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Abstract: 

 
 
As obligate intracellular parasites, viruses rely on host cells to replicate. Hsv-1 is a 

large double stranded DNA virus which is the cause of common cold sores and 

corneal blindness in humans. The defining feature of HSV-1 is its ability to exist in 

two discrete states. During lytic infection, productive virus replication results in cell 

death. After primary infection HSV-1 enters a second state in non-permissive cells, 

termed latency in vivo or quiescence in vitro, in which minimal activity of the viral 

genome allows it to colonize its host. While the lytic state of viral replication is 

relatively well characterised, understanding of latency has lagged due to a lack of in-

vitro models that can facilitate detailed mechanistic study. This thesis investigates 

aspects of HSV-1 quiescence, specifically the role of host cell signalling and 

translation initiation during reactivation from a non productive state. To achieve these 

objectives, a new system was established to study HSV-1 quiescence. The system 

employs the use of serum starved and temperature elevated primary human cells 

which allow for efficient suppression of wild type HSV-1 replication, which that 

results in the formation of HSV-1 quiescent infection. Upon investigation of the 

kinase pathways required during reactivation from quiescence it was discovered that 

inhibition of the ERK signalling pathway resulted in a suppression of viral 

reactivation. Additionally, the activities of the down stream substrate of ERK, Mnk1, 

along with the mTORC1 substrate 4E-BP, both of which regulate the mRNA 

translation initiation factor eIF4E were shown to be required for efficient reactivation. 

To further investigate the role of translation initiation during reactivation, we 

employed the use 4EGi-1, a recently discovered small molecule inhibitor of eIF4F 

formation. During our investigations it was discovered that protein synthesis in 

primary cells was minimally dependent upon eIF4F yet highly sensitive to 4EGi-1 at 

concentrations that did not alter eIF4F levels but instead, increased the association of 

inactive eIF2α with initiation complexes. At these relatively low concentrations a 

potent suppression of mRNA translation was achieved yet tolerable to cells over 

prolonged periods. Critically, inhibition of translation resulted in suppression of both 

lytic replication and reactivation from quiescence suggesting that targeting mRNA 

translation may be a viable therapeutic avenue for treatment of HSV-1 infection. 



Section 1.0: Introduction 

 

1.1:  The Herpesviridae        1                                  

 

1.1.1     Herpes simplex virus 1       2 

 

1.1.1.1         HSV-1 structure (Genome)      3 

1.1.1.2         Capsid         3 

1.1.1.3         The Tegument        3 

1.1.1.4         Envelope         4 

1.1.1.5         The infectious states of HSV-1      5 

1.1.1.5.1      Lytic infection        5 

1.1.1.5.2      Virion assembly        6 

1.1.1.6         Latency         7 

1.1.1.7         Animal models for the study of HSV-1 latency    8 

1.1.1.8         Cell Culture models of HSV-1 and latency (Quiescence)  10 

 

1.2:      Translation         13 

 

1.2.1                Translation initiation        13 

1.2.1.1             Cap structure and poly a tail      16 

1.2.1.1.1         The eIF4F complex       17 

1.2.1.1.1.1       eIF4E         17 

1.2.1.1.1.1.1    Transcriptional regulation      19 

1.2.1.1.1.2 Regulation of eIF4E through phosphorylation   19 

1.2.1.1.1.3 4E binding proteins       24 

1.2.1.1.1.3.1 Regulation of 4E-BP affinity through phosphorylation  24 

1.2.1.1.1.3.2    PI3K-AKT-mTOR Signalling       26 

1.2.1.2             Eukaryotic initiation factor eIF2     30 

1.2.1.2.1          eIF2α kinases        31 

1.2.2                Mechanisms of Translational Control    34 

1.3                   Viral manipulation of translation initiation factor functions  37 

1.3.1                RNA viruses and eIF4F      37 



1.3.1.2             DNA Viruses         37 

1.3.2                Viral strategies for inhibition of PKR and eIF2 phosphorylation 40 

 

1.4:  Aims of thesis         42 

 

Section 2.0: Materials and Methods      43 

 

2.1.1 Reagents          44 

2.1.2 Equipment          45 

2.1.3 Cells          45 

2.1.4 Medium          46 

2.1.5 Trypan blue cell viability assay       46 

2.1.6 Growing and Titering virus       46 

2.1.7 Preparation of working sample buffer and cell lysis    47 

2.1.8 Sodium dodecylsulfate polyacrylamide gel electrophoresis   48 

2.1.9 Western blotting         50 

2.1.10 Western blot probing         50  

2.1.12 Enhanced chemiluminescence detection     51 

2.1.13 Western blot antibodies       52 

2.1.14 Metabolic labelling of cells       53 

2.1.15 TCA precipitation and filter binding assay to quantitate 35S incorporation 54         

2.1.16 Isoelectric Focusing        55 

2.1.17 Cap pulldown protocol       58 

2.1.18 Immunofluorescence protocol       60 

2.1.19 Phalloidin staining        61 

 

Section 3.0: Results          63 

 

3.1      Establishing quiescent infection in vitro     63 

3.1.1  Flow chart for the method of establishing quiescence   64 

3.1.2  Western blot analysis of Heat shock protein 70 and 27 abundance in  

NHDFs exposed to either 37º or 41º C           65 

 



3.1.3  Immunofluorescense analysis of ICP4 production in temperature  

elevated cells 12 hours post infection      66 

3.1.4  Immunofluorescense analyis of ICP4 production in temperature  

elevated cells 24 hours post infection      68 

3.1.5  Viral titers from cultures infected at 37º or 41ºC    69 

3.1.6  Metabolic labelling of infected NDHF cultures    70 

3.1.7  Western blot analysis of viral protein production during lytic and non-

productive infection in NHDF cultures     72 

3.1.8  Immunofluorescence analysis of leaky late protein ICP5 production   

during lytic and non-productive infection in NHDF cultures   74 

3.1.9  Phase contrast image capture of lytic and non-productive infection in NHDF 

cultures         76 

3.1.10  Patterns of protein synthesis during prolonged quiescent infection  77 

3.1.11  Comparative phase contrast images of mock vs quiescently infected   

cultures at 6 days post infection      78 

3.1.12  Levels of viral antigen production during quiescence over a six day period 79 

3.1.13  Western blot analysis of viral antigen production in reactivated    

cultures vs lytically infected cultures      80 

3.1.14  Recovery of infectious virus from quiescently-infected NHDF cultures 81 

3.1.15  Efficient quiescent infection requires non-dividing cells and temperature 

optimization for different HSV-1 strains     82 

3.1.16  Serum starvation is required for efficient quiescent infection  83 

3.1.17  Efficient quiescent infection requires temperature optimization for  

different HSV-1 strains       84 

3.1.18  Recovery of Patton strain from quiescently infected cultures maintained  

at 42°C         86 

3.1.19 HSV-1 ICP0 specifically reactivates virus from quiescently-infected  

NHDF cells         87 

3.1.20  ICP0 mediated reactivation induces CPE characteristic of productive  

Infection         88 

3.1.21  Human serum prevents secondary virus spread and illustrates the  

efficiency of virus reactivation from quiescently-infected NHDFs  89 

 



3.1.22  Expression of Us11 in samples reactivated in the presence  

of Human serum        91 

3.1.23  Quantification of virus reactivation from quiescence    92 

3.1.24  Enlargement of PML structures in NHDF cells infected at elevated 

 temperature         93 

 

3.2.0 The role of host kinases during HSV-1 reactivation    95 

 

3.2.1  The pattern of protein synthesis during reactivation    95 

3.2.2  Kinetics of viral protein production in reactivating cultures   97 

3.2.3  Analysis of viral antigen expression in quiescent and reactivating  

cultures by indirect imuunofloresence     99 

3.2.4  The pattern of ERK and p38 activity in reactivating cultures   101 

3.2.5  ERK stimulation is specific to HSV- 1 reactivation    103 

3.2.6  U0126 inhibits ERK activation during reactivation    105 

3.2.7  Inhibition of MEK-ERK signalling reduces HSV-1 antigen accumulation 

during reactivation        106 

3.2.8  Inhibition of MEK-ERK signalling reduces HSV-1 reactivation  107 

3.2.9  The effect of U0126 on yields of infectious virus produced in  

reactivating cultures        108 

3.2.10 The reactivation of HSV-1 in the presence inhibitors and Human serum 109 

3.2.11  Inhibitors of ERK phosphorylation do not affect lytic replication  110 

3.2.12  The effects of U0126 on spontaneous reactivation of quiescent HSV-1 111 

 

3.2.13  Inhibition of infectious virus production during spontaneous reactivation  

by U0126 or SB203580       113 

3.2.14  MEK-ERK and p38 inhibition potently blocks spontaneous reactivation 114 

 

3.2.15  U0126 does not affect low multiplicity lytic infection and spread of  

HSV-1          115 

3.2.16  Inhibitors of MNK and mTOR cause a reduction of HSV-1 reactivation  

from quiescence        116 

 



3.2.17  Inhibitors of MNK and mTOR cause of reduction of spontaneous  

reactivation from quiescence       117 

3.2.18  The effect of Rapamycin and CGP on yields of infectious virus  

produced in spontaneously reactivating cultures    118 

 

3.3.0 Inhibition of translation in primary human fi broblasts by 4EGi-1 119 

 

3.3.1  The effects of 4EGi-1 on host translation rates    119 

3.3.2  Cellular effects of 4EGi-1 at 4 hours post treatment    121 

3.3.3  The effects of 4EGi-1 on the composition of initiation  

complexes in NHDFs        123 

3.3.4  The effects of 4EGi-1 on the composition of initiation complexes  

in Hela cells         125 

3.3.5  Reversible accumulation of phosphorylated eIF2α in eIF4F complexes 

observed with alternatively sourced 4EGi-1     126 

3.3.6 4EGi-1 reversibility upon removal from culture medium   128 

3.3.7  The effects of Torin on the composition of initiation complexes  

in NHDFs         129 

3.3.8  The effects of 4EGi-1 and Torin1 on translation rates in human cells 130 

3.3.9 4EGi-1 toxicity in NHDF and Hela cells     131 

3.3.10 4EGi-1 reversibility after prolonged treatment of cells   132 

3.3.11 4EGi-1 stability in culture       133 

3.3.12  The effects of extended exposure to 4EGi-1 on protein synthesis rates in 

NHDFs         135 

3.3.13  The effects of extended exposure to 4EGi-1 on patterns of translation 

 and cell viability in NHDFs       136 

3.3.14  Effects of prolonged 4EGi-1 exposure on protein abundance  138 

3.3.15  The effects of extended expose to 4EGi-1 on actin stabilization  

in NHDFs         139 

3.3.16 4EGi-1-treated NHDFs remain tolerant of and responsive to proteasome 

inhibition         130 

3.3.17 4EGi-1-treated NHDFs remain tolerant of and responsive to heat shock 141 



3.3.18  Effects of prolonged exposure to 4EGi-1 and heat shock on  

actin structures        142 

3.3.19  Effects of prolonged exposure to 4EGi-1 and heat shock 

  on apoptotic markers        143 

3.3.20 4EGi-1 inhibition of HSV-1 reactivation from quiescence   144 

3.3.21  4EGi-1 inhibition of infectious HSV-1 productiom during  

reactivation from quiescence       146 

3.3.22  4EGi-1 inhibition of translation during lytic HSV-1 replication  147 

3.3.23  Rates of protein synthesis in HSV-1 infected cultures treated with  

 4EGi-1          148 

3.3.24  The affects of 4EGi-1 treatment on viral antigen accumulation during lytic 

replication         149 

3.3.25  Effects of 4EGi-1 treatment on infectious progeny production during lytic 

replication         150 

3.3.26  The effects of Torin on eIF4F complexes during HSV-1 infection  151 

3.3.27  The affects of Torin on translation rates during HSV-1 high multiplicity 

infection         152 

3.3.28  A comparison of the effects of 4EGi-1 and Torin1 on viral   

 protein production        153 

3.3.29 4EGI-1 is capable of suppressing translation mid way through a HSV-1  

lytic infection         155 

3.3.30 4EGi-1 translational suppression during late stage HSV-1 infection  156 

3.3.31  Suppression of poxvirus protein synthesis by 4EGi-1   157 

3.3.32  Rates of protein synthesis in Vaccinia infected cultures treated with 

 4EGi-1          159 

3.3.33  Effects of 4EGi-1 treatment on infectious progeny production during Vaccinia 

virus replication         160 

3.3.34  The effects of 4EGi-1 on Vaccinia virus antigen accumulation   162 

3.3.35 4EGi-1 translational suppression during late stage Vaccinia infection 163 

 

Section 4: Discussion         164 

 

4.1 Developing a cell culture model of HSV-1 latency     165 



4.1.1 Protein production and entry into quiescence     171 

4.1.2 Controllable and spontaneous reactivation of quiescent infection  173 

4.2 The role of host signaling in reactivation     177 

4.2.1 The role of ERK and p38 in HSV-1 reactivation    177 

4.2.2   The role of Mnk and mTORC1 in HSV-1 reactivation    182 

4.3 The role of initiation factors in HSV-1 reactivation    184 
 

 

Section 5.0: Conclusion        196 

 

Section 6.0: Bibliography        201 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



0 
 

Section 1: Introduction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1 
 

Introduction: 
 
1.1.  The Herpesviridae 
 
The Herpesviridae are a large family of double stranded DNA viruses. The family is 

composed of over 200 viruses which are known to infect a range of vertebrate hosts. 

The viruses derive their name from the Greek word “Herpein” which means to creep 

and refers to the characteristic latent and recurring infection typical of this group of 

viruses. There are eight varieties of Herpes virus known to infect humans and they are 

classified into α (Alpha), β (Beta) and γ (Gamma) subfamilies based on their 

biological similarities. The Alphaherpesvirinae are distinguished by rapidly growing 

viruses that cause acute diseases, both Herpes simplex virus 1 and 2 (HSV-1 and 

HSV-2) are included within this subfamily and are known as neurotropic and 

neuroinvasive viruses. The Betaherpesvirinae are characterised as slow growing and 

highly cell-associated viruses which produce diseases with a prolonged clinical 

course. Cytomegalovirus and Roseolovirus are members of this subfamily and are 

leukotropic in nature, establishing latency in these cells until reactivated. The final 

subfamily within Herpesviridae is the Gammaherpesvirinae. The 

Gammaherpesvirinae subfamily contains two viruses known to infect humans. The 

first of these viruses is the Epstein-Barr virus (EBV), also called human herpesvirus 4 

(HHV-4), which is a virus known to infect and replicate in oro-pharyngeal epithelial 

cells and establish latent infection within B-lymphocyte populations which can result 

in the causation of Burkitt's lymphoma and Nasopharyngeal carcinoma. The other 

member of the Gammaherpesvirinae known to infect humans is the Kaposi's sarcoma-

associated herpesvirus (KSHV) also called human herpesvirus 8 (HHV-8). KSHV is 

known to target a number of cell types including endothelial cells (and progenitors), B 

or T-lymphocytes and subsets of monocyte/macrophages present in peripheral blood 

and in diseased tissues. Similar to Epstein Barr, KSHV can form latency in 

lymphocytes and is the cause of Kaposi's sarcoma, a common cancer occurring in 

patients with AIDS. In addition to Kaposi sarcoma, KSHV can cause the 

lymphoproliferative disorders such as primary effusion lymphoma and some types of 

multicentric Castleman's disease (Knipe et al., 2007). 
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1.1.1  Herpes simplex virus 1 
 

Herpes Simplex Virus 1 (HSV-1) is a nuclear replicating enveloped double stranded 

DNA virus and member of the Alphaherpesvirina subfamily of the Herpesviridae 

family. HSV-1 virus is the pathogen responsible for Herpes labialis of the lips, mouth 

or gums which results in the development of small painful blisters, commonly called 

cold sores. Although Herpes labialis is a relatively benign condition of mainly 

aesthetic concern, HSV-1 can cause more severe conditions, notably Herpes Keratitis 

which can cause blindness and Herpes Encephalitis which destroys brain tissue 

leaving the patient permanently brain damaged (Barton 2009). 

 
Transmission 
 

Between 60 to 90% of the global adult population harbour neutralizing antibodies 

against HSV-1 and therefore serve as reservoirs for the virus. The majority of primary 

infections are attained through direct contact with a lesion or with infected body fluids 

such as saliva, genital fluids and exudates from active lesions. The transmission of 

virus is aided by the fact that individuals which harbour latent virus periodically shed 

infectious HSV-1 in saliva without the formation of symptomatic lesions (Young, 

Rowe & Buchanan 1976; Oliver et al., 1995; Smith, Robinson 2002). This 

phenomena of viral shedding is more frequently observed in immunocompromised 

individuals or in patients undergoing oral surgery (Sacks et al., 2004). 

 

1.1.1.1  HSV-1 structure 
 
Genome: 
 
The HSV-1 genome is 152 kb in size with a base composition of 68% G + C. It 

contains four different regions termed the unique long region (UL), the unique short 

region (US) , and the two sets of repeats, the repeat long (RL) and the repeat short 

(RS). Each repeat within the genome is present in duplicate copies, differentiated as 

either the terminal (T) or internal (I). The genome contains three origins of replication 

situated at the centre of the UL and flanking the US regions.  The 9,000 bp long repeat 

(RL) encodes both an important immediate early regulatory protein (ICP0) and the 

promoter of the latency associated transcript (LAT). The UL which is 108,000 bp in 

length is known to be the coding region for 56 distinct proteins including the proteins 
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involved in genome replication and virion formation. The 6,600 bp short repeats (RS) 

are the areas that code for immediate early proteins, which act as the transactivators of 

early genes which then results in viral DNA replication. The 13,000 bp unique short 

region (US) is the coding region for at least 12 ORFs, a number these ORFs are 

glycoproteins important in viral  infectivity and host range in addition to controlling 

viral responses to host cell defences (Knipe et al., 2007). 

 

Figure 1.1  HSV-1 Genome 

 

                                      

 

Figure 1.1 illustrating the different regions of the HSV-1 genome, termed the unique 
long region (UL), the unique short region (US) ,and the two sets of repeats, the repeat 
long (RL) and the repeat short (RS). Each repeat within the genome is present in 
duplicate copies, differentiated as either the terminal (T) or internal (I). The genome 
contains three origins of replication (ori) situated at the centre of the UL and flanking 
the US regions. 
 
1.1.1.3  Capsid  
 
 
The nucleocapsid is the structure which encapsulates the HSV-1 genome. It has a 

protein shell approximately 15 nm thick and 125 nm in diameter. Its major structural 

characteristic is its 162 capsomers (150 hexons and 12 pentons) which are constructed 

from the major capsid protein VP5, and the proteins VP19, VP23, VP26 bound by 

noncovalent bonding (Knipe et al., 2007; Newcomb et al., 1994). 

 

1.1.1.2  The tegument 
 
 

The tegument is an amorphous layer of heterogeneous proteins that occupies the space 

between the inner capsid and the outer envelope. Over the years the use of cryo-

electron tomography and yeast two hybrid screening along with biochemical assays 

and viral-gene deletions has elucidated much of the structural detail pertaining to the 

tegument. The tegument is composed of 23 known proteins each of which has a 

specific function ranging from initiation of viral transcription, control of cellular 

molecular motors, subversion of cellular antiviral responses and transportation of viral 

capsids and formation of infectious virions. Many of the genes coding for these 
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proteins can also be found in both Betaherpesvirinae and Gammaherpesvirinae 

(Loret, Guay & Lippe 2008; Varnum et al., 2004). 

 

1.1.1.4  Envelope 

The envelope consists of a lipid bilayer studded with 11 glycoproteins. The entry of 

HSV-1 into the host is facilitated by these glycoproteins embedded in the viral 

envelope binding to the receptors on the surface of the host cell. During HSV-1 fusion 

and entry, the envelope glycoprotein C (gC) binds to a proteoglycans on the cell 

surface called heparan sulphate. Upon binding of gC, glycoprotein D (gD) binds to a 

receptor called the Herpesvirus entry mediator receptor (HVEM) bringing the 

membrane surfaces of the cell and virus into close proximity allowing for other 

glycoproteins embedded in the viral envelope to interact with other cell surface 

molecules. This binding to HVEM changes gD’s configuration allowing it to interact 

with viral glycoproteins H (gH) and L (gL), which then form a complex. The 

interaction of these membrane proteins results in the hemifusion state resulting in the 

interaction between glycoprotein B (gB) and gH/gL which then creates an entry pore 

for the viral capsid (Subramanian, Geraghty 2007). Once the viral capsid has entered 

into the cytoplasm, it is transported to the cell nucleus and attaches to the nucleus at a 

nuclear entry pore. The capsid then ejects its DNA contents via the capsid portal on 

the nuculeur membrane, which is a structure created using twelve copies of the viral 

portal protein UL6, which is constructed  in a ring configuration (Knipe et al., 2007).  

 

Figure 1.2  HSV-1 Virion 

 

 

 

 

 

 

 

Figure 1.2 An illustration of the basic structural features of the HSV-1 virus. HSV-1 
is an enveloped, icosahedral DNA virus. The region between the outer lipid envelope 
and the nucleocapsid is called the tegument. The DNA of the virus resides in the core. 
The envelope proteins ("Glycoprotein Spikes") are unique viral proteins, but the 
envelope itself is derived from the virus host cell. (G. E. Lee et al., 2006). 



5 
 

1.1.1.5   The infectious states of HSV-1  

 

Once the viral DNA has entered the nucleus of a host cell it exist in one of two states, 

termed lytic or latent. 

 

1.1.1.5.1 Lytic Infection: 

 

Lytic infection is a state defined by the expression of more than 80 HSV-1 proteins in 

a regulated cascade resulting in the production of infectious progeny. Transcription of 

viral DNA takes place in the host cell nucleus and the viral proteins are synthesized in 

the cytoplasm. Transcription of all viral genes is mediated by RNA Pol II and viral 

proteins can modify RNA Pol II activity and structure (Bastian, Rice 2009)(Wysocka, 

Herr 2003). The first class of viral proteins synthesized during this process are the 

viral α or immediate early (IE) genes. The six proteins comprising this class are ICP0, 

ICP4, ICP22, ICP27, ICP47 and Us 1.5. The transcription of these genes is regulated 

by the viral protein Vp16 which is present within the tegument surrounding the core 

of the infecting virion. Around 500 to 1000 Vp16 molecules are delivered to the cell 

with every incoming virion and these molecules form multicomponent complexes 

with cellular proteins OCT-1 and HCF which can then recognise and bind 

TAATGAAAT sequences on the IE gene promoters (Karupiah 2002; Wysocka, Herr 

2003). 

 

The immediate early genes have a vast array of functions during lytic infection. The 

immediate early protein ICP4 is a transactivator which is required for β and γ gene 

expression, while ICP0 is a ubiquitin ligase that destroys restrictive host factors and is 

a promiscuous viral gene transactivator (Barklie Clements, Watson & Wilkie 1977; 

Preston 1979; Watson, Clements 1980; Everett 2000). 

 

The next class of viral genes are the β class or early (E) proteins, with functional viral 

IE transcription factor ICP4 being essential for β expression. The β genes are largely 

responsible for replication of viral DNA, nucleotide metabolism and the production of 

γ or late genes. The β genes are subdivided into two groups: The β1 genes, which are 

expressed within a short time after the expression of the α proteins and are 
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exemplified by UL39 encoding ICP6, the large subunit of ribonucleotide reductase. 

The second set of β genes, the β2 genes are expressed in a more delayed fashion after 

α protein expression and are exemplified by UL23 encoding Thymidine kinase.  

 

The final class of HSV-1 viral genes expressed during lytic infection are the γ or late 

genes. These genes are expressed after viral DNA synthesis has commenced and 

mainly encode structural proteins which will compose the viral particle. The γ genes 

are also subdivided into two groups; the γ1 early/leaky late and the γ2 late or “true 

late” genes. The chronology of γ gene expression is determined by their dependence 

on viral DNA synthesis, with γ1 early/late genes such as ICP5 being expressed 

relatively early in infection but stimulated a few fold upon viral DNA synthesis. In 

contrast to the γ1 early/late genes, the γ2 late genes such as UL11 are expressed late in 

infection only after DNA synthesis has occurred (Knipe et al., 2007). 

 

1.1.1.5.2  Virion assembly 

 

After the synthesis of all three classes of viral gene products has occurred the virus is 

assembled in several stages. Firstly the DNA is packaged into pre-assembled capsids 

within the nucleus. The filled capsids or “nucleocapsids” then mature into an 

infectious virion by budding through the inner lamella of the nuclear membrane. After 

budding, it is currently thought that the virion transits between the outer nuclear 

membrane to the subcellular space by transit through the Golgi stacks,  being de-

enveloped and then re-enveloped at the trans Golgi network. Once fully formed, the 

virus is then released by exocitosis causing the death of the host cell. The virus then 

spreads to the cells peripheral environment (Knipe et al., 2007). 
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1.1.1.6 Latency 

 

Even though HSV-1 has a wide tropism and can lytically infect a vast array of cell 

types and animal species, the defining trait of HSV-1 is its ability to establish life long 

latent infection within host sensory neurons following spread from the primary site of 

infection. 

Latency is established after the virus has entered sensory neurons by fusion at the 

axonal termini following spread from the epithial site of primary infection. The 

nucleocapsid then moves by retrograde axonal transport along microtubules to the 

nucleus of the cell body. Once inside the nucleus the viral genome acquires an endless 

circular DNA episomal configuration.  

In latently infected neurons, the viral genome is modified by nucleosomal chromatin. 

The Latency Associated Transcript (LAT) promoter and its 5’ exon are associated 

with acetylated H3 histones which are permissive for transcription. In contrast, the 

lytic gene promoters are associated with heterochromatin forms of histones during 

latent infection which prevent transcription (Knipe et al., 2007). 

A key trait with regard to entry into latency is the absence of α gene expression. This 

lack of expression is most likely to be the primary cause of HSV-1 genome silencing. 

One of the possible reasons for lack of α gene expression is probably the lack of 

nuclear forms of host cofactors required for α transcription. As described previously, 

Vp16 forms a multicomplex with HCF and OCT-1 which mediate transcription of 

viral genes in permissive cells. In neuronal cells HCF and OCT-1 are located in the 

cytoplasm but interestingly migrate to the nucleus during HSV-1 reactivation in 

explanted ganglia (Kristie, Vogel & Sears 1999; Nogueira et al., 2004). During latent 

infection, lytic gene transcription is suppressed and the only transcript that abundantly 

accumulates is the “Latency Associated Transcript” (LAT). This transcript yields 

multiple RNA species upon splicing which are collectively referred to as LATS. First 

identified by in situ hybridisation in 1984 and three years later by northern blotting, 

LATs code for no known viral proteins and are found exclusively in the nucleus 

during latency (Stevens et al., 1987). Although the exact functions of the LATs are 

not completely understood, LATS have been found to regulate the host cell genome 

and interfere with natural cell death mechanisms such as receptor mediated (Caspase 

8) and mitochondrial mediated (Caspase 9) pathways (Henderson et al., 2002). In 

addition, LATS have been found to upregulate heat shock proteins and prevent cold 
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shock induced apoptosis indicating that LAT expression may prevent  the occurrence 

of a inhospitable cellular environment during the establishment and maintenance of 

latency (Spivack, Fraser 1987; Perng et al., 2000; Ahmed et al., 2002; Jin et al., 2003; 

Peng et al., 2004;  Atanasiu et al, 2006). 

 

During latency in sensory ganglia little or no replicating virus can be detected, but 

infectious virus is produced in a fraction of neurons periodically in response to 

environmental cues such as physical and psychological stress. This low level 

reactivation results in anterograde transport of virus to the peripheral epithelial tissue 

and can cause a symptomatic or asymptomatic infection depending on the host 

immune status, as CD8+T cells have been shown to control HSV-1 replication in the 

nervous systems of mice (Orr et al., 2007; Knickelbein et al., 2008; Sheridan, 

Knickelbein & Hendricks 2007). 

 

1.1.1.7 Animal models for the study of HSV-1 latency 

 

As a model which re-creates the exact infection characteristics of human disease 

remains unattainable and due to the broad array of hosts which HSV-1 can infect, 

research groups have employed the use of animal models which allow HSV to 

establish a localised initial infection followed by establishment of a latent infection in 

neurons, thus allowing for the study of viral pathogenesis, neuroinvasivness, 

neuropathology and latency. Mice are routinely used for the study of HSV-1 latency 

due to their reasonable cost relative to more expensive animal models and there are 

two infection models used in studies.  The footpad/dorsal root ganglion model 

involves the infection of the mouse footpad which is followed by latent infection of 

the spinal ganglia (Stevens, Cook 1971). This model is thought to mimic aspects of 

HSV human genital infection and many aspects of latent infection, including 

identifying the neuron as the site of latency and the expression of LATS during latent 

infection (Cook, Bastone & Stevens 1974; Cook, Stevens 1976; Stevens et al., 1987). 

 

The second murine model used to study latency is the eye/trigeminal ganglion model, 

which involves infection of the cornea followed by latency establishment in the 

trigeminal ganglia. As with the footpad/dorsal model, virus can be recovered from 

latency by cocultivation of expanted ganglia on feeder cells (Kennedy, Al-Saadi & 
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Clements 1983). Additionally, reports have shown virus recovery from latency in 

mouse trigeminal ganglia following Ultraviolet (UV) irradiation and ocular 

iontophoresis of epinephrine (Willey, Trousdale & Nesburn 1984; Laycock et al., 

1991). 

 

The investigation of HSV-1 latency has also been conducted using rabbit models. 

Like the mouse eye/trigeminal ganglion model latent infection is established 

following infection of the rabbit cornea. One characteristic of this system is the ability 

to sporadically recover virus more frequently than in mouse models. Recovery of 

virus can also be induced by iontophoresis of epinephrine (Nesburn, Elliott & 

Leibowitz 1967; Tullo et al., 1982; Hill et al., 1986; Shimeld et al. 1990). 

Additionally, as in the mouse models no infectious virus is detectable in infected 

ganglia until explantation and culture on feeder cells suggesting viral latency which 

broadly mimics human infection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 
 

1.1.1.7 Cell Culture models of HSV-1 and latency (Quiescence) 

 

Despite the intrinsic positives of animal models and the progress in empirical 

understanding made from their use, many questions with regard features of latent 

phase infection, reactivation and the state of viral genomes can only be best answered 

using tissue culture models that allow detailed mechanistic studies and genetic 

biochemical analysis. The major benefits of tissue culture models are the ability to 

observe the virus at the single cell level and without interference of immunological 

events that modulate the eventual appearance of virus in the host. 

 

In the past a number of models have been developed to study HSV latency (termed 

quiescence in vitro) by coercing HSV to a non productive state. Quiescence can be 

established in sympathetic neurons of rat origin in vitro. These explanted cells are 

treated with antimitotic agents such as florodeoxyuridine to stop the growth of 

fibroblasts or Schwann cells that were removed with the neurons during explant. 

Initial experiments on these cultures reported that quiescence could be established 

with a loss of 37% of cultures infected with HSV-1 at a multiplicity of infection 0.03, 

while of the surviving cultures only 12% harbour virus capable of reactivation from 

quiescence. Further experimentation using these cells showed that treatment of 

cultures with Anti HSV-1 antibodies two weeks subsequent to infection allowed for 

the multiplicity of infection to be increased to 1. Of the cultures infected, 63% 

survived and 53% of which harboured latent virus that could be reactivated upon NGF 

removal. However when the multiplicity of infection was increased to 2, all cultures 

were destroyed by productive lytic infection (Wilcox, Johnson 1987). 

 

Additional models from the same group employed the use of Acyclovir. Acyclovir is 

a guanosine analogue antiviral drug which is a potent inhibitor of viral DNA 

polymerase. It was shown that pre-treatment with Acyclovir 12 hours prior to 

infection, and maintenance of Acyclovir in cultures for 7 days, allowed for cultures to 

be infected at multiplicities of infection of 5 with 100% of the cultures infected 

surviving. Upon acyclovir removal the cultures could be maintained in a quiescent 

state for a further 7 days and reactivated by NGF removal (Wilcox, Johnson 1988). 

However reactivation was often inefficient and did not occur on a population wide 

level. 
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The use of  other chemical inhibitors such 1-,B3D-arabinofuranosylcytosine have also 

been applied to primary cultures of explanted ganglia of rat and human origin to 

suppress viral  replication prior to culture maintenance at  temperatures above 40.5°C. 

Although this approach was successful at establishing quiescence the system was 

limited to infecting with 0.1 plaque-forming units (p.f.u) per cell (Wigdahl, Isom & 

Rapp 1981). In an attempt to increase the proportion of quiescently infected cells 

within the culture the same research group pre-treated cells with medium containing 

(E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) and human leukocyte interferon prior 

to infection at 2.5 plaque-forming unit (pfu) per cell. BVDU is a known inhibitor of 

viral DNA polymerase (Allaudeen et al., 1981), and human interferon is thought to 

induce a cellular antiviral response and reduce viral replication (Kotwal 1997). In 

these systems, viral quiescence was sustained after inhibitor removal by increasing the 

incubation temperature from 37°C to 40.5°C and viral quiescence was maintained for 

up to 15 days post inhibitor removal while virus reactivation was initiated by 

decreasing the temperature to 37°C (Wigdahl et al., 1982; Wigdahl et al., 1983). 

 

As the preparation of dorsal root ganglia is time consuming and inconvenient, other 

tissue culture models were developed which allow for the study of HSV-1 quiescence. 

The first of such models is the rat phaeochromocytoma line (PC12), which is 

differentiated with nerve growth factor. In response to NGF removal the PC12 cells 

cease to divide and acquire properties characteristic of peripheral nervous tissue. 

During infection of these differentiated cells, NGF was maintained in the culture 

media and quiescence could be established and subsequently maintained for several 

weeks. Upon NGF removal, virus could be recovered indicating reactivation. 

Alternatively heat shock or forskolin has also been reported to reactivate virus in 

these systems (Block et al., 1994; Danaher et al., 1999; Miller, Danaher & Jacob 

2006). Further use of these systems showed that the addition of Acyclovir during 

infection allowed for higher multiplicities of input virus to be used to establish 

quiescence (Danaher, Jacob & Miller 1999).  These models have been used to show 

the role of Histone Deacytlases (HDACs) and chromatin remodelling during virus 

reactivation (Danaher et al., 2005). 

Many of these neuronal models were based in non-human cell types. Due to the 

ethical and accessibility issues associated with the use of neuronal systems of human 

origin, primary fibroblasts have been used extensively for the study of HSV-1 
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quiescence in human cells. The capacity of fibroblasts to harbour quiescent infection 

is thought to be facilitated by a low metabolic state and expression of factors that 

resist viral lytic replication which may mimic the state of neurons more accurately 

than other cell lines (Jamieson et al., 1995). 

 

Initial experiments conducted by Crouch and Rapp (Crouch, Rapp 1972) 

demonstrated HSV-1 replication was strongly suppressed in certain cell types by 

elevating the temperature of fibroblast cultures to 40.5°C during the initial 6 hours of 

infection. The fact that this worked in only certain cell types suggested that replication 

of the virus itself was not sensitive to temperature elevation but that an early stage in 

the virus life cycle was inhibited in a host cell-specific manner. Consequently, many 

fibroblast models exploit temperature elevation of cultures to coerce the virus into a 

non replicative state (Wheeler 1958; Harris, Preston 1991). Although temperature 

elevation could prevent viral replication, it could only do so at low multiplicities of 

infection (0.003p.f.u/cell) most likely due to the cytotoxicity of immediate early gene 

expression by wild type virus in these cells (Johnson, Wang & Friedmann 1994; 

Harris, Preston 1991). To overcome this problem and allow for infection on a 

population wide scale, research groups employed the use of viral mutants deficient in 

various IE genes, in addition to treatment of cultures with chemical inhibitors and or 

temperature elevation to prevent low-level replication of these mutants  (Russell et al., 

1987; Stow 1989; Harris, Preston 1991; Jamieson et al.,1995; Samaniego, Neiderhiser 

& DeLuca 1998; Preston, Nicholl 1997; Hobbs et al., 2001; Everett, Boutell & Orr 

2004). However, the use of viral mutants and relatively low efficiency of many 

models means that our understanding of latency and reactivation remains limited. 
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1.2 Translation 

 

As obligate intracellular parasites, viruses lack the genes that code for components of 

the mRNA translational machinery such as ribosomal subunits and translation factors. 

To ensure viral mRNA translation during both lytic infection and reactivation from 

latency, the virus must effectively commandeer the host cells translation machinery to 

compete with the host cells mRNAs for access to limiting amounts of translation 

initiation factors.  

 

Translation is recognised as an important process for gene regulation as it controls the 

conversion of mRNA to protein. Its processes are subdivided into three stages, 

initiation, elongation and termination. 

 

The ribosome complex is a multisubunit structure containing ribosomal RNA (rRNA) 

and proteins, which is responsible for translation of mRNA to a specific sequence of 

amino acids. Before mRNA can be converted to protein the ribosome must position 

itself on the correct area of the mRNA. This process is called translation initiation and 

the activity of cellular initiation factors that mediate this process can influence both 

overall global rates of proteins synthesised or influence the relative rates of synthesis 

of specific subsets of proteins. Whereas the control of global protein synthesis is of 

potential importance for allowing the cell enter G1 phase of the cell cycle, the control 

of the translation of specific proteins impacts process such as cell homeostastis, and it 

is thought that the amounts of a number of proteins which play a key role in cell 

proliferation and differentiation are controlled at the level of translation (Pain 1996; 

Gingras et al., 2001). 

