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Abstract

Combined Time and Frequency Domain Approaches to the Operational

Identification of Vehicle Suspension Systems

Damien Maher

This research is an investigation into the identification of vehicle suspension systems

from measured operational data. Methods of identifying unknown parameter values

in dynamic models, from experimental data, are of considerable interest in practice.

Much of the focus has been on the identification of mechanical systems when both

force and response data are obtainable. In recent years a number of researchers have

turned their focus to the identification of mechanical systems in the absence of a

measured input force.

This work presents a combined time and frequency domain approach to the identi-

fication of vehicle suspension parameters using operational measurements. An end–

to–end approach is taken to the problem which involves a combination of focused

experimental design, well established force–response testing methods and vehicle

suspension experimental testing and simulation. A quarter car suspension test rig

is designed and built to facilitate experimental suspension system testing. A novel

shock absorber force measurement set–up is developed allowing the measurement of

shock absorber force under both isolated and operational testing conditions. The

quarter car rig is first disassembled and its major components identified in isola-

tion using traditional force–response testing methods. This forms the basis for the

development of an accurate nonlinear simulation of the quarter car test rig. A

comprehensive understanding of the quarter car experimental test rig dynamics is

obtained before operational identification is implemented. This provides a means of

validating the suspension parameters obtained using operational testing methods.

A new approach to the operational identification of suspension system parameters

is developed. The approach is first developed under controlled simulated conditions

before being applied to the operational identification of the quarter car experimen-

tal test rig. A combination of time and frequency domain methods are used to

extract sprung mass, linear stiffness and nonlinear damping model parameters from

the quarter car experimental test rig. Component parameters identified under op-

erational conditions show excellent agreement with those identified under isolated

laboratory conditions.
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Chapter 1

Introduction

T
his research is an investigation into the development of vehicle suspension

simulations from measured operational data. Methods of identifying un-

known parameter values in dynamic models from experimental test data are of

considerable interest in practice. In design studies system identification methods

can be applied to experimental test data gathered from isolated testing of a specific

component of interest. Alternatively, they can be applied to operational data to

facilitate on-line monitoring and reliability studies.

System identification is a well established area of research. Much of the focus has

been on the identification of mechanical systems when force and response data are

obtainable. In many applications it can be impractical or impossible to measure

excitation forces. For example, during vehicle suspension operation, the input force

from the road surface to the tyre or the shock absorber force are difficult to identify

experimentally. In recent years a number of researchers have turned their focus to the

identification of mechanical systems in the absence of a measured input force. One

particular example is the rise of Operational Modal Analysis (OMA) techniques for

the identification of mechanical systems. The advantage of using operational testing

is that the system can be tested in its operating environment under actual loading

conditions and often without interfering with the system operation.

Design engineers have always had to come to a compromise between development

time and product quality and performance. This is especially true for the automotive

industry. There is a constant demand for improved vehicle quality, safety, efficiency

and performance. From the point of view of suspension systems, each new car strives
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to have better handling and also greater passenger comfort. This drive for greater

performance and shorter development times has created a demand for dedicated test

and simulation equipment. In the development of vehicle suspension systems much

development is exhaustively done by ride work [1, 2]. During ride work a vehicle

is driven over a number of test tracks. The suspension performance is evaluated

and the shock absorber tuned to improve the performance. With the increased

availability of powerful computers, many organisations are increasingly relying on

numerical simulations in place of expensive ride work for product evaluation [3, 4].

Numerical simulation is considerably less expensive in terms of cost and time. The

parameters for these simulations would classically be obtained using isolated com-

ponent testing. This requires disassembly of the suspension system and isolated

testing of the individual suspension components. The identification of simulation

parameters from operational testing would provide a convenient method of develop-

ing suspension simulations. It would also provide a cost effective and simple method

of continuous system monitoring as the instrumentation is non intrusive and does

not require the vehicle to be taken out of service.

With the increasing use of powerful computer systems in motor vehicles coupled

with the falling cost of robust and accurate accelerometers [5], the collection of

suspension vibration data during vehicle operation could easily be implemented.

Continuous monitoring of suspension operation would provide large amounts of data

for analysis both at regular service intervals and also by the on-board computer.

These data could be analysed to determine suspension system parameters and allow

for accurate assessment of suspension system performance. Vehicle manufacturers

could track changes in suspension performance over the lifetime of the vehicle and

use the acquired design knowledge in future system developments.

1.1 Background

A vehicle suspension system is the term given to the system of springs, shock ab-

sorbers and linkages connecting a vehicle chassis to its wheels. Suspension systems

dynamics are often viewed from two perspectives, ride and handling. A vehicle’s

ride quality is a measure of how well it evens out the irregularities of a bumpy road.

Vehicle handling is a measure of how well the car corners, brakes and accelerates

safely. The suspension is designed to maximise the friction between the tyres and

2



1.1. Background

Figure 1.1: Automotive suspension system major components

the road surface to ensure good handling. It is also designed to maximise the com-

fort of passengers by reducing the acceleration of the car body and, hence, forces

on passengers. Suspension design is a compromise brought about by the demands

of these conflicting goals. Suspension experimental testing and simulation play a

major role in this design process.

Vehicle suspension systems can be classified into two main categories, independent

and dependent. The terms refer to the ability of opposite wheels to move relative

to each other. Dependent suspension systems have some form of rigid connection

between opposite wheels such as a beam axle or live axle which holds the wheels in

place. Independent systems allow opposite wheels to react independently to road

conditions. They provide superior ride and handling characteristics but are more

expensive to manufacture. This work will focus on independent suspension systems

and in particular the MacPherson Strut system.

The MacPherson Strut system is a widely used system in cars because of its light

weight and compact size [6, 7, 8]. The major components of the system are shown

in Figure 1.1. The shock absorber consisting of spring and damper elements serves

to protect the vehicle from impact forces and high acceleration resulting from road

irregularities [9]. The spring force generated depends on wheel travel. The spring

temporarily stores energy imparted to the system by the road surface. The purpose

of the damper is to control the rate of energy release from the spring. It improves
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road holding by preventing the wheels from bouncing off the road. The dampers

resistance to sudden movements results in impact forces. The selection of springs

and dampers properties represent a compromise between the demands of ride and

handling [9]. It is common to design nonlinearity into the system to achieve the

desired ride and handling properties.

The tyre transfers forces and moments from the road surface to the suspension

system. Tyre stiffness is typically ten to twenty times that of the suspension spring.

The suspension arm and shock absorber are connected to the vehicle chassis using

rubber joints or rubber bushings. Road obstacles such as pot holes or transverse

joints in the road surface, excite the suspension system in a wide frequency range

which can come into the audible region [9]. Rubber bushings provide noise and

vibration insulation by reducing the transmission of high frequency vibrations to

the chassis.

1.2 Research objectives

This work will develop techniques for the identification of vehicle suspension sys-

tem parameters in the absence of a priori knowledge of the system or the input

force at the tyre patch. A focused and comprehensive approach to the problem will

be implemented, beginning with the development of an experimental testing setup.

This will take the form of a vehicle suspension experimental test rig, designed to

simulate on–road vehicle conditions in the laboratory. Traditional force–response

identification techniques will first be implemented on the major suspension rig com-

ponents. This will involve the disassembly of the rig to allow individual components

to be tested in isolation. Component models developed under isolated conditions

will provide the parameters for the development of a suspension system simulation.

The background knowledge gained during force–response testing of the quarter car

rig will provide the basis to pursue and develop the operational suspension system

identification techniques. Operational techniques will first be developed under con-

trolled simulation conditions. They will then be applied to the experimental iden-

tification of the suspension experimental test rig. Only acceleration measurement

of the unsprung and sprung masses will provide the measured data for operational

testing. It is believed that in the presence of unmeasured excitation force, a bound-

ary perturbation technique can be used to identify the component parameters in
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1.2. Research objectives

the system. This involves conducting two experimental tests, one a known added

mass attached to the vehicle sprung mass. The operational testing methods will be

developed to allow an instrumented vehicle to be tested in service without interfer-

ing with vehicle operation. The identified suspension parameters from operational

testing will be compared with those obtained using isolated testing to assess the

validity of the proposed approach.
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Chapter 2

Literature review

T
his review provides an overview of the published work critical to the under-

standing of this research in the context of mechanical engineering research

today. To begin, a review of mechanical system identification is presented. System

identification is the process of estimating input–output dynamic systems models,

and their parameters using measured data. The subject of system identification is

extremely broad and much research has been published in the literature on this topic.

Therefore, the topic has been broken down. Linear system identification procedures

are first examined followed by a review of popular nonlinear system identification

techniques. Examples from the literature on the application of linear and nonlin-

ear system identification methods to both experimental and simulated data are also

presented.

Focus then turns to the identification of vehicle suspension systems. The existing

literature is viewed from two angles, force–response identification and response only

identification, or operational identification. A critical review of research focusing on

the characterisation, mathematical modelling, parameter estimation and simulation

of suspension systems is documented. Experimental testing setups used by other

authors in the characterisation and identification of vehicle suspension systems are

examined along with simulation approaches. Finally the conclusions of this literature

review are summarised and the objectives of this investigation outlined.
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2.1. System identification

Figure 2.1: Single input/output system

2.1 System identification

A system can be defined as any collection of interacting elements for which there

are cause and effect relationships among the variables [10]. This study is devoted

to dynamic systems, meaning the variables are time dependent. Consider the stan-

dard diagrammatic form of a Single Input/Single Output (SISO) system shown in

Figure 2.1, where x(t) is the input function of time, y(t) is the response function

of time and h(t) is a function which maps x(t) to y(t). Given any two of these

quantities it is possible, in principle, to determine the third. Simulation refers to

the process of determining y(t) given x(t) and an appropriate description of h(t),

deconvolution is the process of determining x(t) given y(t) and h(t), and, finally,

system identification involves the construction of an appropriate representation of

h(t), given x(t) and y(t). In essence, it is the process of developing a mathematical

model of a dynamic system based on measured data from the system.

The majority of mechanical system analysis procedures are based on linearity (e.g

modal analysis) [11]. It is, therefore, essential that some form of test for the presence

of nonlinearities be carried out in the early stages of the identification process. The

identification and quantification of nonlinearities in mechanical systems is important

when models are being developed for the prediction of system performance [12].

System identification methods can be classified into two types, parametric and non–

parametric. Parametric methods aim to determine the parameters of an assumed

model of the system under investigation. Non–parametric methods aim to produce

the best functional representation of the system without a priori assumptions of

the system model. Regardless of system type, the steps in the identification process

are generally the same. System identification is a complex process as shown in

Figure 2.2 [13]. The identification process can be broken down into the following

broad categories, characterisation, model selection, parameter estimation and model

validation. Each of this categories will now be discussed in more detail.
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2.1. System identification

Figure 2.2: Steps in the system identification process (reproduced from [13])

2.1.1 Characterisation

The first step in the identification procedure is the detection of nonlinearity. Non-

linearity is present when there is no simple proportional relation between cause and

effect. Once it has been established that a nonlinearity exists, further investigation

is required to establish the location and type of nonlinearity present. A nonlinear

system is said to be characterised when the location, type and functional form of all

damping, stiffness and kinematic nonlinearities in the system are known. Character-

isation is the first step in the identification procedure as it provides prior informa-

tion about the system’s nonlinear structure which is needed to select an appropriate

input–output model form [14]. Once a system has been characterised, various iden-

tification and parameter estimation algorithms can be applied to estimate the model

parameters with varying degrees of accuracy.
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2.1. System identification

2.1.2 Model selection

The second step in the identification procedure is model selection. Model selection

involves the identification of a set of candidate models which may be suitable for

modelling the system (e.g time domain models, frequency domain models, paramet-

ric, non–parametric, graphical). A combination of a priori system knowledge and

engineering intuition and insight are required for the selection process [15]. After a

set of models has been determined, a specific model or models in the set are selected.

The selection of a model is usually based on the results of some preliminary experi-

mental measurements of the system. Specially designed experiments are often used

to record the input–output data required for system identification. The experimen-

tal design aims to ensure that the measured data from such tests provide maximum

information about the system. In some cases the user may have no influence on the

setup of the system to be identified and the measured data may have to be recorded

from the system in its normal operating environment, as commonly observed in the

vibration analysis of civil engineering structures.

2.1.3 Parameter estimation

Once the model form is selected, the parameters of the model are estimated. Data

from experimental tests conducted on the system are used for the parameter estima-

tion process. Assessment of the model quality is typically based on how the model

performs when it attempts to reproduce the measured data [15]. To be genuinely

useful a parameter estimation procedure should provide (i) parameters, (ii) error

estimates on the parameters, and (iii) a statistical measure of the goodness of fit

[16]. Results from the parameter estimation step may need to be fed back into the

system identification process and the model order or type revised.

2.1.4 Model validation

Once the results from the parameter estimation step are satisfactory, the proposed

model must be validated. New measurement sets may be used to test the model for

a wider range of input signals. The inputs signals must be within the limits of the

model specified during the model selection process. Uncertainty on the estimates

increases with the number of estimated parameters for a given amount of measured
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data [17], therefore, simpler models are preferred to complex models if they provide

an acceptable level of accuracy. The acceptable level of accuracy is specific to

the application and to the intended model use. For example the level of accuracy

required for flight flutter test on commercial aircraft is much greater than that

required for machine tool anti–vibration mounts.

It is quite likely, in some cases, that the initial model may not pass the validation

test. The model may be deficient for a number of reasons [15],

• the experimental data are not informative enough to aid the selection of an

appropriate model;

• the parameter estimation algorithm failed to find the best model;

• the selected model is not appropriate to describe the system.

A major part of the system identification process is addressing these issues in an it-

erative manner, guided by prior information and the outcomes of previous attempts.

In this research the identification process will be applied to the analysis of vehicle

suspension systems. Addressing this process in an iterative manner will involve the

use of aspects of both linear and nonlinear system identification techniques presented

in the following sections.

2.2 Linear system identification

In practice, almost every system is nonlinear. As the theory of nonlinear systems

can be very involved, they are often approximated by linear models, assuming that

in the operating region, the system can be linearised. This approximation allows

the use of simple models without jeopardising properties which are important to the

modeller. It has been noted that the majority of system identification methods are

based on linearity [11]. At this point a brief review of the strict definition of linear

and nonlinear systems is warranted. This is followed by a look at popular linear

system identification techniques in the literature.
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Figure 2.3: Representation of a system H

2.2.1 Linear and nonlinear systems

Consider the system shown in Figure 2.3. The input is changed in some way by the

system H to produce the output. The system is linear if, for any inputs x1 = x1(t)

and x2 = x2(t) and any constants c1 and c2,

H [c1x1 + c2x2] = c1H [x1] + c2H [x2] . (2.1)

This equation has two properties which are required for linear systems, the additive

property and the homogeneous property. Should the system not satisfy either of

these properties, the system is considered nonlinear and is defined as follows; A

system, H, is nonlinear if, for any inputs x1 = x1(t) and x2 = x2(t) and any

constant c, the system input/output relations are not additive,

H [x1 + x2] 6= H [x1] +H [x2] (2.2)

and/or are not homogeneous,

H [cx1] 6= cH [x1] . (2.3)

These nonlinear operations in equations 2.2 and 2.3 produce non–Gaussian output

data when the input data are Gaussian. In the case of a linear system, Gaussian

input data produces Gaussian output data. In reality all systems exhibit some degree

of nonlinearity. It has been shown in [18] (in a case study to identify a nonlinear

vehicle shock absorber) that errors resulting from the analysis of nonlinear systems

using linear system analysis techniques, can be significant.

2.2.2 Time domain methods

Direct Parameter Estimation (DPE) is a method developed by Mohammad et al. [19]

for directly estimating the physical parameters, i.e., mass, stiffness and damping, of

11



2.2. Linear system identification

Figure 2.4: Linear SDOF system

linear and nonlinear structures using measured time data. The structure is modelled

using a lumped parameter system. A least squares estimation procedure is used to

allow the estimation of the system parameters given only the excitation at a single

point. The implementation of the DPE technique is described here for a linear

Single Degree–Of–Freedom (SDOF) system, and is extended to nonlinear system

identification in § 2.3.2. Consider the linear SDOF oscillator shown in Figure 2.4.

The differential equation of motion of the system is given by,

mẍ(t) + cẋ(t) + kx(t) = F (t). (2.4)

If N samples of acceleration ẍ(t), velocity ẋ(t), and displacement x(t), are recorded

the problem can be formulated as follows,
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. (2.5)

This equation has the general form,

[A] {x} = [B]. (2.6)

Coefficients of x are estimated by minimising the length of residual vector (e),

‖e‖ = ‖Ax− B‖ = eT e. (2.7)
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A least squares solution to this problem can be found using singular value decom-

position(SVD) of A (discussed in detail in § 2.3.4),

A = UΣV T (2.8)

x = V (1/Σ) (UTB) (2.9)

leading to optimal least squares estimates of the model coefficients m, c and k in

equation 2.4.

Estimation of a continuous time system, as described by equation 2.4, requires that

measured time data be available for each term in the model equation. Records are

required for acceleration ẍ(t), velocity ẋ(t), displacement x(t) and force F (t). An

alternative approach is to adopt a discrete time representation of equation 2.4. If

the input force and output displacement signals are sampled at regular intervals of

time ∆t, records of data fi = f(ti) and xi = x(ti) are obtained for {i = 1, 2, ..., N}.

The derivatives ẍ(ti) and ẋ(ti) can be approximated by the discrete forms [11],

ẋ(ti) ≈
x(ti)− x(ti −∆t)

∆t
=

xi − xi−1

∆t
(2.10)

ẍ(ti) ≈
xi+1 − 2xi + xi−1

∆t2
. (2.11)

Substitution into equation 2.4 yields,

xi = a1xi−1 + a2xi−2 + b1fi−1 (2.12)

where a1, a2 and b1 are constant coefficients and functions of the original parameters

m, c and k and the sampling interval ∆t = ti+1 − ti. In time series literature, this

model is termed an Auto–Regressive with eXogenous inputs (ARX) model. The

advantage of this model lies in the fact that only the states x and f need be measured

to estimate the model parameters, a1, a2 and b1, and, hence, identify the system.

2.2.3 Frequency domain methods

The term ‘spectral analysis’ is used to describe the analysis of data in the frequency

domain. The use of the frequency domain to describe the characteristics of vibration

systems finds favour in many engineering applications, where the response of the

system to an input is a function of frequency as well as the magnitude of the input.
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The Fourier Transform is a particular case of the transform relating the time and

frequency domains.

Fourier Transform

For the case where x(t) is a continuous function and,

∫ ∞

−∞

|x(t)| dt < ∞ (2.13)

the Fourier Transform exists such that,

X(f) =

∫ ∞

−∞

x(t)e−j2πftdt −∞ < f < ∞. (2.14)

In a similar mapping the Inverse Fourier Transform is,

x(t) =

∫ ∞

−∞

X(f)ej2πftdf −∞ < t < ∞ (2.15)

while in the case of a vibration system x(t) is a real valued function and the resultant

transform is a complex valued function. The Finite Fourier Transform assumes that

the input function is periodic with the time for one period being T , the sample

length. The transform is defined over this period as,

XT (f) = X(f, T ) =
1

T

∫ T

0

x(t)e−j2πftdt. (2.16)

In the case of data acquired through sampling, {x0, x1, ..., xN−1}, rather than a

continuous record the Discrete Fourier Transform, which exists only at discrete

frequencies fk is,

Xk = X(k∆f) =
1

N

N−1
∑

n=0

xne
−j 2πkn

N k = 0, 1, 2, ..., N − 1 (2.17)

where the fundamental frequency is f0 = 1/T and the discrete frequencies are kf0

and fk − fk−1 = f0 = ∆f .
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Spectra

The autospectrum of a time record is a measure of its power content as a function

of frequency as defined by,

Sxx(f) = lim
T→∞

1

T
E [X∗

k (f, T )Xk (f, T )] . (2.18)

The cross–spectrum between two signals is,

Sxy(f) = lim
T→∞

1

T
E [X∗

k (f, T )Yk (f, T )] (2.19)

where E is an averaging operation over the number of records available, with each

individual record having its own index k. S is valid for all f , both positive and

negative, and in the case where time records are real then S(−f) = S(f) leading to

the definition of the single sided estimate,

Gxy(f) = lim
T→∞

2

T
E [X∗

k (f, T )Yk (f, T )] . (2.20)

In reality T → ∞ may only be approximated. The expected operator, E, is replaced

by averaging a number of records, increasing T without increasing the transform

length. This lengthening of the sampling time helps to ensure that the sampled data

are representative of the original sample. The statistical accuracy of the estimate is

also improved by increasing the number of averages [20].

Frequency Response Function

Frequency Response Functions (FRF) are one of the most widely used methods of

visualising the input–output properties of a system. FRF’s can be used to rapidly

detect the presence of nonlinearities in a system. FRF distortions can be used

to provide information about system nonlinearity [11]. Symptoms of nonlinearity

include changes in FRF structure for different levels of excitation and response at

multiples of the forcing frequency in the presence of a pure sinusoidal excitation [21].

Consider an ideal linear SISO system without noise, as show in Figure 2.5. The FRF,

H(f), between the Fourier Transform of the input X(f) and the Fourier Transform
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Figure 2.5: Single input/output linear system

of the output Y (f) is given by,

H(f) =
Y (f)

X(f)
. (2.21)

In the presence of noise the FRF is commonly estimated using spectral relations.

The calculation of autospectra and cross–spectra, as an intermediate step, allows

averaging operations to be carried out to minimise random errors. The most com-

monly used estimator is known as the H1 estimator. It minimises the effect of noise

on the response and is given by,

H1(f) =
Sxy(f)

Sxx(f)
(2.22)

where Sxy is the cross–spectra between the input and output and Sxx is the au-

tospectra of the input.

The FRF is a complex valued function of frequency. Figure 2.6 shows the magnitude

and phase representation of the FRF for the linear system shown in Figure 2.4. The

natural frequencies, damping ratios and mode shapes of a system can be determined

from the system FRF, and are discussed in more detail in § 2.2.4.

Coherence function

The coherence function describes the extent of the linear relationship between the

input and the output signals and is defined as,

γ2
xy =

|Sxy(f)|
2

Sxx(f)Syy(f)
0 ≤ γ2

xy ≤ 1. (2.23)

If a perfect linear relationship exists between x(t) and y(t), at some frequency fk,

then the coherence function, γ2
xy, will be equal to unity at that frequency. If x(t)

and y(t) are such that Sxy(fk) = 0 at frequency fk, then the coherence function

will be zero at that frequency. Coherence is widely recognised and accepted as a
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Figure 2.6: SDOF system frequency response function

measure of the ‘goodness of fit’ of a proposed linear model to measured data. It is

also arguably the most widely used test of nonlinearity [11]. When the coherence

function falls substantially from unity, the use of a linear model to describe the

system becomes questionable [22]. In practice four main reasons exist as to why a

computed coherence function may not equal unity at all frequencies [18]. They are,

1. Extraneous noise in the input and output measurements;

2. Bias and random errors in spectral density function estimates;

3. The output y(t) is due in part to an input other than the measured x(t);

4. Nonlinear system operations between x(t) and y(t).

Good data acquisition practice, signal processing and physical understanding of the

system under test can eliminate the coherence drops due to the first three rea-

sons. In the presence of nonlinear operations the linear theory breaks down as the

difference between signal noise and nonlinearities cannot be shown [22]. Modified

spectral techniques have been developed which allow nonlinear relationships to be

investigated, these will be discussed in § 2.3.3.
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Figure 2.7: Two input/single output system

Figure 2.8: Two input/single output system with uncorrelated inputs

Multiple input single output systems

The analysis of Multiple Input/Single Output (MISO) systems is well documented

in the works of Bendat and Piersol [23, 24]. MISO system analysis will be described

here for the special case of a two input single output system, shown diagrammatically

in Figure 2.7. In the special case of uncorrelated inputs (S12 = 0 and γ2
12 = 0),

spectral techniques can be applied to each leg independently to give an indication of

the linear relationship between each input and the output. If the two inputs x1(t)

and x2(t) are partially correlated (0 < γ2
12 < 1), some of the contents of the output,

which will appear to be due to the first input, will in fact be due to the second input.

A similar effect will occur in the analysis of the second path. In this case, these

influences must be removed before the analysis can be completed. This is achieved

using conditioned spectral analysis. The system in Figure 2.7 can be remodelled as

shown in Figure 2.8. In this case, the inputs are uncorrelated conditioned records,

developed from the original input records, i.e., x2.1(t) is a conditioned input and

represents the input x2(t) with the linear effects of x1(t) removed from x2(t). The

frequency response function L1y(f) is the optimal linear system to predict y(t) from

x1(t). Likewise L2y(f) is the optimal linear system to predict y(t) from x2.1(t). L1y
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Figure 2.9: Conditioned input/conditioned output model

and L2y are defined as,

L1y(f) =
S1y

S11

(2.24)

L2y(f) =
S2y.1

S22.1

(2.25)

where S2y.1 is the conditioned cross–spectrum between x2.1(t) and y(t) and S22.1 is

the autospectrum of x2.1(t), defined as follows, for finite T,

S2y.1(f) =
1

T
E [X∗

2.1 (f)Y (f)] (2.26)

S22.1(f) =
1

T
E [X∗

2.1 (f)X2.1 (f)] . (2.27)

The H coefficients in Figure 2.7 can be related to the L coefficients in Figure 2.8

using the following equations [23],

H1y(f) = L1y(f)− L12(f)H2y(f) (2.28)

H2y(f) = L2y(f) (2.29)

where L12(f) is the FRF between X1(f) and X2(f). The two input/single output

model of Figure 2.8 with mutually uncorrelated inputs x1(t) and x2.1(t) is equivalent

to the two separate SISO models in Figure 2.9. The ordinary coherence between

x1(t) and y(t) is defined as,

γ2
1y =

|S1y(f)|
2

S11(f)Syy(f)
(2.30)
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while for the second record, the coherence is defined as,

γ2
2y.1 =

|S2y.1(f)|
2

S22.1(f)Syy.1(f)
(2.31)

and is referred to as the partial coherence between the conditioned records, x2.1(t)

and yy.1(t). The multiple coherence function can now be defined as,

γ2
y:x(f) = 1−

[

1− γ2
1y

] [

1− γ2
2y.1

]

. (2.32)

The multiple coherence function is a measure of the linear dependence between a

collection of inputs and an output, independent of the correlation between the inputs

[24].

2.2.4 Modal analysis

Modal analysis is a well established and powerful technique for the analysis of linear

systems. It is the most popular method of performing linear system identification in

structural dynamics [25]. Classic vibration theory explains the existence of natural

frequencies, damping factors, and mode shapes for linear systems. Consider the

general mathematical representation of a SDOF system defined in equation 2.4;

taking the Fourier Transform and rearranging gives,

X (ω) = H (ω)F (ω) (2.33)

where

H (ω) =
1

−mω2 + jcω + k
. (2.34)

Equation 2.33 shows that the system response, X (ω) is directly related to the forcing

function, F (ω), through the quantity H (ω). H (ω) is the system FRF and the

denominator of equation 2.34 when equated to zero, is known as the characteristic

equation. The characteristic values of this equation are known as the complex roots

of the equation or the complex poles or modal frequencies of the system. The FRF

can be written as a function of the complex poles of the system as follows,

H (ω) =
1/m

(jω − λ) (jω − λ∗)
(2.35)
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where,

λ = σ + jωd

λ∗ = σ − jωd

and ωd is the damped natural frequency. This analysis can be extended to Multiple

Degree–Of–Freedom (MDOF) systems. MDOF linear systems can always be repre-

sented as a superposition of a number of SDOF linear systems. Consider the MDOF

form of equation 2.41,

Mẍ (t) +Cẋ (t) +Kx (t) = F (t) (2.36)

in the case of a two Degree–Of–Freedom (DOF) system,

M =

[

m1 0

0 m2

]

,C =

[

c1 + c2 −c2

−c2 c2

]

,K =

[

k1 + k2 −k2

−k2 k2

]

F =

{

f1(t)

f2(t)

}

,x =

{

x1(t)

x2(t)

}

in the MDOF case,

H (ω) =
[

−Mω2 + jωC +K
]−1

=
N (ω)

d(ω)
(2.37)

where the numerator polynomial matrix, N (ω), and the characteristic polynomial

d (ω) are given by,

N (ω) = adj
(

−Mω2 + jωC +K
)

d(ω) = det
(

−Mω2 + jωC +K
)

.

Equation 2.37 can be written in the modal model form,

H (ω) =
n

∑

r=1

Rr

jω − λr

+
R

∗
r

jω − λ∗
r

(2.38)

1To aid clarity and simplify notation, matrices and vectors in the remainder of this section and
in section 2.2.5 are identified using bold face type, i.e. [M ] = M , {x} = x
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where

r = mode number

Rr = residue matrix of mode r = QrΨrΨ
T
r

Ψr = mode shape vector of mode r

Qr = modal scaling factor

λr = system pole

n = number of modes.

The modal model (equation 2.38) expresses the structure’s dynamic behaviour as

a linear combination of n resonant modes. The n modes are defined by a resonant

frequency ωr, a damping ratio ζr = σr/ |λr| and a mode shape vector Ψr. The modal

properties of the structure depend on the material properties, boundary conditions

and geometry of the structure. Experimental Modal Analysis (EMA) is the process

of determining the modal parameters (ωr, Ψr, λr) from measured experimental data.

The process has three stages [26],

Modal data acquisition involves the measurement of the data required for the

modal parameter estimation phase. The frequency response function is the

most common and important measurement to be made.

Modal parameter estimation is a special case of system identification where the

a priori model of the system is known to be in the form of modal parameters.

Modal data presentation/validation is the process of providing a physical view

or interpretation of the modal parameters.

Traditionally EMA methods applied to nonlinear structures require the assumption

of ‘weak nonlinearities’ or a nonlinear model structure which is similar, for small

perturbations, to the underlying linear system. Rice and Fitzpatrick noted that

it known to be limited in the case of non lightly damped structures [27]. In the

presence of nonlinearity, the curve fitting algorithms of modal analysis will result

in the identification of a linear system which best describes the nonlinear system.

Nonlinear system FRF’s will change with a change in excitation amplitude and as a

result, the linearisation carried out by the curve fitting algorithm will only be valid

for a given excitation level.
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Figure 2.10: Operational modal analysis

2.2.5 Operational modal analysis

Operational Modal Analysis (OMA) is a relatively new concept in the field of me-

chanical testing. OMA involves conducting modal analysis without knowing the

input forces acting on the structure. The input force is assumed to be normally

distributed Gaussian white noise. Originally developed for extracting the modal pa-

rameters of civil engineering structures, it is now becoming popular for mechanical

structures [28]. The advantage of using OMA is that structures can be tested in

their operating environment under actual loading conditions. This allows for the

identification of more realistic modal models for in–operation structures [29]. It also

has the advantage of using ambient excitation. This is useful for large structures

which are difficult to excite or require expensive specialist equipment to excite them.

