2 Pipelined Architecture

For a load/store architecture such as a RISC-based PE, pipelining involves partitioning

the ISA into sub-functions which are common to all supported instructions. For exam-

ple, all ALU instructions require either one or two input operands to be fetched from the

register file before the actual ALU operation occurs. Once finished, the ALU result (if

any) must be written back3 to the register file for future use. Memory instructions fol-

low a similar flow with the exception that memory write (store/STR) functions do not

require a writeback operation since a memory store instruction is typically dispatched

without any feedback. On the other hand, memory read instructions (load/LDR) fetch

data from either external memory or cache (if any), with the ‘fetched’ data entering the

microprocessor pipeline via the same port used to issue memory write instructions. RISC

3A memory operation which writes a value to memory is referred to as a store operation, while the
writeback function refers to the process by which a value is written from the pipeline back to the register
file.
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microprocessor designs have tended to converge towards a number of common instruc-

tions, with more complex instructions such as multiply, count leading zero or population

count added should the target application require such operations. While the ISA archi-

tecture employed within various designs shares a number of common traits, it remains

possible to divide up the instruction pipeline in a number of ways. For example, the Texas

Instruments MSP family of micro controllers utilise a single stage design [104], while the

ARM7, ARM9 and ARM11 designs utilise a three, five and six stage pipeline respectively.

Within the DLX pipeline (Figure 2.8), instructions are first fetched from program

memory before moving to the instruction decoder. Typically implemented as a logic array,

the decoder translates an encoded instruction into the bit values needed to set the control

lines within the CPU. Following the decode stage, the operands (if any) are fetched from

the register base, the ALU output multiplexer is configured to select the correct result

and the desired operation is processed. Following this execution stage, the memory stage

involves accessing external memory, cache or memory mapped IO devices. Finally, the

execution result or memory read is stored in the register file. In all, four edge-triggered

pipeline registers are inserted to the design. As was noted previously, each pipeline stage

can ideally operate independent of other stages, but a number of problems arise within

strictly pipelined architectures. Firstly, not all instructions can be implemented within a

single cycle. For example, operations such as binary multiplication require more complex

combinational logic when compared to simple binary addition. Secondly, in order to

maintain optimum performance the pipeline must be full at all times despite a number of

hazard conditions which can occur within a pipelined design.

2.6.3 Pipeline Hazards

Given a PE executing application n on packet p, the time taken to process the packet is

given by:

Tn(p) =
NINSN ∗ CPI

fclk

(2.4)
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Figure 2.9: Structural Hazard Within Pipeline Processor

where NINSN is the number of instructions in application n, fclk is the clock speed of the

PE and Cycles Per Instruction (CPI) is the average number of clock cycles required to

resolve an instruction. To optimise performance the average number of clock cycles per

instruction must be minimised, with a CPI=1 representing the ideal solution. The pro-

cessor frequency can be driven higher by two factors, namely technology improvements

and pipeline depth, but the average number of cycles per instruction can actually be in-

creased by increasing the number of pipeline stages. As was noted previously, it is not

always possible to fit every instruction along a given pipeline; for example the multiply

and population count instructions both require long combinatorial circuits, significantly

longer than the critical path associated with functions such as addition or bitwise shift.

To accommodate these instructions, a mechanism for stalling the pipeline while the long

operation completes is required. For operations such as multiply, the number of stall cy-

cles is typically determined by the length of the multiplication with a 32x32-bit multiply

requiring a higher number of stall cycles than a 16-bit operation. Each multiplication

requires at least one stall cycle which will have the effect of increasing the average CPI,

reducing performance. In addition to these ISA limitations, three possible conflicts also

arise which can decrease performance by increasing the CPI.

2.6.3.1 Structural Hazard

The first type of hazard which is possible within a pipelined design is due to hardware

limitations, typically imposed for reasons of cost. Assume the fetch and memory stages

of the DLX pipeline share the same resource, as when a single port memory architecture
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(Von-Neuman) is employed. A possible hazard occurs every time a memory operation is

resolved in stage four of the pipeline. Using the assembly code snippet outlined in Figure

2.9 it is clear that during the current cycle, the processor will attempt to store the contents

of register 4 (R4) in the address pointed to by register 3 (R3), while at the same time the

fetch stage will need to load the ADD instruction into the pipeline to ensure maximum

performance. The most obvious solution to this hazard is to separate the instruction and

data memories, with two buses employed. Fortunately, for NP it is possible to implement

separate instruction and data buses for all PEs without incurring much cost. In Chapter 4 a

code analysis of NP applications is presented in which it is argued that the small program

size seen in NP applications allows for a dual-port Harvard architecture to be employed,

with the instruction memory coupled directly to each PE, removing the need for prefetch

logic, branch target buffers or instruction caches.

2.6.3.2 Data Hazards

From the 5-stage pipeline outlined previously it can easily be seen that conflicts can arise

between two instructions located in adjacent pipeline slots which utilise the same data

operands. More specifically, a data conflict (hazard) can occur during a Read-After-Write

(RAW) sequential lock. Consider the code segment outlined in Figure 2.10.

Figure 2.10: Data Hazard Within Pipeline Processor

In this case, instruction i+1 will XOR register R4 and register R2, but since register 4

is due to be modified by instruction i the value sourced from the register file will be ob-

solete. Within hardware it is relatively easy to solve this RAW-type data conflict, with a
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mechanism employed which allows data located in stages further ahead than the execution

stage to be forwarded to the execution unit should the register indexes match. Although

not applicable to scalar architectures, it should be noted that two other data hazard condi-

tions are possible, with Write-After-Read (WAR) and Write-After-Write (WAW) conflicts

possible due to data mismatches within a superscalar design.

2.6.4 Control Hazards

The last type of hazard which can occur in a pipelined processor is due to a change in pro-

gram control flow. During normal program flow, the PC maintains the address of the next

instruction to be fetched from memory. At the end of the cycle, the PC is incremented

by some value, typically the byte wise width of the instruction word. As this instruction

is latched into the decoder stage, the fetch stage will attempt to read another instruction

word from program memory, assuming the program flow remains linear. A control hazard

occurs when an instruction attempts to modify the program flow by jumping to another

location via an alteration to the PC. Since the flow change cannot be evaluated until the

decode stage at the earliest, it is not possible to know whether the next instruction to be

fetched is located either at the next sequential address or the new target address, a value

which is not available to the fetch stage until the next clock cycle. When programming a

CPU in a high level language such as C, the most common flow control changes within

a program are caused by the need to support functions such as if-else, switch or loop

functions. In general, each of these operations can be translated into either a conditional

branch (e.g. (for(i=1;i≤10;i++)) which may or may not modify the PC, or an uncondi-

tional branch (e.g. (while(1)) which will always modify the program counter.

In the case of conditional branches, the condition on which a branch is taken is deter-

mined by the status of the ALU status flags. Although different architectures will support

a different number of status flags, the most common ALU status flags are the Zero flag

(Z), Carry flag (C), Overflow flag (V) and Negative flag (N). Between these four flags it

is possible to derive a large number of conditional operations, for example the common
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Figure 2.11: Branch Penalty Within Pipeline Processor

Branch if Equal (BEQ) instruction can be implemented by checking if the Z flag is set

after a compare operation. While the four conditional flags outlined above are common

within General Purpose Processor (GPP) architectures, it is possible to implement more

specific branch instructions in order to aid conditional code generation. For example, the

Intel IXP NP allows conditional operations to be evaluated on fields such as specific bits,

specific bytes, the PE context or if an external signal has been asserted.

An example is presented in Figure 2.11 which illustrates a control hazard. In this case,

the result of a branch decision is not known until the end of the execution stage. The CPU

begins execution at address 0, sequentially fetching instructions from memory. On cycle

i the fetch logic reads the branch if equal to instruction from address 8. On cycle i+1 the

fetch logic will attempt to read address 12 while the branch instruction will move one step

ahead to the decode stage. Whether the conditional branch is taken will be determined
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by the result of the previous compare instruction (CMP [R4,R2]). If the contents of the

registers are equal the program flow should jump to address 32, else it should continue

from the next address. It can be seen that, regardless of the conditional result, the branch

instruction terminates at the decoder stage, with an empty slot propagating through the

rest of the pipeline. For conditional branches which evaluate true (taken branches), the

two misfetched instructions must be flushed from the pipeline since they are no longer

required. This results in three empty slots propagating through the instruction pipeline,

during which time no work is done. Since the empty slot due to the terminating branch

instruction is common to taken, not-taken and always taken branches, the penalty associ-

ated with a branch operation (Bpen) is commonly referenced as the two slots which must

be flushed from the pipeline. For unconditional operations, the branch can be evaluated

in the decode stage requiring only one instruction to be flushed from the pipeline. When

examining microprocessor performance, two factors become important when considering

conditional hazards due to conditional branches. Firstly, additional pipeline stages located

before the ALU flags will increase the branch penalty. Secondly, as the target application

increases in size, the number of cycles lost due to branch instructions will also tend to

increase.

Assuming branches are not taken, the branch penalty in terms of cycles for a branch

instruction decoded as taken in stage M is for the M-1 previous stages to be discarded.

The slot occupied by the branch instruction is not considered since it is not possible to

avoid this cost. The total penalty (τpen) can be calculated as:

τpen = (ρtk ∗Nbr ∗ Ptk) (2.5)

where ρtk is the average of ratio of taken branches, Nbr is the total number of branch

instructions in the program and Ptk is the penalty incurred during a taken branch.

Comparing control hazards to either structural or data conflicts, the primary difficulty

is that, to date, it has not been possible to solve the control hazard problem fully. Instead,

various techniques have been proposed which attempt to minimise this penalty by pre-

dicting if a branch is likely to be taken or not-taken. At its most basic level, these branch
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prediction techniques attempt to utilise factors such as application layout, common pro-

gramming paradigms or using run-time history as a means of guiding future branch pre-

dictions.

2.7 Techniques for Branch Prediction

This section presents an overview of various techniques used to mitigate the performance

penalty associated with branch instructions in a pipelined architecture. Two methods

have emerged for minimising the cost associated with branch operations. While the first

method is broadly software based and is typically implemented via analysis at compila-

tion, the second method utilises run-time history of the program as a means of guiding

future decisions. It should be noted that not all static techniques must be implemented

at compile time only, and various schemes have been proposed which are traditionally

labelled static in nature but do utilise some hardware mechanisms.

2.7.1 Static Branch Prediction

With a few slight exceptions, static branch prediction can be broadly defined as at-compilation

based techniques which may utilise; profile statistics, path information or general heuris-

tics to determine likely branch outcomes. An exception to this fully software based defi-

nition can be seen in the forward not-taken/ backward taken scheme. Program analysis in

[105] by Smith found that, for loop intensive operations, those branch operations jumping

backward in code will typically be taken, while those branch operations which are for-

ward pointing are less likely to be evaluated as true. While the compiler can reorganise

the application code to reflect this information, the micro-architecture must be designed

to reflect this, with any prediction logic comparing the current program counter to the

branch target address. A coarsely grained prediction mechanism, the forward taken/back-

ward not taken scheme clearly mispredicts a large number of conditions. For example,

the last iteration of every loop is predicted incorrectly while a conditional jump to a sub-

routine requires extensive code reordering. An extension of such hybrid-static techniques
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might be to encode additional information in the instruction word at compile time. The

hardware is then redesigned so that a branch prediction decision takes into account not

only the direction of the branch but also whether the branch was hinted as likely to be

taken or not at compile time [106].

Referring back to the DLX pipeline it can be seen that the next instruction to be fetched

after a branch instruction is purely speculative since it is unknown whether the branch will

be evaluated true or false and whether the pipeline must therefore be flushed or not. A

simple solution to this wasted slot might be to move an instruction which is unrelated to

either branch decision but would be required later to this slot. An example of such a case

might be where a variable is set after a conditional call to a subroutine. Although effi-

cient in that no additional hardware is required and no pipeline stages are wasted, there

are a number of difficulties associated with filling every post branch delay slot with an

independent instruction. Firstly, there must always be an independent instruction which

can be positioned in the delay slot. Since most applications are sequential in nature this is

not always possible. Secondly, as the number of pipeline stages increases, the number of

delay slots also increases, meaning multiple independent instructions must be relocated.

Finally, the compiler must take into account these relocations when allocating register

space to variables. In the event of no instruction being available, the compiler will be

forced to insert a No-Operation (NOP) into the delay slot. In [107] it was found that

branch instructions comprised 10.96% of all instructions executed for the SPEC bench-

mark, while the injected NOP operations comprised 8% of the total instruction workload.

While both of the solutions outlined above are simple to implement, more complex

static analysis methodologies are possible. In general, static techniques typically fall into

one of two categories, profile-based static prediction, which attempts to extract predic-

tion information from sample runs of the target program, and program-based prediction,

which maps heuristic rules to the target program. Fisher and Freudenberger found that by

subjecting a target program to a number of previous runs, it is possible to deduce the likely

direction of branches regardless of the dataset [108]. Such profile (or path) based tech-
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niques can be expanded to include path information based on logical correlation [109].

The difficulty with such techniques is the time required to generate the input traces, pro-

file the target application and finally recompile the modified target program to include the

new branch information. The work in [110] highlighted some of the performance issues

related to the original static correlation method outlined by Young et al [109]. Reducing

the need for recompilation, other static methodologies have encoded the profile informa-

tion in a likely bit within the branch instruction. This likely bit is then used at run-time by

hardware to guide any branch prediction. At a more fundamental level, the problem with

profile based static prediction is how to generate the trace dataset used to profile the target

application. In [111] it was found that real profiles provide significantly better coverage

than either estimated or random traces. From an NP perspective, the limitation with re-

gards to the profile-based technique is how variations in network traffic would affect any

predictions. Consider a NP router running packet metering and IPv4 forwarding. Over a

short period of time the metering algorithm must handle short bursts of traffic [112]. Over

a longer period, say 24 hours, the profile of the metering algorithm would adjust to reflect

the periods of under-utilisation. At the same time, the execution trace for the forwarding

application would adjust to routing table changes. On the other hand, the fact that the

majority of packets must pass verification for the network to remain viable should make

profile-based techniques applicable to NP systems.

Another common method of providing static branch prediction is via program-based

correlation techniques. As was noted previously, work by Smith [105] and McFarling

[106] found that common programming idioms can be used to detect likely conditional

outcomes. In [113] and [114] a number of more structured heuristic rules were defined

which could be used for static branch correlation. The basic methodology employed

within a program-based technique is to detect whether a branch operation is likely to be

taken, based on the program structure. For example, routines required for error process-

ing are rarely called and it can therefore be assumed that any conditional call to an error

sub-routine would rarely be taken. Calder et al. proposed a more global framework for

program based prediction, in which heuristic rules are obtained from an analysis of the

49



Technical Background

Figure 2.12: Sample 2-Bit State Transitions for Branch Predictor

large programming body currently deployed [115]. When compared to path-based tech-

niques, the primary advantage of this method is the removal of any testing and simulation

steps when profile traces are extracted. Instead, the program heuristics can be incorpo-

rated at compile time [116].

Within general purpose processing static prediction techniques have not provided the

prediction rates required for modern microprocessors. Neither profile nor program frame-

works obtained prediction rates in excess of 90%, but both methods do provide a means

of optimising object code during compilation, e.g. static prediction provides a method of

removing redundant paths [117], and is commonly implemented at compiler time.

2.7.2 Dynamic Branch Prediction

With static based prediction techniques failing to take into account future changes in

the program flow and therefore branch behaviour, dynamic branch prediction attempts to

utilise the run-time execution history when evaluating whether a branch operation will

likely be taken or not. Typically a hardware based solution, the premise of dynamic

history is that, by assigning a finite number of states to each branch operation within the

application, it is possible to predict future directions of that branch based on the current

branch state value, a value which in turn was determined by previous evaluations of the

specific branch operation. The most common method is to assign each branch to a 2-bit

saturating counter, with the branch instruction transitioning between four possible states.

In Figure 2.12 a sample transition scheme is shown for a 2-bit branch predictor.

For each branch operation mapped to a saturating counter, a prediction can be obtained
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from the most significant bit of the counter state. For each not taken branch the counter

is decremented by one (to a minimum of 0), while a taken branch is recorded by incre-

menting the counter logic (to a maximum of 3). Moving from left to right, the states are

assigned Strongly-Not-Taken (S-NT), Weakly-Not-Taken (W-NT), Weakly-Taken (W-T)

and finally Strongly-Taken (S-T). At initialisation the counters are set to a random dis-

tribution of weakly taken/not-taken, with the initial branch operations providing training

information to the prediction logic. Once fully trained, an ideal 2-bit system will predict

correctly for heavily taken branches all of the time except for the last iteration, at which

point the loop will break from its runtime history. It should be noted that Figure 2.12 il-

lustrates just one of various configurations, with other state transitions possible [118]. All

configurations involve some degree of trade-off with the original scheme mispredicting

both the last and first iteration of a loop, while the scheme outlined above would have mis-

predicted two branches either taken or not taken when the counter is in the corresponding

saturated state.

¨ ¥
f o r ( i =0 ; i <5; i ++) {

i f ( i == 3)

do t a s k A;

}
§ ¦

Listing 2.1: Sample Branch

To demonstrate the operation of a 2-bit scheme, consider the code snippet shown in List-

ing 2.1. Assume the for and if statements map to separate branch counters (i.e. no branch

interference). Typically, prediction locations are initialised as weakly taken or not taken.

In Table 2.4 the branch trace is outlined for all iterations of the for loop and if statement

when the predictor is initialised as weakly not taken (01).

The second and sixth columns within the table specify if the branch will be taken

(Yes) or not (No), while the third and seventh columns refer to the predicted decision for

both branch operations. The updated state (after the current branch has been accounted

for) is shown in the STfor and STif columns. When the predicted (PR) and taken (TK)
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Table 2.4: Prediction Performance
Iteration TKfor PRfor STfor MSfor TKif PRif STif MSif

i=0 Yes No ”10” Yes No No ”00” No

i=1 Yes Yes ”11” No No No ”00” No

i=2 Yes Yes ”11” No No No ”00” No

i=3 Yes Yes ”11” No Yes No ”01” Yes

i=4 Yes Yes ”11” No No No ”00” No

i=5 No Yes ”10” Yes N/A N/A N/A N/A

columns mismatch it is clear that the branch predictor has mispredicted the direction of

the branch. Tracing the first iteration of the code segment it is clear that the for loop

will be mispredicted since it has been initialised as weakly not taken (01) while the if

statement will predict correctly. During the second iteration the state for the for loop has

incremented to weakly taken, correctly predicting the second iteration, while the state

for the if operation will decrement to strongly not taken, also correctly predicting the

direction of the branch. Stepping forward to the final iteration of the loop it is clear that

the for loop will be saturated, mispredicting the exit condition of the loop. Since the loop

branch operation would be placed after the if statement in the assembled code, the last

iteration of the loop does not require the if to be evaluated. In total, 11 branch operations

are encountered during execution of the code segment, with 3 branches mispredicting.

The overall hit rate is therefore 72%.

With modern applications comprising multiple branch operations the number of 2-bit

entries available for each branch operation must be arranged in a table format, commonly

referred to as the Pattern History Table (PHT). Since only one PHT entry is accessed at

a time it is possible to significantly lower the area cost of the prediction architecture by

implementing only a single 2-bit saturating counter along with a series of n-word by 2-bit

memory entries, where n is the number of entries in the PHT. Outlined in Figure 2.13, this

method allows the PHT area to be reduced to a number of 6 transistor SRAM bits along

with the control logic required to access the SRAM locations and the combinational logic

needed to increment and decrement the PHT entries. With multiple branches mapped

to different locations but requiring single cycle access, the most challenging aspect of
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Figure 2.13: 2-Bit Predictor Table in SRAM

a dynamic predictor is how these branch operations can be mapped to the PHT table

without multiple branches being located at the same entry. Consider an application which

involves s separate branch operations, each of which is mapped to a separate entry in a

k-entry PHT. The load factor for the application is therefore given by:

α =
s

k
(2.6)

Similar to any linear search structure, the mapping function employed in branch pre-

dictors is typically a hash type function which translates an input bit stream into a shorter

bit stream in the region 0, 1, 2...k− 1. Since a branch predictor is indexed on a per branch

basis, the Program Counter (PC) provides the most obvious input key through which the

PHT is indexed. The task of the predictor hash function is therefore to reduce the length

of the PC address to another address within the PHT address space, while also providing

a uniform distribution of addresses across the PHT table. The original dynamic predictor

outlined in [119] used k-bits of Program Counter as an index to access a 2k PHT. Since it

suffers from high collision rates due to the limited distribution provided by the program

counter, a directly mapped structure has been replaced by dynamic predictors indexed us-

ing a Global History Register (GHR). Commonly referred to as a two-level system [118]
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Figure 2.14: Global History Prediction Schemes

[120], there are a number of different configurations possible within such a scheme, each

of which is identified using the naming system outlined by Yeh et al. [118].

In the first case the branch taken bit is fed into a k-bit global history shift register,

labelled the GAg predictor. On addition of a new bit, the k-bit index within GHR is

used to access a 2k PHT. As is clear from Figure 2.14(A), the area of this configuration

can be estimated at (6 ∗ 2 ∗ 2k) + (k ∗ 16), assuming 6-Transistor SRAM cells and 16-

transistor edge-triggered register bits. Since the history register is global to all branch

operations, the k-bits of the index change rapidly, allowing a more uniform distribution of

the branches across the PHT. With applications typically following a repetitive structure,

repeated branches are assumed to be indexed in the same order each time. An obvious

flaw with such a configuration is where a very intermittent branch is added to the last k

branch operations which occur regularly. In this case, the lack of any Per Address (PA)

history has limited the performance by randomising the branch history at a global level

only. Since the GHR heavily reduces the input space to a k-entry linear search space,

interference between branches significantly reduced prediction performance. An easy

solution to such a problem is to parallelise the PHT tables as shown in Figure 2.14(B).

In this case m-bits of the branch address (Program Counter) are added to the k-bit GHR

to index 2m separate PHT. The area estimation for such an architecture is approximately

(6 ∗ 2 ∗ 2k ∗ 2m) + (k ∗ 16).

In order to minimise the effect of the global history on the current branch a more effi-

cient solution than the GAp architecture outlined above is to parallelise the global history
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Figure 2.15: Per Address Dynamic Prediction Schemes

via the branch address, allowing 2n separate GHRs to be indexed via n-bits of the program

counter. Shown in Figure 2.15(A), the PAg predictor alters the structure so that the GHR

represents the the history of the last k occurrences of the branch operations indexed by

the n-bits of the program counter. Similar to the GAg scheme, the primary difficulty with

such an architecture is that by reducing the program counter to 2n PHT space, collisions

between branch addresses remain common, with branch interferences destroying both the

GHR and therefore the PHT entries indexed by the GHR. Similar to the PHT architec-

ture outlined in Figure 2.13, a method of implementing a parallel GHR is to design the

sequential logic as an SRAM array of n*k bits with a single combinational block for the

shift function. The area of the predictor is therefore (k ∗ 2n ∗ 6) + (2 ∗ 6 ∗ 2k) transistors.

