
Interference Analysis for Dependable Systems

using Re�nement and Abstraction

Claus Pahl

School of Computer Applications, Dublin City University
Dublin 9, Ireland

cpahl@compapp.dcu.ie

Abstract. A common requirement for modern distributed and reactive
systems is a high dependability guaranteeing reliability and security. The
rigorous analysis of dependable systems speci�cations is of paramount
importance for the reliability and security of these systems. A two-layered
modal speci�cation notation will allow the speci�cation of services and
protocols for distributed dependable systems and their properties. Re-
�nement and its dual { abstraction { will play the key roles in an inte-
grated development and analysis framework. Re�nement and abstraction
form the basis for an interference analysis method for security properties
and for automated test case generation.

1 Motivation

Current software engineering approaches are unlikely to deliver the level of de-
pendability required to construct future distributed, decentralised, and reactive
systems such as mobile systems, telecommunications management, communica-
tion and process control, or integrated e-business systems. The recent advent
of Internet and other intercommunications technologies has made one aspect of
properties particularly important: security properties.

We present a notation for the rigorous development and analysis of depend-
able systems properties. The speci�cation of distributed systems is usually con-
cerned with properties such as reliability or fairness of the communication. In
dependable systems with high security requirements other properties are also
important. Con�dentiality describes that no con�dential data is disclosed to
unauthorised users. Integrity addresses unauthorised modi�cation. Authentica-
tion describes that the identity of participants in a communication can be estab-
lished. We have dependable systems such as public key infrastructures (PKI) in
mind. PKIs are a combination of distributed systems and security technologies,
which create an ideal setting to discuss reliability and security issues.

A PKI provides an infrastructure for the management of public keys in cryp-
tographic systems [1]. It deals with entities, protocols and services in those sys-
tems. This includes for example services such as the generation, distribution and
storage of keys and other secrets. The central concept is that of a certi�cate. A
certi�cate is a datastructure that associates an identity to a public key by means

of a signature. This concept is used for encryption, signatures and key exchange.
The objectives are to guarantee con�dentiality, integrity and authentication.

We will analyse some aspects of PKIs, addressing services and protocols based
on these services. We will analyse these services and protocols with respect to
security issues such as con�dentiality, integrity, and authentication. The security
analysis is realised as an interference analysis, i.e., it is checked if an intruder
can interfere with the system and violate any of the security conditions. The
re�nement calculus [2, 3] forms the framework for the analysis. The analysis is
supported by systematic test case generation based on abstraction (abstraction
is dual to re�nement).

Modal logics, such as temporal or dynamic logics [4, 5], have shown their
ability to de�ne and reason about important properties of dependable systems,
such as safety and liveness, through special modal operators [6, 7, 8]. Dynamic
logic is suitable for the speci�cation of �nite aspects, which includes security
considerations. Dynamic logic is compositional, i.e., reasoning via structural in-
duction on commands is possible. We will argue that dynamic logic is a suitable
tool for security aspects in reactive and distributed systems speci�cation. In
combination with a re�nement concept it allows the analysis of dependable sys-
tems in a novel way. Another advantage of dynamic logic is that it embraces
the classical pre/postcondition technique [9], which has become the foundation
of various engineering methods and notations such as design-by-contract [10] or
the Object Constraint Language OCL [11].

We propose re�nement of modal speci�cations as the central concept for the
analysis of dependable systems. The re�nement relation can be used to develop
systems starting from a simple core, but also to integrate an adversary into
the speci�cation in order to detect possible security aws in a system speci�-
cation. Re�nement essentially guarantees property preservation. Assuming that
a property P holds for some speci�cation of a system S, i.e., P (S), we expect
a re�ned speci�cation S0 to preserve that property, i.e., P (S)) P (S0). Re�ne-
ment is a classical software engineering technique [2, 3] developed to support
transformational design and implementation, that has recently been deployed
in de�ning essential concepts for component technology [12, 13] and also for in-
terference analysis [14, 15]. Here, we will show a novel use of re�nement as an
analysis tool for detecting undesirable interferences and security violations. The
re�nement-based approach allows us to combine the traditional transformational
development with the unusual applications of interference analyses and test case
generation for the context of dependable systems.

We introduce our speci�cation notation in Section 2. In subsections 2.3 and
2.4 we demonstrate the notation by specifying a protocol implementing an au-
thentication service. The principles of re�nement and abstraction are introduced
in Section 3. An analysis looking at an authentication service is carried out in
Section 4 for the protocol described in Section 2.3. Another form of analysis is
addressed in Section 5 focussing on con�dentiality and integrity in a key estab-
lishment and distribution service. We �nish with related work and conclusions.

2 The Notation

The actors in communicating distributed systems are agents. Their activities are
usually described in terms of the following application-speci�c basic commands:
generate and remember data, establish and close connections, send and receive
messages, and guards to protect the execution of operations1. In this section, we
introduce the notation that we will use to specify and reason about dependability
properties. A command language can be based on the constructs listed above.
However, we will reduce this language for the sake of simplicity here.

2.1 The Command and Speci�cation Languages

We de�ne the command primitives { send, receive and a test-operator { and
the command combinators informally, but we will give axiomatisations later on.
This process of con�guring the language contributes to a better understanding
of the application and its problems. Flexibility in de�ning basic variations even
on this level is important for the analysis of security protocols.

{ sndA!R(M1; : : : ;Mn): the send operation for agent A. R is the receiver, the
Mi denote messages that are sent. The Mi are local variables of the agent.
Their value s(Mi) in the current state s is sent to R. The operation fails if
there is no variable Mi de�ned or no communication takes place.

{ rcvB S(M1; : : : ;Mn): the receive operation for agent B. S is sender and the
Mi are messages arriving from S. The reception will only be carried out, if
data has been sent. The message data is assigned to local variables Mi.

{ �?: the test is an operator that involves a quanti�er-free formula �. The
semantics is to proceed if � is true, and fail otherwise.

We assume that messages are created and assigned to a variable before they are
sent. Received messages are assigned to variables, too.

Command combinators are de�ned inductively. Let c1, c2 be command terms:

{ c1; c2 (sequential composition): c1 is followed by c2,
{ c1 + c2 (non-deterministic choice): one possibility is chosen and executed,
{ c�

1
(iteration): c1 is iterated a non-deterministically chosen �nite number of

times,
{ c1jc2 (parallel composition): c1 and c2 are executed concurrently.