The principle behind OMA is shown schematically in Figure 2.10. The measured

responses are the responses of the combined system. The modal model of the system

is extracted from the estimated model of the combined system. In other words, the

response which comes from the system must be separated from the response due

to the excitation. If the system is excited using white noise, the output spectrum

contains full information of the structure as all modes are excited equally. However,

this is generally not the case. In general, the excitation has a spectral distribution

which results in modes being weighted by the spectral distribution of the input

force. Computational noise and measurement noise also contribute to the response.

In addition, rotating parts create harmonic vibrations which show themselves as

sharp peaks in the measured response.

The Frequency Domain Decomposition (FDD) technique used for OMA is an exten-

sion of the classical frequency domain method often referred to as the peak picking
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technique. Unlike classical methods, it can identify closely spaced modes with high

accuracy even in the presence of strong noise contamination. It can also identify har-

monic components in the response signal [30]. The FDD method, however, cannot

be used to make damping estimates. The Enhanced Frequency Domain Decompo-

sition (EFDD) technique is an extension of the FDD technique. It allows for the

estimation of both natural frequency and damping for a particular mode. Once

a peak has been identified, the SDOF Power Spectral Density (PSD) function in

the area of the identified peak is taken back to the time domain using the Inverse

Discrete Fourier Transform. The resonant frequency is obtained by counting the

zero crossings, and the damping by the logarithmic decrement of the corresponding

SDOF normalised auto correlation function [31].

The FDD methods are based on the formula for input/output PSD relationships for

stochastic process. Starting with equation 2.33 and multiplying by its Hermitian

transpose leads to,

Gyy(ω) = H (ω)∗Gxx(ω)H (ω)T (2.39)

where Gxx(ω) is the input PSD matrix. Gyy(ω) is the output PSD matrix, and

H (ω) is the FRF matrix. From classical modal analysis theory, the FRF can be

written in partial fraction form, in terms of poles, λ and residues R as shown in

equation 2.38. Using equation 2.39 and the Heaviside partial fraction theorem for

polynomial expansions, the following expression can be obtained for the output PSD

matrix Gyy(ω), assuming the input is a zero mean white noise distribution, i.e., its

PSD is a constant matrix (Gxx(ω) = C),

Gyy(ω) =
n

∑

r=1

Ar

jω − λk

+
A

∗
r

jω − λ∗
r

+
B r

−jω − λr

+
B

∗
r

−jω − λ∗
r

(2.40)

where Ar and B r are the rth mathematical residues. Considering a lightly damped

model and that the contribution of the modes at a particular frequency is limited

to a finite number (usually 1 or 2), then the response spectral density matrix can

be written as the following final form [31],

Gyy(ω) =
∑

r∈sub(ω)

drΨrΨ
T
r

jω − λr

+
d∗rΨ

∗
rΨ

∗T
r

jω − λ∗
r

(2.41)

where r ∈ sub(ω) is the set of modes that contribute at the particular frequency

and where Ψr is the mode shape and dr is a scaling factor for the rth mode. This

form of the output PSD matrix can be decomposed using the SVD technique into a
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set of singular values and corresponding singular vectors,

Gyy(ω) = ΦΣΦH (2.42)

where Σ is the singular value matrix and Φ the singular vectors unitary matrix,

given by,

Σ =























s1 0 0 . . 0

0 s2 0 . . .

0 0 s3 . . .

. . . . . 0

. . . . sr 0

0 . . 0 0 0























(2.43)

Φ =
[

{φ1} {φ2} {φ3} . . {φr}
]

(2.44)

where φi are approximations of the individual mode shapes, while the resonant

frequencies can be obtained form the singular values. r singular values and r singular

vectors are obtained at each frequency. Plotting these values versus frequency allows

a peak picking method to be used to determine resonant frequencies. At a particular

frequency if only one mode is dominant then only one singular value will be dominant

at this frequency. This allows for the identification of coupled modes. Figure 2.11

shows the singular values of the output PSD matrix for a simulated building [30].

The simulation was designed to have two sets of closely spaced modes. The FDD

technique allowed the identification of all modes (18.7, 20.9, 38.2, 55.05 and 55.12

Hz), including closely spaced modes, in the frequency range of the test.

Devriendt and Guillaume introduced an approach to identify modal parameters

from output only transmissibility measurements [29, 32]. The approach makes no

assumption regarding the spectral nature of the excitation forces. Transmissibilities

are obtained by taking the ratio of two response spectra, i.e. Tij = Xi(ω)/Xj(ω).

Assuming a single force at an input DOF, k, it can be shown that,

T
k
ij(ω) =

X i(ω)

X j(ω)
=

H ik(ω)F k(ω)

H jk(ω)F k(ω)
=

N ik(ω)

N jk(ω)
(2.45)

with N ik(ω) and N jk(ω) the numerator polynomials occurring in the transfer func-

tion models H ik(ω) = N ik(ω)/d(ω) and H jk(ω) = N jk(ω)/d(ω). The common

denominator polynomial, d(ω), whose roots are the system poles disappear by tak-

ing the ratio of the two response spectra. Note that the transmissibilities defined in
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Figure 2.11: Singular values of the PSD matrix of the response (reproduced from
[30])

equation 2.45 depend on the location of the input DOF k of the unknown force. This

fact was used by the authors to identify the modal parameters as outlined below.

Consider the modal model between input DOF k, and output DOF i (equation 2.38)
2,

H ik (ω) =
n

∑

r=1

ΨirLkr

jω − λr

+
Ψ∗

irL
∗
kr

jω − λ∗
r

. (2.46)

It can be shown, using equation 2.46, that the limiting value of the transmissibility

function in equation 2.45 for ω going to the system’s poles, λr, converges to,

lim
ω→λr

T
k
ij(ω) =

ΨirLkr

ΨjrLkr

=
Ψir

Ψjr

(2.47)

and becomes independent of the location of the input DOF k of the unknown force.

Subtraction of two transmissibility functions with the same output DOF’s (i, j) but

different input DOF’s (k, l) yields,

lim
ω→λr

(

T
k
ij(ω)−T

l
ij(ω)

)

=
Ψir

Ψjr

−
Ψir

Ψjr

= 0. (2.48)

This means that the system poles, λr, are zeros of the function ∆T
kl
ij (ω) = T

k
ij(ω)−

2The residue matrix here is expressed in terms of a modal participation factor. At response
DOF p and force DOF q the residue of mode r is given by Rpqr = QrΨprΨqr = LqrΨpr
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T
l
ij(ω) and consequently, poles of its inverse,

1

∆T
kl
ij (ω)

=
1

T
k
ij(ω)−T

l
ij(ω)

(2.49)

The above theoretical results show that it is possible, by using transmissibilities, to

obtain a rational function 1/∆T
kl
ij (ω), with zeros equal to the system poles. This

function can be obtained by combining two transmissibility functions with the same

output DOF’s but different locations of the input DOF’s. This is directly the result

of the fact that transmissibilities vary with the location of the applied forces, but

become independent of them at the system poles (equation 2.47). The approach

was extended to deal with the presence of harmonic excitations in [33].

2.3 Nonlinear system identification

Unlike linear systems, no general analysis method exists for nonlinear systems which

can be applied to all systems in all cases [11, 34]. This is due to the highly indi-

vidualistic nature of nonlinear systems and the fact that the basic principles which

form the basis of modal analysis are no longer valid in the presence of nonlinearity

[35]. In the presence of ‘strong’ nonlinearities, the only approach is to address the

nonlinearities directly and develop a mathematical description of their behaviour

[36]. As a result, an increasing number of nonlinear system identification methods

have been developed over the last three decades. These identification methods will

be divided into a number of broad categories, namely linearisation, time domain

methods and frequency domain methods.

2.3.1 Linearisation

In the field of mechanics, investigators have represented physical laws using rather

simple equations. For many physical systems the governing equations are not so sim-

ple, therefore, certain assumptions are employed to represent the governing equations

in a form which is more easily understood. Thus the process of linearisation has be-

come an intrinsic part of the rational analysis of physical systems [37]. Historically,

linearisation methods were the first methods used for the purposes of nonlinear sys-

tem identification. Equivalent linearisation is a technique first proposed by Caughey
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[38]. This technique involved the minimisation of the mean squared error between

the measured response of a nonlinear oscillator subject to Gaussian excitation and

a linearised system.

One of the most widely used methods of visualising the input/output properties

of a linear system is to construct the system FRF. Harmonic balance provides one

of the neatest methods of deriving a nonlinear system FRF [11]. It is a means of

finding the optimal quasi–linearisation of a nonlinear system. Consider the equation

of motion,

mẍ+ cẋ+ fn (x) = F (t) (2.50)

where fn(x) represents a nonlinear restoring force. Harmonic balance provides a

means of obtaining keq for a given operating condition, such that,

fn (x) ≈ keqx. (2.51)

Consider a phase shifted sinusoidal excitation of the form, Fsin(ωt−φ), and assum-

ing a trial solution of the form, Xsin(ωt−φ), yields the nonlinear form fn(Xsin(ωt)).

Expanding this function as a Fourier series yields,

fn (Xsin(ωt)) = a0 +
∞
∑

n=1

ancos(nωt) +
∞
∑

n=1

bnsin(nωt). (2.52)

The Fourier expansion is a finite sum if fn is a polynomial. The fundamental terms

are the only parts of interest for the purpose of harmonic balance. Elementary

Fourier analysis applies and

a0 =
1

2π

∫ 2π

0

fn (Xsin (ωt)) d(ωt) (2.53)

a1 =
1

π

∫ 2π

0

fn (Xsin (ωt)) cos (ωt) d(ωt) (2.54)

b1 =
1

π

∫ 2π

0

fn (Xsin (ωt)) sin (ωt) d(ωt). (2.55)

If the stiffness function is purely odd, i.e. fn(−x) = −fnx, then a0 = a1 = 0.

Considering terms up to the fundamental in this case gives,

fn (Xsin(ωt)) ≈ b1sin(ωt) = keqXsin(ωt) (2.56)
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leading to the following expression for keq,

keq =
b1
X

=
1

πX

∫ 2π

0

fn(Xsin(ωt))sin(ωt)d(ωt). (2.57)

The FRF takes the form,

Λ (ω) =
1

−mω2 + jcω + keq
(2.58)

where Λ (ω) is often referred to as a composite FRF due to the nature of its deriva-

tion. keq represents the mean value of the stiffness experienced by the system over

one cycle. For this reason harmonic balance is sometimes referred to as an averaging

method [11]. The formulae presented here show the implementation of the harmonic

balance method for nonlinear stiffness, however, the method has no restrictions on

the form of the nonlinearity.

Rice presented a linearisation technique for weakly nonlinear components [39]. The

underlying differential equation governing a vibrating system was identified by chang-

ing equivalent linear stiffness and damping coefficients measured over a range of

response levels. The method was verified using experimental testing of an aircraft

panel connector. The identified model showed excellent results when subject to a

range of excitation which were different to those used for the identification process.

2.3.2 Time domain methods

Masri and Caughey laid the foundations of a nonlinear system identification tech-

nique known as Restoring Force Surface (RFS) method [40]. Given the equation of

motion of a SDOF system as described using Newton’s second law,

mẍ(t) + f(x(t), ẋ(t)) = F (t) (2.59)

where m is the mass and f(x, ẋ) is the internal restoring force which returns the

system to its equilibrium position when disturbed. The function, f(x, ẋ), is seen to

only depend on x and ẋ and, therefore, can be represented by a surface over the

phase plane, i.e., (x, ẋ) plane. Rearranging equation 2.59 gives,

f(x(t), ẋ(t)) = F (t)−mẍ(t). (2.60)
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If the mass m, input force F (t) and output acceleration ẍ(t) are measured, all the

terms on the right hand side of the equation are known and hence so is f . For

discrete sampled data, the ith sample instant of equation 2.60 is given by,

fi = fi(xi, ẋi) = Fi −mẍi. (2.61)

If the velocities ẋi and displacements xi are know at each instant, i = 1, 2, ..., N , a

triplet (xi, ẋi, fi) is specified. This triplet of values gives a point on the phase plane

and also the height of the restoring force above the phase plane. The scattering

of points above the phase plane can be interpolated to form a continuous surface.

Masri and Caughey fitted a parametric model to the restoring force in the form of a

double Chebyshev series, although superior techniques in terms of ease of use, speed

and accuracy have been developed since the original work [11].

RFS’s provide a relatively simple method of visualising the nonlinearity in a system.

A similar method, termed ‘force–state mapping’ was developed by Crawley and

O’Donnell [41]. The RFS method has received much attention in research and

significant improvements have been brought about since the original paper [42, 43,

44, 45, 46]. It is argued in [47] that none of the other nonlinear system identification

methods provide a model as recognisable and usable by the engineer.

DPE introduced in § 2.2.2 can be extended to the identification of nonlinear systems.

The implementation of the DPE technique is described here for a nonlinear SDOF

system. Its application to a more complex MDOF nonlinear system can be found in

reference [19], where it is applied to two and three DOF simulated and experimental

data. Consider the differential equation of motion of a SDOF Duffing oscillator,

mẍ(t) + cẋ(t) + kx(t) + k3x
3(t) = F (t). (2.62)

If N samples of acceleration ẍ(t), velocity ẋ(t) and displacement x(t) are recorded,

the problem can be formulated as follows,













ẍ1 ẋ1 x1 x3
1

ẍ2 ẋ2 x2 x3
2

...
...

...
...

ẍN ẋN xN x3
N



































m

c

k

k3























=













F1

F2

...

FN













(2.63)

The inclusion of the nonlinear form x3 in this formulation allows the coefficient
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of the nonlinearity to be estimated along with the linear coefficients m, c and k.

Masri et al. used a variation of the DPE technique to identify the state equation in

complex nonlinear systems [48]. The method determines the analytical solution ĝ,

that approximates the unknown system state equation, g. The form of ĝ includes a

suitable set of basis functions that are relevant to the problem at hand. Consider

the Duffing oscillator defined in equation 2.62. A suitable choice of basis functions

in this case might be,

basis = (F, Fx, F ẋ, PS) (2.64)

where PS represents the list of basis terms in the power series expansion of,

PS =
imax
∑

i=0

jmax
∑

j=0

xiẋj. (2.65)

Least squares techniques were used to estimate the coefficients of ĝ (x, ẋ, F ). Co-

efficients in ĝ exceeding a predefined value, for example 10−6, are retained. The

identification scheme finds the correct model form and unneeded terms in the basis

function are found to be extraneous. The method was also applied to the identifi-

cation of a hysteretic system, simulated using a Bouc–Wen model.

The linear variant of the time series approach, Auto–Regressive Moving Average

(ARMA) models, have long been used for modelling and prediction purposes, the

classic reference for this material being the work by Box and Jenkins [49]. The

ARX model introduced in § 2.2.2 can be extended to nonlinear systems, such as the

Duffing oscillator represented by equation 2.62 to yield,

xi = a1xi−1 + a2xi−2 + b1fi−1 + cx3
i−1. (2.66)

This model is termed a Nonlinear Auto-Regressive with eXogenous inputs (NARX)

model. The regressive function, xi, contains a cubic term and is, therefore, nonlinear.

This model can be generalised to include all terms of order np or less to yield,

xi = F (np)
(

xi−1, ..., xi−nx
; fi−1, ..., fi−nf

)

. (2.67)

This model form can represent a wide class of nonlinear systems when the nonlin-

earities are polynomial in nature [35]. The model can be extended to account for the

more realistic case of noise on the measured data, where the measured signal consists

of the true signal and a noise signal, xm(t) = x(t) + ǫ(t). This yields an extension

of the general model in equation 2.67, referred to as a Nonlinear Auto-Regressive
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Moving-Average with eXogenous inputs (NARMAX),

xi = F (np)
(

xi−1, ..., xi−nx
; fi−1, ..., fi−nf

; ri−1, ..., ri−nr

)

(2.68)

where the system noise is assumed to be the result of passing a zero mean white

noise sequence, {ri}, through a digital filter with coefficients q1, q2, etc,

ǫi = ri + q1ri−1 + q2ri−2 + ... (2.69)

The NARMAX modelling technique is very versatile and the use of a noise model

makes it a powerful system identification tool. In most cases, it can exploit well

established linear least squares parameter estimation techniques [50]. The non–

parametric nature of the method, however, does not provide direct physical insight

into the system under investigation and in the case of multi input/multi output use,

the number of model terms can quickly become enormous [47].

The time domain version of the Hilbert Transform has been applied to the problem

of nonlinear system identification. The method is presented in the work of Feld-

man [51, 52]. The proposed methods, FREEVIB and FORCEVIB, aim to identify

instantaneous modal parameters (natural frequencies and damping characteristics,

and their dependencies on vibration amplitude and frequency). The methods how-

ever are only truly suited to signals with a single dominant frequency. Extending

the method to two component signals is discussed in [53].

2.3.3 Frequency domain methods

Nonlinear spectral methods have been developed for the identification of nonlinear

systems. Algorithms were first introduced by Bendat and Piersol for SDOF square

law and quadratic systems [54, 55]. Rice and Fitzpatrick extended the approach

to deal with SDOF systems with arbitrary nonlinearities [22]. The authors also

introduced the concept of constructing an inverse model of the nonlinear system.

This procedure (commonly referred to as the ‘reverse path’ or ‘Reverse Multiple In-

put/Single Output (R–MISO)’ method) reverses the role of the input and outputs of

the system, and allows nonlinear SISO models to be converted into equivalent MISO

linear models. Consider the case of the duffing oscillator described in equation 2.62.

This system can be represented by the block diagram shown in Figure 2.12. Note

that the nonlinear term is contained in the feedback loop. By using the R–MISO
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Figure 2.12: Block diagram model of the duffing oscillator

Figure 2.13: Inverse block diagram model of the duffing oscillator

approach, the system can be setup in the form shown in Figure 2.13. This is now

a two input/single output problem with inputs x(t) and x3(t) and output F (t) and

can be solved using the linear MISO techniques outlined in § 2.2.3.

An extension of this method for the case of MDOF systems was proposed in [27].

Richards and Singh presented a similar spectral method termed the Conditioned

Reverse Path (CRP) method [56]. Only slight differences exist in the formulation

of the R–MISO and CRP are not elaborated on here, in–depth discussion on the

similarities and differences between the methods can be found in [57] and [58].

Nonlinear Identification through Feedback of the Outputs (NIFO) is a spectral

method for the identification of nonlinear systems proposed in [59]. For a general

lumped parameter nonlinear vibrating system with different type of nonlinearities

at different degrees of freedom, the impedance model is given by,

[BL(ω)]N0×N0
{X(ω)}N0×1 +

Nn
∑

i=1

µi(ω) {Bni}N0×1 Xni(ω) = {F (ω)}N0×1 . (2.70)

The linear impedance matrix, [BL(ω)], represents the contribution of the underlying

linear lumped spring–mass–damper elements. The summation terms account for the

contribution of the lumped nonlinearities. The term µi(ω) determines the strength

of the associated nonlinearity, {Bni} determines the nonlinearity location and the
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scalar spectrum Xni(ω) is the Fourier spectrum of the nonlinear function of the

output time histories, and determines the types of nonlinearity in the system.

The nonlinearities create unmeasured, internal feedback forces in the underlying

linear model of the system. Rearranging equation 2.70 gives,

[BL(ω)] {X(ω)} = {F (ω)} −
Nn
∑

i=1

µi(ω) {Bni}Xni(ω) (2.71)

= {F (ω)} − {Fn(ω)} (2.72)

where {F (ω)} represent the external forces on the system while, {Fn(ω)}, represents

the internal forces in the system due to the nonlinearities.

Pre–multiplying equation 2.71 by the FRF of the underlying linear system, and

separating measured and unmeasured quantities gives,

{X(ω)} = [ [HL(ω)] [HL(ω)]µ1(ω) {Bn1} ...

[HL(ω)]µNn
(ω) {BnNn

}]













{Fω}

−Xn1(ω)
...

−XNn
(ω)













. (2.73)

This formulation allows internal nonlinear feedback forces to act together with mea-

sured external inputs to produce the measured outputs. The system inputs and

outputs can be measured and the nonlinear functions can be calculated from the

measured input and outputs. Equation 2.73 forms the basis for the NIFO parameter

estimation method.

2.3.4 Parameter estimation: least squares estimators

A large portion of the nonlinear analysis techniques outlined above use parameter

estimation methods based on the least squares technique. The least squares esti-

mators are among those with the best developed theoretical foundations; they are

very popular and intensively used [17]. This section gives a brief overview of least

squares estimation techniques.
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Linear least squares

Linear least square techniques can be applied to models which are linear in the pa-

rameters. Linear in the parameters implies that there is a linear relationship between

the parameters of the model and its output. The complexity of the optimisation

problem is significantly reduced when linear least squares techniques can be applied.

Consider a variable p forms a linear relationship with N independent variables qi,

(i = 1, 2, ..., N) such that,

p = {a}T {q} (2.74)

where

{a} = {a1, a2, ..., aN}
T

{q} = {q1, q2, ..., qN}
T .

{a} is a constant vector while {q} is a time dependent variable vector. Given

M different observations, equation 2.74 can be used M times to form the matrix

equation,

{p} = [Q] {a} (2.75)

where the design matrix [Q] is given by,

[Q] = [{q(1)} , {q(2)} , ..., {q(M)}]T .

When the number of samples, M , exceeds the number of variables in {a}, the equa-

tions are said to be overdetermined and a least squares solution can be found such

that the sum of the squared errors between the predicted values and observations is

minimised. The error vector between the predicted and the observed can be defined

as,

{e} = {p} − [Q] {a} . (2.76)

The cost function is given by,

K ({a}) = {e}T {e}

= {p}T {p} − {a}T [Q]T {p} − {p}T [Q]T {a}+ {a}T [Q]T [Q] {a} . (2.77)
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Minimising the cost function is achieved by taking its derivative with respect to

vector {a} and assigning it to zero, such that,

∂K ({a})

∂ {a}
= −2 [Q]T {p}+ 2 [Q]T [Q] {a} = 0 (2.78)

leading to the well known normal equations for the best parameter estimates {â},

[Q]T [Q] {â} = [Q]T {p} (2.79)

which can be trivially solved,

{â} =
(

[Q]T [Q]
)−1

[Q]T {p} . (2.80)

When it is known that errors from different locations are of different extents, it is

possible to weight the errors in the least squares analysis to optimise the outcome.

Given a known weighting matrix [W ] the cost function for the linear least squares

problem (equation 2.77) becomes,

K ({a}) = {e}T [W ] {e} = ({p} − [Q] {a})T [W ] ({p} − [Q] {a}) . (2.81)

Minimisation of the cost function as before yields the weighed least squares estimate,

{â} =
(

[Q]T [W ] [Q]
)−1

[Q]T [W ] {p} . (2.82)

Robust estimation

In practice, direct solution of the normal equations in not recommended as problems

can arise when the matrix, [Q]T [Q], is close to singular. This can result when

correlation exists between the matrix columns, due to correlations between model

terms (a matrix is singular if two columns are equal). The solution using normal

equations is also susceptible to round off error [16]. Robust estimators have been

developed which transform the design matrix into a form in which its columns are

uncorrelated. One such method is based on the use of Singular Value Decomposition

(SVD) and is the method of choice for solving most linear least squares problems

[16]. For any matrix [Q] of dimensions (M,N), where M ≥ N , it is possible to
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factorise it using SVD to obtain,

[Q] = [U ] [Σ] [V ]T (2.83)

where U , V are orthogonal matrices of dimensions (M,N) and (N,N) respectively,

and [Σ] is a diagonal matrix of dimensions (N,N). The diagonal elements of [Σ],

(ϕjj ≥ 0 for j ≤ N), are called singular values, and are arranged in descending

order of significance. The number of non–zero singular values in [Σ] is the rank of

the matrix [Q]. If [Q] has only r < N linearly independent columns, then the rank

is r and N − r singular values are zero. The use of SVD allows the calculation of,

[Q]† = [V ] [diag (1/ϕjj)] [U ]T (2.84)

where [Q]† is referred to as the pseudo–inverse of [Q] such that,

[Q]† [Q] = [I] , but, [Q] [Q]† 6= [I] . (2.85)

This can be used with equation 2.74 to obtain,

{â} = [Q]† {p} = [V ] [diag (1/ϕjj)] [U ]T {p} . (2.86)

If any singular value, ϕjj, in [Σ] is zero (in practice, due to measurement error, less

than a tolerance limit, ε, close to zero), its reciprocal in equation 2.86 should be set

to zero, instead of infinity. This effectively removes any linear dependence between

the vectors in [Q]. The value of ε is chosen such that, any singular values whose

ratio to the largest singular value is less than N times the machine precision, should

be modified in this fashion [16].

Parameter uncertainty

In practice different samples of data will contain different noise components and as

a result will give different parameter estimates. The parameter estimates, therefore,

represent a random sample from a population of possible estimates, characterised by

a probability distribution. If the expected value of the parameter estimates coincide

with the true parameter values, the estimates are said to be unbiased.

Consider the system shown in Figure 2.14 where the measured output is corrupted
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Figure 2.14: System with output noise

by noise. In this case equation 2.75 becomes,

{pm} = [Q] {a}+ {ηp} (2.87)

where pm, the measured signal, equals the true signal p plus the noise signal ηp. As-

suming the measurement noise is uncorrelated white noise with zero mean, E [ηp] =

0, the estimated parameters, â, will be unbiased. In the case of unbiased estimates

the variance of the parameter distribution is provided by the covariance matrix [11],

C = σ2
ζ

(

[Q]T [Q]
)−1

= σ2
ζ [V ] [Σ]−2 [V ]T (2.88)

where σ2
ζ is the variance of the noise on the measurements. If the noise on the

measured signals is coloured, the estimates will be biased regardless of the amount

of data measured. In this case the bias can be eliminated by including a noise model

in the parameter estimation process.

Nonlinear least squares

Nonlinear least squares techniques are employed when the model depends nonlin-

early on the set of M unknown parameters, {a} = {a1, a2, ..., aM}T . Problems of

this form require iterative solution. The iterative search routines have three basic

steps [17],

• selection of a set of starting values;

• generation of an improved set of parameters;

• selection of a stop criterion.

One popular method of solving nonlinear least squares methods is the Levenberg–

Marquardt method. The method works well in practice and has become the standard
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of nonlinear least squares routines [16]. Consider the cost function,

K (a) = eT e = (p− q(a))T (p− q(a)) (2.89)

new estimates of the model parameters are generated using,

δak+1 =
(

JT
k Jk + λI

)−1
JT
k (p− q(a)) (2.90)

where the Jacobian matrix J is given by,

J =
∂q

∂a
. (2.91)

The method uses the λ parameter to vary between the Gauss–Newton method and

the gradient method. The latter is used far from the minimum, switching contin-

uously to the former as the minimum is approached. The basic structure of the

algorithm can be broken down as follows [17]:

1. Select a set of starting parameters and a large starting value of λ;

2. Calculate the Jacobian J ;

3. Calculate δak+1 using equation 2.90;

4. Is the step successful: K(âk+1) < K(âk)?

• if yes: decrease λ and proceed to 5

• if no: increase λ and restart at 3

5. If the stop criterion is not met, go to 2, otherwise stop.

2.4 Force–response system identification

EMA identification methods are the most widely used linear system identification

techniques in the literature. Application of EMA techniques to system identification

problems have been wide and varied; and the applications, trends and challenges

are extensively documented [60, 61].

One particular work of interest to this investigation was conducted by Zegelaar [62].

It presented the EMA of a tyre under two boundary conditions, a free tyre and a
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Figure 2.15: Tyre driving point FRF’s in radial direction (reproduced form [62])

tyre standing on a road. Although the frequencies of the predicted higher order

modes were less than the measured modes, in general the EMA results compared

well with those from a flexible ring tyre model under both boundary conditions.

In the free tyre state, smooth symmetric mode shapes of the tyre were identified.

The second boundary condition applied a 4000 N preload to the tyre to represent

its actual operating conditions. It was observed that the mode shapes and fre-

quencies were different, and also, a number of modes were identified at frequencies

half way between the successive free tyre modes. Figure 2.15 shows the results of

the EMA for both boundary conditions. Although the free tyre test provided an

accurate representation of the tyre behaviour, these results suggest that identifica-

tion of components in their operating environment may provide a more applicable

representation.

The reverse path or R–MISO spectral method has been applied to a broad range

of nonlinear systems. Fitzpatrick and Rice implemented the method on SDOF and

MDOF numerically simulated vibrating system [12, 27], Meskell and Fitzpatrick

experimentally identified the parameters of a SDOF system with both coulomb

and viscous damping [63] and its application to the modelling and identification

of nonlinear squeeze film dynamics was presented in [64, 65, 66]. In an extensive

revision of his previous book on ‘Nonlinear System Analysis and Identification from

Random Data’, Bendat presented complex MDOF applications of the method for

oceanographic, automotive and biomedical systems [18]. The methods have be-

come very popular for ocean engineering applications, due to the nonlinear nature

of the excitation mechanisms. Liagre and Niedzwecki used R–MISO techniques to
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experimentally identify the dynamic parameters of an deep water compliant offshore

structure [67]. A mathematical model of the structure was developed. The ordinary

coherence inputs between each potential inputs and the output were computed and

the most relevant inputs retained for the identification of related parameters. The

method identified linear stiffness and damping parameters as well as trilinear stiffness

and quadratic damping type nonlinearities. Parker applied R–MISO techniques to

the identification of cushioning materials for protective packaging applications [68].

The R–MISO approach to the problem provided a more accurate description of the

protective material cushioning characteristics used by packaging designers in their

calculations for the protection of a product. Garibaldi used CRP methods to quan-

tify the nonlinear behaviour of a clamped beam with a local nonlinearity at one end

[34]. A two input/single output model was used. The inputs were the displacement

at the end of the beam and a nonlinear term of the form (sign (x(t) |x(t)|m)). The

exponent, m, was found by graphing the multiple coherence levels for a range of

trial analyses and determining the exponent level which maximised the coherence.

The linear frequency response function developed using theCRP method provided

a more accurate description of the system behaviour than linear H1 and H2 FRF

estimators.

Meskell et al. used force–state mapping to develop a nonlinear lumped parameter

model of a coupled fluid structure system [69]. The experimental setup consisted

of a tube array in a wind tunnel. One of the tubes was connected to a flexible

aluminium support structure outside the wind tunnel. The identification of the

support structure using R–MISO spectral analysis can be found in [63]. The tube

was displaced and the free decay recorded for a flow velocity in the range of 0–8.5

m/s. The equation of motion of the tube after averaging out turbulent excitation

effects is,

mẍ(t) + csẋ(t) + ksx(t) = E (x, ẋ, U∞) . (2.92)

Rearranging the equation of motion yields,

ẍ(t) =
1

m
(E (x, ẋ, U∞)− csẋ(t)− ksx(t)) = F (x, ẋ, U∞) (2.93)

therefore, the total force due to the support structure (csẋ(t) − ksx(t)) and fluid–

elastic force (E (x, ẋ, U∞)) can be plotted above the phase plane (x, ẋ). Assessment

of the force–state maps for varying fluid velocities allowed an assumption to be

made that the fluid–elastic force could be represented as the sum of linear and

cubic stiffness and damping terms. The main features of the identified model were a
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destabilising linear damping term and stabilising cubic damping term. The identified

model showed good correlation with measured results.