The final configuration of the 2 level predictor is to employ both a per address GHR table

as well as a per address PHT structure. Commonly referenced as the PAp predictor, the

structure is outlined in Figure 2.15(B). The number of branch address bits utilised is ex-

panded out to m + n with n-bits of the address used to index the GHR table while the m

bits allow multiple PHT tables to be accessed. The transistor cost for such an architecture

is given by (k ∗ 2n ∗ 6) + (2 ∗ 6 ∗ 2k ∗ 2m)

Summarising the above architectures it is clear that the trade-offs within branch pre-

diction can be described as how the PHT table size can be minimised without introducing

conflicts within PHT entries. While an increase in number of available PHT entries will

reduce the number of branch conflicts, the load factor will be decreased for a fixed num-

ber of branch instructions. Parallelising the structure either via multiple PHTs or through
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Figure 2.16: Gshare Predictor

a Per-Address GHR can reduce some of this interference but increases the area cost by a

factor of 2m, k∗2n, and k∗2n+2m respectively. In addition to these configurations, Pan et

al. have also proposed a correlating dynamic predictor which is similar to those outlined

above [121], while Macfarling proposes the gshare and combinational predictors [122].

In the case of a combinational predictor, two differing predictors are used to first generate

separate prediction results. Both of these predictions are then fed into an output predictor

which decides which of the first predictors should be used. A variation of this architecture

is proposed in [123]. In addition to these combining architectures, McFarling found that a

simple XOR operation between the program counter and GHR can significantly improve

prediction rates. Commonly referred to as the gshare predictor, it is shown in Figure 2.16.

Other dynamic predictors include the Agree predictor [124] which attaches a biasing

bit to each branch instruction. The two bit counters are then used to compare if the branch

will go in the direction indicated by the bias bit. The two must therefore agree in order

for a prediction to be used, otherwise the prediction defaults into some fallback position.

For NP platforms a number of difficulties with this architecture are apparent. Firstly, the

bias bit is attached to the branch instruction via either a branch target buffer or instruction

cache, but neither of these components are required within a PE. With a small application

kernel, there is no need for PEs to calculate the branch target, which must be buffered.

Similarly, without an instruction cache, the bias bit must be made static at compilation.
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A second difficultly is that, while the Agree predictor does improve prediction rates, the

need for a large pattern history makes it an expensive solution. For example, the xslip

algorithm requires an 8K-entry table to achieve prediction rates in excess of 95%. In

[125] the bi-mode predictor was proposed, splitting the PHT into three smaller tables,

a not-taken prediction table, a taken prediction table and a choice table. Similar to the

Agree system, the bi-mode predictor improves performance when compared to traditional

gshare architectures. The difficulty for an NP system is that a large predictor is not fea-

sible for cost reasons. The minimum size examined in [125] is 0.5KB or 2K-entries per

PHT(512 ∗ 8
2
), with two PHTs employed in parallel. Another method of improving dy-

namic predictor performance through reductions in the interference rate was proposed in

[126]. Performing better at small table sizes than previous solutions, the YAGS predictor

assigned a tag to each branch which was cached in either a taken or not-taken cache. It

suffers from similar limitations to the bi-mode scheme, in that large predictor sizes are re-

quired for prediction rates above 95% (∼ 10 K-Bytes or ∼80 K-bits). It should be noted

that the Agree, Bi-Mode and YAGS schemes all attempt to minimise the effect of destruc-

tive aliasing, with such behaviour more noticeable in larger general purpose applications.

With NP applications following a much smaller and tightly bounded framework it should

be possible to optimise prediction architecture in ways other than by simply improving

how branches are mapped to the PHTs.

2.8 Conclusions

The trend within NP design is to support more intelligent services while simultaneously

increasing the number of packets processed by the NP. Higher bandwidth connections

reduce the amount of time available for each packet to be processed, while the need for

functions such as metering or filtering is increasing the complexity of NP-based applica-

tions. Modern routers must perform tasks such as packet classification, packet inspection

and packet encryption along with the traditional functions such as IP forwarding and flow

metering. No single architecture has yet emerged which is optimised for all applications,

with certain functions better suited to parallel implementations while others provide better
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performance when partitioned into pipeline stages.

A number of methods are available for improving NP performance. The first method

is to increase the number of process engines employed on-chip. Additional PEs allow the

programmability to be retained but the degree of parallelism that can be deployed is lim-

ited by factors such as power consumption, device contention and compiler issues. With

memory access speed failing to match the performance increments seen in microprocessor

design it is clear that the implementation of additional PEs is unlikely to provide a long

term solution. The second method involves offloading computationally intensive tasks to

dedicated accelerators, either located on-chip or networked externally to the NP. Sacrific-

ing flexibility for performance, dedicated logic allows optimum algorithm performance.

With network applications and demand in a state of flux, it remains unclear whether hard-

ware offloading is justified since it may not possible to simply upgrade existing hardware,

increasing cost while also slowing the evolution of Internet based functions.

Another method of improving performance is through micro-architectural techniques

which target the PEs. Traditionally employing a simple RISC architecture, it is possi-

ble to tailor the underlying architecture towards NP applications without sacrificing the

underlying benefits of a programmable system. These techniques include methods such

as multi-threading, flow-based cache, network specific instructions or by implementing

deeply pipelined PE architectures.

As with all digital systems, a deeper pipeline allows additional performance to be ex-

tracted by increasing the maximum clock speed of the architecture. This performance

gain can only be guaranteed if the pipeline is kept full at all times, a challenge when

branch operations are taken into account. Various techniques have been proposed to mit-

igate this branch penalty and the primary focus of this thesis is to analyse and explore

this topic within NP systems. The exploration and analysis of micro-architectural tech-

niques present a challenge to NP researchers since it requires methods for evaluating the

performance of NP systems. The most common and powerful of these methods is to use

a simulation model for the system under consideration, a topic which will be considered

in the next chapter.
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CHAPTER 3

Performance Evaluation Methods for Network Processors

3.1 Overview

The survey of NP architectures presented in the previous chapter highlighted that within

the NP domain no single optimal architecture has emerged, unlike the GPP domain. Var-

ious architectures have been proposed in both commercial and academic research. There

are however a number of common components from which the majority of NP architec-

tures are constructed. Clearly the PE-based data-plane processing array represents one

such component. Other components include; a multi-channel memory hierarchy and an

on-chip network transceiver to connect the NP to the network and switching fabric, while

possibly including additional hardware blocks for complex tasks such as packet encryp-

tion. With a modern NP SoC comprising multiple modules, a challenge to NP research

is how to model, simulate and evaluate the NP design space. When considering topics

such as workload analysis, memory behaviour or branch prediction this challenge be-

comes a significant problem since any research model should encompass the entire NP

design space. Comparing NPs to more general purpose systems the deficiency in terms

of an available simulation model can be clearly seen. Within general purpose processing

RISC simulators, such as SimpleScalar [127], allow various RISC architectures (ARM,

Sparc, Superscalar) to be selected as the basis for a functional simulation. For micro-

architectural aspects such as power optimisation and cache performance, tools such as
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Wattch [128] and Dinero-IV [129] can be used for research and development. Addition-

ally, it is common for microprocessor and microcontroller manufacturers to release a cycle

accurate model of their underlying hardware. Within the NP domain, however, there is no

unified methodology by which an NP architecture can be efficiently modelled. Previous

NP research has tended to utilise either a general purpose framework or a commercial

platform. Unfortunately, neither of these methods is sufficient when performing a thor-

ough examination of common NP aspects such as hardware acceleration, PE parallelism

or micro-architectural techniques such as thread-level parallelism or branch prediction.

In this chapter a discussion of the problems and challenges regarding NP modelling

and performance evaluation is presented. In addition to a survey of existing modelling

techniques, a number of NP specific performance evaluation metrics are introduced which

are used in future chapters when evaluating NP and PE performance.

3.2 Simulation and Modelling of NP Architectures

Unlike GPP which has largely settled on a multi-core Complex Instruction Set Computer

(CISC) architecture for desktop computing while using multicore RISC platforms in mo-

bile and embedded solutions, no single optimum NP architecture has emerged from either

the commercial or academic domains. When modelling such a system, the challenge is

therefore how to encapsulate the wide number of configurations possible (despite using

similar sub-modules), while also developing a simulation model which allows accurate

information to be extracted for analysis.

Within computer architectural modelling and simulation there are a number of dif-

fering methodologies which allow microprocessor systems to be modelled. While some

of these models focus on describing the system via a number of steady state equations,

other software based models allow greater flexibility by simulating the underlying hard-

ware as either a functional block or cycle-accurate models. The NP simulator developed

by the author and proposed in this chapter, SimNP, follows the traditional functional sim-

ulation framework. Within a functional model, each of the sub-modules are evaluated

at a functional level only, guaranteeing functional performance but lacking cycle accu-
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rate statistics. Before outlining the SimNP simulator (Section 4.2), a brief preliminary

background on system modelling is presented.

3.2.1 Mathematical Models

With complex SoC designs requiring a large outlay of resources and time, a method of

evaluating performance for various configurations before the design process begins is

sometimes required. Constructed to model steady state operation, stochastic mathematical

models represent the most common methodology. In turn, these stochastic models can be

separated into two sub-methodologies which are outlined below.

3.2.1.1 Queue Model

Queue-based models allow the delays, loads and probabilities within a system to be ap-

proximated without a detailed simulation framework. Once a queue model has been de-

veloped, analysis of the queue and service nodes within the system can be used to identify

potential bottlenecks and contention. For example, consider the system outlined in Figure

3.1.

Figure 3.1: Queue Model

Each of the n PEs access a shared device such as a memory module, interface unit

or hardware accelerator. Each PE hosts m threads, with each thread performing the same

task. The PE array operates at fpe, while the shared device operates at fhw and takes τhw

device cycles to complete one operation. To access the hardware block, each thread issues

one command to the hardware block. In a steady state, the total PE request process is the
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non-deterministic sum of n Poisson processes, with an arrival rate, λ, of m * n. The

deterministic service time for each command is given by Equation 3.1.

µ =
fpe

fhw

∗ τdev (3.1)

Following an M/D/1 queueing model [130], the total delay associated with the hardware

accelerator can therefore be calculated using equation 3.2, in which ρhw is the utilisation

rate associated with the hardware block (ρ = λ
µ

).

tqueue =
ρ2

hw

2(1− ρhw)
∗ clkpe

clkhw

∗ τdev (3.2)

The queue model can therefore be examined at an abstract level for system performance,

most notably for sensitivity to other system variables. For example, figure 3.2 presents

the system delay as the load, access latency and hardware time is varied.
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Figure 3.2: Simulation Results for Shared Hardware Block
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In figure 3.2(A) it can be seen that the delay associated with accessing the hardware

accelerator scales exponentially as the hardware load is increased, while in figure 3.2(B)

it can be seen that changes in the service time, due to additional latency, will result in a

linearly increasing delay. The non-linear response associated with device load presents

a trade-off during system design. Such an open queue model allows rapid development

and evaluation. Within general purpose processing these queue models have been used

as a mechanism for performing highly abstract analysis of multiprocessor systems [131],

[132], [133] and [134]. Queue models do, however, suffer from a number of problems.

Firstly, a number of assumptions regarding task complexity and inter process commu-

nication are typically required [131], [132]. While Bucher and Calahan found that an

open-queue model will overestimate delays by up to 10% [134], Tsuei and Vernon found

that that a queue model developed specifically for an underlying architecture had an error

of 9% when compared to a software model of the same architecture [133].

Wolf et al. presented an analytical performance model for an NP, with a queue model

employed to represent data transfers between the PEs and system memory in [135]. The

difficulty remains that, in order to extract meaningful data from the model, it was required

to implement applications and algorithms on an architecture before performing any analy-

sis, presupposing an underlying architecture. Furthermore, it was assumed that the system

bus connected PEs and external DRAM via a cache, with no additional data generating

bus or memory requests. In Chapter 2 it was seen that it is more common for an NP ar-

chitecture to employ both fast, expensive SRAM-based control memory and slow, cheap

DRAM-based packet memory.

3.2.1.2 Petri Net

A second mathematical framework for modelling is to use a Petri Net modelling frame-

work, which provides a methodology by which a discrete system can be represented and

analysed [136]. Examining transitions between concurrent systems, the Petri Net frame-

work is well suited to parallel systems such as NP architectures. Within the NP domain,

research in [137] examined the accuracy of Petri Net modelling when applied to the Intel
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IXP architecture of NPs. It provides similar results to a cycle-accurate simulation but

with a significant number of assumptions included. For example, a fixed line rate, fixed

packet size and fixed memory access time are all assumed. Furthermore, it is unclear how

the accuracy of a Petri Net could be improved without obtaining more accurate timing

information, a process which would require applications to be implemented on the target

platform.

3.2.2 Architectural Simulators

Operating at a lower abstraction level than an analytical model, functional simulations

provide a mechanism for estimating the performance of various architectural configura-

tions. With SoC-based NPs embedding more functions on chip, the number of underlying

configurations can expand greatly, with researchers requiring fast methods of examining

each configuration. In general, functional simulators can operate as either a full system

simulation, in which only the overall functionality is verified, or as a transaction-based

modular framework, in which certain components might be modelled at a higher abstrac-

tion level to more fundamental components such as the bus network. While a system

level functional simulation might define how the data flows between simulated blocks, a

transaction level framework decouples the communication between blocks and the func-

tionality provided by the simulated blocks.

3.2.2.1 System Simulators

To date, a number of functional simulation frameworks have been proposed for general

purpose architectures. Firstly, the widely used SimpleScalar framework [127] provides a

means of examining application profile, branch prediction, instruction level parallelism,

cache performance and micro-op performance. Capable of being configured to target ei-

ther an ALPHA [138] or ARM [23] architecture, the advantage of SimpleScalar when

compared to other platforms is the ease with which changes can be incorporated. While

SimpleScalar suffers from a lack of micro-architectural accuracy, the MASE toolset pre-

sented in [139] was able to build on the SimpleScalar framework. For shared memory
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multiprocessors the RSIM [140] simulator provides models, with processors capable of

exploiting ILP. To rectify the lack of memory timing precision found in a high level func-

tional simulators, DRAMsim [141] allows cycle accurate memory information to be ex-

tracted, while complete general purpose systems can be modelled via Simics [142] and

SimOS [143].

Within the networking domain, Raswammey et al. [144] present an extension of Sim-

pleScalar called PacketBench which provides a framework for benchmarking network

applications. Defining where variables are stored, it allows memory accesses to be seg-

mented into control and packet memory, while providing workload statistics on a per

packet basis. When compared to previous workload and benchmark analysis [100], [91]

and [90], it provides a mechanism for ensuring removal of any simulation ‘wrapper’ anal-

ysis from the results. Unmodified SimpleScalar based frameworks suffer from a number

of limitations. Utilising only a single microprocessor, memory and bus contention issues

are ignored. Also, segmenting variables into either packet or control regions represents

a coarse grain solution, with certain architectures providing little register storage space

and therefore requiring additional memory operations. RISC architectures such as ARM

heavily utilise load and store instructions during stack operations. It is expected that these

would be low (or zero) latency operations which must be separated from longer shared

memory operations. In [145], Bhuyan and Wang present a single processor IP forwarding

model derived from RSIM. In [146], Suryanarayanan et al. present a component network

simulator called ComNetSim which models a Cisco Toaster NP, providing a functional

simulator which is defined by the execution of applications being modelled, limiting the

ability to compare different applications providing the same service.

3.2.2.2 Transaction Level Simulators

While higher level simulations such as the frameworks outlined above allow rapid devel-

opment and analysis, the need to specify the communication framework between simu-

lated blocks limits the flexibility and use of such models. Following a SoC design philos-

ophy, a full system simulation of an entire NP must account for the various blocks found
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within a modern Integrated Circuit (IC). While RSIM can be used to model the commu-

nication between the the processing array and memory, no solution outlined above can be

configured to mimic the entire architecture.

As a solution to this, transactional simulators attempt to separate each block into var-

ious sub-modules. By defining each sub-module in terms of how it communicates, it is

possible to model the functionality of the underlying block at a higher level of abstraction.

The primary advantage of this transaction level approach is the ability to trade abstraction

and flexibility against precision. In [147], Kohler el al. provide a modular mechanism

for specifying processing functionality, but it was limited in the ability to evaluate spe-

cific architectures. StepNP [148] proposed a transaction based simulator which builds on

the Click router [147] to allow system level exploration but is currently not available for

public download. Various other SystemC transaction level simulators have been proposed

[149] and [150]. The SimNP platform follows a transaction level framework, with NP

based sub-modules connected via a centralised bus network.

3.2.2.3 Cycle Accurate Simulations

Commonly developed to accompany commercial products, cycle accurate simulation mod-

els represent the most accurate simulation models. Implemented to mimic an underlying

architecture, cycle accurate simulation favours accuracy over development time. Com-

plex to design and implement, analysis using a cycle accurate simulator requires the user

to have a deep knowledge of the underlying architecture. Within the GPP domain cycle

accurate models remain common. For NP platforms, the framework presented in [151]

represents the only open source NP simulator currently available. Designed to mimic the

Intel IXP12xx and IXP24xx architectures, NePSim models the PEs, bus and memory hi-

erarchy and the interface unit. Compared with IXP1200s own cycle accurate architectural

simulator, NePSim matches the Intel IXP platform to within 1% of packet throughput

and 6% of the processing time. With the implementation developed to accurately model

the IXP family, use of NePSim is limited by the fact that the IXP compiler is relatively

underdeveloped when compared to existing general purpose solutions. Examining pub-
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lished research, the open source aspect of NePSim does not appear to have been used by

many researchers, with large numbers of research papers continuing to utilise Intel’s own

simulator [96][76][78][152].

The primary limitation to cycle-accurate simulators is that while simulators such as

SimpleScalar can be programmed in high level languages such as C or C++, cycle ac-

curate platforms such as NePSim and Intel SDK require extensive hardware knowledge

of the underlying platform. Analysis by Peter Reiher in [153] found that the majority of

IXP programming must be done in assembly code, with detailed architectural knowledge

needed to optimise application performance. Frameworks outlined in [154] and [155]

propose methods of improving the programmability of the Intel architecture but compiler

limitations continue to limit the ability to fully utilise cycle accurate simulators in NP

research. The four applications shipped within the Intel SDK represent the most common

applications to be cited by researchers within the NP domain.

3.2.2.4 NP Programmability Challenges to System Modelling

A major limitation to accurately and rapidly modelling NP systems can be summarised

as the lack of a fully developed programming framework for NP systems. Unlike GPP

systems which have various programming languages, each targeting a specific level of ab-

straction, the NP platform is typically programmed in low level languages such as assem-

bler or C. When accounting for functions such as thread control, inter-process communi-

cation and load-balancing, NP applications can quickly become complex to either develop

or maintain. Within the NP domain a number of researchers have proposed methods of im-

proving NP programmability. Both Lee [154] and Shah et al. [155] propose frameworks

which aim to improve the programmability of NP systems. In [96], Ostler et al. describe

heuristic algorithms and methodologies for mapping applications to a multi-processor,

multi-threaded, NP (Intel IXP). In [96] the Shangri-La compiler was proposed as a means

of generating binary images from a C-like language, again targeting the Intel IXP plat-

form. Li et al. propose techniques to allow automatic partitioning across a pipelined

NP [156] while in [157] a transformation method to automatically inject multi-threading
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and multi-processing was described. Meijer et al. investigate methods for automatically

partitioning stream-applications when implemented on an IXP platform [158].

3.3 Performance Metrics for NP Architectures

Along with the difficulties of constructing a model to reflect the modern NP design space

is the challenge in how to accurately (and fairly) evaluate an NP architecture. In this

section a brief discussion of performance evaluation metrics and methods is presented.

These methods include analysis methods which are common to GPP systems (workload

analysis), while other metrics are motivated by the core topics of this thesis, namely PE

performance and the evaluation of branch prediction schemes within an NP system.

3.3.1 Prior Benchmarks and Analysis

The purpose of this workload analysis is to quantify the differing factors which deter-

mine NP and PE performance. Using a simulation model of the NP architecture while

executing realistic workloads, the goal of workload analysis is to allow performance to

be quantified. In the case of an NP architecture this may take the form of analysing the

system bus utilisation as the number of connected PEs is increased. Previous work in

the area of network processor workload analysis has tended to focus on defining network

tasks via benchmark suites and searching for methods to utilise both thread-level and

instruction-level parallelism within an architecture. In [90], [91] and [100], numerous

network applications were defined, ranging from relatively simple tasks such as IP frag-

mentation to IPsec encryption. Memik et al. analysed nine applications for instruction

mix on both the Intel IXP and a 4-way Superscalar processor [90]. Work by Wolf [100]

and Byeong [91] analysed NP applications on a SPARC processor, investigating cache

behaviour, instruction mix and Instruction Level Parallelism (ILP), but both were primar-

ily focused on defining an NP-specific benchmark for future research. As was discussed

previously, for reasons of cost, techniques such as data caching or ILP can be expensive

to implement and may not be efficient on an NP. For example, the Intel IXP line of net-
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work processors provide no cache mechanism and single in-order instruction execution.

Ramaswamy presented an analysis of aspects such as memory access, unique instruction

counts, data memory requests and per-packet instruction complexity across four header

applications [159]. In [160] cache behaviour, instruction level parallelism and instruction

sequences of the TCP/IP protocol stack were examined and compared to the SPEC bench-

mark, with a number of possible ISA extensions proposed, while a workload analysis of

NP-based cryptographic algorithms was presented in [161], [162] and [163]. A limitation

with the above scheme and analysis has been the lack of diversity in many cases. In most

cases only a single application within a specific NP application group was used but, as

was discussed in Chapter 2, in many cases there are a number of algorithms available to

perform a specific function. In order to achieve an in-depth analysis of NP workloads it is

the author’s belief that multiple algorithms must be evaluated for each application group.

3.3.2 Branch Predictor Performance Evaluation

In Chapter 2 the concept of branch prediction was introduced. In general, this high level

discussion utilised the predictor hit rate as the performance evaluation metric when com-

paring differing prediction architectures. Following on from this, a number of additional

branch prediction metrics are defined in this section which will be used in later chapters

to evaluate various branch prediction schemes within an NP system.

3.3.2.1 Branch Penalty Per Packet

Typically the branch penalty for a given pipeline depth is calculated as per Equation 2.5,

where it is assumed that a taken branch evaluated in stage M requires M-1 previous stages

to be flushed from the pipeline. Since an NP will operate on a fixed data type, namely the

packet, it is possible to calculate the total number of lost cycles due to taken branches on

a per packet basis (Equation 3.4).

τpen = (ρtk ∗Nbr ∗ Ptk) (3.3)

69



Performance Evaluation Methods for Network Processors

τpen(pp) = (ρtk ∗Nbr(pp) ∗ Ptk) (3.4)

where ρtk is the ratio of taken branches to not-taken branches encountered during

packet processing, Nbr(pp) is the total number of branches and Ptk(pp) is the penalty

associated with a single branch instruction. Where the majority of branches are uncondi-

tional or always taken (e.g. loop statements) the penalty will be small, while for highly

conditional functions such as prefix tree traversal it can be assumed the branch penalty

per packet will be highly dynamic from one packet to another.

3.3.2.2 Predictor Collision Rate

Along with the prediction hit rate, other metrics can be used to examine the performance

of dynamic prediction schemes. As was previously discussed, dynamic predictors rep-

resent a type of hashing scheme in which the program address space is reduced in order

to map branch instructions to a smaller and finite PHT structure. When implementing a

hash-based addressing scheme, the trade-off which must be examined is how to reduce

the cost associated with the hash table while ensuring a low collision rate between differ-

ing hash table entries. Unfortunately for branch prediction architectures, solutions such

as complex (or near perfect) hashing algorithms, chained lists or bucket schemes are not

applicable since the predictor logic must be at least as fast as the other stages within

the processor pipeline and such schemes typically require a high degree of additional

complexity. On the other hand, the effect of hash collisions (branch interference) can be

minimised by increasing the PHT table size. Using this information it is possible to define

the collision rate within a given predictor as the percentage of PHT entries which have at

least two independent branches mapped to the same location.