The parallel composition di�ers from the other command combinators in that
it is an operator involving two agents composed in parallel, whereas the others
can be combinations of commands of one or several agents. A send and a re-
ceive operation from two di�erent agents can be synchronised. The two agents
communicate by synchronised message passing. On the receiving side, data is
assigned to a local name. The following is a parallel composition of two agents:

sndA!B(X); rcvA B(Y) j rcvB A(Z); sndB!A(f(Z))

1 Later on, we will also consider cryptographic functionality.

An agent A sends a data item X to B and receives an answer Y from B. The
second agent B applies a function f to the received data Z item before sending
f(Z) back to A. Agent A receives f(Z) as Y .

The de�nitions of parallel composition and communication are critical for
our analysis. Our semantics allows two agents to communicate, i.e. allows a
send and a receive operation to be synchronised, if the types of the in- and
out-parameters coincide. Other notations for the speci�cation of communication
such as the �-calculus [16] also use dedicated channels between two agents.

Our speci�cation language consists of two sublanguages: a command language
to express behaviour and a logical part to specify and reason about properties
of command executions. The language is based on dynamic logic [4] { a logic
with a notion of state that makes a command language explicit in the notation.
Modalities are indexed by programs, which are built from primitive commands
such as send and receive. Logical connectors such as conjunction, disjunction or
negation are available. There are also mixed operators { the modal operators {
combining commands and logical constructs, which make the language di�erent
from classical �rst-order logics. We introduce a box- and a diamond-operator for
safety and liveness properties, respectively. Let c be a command.

{ [c]�: whenever c terminates, it must do so in a state satisfying �.

{ hci�: it is possible to execute c and terminate in a state satisfying �.

If c is a simple state transition, e.g. a receive operation, then � ! [c] and
�! hci are contracts for c with a precondition � and a postcondition 2. If c �
sndA!B(x)jrcvB A(y) is an interaction, then �x ! [sndA!B(x)jrcvB A(y)] y
is a contract for the interaction saying that properties �x of an output variable
x are transferred to y of an input variable y if the interaction takes place.

We can, for example, specify that an agent B remembers a message X that
has been received from A, but an intruder I should not be able to access X ,

KnowsA(X)! [sndA!B(X) j rcvB A(X)] KnowsB(X) ^ :KnowsI (X)

using a predicate Knows. We might expect from a key exchange service { the
parallel execution of agents A and B { that a shared key is eventually in place.
Knows(key) is an invariant for the sender of key.

hAjBi KnowsA(key) ^KnowsB(key)

2.2 The Inference Framework

Formulas of our logical language are based on predicates. The equality predicate
t = t0 is satis�ed in a state of a semantic structure if the interpretations of terms
t and t0 are equal. LetM be a semantic structure and s be a state. A satisfaction

2 The symbol ! stands for implication.

j= for the modalities can be de�ned as follows:

M; s j= [p]� i� every terminating computation of p starting in s
terminates in a state satisfying �

M; s j= hpi� i� exists a computation of p starting in state s
and terminating in a state that satis�es �

(1)

We could also de�ne one of the constructors in terms of the other: hpi� := :[p]:�
(or vice versa). With x0 we denote the variable x in the previous state of a
command execution. This allows us to specify for example increment operations
[incr(x)] x = x0+1. In order to support the formal analysis of speci�ed behaviour,
the operations { such as send and receive { shall be axiomatised in terms of the
given predicates, e.g., receive rcvA B for a given agent A:

[rcvA B(X)] KnowsA(X) (2)

After receiving the message X from B, the agent A remembers (knows about)
X . An axiomatisation can be varied if the given application requires this. These
axioms express a developer's assumptions about the environment explicitly.

We can axiomatise the commands combinators:

hc1 + c2i�, hc1i� _ hc2i� (3)

hc1; c2i�, hc1ihc2i� (4)

There are also dual formulations for the box-operator: [c1 + c2]�, [c1]� ^ [c2]�
and [c1; c2]�, [c1][c2]�. In the literature (e.g. [4]), we typically �nd axiomatisa-
tions of the test-operator such as h�?i , � ^ and [�?] , (� !). Due to
our non-standard de�nition of the test-operator, these equivalences do not hold
here. There is no simple axiomatisation for the iteration t�; see [4] for axioms.

The parallel composition pjq of commands p and q of agents A and B, resp.,
makes our framework di�erent from dynamic logic as presented in [4]. The se-
mantics of c1jc2 is de�ned as a pair of component semantics ([[c1]]A; [[c2]]B) if
[[c1]]A and [[c2]]B are the semantics of c1 and c2. The following axioms hold:

[c1jc2]�, [c1]� ^ [c2]� (5)

hc1jc2i�, hc1i� _ hc2i� (6)

This corresponds to the axioms for the non-deterministic choice (3), except that
a choice between two commands is interpreted in one structure, whereas the
parallel composition is interpreted in two.

2.3 The Needham-Schroeder Protocol Speci�cation

Public key infrastructures provide services such as key generation and distribu-
tion, or authentication. A number of these services are implemented by protocols.
The Needham-Schroeder protocol is a possible way to implement key exchange

and authentication [17]. It allows to bring a shared secret in place, assuming
that an encryption mechanism is already in place.

The Needham-Schroeder key exchange protocol is usually introduced using
the following informal notation:

A! B : fA;NagKb

B ! A : fNa; NbgKa

A! B : fNbgKb

Two agents, A and B, attempt to share a secret. A starts by sending its own
identity and a randomly chosen number Na (called a nonce { number used once)
to B. A uses B's public encryption key Kb to encrypt the message. B decrypts
the message with its own private decrypion key and sends the number sent by
A, Na, together with another nonce Nb (created by B itself) back to A { again
using encryption, but now A's public key Ka. Since A has used B's public key,
only B can decrypt the message. If A receives its nonce Na, it can be sure that
it has communicated with B. In order to allow B to also verify the authenticity
of A, A sends the nonce Nb produced by B back to B. Two results should be
achieved: authenticity of the participants and con�dentiality of the nonces.