Kerschen et al. examined the identification of a nonlinear beam with piecewise linear

stiffness and bilinear stiffness using RFS methods. The restoring force was modelled

using a mathematical representation of the form,

f (x, ẋ) =
m
∑

i=0

n
∑

j=0

αijx
iẋj. (2.94)

The values of αij were obtained using least squares parameter estimation. A signif-

icance factor given by,

sθ = 100
σ2
θ

σ2
x

(2.95)

was introduced to determine which terms in equation 2.94 were significant and which

could be safely discarded. σ2
x corresponds to the variance of the sum of all the

terms in the model and σ2
θ is the variance of the considered term. The piecewise

linear and bilinear systems under test consisted of a clamped beam, which when its

transverse motion exceeded a certain limit, made contact with a steel bush. The

study looked at theoretical and experimental identification of the beam. Third order

polynomial and piecewise linear models were applied and both gave good results.

As acceleration, velocity and displacement signals were required for the analysis,

careful signal processing was required to obtain the three signals from measurement

acceleration.

2.4.1 Vehicle suspension system identification

The identification of vehicle suspension systems poses a significant challenge. Vehicle

suspension systems are known to be highly nonlinear systems, and it is untenable

to model them as linear systems [70]. The combination of high damping, hysteresis,

friction among others, results in a system which can be difficult to identify. Many

analytical techniques currently available are limited to the steady state response of

weakly nonlinear oscillators [35], while many frequency domain methods are quite

limited when applied to highly damped systems [71].

RFS methods have been widely applied in research, most noticeably in the area

of nonlinear automotive components [1, 21, 70, 72, 73, 74, 75]. Its application in
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the absence of measured input excitations has also been reported [76]. One of the

reasons for its popularity is the ability to quickly provide a visual representation of

the restoring force in the system. Cafferty et al. presented the characterisation of

an automotive shock absorber, subject to random excitation, using the RFS method

[21]. The use of random excitation is noted as having a number of benefits including,

• No control over the input is required beyond setting the excitation amplitude

and frequency limits;

• Data can be acquired in a short space of time, eliminating the possibility of

non–stationary data through warming of the shock absorber;

• The significant dynamical behaviour of the system will be described by the

‘backbone’ of the restoring force surface as frequency dependent behaviour

and memory effects will be averaged (only a single force value exists for every

point on the phase plane);

• A more uniform covering of the phase–plane can be achieved (compared to

harmonic excitation methods) allowing the use of simpler surface interpolation

algorithms.

The ability of random excitation to estimate the ‘backbone’ of the shock absorber,

by averaging memory effects, allowed the use of a tenth order polynomial model

form and linear least square parameter estimation. The shock absorber was also

modelled using a hyperbolic tangent model of the form,

Fd = κ {tanh (ξẋ+ ϑ)− tanh (ϑ)} (2.96)

parameter estimation of κ, ξ and ϑ required the use of nonlinear least squares.

Although, the polynomial model gave more accurate results, the hyperbolic tangent

model has the advantage of giving linear damping at high piston velocities and is,

therefore, unconditionally stable.

Duym proposed that velocity and acceleration (f(ẋ, ẍ)) be used in place of velocity

and displacement (f(ẋ, x)) when applied to force–state mapping of shock absorbers

subject to broadband excitation signals [72]. A visual comparison of the two force–

state map approaches is shown in Figure 2.16. Two experiments were carried out

on a shock absorber, the first with multisine excitation containing 16 sines with

frequencies from 1.25–16.25 Hz and the second for a beating signal (5.0–5.2 Hz).
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Figure 2.16: First–order force state map for a 16 by 8 grid for (a) displacement–
velocity and (b) velocity–acceleration (reproduced from [72])

Zeroth order and first order Taylor series expansions were fitted to the f(ẋ, ẍ) and

f(ẋ, x) phase planes. The Root Mean Square (RMS) error between the measured

results and the fitted models was significantly lower for the f(ẋ, ẍ) map for multisine

excitation (broadband). However, the traditional f(ẋ, x) force–state map showed

slightly lower RMS errors for the beating case (narrowband).

Identification of vehicle shock absorbers are almost always carried out under isolated

testing conditions. Numerous examples exist in the literature of shock absorber iden-

tification using force–response methods. Most use harmonic excitation [77], but ar-

guments have been made for the use of random [21, 78, 79], sine–on–sine [80], swept

sine[2, 81], constant velocity [82] and actual recorded road data [83]. Ko et al. ex-

amined shock absorber characteristic variation with wear. This involved the removal

of used shock absorbers from vehicle suspensions to facilitate isolated testing [84].

The identification of Magnetorheological (MR) dampers for vehicle suspension ap-

plications has also proved popular[85, 86, 87, 88]. All applications involved isolated

testing of the dampers on mechanical test stands under different applied magnetic

fields. Yao et al. used the identified MR damper model in a quarter car suspension

simulation [87]. The semi–active MR damper outperformed the passive component

in terms of controlling sprung mass acceleration, suspension deflection and tyre de-

flection. Sung et al. conducted extensive experimental testing and identification

of Electrorheological (ER) shock absorbers [89]. The work involved dynamometer

characterisation of the shock absorber, control system development in a quarter car
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test rig, before on the road full vehicle testing. Hardware in the loop simulation for

the identification of a vehicle shock absorber was presented in [78]. In the simula-

tion the actual shock absorber is used and was excited by a hydraulic actuator. Its

damping and force response were measured directly and fed back to the simulation

in real time. This approach allowed accurate simulation without the need for the

identification of complex nonlinear components.

Gobbi et al. investigated suspension vibration and harshness by measuring forces

and moments at the chassis suspension joints [90]. The ruotavia test rig (Figure 2.23)

was used in this study. Special six axis load cells, presented in detail in reference

[91], were used to measure the forces and moments at the joints. The suspension

was excited by passing over a cleat on the rotating drum surface. Constant speed

and varying speed analysis was carried out. For the constant speed analysis, av-

eraging of the measured signals was carried out using auto and cross–correlation

functions to synchronise the individual cleat passages in the recorded time histories.

This approach allowed calculation of an accurate spectrum of the bushing force

at the suspension joints. The varying speed analysis, conducted between 8 km/hr

and 48 km/hr, revealed that the plots of maximum force are not monotonically in-

creasing functions. The maximum RMS peaks in the vertical and horizontal forces

occur approximately at 20–25 km/hr and 30–35 km/hr, respectively. The authors

included suspension system support structure interaction in their dynamic model, a

technique not previously reported in literature. The support structure was excited

using hammer excitation at the suspension connection joints and the one degree

of freedom models were developed from the accelerances measured. In a related

study [92], Gobbi et al. further analysed the results to obtain modal damping via

the Hilbert Transform. A time history of joint force in the longitudinal direction

was band pass filtered around the frequency of interest. The Hilbert Transform of

the filtered signal was computed and the damping of the system in the longitudinal

direction was calculated from the slope of the decay envelope.

Nozaki and Inagaki presented a method of analysing coil springs and shock absorbers

independently without removing them from the vehicle [93]. The vehicle body was

excited using a vertical up and down motion at speeds in the 0–0.3 m/s range. At

the point where the body displacement of zero was crossed, the spring reaction was

zero. By measuring the tyre vertical load at this point, it was possible to obtain the

damping force value of the shock absorber itself, excluding the effect of the spring.

By varying the body excitation speed, a shock absorber force characteristic diagram
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was generated. The spring constant was found from the vehicle body displacement

and the tyre vertical load when a static force was applied to the vehicle body.

The method was verified theoretically and experimentally, but requires dedicated

hardware and software developed specifically for the application.

Kim and Ro proposed a method of developing accurate simple models of complex

mechanical systems [94]. The authors constructed an accurate complex model of a

double wishbone suspension system in ADAMS R© and used it to produced a two DOF

reduced order model. The reduced order model was produced from the linearised

ADAMS R© model. It was found to be very accurate when compared with the complex

ADAMS R© model. The authors compared the two DOF reduced order model to a two

DOF quarter car model (see § 2.6.2), with component data (sprung mass, unsprung

mass, spring stiffness, shock absorber damping, tyre stiffness) measured from the

actual suspension system, and found significant differences in the output of both

models. A set of revised component parameters were developed from the reduced

order model for use in the two DOF quarter car model. The goal was to develop

a set of parameters such that the response of the quarter car model was as close

as possible to the reduced order model. This revised quarter car model produced

results which showed only slight difference from the reduced order model and hence

the complex ADAMS R© model.

Kim et al. investigated the relationship between quarter car model component pa-

rameters and the suspension kinematic structure [7]. A complex ADAMS R© model

of the suspension system was used in place of an experimental setup. A double

wishbone suspension was first examined. A parameter identification technique was

used to build a more efficient mathematical model, called the identified model, than

the nominal model (a model based on measured component data). The parameters

identified using this technique replaced the sprung mass, unsprung mass, spring stiff-

ness, shock absorber damping and tyre stiffness parameters of the nominal model in

a two DOF quarter car model. The identified model better represented the response

of the complex ADAMS R© model than the nominal model. A complex ADAMS R©

model of a MacPherson strut was then built. The model parameters were the same

as those used for the double wishbone ADAMS R© model. The parameter identifica-

tion technique was again applied and a new identified model was produced. Results

showed that the identified model of the MacPherson strut differed significantly from

the identified model of the double wishbone. This showed that although the suspen-

sion parameters remained the same, a change in the kinematic structure resulted in
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a significant change in the parameters of the identified model. The authors termed

parameters owing to the suspension structure as ‘invisible’ uncertainties (i.e. not

shown in the component data).

Langdon developed an adaptive control method for the identification of a quarter

car test rig [95]. The quarter car system (or plant) was treated as an unknown.

The input to the unknown plant was also applied to an ‘Adaptive Linear Combiner’

which is an adaptive finite impulse response filter. The adaptive part of the filter

is the time varying weight vector, which can be continuously changed to meet some

performance criteria. The output of the plant is called the desired signal. The

output of the adaptive filter is subtracted from the desired signal to form an error. A

least mean squares algorithm uses the approximated error gradient to incrementally

adjust the values of the adaptive filter weights. The model, created by this method,

is purely empirical and is a finite impulse response filter that replicates the input

to output relationship of the physical system. The model error was 16.9 % for the

unsprung mass response and 9.9 % for the sprung mass response when the method

was applied to the quarter car rig. This system identification algorthim was used as

part of an adaptive control algorithm to assist in the control of the quarter car rig

excitation to replicate a desired response.

Allison and Sharpe investigated the longitudinal vibrations of vehicle suspension

systems [96]. A quarter car suspension system was run on a smooth rolling road at

constant velocity while being subject to a sequence of longitudinal forcing frequencies

in the 10–100 Hz range. A model of the tyre and suspension system was developed.

The tyre model used the rigid ring model with a bristle model to represent tyre

road interaction. The planer motion of the tyre hub is resisted by a spring and

viscous damper in both the longitudinal and vertical directions. Measured and

simulated FRF’s in the longitudinal direction, after model optimisation, showed

good correlation in the lower frequency ranges (<40 Hz) but it was believed that

high frequency behaviour of the rig, unaccounted for in the model, served to produce

discrepancies at higher frequencies.

2.5 Response only system identification

Kerschen et al., in their comprehensive review of nonlinear system identification

[35], discussed some key aspects which will drive the development of nonlinear sys-
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tem identification in years to come. One point made by the authors is the need to

move towards in–situ testing of structures in place of laboratory testing of repre-

sentative structures. They also stated that the use of operating loads and ambient

excitation is an area which merits further investigation, with the goal of reducing

the dependence on measured excitation forces. This view is shared by a number

of other authors including Schiehlen and Hu, who highlighted the need to identify

shock absorbers under real operating conditions [78]. While Adams and Allemang

stressed that system characterisation is best achieved using in–situ experimental

characterisation procedures [59], a view shared by Bendat and Piersol when non-

linear components exist in the system [24]. Basseville argued that there is a strong

industrial need for techniques extracting system models under real operating con-

ditions [97], due to the fact that modal models obtained in a laboratory may fail

to predict the correct operational system behaviour. One of the key arguments

for the use of OMA in place of EMA is that when a structure is removed from

its operating environment and tested under laboratory conditions, the laboratory

experimental conditions can differ significantly from the real life operating condi-

tions [29]. This allows for the identification of more realistic modal models for

in–operation structures. Although the modal analysis approach remains inherently

linear, in–operation techniques would allow linearisation to be carried out around

the actual loading conditions and external restraints [97].

The application of OMA techniques to mechanical systems has received much at-

tention in the past number of years. Application areas of OMA have been wide and

varied, from identification of a wind turbine wing using acoustic excitation [31], to

the vibro–acoustical analysis of a helicopter cabin [98], to operational identification

of a machine tool dynamic parameters [99], while numerous applications have been

reported for civil engineering applications; one recent and interesting analysis was

presented in [100]. Möller et al. compared EMA and OMA of a plate structure with

an electric motor attached [28]. The results showed that it was possible to extract

all modes in the frequency range of interest using OMA. Peeters et al. presented

the dynamic characterisation of a complete truck by OMA [101]. During truck de-

velopment, it is common to subject the vehicle to vibration testing, in the form of

either four post shaker tests or test track measurements. The authors conducted a

study on the feasibility of exploiting operational data from these tests to enhance

the vehicle development process. The paper compared finite element modes of a full

truck with modes identified by OMA. The truck was excited using a 4 post shaker

system. Only acceleration responses at 78 degrees of freedom were measured. Al-
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though OMA did not identify many of the finite element model modes, it was argued

that the modes identified using OMA are the modes most relevant in describing the

truck in its normal operating environment.

More complex applications of OMA have been carried out in cases where the as-

sumption of white noise as an input is clearly invalid. Brincker et al. [102] used

OMA to test a car body in the presence of engine excitation. The response data

were analysed using two different techniques: a non–parametric technique based on

FDD, and a parametric technique working on the raw data in time domain, a data

driven Stochastic Subspace Identification (SSI) algorithm. Both techniques iden-

tified 16 modes under 85 Hz and the result were validated by comparing the two

methods. This work highlights how OMA can be used in the presence of harmonic

excitations, in this case from the engine in operation. Although harmonics would

be present in the response spectra, methods of identification and elimination of har-

monics have been developed for use with OMA. Mohanty and Rixen presented a

modified EMA parameter estimation techniques (Least Squares Complex Exponen-

tial (LSCE), Eigensystem Realisation Algorithm (ERA) and Ibrahim Time Domain

(ITD)) for use with OMA in the presence of harmonic excitations [103, 104, 105].

The methods allowed the harmonic content in the measured signal to be accounted

for, but all required knowledge of the harmonic frequencies. The methods were

verified experimentally using a beam structure excited using multi–harmonic loads

superimposed on random excitation. Accurate identification was achieved even when

the harmonic content was very close to the resonant frequencies of the beam.

2.5.1 Response only vehicle suspension system identifica-

tion

The identification of vehicle suspension systems in the absence of input measure-

ments has received much less attention compared with force–response methods. Ha-

roon, Adams and Luk presented a technique for estimating linear system parameters

using nonlinear restoring forces in the absence of an input measurement [106]. The

method employed a technique termed nonlinear restoring force extraction. The

nonlinear restoring force was identified by fitting a hysteretic model of the form,

fnl(∆ẋ,∆x)

m2

= ∆ẋ− 2.5∆x (2.97)
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Figure 2.17: Curve fit to the nonlinear restoring force in the suspension. Nonlinear
damping restoring force (——), curve fit (−−−), and error(−.−) (reproduced from
[106])

∆ẋ = arctan [400(ẋ1 − ẋ2)] /2.2 (2.98)

to the measured restoring force data. The curve fit is shown in Figure 2.17. The

identified model was subtracted from the total restoring force of the system to leave

an estimate of the linear restoring force. DPE was used with a boundary perturba-

tion technique to estimate the linear system parameters from the estimated linear

restoring force. The approach was applied to experimental tyre vehicle suspen-

sion system data, gathered using shaker testing on the front corner of a vehicle.

Validation of the experimental results was not achieved as the analysis lacked a

priori information about the actual mass and linear stiffness in the system. The

identified mass (326.16 kg) and stiffness (79126 N/m for chirp excitation and 71021

N/m for random excitation) parameters were assumed to be ‘reasonable’, despite

the fact that it was noted the estimated stiffness was higher than typical values for

an average passenger car.

Haroon et al. demonstrated that nonlinear mechanical system models can be iden-

tified from experimental vehicle data in the absence of input data at the tyre patch

[76]. Chirp excitation using a hydraulic shaker was applied to a front wheel of a test

vehicle and the frequency and amplitude dependence of nonlinearities were char-

acterised using restoring force methods. An output only formulation of the NIFO
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parameter estimation technique was used to identify the system. Consider the equa-

tion of motion of the sprung mass of a two DOF suspension model in the frequency

domain (ignoring damping),

(

−msω
2 + k2

)

Y2(ω) = k2Y1(ω) + µ1Yn1(ω) + µ2Yn2(ω) (2.99)

where Y1 and Y2 are the Fourier Transforms of the unsprung and sprung mass

displacements, Yn1 and Yn2 are the Fourier Transforms of two particular restoring

forces of interest and µ1 and µ2 are the corresponding coefficients determining the

nonlinear weighting. Rearranging equation 2.99 and noting that the transmissibility

between the unsprung mass and sprung mass of the underlying linear two DOF

system, T21, is equal to,

T21 =
k2

(−msω2 + k2)
(2.100)

leads to,

Y2(ω) =
[

T21(ω)
µ1

k2
T21(ω)

µ2

k2
T21(ω)

]







Y1(ω)

Yn1(ω)

Yn2(ω)






. (2.101)

Least squares parameter estimation is used to calculate the three coefficient func-

tions in the row matrix for each frequency point. The approach was applied to the

experimental identification of a single wheel of a full vehicle. Sine sweep excitation

was used to characterise the nonlinearities in the system. Changes in characteris-

tic and work diagrams for varying input frequency and amplitude were examined.

NIFO was applied to random data for varying input amplitude ranging from 0.5–

7.0 mm RMS displacements at the tyre patch. Two nonlinearities were included,

coulomb friction damping and backlash in stiffness. As they were dominant in differ-

ent operating ranges, NIFO was applied to each separately. The backlash describing

function and NIFO results are shown in Figure 2.18. The NIFO technique provided

good estimates of the linear transmissibility functions in each case (the linear trans-

missibility was assumed to be equal to the transmissibility at the lowest excitation

level).

Three different nonlinear system identification approaches were applied to experi-

mental test data from the front right suspension of a full vehicle in [70]. The system

was excited with a swept sine using a hydraulic shaker. Acceleration measurements

were taken at the suspension knuckle and the top of the shock absorber. First a

visualisation of the nonlinearity in the shock absorber was obtained using RFS meth-
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Figure 2.18: (a) Backlash describing function between the spindle and body in the
strut used in NIFO parameter estimation procedure and (b) magnitudes of measured
transmissibility functions between the spindle and body for: (. . .), 0.5mm; (−−−),
1.0mm; and (−.−), 7.0mm input levels with the NIFO estimate (——) of a near
zero level input using the 1.0mm data. (reproduced from [76])

ods. The output only formulation of the NIFO technique was then applied to the

problem. This approach allowed the frequency dependence of the shock absorber to

be captured. It was noted that the method required specific knowledge of the non-

linearity form before the identification step. Only reasonable success was achieved

with this approach and no actual parameters estimates were reported. Errors were

attributed to unidentified nonlinearities in the system. The final approach aimed to

average out frequency effects using random excitation. Linear and nonlinear opti-

misation routines were used to fit a ninth order polynomial model and a hyperbolic

tangent form (equation 2.96) to the force–velocity curve. Both models gave accurate

results but the hyperbolic tangent model has the advantage of giving linear damping

at high piston velocities and is, therefore, unconditionally stable. The output only

NIFO technique was also implemented by Hickey et al. [74]. Characteristic and

work diagrams were used to characterise the nonlinearities in a vehicle suspension

system. Although actual parameter estimates were obtained using the NIFO ap-

proach for simulated data, the authors stopped short of reporting actual parameters

in the experimental case. Again errors were attributed to unidentified nonlinearities.
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McGee et al. proposed a frequency domain approach for the identification of non-

linearities in vehicle suspension systems in the absence of a known input force [107].

The authors used transmissibility functions and ordinary coherence functions be-

tween the sprung and unsprung masses to develop the method. In systems with

polynomial nonlinearities, such as quadratic or cubic stiffness, additional frequency

response components due to nonlinear interactions are present at frequencies other

than the excitation frequencies. These additional frequencies are often referred to as

harmonic distortion. The authors identified the harmonic distortion frequencies for

different polynomial nonlinearities. They examined the transmissibility functions

and ordinary coherence functions of quarter car models with polynomial nonlin-

earities. Nonlinear frequency permutations, which created drops in the ordinary

coherence function served to characterize the associated nonlinearities. Experimen-

tal validation was carried out using two methods. The first involved the use of

a hydraulic shaker table under one wheel of a mid–sized vehicle. This setup al-

lowed for the measurement of the input force. Quadratic stiffness, cubic stiffness

and coulomb friction were identified using the transmissibility function, frequency

response function and ordinary coherence functions produced. The second method

used on–road testing at three different driving speeds on a rough road and an urban

highway. The nonlinearities were again identified using autospectra, transmissibility

functions and ordinary coherence functions. Figure 2.19 shows transmissibility and

coherence functions, between sprung mass response and unsprung mass response,

for a full vehicle road test at 35 mph. The sprung (f1) and unsprung mass (f2)

resonances were identified at 1.4 Hz and 11.5–13.5 Hz, respectively. The drops in

coherence and the associated nonlinearitites are listed in Table 2.1. This work suc-

cessfully characterised the nonlinearities in a vehicle suspension system but stopped

short of parameter estimation.

Operational damage detection is an area which has been pursued by a small num-

ber of authors. Haroon and Adams used response only measurement to detect and

track the progress of mechanical damage in vehicle suspension components [75]. The

authors discussed the merits of data interrogation methodologies to identify loads

and faults in suspension systems, leading to reduced maintenance costs and future

development of more durable suspension systems. RFS’s were used to characterise

the frequency dependence of nonlinear internal loads in the system, while changes in

the restoring forces with the onset and progression of damage were used for damage

detection. Swept sine excitation was provided by hydraulic actuators over the 0–15

Hz range. The method was demonstrated using full vehicle and quarter car tests
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Figure 2.19: Transmissibility and coherence function between sprung mass response
and unsprung mass response for a vehicle speed of 35 mph on an urban highway
(reproduced from [107])

Frequency [Hz] Description Nonlinearity
14.2 Frequency Permutation, Quadratic stiffness

f1 + f2
16.2 Frequency Permutation, Cubic stiffness in suspension

f2 + 2f1
22.5 Frequency Permutation, Cubic stiffness in suspension

2f2 − f1
27.5 Frequency Permutation, Cubic stiffness in suspension

2f2 + f1
22–50 Consistently worsening Coulomb friction in suspension

trend in coherence

Table 2.1: Drops in coherence and the associated nonlinearities for a vehicle speed
of 35 mph on an urban highway (reproduced from [107])
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Figure 2.20: Change in internal damping force of the sway bar link with usage (34
Hz); Baseline 1 (—–), baseline 2 (−.−.−), after 10 hours of testing (− − −) and
after 24 hours of idle time (. . .) (reproduced from [108])

with different damage types. In related studies [108, 109, 110] the authors used

RFS’s and transmissibility measurements across a damaged automotive component

to develop empirical damage evolution models. Although a combination of full vehi-

cle suspension testing and more traditional isolated component testing was used, the

input forces were not measured during data acquisition. One interesting test con-

ducted during this work involved the examination of the change in internal restoring

force in the vertical damping of a full vehicle sway bar link. A baseline restoring

force was calculated before the system was excited using sinusoidal excitation for

10 hours. Data were collected at the end of the test and again after the system sat

idle for 24 hours. The results are shown in Figure 2.20. The results suggest that

under continuous operation the restoring force in the system changes. This result

indicates that even the most accurate model of such a system developed in isolation

may not accurately represent its actual behaviour during prolonged operation.

The provision of information to support condition based maintenance in place of

calender based maintenance for rail carriages was examined in [111]. This work fo-

cused on monitoring three parameter changes indicative of common faults in railway

vehicles (wheel conicity and damper condition). A Rao–Blackwellized particle filter

based method was used for parameter estimation. Particle filtering is a simulation
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based method for general nonlinear non–Gaussian state estimation, which attempts

to approximate the complete probability density function of the state to be esti-

mated. Only acceleration and gyroscopic measurements were used to implement the

method. The method was found to give excellent results in simulations when the

rail track roughness was known, but parameter estimates related to wheel condition

were significantly biased when the track roughness was unknown and required esti-

mation. Experimental tests were found to give reasonable results for the damping

parameters although the parameter estimates related to wheel condition were again

significantly biased.

A sensing methodology to determine automotive damper condition under normal

operation has been presented in [112, 113]. The authors noted in their literature

review that no precise method exists to continuously evaluate dampers under normal

operating conditions. Two approaches were taken, analysis of the suspension system

as a whole and a study of the damper internal working principles. The former used

acceleration transmissibilities across the shock absorber to assess suspension system

condition, the latter used measurements of the damper internal chamber pressure,

temperature and wheel acceleration to determine damper condition. Both methods

were successfully validated using operational vehicle testing.

Rozyn and Zhang estimated the sprung mass of a simulated vehicle driven over an

unknown and unmeasured road profile [114]. The method used measured response

only, from three accelerometers mounted on the sprung mass of the vehicle. Free

decay response of the system were computed using auto–correlation functions while

the vehicle was in motion, allowing for the use of modal analysis techniques. The

equivalent linear stiffness of the suspension system is required to implement the

method. Simulation results using a three DOF vehicle model showed relative errors

in the estimated mass and inertial parameters of less than 6 %. Although the

technique showed good results for simulated data, no experimental validation of the

method was carried out.

Best identified a vehicle tyre model using GPS (Global Positioning System) and

inertial measurements during vehicle operation [115]. Instrumented vehicles per-

formed 10 step steer events at constant velocities. The authors used an extended

Kalman filter for system identification, to derive individual load dependent tyre

models. Results showed successful tyre model identification.

Hermans and Van Der Auweraer used OMA methods to solve a noise problem in a
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passenger car [116]. A booming interior noise problem occurred at a frequency close

to 80 Hz. Operational testing was carried out on a rough asphalt road at 50 km/hr

along with a detailed laboratory modal test. EMA identified a bending mode in the

rear suspension at 74.6 Hz and this compared favourably with a mode identified at

71.9 Hz using OMA.

The fact that the input force was not required for system identification in the works

outline above, allowed in–situ testing of the suspension components to be used in all

cases. Schiehlen and Hu highlighted the need to identify characteristics of vehicle

shock absorbers under real conditions [78]. They developed a piecewise linear model

of a shock absorber experimentally tested using stochastic models of road roughness.

The identification was repeated using stepped sine excitation. It was found that the

stepped sine excitation produced smaller errors when compared with measured data,

but the authors stressed that these parameters are not optimal in the real operating

environment of the shock absorber. They noted that experiments and simulations

in the real environment are very important for the parameter identification of a

model. The implementation of operational identification methods for vehicle sus-

pension systems has become even more achievable in recent years with the increase

in electronic diagnosis equipment in vehicles [112]. The instrumentation and sens-

ing systems required to implement system identification method already exist in

modern vehicles, load sensors form part of braking distribution systems [113], while

accelerometers are a key component in vehicle stability, crash sensing and adaptive

suspension systems [117].

2.6 Vehicle suspension system experimental test

and simulation

This literature review to date has presented system identification techniques applied

to linear and nonlinear systems. Part of the review focused on the identification of

vehicle suspension systems. System experimental test and simulation play an im-

portant part in the identification process. This section presents a review of the

experimental test and simulation of suspension systems. Current methods of con-

ducting such experimental testing are outlined along with a description of hardware

setups currently in use. This will lead to a discussion on suspension simulation

methods. Popular simulation methods used in research are compared.
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2.6.1 Suspension experimental testing

The goals of and approach to suspension experimental testing depend on the nature

of the industry for which the test is being conducted. For vehicle manufacturers

Noise, Vibration and Harshness (NVH) along with durability would be the major

concerns. For racing or performance applications vehicle stability and handling

would be more important than NVH. For all applications, experimental testing

provides a method of tuning and testing suspension setups to specific applications.

Multi post hydraulic test rigs

Vehicle manufacturers use multi–post testing systems. A multi–post testing system

is an experimental device that allows the simulation/recreation of driving conditions

(e.g., racing track or test track conditions) in the controlled environment of the

laboratory. A four post system, for example, consists of a servo–hydraulic actuator

(post) under each vehicle wheel. The unrestrained vehicle is excited through its

tyres in order to determine some of the dynamic characteristics of the vehicle, its

suspension and its tyres. Inputs are controlled accurately and are repeatable. This

feature enables the effect of small changes to the vehicle and its suspension to be

quantified with precision. Seven and eight post testing rigs are used by racing

teams or when aerodynamics effects need to be included in simulations. Aeroload

actuators become necessary to tune the suspension at the correct ride height by

including aerodynamic effects. Input data for multi–post test systems are gathered

by driving instrumented vehicle around a test track. The response of the vehicle

is then replicated on the multi–post system using Iterative Control System (ICS)

software [118]. This software allows the engineer to play back a track profile on the

multi–post system and assess the effect of suspension changes.

Multi–post test rigs are expensive to install, run and maintain. The rigs are multiple

input/multiple output systems which require a high degree of control knowledge and

understanding to use properly [95]. Multi–post test rigs are not very popular in the

literature of suspension research. A much more popular experimental testing setup

is the quarter car test rig, which will now be examined.
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Figure 2.21: Paré Quarter Car Test Rig (reproduced from [119])

Quarter car test rigs

Quarter car test rigs are designed to provide realistic suspension movement whilst

eliminating the need to have a full vehicle present for testing purposes. Quarter car

test rigs vary in size, shape and complexity. The primary experimental purpose of a

rig determines its design. Rigs designed for testing tyre vibration differ significantly

from those designed to test semi–active shock absorbers. The following section

highlights the different types of quarter car rigs used in research. It has been noted

that very few applications are presented in the literature referring to full suspension

indoor testing [92].