3.3.2.3 Predictor PHT Utilisation Rate

Similar to the predictor collision rate, predictor performance can also be examined via the

utilisation factor of the overall PHT. For an n-entry PHT, the utilisation factor is defined

as the percentage of table entries which are used during execution. For general purpose

processing, branch prediction schemes are designed with a constantly switching OS in
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mind (in terms of the application being executed). A low table utilisation can be safely

ignored since the next application will have a different footprint. Without either an OS

or a constantly switching application, an NP-based branch predictor has an additional

limitation since a hardware solution in which 75% of the pattern table is idle for long

periods of time represents a significant waste of both chip area and energy.

3.3.3 PE Area Cost

In addition to these performance metrics, a fundamental evaluation metric when con-

sidering branch prediction is the area requirement of any solution. The small, highly

optimised nature of NP applications has meant that complex hardware functions have not

been needed (e.g. superscalar), while the parallelism inherent to network data flows has

necessitated a parallel architecture. This PE parallelism, along with the low volume nature

of the NP market, has made NP platforms highly sensitive to area considerations. When

considering additional hardware such as branch prediction or caching, the fundamental

question is whether the performance gain is justified when compared to the additional area

required to implement this hardware. In order to accurately examine the design trade-offs

when implementing a deeply pipelined architecture, an area estimate must first be de-

rived for a typical PE design. Examining commercial architectures, the ARM7-TDMI

and ARM9-TDMI architectures require approximately 75,000 and 110,000 transistors to

implement without any cache [23]. Furthermore, the standard ARM architecture does

not support floating point, similar to the configuration found within network applications

where floating point functions are rare. When evaluating any RISC architecture employed

as a network-based PE there are a number of additional components which may be added.

Firstly, the program memory must be implemented on-chip in order to minimise the

instruction latency, with the program memory coupled to each PE (See Section 4.2.2). In

addition to the cost associated with the on-chip control store, two additional area require-

ments must be factored in when calculating the area cost of a typical PE architecture. The

need to hide long access latencies to external devices necessitates some form of hardware

based multi-threading, allowing greater PE utilisation to be extracted. Finally, the use
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of multiple processing engines, each supporting multiple threads, requires some form of

buffering when accessing bussed external devices. Whereas a single PE system could

simply latch memory access in control logic connected to the system bus, a multi-PE,

multi-threaded system must buffer multiple commands in a FIFO structure connected to

the system bus (or buses). Using the area of the ARM9 microprocessor as a base (110,000

transistors), the area of a PE architecture can be estimated as follows. Firstly, an n-word

by 32-bit program memory would require n∗32∗6 transistors. The area for the hardware

based multi-threading is negligible except for the need to parallelise the register bank.

Assuming each of the m threads has its own 16-register bank, the area of the register bank

is increased by a factor of m. Other costs associated with the multi-threading can be ig-

nored since it can be implemented via a simple round robin scheme. Finally, with each

of the m threads accessing the shared bus, an m entry input and output FIFO are required

to buffer data transfers between the PE and other external devices. For an l bit bus, each

FIFO would require l ∗m ∗ 16 bits to be stored.

Using the sample configuration outlined in Table 3.1, the program memory would re-

quire 393,000 transistors, while the register base and I/O FIFOs would require 40,900 (16

* Nthreads * 32 * 10) transistors and 40,900 (160 * Nthreads * 16) transistors respectively.

Since the area of the program memory is much larger than all other components within

the PE design, the cost associated with it is not included in any comparison. The area of

a similar ARM9-based architecture is therefore increased to 110, 000 + 40, 900 + 40, 900

transistors. Future branch prediction trade-offs are examined with respect to this area

estimation.

Table 3.1: PE System Parameter
Section Name Parameter

Program Memory Psize 2K Words

Thread Count Nthreads 8

Bus Data Width Wdata 128

Bus Cmd Width Wcmd 32
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3.3.4 Area Cost of Branch Prediction

Recalling the area estimates given for the various 2 level predictors outlined in section

2.7.2 it is clear that for a global address scheme, such as GAg or gshare, any expansion

of PHT increases the area cost. For the per-address schemes, increases in either the PHT

size or the number of GHR entries will dramatically increase the number of transistors

required. As an example, consider the three prediction architectures examined in [90].

In the first case a 2KB (8K entry) global history scheme is examined. Ignoring the cost

associated with the address logic, the area of such a predictor can be estimated at:

AGAg(2KB) = (6 ∗ 2 ∗ 8192) + (16 ∗ log2(8192))

≈ 98, 500

With a maximum PE area (excluding program memory) estimated at 200,000 transistors

it is clear that predictors of this size would not be justified on an NP platform. Assuming

a 16 PE system, 16 predictors matching the above configuration would require the same

amount of transistors as 8 additional PEs. The two other architectures examined in [90]

were a 2KB-4KB bimodal system and a combinational predictor involving both the 2KB

GAg predictor and the 2KB-4KB bimodal system. In the case of the bimodal system, the

4KB tag cache would require almost 200,000 transistors for the SRAM alone, with a large

amount of transistors required for the lookup logic (equivalent to Content Addressable

Memory (CAM) logic) and the first level prediction tables. Without large increases in the

area complexity of a PE (additional program memory, level 1 cache, superscalar) such

large predictor structures are not justified.

3.4 Conclusions

This chapter presented an overview of the difficulties regarding performance evaluation of

NP architectures. With modern SoC-based NPs comprising multiple hardware modules,

parallel processors and a complex memory hierarchy, a major challenge to NP researchers
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is how such an NP architecture can be efficiently and accurately modelled without re-

quiring a specific model for each architecture and configuration. Examining the current

state of the art within the domain of computer modelling and simulation it was found

that while purely mathematical models allow rapid development it is difficult to estimate

some of the parameters needed to make such a model accurate. Other modelling tech-

niques can be generally described as simulators which attempt to mimic the hardware

target. Within the domain of digital simulation there are a number of abstraction lay-

ers possible based on the degree of precision needed. Whereas complex cycle-accurate

models allow highly accurate simulation, a higher level functional simulator will tend to

favour speed (of development) and flexibility, sacrificing some of the accuracy achievable

with a cycle-accurate model. Unfortunately there is no unified NP simulation model cur-

rently available to NP researchers which allow architecture aspects such as PE, memory

and bus configurations to be examined. In the next Chapter a new NP specific simulator

is proposed which attempts to solve this problem, allowing fast NP simulations while at

the same time providing the flexibility to allow different NP architectures to be explored.
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CHAPTER 4

A New Simulator for Network Processors

4.1 Overview

In Chapter 2 an overview of the current state of the art within NP design was presented,

outlining the common components which comprise a modern NP while also highlight-

ing the different NP architectural configurations currently available. In Chapter 3 it was

argued that the lack of a single unified NP architecture made research within the NP do-

main difficult. When analysing a computer system to evaluate design aspects such as

memory usage, branch behaviour or instruction distribution a simulation model reflects

the most powerful method of evaluating such a system. With this in mind, in this Chapter

a new NP-based simulator is proposed which attempts to model the configuration blocks

commonly found within a modern NP while providing enough abstraction such that sim-

ulation models can be rapidly and efficiently developed. Written entirely in C and using

the widely used ARM architecture, this simulator, called SimNP, follows a part-functional

model, with simulated sub-modules implemented as cycle-accurate (e.g. memory latency)

but where the interconnection system remains at an abstraction layer high enough to allow

differing NP architectures to be explored.
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4.2 SimNP Simulator

Summarising the performance evaluation survey presented in the previous chapter it is

clear that within the topic of system simulation a number of trade-offs are apparent.

While stochastic models allow rapid evaluation of system performance by abstracting

away architecturally defined parameters, the assumptions regarding traffic distribution,

inter-process communication and queue capacity can introduce significant errors. On the

other hand, a software-based simulation framework provides an alternative means of ex-

amining system performance. Modelled at either a system level or by interconnecting var-

ious subsystem components, a simulation framework provides a mechanism of improving

the precision of salient information by trading off some of the high level abstraction ca-

pable with a mathematical model. In this section a brief outline of the proposed SimNP

simulator is presented. Designed to incorporate the components common to a modern

NP, it allows rapid analysis of NP systems. Figure 4.1 shows the system block diagram

of the SimNP simulator, highlighting the default components simulated within the model.

An overview of the software architecture employed by SimNP is also presented.

4.2.1 Software Architecture

The software architecture employed within SimNP follows the outline shown in Figure

4.2 1. Following an execution-driven method, applications are created in C or C++ before

being compiled into static binaries for execution using an ARM targeted cross-compiler

(The work presented in this thesis used the open source gcc compiler suite [103]). A num-

ber of packet traces are supported, with SimNP attempting to rebuild valid packet traces

from some of the popular anonymised trace files available via the NLANR repository

[164]. Since these packet traces remove any sensitive data, new IP addresses are derived

from the MAE-west and AT&T East Canada routing tables. Once the header has been

rebuilt, random data replaces the packet payload. To the best of the author’s knowledge,

there is no current methodology or framework which allows packet payload information

to be rebuilt to a realistic level. At simulation runtime, each simulation component is

1The shaded areas denote modules implemented by the author.
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Figure 4.1: SimNP Block Diagram

initialised within its own space, interacting via the central bus and simulator core. At

initialisation, the simulation configuration file defines the simulator parameters. Some of

the parameters, which can be configured at run-time, are outlined in Table 4.1. For all

devices it is also possible to configure the clock frequency as well as the FIFO depths.

Target applications to be simulated can be written in either assembly, C or C++, with the

applications following a run-to-completion model. Typically, a PE can request a packet

from a central arbitrator (either the interface unit or another PE configured to maintain

the packet queues). During execution, operations involving long latencies will trigger

the current thread to be placed in a waiting state while the operation is being completed,

allowing another thread access to the PE.
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Figure 4.2: SimNP Software Architecture

4.2.2 SimNP Processing Engines

In general a PE can be defined as a Harvard-based, cache-less, integer-only RISC mi-

croprocessor. While the lack of a data caching can be justified by the low spatial data

locality of NP applications, the justification for employing a Harvard architecture can

be seen when common NP applications are examined. Firstly, the amount of processing

which can be applied to any packet traversing the network is limited by the upper bound

determined by the need to maintain wirespeed. When compared to large programmes

such as OS kernels or web browsers, the number of instructions within an NP system is

much smaller. In Table 4.2 the binary code size (in KB) is given for common NP ap-

plications when compiled for the ARM architecture (without optimisation). The second

characteristic is the relatively static nature of NP applications. Unlike a general purpose

system where the executing application may change many times every second, the same

NP application may remain in place for long periods of time with only minor changes or

alterations to program flow. For an NP system it is therefore possible to provide a small

amount of closely coupled on-chip SRAM, where the instruction data can be fetched

without the need to access external memory.

The other common trait within PE design is the provision of hardware based multi-

threading. The primary advantage of multi-threading is as a mechanism for hiding latency
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Table 4.1: SimNP Configurable Parameters
Application Parameter

PE
Number of PEs

Number of Threads

Local Data/Control Store

Bus
Latency

Bandwidth

Memory
Access Time

Data Width

Hardware Acceleration
Algorithm

Device Latency

Process Delay

Interface
Buffer Size

Bus Width

when accessing slower external devices. Largely transparent to the programmer, multiple

threads in hardware can be achieved through a switch of the register bank. More com-

plex schemes involve implementing the entire ‘pipeline’ on a single PE, with the context

switch providing a means of switching between stages of a pipeline. For SimNP, the

multi-threading is designed to follow either an automatic or manual trigger point. During

automatic thread switching, a long latency operation causes a PE to switch thread to the

next available thread. Once the request has been processed, the PE is released into the PE

waiting pool. The manual configuration follows a similar design flow with the exception

that the context switch is triggered by a segment of volatile assembler code.

Table 4.2: NP Application Code Size
Application Code Size (KB) Application Code Size (KB)

AES 1914 TRIE 634

CAST 2182 HASH 630

RC4 1670 HYPER 720

SHA1 3248 RFC 438

MD5 2375 TCM 380

FRAG 382 TBM 1264

CRC 359 DRR 685

RS 3400 STAT 829
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Figure 4.3: SimNP Process Engine

With regards to the ISA employed by SimNP, the ARM architecture was selected for

the SimNP platform since it allows the SimpleScalar execution unit to be reused [127],

while also allowing the user to take advantage of mature development platforms.

Two additional modifications are also incorporated in the SimNP PEs. Firstly the

ARM software interrupt instruction ( swi ), which allows hosted applications to access

system call functions such as file read and write, can be reused to simulate new instruc-

tions since high level system calls are not applicable to NPs. The ( swi ) instruction

can therefore be used to rapidly map new instructions to the system without needing to

change the compiler specification. The second addition is the provision of local hardware

accelerators which allow low access hardware blocks to be simulated. Like the shared

hardware blocks outlined in Section 4.2.6, the local hardware blocks allow functions to

be benchmarked under conditions where only inter-thread contention determines access

latency. The system block model for the PE employed by SimNP is shown in Figure 4.3.

80



A Simulator for Network Processors

4.2.3 SimNP Memory Hierarchy

The advantages of one memory hierarchy over another are largely determined by the

choice of microprocessor architecture. Modern general purpose architectures typically

use a flat memory model with devices mapped to specific regions within the memory

space. When compared to a more complex system involving specialised instructions for

accessing specific external blocks, the flat model presents a clean, cheap and efficient

memory hierarchy. At a technology level, there are a number of traits common to NP plat-

forms. In general, the consensus has been to store packets in slow DRAM technologies

while more latency sensitive control data is stored in external SRAM. More cost effective

than a full SRAM solution, this hybrid model is common to commercial architectures.

With the SimNP PEs employing a flat 32-bit memory space, the entire SimNP mem-

ory model is simplified to a linear memory space from between addresses 0x00000000

- 0xFFFFFFFF. The majority of the memory is undefined and can be used to map new

functions. A small section of the memory is used as the base address for DRAM, SRAM

or TCAM devices connected to the system bus. Each memory device can be altered in

either size, location or even whether the device is accessible by all devices in the NP

architecture. A small number of memory locations are reserved for memory mapped pre-

compiled library functions (Interface Unit Access, printf ). A sample SimNP memory

model is shown in Figure 4.4.

4.2.4 SimNP Inter-Device Communication

For a functional simulator, it is possible to model the system bus using a small number of

factors; the arbitration method, the cycle time and the bandwidth. For a transaction-based

bus which moves Ncmd commands, each of which is Mwidth wide, the bandwidth is:

Bwidth = Ncmd ∗Mwidth ∗ clkbus (4.1)

Within the SimNP platform, the device bus is implemented as a fixed-length command

driven bus with central bus arbitration. Similar to the AMBA bus, the SimNP bus aims to
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Figure 4.4: SimNP Sample Memory Map

remove the underlying bus specifications from the simulation model. Devices are assumed

to contain either one or more receive and transmit queues. On each bus cycle the bus unit

is configured to route Ncmd waiting commands from one source TX First-In-First-Out

(FIFO) to another addressable RX FIFO. For the current cycle the bus attempts to route a

single transaction from the device which should next have access to the bus. In the event of

no command being found at the device, TX FIFO, the bus unit checks the next available

device until all nodes have been processed. In this manner the bus unit operates as an

optimised implementation of the round robin algorithm and ensures high bus utilisation.

4.2.5 SimNP Interface Unit

On an NP the interface unit allows the packets to be transferred in and out of the NP, either

to the network or the switching fabric within the routing architecture. Interface standards,

such as GMII, SPI-4.2 and CSIX, are commonly found on NP architectures and allow an

NP to connect to physical connections (optical, switch fabric or Ethernet). Within a func-
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Figure 4.5: SimNP Bus Model

tional framework, it is possible to generate an abstract model for these communication

models. Figure 4.6 presents a block diagram for the CSIX interface which allows devices

such as traffic managers and NPs to connect to the switching fabric. As can be seen from

the diagram, only a small number of signals are required, i.e. the data bus, along with a

clock, parity and start of frame control bit. The transmit unit from the switching fabric to

the egress NP follows a similar outline. The CSIX specification [165] defines the data bus

as 32, 64, 96 or 128-bits while the clock signal is defined in the range of 100-160MHz.

Figure 4.6: Common Switch Interface [165]
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A similar outline is defined for the SPI Interface, while GMII-type connections em-

ploy an 8-bit Ethernet framing method. The SimNP interface is designed to model the

behaviour of an SPI-type interface without requiring details of the underlying hardware

or specifications. Incoming packets are transferred to the receive FIFO which is main-

tained in SRAM coupled directly to the interface unit. Both ingress and egress packet

buffers are maintained in round robin fashion, with packets automatically dropped once

the buffer fills. It is assumed that any realistic simulation would attempt to meter the traf-

fic after initial buffering, using either a second stage hardware block or a PE configured

to manage packet flows. When requesting packets from the interface, a PE will issue a re-

quest command containing the address where the head packet is to be moved to. A similar

process is followed when adding a processed packet to the TX buffer queue. Transfers,

either to or from the interface unit, are handled via a DMA controller which can use ei-

ther the main system bus or a dedicated bus to transfer data through memory. Two bus

methods are provided as the volume of command requests generated by the interface can

be very large for small parallel architectures, a condition which can result in high bus

contention rates.

4.2.6 SimNP Hardware Acceleration

Simulation of hardware acceleration involves deriving a framework for classifying hard-

ware accelerators based on the functionality provided by the hardware accelerator. For

parallel systems such as an NP, hardware acceleration can be provided in three different

methods.

• PE Independent Acceleration - Acceleration blocks which operate largely indepen-

dent of the application running on the PE array. For example, consider an NP system

which includes an on-chip mechanism for congestion control and queue distribution

of incoming traffic. Within the SimNP platform, PE independent accelerators such

as ingress metering or queue maintenance can be inserted to intercept incoming

packets automatically and provide the required functionality.
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• PE Shared Accelerators - These hardware blocks are assumed to be shared across

all PEs and are accessed via the PE memory map. Since these devices are shared it

can be assumed that contention will account for a significant amount of processing

delay. Shared hardware blocks are commonly those applications which would be

too expensive (in area cost) on a per-PE basis, for example packet encryption and

decryption.

• Per PE Accelerators - Typically much more simple hardware blocks, per-PE hard-

ware accelerators typically provide functions which are commonly used by all PEs

and NP applications. For example, hash key generation is often used within NP

applications to index packet control information in a hash structure. Since all PEs

would have to access this structure it can significantly improve performance if the

hash index generation is offloaded to hardware coupled directly to each PE.

Within any simulation model, the salient information regarding these various hard-

ware blocks is; the queue delays associated with accessing the hardware block, the device

latency and whether the underlying architecture is pipelined or non pipelined. Using these

parameters, it is possible to implement a functional model of the hardware block without

sacrificing any precision within the results. For example, a shared hardware block pro-

viding deterministic processing (e.g. packet classification rule lookup) would require Tn

cycles to process a single packet.

Tn = taccess + tprocess + tresult (4.2)

where taccess is the access time associated with a shared device, largely comprised of the

contention between PEs and the bus (and or) hardware device. The processing time for

the hardware block is given by tprocess and is determined by the underlying architecture.

If the hardware block is assumed to be pipelined, processing multiple commands on each

cycle, the processing time can be calculated as:

tprocess =
s + (p− 1)

fhw

∗ fpe (4.3)
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where s is the number of pipeline stages, p is the number of stages occupied by one

command, fhw is the clock frequency of the hardware and fpe is the clock frequency of

the PE issuing the command. Within SimNP, two application interfaces are provided

which allow memory mapped hardware blocks to be modelled. Each interface supports

four independent accelerators, allowing multiple server configurations to be examined.

In the case of the upper hardware interface, cluster A, the DMA and state controllers

target payload applications and can be configured by writing the source data address,

destination data address and data length to the hardware control registers. The lower

hardware interface allows header based functions such as forwarding and classification to

be simulated. Since both interfaces are memory mapped, it is a trivial task to reconfigure

the hardware blocks if additional parameters must be passed to the hardware block.

4.3 Comparison with Existing Solutions

The design goal of SimNP is to provide a platform for the study of network processing

systems. Consequently, it is a simulation infrastructure with a collection of commonly

used architectural features rather than a model of any existing NP system or platform.

Using six common network applications (outlined in Chapter 5), a comparison between

the SimNP and the SimpleScalar platforms is presented in the following sections. Sum-

marising, two of the applications (AES and MD4) represent block based cryptographic al-

gorithms used for functions such as IPsec encryption and authentication. Both algorithms

require a large degree of processing, involving extensive logic and arithmetic operations,

and allow raw processing metrics such as Million Instruction Per Second (MIPS) to be

determined. A third payload application, FRAG, involves requesting a packet for process-

ing, checking to see if the packet is large enough to be fragmented, before dividing the

packet into smaller sizes. Unlike the other payload applications (AES and MD4), the ma-

jor difference of the FRAG algorithm is the large amount of memory operations required

but with very little processing applied to each packet. In addition to these three payload

applications, three header processing functions are also examined. The TRIE applica-

tion performs IP packet forwarding, utilising the AT&T East Canada routing table. Each
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packet is verified before the next hop is generated and the packet is queued for egress

transmission. The second application, STAT, uses a hash-based structure to maintain in-

formation on a per-flow basis. New flows are allocated space within the structure while

terminating packet flows are discarded after any per-flow statistics are added to the global

statistics database. The final application examined is the Deficit Round Robin (DRR)

algorithm which provides a mechanism for balancing variable length packet queues. Rel-

atively simple to implement, the DRR algorithm only moves a pointer to the packet around

memory, since memory copy routines can be computationally expensive on load/store ar-

chitectures such as the ARM platform. Each application is benchmarked using two packet

traces obtained from the NLANR repository. The PSC trace is gathered from an OC-48

connection while the AMP trace captures datagrams traversing the OC-12 connection.

4.3.1 Simulation Time

Within the computer architecture domain, research aspects such as simulation time have

become less important due to the performance and cost developments within general pur-

pose systems. For research purposes any simulation platform must remain fast enough

to allow rapid analysis for configurations where longer term analysis is required. For

NP systems, this second point becomes more important when trends within network traf-

fic are factored in. While analysis such as instruction distribution and memory analysis

can be performed using small trace files, metrics such as power analysis, load and queue

balancing, etc. may require network traces running for long periods of time, capturing

millions of packets. For an application such as AES or MD5, which require extensive

computational resources, a simulation involving 100,000 packets takes approximately 45

minutes to run on a standard 2GHz Intel Core Duo laptop. Executing significantly fewer

instructions, header applications such as such as TRIE require only 31 seconds to process

100,000 packets. For both header and payload applications the simulation time is linear,

allowing an accurate simulation time to be extrapolated from smaller simulation runs.
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Figure 4.7: SimNP Simulation Time

4.3.2 Simulation Performance

In addition to simulation time, a number of other metrics can be used to verify perfor-

mance. For the payload functions, the number of instructions simulated per second allows

a method of comparing various simulators and configurations. In addition to the simulated

MIPS rate, NP performance can be quantified using either the number of processed Pack-

ets Per Second (PPS) or the number of bits processed per second (Kilo-bits per second).

In the case of payload applications, the number of bits processed per second is a more

useful metric since the processing cost per packet is determined by the packet length. On

the other hand, the number of packets processed per second provides a reasonable metric

when comparing header based applications.