 

1.2.1 Translation initiation. 

 

Translation initiation is said to be a rate limiting step with regard to protein synthesis 

as it is at this stage where most steps of physiological control are observed (Figure 

1.3). Initiation begins when preexisting 80S ribosomes bound to the 3’ end of mRNA 

are dissociated by binding of eIF6 to the 60S ribosomal subunit and binding of eIF3 

and eIF1A to the 40S ribosomal subunit. Once the 40S subunit is released it can bind 

eIF2-GTP-Met-tRNA which forms the 43S preinitiation complex. When the 43S 
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preinitiation complex is formed it is competent at binding mRNA independently, but 

for the ribosome to assemble on the 5’ end of mRNA it first must avail of ATP 

hydrolyis and a set of initiation factors termed the eIF4 group. Once the 43S subunit 

has bound eIF4F through the binding of eIF3 it is thought to traverse and scan the 

mRNA 5′ untranslated region (5′ UTR) in a linear and processive fashion in a 5′-to-3′ 

direction until it comes upon an AUG initiation codon in the favourable sequence 

context. Upon encountering the correct initiation codon the associated initiation 

factors are released in a process mediated by the GTPase-activating protein (GAP), 

eIF5, which promotes eIF2 to hydrolyze its bound GTP to GDP. Once the hydrolysis 

of GTP has occurred, the initiation factors are released from the ribosome and the 60S 

subunit binds to the complex initiating polypeptide elongation (Gingras, Raught & 

Sonenberg 1999). 
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Fig 1.3 Recruitment of Ribsomes to mRNAs 

 

 

 

 

 

 

 

 

 

                                                                               

 

 

 

 

 

 

 

 

 

 

 
 
 
Fig 1.3 The 48S initiation complex is composed of Met-tRNAi

Met which is recruited 
to the small (40S) ribosomal subunit in a ternary complex (TC) with GTP-bound eIF2, 
to produce the 43S preinitiation complex (PIC). The 43S PIC interacts with the 5’ end 
of mRNA in a manner stimulated by factors that bind to the m7G cap of the mRNA. 
The m7G cap binding complex termed the eIF4F complex is composed of eIF4E 
which binds the m7G cap and the N-terminal region of eIF4G. eIF4G is a protein 
which has multiple protein binding sites and in addition to eIF4E it also binds the 
ATP dependent RNA helicase eIF4A, the ribosome binding protein eIF3 and the 
poly(A) tail binding protein (PABP). The 48S PIC is formed once the mRNA bound 
eIF4F complex has bound the 40S ribsome. The PIC then scans the mRNA leader 
until the anticodon Met-tRNAi

Met base-pairs with the “start” AUG codon in the 
correct site context on the mRNA. When the Met-tRNAi

Met binds this AUG codon the 
eIF4F complex is then released allowing for the 40s ribsome to bind the 60s ribosome 
thus forming the 80s ribosome which facilitates polypeptide elongation. 
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1.2.1.1 Cap structure and poly a tail: 

 

The majority of eukaryotic cellular mRNAs possess an inverted 7- methyguanosine, 

linked by a 5’-5’ triphosphate bridge to the first transcribed residue at the 5’end 

(Banerjee 1980). This group is referred to as the ‘cap’ and has many functions 

including nuclear export, stability, splicing and recognition of mRNA for translation 

into protein (Lewis, Izaurflde 1997; Cougot et al., 2004). 

In addition to the cap, most eukaryotic mRNAs possess a 3′ poly(A) tail which can be 

50 bases long in yeasts to more than 200 bases long in higher eukaryotes. The poly(A) 

tail is important for the nuclear export, translation and stability of mRNA  (Preiss, 

Muckenthaler & Hentze 1998; Guhaniyogi, Brewer 2001;  Fuke, Ohno 2008). 

 

 

Figure 1.4 Cap structure 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 1.4 The 5’ cap structure is found on most eukaryotic messenger RNAs and is 
required for translation inititaion. The guanosine is methylated on position 7 by a 
methyl transferase and connected to the 5’ end of the mRNA via a 5’ to 5’ 
triphosphate linkage (Molecular Biology of the Cell, 4th edition).  
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1.2.1.1.1 The eIF4F complex: 

 

The eIF4F complex is composed of three subunits, eIF4E, eIF4A, and eIF4G 

(Gingras, Raught & Sonenberg 1999). eIF4E is responsible for binding the cap 

complex directly and is itself highly regulated to fine tune cap dependent translation. 

The eIF4A initiation factor functions within the eIF4F complex as an ATP-dependent 

RNA helicase. The helicase activity of eIF4A is required to unwind secondary 

structures within the 5' untranslated region of mRNAs to facilitate ribosome binding 

(Pain 1996). 

eIF4F also binds the poly(A)-binding protein (PABP) which functions to increase 

translational efficiency. As PABP binds to the poly A tail present on most eukaryotic 

mRNAs it brings about a circularisation of the mRNA on the eIF4G, where the 5’ 

terminus is bound to eIF4E and the 3’ terminus is bound to PABP. This circularisation 

is thought to function as an integrity check for mRNAs and to stabilise the binding of 

the mRNA on the complex. Of the three subunits of the translation initiation complex 

eIF4E is the least abundant and is a major target for regulation. Therefore eIF4E is 

considered a rate limiting factor in the localisation and binding of mRNA to 

ribosomes. 

 

1.2.1.1.1.1 eIF4E 

 

The cap facilitates translation of most cellular mRNAs by distinguishing the 5’ 

terminus for interaction with the eIF4E translation factor during the initial stages of 

translation initiation. It is through this interaction with eIF4E that the 5’ end of capped 

mRNA is recruited to the other components of the translation complex. Consequently 

eIF4E is essential for cap dependent translation.  

 

The 3D structure of eIF4E is similar in appearance to a cupped hand or baseball glove 

and is composed of eight antiparallel β strands, three α helices and ten loop structures.  

The eight antiparallel β strands form a curved β sheet while the α helices provide 

structural support behind the sheet (Tomoo et al., 2003; Volpon et al., 2006). The C- 

and N- terminal regions of eIF4E are flexible and the flexibility plays a role in the 

regulation of eIF4E function. The C- terminal flexible region contains the receiving 

pocket for the cap and also contains a Ser209 regulatory phosphorylation site. During 
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cap binding the m7GDP resides within a narrow slot on the concave surface of eIF4E. 

Binding of m7GDP is facilitated by π-π stacking interactions between the base and the 

eIF4E indole side chains of two tryptophans in the flexible C-terminal region (Trp56 

and Trp102) (Tomoo et al., 2003;  Marcotrigiano et al., 1997). Other interactions such 

as van der Waals contacts between the N-7 methyl group of the guanine ring and 

Trp166 also organize the π-π stacking between the cap and eIF4E. In addition, 

positively charged residues in the cap-binding slot (Arg112, Arg157, and Arg162) 

arrange the negatively charged oxygen atoms of the phosphate moieties in m7GDP to 

the correct configuration and hydrogen bonding between amino acids of eIF4E and 

phosphate groups on the cap also contributes to the stability of binding (Gingras, 

Raught & Sonenberg 1999).  

 

The N-terminal flexible region of eIF4E contains the binding site for eIF4G. eIF4E 

binds at position 572–578 in human eIF4G  and the consensus eIF4E binding site is 

YXXXXL , where is usually L, but may also be M or F. This fragment of eIF4G can 

bind to the dorsal convex surface of eIF4E which is directly behind the cap-binding 

slot, the binding is facilitated through hydrogen bonds, salt bridges, and van der 

Waals contacts. The 4E-BPs also possesses the YXXXXL   binding motif and 

therefore 4E-BPs compete with eIF4G for binding with eIF4E (Mader et al., 1995; 

Sonenberg, Gingras 1998; Marcotrigiano et al., 1999). 

 

 

Given the important functions of eIF4E its activity is regulated at multiple levels.  

The three mechanisms of eIF4E activity regulation include:  

(1) Transcription of eIF4E mRNA 

(2) Phosphorylation of the eIF4E 

(3) Interaction with the 4E-BP family of translational repressors. 
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1.2.1.1.1.2 Transcriptional regulation of eIF4E 

 

Previous studies have shown that both eIF4E mRNA and eIF4E protein levels 

increase in T cells after T-cell receptor (TCR) cross-linking, suggesting that in 

response to extracellular stimuli eIF4E upregulation may by attributed to 

transcriptional activation (Mao et al., 1992; Rosenwald et al., 1993; Boal et al., 1993) 

Indeed, during the cell cycle increased levels of the potent  regulator of cell growth 

MYC are observed along with upregulation of eIF4E mRNA levels, and cells that 

stably overexpress MYC show the same phenomena (Rosenwald et al., 1993). 

Furthermore the eIF4E promoter contains two functional MYC-binding sites (E 

boxes) (Jones et al., 1996). Therefore, since eIF4E plays a key role in cell growth and 

proliferation, it seems likely that eIF4E transcription is a downstream result of MYC 

production and is likely to play a central part of MYC induced cellular transformation 

and cancers.  

 

1.2.1.1.1.2.1 Regulation of eIF4E through phosphorylation 

 

The second means of regulation of eIF4E is phosphorylation at the C-terminus Ser209 

residue. Phosphorylation of this residue is increased following treatment of cells with 

growth factors, mitogens and hormones, cytokines and stressful conditions (Morley, 

McKendrick 1997; Pyronnet et al., 1999). These increases in Ser 209 phosphorylation 

appear to be mediated via a series of signalling pathways that respond to a variety of 

extracellular stimuli and activate specific mitogen-activated protein (MAP) kinase 

cascades (Davis 1993; Marshall 1994). The first MAP Kinase pathway found to play a 

role in eIF4E phosphorylation was the extracellular-signal-regulated kinase (ERK) as 

inhibitors of this pathway reduce eIF4E phosphorylation (Flynn, Proud 1996; Wang et 

al., 1998; Waskiewicz et al., 1999). 

ERK is activated in response to peptide growth factors, phorbol esters, Ca2+ and some 

G-protein-linked agonists. Typically ERK is stimulated when G-protein coupled 

receptors, integrins and receptor tyrosine kinases are activated in a process where 

ligand binding to receptors results in the displacement of GDP for GTP on the G 

protein Ras. Ras can then activate the family of Raf proteins. Rafs are a group of 

Serine/Theronine kinases which are maintained in an inactive state in the cytosol by 

binding with 14-3-3. The 14-3-3 dimer binds the phosphorylated N-Terminal (S259) 
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and C-terminal (S621) on Raf, keeping Raf in a closed, catalytically inactive 

configuration. Once Ras recruits Raf it displaces 14-3-3 allowing for Raf to be 

dephosphorylated by cellular phosphatases. This dephosphorylation causes Raf to 

change its structural configuration  which opens its kinase domain to activating events 

such as phosphorylation by PKC and Src (Avruch et al., 2001; Rodriguez, Viciana et 

al., 2006). Raf family kinases phosphorylate and activate MAP kinase 1 and 2 

(MEK1, MEK2). MEKs are dual specificity kinases that phosphorylate ERK1/2 on 

the Threonine and Tyrosine residues in the conserved Tyr-Glu-Thr (TEY) motif of the 

activation loop.  

 

The second Map Kinase pathway found to play a role in eIF4E phosphorylation is 

referred to as the p38 pathway (Morley, McKendrick 1997; Wang et al., 1998). The 

p38 pathway is composed of several kinases, the most important of which are MEK3 

and MEK6 and four known p38 isoforms (α,β,γ and δ). In mammalian cells, the p38 

isoforms are activated by environmental stresses and inflammatory cytokines 

(Cuenda., 2007). 

 

MEK3 and MEK6 are activated by a panoply of kinases in response to various 

physical and chemical stresses, such as hypoxia, oxidative stress, ischemia, UV 

irradiation, and  cytokines, including tumor necrosis factor alpha and  interleukin-1 

(IL-1) (Chen et al., 2001; Roux, Blenis 2004). MEK6 activate all p38 isoforms, while 

MEK3 preferentially phosphorylates the p38α and p38ß isoforms. The specificity of 

p38 activation is due to the the formation of functional complexes between MEK3/6 

and different p38 isoforms where MEK3/6 recognises specific sequences in the 

activation loop of p38. Activation of the p38 isoforms is caused by a MEK3/6-

catalyzed phosphorylation of a conserved Thr-Gly-Tyr (TGY) motif in the activation 

loop of p38 at Thr180 and Tyr182.  

 

Both ERK1/2 and p38 kinases phosphorylate proteins containing Serine/Threonine 

residues that are followed by a Proline (S/T-P). ERK and p38 can phosphorylate 

substrates at various locations within the nucleus and the cytoplasm (Roux, Blenis 

2004). The use of two-hybrid screens in addition to novel phosphorylation screens 

looking for ERK substrates discovered a kinase termed the MAPK signal integrating 

kinase, or Mnk, with a unique ability to interact with both  p38 and ERK2 
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(Waskiewicz et al., 1997; Fukunaga, Hunter 1997). Mnk1 and 2 share 88% similarity 

in their catalytic domains and their N-and C- termini share 77% and 65% similarity, 

respectively. Both Mnk isoforms interact with eIF4F in vivo (Waskiewicz et al., 1999; 

Scheper et al., 2001). The Mnks directly bind with the C terminal domain of eIF4GI 

and eIF4GII in mammalian cells and therefore eIF4G acts to bring the Mnk kinase in 

close proximity to phosphorylate the eIF4E substrate. As such 4E is phosphorylated 

when it is part of the 4F complex. Consequently, when Mnk’s are absent from the 

eIF4F complex, eIF4E has been shown to be less phosphorylated than when Mnk’s 

are bound to eIF4G (Waskiewicz et al., 1999). 

Although both Mnks are responsive to ERK and p38 stimulation in vitro their basal 

activities differ in vivo (Fukunaga, Hunter 1997; Waskiewicz et al., 1997). In vivo 

Mnk1 has a low level of activity, which is increased when either the ERK or the p38 

MAP kinase α/β pathways are stimulated (Wang et al,. 1998; Waskiewicz et al., 1997; 

Fukunaga, Hunter 1997). Conversely, Mnk2 has a high basal activity which is not 

enhanced upon ERK or p38 MAP kinase pathway stimulation (Scheper et al., 2001). 

Additionally, the finding that Mnk2 activity can be reduced upon inhibition of both 

the ERK and p38 pathways has led to suggestions that low basal activities of these 

pathways in unstimulated cells is sufficient to allow for high basal Mnk2 activity 

(Scheper et al., 2001). As Mnk1 and Mnk2 differ in their basal activities and 

regulation, the ratio of Mnk1 to Mnk2 may have a large bearing on eIF4E 

phosphorylation. In cells that primarily contain Mnk1, the level of eIF4E 

phosphorylation will depend on the stimulation of ERK and p38 along with the level 

of functioning eIF4F complexes which mediate the Mnk1-eIF4E interaction, whereas 

in cells containing mainly Mnk2, the amount of eIF4F will be the limiting factor. 

 

To date conflicting reports have surfaced with regard to the exact mechanistic 

function eIF4E phosphorylation performs during the process of translation initiation. 

Initial experiments suggested that eIF4E increases in binding affinity to the cap 

structure upon phosphorylation (Bu, Haas & Hagedorn 1993; Minich et al., 1994). 

One hypothesis based on analysis of the co-crystal structure of eIF4E bound to the cap 

proposed that the Ser209 located behind the cap binding slot could form a retractable 

salt bridge over the mRNA by binding to a Lys159 residue which lies opposite from 

Ser209 and in the putative mRNA path. This retractable clamp would thus stabilize 

the mRNA in the cap-binding slot and consequently phosphorylation would enhance 
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the binding of eIF4E to capped mRNAs and long cap analogs (Marcotrigiano et al., 

1997). This hypothesis was subsequently dispelled by more recent crystallographic 

studies using larger ligands (m7GpppG m7GpppA) showing that a salt bridge 

formation was not possible as the distance between the Lys 159 and Ser209 was too 

vast (Tomoo et al., 2002; Niedzwiecka et al., 2002; Tomoo et al., 2003). The initial 

studies which led to the hypothesis that eIF4E increases in binding affinity to the cap 

structure upon phosphorylation were performed before the Mnks had been identified, 

and used chromatography on RNA-cellulose to separate phosphorylated from 

unphosphorylated eIF4E. The fractions of eIF4E that were unbound to the resin was 

found in the phosphorylated form, while the bound material was unphosphorylated. 

Using fluorescence methods, it was found that the fraction containing the 

phosphorylated  eIF4E had three to four times greater affinity for m7GTP and for 

capped (globin) RNA, but questions over this approach arose on the basis that the 

resolution of these forms on RNA-Sepharose was unclear. Additionally, it was 

possible that fractions used in these assays were contaminated with other proteins that 

affect the affinity of eIF4E for capped RNA. For example, it was plausible that the 

fractions contained 4E-BPs or eIF4G, which increase the binding of eIF4E to the cap. 

This caveat to the investigation was not known at the time and could have biased the 

results obtained. 

 

More recent studies into the role of eIF4E phosphorylation employed Mnks to 

produce stoichiometrically phosphorylated eIF4E in vitro. The binding of eIF4E to 

cap analogue (m7GTP) was examined by fluorescence quenching and it was found 

that phosphorylated eIF4E bound with a lower affinity (2.5-fold difference) than the 

unphosphorylated protein. The same group also conducted surface plasmon resonance 

to examine binding of eIF4E to a capped oligonucleotide. The capped mRNA ligand 

was immobilized on a biotin group at its 3'-end, which allows very tight binding to the 

streptavidin chip surface and is thought to more accurately resemble the physiological 

ligand of eIF4E. In these experiments, phosphorylation of eIF4E reduced its ligand 

affinity by five fold and acidic mutations at Ser209 which mimic the charge of 

phosphate, also decreased the affinity of eIF4E, although to a lesser degree than 

phosphorylation (Scheper et al., 2002).  

Thus, the reduction in affinity for the cap could reduce translation rates, or by 

releasing eIF4F from the cap promote scanning and translation initiation. Indeed 
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many studies have shown that eIF4E phosphorylation is either positively of negitively 

modulated in response to viral infection. For example upon infection with either 

Herpes Simplex Virus-1 (HSV-1) or Human Cytomegalovirus (HCMV), 

phosphorylated eIF4E accumulates rapidly through the exclusive activation of the p38 

kinase pathway (Walsh, Mohr 2004; Walsh et al., 2005). Whereas following infection 

of cells with adenovirus, unphosphorylated eIF4E accumulates and this correlates 

with the inhibition of host protein synthesis (Huang, Schneider 1991). In contrast, 

studies analysing eIF4E phosphorylation in various systems have shown that 

phosphorylation of eIF4E may not be a requirement for efficient translation 

(McKendrick et al., 2001; Morley, Naegele 2002) and may even have a negative 

effect on translation (Knauf, Tschopp & Gram 2001). 
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1.2.1.1.1.3  4E binding proteins 

 

Another mechanism that regulates eIF4E activity is its interaction with a family of 

repressor proteins termed the eIF4E-binding proteins (4E-BPs) which function as a 

metabolic brake to control translation in response to nutrient availability, stress and 

growth signals (Teleman, Chen & Cohen 2005). These proteins were initially 

identified by the far western technique which isolated two small 12kDa proteins that 

bind to eIF4E. These proteins, termed  4E-BP1 and 4E-BP2 share 56% amino acid 

homology and were found to inhibit cap-dependent translation both in vivo and in an 

in vitro cell free translation assay (Pause et al., 1994). 

Binding of the 4E-BPs to eIF4E does not alter the affinity of eIF4E for the cap, as 

experiments using a matrix-bound cap have found that eIF4E/4E-BP1 binding does 

not alter eIF4E cap binding (Pause et al., 1994). The mechanism of translation 

inhibition arises from 4E-BPs ability to prevent eIF4E association with eIF4G, 

therefore preventing the formation of the eIF4F complex (Mader et al., 1995; Poulin 

et al., 1998). 

 

1.2.1.1.1.3.1 Regulation of 4E-BP affinity through phosphorylation 

 

The phosphorylation of specific Serine/Threonine residues on 4E-BP regulates its 

affinity for eIF4E. Hypophosphorylated 4E-BPs bind strongly to eIF4E, but upon 

phosphorylation a decrease in affinity for eIF4E and a relief in translational repression 

is observed. 4E-BP phosphorylation occurs on sites Thr37, Thr46, Ser65, Thr70, Ser 

83, Ser101 Ser112 and phosphorylation occurs in a hierarchical manner. Firstly, 

phosphorylation on Thr37 and Thr46 is required as a priming event for the subsequent 

phosphorylation of Thr70, which is then followed by phosphorylation of Ser65 and 

the release of eIF4E (Gingras, Raught & Sonenberg 2001; Mothe-Satney et al., 2000). 

Phosphorylation of Ser101 seems to be constitutive and has been reported to be 

required for efficient phosphorylation of Ser65 in vivo (Wang et al., 2003). The roles 

of phosphorylated Ser83 and Ser112 are less clear; although priming events have been 

postulated, subsequent studies discovered no effects on hierarchical phosphorylation 

events when these serine residues were mutated to alanines (Ferguson, Mothe-Satney 

& Lawrence 2003).  
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Growth factors, cytokines, mitogens, G protein coupled receptors, hormones (insulin, 

angiotensin) and adenovirus infection have been reported to induce phosphorylation 

of 4E-BP (Feigenblum, Schneider 1996; Gingras, Sonenberg 1997; Rao et al., 1994; 

Wang et al., 1998; Graves et al., 1995), whereas heat shock and poliovirus infection 

have been reported to decrease phosphorylation (in specific cell types) (Gingras et al., 

1996; Scheper et al., 1997), which led to the suggestion that  4E-BP was activated 

through MAPK kinase pathways. This hypothesis was subsequently disproved by 

studies which reported inhibition of 4E-BP activity in cells treated with the inhibitors 

Wortmannin and Rapamycin which have no inhibitory effect on MAPK pathways 

(von Manteuffel et al., 1996; Gingras et al., 1999). 

 

A link between AKT activity and the levels of 4E-BP1 phosphorylation was first 

proposed when HEK 293 cells expressing a dominant negative mutant of AKT 

blocked insulin mediated phosphorylation of 4E-BP1. The study also highlighted that 

upon AKT activation 4E-BP becomes phosphorylated on the same residues as occurs 

upon serum stimulation and that a hyper activated form of AKT was insensitive to 

Wortmannin but was sensitive to the inhibitor Rapamycin (Gingras et al., 1998). 

These results pointed to a kinase downstream of AKT being responsible for 4E-BP 

phosphorylation.  

 

With 4E-BP1 established as a target for regulation by PI3K–AKT signalling the 

Frap/mTOR complex was elucidated to be responsible for 4E-BP phosphorylation 

when a Rapamycin resistant Frap/mTOR1 conferred Rapamycin resistance to 4E-BP1 

phosphorylation (Brunn et al., 1997) and studies have shown that mTOR plays an 

essential role in the phosphorylation of 4E-BP1 in response to insulin treatment and 

nutrient levels in cells (Raught, Gingras 1999; Proud 2002). 

 

Currently, the mechanism by which mTOR activates 4E-BPs remains ambiguous. 

Whether mTOR directly or indirectly phosphorylates 4E-BP remains unclear but 

reports have emerged suggesting that Raptor may play a role as a scaffold protein that 

bridges mTOR to its substrates (Hara et al., 2002). Additionally, the C-terminus of 

4E-BP contains a TOR signalling (TOS) motif which was found to be required for 

phosphorylation at mTOR regulated sites (Schalm et al., 2003). This motif is also 

required for binding to Raptor suggesting a role for the regulation of 4E-BP (Schalm 
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et al., 2003; Choi, McMahon & Lawrence 2003; Nojima et al., 2003). Another four 

amino acid sequence named the RAIP has been shown to play a role in the association 

with raptor and mTOR-mediated phosphorylation of 4E-BP1; however its function is 

mainly accessory whereas TOS motif has an essential function to this process in 

response to amino acid stimulation (Eguchi et al., 2006). 

 

1.2.1.1.1.3.2 PI3K-AKT-mTOR Signalling. 

 

Wortmannin inhibits the phosphoinositide 3-kinase (PI3K), which in response to a 

variety of growth factors are a family of lipid kinases which phosphorylate the 

hydroxyl group at position three of the inositol ring of phosphatidylinositols. PI3Ks 

are involved in cellular functions such as growth, proliferation, differentiation, 

motility, survival and intracellular trafficking (Vanhaesebroeck et al., 1997; Courtney, 

Corcoran & Engelman 2010). 

 

Activation of PI3K upon ligand binding to receptor tyrosine kinases results in the 

production of phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) or  

phosphatidylinositol (3,4) diphosphate (PtdIns(3,4)P2), which in turn bind to the 

pleckstrin homology domain of AKT. AKT is a serine–threonine kinase that has three 

family members: AKT1, AKT2 and AKT3, which are encoded by three different 

genes (Datta, Brunet & Greenberg 1999). Since PtdIns(3,4,5)P3 and PtdIns(3,4)P2 are 

restricted to localise to the plasma membrane, this results in AKT localisation to the 

plasma membrane. Likewise, the phosphoinositide-dependent protein kinase 1 

(PDK1) also contains a pleckstrin homology domain that allows it to bind to 

PtdIns(3,4,5)P3 and PtdIns(3,4)P2, causing PDK1 to also translocate to the plasma 

membrane upon activation of PI3K (Chan, Rittenhouse & Tsichlis 1999). PDK1 

colocalization with AKT causes PDK1 to phosphorylate AKT on residue threonine 

308 causing partial activation of AKT. AKT is fully activated upon phosphorylation 

of serine 473 by the TORC2 complex of the mTOR protein kinase (Sarbassov et al., 

2005). Once phosphorylation occurs at both sites, AKT detaches from the plasma 

membrane and can then phosphorylate its substrates within the cell. AKT/PKB has 

been implicated in a variety of cellular processes, including proliferation and cell 

growth, apoptosis, regulation of gene expression and translational control (Chan, 

Rittenhouse & Tsichlis 1999). 
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Frap/mTOR is the mammalian homologue of yeast TOR (Target of Rapamycin) 

(Helliwell et al., 1994). Mammalian TOR (mTOR) is a large 298 kDa 

Serine/Threonine protein kinase that belongs to the family of PI3K-related protein 

kinases (PIKKs)(Keith, Schreiber 1995). mTOR exists as part of two functional 

complexes, mTORC1 and mTORC2. mTORC1 is composed of mTOR, FRAP and its 

regulatory protein Raptor, along with PRAS40, DEPTOR  and mammalian LST8/G-

protein β-subunit like protein (mLST8/GβL) which stimulates the in vitro kinase 

activity of mTOR. mTOR can be inhibited by Rapamycin, a macrocyclic antibiotic 

and immunosupressant which binds the cystolic protein FKBP12. The subsequent 

Rapamycin/ FKBP12 complex then binds to FRAP causing a potent inhibition of the 

mTORC1 complex (Chan 2004; Kim et al., 2003; Kim et al. 2002; Hara et al., 2002; 

Loewith et al. 2002; Sancak et al., 2007; Peterson et al., 2009; Haar et al., 2007). 

 

Alternatively, the Rapamycin insensitive mTOR Complex 2 (mTORC2) is composed 

of mTOR, FRAP, Rictor and GβL along with the mammalian stress-activated protein 

kinase interacting protein 1 (mSIN) (Frias et al., 2006; Jacinto et al., 2006; Jacinto et 

al., 2004; Dos D. Sarbassov et al., 2004; Yang et al., 2006). In addition to their 

differential sensitivity to Rapamycin, mTORC1 and 2 are stimulated in alternate ways 

and have distinct substrate specificities. mTORC1 responds to viral infection, amino 

acids, growth factors, energy and oxygen levels (Walsh, Mohr 2004; Nobukuni et al., 

2005; Xu et al., 2010; Schneider, Younis & Gutkind 2008), whereas mTORC2 

activation is less understood, but seems to be activated only by growth factors 

although recent reports suggest Vaccinia virus may also activate this protein 

(Zaborowska, Walsh 2009). 

 

mTOR is also directly regulated by factors such the tuberous sclerosis complex 

(TSC). The TSC complex is formed by TSC1 and TSC2 and causes the inhibition of 

the  mTORC1 activator GTPase Ras-homolog enriched in brain (Rheb) by causing a 

hydrolyzion of its GTP to GDP (Inoki et al., 2003). TSC2 is itself activated by 

phosphorylation by the AMP-activated protein kinase (AMPK) (Inoki, Zhu & Guan 

2003) and AMPK activation is the result of a high AMP to ATP ratio in the cell. 

AMPK also causes the phosphorylation and inactivation of Raptor, which is required 

for efficient phosphorylation of mTOR, thus AMPK inhibits mTORC1 activity by 
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TSC-dependent and TSC-independent mechanisms (Gwinn et al., 2008). AMPK 

activity is itself regulated through phosphorylation by the tumor suppressor LKB1 

(Kyriakis 2003; Marignani 2005). 

 

AKT inactivates TSC1/2 by phosphorylating TSC2 (Manning et al., 2002). 

Additionally, AKT inhibits PRAS40, a regulator of mTORC1 that negates Rheb 

function (Haar et al., 2007; Sancak et al., 2007). The activation of mTORC2 is not 

well understood, but as mentioned previously this complex directly activates AKT 

(and AKT-related kinases) by phosphorylation and seems to be part of a possible 

mTOR –AKT regulatory loop. 

 

Counteracting AKT function is the tumor suppressor phosphatase and tensin homolog 

deleted on chromosome ten (PTEN) which is a lipid phosphatase that converts 

phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) to phosphatidylinositol 

(3,4) diphosphate (PtdIns(3,4)P2) therefore quelling the signalling from PI3K 

(Ramaswamy et al., 1999). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 
 

mTOR 

 

4E-BP 

P P 
P 

 

 eIF4G 

eIF4E 

 

p38MAPK ERK 

P 

Mnk 

Rapamycin 

Torin1 

PI3K 
 MEK 

  Stress  Raf 

   Ras 

Growth factors 

Hormones  

Cytokines  

Mitogens  

       

SB203580 

U0126 

Figure 1.5 Intracellular signalling pathways regulating the phosphorylation of 

the translation initiation factor eIF4E and the 4E-BPs and the kinase inhibitors 

used in this study. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.5   The stimulation of signalling pathways can regulate both the availably 
and activity eIF4E. Hypophosphorylated 4E-BPs inhibits translation through 
sequestering eIF4E, which can either be free or bound to the cap complex. Upon 
activation of the PI3K pathway, mTOR can hyperphosphorylate 4E-BP which results 
in the release eIF4E allowing it to bind to eIF4G, so permitting translation to proceed. 
Additionally, stimulation of either the stress activated p38 pathway or the mitogen 
activated ERK pathway can result in the phosphorylation of Mnk. Mnk can bind to 
the C-terminus of eIF4G and phosphorylate eIF4E on its Ser209 residue. 
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1.2.1.2  Eukaryotic initiation factor eIF2 

 

Another rate limiting step in the process of mRNA translation initiation is the 

regulation of eIF2 activity. The function of eIF2 is to mediate the binding of the 

initiator Met-tRNA to the ribosome in a GTP-dependent manner during the initiation 

of translation of all cytoplasmic mRNAs in eukaryotic cells.  

 

When in a GTP-bound state the eIF2 complex binds with Met-tRNAi. The 

eIF2·GTP·Met-tRNAi ‘ternary’ complex is then able to bind to the 40S ribosomal 

subunit. The Met-tRNAi recognises and binds to the start codon on the mRNA. Upon 

binding at the AUG start codon, hydrolysis of eIF2-bound GTP occurs in a process 

mediated by eIF5 (Das, Ghosh & Maitra 2001). Subsequent to hydrolysis of GTP, the 

newly formed GDP-bound eIF2 is released from the ribosome and mRNA translation 

begins. To return to its active GTP-bound state, eIF2 must undergo nucleotide 

exchange, and this function is performed by eIF2B. eIF2 is composed of three 

subunits termed α, β, and γ. The α subunit contains a phosphate acceptor at Ser 51. 

The β-subunit contains multiple phosphorylation sites (residues 2, 13, 67, 218) and 

three lysine clusters in the N-terminal domain (NTD) which mediate the interaction 

with guanine nucleotide exchange factors (GEFs). The γ-subunit comprises three 

guanine nucleotide binding sites and is known to be the main docking site for 

GTP/GDP (Kimball 1999). 

 

eIF2B facilitates the release of GDP from eIF2 as it is a GDP-dissociation stimulator 

protein (GDS) (Williams et al., 2001). The best characterized mechanism for 

regulating eIF2B activity involves phosphorylation of the eIF2α subunit at Ser51. 

Upon eIF2α phosphorylation, eIF2B binds to eIF2 with a much greater affinity but 

cannot be released after GTP transfer, thus prohibiting the binding of new Met-tRNA. 

As eIF2B is present at low levels relative to eIF2, eIF2α phosphorylation sequesters 

eIF2B and is the major regulator of global translation initiation.  

eIF2B is comprised of five subunits termed  α, β, ,γ, δ and ε. eIF2Bα/β/δ form a 

regulatory subcomplex that sensitises eIF2B to inhibition by eIF2α phosphorylation 

(Pavitt, Yang & Hinnebusch 1997; Krishnamoorthy et al., 2001). The ε subunit 

contains the proteins catalytic domain (Gomez, Mohammad & Pavitt 2002; Boesen et 

al., 2004) and forms a binary ‘catalytic’ subcomplex with eIF2Bγ, with which it has 
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partial sequence homology (Pavitt, Yang & Hinnebusch 1997). In addition, the 

extreme C-terminus of the ε subunit is involved in interacting with eIF2 in a process 

that requires phosphorylation on sites within this region (Asano et al., 1999).  

 

eIF2α phosphorylation is regulated in mammalian cells by four different eIF2α 

kinases. This common substrate has led to these four kinases being classified as part 

of the integrated stress response (ISR) (Harding, Ron 2002). Through work 

facilitating transgenic mice which have targeted knock-outs of each kinase or where 

eIF2α phosphorylation was eliminated by a targeted Ser51 to alanine knock in to 

remove the eIF2α phosphorylation site, the characteristic nature and importance of 

these kinases with regard the integrated stress response has been elucidated. Of 

importance was that experiments using these mice showed that loss of integrated 

stress response kinase activity or eIF2α phosphorylation resulted in as loss of mRNA 

translation inhibition in response to ER stress thus confering a reduced survival 

capacity (Scheuner et al., 2001).  

 

1.2.1.2.1 eIF2α kinases 

Heme-regulated inhibitor (HRI). 

The Heme-regulated inhibitor was initially identified during studies on reticulocytes. 

Reticulocytes are the precursors of red blood cells which produce large amounts of 

globins. When reticulocytes are heme depleated mRNA translation shuts off, an event 

which is the result of eIF2α phosphorylation (Chen, London 1995). Studies have 

elucidated HRI as the kinase which regulates eIF2α phosphorylation upon heme 

depleation by providing evidence that that HRI activity was incresingly quelled by 

increasing heme levels in reticulocytes. Furtheremore studies employing targeted 

knock-out mice have shown that HRI is essential for the shuting off protein synthesis 

in reticulocytes deprived of heme (Han et al., 2001).  
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PKR 

Protein kinase activated by dsRNA (PKR) or Eukaryotic translation initiation factor 

2-alpha kinase 2, is a kinase activated by double-stranded (ds) RNA. This function is 

facilitated by its N-terminal RNA-binding domains (RBDs). Upon RNA binding, 

PKR dimerises, resulting in the activation of the enzyme by autophosphorylation. 

PKR is expressed at low levels in many cell types but is induced by interferons (IFNs) 

(Hovanessian 2007). PKR plays a primary role in protecting the cell from invading 

viral infection. During viral replication dsRNA is produced which then activates PKR 

and leads to the phosphorylation of eIF2α resulting in translational inhibition, thus 

causing a repression of viral replication. The importance of PKR for controlling viral 

replication is highlighted by the fact that viruses have evolved many strategies to 

inhibit PKR which include mechanisms to counteract the induction or effects of 

interferons (Goodbourn, Didcock & Randall 2000) in addition to preventing the 

activation of dsRNA-dependent pathways and avoiding the repressive effects of the 

PKR and 2′-5′ oligoadenylate synthetase/RNase L system (Goodbourn, Didcock & 

Randall 2000). 

PERK (PKR like endoplasmic reticulum kinase)  

PERK (PKR like endoplasmic reticulum kinase or EIF2AK3) is a kinase which is 

activated in response to misfolded protein in the endoplasmic reticulum. PERK has a 

kinase domain with homology to other eIF2α kinases and its N-terminal domain has 

homology to the IRE1, which is a protein involved in the unfolded protein response 

(UPR) (Harding, Ron 2002). Under normal cell conditions the IRE1-domain of PERK 

binds to the chaperone BiP/GRP78. Upon ER stress, BiP dissociates from the IRE1-

domain of PERK and consequently binds to proteins in the ER lumen. Once BiP is no 

longer bound to PERK, PERK molecules can then dimerise. The dimerisation of 

PERK results in its activation and leads to the phosphorylation of eIF2α which then 

causes an inhibition of mRNA translation. As many proteins are destined for the 

endoplasmic reticulum this inhibition thus allows the the organelle time to deal with 

the existing load of proteins it has to process (Kapoor, Sanyal 2009). 
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GCN2 

GCN2 is a kinase found in yeast and mammals that functions to inhibit translation 

during amino acid starvation. It has a kinase domain that is homologous PKR, PERK 

and HRI and has a C-terminal domain similar to histidinyl-tRNA synthetases 

(HisRSs). During amino acid depleation, uncharged tRNAs bind to the C-terminal 

domain of Gcn2p. The resulting interaction activates Gcn2 and causes the induction 

of eIF2α phosphorylation. Gcn2 has also been shown to phosphorylate eIF2α in 

response to ultraviolet radiation (Zhang et al., 2002; Deng et al., 2002). 
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1.2.2 Mechanisms of Translational Control 

 

As previously described, mRNA translation is of paramount importance in regulating 

gene expression. Regulation of translation initiation facilitates the cells ability to 

respond rapidly to stimuli. In response to such stimuli global rates of translation 

initiation can increase in many cell types and mRNAs which normally remain 

translationally repressed become translated. Many of these mRNAs produce growth 

factors and proto oncogenes involved in proliferation and differentiation. 

 

In addition to the activity of translation initiation factors, the efficiency of mRNA 

translation depends on the degree of innate complexity with in the mRNA structure. 

Most cellular mRNAs in vertebrates contain 5′ UTR which are from 10 to 200 bases 

long, whereas 60% of mRNAs which encode growth factors contain 5′ UTRs with 

more than 200 bases (Willis 1999). 

Within these UTRs there can exist various cis-acting elements which can regulate 

translational efficiency. Under normal conditions (e.g cells in a resting state) these 

elements prohibit efficient translation whereas under conditions favouring growth, 

repressive cis acting elements within UTRs can no longer prevent translation 

initiation. The following are repressive elements found within 5’UTRs. 

 

(i)     The sequence flanking the initiation codon 

The scanning model currently posits that the 40S ribosomal subunit which is bound to 

Met-tRNA and various initiation factors binds initially at the 5'-end of mRNA and 

then traverses the mRNA in a linear proccessive fashion, upon reaching the first AUG 

codon in a favourable context, translation initiation begins. The model thus suggests 

that both the AUG start codon position relative to the 5’end and context of the 

neighbouring codons within the sequence influence the selection of the initiation site 

(Kozak 1987). 

 

(ii)     Long UTRs with complex secondary structures 

The majority of cellular mRNAs have 5’UTRs of up to 100 nucleotides in length. 

However, many mRNAs which code for oncoproteins, growth factors, transcription 

factors and signal transduction components have long 5’UTRs which can have a high 
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GC content (70 to 90%). This degree of length and GC content suggests a high degree 

of mRNA secondary structures which have the ability to form stem loop structures. 

These secondary structures have an inhibitory effect on the ribosomes capacity to scan 

from the cap to the AUG start codon and need high eIF4F activity for efficient 

translation (Baim et al., 1985; Pelletier, Sonenberg 1985; Kozak 1987; Cigan, Pabich 

& Donahue 1988). 