Excitation is normally provided by hydraulic shaking systems or rolling roads. Some

test rigs simplify or eliminate complex components of suspension systems. Rigs

employing hydraulic shaker excitation sometimes eliminate the wheel and tyre from

the system. An example of this type of rig can be seen in Figure 2.21. The rig

was designed by Paré [119] and used in research into semi–active control methods

by Ahmadian and Paré [120] and Ahmadian, Goncalves and Sandu [121]. The rig

consisted of a sprung mass constrained to move in the vertical direction using eight
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Figure 2.22: Langdon Quarter Car Test Rig (reproduced from [95])

linear bushings. This was connected to the unsprung mass using two air springs in

parallel. Excitation was provided to the unsprung mass using a hydraulic shaking

system through eight rubber mounts designed to have a stiffness close to that of a

tyre. This type of rig is primarily used for active and semi–active control system

development and validation. In this type of testing, the performance metric would be

the acceleration of the sprung mass as this is directly related to the force experienced

by passengers. For this reason the inclusion of the tyre is not critical, as the primary

concern is the transmission of vibration between the unsprung mass and the sprung

mass. Further examples of similar rig setups can be found in references [96, 122].

This type of rig does not include the effects of suspension geometry. No suspension

arms are used in the rig setup. Both the sprung and unsprung masses are constrained

to move in the vertical direction. The effects of rolling tyre vibrations cannot be

examined with this type of rig.

Langdon designed a tyre coupled quarter car test rig [95]. The rig was used in

research by Ziegenmeyer, to estimate the disturbance inputs to the tyre [123]. This

rig, shown in Figure 2.22, consisted of a full suspension system, including wheel and

tyre, from a racing car. Excitation is provided to the tyre patch using a hydraulic

shaker. This type of rig allows for the use of an actual suspension system with
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the flexibility of a hydraulic excitation system. The suspension arm and shock

absorber are attached to a rigid metal plate which is constrained to move in the

vertical direction using two linear guides. The support structure and base were

tested to ensure no resonances of these structures existed in the frequency range of

interest of the study. The rig was used to develop a control algorithm to determine

the excitation required to replicate a response recorded during a road test. Tyre

coupled hydraulic rigs are the most popular in literature and many different types

and design variations exist [124, 125, 126, 127, 128, 129]. Another popular approach

is to use a hydraulic actuator on one corner of a full vehicle [70, 75, 76, 106]. A wide

range of excitations can be used with this type of test setup. The excitations are

repeatable and accurate. The effects of the rolling tyre are not included with this

type of system. The system can only be excited in the direction of the hydraulic

shaker. In reality, when the tyre encounters a road disturbance it is excited in the

vertical, transverse and fore–aft directions.

A ‘rolling road’ type quarter car rig was used by Giorgetta et al. [130] and Gobbi

et al. [90, 92, 131]. The rig, based at the Laboratory for the Safety of Transport at

the Politecnico di Milano, consists of a 2.6 m diameter steel drum which provides

a running contact surface for vehicle wheels. The drum is driven by an electric

motor. The suspension arm and shock absorber are attached to a sled system which

is free to move in the vertical direction on two cylindrical rails. The rig can be seen

in Figure 2.23. It is primarily used to test suspension vibration performance when

running over cleats on the drum surface. The excitation provided to the system with

this type of rig will always be periodic. It does, however, allow for the effect of the

rolling tyre to be included in the analysis. This is very applicable in NVH studies

as tyres have been shown to be the leading cause of vehicle noise above 80 km/hr

[132]. Another advantage of this type of rig is that realistic inputs are provided to

the system. As the rig passes over a cleat on the drum surface it is excited in the

vertical, transverse and fore–aft directions. Figure 2.24 shows results from a rolling

road rig mapping the wheel displacement in the vertical and fore aft directions.

This is an important feature when examining the dynamics of the unsprung mass in

more than one plane. Allison and Sharp used a rolling road type rig to investigate

suspension longitudinal vibrations in vehicle suspensions [96]. Haga developed half

car rolling road test rig. The rig consisted of two rolling drums which provided the

input to a full rear suspension and axle assembly of a passenger car [133].
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Figure 2.23: Ruotavia quarter car test rig (reproduced from [130])

Figure 2.24: Non–dimensional measured displacement of the wheel centre (repro-
duced from [92])
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2.6.2 Suspension simulation

Prior to the widespread use of computer technology, for complex systems, the only

model at a design engineers disposal was a replica of the real thing. For complex

systems nowadays the model is almost certain to be a mathematical model. The

mathematical modelling of a dynamic system is the formulation of mathematical re-

lationships which describe all the features of the system that are considered essential

[134]. Features which are considered essential depend on the purpose of the model

and also their effect on the behaviour of the system being modelled. For suspension

performance analysis, a model to evaluate ride comfort may only take account of the

vertical acceleration of the sprung mass, whereas an in–depth handling model may

take wheel and tyre movement and vibration in the vertical, transverse and fore–aft

directions into account.

In the literature, the analytical quarter car model is said to be the most widely used

suspension system model [7, 94, 135, 136]. With the current trend of using four

independent suspension systems on a single vehicle, the linear quarter car model

offers quite a reasonable representation of the actual suspension system [7, 94, 137].

Quarter car model

A diagram of the classic linear two degree of freedom quarter car model can be seen

in Figure 2.25. The model consists of a sprung mass which represents the mass of

a quarter of the vehicle chassis and the unsprung mass which represents the mass

of a single wheel, tyre, shock absorber and suspension knuckle. The sprung and

unsprung masses are connected using linear spring and viscous damping elements

to represent the stiffness and damping of the shock absorber. The tyre is modelled

as a linear spring in parallel with a viscous damper (point contact tyre model).

Despite its simplicity, the linear quarter car model is very popular in the literature

of suspension research. It has for a long time been the par excellence model used in

suspension design [138]. It has the following advantages over more complex models

[139]:

• Few design parameters;

• Few performance parameters;
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Figure 2.25: Two DOF linear quarter car model

• The relationship between design and performance is easily understood;

• Single input system, leading to ease of computation of performance;

• Ease of application of control theory to derive control laws.

It does not, however, give any representation of the geometrical effects of having

four wheels and offers no possibility of studying the excitation of vehicle body roll

and pitch motions. Two lesser used analytical models, the four degree of freedom

half car model and seven degree of freedom full car model are used when these

parameters are of interest [4, 114, 140, 141].

Quarter car model accuracy

Conflicting views were found in the literature on the accuracy of the linear quar-

ter car model. Despite its widespread use, little dedicated research was found on

the validity of the relatively simple model in predicting the movement of complex

suspension systems.

A number of authors have cast doubts over the effectiveness of the linear quarter

car model in predicting suspension movement in certain circumstances. Kim and

Ro wrote that the two mass quarter car model is effective in predicting the two
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dominant modes, sprung mass bouncing and wheel hopping [94]. They did, however,

have some reservations about the component data used in such simulations. The

authors constructed a complex multibody model and used it to produce a two degree

of freedom reduced order model. They estimated the component parameters for the

reduced order model and found them to be very far from the measured component

data. They also referred to work carried out by Kim et al. [7], in which it was

shown that suspension kinematic structure has an influence on the effectiveness

of the simple linear quarter car model. Türkay and Akçay used a linear quarter

car model to study the response of a vehicle to random road inputs [142]. Their

results showed how imprecise knowledge of the excitation road spectra would impact

subsequent active suspension design. They recognised that the linear quarter car

model is ‘too simple for performing a comprehensive analysis of the ride motion of

the vehicle’ but also noted that significant insight into the problem was obtained

using this simple model. Etman et al. compared the optimum parameters of a

stroke dependent truck damper for both a linear quarter car model of the front

side of a truck and a 34 degree of freedom multibody full truck model [143]. It

was concluded that the step from the quarter car model to the full scale model was

‘pretty large’, due to the fact that a great deal of the dynamic behaviour of the

truck was not included in the quarter car model. They did, however, note that a

reasonable resemblance of the global response behaviour was present between the

two models.

A popular view among authors is that the linear quarter car model is used due to

its simplicity and that the qualitative information it provides in the initial stages of

design, outweighs the inaccuracy [138, 139, 144, 145]. Elmadany and Abduljabbar

stated that it captures the most basic features of the real vehicle problem. They

followed this by saying that when a detailed model of vehicle motion is required,

more elaborate models (two or three dimensional models) must be used which take

account of features omitted from the quarter car model [146]. An important property

of the quarter car model is that it properly represents the problem of controlling

wheel load variations and contains suspension system forces which are properly

applied between unsprung and sprung masses [139]. This fact has given rise to the

widespread use of quarter car models in the development of active and semi–active

suspension control strategies.
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Tyre modelling

The pneumatic tyre serves an important purpose in suspension systems with respect

to the isolation of road induced vibration. There are a variety of tyre models in the

literature with different levels of complexity. Tyre model complexity is determined

by the frequency range of interest of the study [147].

In the low to intermediate frequency range the most widely used and simple tyre

model is the point contact model [148, 149]. It consists of a linear spring in parallel

with a linear viscous damper. This is considered to give relatively good approxima-

tions of tyre forces generated when a tyre is in contact with small amplitude, long

wavelength road profiles. The enveloping behaviour of tyres as they roll over small

obstacles cannot be accounted for in such a model as it does not consider the tyre

geometry and elasticity in the contact zone. This model, although quite crude, is

acceptable for ride analysis [138]. More complex tyre models are required for Noise,

Vibration and Harshness (NVH) investigations [147, 149] and for handling, brak-

ing and traction studies. Such models must account for road tyre adhesion (both

longitudinal and lateral) as well as rolling friction [138].

Conflicting views were also found on the issue of tyre damping in quarter car mod-

els. The view that tyre damping is typically small, and is ,therefore, insignifi-

cant compared with shock absorber damping is shared by a number of authors

[141, 150, 151, 152]. The placement of tyre damping in the quarter car model has

also been given as a reason to neglect its effects [139]. It was noted in [153] that

tyre damping is often neglected in suspension simulations due to the fact that it is

difficult to estimate.

On the other hand, some authors argue that the role of tyre damping in vehicle

dynamics is overshadowed by factors which are presumed to be more important

[154, 155]. It is often neglected, even in view of the fact that the tyre damping

ratio is generally accepted to be between 0.03 and 0.10, depending on tyre size and

type [156]. Levit and Zorka published a paper on the influence of tyre damping in

quarter car active suspension models [155]. The authors urged that considerable

care be taken in setting tyre damping to zero when developing quarter car models

for control applications. Non–zero tyre damping was shown to couple the motions of

the sprung and unsprung masses at all frequencies and lead to substantially different

transfer functions for RMS body acceleration. Türkay and Akçay studied the effect
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of tyre damping on the performance limitations of quarter car active suspension

models subject to random road excitation. Results showed that tyre damping can

have a significant influence on the closed loop performance of the active suspension

system [156]. Maher and Young investigated the effect of tyre damping on the

accuracy of the quarter car model subject to sinusoidal excitation [157]. Simulation

results were compared with measured results from a quarter car test rig. Isolated

testing of the quarter car rig shock absorber, spring and tyre provided the simulation

parameters. Tyre damping was shown to lower the magnitude of the peaks in the

unsprung mass acceleration and was also found to increase the accuracy of the

simulation when compared with measured results.

Shock absorber modelling

A shock absorber is one of the most important elements in a suspension system. It is

a complex nonlinear element [158, 159]. Duym highlighted that attempts in the past

to simulate vehicle behaviour showed poor correlation with measured values due to

the fact that shock absorbers were modelled as pure linear elements [1]. He stated

that linear modelling of shock absorbers have been rejected and replaced by a two–

slope or three–slope model which represents the most important nonlinearity in the

characteristic diagram. Duym, however, also noted that the presence of hysteresis in

the characteristic diagram can falsify simulation results obtained using the two–slope

model. Basso noted that damping force is a nonlinear function of many parameters

and its modelling is extremely difficult [82]. He stated that due to these modelling

difficulties it is often preferable to characterise the shock absorber restoring force,

not only in terms of damping force, but also in terms of internal friction force and

elastic effects due to the possible presence of a spring.

Shock absorber modelling has been the focus of much research in the last two

decades. An exhaustive review of modelling techniques can be found in [1]. Mod-

els can generally be divided into three categories, physical, rheological and non–

parametric. Physical models are developed from knowledge of the internal structure

of the shock. They are accurate over a wide range of operating conditions. They

are, however, difficult to develop and most require a large number of parameters

which can only be determined using expensive in–depth testing of the shock. Physi-

cal models also tend to be computationally intensive and are not suited to dynamic

simulations. They have also seen limited application to the analysis of vehicle ride
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and handling [160].

Rheological models are developed using a collection of elements such as dash pots,

springs, friction and backlash. They can be tedious to develop but provide a model

which has a broad operating range. They can be computationally intensive as with

physical models [77]. Non–parametric models are developed from measured quan-

tities such as force and velocity. They are easier to develop than the methods

above but can only describe the shock absorber in a limited range of operation. For

dynamic simulations, the force–velocity relationship of the suspension damper can

be approximated by a sequence of connected straight line segments. The majority

of analysis involving vehicle dynamics, road holding, handling and control employ

either linear or piecewise linear and symmetric damping properties [160]. The con-

tribution of hysteresis, asymmetry and gas spring effect are often assumed negligible

[160].

Spring modelling

A helical spring such as that found in an automobile are often treated as simple

massless force elements. Lee and Thompson stated that helical springs typically

used in automotive suspension systems can be treated as massless force elements at

low frequencies (below 40 Hz). In the same paper the authors stated that above

about 40 Hz the dynamic stiffness is found to increase sharply due to internal res-

onance [161]. This highlights the fact that the purpose of the suspension model

will determine the type of spring model to be used. Many dynamic spring models

have been developed; most are complex, taking lateral and shear deformations of

the wire into account. The equations which govern the dynamics of helical springs

become twelve simultaneously partial differential equations containing inertial terms

which are difficult to solve. An in–depth review of the development of helical spring

modelling theory can be found in [161]. Verros et al. noted that the restoring force

of a car suspension exhibits nonlinear characteristics. They modelled the spring as

a trilinear element and stated that this is a sufficiently accurate representation of

the spring characteristic [144].
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2.7 Summary

This literature review provides a summary of well established identification methods

and current trends in nonlinear system identification. It is clear that the identifica-

tion of nonlinear systems poses a significant challenge, due to their individualistic

nature and the lack of general analysis methods which can be applied to all systems

in all cases.

Vehicle suspension systems are known to be highly nonlinear [70]. A wide variety

of identification procedures have been applied to this identification problem, mostly

using traditional force–response identification methods. The identification of vehicle

suspension systems in the absence of input measurements has received much less

attention among the research community. Numerous works focused on detection of

changing suspension parameters due to wear or damage [109, 111, 112, 113], others

characterised the nonlinearities in suspension system [107], but neither approach

provided estimates of actual parameter values. The work of Haroon et al. [106]

estimated actual suspension parameters, but a lack of a priori knowledge of the

system under test prevented a thorough validation of the method.

This investigation will approach the problem of operational vehicle suspension sys-

tem identification from a new angle. A vehicle suspension test rig will be designed to

facilitate laboratory experimental testing (Chapter 3). A traditional force–response

approach will be used to identify the individual components of the suspension sys-

tem. A simulation of the suspension rig will be developed and validated using

measured experimental data from the rig (Chapter 4). Successful identification of

the quarter car test rig using traditional methods will provide the foundation to

pursue the operational identification of the system (Chapter 5). Operational data

in the form of acceleration measurements will be used for this purpose. This end–

to–end approach to the operational identification of vehicle suspension systems will

provide a structured approach to the problem using a combination of focused exper-

imental design, well established force–response testing methods, vehicle suspension

experimental testing and simulation.
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Chapter 3

Experimental design

T
he importance of experimental testing and simulation to the system identifi-

cation process is highlighted in the literature review (Chapter 2). The design

and development of both the experimental testing set–up and simulation set–up for

this investigation is outlined here. The chapter is divided into two sections. Firstly

the experimental testing set–up design and development is described in Section 3.1.

The experimental design focuses around the development of a vehicle suspension test

rig. The rig is designed to facilitate the end–to–end approach to operational sus-

pension identification, proposed in the literature review. The data acquisition and

signal processing hardware and software are also described. Section 3.2 examines

the suspension simulation development and data visualisation. The development of

a quarter car experimental test and simulation analysis tool, or Quarter car Analysis

Tool (QcAT), is detailed in this section.

3.1 Experimental test development

The popularity of quarter car test rigs for suspension system experimental test and

analysis, was highlighted in the literature review (§ 2.6.1). It was noted that the

goals of the proposed testing dictates the overall rig design. This investigation aims

to replicate the case of on–road full vehicle testing. Therefore, to provide the most

realistic excitation (multi–directional) and to include the effects of a rolling tyre, a

rolling road type quarter car rig is developed.
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3.1. Experimental test development

(a) Complete test rig (b) Rig with safety cover removed

Figure 3.1: Quarter car suspension experimental test rig

3.1.1 Quarter car test rig

Figures 3.1 shows the experimental test rig purpose built for this research. The rig

is designed to mimic a MacPherson Strut type car suspension (engineering drawings

showing dimensions of the assembled rig can be found in Appendix F). It has

two main parts; the suspension system and the suspension support structure. The

suspension system (Figure 3.2) consists of a 260 mm diameter tyre and steel wheel

rim. The wheel is mounted on a 12 mm diameter stub axle supported by the

suspension hub. The hub is attached to a link representing the vehicle chassis

(chassis link) using either a dual horizontal link set–up or an A–arm (The suspension

hub and horizontal links are shown in Figure 3.3a). The rig has interchangeable

steel and rubber bushings at the A–arm to chassis link connection points. A shock

absorber connects the suspension hub to the sprung mass. The shock absorber is

an air damper unit (Festo R© pneumatic cylinder, model number DSNU–PPV–A)

with coil–over spring and is mounted vertically. Due to the relatively low damping

requirements of the rig, commercially available car and motorcycle shock absorbers

are unsuitable for this application. Flow control valves are placed on the damper
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3.1. Experimental test development

Figure 3.2: CAD drawings of the quarter car suspension experimental test rig show-
ing the suspension system

inlet/outlet ports. Control of the air flow in to and out of the cylinder allows the

characteristics of the damper to be adjusted.

The suspension system support structure consists of a base constructed of 25 mm

mild steel square section to provide a rigid base for the suspension system. A dual

truss support structure is mounted to the rig base. It supports parallel THK R©

HRW21 precision linear guides as shown in Figure 3.3b. The sprung mass is con-

strained to one degree of freedom (vertical) using this guide system, in a similar

manner to other rigs detailed in the literature review [92, 95, 119]. The base also

houses the motor, motor controller, cams and gearing system. The motor is a

CMG R© SLA 71B–4 three phase electric motor (Figure 3.3c). The motor is run

using a Hitachi R© SJ200 Inverter. Motor speed is controlled and monitored using

a feedback control system implemented using a National Instruments R© USB–6009

multifunction I/O module and Matlab R© control software. The motor speed is mon-

itored using a Kübler R© type 2400 rotary encoder (Figure 3.3c). The encoder has a

resolution of 500 pulses per revolution and it also has 1 pulse per revolution home

signal. The encoder signal is acquired using the USB–6009 at a rate of 48 kHz. The

home signal pulse is used to correlate time series measurements performed at the

same cam and wheel speeds, allowing for time domain averaging.
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(a) Suspension hub (b) Linear Guide

(c) Motor and Encoder

Figure 3.3: Quarter car experimental test rig detail
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Figure 3.4: Wheel and tyre balancing rig

The cams used to excite the suspension system are Computer Numerical Control

(CNC) machined from medium density fibreboard. The rig can be set–up to use a

2 lobe sine cam, 4 lobe sine cam or a 72 lobe pseudo random cam. The 2 lobe and

4 lobe cams provide 2.5 mm and 1 mm peak to peak sine amplitudes, respectively.

The pseudo random cam has 72 lobes with Matlab R© generated random amplitudes

between ±2.5 mm. All cams have a mean diameter of approximately 460 mm.

A purpose built wheel and tyre balancing rig, shown in Figure 3.4, is used to balance

the wheel and tyre assembly of the quarter car rig. The wheel is balanced using a

single plane balancing method known as the four run method [162]. The four run

method is a relatively simple but effective method of mass balancing. After an initial

baseline run, three trial masses are added individually at known locations on the

rotor and the vibration results from the four runs are used to determine a correction

vector. The magnitude of the correction vector is proportional to the mass required

for balance and its argument is equal to the angle at which the mass needs to be

applied to the rotor.

3.1.2 Isolated component testing

An ESH R© servo–hydraulic testing machine is used to perform isolated testing on

individual suspension components. A picture of the ESH R© machine can be seen

in Figure 3.5, showing the shock absorber and tyre testing set–ups. The machine

can produce sinusoidal, triangular or square wave oscillations in the 0.01–30 Hz
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(a) Shock absorber test set–up (b) Tyre test set–up

Figure 3.5: ESH R© servo–hydraulic testing machine

frequency range. The machine is used for both static and dynamic identification of

the shock absorber, tyre and spring.

3.1.3 Shock absorber force measurement

A novel force measurement system is developed allowing the measurement of shock

absorber force during isolated and operational testing using an identical force trans-

ducer set–up. A force measurement set–up of this nature has, to the author’s knowl-

edge, not been previously reported in the literature. The set–up uses a Kistler R©

9021A load washer sandwiched between two 5 mm thick steel washers, as shown in

Figure 3.6. A high precision rod end provides the shock absorber attachment to the

sprung mass. The complete set–up is mounted on a steel shaft running through the

rod end, steel washers and load washer. A preload of 6 kN is applied to the load

washer using the preload nut. The complete set–up is dynamically calibrated using

a Brüel & Kjær R© Type 8200 force sensor on the ESH R© machine. The calibration
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Figure 3.6: Custom shock absorber force measurement set–up (See Appendix F for
detailed engineering drawings)

set–up is shown in Figure 3.7b. The shock absorber force measurement set–up is

mounted to the shock absorber shaft while the Brüel & Kjær R© Type 8200 is con-

nected in series with the shock absorber and ESH R© machine piston. The Type 8200

provides a direct measurement of the shock absorber force allowing calibration of the

load washer set–up. Figure 3.7a shows the 9021A load washer mounted on the quar-

ter car rig, using the same calibrated mounting method. Full engineering drawings

of the shock absorber force measurement setup can be found in Appendix F.

3.1.4 Quarter car rig modal test

A modal analysis of the quarter car rig and support structure is carried out to

identify the resonant frequencies of the rig. Twenty three measurement points are

used and measurements are taken in three directions at each point to give a sixty

nine Degree–Of–Freedom (DOF) model of the rig. The rig is excited in the x, y and z

directions at measurement point 1, located at the A–arm to chassis link connection

point. In terms of a full vehicle, the x, y and z directions are defined as the,

transverse, fore–aft and vertical directions, respectively. The structure is excited

using hammer impact excitation. The hammer used is a Brüel & Kjær R© type 8202

impact hammer. A rubber tip is used for this analysis due to the relatively low

frequency range of interest (0–100 Hz). A Matlab R© based mode visualisation tool

is developed to animate operating deflection shapes of the rig. This tool aids in the
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3.1. Experimental test development

(a) Force measurement set–up mounted on
the shock absorber during operational test-
ing

(b) Force measurement set–up
mounted on the shock absorber during
isolated testing

Figure 3.7: Isolated and operational shock absorber force measurement set–up

visualisation of vibration modes and identification of resonance sources. A screen

shot of a typical resonance animation is shown in Figure 3.8. The 13.7 Hz mode in

this example, is seen to be due to a tyre bounce motion with the unsprung mass

and sprung mass motions coupled (measurement points 1 and 2 are at the A–arm

to chassis link connections, points 3, 4, 5 and 6 are on the sprung mass and point 7

is on the unsprung mass).

Figure 3.9 shows driving point receptance plots for hammer impact excitation taken

on the sprung mass and unsprung mass in the x and z directions. Significant res-

onances are seen at frequencies of 13, 25, 33, 48, 71, 78 and 91 Hz. The modes of

vibration of the quarter car rig support structure are consistent with modes of vi-

bration typically observed during full vehicle ‘body–in–white’ modal tests [163, 164].

In the work of Verboven et al. [163] a full modal analysis of a car chassis was carried
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Figure 3.8: Quarter car rig mode visualisation tool showing a flyby view of a rig
resonance at 13.7 Hz (the undeformed structure is shown in dashed white lines)

out. Dominant modes of vibration are observed at approximately 26, 35, 42, 51,

68, 78 and 82 Hz. The presence of modes of vibration in the quarter car rig, which

are similar to those identified in full vehicle tests, contributes to a realistic system

identification scenario.

3.1.5 Data acquisition and analysis

Experimental measurements on the rig are carried out using Pulse R©. The Pulse R©

hardware/software family is Brüel & Kjærs R© platform for noise and vibration anal-

ysis. Data acquisition is carried out using Brüel & Kjærs R© type 3109 input/output

module, which communicates with a computer via a Brüel & Kjær R© type 7533 LAN

interface module. The type 3109 module has four input channels for multichannel

vibration measurements and two output channels for system excitation. It allows in-
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Figure 3.9: Quarter car rig experimental modal analysis driving point FRF’s; sig-
nificant resonances are seen at frequencies of 13, 25, 33, 48, 71, 78 and 91 Hz
(Subscripts are defined as follows: asz, sprung mass acceleration in the z direction;
auz, unsprung mass acceleration in the z direction; aux, unsprung mass acceleration
in the x direction).

dependent input ranges to be set for each channel, optional input autorange, built–in

digital signal processors, automatic DC–offset compensation and overload detection

for out–of–band frequencies.

Transducers

Brüel & Kjær R© type 4508 accelerometers are used for acceleration measurement.

They provide a wide frequency range of operation (0.3–8000 Hz) combined with a

low mass and high sensitivity (100 mV/g). This model of accelerometer is widely

used in the automotive and aeronautical industries for modal analysis and structural

analysis measurements. The accelerometers are of the piezoelectric type. Piezoelec-

tric sensors develop a charge when subjected to a force. The accelerometers have

an integrated charge amplifier to convert the piezoelectric output signals to volt-

ages. They are mounted using Brüel & Kjær R© UA–1407 mounting clips. The clips
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Figure 3.10: The measurement chain for vibration analysis (adapted from [165])

are secured using cyanoacrylate. This set–up gives an upper limiting measurement

frequency of 2 kHz. Displacement measurements are carried out using a Solartron

Metrology R© DC25 Linear Variable Differential Transformer (LVDT). The DC25 has

a ±25 mm operating range and a sensitivity of 17.12 mV/V/mm.

Force measurements are conducted using a Kistler R© piezoelectric load washer, type

9021A. The load washer has a sensitivity of -4.3 pC/N and a maximum load rating

of 35 kN. A Kistler R© type 5011 charge amplifier is used in conjuction with the load

washer to convert the electrical charge yielded by the sensor into a proportional

voltage signal. A Brüel & Kjær R© type 8200 force sensor is also used for force

measurement. Type 8200 is a small, permanently pre–loaded transducer usable in

the force range 1000 N tensile to 5000 N compressive. The 8200 has a sensitivity

of 4.0 pC/N. It is mounted in series with a Brüel & Kjær R© type 2646 inline charge

converter.

Vibration measurement

Vibration measurement and analysis starts with a time–varying, real world signal

from a transducer or sensor. The measurement chain for vibration analysis is shown

in Figure 3.10. The preamplifier amplifies and conditions the transducer signal.

The filtering of the signal may involve the use of low–pass (anti–alias), high–pass,

band–pass or integration filters. In frequency analysis, for example, a bank of band–

pass filters is used and the signal is passed through each filter simultaneously. The

resulting output is used to develop a frequency spectrum of the signal. The final

stage in the measurement chain is the detector/averager. This converts the vibration

signal into a level which can be shown on the display.
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Figure 3.11: Dual channel spectrum averaging (adapted from [166])

Dual channel measurements

A dual channel measurement is the simultaneous measurement of the cross–spectrum

between two input channels, and a measurement of the autospectrum of the two

channels. A diagram of a dual channel spectrum averaging is shown in Figure 3.11.

The analog input signals of channels A and B are filtered, sampled, and digitized

to give a series of digital sequences or time history records. The sampling rate and

the record lengths determine the frequency range and the resolution of the analysis.

A Fourier Transform is performed on both time history records. Multiplication and

averaging are performed and two autospectra are generated along with a cross–

spectrum [166]. All the other functions can be computed by post processing of

these measured spectra. This is important for practical applications as only one

measurement needs to be made regardless of how many post processed functions are

used [166].
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Parameter Description Measured Value

mu Unsprung mass 8.02 kg

ms Sprung mass 25.24 kg

ku Tyre stiffness 89020 N/m

ks Spring stiffness 5690 N/m

cs Shock absorber damping 334 N s/m

Table 3.1: Measured quarter car component parameters

3.2 Simulation development

The two DOF linear quarter car model, as shown in Figure 2.25, is used for the

purposes of suspension system simulation in this work. It will be used as a starting

point for the development of a more accurate simulation as individual component

testing is carried out. The advantages and limitations of this widely used model

are outlined in the literature review (§ 2.6.2). Table 3.1 defines the component

parameters used in the linear quarter car model. The sprung and unsprung mass

are measured from the quarter car test rig. The mass values were chosen during rig

design to provide realistic unsprung and sprung mass natural frequencies (derived in

§ 3.2.1). The experimental identification of the remaining parameters is presented

in detail in Chapter 4 and Appendices A and B and therefore, will not be discussed

any further at this point.

3.2.1 Quarter car simulation

Consider the quarter car model shown in Figure 2.25 subject to a displacement

input xr. A force balance performed on the sprung and unsprung masses yields the

following equations of motion,

muẍu + cs (ẋu − ẋs) + cu (ẋu − ẋr) + ks (xu − xs) + ku (xu − xr) = 0 (3.1)

msẍs − cs (ẋu − ẋs)− ks (xu − xs) = 0. (3.2)

The equations of motion are implemented in block diagram form in Simulink R© to

allow numerical solution. The undamped natural frequencies of the quarter car

model are calculated by letting damping go to zero, and putting the equation of
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motion in matrix form,

[

ms 0

0 mu

]{

ẍs

ẍu

}

+

[

ks −ks

−ks ks + ku

]{

xs

xu

}

=

{

0

kuxr

}

. (3.3)

Assuming a sinusoidal excitation of the form xr = Xsin(ωt), it can be shown that

ẍs = −ω2xs, therefore, equation 3.3 becomes,

[

−ω2ms + ks −ks

−ks −ω2mu + ks + ku

]{

xs

xu

}

=

{

0

kuxr

}

. (3.4)

Calculating the determinant of the square matrix and setting it equal to zero yields,

ω4 (mums)− ω2 (msks +msku +muks) +
(

k2
s + ksku − ks

)

= 0. (3.5)

Subbing in the values in Table 3.1 and solving for ω, yields natural frequencies of

ωs = 2.39 Hz (3.6)

ωu = 17.29 Hz. (3.7)

These frequencies are referred to as the body bounce (ωs) and wheel hop (ωu) fre-

quencies.

Simulation input

The 2 and 4 lobe cams manufactured for the quarter car rig provide an approx-

imately sinusoidal displacement excitation to the tyre patch. To develop simula-

tion displacement excitation time histories, the cam surfaces are profiled using a

Mitutoyo R© Absolute ID–S 1012M digimatic indicator with a resolution of 0.01 mm.