Examining the results in Table 4.3, the average simulated MIPS rate is 2.39, approx-

imately 30% higher than the equivalent SimpleScalar/Packetbench configuration. Simi-

larly, the average number of bits processed per second (Kbps) with SimNP is approxi-

mately 50% higher for the AES and MD5 applications when compared to the previous

solution. For the header applications it can be seen that both the simulated MIPS and bit

processing rate can be heavily skewed by the underlying traffic. Since header applications
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Table 4.3: Performance Analysis of SimNP Vs. Simplescalar/Packetbench

Application Trace SimNP Simplescalar
MIPS Kbps PPS MIPS Kbps PPS

AES
AMP 2.23 25.98 29.99 1.28 17.88 21.37

PSC 2.27 26.51 36.34 1.29 18.52 24.51

MD5
AMP 2.65 36.24 42.34 1.12 20.78 24.27

PSC 2.47 31.82 44.25 1.10 19.59 27.25

FRAG
AMP 2.35 357.83 364.96 3.28 1680.13 2000

PSC 2.35 359.16 438.60 2.90 1406.03 2000

TRIE
AMP 1.50 1866.81 2222.22 5.03 60.44 71.94

PSC 1.57 1634.92 2325.58 5.18 52.08 74.07

STAT
AMP 1.65 2470.78 2941.18 3.27 1400.11 2500

PSC 1.52 1900.04 2702.70 3.92 1406.03 3000

DRR
AMP 2.01 4000.31 4761.91 3.89 2800.22 3333.33

PSC 1.93 3195.52 4545.46 3.47 2343.38 3333.33

typically involve only a small amount of processing per packet, performance for SimNP

is limited by two factors. Firstly, when performing workload analysis, SimNP ‘block’

fetches enough packets to fill the ingress buffer, incurring a small penalty since excess

packets may be buffered. Secondly, SimpleScalar simulated all memory operations as

atomic, with a latency of only one cycle. Since SimNP connects multiple devices via a

shared bus system it is unlikely that a memory operation would be arbitrated in a single

cycle, even if all devices are running at the same clock frequency.

4.3.3 Workload Validation

Along with performance evaluation, a brief workload analysis is presented in order to

validate SimNP when compared to a SimpleScalar/Packetbench configuration. Using an

OC-3 packet trace, the six applications are compared in Table 4.4. Examining the data,

a number of reasons can be deduced to explain the performance difference. Firstly, Sim-

pleScalar requires the use of a more complex standard c library (glibc) since packet re-

quest functions are complied as file read fread and file write fwrite functions. The library

also allows more complex instructions such as the ARM load and store multiple (LD-
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M/STM) to be invoked, instructions which are not assumed with the lightweight newlib

library. In addition to the instructions used to fetch and store data between memory, the

difference in memory partitioning accounts for some of the variance. SimpleScalar as-

sumes a flat memory space, with each packet modified ‘in position’, without any need to

copy the packet to a local space. A SimNP model will typically copy a packet from the

global packet queue then modify the local copy before returning the processed packet,

while the SimpleScalar simulator assumes the packet does not need to be copied before

processing. As a final note, SimpleScalar requires the standard library (glibc) to be used

for functions such as I/O, while the SimNP platform can use either glibc or the more

lightweight newlib library.

Table 4.4: Instruction Distribution for SimNP & SimpleScalar
Application Simulator Load Store U-Branch C-Branch Logic

AES
SimpleScalar 30.66 6.94 1.48 3.21 57.71

SimNP 38.49 16.84 1.03 2.44 41.21

MD5
SimpleScalar 40.79 13.54 3.91 3.85 37.91

SimNP 34.36 12.56 1.45 1.54 50.09

FRAG
SimpleScalar 22.43 20.35 2.77 6.67 47.79

SimNP 21.76 20.57 2.29 12.76 42.62

TRIE
SimpleScalar 16.07 12.17 2.58 11.82 57.36

SimNP 28.38 16.7 4.54 6.75 43.63

STAT
SimpleScalar 32.51 20.02 1.58 8.43 37.32

SimNP 27.68 16.11 3.53 9.65 43.04

DRR
SimpleScalar 32.33 17.35 1.05 11.98 37.28

SimNP 26.53 11.91 1.65 5.62 54.3

4.4 Conclusions

This chapter has described a simulation framework for NP architectures. While a number

of techniques were evaluated, it was decided that a simulator could be developed which

would provide good accuracy in terms of processing speed and latency, while at the same

time allowing architectural aspects such as the number of PEs, memory hierarchy and
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hardware acceleration to be thoroughly evaluated. Employing a modular framework sim-

ilar to a System-C transaction level simulator but implemented within a single high level

language, the simulator proposed does not require long simulation times and is capable of

being run on a general purpose desktop computer or laptop. Modelling the components

common to a packet processing environment, SimNP currently includes simulation mod-

els for multi-threaded process engines, external DRAM and SRAM, network interfaces,

TCAM devices and hardware acceleration blocks. Supporting the ARM ISA it allows

programmes to be implemented in high level languages such as C or C++, removing the

development bottleneck associated with mapping algorithms and applications to assembly

code. The use of a memory mapped I/O allows rapid addition or removal of architectural

features, as well as complex network processor design space exploration, balancing a flex-

ible and appropriate abstraction level while providing meaningful statistics and analysis.

Benchmarked to previous solutions it was found to provide similar performance across

a wide range of applications, while allowing greater accuracy to be extracted from simula-

tions. In the next chapter, this simulation framework is used to examine NP performance

workloads, as well as to examine architectural techniques such as parallelisation or hard-

ware offloading.
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CHAPTER 5

Analysis of NP Workloads

5.1 Introduction

As was previously discussed, the tasks implemented on a modern router have expanded

from basic packet switching to more computationally intensive applications such as secu-

rity, classification or payload modification. As such, it is important to develop an under-

standing of NP applications via a workload analysis.

Using the information obtained from a workload analysis it is possible to guide future

development and optimisations of the architecture being analysed. In the case of an NP

platform, a workload analysis allows potential bottlenecks to be identified, while com-

mon penalties such as bus contention or branch penalties can be quantified. Unlike an

application benchmark, which attempts to define applications to be used as a means of

comparing one architecture and another, a workload analysis uses a broad variety of NP

applications and algorithms. With numerous applications capable of performing the same

function on an NP platform, selecting multiple applications from each group ensures the

analysis remains valid for various NP configurations.

For a pipelined PE, the processor utilisation is maximised by ensuring all stages of

the pipeline are processing data at all times. While the primary focus of this thesis is the

effect of conditional branches within the pipeline, there are a number of additional aspects

which directly affect PE utilisation. These include the memory behaviour and distribution
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of NP applications, the bus utilisation of a multi-PE system and the conditional behaviour

of NP applications.

Developing both an analytical framework as well as a quantitative evaluation of NP

workloads and systems, the work presented in this chapter provides a detailed under-

standing and examination of NP workloads. In all cases the simulation models used were

designed to reflect realistic operating conditions. Using the SimNP simulator model out-

lined in the previous chapter, a large suite of NP applications and packet traces are used

to fully explore the architectural aspects which affect NP performance.

5.1.1 Network Processing Complexity

In commercial NP architectures it is possible to define two very broad architectural philoso-

phies for use in PE design. In the case of Xelerated, Bay Microsystems and Ez-chip, it

is assumed that NP applications can be implemented in a fully deterministic fashion,

with a given processing rate guaranteed. Requiring a pipeline design, an example of an

NP which maximises deterministic behaviour can seen in the architecture employed by

Xelerated, which is constructed around a pipeline of special process engines with each

engine capable of executing up to 4 instructions per packet. On the other hand, architec-

tures employing a more traditional RISC structure such as Intel (Netronome) and Cavium

leave timing issues to the customer, allowing maximum flexibility in terms of how the NP

resources are deployed.

At first inspection it would appear that deterministic processing is well suited to NP

systems. Consider an NP which is processing incoming packets arriving at the NP ingress

port at the rate of LR Megabits per second. To maintain the line rate of the incoming

traffic, the NP must therefore ensure that the amount of time taken to process any packet

does not exceed the packet inter-arrival time Tprocess ≤ TIR, where TIR is the packet

inter-arrival time between two minimum sized packets, each Psize bytes (Equation 5.1).

TIR =
Psize ∗ 8

LR
(5.1)
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Table 5.1: Optical Carrier Instruction Budget
Interface Psize Line Rate (Mbps) TIR(nS)

POS OC-3 46[34] 155.52 2366

POS OC-12 46 622.08 592

POS OC-48 46 2488.32 148

POS OC-192 46 9953.28 37

GigE 64 1000 512

10GigE 64 9953.28 51

In Table 5.1 the minimum packet inter-arrival delay for a number of network configu-

rations is shown. As can be seen from the table, each generation of network technology

has the effect of reducing the available number of clock cycles by a factor of 4. A similar

calculation can be done for other configurations, for example ATM-over-SONET utilises

fixed 52-Byte frames sent over an optical SONET network.

5.1.1.1 Deterministic Processing

Within P-stage deterministic NPs, the entire application is divided across these stages

at compile time. Since not all pipeline stages will have access to the same resources,

the application must be divided with this restriction in mind. For example, access to an

external search structure might be reserved to a single stage of the pipeline. The compi-

lation algorithm must therefore attempt to divide the application into P even stages while

also ensuring this hardware limitation is accounted for. There are a number of challenges

within such pipelined NP architectures. Firstly, not all applications are suited to pipelin-

ing, with certain functions requiring to be atomic operations. Secondly, how can those

applications which are well suited to pipelining be efficiently partitioned when hardware

limitations are factored in? And thirdly, how can deterministic processing be ensured

when technologies such as DRAM require a variable number of cycles to complete?

By implementing certain dedicated hardware solutions it is possible to solve some

of the contention and latency issues with a software based processing system. The most

common NP-based example of this involves implementing on-chip logic to calculate the

next hop address to which a packet should be forwarded to. Instead of utilising a software
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traversed trie structure, requiring multiple memory accesses, a hardware accelerator ca-

pable of traversing the trie in a single cycle can be used to place a known upper bound on

the processing time of each packet, with queue models such as those outlined in Chapter

4 capable of modelling such a system as a basic Markovian queueing system.

5.1.1.2 Exponential Processing

While a deterministic NP architecture places an upper bound on the application which

can be supported, a PE design which is fully software based allows the application de-

signer to determine the tradeoff between the degree of application complexity which can

be supported (the number of cycles available for processing) and processing rate which

must be maintained in order to meet the target network line rate. In the case of a non-

deterministic application, the processing time is discrete in nature within two bounds.

Consider a RISC-type PE executing application n on packet p. The processing time Tn(p)

is given by:

Tn(p) =
∑

k

tk (5.2)

where tk is the time delay associated with function k. In general, the majority of the

processing time is due to the instructions executed and the latency associated with IO and

memory operations:

Tn(p) = tinsn + tmem (5.3)

With only small changes in the underlying data structure, the number of possible ex-

ecution paths is finite and can be estimated at compilation. To illustrate this, consider

the code segment outlined in Listing 5.1. The function outlined represents an IPv4 ad-

dress verification routine and is required during IPv4 packet forwarding. Given a 32-bit

IP address, a router must check if the IP address is either invalid, multicast range or a

normal routable address. In the event of an invalid address the routing application must

be signalled to drop the packet, while valid packet addresses, either multicast or unicast,

must be processed in their respective manner. Viewing each conditional operation as a

node, it is possible to view the application as a path execution tree with a branch at each
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node. In Figure 5.1 the execution path for the code segment is shown. In all there are

four bitwise checks which are mapped to three possible return nodes. In terms of possible

paths traversed, it can be seen that there are five possible combinations.¨ ¥
void c h e c k a d d r e s s ( unsigned i n t i p a d d r e s s ) {
unsigned i n t vaddr ;

/∗ check f o r 0 . x . x . x and 1 2 7 . x . x . x ∗ /

vaddr = ( i p a d d r e s s >> 24) & 0 x0000000F ;

i f ( ( vaddr == 0) | | ( vaddr == 0x7F ) ) /∗ A ∗ /

re turn INVALID TYPE ;

/∗ check f o r 2 5 5 . 2 5 5 . 2 5 5 . 2 5 5 ∗ /

i f ( vaddr == 0xFFFFFFFF ) /∗ B ∗ /

re turn VALID MULTICAST ;

vaddr = ( i p a d d r e s s >> 28) & 0 x0000000F ;

/∗
∗ Check f o r 2 2 4 . x . x . x t o 2 3 9 . x . x . x ( m u l t i c a s t )

∗ /

i f ( vaddr == 0xE ) /∗ C ∗ /

re turn VALID MULTICAST ;

i f ( vaddr == 0xF ) /∗ D ∗ /

re turn INVALID TYPE ;

re turn VALID IP ;

}
§ ¦

Listing 5.1: Verify IP Address

A-INVALID A-B-MULTICAST A-B-C-MULTICAST

A-B-C-D-VALID A-B-C-D-INVALID

While tinsn is discrete, the time delay associated with memory operations is deter-

mined by a number of factors. Memory access can be subdivided into access delays

associated with three regions, tpkt which covers memory accesses to packet memory, tctrl

which are those memory operations accessing the control memory and tlocal which defines
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Figure 5.1: Execution Path For Application n

the memory space local to the PE. Architecturally, the memory regions reflect the fact that

it is common to store packets in one region and control information such as routing tables

in another region, while important data is cached close to the PE.

The tmem is therefore given by Equation 5.4.

tmem = (Npkt ∗ tpkt) + (Nctrl ∗ tctrl) + (Nlocal ∗ tlocal) (5.4)

where Npkt, Nctrl and Nlocal are the number of memory operations falling into each

region. With the majority of modern RISC architectures following a stack-pointer based

architecture, with extensive register movements, it is clear that the number of local mem-

ory accesses will be significantly higher than the number of accesses made to either packet

or control memory. Since any local memory is assumed to be nested close to the PE, it

does not involve any contention or queueing. On the other hand, the control and packet

memories are assumed to be shared between all PEs and therefore involve a contention

or queue delay along with longer access latency. Wolf and Franklin demonstrated that an

M/D/1 queue system provides a good approximation of a shared memory system, particu-

larly at high device loads [135], but does not differentiate the PE, system bus and memory

delays. Intuitively, it is possible to deduce the number of memory accesses for certain

memory regions under defined conditions. For example, a typical IP forwarding appli-
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cation might follow an outline such as; packets are buffered in external DRAM (tpkt),

the forwarding table is maintained in shared SRAM (tctrl) while the packet processing

variables are maintained in local per-PE SRAM. On requesting a packet from the queue

controller, the PE is allocated the next available packet from a certain queue. Instead of

moving packets around memory, the packet request operation results in a pointer to the

packet being returned to the PE. Since IP packet forwarding does not require the packet

payload to be modified, the PE issues memory read operations to packet memory for the

first 20-Bytes of the packet (IP Header) along with any link layer data (interface, time

stamp, etc.). Since the updated Time-To-Live and packet checksum must be written back

to the header, a reasonable approximation of the number of packet memory operations

(per-packet) on a 32-bit architecture is 5 memory reads (1 Word Link Layer Header plus

4 Word IP Header) as well as a single memory write operation. The number of packet

memory transactions is therefore Npkt = 6. Although the number of forwarding table

accesses per packet is unknown, the number will typically be bounded by the underlying

algorithm, e.g. a 32-bit multi-bit trie with 4-bit stride will require at most 8 memory oper-

ations. In Section 5.3.3 an empirical analysis of memory distribution for NP applications

is presented.

5.1.1.3 Instruction Budgets

Recalling the maximum amount of packet processing time available outlined previously in

this chapter, there is another method by which NP applications can be examined. Recall-

ing Equation 5.1 it can be seen that, assuming TIR = Tprocess, it is possible to calculate

the number of instructions which can be executed on each packet in order to maintain

line rate. For any microprocessor, the time taken to execute program n on packet p, the

processing time ,Tn(p), is given by:

Tn(p) =
Nins ∗ CPI

fclk

(5.5)

where Nins is the number of instructions executed for program n, fclk is the processor

clock frequency and CPI is the average number of clock ticks required to execute a sin-
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gle instruction. While an ideal architecture requires a single clock cycle to execute one

instruction, some of the difficulties in obtaining an optimal CPI (1 instruction completing

every cycle) were outlined in Chapter 2. Commercial architectures commonly obtain a

value in the range of 1.5 to 2 clocks per instruction. Substituting TIR for Tn(p) it is pos-

sible to deduce the number of instructions which can be supported during the processing

of two minimum sized packets.

Ibudget =
fclk ∗ Psize ∗ 8

LR ∗ CPI
(5.6)

For an n PE system the instruction budget is scaled by a factor of n:

Ibudget(Parallel) =
n ∗ fclk ∗ Psize ∗ 8

LR ∗ CPI
(5.7)

In Figure 5.2 the relationship between the instruction budget and the microprocessor

CPI is plotted for various static parameters. (LR=622.08Mbps, n=8 and fclk=1GHz). It

can be seen that small increases in the average CPI can significantly reduce the instruction

budget available for processing. An increase in the average CPI from 1.2 to 1.4 would

reduce the instruction budget by ∼800 instructions on a POS link with 46-Byte minimum

sized packets 1.

5.2 Workload Analysis

While the analytical framework outlined previously highlights the sensitivity of PE per-

formance to microprocessor CPI, the parameters which directly affect CPI must be de-

rived from empirical analysis using a workload analysis. The next section presents a brief

overview of the applications chosen for this analysis. To ensure a broad analysis, where

possible, the algorithms and applications chosen reflect the differing methods by which

a function can be implemented. For example, none of the benchmarks proposed for NP

architectures include a standard 5-tuple packet classification algorithm. In Chapter 2 the

1A 46-Byte POS link assumes 40-Byte minimum sized TCP/IP packets along with a 6-byte SONET
control header
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Figure 5.2: Instruction Budget Vs. Microprocessor CPI

importance of classification in a number of network applications was highlighted, but

of the various algorithms proposed for 5-tuple packet classification, only HyperCuts and

HiCuts share an algorithm similarity. When evaluating NP performance of packet classi-

fication it is clear that selecting only a single algorithm would limit any general analysis

from being extracted.

With the exception of the structure generation of the Recursive Flow Classification

(RFC) 2 algorithm, the remaining code was implemented by the author in C code. Appli-

cations obtained from previous benchmarks or public sources have been acknowledged

within the research. Applications follow the traditional definition of being either header

or payload based functions. From this initial separation, applications are divided into their

respective functionality such as IP security, packet classification, packet forwarding, etc.

In general, it is unlikely a router would implement only one function, so these applica-

tions would typically form building blocks from which the services required by the router

would be obtained. Where possible, the implementations match those specifications de-

fined in the relevant Request For Comments. For example, the IP forwarding applications

include code to verify the source and destination address, packet header checksum and

2For clarity the acronym RFC refers to the Recursive Flow Classification algorithm in this thesis and
not the common Internet-based Request for Comments.
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the packet Time-To-Live. For the remainder of the thesis, the capitalised abbreviation is

used to identify each network application.

5.2.1 Network Algorithms and Applications

Network applications follow the common division of those applications which utilise the

packet header only (Header Processing Applications), and those applications which utilise

both the packet header and payload during processing (Payload Processing Applications).

5.2.1.1 Header Processing Applications

Packet Forwarding When deploying route lookup algorithms, a network designer is

typically concerned with three factors; the lookup complexity associated with perform-

ing a single route lookup, the memory requirements needed to store the underlying table

structure and the ability to incrementally update the routing table. A large number of

algorithms have been proposed which attempt to trade one of these factors off against an-

other. Current solutions can be divided into three categories; hash-based linear searches,

trie type structures and hardware accelerated IP forwarding. Each method has a num-

ber of advantages when compared. For example, a hash structure typically requires large

amounts of memory but guarantees the number of memory operations required to access

the routing table.

In addition to route lookup, performance and stability requirements necessitate a num-

ber of functions which must be implemented alongside next hop address generation [166].

These packet operations include verifying that the source and destination addresses are

valid, checking the header integrity through a checksum operation before finally checking

and decrementing the Time-To-Live value. The analysis presented in this work chooses

two software algorithms; the Level-Compressed Trie TRIE, which implements both level

and path compression [167], along with a linear hash based forwarding application in

which n routing table entries are mapped to 2n hash entries HASH.
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Packet Classification Similar to packet forwarding, a number of algorithms have been

proposed for packet classification. Heuristic, Decomposition and trie based algorithms

all map the classification ruleset into differing search structures. This work utilises two

classification mechanisms, the heuristic RFC algorithm [58] and the Hypercuts algorithm

HYPER [59] for analysis. Both algorithms are optimised for differing performance con-

straints. While the RFC algorithm attempts to minimise the number of memory accesses

required to classify each packet, it does require large amounts of memory when compared

to the multi-dimensional Hypercuts algorithm.

Traffic Shaping & Queueing With network traffic demonstrating bursty characteris-

tics, some mechanism of shaping traffic patterns to create a more manageable network

is required. Metering algorithms allow packets to be marked and processed differently

based on the network load at that point in time. Queueing algorithms such as Round

Robin (RR), Weighted Round Robin (WRR) and Deficit Round Robin (DRR) allow in-

coming packets to be fairly distributed across the NP, while algorithms such as Random

Early Detection (RED) can be implemented to randomly drop packets if it is clear that

minimum service cannot be maintained. Three algorithms in this category are used for

analysis in this work. The Token Bucket Metering TBM [168] algorithm releases packets

at a rate determined by the amount of tokens stored in a bucked at any one point in time.

The Two-Rate Three Color Marking TCM [169] implements a similar function but can

be used to mark incoming packets either Yellow, Green or Red based on the inter-arrival

time, packet length and bucket states. Finally, the DRR algorithm allows a random data

load to be evenly balanced across a number of queues. The queueing mechanism imple-

mented expands a single data source to m unbalanced queues before further expanding

the structure to n balanced queues.

Miscellaneous Applications Other functions which do not fall into the categories out-

lined above include tasks such as statistics gathering or Network Address Translation

(NAT). Statistical analysis such as network load, flow-based information or a more finely

grained customer-based usage allow network providers to implement functions such as
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Figure 5.3: Deficit Round Robin Load Balancing

user-based metering and identifying potential bottlenecks. NAT services allow networks

to present the same outgoing IP address for all users within the network. At a flow level it

can be seen that translation and statistical analysis are similar functions. Both applications

use either 2 or 5 tuple classification to identify independent flows within the traffic. The

application implemented in this work, STAT, implements a 5-tuple flow based statistical

analysis. At any point in time the number of active flows is available as well as global

statistics such as protocol and port distribution, network throughput, etc.

5.2.1.2 Payload Applications

Packet Encryption Packet encryption is required for functions such as VPN or SSL.

Encryption in IP networks is defined by the IPsec cryptographic security suite. To provide

secure communication across an open network, IPsec utilises symmetric cryptographic

algorithms as a means of encrypting packet data. Algorithm agnostic, IPsec defines the

protocol layout without standardising the specific encryption algorithm. At a network

level it is possible to trade off security and speed. While block algorithms require exten-

sive processing, a stream cipher allows higher performance to be extracted at the cost of

lower security. This work examines three encryption algorithms; the AES algorithm [67],

the less secure but faster CAST algorithm [170], and the stream-based lightweight (but

cryptographically weaker) RC4 cipher [171].
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Packet Authentication In addition to packet encryption, the Authentication Header

(AH) protocol provides a mechanism for securing and verifying packets sent between

networks. For each outgoing packet, a digital signature is created for the packet. This

message digest is added to the packet before the modified datagram is encrypted and

transmitted. A number of hash algorithms are currently available and can be used within

an IPsec implementation, with some algorithms utilising a modified encryption block,

while others are built around transforms specifically chosen to be difficult to implement

in both forward and reverse directions. The 160-bit SHA1 [68] and 128-bit MD5 [172]

algorithms are examined in this work.