We reformulate the informal protocol speci�cation using our command lan-
guage, before specifying properties. The speci�cation shall be divided into ac-
tivities of agent A and agent B. Agent A acts as follows:

sndA!B(A;Na); rcvA B(Na; Nb); sndA!B(Nb) (7)

A sends a message to B, receives one from B, and sends a second message. The
data items received are stored in variables. Here is B's behaviour:

rcvB A(A;Na); sndB!A(Na; Nb); rcvB A(Nb) (8)

The authenticity of the agents A and B and the con�dentiality the nonces is not
guaranteed here. Encryption { to be added later { will achieve this.

2.4 Properties of the Needham-Schroeder Protocol

A dynamic logic speci�cation consists of command terms and properties that
specify the commands in their behaviour. We can classify security properties
into authentication: authenticity of agents is guaranteed, con�dentiality: secret
data remains secret, and integrity: data remains intact. We use di�erent forms
of constraints to address them:

{ Firstly, an access control constraint describes that a data item is accessible
for the receiver, e.g., that data actually arrives if it is sent. This allows us to
deal with con�dentiality and integrity.

{ An authentication constraint describes that after a sequence of message ex-
changes one agent is sure about the identity of another agent. This requires
the use of cryptographic methods.

{ The correctness constraint is a data-speci�c consistency condition, e.g., that
data, which has been sent, satis�es a certain condition.

Later, we add cryptographic constraints. If a message has been encrypted with a
public key, then the message can only be decrypted with the corresponding pri-
vate key. Authentication and con�dentiality can be achieved using cryptographic
methods, but, still, an intruder attack can violate all these properties.

The receive-operation of agent A in the Needham-Schroeder protocol shall
be speci�ed by the following access control constraint:

[rcvA B(Na; Nb)] KnowsA(Na; Nb) (9)

After receiving data, A remembers the information, i.e., stores it locally in vari-
ables Na and Nb, expressed using the predicate Knows. Agent B receives two
messages. Each reception is remembered in the corresponding variables:

[rcvB A(A;Na)] KnowsB(A;Na) (10)

[rcvB A(Nb)] KnowsB(Nb) (11)

Previous assignments are overwritten, otherwise older assignments are remem-
bered. After discussing single protocol steps, we address the full behaviour of a
single agent. After �nishing their execution sequences both agents shall share a
secret, or at least the same two values3. Here are agent A (12) and B (13):

[sndA!B(A;Na); rcvA B(Na; Nb); sndA!B(Nb)] KnowsA(Na; Nb) (12)

[rcvB A(A;Na); sndB!A(Na; Nb); rcvB A(Nb)] KnowsB(Na; Nb) (13)

An agent A authenticates another agent B, if A sends a random number Na

to B encrypted with B's public key. If A receives N 0a back from B and Na = N 0a,
then A can be sure that only B { the owner of the public key KB { could have
decrypted KB(Na) and sent Na back. We expect

[sndA!B(KB(NA)); rcvA B(KA(N
0
A))] NA = N 0A (14)

for the authentication. We de�ne the authentication predicate AuthA(B) for
agent A and a target agent B to become true in that case.

Data sent or received is subjected to constraints in some cases. The �rst send-
operation of agent A is not restricted with respect to a correctness constraint,

[sndA!B(A;Na)] true (15)

but A should receive its nonce Na back from B, i.e., the received value in Na is
the same as the value in the previous state N 0a:

[rcvA B(Na; Nb)] Na = N 0a (16)

3 The fact that B also remembers the identity of A { see (10) { is not relevant at this
stage and therefore neglected.

A should only proceed if this is satis�ed { expressed using a precondition:

Na = N 0a ! [sndA!B(Nb)] true (17)

The �rst value that A receives must coincide with its own nonce Na. Similar
constraints can be imposed on agent B, e.g., on the second receive operation:
[rcvB A(Nb)] Nb = N 0b.

Access control, authentication, and correctness form di�erent views on the
problem { e.g., the accessibility formula [rcvA B(Na; Nb)] KnowsA(Na; Nb) and
the correctness condition rcvA B(Na; Nb)] Na = N 0a can be combined to the
formula [rcvA B(Na; Nb)] KnowsA(Na; Nb) ^Na = N 0a using inference rules of
the logic, see Section 2.2.

3 Re�nement and Abstraction

The two main concepts for our interference analysis shall now be introduced.
Traditionally, re�nement is used to develop a speci�cation step by step. Re�ne-
ment also serves another purpose in our approach. Security analysis { intruder
integration and interference analysis { can also be supported. We use the concept
of abstraction { the dual of re�nement { to test for interferences. We will briey
show how to add encryption to a simpli�ed protocol speci�cation in order to
illustrate the transformational development approach based on re�nement. The
concepts for interference analysis and testing will be applied in Section 4.

3.1 Re�nement

The re�nement relation is essentially de�ned based on implication. A speci-
�cation is a re�nement of another if it implies it, i.e., if the re�nement pre-
serves the properties of the original speci�cation. Let � and be formulas:
� re�nes i� � ! . For commands p and q speci�ed by � ! [c] �0 and
 ! [c0] 0 we de�ne { based on the monotonicity of [:], see [4] Th. 4(2) { for
the box-operator:

c is re�ned by c0 , or c v c0 , i� �! ^ 0 ! �0 (18)

We have chosen to de�ne a su�cient and necessary condition. An intruder cannot
be introduced (using re�nement { see Section 4) that violates the re�nement, but
does not a�ect the security conditions of the original speci�cation. A violation
of a re�nement should only occur if security speci�cations are violated.

We do not constrain the commands c and c0 in any way. This allows a single
command to be re�ned by a sequence of commands. We could also insert com-
mands into a sequence of commands without violating the re�nement condition.
The re�nement of commands is here de�ned on properties of the state that is
reached through command execution. More support for a re�nement calculus
can be based on an inference system for dynamic logic, see [4].

To add encryption to the protocol speci�cation from Section 2.3 using re�ne-
ment, we de�ne two new functions for encryption and decryption and axiomatise
their behaviour. The particular encryption method (RSA, Merkle-Hellman, etc.
[18]) shall not matter. We assume that the encryption scheme is secure, i.e.,
that there are no principal problems such as mathematical aws. We assume a
public key encryption scheme. KA is A's (public) encryption key and K�1A is its
(private) decryption key (analogously for B). KA(X) is the encryption operation
and K�1A (Y) the decryption operation4. The cryptographic law is:

K�1A (KA(X)) = X (19)

In order to fully specify cryptographic basics, we would need to express that not
only can the original message be recovered with the corresponding private key,
but also that no other key except the corresponding private key can decrypt the
message. For the sake of simplicity, we have left out properties like this.