Each cam surface is measured at 72 equally spaced points around the circumference.

Four separate measurement sets are taken and averaged to develop a 72 point profile

of the cam surface. This 72 point profile is used, along with user selected values

for cam rotation frequency and sample rate, to generate a simulation displacement

excitation to match that of the experimental test rig.

Figure 3.12 shows the input spectrum generated by the 2 and 4 lobe cams rotating

at a frequency of 2.3 Hz. Significant peaks are observed in the 2 lobe cam spectrum

at 2.3 Hz and 4.6 Hz, and at 2.3 Hz, 9.2 Hz and 18.4 Hz in the 4 lobe cam spectrum.
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Figure 3.12: Quarter car simulation 2 and 4 lobe cam input spectra corresponding
to a cam rotation frequency of 2.3 Hz

All other peaks are greater than 30 dB below the respective dominant peaks.

As the tyre rotates on the surface of the cam, it acts as a mechanical filter, effectively

smoothing the cam input. The extent of the smoothing depends on two factors; the

rolling radius of the tyre and tyre enveloping. Tyre enveloping is the tendency of

a pneumatic tyre to partially engulf short wavelength road irregularities. The tyre

rubber tends to drape over the the major asperities of the road surface [167]. Tyre

enveloping damps and reduces the effects of road irregularities and, hence, decreases

the force input to the suspension hub. In quarter car simulations, where point

contact tyre models are often used, problems can arise when road irregularities are

encountered which are shorter than the tyre footprint length. The point contact tyre

model produces large errors in its load prediction as it follows the road profile exactly

and produces a load proportional to the surface contour. An actual tyre travelling

over the same surface produces much less load variation due to the tyre partially or

fully enveloping these irregularities [168]. Tests are carried out to determine the size

of the contact patch under static loading. The tests involve compressing an inked

tyre in the ESH R© machine onto a sheet of white paper. The length of the contact

patch is measured from the tyre footprint at 1 mm intervals, between 1 mm and
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(a) Tyre footprint: 2 mm De-
flection

(b) Tyre footprint: 9 mm Deflection

Figure 3.13: Quarter car rig tyre footprint at 2 mm and 9 mm deflections

10 mm static deflection. The tyre footprint for 2 mm and 9 mm static deflections

are shown in Figure 3.13. Knowledge of the tyre footprint at a range of static loads

allowed for the development of a moving average filter to represent tyre enveloping.

The input signal to the tyre is smoothed using this filter to represent the tyre

enveloping and mechanical filter properties of the tyre [169, 170]. The length of the

moving average filter is dependent on the tyre loading conditions during suspension

simulation and is calculated from the known tyre footprints under static deflection.

3.2.2 Data acquisition and analysis

Quarter car Analysis Tool (QcAT) is a custom experimental test and simulation

analysis tool developed in Matlab R©. QcAT gives the user control of the complete

data acquisition–analysis–presentation process from a single Graphical User Inter-

face (GUI). The acquisition tab allows the user to enter experimental and simulation

parameters. QcAT implements ActiveX control of both Pulse R© and Labview R© to set

data acquisition and experimental test rig parameters. A basic motor control loop

uses the USB–6009 I/O module to set the motor speed via a control voltage to the

inverter. The actual motor speed is calculated using the optical encoder signal and

adjusted until the actual speed matches the user defined value. After acquisition

measurement data are exported to Matlab R© in Universal File Dataset 58b format

for further analysis. Universal file formats are used as a de facto standard by the
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3.2. Simulation development

Figure 3.14: QcAT analysis tab screen shot

experimental dynamics community. Details of the Universal File Dataset 58b format

can be found in Appendix E. The QcAT analysis tab is shown in Figure 3.14. The

analysis tab allows time and frequency domain visualisation of the data. Historic

data can be loaded into the analysis tab, and because of the standard universal file

format used, details of the analysis type and experimental set–up parameters are

available to the user. The presentation of data acquired and analysed in QcAT is

achieved using the export screen. Multiple data sets can be loaded and exported for

presentation purposes. A more detailed description of the feature of QcAT, along

with a development history is reported in Appendix D. A diagram summarising the

hardware/software implementation is shown in Figure 3.15.
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3.2. Simulation development

Figure 3.15: Experimental testing hardware/software implementation
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Chapter 4

Suspension system identification

T
he literature review in Chapter 2 examined suspension system identifica-

tion from two angles, the more traditional force–response approach and the

relatively new response only or operational approach. Chapter 3 outlined the devel-

opment of an experimental testing setup with the flexibility to allow both isolated

suspension component testing and also operational suspension system testing. In

this chapter the identification of the suspension system using the force–response

approach is presented. Sections 4.1, 4.2 and 4.3 document the identification of the

tyre, shock absorber and spring, respectively. This is carried out by disassembling

the quarter car rig and testing each of the components in isolation using the ESH R©

servo–hydraulic testing machine. The identified component parameters, from the

isolated testing, form the basis for the development of a quarter car simulation of

the quarter car rig. Section 4.4 presents the development and evaluation of both

linear and nonlinear quarter car models.

4.1 Tyre identification

This section gives an overview of the tyre identification procedure and a detailed

account is documented in Appendix A. The tyre is tested both statically and dy-

namically in isolation using the ESH R© testing machine. The test setup can be seen

in Figure 4.1. Tests are carried out at four different inflation pressures, 1.1 Bar, 1.5

Bar, 1.8 Bar and 2.0 Bar. A preload is applied to the tyre before each test to repli-

cate operational conditions. Testing is carried out at selected frequencies between 1
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4.1. Tyre identification

Figure 4.1: Tyre dynamic test setup

Hz and 14 Hz, and at selected amplitudes between 1 mm and 4 mm.

4.1.1 Characterisation

Static tyre compression test results show the tyre to be almost linear for deflections

up to 10 mm. Static linear stiffness values of 63.32 N/mm and 81.42 N/mm are

calculated for the 1.1 Bar and 2.0 Bar tests, respectively. Under dynamic sinusoidal

loading, of the form x = A sin(2πfet), where fe and A are the excitation frequency

and amplitude, respectively, the tyre shows a hardening/softening spring character-

istic at all test frequencies and amplitudes. This behaviour is due to the preload

applied to the tyre prior to dynamic testing. Two typical work diagrams (force–

displacement) are shown in Figure 4.2. The test on the left is run at an inflation

pressure of 1.1 Bar, with a sinusoidal input excitation amplitude of 2 mm and exci-

tation frequency of 5 Hz. The test on the right is run at an inflation pressure of 2.0

Bar, with input amplitude and frequency equal to 3 mm and 2 Hz, respectively.
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Figure 4.2: Tyre work diagrams at fe = 5 Hz, A = 2 mm, 1.1 Bar (left) and fe = 2
Hz, A = 3 mm, 2.0 Bar (right)

Hysteresis loops are also observed in the work diagrams. The area enclosed by the

loop denotes the energy dissipated by the tyre in one cycle of motion. The damping

mechanism of the tyre is investigated by examining the frequency dependence of the

energy dissipation. Results show that in general the energy loss per cycle does not

increase significantly with increasing frequency and at higher frequencies it decreases

slightly with increasing frequency. The energy loss per cycle is also approximately

proportional to the square of the excitation amplitude. These observations are

consistent with hysteretic damping [171, 172, 173] and lead to the assumption that

the major damping mechanism of the tyre is hysteretic damping.

4.1.2 Model selection

Based on these initial observations, a point contact tyre model is developed. The

literature review noted that the relatively simple point contact tyre model is widely

used for low to intermediate frequency range studies [148, 149] and is acceptable for

ride analysis [138]. The proposed point contact tyre model consists of a hysteretic

damper in parallel with a nonlinear spring, as shown in Figure 4.3. The tyre stiffness
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4.1. Tyre identification

Figure 4.3: Proposed point contact tyre model (nonlinear spring in parallel with a
hysteretic damper)

is modelled as a hardening/softening nonlinear spring system. The nonlinear spring

force, Fs, is given by,

Fs = kn(x+ ctx
2) (4.1)

where kn is the tyre stiffness, x is the tyre deflection and ct is the coefficient of

the hardening/softening nonlinearity. The hardening/softening spring characteristic

observed in Figure 4.2 is due to the preload applied to the tyre. It should be noted

that the nonlinearity in the tyre is modelled using an asymmetric nonlinear term

(x2). This nonlinear functional form is chosen for its ability to represent the tyre

stiffness nonlinearity without a priori knowledge of the presence of a preload on the

tyre.

Consider a linear spring and hysteresis damper connected in parallel. The force dis-

placement relation, assuming approximately harmonic excitation, can be expressed

as [173],

F = (k + ih)x (4.2)

where h is called the hysteresis damping constant and,

k + ih = k

(

1 + i
h

k

)

= k(1 + iη). (4.3)

The term k + ih is known as the complex stiffness and η = h/k is a constant

indicating a dimensionless measure of damping. An equivalent viscous damping
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4.1. Tyre identification

ratio and viscous damping constant can be calculated for hysteretic damping using,

ζeq =
η

2
(4.4)

ceq =
ηk

ω
. (4.5)

Therefore, the equation for the force displacement relation of the tyre can be ex-

pressed as,

Ft = Fs + Fd (4.6)

= kn(x+ ctx
2) + ceq(ẋ) (4.7)

where, the terms Ft, Fs and Fd represent the tyre force, the spring force and the

damping force, respectively. The tyre damping is now represented here using the

frequency dependent damping term ceq.

4.1.3 Parameter estimation and model validation

Experimental data collected at a tyre inflation pressure of 1.8 Bar are used for the

model parameter estimation. The nonlinear stiffness, kn, shows both frequency and

amplitude dependence, while ct and η depend only on excitation amplitude. kn

shows an approximately linear relationship with frequency and amplitude. Least

squares are used to fit first order polynomials to plots of kn versus A and kn versus

fe. This yields the following expression for kn in terms of A and fe,

kn = −2.79A+ 0.5fe + 89.02. (4.8)

The terms ct and η are found to be dependent only on excitation amplitude, there-

fore, expressions for ct and η in terms of excitation amplitude are obtained in a

similar manner,

ct = 0.0085A+ 0.0234 (4.9)

η = −0.0067A+ 0.1071. (4.10)

The reader is referred to Appendix A for a more detailed description of the parameter

estimation in equations 4.8, 4.9 and 4.10.
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4.1. Tyre identification

Tyre Inflation Pressure 1.8 Bar
A 1mm 2mm 3mm 4mm
fe MSE MSE MSE MSE
1hz 0.5 0.6 1.4 3.0
2hz 0.0 0.6 1.2 3.1
4hz 0.1 0.5 1.2 2.9
5hz 0.2 0.6 1.5 -
7hz 0.4 0.4 1.5 -
10hz 0.6 0.6 - -
14hz 0.8 - - -

Table 4.1: Nonlinear tyre model MSE

The proposed model is implemented in Matlab R©. Simulations are carried out and

compared with experimental data. In order to have an objective measure of ‘good-

ness of fit’, the Mean Squared Error (MSE) is introduced,

MSE(x̂) =
100

Nσ2
x

N
∑

i=1

(xi − x̂i)
2 (4.11)

where N is the number of data points and σ2
x is the variance of the measured data

record. Experience with this norm suggests that a value less than 5 % indicates a

good model while less than 1 % indicates excellence [70]. Table 4.11 shows simulation

MSE for a range of excitation frequencies and amplitudes.

The simulation error is seen to increase with increasing excitation frequency and

amplitude. A refinement of the model is introduced which takes account of a neg-

ative offset observed in measured data along the y–axis. This offset can be seen

in Figure 4.2. This type of drift is a characteristic of asymmetric systems. Such

systems are prone to bias their response toward a preferred or weak direction [174].

The absolute value of the offset, fo, in Newtons, is found to increase with increasing

excitation amplitude while remaining relatively independent of excitation frequency.

Orthogonal least squares are used to fit a third order polynomial to a plot of mea-

sured offset versus excitation amplitude, yielding an expression for fo which is a

nonlinear function of excitation amplitude,

fo(A) = −0.44A3 − 0.61A2 − 0.23A (4.12)

1Missing data outside ESH machine capability
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4.1. Tyre identification

Tyre Inflation Pressure 1.8 Bar
A 1mm 2mm 3mm 4mm
fe MSE MSE MSE MSE
1hz 0.3 0.1 0.1 0.1
2hz 0.1 0.2 0.1 0.3
4hz 0.0 0.1 0.1 0.2
5hz 0.2 0.2 0.2 -
7hz 0.2 0.2 0.4 -
10hz 0.1 0.2 - -
14hz 0.1 - - -

Table 4.2: Revised nonlinear tyre model MSE

The resulting expression for fo is included in equation 4.1 to yield,

Fs(x) = kn(x+ ctx
2) + fo(A) (4.13)

The modified nonlinear tyre model therefore becomes,

Ft = Fs + Fd (4.14)

= kn(x+ ctx
2) + fo(A) + ceq(ẋ). (4.15)

Evaluation of this modified nonlinear tyre model revealed a significant improvement

over the original nonlinear tyre model. Table 4.2 shows the MSE for a range of

excitation frequencies and amplitudes at a pressure of 1.8 Bar. The average MSE

across all measurement frequencies and amplitudes is found to be 0.17 %, indicating

an excellent model fit. The tyre model fit is shown for two example measurements

in Figure 4.4.
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Figure 4.4: Proposed tyre model fit to measured data at fe = 4 Hz, A = 3 mm, 1.8
Bar (left) and fe = 1 Hz, A = 4 mm, 1.8 Bar (right)

4.2 Shock absorber identification

Identification of shock absorbers is usually carried out experimentally using me-

chanical test stands [78] and harmonic excitation [77, 158]. In this work, the shock

absorber is tested in isolation using the ESH R© machine. Figure 4.5 shows a close

up of the shock absorber test setup, which is based on the methods used by Centro

Ricerche FIAT (CRF) of Torino, Italy as presented in a case study by Worden and

Tomlinson [11]. A detailed account of the shock absorber identification is docu-

mented in Appendix B. An overview of the identification process is outlined here.

The literature review presented many works which highlighted the complex nonlin-

ear nature of shock absorbers [78, 82, 158, 159]. Despite this, it has been common

practice to model the damping of a shock absorber as a linear viscous damper, as

in the linear quarter car model. This linear model is now commonly replaced with

two and three slope models to account for the major nonlinearities of the shock

absorber [1]. The shock absorber, used in this investigation, is a coil–over type. The

spring is removed and the damper dynamically tested in isolation to characterise its

behaviour.

95



4.2. Shock absorber identification

Figure 4.5: Shock absorber experimental test setup

4.2.1 Characterisation

Figure 4.6 shows typical characteristic (force–velocity) and work (force–displacement)

diagrams for the damper subject to sinusoidal displacement excitation of the form

x = A sin(2πfet). Initial observation of the characteristic diagrams indicate the

presence of static friction in the damper. This can be seen as the shock absorber

velocity increases from zero. Note the sharp increase in force (sticking) followed by

a decrease in force (slipping). Due to the low velocity of the damper at 2 Hz 0.5

mm, the friction force dominates, a common property of coulomb friction [11]. The

stick–to–slip transition is seen to occur at a force of approximately ±13 N. In the

slipping phase, the damper force decreases as the velocity increases to its maxima of

±6.3 mm/s. The force as the velocity decreases from its maximum is lower than the

corresponding force as the velocity increases to its maximum. This phenomenon,

known as frictional lag, was observed experimentally by Hess and Soom [175]. Note

that as the velocity returns to zero from the maxima, the damper again enters the

stick state at approximately ±0.6 mm/s.

Pre–sliding displacement of approximately 83 µm can also be seen in the work dia-

gram. This spring like behaviour in static friction may be due to relative displace-

ment between the cylinder wall and the piston seal prior to slipping. The pre–sliding
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Figure 4.6: Shock absorber characteristic and work diagrams at fe = 2 Hz, A = 0.5
mm (left) and fe = 5 Hz, A = 2 mm (right)

displacement increases with excitation frequency to a value of approximately 153 µm

at 14 Hz, 0.5 mm amplitude. It also increases with amplitude and a value of 110 µm

is recorded at 2 Hz, 4 mm amplitude. This indicates that pre–sliding displacement is

dependent on the acceleration of the damper piston in the sticking phase of motion.

Overall, the damper shows similar characteristics to those observed by Guglielmino

et al. for isolated testing of a prototype semi–active automotive friction damper

[138].

The energy dissipation per cycle of the shock absorber, at the larger amplitudes

of excitation (>2 mm), is seen to increase in an approximately linear fashion with

excitation frequency, indicating that the damping mechanism is viscous damping. At

the lower amplitudes (0.5 mm and 1 mm) the energy dissipation does not show strong

dependence on excitation frequency. This is believed to be due to the dominance of

friction damping at low excitation amplitudes.
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4.2. Shock absorber identification

4.2.2 Model selection

Based on the observations made during shock absorber characterisation, three shock

absorber models are proposed. A simple linear model, a piecewise linear model and

a full nonlinear model. The linear model takes the form of a linear viscous damping

element, where the shock absorber force, Fd, is a function of the linear damping

coefficient, c, and the shock absorber piston velocity, ẋ,

Fd = cẋ. (4.16)

The piecewise linear model is chosen to be trilinear. A trilinear model is selected

based on the observation of three distinct regions in the characteristic diagrams in

Figure 4.6, a viscous damping characteristic at high velocities in compression and

rebound and a static friction zone at low shock absorber velocities. The equations

representing the trilinear characteristic are given by [78],

Fd(ẋ) =



















c3(ẋ− c5) + c1c5 for ẋ > c5,

c1ẋ for c4 ≤ ẋ ≤ c5,

c2(ẋ− c4) + c1c4 for ẋ < c4

(4.17)

where c1, c2 and c3, represent the damping coefficients of the three regions while c4

and c5 represent the transition velocities between the damping coefficients.

The nonlinear model aims to model the dynamic friction in the shock absorber,

the symptoms of which are seen in the characteristic diagrams. Friction models

can be classified as static or dynamic. Static friction models cannot sufficiently

describe all the dynamic effects of friction, such as pre–sliding displacement, friction

lag and variable break away force [176, 177]. A dynamic friction model is required

to model the complex phenomena observed in the shock absorber characteristic

diagram. One such model, called the LuGre model, was developed by Canudas de

Wit et al. [178]. The LuGre model supports hysteretic behaviour due to friction

lag, spring like behaviour in static friction and gives a varying break away force

depending on the rate of change of the applied force. The LuGre model is a bristle
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4.2. Shock absorber identification

type friction model and is given by [178],

dz

dt
= v − σ0

|v|

g(v)
z (4.18)

g(v) = Fc + (Fst − Fc)e
−(v/vs)2 (4.19)

F = σ0z + σ1ż + f(v) (4.20)

where z is the unmeasurable average deflection of the bristles, σ0 is the bristle

stiffness and σ1 is the bristle velocity dependent damping coefficient. Fst and Fc

represent the static friction force and the coulomb friction force, respectively. The

term, vs, is the stribeck velocity and the function g(v) characterises the stribeck

effect. The function f(v) models the lubrication and viscous friction effects.

4.2.3 Parameter estimation and model validation

To assess the accuracy of the different models across the frequency range of interest,

optimisation is carried out to find the model parameters for the linear, piecewise

linear and nonlinear shock absorber models. The linear model is optimised using

orthogonal least squares, while the piecewise and nonlinear models are optimised

in Matlab R© using the pattern search optimisation function patternsearch. The nor-

malised mean squared error is used as a measure of quality of the model fit. Fig-

ure 4.7 shows the MSE for the three models for an excitation amplitude of 1 mm.

The linear and piecewise linear models show large MSE at low frequencies. The

error is seen to decrease in both cases as excitation frequency increases. This is

due to the increased piston velocity at higher excitation frequencies which serves

to reduce the influence of the dominant static friction nonlinearity. The nonlinear

model shows a good model fit, with the MSE below 4 % at all frequencies. Figure 4.8

shows the LuGre model with optimised parameters to fit the experimental data for

an excitation frequency of 4 Hz and an amplitude of 4 mm. It accurately models

the asymmetric behaviour of the damper in acceleration and deceleration and also

includes hysteresis effects and pre–sliding displacement.

Initial investigations are carried out to identify the optimal parameters of the non-

linear model across the frequency and amplitude range of the experimental tests. To

be truly useful, an expression is required which can identify the model parameter
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Figure 4.8: Nonlinear shock absorber model fit for fe = 4 Hz and A = 4 mm
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values not only at the discrete experimental test points, but at any user defined

excitation frequency within the range of the experimental tests. The identification

of such an expression proves extremely difficult. No easily identifiable pattern exists

between optimised model parameters across the experimental test range. Dynamic

friction models such as the LuGre model are known to be complex and hard to

implement in practical engineering applications [179]. In this investigation optimi-

sation of the LuGre model requires a significant amount of time. Each evaluation of

the optimisation objective function requires a simulation to be run for comparison

with the measured data. Due to the complex nature of the LuGre model, this sim-

ulation requires a sampling rate of 8192 Hz to prevent numerical integration errors.

As a result optimisation of each LuGre model at each individual test frequency and

amplitude takes a number of hours (The objective function was evaluated 3140 times

to obtain the optimised model shown in Figure 4.8). This is compared with minutes

for the piecewise linear model and seconds for the linear model, which can both use

much lower simulation sampling rates.

The trilinear model parameters can be directly related to phenomena identified in

the shock absorber characteristic diagrams. The friction which dominates at low ve-

locities can be related to parameter c1 which represents the trilinear damping at low

velocities. The sticking to sliding transition velocity to parameters c4 and c5 while

the viscous damping outside the static friction zone can be related to parameters c2

and c3. Although the parameters of the model are intuitive, it also proves difficult

to identify expressions for the parameters across the frequency and amplitude range

of the experimental tests.

4.3 Spring identification

Automotive helical springs are often treated as simple massless linear spring ele-

ments. Background reading has shown that at low frequencies (below 40 Hz), this

assumption is a valid one [161]. Above 40 Hz, the dynamic stiffness has been found

to increase sharply. This experimental test of the spring will aim to first verify this

assumption and also investigate the damping effect of the spring in the 0–20 Hz

range. The spring test setup is the same as that of the tyre dynamic test.
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Figure 4.9: Spring work diagrams at fe = 4 Hz, A = 2 mm (left) and fe = 7 Hz, A
= 3 mm (right)

A 1mm 2mm 3mm 4mm 6mm
fe ks ks ks ks ks
1 Hz 5.61 5.66 5.67 5.67 5.67
2 Hz 5.61 5.66 5.67 5.67 5.67
4 Hz 5.64 5.66 5.68 5.68 -
5 Hz 5.64 5.68 5.69 - -
7 Hz 5.69 5.72 5.73 - -
10 Hz 5.77 5.79 - - -
14 Hz 5.94 - - - -

Table 4.3: Shock absorber spring dynamic stiffness ks [N/mm]

4.3.1 Characterisation and model selection

Two typical spring work diagrams are shown in Figure 4.9. The spring is seen to

be almost linear in the range of the experimental test. First order polynomials are

fitted to the measured data to estimate the spring stiffness. Table 4.3 shows spring

stiffness, ks, over a range of excitation frequencies and amplitudes.

Slight hysteresis is observed at the higher excitation frequencies and amplitudes.

The energy dissipation per cycle, ∆W , at an excitation frequency of 7 Hz and an
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4.4. Quarter car simulation

A 1mm 2mm 3mm 4mm
fe MSE MSE MSE MSE
1 Hz - 0.5 1.3 0.6
2 Hz 6.2 0.1 0.5 0.0
4 Hz 0.0 0.0 0.0 0.0
5 Hz 0.3 0.1 0.0 -
7 Hz 0.5 0.0 0.0 -
10 Hz 0.4 0.0 - -
14 Hz 0.4 - - -

Table 4.4: Linear spring model MSE at a range of excitation frequencies and ampli-
tudes

amplitude of 3 mm, is among the highest with a value of 0.0133 J. Comparing this

value with the corresponding value from the damper revealed that the energy loss

in the spring is over 14 times less than that of the damper. At lower amplitudes

and frequencies the energy dissipation of the spring is over 40 times less than that

of the damper. It is therefore concluded that damping in the spring is negligible.

4.3.2 Parameter estimation and model validation

The spring stiffness does not show significant dependence on excitation frequency or

amplitude. The mean dynamic spring stiffness is found to be 5.69 N/mm. The static

stiffness of the spring as per the spring specifications is 4.9 N/mm, indicating that the

stiffness of the spring increases under dynamic loading. Based on these results, the

spring is modelled as a massless linear spring element with a stiffness of 5.69 N/mm.

Table 4.4 shows the normalised mean squared error between measured spring force

and simulated spring force. The linear spring model shows good correlation across

the frequency and amplitude range of this testing.

4.4 Quarter car simulation

The result of the tyre, shock absorber and spring identification are now used to

develop both linear and nonlinear quarter car models. The simulations are evalu-

ated by comparing simulation results with measured data from the quarter car test

rig. The quarter car rig is excited with an approximately sinusoidal excitation with

peak to peak amplitude of 1 mm in the frequency range of 1.6–24.0 Hz. Fifty six
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Parameter Description Measured value

mu Unsprung mass 8.02 Kg

ms Sprung mass 25.24 Kg

ku Tyre stiffness 89020 N/m

ks Spring stiffness 5690 N/m

Table 4.5: Linear quarter car simulation parameters

individual frequencies are used in this frequency range giving a frequency resolu-

tion, ∆f , of 0.4 Hz. Tests are carried out at each frequency for 64 seconds and

synchronous time averaged. Individual data segments are synchronised using the

quarter car rig optical encoder signal, which is phase–locked to the rotation of the

cam. Desynchronisation [180] and random phase shift errors (jitter) [181] in the

synchronous averaging process are minimised using a technique known as Woody

adaptive filtering [182]. The Woody adaptive filter is a special case and application

of the cross–correlation technique. Signal segments are shifted to maximum cross

correlations during averaging. The frequency spectrum of each averaged time history

is calculated. The real and imaginary values are noted at the excitation frequency

and are combined to give a response spectrum of the rig across the frequency range.

Due to the complex excitation frequency and amplitude dependence of the shock ab-

sorber, linear and piecewise linear models are fitted to the operational shock absorber

characteristic at each frequency of interest. Fitting a model at each measurement

frequency ensures that the linear and piecewise linear shock absorber models offer

the best representation of the shock absorber characteristic at that individual fre-

quency. The linear quarter car parameters fixed for the duration of this testing are

shown in Table 4.5.

4.4.1 Linear quarter car simulation

The linear quarter car simulation uses a linear tyre model and the shock absorber

is modelled as a linear spring and linear viscous damper in parallel. The simulated

linear quarter car spectra and measured quarter car spectra are shown in Figure 4.10.

The quarter car spectra show that the linear quarter car simulation provides a

reasonable approximation of the magnitude of the unsprung mass acceleration across

the full frequency range of the test. It does, however, over predict the magnitude of
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Figure 4.10: Linear quarter car model simulated and quarter car rig measured ac-
celeration spectra between 1.6–24 Hz

the sprung mass acceleration above 5 Hz. Figure 4.11 shows simulated and measured

acceleration time history comparisons at 5.2 Hz and 12.0 Hz. The Root Mean Square

(RMS) signal amplitudes are also shown. The simulation accurately predicts both

unsprung and sprung mass acceleration amplitudes at 5.2 Hz. The percentage errors

in acceleration RMS are 3.7 % and 1.3 % for the unsprung mass and sprung mass,

respectively. At 12.0 Hz the simulation under predicts the unsprung acceleration

and over predicts the sprung mass acceleration. The percentage error is 19.1 % for

the unsprung mass and 30.9 % for the sprung mass (Further discussion on these

results can be found in § 6.1.2).

The presence of static friction in the damper is confirmed from the measured sprung

and unsprung mass spectra. Notice how the measured sprung and unsprung mass

spectra are almost identical below approximately 5 Hz. Correlation coefficients are

calculated between the measured unsprung and sprung mass accelerations in the 1.6–

24.0 Hz frequency range. The correlation coefficient is a measure of the strength of

the relationship between the two signals. It is calculated using [24],

ρxy(τ) =
Rxy(τ)− µxµy

√

[Rxx(0)− µ2
x][Ryy(0)− µ2

y]
(4.21)
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Figure 4.11: Linear quarter car model simulated and quarter car rig measured time
history comparison at 5.2 Hz and 12.0 Hz

where Rxy(τ) is the cross–correlation between x and y at time τ , Rxx(0) is the

autocorrelation of x at τ = 0, Ryy(0) is the autocorrelation of y at τ = 0, µx is

the mean value of x and µy is the mean value of y. Correlation coefficients are

calculated at τ = 0. Correlation coefficients for measured accelerations are above

0.99 for excitation frequencies below approximately 5.0 Hz. This indicates that the

unsprung and sprung masses movements are highly coupled below this frequency.

The correlation coefficients at 5.2 Hz and 12.0 Hz are 0.98 and 0.51, respectively.

This provides an insight into why the linear model is more accurate at 5.2 Hz

than at 12.0 Hz. The measurement at 5.2 Hz is very close to the static friction

zone and as a result the dominant mode of damping in the shock absorber at this

frequency is due to friction damping. A linear damping model gives a reasonable

approximation of this damping at 5.2 Hz due to the small relative velocity across

the shock absorber. At 12.0 Hz the damping is a combination of both friction

damping and viscous damping due to the larger relative velocity and displacement

across the shock absorber. A linear damping approximation at this frequency does

not accurately describe the shock absorber characteristic. The effect of this static

friction can be seen in the calculated linear damper coefficients. At 5.2 Hz the linear
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4.4. Quarter car simulation

damping coefficient is calculated to be 10178 N s/m compared with a value of 1300

N s/m at 12.0 Hz.

4.4.2 Nonlinear quarter car simulation

A nonlinear quarter car model is developed and tested at selected frequencies. The

goal of this particular analysis is to quantify the accuracy improvement which may be

obtained with the inclusion of nonlinear suspension component models in a quarter

car simulation. The isolated identification of the shock absorber shows that the

nonlinear LuGre model provides an accurate representation of the shock absorber

across a broad frequency range (Figure 4.7). The LuGre model is known to be

hard to implement in practical engineering applications [179]. In this investigation

the complex nature of the model requires that a simulation sampling frequency of

8192 Hz be used to prevent numerical integration errors. This creates a number

of practical problems due to long simulation run times and large data sets (A 128

second nonlinear quarter car simulation produces output time histories with in excess

of 1 million data points). The trilinear model is chosen to model the shock absorber

in this investigation. It provides a good compromise between the simplicity of a

linear model and the complexity of the LuGre model.

The nonlinear quarter car model uses the nonlinear tyre model developed during iso-

lated testing and also a trilinear damper model developed from operational testing.

The frequencies selected for this test are 6.8 and 11.2 Hz. The optimised trilinear

shock absorber model and equivalent linear shock absorber model for each of these

frequencies are shown in Figure 4.12. The trilinear models are optimised using direct

search methods. The optimisation is carried out in Matlab R© using the patternsearch

function. The MSE between the measured shock absorber force and the simulated

shock absorber force is used as a measure of the model fit. The trilinear shock

absorber models are shown to give significantly smaller error magnitudes than their

linear equivalents.