 

(iii)   Upstream open reading frames  

A subset of mRNAs contain long leader sequence which contain one or more 

upstream open reading frames (uORFs) in the 5’UTR. The presence of uORFs can 

repress the translation of downstream cistrons, and in some cases these uORFs are 

also involved in the selective translation of specific mRNAs (Geballe, Morris 1994). 

 

(iv)   Binding sites for specific regulatory proteins 

Many mRNAs contain binding regions for inhibitory proteins in their 5' UTR. These 

proteins can compete with the 43S complex for binding to mRNA thus preventing 

translation initiation (Hentze, Kühn 1996). 

 

(v)    Oligopyrimidine tracts at the extreme 5′ terminus (5′ TOP mRNAs) 

One common feature found in sequenced mammalian ribosomal protein mRNAs is 

the oligopyrimidine tract at the 5' terminus. This element, referred to as the 5’ 

terminal oligopyrimidine tract (5’TOP), is usually composed of a cytidine residue at 

the cap site followed by an uninterrupted sequence of 7-13 pyrimidine nucleotides.  

Considerable evidence has been presented showing that 5′ TOP is a cell-growth-

dependent translational cis-regulatory element in mammalian cells (Kaspar et al., 

1992; Biberman, Meyuhas 1997). 

 

(vi)   Internal ribsome entry sites 

Another mechanism by which ribosomes may be recruited to eukaryotic mRNAs is by 

direct binding of the 40S subunit to internal structures within the mRNA. This internal 

binding negates the need for the 5′ end containing the cap, consequently certain 

initiation factors are not required for mRNA translation initiation. Internal binding of 

the ribosome to sites termed internal ribosome entry sites (IRES) was first identified 
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for two picornaviruses, poliovirus and encephalomyocarditis virus (Pelletier, 

Sonenberg 1988; Jang et al., 1988). 

Picornavirus mRNAs translate by a cap-independent mechanism as they do not 

contain a 5’ cap on their mRNA. Additionally, they contain long 5′ UTRs (Belsham, 

Sonenberg 1996), have significant secondary structure and contain numerous 

redundant AUGs (Belsham, Sonenberg 1996). In addition to viral RNA, IRESes also 

occur in capped RNAs of cellular origin such mRNAs for BiP, fibroblast growth 

factor-2 (FGF-2) (Nanbru et al. 1997), MYC proto-oncogene product, and vascular 

endothelial growth factor (VEGF) (Macejak, Sarnow 1991; Vagner et al. 1995; 

Subkhankulova, Mitchell, Willis 2001; Huez et al. 1998). It is hypothesised that the 

extensive secondary and tertiary structure of the IRES region can be recognized by 

the translation machinery in various ways and is responsible for ribosome binding. 

This is likely mediated by RNA structure due to the fact that IRESs vary in length and 

lack identifiable consensus sequences. Supporting this theory was computer analysis 

conducted by Le and Maizel which presented a common structural motif for the 

IRESes of several cellular genes (BiP, platelet-derived growth factor 2, VEGF, and 

FGF-2) as well as IRES of HCV and picornaviruses. This structural motif is 

composed of a Y-shaped pseudoknot stem-loop which is followed by a smaller simple 

stem-loop (Le, Maizel 1997). 
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1.3     Viral manipulation of translation initiatio n factor functions 

 

As obligate intracellular parasites viruses have evolved many techniques to 

manipulate host mRNA translation to favour viral replication. To this end many, 

viruses also target eIF4F. 

 

1.3.1    RNA viruses and eIF4F 

 

Given the role of eIF4F in cap dependent translation many viruses target its activity. 

RNA viruses do not require intact eIF4F to efficiently translate their mRNA and 

consequently have evolved mechanisms to inhibit host cap dependent translation 

while promoting cap independent translation of their own mRNA. RNA viruses such 

as poliovirus and encephalomyocarditis virus code positive-stranded viral mRNA that 

is translated by an internal ribosome entry mechanism, which facilitates internal 

ribosome entry and mRNA translation independent of the m7cap structure. Typically, 

they facilitate ribsome binding, either directly or through binding to the C-terminal 

region of eIF4G, obviating the need for cap binding initiation factors. During virus 

infection, virus-encoded proteases cleave the eIF4G component of eIF4F at the N-

terminal domain. The N-terminal cleavage product contains the binding site for eIF4E 

and PABP, whereas the C-terminal product contains binding sites for eIF4A and eIF3, 

which has ribosome binding activity.   

Once eIF4G is cleaved host cell cap dependent translated is curtailed allowing viral 

IRES dependent translation to proceed unimpeded by competition for ribosomal 

engagement (Schneider, Mohr 2003). 

 

1.3.1.2   DNA Viruses  

 

HSV-1: 

 

HSV-1 encodes mRNAs which are capped. As a result it endeavours to sequester host 

cells initiation factors while suppressing host cell translation during productive 

infection. HSV-1 encodes the mRNA UL 41 and its protein product is termed the 

Virion host shutoff protein or Vhs. Vhs is a 58 kDa polypeptide, which is packaged in 

the tegument of HSV-1 virions. Its primary function is to shut off host cell translation 
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and it achieves this by degrading host cell mRNA by associating with the translation 

factors eIF4A and eIF4H, thus allowing viral mRNA to compete efficiently for host 

cell initiation factors (Feng, Everly & Read 2001). 

 
During lytic infection HSV-1 uses multiple strategies to stimulate the translational 

machinery to ensure that its mRNAs are translated efficiently. Firstly, during the 

initial stages of infection the stress activated kinase p38 is activated, a process which 

is thought to be mediated by the viral protein ICP27 (Gillis, Okagaki & Rice 2009). 

The activation of this pathway results in increased Mnk1 activity which increases the 

phosphorylation of eIF4E bound to eIF4G (Walsh, Mohr 2004; Walsh, Mohr 2006). 

Indeed, prevention of eIF4E phosphorylation by inhibiting p38 or Mnk-1 

phosphorylation significantly reduced HSV-1 mRNA translation and viral replication 

in quiescent primary human cells (Walsh, Mohr 2004). In addition to stimulating the 

eIF4E kinase Mnk-1, HSV-1 promotes phosphorylation of the translational repressor 

4E-BP1 and its degradation by the cellular proteasome allowing eIF4E to bind to 

eIF4G and form active eIF4F. Although 4E-BP1 is phosphorylated through mTOR, 

the exact viral protein responsible for mTOR activation is unknown (Walsh, Mohr 

2004). 

In addition to stimulating signalling pathways during lytic infection, HSV-1 encodes 

ICP6 whose product is a 140kDa protein which acts as a chaperone to promote the 

assembly of eIF4F complexes in quiescent cells which have been lytically infected 

(Walsh, Mohr 2006). 

 

Human Cytomegalovirus (HCMV): 

 

HCMV like HSV-1 produces mRNAs which are capped on their 5’ ends. While 

HCMV cannot totally suppress the synthesis of host polypeptides during infection, 

HCMV infection results in the phosphorylation of the cap binding protein eIF4E and 

the translational repressor 4E-BP1 early in infection. Additionally during infection, 

HCMV increases the overall abundance of eIF4F components, eIF4G, eIF4E and 

PABP which promotes assembly of eIF4F complexes resulting in a reduction of 

competition between viral and host cellular mRNA (Mohr, Walsh 2005) 
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KSHV:  

 

While little is known about the requirements for the mRNA translation apparatus 

during KSHV latent or lytic infection, a recent report detailing reactivation of KSHV 

from latency in Primary effusion lymphoma derived B cells showed both 

phosphorylation of 4E-BP and eIF4E as well as eIF4F assembly were initiated upon 

viral reactivation (Arias et al., 2009). Critically the report also showed that Mnk1 

inhibition caused a reduction of the accumulation of the viral gene transactivator RTA 

and therefore suggests that cap dependent translation is required by KSHV during 

reactivation from latency (Arias et al., 2009). 

 

Adenovirus: 

 

During late stages of adenovirus infection, cap-dependent translation is inhibited. 

Adenovirus inhibition of cellular protein synthesis correlates with a strong decrease in 

eIF4E phosphorylation (Huang, Schneider 1991; Zhang, Feigenblum & Schneider 

1994) but this inhibition does not involve eIF4E sequestration by the 4E-binding 

proteins. Instead the Adeno virus late L4 100-kilodalton (L4 100K) binds to eIF4G 

displacing Mnk1 and preventing eIF4E phosphorylation thus inhibiting cap dependent 

protein synthesis (Cuesta et al.,  (Cuesta et al., 2000). 

 

Adenovirus late mRNAs are translated despite the inhibition of host cell protein 

synthesis as late adenovirus mRNAs contain a 200-nucleotide 5′ noncoding region, 

known as the tripartite leader. The tripartite leader mediates translation by a novel 

initiation mechanism termed ribosome shunting. During ribosome shunting the 40S 

ribosomal subunit associates to the 5’ cap structure with eIF4G but is directed by its 

tripartite leader to translocate to the downstream initiating AUG in a nonlinear 

fashion, this causes the ribosome to shunt over and bypass the intervening RNA 

regions. Ribosome shunting in late Adenovirus infected cells has been found to be 

enhanced with dephosphorylation of eIF4E and inhibition of host cell protein 

synthesis with 100K fulfilling this function (Yueh, Schneider 1996; Yueh, Schneider 

2000). 
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1.3.2 Viral strategies for inhibition of PKR and eIF2 phosphorylation. 

HSV-1 has two mechanisms for preventing the activation of PKR. The first is the 

expression of the γ34.5 protein which inhibits the downstream effects of PKR by 

recruiting the cellular protein phosphatase 1 (PP1) thus forming a complex causing 

the dephosphorylation eIF-2α (He, Gross & Roizman 1998). HSV-1 also encodes a 

protein called Us11, which functions to bind double stranded viral RNA and mask it 

from PKR thus preventing eIF2α phosphorylation. Another function of Us11 is its 

ability to bind to the N-terminal domain of PKR directly preventing PKR activation 

by PACT, which is itelf activated by stress conditions in the absence of foreign 

dsRNA (Cassady, Gross 2002;  Peters et al., 2002). 

Kaposi sarcoma-associated herpesvirus (KSHV) produces two proteins that obstruct 

PKR’s action: vIRF2 and LANA2. vIRF2 binds to PKR and prevents its 

autophosphorylation (Burysek, Pitha 2001). LANA2 is homologous to cellular IRF-4 

(Rivas et al., 2001) and inhibits apoptosis and PKR-mediated translational inhibition 

(Esteban et al., 2003). 

Epstein–Barr virus (EBV) produces the RNA species EBER-1. EBER-1 mRNA is not 

translated but is key to the Epstein–Barr viruses endeavour to transform cells 

(Clemens 2006). In-vitro EBER-1 has been found to inhibit PKR by binding to its 

dsRNA domain, thus preventing dsRNA activators present in the cell from binding to 

PKR (Sharp et al.. 1993). EBV also encodes for the SM protein which is a post 

transcriptional regulator of gene expression that also fuctions to bind dsRNA 

preventing PKR activation (Poppers et al., 2003). 

Vaccinia virus expresses two proteins, E3L and K3L, which can inhibit intracellular 

IFN-induced pathways. E3L prevents activation of PKR and OAS, (2′-5′ 

oligoadenylate synthetase) by binding to and cloaking dsRNA molecules (Shors et al., 

1997; Rivas et al., 1998). E3L can also directly bind to PKR which leads to 

heterodimer formation and repression of PKR function (Romano et al., 1998; Sharp et 

al., 1998). The K3L protein inhibits the dimerisation and autophosphorylation of 

PKR, thus preventing an inhibition of protein synthesis (Carroll et al., 1993; Davies et 

al., 1992). 
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The Influenza virus codes for a protein called  NS1 which is similar to E3L and has a 

dsRNA-binding domain that inhibits IFN-α/β synthesis in addition  to PKR activation 

(LU et al., 1995; Hatada, Saito & Fukuda 1999; Bergmann et al., 2000). Like HSV-1 

Us11, NS1 can also prevent PKR activation by inhibiting its cellular activator PACT 

(Li  et al., 2006). 

Human immunodeficiency virus type 1 (HIV-1) encodes a protein labelled Tat which 

is a transcriptional transactivator that can also act as a substrate homologue of eIF2α, 

preventing PKR activation (Brand, Kobayashi & Mathews 1997).  
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Aims of thesis. 

 
 
While our understanding of the processes involved in HSV-1 lytic replication has 

become more refined with time, the characterisation of HSV-1 latency has been 

obfuscated by a lack of infection models which reflect the situation of HSV-1 latency 

in-vivo. To date, in-vivo studies employ the use of animal models but questions over 

their relevancy to human infection has led to uncertainty over the results garnered 

from such studies. Consequently, without relevant in vivo models researchers must 

rely on tissue culture models to illuminate the mechanistics of HSV-1 non-productive 

infection but current models are relatively inefficient for conducting such studies. 

Considering these problems, the main aims of this thesis were as follows:   

 
 

• To understand the mechanistics of non productive infection (quiescence) by 

developing a tissue culture model using human cells that facilitates high 

multiplicities of infection with wild type HSV-1. 

• Investigate the roles of signalling pathways during HSV-1 quiescence and 

reactivation from quiescence.  

• Investigate the role of translation initiation factors during HSV-1 reactivation 

from quiescence and lytic replication 
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Section 2: Materials and Methods 
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2.0 Materials and Methods 
 
2.1.1 Reagents 
 
Acrylamide 
Acetic acid (Merck) 
APS (Ammonium persulfate) (Sigma) 
β-Mercaptoethanol (Merck) 
Bis-acrylamide 
Bromophenol Blue 
Buffer solutions pH 10, 7 and 4 (Merck) 
Crystal violet (Merck) 
DMSO (dimethyl sulfoxide) (catalogue no. D2650, Sigma) 
EDTA (ethylene diamine tetraacetic acid) (Sigma) 
Ethanol (Merck) 
Glycerol 
Glycine 98 % (Sigma) 
Glutamic acid 
Glycerophosphate 
HCl (Hydrochloric Acid, min. 37 %) (Riedel-de Haen) 
HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (Sigma) 
Histidine 
Hydrogen peroxide (Sigma) 
iso-Butanol (Sigma) 
L-cystein (Sigma) 
L-methionine (Sigma) 
Methanol (Merck) 
MgCl2 (Sigma) 
NaOH (Sigma) 
NaCl (Sigma) 
Na3VO4 (sodium orthovanadate, catalouge no. 567540, Calbiochem) 
NP-40 alternative (nonylphenyl polyethylene glycol) (Calbiochem) 
Nuclease-free water, 0.2 µm filtered (Ambion) 
PBS (phosphate buffered saline, Dulbecco A) (BR0014G, Oxoid) 
Phalloidin (Sigma) 
Protease inhibitor cocktail tablets (CompleteR Mini-tablets, Roche) 
RNase (catalogue no. R4642, Sigma) 
7-methyl GTP Sepharose (Ge Healthcare) 
Sepharose 4B beads (catalogue no. 4B200, Sigma) 
SDS (sodium dodecylsulfate polyacrylamide) (Sigma) 
TEMED (N,N,N’,N’-tertramthyl ethylendiamine) (Merck) 
Tris (tris(hydroxymethyl)aminomethane) (Sigma) 
Tween 20 (Merck) 
Water UHP (Ultra High Purity) (Maxima, ELGA) 
U0126 (Calbiochem) 
Urea 
Sb 203580 (Calbiochem) 
Sodium dodecyl sulfate (Sigma) 
Rapamycin (Calbiochem) 
Cgp57380 (Calbiochem) 
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4EGi-1 (Calbiochem) 
4EGi-1 (Santa cruz) 
MG132 (Calbiochem) 
Tetramethylethylenediamine (TEMED) (Merck) 
Torin1 (gift of Nathanael Gray) 
Trypan blue (Sigma-Aldrich).  
[35S] Methionine/Cysteine (Perkin Elmer) 
 
 
 
2.1.2 Equipment  
 
Container with printed label, 30 ml (greiner bio-one) 
Hotplate stirrer (SB162, Stuart) 
Laminar flow cabinet (Lamin Air, Model 1.2, Holten) 
Leica DFC 500 microscope 
Microcentrifuge (catalogue no. 37001-296, Galaxy 14D, VWR) 
Microprocessor pH meter (pH210, HANNA instruments) 
Mini protean 3 cell, iso electric focusing Rig (Bio rad Cat no165,3301) 
Mini see-saw rocker (SSM4, Stuart) 
LS 6500 Liquid Scintillation Counter (Beckmann) 
Micro pipettes 1-10 µl, 10-100 µl, 20-200 µl, 100-1000 µl (VWR) 
Pipettes 1 ml, 2 ml, 5 ml (costar, USA) 
Pipettes 10 ml, 25 ml (greiner bio-one) 
Power Supply (PowerPac™ HV, catalogue no. 164-5056, BIO-RAD) 
Speed Gel SG 200 gel dryer (Savant, Farmingdale, NY) 
Steri-cycle CO2 Incubator (Thermo Electron Corporation) 
Tips, natural bevelled (TipOne, Starlab) 
Vortex Mixer (PV-1, Grant Bio) 
Vacuum Millipore  
 
 
 
2.1.3 Cells 
 
The utilized cell lines were primary normal human diploid fibroblasts (NHDFs) 

(Clonetics, Walkersville, Maryland, United States), Vero and HeLa cells (kindly 

provided by Dr. I. Mohr, New York University). The sub-culturing of Adherent cells 

was conducted on a routine basis under strict aseptic technique. To do this the waste 

medium was removed by aspiration from the 10cm² plates and cells were washed with 

10mls of pre-warmed (37°C) PBS to sequester naturally occurring trypsin inhibitor 

which is present in residual serum. Subsequent to the wash step the dishes were 

incubated at 37°C with 1ml trypsin/EDTA (TV) solution (0.25% trysin (Gibco; 043-

05090), 0.01% EDTA (Sigma; EDs solution in PBS A (Oxoid;BR14a). After 5 mins 

the cells were checked under the microscope to confirm detachment. Once cells were 
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detached, 9 mls of growth medium was added to the plate. The plate was then split 

according to specifications into fresh 10cm² plates 

 

2.1.4 Medium 

 

Cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM Sigma) 

supplemented with 2 mM L-glutamine (invitrogen, UK), 1 mM sodium pyruvate 

(invitrogen, UK), 50 units of penicillin, and 50 µg per ml of streptomycin (both 

invitrogen, UK). Medium with 5 % foetal bovine serum (FBS) (catalogue no. F7524, 

Sigma) was used for culturing cells, whereas 0.2 % FBS supplementation was added 

to the medium for starving NHDFs. Human serum used to prevent viral spread was 

derived from platelet-poor human plasma, sterile-filtered, (mycoplasma and virus 

tested) (Sigma). 

 
 
2.1.5 Trypan blue cell viability assay 

 

For viability assays 10cm² dishes containing NHDF cells were trypsinized with 1ml 

trypsin for five minutes at 37°C. 9mls of 5% DMEM was added to the plate once cells 

were trypsinized. 40µl of the cell suspension was placed in an eppendorff along with 

40µl of 0.4% trypan blue. The sample was mixed and allowed stand for 5 minutes at 

room temperature. 10µl of the stained cells were placed in a Hemocytometer. The 

percentage of viable cells was calculated by dividing the amount of dye excluding 

cells by the total number of cells and multiplying by 100. 

 

2.1.6 Growing and Titering virus 

 

For HSV-1 stocks, Vero cells were seeded at half confluence in 10cm² dishes 

containing 10mls 5% FBS DMEM for 24 hours before addition of virus. One hour 

before the addition of virus the medium was changed to 1% FBS DMEM. Cells were 

subsequently infected at m.o.i 0.001. The culture was then returned to the 37°C 

incubator for 72 hours. Cells were then scraped and medium containing cells from 

10cm² dishes was pooled into a suitable container (50ml Falcon tube). The Falcon 

tubes were then stored in a –80°C freezer.  
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HSV-1 titration was conducted on permissive Vero cells. Vero cells were seeded at 

200,000 cells per well in 5% FBS DMEM for 24 hours before addition of virus. One 

hour before the addition of virus the medium was changed to 1.5mls of 1% FBS 

DMEM in each well. The cell lysates taken from virally infected cells were serially 

diluted in 1% FBS DMEM to the appropriate dilution and 500µl of the chosen 

dilutions were added to the appropriate wells and cultures were returned to the 37° 

incubator for 72 hours. On day three of incubation the cells were removed and fixed 

with 2ml 10% TCA for 10 minutes. The cells were then stained with 2mls crystal 

violet for 15mins (plate was rocked at room temp). 

After staining, the plates were washed with water and allowed air dry.  

 

 
2.1.7  Preparation of working sample buffer and cell lysis: 
 
 
 
Table 1: preperation of Sample buffers 
 

1X sample buffer 2X sample buffer 
50 % 2 X Laemmli 95 % 2 X Laemmli 
45% UHP water -------------------------- 
5% β-Mercaptoethanol 5% β-Mercaptoethanol 
4 µl 8% bromophenol blue/ml buffer 4 µl 8% Bromophenol blue/ml buffer 

 
 
Table 2: preperation of 2X Laemmli 
 

2 X Laemmli 
12.5 % 1 M Tris, pH 6.8 
20 % SDS (20 %) 
40 % Glycerol (50 %) 

27.5 % UHP water 

 
 
 
 
The working sample buffer was prepared according to the above table 1. The buffer 

contains the negatively charged detergent sodium dodecylsulfate and the reducing 

agent β-Mercaptoethanol. The purpose of these reagents is to confer a negative charge 

and disrupt the tertiary structure and quaternary structure of proteins. SDS binds to the 

proteins hydrophobic regions and causes the protein to unfold its polypeptide chains 
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by disrupting non-covalent bonds, denaturing them and causing the molecules to lose 

their native shape. The anionic SDS binds to the main peptide chain at a ratio of one 

SDS anion for every two amino acid residues. This results in a negative charge on the 

protein that is proportional to the mass of that protein (approximately 1.4 g SDS/g 

protein). β-Mercaptoethanol ensures that a protein solution contains monomeric 

protein molecules by breaking disulphide bonds instead of disulfide linked dimers or 

higher order oligomers. 

When samples were ready to be harvested, the medium was removed by aspiration 

and 250µl of 1X Laemmli Lysis buffer was added to the wells and mixed thoroughly. 

The samples were placed in eppendorfs and were boiled after harvesting for three 

minutes to eliminate any secondary and tertiary protein structures. 

 
 
2.1.8 Sodium dodecylsulfate polyacrylamide gel electrophoresis: 
 
 
The SDS-PAGE technique (Laemmli 1970) was used to separate proteins in lysed cell 

protein samples. Gels were mixed with varying concentrations of ingredients to 

achieve larger or smaller pore size depending on degree of protein separation required 

(Table 3). The 10cm x 8cm glass plates used for this procedure were first washed with 

water and then EtOH. The plates were assembled using gasket, spacers and 4 clamps. 

A mark was made on the plates about 1-2cm below where the end of the teeth of the 

comb lies. The resolving gel solutions were poured into 10cm x 8cm gel cassettes 

(stopping at the mark made). 500µl of water saturated iso-butanol was added to 

overlay the gel. After one hour the gels were polymerized, the iso-butanol was 

washed out of the cassette with distilled water. The stacking gel solution was poured 

into the glass plates to overlay the resolving gel and a comb was placed between the 

plates. Once the stacking gel had set the vertical plates were clamped into 

electrophoresis rig and 1X electrode buffer (Table 5) was added to the rig chambers to 

immerse the top and bottom of the gel. The combs were removed and bubbles that 

impede electric current were expunged from the buffer using a syringe. Once the 

bubbles had been removed a molecular weight marker was prepared using 3µl of 

precision plus protein dual colour standard per 10µl 1x laemmli buffer. The samples 

were boiled for three minutes prior to loading and the marker was loaded into the first 
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lane of the gel, samples were then loaded into the subsequent lanes. Gels were 

typically run at 170 volts to separate proteins. 

 
 
 
Ingredients for SDS-PAGE: 
 
Table 3: preparation of separating gel 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4: preparation of stacking gel 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5: preparation of 10X electrode buffer 
 
 
 
 
 
 
 
 
 
 

Separating gel  7.5 % 10 % 12.5 % 17.5 % 
Water (ml) 2.75 2.22 1.55 -------------- 
1 M Tris pH 8.7(ml) 3.75 3.75 3.75 3.75 
30 % Acrylamide (ml) 2.5 3.34 4.15 5.85 
2 % Bis-Acrylamide (ml) 0.95 0.67 0.5 0.365 
20 % SDS (µl) 50 50 50 50 
10 % APS (µl) 33.35 33.35 33.35 33.35 
TEMED (µl) 8.35 8.35 8.35 8.35 

Stacking gel 5% 
Water (ml) 3.15 
1 M Tris pH 6.8(ml) 0.625 
30 % Acrylamide (ml) 0.850 
2 % Bis-Acrylamide (ml) 0.350 
20 % SDS (µl) 25 
10 % APS (µl) 25 
TEMED (µl) 12.5 

10 X electrode buffer 
0.25 M Tris 
2.5 M Glycine 
1 % SDS 
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2.1.9 Western blotting: 
 
Following electrophoresis the gels were removed from the glass plates and 

equilibrated in 1X transfer solution (Table 6). The composition of 1X and 5X transfer 

buffer is outlined below in table 6. The gels were transferred to transfer buffer-wetted 

whatmann paper and nitrocellulose sheets were placed on the gel. A further buffer 

wetted sheet of whatmann was placed over the nitrocellulose sheet and the sandwich 

was then clamped between two sponges which were themselves stabilized between 

two plastic scaffolds. The sandwich was then placed into the electrophoresis chamber 

and it was filled with enough 1X transfer buffer to cover the assembly. Typically the 

electrophoresis was run at 57 volts for 1 hour but longer times were employed to 

transfer larger proteins such as eIF4G.  

 
 
Table 6: preparation of transfer buffer 
 

1X transfer buffer 5 X wet western transfer buffer 
20 % 5 X wet western transfer buffer 124 mM Tris 
20 % methanol 960 mM Glycine 
60 % UHP water 0.05 % SD 

 
 
 
2.1.10 Western blot probing:  
 
 
Primary antibody treatment: 

After transfer electrophoresis the nitrocellulose blot was washed with TBS-Tween 

0.1% for 1 minute. The blot was then blocked with 5% marvel low fat milk (Cadbury 

ltd) in TBS-Tween for 1 hour. The blot was then washed three times (x3) with TBS-T 

for 5 minutes (while rocking). The primary antibodies were diluted from ranges 

1:1000 -1/10,000 (see table 2.1.13) in 3% Fraction V BSA/TBS-Tween/0.02% 

Sodium Azide The primary antibody was added to the blot and rocked at room 

temperature for 1 hour or over night at 4ºC. The primary antibody was then removed 

and the blots were washed three times (x3) with TBS-T for 5 minutes (while rocking). 
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2.1.12 Enhanced chemiluminescence detection: 

Protein bands were developed using an enhanced chemiluminesence Kit (Pierce ECL 

western blotting prod #32106). After the wash step, blots were incubated with 

horseradish peroxidise conjugated secondary antibody diluted 1/6000 in TBS-T 5% 

Marvel milk and rocked at room temperature for 1 hour. After the secondary antibody 

step the membranes were washed with 1X TBS-Tween as before, the fluid was then 

removed and membranes were placed on cellophane. Equal volumes of ECL reagents 

were then mixed and placed on the membranes for 1 minute. The ECL solution was 

then removed and the membranes were enclosed in cellophane. The membrane was 

exposed to autoradiographic film (Kodak Biomax XAR-5 165 1454) in 

autoradiographic cassettes. The exposed film was developed for 5 minutes in 

developer (Kodak, LX 24) diluted 1: 6.5 in water. The film was then washed in water 

and placed in fixer solution (Kodak FX-40) diluted 1:5 in water for 5 minutes. The 

film was transferred to water, washed and air dried. 
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2.1.13 Western blot antibodies: 
 
Antibody Host Supplier Dilution 

PML Rabbit Abcam (ab53773) 1/1000 

ICP 4 Mouse Abcam (ab6514) 1/1000 

P44/42 MAP Kinase  Rabbit Cell Signalling #9102 1/1000 

p70 S6 Kinase Rabbit Cell Signalling #9202 1/1000 

4E-BP1 Rabbit Cell Signalling#9452 1/1000 

Phospho-MEK1/2 Rabbit monoclonal Cell Signalling#9154 1/1000 

Phospho - P44/42 Rabbit polyclonal Cell Signalling #9102 1/1000 

Phospho- P38 MAP Mouse monoclonal Cell Signalling #9216 1/1000 

P38 MAP Kinase total Rabbit polyclonal Cell Signalling #9212 1/1000 

HSV-1 ICP0 Mouse monoclonal Abcam (ab6513) 1/1000 

HSV1 + HSV2 ICP5 Mouse monoclonal Abcam (ab6508) 1/1000 

HSV-1 ICP22 Rabbit polyclonal Gift , John Blaho 1/3000 

Caspase 3  Rabbit polyclonal Cell Signalling #9662 1/1000 

Caspase 7 Rabbit polyclonal Cell Signalling #9492 1/1000 

Caspase 9 Rabbit polyclonal Cell Signalling #9502 1/1000 

Cleaved Caspase 3 Rabbit polyclonal Cell Signalling #9661 1/1000 

Cleaved Caspase 7 Rabbit polyclonal Cell Signalling #9491 1/1000 

Cleaved Caspase 9 Rabbit polyclonal Cell Signalling #9501 1/1000 

Parp  Rabbit polyclonal Cell Signalling #9542 1/1000 

Cleaved Parp Rabbit polyclonal Cell Signalling #9541 1/1000 

Heat shock protein 70 Rat polyclonal Cell Signalling #2402 1/1000 
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Heat shock protein 27 Mouse monoclonal Cell Signalling #4872 1/1000 

Pabp  Rabbit polyclonal Gift (Prof Simon Morley 
University of Sussex) 

1/1000 

eIF-4E Mouse monoclonal BD Labs #610269 1/1000 

Us 11 Mouse monoclonal 
 

Gift (Richard Roller) 
 

1/1000 

4E-BP-1 Rabbit polyclonal Cell Signalling # 9644 1/1000 

eIF-4G Rabbit polyclonal 
 

Gift (Ian mohr) 
 

1:3000 
1:10,000 

Total eIF2α Rabbit polyclonal 
 

Cell Signalling #9722 1/1000 

Phosphoylated eIF2α 
 

Rabbit polyclonal 
 

Cell Signalling #9721 1/1000 

eIF3A 
 

Rabbit polyclonal 
 

Cell Signalling #2538 1/1000 

Ribosomal protein  
RpS3 

Rabbit polyclonal 
 

Cell Signalling #2579 1/1000 

 
 
 
2.1.14 Metabolic labelling of cells 
 
For each well of six-well plates, the medium was changed to 1 ml of DMEM without 

Methionine or Cysteine (catalog no. D0422; Sigma-Aldrich) containing HEPES, pH 8, 

sodium pyruvate, L-glutamine, penicillin-streptomycin and 77 µCi of [35S]-

Methionine/Cysteine (catalog no. NEG072; Perkin Elmer) for 1 hour at 37°C. The 

cells were then lysed in 250µl 1x Laemmli Lysis buffer. The samples were placed in 

eppendorfs and were boiled. 

 

[35S]  Sample Analysis:  

 

[35S] samples were Resolved/ on 12.5% SDS-PAGE gels as outlined in 2.1.8. 

 
 

Gel fixation and drying: 

Gels containing samples that had been labelled with [35S] -Methionine/-Cysteine were 

placed in destain solution (Table 8) for 20 minutes at room temperature. 
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Table 8: preparation of destain solution  
 

Destain solution 
25 % Methanol 
10 % Acetic Acid 
65 % UHP water 

 
 

The gel was dried on cardboard at 80°C for two hours under vacuum with a Speed 

Gel SG 200 gel dryer to remove the water in the gel. The dried gel was then exposed 

to X-ray film at -80°C for the appropriate exposure time and developed using Kodak 

developer/fixer solutions. 

 
 

2.1.15 TCA precipitation and filter binding assay to quantitate [35S] 

incorporation into protein:           

 

In 1.5ml eppendorf tubes 67µl of 3% H202 + 10µl of 10N (10M) NaOH + 20µl of 

[35S] labelled SDS lysate in Laemlli buffer were mixed. This step eliminates  

charged tRNAs. 

The tubes were mixed and incubated for 10 minutes at 37°C. Subsequent to 

incubation 5µl of 10mg/ml V BSA stock was added to the mixture along with 1mls of 

ice cold 10% TCA/4mM L-Cys/4mM L-Met. This step allows for L-Cys/L-Met to 

compete with free radiolabelled Methioine and Cysteine.  

The mixture was vortexed and incubated on ice for 15-30 min. As incubation was 

progressing, 25mm GF/C circles of Whatman-Glass Microfibre filters were soaked in 

10% TCA/10mM L-cys/10mM L-met in a 10cm² plate. The filters were then placed 

on the millipore vacuum unit. Once the unit was secured and attached to a vacuum 

pump the samples were poured into appropriate wells. The sample tubes were washed 

twice with 1ml cold 10% TCA/10mM L-cys/10mM L-met and poured into 

appropriate wells. The vacuum was then applied and shut off once the samples had 

passed through each filter. Each well was then washed with 10% TCA solution and 

the vacuum was re-applied. This step was repeated twice more. The vacuum was then 

shut off and each well was filled with ice-cold EtOH and the vacuum was applied. 

The previous step was repeated one more time. The vacuum unit was then 

disconnected from the vacuum and disassembled, the filters were removed and placed 
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on aluminium foil and placed on an inverted Styrofoam rack. When filters had dried 

they were placed in labelled scintillation tubes with 4mls of Econo Safe liquid 

scintillation fluid (RPI) and allowed to incubate for 20 minutes. Once incubation was 

complete the tubes were placed in a LS 6500 Liquid Scintillation Counter and 

measured for [35S] using program three in the count protocol list. 

 
 
2.1.16 Isoelectric Focusing: 
 
 

Isoelectric focusing (IEF) is a technique for separating different molecules by their 

electric charge differences. It is a type of zone electrophoresis, and takes advantage of 

the fact that a molecule's charge changes with the pH of its surroundings. This 

description of the procedure was kindly given to us by Professor Simon Morley 

(University of Sussex) and is based on the vertical slab version of IEF published by 

Jagus et. al. (Dev. Gen. 14: 412-423) using a Bio-Rad Protean II minigel aparatus 

(0.75mm spacers).  

 

Firstly a 50ml stock of incomplete gel mix was made, and stored at 4°C. 

 
Table 9: preparation of incomplete gel mix 
 
42.8ml pure water   
 

24.13ml H²O 

4.86g Acrylamide 
 

12.17ml 40% Acrylamide 

274.3mg Bis-Acrylamide 
 

13.7ml 2% Bis-Acrylamide 

1.71g CHAPS 
 

1.71g of CHAPS 

 
 
The above mixture was then filtered using a 0.22µM filter (large syringe and pressure, 

not vacuum) 
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To make and pour the gels: 

The gel was mixed as outlined in the table 10 below, leaving out APS and TEMED. 

The mixture was gently heated in a 37°C waterbath to dissolve the urea. Once Urea 

was dissolved, the APS and TEMED was added.  The gel was then poured right to the 

top of plates, the combs were added and gels were allowed to set. 

 
 
Table 10: preparation of iso-electric focusing gels 
 

1 Gel (6mls) 2 Gels (12mls) 

3.5ml Incomplete gel mix 7ml incomplete gel mix 

3.24g urea 6.48g urea 

0.45ml ampholines 0.9ml ampholines 

20µl 10% APS 40µl 10% APS 

10µl TEMED 10µl TEMED 

 

Sample buffer and sample preparations: 

7X sample buffer was made as described in the table 11 below. 1ml aliquots were 

stored at -20°C and reused). For a 5ml stock the following were mixed as described 

below in table 11. 

 

Table 11: preparation of 7X sample buffer 
 
 
 
 
 
 
 
 
For sample preparation 1X sample buffer was made as described below.  
 
 
Table 12: preparation of 1X sample buffer 
 
                   
 
 
 
 
 
 

21% (v/v) ampholines  pH range 3-10 (same as for gels) 1.05ml 
14% (v/v) ß-mercaptoethanol                    0.7ml 
35% (w/v) CHAPS                                    1.75g 
H²O 3.0ml 

143µl of 7X sample buffer 
0.54g urea (gives 9M final) 
550µl MilliQ water.  
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Running Buffers were created as described below in table 13 
 
 
Table 13: preparation of electrode buffer 
 
Cathode (outer chamber) 0.05M Histidine (= 3.88g/500ml) 
Anode (inner chamber)       0.01M Glutamic Acid (= 0.73g/500ml) 
 
 
500ml of each buffer was prepared fresh. The buffers were chilled as the high 

voltages used during IEF can increase buffer temperature and warp the gels . 

 

Running the Gels: 

 

Due to the numerous voltage changes used in the IEF procedure, the Bio-Rad 

programmable powerpack was used for this procedure. 

Once the gels had set the combs were removed and wells were washed out thoroughly 

with water. 20-25µl of 1X sample buffer was then added to each well. The wells were 

then carefully overlayed with 10µl 6M urea followed by glutamic acid. The inner 

chamber of the IEF apparatus was filled with 0.01M Glutamic Acid and the outer 

chamber was filled with 250ml 0.05M Histidine. The apparatus was placed in a 

plastic container and surrounded with ice to maintain a low temperature. 

The gels were then prefocused for a total of 1 hour on reverse polarity at the following 

voltage, 20min at 200v, 20min at 300v and 20min at 400v. 

 

After prefocusing the wells were washed out thoroughly with water. Before the end of 

the prefocus stage the samples to be analysed were prepared by boiling and allowed to 

cool. A 1:1 dilution of sample with 1x IEF sample buffer was prepared.  The samples 

were then vortexed quickly to mix and 25µl of sample was loaded into to each well. 

The sample was overlayed with urea and glutamic acid as for prefocusing, and IEF 

was performed by increasing voltages in 50v increments every 20 minutes starting at 

500 up to 750v, i.e. 500-550-600-650-700-750v, each one for 20 minutes. The 

samples were then ran at 1000v for a further 20 minutes. Again, as for prefocus, IEF 

was run on reverse polarity. After electrophoresis the gel was transferred to 

nitrocellulose and probed with anti-eIF4E antiserum as described for Western 

Blotting.  
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2.1.17 Cap pulldown protocol 

 
 
For cap pulldown procedure the lysis buffer prepared as follows 

 

NP-40 Lysis Buffer - For every 10mls of buffer:  

 

Table 13:  preparation of NP-40 Lysis Buffer 
 
500µl 1M HEPES/KOH pH 7.4 containing 40mM 

EDTA 
400µl
  

2.5M NaCl 

80µl
  

0.25M Na3VO4 
 

250µl 1M Glycerophosphate 

125µl
  

20% NP40 

3.3µl
  

1.5M MgCl2 
 

8.56ml Sterile loop water  (ddH²O) 
 

 
  
The buffer was mixed well on a rocker to make sure NP-40 was evenly mixed 
and 10mls from each stock of buffer had one protease inhibitor tablet (Complete® 
Mini-tablets) dissolved in it . 
 