Error Correction and Detection Network algorithms such as IP or TCP provide a

means of verifying that data arriving across a network has not been damaged during trans-

mission, but the checksum employed within TCP/IP headers provides little protection to

the header in the case of multiple errors and provides no means of recovering packets

if re-sending is not possible or guaranteed. A more comprehensive method of verify-

ing data is to employ a software based error detection algorithm which allows the entire

packet to be checked for multiple errors. At transmission, the checksum code is generated

and transmitted with the packet. Once the packet is received, the checksum generation is

repeated to verify both values. Should packet correction be required, a more computation-

ally intensive algorithm can be utilised. For a large proportion of IP based traffic it can

be argued that complex error correction codes are not required since any corrupted packet

can always be resent at little cost. But for certain networked cases it may not be possible

to resend data with error correction codes common in satellite, wireless and broadband

network technologies. For technologies highly sensitive to latency, such as video stream-

ing using the H264 Scalable Video Codec [173], routing-based forward error correction

becomes ever more important, with Cisco’s ASR9000 Routers providing optional error

correction [174] at the edge-level of the network. This workload analysis uses two al-

gorithms, the simple 32-bit error detection CRC algorithm and the Reed-Solomon [175]

error correction algorithm RS.
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Packet Manipulation In addition to packet security and verification, another payload

function commonly implemented at a router level is packet manipulation. An example

of these manipulation routines can be seen in the fragmentation algorithm. Since not all

networks provide the same performance or even follow the same level 2 specification, the

maximum packet size allowed on a network may vary from one to another. To deal with

this situation, routers typically fragment large packets into smaller blocks at the entry

point of the network, while the routers employed on the larger Maximum Transmission

Unit (MTU) network might implement a re-assembly algorithm which attempts to rebuild

fragmented packets arriving to this network. This workload analysis uses this fragmenta-

tion algorithm FRAG.3

5.2.2 Simulation Parameters

Table 5.2: Summary of Applications Analysed
Function Key Function

Packet Forwarding
TRIE LC-Trie forwarding

HASH Linear Search Forwarding

Packet Classification
HYPER Trie-based 5-Tuple Classification

RFC Heuristic 5-Tuple Classification

Packet Metering
TBM Token Bucket Metering

TCM Two-Rate Three Color Marker & Metering

Queuing DRR Deficit Round Robin

Miscellaneous STAT Statistics & Flow Maintenance

IPsec Encryption
AES 128-bit AES-CBC

CAST 128-bit CAST-CBC

RC4 Stream Cipher

IPsec Authentication
SHA1 160-bit Message Digest

MD5 128-bit Message Digest

Error
CRC32 32-bit Error Detection

RS Reed-Solomon Error Correction

Manipulation FRAG Packet Fragmentation

3The fragmentation algorithm is expected to be phased out at router level as IPv6 gradually replaces
IPv4.
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Utilising the SimNP simulator described in Chapter 4, the simulation parameters used

for the analysis presented in this chapter are first outlined. A summary of the algorithms

examined in this work is given in Table 5.2. For the forwarding applications, routing

tables are derived from common backbone network connections, with the TRIE algorithm

using the 117,000 entry AT&T forwarding table and the HASH algorithm using a smaller

27,000 entry MAE-WEST routing table. For the classification algorithms, rulesets derived

from Classbench [176] are used. Both classification applications use a 1000 entry ruleset,

with the simulation traces modified to match the semi-synthetic rulesets. In addition to the

OC-12 (AMP) and OC-48 (PSC) traces utilised in Chapter 4, a slower OC-3 TXS trace is

also used during simulation. As with the AMP and PSC traces, the TXS trace is modified

since NLANR trace files do not include valid IP addresses. The trace files are summarised

in Table 5.3. For analysis which is PE specific (e.g. instruction distribution), SimNP is

configured using a single PE with a relative latency between the PE and memory of 5

cycles (both packet and control memory). When examining the degree of parallelism the

PE to memory latency is fixed at 10 cycles as the number of PEs is increased. Each PE

is configured with a coupled zero-latency 128-KByte local SRAM. For branch behaviour

analysis the underlying system parameters are not important since branch penalties or

even predictor performance (examined in Chapter 6) is independent of parameters such

as memory latency or bus utilisation.

Table 5.3: Summary of Trace
Trace POS Connection Npkt Lavg TCP % UDP % OTH %

TXS OC-3 17,000 90 80.41 8.1 11.49

AMP OC-12 250,000 875 96.87 2.28 0.84

PSC OC-48 1,000,000 704 86.46 10.75 2.78

5.3 Simulation Results

The simulation results are divided into a number of sections. Firstly, the instruction dis-

tribution and instruction budget decide whether an application could be supported under

realistic conditions. Secondly, those aspects which reduce PE utilisation are examined.
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Figure 5.4: Instruction Distribution for NP Payload Applications

The parameters include the memory footprint of NP applications, the degree of PE par-

allelism employed in a shared bus system and finally the performance penalty associated

with conditional branch instructions within NP applications.

5.3.1 Instruction Distribution

The first aspect of any workload analysis is to classify the types of instructions commonly

used in network applications.
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Figure 5.5: Instruction Distribution for NP Header Applications

The high memory usage of NP applications is demonstrated in Figure 5.4 and Figure

5.5 which summarise the instruction distribution across three separate traces. Averaged
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across all three traces, memory load and store operations comprise 46.2% of header ap-

plications and 51% of payload tasks and highlight that memory latency hiding techniques

such as multi-threading will remain important methods of ensuring high PE utilisation,

especially with memory access speed failing to keep pace with CPU performance. It can

also be seen that the number of branch operations is higher for header applications than

payload functions, an average 9.5% of all instructions for the 8 header applications and

7% of the payload applications. Both of these topics are covered in more detail later in

this chapter.

5.3.2 Instruction Budget

In Section 5.1.1.3 the instruction budget metric was defined in terms of available process-

ing time per packet. For a given PE CPI, it is possible to estimate how many instructions

can be executed while maintaining the required wire speed. Previous workload analyses

have attempted to link this instruction budget to the average instruction count per packet.

While the average instruction count provides a good snapshot of the workload complexity

of an application, it is not possible to determine if a given application can be supported

via the average instruction count. As an example, consider an IP forwarding application.

In this case, the instruction budget available to one packet must be less than the maximum

instruction count of the application. For a payload application, the instruction budget is

defined by the number of instructions required to process two minimum sized packets

arriving at the line card back-to-back.

5.3.2.1 Header Application Instruction Budget

While a relationship between the instruction count per packet and the payload length can

be deduced for payload based NP applications, it is not possible to extract a similar model

for header based applications. In general, the processing time will be determined by the

control variables used during execution. For example, the number of read operations

required to traverse a trie structure depends on the number of memory reads per node

as well as the initial key being searched for within the trie structure. Examining the per
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Figure 5.6: Header Application Instruction Count Per Packet Distribution

packet instruction traces for four NP header applications in Figure 5.6 (TRIE, HYPER,

DRR & STAT) it can be seen that, with the exception of the HYPER algorithm, there are

only a small number of possible execution paths. In the case of TRIE based IP forwarding

there are six possible execution paths ranging between 614 and 713 instructions, with an

examination of 50000 packets finding that three execution paths (647, 680, 713) cover

93.76% of all processed packets. The STAT and DRR metering algorithms exhibit similar

structures, with only 3 processing paths for DRR and the three most common paths for the

STAT algorithm covering 77.34% of all packets. In Table 5.5 and Table 5.6 the average,

minimum and maximum instruction counts for the TXS and PSC traces are given.

It was seen in Equation 5.7 that to support a given application the number of cycles

used to process a packet must be less than the packet inter-arrival time at that line rate.

For header applications the difference between maximum processing time and the average

processing cost varies from almost zero for HASH-based IP forwarding to over 63% for

the Hypercuts classification algorithm. Across all header applications the results highlight

the importance of determining the maximal processing cost during analysis. In Chapter 2

it was seen that, with the exception of the Intel IXP, it was common for NP architectures
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to include some form of packet metering hardware. As can be seen in table 5.5, the TCM,

TBM and DRR algorithms all require at most 575 instruction cycles to deploy and are

small enough to be implemented on a 1GHz PE, processing packets at up to OC-12 POS

line rates.

To evaluate which applications could be supported and at what degree of parallelism

an instruction budget model is constructed. The PEs utilise a 1 GHz 5-stage ARM9 type

processor, with a CPI of approximately 1.5 [177]. A standard TCP/IP network is used

with a minimum packet size of 40-bytes. The instruction budgets for OC-3, OC-12 and

OC-48 optical links are are shown in Table 5.4.

Table 5.4: ARM9-Type Instruction Budget
Interface TIR Ibudget

OC-3 2000 1371

OC-12 514 342

OC-48 128 85

Table 5.5: Instruction Complexity (Header Applications)

Application Ipp(Avg) Ipp(Min) Ipp(Max) δ %
TXS PSC TXS PSC TXS PSC TXS PSC

TRIE 684 675 614 395 713 746 4 9.51

HASH 4613 4613 4613 4614 4624 4624 0.2 0.2

HYPER 3575 3125 2828 2763 5254 5121 31.9 63.8

RFC 492 524 286 296 531 531 7.3 1.3

DRR 365 504 306 306 575 575 36.5 12.34

TCM 259 215 206 206 261 253 0.7 15

TBM 170 152 152 152 178 174 4.5 12.6

STAT 531 563 392 347 619 619 14.2 9.0

In Table 5.5 the actual instruction complexity for each header application is obtained

from simulation. In addition to the average instruction count per packet (Ipp(Avg)), the

more useful maximum (Ipp(Max)) and minimum (Ipp(Min)) instruction counts are also

extracted. The final column in Table 5.5 highlights the importance of extracting maxi-

mal processing costs from any workload analysis, with the average processing cost for

the HYPER algorithm understating the processing cost by nearly 64% across the exact
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same packet. It can be seen that a single PE system provides enough computing resources

to maintain an OC-3 connection across all applications except the HASH and HYPER

based algorithms. While for an OC-12 based router the number of PEs must be increased

to three in order to support applications such as TRIE-based forwarding, RFC classifi-

cation, DRR-based queueing or a flow based statistical analysis. Increasing the line rate

to 2.4 Gbps (OC-48) reduces the instruction budget to only 85 instructions, highlighting

the need to minimise the average CPI in order to meet future demands. With a budget of

85 instructions per packet, IP forwarding would need to be divided over approximately 9

PEs for peak line rate to be maintained. It should be noted that the HASH based imple-

mentation is not optimised and it may be possible to significantly improve performance

by implementing either a more refined hash algorithm or by providing each PE with a

small hash generating engine. While the Hypercuts algorithm is more efficient in terms of

memory usage, its computational complexity is on average 7 times greater than the RFC

algorithm. Furthermore, only ∼ 180 instructions are actually related to the classification

algorithm, while the remaining instructions are required to fetch and extract the packet

tuples.

5.3.2.2 Payload Application Instruction Budget

As expected, for payload applications, the number of instructions executed on an n-byte

packet will increase linearly with changes in the packet length (Figure 5.7). Utilising

the base α plus length component β estimation outlined in [178], the processing time for

payload applications can be assumed to be:

Tn(p) = α + β ∗ Psize (5.8)

Analysis of simulation data allows the values for α and β to be calculated (Table 5.6).

With the exception of the hashing algorithms, the initial processing cost is quite small

when compared to the per byte instruction count. For example, IPsec AES encryption of a

zero byte packet requires 326 instructions (α) to be executed while encryption of a 4 byte

string requires 676 instructions to be executed.
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Figure 5.7: Instruction Count Vs. Payload Length

For payload applications the worst case scenario is when two minimum sized packets

arrive back-to-back at the network interface. Across all security algorithms it is clear

that a high degree of parallelism would be required to support each application in a fully

software based implementation. Again, assuming a similar PE configuration to that used

in the previous section (fclk = 1GHz, CPI = 1.5), the AES, CAST and RC4 would

all require between 7 and 10 PEs running in parallel. The high initial time required to

configure a software based hashing algorithm would seem to make such implementations

too expensive to deploy. Discounting the per-packet base instruction cost (α), the per-byte

instruction costs of 244 and 231 (Table 5.6) would require 9760 and 9240 instructions for

the SHA and MD5 algorithms respectively. Without massive increases in parallelism it is

difficult to see error correcting codes such as the Reed-Solomon encoder being deployed

on software-based NP systems.
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Table 5.6: Instruction Complexity (Payload Applications)

Application α β
Ipp(Avg) Ipp(Min) Ipp(Max)

TXS PSC TXS PSC TXS PSC

AES 326 87.5 9173 62455 3128 3128 132020 137624
CAST 525 130 7156 47787 2625 2626 99225 99225

RC4 324 86 8439 61707 2732 3076 129324 129324

SHA 7591 244 20666 53899 17281 17281 96201 96201

MD5 13079 231 25572 56363 22309 22309 95603 95603
FRAG 146 5.5 579 5440 146 146 11681 11681
CRC 395 22 2474 15861 1011 1011 39896 39896
RS 112 232 21928 160369 6794 6794 509165 512764

5.3.3 Memory Distribution

Examining published work, it is clear that memory latency remains a substantial issue

regarding PE performance. The high proportion of memory operations places large de-

mands on the bus and memory hierarchies which connect the PE array to external mem-

ory. Segmenting memory into the three regions (control, packet and local), it is possible

to determine how each memory region affects PE (or NP) performance. As an example,

consider a PE executing IP packet forwarding. Once allocated a packet the PE must read 5

data words from packet memory (4-Byte control structure + 20-Byte IPv4 header). From

the previous workload sections it is possible to see that on average the PE will execute

684 (Table 5.5) instructions during processing (TXS-Trace), of which 45.08% are load

and store instructions (∼ 307 instructions). For a 32-bit architecture the packet memory

functions would require 5 data loads and a single data write. With the TRIE algorithm

configured so that the maximum number of trie lookups is eight, with 2 additional mem-

ory reads required to fetch the node structure, the total number of Npkt and Nctrl operations

is 6 and 10 respectively. The remaining 292 memory instructions are therefore accesses

to the local memory and are primarily used for stack operations (PUSH/POP) and data

movements between the register bank and local memory.

Across all NP applications examined in the work it is possible to deduce a similar re-

sult with the exception of the fragment function. In Figure 5.8 and Figure 5.9 the memory

distribution for each application is shown. The PE was configured with a small amount of
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Figure 5.8: Memory Region Distribution (Header Applications)
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Figure 5.9: Memory Region Distribution (Payload Applications)

on-chip per-PE local SRAM (65 Kbytes). This memory maintains program control struc-

tures (stack, heap and initialised data) and variables swapped out of the register bank.

For header applications the number of memory accesses to local memory is almost 92%

across all three traces, with only DRR and RFC generating packet memory requests in ex-

cess of 10% (11% and 10%). For the TRIE algorithm, the figures are 2.5% (8 operations)

to packet memory, 2.3% (7 operations) to control memory and 95.1% to local SRAM.

Since none of the payload applications require access to shared control memory, the

memory requests are divided between packet memory and local per-PE memory. Despite

each application having to transfer the entire payload back and forth from packet memory,

the proportion of packet memory requests remains significantly smaller than local mem-
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ory accesses. Part of this is due to the fact that security algorithms such as AES or SHA

are factored to operate on a block size buffer, requiring stack operations (Load/Store on

an ARM architecture) to be called during each sub-routine jump and return. The majority

of local memory accesses are because operations involving large blocks of data in par-

allel will tend to saturate the PE register base, requiring state variables to be constantly

swapped between the PE register base and local SRAM. Across all 8 applications, only the

FRAG application requires a high proportion of packet memory operations (either read or

write). This is an expected result since it does not actually make significant changes to

the packet, simply moving the data from one buffer to another. The results highlight that

one method of improving PE utilisation is to ensure that only a small latency between the

PE and local memory is present. Additional register space will also help to reduce the

number of swap instructions required during processing.

5.3.4 Parallelisation

The limitation on PE performance due to parallelism is examined in this section. The

negative effects of parallelism can be examined by determining either the NP stall rate or

the per-packet processing rate for each PE. In the first case, the stall rate can be defined as

the number cycles when all PEs are stalled while waiting for external operations (either

memory or interface) to finish. The per-packet processing rate is the average number of

cycles (c) required for a single PE to process a single packet. An n PE system would

ideally require c/n cycles to process the same packet. The deviation away from the ideal

provides a mechanism for determining the degree of parallelism which can be supported.

Commonly referenced as Amdahl’s law, it provides an empirical method of determining

the expected speed-up which can be achieved via increased parallelism.

5.3.4.1 Stall Rate

The utilisation rate for each PE can also be calculated as the ratio of active cycles to total

cycles. In Figure 5.10 the stall rate for each PE, as well as the stall rate for the entire

processing array, is given for four applications. The stall rate for the processing array

115



Analysis of NP Workloads

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  1  2  3  4  5
 0

 4

 8

 12

 16

 20

P
E

  S
ta

ll 
%

N
P

 S
ta

ll 
%

PE Count (Log2(N))

TRIE-NP
TRIE-PE

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  1  2  3  4  5
 0

 2

 4

 6

 8

P
E

 S
ta

ll 
%

N
P

 S
ta

ll 
%

PE Count (Log2(N))

HYPER-NP
HYPER-PE

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  1  2  3  4  5
 0

 2

 4

 6

 8

P
E

  S
ta

ll 
%

N
P

 S
ta

ll 
%

PE Count (Log2(N))

AES-NP
AES-PE

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  1  2  3  4  5
 0

 0.2

 0.4

 0.6

 0.8

 1

P
E

  S
ta

ll 
%

N
P

 S
ta

ll 
%

PE Count (Log2(N))

SHA-NP
SHA-PE

Figure 5.10: NP System Stall Rate(Modified Round Robin Bus)

(NP Stall Rate) is the proportion of the device cycles when all PEs are inactive while

waiting for external data. Above eight PEs the average utilisation rate for each PE is

below 50% for both header based applications. In the case of IP forwarding, each PE is

stalled on average 92% of the time when 32 PEs are used in parallel, highlighting that

increased parallelisation may not be possible without significant increases in memory and

bus performance. It should be noted that the above simulations actually underestimate

the degree of parallelism available since it was assumed that external memory operated

at the same frequency as the PE array. The utilisation rate for the HYPER algorithm

increases linearly from only 10% for a single PE system to ∼82% for a 32-PE system.

With payload applications employing a large number of ALU instructions during packet

processing the utilisation rate is higher for both single and multiple PE systems. In fact,

even scaling the number of PEs running either AES or SHA would continue to yield

positive PE utilisation rates (≥ 50%). The NP stall rate increases from 1.06% to 3.5% as

the number of PEs is increased from 8 to 32, indicating that device contention (bus and

external memories) becomes a performance bottleneck at higher levels of parallelism,

despite the long processing times between packet transfers to packet memory.
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Figure 5.11: NP Stall Cycles Per Packet

The NP stall rate can also be quantified as a per-packet penalty applied to each packet

traversing the router. For a single PE system, ρpe = ρnp, the fact that commands are not

interleaved between parallel PEs results in a high per packet penalty. As the number of

PEs is increased the per-packet NP stall rate decreased before increasing once contention

becomes an issue. In Figure 5.11 it can be seen that the stall penalty per packet falls to 11

cycles for TRIE, 1 cycle for HYPER, 1 cycle for SHA and 4 cycles for AES but increases

rapidly for AES when more than 4 PEs are employed.

5.3.4.2 Per-Packet Processing Rate

Another method of analysing parallelism involves quantifying the average number of cy-

cles per packet. When using Amdahl’s law to estimate the speed-up due to parallelisation,

two factors within the program must be determined. Firstly, P is defined as the propor-

tion of the program which can benefit from parallelisation by degree N, while 1-P is the

proportion of the program which cannot be parallelised. The speedup is therefore:

S =
1

1− P + P
N

(5.9)

For an NP system it was commonly found that packet p is independent of other pack-

ets within the stream, removing any dependencies between one PE and another. Since a
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Figure 5.12: Per-Packet Processing Rate

parallel system such as an NP involves some degree of contention the performance in-

crease is scaled by the PE utilisation ρi. As the degree of parallelism increases the PE

utilisation will fall since the majority of the PE time will be spent waiting for external

device access. In Figure 5.12 the per packet rates for the four applications are shown

alongside the ideal processing rate (ρi = 1). As can be seen, the two header applications

deviate more significantly from the ideal when compared to the AES and SHA algorithms.

For IP forwarding, the per packet processing rate reduces by 44.7% when N is increased

from 1 to 2 but only 2.5% when n is increased from 16 to 32. Similar to previous results,

the small amount of ALU instructions relative to the amount of memory operations limits

the degree of parallelism which can be employed, with the cycles per-packet processing

rate instruction only 13 clock cycles less for a 32 PE system when compared to a 16 PE

system. For the HYPER algorithm the processing rate levels off at 8 PEs. The processing

times for both payload applications continues to decrease even for a 32 PE system. De-

spite having a much lower application complexity, both header applications suffer from

diminishing returns for high levels of parallelism.
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Figure 5.13: Static Branch Analysis of NP Applications

5.4 Conditional Branches within NP applications

In addition to either bus contention or memory bandwidth limitations, another parame-

ter which determines PE utilisation is the branch behaviour of NP applications. As was

discussed in Chapter 2, each branch operation requires either the processor pipeline to be

stalled while the branch is evaluated or for some means of predicting if a branch will be

taken to be implemented. In this section a detailed analysis of branch behaviour in com-

mon NP applications is presented. It should be noted that the use of an ARM architecture

minimises the total number of conditional branch instructions since all instructions can

be made conditional within the ARM ISA, allowing certain small if-else statements to be

reduced to a single conditional ALU operation. This feature accounts for the some of the

difference between the instruction characterisation presented in this work, which found

conditional operations account for 8.5% of instructions, while previous work in [100] and

[91] found that branch instructions comprise 18% and 16.2% of typical network work-

loads, on different ISAs.
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5.4.1 Static Branch Analysis of NP Applications

In Figure 5.13 a static branch analysis for various NP applications is presented. Each ap-

plication is compiled as a static binary using an ARM-targeted cross compiler (gcc-3.4.3).

The U-Branch, C-Branch and C-Insn fields refer to the number of unconditional branches,

conditional branches and conditional ALU operations within the object code. While some

of the conditional operations are related to how the ARM architecture handles function

calls and sub-routine returns during execution, it should be noted that when extending

this analysis to a more generic framework some of these conditional instructions would

be translated into traditional conditional branch segments, i.e. branch operations over

small sections of code. As was noted previously, while the applications are designed to

be as realistic as possible, some of the processing conditions are simplified for simulation

purposes. For example, the IPv4 forwarding algorithm verifies each packet before calcu-

lating the next hop address. A more complete PE implementation would include a method

for detecting network control packets, such as ICMP packets used for inter-router com-

munication. Within a typical router framework it is unlikely that data-plane PEs would be

charged with processing such packets, with the control plane processor providing better

mechanisms. As such, other processing paths and subroutines would be required in order

to create an implementation-ready application.

5.4.2 Dynamic Branch Analysis of NP Applications

An examination of the simulation traces allows dynamic branch behaviour to be extracted.