4.4.3 Linear versus nonlinear quarter car simulation

The nonlinear simulation results are shown side by side with linear simulation results

in Figures 4.13 and 4.14. The excitation frequency, damper parameters, measured
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Figure 4.12: Linear and trilinear shock absorber models at 6.8 Hz and 11.2 Hz

0 0.2 0.4 0.6
−6

−4

−2

0

2

4
Linear Sim Unsprung Acceleration

Time [s]

A
cc

el
er

at
io

n 
[m

/s2 ]

0 0.2 0.4 0.6
−6

−4

−2

0

2

4
Non−linear Sim Unsprung Acceleration

Time [s]

A
cc

el
er

at
io

n 
[m

/s2 ]

0 0.2 0.4 0.6
−3

−2

−1

0

1

2

3
Linear Sim Sprung Acceleration

Time [s]

A
cc

el
er

at
io

n 
[m

/s2 ]

0 0.2 0.4 0.6
−3

−2

−1

0

1

2

3
Non−Linear Sim Sprung Acceleration

Time [s]

A
cc

el
er

at
io

n 
[m

/s2 ]

 

 

Measured
Simulated

c
1
: 4216.2 Ns/m

c
2
: 996.0 Ns/m

c
3
: 272.1 Ns/m

c
4
: −0.0089 m/s

c
5
: 0.0087 m/s

Meas
rms

: 1.66
Simu

rms
: 1.76

Meas
rms

: 1.66
Simu

rms
: 1.47

Meas
rms

: 1.12
Simu

rms
: 1.30

Meas
rms

: 1.12
Simu

rms
: 1.22

f
e
: 6.8 Hz

Avgs: 50 c
s
: 2351.3 Ns/m

Figure 4.13: Linear and nonlinear quarter car simulation evaluation at 6.8 Hz
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Figure 4.14: Linear and nonlinear quarter car simulation evaluation at 11.2 Hz

acceleration RMS and simulated acceleration RMS values are plotted with each Fig-

ure. In general, the results show that the nonlinear simulation provides a significant

improvement over the linear simulation when compared with measured results from

the quarter car rig. The nonlinear simulation accurately predicts both the unsprung

and sprung mass accelerations in terms of magnitude and signal peak pattern. The

linear simulation gives a reasonable approximation of the magnitude of the unsprung

mass acceleration but over predicts the magnitude of the sprung mass acceleration.

It also gives a poor estimate of the signal peak pattern. At 6.8 Hz the linear sim-

ulation shows a 11.4 % error in the unsprung mass acceleration and a 16.1 % error

in the sprung mass acceleration. The nonlinear simulation showed errors of 6.0 %

and 8.9 % for the unsprung and sprung mass accelerations, respectively. At 11.2

Hz the linear simulation shows an 18.7 % error in the unsprung mass acceleration

and a 24.1 % error in the sprung mass acceleration. This is compared with 4.2 %

and 12.5 % for the nonlinear simulation unsprung and sprung mass accelerations,

respectively.
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Figure 4.15: Comparison of nonlinear quarter car models without tyre damping
(left) and with tyre damping (right) at 10.4 Hz

4.4.4 Effect of tyre damping

The literature highlighted differences of opinion among authors with regard to the

importance of tyre damping in quarter car simulations. The damping of the tyre used

in this experimental investigation is quantified using isolated tyre testing. To test

the effect tyre damping has on simulation results, two quarter car simulations with

optimised trilinear damper are run. Two tyre models are used. The first simulation

uses a linear spring point contact model with no damping and the second uses a

linear spring and viscous damper point contact model. The test is conducted at

10.4 Hz and the equivalent tyre viscous damping coefficient, cu, is found to be 138

N s/m at this frequency (equation 4.5). The results from the two simulations are

compared with measured results in Figure 4.15.

The simulation with tyre damping shows more damping in the peaks of the unsprung

mass acceleration when compared with the simulation with no tyre damping. The

simulation with no tyre damping and the simulation with tyre damping show max-

imum peak amplitudes of 6.4 m/s2 and 4.3 m/s2, respectively. This is compared

with a measured maximum peak amplitude of 4.0 m/s2. Both simulations show a
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percentage error of 4.7 % in the RMS amplitude of the unsprung mass acceleration.

The simulation with no tyre damping shows a percentage error of 17.8 % for sprung

mass acceleration RMS amplitude while the simulation with tyre damping reduces

this error to 10.7 %.

This chapter shows the development of linear and nonlinear quarter car simulations

of the quarter car test rig. Force–response testing of the major components (tyre,

damper, spring) provide the simulation parameters. Accurate linear and nonlinear

models of the components are developed by disassembling the rig and testing the

components in isolation. The nonlinear quarter car simulation, with nonlinear tyre

and trilinear shock absorber, is seen to give good results when simulated data is

compared with measured data from the quarter car test rig.
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Chapter 5

Operational suspension system

identification

H
aving identified the major quarter car rig components in isolation in Chap-

ter 4, focus now turns to the operational identification of the system. The

acquired signals for operational identification are sprung mass acceleration in the

vertical direction and the unsprung mass accelerations in the transverse, fore-aft and

vertical directions. These are signals which can easily be obtained by instrumenting

a vehicle in service without interfering with vehicle operation. The boundary per-

turbation technique, used to identify suspension system components in the absence

of a measured input force, is first introduced in section 5.1. The boundary per-

turbation technique is then developed under a controlled simulation environment.

Results from the application of the technique to nonlinear quarter car simulations

are presented in section 5.2. Both time and frequency domain approaches to the

parameter estimation are documented. The robustness of the technique is examined

for a number of simulation scenarios including noise polluted data, uncharacterised

nonlinearities, hysteresis and unknown shock absorber model form. Focus then turns

to the identification of the quarter car test rig in section 5.3. The results from both

time and frequency domain approaches to the experimental identification of the

quarter car rig are presented.
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5.1. Boundary perturbation technique

(a) Original system (b) Perturbed system

Figure 5.1: SDOF system subject to base excitation

5.1 Boundary perturbation technique

In the absence of a known excitation force on a system, a technique known as

boundary perturbation can be used to identify the system using only measured

system responses. The boundary perturbation technique is first introduced here

using a Single Degree–Of–Freedom (SDOF) example before being discussed in the

context of vehicle suspension systems. Consider a SDOF system subject to base

excitation, as shown in Figure 5.1a. The equation of motion of the system is given

by,

mẍ+ c (ẋ− ẋb) + k (x− xb) = 0. (5.1)

Consider the case where parameters m, c and k are unknown and signals x and xb,

and their derivatives, are measured. Equation 5.1 cannot be solved directly for m,

c and k but can be reformulated to yield,

c

m
(ẋ− ẋb) +

k

m
(x− xb) = ẍ. (5.2)

If N samples of each of the measured signals are recorded, this equation can be

written as an over determined set of equations as follows,













(ẋ− ẋb)1 (x− xb)1
(ẋ− ẋb)2 (x− xb)2

...
...

(ẋ− ẋb)N (x− xb)N













{

c/m

k/m

}

=













ẍ1

ẍ2

...

ẍN













(5.3)

Equation 5.3 can be solved for the mass normalised damping (c/m) and mass nor-

malised stiffness (k/m) parameters using standard least squares techniques. Now
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consider the case where the same system is perturbed by a known mass ma (Fig-

ure 5.1b) such that,

m
′

= m+ma. (5.4)

If signals x′ and x′
b (and their derivatives) are measured, the analysis above can

be repeated to yield estimates of the new mass normalised damping
(

c/m
′
)

and

mass normalised stiffness
(

k/m
′
)

parameters. Using the mass normalised stiffness

parameters estimated from the original and perturbed systems, and equation 5.4,

the following relationship can be established,

(k/m)

(k/m′)
=

m
′

m
=

(m+ma)

m
(5.5)

leading to an expression for the estimated system mass,

m̂ = ma

(

(k/m)

(k/m′)
− 1

)−1

. (5.6)

The estimated system mass (m̂) can be used to estimate the system stiffness, k̂, and

system damping, ĉ.

Now consider a vehicle suspension system. When sprung mass and unsprung mass

accelerations are measured during suspension operation, a simple technique which

involves the addition of a known mass to the sprung mass of the vehicle is used

to determine the parameters of the shock absorber. This technique involves no

disassembly of the vehicle suspension system and no measurement of the force input

from the road surface to the tyre patch. Two road tests of the vehicle are required,

one with no added mass and one with the known added mass attached. Consider

the linear quarter car model shown in Figure 2.25. The sprung mass equation of

motion is given by,

msẍs − cs (ẋu − ẋs)− ks (xu − xs) = 0. (5.7)

If N samples of ẍs, ẋs, xs, ẋu and xu are recorded, the problem can be formulated

as follows,












(ẋu − ẋs)1 (xu − xs)1
(ẋu − ẋs)2 (xu − xs)2

...
...

(ẋu − ẋs)N (xu − xs)N













{

cs/ms

ks/ms

}

=













ẍs1

ẍs2

...

ẍsN













(5.8)
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Direct Parameter Estimation (DPE) methods are used to obtain estimates for sprung

mass normalised damping (cs/ms) and stiffness (ks/ms). The analysis is repeated

with a known mass, ma, added to the sprung mass such that,

m
′

s = ms +ma. (5.9)

New estimates of sprung mass normalised damping (cs/m
′

s) and stiffness (ks/m
′

s)

are obtained. In the SDOF example above, the mass normalised stiffness is used to

estimate the system mass. However, the mass normalised damping can also be used

for this purpose. The concept of a significance factor is introduced here to determine

which of the mass normalised parameters should be used to give the best estimate

of the system mass. The significance factor is used to determine which term is most

important in the model formulation. The significance factor of the individual model

terms, θ, is defined as follows,

sθ = 100
σ2
θ

σ2
y

(5.10)

where, σ2
y is the variance of the estimated output with all model terms included and

σ2
θ is the variance of the output with only the θ term included. Roughly speaking,

sθ can be interpreted as the percentage contribution to the model variance by the

individual model term θ. Assuming (ks/ms) is the most significant term in this

example, dividing (ks/ms) by (ks/m
′

s), and using equation 5.9 leads to an estimate

of the sprung mass, m̂s,

(ks/ms)

(ks/m
′

s)
=

m
′

s

ms

=
(ms +ma)

ms

(5.11)

⇒ m̂s = ma

(

(ks/ms)

(ks/m
′

s)
− 1

)−1

. (5.12)

The estimated sprung mass, m̂s, can be used to obtain estimates of the shock ab-

sorber damping, ĉs, and stiffness, k̂s, parameters. The analysis can be extended to in-

clude nonlinearities characterised using the Restoring Force Surface (RFS) method.
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Figure 5.2: Two DOF nonlinear quarter car model

5.2 Application of the boundary perturbation tech-

nique to simulated data

A series of nonlinear quarter car simulations are conducted to develop the boundary

perturbation technique under a controlled simulation environment. The nonlinear

quarter car simulation setup, shown in Figure 5.2, is used for this purpose. The

differential equations of motion describing the system are,

muẍu + cs (ẋu − ẋs) + ks (xu − xs) + ku (xu − xr) +Fnl(xu − xs, ẋu − ẋs) = 0 (5.13)

msẍs − cs (ẋu − ẋs)− ks (xu − xs)− Fnl(xu − xs, ẋu − ẋs) = 0 (5.14)

where, the term Fnl represents the force due to the nonlinear elements in the shock

absorber. For this investigation the shock absorber nonlinearities are chosen to be

coulomb friction and cubic stiffness,

Fnl = µs (sign (ẋu − ẋs)) + kn (xu − xs)
3 . (5.15)

The simulations are chosen to have a dominant coulomb friction nonlinearity and

a mild cubic stiffness. The parameter estimation is first carried out to identify

both nonlinearities. The second situation looks at identifying just the dominant

nonlinearity, ignoring the mild cubic stiffness. This approach examines the influence
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Parameter Value Unit

mu 10.0 kg
ms 25.0 kg
ku 9x104 N/m
ks 5x103 N/m
ζ 10.0 %
kn 5.0 %
µs 50.0 %

Table 5.1: Quarter car simulation parameters

of uncharacterised nonlinearities on the system identification. The application of the

method to nonlinear quarter car simulations with memory, is then examined. Both

a backlash parameter and a Bouc–Wen shock absorber model are employed for this

purpose. For the Bouc–Wen simulations the exact shock absorber model form is

assumed to be unknown. This represents a practical identification problem, where

characterisation must be conducted to select an appropriate model form.

Simulated time data are obtained by integrating the equation of motion with a

fourth order Runge–Kutta scheme [16]. The road input excitation to the tyre is

simulated with a white noise signal band limited to 1–50 Hz, using a sixth order

Butterworth filter [183]. The input signal Root Mean Square (RMS) amplitude is

equal to 0.0005 m. The small amplitude is chosen based on observation and basic

measurement of a smooth road surface. The sampling frequency used is 256 Hz

and 524288 samples of data are taken for each simulation. The stochastic input

excitation is different for each simulation and is unmeasured. Each simulation is

repeated 100 times to yield an ensemble of parameter estimates. Table 5.1 shows

the quarter car parameters used for the simulation. The static friction (µs) and

cubic stiffness (kn) nonlinearities are specified as a percentage of the total shock

absorber force RMS magnitude. The added mass, used for boundary perturbation,

is set at 10 % of the sprung mass magnitude for all simulations. Simulations are run

with and without noise. For the simulations with noise, measured signals are noise

polluted to a level of 5 % of their respective RMS value, with uncorrelated white

noise. The simulation setup parameters, summarised in Table 5.2, are used for all

simulations unless otherwise stated.
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5.2. Application of the boundary perturbation technique to simulated data

Sampling Time Simulation Input Input Input Solution
frequency, points, Runs Amplitude filter
fs N (RMS)

256 Hz 524288 100 White 0.0005 m BP: 4th order
Noise 1–50 Hz Runge–Kutta

Table 5.2: Nonlinear quarter car simulation setup parameters

5.2.1 Time domain approach

The boundary perturbation technique is first implemented using time domain pa-

rameter estimation. DPE is used to estimate the system parameters in each case.

Shock absorber characterisation is carried out using RFS methods. In the absence

of a measured shock absorber force, the sprung mass acceleration can be used, ef-

fectively giving a RFS scaled by the magnitude of the sprung mass [70, 76].

Nonlinear quarter car simulation

Figure 5.3 shows the RFS for the shock absorber in the quarter car simulation.

The dominant static friction nonlinearity is clearly visible at zero velocity in the

restoring force surface plot and the characteristic diagram. The effect of the mild

cubic stiffness can be observed in the work diagram in Figure 5.3.

The boundary perturbation technique is first implemented with all the nonlinearities

in the shock absorber included in the problem formulation. The ensemble mean and

standard deviations of all parameter estimates, with and without noise, are shown

in Table 5.3 (the Matlab R© function lssvd, developed for boundary perturbation

least squares parameter estimation is documented in Appendix C). To assess the

effect of uncharacterised nonlinearities on the parameter estimation process, a second

parameter estimation is carried out ignoring the cubic stiffness. The results are

shown in Table 5.4. In the absence of noise, exact estimates are obtained for all

parameters when all nonlinearities are included in the estimation process. When

the cubic stiffness is ignored, accurate estimates of ms, cs and µs are obtained,

while ks showed an error of 9.6 %. The estimated linear stiffness has increased to

componsate for the lack of a cubic stiffness term in the estimation process.
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Figure 5.3: Nonlinear quarter car simulation restoring force surface

No Noise

Parameter Actual Estimated Std Dev % Error

ms 25.0 25.0 0.0 0.0
ks 5000.0 5000.0 0.0 0.0
cs 70.7 70.7 0.0 0.0
µs 6.3 6.3 0.0 0.0
kn 1.68x108 1.68x108 0.0 0.0

5% Noise

Parameter Actual Estimated Std Dev % Error

ms 25.0 25.0 0.3 +0.2
ks 5000.0 4959.9 69.0 +0.8
cs 70.7 76.1 1.0 +7.7
µs 6.3 5.6 0.1 -10.7
kn 1.58x108 1.59x108 2.3x106 +0.5

Table 5.3: Estimated parameters; both friction and cubic stiffness nonlinearities
included
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5.2. Application of the boundary perturbation technique to simulated data

No Noise

Parameter Actual Estimated Std Dev % Error

ms 25.0 25.0 0.4 +0.0
ks 5000.0 5481.5 9.2 +9.6
cs 70.7 70.6 0.1 -0.1
µs 6.3 6.3 0.0 +0.0

5% Noise

Parameter Actual Estimated Std Dev % Error

ms 25.0 25.0 0.4 +0.1
ks 5000.0 5449.9 79.1 +9.0
cs 70.7 76.1 1.0 +7.7
µs 6.3 5.6 0.1 -10.7

Table 5.4: Estimated parameters; only dominant friction nonlinearity included

Nonlinear quarter car simulation with memory

In practical applications the characteristic of the shock absorber may not be readily

identifiable as a spring-damper-friction model. Other more complex nonlinearities

such as hysteresis may be present in the shock absorber. Hysteretic systems are

among the more difficult nonlinear systems to investigate and identify [48]. To assess

the effect of hysteresis on the parameter estimation procedure a nonlinear simulation

is run with hysteresis (backlash) in damping. The backlash magnitude is expressed

as a percentage of the RMS relative velocity across the shock absorber. Figure 5.4

shows the RFS for the nonlinear quarter car model with 10 % backlash. Table 5.5

shows the ensemble mean error and standard deviation of the estimates for varying

backlash between 0 and 10 %. Another simulation is now run with 10 % backlash,

but in this case a backlash parameter is included in the model formulation (backlash

is introduced by processing the relevant signal before conducting the parameter

estimation; when the input changes direction, an initial change in input has no

effect on the output until the specified backlash deadband is overcome). The results

of the revised parameter estimation are shown in Table 5.6. Table 5.5 shows that as

backlash approaches 10 % large errors on the parameter estimates are seen. However,

Table 5.6 indicates that the inclusion of a backlash term in the model allows excellent

parameter estimates to be obtained even at high backlash levels.
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Figure 5.4: Nonlinear quarter car simulation RFS (10% backlash)

No Noise

Backlash %

Parameter 0.00 0.01 0.10 1.00 10.00

ms 0.00 +0.00 +0.00 -0.07 -0.47
ks 0.00 +0.01 +0.14 +1.28 +9.28
cs 0.00 +0.01 +0.17 +1.63 +7.96
µs 0.00 -0.02 -0.22 -2.34 -12.82
kn 0.00 -0.04 -0.38 -4.02 -26.91

5% Noise

Backlash %

Parameter 0.00 0.01 0.10 1.00 10.00

ms +0.15 -0.10 -0.96 -0.27 -0.25
ks -0.46 -0.70 -0.60 +0.17 +8.95
cs +8.04 +7.79 +7.78 +7.53 +9.11
µs -10.38 -10.64 -10.60 -10.77 -14.24
kn +0.90 +0.44 +0.39 -2.37 -25.67

Table 5.5: Estimated parameter error for varying backlash between 0.0 %–10.0 %
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5.2. Application of the boundary perturbation technique to simulated data

No Noise

Parameter Actual Estimated Std Dev % Error

ms 25.0 25.0 0.0 0.0
ks 5000.0 5000.0 0.0 0.0
cs 70.7 70.7 0.0 0.0
µs 6.3 6.3 0.0 0.0
kn 1.68x108 1.68x108 0.0 0.0

5% Noise

Parameter Actual Estimated Std Dev % Error

ms 25.0 24.9 0.4 -0.2
ks 5000.0 4972.0 77.5 -0.6
cs 70.7 75.9 1.1 +7.3
µs 6.3 5.7 0.1 -10.2
kn 1.68x108 1.57x108 2.6x106 -0.9

Table 5.6: Nonlinear quarter car model with 10% backlash, estimated parameters
with backlash included in the model formulation

Unknown shock absorber model structure

So far reasonable parameter estimates have been obtained in situations where the

shock absorber model form is known, backlash is small (<1 %) or accounted for in

the model and noise is low. A more complex identification problem is now examined.

Consider a simulation with unknown shock absorber model structure exhibiting hys-

teretic behaviour. This replicates the practical situation where measured operational

data must be used to characterise the suspension system. One method proposed

in the literature of simulating hysteretic behaviour is the Bouc–Wen model. The

Bouc–Wen model has the ability to capture the properties of a wide class of real

nonlinear hysteretic systems [48]. The shock absorber is modelled as a linear spring

and damper in parallel with a Bouc–Wen hysteretic element, as described by the

following equation for the shock absorber force,

F = csẋ(t) + ksx(t) + αν(t) (5.16)

where, the evolutionary variable ν is governed by,

ν̇(t) = Bẋ(t)− β |ẋ(t)| ν(t) |ν(t)|n−1 − γẋ(t) |ν(t)|n . (5.17)
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5.2. Application of the boundary perturbation technique to simulated data

Param Value Unit

mu 10.0 Kg
ms 25.0 Kg
ku 9x104 N/m
ks 5x103 N/m
ζ 10.0 %
B 800 -
β 1x104 -
γ 1x103 -
n 1 -
α 300 -

Table 5.7: Bouc–Wen quarter car simulation parameters
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Figure 5.5: Quarter car simulation with Bouc–Wen shock absorber RFS

The shape of the hysteric loop is governed by the coefficients B,α, β, γ and n. Simu-

lation parameters for the revised quarter car model are given in Table 5.7. Figure 5.5

shows the RFS for the Bouc–Wen quarter car simulation. The hysteresis in the sys-

tem can be identified from the stochastic nature of the RFS at low velocities. The

interpolated RFS attempts to average the separate hysteresis paths in compression

and rebound. The RFS identifies the ‘backbone’ of the shock absorber, showing the

significant dynamical behaviour of the system [21].
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5.2. Application of the boundary perturbation technique to simulated data

No Noise

Parameter Actual Estimate Std Dev % Error

ms 25.0 24.9 1.5 -0.4
ks 5000.0 11072.7 673.0 +121.5
cs 70.7 244.0 14.2 +245.1
µs - 5.8 0.4 -

5% Noise

Parameter Actual Estimate Std Dev % Error

ms 25.0 25.0 1.8 +0.0
ks 5000.0 11053.6 796.9 +121.1
cs 70.7 243.9 17.1 +244.9
µs - 5.8 0.4 -

Table 5.8: Estimated Bouc–Wen quarter car model parameters

From analysis of the RFS it is clear that a simple spring–mass–damper model will

not accurately represent the shock absorber. In fact the selection of an appropriate

model to represent the shock absorber characteristic in this case proves extremely

difficult. The shock absorber has not only a non–polynomial type characteristic,

but its RFS is also not an explicit function of just its present states. As an initial

investigation, the nonlinear quarter car model, with static friction is used to model

the system. This is a reasonable first model selection based on one interpretation

of the RFS. The discontinuity in the system at low velocities resembles that of a

coulomb friction characteristic. Due to the complex nature of the Bouc–Wen model

a simulation sampling rate of 2048 Hz is required to prevent numerical integration

errors. The simulation signals are downsampled to 256 Hz before analysis. The

estimated parameters with and without noise are shown in Table 5.8. The simulated

and estimated time histories are compared, for the case with no noise, in Figure 5.6.

The model selection is refined to include the backlash evident in the characteristic

diagram in Figure 5.5. The width of the hysteretic region, in m/s, when the acceler-

ation is zero, is used as a measure of the backlash in the system. The backlash input

signal for the parameter estimation process is generated from the relative velocity

signal across the shock absorber. When the velocity changes direction, the backlash

deadband must be overcome before the velocity continues in the opposite direction.

The measured deadband is 0.07 m/s. An iterative approach is then applied to the
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5.2. Application of the boundary perturbation technique to simulated data
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Simulated

Estimated

fs: 2048 Hz
MSE: 18.04

Simulated:
mu: 10 kg
ms: 25 kg
ku: 90000 N/m
ks: 5000 N/m
cs: 70.7 Ns/m
B: 800
β: 10000
γ: 1000
n: 1
α: 300

Estimated:
mu: 10 kg
ms: 24.9 kg
ku: 90000 N/m
ks: 11072.7 N/m
cs: 244.0 Ns/m
µs: 5.8 N

Figure 5.6: Bouc–Wen quarter car model simulated and estimated sprung mass
acceleration time histories

identification of the optimal level of backlash in the model. This involves the iden-

tification of model parameters using the initial estimate of 0.07 m/s. The Mean

Squared Error (MSE) between the identified model and the true Bouc–Wen quarter

car simulation is evaluated for a range of backlash values. The backlash value, which

minimises the MSE of the estimated model, is then taken as the new backlash value

and the process is repeated until there is no significant decrease in the model MSE.

The results of the analysis with an optimal backlash value of 0.038 m/s are shown

in Table 5.9. The simulated and estimated time histories are compared, for the case

with no noise and backlash, in Figure 5.7.

The boundary perturbation analyses carried out thus far, require that a shock ab-

sorber model form must be selected for use in the problem formulation. A different

approach is examined here, which uses the nonlinear system identification methods

presented by Masri et al. [48] (§ 2.3.2), adapted for the operational case. Using this

method, the algorithm itself determines the required parameters to best represent

the system. The set of basis functions for the analysis are chosen to be,

basis = (sign(ẋu − ẋs), PS) (5.18)

where, PS represents the list of basis terms in the power series expansion of the
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5.2. Application of the boundary perturbation technique to simulated data

No Noise

Parameter Actual Estimate Std Dev % Error

ms 25.0 25.3 1.3 +1.2
ks 5000.0 7353.5 372.4 +47.1
cs 70.7 208.6 11.2 +195.0
µs - 11.7 0.6 -

5% Noise

Parameter Actual Estimate Std Dev % Error

ms 25.0 25.1 1.3 +0.4
ks 5000.0 7563.4 399.6 +51.3
cs 70.7 206.8 11.3 +192.5
µs - 11.5 0.6 -

Table 5.9: Estimated Bouc–Wen quarter car model parameters with backlash
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fs: 2048 Hz
MSE: 11.47
B’Lash: 0.038
m/s

Simulated:
mu: 10 kg
ms: 25 kg
ku: 90000 N/m
ks: 5000 N/m
cs: 70.7 Ns/m
B: 800
β: 10000
γ: 1000
n: 1
α: 300

Estimated:
mu: 10 kg
ms: 25.3 kg
ku: 90000 N/m
ks: 7353.5 N/m
cs: 208.6 Ns/m
µs: 11.7 N

Figure 5.7: Bouc–Wen quarter car model simulated and estimated sprung mass
acceleration time histories (with Backlash)
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5.2. Application of the boundary perturbation technique to simulated data

No Noise

Parameter Actual Estimate Std Dev % Error

ms 25.0 25.1 3.8 +0.6
ks 5000.0 13664.7 2038.8 +173.3
cs 70.7 360.7 51.7 +410.1

Table 5.10: Estimated Bouc–Wen quarter car model parameters, using revised time
domain approach

doubly indexed series,

PS =
imax
∑

i=0

jmax
∑

j=0

(xu − xs)
i (ẋu − ẋs)

j (5.19)

for imax and jmax equal to 3. The results of the analysis are shown in Table 5.10.

In all simulated cases for the Bouc–Wen quarter car model, the actual (hysteretic)

shock absorber model is not included in the estimation process. Therefore, the

identification approach is effectively a non-parametric one. Sprung mass estimates

are good in all cases, but the identified linear stiffness and damping parameters

have effectively become equivalent linear stiffness and damping values, due to the

non–parametric nature of the methods when applied to an unknown shock absorber

model form.

5.2.2 Frequency domain approach

Time domain methods provide accurate estimates of sprung mass in all cases. Less

success is obtained in the estimation of true values of stiffness and damping in the

case when the exact shock absorber model form is unknown. The frequency domain

approach applied here assumes that the mass has been calculated from the time

domain procedures. The aim here is to obtain a more accurate estimate of the

linear stiffness parameter in the suspension system.

The frequency domain approach aims to use Reverse Multiple Input/Single Output

(R–MISO) to develop the linear Frequency Response Function (FRF) of the suspen-

sion system in order to identify the linear system parameters. In the case of the two

Degree–Of–Freedom (DOF) quarter car model, the sprung mass equation of motion
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5.2. Application of the boundary perturbation technique to simulated data

(given in equation 5.13) can be rearranged as follows,

ẍs =
1

ms

[cs (ẋu − ẋs) + ks (xu − xs) + Fnl(xu − xs, ẋu − ẋs)] . (5.20)

This equation shows that the acceleration of the sprung mass is equal to the mass

normalised shock absorber force. In this case the inputs to the R–MISO analysis

are chosen to be the relative displacement across the shock absorber (xu − xs) and

nonlinear functions of (xu − xs) and (ẋu − ẋs) representing the shock absorber non-

linearity form. The R–MISO output is ẍs. This approach allows for the calculation

of a linear FRF between xu − xs and ẍs, after the nonlinearities due to the shock

absorber have been removed from the problem, using conditioned spectral analysis.

The nonlinear function inputs are selected by examining the ordinary coherence

between a set of possible inputs and the output. The area under the ordinary

coherence function in the frequency range of interest is calculated and expressed as

a percentage of perfect coherence. Functions with a coherence level above a selected

tolerance percentage are included in the problem formulation. The selected set of

input functions is then ordered based on the magnitude of their ordinary coherence

with the output. The proposed R–MISO formulation is then checked to ensure the

problem is well-defined. The following four conditions must be satisfied [23],

• Ordinary coherence between any pair of input records should not equal unity;

• Ordinary coherence between any input and the output should not equal unity;

• Multiple coherence between any input and the other inputs, excluding the

given input, should not equal unity;

• Multiple coherence between the inputs and the outputs should be sufficiently

high (> 0.5).

Nonlinear quarter car simulation

As in the time domain case, the method is first applied to the quarter car simulation

with static friction and cubic stiffness nonlinearitites. The simulation parameters

remain unchanged, and are shown in Table 5.1. A three input single output model

is chosen. The model setup is shown diagrammatically in Figure 5.8. The inputs

records x1(t), x2(t) and x3(t) are defined as (xu − xs), sign(ẋu − ẋs) and (xu − xs)
3,
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5.2. Application of the boundary perturbation technique to simulated data

Figure 5.8: Three input single output R–MISO setup

Sampling Time Block Overlap Window Filter FRF
frequency, points, size Type type Estimator
fs N

256 Hz 2097152 2048 50 % Hanning LP:50 Hz H1

Table 5.11: Signal processing parameters used for quarter car simulation R–MISO
analysis

respectively. The output y(t) is equal to ẍs. The terms H1y, H2y and H3y are

the FRF’s between the respective inputs and the output. The signal processing

parameters used for the R–MISO analysis are shown in Table 5.11. Figure 5.9

shows results of the analysis1. It can be seen that the value of H1y at 0 Hz, is equal

to the mass normalised stiffness. Estimates of mass normalised µs and kn can be

obtained from the magnitudes of H2y and H3y.