 

For the cap pulldown everything was kept on ice or at 4°C throughout the procedure. 

 

To perform the cap pulldown the cells were washed in PBS, then 700µl of NP-40 

Lysis Buffer (NLB) was added to cells and cells were scraped off the plate and 

transferred to eppendorff tubes then were incubated on orbital shaker at 4°C for 30-40 

minutes. 

The cells were then centrifuged at 10,000 x g for 10 min at 4°C. The supernatant was 

removed and placed in a fresh eppendorf containing 1.3µl RNase A and 8µl 100mM 

CaCl2. The eppendorfs were then rocked at room temperature for 20 minutes. After 

RNase treatment the samples were chilled on ice, supernatants from each sample were 
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then placed in fresh tube containing 40µl Sepharose 4B, prewashed in NLB. The 

samples were mixed by inversion and rocked at 4°C for 40 minutes. Once pre clear 

had completed the samples were centrifuged for 1 minute at 10,000 x g, input samples 

(27µl to which 33µl 2x sample buffer was added) were then taken from the 

supernatent. The rest of the pre-cleared sample was added to fresh eppendorfs 

containing 40µl washed 7-Methyl GTP Sepharose. 

The eppendorfs were then mixed by inversion and placed on rocker for 1 hour at 4°C. 

After this step each tube was centrifuged and the supernatant removed. 800µl of fresh 

NP-40 Lysis Buffer containing 8µl 100mM GTP was then placed in eppendorfs 

containing 7-Methyl GTP Sepharose bound to sample and the eppendorfs were mixed 

by inversion and rocked at 4°C for 1 hour. After the GTP step, the eppendorfs were 

centrifuged for 1 minute at 10,000g and the supernatents removed. The beads were 

then washed 3 times in at least 500µl NP40 lysis buffer and boiled for 3 min in 40µl 

Laemmli buffer. The samples were vortexed gently to mix before boiling then stored 

at -20°C as usual for protein samples. 
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2.1.18  Immunofluorescence protocol 
 

For Immunofluorescence, cells were seeded on coverslips in six well plates and the 

appropriate experiment performed. For sample preparation medium was aspirated 

from cells and cells were washed with 1X PBS. The cells were then fixed with 2mls 

3.7% formaldehyde per well for 15 minutes. The formaldehyde was aspirated and the 

cells were washed with 1X PBS four times. The cells were then stored at 4ºC until the 

day of immunofluorescence. On the day of immunofluorescence the storage PBS was 

removed from the cells and 100µl of 0.1% Triton X-100 in 1X TBS was added for 30 

minutes at room temperature to permeabilize cells. The Triton was aspirated and the 

cells were briefly washed twice with TBS and incubated with TBS for 5 minutes. The 

cells were then blocked with 3% BSA in TBS for 30 minutes at room temperature. 

The blocking solution was aspirated and primary antibody (diluted in TBS-T plus 3% 

BSA) was added to each sample and incubated for 1 hour at Room Temp. The 

primary antibody was removed and cells were washed three times with TBS-T for 

five minutes each wash. The TBS-T was removed by aspiration and the sample was 

incubated with the appropriate fluorophore-conjugated secondary antibody in TBS-T 

plus 3% BSA for 40 minutes. After secondary binding the antibody was removed by 

aspiration and the sample was washed three times with TBS-T. The nuclei were 

stained with Hoechst for 5 minutes and washed twice with TBS-T, then briefly 

incubated for 5 minutes in TBS-T. The TBS-T was then removed and the mounting 

medium applied to glass slides, on which sample coverslips were then placed. 
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2.1.19 Phalloidin staining: 

 
0.1 mg per ml Stock phalloidin solutions were made using DMSO and stored at -

20ºC. Cells to be analysed were washed with PBS and fixed with 3.7% formaldehyde 

for 15 minutes. The cells were then washed three times with PBS. On the day of 

analysis the PBS was removed from the cells and a grease pen was used create grease 

rings in each well. 100µl of PBS was added to the centre of each grease ring to 

prevent culture dehydration. The PBS was aspirated and 100µl of 0.1% Triton X-100 

in 1X PBS was added to permeabilize samples for 30 minutes at room temperature. 

The Triton was aspirated and the cells were briefly washed twice with PBS and 

incubated with TBS for 5 minutes. Each sample was then incubated with 1/100 

dilution of the 0.1 mg Stock phalloidin in PBS and incubated at room temperature for 

40 minutes. The samples nuclei were then stained with Hoechst for 5 minutes and 

washed twice with PBS and then briefly incubated for five minutes in PBS. The PBS 

was then removed and mounting medium applied, then coverslips where placed on 

samples. 
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Section 3.0: Results 
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3.0 Results 

 

Introduction to results 

3.1 Establishing quiescent infection in vitro 

Latent HSV-1 infection is very poorly understood. The majority of models developed 

to study latency are based in animals which imposes serious limitations on the types 

of studies that can be conducted. In addition, questions relating to how well mouse 

and rabbit models reflect the true nature of human infection has led to doubt over 

results garnered from such experiments. 

 

In vitro HSV-1 latency models termed quiescence models have been developed using 

non-human neurons but are relatively inefficient. Systems have also been developed 

in human cells, particularly primary human fibroblasts. The success in using these 

cells appears to lie in their reduced metabolic state in culture that may resemble the 

metabolic state in neurons more closely than transformed cell types. In addition, these 

models employ infection at elevated temperature and experiments by Crouch and 

Rapp have shown that HSV-1 is sensitive to temperatures above 40.5°C during the 

initial stages of lytic infection (Crouch, Rapp 1972). However, to date, establishing 

HSV-1 quiescence in human cells has required deletion of the early viral gene 

encoding ICP0, to prevent the establishment of a lytic infection.  

 

In an attempt to develop a quiescent model in human cells using wild type virus, we 

endeavoured to create a non permissive environment for productive infection 

(outlined in Figure 3.1.1). The parameters tested included serum starvation to further 

reduce the metabolic state of the host cell combined with heat shock to induce 

protective heat shock proteins that might mimic the function of LATs, which induce 

Hsp70, in the absence of their expression in fibroblast systems. Finally, infecting cells 

at elevated temperature was also expected to prevent entry into the lytic phase of 

replication and promote the establishment of a quiescent infection. We then tested 

whether virus could be recovered from the non-productive state in a controlled 

manner by supplying exogenous viral genes or through spontaneous reactivation 

events. 
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Fig 3.1.1       Flow chart for the method of establishing quiescence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 3.1.1 Flow chart illustrating the steps in establishing a HSV-1 quisescent 
infection. Firstly confluent cultures of low passage primary NHDFs were starved in 
0.2% FBS DMEM for 3 days and subsequently subjected to temperature elevation at 
41°C for 30 hours. Cultures were then infected at 41°C with HSV-1 at a m.o.i of 0.5-1 
and the cultures were maintained at 41°C for either 3 or 6 days to repress viral 
replication. To reactivate the virus, cultures were placed in the 37°C incubator 
subsequent to replenishment in fresh 5% FBS DMEM and either allowed to 
spontaneously reactivate over a 5 day period or alternatively the virus could be 
controllably reactivated by transduction with Adeno virus vectors encoding the HSV-
1 gene ICP0. To harvest samples the cultures were lysed in 1x Laemmli buffer. 
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Figure 3.1.2  

 
Western blot analysis of Heat shock protein 70 and 27 abundance in NHDFs 

exposed to either 37ºC or 41ºC 

Firstly we examined the ability of the culture conditions to elicit changes in 

expression of Heat shock proteins 27 and 70. 

 

NHDF cells were serum starved and incubated for 30 hours at either 37 °C or 41°C 

then mock-infected or infected with wild type HSV-1 Kos at 0.5 to 1 PFU per cell. 

Total cell extracts were prepared by laemmli buffer lysis at 12 hours and 24 hours 

post-infection and resolved by SDS-PAGE, then transferred to nitrocellulose 

membranes and probed with either Heat shock protein 27 or 70 antisera. The Hsp70 

blot is representative of results 12 hours post-infection while Hsp27 and PABP blots 

are representative of results 24 hours post-infection.  

 

Importantly, the infection had no effect on Hsp 27 or 70 expression. Significantly, 

heat shock protein induction in cultures was specific, as no change in the 

representative cellular antigen loading control PABP was observed. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 3.1.2 Western blot of heat shock protein (Hsp) expression within mock 
infected and infected cultures at either 37°C or 41°C. PABP was probed for as load 
control. 
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Figure 3.1.3 
 

Immunofluorescense analysis of ICP4 production in temperature elevated cells 

12 hours post infection 

To validate that cells could be infected and to quantify the amount of infected cells 

within conditioned cultures at 12 hours post infection, the expression of the IE gene 

product ICP4 was analysed by indirect immunofluorescence. NHDF cells were grown 

to confluence on glass coverslips and subsequently serum starved. The cells were then 

incubated for 30 hours at 41°C and infected with HSV-1 for 12 hours. The slides were 

fixed and probed with ICP4 antiserum. ICP4 was detected with FITC-labelled anti-

mouse secondary. Hoechst was employed to counterstain nuclei.  

 

At 12 hours postinfection, approximately 60% of cells in cultures infected at 41°C 

expressed the viral IE gene product ICP4. A similar amount of ICP4 staining was 

observed in cells infected at 37°C at this stage post-infection (not shown) which 

confirmed that the selective pressures of elevated temperature and serum starvation 

had no effect on viral entry into the cell or the expression IE gene product ICP4 (see 

also figure 3.1.7). 
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Figure 3.1.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.1.3 Immunofluorescence of ICP4 production in temperature elevated cells 
12 hours post infection. The Images were taken at 63x magnification and a 
representative field shown. The percentage of antigen-positive cells in each field is 
shown to the right of the panel. 
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Figure 3.1.4 

Immunofluorescense analysis of ICP4 production in temperature elevated cells 

24 hours post infection 

To quantify the amount of cells within conditioned cultures harbouring virus at 24 

hours post infection, NHDF cells were grown to confluence on coverslips, serum 

starved and infected at 41°C or 37°C for 24 hours. The cells were processed as in 

Figure 3.1.3. The percentage of antigen-positive cells in each field is also shown to 

the right of the panel. 

 

Approximately 60% of the culture infected at elevated temperature stained positive 

for ICP4 at 24 hours post infection, indicating that virus replication and secondary 

spread to neighbouring cells was inhibited. Conversely virus in cells infected at 37°C 

replicated and spread to 100% of the culture by 24 hours postinfection. 

 

                    Hoescht                            ICP4                              Merge                 %Inf 

                   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1.4 Immunofluorescence of ICP4 production in temperature elevated cells 
24 hours post infection. The Images were taken at 63x magnification and a 
representative field shown. The percentage of antigen-positive cells in each field is 
shown to the right of the panel. 
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Figure 3.1.5 
 

Viral titers from cultures infected at 37º or 41ºC 

In order to confirm that the cultures infected at elevated temperatures were not 

producing viable infectious virus, a quantification of plaque forming virus being  

produced in 35mm dishes of infected NHDF cultures at either 37°C or 41°C was 

performed. Samples were taken at one, two and three days post-infection (d.p.i). 

Amounts of virus were determined by titration on Vero cells and calculated as 

pfu/culture. The numbers illustrated on the diagram are representative of three 

independent experiments. 

 

As expected, viral replication was uninhibited in cultures infected at 37ºC over the 

time points indicated. It was discovered that minimal amounts of infectious virus were 

detectable in cultures infected at 41°C over the first 48 hours and virus became 

completely undetectable by 72 hours postinfection, suggesting that as long as cultures 

were maintained at 41°C, the infection was maintained in a non-productive state. 

 

                                                                                                                              
                                                                                                                              
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1.5 Viral titers from NHDF cultures infected at 37º or 41ºC. Supernatents 
for titering experiments were taken at 24 hour intervals over a three day period. The 
amount of plaque-forming virus was titered on permissive Vero cells. The circle 
points represent virus particle numbers in supernatents from 37°C infections while the 
squares represent virus partice numbers in supernatents from 41°C infections at the 
indicated time points in days postinfection (d.p.i). 
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Figure 3.1.6 
 
Metabolic labelling of infected NDHF cultures 

As illustrated in Figure 3.1.2 and 3.1.3, approximately 60% of the culture could be 

initially infected and this number remains static at 24 hours post infection.  As the 

majority of the culture can be infected it is possible to observe population wide 

changes in protein production during entry into a viral non-productive state. Therefore 

an examination of the global patterns of protein synthesis in uninfected and infected 

cells was conducted by metabolic labelling. 

 

NHDFs were grown to confluence and serum starved. Cells were incubated at 41°C 

for 30 hours and either Mock-infected (M) or infected with HSV-1 (Inf) at either 

37°C (B) or 41°C (A). At 1 hour prior to the indicated sampling times in hours post-

infection (h.p.i.), cultures were incubated with [35S]-Methionine/Cysteine and total 

protein was harvested by lysing cells in 1x Laemmli buffer. Samples were resolved by 

SDS-PAGE and dried gels were exposed to X-ray film.  

 

Cells infected at 41°C differentially expressed a small number of proteins at 12 hours 

post infection. (A) When compared to lytically infected cultures, (B) these proteins 

have similar size and comigration with viral proteins normally produced in productive 

infection and appear to represent viral polypeptides. By 24 hours postinfection a 

reduction in synthesis of these proteins was observed. By 48 hours postinfection viral 

protein production at 41°C was undetectable. During infection at 37°C, HSV-1 shuts 

off host protein synthesis and directs the cell toward synthesising viral proteins. 

Compared to cultures infected at 37°C (B), many of the viral proteins normally 

associated with productive infection were not detectable in cells infected at the 

elevated temperature (A), suggesting that they were either not produced or were made 

at very low levels. In addition, at no point did infection at the elevated temperature 

alter host cell protein synthesis patterns or elicit the shutoff of host translation 

associated with lytic replication 
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Figure 3.1.6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1.6 Metabolic labelling of infected NHDF cultures incubated at 41°C for 30 
hours and either mock infected (M) or infected with HSV-1 (Inf). At 1 hour prior to 
the indicated sampling times in hours postinfection (h.p.i.), cultures were incubated 
with [35S]-Methionine/Cysteine, and total protein was harvested by lysing cells in 
Laemmli buffer. Samples were resolved by SDS-PAGE and 50µl of sample was 
loaded into each well. Molecular weight standards (in kDa) are shown to the left of 
the panel. The arrows indicate suspected viral proteins produced during non-
productive infection at 41°C. For comparative analysis, the pattern of proteins 
expressed in cultures harbouring a lytic infection (from image B) is shown between 
the 12 hour and 24 hour 41ºC time points. 
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Figure 3.1.7 
 
Western blot analysis of viral protein production during lytic and non-

productive infection in NHDF cultures 

To verify and  further investigate the production of viral proteins in cells infected at 

elevated temperature, western blotting with antiserum directed against an array of 

viral IE proteins was performed. Serum starved NHDF cultures were mock infected or 

infected at 37°C or 41°C. Whole cell extracts were prepared at the indicated times in 

hours post-infection (h.p.i) by Laemmli lysis. Samples were resolved by SDS-PAGE 

and transferred to nitrocellulose. The nitrocellulose was probed with antisera against 

IE gene products ICP0, ICP4 and ICP22 or the late gene product, Us11. 

 

Both cultures infected at 37°C and 41°C expressed the 175-kDa viral IE protein ICP4. 

While production increased over time in 37°C samples, it declined in 41°C samples 

confirming results from the immunofluorescence studies shown in Fig. 3.1.3. The 66-

kDa IE protein ICP22 was also expressed in both 37°C and 41°C. However cells 

infected at 41°C produced unprocessed ICP22 unlike cells infected at 37°C, which 

was heavily post-translationally modified, detected as multiple immunoreactive 

species. This ICP22 modification is an indicator that the infectious cycle is 

progressing, and unprocessed ICP22 is indicative of infection that is stalled at an early 

stage. The trans-activating protein ICP0 was produced at 41°C but accumulated at 

greatly reduced levels compared to cultures infected at 37°C. The “late” protein Us11, 

which is made late in infection, was produced in 41°C cultures at minute amounts 

relative to 37°C cultures, which further confirms that viral infection was not 

progressing when cells were held at 41°C. 
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Fig 3.1.7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1.7 Western blot analysis for production of HSV-1 viral proteins: ICP0, 
ICP4, ICP22 and Us11 during lytic 37°C and non-productive 41°C infection in NHDF 
cultures. Blots were also probed with antiserum against total p38 MAPK to 
demonstrate even loading of samples. 
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Figure 3.1.8 
 

Immunofluorescence analysis of leaky late protein ICP5 production during lytic 

and non-productive infection in NHDF cultures 

The production of small amounts of virus and Us11 in cultures infected at 41°C 

indicated that a low level of lytic replication was occurring. In order to further 

validate if this phenomena is indeed occurring and quantify the numbers of cells 

supporting lytic replication, we examined expression of the late protein ICP5 by 

indirect immunofluoresence. Serum-starved NHDF cultures grown on glass coverslips 

were mock infected or infected at either 41°C or 37°C for 24 hours. Cells were then 

fixed and probed with ICP5 antiserum. Cells were counterstained with Hoechst to 

visualise nuclei.  

 

At 24 hours post-infection, cultures infected at 37°C expressed extremely high levels 

of ICP5, whereas an average of only 15% of cells infected at 41°C faintly expressed 

this late antigen at very low levels.  
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Figure 3.1.8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1.8 Immunofluorescence of ICP5 production in cultures infected at either 
37°C or 41°C at 48 hours post infection. The images were captured at 20x 
magnification and represent a typical field of view. Due to low antigen expression at 
41°C, a weak fluorescent signal was observed when using the same exposure times as 
those used for 37°C samples. Consequently, overexposed (Overex) images of ICP5 
staining were taken at 41°C to illustrate the number of antigen-positive cells (lower 
image).  
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Figure 3.1.9 

 

Phase contrast image capture of lytic and non-productive infection in NHDF 

cultures 

In order to assess the degree of cytopathic effect (CPE) in cultures either infected at  

41°C or 37°C, serum-starved NHDF cultures were mock infected or infected for 48 

hours and then photographed by phase-contrast microscopy.  

 

As expected, virus in cultures infected at 37°C lytically replicated and cells exhibited 

significant CPE by 48 hours postinfection, characterised by changes in cell 

morphology and detachment from one another. In contrast, cultures infected at 41°C 

remained healthy with the exception of some cells exhibiting low level CPE. These 

cells are probably representative of cells harbouring low level lytic replication and 

will consequently die or recover, possibly to then harbour a quiescent infection. 

 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1.9 Phase contrast microscopy of Serum-starved NHDF cultures that were 
either mock infected or infected at 41°C or 37°C for 48 hours. 
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Figure 3.1.10 

 

Patterns of protein synthesis during prolonged quiescent infection 

The stability of non productive infection was assessed at 3 and 6 days postinfection 

(d.p.i.) by examining the pattern of protein synthesis in either mock-infected (M) or 

infected (Inf) NHDF cultures. Cultures were metabolically labelled using [35S]-

Methionine/Cysteine for 1 hour at both 3 and 6 d.p.i. Whole-cell extracts were 

resolved by SDS-PAGE, fixed and the dried gels were then exposed to X-ray film. 

The migration of molecular weight markers (in thousands) is shown to the left of the 

panel.  

 

As illustrated, the pattern and rates of protein synthesis were indistinguishable from 

those of mock-infected cells at both 3 and 6 days, suggesting a lack of viral gene 

expression and demonstrating again that at 41°C the virus cannot establish productive 

replication. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1.10 Metabolic labelling of mock infected (M) and infected NHDF cultures 
incubated at 41°C for either 3 or 6 days. At 1 hour prior to the indicated sampling 
times in days postinfection (d.p.i.), cultures were incubated with [35S]-
Methionine/Cysteine, and total protein was harvested by lysing cells in Laemmli 
buffer. Samples were resolved by SDS-PAGE where 50µl of sample was loaded into 
each well. Molecular weight standards (in kDa) are shown to the left of the panel.  
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Figure 3.1.11 
 

Comparative phase contrast images of mock vs quiescently infected cultures at 6 

days post infection 

To assess the morphologies of cultures infected at 41°C, NHDF cultures were either 

mock-infected (M) or infected (Inf) at 41°C and phase-contrast images were taken 

after 6 days at 41°C.  

It was found that the morphology of the culture infected and maintained at 41°C was 

identical to that of the mock infected culture, and CPE was not apparent. 

 

 
 
 
                                                 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
 
Figure 3.1.11 Phase contrast microscopy of Serum-starved NHDF cultures that were 
either mock infected or infected at 41°C for 6 days. 
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Figure 3.1.12 

 

Levels of viral antigen production during quiescence over a six day period 

Considering the patterns of proteins synthesised and morphology of cultures that were 

either uninfected or infected at 41°C resembled each other, it was decided to analyze 

production of Us11 and ICP4 in 41°C cultures harvested at 1 day and 6 days post 

infection in order to decipher if any viral proteins associated with lytic replication 

were being produced 6 days postinfection at 41°C.  

 

To accomplish this, whole-cell extracts from NHDF cultures that were either mock 

infected (M) or infected (Inf) for 1 or 6 days at 41°C. Samples were resolved by SDS-

PAGE and probed with antiserum against ICP4 or Us11. Images of ICP4 are taken 

from the same blot and exposure as presented in Fig 3.1.7 to allow direct comparison 

of expression levels at days 1 and 6 post infection. To illustrate that Us11 becomes 

completely undetectable over time the image was intentionally overexposed.  

 

As expected, the low level expression of Us11 visible on overexpressed blots in 

samples became undetectable in samples over time, whereas low levels of ICP4 

remained visible even at 6 days post infection. The presence of ICP4 signifies that 

either ICP4 is synthesized at minute quantities or was proteolytically stable in cells 

that harbour HSV-1. This result agrees with previous reports showing that low levels 

of ICP4 transcript are detected in mouse ganglia latently infected with HSV-1 

(Kramer, MF 1995). 

 

 
 
 
 
 
 
       
 
 
 
Figure 3.1.12 Western blot analysis for production of HSV-1 viral proteins: ICP4 and 
Us11 at 1 and 6 days postinfection in cultures maintained at 41°C. Blots were also 
probed with antiserum against eIF4E to demonstrate even loading of samples. 
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Figure 3.1.13 

 

Western blot analysis of viral antigen production in reactivated cultures vs 

lytically infected cultures 

For a non-productive infection to be considered quiescent, reactivation of the virus to 

a state of replication must be possible. To investigate whether the infection was 

quiescent, NHDF cultures were infected and maintained at 41°C for 6 days to 

establish quiescence. Cultures were subsequently returned to 37°C and transduced for 

48 hours with an adenoviral vector encoding HSV-1 ICP0, a key regulator of 

reactivation from latency in vivo and quiescence in vitro  

 

Levels of viral antigen production in reactivated cultures were compared to cultures 

infected at 37°C and it was found that at 48 hours post transduction with Ad-0, 

quiescently infected cultures had levels of the late viral protein Us11 that were 

comparable to those observed in cells infected at 37°C for either 1 or 2 days. 

 

For this experiment, the same amount of virus was used to infect cells at 37° C as was 

used during a quiescent infection i.e m.o.i 0.5-1. 

 

 

 

 
 
 
 
 
 
 

 

 
Figure 3.1.13 Western blot analysis for production of HSV-1 viral proteins: ICP0 and 
Us11 from NHDF cells infected for 24 or 48 hours (d.p.i. 1 and 2) at 37°C, mock-
infected cell extracts (M), or cell extracts from NHDF cells quiescently infected for 6 
days and then reactivated for 48 hours (Q-R) using an adenovirus encoding HSV-1 
ICP0 (Ad0) were resolved by SDS-PAGE, and membranes were probed with 
antiserum against ICP0 or Us11. Blots were also probed with antiserum against eIF4E 
to demonstrate even loading of samples. 
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Figure 3.1.14 

 

Recovery of infectious virus from quiescently-infected NHDF cultures 

To quantify the amount of recoverable virus from quiescence , NHDF cells were 

grown in 35-mm dishes and infected at 41°C. At 3 or 6 days postinfection (d.p.i) 

quiescent virus was reactivated by transduction with adenovirus encoding HSV-1 

ICP0 and allowed to reactivate for 48 hours. Titers of infectious virus were quantified 

on Vero cells. 

 

Its was found that the yields of infectious virus from ICP0-transduced cultures that 

had been quiescently infected for either 3 or 6 days were equivalent to those from 

cells infected at 37°C and harvested at 48 hours postinfection (see fig 3.1.5) 

 

                                                                                                                   

                                                                                                                   
                                                                                                                   
 
                                                                                                                   
                                                                                                                   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1.14 Viral titers from cultures infected at 41ºC for either 3 or 6 days and 
subsequently reactivated for 48 hours by transducing cultures with adenovirus 
encoding HSV-1 ICP0. Titers of infectious virus were determined on Vero cells. 
Titers are representative of multiple independent experiments. 
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Figure 3.1.15 
 

Efficient quiescent infection requires non-dividing cells and temperature 

optimization for different HSV-1 strains. 

In establishing our system, one of the selective pressures employed to prevent viral 

replication was serum starvation. To demonstrate its importance and quantify the 

levels of viral replication in unstarved cells infected at 41°C, NHDF cultures were 

maintained in 5% FBS and were either mock infected or infected with wild-type KOS 

for 72 hours at 41°C. Cultures were photographed by phase-contrast microscopy.  

 

A low level of virus activity was detectable in cultures at 72 hours post infection as 

evident by small areas of CPE and notable changes in the morphology and 

detachment of cells. This higher level of CPE present in unstarved cells implies that 

cultures contain an amalgam of nondividing and dividing cells, where the dividing 

cells possibly support productive infection. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1.15 Phase contrast microscopy of unstarved NHDF cultures that were either 
mock infected or infected at 41°C for 3 days. 
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Figure 3.1.16 

 

Serum starvation is required for efficient quiescent infection 

To further explore the importance of serum starvation, unstarved and starved cells 

were infected with wild-type KOS for 72 hours at 41°C. Total protein was then 

solubilised after 72 hours at 41°C, or alternatively cultures were reactivated by 

transduction with adenovirus encoding ICP0 (R) and lysed 48 hours later. Samples 

were resolved by SDS-PAGE, and membranes were probed with antiserum against 

either IE protein ICP4 or late protein Us11. 

 

Although viral replication was largely inhibited by temperature elevation in unstarved 

cultures, the presence of Us11 in unreactivated cultures above levels in starved 

cultures infected at the same time indicates low level viral replication was occurring. 

The increased expression of Us11 in adenovirus transduced cultures further supported 

the idea that cycling cells harboured a mixture of quiescent and lytic infection. 

 
 
 
 
 
 
 

 

 

 

 

 
 
 
 
Figure 3.1.16  Western blot analysis of production of HSV-1 viral proteins ICP4 and 
Us11 in unstarved and starved NHDF cultures that were preincubated at 41°C and 
then infected with wild-type KOS for 72 hours at 41°C (Inf). Total protein was then 
solubilized, or alternatively cultures were transduced with adenovirus encoding ICP0 
(R) and then lysed 48 hours later.  The control probed to ensure even loading of 
samples was eIF4E. 
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Figure 3.1.17 

 

Efficient quiescent infection requires temperature optimization for different 

HSV-1 strains 

To address whether inhibition of replication by serum starvation and temperature 

elevation could be achieved using alternative strains of HSV-1, serum-starved NHDF 

cultures were infected (inf) with wild-type HSV-1 strains KOS or Patton (Patt) for 72 

hours at 41°C. Total protein was then solubilised, or alternatively cultures were 

transduced with adenovirus encoding ICP0 (R) and lysed 48 hours later. Samples 

were resolved by SDS-PAGE, and membranes were probed with antiserum against 

either IE protein ICP4 or late protein Us11. 

 

It quickly became clear that the replication of the Patton strain of HSV-1 was less 

sensitive to the elevated temperature of 41°C as extensive CPE was observed (not 

shown). This was reflected in abundant production of Us11 in Patton infected 

cultures. 

Characteristic of the Patton strain, its Us11 gene product is larger than that of Kos. 

 

Having found that 41°C was incapable of inhibiting the Patton strain, serum-starved 

NHDF cultures were infected with wild-type HSV-1 Patton at 42°C and processed as 

described above. At 42°C, non productive infection was achieved using the Patton 

strain, as shown by the absence of Us11 expression at elevated temperature. The 

infection was indeed quiescent as the Patton strain was controllably reactivated to a 

productive state by transduction with Ad-0, illustrated by a lytic pattern of Us11 

expression at 48 hours post Ad-0 transduction. 
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Fig 3.1.17   

 

 

 

 

  

 

 

 

 

 

 

 

 
Figure 3.1.17  Western blot analysis of production of HSV-1 viral proteins ICP4 and 
Us11 in starved NHDF cultures that were preincubated at 41°C and then infected with 
wild-type KOS and or Patton (Patt) for 72 hours at either 41°C or 42°C (Inf). Total 
protein was then solubilised or alternatively cultures were transduced with adenovirus 
encoding ICP0 (R) and then lysed 48 hours later. The lower panel shows an extensive 
overexposure demonstrating the lack of detectable Us11 protein in quiescently 
infected cultures. 
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Figure 3.1.18 

 

Recovery of Patton strain from quiescently infected cultures maintained at 42°C 

The levels of infectious virus produced in cultures infected with patton was assessed 3 

days post infection at 42°C and two days post reactivation with Ad-0.   

 

Titers were determined by titration on Vero cells. Titers were representative of at least 

three independent experiments. At the 42°C three day time point the culture 

harboured a quiescent infection (Q) as no infectious virus was detected , whereas the 

virus could be reactivated (Q-R) to a productive state by transduction with Ad-0 as 

evident by extensive virus production at 48 hours post reactivation. This indicated that 

the Patton strain of HSV-1 was also repressible using this tissue culture model. 

 
 
 
 
 
 
 
 
                                                                                                                          
 
                                                                                                                       
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1.18 Viral titer experiment analyzing the amount of infectious virus 
contained in NHDF cultures quiescently infected (Q) with HSV-1 Patton at 42°C 72 
hours post infection or quiescently infected cultures reactivated (Q-R) by transduction 
with adenovirus encoding ICP0 were determined by titration on Vero cells. Titers are 
representative of a number of independent experiments. 
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Figure 3.1.19 
 

HSV-1 ICP0 specifically reactivates virus from quiescently-infected NHDF cells 

To address if the reactivation of virus from a quiescent state was due to the specific 

addition of ICP0, serum-starved NHDF cultures were mock infected (M) or infected 

(Inf) at 41°C for 72 h to establish quiescence. Cultures were returned to 37°C and 

either mock transduced with growth medium (med) or adenoviral vectors encoding 

HSV-1 ICP4 (Ad-4) or HSV-1 ICP0 (Ad-0) as indicated. At 47 hours post-

reactivation cultures were metabolically labelled for 1 hour using [35S] 

Methionine/Cysteine, whole-cell extracts were resolved by SDS-PAGE and fixed, 

dried and gels were then exposed to X-ray film. The migration of molecular weight 

markers (in thousands) is indicated to the left of the panel.  

 

The reactivation of virus was found to be specific to Ad-0 transduction as neither Ad-

4 nor growth medium could induce a viral pattern of protein synthesis. Also, the 

addition of Ad-0 to mock-infected cultures proved that the appearance of a viral 

pattern of protein synthesis was not due to a HSV-1 contaminated Ad-0 vector. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3.1.19 Metabolic labelling of mock infected (M) and infected NHDF cultures 
incubated at 41°C for 6 days and either mock transduced with growth medium (med) 
or adenoviral vectors encoding HSV-1 ICP4 (Ad-4) or HSV-1 ICP0 (Ad-0) for 48 
hours. At 1 hour prior to the sampling time, cultures were incubated with [35S] 
methionine-cysteine, and total protein was harvested by lysing cells in Laemmli 
buffer. Samples were resolved by SDS-PAGE where 50µl of sample was loaded into 
each well. Molecular weight standards (in kDa) are shown to the left of the panel.  
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Figure 3.1.20 
 

ICP0 mediated reactivation induces CPE characteristic of productive infection  

To evaluate the cytopathic effect (CPE) present in cultures 48 hours posttransduction 

with the indicated adenoviral vectors described in fig 3.1.19, a series of phase contrast 

images were taken.  

As expected, quiescently infected cultures that were transduced with an adenoviral 

vector encoding ICP4 had a morphology largely indistinguishable from uninfected 

NHDFs, although a small percentage of cells appeared to be rounding up and possibly 

harbouring productive infection at 48 hours after return to 37°C. This may represent 

small numbers of cells that had spontaneously reactivated from quiescence.  

 

Cells that had been mock infected and transduced with Ad-0 presented no CPE 

whereas cells that were quiescently infected and subsequently transduced with Ad-0 

exhibited extensive CPE, indicating efficient viral reactivation and replication. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3.1.20 Phase contrast microscopy of mock infected and quiescently infected 
cultures that were transduced either with Ad-0 or Ad-4. Images were captured 48 
hours after transduction at 10x magnification.   
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Figure 3.1.21 

 
Human serum prevents secondary virus spread and illustrates the efficiency of 

virus reactivation from quiescently-infected NHDFs 

In order to quantify the amount of the virus in cultures reactivating from a quiescent 

state it was necessary to prevent reactivating virus from spreading and infecting 

uninfected cells within the culture. This was achieved by the addition of 5% human 

serum containing neutralizing antibodies which prevent secondary spread. Titering 

experiments confirmed the efficiency of 5% human serum against preventing HSV-1 

lytic infection (not shown) and as a consequence this concentration of human serum 

was used for all subsequent experiments when required.  

 

To observe patterns of proteins synthesised in cultures reactivating from quiescence in 

the presence of human serum, serum-starved NHDFs were infected at 41°C for 72 

hours and then returned to 37°C and transduced with the indicated adenoviral vectors 

encoding ICP4 (Ad-4) or ICP0 (Ad-0). An additional Ad-0 transduced culture was 

maintained in the presence (+) of 5% human serum after the adenoviral vector was 

removed. At 47 hours post-reactivation, cultures were metabolically labelled; whole-

cell lysates were resolved by SDS-PAGE and fixed, dried gels were exposed to X-ray 

film. Migration of molecular weight standards (in thousands) is indicated to the left of 

the panel.  

 

The presence of human serum during reactivation resulted in a pattern of protein 

synthesis containing a mixture of host cell and viral proteins, suggesting that human 

serum reduced the secondary spread of virus in reactivated cultures and that a large 

proportion of the culture initially infected reactivated efficiently in response to Ad-0 

transduction.  
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Figure 3.1.21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1.21 Metabolic labelling of mock infected (M) and quiescently infected 
cultures transduced either with Ad-0 or Ad-4 for 48 hours in the presence of 5% FBS 
DMEM or in the presence of 5% Human serum DMEM (H.S). At 1 h prior to 
sampling, cultures were incubated with [35S]-Methionine/Cysteine, and total protein 
was harvested by lysing cells in Laemmli buffer. Samples were resolved by SDS-
PAGE where 50µl of sample was loaded into each well. Molecular weight standards 
(in kDa) are shown to the left of the panel.  
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Figure 3.1.22 

 
Expression of Us11 in samples reactivated in the presence of Human serum 

To further confirm secondary spread inhibition by human serum, NHDF cultures were 

either mock infected (M) or infected (Inf) at 41°C for 72 hours and then returned to 

37°C and mock transduced with growth medium (Med) or transduced with the 

indicated adenoviral vectors in the presence or absence of 5% human serum (HS). At 

48 hours posttransduction whole-cell extracts were resolved by SDS-PAGE, and 

membranes were probed with antiserum against Us11.   

 

The levels of Us11 expression were reduced in cultures controllably reactivated in the 

presence of 5% human serum relative to cultures reactivated in the presence of 5% 

FBS DMEM and  this was more apparent on the normal exposure of Us11 blots.  

As outlined  previously, low levels of Us11 expression are indicative of spontaneous 

reactivation occurring in quiescently infected cultures that are transferred to 37°C and 

supplemented with 5% FBS for 48 hours. However, when quiescent cultures are 

transferred to 37°C in the presence of human serum, Us11 production becomes 

undetectable by western blot, again highlighting the effectiveness of human serum in 

preventing secondary spread from occurring. 

 
 
 
 
 
 
 
 
 
                   
 
 
 
 
 
 
Figure 3.1.22  Western blot analysis of production of HSV-1 viral protein Us11 in 
mock infected and  quiescently infected NHDF cultures that were transduced with 
either medium, Ad-0 or Ad-4 vectors in the presence or absence of human serum. 
Samples were reactivated for 48 hours and then lysed in 1x Laemmli buffer. An 
Overexposure was taken to illustrate low level production Us11 production in cells 
spontaneously reactivating.   
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Figure 3.1.23 
 

Quantification of virus reactivation from quiescence 

The quantify the amount of the culture reactivating from quiescence in the presence of 

human serum,  NHDF cells  were grown on glass coverslips and infected at 41°C for 

72 hours. Cells were returned to 37°C and mock transduced (Med) or transduced with 

adenovirus encoding ICP0 (Ad-0) in the presence or absence of 5% human serum.  

 

When virus was reactivated in the presence of 5% FBS DMEM approximately 95% to 

100% of the culture stained positive for ICP5. This percentage dropped to around 

60% when reactivated in the presence of human serum. Quiescently infected cultures 

that were not reactivated with ICP0 but instead maintained in the presence of human 

serum showed that about 2% of cells underwent spontaneous reactivation in the first 

48 hours upon return of the culture to 37°C.  

 
 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 3.1.23 Immunofluorescence of ICP5 production in cultures 48 hours post Ad-
0 or medium alone transduction in the presence or absence of 5% Human serum (HS). 
Cultures were fixed and probed with the antiserum against ICP5. Nuclei were 
counterstained with Hoechst, and images were captured at a 20x magnification. Two 
representative fields are shown for HS experiments. Percent reactivation is presented 
to the right of the immunofluorescent images. For Ad-0 + human serum and medium 
+human serum reactivation experiments two images were taken to represent each 
culture.  
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Figure 3.1.24 
 

Enlargement of PML structures in NHDF cells infected at elevated temperature 

During the establishment of quiescence it was observed that only small amounts of 

the immediate early protein ICP0 was being produced relative to immediate early 

proteins ICP4 and ICP22. ICP0 is a ubiquitin ligase which functions to disrupt the 

repressive ND10 structures within cell nuclei thus promoting the establishment of a 

lytic infection. (Clements, Stow 1989; Cai, Schaffer 1992; Maul, Guldner & Spivack 

1993; Maul, Everett 1994; Chee et al., 2003).  PML is a key ND10 component that is 

dispersed during lytic infection but recruited to viral genome and enlarged during 

non-productive infection. 