Each agent shall know the public keys of the agents it wants to communicate
with securely. In our case, for two agents A and B, the predicates KnowsA(KB)
for A and KnowsB(KA) for B are true. The speci�cation of agent B, who
receives encrypted data from A, now looks as follows:

[rcvA B(X;Y)] KnowsB(K
�1
B (X;Y)) (20)

B tries to decrypt the received pair of two data items X and Y . B should only
proceed if the decryption is successful, i.e., results in K�1B (X;Y) = (A;Na).

[(K�1B (X;Y) = (A;Na))?; sndB!A(KA(Na; Nb))] true (21)

Composed in parallel, A and B can communicate { the send and receive oper-
ation are synchronised and data is transferred from A to B. After applying the
axioms (5) and true ^ �, � to (15) and (10), the simpli�ed speci�cation

[sndA!B(A;Na) j rcvB A(A;Na)] KnowsB(A;Na) (22)

can be re�ned by

[sndA!B(KB(A;Na)) j rcvB A(KB(A;Na))] KnowsB(K
�1
B (KB(A;Na)))

(23)
With the assumption that a cryptosystem is in place, we get KnowsB(A;Na) =
KnowsB(K

�1
B (KB(A;Na))) by applying the cryptographic law (19). Thus, the

re�nement relation is satis�ed. We have proved that properties from the original
speci�cation (22) are actually preserved by (23).

3.2 Abstraction and Testing

The parallel composition of agents is the essential combinator for our interference
analysis. We can automate the analysis by testing the composition of sequential

4 This notation is not su�cient for cryptographic techniques such as signatures. To
keep the notation simple for the given protocol form, we have used this simple form.

agent behaviours. Each sequential agent behaviour { called a scenario { is a
test case for a non-sequential, non-deterministic agent speci�cation. Agents of
our ideal protocol have been de�ned in a sequential deterministic way, but we
assume a non-deterministic behaviour for the intruder. These scenarios shall be
constrained by the abstraction Spec w Scen, i.e., the system speci�cation Spec
is abstracted by the scenario Scen, or, the speci�cation re�nes the scenario. We
will systematically try to �nd intruder scenarios that { in composition with the
protocol agents { violate the re�nement relation.

The basic principle of test case generation in the context of the re�nement
calculus is that test cases abstract contracts5. The abstraction is dual to the
re�nement relation. c abstracts c0 { or c0 is abstracted by c { if c0 re�nes c:

c0 w c := c v c0 ^ c 6= false

for any two commands c and c0. false is the trivial abstraction, which should be
excluded. Speci�cations can involve sequential, iterative and non-deterministic
behaviour. For an intruder, we cannot assume sequential or deterministic be-
haviour, but we will test the system using various sequential intruder scenarios.

The �rst step shall be to de�ne a simple input/output test case for a com-
mand. A test case TCc for a command c is de�ned by:

TCc(�; �) := �! [c] �

� and � are conditions describing input and output values. The following propo-
sition states when a pair of conditions � and � is a suitable test case for a
command, i.e., when it abstracts a command c speci�ed by �! [c] .

c w TCc(�; �) , (�! �) ^ (� ^)! � (24)

An example shall illustrate this proposition. We assume the following de�nitions
for the conditions �, �, � and : � � x � 0, � y = x+1, � � x = 1, and � �
y = 2. Then, the two constraints formulated in the proposition are satis�ed and
we have a proper test case: the condition �! � is satis�ed since x = 1! x � 0,
and the condition (� ^)! � is satis�ed since (x = 1 ^ y = x+ 1)! y = 2.

In order to deal with interaction between agents of a protocol, we expand
our notion of test cases to interactions between two agents.

TCc1jc2(�x; �y) := �x ! [c1hxijc2(y)] �y

where �x and �y are properties of x and y, respectively. Properties of x are
transferred to y if the interaction takes place. A test case for parallel compositions
requires x and y to have the same type.

c1jc2 w TCc1jc2(�x; �y) , �x ! �y (25)

5 Most of the concepts here are motivated by [19], but formulated in a di�erent se-
mantical framework and extended to parallel composition.

The key construct to test concurrent non-deterministic agents is a scenario, i.e.,
a sequence of basic commands or interactions of basic commands. We de�ne
a scenario S for a speci�cation as a sequence (c1; : : : ; cn) of basic commands
or interactions of basic commands. We assume an iterative non-deterministic
choice to be the basic format of an intruder speci�cation, see also (31). Scenarios
abstract iterative choices (c1 + : : :+ cn)

� if the scenario itself is executable, i.e.,
if the last state of the sequence can be reached.

Let ci be speci�ed by �i ! [ci] i and assume ik 6= false (the last state
should be reachable). Then

(c1 + : : :+ cn)
� w (ci1 ; : : : ; cik) if ij ! �ij+1 (26)

with 1 � ij � n (j = 1; ::; k) and �ij ! [cij] ij and �ij+1 being the precondition
of the (j + 1)-th element in the scenario sequence.

The next two propositions are corollaries based on the last proposition. They
essentially state how to construct scenarios for speci�cations. The �rst one shows
conditions that makes a basic scenario a test case for an iterative choice. Let
p ^ �i ! [ci] i and �j ! [cj] j . If p 6= false and i ! �j then

(c1 + : : :+ cn)
� w (ci; cj) (27)

for i; j 2 1; ::; n. The next corollary shows how to combine basic scenarios into
more complex ones. Let ca^�a ! [ca] a, a 2 fi; j; kg. If (c1+ : : :+ cn)

� w ci; cj
and (c1+ : : :+ cn)

� w cj ; ck and ci 6= false and i ! ci ^�j and ci 6= false and
 i ! cj ^ �j then

(c1 + : : :+ cn)
� w (ci; cj ; ck) (28)

4 Authentication Analysis

A central PKI service is authentication support through certi�cates. Therefore,
our �rst analysis addresses a protocol implementing an authentication service.