The results in the presence of 5 % noise, are shown in Figure 5.10 and warrant

further discussion. One advantage of the frequency domain approach is that the

effect of noise on the R–MISO approach can be assessed using the multiple coherence

function. One observation in this case is that the multiple coherence drops sharply

below approximately 2 Hz. This makes the estimation of the mass normalised linear

stiffness difficult. The FRF value at 0 Hz is approximately 72 N/m, which is clearly

an erronous estimate.

A curve–fit is used to estimate the sprung mass normalised linear stiffness parameter

in the presence of noise. The Rational Fraction Polynomials (RFP) FRF curve–fit

1Notation used for R–MISO analysis: H1y,H2y,H3y are FRF’s defined in Figure 5.8; γ2
1y, or-

dinary coherence between x1(t) and y(t); γ2
2y.1, partial coherence between the conditioned record

x2.1(t) and y(t); γ2

3y.2!
, partial coherence between the conditioned record x3.2!(t) and y(t); γ2

y:x,
multiple coherence function between all the inputs and the output.
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5.2. Application of the boundary perturbation technique to simulated data
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Figure 5.9: Nonlinear quarter car model R–MISO analysis results
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Figure 5.10: Nonlinear quarter car model R–MISO analysis results (5 % noise)
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5.2. Application of the boundary perturbation technique to simulated data

method is adopted for this purpose [184]. The RFP method is a Multiple Degree–

Of–Freedom (MDOF) Experimental Modal Analysis (EMA) curve–fit method which

expresses the measured FRF in terms of rational fraction polynomials as follows,

H(ω) =

n
∑

k=0

(jω)kαk

m
∑

k=0

(jω)kβk

. (5.21)

Manipulation of equation 5.21 allows the coefficients αk and βk to be found using

linear least squares techniques. Despite the non–parametric nature of the identi-

fied FRF, the sprung mass normalised stiffness can be estimated by normalising

the numerator coefficients(αk) by β0. The value of α0 after normalisation gives an

estimate of the y–axis crossing point of the synthesised FRF and hence the sprung

mass normalised stiffness. The RFP method in its standard form is found to give

reasonable estimates of the mass normalised stiffness value when the multiple co-

herence is close to unity. However, it is found that the synthesised FRF is biased

by errors on the measured FRF when the multiple coherence function is not close

to unity. Therefore, a weighted RFP method is developed to increase the accuracy

of the FRF estimates. The variance of the noise present on the FRF data can be

computed from [20],

var (|Hxy|) ≈

(

1− γ2
xy

)

2γ2
xynd

|Hxy|
2 (5.22)

where, nd is the number of sample records used in the spectral estimation. Using

equation 5.22, a weighting function for the RFP least squares estimator, W 2
xy, can

be formulated as follows [185],

W 2
xy =

|Hxy|

var (|Hxy|)
. (5.23)

A measure of the quality of the synthesised FRF fit to the actual FRF is provided

using the Synthesis Correlation Coefficient (SCC) [186]. The SCC, Γ2, is given by,

Γ2 =

∣

∣

∣

∣

∣

ω2
∑

ω=ω1

H(ω)Ĥ∗(ω)

∣

∣

∣

∣

∣

2

ω2
∑

ω=ω1

H(ω)H∗(ω)

ω2
∑

ω=ω1

Ĥ(ω)Ĥ∗(ω)

(5.24)
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Figure 5.11: Nonlinear quarter car model with 5 % noise R–MISO weighted RFP
curve–fit

where, H(ω) is the measured FRF and Ĥ(ω) is the synthesised FRF. In the case of

the constant coefficients due to the R–MISO nonlinear paths, a weighted mean is

used to calculate the parameter estimates. The weighted mean is given by,

x =

ω2
∑

ω=ω1

W (ω) |Hxy(ω)|

ω2
∑

ω=ω1

W (ω)

(5.25)

where, Hxy is the FRF of the nonlinear path and W is the weighting vector defined

in equation 5.23, however, the variance on Hxy defined by equation 5.22 is developed

from the partial coherence of the corresponding nonlinear path as opposed to the

ordinary coherence.

Applying this approach to the nonlinear quarter car model with noise leads to the

curve–fit shown in Figure 5.11. Note in areas of low multiple coherence, i.e. below

2 Hz and above 45 Hz, the synthesised FRF is not significantly biased by these

frequency points due to the weighting on the least squares estimator. This improves

the parameter estimates especially in the case when the multiple coherence drops

significantly from unity. The estimated quarter car model parameters in the presence

of 0 % noise and 5 % noise are summarised in Table 5.12. Good sprung mass
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5.2. Application of the boundary perturbation technique to simulated data

0% Noise

Parameter Actual Estimate % Error Γ2

ks/ms 200.0 199.0 +0.5 0.89
µs/ms 0.25 0.25 +0.4 1.00
kn/ms 6.72x106 6.72x106 +0.0 1.00

5% Noise

Parameter Actual Estimate % Error Γ2

ks/ms 200.0 201.4 +0.7 0.85
µs/ms 0.25 0.24 -6.1 0.99
kn/ms 6.72x106 6.80x106 +1.1 0.95

Table 5.12: Estimated mass normalised nonlinear quarter car model parameters
using R–MISO and a RFP curve–fit

normalised parameter estimates are obtained in all cases.

Unknown shock absorber model structure

The R–MISO approach is now applied to the more complex case of the nonlinear

quarter car model with Bouc–Wen shock absorber. The simulation parameters are

the same as for the time domain case and are given in Table 5.7. As the exact model

form is assumed unknown, a set of possible R–MISO inputs is generated. The set

of basis functions for this analysis are chosen to be,

basis = (sign(xu − xs), sign(ẋu − ẋs), sign(ẍu − ẍs), PS1, PS2, PS3) (5.26)

where, PS1, PS2 and PS3 represent the list of basis terms in the power series

expansion of the doubly indexed series (for imax = jmax = 7),

PS1 =
imax
∑

i=1

jmax
∑

j=0

(xu − xs)
i (ẍu − ẍs)

j (5.27)

PS2 =
imax
∑

i=1

jmax
∑

j=1

(xu − xs)
i (ẋu − ẋs)

j (5.28)

PS3 =
imax
∑

i=1

jmax
∑

j=1

(ẋu − ẋs)
i (ẍu − ẍs)

j . (5.29)
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5.2. Application of the boundary perturbation technique to simulated data

Sampling Time Block Overlap Window Filter FRF
frequency, points, size Type type Estimator
fs N

2048 Hz 4194304 2048 50 % Hanning LP:50 Hz H1

Table 5.13: Signal processing parameters used for quarter car simulation with Bouc–
Wen shock absorber R–MISO analysis
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x8 = (ẋu − ẋs)(xu − xs)
2

x9 = (ẍu − ẍs)(ẋu − ẋs)
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Figure 5.12: Bouc–Wen quarter car simulation R–MISO model check results

The R–MISO output is sprung mass acceleration, ẍs. The signal processing param-

eters used for the R–MISO analysis are given in Table 5.13. The integral of each

input terms ordinary coherence with the output is calculated. Terms with an inte-

gral of less than 5 % of perfect coherence are discarded and the remaining inputs are

ordered in decending order, based on their percentage coherence with the R–MISO

output. The model is checked, as outlined above, to ensure it is well defined before

the analysis is run. The results of the model check, after basis function truncation

and reordering, are shown in Figure 5.12. A total of 16 inputs are included in the

model out of a possible 157 in the original basis function set. As the FRF of most

interest in this case is the FRF between the relative displacement of the shock ab-

sorber (xu−xs) and the sprung mass acceleration (ẍs), xu−xs is set as input number

1 (x1). The results of the R–MISO analysis, for inputs x1, x2 and x3, are shown in

Figure 5.13 (the Matlab R© function rmiso, developed to run R–MISO analysis for an

arbitrary number of inputs is documented in Appendix C).
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Figure 5.13: Bouc–Wen quarter car simulation R–MISO analysis results for inputs
x1, x2, x3

A weighted RFP curve–fit is performed as before and the results are shown in Fig-

ure 5.14. In this case the curve–fit is performed in the 0–16 Hz frequency range, as

highest multiple coherences are seen close to the natural frequencies of the sprung

and unsprung masses and a drop in phase from its ideal value of π/2 is seen above

16 Hz. An error of 12.1 % is seen in the estimated sprung mass normalised stiffness.

This represents a significant improvement in model error when compared with the

time domain estimate of the linear stiffness. A combination of time domain and fre-

quency domain analysis of the Bouc–Wen quarter car simulation, using operational

testing, produces estimates for ms and ks of 25.2 kg and 4430.2 N/m, respectively.

These estimates compare favourably with the corresponding true values of 25 kg

and 5000 N/m, considering the complexity of the identification problem.
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Figure 5.14: Bouc–Wen quarter car simulation R–MISO weighted RFP curve–fit

5.3 Experimental quarter car rig identification

Having implemented the boundary perturbation technique on a range of nonlinear

quarter car simulations, the technique is now applied to the experimental identi-

fication of the quarter car test rig. A combination of time and frequency domain

approaches allowed for the identification of a nonlinear quarter car simulation with a

complex Bouc–Wen shock absorber characteristic. This time and frequency domain

approach is extended here to allow operational experimental identification of the

quarter car rig.

The rig is instrumented with four accelerometers, three on the unsprung mass in

the transverse, fore–aft and vertical directions and one on the sprung mass in the

vertical direction. The accelerometer mounting positions are shown in Figure 5.15.

The transverse, fore–aft and vertical directions are referred to as the x, y and z–

directions in future discussion2. Excitation is provided using the 72 lobe cam, shown

in Figure 5.16. The cam frequency is linearly swept from 0.4–6 Hz during each ex-

perimental measurement run. Data are sampled at 256 Hz and each measurement

data set contains 16384 samples. The first 60 data sets of each measurement run

2The following notation is used to distinguish between measurement directions; ẍux, unsprung
mass acceleration in the x–direction; ẍuy, unsprung mass acceleration in the y–direction; ẍuz,
unsprung mass acceleration in the z–direction; ẍsz, sprung mass acceleration in the z–direction.
Velocity and displacement follow along similar lines.
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5.3. Experimental quarter car rig identification

(a) Unsprung mass, showing accelerometers
mounted in the transverse, fore–aft and vertical
directions or x, y and z–directions, respectively

(b) Sprung mass, showing an accelerometer
mounted in the vertical or z–direction

Figure 5.15: Quarter car rig accelerometer locations for operational testing

Figure 5.16: Quarter car rig 72 lobe pseudo random cam

137



5.3. Experimental quarter car rig identification

Figure 5.17: Quarter car rig with known added mass attached to the sprung mass

are discarded to ensure components have reached a steady state operating temper-

ature before subsequent data sets are collected for analysis. The data acquisition

is repeated with a known mass added to the sprung mass. Figure 5.17 shows the

added mass clamped to the sprung mass. Experiments are conducted with added

mass values of 6.5, 8.0, and 10.5 % of the sprung mass magnitude.

5.3.1 Characterisation and model selection

The RFS of the quarter car rig is shown in Figure 5.18 for 10 data set averages.

The stochastic nature of the RFS is due to the hysteretic nature of the system, as

observed in Figure 5.5 and in the work of Cafferty et al. [21]. One assumption

made by Cafferty et al. is that the significant dynamical behaviour of such a system

is summarised by the ‘backbone’ of the RFS surface. This approximation allows a

practical modelling by a memory–less system [21]. The ‘backbone’ of the system

can be identified by averaging out the effects of hysteresis. When duplicate force

values exist for a given velocity and displacement the algorithm used to develop the

RFS returns an average of the values. The RFS is replotted using 400 averages and

is shown in Figure 5.19.
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Figure 5.18: Quarter car rig restoring force surface (10 averages)
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Figure 5.19: Quarter car rig restoring force surface (400 averages)
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5.3. Experimental quarter car rig identification

The identification of the quarter car rig, given the operationally identified restoring

force surface, presents the same set of challenges faced for the identification of the

Bouc–Wen simulation when the shock absorber model form is unknown, i.e. com-

plex nonlinear behaviour, frequency and amplitude dependence, hysteresis, unknown

shock absorber model form and in the experimental case, measurement noise. As

a starting point, a spring–damper–friction model of the shock absorber is assumed.

This model is chosen based on an analysis of the shock absorber RFS. The shock

absorber is seen to exhibit high damping at low velocities (−0.03 < ẋu − ẋs < 0.03)

and a lower damping rate at high velocities (|ẋu − ẋs| > 0.03). The spring–damper–

friction model offers a relatively simple model of this type of nonlinear behaviour.

5.3.2 Operational parameter estimation

The time and frequency domain approaches, developed under controlled simulated

conditions, provide a means of identifying both the suspension system sprung mass

and also the true linear stiffness in the system. Here, this approach is adopted

to experimentally identify the quarter car rig sprung mass, shock absorber spring

stiffness and a nonlinear damping model, using operational testing.

Time domain approach

As with the nonlinear quarter car simulation, the boundary perturbation approach

coupled with DPE is first used to identify the quarter car rig parameters. Nonlinear

quarter car simulations showed this approach to be very robust in the estimation of

the sprung mass in all simulated scenarios. Analysis of the quarter car model with

Bouc–Wen shock absorber suggests that the sprung mass estimate is not particularly

sensitive to the shock absorber model form used in the estimation algorithm.

The analysis is run on experimental data from the quarter car rig. After rig warm

up, 60 measurement data sets are collected. A known mass (ma) with magnitude

equal to 10.5 % of the sprung mass is attached to the sprung mass. A further

60 measurement data sets are collected. Figure 5.20 shows a plot of the mean

significance factor (equation 5.10) for each input across the 60 measurement data

sets. It also shows mass normalised parameter estimates of the most significant

input, (ẋu − ẋs), for the no added mass and added mass cases. The analysis is

140



5.3. Experimental quarter car rig identification

1 2 3
0

20

40

60

80

100
Mean significance factor (sθ)

%

Input Number
0 20 40 60

18

19

20

21

22

23

24

25

26
(ẋuz − ẋsz) parameter estimates

M
a
ss

n
o
rm

a
li
se

d
co

effi
ci

en
t

[(
N

s/
m

)/
k
g]

Measurement number

 

 
ma = 0%

ma = 10.5%

fs: 256 Hz
ms: 25.24 kg
m

′

s: 27.89 kg
Filter: 2 – 50 Hz (band pass)
Excitation: 72 lobe cam sweep

DPE Input:
x1 : xuz − xsz
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Figure 5.20: Quarter car rig boundary perturbation analysis with 10.5 % added
mass

repeated for added mass values of 6.5 % and 8.0 %. The estimated suspension

parameters are shown in Table 5.14. Good estimates of the sprung mass are seen in

all three cases, with a mean percentage error of 3.5 %.

Frequency domain approach

The quarter car rig is designed to allow realistic multi–directional motions of the

unsprung mass. The unsprung mass displacement in the z–direction, plotted against

the displacement in both the x and y–directions, for a 72 lobe cam sweep are shown

in Figure 5.21. The data is normalised by the maximum value of displacement in

the z–direction. Significant displacements of the unsprung mass are seen in both

the x and y–directions. It is, therefore, deemed necessary to include motions in the

x and y–directions in the R–MISO analysis.

Due to the complex nature of the shock absorber, as observed in the RFS plot in

Figure 5.19, a set of basis functions is chosen to include a wide range of nonlin-

ear terms. The basis function has a total of 256 terms, consisting of powers and

sign terms of measured acceleration, velocity and displacement signals. The basis
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10.5% Added Mass

Parameter Actual Estimate % Error

ms 25.24 24.39 -3.4
ks 5690 14225 +150.0

8.0% Added Mass

Parameter Actual Estimate % Error

ms 25.24 23.58 -6.6
ks 5690 14127 +148.0

6.5% Added Mass

Parameter Actual Estimate % Error

ms 25.24 25.11 -0.5
ks 5690 14418 +153.0

Table 5.14: Quarter car rig boundary perturbation analysis results with 10.5 %, 8.0
% and 6.5 % added mass
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Figure 5.21: Normalised quarter car rig unsprung mass displacement in the x, y and
z–directions
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function is defined as,

basis = (sign(xuz − xsz), sign(ẋuz − ẋsz), sign(ẍuz − ẍsz),

sign(xuz − xux), sign(ẋuz − ẋux), sign(ẍuz − ẍux),

sign(xuz − xuy), sign(ẋuz − ẋuy), sign(ẍuz − ẍuy),

sign(xux − xsz), sign(ẋux − ẋsz), sign(ẍux − ẍsz),

sign(xuy − xsz), sign(ẋuy − ẋsz), sign(ẍuy − ẍsz),

sign(xux − xuy), sign(ẋux − ẋuy), sign(ẍux − ẍuy),

PSk) (5.30)

where, the terms PSk, for k = 1, 2, 3..., 17., represent the list of basis terms in the

power series expansion of the doubly indexed series (for imax = jmax = 7),

PS1 =
imax
∑

i=1

jmax
∑

j=0

(xuz − xsz)
i (ẍuz − ẍsz)

j PS2 =
imax
∑

i=1

jmax
∑

j=1

(xuz − xsz)
i (ẋuz − ẋsz)

j

PS3 =
imax
∑

i=1

jmax
∑

j=1

(ẋuz − ẋsz)
i (ẍuz − ẍsz)

j PS4 =
imax
∑

i=2

(ẋuz − ẋsz)
i

PS5 =
imax
∑

i=2

(ẍuz − ẍsz)
i PS6 =

imax
∑

i=2

(xux − xsz)
i

PS7 =
imax
∑

i=2

(ẋux − ẋsz)
i PS8 =

imax
∑

i=2

(ẍux − ẍsz)
i

PS9 =
imax
∑

i=2

(xuy − xsz)
i PS10 =

imax
∑

i=2

(ẋuy − ẋsz)
i

PS11 =
imax
∑

i=2

(ẍuy − ẍsz)
i PS12 =

imax
∑

i=1

(xuz − xux)
i

PS13 =
imax
∑

i=2

(ẋuz − ẋux)
i PS14 =

imax
∑

i=2

(ẍuz − ẍux)
i

PS15 =
imax
∑

i=1

(xuz − xuy)
i PS16 =

imax
∑

i=2

(ẋuz − ẋuy)
i

PS17 =
imax
∑

i=2

(ẍuz − ẍuy)
i .

The signal processing parameters used for the R–MISO analysis are shown in Ta-

ble 5.15. All measured signals are high pass filtered to eliminate low frequency
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Sampling Time Block Overlap Number Window Filter FRF
frequency, points, size Data Type type Estimator
fs N Sets

256 Hz 16384 2048 50 % 60 Hanning HP:1 Hz H1

Table 5.15: Signal processing parameters used for quarter car rig R–MISO analysis

Input Expression Input Expression

x1 xuz − xsz x14 sign(ẋuz − ẋuy)
x2 xuz − xux x15 (ẍuz − ẍuy)

3

x3 xuz − xuy x16 (ẍuz − ẍux)
3

x4 sign(ẍuy − ẍsz) x17 sign(ẍux − ẍuy)
x5 sign(ẍuz − ẍuy) x18 (ẍuz − ẍsz)

3

x6 (ẍuy − ẍsz)
3 x19 sign(ẋuy − ẋsz)

x7 sign(ẍuz − ẍux) x20 sign(ẋux − ẋuy)
x8 (ẍux − ẍsz)

3 x21 (xux − xsz)
3

x9 sign(ẋuz − ẋux) x22 (xuy − xsz)
3

x10 sign(ẋuz − ẋsz) x23 (ẍux − ẍuy)
3

x11 sign(ẍuz − ẍsz) x24 sign(xuz − xux)
x12 sign(ẋux − ẋsz) x25 (ẋux − ẋsz)

3

x13 sign(ẍux − ẍsz)

Table 5.16: Quarter car rig R–MISO analysis inputs

drift. Low frequency drift occurs when measured acceleration signals are integrated

to obtain velocity and displacement records. Any DC offset on the original signal

manifests itself as a low frequency drift component on the integrated signal. All

signals are zero–phase forward and reverse filtered using a 6th order Butterworth

filter [183, 187]. The R–MISO model check function, as used for simulated data, is

run on the basis function. The coherence threshold is set to 15 %. After truncation,

25 terms remain and are listed in Table 5.16, while the results of the R–MISO check

are shown in Figure 5.22. The results of the 25 input R–MISO analysis, for input

paths x1, x2 and x3, are shown in Figure 5.23. The weighted RFP curve–fit method

is used to estimate the sprung mass normalised stiffness. The results of the curve–fit

of H1y are shown in Figure 5.24. The estimated value of sprung mass normalised

stiffness is 227.2 N/m/kg.

The results of a combined time and frequency domain operational identification

of the quarter car test rig are compared with the parameter values obtained using

isolated component identification in Table 5.17. Excellent agreement is seen between
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Figure 5.22: Quarter car rig R–MISO model check results (input numbers are defined
in table 5.16)
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Figure 5.24: Quarter car rig R–MISO analysis weighted RFP curve–fit

Parameter Isolated Operational % Error

ms 25.24 24.36 -3.5
ks 5690 5534.6 -2.7

Table 5.17: Quarter car rig estimated component parameters obtained using isolated
component testing and operational system testing

components parameters identified using the two identification approaches.

Nonlinear damping model

Having estimated the sprung mass and linear spring parameters, the development of

a damping model from operational data is now examined. It is clear, from isolated

test results and a visual inspection of the shock absorber RFS, that estimation of a

linear damping coefficient for the shock absorber would be inadequate to describe its

nonlinear behaviour. Its significant nonlinear behaviour is represented in the RFS,

therefore, it is used to develop the damping model.

Consider the operational identified shock absorber RFS shown in Figure 5.19. An

indication of the damping ‘backbone’ of the system can be obtained by taking a

narrow slice through the RFS along the plane of zero displacement. If the width of

the narrow slice is chosen to be, δ, all pairs of values ((ẋu − ẋs)i, (ẍs)i) in the raw
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Figure 5.25: Quarter car rig nonlinear damping model from operational testing

uninterpolated RFS data, such that |(xu − xs)i| < δ, are recorded. Placing these

values in ascending order and plotting gives a graph of (ẋu − ẋs) versus ẍs which

is essentially a slice through the RFS at xu − xs = 0 [11]. The 60 data sets used

for the R–MISO analysis in the previous section, are used to generate the damping

model. The value of δ is chosen to be 10 % of the RMS amplitude of the relative

displacement across the shock absorber. Figure 5.25 shows the resulting RFS section

and also a curve–fit of the data using a hyperbolic tangent shock absorber model of

the form,

Fd = cs(ẋu − ẋs) + κ {tanh (ξ(ẋu − ẋs) + ϑ)− tanh (ϑ)} . (5.31)

Estimation of the model parameters, cs, κ, ξ and ϑ, requires the use of nonlinear

least squares and is carried out using the Levenberg–Marquardt method (§ 2.3.4).

The resulting parameter estimates are shown in Figure 5.25. A MSE value of 0.29

%, between the measured and synthesised data, indicates an excellent model fit.

The model paramaters are essentially sprung mass normalised parameters. Using

the operational sprung mass estimate (24.36 kg) obtained earlier, true parameter

estimates for the damping model can be obtained and are shown in Table 5.18.
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Parameter Value

cs 253.3
κ 33.5
ξ 2069.9
ϑ 0.2

Table 5.18: Quarter car rig operational damping model parameters

5.3.3 Operational model validation

The operationally identified suspension system parameters are used to generate a

nonlinear quarter car simulation which is compared with measured experimental

data from the quarter car test rig. As the excitation applied at the tyre patch using

the pseudo random cam is unknown and unmeasurable, the method used to validate

the nonlinear quarter car simulation in Chapter 4 is employed (the quarter car rig

is excited with the 4 lobed cam whose profile is known and measured, allowing an

equivalent excitation to be applied to the quarter car simulation).

A nonlinear quarter car simulation is developed using the operationally identified

sprung mass, spring stiffness and hyperbolic tangent damping model, coupled with

the nonlinear tyre model developed under isolated conditions (§ 4.1). Results in

§ 4.4.4 show tyre damping to have a noticeable effect on simulation accuracy, there-

fore, 10 % tyre damping is used corresponding to a damping value, cu, of 169 N s/m.

Validation is carried out at using approximately sinusoidal excitation, correpsonding

to that generated using the quarter car rig 4 lobe cam, at 6.8 Hz and 11.2 Hz.

The simulated and measured results are shown, along with the simulation param-

eters, in Figure 5.26. A comparison of the measured and simulated unsprung and

sprung mass RMS acceleration amplitudes and signal peak pattern, show the oper-

ational identified model to give reasonable results. This is in spite of the fact that

the model is validated under very different excitation conditions to those used in

the identification process. During operational identification, broadband excitation

is used and the RMS amplitude of the relative displacement across the shock ab-

sorber is calculated to be 2.68x10-4 m. This is compared with the single frequency

sine excitation for the validation test, showing corresponding RMS amplitudes of

3.44x10-4 m and 4.62x10-4 m at 6.8 Hz and 11.2 Hz, respectively. Considering the

significant frequency and amplitude dependence of the shock absorber, as observed

under isolated testing conditions, the operational model shows promising results.
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Figure 5.26: Quarter car simulation, with operationally identified parameters, com-
parison with measured experimental data from the quarter car test rig at 6.8 Hz
and 11.2 Hz.
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Chapter 6

Discussion

T
he results presented in Chapter 4 show the identification process for the quar-

ter car rig using traditional force-response identification techniques. This

process involved the disassembly of the test rig to facilitate isolated component

testing under controlled conditions. Linear and nonlinear quarter car models, de-

veloped using the identified component parameters, are compared with measured

experimental data from the quarter car test rig to assess the simulation accuracy. A

discussion on these results is presented in section 6.1. Chapter 5 presents quarter car

rig identification from operational testing. The techniques used are first developed

using a series of nonlinear quarter car simulations before they are applied to mea-

sured experimental data from the quarter car test rig. The results of the operational

suspension system identification are discussed in section 6.2.

6.1 Force–response suspension system identifica-

tion

Disassembly of the quarter car test rig allows the major components (tyre, damper

and spring) to be tested in isolation. Testing is carried out using an ESH R© servo–

hydraulic testing machine. The use of force–response testing for the identification of

tyre and shock absorber models is widely reported in the literature [78, 82, 129, 188].

This approach allows controlled excitation and force measurement and aids in the

development of accurate component models.
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6.1. Force–response suspension system identification

6.1.1 Suspension component identification

The tyre is tested both statically and dynamically. The tyre shows an almost lin-

ear spring characteristic under static testing. Dynamic testing is carried out using

sinusoidal excitation at a range of frequencies between 1–14 Hz and amplitudes be-

tween 1–4 mm. Dynamic testing reveals a hardening/softening spring characteristic

which increases with increasing tyre deflection. Observations of the tyre damping

dependence on excitation amplitude and frequency are consistent with hysteretic

damping [171, 172, 173]. A nonlinear point contact tyre model, consisting of a

hysteretic damper in parallel with a nonlinear spring, is developed to describe the

tyre behaviour. An initial validation of the model shows increasing model error at

increasing excitation amplitudes. The model Mean Squared Error (MSE) is seen

to be between 0.0 and 0.8 % at an excitation amplitude of 1 mm, this is seen to

increase to between 2.9 and 3.1 % at an amplitude of 3 mm. The tyre response is

seen to drift away from the origin with increasing amplitude of excitation. This is

attributed to the asymetric nature of the preloaded tyre and is a characteristic of

asymmetric systems [174]. An expression to account for this drift is included in the

tyre model (equation 4.12). The revised model (equation 4.15) is shown to have

a mean MSE of less than 0.2 % across the frequency and amplitude range of the

experimental tests, indicating an excellent model fit.

The shock absorber is also dynamically tested using sinusoidal excitation. A novel

force measurement setup, developed during this work, allows both isolated and op-

erational testing of the shock absorber using an identical force transducer setup.

Isolated testing shows the shock absorber to be highly nonlinear. The results of

an initial test for harmonic distortion are shown in Figure 6.1. Strong harmonics

of the single frequency excitation are seen in the response spectra, indicating sig-

nificant nonlinear behaviour. Further investigation identifies the presence of static

friction, asymmetry and hysteresis in the characteristic and work diagrams. The

nonlinearities identified in the shock absorber are consistent with those found in

experimental investigations by other authors [78, 158, 159, 189], and in particular

to those of an automotive friction damper tested by Guglielmino et al. [138]. Static

friction dominates at low piston velocities. Friction phenomena including presliding

displacement, dry friction hysteresis, variable break away force and non reversibility

of friction are observed in the shock absorber characteristic diagrams, as shown in

Figure 6.2.
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Linear, piecewise linear and nonlinear shock absorber models are developed. The

nonlinear LuGre model accurately describes the shock absorber across the range of

discrete excitation frequencies and amplitudes of the experimental test. The LuGre

model is, however, relatively complex compared to the linear and piecewise linear

models. It is also difficult to implement in practical engineering applications [179].

The piecewise linear model provides a good compromise between model accuracy and

complexity. It provides a more intuitive model of the shock absorber as model pa-

rameters can be related to shock absorber phenomena such as static friction, viscous

damping in compression and rebound and stick–slip transition velocity. Figure 6.3

shows the optimised trilinear parameter c5 plotted alongside measured stick–slip

transition velocity. Note how the trilinear parameter shows similar frequency and

amplitude dependence to the measured stick slip transition velocity.

The identification of a piecewise linear or nonlinear model to describe the shock

absorber behaviour over the full frequency range of the experimental tests proves

illusive. The approach taken to develop shock absorber models for quarter car sim-

ulation uses operational quarter car testing. The shock absorber force measurement

setup allows both the measurement of shock absorber force in isolation and also in

operation. This allows both linear and piecewise linear shock absorber models to

be optimised at each individual excitation frequency to describe the shock absorber

behaviour.
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The shock absorber spring shows only a slight deviation from linear force–displacement

behaviour and as a result is modelled a massless linear spring element. A linear

spring stiffness of 5690 N/m is calculated and damping is found to be negligible.

This spring model shows an average MSE of less than 0.6 % across the frequency

and amplitude range of the experimental tests, indicating an excellent model fit.

6.1.2 Quarter car rig simulation

The identified component parameters are used to develop both linear and nonlinear

quarter car simulations of the experimental test rig. The accuracy of linear quarter

car simulations are first examined. The quarter car rig is excited at fifty six individ-

ual frequencies in the 1.6–24.0 Hz frequency range, using an approximately sinusoidal

excitation. Linear damping models are fitted to the shock absorber characteristic

at each measurement frequency. This technique allows for optimal linear damper

models to be used in the linear simulations at each excitation frequency. Due to the

static friction nonlinearity, the optimal viscous damping coefficients at low shock

absorber velocities are extremely high (fe < 6 Hz). The linear simulation is quite

accurate in this low velocity static friction zone where the static friction nonlinearity

dominates. The simulation accuracy may be aided by the fact that the relative mo-

tion between the unsprung and sprung masses is very small and as a result the shock

absorber is effectively inactive at these low excitation velocities. As the excitation

frequency increased the relative motion across the shock absorber increased and

the shock absorber model became more significant in terms of simulation accuracy.