In general, a dynamic analysis allows branch behaviour to be classified at run time. For

example, while the static analysis identified the number of conditional operations and

allows the application paths to be formed into a tree-type structure, which can be anal-

ysed at compile time, the absolute number of branch instructions is not useful if a single

branch loop is called multiple times. For an NP system, the branch metrics are defined

in conditional branches per packet. In Table 5.7 the dynamic analysis for the 16 NP ap-

plications is shown. The first two columns represent the percentage of the instruction

workload which is comprised of unconditional branch instructions (U-BRd) and condi-
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Table 5.7: Dynamic Branch Analysis of NP Applications
Application U-BRd C-BRd Nbr(min) Nbr(max) ρtk

AES 1.03 2.45 90 2942 0.65

CAST 1.98 2.57 95 2119 0.12

RC4 2.37 1.37 53 1521 0.03

SHA 1.45 1.59 290 893 0.30

MD5 3.81 4.11 944 3046 0.10

FRAG 2.29 12.63 10 1775 0.27

CRC 4.55 4.89 54 1526 0.12

RS 3.55 5.82 559 19631 0.38

TRIE 4.56 6.77 44 48 0.22

HASH 3.91 6.62 234 240 0.37

HYPER 3.54 6.18 150 353 0.29

RFC 2.15 5.76 11 32 0.6

TBM 3.29 2.93 8 9 0.47

TCM 2.48 6.44 11 17 0.55

DRR 1.9 5.8 14 33 0.73

STAT 3.58 9.74 35 60 0.35

tional branch instructions (C-BRd). Examining the instruction flow on a per packet basis

it is possible to determine the maximum and minimum number of conditional branches

per packet (Nbr(min), Nbr(max)). Finally, it is important in quantifying the performance

penalty associated with branch operations to determine the ratio of taken to not taken

branches within the application (ρtk). Typically defined by both the underlying applica-

tion and compilation algorithm, the ratio of taken branches allows only those branches

which incur a pipeline flush (or stall) to be included in the analysis. Similar to the number

of instructions per packet, for payload tasks the number of conditional branches is largely

determined by the packet length, although certain payload applications such as DPI would

not fall into this category.

When considering static branch prediction techniques, the proportion of branches

taken highlights the challenge with most static analysis methods. Consider the two IPsec

encapsulation applications, AES and CAST. While 65% of branches are taken during

AES encryption, only 12% of branches are taken during CAST encryption. Across all
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applications the proportion of taken branches ranges from only 3% for the RC4 algorithm

to almost 75% of branches for the DRR algorithm. An at-compilation heuristic approach

would therefore have to apply generic rules to a wide variation of algorithms. On the

other hand, for payload applications, any scheme which attempts to maintain a run-time

history of branch decisions must take into account the length distribution commonly seen

in Internet traffic, with packets less than 100 bytes and greater than 1000 bytes making up

the majority of Internet traffic.

5.4.3 Branch Penalty per Packet

Recalling Section 3.3.2.1 the average branch penalty per packet can be calculated using

statistics gathered from simulation. With no branch prediction scheme employed, the

penalty in cycles lost per packet for each application is shown in Table 5.8. For a minimum

sized 40-Byte packet encrypted using the AES algorithm, 293 processor cycles are lost

due to taken branches, while for a maximum sized 1500-Byte packet the branch penalty is

almost 3000 processing cycles. Recalling the number of instructions per packet outlined

in Table 5.6, the number of instructions required to encrypt a minimum sized packet is

3128, similar to the branch penalty incurred for a 1500-Byte packet. With Internet traffic

following a complex distribution, in which large packets make up a large proportion of IP

traffic and most applications operate in a greedy mode, a penalty of one minimum sized

packet for each 1500-Byte packet would be difficult to ignore. For header applications

the branch penalty is smaller but remains a significant loss of processing capabilities. For

TRIE-based forwarding, the branch penalty is at least 48 cycles per packet or 7% of the

instruction count (Table 5.6).

5.5 Conclusions

While previous research has examined NP workloads, with comparisons to general pur-

pose applications, the analysis presented in this chapter attempted to determine and quan-

tify those factors which determine PE utilisation. With maximum performance in a
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Table 5.8: Branch Penalty Per Packet (ρtk = 5)
Application ρtk Nbr(min) Nbr(max) τtk(min) τtk(max)

AES 0.65 90 2942 293 9562

CAST 0.12 95 2119 57 1271

RC4 0.03 53 1521 8 228

SHA 0.30 290 893 435 1340

MD5 0.10 944 3046 472 1523

FRAG 0.27 10 1775 14 2396

CRC 0.12 54 1526 32 916

RS 0.38 559 19631 1062 37299

TRIE 0.22 44 48 48 53

HASH 0.37 234 240 433 444

HYPER 0.29 150 353 218 512

RFC 0.60 11 32 33 96

TBM 0.47 8 9 19 25

TCM 0.55 11 17 30 47

DRR 0.73 14 33 51 120

STAT 0.35 35 60 61 105

pipelined PE achieved when the pipeline remains full, pipeline bubbles or stalls can sig-

nificantly decrease performance. Using the SimNP simulator outlined in Chapter 4 the

analysis in this section determined what applications can realistically be supported on a

programmable PE platform for various network line rates. While software based imple-

mentations of security algorithms would require massive degrees of parallelism in order

to support high bitrates, header applications are typically small enough (in terms of in-

struction count) to be implemented in software. In general, NP applications require a high

proportion of memory instructions (relative to the ALU instructions), highlighting possi-

ble limitations in the degree to which parallelism can be used to increase NP performance.

Even for a PE design with zero latency local SRAM, the need to access external control

and packet memory will significantly affect PE utilisation. It is clear that high levels of

parallelism can only ensure future performance gains with corresponding improvements

in both bus and memory technologies. Without significant improvements in these compo-

nents, high degrees of parallelism will quickly result in PE under-utilisation. In the case
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of the configurations examined in this chapter, 8-16 PEs is found to be the optimum for

header based applications while up to 32 PEs can be configured in parallel for payload

based functions.

While memory access latency and bus contention represent two external sources which

reduce PE utilisation, the effect of branch instructions within NP applications represent an

‘internal’ PE performance limitation. Both the analysis in this work and previous work-

load analyses have highlighted the high percentage of conditional operations within NP

applications. For a deeply pipelined PE the effect of these conditional operations is to

result in a large amount of wasted cycles after only a short period of time. Unlike general

purpose systems which have input sources as varied as network interfaces to keyboards,

an NP platform operates on packets only, with the same application remaining in place

for long periods of time. With this is mind it should be possible to minimise the amount

of processing cycles lost due to branch operations. By taking into account some network

traits, it is believed that prediction methods, specific to PEs, should be able to significantly

reduce this branch penalty.
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CHAPTER 6

Branch Prediction in Process Engines

6.1 Introduction

Following on from the workload and branch analysis presented in Chapter 5, this chapter

presents a detailed examination of existing branch prediction schemes when applied to

network workloads. In each case, the existing predictor architectures were implemented

as simulation models within the SimNP simulator. In Chapter 3 the metrics used to eval-

uate branch prediction architectures were discussed. In general it is possible to model

branch prediction at a relatively high functional level, with branch prediction evaluation

and analysis well suited to the SimNP platform. Examining existing prediction schemes

it is found that no current method fully exploits the unique nature of NP applications, pro-

viding scope for a new NP-specific prediction mechanism. Whereas existing prediction

schemes aggregate branch history via a number of saturating counters in order to guide

future predictions, the field-based scheme proposed in this chapter attempts to incorporate

a number of NP specific traits as a means of improving prediction performance. This new

field-based prediction architecture is described before a detailed performance evaluation

of the scheme is presented. Design considerations such as prediction rate, silicon area and

latency are examined and the field-based scheme is found to outperform existing predic-

tion schemes in terms of prediction hit rate while requiring a similar amount of area as

traditional schemes. In all cases the results presented in this chapter where obtained by
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the author via simulations based on either the SimpleScalar/ARM or SimNP simulators

and using the network traces used in previous chapters.

6.2 Performance Evaluation of Existing Prediction Schemes

Recalling the various dynamic predictors outlined in Chapter 2, this sections presents a

detailed analysis of the performance of existing branch prediction schemes when applied

to network workloads1. In general the configurations possible with a dynamic predictor

are to either expand the per-branch pattern history table (PHT) or the global history reg-

ister (GHR). The most basic dynamic prediction method is the directly indexed predictor.

While such an architecture is sub-optimal in terms of prediction rate it does allow the

saturation point for a given application to be determined. The hit rate prediction perfor-

mance for a directly indexed branch predictor is shown in Figure 6.1. While the CRC

application provides almost perfect prediction rates, the remaining applications all follow

a similar pattern, increasing from an initially low prediction rate for ultra-small prediction

tables towards a saturation point when a large number of entries are deployed. Typically,

the reason for a saturation point within branch prediction relates to the problem of branch

interference within the PHT. It is clear that the small application kernel found in NP

applications should minimise the effect of branch interference for large table sizes, but

this small application size also reduces the variance seen in the program counter, a key

aspect in randomising the PHT index. Averaging the header and payload tasks into the

two categories, HPA and PPA, a performance difference between both categories can be

seen. While the average PPA hit rate is almost 95% for small 64-entry predictors, it is

only 85% for the HPA applications. When compared to SPEC benchmark applications

[179] the most noticeable characteristic of NP applications is that they will tend to satu-

rate at a lower point when compared to general purpose applications (SPEC benchmark

applications required at least 8K entries).

The more efficient prediction architectures such as GAp or PAp require both the level

1 and level 2 dimensions to be explored. In each case the specific predictor model was

1The results in this section utilise gcc-2.9.5/glibc/Simplescalar.
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Figure 6.1: Directly Indexed Predictor Performance

implemented on the SimNP platform and the various configurations were examined via

an exhaustive search. In Tables 6.1 and 6.2 the performance of various configurations of

2 level predictors is presented. The prediction hit rates are averaged across the TXS, PSC

and OSU traces used previously. For comparison, a static prediction technique (assume

always taken) is also presented. In the case of global address schemes, performance was

found to increase in a similar fashion to both directly mapped and gshare based schemes,
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Table 6.1: Predictor Performance For Various Global Address Schemes

Architecture Hit Rate %
HPA PPA AVG

Taken 65.41 86.97 74.29

GAg-256 92.29 95.05 93.50

GAg-512 93.59 96.19 94.73

GAp-256-7 94.04 94.36 94.18

GAp-512-8 94.06 95.17 94.55

Table 6.2: Predictor Performance For Various Per Address Schemes

Architecture Hit Rate %
HPA PPA AVG

PAg-(16-256) 91.24 96.88 93.71

PAg-(32-256) 91.96 96.86 94.10

PAg-(64-256) 93.38 96.85 94.90

PAg-(128-256) 93.78 96.86 95.32

PAg-(128-256) 93.78 96.86 95.32

PAp-(4-2-256) 92.58 95.63 94.05

PAp-(4-2-512) 92.23 96.07 94.15
PAp-(4-4-512) 92.19 95.82 94.00

with the gshare architecture consistently outperforming the GAg and GAp architectures

regardless of table size. For the GAp predictor the PHT table size refers to the total

number of PHT entries, so that a 512-8 predictor refers to a scheme in which an 8-bit

GHR is concatenated with a single bit from the program counter to index one of two 256

entry PHTs.

For more complex schemes employing a Per-Address history register, the trade off

is between additional per address level 1 and the number of PHT entries which can be

employed. In the case of a PAg-128-256, 128 8-bit GHRs are used to index a single 256

PHT. The area requirement for such a predictor is estimated as approximately 9,200 tran-

sistors. For a PAp scheme the use of parallel PHTs greatly increases the area requirement,

with the PAp-4-4-512 predictor requiring almost 25,000 transistors to implement. When

compared to the more basic global schemes, it can be seen that neither a PAg nor PAp

provide significant performance increases.
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6.3 Gshare Predictor Performance

With a gshare type architecture identified as providing the most efficient solution to

branch prediction for NP applications, a more detailed analysis of gshare performance

is presented in this section2, with branch interferences, utilisation and saturation each

examined within an NP framework.

Similar to a directly addressed scheme, the optimum number of PHT entries must first

be determined. Using the PSC OC-48 trace, the predictor performance for various PHT

sizes was obtained from simulation (Figure 6.2). For very small table sizes (≤ 32) it can

be seen that a small number of applications have very low prediction rates, with the three

most complex header applications (TRIE, HYPER & STAT) all achieving a hit rate of

70% or lower.

For the payload applications only the prediction rate of the SHA algorithm increases

substantially as the number of PHT entries is increased, with other PPA applications such

as CRC, FRAG, CAST and MD5 all achieving a prediction rate in excess of 90% when

only 16 PHTs are used. In addition to the 12 algorithms outlined in Chapter 5, four more

complex combinational applications are also examined. Since it is unlikely that an ap-

plication such as TCM metering, RFC classification or TRIE-based forwarding would be

implemented as a standalone application, the four applications represent possible config-

urations. In the first case, incoming packets are marked based on the TCM algorithm

before packets marked with a certain colour are classified, otherwise packets are trans-

mitted to the egress port without any classification (TCM-RFC). The second application

implements TRIE based forwarding before fragmenting large files into smaller sections

(TRIE-FRAG). The next application first classifies a packet using the HYPER algorithm

before determining the next hop via TRIE-based lookup (HYPER-TRIE). The final appli-

cation uses the TRIE algorithm and the CRC algorithm to calculate the next hop before

appending a checksum to the forwarded packet (TRIE-CRC). As can be seen in Figure

6.2, the combined applications achieve a lower hit rate when compared to the primitive

2The remaining results in this chapter utilise gcc-3.4.4/newlib/SimNP.
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Figure 6.2: Gshare Predictor Performance for Various Network Applications

functions. This is to be expected since a higher number of conditional instructions will

increase the load factor on a fixed table size, increasing the chance of branch interfer-

ence between conditional instructions. As an example of this fact, the 2-K entry predictor

achieves a hit rate of 96.34% and 95.72% for the FRAG and TRIE algorithms, but the

combined TRIE-FRAG application achieves only 92.78% with the same predictor. With

NP applications becoming increasingly complex, this point highlights that, while gshare-

based solutions can provide good prediction rates, future developments within NP systems

may make such architectures difficult to scale in terms of prediction performance.

In addition to the absolute prediction rate, in Chapter 3 two additional branch predic-

tion metrics were outlined which allow various branch prediction schemes to be analysed.
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Figure 6.3: Gshare Predictor Collisions as a Percentage of PHT Size

The first mechanism is the collision rate which allows the trade-offs within the hashing

scheme to be examined. By modifying the statistics maintained by SimNP during simu-

lation it is possible to extract these two parameters. Figure 6.3 shows the collision rate

for various NP applications obtained from simulation. It is clear from the figure that

below 64 entries there is a high probability that any entry within the PHT table will con-

tain some degree of branch interference, with the branch history represented in the PHT

much more speculative than normal. With gshare employing a single global address reg-

ister, it is possible for the same branch to map to multiple entries since the GHR register

might not match exactly each time the branch is evaluated. In this case the branch history

is distributed across multiple PHT entries, causing interference across multiple branch

131



Branch Prediction in Process Engines

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 4  5  6  7  8  9  10  11

T
ab

le
 U

til
is

at
io

n 
%

PHT Entries (Log2(N))

TRIE
HASH

RFC
HYPER

STAT
DRR
TCM

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 4  5  6  7  8  9  10  11

T
ab

le
 U

til
is

at
io

n 
%

PHT Entries (Log2(N))

AES
SHA
MD5

CAST
CRC

FRAG

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 4  5  6  7  8  9  10  11

T
ab

le
 U

til
is

at
io

n 
%

PHT Entries (Log2(N))

TRIE-FRAG
TCM-RFC

HYPER-TRIE
TRIE-CRC

Figure 6.4: Gshare Predictor Table Utilisation

instructions. Such situations help to explain why certain header applications, such as

HYPER and STAT, perform significantly worse than other applications. For the HYPER

algorithm, with a maximum of 353 branch instructions per packet, a 256-entry PHT has

58 colliding entries, representing 24% of the table size. Furthermore, for all NP appli-

cations, increasing the table size to 512 or greater does not reduce the absolute number

of collisions significantly. Analysis of the TRIE algorithm found 11 collisions on a 256-

entry PHT, while a 2048 entry PHT only reduces the number of collisions to 7. The

collision rate does not directly infer prediction performance since one of the colliding

branches may only be called sparsely, or may be predicted correctly simply because the

other branches at this location have evaluated in the same direction (positive interference).
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The second metric which allows a predictors efficiency to be analysed is the table util-

isation of a given architecture and application. In Figure 6.4 the table utilisation for each

NP application was obtained from single PE simulations. In each case, with the exception

of the two authentication algorithms (MD5 & SHA), no NP application achieves a table

utilisation in excess of 25% for large predictor sizes (2K-Entry). In the case of common

applications such as TRIE, HYPER or STAT the utilisation rate falls from approximately

100% for small 64 entry predictors to only 5.4%, 20.75% and 18.1% respectively for

2048-Entry predictors. For the large applications, the utilisation rate is in excess of 70%

up to 128 entries, with an average utilisation of only 25% for the 2K-Entry predictor.

6.4 Performance Limitations of Dynamic Predictors

As was previously outlined, when compared to general purpose processing, NP applica-

tions occupy smaller footprints and therefore require a smaller number of pattern history

entries. Similar to prediction rates obtained on GPP systems, above a certain size, ad-

ditional table entries provide no increase in the hit rate. Expanding on this analysis, a

detailed examination of the limitations with pattern prediction schemes is now presented,

with each application examined in order to determine which variable(s) within the target

NP application determines predictor performance and whether the average prediction rate

remains the same regardless of the packet trace.

6.4.1 Payload Applications

With dynamic predictors well suited to predicting branch directions within loops, NP data

almost always provides enough iterations to ensure predictor saturation. With the number

of iterations defined by the input packet size and the application block size, it is possible

to infer the relationship between the number of loop iterations (packet length) and the

prediction rate. For an n byte packet processed in sections of p bytes, n
p

iterations of the

control loop are executed. Assuming the control branch is mapped to a 2-bit dynamic

counter initialised as weakly-taken, it is clear that the counter msb will correctly predict
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iterations 1, 2....(n
p
− 1). The prediction rate for branch x is therefore:

HR =
n− p

n
(6.1)

Assuming the application is comprised of a number of nested loop functions, it can be

seen that maximising n should allow increased performance, provided the number of

nested control branches is higher than other ‘flow’ control statements. In Figure 6.5 the

prediction rate for six payload applications is shown as the packet length is increased.

In all cases, 1000 n byte packets were processed using a 64-Entry and 256-Entry gshare

predictor. While a 64-Entry architecture provides only 91.72% and 91.89% hit rates for

40 byte packets (AES & CAST), increasing the average packet size to 200 bytes increases

the prediction rates to 95.36% and 94.35% respectively. Since branch interference re-

mains a significant problem with a small table, the increase in the prediction rate can be

determined as being due to the branch instruction associated with the processing loop

mapping to a saturated counter, correctly predicting all branches except the final itera-

tion. The sheer volume of branch instructions therefore masks mispredictions elsewhere

in the packet processing flow. For hashing algorithms, the packet manipulation routines

are well suited to word aligned boundaries, creating a saw tooth edge (The hash key is

padded between the header and payload as per IPsec Authentication Header Protocol).

For the fragmentation algorithm, a destructive interference initialises the branches at a

very low hit rate (∼ 80%), before stabilising once the average byte count is above the

fragmenting threshold.

Since it would be inefficient to pad every packet less that 100 bytes out to a minimum

nmin bytes, it would be more useful to incorporate this information in other ways. For

example, the packet fragmentation threshold could be set at a level to ensure fragments are

above nmin. For those payload applications which have no dependency between blocks

such as AES and CAST, performance increments could be achieved by grouping small

packets together at encryption time, with the PE configured to encrypt a given data block

before re-segmenting the encrypted buffer into their respective packets.
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Figure 6.5: Payload Application Prediction Vs Packet Length

6.4.2 Header Applications

For header applications there are a number of possible variables which can directly effect

prediction performance. While some of these variables can be safely ignored, e.g. the

percentage of corrupted packets traversing any IP network, the more important question

is how prediction rates change over time.

6.4.2.1 Forwarding Applications

For IP forwarding applications, such as TRIE and HASH, the forwarding table represents

the most dynamic source within the application. Changing as new networks and routes are

added, it is difficult to isolate the routing table from the underlying network topography.
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In the case of network simulations, the lack of availability of real-world network traces

requires shared repositories such as NLANR [164] to be used. For the SimNP simula-

tions, the anonymised addresses are replaced with addresses derived from the destination

addresses referenced in common routing tables. Regardless of the forwarding structure

utilised, the prediction rate is more likely to be changed by the underlying data rather than

the absolute number of entries. To examine this, routing entries from the MAEWEST and

AT&T East Canada routing table are parsed to form a new synthetic routing table. The

results in Table 6.3 demonstrate that although prediction rate will change as the routing

table is altered, the difference in performance is relatively small, 1.45% for TRIE-based

forwarding and 1.03% for HASH based forwarding.

Table 6.3: Gshare Prediction Hit Rate For TRIE and HASH Forwarding
TRIE HASH

Routing Entries Hit Rate % Routing Entries Hit Rate %
75,000 93.72 5,000 96.03

102,000 92.33 10,000 95.66

119,000 92.96 15,000 95.19

141,000 92.27 20,000 96.22

6.4.2.2 Classification Applications

For packet classification algorithms, the prediction rate is determined by both the ruleset

entries and the structure used to represent the ruleset. In the case of RFC, the data struc-

ture requires no conditional operations during the rule lookup, examining the memory

structure in the same fashion regardless of the underlying data. In Table 6.4, the perfor-

mance of a 256-Entry gshare predictor is outlined as the number of classifier rules stored

is increased. For this simulation a 1000 rule classbench [176] defined ruleset was used.

Similar to the forwarding algorithms, the hit rate does not appear to either increase or

decrease with the provision of additional rules. The prediction rate can change by up to

2.58% between one classification set and another, highlighting some of the variance in

dynamic predictor performance.
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Table 6.4: Prediction Hit Rate For Hypercuts Classification
Rule Entries Hit Rate %

250 86.52

500 88.98

750 86.44

1000 86.40

6.4.2.3 Metering & Queueing Applications

The final application types examined in detail are the metering and queueing applications

such as Three Colour Metering (TCM) or Deficit Round Robin (DRR). As described pre-

viously, metering algorithms such as either Single-Rate TCM, Two-Rate TCM, Leaky

Bucket or Token Bucket typically operate by regulating the packet output in order to

match a bucket which is configured to fill with tokens at a given fill rate. In the case of

TCM, two buckets are used during normal operation; command and peak buckets. Both

buckets are configured to fill at different rates, allowing a greater degree of granularity to

be employed during metering. A sample configuration might be for the command bucket

to be used to detect a large number of packets arriving within a short amount of time,

while the peak bucket can be used to detect when a high number of large packets arrive

within a short amount of time. In this case, packets falling into the command bucket are

marked green, packets falling into the peak bucket are marked yellow, otherwise (low

network load) packets are marked red. To examine predictor performance for various net-

work conditions, the same 100,000 packets from the OC-48 trace are metered for various

configurations of the fill rates. The results are summarised in Table 6.5, with the pre-

diction rate varying between 98.1% for periods of time where network load is relatively

low (À Red) and 93.13% when a high proportion of the packets exceed the peak and

command fill rates.