Security analysis is mostly concerned with safety properties, i.e., something
(bad) must never happen (e.g., that the intruder knows a secret { at any time),
whereas the development of protocols is more involved with liveness properties,
i.e., that something (good) will happen eventually (data arrives, keys are even-
tually in place). Our dynamic logic provides constructs for both aspects.

We will base our analysis on an accepted and successful methodology { used
by most analysis techniques [8, 20, 21]: formal speci�cation of the ideal be-
haviour, add the intruder or possible interfering features, state the properties
to be guaranteed/analysed, analyse the ideal speci�cation, and vary parameters
and analyse again. This justi�es to use re�nement to add the adversary or new
features, but also to vary parameters through repeated use of re�nement.

4.1 The Protocol

The full speci�cation of the desired behaviour of the Needham-Schroeder pro-
tocol with respect to authentication based on the speci�cations of A and B in

isolation, (12) and (13), is:

[sndA!B(KB(A;Na)); rcvA B(KA(Na; Nb)); sndA!B(KB(Nb)) j
rcvB A(KB(A;Na)); sndB!A(KA(Na; Nb)); rcvB A(KB(Nb))]

AuthA(B) ^AuthB(A)
(29)

This is the ideal protocol. Any intruder behaviour will be analysed against this
speci�cation. The agents themselves behave deterministically, thus we have used
the box operator. When the intruder I is integrated, behaviour becomes non-
deterministic. The intruder might intercept at any time. Still, we would like to
guarantee that A and B eventually authenticate each other, even under inter-
ference by an intruder:

hAjBjIi AuthA(B) ^ AuthB(A) (30)

We want to prevent that an intruder can interfere with the authentication be-
tween A and B. A mutual authentication between A and B shall be achieved.
This is an adaptation of Goguen and Meseguer's classical non-interference de�-
nition. Here, an intruder does not interfere with another group of agents, if the
excution of intruder commands has no e�ect on the agent's security properties.

4.2 The Adversary

We assume intruders to have capabilities as formulated in the Dolev-Yao model
[22]. The Dolev-Yao model is an accepted collection of assumptions about possi-
ble intruder behaviour. The intruder can read any message, block further trans-
mission, decompose messages, remember messages, generate fresh data, and com-
pose and send new messages6. In principle, the intruder can non-deterministically
choose between these operations. The general di�culty with these analyses is to
make the right assumptions about the intruder (or about new features in feature
interaction analysis) in order to detect possible interferences. This problem can
only be solved by the developer or analyser, but the speci�cation and analysis
technique should provide the possibility to vary assumptions explicitly.

The mechanism for an intruder to attack a protocol is to intercept the commu-
nication between the agents participating in the protocol. This can be modelled
by allowing the intruder to be executed in parallel with the agents. Then, the
intruder I can communicate with the agents A and B, receiving and sending mes-
sages. LetA := sndA!B(y),B := rcvB A(y) and I := rcvI A(y); sndI!B(f(y)).
The parallel composition of A, B and intruder I , AjBjI , can result in one of the
following executions based on synchronisations of non-deterministically chosen
send- and receive-operations. A and B can communicate directly by transferring
data from A to B, or A communicates �rst with I and then I communicates with
B sending manipulated data f(y) to B. The �rst is the desired case, the second
is a successful intrusion, or interference, using a man-in-the-middle attack.

6 This does not include the intruder's encryption capabilities.

Reducing the capabilities of the intruder to two operations here, the general
behaviour of an intruder is:

(sndI!X(M1; : : : ;Mn) + rcvI Y (M1; : : : ;Mm))
� (31)

The intruder chooses repeatedly and non-deterministically between sending and
receiving { we cannot make many assumptions about an intruder's behaviour.
We assume that the intruder does not block communication between A and B.

4.3 The Analysis

In a concrete example, the intruder may execute the following command sequence

rcvI A(KI(A;Na)); sndI!B(KB(A;Na));
rcvI B(KA(Na; Nb)); sndI!A(KA(Na; Nb))

(32)

which satis�es (31). The intruder intercepts the communication between A and
B. At the beginning, the intruder has to convince A to communicate with him
instead of B, i.e., A needs to send data to him and to use his public encryption
key. The intruder then forwards this to B imposturing as A, and B's answer
to A is again intercepted and forwarded to A. A and B might not suspect an
intrusion. In this scenario, A authenticates I , since A uses I 's public key and
receives NA back. B authenticates A since NB encrypted with A's public key is
returned. This is where the protocol fails to work securelyfootnoteThis attack
has originally been described in [23]..

The intruder can be integrated via re�nement. The ideal protocol speci�ca-
tion, which speci�es the expected secure behaviour, should be preserved. The
inclusion of a successful intruder would violate the ideal speci�cation, i.e., would
not re�ne the ideal protocol speci�cation. For instance, the con�dentiality con-
straint could be violated by the intruder behaviour. Re�nement is the tool to
analyse, i.e., to prove or disprove, the security of a protocol. We would hope to
prove that all possible extensions by intruder behaviours are re�nements that
preserve the properties speci�ed for the protocol. Then, the protocol is secure.

The essential properties have already been discussed. Eventually the agents
A and B have authenticated each other: AuthA(B) ^ AuthB(A). Including the
intruder I as speci�ed above in formula (32) will satisfy

hAjBjIi AuthA(I) ^AuthB(A) (33)

since the intruder intercepts the communication and is able to imposture as A for
B, but this clearly violates the protocol speci�cation (30) { hAjBjIi AuthA(B)^
AuthB(A) { which requires that A and B mutually authenticate each other. Seen
as a re�nement step, we get a violation of the constraint: the predicate AuthA(I)
does obviously not imply AuthA(B). Besides being used for the stepwise devel-
opment, re�nement is also a tool for analysis { even though our aim now is to
violate the re�nement constraint in order to detect security aws.

4.4 Testing

The testing concepts shall now be applied to the authentication analysis of the
Needham-Schroeder protocol. Firstly, we would need to summarise the contracts
of the basic commands such as [sndA!B(KB(NA)); rcvA B(KA(NA))] AuthA(B)
or [sndA!B(A;Na)] true. Then, we list the possible interactions between the two
agents of the ideal protocol in (34) and also some of the possible interactions
between the two agents and the intruder for the extended protocol in (35).