 

To observe PML morphology and localization within nuclei of cells during the 

establishment of quiescence, a series of indirect immunofluorescence experiments 

were performed. Serum-starved NHDF cultures were grown on glass coverslips and 

mock infected or infected at 41°C or 37°C for 10 hours and then fixed. 

 

The indirect immunofluorescence experiments showed that PML structures exhibited 

a normal pattern of nuclear speckling in uninfected cells at 41°C.  The dispersal of 

these structures was observed in infected cells undergoing lytic replication at 37°C, as 

identified by costaining for the viral antigen ICP4. Conversely, cells infected at 41°C 

contained enlarged PML aggregate structures. This phenomenon occurred only in 

infected cell nuclei that co-stained for viral antigen ICP4 while neighbouring 

uninfected cells had normal PML morphology. This suggested that failure to produce 

sufficient ICP0 to disperse repressive PML was likely to play a role in the 

establishment of a non productive infection.  
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Figure 3.1.24 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
Figure 3.1.24 Immunofluoresence of enlarged PML structures in NHDF cells infected 
at 37°C and at elevated temperature 41°C. Cultures were co-probed with antiserum 
against human PML (green) and HSV-1 ICP4 (red); proteins were then detected using 
the appropriate FITC-conjugated or TRITC-conjugated secondary antibodies. Nuclei 
were visualised by Hoechst counterstain and images were captured at 63x 
magnification. 



95 
 

Figure 3.2 

The role of host kinases during HSV-1 reactivation. 

The development of this model which facilitates quiescent infection of primary 

human diploid fibroblasts allows the opportunity to directly compare HSV-1 lytic 

replication and HSV-1 reactivation in the same cell type. As such, this approach can 

be used to illuminate the mechanistics of the various stages in the life cycle of HSV-1. 

 

Whereas previous reports have shown that the activity of host MEK-ERK signaling 

pathways is stifled during lytic infection within a number of cell lines (McLean, 

Bachenheimer 1999; Walsh, Mohr 2004; Sloan et al. 2006; Santamaría et al. 2009), 

little is known about the signaling pathways required by HSV-1 during reactivation 

from quiescence. To address this issue we first decided to characterize the kinetics of 

reactivation from a quiescent state over the 48 hour reactivation period. 

 

Figure 3.2.1   

 

The pattern of protein synthesis during reactivation 

Serum starved NHDFs were mock-infected (M) or infected with HSV-1 KOS   (m.o.i. 

0.5-1) at 41°C for 6 days to establish quiescence (Q). Cultures were returned to 37°C 

and either mock-transduced (-) or transduced (+) with Adeno viral vectors encoding 

the immediate early trans activating protein ICP0 to initiate reactivation of quiescent 

virus (R).  

During the first 24 hours of reactivation there were no significant differences in 

patterns of proteins synthesized between mock, quiescent and reactivating samples. 

By 34 hours post reactivation the synthesis of a small number of higher molecular 

weight proteins was observed and these proteins co-migrated with polypeptides 

abundantly produced in reactivating cultures at the 48 hour time point. 
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Figure 3.2.1   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.2.1 Metabolic labelling of mock (M) quiescently infected (Q) and 
reactivated (R) NHDF cultures. At 1 hour prior to the indicated sampling times in 
hours post-reactivation (h.p.r.), cultures were incubated with [35S]-
Methionine/Cysteine, and total protein was harvested by lysing cells in Laemmli 
buffer. Samples were resolved by SDS-PAGE where 50µl of sample was loaded into 
each well. Molecular weight standards (in kDa) are shown to the left of the panel. The 
asterisk indicates suspected viral proteins produced during reactivation.  
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Figure 3.2.2 

 

Kinetics of viral protein production in reactivatin g cultures 

To further explore the kinetics of viral protein production in reactivating cultures, 

quiescently-infected cultures were established and reactivated as described in figure 

3.2.1 and whole cell extracts were prepared at the indicated time points. Samples were 

resolved by SDS-PAGE and membranes were probed with the indicated antibodies 

for immediate early (IE) proteins ICP0, ICP4 and ICP22, the leaky-late protein ICP5 

which is produced both prior to and following viral DNA synthesis and finally the late 

protein Us11, which is only produced after viral DNA synthesis. 

 

The presence of low level ICP4 and ICP5 was detected by western blot in samples 

from unreactivated quiescently infected cultures that were mock transduced with 

medium. This production of ICP4 and ICP5 does not necessarily signify lytic 

replication  as production of a number viral genes, including those of ICP4, have been 

reported in latently-infected neurons in vivo as well as in tissue culture models 

(Deatly et al., 1987; Kramer, Coen 1995;  Chen et al., 1997). 

The production of the lytic gene transactivator ICP0 was not evident in quiescently 

infected cultures that were mock transduced with medium. Furthermore, ICP0 was not 

efficiently produced in mock infected cultures transduced with Ad-0 as the ICP0 gene 

encoded by this Adenoviral vector is under the control of its own promoter (Zhu et 

al., 1990). As ICP4 binds to the ICP0 promoter to regulate its expression (Zhu, Cai & 

Schaffer 1994) the low levels of ICP4 that exist within quiescently infected cultures 

may play an important role in promoting efficient expression of exogenous ICP0 upon 

trans-gene delivery by the adenoviral vector.  

 

By 34 hours post-transduction ICP0 was produced and significant accumulation of 

ICP4 and ICP5, as well as production and processing of ICP22, detected as higher-

migrating species in SDS-PAGE gels was evident in Ad-0-reactivated cultures. 

Uninfected cultures transduced with Ad-0 showed no expression of these antigens 

while quiescent cultures that were transduced with medium alone showed the same 

levels of ICP4 and ICP5 expression over the 48 hour time period. These results 

suggest that the significant reactivation events began somewhere between 24-34 hours 

post-transduction, coincident with robust expression of ICP0. Low levels of Us11 



98 
 

were detectable at 34 hours in reactivated cultures and combined with the 

accumulation of processed ICP22 suggested that reactivation was progressing into a 

fully productive infection. Indeed, robust production of all viral antigens examined 

along with characteristic host Shutoff of protein synthesis (Fig 3.2.1) was evident by 

48 hours post-transduction of quiescently infected NHDFs.  

 

 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 3.2.2 Western Blot analysis of the production of HSV-viral proteins ICP0, 
ICP4, ICP22, ICP5 and Us11 in mock (M), quiescently infected (Q) and reactivated 
(R) NHDF cultures at the indicated sampling times in hours post-reactivation (h.p.r.). 
To ensure even loading of samples eIF4E was probed for as a loading control. 
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Figure 3.2.3 

 

Analysis of viral antigen expression in quiescent and reactivating cultures by 

indirect imuunofluorecence 

Both ICP4 and ICP5 were expressed at low levels in unreactivated quiescent NHDFs 

but accumulated rapidly in reactivating cultures at 34 hours post-transduction. To 

address whether these expression patterns were either the result of high-level 

expression in a small subset of cells or low level expression within the majority of the 

culture, the production of both ICP5 and ICP4 was assessed in reactivated cultures by 

indirect immunofluorescence.  

 

NHDFs were mock-infected (M) or quiescently infected (Q), then mock-infected or 

infected with Ad-0 to reactivate quiescent virus (R). At 30 hours post-transduction 

with either medium control or Ad-0, cultures were washed, fixed in formaldehyde and 

probed with antiserum against ICP4 or ICP5. Nuclei were counterstained with 

Hoescht and images were captured at 63x magnification using a Leica DFC 500 

microscope. 

 

It was discovered that neither ICP5 nor ICP4 were visible in either mock or 

quiescently infected cells, suggesting that their detection in quiescently-infected 

samples by western blotting represented low-level expression which was below the 

sensitivity of indirect immunofluorescence. Conversely, cultures that were transduced 

with Ad-0 had approximately 40% of cells staining positive for both viral antigens by 

30 hours post-transduction. The absence of significant viral antigen accumulation 

over the first 24 hours but accumulation of early and mid-phase viral gene expression 

in approximately 40% of the culture by 30 hours post-transduction suggested that 

reactivation occurred in a synchronous manner between 24-30 hours coinciding with 

robust expression of ICP0 and further reactivation of additional virus likely occurred 

over time.  
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Figure 3.2.3 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 3.2.3 Immunofluorescence of HSV-1 viral proteins ICP4 and ICP5 in mock 
(M), quiescently infected (Q) and reactivated (R) NHDF cultures at 30 hours post-
reactivation. Cultures were probed with antiserum against HSV-1 ICP4 (green) and 
ICP5 (green); proteins were then detected using the appropriate FITC-conjugated 
conjugated secondary antibody. Nuclei were visualised by Hoechst counterstain. 
Images were captured at 63x magnification. 
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Figure 3.2.4 
 
The pattern of ERK and p38 activity in reactivating cultures 

Having established the kinetics of reactivation and discovered that a significant 

proportion of the culture can be controllably reactivated in a synchronous manner, 

changes in the activity of signalling pathways could now be measured during the 

various stages of reactivation. With this in mind, we decided to study the 

phosphorylation patterns of both the ERK and p38 signaling pathways in either mock-

infected (M), quiescently infected (Q), or reactivated (R) cultures. 

 

Serum-starved and temperature-elevated NHDF cultures were mock infected or 

infected and maintained for 6 days at 41°C. At 6 days post infection at 41°C mock-

infected (M) or quiescently-infected (Q) NHDFs were returned to 37°C and mock-

infected (-) or infected (+) with Ad-0 to reactivate quiescent virus (R). Whole cell 

extracts were prepared at the indicated times, in hours post-reactivation (h.p.r.). 

Samples were analyzed by Western blotting with antibodies towards total or 

phosphorylated forms of ERK or p38. 

 

The levels of total p38 remained unchanged in mock, quiescent and reactivated 

cultures. Phosphorylated p38 remained identical in both mock and quiescent NHDFs 

at each point in the time course. Quiescent cells that were transduced with AD-0 had 

no change in p38 phosphorylation over the first 24 hours. At 34 hours post-

transduction, p38 phosphorylation increased. This coincided with the onset of 

reactivation as evident by the expression of viral proteins seen in Fig 3.2.2. As the 

reactivation progressed, p38 phosphorylation continued to increase. Similar to p38, 

abundance of total ERK remained unchanged in samples over the course of 

reactivation.  Interestingly, quiescent cultures displayed a modest reduction in the 

levels of phosphorylated ERK relative to mock cells at each time point. This slight 

reduction in ERK activity suggested that quiescence had a negative affect on 

mitogenic signaling. Over the first 24 hours of reactivation from quiescence, changes 

in ERK phosphorylation were not observed. At 34 hours post reactivation a modest 

but reproducible increase in ERK phosphorylation was observed relative to quiescent 

cultures. By 48 hours post reactivation ERK phosphorylation had declined below that 



102 
 

of either mock or quiescent NHDFs, signifying that the virus entered a more lytic-like 

state. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 3.2.4 Western Blot analysis of NHDFs of signalling pathways activated in 
mock (M), quiescently infected (Q) and reactivated (R) NHDF cultures. Whole cell 
extracts were prepared at the indicated times in hours post-reactivation (h.p.r.). 
Samples were resolved by SDS-PAGE and probed with antibodies towards total or 
phosphorylated forms of ERK or p38. 
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Figure 3.2.5 

 

ERK stimulation is specific to HSV- 1 reactivation 

The transient stimulation of ERK phosphorylation during reactivation from 

quiescence was not expected and contrasted with previous reports that described ERK 

inhibition during lytic replication  (Gillis, Okagaki & Rice 2009)(Zachos, Clements & 

Conner 1999)(Hargett, McLean & Bachenheimer 2005). To elucidate whether the 

stimulation of ERK activity observed was a consequence of the employed culture 

conditions, NHDFs were mock-infected at 41°C for 6 days and returned to 37°C. 

Cultures were then mock-infected (-) or infected (+) with Ad-0 for 2 hours, then 

washed and mock-infected (M) or infected (I) with HSV-1 KOS at m.o.i 1 for 48 

hours. Whole cell extracts were prepared and analyzed by western blotting with the 

indicated antisera. The cellular antigen eIF4E was probed for as a loading control. 

 

It was discovered that ERK activity was robustly suppressed as the virus replicated, as 

illustrated by the accumulation of the leaky-late and late viral proteins ICP5 and 

Us11. At no time during the infection was ERK stimulation observed when timepoints 

were examined (not shown). Additionally, the mock infected cells that were 

maintained for 6 days at 41°C, returned to 37°C and transduced with Ad-0 prior to 

lytic infection with HSV-1 showed no stimulation of ERK activity which confirmed 

that the process of Ad-0 transduction was not the cause of ERK stimulation, nor did it 

interfere with HSV-1 mediated ERK suppression. 

 

In summary, the culture conditions employed were not a contributory factor in the 

activation of ERK observed during reactivation. 
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Figure 3.2.5 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.2.5 Western blot of phosphorylated ERK (pERK) and HSV-1 viral proteins 
ICP5 and Us11 in NHDFs that were mock-infected at 41°C for 6 days, returned to 
37°C and subsequently mock-infected (-) or infected (+) with Ad-0 for 2 hours, then 
washed and mock-infected (M) or infected (I) with HSV-1 KOS at m.o.i 1 for 48 
hours. The cellular antigen eIF4E was probed for as a loading control. 
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Figure 3.2.6 

 

U0126 inhibits ERK activation during reactivation 

The modest stimulation of ERK during the initial stages of reactivation led us to 

examine the potential role(s) of both MEK-ERK and p38 during early stages of 

reactivation from quiescence. Quiescently-infected NHDFs were returned to 37°C and 

mock-transduced to maintain quiescence (Q) or infected with Ad-0 to reactivate virus 

(R) in the presence of equal volumes of DMSO (solvent control), U0126 (20µM) or 

SB203580 (40µM). 34 hours later whole cell lysates were prepared and analyzed by 

western blotting with the indicated antibodies. The concentrations of U0126 (20µM) 

or SB203580 (40µM) were chosen from experiments outlined in (Walsh, Mohr 2004). 

 

Again, the ERK activity in reactivated cultures was found to be modestly stimulated 

relative to quiescent cultures and it was observed that U0126 robustly inhibited ERK 

activity in reactivating cultures. Importantly, both U0126 and SB203580 had no 

influence on the initial expression of adeno-viral derived ICP0 at this early point in 

reactivation, nor did they affect total ERK levels. 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 3.2.6 Western blot of  total or phosphorylated forms of ERK and HSV-1 viral 
protein ICP0  in quiescently-infected NHDFs mock-transduced to maintain 
quiescence (Q) or infected with Ad-0 to reactivate virus (R) in the presence of equal 
volumes of DMSO, U0126 (20µM)  or SB203580 (40µM). 
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Figure 3.2.7 

 
Inhibition of MEK-ERK signalling reduces HSV-1 antigen accumulation during 

reactivation 

To observe what effects MEK-ERK inhibition had on viral antigen accumulation 

during reactivation, quiescently-infected NHDFs were mock-reactivated (Q) or 

reactivated with Ad-0 (R) in the presence of equal volumes of DMSO, U0126 (20µM) 

or SB203580 (40µM).  

 

The presence of U0126 caused a significant reduction in the expression of immediate 

early, leaky late and late viral antigens at all time points taken whereas SB203580 had 

no significant effect on antigen accumulation. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2.7 Western blot of HSV-1 viral proteins ICP5, ICP22 and Us11 in 
quiecently-infected NHDFs mock-transduced to maintain quiescence (Q) or infected 
with Ad-0 to reactivate virus (R) in the presence of equal volumes of DMSO (solvent 
control), U0126 (20µM) or SB203580 (40µM). Whole cell extracts were prepared at 
the indicated times in hours post-reactivation (h.p.r.) and eIF4E was used as a loading 
control (Load). 
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Figure 3.2.8 

 

Inhibition of MEK-ERK signalling reduces HSV-1 reactivation  

To further confirm the requirement for ERK activity during HSV-1 reactivation from 

quiescence, quiescently-infected NHDFs were reactivated (R) with Ad-0 in the 

presence of equal volumes of DMSO or U0126 (20µM).  

The numbers of cells staining positive for both ICP5 and ICP4 was notably reduced in 

cultures reactivated in the presence of U0126. Additionally, ICP5 and ICP4 staining 

intensities in antigen-positive cells were reduced in the presence of U0126. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2.8 Immunofluoresence of HSV-1 viral proteins ICP4 in reactivated (R) 
NHDF cultures at 34 hours post-reactivation in either the presence of either DMSO 
and U0126 (20µM). Cultures were probed with antiserum against HSV-1 ICP4 
(green) proteins were then detected using the appropriate FITC-conjugated conjugated 
secondary antibody. Nuclei were visualised by Hoechst counterstain. Images were 
captured at 20x magnification. 
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Figure 3.2.9 
 
The effect of U0126 on yields of infectious virus produced in reactivating cultures 

To quantify the affects of U0126 on yields of infectious virus produced in reactivating 

cultures, NHDFs were quiescently-infected in 35mm dishes and reactivated by Ad-0 

transduction for 48 hours in the presence of DMSO, U0126 (20µM) or SB203580 

(40µM). Culture supernatants were serially diluted, plated on permissive Vero cells 

and titers of infectious virus were calculated as p.f.u./culture supernatant.  

 

It was found that SB203580 had no effect on reactivation from quiescence as the level 

of infectious progeny within supernatants were identical to those taken from cultures 

reactivated in the presence of DMSO. In contrast to SB203580, U0126 caused a 20 

fold reduction of virus production compared to DMSO treated samples. 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.9 Viral titers of HSV-1 produced over a 48 hour period of reactivation in 
the presence of either DMSO, U0126 (20µM) or SB203580 (40µM). Titers are 
represented as Log/pfu/culture supernatant and are the average of a number of 
independent experiments. 
 

 

 



109 
 

Figure 3.2.10 

 

The reactivation of HSV-1 in the presence inhibitors and Human serum 

To confirm that the inhibition of HSV-1 replication previously observed was due to 

U0126 inhibiting reactivation and not secondary viral spread, the reactivation of virus 

was performed in the presence of human serum to inhibit viral secondary spread. 

Mock-infected (M) or quiescently-infected NHDFs were mock-reactivated (Q) or 

reactivated with Ad-0 (R). After 2 hours the adenoviral vector was removed and 

cultures were washed and maintained in medium containing 5% human serum along 

with either DMSO, U0126 (20µM) or SB203580 (40µM). Samples were analyzed by 

western blotting with antibodies toward ICP4, ICP5, Us11 or eIF4E. 

 

Again it was found that U0126 inhibited reactivation from quiescence as evident by a 

reduction in production of ICP4, ICP5 and Us11 at both the 34 hour and 48 hour time 

points. Furthermore, inhibition of p38 had no effect on antigen accumulation, with the 

exception of modest effects on ICP5. 

  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2.10 Western blot of HSV-1 viral proteins ICP4, ICP5 and Us11 in 
quiescently-infected NHDFs mock-transduced to maintain quiescence (Q) or infected 
with Ad-0 to reactivate virus (R) in the presence 5% human serum and equal volumes 
of either DMSO (solvent control), U0126 (20µM) or SB203580 (40µM). Whole cell 
extracts were prepared at the indicated times in hour post-reactivation (h.p.r.) and 
eIF4E was probed for as a loading control (Load). 
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Figure 3.2.11 
 
 

Inhibitors of ERK phosphorylation do not affect lytic replication 

These findings suggested a role for MEK-ERK in virus reactivation. However, to 

exclude the possibility that this was due to metabolic changes in the cell due to culture 

conditions that might influence the processes involved in HSV-1 infections we 

analysed whether ERK activity was required for lytic replication in cells that had been 

mock-quiescently infected. NHDFs were mock-infected for 6 days at 41°C. Upon 

return to 37°C, cultures were mock-infected (M) or infected (Inf) at moi 0.5-1 in the 

presence of DMSO or U0126 (20µM). At 48 hours post infection, whole cell lysates 

were prepared and analyzed by western blotting with the indicated antibodies.  

 

The inhibition of ERK did not affect the replication or spread of HSV-1, as viral 

antigen accumulation was identical in cultures infected either in the presence of 

DMSO or U0126. This data correlates with findings from a previous report (Walsh, 

Mohr 2004), which demonstrated that ERK inhibition does not affect lytic HSV-1 

replication and suggests that the reduction of viral reactivation from quiescence 

observed in U0126 treated cultures is the result of the drug affecting the reactivation 

process directly. 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 3.2.11 Western blot of HSV-1 viral proteins ICP5 and Us11 in NHDFs that 
were mock-infected for 6 days at 41°C and returned to 37°C, cultures were then 
mock-infected (M) or infected (I) at moi 0.5-1 in the presence of DMSO or U0126 
(20µM). At 48 hours post infection whole cell lysates were prepared and analyzed by 
western blotting with the indicated antibodies. eIF4E was probed for as a loading 
control. 
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Figure 3.2.12 
 

The effects of U0126 on spontaneous reactivation of quiescent HSV-1 

As spontaneous reactivation occurs naturally within all in-vitro models (Feldman et 

al., 2002; Margolis et al., 2007; Knickelbein et al., 2008) and possibly reflects the 

natural dynamic state of HSV-1 in vivo, it was important to assess whether ERK 

inhibition affected this process. This also allowed us to exclude effects of ERK 

inhibition on Ad-0 mediated reactivation. To observe whether ERK inhibition 

impacted spontaneous reactivation, mock-infected (M) or quiescently-infected 

NHDFs were returned to 37°C and allowed to spontaneously reactivate for 5 days in 

the presence of either DMSO, U0126 (20µM) or SB203580 (40µM).  

Whole cell extracts were prepared and analyzed by western blotting with antisera 

against ICP0, Us11 or cellular eIF4E as a loading control. The Us11 blots were 

purposely overexposed to detect the low levels of Us11 in drug-treated reactivating 

cultures. The same blot and exposure was used but an empty dividing lane to allow 

excessive overexposure (O.E) was cropped out.  

 

Spontaneous reactivation of HSV-1 in cells treated with either U0126 or SB203580 

showed that both U0126 and SB203580 significantly reduced the expression of viral 

antigen accumulation with U0126 having a greater inhibitory capacity than 

SB203580.  

The fact that SB203580 inhibited spontaneous reactivation was not surprising as 

spontaneous reactivation is asynchronous in nature, where virus reactivates at 

different times resulting in areas within the culture where low level spread is 

occurring. As discussed previously low level spread is inhibited by the SB203580 and 

this is likely the reason why SB203580 reduces spontaneous reactivation. 
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Figure 3.2.12 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.12 Production of HSV-1 viral proteins ICP0 and Us11 in NHDFs that 
were either mock or quiescently-infected, then returned to 37°C and allowed 
spontaneously reactivate in the presence of either DMSO, U0126 (20µM) or 
SB203580 (40µM). At 5 days post initiation of spontaneous reactivation, whole cell 
lysates were prepared and analyzed by western blotting with the indicated antibodies. 
eIF4E was probed for as a loading control. Us11 blot was intentionally overexposed 
to detect signal in the U0126 treated sample. 
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Figure 3.2.13 

 

Inhibition of infectious virus production during spontaneous reactivation by 

U0126 or SB203580 

To quantify the affects of both U0126 and SB203580 on yields of infectious virus 

produced during spontaneous reactivation, supernatants from 35mm dishes of 

quiescently infected cultures allowed to spontaneously reactivate for 5 days in the 

presence of the indicated inhibitors were taken. The supernatents were then serially 

diluted, plated on permissive Vero cells and titers of infectious virus were calculated 

as p.f.u./culture. Titers are representative of at least three independent experiments.  

 

It was found that both U0126 and SB203580 greatly reduced spontaneous reactivation 

relative to DMSO, with U0126 being the more potent inhibitor of the two. These 

findings reflected the accumulation of viral antigens in whole cell extracts analysed 

by western blotting (Figure 3.2.12). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2.13 Viral titers of HSV-1 produced over a 5 day period of spontaneous 
reactivation in the presence of either DMSO, U0126 (20µM ) or SB203580 (40µM). 
Titers are represented as Log/pfu/culture supernatant and are the average of three 
independent experiments. 
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Figure 3.2.14 

 

MEK-ERK and p38 inhibition potently blocks spontaneous reactivation 

To determine the pattern of virus reactivation, mock infected or quiescently-infected 

NHDFs were returned to 37°C and allowed to spontaneously reactivate for 5 days in 

the presence of equal volumes of DMSO, U0126 (20µM) or SB203580 (40µM). Cells 

were washed in PBS, fixed and analyzed by indirect immunofluorescence using anti-

ICP5 antiserum.  

It was discovered that although large areas of DMSO-treated cultures were antigen 

positive, ICP5 expression was not evident in cultures reactivated in the presence of 

U0126 or SB203580. This suggested low levels of reactivation occured below the 

detection limits of immunofluorescence. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2.14 Immunofluorescence of HSV-1 viral protein ICP5 production in 
spontaneously reactivated (Sp.) NHDF cultures treated with either DMSO, U0126 
(20µM) or SB203580 (40µM) at 5 days post reactivation. Cultures were probed with 
antiserum against HSV-1 ICP5 (green), proteins were then detected using the 
appropriate FITC-conjugated conjugated secondary antibody. Nuclei were visualised 
by Hoechst counterstain. Images were captured at 20x magnification. 
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Figure 3.2.15 
 
U0126 does not affect low multiplicity lytic infection and spread of HSV-1 

To ensure that the previous effects of ERK inhibition on spontaneous reactivation 

were not due to effects on lytic virus spread, NDHFs were mock-infected at 41°C for 

6 days then returned to 37°C and infected with HSV-1 at m.o.i. 0.025 in the presence 

of DMSO or U0126 (20µM). After 3 days whole cell extracts were prepared and 

analyzed by western blotting using the indicated antibodies. 

 

It was confirmed that U0126 had no effect on lytic replication and secondary spread 

as the accumulation of both ICP5 and Us11 was unaffected by ERK inhibition, 

suggesting that effects of U0126 were due largely to the inhibition of reactivation 

events. 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2.15 Western blot of HSV-1 viral proteins ICP5 and Us11 in NHDFs that 
were mock-infected for 6 days at 41°C and returned to 37°C, cultures were then 
mock-infected (M) or infected (Inf) at moi 0.025  in the presence of DMSO or U0126 
(20µM). At 72 hours post infection whole cell lysates were prepared and analyzed by 
western blotting with the indicated antibodies. eIF4E was probed for as a loading 
control. 
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Figure 3.2.16 

 

Inhibitors of Mnk and mTOR cause a reduction of HSV-1 reactivation from 

quiescence 

eIF4E is a major constituent of the eIF4F complex and mediates the  binding of 

capped  mRNA. Considering that the ERK and p38 signalling pathways directly 

control the phosphorylation of the Mnk-1 kinase known to phosphorylate eIF4E,  

which results in an increase of HSV-1 protein synthesis during lytic replication 

(Walsh, Mohr 2004; Duncan, Peterson & Sevanian 2005), it was decided to 

investigate the roles of both Mnk and mTOR  activity during reactivation of HSV-1 

from quiescence. The drug concentrations used were chosen from experiments 

outlined in (Walsh, Mohr 2004). 

 

It was discovered that both Rapamycin and CGP treatment resulted in the suppression 

of virus reactivation from quiescence, reducing the accumulation of all viral antigens 

examined. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.16 Western blot of HSV-1 viral proteins ICP0, ICP5, Us11 and cellular 
proteins eIF4E and 4E-BP1. Quiescently-infected NHDFs that were mock-reactivated 
(Q) or reactivated with Ad-0 (Reactivated) in the presence of equal volumes of 
DMSO, the Mnk1 inhibitor CGP (30µM) or the mTORC1 inhibitor Rapamycin 
(125nM). Whole cell extracts were prepared at 48 hours post-reactivation. The Us11 
blots were intentionally overexposed to detect the low levels of Us11 in drug-treated 
reactivating cultures. The same blot and exposure is used but an empty dividing lane 
to allow excessive overexposure was cropped out.  
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Figure 3.2.17 
 

Inhibitors of Mnk and mTOR cause a reduction of spontaneous reactivation 

from quiescence 

To observe whether Mnk and mTOR inhibition impacted spontaneous reactivation, 

mock-infected (M) or quiescently-infected NHDFs were returned to 37°C and 

allowed to spontaneously reactivate for 5 days in the presence of either DMSO, 

CGP57380 (30µM) or Rapamycin (125nM). Whole cell extracts were prepared and 

analyzed by western blotting with antisera against ICP4, ICP5, Us11, p70S6K and 

eIF4E as a loading control.  

 

It was discovered that the presence of either CGP57380 (30µM) or Rapamycin 

(125nM) significantly reduced spontaneous reactivation, with Rapamycin having a 

stronger effect. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.17 Western blot HSV-1 viral proteins ICP4, ICP5, Us11 and cellular 
proteins eIF4E and p70S6K. Mock infected and quiescently-infected NHDFs were 
spontaneously reactivated in the presence of equal volumes of DMSO, the Mnk1 
inhibitor CGP (30µM) or the mTORC1 inhibitor Rapamycin (125nM). Whole cell 
extracts were prepared at 5 days post reactivation. eIF4E was probed for as a loading 
control while p70S6K was probed for to show Rapamycins capacity to inhibit the 
mTORC1 pathway. 
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Figure 3.1.18 

 

The effect of Rapamycin and CGP on yields of infectious virus produced in 

spontaneously reactivating cultures 

To quantify the affects of both Rapamycin and CGP57380 on infectious virus 

produced during spontaneous reactivation, supernatants from 35mm dishes of 

quiescently infected to spontaneously reactivate for 5 days in the presence of the 

indicated inhibitors were serially diluted, plated on permissive Vero cells and titers of 

infectious virus were calculated as p.f.u./culture supernatant.  

 

It was found that both Rapamycin and CGP57380 significantly reduced spontaneous 

reactivation relative to DMSO with Rapamycin being the more potent inhibitor of the 

two. This was in agreement with their effects or antigen accumulation (Figure 3.2.17) 

and suggested that the active eIF4F is required by HSV-1 during spontaneous 

reactivation from quiescence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.18 Viral titers of HSV-1 produced over a 5 day period of spontaneous 
reactivation in the presence of either DMSO, Rapamycin or CGP57380. Titers are 
represented as Log/p.f.u/culture supernatant and are the average of three independent 
experiments. 
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Figure 3.3 
 

Inhibition of translation in primary human fibrobla sts by 4EGi-1 

Considering that the inhibition of eIF4F regulators, MNK and mTOR both reduced 

reactivation from quiescence, it was deemed plausible that inhibition of eIF4F activity 

may be a viable therapeutic target for inhibition during HSV-1 lytic replication or 

reactivation from quiescence. The small molecule inhibitor 4EGi-1 has been reported 

previously to prevent eIF4E- eIF4G binding and therefore is thought to inhibit eIF4F 

assembly (Moerke et al. 2007). We therefore tested its effects on virus reactivation 

and replication. 

 

Figure 3.3.1  

 

The effects of 4EGi-1 on host translation rates 

To investigate whether this drug could inhibit HSV-1 replication, the levels of 4EGi-1 

needed to inhibit translation within NHDF cultures were optimised. NHDFs were 

treated with increasing concentrations of 4EGi-1 for 3 hours. Cells were then 

metabolically labelled with [35S]-Methionine/Cysteine for 1 hour in the presence of 

4EGi-1. Whole cell extracts were prepared in 1x Laemmli and resolved by SDS-

PAGE. The gels were then fixed dried and exposed to x-ray film. Migration of 

molecular weight standards is indicated to the left of the panel. 

 

It was found that a gradual decrease of translation rates occurred with increasing 

concentrations of 4EGi-1, the most effective concentrations being between 30 µM and 

50µM. Cells were found to be stressed at 60 µM and above (not shown). 
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Figure 3.3.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.1 Metabolic labelling of NHDFs treated with DMSO or increasing 
concentrations of 4EGi-1 for 4 hours. At 1 hours prior to sampling, cultures were 
incubated with [35S]-Methionine\Cysteine. Total protein was harvested by lysing cells 
in Laemmli buffer. Samples were resolved by SDS-PAGE where 50µl of sample was 
loaded into each well. Molecular weight standards (in kDa) are shown to the left of 
the panel.  
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Figure 3.3.2  

 

Cellular effects of 4EGi-1 at 4 hours post treatment 

While characterization of the effect of 4EGi-1 on eIF4F complex formation has been 

described previously, little is known about the effects of the drug on initiation factor 

abundance or the activity of cell signalling pathways which impart translational 

control. To investigate these questions, NHDFs were treated for 4 hours with DMSO 

or 40µM 4EGi-1; whole cell extracts were then analyzed by western blotting with the 

indicated antibodies. 

 

The total levels of 4E-BP1 were examined using non-resolving 7.5% gels while 

phosphoylated 4E-BP1 was resolved using 17.5% gels. The eIF4E phosphorylation 

profile in cells treated with 4EGi-1 was elucidated by iso-electric focusing and 

membranes were probed with anti-eIF4E antibody. Migration of the phosphorylated 

(p-4E) and hypophosphorylated (4E) forms of eIF4E is indicated to the left of the 

blot. 

 

The steady state levels of eIF4E, PABP, eIF4G and 4E-BP1 were unaffected by 

treatment with 4EGi-1. In addition, the phosphorylation profiles of ERK, a MAPK 

substrate, or stress-activated targets such as p38 or eIF2α were unaffected. The 

mTOR substrates, p70S6K and 4E-BP1 were slightly stimulated. In addition, the 

phosphorylation profiles of eIF4E in DMSO and 4EGi-1 samples were identical.  This 

suggested that the translational repression observed in NHDFs treated with 40µM 

4EGi-1 was not linked to changes in either the abundance of key translation initiation 

factors or the activity of signal pathways that regulate their function. 
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(A) Western blotting of total protein levels                         (B) Iso-electric focusing  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.2 (A) Western blot of translation factor abundance and cell signalling 
pathway activities in NHDFs that were treated for 4 hours with DMSO or 40µM 
4EGi-1.Whole-cell extracts were analysed with the indicated antibodies. 17.5% gels 
were used to probe and resovle (R) hyper and hypo phosphorylated forms of 4E-BP1.  
Samples described for the right hand panel (B) were fractionated by isoelectric 
focusing and membranes were probed with anti-eIF4E antibody. Migration of the 
phosphorylated (p-4E) and hypophosphorylated (4E) forms of eIF4E are indicated. 
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Figure 3.3.3 

 

The effects of 4EGi-1 on the composition of initiation complexes in NHDFs 

It has been reported previously that 4EGi-1 significantly disrupted eIF4F complex 

formation in transformed cell lines at concentrations of 100µM or above (Moerke et 

al., 2007). As outlined previously it was found during our investigations that NHDFs 

were stressed at concentrations above 60µM but translation was inhibited at 

comcentrations between 30µM-50 µM. 

As primary human cells are of lower metabolic activity and contain considerably 

smaller amounts of translation initiation factors than transformed cells, we examined 

the effects of 40µM 4EGi-1 on the composition of initiation complexes.  

 

Confluent NHDFs were treated for 4 hours with DMSO or 40µM 4EGi-1. It has been 

shown that 4EGi-1 binds to eIF4E reversibly. For this reason, cell extracts were 

prepared by freeze-thaw in the absence of detergent and 4EGi-1 was added to all 

buffers at every step of the assay. Soluble cell extracts were precleared with sepharose 

4B and subsequently subjected to 7-Methyl-GTP chromatography.  

 

The abundance of initiation factors and phosphorylation profiles of 4E-BP1 and 

eIF2α present in the input samples were similar, proving again that 4EGi-1 had no 

significant effect on steady state levels of initiation factors or the activity regulating 

kinases. However, it was discovered that 4EGi-1 had no inhibitory effect on the 

eIF4E:eIF4G interaction, in line with a previous report showing that higher 

concentrations are needed to disrupt eIF4F (Moerke et al., 2007. A slight increase in 

eIF4E-4E-BP1 binding was observed in 4EGi-1 treated cells, which was also 

observed in the initial report characterising 4EGi-1. Interestingly, large amounts of 

total and phosphorylated eIF2α were found in initiation complexes from 4EGi-1-

treated cultures. To confirm that whole initiation complexes were being pulled down 

with the cap, eIF3A and Ribosomal Protein S3 (RPS3) were also examined. While 3A 

was unchanged, binding of RPS3 increased, suggesting that 4EGi-1 increased 

ribosomal complexes with inactive eIF2. 
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Figure 3.3.3 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 3.3.3 NHDFs treated for 4 hours with DMSO or 40µM 4EGi-1. Soluble 
extracts were subjected to to 7-Methyl-GTP chromatography. 7M-Cap-bound and 
input samples were then resolved by SDS-PAGE. Membranes were probed with the 
indicated antibodies. 4E-BP1 was examined using 17.5% gels to resolve 
phosphorylated species. 
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Figure 3.3.4 

 

The effects of 4EGi-1 on the composition of initiation complexes in HeLa cells 

To determine if the effects of 4EGi-1 on the composition of initiation complexes was 

unique to NHDFs, a repeat of the previous experiment was conducted on HeLa cells. 

As HeLa cells are transformed with a higher metabolic acitivy, a higher concentration 

of 4EGi-1 was chosen to suppress tranlation. Consequently HeLa cells were treated 

for 4 hours with DMSO or 60µM 4EGi-1 then processed and analyzed as described in 

(Figure 3.3.3). 

The treatment of HeLa cells with 4EGi-1 had similar effects to those observed in 

NHDFs, as the levels of translation factors as well as the phosphorylation of 4E-BP1 

and eIF2α in input samples remained identical to DMSO treated cells. 

It was again discovered that 4EGi-1 had no inhibitory effect on the eIF4E:eIF4G 

interaction and that a small increase in 4E-BP1 binding to eIF4E was observed in 

4EGi-1-treated cultures. The large amounts of phosphorylated eIF2α that were found 

in NHDF initiation complexes from 4EGi-1-treated cultures were also found in 4EGi-

1treated Hela cells. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3.4 HeLa cells were treated for 4 hours with DMSO or 60µM 4EGi-1 and 
soluble extracts subjected to 7-Methyl-GTP chromatography. 7M-Cap-bound and 
input samples were then resolved by SDS-PAGE. Membranes were probed with the 
indicated antibodies. 4E-BP1 was examined using 17.5% gels to resolve 
phosphorylated species. 
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Figure 3.3.5 
 
 
Reversible accumulation of phosphorylated eIF2αααα  in eIF4F complexes observed 
with alternatively sourced 4EGi-1 
 
To decipher if phosphorylated eIF2α disassociates from the cap complex in vitro 

when the drug is removed during the cap pull-down assays a series of experiments 

were performed. HeLa cell cultures were treated with 60µM 4EGi-1 for 4 hours. Cell 

extracts were prepared by freeze-thaw in the absence of detergent. Soluble cell 

extracts were precleared with sepharose 4B and subsequently subjected to 7-Methyl-

GTP Chromatography. For the 4EGi-1 samples the drug was added to all buffers at 

every step of the assay.  For the wash out sample, drug was added to all buffers up 

until the final wash steps post the cap binding step. In addition, to determine if the 

effects observed with 4EGi-1 were the result of compound impurities it was decided 

to repeat the HeLa cap pulldown experiment with 4EGi-1 purchased from a different 

company (Santa Cruz). 