The final application examined is the deficit round robin queueing algorithm. Similar

to other queueing systems, there are three variables within the algorithm which can be

identified as possibly altering prediction rates; the number of unbalanced input queues

(Nip), the number of output queues, (Nop), and the quantum associated with each round
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Table 6.5: Prediction Hit Rate For TCM Metering
Red % Green % Yellow % Hit Rate %

0.20 4.34 95.46 98.1

22.54 4.34 73.13 97.71

50.41 49.59 0 95.83

20.31 54.39 25.30 94.7

22.54 65.51 11.95 94.98

50.42 40.20 9.38 94.34

44.63 35.45 19.91 93.13

(Qrr). The quantum within the DRR algorithm refers to how many bytes are moved

from the input to the output during each round of the algorithm, so that, for example, if

the current packet at input is 500 bytes long, the current queue quantum is 300 and the

quantum added per round is 100, the packet must wait 2 iterations before being moved

to the balanced output queue. Using the OC-12 packet trace, the prediction rate for a

256-Entry gshare predictor is shown in Figure 6.6. In Figure 6.6(A) the prediction rate is

shown for a varying number of input and output queues. As can be seen, in both cases the

prediction rate increases as the number of queues is balanced before falling almost 3%

as the number of configured queues (either input or output) exceeds the number of fixed

queues (either input (Nip) or output (Nop). While it is clear that the relationship between

the number of input/output queues will affect the prediction rate, the quantum size has

no definitive relationship to the hit rate. For configurations involving a large number of

queues, the prediction rate changes by approximately 1% as the quantum is increased

from 100 to 1200. A quantum of 1200 would allow nearly all packets through within a

single iteration, minimising the ability of the algorithm to balance the output queues.

6.4.3 Summary of Predictor Performance

While Section 6.3 examined the performance of a gshare under fixed conditions, the anal-

ysis outlined above attempts to quantify branch prediction performance as the underlying

network conditions are varied. In the case of payload applications, maximising the packet

length provides one method of improving PE performance. For all payload applications
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Figure 6.6: Prediction Rate For DRR Algorithm

except fragmentation, is was seen that a small 64-Entry predictor can provide similar per-

formance to a 256-Entry predictor provided the packet length is long enough to mask

some of the mispredictions. To maximise prediction rates, two methods are available

which can easily incorporate this information at little cost. Firstly, the fragmentation size,

either at host or router level, could be set in such a manner so as to ensure any fragmented

packets are above a threshold determined by expected router performance. Secondly, re-

gardless of flow state, it may be possible to concatenate small packets into a larger packet

if the target application is found to be data block independent. However, since both frag-

mentation and flow-level application behaviour are topics more likely to be changed at a

host level, neither of these topics is explored in detail (the IPv6 standard assumes packet

fragmentation is handled by end nodes only). For header applications it was seen that

both IP forwarding and packet classification are relatively insensitive to changes in the

underlying control structures. For applications which store information in a trie structure,

the shape of the trie will have more influence on prediction rates than the absolute number

of entries. Larger networks, as well as the spread of IP connected systems to nations such

as China and India, necessitate both wider and deeper trie structures, with IPv6 providing
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a large amount of addressable users.

Queueing and metering applications are found to exhibit a large degree of variance as

underlying parameters and network conditions are altered. In the case of the TCM meter-

ing algorithm, changes in how packets are metered and therefore coloured significantly

alter the prediction rate, while for a software implementation of the DRR algorithm, the

prediction rate is likely to be determined by the number of input and output queues em-

ployed, with modern routers employing thousands of queues. With these results in mind,

the challenge for achieving high PE utilisation is how additional prediction performance

can be achieved when the dynamic branch behaviour outlined in this section is taken into

account.

6.5 Utilising Packet Flow Information during Branch Pre-

diction

6.5.1 Flow Information For Payload Applications

For payload applications, the majority of the branch history represents branch operations

corresponding to the control loop operating on the packet payload. Consider the pseudo

code for a packet encryption and encapsulation application outlined in Listing 6.1. Once

the packet has been fetched, the header and payload are encrypted on a fixed per-block

basis. The encrypt packet function encrypts the next block size number of bytes starting

from pkt ptr and attaches the result to enc pkt. The while-loop continues until every byte

of the packet (including the header) has been fetched and encrypted. Then the encrypted

packet is encapsulated with a new IP packet header for transmission. Generalising this

framework to all payload applications it can be seen that to attach a digital signature or

checksum to the outgoing packet, the function encrypt packet would be changed while

the encapsulation routine would also be altered to reflect the new requirements. However,

the overall programming design would remain the same.

With the branch history growing linearly, it can be seen that while the branch history
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should represent a summary of previous branch history, it is likely to be only the history

of the immediately previous packet. Examining the sample code outlined below, it is clear

that if the packets i and i+1 are of equal length, the execution path traversed should be

identical (assuming no processor/packet exceptions). Analysing the instruction paths for

payload applications it is found that for applications such as AES, CAST, CRC or FRAG,

the execution path grows linearly.¨ ¥
p a c k e t e n c a p s u l a t e ( char∗ p k t p t r ) {

s t r u c t i p i p h d r , n e w i p h d r ;

char∗ e n c p k t ;

i p h d r = f e t c h h e a d e r ( p k t p t r ) ;

whi le ( i p h d r . i p l e n ) {
e n c r y p t p a c k e t ( p k t p t r , e n c p k t , b l o c k s i z e ) ;

i p h d r . i p l e n −= b l o c k s i z e ;

p k t p t r += b l o c k s i z e ;

}
n e w i p h d r = new header ( i p h d r , e n c p k t ) ;

p k t p t r = e n c a p p a c k e t ( new iphdr , e n c p k t ) ;

t r a n s m i t ( p k t p t r ) ;

}
§ ¦

Listing 6.1: Pseudo Code for Encryption and Encapsulation

In Figure 6.7 the branch history string for the AES application is shown. The branch

string represents a bit sequence formed by the evaluation of all branches during packet

processing, i.e. a ‘1’ represents a taken branch while a ‘0’ represents a not-taken branch.

In the figure, the hexadecimal value 105FF001 describes 32 branch operations, were the

first three branches where not taken, the forth branch was taken, followed by 4 not taken

branches, etc. For the AES algorithm, all valid packets have the exact same execution

history for the first 121 branch operations, while those packets greater than 48 bytes con-

tinue from this point on. For other payload applications a similar behaviour can also be

seen, with the exception of the hashing algorithms (MD5 and SHA-1) which have a num-

ber of paths at block size boundaries but identical bit sequences between these block size
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Figure 6.7: Execution Path For AES Algorithm

boundaries.

Since the PHT branch history represents the sum of previous packet lengths, one

method of improving branch prediction performance would be to section the branch his-

tory based on the header field which differentiated the execution path for packets of vary-

ing length. Recalling the dynamic branch behaviour analysis presented in Chapter 5 it

is obvious that it would not be feasible to completely retain the branch history for each

possible packet length, requiring too many separate entries and too much cache history.

However, an analysis of network traces finds that certain packet lengths represent the ma-

jority of IP traffic (Table 6.6). For the 1.7 million packet PSC trace, 8 individual packet

lengths comprise over 76% of the total packet trace. By incorporating this information

at run time, improvements in the branch prediction rate should be possible. It should be

Table 6.6: Detailed Packet Distribution For OC-48 Trace
Packet Length Percentage of Trace

40 17.10

52 15.54

1420 7.74

1500 30.10

Total 70.48

noted that more general packet distribution studies in [180], [181] and [182] found that

in addition to high proportion of small (≤ 100) and large (≥ 1000) packets, another dis-

tribution peak can be seen at packet lengths of approximately 500 bytes. However, none

of the traces used in this study had such a peak, but it is expected that such a distribution

would further increase the performance of a flow-based predictor scheme since it further

reduces the variance of packet lengths which must be indexed.
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6.5.2 Flow Information For Header Applications

While payload applications typically follow a loop framework, header based applications

are more commonly implemented as a number of if-else statements. An example of this is

shown in the IP forwarding pseudo code outlined in Listing 6.2. In this example, a packet

pointer pkt ptr is passed to the function packet forward() for processing. Once the whole

IP packet header iphdr has been fetched and verified, the next hop address is determined

based on the destination IP address. If the header or the next hop is not valid, the packet is

dropped. Otherwise, it is modified (e.g. decrementing the Time-To-Live field of IP packet

header) and forwarded.

¨ ¥
p a c k e t f o r w a r d ( char∗ p k t p t r )

{
s t r u c t i p i p h d r ;

i n t n e x t h o p ;

i p h d r = f e t c h h e a d e r ( p k t p t r ) ;

i f ( v e r i f y h e a d e r ( i p h d r ) == TRUE) {
n e x t h o p = f i n d n e x t h o p ( i p h d r . d s t a d d r e s s ) ;

i f ( n e x t h o p == PROBLEM)

drop ( p k t p t r ) ;

e l s e {
modify ( i p h d r ) ;

t r a n s m i t ( p k t p t r ) ;

}
} e l s e

drop ( p k t p t r ) ;

}
§ ¦

Listing 6.2: Pseudo code for IP Forwarding

Assuming the vast majority of packets pass verification, the execution path can be

seen to be most affected by the destination address. Similar to predicting branch direction

by segmenting branch history by sizes, the branch direction for an application such as IP
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forwarding can be predicted by assuming two packets with the same destination address

will follow the same execution path.

Applying the same principal to other header applications it is possible to extract packet

fields which can be used to identify the most likely execution path. For packet classifica-

tion, statistics or NAT applications, packets of the same flow will have the same execution

path, with flow identification possible at a 2, 3 or 5 tuple level. For queueing and me-

tering algorithms it is not possible to deduce a single variable by which future branch

instructions can be predicted based on past packet history. For the metering algorithms,

the inter-arrival time will determine the number of tokens added to the bucket during the

inter-arrival period and therefore influence the prediction decision(s). For queuing algo-

rithms such as DRR, the packet length does provide a hint as to the execution path which

might be taken but, with no reference to the quantum (or more specifically the quantum

per round), using the packet length to predict how a packet will be processed will be

wrong a certain proportion of times.

It is clear that for payload applications it is possible to determine future execution

paths based on how previous packets of the same length have been processed. Similarly,

for packet forwarding applications it is possible to predict future branch decisions based

on how previous packets routed to the same destination addresses were processed. These

header fields (Search Keys) can be further expanded to include flow based applications

such as RFC, HYPER or STAT, whereas for metering and queueing algorithms, a search

key based on packet length represents a method of indexing one possible execution path.

A summary of possible IP based search keys by which application branch history can be

sectioned is presented in Table 6.7.

6.5.3 Indexing Branch History

Given that the Search Keys (SK) outlined in the previous section can be used to partition

branch history on a per-packet basis, the question is how this information can be used to

improve branch prediction rates within a PE. Consider a PE which operates on a run-to-

completion basis, where packets are either requested from a central arbitrator or popped
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Table 6.7: Flow-Index Search Key Extracted From Packet Header
Architecture Search Key

TRIE Source IP + Destination IP

HASH Source IP + Destination IP

HYPER Source IP + Destination IP + Protocol

RFC Source IP + Destination IP + Protocol

STAT Source IP + Destination IP + Protocol

DRR Length

TCM Length

AES Length

SHA Length

CRC Length

FRAG Length + Offset

off the front of a queue mechanism. Once packet i has been allocated to the waiting PE,

the packet can be processed. The Branch History (BH) of packet i can be defined as

the concatenation of the m conditional branch operations encountered during the packet

processing stage

BHi = c0.c1.c2...cm−1 (6.2)

Seen as single branch history would not provide much additional information, n previous

packet histories must be stored, creating an n ∗m branch String Table (ST).

ST =
m∑
−1i=0 = BH0 ∪BH1 ∪BH2 ∪ ...BHn (6.3)

Future use of BHi to predict branch behaviour of packet k, both of which have matching

search keys (SKk =∈ ST ), depends on the PE being able to index the string table based

on a search key instead of an absolute address. A number of methods of performing this

function are possible. Firstly, the search keys can be stored in a tag memory associated

with each m-bit string. Given a search key, a hardware mechanism to linearly search

all n elements can be performed to identify the correct location. Parallelisation of this

search function is possible since multiple locations could be examined at the same time.

Assuming the indexing function must be complete in a single clock cycle, n indexed
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Figure 6.8: Binary/Ternary CAM Operation

search keys, each of which is log2(n) bits long would require n ∗ log2(p) SRAM bits and

n log2(n)-bit binary comparators (XOR operations).

A second method would be to utilise the search key in a hash algorithm to create a

hash-indexed structure. As with all hash structures, the lookup time to find the index

address would be O(1). Replacing the parallel subtractors required for a linear search

with a single combinational hashing block, the primary difficulty with a hash structure is

that for small values of n, hash collisions would present a serious limitation to predictor

performance. For example, if the predictor was required to retain the branch history of

the past 256 (N=8) packets, the birthday paradox implies a hash collision for every 2
N
2

different inputs. As with the hash schemes employed by branch prediction, the need to

heavily reduce the mapped space implies a high table load factor, with the corresponding

collision rate.

Another possible method by which the string table can be indexed is to use a CAM

structure [183]. Unlike normal SRAM which accesses data based on an address presented

to the SRAM logic, content addressable memory operates by examining all locations with

a search key before returning the addresses of the locations where the content matches

the search key (if any). Available in either Binary or Ternary format, the difference is

outlined in Figure 6.8. For a binary system, an exact match between the search key and

the stored values results in the address being returned, while in a ternary CAM certain bits
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within the search structure can be masked off as ‘don’t care’ states via the mask register.

In the example shown, two locations within the TCAM match the search key, with the

lowest location being returned by precedent. For flow-indexed branch prediction, a CAM

structure allows a binding between the search keys and history registers to be created with

no chance of collision across search keys.

6.5.4 Field-Based Branch Predictor

With each location of an N entry CAM mapping to an address offset within an N*M-bit

string table, it is possible to create a full-associative Branch String Table in which the

index can be easily accessed via a CAM search. While it is clear that the branch history

can be used to guide future predictions of packets matching the search key, there is no

history available for the first packet of a matching key-flow3. To solve this training time,

a Fall-Back (FB) predictor must be present while the branch history is being collated.

Furthermore, since the memory allocated to each search key may be less than the number

of branch operations evaluated during processing, the fall-back predictor must also pro-

vide prediction if the stored branch history in the ST has been exhausted. Assuming hit

rate of the string table prediction and fall-back predictor is HRST and HRFB , the overall

prediction rate for a packet with search key SKk and a branch history of length M can be

estimated as:

PRk =





HRST if SKk ∈ ST & M ≤ Mthreshold

HRFB if SKk 6∈ ST

HRFB if M ≥ Mthreshold

HRFB if Tmiss ≥ Tthreshold

(6.4)

where Mthreshold and Tthreshold are the two configurable threshold values used to de-

termine predictor behaviour when the current branch history length exceeds the stored

branch history and Tthreshold is used to allow fall-back prediction when the string his-

tory does not accurately represent the current packet execution path. Once the number
3A key-flow is defined as those packets which having matching search keys
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of mispredicts exceeds the threshold, the branch history is assumed to no longer match

the packet execution and so control is passed to the fall-back predictor. In addition to

predictor behaviour during normal operation, another issue which must be resolved is the

methodology employed when allocating a CAM entry to new search keys. For header

applications such as IP forwarding or packet classification it is assumed that a search key

will time out as the underlying network flow terminates. To ensure fairness, a new search

key is allocated to the next CAM location, regardless of the current state or how often the

CAM location is accessed. As such, the CAM allocation algorithm can be simplified to

a round robin mechanism and is implementable via a simple modulo counter. While the

branch string width (M) relates to the precision applied to each packet matching a given

search key, the number of CAM entries (N) regulates the number of active flows retained

at any point in time, or the amount of time a specific branch history remains available to

the predictor. For certain payload applications, a semi-static branch prediction method-

ology might be to pre-compute and allocate a certain number of the CAM entries (and

branch history strings) to those search keys which are highly probable to occur again, e.g.

40, 64 and 1500 byte packets.

A block diagram outlining a field-based predictor scheme is shown in Figure 6.9. Us-

ing a simple clocking scheme, Figure 6.10 presents a timing diagram for such a predictor

scheme. In the first instance, a new packet allocated to the PE triggers the bNewPacket

signal which allows the internal address logic to be reset. While the address logic is being

reset, the new packet signal can be used to latch the search key into the predictor logic.

On the next clock cycle the CAM unit either returns a match or signals that the search key

must be allocated space within both the CAM and string table. In the timing diagram it is

assumed that the search key matches contents found in CAM address ST Address. Using

the bMatch signal the output multiplexer is to configured to select the least significant

bit of the T-bit O/P shift register. At the same time as the multiplexer is being set, the

ST Address value is used by ST address logic to calculate the index address in the string

table. To save on having to access the string table for each branch prediction, the T-bit

input and output registers allow the string table to be accessed in T-bit blocks, fetching
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Figure 6.9: Block Diagram of Field-Based Predictor

the next T branch operations during read operations and writing T bits when updating the

string table history. At the cost of an additional register, such a configuration allows the

critical path of the design to be reduced to a signal shift register during normal read-mode

predictions, with the bIsBranch signal shifting the contents of the O/P register by one

place. Since space within the CAM logic is allocated on a fair basis, the address logic

used within both the CAM and string table logic can be implemented as simple modulo

counters. As can be seen, the prediction architecture can be expanded in three directions,

through additional CAM entries, a longer branch history per entry or by expanding the

number of PHT entries within the fall-back predictor. The CAM width is configured as

32-bits wide, requiring certain values to be compressed before concatenation into a search

string, while other small values such as the 16-bit packet length is padded out with leading

zeros.
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Figure 6.10: Example Timing Diagram for Field-Based Predictor

6.6 Performance Evaluation of a Proposed Predictor

Utilising the architecture outlined in the previous section, an analysis of the performance

is presented in this section. A software model for the field-based predictor was imple-

mented within the SimNP simulator, allowing the proposed architecture to be compared

to the results presented previously without any change in other system parameters. Firstly,

the latency and area requirement of a field-based predictor is examined to ensure the de-

sign constraints are realistic. Secondly, the utilisation of a field-based scheme is presented

since the branch history must be used significantly more than the fallback predictor to

justify such an architecture. Thirdly, an examination of impact of both additional CAM

entries, longer branch history width and a larger fallback predictor is presented for both

individual and combinational applications.

6.6.1 Latency of Field-Based Branch Predictor

As was shown in the Figure 6.10, there is considerable scope for hiding the latency as-

sociated with CAM lookup timing in a manner such that the delay is transparent to the

overall prediction function. Considering it is unlikely that the CAM lookup and string

table indexing could occur in a single clock cycle a more obvious solution would be to
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trigger the bNewPacket signal as early as possible, processing the lookup function while

the packet is still being allocated to the PE.

A sample configuration might be a situation where the PE requests a packet from a

centralised queue arbitrator. On receipt of a packet request, the arbitration unit returns the

search key, packet address and packet length to the requesting PE. Provided the very first

instruction in the processing stream is not a branch instruction, it is therefore possible

to process the setup functions before packet processing occurs. The CAM read time is

τcam, the string table read time is τstring and the fall-back predictor read time is τgshare.

Generally speaking, the delay associated with CAM read operations is heavily dependent

on factors such as the number of entries to be searched and the speed at which one CAM

location can be clocked. In CMOS, TCAM architectures can be operated at very high

frequencies (3nS in 0.18um technology [184]). For large external TCAMs, a typical im-

plementation might be to clock the device at this speed by processing only a section of

the TCAM entries during each clock cycle, creating a multi-cycle lookup which must be

pipelined. Since the CAM structure employed in the proposed branch predictor is lim-

ited to only a small number of entries the CAM lookup operation can be performed fast

enough in a single cycle. During normal execution, the branch predictor must either trig-

ger the O/P register or wait for the gshare predictor to determine a prediction direction.

The time delay for each prediction bit is therefore

τpredict =





τreg if k ∈ ST

τgshare all other conditions
(6.5)

Similar to the update function employed within traditional dynamic predictors, control

operations associated with updating the O/P register, updating the misprediction condi-

tions, checking the string length and writing the prediction bit back to the predictor can

be arranged in such a fashion so that they occur between branch operations.
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6.6.2 Chip Area of Field-Based Branch Predictor

Similar to previous prediction architectures examined, for a field-Based solution to be

viable, the transistor cost must be small enough when compared to the overall PE area.

Using either a 6 or 9 Transistor CAM cell, ([184] and [183]), the area of an N/M/P pre-

dictor can be estimated as4:

Afield = (6 ∗N ∗ CAMwidth) + (6 ∗N ∗M) + (6 ∗ 2 ∗ P ) (6.6)

For a 32-bit wide CAM structure, the area of a 32/128/128 field-based predictor would be

32,256 transistors, comparable to the 24,000 transistors required for the 2K entry gshare

predictor. Recalling that the utilisation of a gshare-based scheme quickly falls off above

256 entries, the original transistor budget of 25% of PE area allows various configura-

tions to be examined. When compared to 32/128/128, another configuration might favour

a longer string history per search key with a smaller amount of searchable elements. For

example, a 16/512/256 field-based predictor allows a large amount of branch history to

be retained, increasing prediction precision since matching packets have almost perfect

prediction, providing the history length is shorter than the threshold (Mthreshold). Such a

configuration would require∼54,000 transistors to implement and would provide enough

branch history to encompass all header applications and those small packet lengths pro-

cessed by a payload application.

6.6.3 Utilisation of Field-Based Branch Predictor

In addition to meeting the area and latency requirements, a field-based prediction must

also be utilised enough to justify the additional silicon.

As can be seen from Table 6.7, four types of search strings can be used to cover all

11 applications. In Table 6.8 the utilisation rate for 1,000,000 packets of the PSC trace

is given. With only 16 CAM entries, the CAM logic is used for over 92% of packets

processed during IP forwarding, with the proportion rising to 97% when n=128. For

4The area associated with the address logic, memory decoders and latches is negligible when compared
to the area of either the CAM logic or the branch string table
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Table 6.8: Percentage of Packets Predicted Via Field-Based Scheme (PSC Trace)
Search Key N=16 N=32 N=64 N=128

TRIE 92.53 91.05 96.61 97.47

HYPER 86.23 89.38 93.77 95.33

AES 86.07 89.38 92.43 95.04

FRAG 86.07 89.38 92.43 95.04

the other applications, the utilisation rate is consistently over 86% for a 16 entry device,

increasing to 95% when a 128-entry CAM (N=128) is employed.

6.6.4 Performance Evaluation

Examining NP applications it can be intuitively deduced how a particular application

should behave when a field-based system is deployed. For payload applications, a high

proportion of small packets will increase the prediction rate when compared to a gshare

system since the entire branch history can be cached. For header applications it is clear

that a string table length in excess of the maximum branch count will provide no additional

performance benefits. For such configurations it would be more beneficial to implement

a large amount of CAM entries, with the address logic capable of being configured so

that it is possible to have either a fully associative relationship between the CAM table

and the string table, or by disabling the top n entries of an N-entry CAM it would be

possible to expand the string table history allocated to each of the N-n enabled entries. A

detailed analysis of this behaviour is now presented, with the NP applications grouped by

functionality.

6.6.4.1 Header Applications

The most important function required by a modern router, previous sections highlighted

that while a gshare predictor provides better performance than other two level schemes, in

general, all such prediction architectures will tend to saturate between 256 and 512 entries.

In Figure 6.11 the prediction rate for the two forwarding applications is compared to two

base gshare configurations (GS-256 and GS-512). For the Field-Based scheme (FB), the
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Figure 6.11: Field-Based Predictor Performance For Forwarding Applications

fall-back predictor employed is a gshare scheme with 128 PHT entries. The two digits

within the identifier relate to the number of CAM entries and the size of string table per

entry (N/M).