�1 := sndA!B(A;Na) j rcvB A(A;Na)
�2 := rcvA B(Na; Nb) j sndB!A(Na; Nb)
�3 := sndA!B(Nb) j rcvB A(Nb)

(34)

A variety of interactions is possible if the non-deterministic intruder is included.
A few of them are:

�4 := sndA!B(A;Na) j rcvI A(A;Na)
�5 := sndI!B(I;Na) j rcvB I (I;Na)
�6 := rcvI B(Na; Nb) j sndB!I(Na; Nb)
�7 := rcvA I (Na; Nb) j sndI!A(Na; Nb)
�8 := sndA!B(Nb) j rcvI A(Nb)
�9 := sndI!B(Nb) j rcvB I (Nb)

(35)

The interactions �4; : : : ; �9 describe a successful intrusion that leads to the de-
scribed authentication problem { see (32) in Section 4.3. Interactions are the
basis of the scenario generation. Interactions are sequentially composed to sim-
ple scenarios in the �rst step. Simple two-element scenarios are (�4; �5), (�5; �6),
: : :, (�8; �9). These simple scenarios are derived using proposition (27). The simple
scenarios are combined to full scenarios based on proposition (28), e.g.,

�(�4) := �4
�(�5) := �4; �5
�(�6) := �4; �5; �6

(36)

Finally, we can show that the scenario �(�9) := �4; : : : ; �9 is an abstraction of the
protocol including the intruder.

AjBjI w �4; : : : ; �9 (37)

We can derive the intruder behaviour for this scenario by projecting onto the
intruder in the overall sequence of interactions. This sequence is clearly an ab-
straction of the general intruder behaviour:

(sndI!X (M1) + rcvI Y (M2))
� w

rcvI A(A;Na); sndI!B(I;Na); rcvI B(Na; Nb);
sndI!A(Na; Nb); rcvI A(Nb); sndI!B(Nb)

(38)

The inclusion of the intruder does not satisfy the constraint that A and B

mutually authenticate each other, see (30). A security aw is detected.

5 Con�dentiality and Integrity Analysis

Besides authentication support, a PKI also provides services concerned with the
secure distribution of keys and other secrets. In order to show the versatility of
our method, we shall look at con�dentiality and integrity issues relating to a key
establishment service based on a simpli�ed Di�e-Hellman protocol [18].

5.1 The Protocol

The protocol assumes a common number g. The names a and b denote random
values generated by A and B, respectively.

sndA!B(g
a); rcvA B(g

b) (39)

A sends ga to B, and receives gb from B. Here is B:

rcvB A(g
a); sndB!A(g

b) (40)

Here are the access control properties concerning A and B:

[sndA!B(g
a); rcvA B(g

b)] KnowsA(a; b)
[rcvB A(g

a); sndB!A(g
b)] KnowsB(a; b)

(41)

Thus, we get for the ideal protocol { the parallel composition:

[sndA!B(g
a); rcvA B(g

b) j rcvB A(g
a); sndB!A(g

b)]
KnowsA(a; b) ^KnowsB(a; b)

(42)

Two values are exchanged. A knows value b of B, and B knows value a of A. This
is the full speci�cation of the desired behaviour { the protocol without intruder
{ based on the speci�cations of A and B in isolation, (41). Including intruder I

[AjBjI] :KnowsI (a; b) (43)

we would not like I to interfere, but would like to achieve

hAjBjIi KnowsA(a; b) ^KnowsB(a; b) : (44)

We want to prevent that an intruder will ever get hold on the secret (a safety
condition) and that A and B will eventually share a secret (a liveness condition).

5.2 The Adversary

We reduce the capabilities of the intruder to the send- and receive-operations:
(sndI!X (M1; : : : ;Mn) + rcvI Y (M1; : : : ;Mm))

�. The intruder may proceed as
speci�ed by the following command sequence:

rcvI A(g
a); sndI!B(g

a); rcvI B(g
b); sndI!A(g

b) (45)

The intruder intercepts the communication between A and B. He will know
about the secret shared between A and B { the values ga and gb { and he will
even about a and b if he knows g or can infer it.

5.3 The Analysis

The intruder is again integrated via re�nement. A successful intruder inclusion
would violate the security conditions of the ideal speci�cation, i.e., would not
re�ne the ideal protocol speci�cation. We hope that eventually secrets a and b are
in place and nobody else knows about them, i.e., KnowsA(a; b)^KnowsB(a; b)
and :KnowsI (a; b) for any other agent I . Including the intruder I as speci�ed
above in formula (45) and assuming that I can infer g will satisfy

[AjBjI] KnowsI(a; b) (46)

since the intruder intercepts the communication and has access to ga and gb

and can calculate a and b from them, but it also violates the speci�cation
[AjBjI] :KnowsI(a; b), see (43). Assuming that I knows g, we get again a viola-
tion of the re�nement constraint: KnowsI(a; b) does not imply :KnowsI(a; b).

6 Related Work

Most approaches to security systems analysis are essentially adaptations of gen-
eral frameworks to the security context. Durgin and Mitchell [8] use conventional
logics and analysis methods to analyse security protocols. Their speci�cation ap-
proach is based on multisets of �rst-order formulas (called facts). A rewriting
technique is used to develop and analyse speci�cations. State are described by
multisets of facts. State transitions are given by rules, essentially relations on
multisets of facts. This treatment of states and state transitions is the essential
di�erence between their approach and our framework. We believe that a for-
mal speci�cation framework closer to techniques such as pre/postconditions and
re�nement is more suitable for a general approach to dependable systems engi-
neering. Common characteristics include the aim to reduce implicit assumptions
and to make them explicit, and the use of the explicit intruder method.

The spi-calculus [20] is based on the �-calculus and includes additional cryp-
tographic primitives. Process calculi such as the �-calculus are suitable to model
and develop infrastructures for distributed and mobile systems. The key di�er-
ence to our approach is that the intruder behaviour is not modelled explicitly in
the spi-calculus. Security properties of process de�nitions such as con�dentiality
(secrecy) and authentication (essentially integrity) are expressed via equivalences
to a process speci�cation. Consider the following example. Two processes shall
be de�ned: a process A sending a message M on channel cAB and a process
B := cAB(x):F (x) receiving on cAB and then processing the input x. The pro-
tocol is the parallel composition of A and B, i.e., P = �cAB :A(M)jB with a
channel cAB restricted to A and B. We expect B to processM internally, which
can be expressed by Bspec := cAB(x):F (M). The overall protocol speci�cation
is Pspec := �cAB :A(M)jBspec.