  

When samples were analysed western blotting, the treatment of HeLa cells with Santa 

Cruz 4EGi-1 had similar effects to those observed with the Calbiochem (CB) 4EGi-1 

experiments; the levels of translation factors as well as the phosphorylation of eIF2α 

in input samples remained identical to DMSO treated cells. It was again discovered 

that 4EGi-1 had no inhibitory effect on the eIF4E:eIF4G interaction. The large 

amounts of phosphorylated and total eIF2α in addition to Ribosomal Protein S3 that 

were found in NHDF initiation complexes from Calbiochem 4EGi-1-treated cultures 

(Figure 3.3.3) were also in Santa cruz 4EGi-1-treated HeLa cells, suggesting that the 

phenomena of  eIF2α accumulation in initiation complexes was not an anomaly of the 

Calbiochem 4EGi-1 compound. Interestingly, when the drug was removed (R) during 

the wash steps a reduction in phosphorylated  and total eIF2α, in addition to 

Ribosomal Protein S3 bound to the complex was observed suggesting that the effect 

of the drug was reversible. 
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Figure 3.3.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3.5 HeLa cells were treated with DMSO or 60µM 4EGi-1 for 4 hours. 
Soluble extracts were then subjected to 7-Methyl-GTP chromatography. Two 
independent sources of 4EGi-1 were used, Calbiochem (CB) and Santa Cruz 
Biotechnology (SC). An additional sample was prepared from cells treated with 
60µM 4EGi-1 but the inhibitor was removed (R) by omitting it from wash buffers at 
the end of the assay to examine reversibility. 7M-Cap-bound and input samples 
resolved by SDS-PAGE. Membranes were probed with the indicated antibodies. 4E-
BP1 was examined using 17.5% gels to resolve phosphorylated species. 
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Figure 3.3.6 

 
4EGi-1 reversibility upon removal from culture medium 

To determine how quickly the affects of 4EGi-1 last in cells once the drug has been 

removed from the culture medium, a series of wash out experiments were performed. 

To do this, NHDF cultures were treated with either DMSO or 40µM 4EGi-1 for 4 

hours and labelled with [35S]-Methionine/Cysteine for 10 or 30 mins either in the 

presence or absence of drugs.  

 

It was observed that translation rates recovered to near the levels observed in the 

DMSO treated samples even after 10 minutes of labelling when then inhibitor was 

removed (R), while after 30 minutes in the absence of 4EGi-1 the cells synthesise  

proteins as efficiently as cells treated with DMSO. These results indicate that once 

4EGi-1 is removed from the culture medium the inhibitory affect the drug reverses 

almost instantaneously. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3.6 Metabolic labelling of NHDF cultures treated with either DMSO, 4EGi-
1 40µM (NHDF) for 1 hour at either 10 or 30 minutes prior to sampling, cultures were 
incubated with [35S]-Methionine\Cysteine in either the presence or absence 4EGi-1, 
total protein was harvested by lysing cells in Laemmli buffer. Samples were resolved 
by SDS-PAGE where 50µl of sample was loaded into each well. Molecular weight 
standards (in kDa) are shown to the left of the panel.  
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Figure 3.3.7 
 
 
The effects of Torin1 on the composition of initiation complexes in NHDFs 

Given that 4EGi-1 treatment had no effect on eIF4E:eIF4G interaction but still 

robustly inhibited translation, we decided to examine the contribution of eIF4F to 

rates of protein production by treating cells with 100nM Torin1, a catalytic site-

specific mTOR inhibitor that inhibits 4E-BP1 phosphorylation (Thoreen et al., 2009). 

NHDFs were treated with DMSO or 100nM Torin1 for 1 day and processed as in 

(Figure 3.3.3). The Torin1 drug concentration used was chosen from experiments as 

outlined in (Thoreen et al., 2009). 

 

The treatment of cells with Torin1 had no effect on protein abundance in input 

samples but caused a robust dephosphorylation of 4E-BP which resulted in increased 

4E-BP binding to eIF4E on the cap. Incidentally, the increased binding of 4E-BP to 

eIF4E caused a large decrease in the amounts of eIF4G bound to eIF4E on the cap. 

Importantly, phosphorylated eIF2α was not found in NHDF initiation complexes from 

Torin1 treated cultures. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3.7 NHDFs were treated for 24 hours with DMSO or 100nM Torin1 and 
soluble extracts were subjected to 7-Methyl-GTP chromatography. 7M-Cap-bound 
and input samples were then resolved by SDS-PAGE. Membranes were probed with 
the indicated antibodies. 4E-BP1 was examined using 17.5% gels to resolve 
phosphorylated species. 
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Figure 3.3.8 
 

The effects of 4EGi-1 and Torin1 on translation rates in human cells  

Torin 1 was found to cause a robust increase in the abundance of hypophosphorylated 

4E-BP1 in input samples, resulting in a large increase in the association of 4E-BP1 

with eIF4E and a loss of eIF4G binding, whereas 4EGi-1 inhibited translation without 

causing eIF4F disruption. Therefore, a comparison of the effects of inhibitors on rates 

of translation in HeLa cells and NHDFs was performed. 

NHDFs or HeLa cells were treated with DMSO, 40µM (NHDF) or 60µM (HeLa) 

4EGi-1 or 100nM Torin1 for 1 day. Cultures were metabolically-labelled for 1 hour 

prior to sampling. Whole cell extracts were resolved by SDS-PAGE and fixed dried 

gels were exposed to x-ray film. MW standards are indicated to the left of the panel.  

 

The autoradiogram illustrates how Torin1 affects the expression of specific proteins, 

in line with a role for eIF4F in stimulating translation of specific types of mRNAs. In 

contrast to 4EGi-1, Torin1 only had a modest effect on reducing global rates of 

protein synthesis in either HeLa or NHDFs.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3.8 Metabolic labelling of HeLa and NHDF cultures treated with either 
DMSO, 4EGi-1 40µM (NHDF) 60µM (HeLa) or 100nM Torin1 for 1day. At 1 hour 
prior to sampling, cultures were incubated with [35S]-Methionine\Cysteine in the 
presence of drugs, and total protein was harvested by lysing cells in Laemmli buffer. 
Samples were resolved by SDS-PAGE where 50µl of sample was loaded into each 
well. Molecular weight standards (in kDa) are shown to the left. As with all previous 
experiments, drugs were disolved in DMSO. 
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Fig 3.3.9 
 

4EGi-1 toxicity in NHDF and Hela cells 

It was noticed that HeLa cells treated with 4EGi-1 appeared visibly stressed after 24 

hours, while NHDFs were indistinguishable from DMSO controls (not shown).  

To verify if cellular stress was occurring upon 4EGi-1 treatment, HeLa and NHDF 

cultures were treated with DMSO or 40µM (NHDF) or 60µM (HeLa) 4EGi-1 for 1 

day, then whole cell extracts were prepared and subjected to western blot analysis 

using anti Caspase-9 and Caspase 3 antibodies. The migration of full-length (FL) and 

cleaved (Cl) forms of Caspases is indicated to the left of the panel. 

 

It was found that a decrease in full-length caspases and appearance of specific 

cleavage products was evident in HeLa cells but not in NHDFs.  

 
 
 

 
 

 

 
 
 
 
 
                                             
                                               Caspase 9                           Caspase 3 
  
 
 
 
 
Fig 3.3.9 Western blot of full length (FL) and cleaved forms (Cl) of Caspase 3 and 9 
in cultures of HeLa and NHDFs treated with DMSO, 40µM (NHDF) or 60µM (HeLa) 
4EGi-1 for 1 day. 
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Figure 3.3.10 

 

4EGi-1 reversibility after prolonged treatment of cells 

To determine how quickly the affects of 4EGi-1 reverses once the drug has been 

removed from cells after prolonged treatment of cells, another series of wash out 

experiments were performed. NHDF cultures were treated with either DMSO or 

40µM 4EGi-1 for 8 days, the drug was replaced after 4 days and 7 days. On the 8th 

day the cells were labelled with 35S-Methionine/Cysteine in the absence of 4EGi-1 for 

30 minutes.  

It was observed that unlike the results garnered from short treatments where 

translation rates recovered to near the levels observed in the DMSO treated samples 

(Figure 3.3.6), after 30 minutes in the absence of 4EGi-1 translation recovered but to 

a lesser degree. This is most likely because the cells have been in a state of constant 

translational suppression for 8 days which resulted in a lowering of metabolic activity, 

including decreased levels of translation factors that would thus increase the 

translation recovery time upon drug removal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.10 Metabolic labelling of NHDF cultures treated with either DMSO or 
40µM 4EGi-1 for 8 days. At 30 minutes prior to sampling, cultures were incubated 
with [35S]-Methionine/Cysteine in the absence of DMSO (0) or the absence of 4EGi-1 
(Gi-R), and total protein was harvested by lysing cells in Laemmli buffer. Samples 
were resolved by SDS-PAGE where 50µl of sample was loaded into each well. 
Molecular weight standards (in kDa) are shown to the left of the panel.  
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Figure 3.3.11 
 

4EGi-1 stability in culture 

To elucidate the length of time 4EGi-1 is active in cultured NHDFs, cells were seeded 

at low density (3.5 x 104) on 35mm dishes. Upon seeding after cell attachment, four 

cultures were treated with 40µM 4EGi-1 and one culture was treated with DMSO 

alone. At 1 , 2 and 3 days post seeding, a culture was taken from the 37°C incubator 

and the drug removed (rem) from the cells by washing once with 5% FBS DMEM, 

and returning to culture in fresh 5% FBS DMEM containing DMSO. 4EGi-1 was not 

removed from the last culture. On day four each culture was trypsinised, resuspended 

in medium and 50µl of the cell solution was added to an equal volume of 8% trypan 

blue. The cells were then counted using a haemocytometer. The numbers shown are 

an average of two independent experiments.  

 

It was found that in the absence of 4EGi-1 the cells increased in number to 

approximately 22.5 x 104 over a period of five days. When the drug was removed 

after one day the cells reached 21 x 104 per well. When drug was removed on day two 

the cells reached 6.5 x 104 per well and on day three the cells reached approximately 

2.5 x 104 cells per well. Finally the 4EGi-1 culture which had no wash step was found 

to have 2.6 x104 cells per well. Taken together with the results from (Figure 3.3.5, 

3.3.6) these results suggest that although 4EGi-1 is rapidly reversible upon removal 

but is highly stable in cultures for periods up to at least three days.   
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Figure 3.3.11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3.16 Cell counts taken from four NHDF cultures seeded at 3.5 x104 per 35 
mm dish and treated with 40µM 4EGi-1. One culture was treated with DMSO alone. 
At 1 , 2 and 3 days post seeding, a culture was taken from the 37°C incubator and the 
drug removed (rem) from the cells by washing once with medium, and returning to 
culture in fresh 5% FBS DMEM containing DMSO. 4EGi-1 was not removed from 
the last culture. On day four each culture was trypsinised, resuspended in medium and 
50µl of the cell solution was added to an equal volume of 8% trypan blue. The cells 
were then counted using a haemocytometer. The numbers shown are an average of 
two independent experiments.  
 
 

 

 

 

 

 

 

 

 

 



135 
 

Figure 3.3.12 

 
The effects of extended exposure to 4EGi-1 on protein synthesis rates in NHDFs 

To determine the effects of extend exposure of primary cells to 4EGi-1, we then 

quantified translation rates at timepoints over an eight day period. Previous studies 

have reported that 4EGi-1 is stable in culture for 3 to 7 days (Moerke et al., 2007; 

Tamburini et al., 2009) in line with our findings that it is stable for at least 3 days 

(Figure 3.3.11). 

 

It was discovered that the rates of translation were reduced to 5% relative to DMSO 

control samples by 3-4 hours post-treatment, while continued exposure to 4EGi-1 

further reduced rates to 0.5-1% of control samples at later points suggesting that 

4EGi-1 can suppress translation for long periods of time.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3.12 mRNA translation rates determined by TCA precipitation in NHDFs 
cultures treated were DMSO or 40µM 4EGi-1 for either 4 hours, 1 day or 8 days. 1 
hour prior to the indicated time-points, cultures were metabolically-labelled and 
whole cell extracts prepared. For 8 day samples, drugs were replenished at day 3 and 
7. [35S] incorporation was quantified as counts per minute (CPM) as a percentage of 
control cultures treated with DMSO, arbitrarily set at 100%. 
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Figure 3.3.13 

 
The effects of extended exposure to 4EGi-1 on patterns of translation and cell 

viability in NHDFs  

Further characterisation of the effects of extended expose to 4EGi-1 was performed 

by metabolic labelling and cell viability assays to assess the levels of translation and 

what affects extended translational suppression had on cell viability. 

 
(A) The degree of translational suppression at 8 days post-treatment with 4EGi-1 was 
evident on overexposed auto radiographs. 
 
(B) It was found that NHDFs cultures treated with 4EGi-1 had no reduction in cell 
viability. 
 
 

 

 

(A) 

 

 
  
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
Figure 3.3.13 NHDFs were treated with DMSO or 40µM 4EGi-1 for 8 days 
replenishing at day 3 and 7 and then metabolically-labelled with [35S]-
Methionine/Cysteine for 1 hour. Whole cell extracts were resolved by SDS-PAGE 
and fixed dried gels were exposed to x-ray film. MW standards are indicated to the 
left of the panel.  
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(B) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.13 NHDFs were treated with DMSO or 40µM 4EGi-1 for 8 days then cells 
were trypsinized and incubated with trypan blue. Percentage viability represents the 
number of dye-excluding cells as a percentage of the total cell number. 
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Figure 3.3.14 

 

Effects of prolonged 4EGi-1 exposure on protein abundance 

To measure the effects of prolonged 4EGi-1 exposure on protein levels, whole cell 

extracts from NHDFs treated for 8 days with either DMSO or 40µM 4EGi-1 were 

analyzed by western blotting with the indicated antibodies. Phosphorylated forms of 

4E-BP1 were assessed using 17.5% gels. 

 

The abundance of cellular antigens was modestly reduced along with the activity of 

the mTOR signalling pathway as determined by a reduction of 4E-BP1 

phosphorylation. The levels of the apoptotic indicators Caspase 3 or 7 were also 

reduced in 4EGi-1-treated cultures. However, this was apparently a result of a global 

decrease in abundance of proteins in these cultures, rather than apoptotic associated 

cleavage, as cleavage products were not evident in 4EGi-1 samples. The arrow (>) 

points to a low abundance Casp-7 cleavage product in DMSO-treated cultures. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3.14 Western blot of protein abundance and cell signalling pathway 
activities in NHDFs that were treated for 8 days with DMSO or 40µM 4EGi-1. 
Whole-cell extracts were analysed with the indicated antibodies.  Full length (FL) of 
Caspase 3 and 7 in cultures were also analysed to show if extended exposure caused 
apoptosis. The (>) represents the cleaved form of Caspase 7. 
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Figure 3.3.15 
 

The effects of extended expose to 4EGi-1 on actin stabilization in NHDFs 

To examine the effects of extended 4EGi-1 treatment on cytoskeletal integrity, 

NHDFs were treated with DMSO or 40µM 4EGi-1 for 8 days then washed in PBS 

and fixed in formaldehyde after which the cultures were permeablised and actin 

stained.  

Although the intensity of actin staining decreased in 4EGi-1 treated cells, correlating 

with the global decrease in protein production, the cells treated with 4EGi-1 had actin 

morphologies similar to control cells suggesting cellular homeostasis was maintained 

over the extended period of 4EGi-1treatment. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.3.15 Fluorescent analysis of actin filaments in cultures treated with either 
DMSO or 4EGi-1 for 8 days and subsequently stained with FITC-conjugated 
phalloidin (actin; green). Nuclei were counterstained with Hoescht (DNA; blue). 
Phase contrast and fluorescent images were captured on a Leica DFC 500 microscope 
at 63x magnification. 
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Figure 3.3.16 

 

4EGi-1-treated NHDFs remain tolerant of and responsive to proteasome 

inhibition  

While cells remained viable when translation was inhibited to barely detectable levels 

over extended periods, it was necessary to understand the degree of sensitivity to 

stress within cultures exposed to 4EGi-1. 

To address this question, NHDFs were treated with DMSO or 40µM 4EGi-1 for 7 

days, replacing the drugs at day four and seven followed by treatment with DMSO or 

10µM MG132, a broad-spectrum chemical inhibitor of proteasome and lysosome 

function, for 24 hours. Whole cell extracts were prepared and resolved by SDS-PAGE 

and blots were probed for Hsp27, Hsp70, and eIF4E as a control antigen. The MG132 

drug concentration used were chosen from experiments as outlined in (Walsh, Mohr 

2004). 

In control samples that were not exposed to MG132, levels of each protein were again 

modestly reduced in 4EGi-1-treated cultures correlating with the global decrease in 

protein production. Cells exposed to MG132 had high levels of Hsp70 expression in 

both DMSO and 4EGi-1-treated cultures, illustrating that cultures were viable and 

stress-responsive.  

Interestingly, 4EGi-1 reduced the accumulation of Hsp27 in response to MG132, 

demonstrating distinct mechanisms by which these small and large Hsps were 

induced. Finally, the pattern of eIF4E expression remained unaltered in cultures 

treated with MG132 treatment, only being modestly reduced in the presence of   

4EGi-1. 

 

 
 
 
 
 
 
 
 
Figure 3.3.16 Western blot of Heat shock proteins (Hsp) 70 and 27 in NHDF cultures 
that were with either DMSO or 40µM 4EGi-1 for 7 days and subsequently treated 
with 10µM MG132 for 24 hours in addition DMSO or 40µM 4EGi-1.Whole-cell 
extracts were resolved by SDS-page and eIF4E was probed for as a loading control. 
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Figure 3.3.17 
 

4EGi-1-treated NHDFs remain tolerant of and responsive to heat shock 

To confirm that 4EGi-1 treated cells had a general capacity to tolerate stress and not a 

specific response with regard to proteasome inhibition, NHDFs were treated for 7 

days as described in figure 3.3.16, followed by either continued incubation at 37°C or 

heat shock (H.S.) at 41°C for 24 hours. Whole cell extracts were prepared and 

resolved by SDS-PAGE and blots were probed for Hsp27, Hsp70, and PABP as a 

control antigen. 

 

It was discovered that control cultures that were not exposed to heat shock had a 

modest reduction in protein levels when treated with 4EGi-1 for 8 days, again 

correlating with the global decrease in protein production.  

The levels of PABP expression remained unaltered in cells subjected to heat shock. 

In contrast, cells exposed to heat shock had high levels of Hsp70 expression in both 

DMSO and 4EGi-1-treated cultures, proving that cultures remain capable of mounting 

a stress response. Finally, in agreement with the MG132 experiment, the presence of 

4EGi-1 reduced the accumulation of Hsp27 relative to the DMSO control in response 

to heat shock. 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 3.3.17 Western blot of Heat shock proteins (Hsp) 70 and 27 in NHDF cultures 
that were treated with either DMSO or 40µM 4EGi-1 for 7 days and subsequently 
heat shocked at 41°C for 24 hours in the presence of either DMSO or 40µM 4EGi-1. 
Whole-cell extracts were resolved by SDS-page and PABP was probed for as a 
loading control. 
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Figure 3.3.18 

 

Effects of prolonged exposure to 4EGi-1 and heat shock on actin structures 

The effects of heat shock on cells that had been exposed to 4EGi-1 for 7 days was 

further assessed by fluorescence microscopy. NHDFs were treated for 7 days as 

described in Figure 3.3.16 then heat-shocked at 41°C for a further 24 hours.  

 

Although the intensity of actin staining decreased in 4EGi-1 treated cells, the Phase-

contrast and fluorescent imaging illustrated that the morphology of cells together with 

the integrity of the actin cytoskeleton in both DMSO and 4EGi-1-treated cultures 

remained intact under heat-shock conditions 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3.18 Fluorescent analysis of actin filaments in cultures treated with either 
DMSO or 4EGi-1 for 7 days and subsequently heat shocked at 41°C for 24 hours in 
the presence of either DMSO or 40µM 4EGi-1. Cultures were stained with FITC-
conjugated phalloidin (actin; green). Nuclei were counterstained with Hoescht (DNA; 
blue). Phase contrast and fluorescent images were captured on a Leica DFC 500 
microscope at 63x magnification. 
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Figure 3.3.19 

 
 
Effects of prolonged exposure to 4EGi-1 and heat shock on apoptotic markers 

To assess if an apoptotic profile of caspase activation was present in cells exposed to 

4EGi-1 and heat shock, NHDFs were treated for 7 days as described in figure 3.3.15, 

followed by continued incubation and heat shock, (H.S.) at 41°C for 24 hours. Whole 

cell extracts were prepared and resolved by SDS-PAGE, then blots were probed with 

an antibody against PARP-1, which detects both full length (FL) and cleaved (C) 

forms of the protein, or an antibody against the cleaved form of PARP-1, NHDFs 

were also treated with 1µM of Staurosporin for 4 hours as a control for detection of 

apoptosis. 

 

The processing of PARP-1 indicative of apoptosis was not detected in either DMSO 

or 4EGi-1-treated cultures which had been heat shocked, unlike cells treated with 

staurosporin which showed a large an increase in cleaved PARP and a reduction of 

full length PARP. 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 3.3.19 Western blot of anti-Parp-1 and anti-cleaved Parp-1 in cultures of 
NHDFs treated with DMSO or 40µM 4EGi-1 for 7 days followed by continued 
incubation and heat shock, (H.S.) at 41°C for 24 hours in the presence of either drug. 
NHDFs were also treated with 1µM of Staurosporin for 4 hours as a control for 
detection of apoptosis. 
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Figure 3.3.20 
 
 
4EGi-1 inhibition of HSV-1 reactivation from quiescence 

The discovery that primary human cells were extremely tolerant of 4EGi-1-mediated 

translational suppression led us to examine whether this inhibitor could be used to 

inhibit viral replication. To investigate what effects 4EGi-1 would have on HSV-1 

reactivation from quiescence, NHDFs were mock-infected (M) or infected with HSV-

1 day at elevated temperature to establish a quiescent infection, which was maintained 

for 6 days. 

 

(A) Cultures were then returned to 37°C and quiescent virus was allowed to 

spontaneously reactivate in the presence of DMSO or 40µM 4EGi-1 for 5 days. 

Whole cell extracts were prepared in 1x Lemmli lysis buffer and resolved by SDS-

PAGE. Blots were probed with the indicated antibodies. 

 

(B) NHDFs were quiescently-infected with HSV-1 for 6 days then returned to 37°C. 

Cultures were mock transduced with medium (Q) or transduced with adenovirus 

encoding HSV-1 ICP0 (Reactivated) in the presence of DMSO or 40µM 4EGi-1 for 

48 hours. Whole cell extracts were prepared by laemmli lysis and resolved by SDS-

PAGE, then blots were probed with the indicated antibodies. 

 

 

While the accumulation of viral proteins remains unencumbered during spontaneous 

and controlled reactivation in the presence of DMSO, the treatment of cells with 

40µM 4EGi-1 prevented production of the immediate early gene ICP4, leaky late 

gene ICP5 and the late gene Us11 during both spontaneous and controlled 

reactivation. Notably, 4EGi-1 also prevented ICP0 production during controlled 

reactivation. 
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(A) (B) 
 
 
                                                                       
  
 
 
 
 
 
 
 

 

 

 

 

 

 
Figure 3.3.20 (A) Western blot analysis for production of HSV-1 viral proteins: 
ICP4, ICP5, Us11 and load control protein eIF4E in mock infected or quiescently-
infected NHDFs that were spontaneously reactivated in the presence of equal volumes 
of DMSO, or 40µM 4EGi-1. Whole cell extracts were prepared at 5 days post 
reactivation. (B) Western blot analysis for production of HSV-1 viral proteins: ICP0, 
ICP5, Us11 and load control protein eIF4E in mock infected and quiescently-infected 
NHDFs that were transduced with adenovirus encoding HSV-1 ICP0 (Reactivated) in 
the presence of DMSO or 40µM 4EGi-1 for 48 hours. 
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Figure 3.3.21 

 

4EGi-1 inhibition of infectious HSV-1 productiom during reactivation from 

quiescence 

To confirm that 4EGi-1 prevented the production of viable infectious virus. 

NHDFs were quiescently infected for 6 days at 41°C and then returned to 37°C prior 

to reactivation with an adenovirus encoding HSV-1 ICP0 in the presence of DMSO or 

40µM 4EGi-1 for 48 hours. The levels of infectious virus in cultures was quantified 

by titration of freez thawed cell culture lysates on Vero cells and were represented as 

plaque-forming units per culture (Log p.f.u/culture). 

 

The presence of 4EGi-1 during reactivation completely prevented production of 

infectious virus, in agreement with the inhibition of viral antigen accumulation 

(Figure 3.3.20) 

 

 
 
 
 
 
                                                                                                               
                                                                                                               
                                                                                                               
                                                                                                               
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3.21 Viral titers of HSV-1 produced during a Ad-0 controlled reactivation in 
the presence of either DMSO or 40µM 4EGi-1 over a 48 hour period. Titers are 
represented as Log/p.f.u/culture in supernatants taken from cultures which had been 
freez thawed and are the average of three independent experiments. 
 



147 
 

Figure 3.3.22 
 
 
4EGi-1 inhibition of translation during lytic HSV-1  replication 

As 4EGi-1 was found to inhibit reactivation from quiescence, we therefore assessed 

whether 4EGi-1 was effective against primary lytic infection. To address this 

question, NHDFs were mock-infected (M) or infected with HSV-1 of m.o.i. 5 in the 

presence of increasing µM concentrations of 4EGi-1. 10 hours post-infection cultures 

were metabolically labelled for 1 hour and whole cell extracts were resolved by SDS-

PAGE. Fixed dried gels were exposed to x-ray film. MW standards are indicated to 

the left panel. 

 

At concentrations above 30 µM, 4EGi-1 caused potent inhibition of viral protein 

synthesis.  

 
                                                                                        
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
Figure 3.3.22 Metabolic labelling of NHDF cultures treated with either DMSO or 
increasing concentrations of 4EGi-1 in uninfected (U) or infected with HSV-1 at m.o.i 
5 for 11 hours. At 1 hour prior to sampling, cultures were incubated with [35S]-
Methionine/Cysteine in the presence of the drugs. Total protein was harvested by 
lysing cells in Laemmli buffer. Samples were resolved by SDS-PAGE where 50µl of 
sample was loaded into each well. Molecular weight standards (in kDa) are shown to 
the left of the panel.  
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Figure 3.3.23 
 

Rates of protein synthesis in HSV-1 infected cultures treated with 4EGi-1 

To quantify the rates of translation in 4EGi-1 treated cells infected with HSV-1. 

NHDFs were mock-infected (M) or infected with HSV-1 at m.o.i. 5 in the presence of 

increasing µM concentrations of 4EGi-1, 10 hours post-infection cultures were 

metabolically labelled for 1 hour. Translation rates were quantified by TCA 

precipitation and represented as a percentage of DMSO control arbitrarily set at 

100%. 

 

It was found that 4EGi-1 at a concentration of 40µM reduced translation rates to 1.4% 

of control samples during lytic infection. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
                                                                                     
 
 
Figure 3.3.23 mRNA translation rates determined by TCA precipitation in NHDFs 
treated with DMSO or increasing µM concentrations of 4EGi-1 and infected with 
HSV-1 for 11 hours. At one hour prior to sampling cultures were [35S]-
Methionine/Cysteine metabolically-labelled and whole cell extracts prepared. [35S] 
incorporation was quantified as counts per minute (CPM) as a percentage of control 
cultures treated with DMSO, arbitrarily set at 100%. 
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Figure 3.3.24 

 

The affects of 4EGi-1 treatment on viral antigen accumulation during lytic 

replication 

The ability of 4EGi-1 to reduce translation in HSV-1 infected cells led us to 

investigate what effects 4EGi-1 had on viral protein accumulation during lytic 

infection. 

NHDFs were mock-infected (M) or infected with HSV-1 at m.o.i. 5 in the presence of 

increasing µM concentrations of 4EGi-1. 11 hours post-infection whole cell extracts 

were prepared. Samples were analyzed by western blotting using the indicated 

antibodies. 

 

The abundance of viral antigens was found to decrease with increasing concentrations 

of 4EGi-1, with 40µM 4EGi-1 reducing the production of viral proteins examined to 

below detectable limits. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3.24 Western blot analysis for production of HSV-1 viral proteins: HSV-1, 
ICP22, Us11 in NHDFs cultures that were mock infected (U) or infected with HSV-1 
at m.o.i 5 (HSV-1) in the presence of equal volumes of DMSO, or increasing µM 
concentrations of 4EGi-1. Whole cell extracts were prepared at 11 hours post 
infection. eIF4E was probed for as a load control. 
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Figure 3.3.25 

 

Effects of 4EGi-1 treatment on infectious progeny production during lytic 

replication 

Acknowledging the ability of 4EGi-1 to inhibit rates of translation and viral antigen 

accumulation, the amounts of infectious progeny being produced in cultures infected 

in the presence of 40µM 4EGi-1 were measured. 

NHDFs were infected with HSV-1 at m.o.i. 5 in the presence of increasing µM 

concentrations of 4EGi-1 for 11 hours. Infectious virus production was determined by 

titration of freez thaw culture lysates on permissive Vero cells and represented as Log 

p.f.u/culture. Titration results are representative of three experiments.  

Cultures treated with 40µM 4EGi-1 contained on average around 400 particles per 

culture, more than 106-fold lower than DMSO controls.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3.25 Viral titers of HSV-1 produced in NHDFs cultures that were infected 
with HSV-1 m.o.i 5 in the presence of equal volumes of DMSO, or increasing 30µM 
and 40µM concentrations of 4EGi-1 for 11 hours. Titers are represented as 
Log/p.f.u/culture supernatant and are the average of three independent experiments. 
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Figure 3.3.26 

 

The effects of Torin1 on eIF4F complexes during HSV-1 infection 

Considering that both Mnk and mTOR inhibition reduced reactivation from 

quiescence, it was deemed plausible that inhibition of eIF4F activity may be a viable 

therapeutic target for inhibition of HSV-1 lytic replication. Torin1 has been reported 

previously to prevent 4E-BP phosphorylation thus sequesting eIF4E and preventing 

eIF4G binding, therefore inhibiting eIF4F assembly (Thoreen et al. 2009). 

To determine if the addition of Torin1 during HSV-1 infection caused inhibition of 

eIF4F complex formation, NHDFs were pretreated with 100nM Torin1 for 1 hour 

prior to infection. Cells were then infected at m.o.i 5 for 11 hours in the presence of 

Torin1 (100nM). Cell extracts were prepared in NP-40 lysis buffer, precleared with 

sepharose 4B and subsequently subjected to 7-Methyl-GTP Chromatography. Cap-

bound and input samples were resolved by SDS-PAGE and membranes were probed 

with the indicated antibodies. 4E-BP1 was examined using 17.5% gels to resolve 

phosphorylated species.  

 

Torin1 caused hypophosphorylation of 4E-BP1 and increased binding to eIF4E 

causing a significant reduction of eIF4G binding, demonstrating that during HSV-1 

infection Torin1 effectively disrupted eIF4F formation. 

 

 

 

 

 

 

 

 

 

Figure 3.3.26 Western blot of translation factor abundance and 4E-BP1 
phosphorylation in NHDFs that were treated with DMSO or 100nM Torin1 and then 
infected at m.o.i 5 for 11 hours in the presence of either DMSO or Torin1 (100nM). 
Soluble extracts were subjected to 7-Methyl-GTP chromatography. 7M-Cap-bound 
and input samples resolved by SDS-PAGE. Membranes were probed with the 
indicated antibodies. 4E-BP1 was examined using 17.5% gels to resolve 
phosphorylated species. 
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Figure 3.3.27 
 

The affects of Torin1 on translation rates during HSV-1 high multiplicity 

infection.   

To investigate whether Torin1 could inhibit HSV-1 translation, NHDF cells were 

either mock infected or infected at m.o.i 5 for 11 hours in the presence of DMSO or 

100Nm Torin1. Cells were then metabolically labelled with [35S]- 

Methionine/Cysteine for 1 hour in the presence of DMSO or 100nM Torin1. Whole 

cell extracts were prepared in 1x Laemmli and resolved by SDS-PAGE. The gels were 

then fixed dried and exposed to x-ray film. Migration of molecular weight (MW) 

standards is indicated to the left of the panel.  

 

The metabolic labelling of mock infected cells treated with either DMSO or Torin1 

illustrated that Torin1 reduces the translation rate modestly compared to DMSO 

treatment. During infection Torin1 also modestly represses translation.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.27 Metabolic labelling of NHDF cultures treated with either DMSO or 
100nM Torin1 and mock infected (Mock) or infected (HSV-1) for 11 hours with 
HSV-1 at m.o.i 5. At 1 hour prior to sampling, cultures were incubated with [35S]-
Methionine/Cysteine in the presence of the drugs, and total protein was harvested by 
lysing cells in Laemmli buffer. Samples were resolved by SDS-PAGE where 50µl of 
sample was loaded into each well. Molecular weight standards (in kDa) are shown to 
the left of the panel.  
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Figure 3.3.28 
 

A comparison of the effects of 4EGi-1 and Torin1 on viral protein production. 

To observe what effects 4EGi-1 and Torin1 have on the production of viral proteins 

and downstream targets of mTOR in either uninfected or infected cells, NHDF 

cultures were mock infected of infected at a m.o.i 5 for 12 hours in either the presence 

of DMSO, 100nM Torin or 40µM 4EGi-1. Whole cell extracts were prepared and 

analyzed by western blotting and probed with antisera against p70S6K, HSV-1, 

ICP22, ICP0, US11 and eIF4E as a loading control. 

 

As expected Torin1 caused the appearance of dephosphorylaed forms of p70S6K in 

both the uninfected and infected cultures. 4EGi-1 had no affect on the 

phosphorylation of p70S6K relative to the DMSO control. The DMSO treated 

infected culture showed an increase in p70S6K which was blocked by 4EGi-1 due to 

the inhibition of infection, while Torin1 caused hypophosphorylation of p70S6K due 

to mTOR inhibition.   

 

In the infected cells treated with DMSO HSV-1 replicated efficiently as evident by 

the accumulation of HSV-1, ICP22, ICP0 and US11. Torin1 slightly reduced the 

accumulation of all viral antigens tested whereas 4EGi-1 completely inhibited their 

accumulation. 
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Figure 3.3.28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.28 Western blot of HSV-1 viral proteins: ICP0, ICP22 and HSV-1 in 
addition to cellular protein p70S6K in NHDFs cultures that were mock infected 
(Mock) or infected with HSV-1 m.o.i 5 in the presence of equal volumes of DMSO, 
40µM 4EGi-1 or 100nM Torin1. Whole cell extracts were prepared at 11 hours post 
infection. eIF4E was probed for as a load control. All drugs used were disolved in 
DMSO. 
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Figure 3.3.29 

 

4EGI-1 is capable of suppressing translation mid way through a HSV-1 lytic 

infection. 

To determine whether 4EGI-1 was capable of suppressing translation mid way 

through a HSV-1 lytic infection, NHDFs were mock-infected (M) or infected with 

HSV-1 at m.o.i. 5. 4 hours into the infection the infection the cells were treated with 

either DMSO or 40µM 4EGi-1. 8 hours post-infection cultures were metabolically 

labelled for 1 hour and whole cell extracts were resolved by SDS-PAGE. Fixed dried 

gels were exposed to x-ray film.  MW standards are indicated to the left of the panel. 

Samples were analyzed by western blotting using the indicated antibodies. 

4EGi-1 added to cultures at mid stages of infection retained the capacity to inhibit 

ongoing viral protein synthesis as illustrated by metabolic labelling and the 

suppression of the accumulation of late protein Us11. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3.29 Metabolic labelling of NHDF cultures that were infected (HSV-1) for 9 
hours with HSV-1 at m.o.i 5. 4 hours into the infection the cultures were treated with 
either DMSO (0) or 40 µM 4EGi-1. At 1 hour prior to sampling, cultures were 
incubated with [35S]-Methionine/Cysteine in the presence of the drugs. Total protein 
was harvested by lysing cells in Laemmli buffer. Samples were resolved by SDS-
PAGE where 50µl of sample was loaded into each well. Samples were also subjected 
to western blot and probed for Us11 and eIF4E. Molecular weight standards (in kDa) 
are shown to the left of the panel. 
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Figure 3.3.30 
 

4EGi-1 translational suppression during late stage HSV-1 infection. 

As 4EGi-1 inhibited translation when added prior to and during infection of cells, 

it was decided to test whether 4EGi-1 could suppress translation when added at very 

late stages during infection. NHDF cultures were infected with HSV-1 m.o.i 5 for 12 

hours and subsequently treated with either DMSO or 4EGi-1 for 4 hours and labelled 

with 35S-Methioine/Cysteine for 1 hour in the presence of drugs. 

 

It was discovered that when 4EGi-1 is added to cells very late in HSV-1 infection still 

potently suppressed translation, although some viral protein synthesis was detectable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.30 Metabolic labelling of NHDF cultures that were infected (HSV-1) for 
16 hours with HSV-1 at m.o.i 5. 12 hours into the infection the cultures were treated 
with either DMSO or 40 µM 4EGi-1 for 4 hours. At 1 hour prior to sampling, cultures 
were incubated with [35S]-Methionine/Cysteine in the presence the drugs. Total 
protein was harvested by lysing cells in Laemmli buffer. Samples were resolved by 
SDS-PAGE where 50µl of sample was loaded into each well. Molecular weight 
standards (in kDa) are shown to the left of the panel.  
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Figure 3.3.31 
 

Suppression of poxvirus protein synthesis by 4EGi-1 

To determine whether 4EGI-1 was capable of suppressing the replication of viruses 

other than HSV-1 we tested 4EGi-1 effects on Vaccinia Virus (VacV), the laboratory 

prototype for poxvirus infection. NHDFs were mock-infected (M) or infected with 

VacV at m.o.i. 10 for 15 hours in the presence of increasing concentrations of 4EGi-1 

then metabolically labelled for 1 hour. Whole cell extracts were resolved on SDS-

PAGE gels that were then dried and exposed to x-ray film.  