As can be seen in Figure 6.11, the prediction rate for both algorithms is improved

using a field-based system. For the TRIE algorithm, the hit rate is increased from 92.08%

for a 512 PHT gshare predictor to over 99.19% for field-based predictor with 16 CAM

entries. The short branch history of the TRIE algorithm means that provision of a larger

string table does not improve performance since the entire packet branch history can be

stored within a 64-bit string table. On the other hand, additional CAM entries do provide

a small degree of performance increase (99.48%). For the HASH algorithm, two aspects

are of note. Firstly, the larger branch history makes the HASH algorithm more sensitive to

the string table width. A change in the string table width from 64-bits to 128-bits increases

the prediction rate from 98.27% to 99.42%. Secondly, since the string history would be

exhausted only half way through packet processing, it is clear that the gshare scheme must

be less well suited to traversal of a highly linked hash structure, since the first half of the

application roughly translates to data retrieval. As with the TRIE algorithm, additional

CAM entries provide little performance increase, although for higher speed connections
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(AMP and PSC) this relationship would be more apparent.

For classification based algorithms such as RFC, HYPER or STAT, the prediction rate

is shown in Figure 6.12. The STAT algorithm implements a flow-based identification

system, with packet flows identified via the five tuples, and statistics maintained dynam-

ically on a per-flow and a global basis. Both the RFC and STAT algorithm require a

64-bit history for each flow, while the HYPER algorithm requires storage for up to 353

branch operations per packet. For clarity, only the results for 256-bit string table widths

are shown in Figure 6.12, although it is clear that only the HYPER algorithm requires

table size greater than 64-bit and that a more optimised implementation of the HYPER

algorithm could significantly reduce the amount of branch operations required per packet.

While the RFC and HYPER algorithm do not modify the underlying search structure, the

STAT application presents a challenge in that a mapped flow entry may be deleted if the

flow terminates. For situations such as this, the cached branch history may only represent

part of current conditional path, with a slightly different execution path as the flow statis-

tics are updated. As with the forwarding applications, a 128 PHT entry gshare predictor

is employed as the fall-back scheme. For the RFC algorithm, a 64/64 field-based predic-

tor provides a prediction rate of 99.64%, an improvement of over 5% from the 512-entry

gshare scheme (94.59%). For the HYPER algorithm, a 256-bit string table does not cache

the entire packet history. However, performance is still increased from only 87.61% for

a 512-entry gshare scheme to over 98.80% for a 32/256 field-based predictor. Similarly,

the field-based scheme improves performance for the STAT algorithm by at least 4%,

but, with a more dynamic nature, it does not reach the prediction rates of other similar

classification algorithms.

Finally, metering and queueing algorithms are examined. Both applications have rel-

atively short branch histories per packet and so can be fully cached with a 32-bit string

history width. As was previously discussed, the metering algorithms such as TCM and

TBM are highly speculative since the execution path in both algorithms is determined by

a largely non-deterministic value, namely the packet inter-arrival time. While it would be

possible to use a scaled version of inter-arrival time as a search key within the field-based

155



Branch Prediction in Process Engines

RFC
HYPER
STAT

 80%

 85%

 90%

 95%

 100%

G
S

−
25

6

G
S

−
51

2

F
B

−
16

/2
56

F
B

−
32

/2
56

F
B

−
64

/2
56

H
it 

R
at

e 

Figure 6.12: Field-Based Predictor Performance For Classification Applications
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Figure 6.13: Field-Based Predictor Performance For Queueing & Metering Applications

scheme, such a mechanism would ignore the packet length and remains speculative. A

more simple solution is to configure the field-based scheme in such a way that a single

misprediction causes the fall-back predictor to be used, allowing some of the top level

conditional code to be predicted before using the fall-back prediction. In Figure 6.13 it

can be seen that a field-based scheme with a 128-entry fallback prediction provides a sim-
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Figure 6.14: Field-Based Predictor Performance For Encryption Applications

ilar performance to a much larger gshare predictor, while for the DRR algorithm, average

performance is increased by over 6% when comparing a 16/32 (N/M) field-based scheme

and a 512-entry gshare predictor. Although, as with the gshare scheme, prediction rates

for the DRR algorithm can vary when either the number of queues or the round quantum

is altered.

6.6.4.2 Payload Applications

For payload applications two important factors must be noted. Firstly, since it would be

inefficient to cache the entire branch history for long packets, the prediction rate after the

string history has been exhausted would be largely determined by the architecture em-

ployed in the fall-back prediction. However, as was examined in section 6.4.1, two level

schemes are well suited to prediction on long packets, with most payload applications

(except DPI) employing a loop structure which can be easily predicted for the majority of

iterations. Secondly, the percentage of small packets within the trace will heavily affect

the performance of the field-based scheme. In the case of the simulations presented in this

section, the TXS trace utilised has a high proportion of small packets, allowing the field-

based scheme to be fully utilised. In Figure 6.14 the prediction rates for the two encryption
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Figure 6.15: Field-Based Predictor Performance For Authentication Applications

algorithms are shown. For the field-based scheme, two configurations for each CAM size

are shown, with either a 128-bit or 256-bit string table employed. Although a doubling of

the string table width would be expected to significantly increase the prediction rate, it is

found that in all cases the additional string history provides only small increases in per-

formance. The high proportion of packets less than 48 bytes (121 conditional branches)

means that the extra history is not fully utilised. Future sections of this chapter exam-

ine performance for other traces and highlight the expected relationship. Examining the

performance of field-based schemes it can be seen that a 16 CAM entry by 128-bit field

scheme outperforms a 512-entry gshare predictor by almost 4% (94.56%, 98.33%), while

for the CAST algorithm, performance is increased from 95.08% to 97.36%. An exam-

ination of the prediction histories of these algorithms highlight a potential drawback in

an evenly weighted flow-based scheme. As was discussed previously, a small number

of packet lengths comprise a high proportion of all IP traffic. With payload applications

allocating CAM space based on the packet length it is clear that certain packet lengths

will eventually be replaced in the string history despite a heavily utilisation. A technical

improvement to such a scheme might be for the programmer to allocate space within the

string table for certain search keys likely to occur often.
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Figure 6.16: Field-Based Predictor Performance For Miscellaneous Applications

Examining the performance of authentication algorithms it can be seen how prediction

rates could be improved by caching only a single packet length within the CAM structure.

With only a 128 PHT entry fallback predictor used in the field-based scheme, the pre-

diction rate for a 128-bit string table is worse than the two gshare architectures used for

comparison due to the fact that for the SHA algorithm a minimum sized 40-byte packet

requires 290 conditional operations. The MD5 algorithm is better suited to dynamic pre-

diction than the SHA algorithm and so does improve despite the string table width being

significantly less than the minimum number of conditional branches per packet (944). For

the SHA algorithm, increasing the string table width to 256-bits does provide a significant

performance gain since it provides almost enough branch history to cover small packets.

Comparing the performance of a 16/128 field-based scheme to a larger 16/256 predictor,

performance is found to increase from 92.21% to 95.87%.

The prediction performance for the two remaining payload applications, FRAG and

CRC, is shown in Figure 6.16. The simplicity of the CRC algorithms ensures that a high

prediction rate can be achieved with various prediction architectures. Typically imple-

mented as a table lookup, only a single branch instruction is needed for the main pro-

cessing of the CRC loop, while additional conditional branches are required to add the
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computed CRC value to the end of the packet before updating the packet header. Since

the field-based scheme retains only the initial M branches, the more dynamic branch op-

erations are predicted by the fall-back predictor. For various configurations of the number

of N (CAM entries), a 64-bit and 128-bit string table is examined. For the CRC algo-

rithm, the high prediction rates which can be obtained with a small gshare predictor limit

the amount of performance gain which can be achieved via a field-based scheme. On

the other hand, the prediction rate for the FRAG algorithm does improve significantly

when a field-based scheme is used, with a 512-entry gshare predictor providing a hit rate

of 95.20% while the field-based predictor (16/64) obtains a hit rate of 98.48%, with a

16-entry by 128-bit configuration providing almost perfect prediction (99.43%).

Finally, the prediction rates for the combinational applications is shown in Figure

6.17. Again, the field-based scheme provides a higher prediction than any of the gshare

configurations. Comparing a 16/256/128 field-based predictor to a 2K gshare predictor

(not shown), we find that the performance for the four applications is 92.64%, 92.78%,

93.03% and 97.23% respectively, while the field-based scheme provides prediction rates

of 96.92%, 96.92%, 94.85% and 98.84%. In terms of area requirement, a 2K gshare

predictor requires approximately 24.5K transistors while the field-based scheme occupies

29.1K transistors.

6.6.4.3 Performance Evaluation For Other Traces

The performance of a field-based scheme follows other ‘flow’ based algorithms imple-

mented on a network device. As with classification schemes or per-flow metering schemes,

the average number of active flows will determine the performance. While the previous

section examined performance using an OC-3 trace (TXS), this section presents a perfor-

mance evaluation for a field-based scheme when routing faster OC-12 and OC-48 based

connections. Intuitively it is possible to deduce that higher speed connections such as

OC-12 and OC-48 links will require an increase in the number of branch histories cached

within the string table, as opposed to the the string width. To evaluate this, 250,000

packets from the OC-12 AMP trace and 1,000,000 packets from the OC-48 trace were
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Figure 6.17: Field-Based Predictor Performance For Combinational Applications

processed by the same applications as above (Table 6.9 and Table 6.10).

For the OC-12 trace, the branch history is fixed at 128-bit for all applications. With

the AMP trace containing a higher proportion of large packets, the fall-back scheme is ex-

pected to be more important for payload applications. However, as was previously exam-

ined in this chapter, the gshare predictor is well suited to payload applications, especially

when the average packet size is high. Two configurations are examined with performance

compared to a 2K gshare predictor. For a 32-entry scheme, prediction performance is

found to be increased for 11 of the 13 applications, with all applications achieving a hit

rate in excess of 95% and an average hit rate across all applications of 97.35%. Increas-

ing the number of CAM entries to 64 allows an average prediction rate of 97.74% to be

achieved. On applications such as FRAG, CAST, TRIE, HYPER, DRR and RFC, the per-

formance gain for a 64/128/128 scheme is over 2% for each application, with increases

greater than 1% seen in the AES, CRC, HASH and STAT algorithms. As was seen pre-

viously, the SHA algorithm is highly sensitive to the table size employed in the fall-back

prediction. With even a 40-byte packet requiring a large amount of branch history to be

cached, the majority of the prediction defaults back to 128-entry gshare prediction.
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Table 6.9: Prediction Rate Field-Based Scheme Vs. 2K Gshare (OC-12 AMP Trace)

Application GS-2048 FB-32/128 FB-64/128
H.R % δ% H.R % δ%

AES 95.77 97.06 1.29 97.09 1.32

SHA 94.81 94.05 -0.76 94.14 -0.67

MD5 96.48 98.83 2.35 98.86 2.38

CAST 93.48 95.56 2.08 95.98 2.5

CRC 98.23 99.23 1.00 99.71 1.48

FRAG 96.56 98.88 2.32 99.24 2.68

TRIE 96.20 99.07 2.87 99.49 3.29

HASH 97.59 99.29 1.7 99.59 2

DRR 95.76 97.17 1.41 97.87 2.11

STAT 95.17 95.86 0.69 96.42 1.25

HYPER 92.84 97.44 4.6 98.25 5.41

RFC 96.77 99.35 2.58 99.53 2.76

TCM 95.86 93.82 -2.04 94.5 -1.36

Similar to the OC-12-based evaluations, 32 and 64 entry CAM configurations are

compared against a 2K-entry gshare predictor. In both cases the string table width is

fixed as 128-bits per entry. With a similar length distribution to the AMP trace, perfor-

mance across the payload application is similar, with performance improvements seen in

AES, CAST, CRC and FRAG algorithms. For the header applications the performance

increase is smaller due to the fact that an OC-48 router would multiplex a higher number

of connections during normal operation.

6.7 Conclusions

In this chapter an examination of branch prediction for NP systems was presented. For

a small 5-stage pipeline the branch penalty results in a significant loss of processing cy-

cles and with NP applications remaining in place for long periods of time, the loss in

performance due to wasted microprocessor cycles must be mitigated to optimise PE per-

formance and utilisation.

Existing branch prediction schemes fail to efficiently account for the repetitive nature
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Table 6.10: Prediction Rate For OC-48 PSC Trace

Application GS-2048 FB-32/128 FB-64/128
H.R % δ% H.R % δ%

AES 95.77 97.34 1.57 97.4 1.63

SHA 94.68 95.17 0.49 95.5 0.82

MD5 95.86 96.66 0.8 96.76 0.9

CAST 93.78 94.49 0.71 94.5 0.72

CRC 99.14 99.68 0.54 99.68 0.54

FRAG 96.34 98.4 2.06 98.89 2.55

TRIE 95.72 98.51 2.79 98.98 3.26

HASH 97.38 99.77 2.39 99.88 2.5

DRR 96.77 98.63 1.86 99.05 2.28

STAT 95.73 95.32 -0.41 96.78 1.05

HYPER 93.2 97.37 4.17 98.99 5.79

RFC 96.62 98.19 1.57 98.34 1.72

TCM 95.96 94.81 -1.15 94.62 -1.34

of NP applications. Various NP applications only achieve high prediction rates when

large PHT are employed, but since NP applications are generally small applications the

vast majority of these table entries remain idle for long periods of time. In addition to this

under-utilisation, existing schemes such as gshare fail to take into account NP specific

application level information when deciding if a branch will be taken or not.

To improve prediction rates, a field-based prediction scheme is proposed, which in-

corporates per-packet information within the branch predictor. Incorporating packet level

information at the time of prediction, the field-based scheme attempts to utilise flow-

level history as a means of guiding future prediction decisions. Exploiting common net-

work behaviour and topologies, the field-based scheme improves the branch prediction

performance of many NP applications, with the exception of only inter-arrival-based ap-

plications such as metering applications (e.g. TCM). Being well suited to highly con-

ditional code, the field-based scheme significantly improves performance on common

header based applications such as forwarding or packet classification. Furthermore, while

achievable prediction rates are limited for payload based applications, modern NP plat-

forms have increasingly moved such data intensive algorithms to hardware, leaving the
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PE to perform the conditional aspect of the applications. The field-based predictor can

also be scaled in order to meet the requirements of an NP operating at various line rates

and it is particularly well suited to highly dynamic network loads.
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CHAPTER 7

Conclusions & Future Work

This section summarises the research goals of the author, presents an examination and

discussion of the results achieved, as well as briefly examining possible future directions

of research within the scope of PE design for network processors.

7.1 Motivation for Proposed Research – A Summary

Examining the modern Internet it is clear that a number of trends are apparent which

pose significant challenges to network designers and researchers. Firstly, the number of

devices connected to the global Internet has increased exponentially. As well as con-

necting an increasing number of users via traditional PC based systems, the difference

between existing mobile communication systems and IP based packet switched networks

is narrowing, with ‘Anywhere, Anytime’ networks becoming more common. Network

technologies such as 3G and 4G can be viewed as packet switched networks optimised

for mobile communications. Devices such as Apple’s iPhone and Amazon’s Kindle E-

Book reader all provide a means of connecting to either mobile networks (GSM, EDGE,

CDMA, etc.) or IEEE802.11 ‘Wi-Fi’ wireless networks. Along with the trends towards

larger, more diverse and higher bandwidth networks is the evolution in the functions pro-

vided by IP networks. Tasks such as packet forwarding remain fundamental but form only

a base on which quality and security services are also provided. Provision of services such
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as VOIP, IPTV or video conferencing require networks to be aware of both packet flows

and packet content, detecting high priority content within a heavily multiplexed network

flow. Even providing more basic services, such as a fair usage policy, requires ISPs to de-

tect, classify and meter those users which are using more than their fair share of network

resources.

For network researchers, the trends outlined above can be summarised as follows. Fu-

ture networks must connect more users, at higher speeds, while also allowing network

providers to add and remove services as user demands change. For a programmable NP

system, the challenge is how the reprogrammable aspect of router design can be retained

while also increasing performance. In Chapter 2 it was outlined how techniques to in-

crease NP performance have typically involved CMOS technological improvements, in-

creased parallelism or the offloading of specific functions to dedicated hardware. In the

first case it is clear that technology increments cannot be relied upon to provide future

performance increases. On the other hand, hardware offloading provides a method of in-

creasing performance but at the cost of less flexibility. Numerous hardware architectures

have been proposed for NP tasks such as packet forwarding, five tuple classification or

deep packet inspection but all three of these topics have been actively researched (and im-

proved), highlighting the challenges with hardware specific solutions. In addition to tech-

nological changes and hardware offloading, another method by which NP performance

can be increased is to parallelise the NP architecture by implementing a larger number

of PEs. Parallelisation does however provide a number of significant challenges such as

memory and I/O bandwidth latency, load balancing and software programmability.

Examining each mechanism it is clear that future NP designs will have to strike a bal-

ance between these techniques and more fundamental micro-architectural considerations

such as pipeline depth. With these considerations in mind, the goal of this research was to

investigate methods of improving NP performance by examining the behaviour and per-

formance of branch operations within an NP system. Whereas previous published work

has examined topics such as caching, the goal of the author’s research was to determine

if deeper processor pipelines could be implemented while avoiding the traditional limi-
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tation associated with these deeper pipelines, namely the branch penalty incurred during

conditional operations.

7.2 Summary of Thesis Contributions

The context for the work presented in this thesis was briefly summarised in the previous

section, with Chapter 1 providing a more broad discussion of the work described in this

thesis. The author’s goals and objectives were also outlined in Chapter 1. Chapter 2

presented a high level technical background on the topic of network processors before

presenting an overview of the concept of pipeline processors, pipeline hazards and the

various prediction techniques used to overcome the control hazard. Chapter 3 presented

a discussion of performance evaluation methods and metrics for NP architectures. It was

argued that the lack of a coherent NP simulation framework seriously limited the degree

of research regarding architectural performance which can be undertaken, motivating the

need for a new NP simulator.

7.2.1 The SimNP NP Simulator

In Chapter 4 a framework for modelling NP systems was presented. A significant limi-

tation within NP research, the lack of a flexible and open source system simulator means

that realistic comparisons between existing work is almost impossible. For example, per

packet processing rates of external hardware accelerators commonly fail to take into ac-

count limitations such as contention or configuration time, making performance figures

idealistic and difficult to evaluate. Existing NP system simulators are found to be either

too specific to one architecture or to require extensive configuration and development in

order to build the required architecture. High level modelling via Petri-Nets or a queue

model allows certain performance figures to be extracted but require either a large amount

of input knowledge (request/service rate), or can only be implemented by simplifying a

significant part of the system to be modelled. The proposed simulator is designed using

a single language and utilises a flat-memory model, allowing memory mapped devices
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to be rapidly added/removed from the simulation framework. It can be programmed in a

single high level language such as C and can be easily re-ordered to create various con-

figurations. A primary goal of the SimNP simulator was to provide an open source NP

simulator which could be developed with ease in order to better model NP platforms.

With this in mind a number of possible additions are briefly outlined which the author be-

lieves would improve the usability and precision of the SimNP simulator. Improvements

to the programming framework and the addition of debugging facilities would allow faster

application development. At a hardware level, further work could improve the accuracy

by implementing more detailed memory models, e.g. DDR DRAM, QDR SRAM, etc.,

allowing aspects such as non-deterministic latency and paging to be investigated across

memory units. Also, a more complete interface model would allow entire line-cards to be

simulated.

7.2.2 Workload Analysis and Branch Behaviour of NP Applications

Using the SimNP simulator, a workload analysis of NP applications was presented in

Chapter 5. Topics such as memory distribution, parallelism, processing time and branch

behaviour were examined. For flexible software stack pointer architectures such as the

ARM architecture, local RAM was found to be extremely important to NP performance.

Comprising a majority of all memory operations, it is clear that access latency between

the PE and any local RAM must be minimised, pointing to the fact that it may not be

possible to share local RAM between multiple PEs and it almost certainly would not be

possible to move the local RAM space within an NP design to external memory. With

respect to parallelism, performance increases above 16 PEs are found to be smaller when

compared to a change from 8 to 16 PEs. High device contention limits the utilisation of

each PE, a factor which would be made worse by techniques such as multi-threading. The

final aspect of the workload analysis was to examine the behaviour of conditional branch

operations within NP applications. While the ratio of taken to not-taken branches varies

greatly across NP applications, a number of important NP specific points can be obtained.

Firstly, despite the small application size, the number of cycles lost through conditional
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branches in an NP system is large since NP applications process high volumes of data,

almost continually, for long periods of time. Secondly, this performance loss is due to

only a small amount of unique branch instructions (unique in either a temporal or spatial

location).

7.2.3 Branch Prediction for Network Processors

Finally, in Chapter 6 a detailed analysis of branch prediction for NP systems was pre-

sented. Although more static than general purpose systems in the sense that an NP appli-

cation will remain deployed for a long period of time, the randomness within NP traffic is

found to limit the performance of many existing prediction schemes. Variance within the

underlying traffic makes static branch prediction difficult to implement, despite the small

application kernel. Dynamic prediction schemes are found to provide prediction rates in

excess of 90%, but only when the number of pattern history entries is large. Viewing the

problem from a different perspective, it is clear that it should be possible to achieve very

high prediction rates within a programmable NP system. While certain network charac-

teristics such as packet length or inter-arrival time are random between one packet and

another, the data unit processed by a PE does not change. Furthermore, there are certain

aspects within network traffic which, although difficult to predict from one packet to an-

other, can be seen across either a section of the network load or indeed, the entire network

history. It is with this in mind that the Field-Based branch predictor outlined in Chapter

5 was presented. Whereas existing dynamic predictors utilise only run-time history in

future branch predictions, the Field-Based scheme uses both run-time history and packet

level information when deciding if a branch will likely be taken or not. Capable of being

configured at run-time, the Field-Based predictor was scalable in terms of performance

and area utilisation, and was found to compare favourably to existing methods in terms of

prediction hit rates, area and latency.
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7.3 Future Work

Within the scope of NP design there are a number of principal areas that will require fu-

ture research. Firstly, with parallelism and multi-threading increasingly common within

NP design, current programming languages represent a significant limitation. Commer-

cial NPs typically provide programming frameworks adapted from a standard language

such as C. While such modifications allow parallelism to be exploited, a pseudo-c pro-

gramming language slows software development by limiting the scope of the existing

code base which can be used, while making the design and implementation of re-usable,

architecture agnostic software difficult. Future standardisations of both the C and C++

languages should include mechanisms for programming paradigms such as parallelism,

but with NP architectures highly sensitive to latency it may be difficult to fully utilise

constructs optimised for general purpose systems. With reference to the work presented

in this thesis, the evaluation of new programming frameworks can easily be achieved via

SimNP. The PEs utilise the ARM instruction set, allowing mature compilers for various

languages to be exploited (C, C++). Furthermore, while a workload analysis provides a

good method of classifying, analysing and quantifying performance of various NP appli-

cations, the lack of a good programming framework limits the amount of analysis which

can be achieved under more realistic conditions, i.e. analysis of a fully programmed line

card.

The work presented in Chapter 6 represents one possible method of improving PE

performance without sacrificing the flexibility of an NP system. Other areas of research

outside the author’s core topics might include; improvements to how a cache hierarchy is

employed in systems with low spatial data locality and a NP specific superscalar architec-

ture which follows the same design flow as the field-based prediction scheme proposed in

this work, i.e. by tailoring an existing design technique to an NP system.
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