{ Secrecy: if F (M) ' F (M 0) then P (M) ' P (M 0) for allM;M 0. Whatever the
message is, an observer cannot distinguish between messages. If B does not
leakM within F , then the protocol should not leakM in order to guarantee
secrecy.

{ Authentication (integrity): P (M) ' Pspec(M) for all M . The protocol P
should behave (under observation) like its speci�cation Pspec, i.e., if M is
sent, then M arrives unchanged and is processed subsequently.

The equivalence ' is testing equivalence. It formalises the idea of observation
(by an intruder). Compared to our approach, the spi-calculus is more abstract.
It assumes restricted channels to be secure. Our approach does not make this
assumption. We o�er the possibility of more �ne-granular and explicit analyses.

Paulson's Inductive Method [21] uses induction over protocol traces (a trace
is a list of events that occur in some run of a protocol). Paulson introduces
a specialised notation for security protocols. Standard operators to construct,
deconstruct and remember messages are used in the speci�cation of traces.
The overall set of traces describing a protocol is de�ned inductively. Focardi,
Ghelli and Gorrieri [24] apply a non-interference approach for the analysis of the
Needham-Schroeder protocol. To keep our approach suitable for all forms of de-
pendability aspects and integrated development and analysis, we have included
security-speci�c aspects into a general-purpose framework, providing exibility
and con�gurability by combining di�erent command features.

Butler [25] describes an approach to security systems analysis similar to ours.
Butler bases his framework on a combination of the abstract machine notation
AMN (the B method) and CSP. He also uses re�nement to introduce the in-
truder. The correctness of an abstraction invariant AI needs to be checked:
S vAI T if AI) [T]hSiAI . Butler's approach is based on iterative re�nement,
i.e., an initial abstraction might need to be strengthened iteratively until suit-
able. Butler's and our approach are similar in that both use an explicit intruder
model and use re�nement to introduce encryption and the intruder. Both pro-
vide safety and liveness operators and make parallel composition available. The
key di�erence is that Butler's approach is based on data re�nement with ex-
plicit state, whereas we use an implicit, observation-based notion of state, which
creates a more abstract framework. We think that developing our re�nements
results into re�nement laws giving templates for e.g. con�dentiality-preserving
re�nements is a more suitable way. The combination of CSP and FDR, a model
checking tool, has been been very fruitful for security analyses, e.g., to detect
Lowe's attack [23]. This work has been carried further; [26] is a recent example.
However, a proof-theoretic approach can give more insight into why a protocol
works or fails than model checking.

We see re�nement as an interference analysis tool, not restricted to security
analysis, but also suitable for other forms of interference detection. Feature in-
teraction in telephony systems poses a similar problem [14, 15]. If a new feature
has to be added to an existing system, the main question is whether there are
unexpected or undesirable interferences with existing features. Re�nement can
answer this question. The principle of our analysis method { state the ideal
properties, add new behaviour, and analyse possible interferences { is not lim-
ited to security analysis. In [15], an investigation into common simple telephone
systems and advanced features such as call waiting and call forwarding is carried
out. Certain properties (invariants) are proven for the speci�cation of the basic

system. A re�ned speci�cation including advanced features needs to preserve the
properties. There is an interference, if this is not possible. Feature interaction is
de�ned as the violation of proof obligations in a re�nement.

Our work is based on testing approaches developed in [27, 28, 29, 19]. We
have in particular based parts of our test case generation on ideas developed
by Aichernig in [19]. He presented his work in a general purpose context, with
semantics based on weakest preconditions { essentially based on [3]. We have
improved this semantic framework towards a more exible and expressive modal
logic framework. Additionally, we have provided an improved, process-algebra
style command language including an explicit parallel composition.

7 Conclusions

Our approach to integrated development and analysis of dependable systems is
based on a re�nement mechanism for both purposes. Using re�nement as an anal-
ysis tool is not restricted to security analyses where various intruder behaviours
can be analysed. The analysis of any kind of interference such as feature interac-
tion can be carried out. An essential technique for the analysis of interferences is
to vary the behaviour. Elements have to be added or removed in a exible way.
We have provided two ways to control this exibility: �rstly, by using re�nement
to add new elements while preserving properties, and, secondly, by providing a
framework where the command language for the communication primitives itself
is not �xed, but can be inuenced through the introduction and axiomatisation
of new commands (or variants of existing ones). This exibility in reecting dif-
ferent assumptions about the underlying technology and the intruder is crucial.
Another key element is the compositionality of the approach, which supports the
required exibility in modelling and analysing various scenarios through compo-
sition and decomposition.

Our main objective has been to illustrate the concepts needed to address
reliability and security problems in dependable systems engineering. Two di�er-
ent aspects have been looked at to show the versatility of the approach. Here,
we have illustrated concepts using aspects from the well-known security pro-
tocols Needham-Schroeder and Di�e-Hellman. In [30], we have investigated a
specialised protocol { the Online Certi�cate Status Protocol OCSP. Due to the
compositionality of the dynamic logic framework, the approach is scalable and
can be applied to larger systems. We have addressed mechanised analysis support
through test case generation, necessary for large systems analysis. An approach
to further simplify reasoning, and enable automated or mechanised reasoning
in particular, is to reduce the complexity to equational reasoning by de�ning a
re�nement between modal formulas where the condition can be reduced to an
implication between simple non-modal formulas. Suitable environments for proof
support could be tools supporting pre- and postcondition based speci�cation or
tools such as tools for the B speci�cation language, which have also been used
in [25] and in the feature interaction analysis [15] discussed earlier on.

We have used abstraction-based testing to verify security properties. Since
we have used a dynamic logic similar to the modal �-calculus [31], the question
arises whether model checking is another alternative. The modal �-calculus is
a branching time temporal logic that forms the basis of several model checking
approaches, see [32]. With a �nite state space and �nite set of properties, model
checking becomes an alternative. If a given model satis�es the ideal protocol
speci�cation, then the model also has to satisfy the protocol with intruder. Oth-
erwise, there is a security violation. In [30], we have given semantics to a similar
speci�cation notation based on Kripke transition systems and the �-calculus,
enabling model checking as an alternative approach to the automation of the
security analysis.