 

Poxvirus infection of DMSO-treated NHDFs resulted in the characteristic shut-off of 

host translation and robust synthesis of poxvirus polypeptides. While lower 

concentrations of 4EGi-1 had no significant effect on the pattern or rates of viral 

protein synthesis, modest inhibition of translation was evident at 10µM while 

concentrations above 20µM resulted in dramatic suppression of translation. 
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Figure 3.3.22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.22 Metabolic labelling of NHDF cultures infected with Vaccinia virus at a 
m.o.i of 10 for 16 hours in the presence of either DMSO (0) or increasing µM 
concentrations of 4EGi-1. At 1 hour prior to sampling, cultures were incubated with 
[35S]-Methionine/Cysteine in the presence of the drugs. Total protein was harvested 
by lysing cells in Laemmli buffer. Samples were resolved by SDS-PAGE where 50µl 
of sample was loaded into each well. Molecular weight standards (in kDa) are shown 
to the left of the panel.  
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Figure 3.3.32 

 

Rates of protein synthesis in Vaccinia infected cultures treated with 4EGi-1 

To determine the rates of translation in VacV samples described in figure 3.3.31, TCA 

precipitation was performed and presented as a percentage of DMSO controls.  

 

TCA precipitation and quantification showed that 30µM and 40µM 4EGi-1 reduced 

translation rates in infected cultures to 2.4% and 2.3% respectively, of those in 

DMSO-treated cultures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 3.3.23 mRNA translation rates determined by TCA precipitation in NHDFs 
treated with DMSO or increasing concentrations of 4EGi-1 and infected with 
Vaccinia virus m.o.i 10 for 16 hours. At one hour prior to sampling cultures were 
[35S]-Methionine/Cysteine metabolically-labelled and whole cell extracts prepared. 
[35S] incorporation was quantified as counts per minute (CPM) as a percentage of 
control cultures treated with DMSO, arbitrarily set at 100%. 
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Figure 3.3.33 

 

Effects of 4EGi-1 treatment on infectious progeny production during Vaccinia 

virus replication. 

To test the effects of this translational suppression on production of infectious virus, 

NHDFs were treated with DMSO or 30µM 4EGi-1 and infected at a multiplicity of 

either 1 or 10 pfu per cell to determine whether the effects of this inhibitor were also 

influenced by the amount of incoming virus particles. At 16 hours post infection the 

samples were harvested by freeze-thaw and infectious virus determined by titration on 

permissive BSC40 cells.  

 

 

(A) In both instances 4EGi-1 reduced virus replication to approximately 3% of control 

DMSO-treated cultures, demonstrating that 4EGi-1 suppressed virus replication 

regardless of the amount of incoming virus and that its effects on virus replication 

closely mirrored the degree to which it suppressed rates of viral protein synthesis 

(Figure 3.3.32). However, when represented on a logarithmic scale (B) although 

4EGi-1 potently suppressed VacV replication its effects on infectious virus production 

were much lower than that observed with HSV-1. 
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Figure 3.3.33 

 
 
(A)                                                                      (B) 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.3.33 Viral titers of Vaccinia Virus produced in NHDFs cultures that were 
infected with Vaccinia Virus at m.o.i 1 and 10 in the presence of equal volumes of 
DMSO or 30µM of 4EGi-1 for 16 hours. Titers are represented as Log/p.f.u/culture 
supernatant and are the average of three independent experiments. (A) Represents the 
amounts of viral progeny production in cultures treated with 4EGi-1 as expressed as a 
percentage relative to a DMSO infection. (B) Represents the amounts of viral progeny 
production as expressed on the logarithmic scale. 
 
 

 

 

 

 

 



162 
 

Figure 3.3.34 

 

The effects of 4EGi-1 on Vaccinia virus antigen accumulation 

To determine the effects of 4EGi-1 on Vaccinia antigen accumulation during 

infection, NHDFs were mock-infected (M) or infected with VacV at m.o.i. 10 in the 

presence of increasing µM concentrations of 4EGi-1 and whole cell extracts prepared 

after 16 hours. Samples were analyzed by western blotting using anti-VacV antibody.  

 

In contrast to HSV-1 antigens (Figure.3.3.24) overexposure of western blots against 

VacV antigens demonstrated that the accumulation of viral proteins was still 

detectable in 30µM 4EGi-1-treated samples. As such, while 4EGi-1 affected 

translation rates in both cases it had distinct effects on the overall fate of Poxvirus and 

Herpes virus infection. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3.24 Western blot analysis for production of Vaccinia viral protein: VacV in 
NHDF cultures that were infected with Vaccinia Virus at m.o.i of 10 for 16 hours in 
the presence of equal volumes of DMSO increasing µM concentrations of 4EGi-1. 
eIF4E was probed for as a loading control. 
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Figure 3.3.35 
 

4EGi-1 translational suppression during late stage Vaccinia infection 

As 4EGi-1 inhibited translation when added prior to and during HSV-1 infection, it 

was decided to test whether 4EGi-1 could suppress translation when added at late 

stages of VacV infection. NHDF cultures were infected with Vaccinia virus m.o.i 10 

for 12 hours and subsequently treated with either DMSO or 4EGi-1 for 4 hours and 

labelled with 35S-Methioine/Cysteine for 1 hour in the presence of drugs. 

 

It was discovered that when 4EGi-1 was added to cells late in Vaccinia virus infection 

4EGi-1 retained the capacity to potently suppress translation. 

 

 

  

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 3.3.35 Metabolic labelling of NHDF cultures that were infected with Vaccina 
at m.o.i 10 for 16 hours. 12 hours into the infection the cultures were treated with 
either DMSO or 30µM and 40 µM 4EGi-1 for 4 hours. At 1 hour prior to sampling, 
cultures were incubated with [35S]-Methionine/Cysteine in the presence of the drugs. 
Total protein was harvested by lysing cells in Laemmli buffer. Samples were resolved 
by SDS-PAGE where 50µl of sample was loaded into each well. Molecular weight 
standards (in kDa) are shown to the left of the panel.  
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Section 4: Discussion 
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4.0 Discussion: 

 

In contrast to our relatively detailed understanding of HSV-1 lytic replication, latent 

infection and reactivation remain very poorly understood. This project was aimed at 

understanding the roles cell of signalling and translational regulation during the 

establishment and reactivation from HSV-1 quiescence. In an attempt to achieve our 

goals we endeavoured to create an in vitro model to study these phenomena. Our 

decision to create such a model was due to the fact that latent infection has proven to 

be difficult to model in the past. Consequently in order to study cellular changes 

caused by reactivation events an efficient model was required.  

 

4.1 Developing a cell culture model of HSV-1 latency. 

 

In the past many attempts in studying latency have employed the use of both in vitro 

and in vivo models. Of the in vivo models, mice and rabbit models are used most 

frequently for the study of latency. The use of mice during studies has been 

considered advantageous due to the low cost relative to other animal models and some 

aspects of mouse HSV-1 latency mimic aspects of human HSV-1 latency, and led to 

identifying the neuron as the site of latency and the expression of LATS during latent 

infection. However, the limitations associated with the use of mice to model human 

latency include the unusual routes by which infection is accomplished, such as 

infection of the cornea or through the footpad which do not represent a typical route 

of infection normally taken by an infecting virus. The main disadvantage postulated in 

using mice for the study of HSV-1 latency is that they are not human and mouse 

models lack the characteristic of spontaneous reactivation, a phenomena routinely 

seen in humans. Spontaneous reactivation along with LAT expression occurs in 

rabbits that are latently infected but their use has been limited as they are quite 

expensive and cumbersome to work with. Although spontaneous reactivation is seen 

in latently infected rabbits a fact which has led some to suggest that HSV-1 latency in 

rabbits mimic human infection more closely than mice, questions over the relevancy 

of these models have not eluded experts in the field. An example of this is that in mice 

latently infected with a LAT promoter deletion mutant, HSV-1 genomes are less 

associated with repressive histone dimethyl H3 K9 than with the wild type strains. 

Whereas HSV-1 LAT-negative genomes in infected rabbits do not become less 
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enriched in repressive histone marks relative to the wild type, therefore indicating that 

the LAT does not seem to exert a repressive effect on the chromatin state of latent 

genomes in rabbits. These findings highlight the opposing characteristics of infection 

in different species which raises questions on the relevancy of animal models to 

human infection by human pathogens (Wang et al., 2005; Giordani et al., 2008). 

 

It should also be outlined that many clinical isolates of HSV-1 vary with regard to 

their neurovirulance and pathology in different species of animal. Therefore the 

amount of genotypes, serotypes and phenotypes available for study is limited in 

comparison to the plethora of naturally occurring ones. The study of HSV-1 mutants 

is also encumbered by the fact that specific characteristics of virus infection, latency 

and reactivation are often strain specific, so even though mutants are available for 

study in tissue culture they may not be viable for in vivo study. For example the 

17syn+ strain is a standard strain used in mutational analysis but is much more 

virulent in mice than the Kos (M) strain (Thompson et al., 1986). Additionally, strain 

specific difference in viral glycoproteins as well as other proteins may drastically 

influence the capacity of the virus to spread in the nervous system and hypothetically 

alter the parameters of latency (Izumi, Stevens 1990; Yuhasz, Stevens 1993; Bloom, 

Stevens 1994; Mitchell, Stevens 1996). 

 

The difficulties in creating in vitro models which can facilitate detailed mechanistic 

studies of HSV-1 latency has also largely contributed to our relatively poor 

understanding of latency. In the past, attempts have been made to create models 

which approximate human infection as accurately as possible but many of the models 

developed for such studies have used neuronal cells of non-human origin and 

transformed cell lines while employing the use of chemical inhibitors to suppress the 

initial production of immediate early genes. Alternatively HSV-1 mutants which lack 

the required genes to initiate viral replication have also been used. These strategies to 

suppress viral replication have attempted to increase the amount of virus that could 

infect and be coerced into a non replicating state as infecting cultures with wild type 

virus at high multiplicity without inhibitors is not viable and invariably results in the 

lytic replication and death of the culture. The main disadvantages of these models are 

the poor efficiency of both spontaneous and controllable reactivation and the fact that 
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they use animal cells, which again raises questions of the results gathered using these 

models with regard to their relevancy to human infection. 

 

Due to Ethical and accessibility issues associated with the development of human 

neuronal systems using primary cell cultures, research groups have developed models 

to study quiescence using Human fibroblasts. This is mainly due to the low metabolic 

state of fibroblasts which is thought to resemble that of neurons more closely than 

transformed cell lines which do not support quiescent infection. It is also thought that 

fibroblasts express factors which restrict viral replication (Hancock, Corcoran & 

Smiley 2006). 

Although primary fibroblasts may resemble neurons metabolically, difficulties still 

remain in forming efficient quiescent infection. In the past, just as in animal neuronal 

models, the inability to infect at high multiplicity has led research groups to create 

mutant stains of HSV-1 which are either lacking in the immediate early gene ICP0 or 

lacking ICP0 in combination with other essential genes such as ICP4. While these 

mutant strains have been useful in the study of HSV-1 quiescence, doubt still remains 

about whether quiescence established using IE mutants follows an identical infection 

paradigm to wild type infection. The caveats of these models raise questions in 

relation to the viruses natural characteristics during the formation of latency. For 

example, does immediate early protein production occur during establishment of 

quiescence, and if so, does that mean when certain genes are deleted from a genome, 

are there alterations in the virus host balance during initial establishment of 

quiescence, as many of the genes initially produced have regulatory functions which 

control ordered cascades that may determine the overall fate of the genome as it 

resides in either a strongly repressed or weakly suppressed state during its residency 

within the nucleus. 

 

To begin to ask questions about these issues and the mechanisms of virus reactivation 

from a dormant state, we developed a model to study HSV-1 quiescence requiring 

only simple culture conditions to support the establishment of quiescence in human 

cells without having to employ mutant forms of the virus or chemical inhibitors of 

viral replication. In considering the parameters to be tested to establish quiescence in 

primary NHDF’s our choices were influenced by the observation that old models used 

cycling cells which would presumably provide a more favourable environment for 



168 
 

lytic replication to proceed. Indeed previous studies could only achieve a m.o.i of 

0.003. As a result the first selective pressure employed for the establishment of the 

quiescence model was serum starvation which synchronizes confluent cultures into 

the g0 quiescent phase, where the cells have left the cycle and stopped dividing thus 

limiting kinase pathway and metabolic activity to basal levels creating a less 

favourable environment for efficient viral replication. This non dividing state may 

resemble the low metabolic state of neurons which are the primary environment for 

the establishment of latency in humans. When experiments were conducted to answer 

whether serum starvation was required for the establishment of quiescence, the 

selective pressure was removed from the quiescent model protocol and cells were 

infected at elevated temperature in medium containing 5% normal serum, upon which 

it was discovered that although replication was suppressed, some Us11 was observed 

at 48 hours post infection and low level viral replication was observed at 72 hours 

postinfection, illustrated by small areas of CPE. This suggested that a mix of quiescent 

and replicating viruses were present, likely reflecting the mixture of dividing and 

nondividing cells present in unstarved cultures and signifying that temperature 

elevation alone is not sufficient to suppress lytic replication and that a restricted 

metabolic environment is required for maximal non productive infection (Figure 

3.1.16,  3.1.15). 

 

The second selective pressure employed to establish our quiescence model was 

temperature elevation. As mentioned previously, during latency of herpes simplex 

virus type 1, the latency associated transcript (LAT) 2-kb intron is expressed, this 

intron is excised from the larger (10kb) precursor primary transcript. During infection 

of neuronal cells with HSV that express LATs, it was observed that their presence 

increase the accumulation of the Hsp70 protein. This HSP has molecular chaperone 

activity and regulates processes involved in protein biogenesis e.g stabilization of 

unstable misfolded proteins, localisation of proteins to particular cellular 

compartments and control of the switch between active/inactive protein conformation 

(Whitley, Goldberg & Jordan 1999). It has therefore been hypothesised that Hsp 

overexpression during infection may be used by the virus to increase the viability of 

the infected cells during the establishment of a latent infection. 
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Considering that LAT expression is inefficient in quiescently infected rat neuronal 

and human fibroblast cultures, in addition to many neuronal cells in vivo, it is likely 

that the induction of Hsp expression by temperature elevation may allow for increased 

cell viability during infection with HSV-1. In our model the over expression of Hsp27 

and Hsp70 was successfully achieved by temperature elevating NHDF cultures for 30 

hours at 41°C despite the metabolic suppression of serum starvation (Figure 3.1.2). 

Western blot analysis showed Hsp27 and Hsp70 expression was up-regulated 

compared to mock infected or infected cells at 37°C and no increase in the expression 

of the control protein PABP was observed. Critically, the infection of cells at 41°C 

did not alter the degree of Hsp expression relative to mock infected cells. Whether 

Hsps are truly important for protecting cells during the establishment of quiescence 

could be tested in future experiments by siRNA-mediated knockdown of Hsps or the 

use of inhibitors of Hsp function such as Geldanamycin. 

 

Although temperature elevation induces heat shock proteins, it also has the added 

benefit of suppressing HSV-1 replication. Temperature elevation had no inhibitory 

affect on entry into the cell or the expression of ICP4. However, unlike cells infected 

at 37°C, where virus replicated efficiently and subsequently spread to 100% of the 

culture by 24h postinfection, the percentage of cells expressing ICP4 at 41°C 

remained static (Figure 3.1.3, 3.1.4), which suggested that the virus was unable to 

replicate at elevated temperature. Measuring the amount of infectious virus in cultures 

at either temperature validated that virus was being actively synthesised in cells 

infected at 37°C while only minimal amounts of infectious virus were detectable in 

cultures at 41°C over the first 24 to 48 hours (an observation seen previously in 

neuronal cell systems (Su et al., 1999). This was also evident in the small amounts of 

Us11 produced at 41°C in the first 48 hours. This production of virus became 

undetectable by 72 hours postinfection (Figure 3.1.5) validating that as long as 

cultures were maintained at 41°C, the infection was maintained in this nonproductive 

state. This was further confirmed by metabolic labelling that monitored population-

wide changes in protein production during entry into a nonproductive state. The 

experiment illustrated that at 12 hours postinfection, cells infected at 41°C 

differentially expressed a small number of proteins that due to their size and 

comigration with viral proteins in lytically infected cultures most likely represent viral 

polypeptides. By 24 hours postinfection, synthesis of these proteins had begun to 
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diminish, and by 48 hours postinfection they became undetectable relative to cultures 

infected at 37°C (Figure 3.1.6). Notably, many of the viral proteins normally 

characteristic with productive infection were not synthesized in cells infected at the 

elevated temperature, suggesting that they were either not produced or were made at 

levels below detection. In addition, at no point did infection at the elevated 

temperature alter host cell protein synthesis patterns or elicit the shutoff of host 

translation associated with lytic replication, a well known phenomena of HSV-1 

infection which is facilitated by the viral proteins VHS protein and ICP27 (Feng, 

Everly & Read 2001; Taddeo, Zhang & Roizman 2010) These results suggest that as 

the quiescent infection progressed, the synthesis of viral proteins declined and 

production of progeny ceased, seemingly indicating that the virus was entering into a 

non productive state and agrees with previous reports showing that elevated 

temperature suppress lytic replication provided the infection has not proceed past the 

stage of genome replication stage (Crouch, Rapp 1972). 

 

As mentioned previously the many clinical isolates of HSV-1 vary with regard to their 

neurovirulance and pathology. The question of whether alternate strains of HSV-1 

could be coerced to a state of non productive infection using this system was 

answered in figure 3.17 and 3.18. When cultures which were treated as outlined in the 

models protocol were infected with the Patton strain of HSV-1 it was shown that 

although serum starvation and temperature elevation of cultures to 41°C repressed 

viral replication, some replication was observed. This phenomena was prevented by 

increasing the temperature to 42°C and it was found that virus was recoverable from 

quiescence as evident by tittering experiments performed (Figure 3.1.18). The exact 

reason for this requirement is unknown, but Patton is known to be a more temperature 

insensitive strain than Kos, which further supports the theory that temperature 

elevation suppresses HSV-1 replication and this degree of suppression can vary 

depending on the strain used. To illuminate the reasons for this occurrence, an 

analysis of the production of immediate early, early and late antigens produced by 

Patton at both 41°C and 42°C may indicate whether the expression of specific Patton 

strain proteins are less sensitive to temperature elevation thus making the lytic 

programme of the Patton more resistant to suppression relative to the Kos strain. 

Another possibility is that Kos ICP4 may be more sensitive to elevated temperature 

than the Patton strain, thus altering its transactivating capacity at a lower temperature. 
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This could be possibly tested by electrophoretic mobility shift and Chromatin 

immunoprecipitation assays. 

 

4.1.1 Protein production and entry into quiescence. 

 

The four bands initially visible at the 12 hour point post-infection at 41°C sample 

(Figure 3.1.6) were suspected to be viral antigens and western blotting with antiserum 

directed against an array of viral IE proteins confirmed that viral antigens were being 

robustly produced at 37°C whereas at 41°C the accumulation of viral antigens was 

greatly repressed relative to the 37°C infection (Figure 3.1.7). Although ICP4 was still 

being produced efficiently at 41°C, the production of the critical regulator of lytic 

replication ICP0 was highly suppressed relative to a normal lytic infection, whereas 

ICP22 was produced but not posttranslationally modified, which suggests that 

infection was impeded at an early stage of the viral life  cycle. Additionally the Us11 

protein which is an indicator of viral progeny production was only visible in minute 

quantities on the blots taken, signifying low level lytic replication, an observation 

confirmed by immunofluorescence analysis of another late antigen, ICP5 which 

showed at 24 hours post infection that cultures infected at 37°C expressed extremely 

high levels of ICP5 (100% of culture), whereas an average of only 15% of cells 

infected at 41°C faintly expressed ICP5 at very low levels. Whether these cells 

eventually died from productive infection or survived due to the level of lytic antigen 

production being below the threshold of cellular tolerance remains unknown, but as 

no large scale CPE or accumulation or cell debris was found in these cultures it was 

unlikely that these cells harbour robust lytic infection. 

During lytic infection, the viral transcription factor VP16 binds to cellular 

transcription factors HCF and OCT-1 to initiate immediate early gene expression. In 

cells lacking HCF and OCT-1, HSV-1 infects poorly (Wysocka, Herr 2003; Nogueira 

et al., 2004). Interestingly during entry into quiescence, IE genes such as ICP4 were 

being produced abundantly throughout the first 48 hours (Figure 3.1.7) and when 

samples taken from a 6 day infection at 41°C were analysed it was found that residual 

ICP4 was present. The presence of ICP4 indicates that either ICP4 was continually 

synthesized at low quantities or was proteolytically stable in cells quiescently 

infected. This result agrees with previous reports showing that low levels of ICP4 
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transcript are detected in mouse ganglia latently infected with HSV-1 (Kramer, Coen 

1995) and seems to indicate that Vp16 may be functionally active at elevated 

temperature. Taking this into consideration, an understanding of how these cells allow 

for the production of some immediate early genes while suppressing ICP0 production 

may provide some important mechanistic understanding into how certain host cells 

prevent HSV-1 from productively replicating. This may involve heat shock responses 

that regulate (NF)-kappa B which controls ICP0 expression (Amici et al. 2006). 

Another mechanism by which lytic replication may be prevented is the fact that 

ICP22 is being produced but not processed. ICP22 is a protein 420-amino-acids in 

length and is encoded by the α22 gene and is required for regulation of early and late 

gene expression. The α22 gene is not required for replication in permissive Vero and 

HEp-2 cell lines, but α22− mutant viruses replicate inefficiently in restrictive primary 

human fibroblasts (Post, Roizman 1981; Meignier et al., 1988). Interestingly, in the 

restrictive cells, the mutant HSV-1 strain R325 which lacks the carboxyl-terminal 220 

codons of the α22 gene exhibits a reduction of ICP0 and of Us11 mRNA and proteins 

(Purves, Ogle & Roizman 1993). During the early stages of infection, ICP22 localizes 

in punctuate nuclear structures. Upon the onset of viral DNA synthesis, ICP22 

colocalizes in infected nuclei with ICP4, viral DNA, RNA polymerase II, and the 

small cellular protein EAP. This localisation requires the presence of the functional 

HSV-1 protein kinase encoded by the UL13 gene and is required for optimal late-gene 

expression (Purves, Ogle & Roizman 1993; Leopardi et al., 1997). During the 

procession of lytic infection ICP22 is extensively modified. These modifications 

include phosphorylation by the viral protein kinases Us3 and UL13 (Post, Roizman 

1981; Purves, Ogle & Roizman 1993) and nucleotidylylation by casein kinase II 

(Blaho, Mitchell & Roizman 1993; Mitchell, Blaho & Roizman 1994; Mitchell et al., 

1997). A recombinant virus carrying a deletion in the UL13 gene was found to be 

similar to R325 with respect to several properties. Studies of the UL13− virus in 

restricted cells led to the conclusion that the phosphorylation of ICP22 is necessary 

for the functions described above. At least one of the sequences required for 

posttranslational modification of ICP22 maps in the carboxyl-terminal domain of 

ICP22. Therefore it is interesting to note that the lack of ICP22 posttranslational 

modification observed in cultures infected at elevated temperature may also play a 

role in the repression of ICP0 synthesis. Indeed, ICP22 has been shown to 
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downregulate ICP0 expression in cotransfection assays where increasing amounts of 

the ICP22 expression vector, and unprocessed ICP22 protein, resulted in loss of ICP0 

expression (Bowman et al., 2009). 

4.1.2 Controllable and spontaneous reactivation of quiescent infection. 

Of the characteristics exhibited by the virus during infection at elevated temperature, 

the failure to efficiently process ICP22 and the robust inhibition of ICP0 production 

(Figure 3.1.7) were likely the primary events hindering the establishment of 

productive infection. During a normal productive infection the IE protein ICP0 

disrupts nuclear structures within the host cell known as ND10 or PML bodies. These 

PML bodies are then reorganised coinciding with formation of viral replication 

compartments (Chee et al., 2003; Everett, Maul 1994; Everett, Murray 2005; Everett 

et al., 2006; Ishov, Maul 1996; Gerd G. Maul 1998). 

In neuronal cell lines, infection with mutant HSV-1 that lacks ICP0 results in enlarged 

PML bodies and the formation of a quiescent infection (Hsu, Everett 2001; Hsu, 

Everett 2001). PML structures are also known to become enlarged in human 

fibroblast lines when infected with HSV-1 mutants that lack IE gene products 

including ICP0. Interestingly, during infection at elevated temperature PML structures 

were also observed to be enlarged (Figure 3.1.24).  

Although the capacity of the repressive culture conditions to prevent lytic replication 

was clear, there was a concern that the virus might be inactived. ICP0 is a critical 

regulator of lytic replication and reactivation from quiescence, whereby it acts as a 

promiscuous transactivator that functions in the nucleus to enhance the expression of 

genes by degrading and dispersing repressive ND10 bodies (Everett et al., 2006; 

Everett, Chelbi-Alix 2007). Its low level production at 41°C likely contributes to the 

failure to lytically replicate. Demonstrating that the virus was not inactivated and 

could indeed be coerced back into productive infection even after 6 days of 

quiescence was recovery by transduction of cells with an Adeno viral vector encoding 

ICP0 (Figure 3.1.13). This was evident in robust production of Us11 at levels 

comparable to a 37°C lytic infection of identical multiplicity. In addition, viral titering 

experiments showing that the yields of infectious virus from ICP0-transduced cultures 

that had been quiescently infected for either 3 or 6 days were equivalent to those from 
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cells infected at 37°C and harvested at 48 hours postinfection. Phase contrast imaging 

also showed extensive CPE in cultures that had been quiescently infected for 6 days 

and reactivated with ICP0, demonstrating that the virus could be robustly reactivated 

in a controlled manner upon exogenous addition of ICP0 (Figure 3.1.14). 

Whereas exogenous expression of ICP0 caused reactivation of virus, exogenous 

expression of ICP4 could not reactivate quiescent virus above spontaneous levels in 

our system as evident by metabolic labelling experiments which showed a primarily 

cellular pattern of protein synthesis (Figure 3.1.19). This result was further supported 

by phase contrast imaging of quiescent cultures treated with either ICP0 or ICP4 

vectors which illustrated that the extensive CPE in ICP0 reactivated cultures was 

absent in quiescent cultures treated with ICP4 (Figure 3.1.20). Additionally western 

blot analysis of Us11 from various quiescent cultures treated with either ICP0, ICP4 

or medium alone showed that in cells harbouring quiescent virus that were transduced 

with ICP4 vector, the levels of Us11 expression were similar to quiescent cultures 

treated with medium alone (Figure 3.1.22).  This was as expected as ICP4 was already 

being expressed in quiescent cells (Figure 3.1.12). In agreement with these results are 

previous reports describing the inability of exogenous expression of ICP4 to 

reactivate quiescent HSV in human cell line models (Harris et al., 1989; Zhu et al., 

1990; Harris, Preston 1991; Arthur et al., 2001).  

In the past, the degree of viral genome repression has been observed to vary 

depending on the cell type used. Reports have shown that although ICP0 is the most 

efficient at causing reactivation, both ICP4 and VP16 also have the capacity to 

reactivate virus in neuronal lines (Halford et al., 2001). Also, it has been shown that 

various stress-inducing agents can reactivate virus in certain neuronal models. 

Conversely, human fibroblast models are resistant to most reactivation stimuli with 

the exception of ICP0. This information has led to the suggestion that viral genomes 

can be suppressed to varying degrees, as it seems that human fibroblasts maintain 

HSV-1 in a more repressed state than non human neuronal cell lines. To date our 

findings are in line with these previous reports. 

Although exogenous expression of ICP0 caused the recovery of virus, spontaneous 

reactivation of virus could be also initiated by removal of the cells from the selective 

pressures of serum starvation and temperature elevation. Interestingly, low level 
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spontaneous reactivation has also been reported previously in quiescent systems. 

Additionally, low levels of viral production in rabbit ganglia causes shedding of virus 

which is contained by host immunity and asymtomatic shedding routinely occurs in 

infected humans (Feldman et al., 2002; Margolis et al., 2007). Therefore our results 

with regard to low level reactivation in cultures removed from their selective 

pressures likely reflect the natural dynamic state of HSV-1 in-vivo where the virus is 

spontaneously produced at low levels, but is continually prevented from causing a 

large scale productive infection by the hosts immunity. In agreement with this 

hypothesis is the fact that when quiescently infected cultures were removed from 

elevated temperature and maintained in 5% human serum that contains neutralizing 

antibodies, spread of virus from this small population undergoing spontaneous 

reactivation was prevented (Figure 3.1.23). 

The main motivation in designing a quiescence model was to characterize what 

bearing HSV-1 quiescence and reactivation has on cellular processes such as cell 

signalling and translation. For our model to be able to detect cellular changes caused 

by the virus at various stages of its life cycle, the majority of the culture needed to be 

harbouring quiescent virus which could be viably reactivated. Through the use of 

Human serum during reactivation it was possible to reactivate virus and drastically 

reduce secondary spread of the virus to uninfected cells. This approach allowed for a 

more accurate quantification of cells harbouring reactivating virus. From results 

illustrated in figure 3.1.22 it was shown that when virus was reactivated in the 

presence of Human serum there was a reduction in the amount of Us11 accumulation 

relative to cultures reactivated in normal serum. This along with metabolic labelling 

showing that cultures reactivated in human serum had an amalgam of cellular and 

viral proteins being expressed simultaneously suggested that secondary spread was 

indeed being suppressed. This allowed us by indirect immunfluorescence to quantify 

that 40- 60% of the culture was harbouring reactivating virus. Therefore this model 

provides an amenable tool to study wild type HSV-1 quiescence in human cells, 

whereby the relatively simple selective pressures of serum starvation of primary 

normal human diploid fibroblasts and temperature elevation results in inhibition of 

productive infection and the establishment of quiescence. Importantly, the model can 

use different strains of HSV-1 with the proviso that the correct elevated temperature 

must first be elucidated to inhibit replication. In addition, as the majority of the 
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culture can be quiescently infected without causing cellular stress, this allows for 

population-wide scale occurrences to be readily detectable by experimentation. 

Furthermore, the use of human serum allows for the reduction of secondary spread of 

virus post reactivation. Consequently, this feature of the system therefore confers the 

capacity to differentiate between events associated with reactivation from those 

related to secondary spread of the virus. As such, this approach can be used to 

illuminate the mechanistics controlling the various stages in the life cycle of HSV-1. 
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4.3 The role of host signalling in reactivation: 

The control of cell signalling pathways during viral replication is of paramount 

importance to the resulting fate of viruses within the host cell. During HSV-1 lytic 

infection, the activation of the p38 mitogen-activated protein kinase (MAPK) 

signalling pathway is onserved. This MAPK pathway is known as a stress-activated 

protein kinase (SAPKs) due its involvement in controlling cellular responses to 

various types of stress. Studies have discovered that p38 becomes activated as early as 

3 hours postinfection during the initial stages of HSV-1 lytic infection and peaks at 

about 6 to 8 hours postinfection (McLean, Bachenheimer 1999). The activation of this 

SAPK signalling pathway appears to be important for normal viral replication since 

the presence of the pharmacological inhibitor p38 leads to a large drop in viral yields 

wheb cells are infected at low multiplicity but has little impact when large input doses 

of virus are used (Walsh, Mohr 2004). The timing of the p38 activation suggested that 

an IE gene product might be responsible for initial p38 stimulation as IE proteins are 

present at high levels at 3 hours postinfection. Consistent with this are studies which 

have shown that ICP27 is required in the context of viral infection for activation of 

the SAPK pathways (Hargett, McLean & Bachenheimer 2005). While host p38 

signalling pathways exploited by Herpes Simplex Virus type 1 during lytic replication 

are relatively well characterized, little is known about kinase pathway activation 

during reactivation from the non-productive state of quiescence. Considering that 

viruses manipulate protein kinase signalling networks within host cells for the 

primary purpose of hijacking critical cellular functions to facilitate their replication, it 

was decided to characterize the activities the ERK and P38 kinase pathways during 

HSV-1 quiescence and reactivation from quiescence using the model described in 

figure 4.1. 

4.2.1 The role of ERK and p38 in HSV-1 reactivation 

To characterize the activities of these pathways during reactivation it was required to 

pinpoint the moment of viral reactivation subsequent to ICP0 transduction. A kinetic 

analysis of reactivation was illustrated by metabolic labeling and showed that while at 

34 hours post transduction cells were producing primarily cellular proteins, there were 

four bands visible which migrated to areas of the gel where viral proteins are observed 

in cultures supporting complete reactivation at 48 hours post infection (Figure 3.2.1). 
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Upon analysis of viral antigen expression at various timepoints post reactivation, it 

was found that by 24 hours, ICP0 was not being produced in either the quiescent or 

reactivated cultures and levels of ICP4 in the reactivated cultures were similar to 

those observed in quiescently infected cultures (Figure 3.2.2), indicating that the virus 

had not yet reactivated. The fact that ICP4 was expressed during quiescence 

correlated with the results garnered in (Figure 3.1.12). At 34 hours post reactivation, 

there was robust ICP0 accumulation which coincided with the expression of 

immediate early ICP4 and processed ICP22. This, along with expression of the leaky 

late protein ICP5 suggested that the viral genomic replication was progressing, and 

when Us11 was analyzed it was found that small amounts of these proteins were 

already being produced. By 48 hours post reactivation all viral antigens analyzed were 

being robustly expressed. These results suggested that the initial processes of 

reactivation occurred upon ICP0 production somewhere between 24 and 34 hours post 

reactivation (Figure 3.2.2). It was likely that the population of quiescent virus 

reactivated in a relatively synchronous manner as immunofluorescence analysis of 

reactivating cultures showed no viral antigen staining at 24 hour post reactivation 

whereas by 30 hours post transduction approximately 40% of the cultures were 

expressing both ICP4  and ICP5 (Figure 3.2.3).  

With at least 40% of the culture reactivating by 30 hours post infection, it was 

possible to observe changes in signalling activities for the duration of the initial stages 

of reactivation. Western blot characterization of p38 and ERK activity in quiescent 

cultures showed that although p38 was unaffected, surprisingly ERK activity was 

suppressed relative to mock infected cultures suggesting that quiescence has a 

suppressive effect on this pathway. Conversely, in reactivated cultures it was found 

that MEK-ERK signalling was modestly stimulated during reactivation from a non-

productive state at the 34 hour time point. As the reactivation progressed ERK activity 

was suppressed and p38 stimulated most likely due to the production of ICP27 (Gillis, 

Okagaki & Rice 2009; Hargett, McLean & Bachenheimer 2005). The maintenance of 

ERK activity at early stages of infection was surprising given it has no role in HSV-1 

lytic replication, as NHDFs that had been subjected to a mock quiescent infection i.e 

serum starvation and temperature elevation prior to a lytic infection at 37°C showed 

that ERK activity was not required and was in fact repressed during lytic replication 

(Figure 3.2.5). This result was in agreement with previous reports which have shown 
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that the activity of host MEK-ERK signalling pathways are stifled during lytic 

infection within a number of cell lines and ERK inhibitors do not suppress lytic 

replication (McLean, Bachenheimer 1999; Walsh, Mohr 2004; Sloan et al., 2006; 

Santamaría et al., 2009). 

These differences in MEK-ERK signalling activities during lytic replication, 

quiescence or reactivation from quiescence suggested that distinct contextual 

requirements exist for ERK depending on the stage of HSV-1 infection. This was 

confirmed when quiescent virus was controllably reactivated by Ad-0 transduction in 

the presence of either MEK-ERK or p38 pathway inhibitors to see what affects these 

drugs would have on viral antigen accumulation.  

The presence of U0126 caused a reduction of ICP5, ICP22 and Us11 at both 34 hours 

and 48 hours post transduction whereas SB203580 had no effect on antigen 

accumulation (Figure 3.2.7). This reduction of antigen accumulation by ERK 

inhibition was also seen in cells reactivated in the presence of human serum 

containing neutralizing antibodies, indicating that the reduction observed was not 

caused by a inhibition of secondary spread to uninfected cells within the culture 

(Figure 3.2.10). 

The capacity of U0126 to suppress viral reactivation was also confirmed by 

immunofluorescence which showed that the amount of cells staining positive for both 

ICP5 and ICP4 was reduced in cultures reactivated in the presence of U0126 relative 

to cells reactivated in the presence of DMSO (Figure 3.2.8). Additionally, it was 

discovered that when viral progeny production was quantified from Ad-0 reactivated 

cultures, in contrast to SB203580, U0126 caused a 20 fold reduction of virus 

production compared to DMSO treated samples (Figure 3.2.9).  

 

Whereas controllable reactivation is facilitated by transduction with adeno viral 

vectors coding for ICP0, a key feature of our quiescence model was that it also 

allowed the study of spontaneous reactivation, which most likely reflects more 

accurately the processes of reactivation in-vivo. This aspect of the model also allowed 

us to discount that the suppression observed was not due to a defect in Ad-0 

transduction caused by UO126.  Consequently, the affect of ERK inhibition on viral 

accumulation was investigated and was found to have an even more robust effect on 

spontaneous reactivation than controllable reactivation (Figure 3.2.12). Spontaneous 
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reactivation of HSV-1 in cells treated with either inhibitor showed that expression of 

both ICP0 and Us11 was reduced by both U0126 and SB503580. Furthermore it was 

found that U0126 significantly reduced spontaneous reactivation relative to DMSO 

with a 1200 fold reduction of infectious progeny and SB508230 had a 1000 fold 

reduction (Figure 3.2.13). In addition, immunofluorescence analysis illustrated that 

ICP5 expression was not evident in cultures reactivated in the presence of U0126 or 

SB203580 (Figure 3.2.14). 

Although HSV-2 encodes ICP10, a ribonucleotide reductase (R1) protein that blocks 

apoptosis in cultured hippocampal neurons by activating the extracellular signal-

regulated kinase (ERK) survival pathway (Perkins et al., 2002) no reports have shown 

that its homologe in HSV-1 (ICP6) has a similar effect on ERK signalling. Whether 

an as-yet unidentified viral protein can activate ERK specifically during the 

reactivation process is unclear, but it is likely that the ERK phosphorylation observed 

at 34 hours post reactivation reflects metabolic changes in the host cell during 

reactivation of the dormant viral genomes. Interestingly, microarray studies have 

shown that the onset of HSV-1 reactivation elicits a wide range of responses in the 

host cell, identifying MAPKs, including ERKs as being rapidly induced upon 

reactivation in ganglia explanted from latently-infected animals (Singer et al., 1998; 

Tsavachidou et al., 2001; Hill et al., 2001; Kent, Fraser 2005; Schang, Bantly & 

Schaffer 2002). These reports would seem to suggest that cellular responses are 

exploited by the virus to facilitate early events in the reactivation of the repressed 

genome. Indeed, during reactivation of HSV-1 within explanted ganglia both Cdk1/2 

have been shown to be induced (Schang, Bantly & Schaffer 2002). Interestingly, 

Cdk1 has recently been shown to activate ERK and studies have also reported ERK 

dependent phosphorylation of Cdk2, suggesting that complicated feedback loops exist 

between Cdk activity and ERK signalling (Lents et al., 2002; Borysov, Guadagno 

2008). Also it has been reported that the cyclin-dependent kinase inhibitor roscovitine 

inhibits the transactivating activity and alters the posttranslational modification of 

ICP0 (Davido, Leib & Schaffer 2002). Additionally, ERK activity  has been shown to 

be involved in the reactivation of other herpes viruses (Chang et al., 2006; Ford et al., 

2006; Fahmi et al., 2000; Fukuda et al., 2002), and a number of chemical treatments 

understood to reactivate HSV-1 both in-vitro and in vivo are known to activate ERK 

signalling (Smith et al., 1992; Frost et al., 1994; Bartoli et al., 2003; Danaher et al., 



181 
 

2005; Terry-Allison, Smith & DeLuca 2007; Wang et al., 2008). These findings 

illustrate that although the exact contributive mechanisms for HSV-1 reactivation 

remain unclear, they may be analogous to the role played by TPA mediated 

reactivation of KSHV (Cohen, Brodie & Sarid 2006). While it remains to be 

elucidated how ERK is activated, our results demonstrate its functional role in the 

initial stages of HSV-1 reactivation. 