Acknowledgements

The author would like to thank the anonymous reviewers for their valuable
comments.

References

[1] IETF PKIX Working Group. Internet X.509 Public Key Infrastructure, 2000.
http://www.ietf.org/internet-drafts/draft-ietf-pkix-roadmap-06.txt.

[2] C. Morgan. Programming from Speci�cations 2e. Addison-Wesley, 1994.

[3] R.J.R. Back and J. von Wright. The Re�nement Calculus: A Systematic Intro-

duction. Springer-Verlag, 1998.

[4] Dexter Kozen and Jerzy Tiuryn. Logics of programs. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, Vol. B, pages 789{840. Elsevier
Science Publishers, 1990.

[5] E.A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, Vol. B, pages 995{1072. Elsevier Science
Publishers, 1990.

[6] L. Lamport. The Temporal Logic of Actions. ACM Transactions on Programming

Languages and Systems, 16(3):872{923, May 1994.

[7] K.M. Chandy and J. Misra. Parallel Program Design. Addison-Wesley, 1988.

[8] N.A. Durgin and J.C. Mitchell. Analysis of Security Protocols. In M. Broy and
R. Steinbruggen, editors, Calculational System Design, pages 369{395. IOS Press,
1999.

[9] G.T. Leavens and A.L. Baker. Enhancing the Pre- and Postcondition Technique
for More Expressive Speci�cations. In R. France and B. Rumpe, editors, Pro-
ceedings 2nd Int. Conference UML'99 - The Uni�ed Modeling Language. Springer
Verlag, LNCS 1723, 1999.

[10] Bertrand Meyer. Applying Design by Contract. Computer, pages 40{51, October
1992.

[11] J.B. Warmer and A.G. Kleppe. The Object Constraint Language { Precise Mod-

eling With UML. Addison-Wesley, 1998.

[12] M. B�uchi and E. Sekerinski. Formal Methods for Component Software: The Re-
�nement Calculus Perspective. In Proceedings 2nd International Workshop on

Component-Oriented Programming WCOP '97. Turku Center for Computer Sci-
ence, General Publication No.5-97, Turku University, Finland, 1997.

[13] C. Pahl. Components, Contracts and Connectors for the Uni�ed Modelling Lan-
guage. In Proc. Symposium Formal Methods Europe 2001, Berlin, Germany.
Springer-Verlag, LNCS-Series, 2001.

[14] B. Mermet and D. M�ery. Incremental Speci�cation of Telecommunication Services.
In M. Hinchey, editor, International Conference on Formal Engineering Methods

ICFEM. IEEE Press, 1997.
[15] J.-P. Gibson, G. Hamilton, and D. M�ery. Integration Problems in Telephone

Feature Requirements. In A. Galloway and K. Taguchi, editors, Proc. IFM'99

Integrated Formal Methods. Springer-Verlag, 1999.
[16] R. Milner. Communicating and Mobile Systems: the �-Calculus. Cambridge Uni-

versity Press, 1999.
[17] R.M. Needham and M.D. Schroeder. Using Encryption for Authentication in

Large Networks of Computers. Communications of the ACM, 21(12):993{999,
1978.

[18] W. Stallings. Cryptography and Network Security. Prentice Hall, 1999.
[19] B.K. Aichernig. Test-case calculation through abstraction. In J.N. Oliveira and

P. Zave, editors, Proc. FME'2001 Symposium Formal Methods Europe. Springer-
Verlag, LNCS Series No. 2021, 2001.

[20] M. Abadi and A. Gordon. A Calculus for Cryptographic Protocols: the spi Cal-
culus. Information and Computation, 148:1{70, 1999.

[21] L.C. Paulson. Proving Properties of Security Protocols by Induction. In 10th

IEEE Computer Security Foundations Workshop, pages 70{83. 1997.
[22] D. Dolev and A. Yao. On the Security of Public-key Protocols. IEEE Transactions

on Information Theory, 29(2), 1983.
[23] G. Lowe. An attack on the Needham-Schroeder public-key protocol. Information

Processing Letters, 56:131{133, 1995.
[24] R. Focardi, A. Ghelli, and R. Gorrieri. Using non interference for the analysis

of security protocols. In H. Orman and C. Meadows, editors, DIMACS Work-

shop on Design and Formal Veri�cation of Security Protocols. DIMACS, Rutgers
University, 1997. http://dimacs.rutgers.edu/Workshops/Security.

[25] M. Butler. On the Use of Data Re�nement in the Development of Secure Commu-
nications Systems. Technical Report DSSE-TR-2001-1, University of Southamp-
ton Declarative Systems and Software Engineering, 2001.

[26] I. Zakiuddin, J. Woodcock, M. Goldsmith, and J. Hulance. Formal Veri�cation for
Survivable Key Management Systems. In Proc. IEEE Information Survivability

Workshop. http://www.cert.org/research/isw/isw2000/, 2000.
[27] J. Peleska. Test automation for safety-critical systems: Industrial applications and

future developments. In M.-C. Gaudel and J. Woodcock, editors, Proc. FME'96

Symposium Formal Methods Europe. Springer-Verlag, LNCS Series, 1996.
[28] R. Back, A. Mikhajlova, and J. von Wright. Reasoning about interactive systems.

In J.M. Wing, J. Woodcock, and J. Davies, editors, Proc. FME'99 Symposium

Formal Methods Europe. Springer-Verlag, LNCS Series No. 1709, 1999.
[29] J. Derrick and E. Boiten. Testing Re�nements of State-based Formal Speci�ca-

tions. Software Testing, Veri�cation and Reliability, 9:27{50, 1999.
[30] C. Pahl. Analysing Security Properties using Re�nement. In Proc. International

Workshop on Re�nement of Critical Systems RCS'02, 2002. (to appear).
[31] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Sci-

ence, 27:333{354, 1983.
[32] M. M�uller-Olm, D. Schmidt, and B. Ste�en. Model Checking { a Tutorial Intro-

duction. In Proc. 6th Static Analysis Symposium. Springer-Verlag, LNCS 1694,
1999.