The requirement for activated p38 during the initial stages of lytic infection has been 

demonstrated during previous studies (Zachos, Clements & Conner 1999; Hargett, 

McLean & Bachenheimer 2005; Hargett, McLean & Bachenheimer 2005). During the 

characterization of HSV-1 reactivation in this study it was found that p38 was 

activated at 34 hours post transduction with Ad-0 and this activation of p38 coincided 

with the expression of early and mid phase proteins. Although this pathway is not 

essentially required during viral replication during high multiplicity infection, it does 

play a role during low level lytic replication and spread (Walsh, Mohr 2004). In 

agreement with these previous findings, our results demonstrated that p38 did not play 

a significant role in the reactivation process under conditions of efficient reactivation 

when the culture was transduced with Ad-0. However, when spontaneous reactivation 

was allowed to occur, a process resulting in asynchronous disparate reactivation, 

where low levels of reactivation and secondary spread occurs randomly and 

inefficiently throughout the culture, it was observed that p38 inactivation resulted in 

the reduction of viral antigen accumulation and infectious virus production within the 

culture. 

This disparity between the ability of HSV-1 to replicate during controlled reactivation 

and the inability to accumulate virus during spontaneous reactivation when in the 

presence of SB203580 likely reflects the need for p38 kinase activity during low 

multiplicity lytic spread but also may be due to direct effects on virus reactivation. As 

spontaneous reactivation is a highly inefficient process compared to that of Ad-0 

mediated reactivation, p38 might play a subtle but important role in the biology of 

HSV-1 during sub optimal conditions. Indeed, p38 is activated by a variety of stimuli 

in vivo, with stress being the main contributory factor (Kumar, Boehm & Lee 2003). 

As spontaneous reactivation is a dynamic event, it is frequently occurring in vivo but 

contained by the hosts immune system thus preventing frequent symptomatic lytic 
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replication in mucosal epithelia (Feldman et al., 2002; Sacks et al., 2004; Gilbert 

2006; Margolis et al., 2007). Consequently, under conditions of physiological stress it 

is thought that a reduction in immune function alongside an increase in the efficiency 

of spontaneous reactivation can result in a greater chance of opportunistic re-entry 

into the productive stage viral replication and p38 may play a subtle but important 

role in this process. It may also be possible that the processes governing spontaneous 

and controllable reactivation differ. Indeed, the pattern of gene expression observed 

during primary lytic infection has been reported to be at variance from that of 

reactivation from quiescence (Danaher, Jacob & Miller October 2006). Additionally it 

has been observed that chemical treatments and various HSV-1 viral proteins can 

trigger reactivation both in-vitro and in-vivo (Halford et al., 2001; Miller, Danaher & 

Jacob 2006; Preston 2007), suggesting that the virus can exploit many different 

environmental cues to initiate reactivation through different routes. Indeed, evidence 

that ICP0 is not required for reactivation in vivo has been reported previously 

(Thompson, Sawtell 2006). Therefore if spontaneous reactivation occurs through a 

process which is distinct from the processes involved in ICP0 controllable 

reactivation, the fact that U0126 suppresses both spontaneous and controlled 

reactivation adds emphasis to the central importance of MEK-ERK signalling during 

HSV-1 reactivation, and possible roles for p38 in distinct processes. 

4.2.2   The role of Mnk and mTORC1 in HSV-1 reactivation. 

As described previously, HSV-1 increases mTORC1 and p38 cell signal pathway 

activities during lytic infection (Walsh, Mohr 2004; Walsh, Mohr 2006). We had also 

demonstrated that both ERK and p38 were required during spontaneous reactivation 

from quiescence. Considering that these kinases both have a function in 

phosphorylating the Mnk1 kinase which is known to phosphorylate eIF4E and 

enhances translation (Bianchini et al., 2008), we decided to inhibit Mnk and 

mTORC1, a serine/threonine protein kinase whose substrates are p70-S6 Kinase 1 

(S6K1) and 4E-BP1 during virus reactivation. By targeting both kinases we hoped 

clarify if the downstream targets of ERK, p38 and mTORC1 that regulate translation 

were required for reactivation from quiescence. 

Upon reactivation in the presence of either the Mnk1 inhibitor, CGP57380, or the 

mTORC1 inhibitor, Rapamycin, it was discovered that both kinase inhibitors 



183 
 

suppressed controlled and spontaneous reactivation from quiescence (Figure 3.2.16, 

3.2.17). Rapamycin proved to be the more potent inhibitor of the two, suggesting that 

the disruption of eIF4E-eIF4G by 4E-BP1 sequestration of eIF4E reduced 

accumulation of viral antigens and infectious progeny production during reactivation 

more so than the inhibition of eIF4E phosphorylation, and agrees with the commonly 

held understanding of eIF4E phosphorylation having a more subtle regulatory 

function compared to sequestration of eIF4E by 4E-BP. This suggested that targeting 

the formation of the eIF4F complex directly may be a viable therapeutic target in 

preventing HSV-1 viral reactivation. 
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4.3 The role of initiation factors in HSV-1 reactivation 

 

The importance of translation as an essential mechanism in the conversion of genes to 

protein for either host cells or invading viruses cannot be understated. The 

convergence of dependence is evident by the competition for translation factors 

between host cells and virus during infection. Due to this dependence on translation 

for both cell viability and productive replication of virus, questions relating to the 

suitability of targeting translation therapeutically to inhibit viral replication have 

remained unclear. Over the past decades our understanding of the mechanistics of 

translation regulation, and consequently, the affects of its deregulation has improved 

greatly. The result of this understanding has been the development of small molecule 

inhibitors which suppress translation initiation. These inhibitors have included 

Rapamycin, which binds the cytosolic protein FK-binding protein 12 (FKBP12) and 

inhibits mTORC1 (Dowling et al., 2010), Torin1, which  is a highly potent and 

selective ATP-competitive mTORC inhibitor that directly inhibits both mTORC1 and 

mTORC2 complexes and impairs cell growth and proliferation to a far greater degree 

than Rapamycin (Thoreen et al., 2009) and NSC119889, a compound that prevents the 

association of eIF2 with Met-tRNAi
Met (Robert et al., 2006). 

 

As our understanding of the detailed mechanistics of protein synthesis has increased, 

it has become apparent that mRNAs may have distinct requirements for initiation 

factors to mediate their translation.  Previous reports have shown that the degree of 

complexity in the 5’ UTRs of mRNAs may play an important role in whether their 

translation is affected when eIF4F is modulated. Structurally complex mRNAs have 

been found to be dependant on high levels of  functionally active eIF4F while 

abundant housekeeping mRNA with little 5’ UTR complexity are relatively 

insensitive to modulations in the activity of this complex (Coldwell, Morley 2006; 

Ramírez-Valle et al., 2008). Additionally, investigations into the dispensability of 

components within eIF4F have shown that many interactions within the complex are 

not required to maintain significant rates of global protein synthesis, indicating that 

this complex could play more a regulatory rather than essential role in translation 

(Hinton et al., 2007). With these developments in understanding, the potential for 

suppressing tumor growth through inhibition of eIF4F in a safe manner has gained 

recognition and driven the search for small molecules that exclusively target this 
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complex.  One of the most promising inhibitors found recently was 4EGi-1. 4EGi-1 

was discovered by high-throughput in vitro screening for molecules that can bind to 

eIF4E, and has been identified as a drug that could potentially prevent the interaction 

between eIF4G and eIF4E (Moerke et al., 2007). As cancer cells have been shown to 

rely on high rates of translation, this small molecule inhibitor has been proposed as a 

potential anti cancer drug.  

 

Given recent findings which showed that DNA viruses stimulate eIF4F we wanted to 

test the effects of 4EGi-1 on viral replication (Walsh, Mohr 2004; Walsh et al., 2008; 

Arias et al., 2009; Castella et al., 2009). However, the potential effects of 4EGi-1 with 

regard to ongoing translation in normal cells had not been investigated and therefore 

must be considered if it is to be used therapeutically. With this in mind we 

endeavoured to investigate the effects of translation inhibition with regard cell stress 

tolerance, cell viability and finally what effect this drug had on replication of both the 

HSV-1 and Vacinna virus.  

 

During our initial characterisation of 4EGi-1, metabolic labelling experiments of cells 

which had been treated with increasing concentrations of 4EGi-1 showed that the 

effective concentration to suppress translation below detectable levels was between 30 

and 50µM. This concentration was much lower than that used in previous reports 

which showed that concentrations between 50 and 100µM and even higher were 

needed to disrupt eIF4F complex formation (Moerke et al., 2007; Fan et al., 2010). 

The characterisation of initiation factor abundance and of the activity of cell 

signalling pathways which impart translational control illustrated that 40µM 4EGi-1 

does not alter the levels of eIF4E, PABP or eIF4G and both the Mnk regulating 

kinases: ERK and p38 pathways remain unaffected during translational suppression 

(Figure 3.3.2). Interestingly the mTOR substrate: p70S6K, was slightly stimulated and 

may represent a failsafe mechanism whereby when translation is suppressed to below 

a certain threshold a feedback loop involving mTOR is activated. In agreement with 

this explanation is a report showing that upon cycloheximide treatment mTOR1 

signalling is activated and that the change in mTOR signalling was inversely 

proportional to alterations in the expression of the short lived mTORC1 repressor, 

REDD1 (Kimball et al., 2008). In addition to p70S6K activation, a small increase in 

the phosphorylation of 4E-BP1 was also observed. The fact that p70S6K was more 
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stimulated than 4E-BP1 could be due to the fact that 4EGi-1 was reported in the initial 

characterisation paper to cause an accumulation of 4E-BP1 on eIF4E. This tripartate 

interaction may prevent 4E-BP1 phosphorylation and thus explain why one substrate 

of mTOR1 is more phosphorylated than the other. In addition, the regulator of global 

translation initiation (eIF2α) was assessed and found to have a phosphorylation 

profile identical to DMSO treated samples. This along with the absence of p38 

activation suggested that even though the cells were translationally suppressed, 

cellular stress was not occurring. 

 

eIF4E phosphorylation was also analysed as an indicator of 4EGi-1’s capacity to 

prevent eIF4E/ eIF4G binding and iso-electric focusing demonstrated that 4EGi-1 had 

no effect on eIF4E phosphorylation (Figure 3.3.2). This result indicated that eIF4E/ 

eIF4G binding was still occurring and during subsequent cap pull-down experiments 

in both NHDF and Hela cells it was shown that 4EGi-1 did not prevent eIF4E/ eIF4G 

binding to any large degree. 

 

4EGi-1 at concentrations sufficient to inhibit global translation was found to modestly 

stabilize the interaction of 4E-BP1 with eIF4E but did not affect the binding of eIF4G 

to any significant degree (Figure 3.3.3). In line with these data are numerous studies 

which have shown that modest changes in 4E-BP1 binding to eIF4E are insufficient to 

elicit changes in eIF4F levels in many cell types, including NHDFs (Walsh, Mohr 

2004). This is most likely due to the differences in the relative amounts of each of 

these proteins. In agreement with this was the fact that high 4EGi-1 concentrations 

were previously reported necessary to achieve notable eIF4F disruption (Moerke et 

al., 2007). During our initial experiments, disruption of eIF4F was evident in NHDFs 

at higher 4EGi-1 concentrations but was coincident with the onset of cytotoxicity. 

Therefore it is unknown whether the drug was disrupting eIF4F or if the disruption 

observed was due processes associated with cell death. Taken together our findings 

demonstrated that 4EGi-1 suppressed translation at concentrations below the 

concentrations needed to cause a disruption to eIF4F. .Indeed, a reduction of eIF4F 

levels does not necessarily confer a reduction of translation rates in cells, as during 

cap pull-down analysis of initiation complexes from cells which had been treated with 

Torin1, it was found that Torin1 treatment caused a robust dephosphorylation of 4E-
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BP1 in input samples, which correlated with a large increase in the association of 4E-

BP1 with eIF4E and an associated loss of eIF4E-eIF4G binding, resulting in a robust 

disruption of eIF4F. However, Torin1 only had a modest effect on translation rates 

relative to 4EGi-1 treated NHDF and Hela cells (Figure 3.3.6) and was consistent 

with  recent reports which documented the effects of Torin1 on eIF4F and viral 

protein production in Herpesvirus infected cells (Moorman, Shenk 2010). These 

results seem to indicate that when 4EGi-1 is used at the lower concentrations it may 

confer small fluctuations in eIF4F at undetectable levels, which may have specific 

effects on the translation of structurally complex mRNAs (Moerke et al., 2007), but 

the powerful effects of this inhibitor on global translation appear to be largely caused 

by an alternative mechanism independent of the eIF4E-eIF4G interaction. 

 

It was shown in previous reports that 4EGi-1 disrupted eIF4F complexes in vitro and 

in vivo, but at relatively high concentrations (Moerke et al., 2007; Fan et al., 2010). 

Although a number of properties of this compound were elucidated during its initial 

characterization, questions of whether 4EGi-1 may have auxiliary effects on the 

processes of translation arose due to the facts that it inhibited translation and reduced 

the growth of cell lines at concentrations lower than those required to disrupt eIF4F. 

Additionally, 4EGi-1 affected the translation of mRNAs containing reporter 

constructs which employ Internal Ribosome Entry Sites from Encephelomyocarditis 

Virus (EMCV) or Hepatitis C Virus (HCV) and therefore do not require eIF4F but did 

not affect the translation of a mRNA containing the Cricket Paralysis Virus (CrPV) 

IRES, which is distinct from both the EMCV and HCV IRES elements in that it drives 

ribosome recruitment and translation initiation in a manner that is independent of both 

eIF4F and eIF2 (Sarnow, Cevallos  2005; Wilson et al. 2000). 

 

We therefore examined the levels of other components of the translation initiation 

complex that forms on eIF4F. It was found that 4EGi-1 had no effect on the 

abundance or association of eIF3A, a component of the functional core of the eIF3 

complex (Masutani et al., 2007), but did increase the binding of the 40S ribosomal 

protein, RPS3. In addition to the aforementioned proteins, eIF2α was examined due to 

its central role in regulating global protein synthesis. Similar to whole cell extracts 

(Figure 3.3.2), input samples demonstrated that 4EGi-1 did not induce eIF2α 

phosphorylation (Figure 3.3.3). However, large amounts of phosphorylated eIF2α 
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were found in complexes isolated from 4EGi-1-treated cultures. Overall these 

findings suggested that this compound increased the association of ribosomal 

complexes containing phosphorylated inactive eIF2 with eIF4F. 

 

A recent report demonstrated that 100µM 4EGi-1 inhibited translation in HeLa cells 

with only a small induction of cellular stress over an 8 hour period, but the levels of 

eIF4F complex formation were not investigated (Mokas et al., 2009). We therefore 

treated HeLa cells with 60µM 4EGi-1 and first confirmed that this concentration also 

suppressed translation. Subsequently it was found that the composition of initiation 

complexes in HeLa cells treated 60µM 4EGi-1 for  4 hours were  similar to the those 

found  in NHDFs, the levels of translation initiation factors and RPS3, as well as the 

phosphorylation of eIF2α in input samples remained unaffected in 4EGi-1-treated 

samples (Figure 3.3.4), whereas analysis of 7-Methyl GTP-bound complexes 

demonstrated that 4EGi-1 had no significant effect on the association of eIF4E with 

eIF4G, or with eIF3A, but did increase the association of RPS3 and phosphorylated 

eIF2α, suggesting that phosphorylated eIF2α accumulation was not cell-type specific. 

This effect was also observed in samples treated with 4EGi-1 purchased from an 

independent source (Figure 3.3.5), demonstrating that the effects were not limited to 

4EGi-1 sourced from Calbiochem. 

 

While the exact mechanisms behind the accumulation of phosphorylated eIF2α 

remain unclear, this occurrence may explain how 4EGi-1 inhibited the translation of 

mRNAs containing reporter constructs driven by Encephelomyocarditis Virus 

(EMCV) or Hepatitis C Virus while being unable to prevent translation of mRNA’s 

containing the Cricket Paralysis Virus (CrPV) IRES. It also may explain why this 

inhibitor supresses translation and reduces growth in cells at relatively low 

concentrations. Indeed, a previous report has shown that 4EGi-1 potently inhibited 

global translation in HeLa cells and resulted in the accumulation of 80S ribosomes, 

which was not observed when eIF4E levels were experimentally reduced (Mokas et 

al., 2009). 4EGi-1 may cause defects in the dissociation and recyling of both eIF4 and 

eIF2 that normally occurs during ribosome assembly and translation initiation, or 

alternatively may increase the abundance of inactive eIF2-bound ribosomes. Potential 

effects on correct eIF2 translocation and release during the formation of the 80S 

ribosome and the onset of translation might also fit with the polysome profiles of 
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Mokas and colleagues (Mokas et al., 2009). While it remains to be determined how 

4EGi-1 mediates this effect, it may be analogous to how 4EGi-1 stabilizes the eIF4E-

4EBP-1 interaction. This finding offers an explanation why this inhibitor affects 

global translation and cell growth at concentrations below those needed to disrupt 

eIF4F. As such, this is an important functional consideration if 4EGi-1 is to be 

considered a as tool to study eIF4F as a therapeutic agent.  

 

During the initial characterisation it was observed that extensive dialysis of 4EGi-1 

reverses its interaction with eIF4E, but the reversibility of its effects on translation 

had not been examined (Moerke et al., 2007). During our investigations we 

discovered that translation was restored in NHDFs upon removal of 4EGi-1 as 

illustrated in figure 3.3.10, which shows the amount of [35S]-Methionine/Cysteine 

incorporated into proteins increased with increasing labelling time and was potently 

reduced in the continuous presence of 4EGi-1. However, in cultures where the 

inhibitor had been washed out, only a very small reduction in [35S]-

Methionine/Cysteine incorporation was observed after 10 minutes labelling, while 

after 30 minutes no significant differences were observed (Figure 3.3.5),, illustrating  

that the effects of 4EGi-1 were very rapidly reversible in cultured cells. Given the 

reversibility of effects on translation upon 4EGI-1 removal we examined whether its 

effect on RPS3 and eIF2α association with cap complexes were also reversible and 

found that the increased association of RPS3 and phosphorylated eIF2α was also 

reversed when 4EGI-1 was omitted from buffers during the final wash stages of the 

assay after recovery of cap-bound initiation complexes. Overall, these findings 

demonstrate that the effects of 4EGi-1 on both cellular translation and the 

composition of initiation complexes are rapidly reversible upon drug removal. 

 

As 4EGi-1 had no obvious effects on NHDF morphology after 1 day, we then 

examined more prolonged exposure to this inhibitor. Previous studies demonstrated 

that 4EGi-1 inhibited cell growth or induced apoptosis in different cell types over 3-7 

day periods (Moerke et al., 2007; Tamburini et al., 2009), suggesting that this 

inhibitor is relatively stable in culture. In agreement with these reports, when low 

density cultures of NHDFs were treated with 40µM 4EGi-1 it was found that the drug 

completely inhibited cell growth at least 3 days (Figure 3.3.11). When samples were 
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metabolically labelled after 4 hours, 1 day and 8 days, TCA precipitation 

demonstrated that rates of translation were reduced to 5% of control samples by 3-4 

hours post-treatment while continued exposure to 4EGi-1 further reduced rates to 1% 

of control samples at the 8 day time point. The degree and global nature of 

translational suppression at 8 days post-treatment was evident on autoradiographs of 

samples resolved by SDS-PAGE but despite this, cell viability, as determined by 

trypan blue exclusion remained unaffected after 8 days (Figure 3.3.13). In addition, 

the structural integrity of both the cell and the actin cytoskeleton in 4EGi-1 treated 

cultures were found to be similar after 8 days of treatment as the DMSO treated 

control cultures (Figure 3.3.15), although the intensity of staining in inhibitor-treated 

cells was modestly decreased, in line with general decreases in protein abundance in 

these cells (Figure 3.3.14).  In addition, removal of 4EGi-1 from cultures resulted in a 

substantial restoration of translation rates within just 30 minutes, demonstrating that 

cells remained viable and the effects of this inhibitor remained reversible.  

 

The cytotoxicity observed when cells are treated with higher concentrations of 4EGi-1 

suggested that primary cells can exist with a low basal level of protein production but 

below that threshold the cell cannot sustain viability. Indeed, above this threshold it 

was found that cells not only remain viable but retained the ability to tolerate stress as 

evident by Hsp70 accumulation in 4EGi-1 cells exposed to distinct chemical and 

thermal stresses. 4EGi-1-treatment in the absence of stress had no effect on Hsp70 

expression, further demonstrating that 4EGi-1 does not cause cellular stress at this 

low concentrations and that Hsp70 accumulation is not sensitive to inhibition of 

global translation. Therefore Hsp70 accumulation is likely to be controlled by 

additional mechanisms during stress responses. Interestingly, translation of Hsp27 and 

Hsp70 mRNAs have been shown to be enhanced rather than repressed when eIF4F 

components are depleted in HeLa cells (Joshi-Barve, De Benedetti & Rhoads 1992). 

As 4EGi-1 did impair Hsp27 accumulation (Figure 3.3.16, 3.3.17), this further 

suggests that 4EGi-1 affects Hsp27 accumulation in an eIF4F-independent manner. 

Interestingly the accumulation of Hsp70 that was seen in 4EGi-1 treated cells during 

stress could be explained by a previous report that demonstrated selective synthesis of 

Hsp70 occuring during stress conditions which is facilitated by sequences specifically 

found in the 5’ UTR of Hsp70 mRNA (Yueh, Schneider 2000). These sequences may 

confer an advantage in competing for low levels of active initiation complexes. 
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Alternatively, the accumulation of Heat shock proteins may be the result of alterations 

in protein stability, or conversely, increases in the expression or stability of Hsp70 

mRNA. The latter would give Hsp70 mRNA an advantage over other transcripts to 

compete for initiation complexes available in the cell. In any case, these findings 

demonstrated that extensive exposure to 4EGi-1 did not adversely affect the cells 

overall capacity to tolerate diverse stress conditions but it did alter the accumulation 

of specific Hsps, this raised the possibility that the drug may be a viable therapeutic to 

suppress viral replication given their dependence on host translation. 

 

Currently, the only antiviral treatments presently available to treat HSV-1 are based 

on conversion of nucleotide analogues to cytotoxic forms by the viral Thymidine 

Kinase (Elion 1993). Consequently, the selective pressure of widespread use has 

caused the emergence of drug-resistant strains. As HSV-1 replication depends on the 

host cells translational machinery for production of viral proteins, manipulation of 

mRNA translation may prove an attractive antiviral strategy. Indeed, the inhibitors of 

Mnk and mTOR which reduce the capacity of the cell to translate mRNAs were 

recently shown to reduce herpes virus lytic replication and viral reactivation from 

quiescence, which suggests the importance for eIF4F activity during both stages of 

viral lifecycles (Walsh, Mohr 2004; Walsh et al., 2005; Arias et al. 2009; Moorman, 

Shenk 2010). 

 

Upon investigation of  the antiviral potential of targeting translation it was discovered 

that 4EGi-1 robustly inhibits both spontaneous and controlled reactivation of HSV-1 

from quiescence as illustrated by readily detectable levels of early (ICP4), mid (ICP5) 

and late (Us11) stages proteins in samples from DMSO-treated cultures while levels 

of these proteins remained completely undetectable in 4EGi-1-treated samples (Figure 

3.3.20). It was also found that the levels of infectious progeny produced during 

controlled reactivation were undetectable in cultures treated with 4EGi-1 (Figure 

3.3.21).  

 

In contrast to the process of virus reactivation from a quiescent state within the cell, 

infecting viral particles that establish a productive lytic infection contain within the 

tegument layer a plethora of viral proteins whose various functions manipulate the 

host cell environment to ensure the rapid onset of efficient viral replication (Karupiah 
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2002). We therefore tested the efficacy of 4EGi-1 against the lytic phase of HSV-1 

infection and discovered that while 20µM 4EGi-1 had only modest effects, 30µM and 

40µM concentrations caused an increasingly effective suppression of viral protein 

synthesis. When the abundance of viral antigens was analysed in the same samples the 

accumulation of HSV-1 proteins was reduced in a dose-dependent manner, reaching 

undetectable levels at 40µM 4EGi-1 (Figure 3.3.24). The effects on antigen 

accumulation were reflected in the levels of virus production in inhibitor-treated 

cultures infected at m.o.i. 5 for 11 hours, with those in 40µM 4EGi-1-treated cultures 

declining to just 400 infectious particles per culture, a 1 million fold reduction 

compared to DMSO controls (Figure 3.3.25). Additionally, when 4EGi-1 was added 

to cultures mid-way through infection it potently suppressed protein synthesis and 

reduced the accumulation of late proteins which are dependent upon ongoing 

translation. This demonstrates that the inhibitor was capable of interfering with 

protein synthesis even in an established infection and that its effects were not due to 

defects in viral entry. 

 

Although 4EGi-1 potently suppressed rates of protein synthesis, some viral protein 

synthesis was evident when 4EGi-1 was added at very late in infection. HSV-1 

encodes numerous proteins that interact with eIF4G, eIF4A, PABP and ribosomal 

proteins in addition to encoding proteins capable of modulating both the activity of 

eIF2 kinases and directly influencing phosphate turnover on eIF2 (Diaz et al., 1993; 

Feng, Everly & Read 2001; Fontaine-Rodriguez et al., 2004; Larralde et al., 2006; 

Walsh, Mohr 2006). Future work might aim to elucidate whether any of these proteins 

might partially lessen the effects of 4EGi-1 at late stages of infection.  

 

To determine the contribution of eIF4F to HSV-1 protein synthesis and accumulation, 

we then examined the effects of Torin1 during infection. In agreement with previous 

reports (Walsh, Mohr 2004), HSV-1 activated mTOR and induced phosphorylation of 

4E-BP1 in input samples and resulted in a loss of 4E-BP1 associated with eIF4E in 

cap-bound samples (Figure 3.3.26). In contrast, Torin1 treatment resulted in a robust 

dephosphorylation of 4E-BP1. This was accompanied by a robust decrease in eIF4G 

binding to eIF4E compared to the DMSO-treated control (Figure 3.3.26). Upon 

analysis of effects of Torin1 on rates of host and viral protein synthesis metabolic 

labelling illustrated that Torin1 reduced rates of translation in both mock and infected 
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samples to comparable degrees, suggesting that host and viral mRNAs have a similar 

requirement for eIF4F activity. However, the extent of repression was not as dramatic 

as that observed for 4EGi-1 (Figure. 3.3.28). 

 

When a comparison analysis on the effects of both inhibitors was conducted in 

relation to the production of viral proteins, it was found that Torin1 caused a notable 

reduction in the accumulation of viral immediate early proteins and late proteins 

detected with anti- HSV-1 antibody. These results were in agreement with a recent 

report detailing that Torin1 disrupted eIF4F, where it was shown that Torin1 reduced 

HSV-1 replication by approximately 100-fold (Moorman, Shenk 2010). However, it 

should be outlined that those experiments were performed in mouse embryo fibroblast 

cells that were infected at m.o.i. 0.05 for a period of 3 days. Therefore the viral 

growth defects observed may have been amplified by inefficient secondary spread in 

Torin1-treated cultures. Nevertheless, our findings are in agreement with this report 

and suggest that although eIF4F is important for maximal rates of translation, as 

significant disruption of this complex does not adversely affect HSV-1 protein 

synthesis to a major degree. In contrast to Torin1, each of the viral antigens tested 

were undetectable in 4EGi-1-treated samples. HSV-1 infection resulted in mTOR 

activation and phosphorylation of p70S6K, which was not only inhibited but was 

reduced to below basal mock-infected levels in the presence of Torin1 (Figure 

3.3.28). In addition p70S6K phosphorylation in cells infected with HSV-1 in the 

presence of 4EGi-1 remained the same as in DMSO or 4EGi-1-treated mock-infected 

samples, which was most probably the result of the failure of the virus to establish 

lytic infection and produce the proteins required to activate mTOR. 

 

We also examined whether 4EGi-1 was potentially effective against other viruses. 

Vaccinia Virus (VacV) is a large, complex, double-stranded DNA enveloped virus 

belonging to the Poxvirus family and is the laboratory prototype for Poxvirus 

infection (Knipe et al., 2007). Compared to other human DNA viruses, Poxviruses are 

unique with regard their life cycle as they replicate exclusively in the cytoplasm of 

infected cells. To confirm if 4EGi-1 can inhibit the replication of viruses other than 

HSV-1 we then tested its effects on VacV. Upon treatment of NHDFs with increasing 

concentrations of 4EGi-1 it was found that while Poxvirus infection of DMSO-treated 

NHDFs resulted in the characteristic shut-off of host translation and robust synthesis 
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of Poxvirus polypeptides, a modest inhibition of translation was evident when cells 

were treated with 10µM 4EGi-1 while concentrations above 20µM resulted in 

dramatic suppression of translation. TCA precipitation and quantification showed that 

30µM and 40µM 4EGi-1 reduced translation rates in infected cultures to 2.4% and 

2.3% respectively, of those in DMSO-treated cultures (Figure 3.3.32). Notably, when 

4EGi-1 was added to cultures at 12 hours post infection 4EGi-1 inhibited ongoing 

viral protein synthesis (Figure 3.3.35), demonstrating that its effects were again not 

due to 4EGi-1 preventing cell entry.  

 

When the effect of this translational suppression on poxvirus replication was assessed 

it was found that 4EGi-1 reduced virus replication to approximately 3% of control 

DMSO-treated cultures (Figure 3.3.33), this result correlated with the degree to which 

4EGi-1 suppressed rates of viral protein synthesis and demonstrated that 4EGi-1 

inhibited virus replication regardless of the multiplicity of infection used. However, 

although 4EGi-1 potently suppressed VacV replication the degree of suppression was 

much lower than that observed with HSV-1 (Figure 3.3.25). Indeed, in contrast to 

HSV-1 antigens, western blotting against VacV antigens demonstrated that the 

accumulation of viral proteins remained detectable in 4EGi-1- treated samples albeit 

with significant reductions (Figure 3.3.34).  

 

As mentioned previously, the degree to which 4EGi-1 suppressed translation 

Poxvirus-infected cells directly correlated with the reduction in infectious virus 

produced in 4EGi-1-treated cultures. However, although 4EGi-1 reduced translation 

to similar levels in HSV-1 infected cells it had a disproportionately large effect on 

viral antigen accumulation and production of infectious virus during HSV-1 infection. 

While this effect may be caused by a series of unknown negative effects on other 

processes during HSV-1 infection it may also be due to the fact that Herpesviruses 

and Poxviruses have lifecycles that are inherently different. For example, poxviruses 

replicate in the cytoplasm whereas HSV-1 replicates in the nucleus but can also exist 

in a dormant repressed state mediated by suppressive cellular factors. Upon infection, 

if the critical regulators of lytic replication are not produced in sufficient quantities 

these suppressive cellular factors can coerce the virus to a non productive state. 

Therefore 4EGi-1 may cause inefficient production of these proteins to below a level 

required to initiate lytic replication. This in collaboration with the cells natural 
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suppressive mechanisms likely results in an amplification of the inhibitory effects of 

4EGi-1 on the HSV-1 lifecycle. Similarly, 4EGi-1 inhibition of HSV-1 reactivation is 

likely due its ability to suppress de-novo production of ICP0 therefore resulting in a 

maintained repression of viral genomes which may be similar to the phenonema 

observed in our quiescence model where low levels of ICP0 produced fail to disperse 

PML resulting in an inability to establish productive infection. Therefore, 4EGi-1 may 

be a particularly effective treatment in the repression of infectious agents that depend 

upon efficient expression of viral proteins to overcome the hosts natural cellular 

restrictions. 
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Section 5.0: Conclusions 
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Conclusions: 
 

The main focus of this thesis was to investigate the roles of host signalling pathways 

and translation initiation factors during HSV-1 reactivation from quiescence and lytic 

replication. 

 

To achieve these goals a tissue culture model for studying HSV-1 quiescence was 

developed. The system utilizes selective pressures of serum starvation of primary 

normal human diploid fibroblasts and temperature elevation, both of which proved to 

play an important role in the inhibition of productive infection and establishment of a 

stable quiescent infection. Approximately 40-60% of the culture can be quiescently 

infected and reactivated efficiently, which allows for population-wide occurrences to 

be readily examined. The model can be readily adapted for use with different strains 

of HSV-1. Additionally, the use of human serum allows for the reduction of 

secondary spread of virus post reactivation and therefore permits differentiation 

between mechanistic events associated with reactivation and secondary spread of the 

virus.  

While the reduced metabolic state caused by serum starvation likely creates a sub-

optimal environment for efficient viral infection, the role of temperature elevation in 

this system will prove important for our understanding of cellular mechanisms that 

repress viral infection. Notably, ICP0, a viral factor critical for establishing productive 

infection, failed to be produced efficiently during entry into quiescence in our system. 

Interestingly, it has been reported that Herpes simplex virus 1 is able to hijack the 

host-cell IkappaB kinase (IKK)/NF-kappaB pathway causing a redirection and 

recruitment of NF-kappaB to the ICP0 promoter. Various laboratories have 

documented in vitro and in vivo interactions between the heat shock response (HSR) 

and NF-kappa B (Amici et al., 2006). Alternatively, ICP0 may be unstable at higher 

temperatures in certain cell types and the degree of sensitivity may be HSV-1 strain-

specific. In addition, the failure to process ICP22 may negatively impact on ICP0 

production. Therefore, further experimentation to monitor these phenomena using our 

model may help to uncover why a block in ICP0 production occurs in heat shocked 

primary human cells. 
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Additionally the role of heat shock proteins in reducing cellular stress during viral 

infection may be further examined using siRNA knock-down of specific hsps. In 

addition, small molecule inhibitors of Hsp function might be possible to use to further 

examine their role in this system. 

The characterisation of signalling pathways required for efficient reactivation showed 

that ERK activity was moderately stimulated during reactivation relative to 

quiescently-infected cells and in contrast to previous studies of ERK suppression 

during lytic infection. Indeed, inhibition of ERK failed to affect lytic infection but 

resulted in a suppression of viral reactivation, suggesting a specific role for ERK in 

the reactivation process. Considering that there was a suppression in ERK activity 

during quiescence but modest stimulation observed during reactivation, which was in 

line with previous reports of elevated ERK during reactivation from explanted 

ganglia, this may represent a cellular response to the reactivation of quiescent virus. 

As our system allows direct comparison of distinct phases of the viral lifecycle in the 

same cell type, it would be interesting to conduct parallel microarray and proteomic 

studies in mock and quiescent NHDF cultures, alongside reactivating cultures in the 

presence or absence of ERK inhibitors, such as U0126. This may help to determine 

the role of ERK activity in responding to or altering cellular metabolism during both 

quiescence and reactivation, and its role in virus reactivation. 

 

Additionally, the activity of the down stream substrate of ERK and p38, Mnk1, along 

with the mTORC1 substrate 4E-BP, both of which regulate mRNA translation 

initiation factor eIF4E, were shown to be required for efficient reactivation. These 

results correlate with studies showing a requirement for efficient translation during 

HSV-1 lytic replication and highlight its importance in both phases of the virus 

lifecycle (Walsh, Mohr 2004). In line with this, the viability of directly inhibiting 

eIF4F as a potential therapeutic target against viral infection was also assessed using 

the mTORC1/2 inhibitor, Torin1. Results with this inhibitor showed that both host 

and viral protein synthesis was only modestly affected by disruption of eIF4F, 

suggesting that viral mRNAs have a similar low-level requirement for eIF4F activity 

to cellular housekeeping mRNAs. 
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In contrast to Torin1, cells treated with 4EGi-1, a small molecule reported to inhibit 

eIF4F formation was also assessed. Experiments showed that translation rates could 

be reduced to 0.5-1% of normal rates with 4EGi-1 concentrations that did not prevent 

eIF4F formation. At these relatively low concentrations, increased association of 

inactive eIF2α with initiation complexes was observed and may be the primary 

mechanism by which 4EGi-1 functions. Robust translation inhibition did not initiate 

apoptotic events in normal human cells, which also retained their capacity to mount 

stress responses in reply to heat shock or proteasome inhibition, suggesting that 

prolonged 4EGi-1 mediated inhibition of translation but did not confer fragility to 

primary NHDFs. 

 

Our findings that 4EGi-1 causes increased binding of ribosomal protein and inactive 

eIF2α to cap-bound complexes suggests that this inhibitor may cause defects in the 

dissociation and recyling of both eIF4 and eIF2 that normally occurs during ribosome 

assembly and translation initiation, or alternatively may increase the abundance of 

inactive eIF2-bound ribosomes. A recent report showed that 4EGi-1 potently inhibited 

global translation while increasing the accumulation of 80S ribosomes (Mokas 2009). 

Therefor polysome profiling in addition to immunoprecipitation of 40S and 60s 

ribsosomal subunits in 4EGi-1 treated cells may help to understand potential effects of 

this inhibitor on the proper formation and dissociation of factors involved in 

translation, which may be perturbed in numerous ways by 4EGi-1 to induce its 

effects. 

 

Importantly, 4EGi-1 powerfully suppressed both lytic replication and reactivation 

from quiescence. It would be interesting to investigate whether the lack of viral 

protein synthesis during lytic infection allows for suppressive cellular mechanisms 

that exist in the nucleus to silence the virus and force it into quiescence. The 

reorganisation of PML structures that were seen in the establishment of the 

quiescence model may also be observed during lytic infection in the presence of 

4EGi-1 by immunofluorescence. Additionally, as 4EGi-1 is reversible, it would be 

interesting to determine if HSV-1 replication resumes upon wash-out of inhibitor after 

infection. This may occur rapidly or gradually, similar to spontaneous reactivation. 
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Overall, our findings show that inhibition of cellular signalling pathways that regulate 

eIF4F function or disruption of eIF4F itself only modestly reduce virus reactivation or 

lytic replication. However, 4EGi-1 mediated potent translational suppression and 

inhibits infection by both Herpesviruses and Poxviruses. As such, this may represent a 

potent, non-cytotoxic antiviral approach. 
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