Outside the static friction zone the linear simulations are found to give a reasonable

approximation of the unsprung mass acceleration but overestimate the sprung mass

accelerations. Figure 4.12 provides an insight into the reason behind sprung mass

acceleration overestimation. Note how the optimal linear model significantly over

estimates shock absorber force at higher excitation velocities. Overestimation of the

shock absorber force would subsequently cause overestimation of the sprung mass

acceleration.

A significant improvement in simulation accuracy is seen with the addition of nonlin-

ear component models. The nonlinear quarter car model is assessed at two excitation

frequencies, 6.8 Hz and 11.2 Hz. The shock absorber is modelled as a trilinear ele-

ment and the tyre as a hardening/softening spring with parallel hysteretic damping.

The accuracy of the nonlinear simulation is in part due to the accuracy with which
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Figure 6.4: Linear and nonlinear quarter car simulation evaluation at 11.2 Hz

the trilinear shock absorber model represents the most significant nonlinearity of

the shock absorber, namely the static friction. This is illustrated in Figure 4.12.

The trilinear model accounts for both the high damping in the static friction zone

and also the lower damping in compression and rebound outside this zone. The

different influences of the trilinear and linear models on simulation results are seen

at the unsprung mass acceleration peaks in Figure 4.14, replotted here in Figure 6.4.

These are regions where shock absorber acceleration is close to its maximum and

shock absorber velocity is close to zero. The high damping of the trilinear model

in this zone causes a visible decrease in shock absorber acceleration. This is in line

with the signal pattern observed from measured signals. The linear model cannot

account for this phenomenon.

The effect of tyre damping on simulation accuracy is assessed at an excitation fre-

quency of 10.4 Hz. Identical simulations are run with an optimised trilinear shock

absorber model. One simulation has no tyre damping and the second has an equiva-

lent tyre viscous damping of 138 N s/m, calculated using equation 4.5. Tyre damping

is shown to have a moderate influence on the simulation accuracy. The simulation

with tyre damping shows more realistic unsprung mass peak accelerations and as

a result lower sprung mass acceleration. The argument put forward by a number
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of authors is that tyre damping can be neglected in simulations of this type. The

results show that although it has an influence on the simulation accuracy, its affect

is relatively small when compared with the affect the shock absorber model has on

the simulation accuracy. In developing a nonlinear quarter car model, the effec-

tiveness of the shock absorber model should first be examined before focusing on

modification of the tyre model to improve simulation accuracy [157].

Narrowband excitation, in the form of an approximately sinusoidal excitation, is

used throughout this experimental and simulation work. Results show that, for this

type of excitation, the nonlinear quarter car model outperforms the linear quarter

car model when compared with measured data from the experimental test rig. It is

noted that during the isolated shock absorber testing, the shock absorber character-

istic shows significant frequency and amplitude dependence, a common observation

during shock absorber experimental testing [70, 76]. Due to the narrowband na-

ture of the excitation in this investigation, it is possible to assess the accuracy of

linear and nonlinear quarter car models at individual frequencies and amplitudes.

Under broadband excitation the frequency and amplitude dependence of the shock

absorber may need to be accounted for.

6.2 Operational suspension system identification

The force-response approach to suspension system identification is shown to aid in

the accurate development of component models. However, the laboratory experi-

mental conditions of an isolated force-response test can differ significantly from the

real life operating conditions [29]. Operational testing techniques allow component

identification to be carried out around the actual loading conditions and external

restraints [97]. It has been argued that in situ operational system characterisation

and identification techniques provide a more useful model of the system, which is

optimal in the real operating environment [59, 78].

The operational identification of the quarter car test rig aims to determine the sus-

pension system sprung mass, the shock absorber spring stiffness and also a nonlinear

damping model for the shock absorber. The boundary perturbation technique, de-

veloped in § 5.1, allows the estimation of suspension parameters without the need

to measure the input excitation at the tyre patch. This requires two vehicle experi-

mental tests, one with a known mass added to the vehicle sprung mass. The input
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displacement to the tyre patch can be different for each experimental test run and is

unmeasured. Here, the assumption is made that the input displacement spectrum is

of similar magnitude for both runs, to ensure amplitude dependence of nonlinearites

do not effect the parameter estimates. Both time and frequency domain approaches

to the problem are examined.

6.2.1 Nonlinear quarter car simulation

The implementation of the boundary perturbation technique under controlled sim-

ulated conditions aids the development of the approach. A number of operational

system identification scenarios are examined using simulated nonlinear quarter car

model data. The quarter car model is chosen to have a dominant friction nonlinear-

ity and a mild cubic stiffness.

Time domain approach

The boundary perturbation technique is used with Direct Parameter Estimation

(DPE) to estimate suspension system parameters in the time domain. Exact pa-

rameter estimates are obtained in the case when all nonlinearities in the system are

accounted for in the proposed system model. In the presence of 5 % uncorrelated

white noise, the percentage errors in ms, ks and kn are all less than 1 %, while the

parameters cs and µs show arrors of 7.7 % and 10.7 % respectively.

In the case where only the dominant nonlinearity is included in the model, estimates

of ms, cs and µs show less than 0.1 % error. The spring stiffness, ks, shows an over

estimation by 9.6 %. The estimated linear stiffness has increased to compensate

for the lack of a cubic stiffness term in the estimation process, and has effectively

become an equivalent stiffness value which provides the best linear estimate of the

stiffness in the model. In the presence of noise, the cs and µs parameters show

errors of similar magnitude to the case when all nonlinearities are included. The

spring stiffness, ks, shows an error of 9.0 %, which is 0.6 % lower than the case with

no noise. The ensemble of estimates does, however, show a standard deviation of

79.1 N/m in the presence of noise, which can be compared with a value of 9.2 N/m

when no noise is present on the signals. Accurate estimates of the sprung mass are

obtained even in the presence of noise and an uncharacterised nonlinearity.
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Hysteresis, in the form of backlash, is found to have a pronounced effect on the

estimated parameter accuracy. It is interesting to note that the Restoring Force

Surface (RFS) for the simulation with 10 % backlash (Figure 5.4) looks very similar

to that with no backlash (Figure 5.3). Therefore, characterisation of a backlash

nonlinearity using the RFS approach is not guaranteed. In the noise free case, the

average parameter errors for 0.1 %, 1.0 % and 10 % backlash are 0.23 %, 1.87 %

and 11.49 %, respectively. In the presence of noise and 10 % backlash the mean

percentage error on the estimates is 11.64 %, although the standard deviation on

the estimates is significantly greater in the presence of noise. Again less than 1 %

error is seen on the sprung mass estimates in all cases. In the presence of 10 %

backlash, with the backlash accounted for in the parameter estimation, very similar

results are seen to the estimates with 0 % backlash.

The identification of the nonlinear quarter car model with Bouc–Wen hysteretic

shock absorber, aims to examine the robustness of the estimation process when the

exact shock absorber model form is unknown and is not included in the problem

formulation. The hysteresis in the system can be identified from the stochastic

nature of the RFS at low velocities (Figure 5.5). Accurate estimates of the sprung

mass are obtained in both the noise free and noise polluted cases, with a maximum

percentage error on the estimates of 0.4 %. The estimation of the linear spring and

damper parameters proved difficult. In effect, the estimation procedure becomes

a non–parametric method due to the absence of the exact shock absorber model

form in the estimation procedure. The identified linear stiffness and linear damping

parameteres show percentage errors of 121.5 % and 245.1 %, respectively. The

estimated values are effectively equivalent linear stiffness and damping parameters

which provide the best approximation of the system behaviour in a least squares

sense. The including of a backlash parameter in the model formulation is also

examined. An initial backlash parameter, estimated using the characteristic diagram

in Figure 5.5, is optimised to minimise the MSE between the parameter estimation

model and the simulated values. The inclusion of the backlash is seen to reduce

the error on the linear stiffness and linear damping parameters to 47.1 % and 195.0

%, respectively. The MSE between the measured and predicted time histories is

also reduced from 18.04 % to 11.47 % with the inclusion of backlash in the model

(Figures 5.6 and 5.7).

The approach to nonlinear system identification presented by Masri et al. [48] is

applied to the quarter car simulation with Bouc–Wen shock absorber. Given a set
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of basis functions, the algorithm itself determines the required parameters to best

represent the system. A basis function of 17 parameters is used. The estimated

linear stiffness and damping parameters again show large percentage errors of 173.3

% and 410.1 %, respectively. The sprung mass estimate is again accurate, showing

an error of 0.6 %.

Frequency domain approach

The time domain approach provides accurate estimates of sprung mass in all cases,

a maximum error of 1.2 % is seen across all the simulated scenarios. Less success

is obtained in the estimation of true values of stiffness and damping in the case

when the exact shock absorber model form is unknown. In this case, the estima-

tion procedure becomes non-parametric and the stiffness and damping estimates

are effectively equivalent linear stiffness and linear damping values. The frequency

domain approach uses Reverse Multiple Input/Single Output (R–MISO) nonlinear

spectral analysis, and aims to complement the time domain methods and estimate

the true value of the linear stiffness in the quarter car simulations. This approach is

chosen for a number of reasons. Firstly, the availablility of ordinary coherence, par-

tial coherence and multiple coherence functions can quickly provide an indication of

how well the proposed model fits the measured data. Uncharacterised nonlinearities

and noise contamination lead to drops in the coherence functions. Secondly, due to

its frequency domain nature, it can identifiy frequency dependent component pa-

rameters. This is important as the shock absorber used for experimental testing in

this work is shown to exhibit significant frequency dependence, as identified under

harmonic excitation in isolation (§ 4.2). Thirdly, its ability to identify the system

linear Frequency Response Function (FRF) in the presence of complex nonlinear

behaviour is a powerful feature for the analysis of nonlinear systems.

To introduce the technique, it is first applied to the nonlinear quarter car model

with friction and cubic stiffness nonlinearities. The approach estimates sprung mass

normalised parameters. A three input/single output model is developed as shown

in Figure 5.8. The inputs records x1(t), x2(t) and x3(t) are defined as (xu − xs),

sign(ẋu − ẋs) and (xu − xs)
3, respectively. The output y(t) is equal to ẍs. Accurate

estimates of ks/ms, µs/ms and kn/ms are obtained, all showing less than 0.5 % error

in the noise free case. In the presence of noise, the development of a curve–fitting

technique is required for parameter estimation. Drops in coherence, especially at
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frequencies close to zero, prevent direct estimation of the mass normalised stiffness

from the estimated linear FRF. The Rational Fraction Polynomials (RFP) curve–

fit method is adopted to improve parameter estimation accuracy. The method is

further developed to include a weighting function developed from the variance on the

FRF estimate. This reduces the tendance of the least square curve-fitting technique

to be biased by FRF measurement points with low multiple coherence. A weighted

mean is used to estimate the magnitude of the nonlinear path constant coefficients.

Using this approach for the case with 5 % noise, the estimated friction parameter

shows an error of 6.1 %. The linear stiffness and cubic stiffness parameteres show

greater accuracy, with errors of 0.7 % and 1.1 %, respectively.

The application of the method to the more complex Bouc–Wen quarter car model is

now discussed. Equation 5.16 shows that the Bouc–Wen shock absorber consists of

a linear spring and linear damper in parallel with a Bouc–Wen hysteretic element.

The aim is to obtain better estimates of the true linear stiffness (ks in equation 5.16)

in the suspension system as opposed to equivalent linear stiffness estimates obtained

using the time domain approach. Coherence functions are used to determine the

inputs to the R–MISO analysis. A set of basis functions for the analysis is chosen,

consisting of a total of 157 terms. The ordinary coherence between each term in

the set of possible inputs and the R–MISO output is calculated. The area under

the ordinary coherence function in the frequency range of interest is calculated and

expressed as a percentage of perfect coherence. Functions with a coherence level

above a selected tolerance percentage are included in the problem formulation.

The selected inputs are then placed in descending order based on their ordinary

coherence with the output. In this case a total of 16 terms qualified for inclusion

in the analysis. The analysis is checked to ensure it is well defined before it is

run, as outlined in § 5.2.2. The resulting linear FRF, between the first input path

(xu−xs) and the output (ẍs), is curve–fitted as before to determine the sprung mass

normalised linear stiffness. The curve–fit is performed in the 0–16 Hz frequency

range as the multiple coherence is seen to drop at higher frequencies and this is

accompanied by a drop in phase from the ideal value of π/2 for a linear spring and

damper in parallel. The estimated mass normalised linear stiffness is found to be

175.8 N/m, corresponding to a linear stiffness of 4395 N/m . The percentage error

on the estimate is 12.1 %. This estimate is significantly more accuracte than the

equivalent linear stiffness parameters identified using the time domain approach. For

the same simulation, the best time domain estimate of the linear stiffness is 7353.5
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N/m, corresponding to an error of 47 %. It is believed that a combination of the

use of coherence functions to determine the optimal model formulation, coherence

functions to indicate FRF accuracy and also the ability of the R–MISO analysis to

estimate frequency dependent parameters, contribute to the significant improvement

in linear stiffness estimate accuracy.

6.2.2 Quarter car rig identification

The time and frequency domain approaches, developed under simulated conditions,

are now applied to the experimental identification of the quarter car test rig. The

initial focus is on the identification of the sprung mass and the linear spring stiffness

of the suspension system. The challenge here is to identify these parameters in the

fully assembled quarter car test rig using only acceleration measurements recorded

on the sprung and unsprung masses. The identification is carried out in the presence

of a complex frequency and amplitude dependent nonlinear damper, nonlinear tyre

and unmeasured multi–directional excitation at the tyre patch. This is in contrast

to the spring identification carried out in § 4.3, where isolated testing and controlled

experimental conditions are used. Focus then turns to the identification of a non-

linear damping model. Although accurate models of the damping mechanism are

generated at discrete frequencies using isolated sinusoidal testing, the development

of a general damping model applicable across a broader frequency range proves very

difficult.

The quarter car test rig is excited using the 72 lobe cam for the experimental testing.

The cam frequency is linearly swept from 0.4 Hz to 6 Hz over the 64 second period

of the data acquisition. The 72 lobe cam is designed to excite the tyre with a

series of impulses to provide a broadband excitation to the suspension system. The

RFS of the quarter car rig is first generated. An initial plot of the RFS developed

using 10 data set averages is shown in Figure 5.18. The stochastic nature of the

surface is due to the hysteresis present in the system. Cafferty et al. examined

the generation of RFS for an automotive damper exhibiting hysteretic behaviour

[21]. It was argued in this paper that the significant dynamical behaviour of the

system is summarised by the ‘backbone’ of the RFS. The RFS replotted for 400

data set averages, corresponding to over 7 hours of suspension operation, is shown

in Figure 5.19. This approach effectively averages the separate nonlinear paths in

shock absorber compression and rebound and presents a clear visual representation
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of the shock absorber characteristic.

The shock absorber is shown to exhibit significant nonlinear behaviour, mainly due

to complex friction related phenomena. The shock absorber requires accurate force–

response testing at discrete frequencies to develop an understanding of its behaviour.

It also requires the use of a complex friction model to describe its behaviour at

these discrete frequencies. Therefore this presents the problem of how the shock

absorber can be accurately characterised, in operation, under broadband excitation

using RFS methods (an approach commonly used in the operational identification

of vehicle suspension systems [70, 74, 76]). The frequency domain approach, in this

investigation, uses a custom developed R–MISO setup algorithm to determine the

model form which best describes the system under test. For the time domain anal-

ysis, extensive development of the methods under controlled simulated conditions,

shows that the sprung mass estimate is not particularly sensitive to the accuracy of

the shock absorber model.

Time domain approach

The time domain approach is first applied to estimate the quarter car rig sprung

mass. The development of the boundary perturbation technique, using simulated

data, revealed that accurate estimates of the sprung mass can be obtained even in a

situation where the shock absorber model form is unknown and only approximated.

The relatively simple spring–damper–friction shock absorber model applied to the

identification of the complex Bouc–Wen shock absorber model, returned accurate

sprung mass estimates with a percentage error of less than 1 %. The quarter car

rig shock absorber RFS shows three distinct regions, relatively low damping at high

piston velocities in compression, relatively low damping at high piston velocities in

rebound and a high damping region at low velocities. These observations, suggest

that a spring–damper–friction shock absorber model would provide a reasonable

model of the shock absorber characteristic.

The boundary perturbation technique coupled with DPE is applied to 60 data sets

acquired with no added mass attached to the sprung mass and a further 60 data

sets each for added mass values of 6.5 %, 8.0 % and 10.5 % of the sprung mass. The

inputs used in the DPE formulation are (xuz − xsz), (ẋuz − ẋsz), (sign(ẋuz − ẋsz))

and the output is the acceleration of the sprung mass (ẍsz). Figure 5.20 shows

the results of the analysis applied with 10.5 % added mass and is replotted here in
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Figure 6.5: Quarter car rig boundary perturbation analysis with 10.5 % added mass

Figure 6.5. The mean significance factor for each term in the model formulation,

across the 60 data sets, are shown using the bar graph. The most significant term in

the model is found to be the relative velocity across the shock absorber (ẋuz − ẋsz),

therefore, it is used to estimate the quarter car rig sprung mass. The individual

mass normalised damping estimates for the 0 % added mass and 10.5 % added mass

cases are also shown in Figure 6.5. The mass normalised values appear to be noisy

in nature with the coefficients for 0 % and 10.5 % added mass showing standard

deviations of 0.78 N s/m/kg and 0.45 N s/m/kg, respectively. The use of a larger

number of data sets in the estimation may seem like a logical solution to decrease

the effect of the noise and increase the accuracy of the estimated sprung mass but

in a number of the experimental data sets, drift in the mass normalised coefficient

estimates is observed. This drift can be seen to a certain extent in the coefficients

of the 10.5 % added mass across the 60 data sets. An underlying increasing trend

can be seen from approximately measurement number 5 to measurement number

60. The data is acquired over a 90 minute period so the drift may be due to ambient

temperature effects on the quarter car rig, the data acquisition system or both. It

may also be due to rig warm up during continuous operation. However, steps are

taken to eliminate this by acquiring 120 data sets for each analysis and discarding

the first 60 to ensure the rig has reached a steady state operating temperature before

the data for analysis is acquired.
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6.2. Operational suspension system identification

The boundary perturbation and DPE time domain approach is seen to give good

estimates of the sprung mass in all three cases, with percentage errors for the 6.5 %,

8.0 % and 10.5 % added mass analyses equal to 0.5 %, 6.6 % and 3.4 %, respectively.

These results verify the findings during the development of the method under con-

trolled simulated conditions. It is seen, using both simulated and experimental data,

that the time domain approach provides a robust method of estimating the suspen-

sion system sprung mass even in the case when a simplified representation of the

actual shock absorber model characteristic is used. The estimated spring stiffness

values are also quite interesting. Note how, for the three different added masses, the

stiffness estimates are very similar, albeit with errors of approximately 150 % when

compared with the true suspension linear stiffness. Accurate estimation of the true

spring stiffness is not expected using the time domain approach. Simulated quarter

car results show that the estimated stiffness is an equivalent linear stiffness when

the exact shock absorber model form is not included in the model formulation.

Frequency domain approach

Having obtained good estimates of the sprung mass using three different added mass

percentages, focus now turns to estimating the true linear stiffness in the quarter car

test rig as opposed to an equivalent linear stiffness obtained using the time domain

approach. As in the simulated quarter car case, the R–MISO approach is applied

to the problem. The 60 data sets for the 0 % added mass case are used for the

R–MISO analysis.

An initial investigation is carried out to determine the significance of the unsprung

mass motions in the x and y–directions. The plots of the unsprung mass trajectory

in the x–z plane and the y–z plane are shown in Figure 5.21. It can be seen that

the peak displacements in the x and y–directions are greater than 15 % of the peak

displacement in the z–direction and are, therefore, deemed significant. This adds

an interesting aspect to the operational identification problem in this investigation.

Many works presented in the literature use hydraulic shakers to excite the suspension

systems [70, 75, 76, 107]. This provides a very controlled vertical excitation to the

tyre patch and does not replicate the realistic case where multi–directional motions

of the unsprung mass are observed.

A large basis function, consisting of 256 terms, is chosen for the R–MISO analysis due

to the complex nonlinear behaviour of the shock absorber and the multi–directional
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Figure 6.6: Quarter car rig R-MISO analysis results for input paths x1, x2 and x3

motion of the unsprung mass. The basis function terms are outlined in equation 5.30.

The number of terms to be included in the model are truncated as in the application

of R–MISO to the simulated case. Due to the large number of basis terms the

coherence threshold level is set at 15 % of perfect coherence. A total of 25 terms

qualify for inclusion in the R–MISO analysis. The FRF’s for the first 3 inputs

(xuz−xsz, xuz−xux, xuz−xuy) to the R–MISO analysis are shown in Figure 5.23 and

replotted here in Figure 6.6. Note the significant increase in the multiple coherence

function over the ordinary coherence function for H1y, due to the inclusion of the

additional linear and nonlinear terms. Greater than 90 % multiple coherence is seen

in the 1.5–70 Hz frequency range.

A 13th order RFP model is used to curve–fit H1y. The model order is chosen based

on the rig resonances observed during quarter car rig Experimental Modal Analysis

(EMA). Table 6.1 summarises resonant frequencies obtained via peak–picking the

results of the EMA on the quarter car rig (as described in § 3.1.4, where the driving

point FRF’s for this analysis are plotted in Figure 3.9). A total of 13 significant

resonances are observed in the EMA FRF’s. Note how a number of the rig resonance

can be observed in the linear paths (x1, x2, x3) of the R–MISO analysis (Figure 6.6).

A combination of FRF peaks, phase changes and localised coherence spikes serve
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Force – Fsz Force – Fuz Force – Fux

ẍsz ẍuz ẍux ẍsz ẍuz ẍux ẍsz ẍuz ẍux

- - 13 - - - 13 13 13
- - - - - - - - 15
- - - - 18 - - - 19
- - - - - - - 21 -
- - 24 25 25 24 24 24 24
33 33 - - - - - - -
47 - 48 - - - - - -
71 71 - 71 71 - - - -
- - 78 - 78 78 - 78 79
- - - 81 - - - - -
- - 91 91 91 91 91 91 91
93 93 - - - - - - -
- - - - 96 96 - 96 96

Table 6.1: Quarter car rig resonance frequencies (Hz) for hammer impact excitation
on the unsprung mass in the x and z–directions and the sprung mass in the z–
direction

to provide a rough indication of the presence of both lightly damped and heavily

damped modes. The more dominant rig resonances are observed at 11, 15, 25, 45,

79, 82 and 89 Hz. These correspond well with the modes identified in the modal

analysis test, considering that the rig resonant frequencies may vary slightly under

operating conditions. In the operational analysis case when no a priori knowledge

of the system exists, this approach may provide a starting point for the selection of

a RFP curve–fit order.

The linear paths x2 and x3 in the R–MISO analysis are chosen to eliminate as

many rig resonances as possible from x1. These paths are chosen by trial and error

using combinations of the recorded signals xux, xuy, xuz and xsz. This simplifies

the estimation of the mass normalised spring stiffness between the unsprung mass

and the sprung mass. In H1y, note that below 50 Hz, very subtle indicators (small

highly damped peaks and small phase changes) of the resonance can be observed at

approximately 15 Hz and 45 Hz, but the dominant effects of these peaks are removed

from the analysis by the linear paths x2 and x3. This approach to the estimation of

the linear FRF between the unsprung and sprung masses shows good results. This

is confirmed with the curve–fit shown in Figure 5.14. A sprung mass normalised

spring stiffness value of 227.2 N/m/kg is obtained from the curve–fit in a similar

manner to that outlined under simulated conditions.

166



6.2. Operational suspension system identification

A comparison of the parameter estimates obtained using the time and frequency

domain approach to operational identification of the quarter car test rig and param-

eter values obtained through isolated component identification methods is shown in

Table 5.17. The mean sprung mass, obtained using three added mass values for the

time domain analysis, is used to determine the true linear spring stiffness. The linear

stiffness estimate of 5534.5 N/m and the sprung mass estimate of 24.36 kg, show

percentage errors of 2.7 % and 3.5 %, respectively, when compared with estimates

using traditional isolated component testing methods. The results show excellent

agreement between operationally identified parameters and isolated parameters.

The operational analysis is extended further to develop a nonlinear model of the

damping in the shock absorber. The nonlinear damping model used, termed the

hyperbolic tangent model, has been applied by a number of authors to model shock

absorber characteristic diagrams [21, 70]. A quarter car simulation developed using

operationally identified component parameters (sprung mass, spring stiffness and

nonlinear damping model) shows reasonable agreement with measured results, de-

spite being validated under excitation conditions differing significantly from those

used during the identification process. Errors in the Root Mean Square (RMS) ac-

celerations in the 6.8 Hz case are 22.8 % and 13.4 % for the unsprung and sprung

masses, respectively. At 11.2 Hz, errors of 13.8 % and 36.2 % are seen for the

unsprung and sprung mass accelerations, respectively. Good agreement is seen in

terms of simulated and measured signals peak pattern. One reason for the over

estimation of quarter car rig accelerations in all cases is attributed to the differing

relative velocities across the shock absorber during the identificaiton process and the

validation tests. A RMS value of 0.022 m/s is seen during identification compared

with a value of 0.034 m/s observed during validation at 11.2 Hz. As a consequence,

during identification the shock absorber would operate more in the high damping

static friction zone as opposed to the lower damping viscous damping zones. The

identified model would in turn reflect this and would, therefore, not be optimal

in the presence of higher relative velocities across the shock absorber as observed

during validation.

Due to the nature of its development, the operational quarter car simulation is

valid across a wide frequency range. It should be noted that the same quarter car

simulation is used at both validation frequencies. This is in contrast to the nonlin-

ear quarter car simulations developed in Chapter 4. These models feature trilinear

shock absorber models optimised at 6.8 Hz and 11.2 Hz. Attempts to developed
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a reasonably accurate model, applicable across a larger frequency range using iso-

lated sinusoidal testing methods, proves illusive. For this reason it is believed the

operationally identified quarter car simulation provides a more useful model of the

quarter car test rig when compared with the quarter car simulations optimised at

discrete frequencies.

6.3 Summary

The development of techniques for the operational identification of vehicle suspen-

sion systems in this investigation benefits from the end–to–end approach taken to

the problem. The problem is addressed in a methodical and logical manner from

experimental design to operational testing. There are a number of important fea-

tures of the analysis methods developed in this work which have not previously been

addressed by similar investigation in this field [70, 74, 75, 76, 106, 107, 111]. Firstly

the quarter car test rig is designed to provide realistic suspension system operating

conditions. Excitation to the tyre patch is multi–directional and significant motions

of the unsprung mass in the x, y and z–directions are observed. They are deemed

significant to the overall dynamics of the system and are accounted for in the analy-

sis. This type of realistic excitation input to the tyre patch has not previously been

included in operational suspension system identification works in the literature. The

operational identification approach developed in this investigation represents a move

towards on–road vehicle suspension system identification. The time and frequency

domain methods would require little modification to allow their application to such

a problem.

The quarter car rig is also shown to have resonances close to those observed during

full vehicle chassis testing [163]. The ability of the techniques developed here to

deal with these resonances is key to the success of the methods. The most common

excitation type used in the literature of operational suspension system identification

is slow swept sine at low frequencies (0–15 Hz). Therefore, modes of the chassis

excited under normal operating conditions are not excited during the analysis, elim-

inating their effect. In this work the tyre is excited using a rotating cam which

provides a series of impulses to the tyre. Although the excitation of a rotating cam

is inherently periodic, no attempt is made to limit the bandwidth of the excitation.

Analysis of the FRF’s generated using R–MISO analysis show multiple coherences
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above 0.9 across most of the frequency range of the analysis (0–100 Hz), giving a

strong indication that the excitation applied to the suspension system is broadband

in nature.

The shock absorber used in the quarter car rig shows significant nonlinear behaviour,

and it is generally accepted that automotive shock absorbers exhibit complex non-

linear behaviour [1, 158, 159]. RFS methods have been used, in many investigations

focusing on the operational identification of suspension systems, to characterise the

nonlinearities in the system. This is usually in the presence of controlled shaker

excitation allowing the use of single frequency excitation or slow swept sines to ob-

serve nonlinear behaviour and select an appropriate model form. This approach

works well under controlled laboratory conditions, but under real operating condi-

tions and broadband excitation, it cannot be applied. The use of R–MISO analysis

eliminates the need to estimate a shock absorber model form based on observations

of the RFS. A large set of basis functions can be generated and the analysis can

select the terms in the set to best represent the nonlinearities in the system. This

is important when the shock absorber exhibits strong nonlinear behaviour. That

said, the RFS is still a very useful tool in the operational identification process. It

can be used to quickly assess the degree of nonlinearity in the system. It is used to

good effect in this work to select a model form for the time domain analysis. This

is possible as the time domain approach is not particularly sensitive to the accuracy

of the shock absorber model chosen for the analysis.

In conclusion this work identifies actual suspension parameters using in–operation

measurements, while the comprehensive approach to the operational identification

problem allows for the validation of these parameters using parameters identified

under controlled isolated testing conditions.
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Chapter 7

Conclusions

T
his work presented the development of an new approach to the identification

of vehicle suspension parameters using operational measurements. Due to the

complexity of the system, time and frequency domain algorithms were developed.

An end–to–end approach was taken to the problem which involved a combination

of focused experimental design, well established force–response testing methods, ve-

hicle suspension experimental testing and simulation, before finally implementing

operational system identification. This allowed for the development of a compre-

hensive understanding of the dynamics of the system under test. It also provided

a means of validating the suspension parameters obtained using operational testing

methods using traditional force–response testing techniques. The outcomes of this

work are summarised as follows,

• A new approach to the operational identification of suspension system param-

eters was developed. A combination of time and frequency domain methods

were used to extract sprung mass, linear stiffness and nonlinear damping model

parameters from a quarter car experimental test rig. Only acceleration mea-

surements of the quarter car rig unsprung and sprung masses were used as

inputs to the identification process.

• Component parameters identified using this new approach under operational

conditions showed excellent agreement with those identified under controlled

laboratory conditions using force–response testing.

• The operational identification approach was developed under conditions de-
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signed to replicate on–road vehicle testing conditions in the laboratory. This

represents a move away from operational identification using shaker excitation

and a move towards more applicable on–road vehicle identification.

• A quarter car suspension test rig was designed and built to facilitate experi-

mental suspension system testing. A novel shock absorber force measurement

set–up was developed allowing the measurement of shock absorber force under

both isolated and operational shock absorber testing conditions.

• The quarter car rig was dissembled and the major components of the rig (tyre,

damper and spring) were identified in isolation using traditional force–response

testing methods. Models of the major components were developed and formed

the basis for the development of an accurate nonlinear quarter car simulation

of the suspension test rig.

7.1 Future work

Research into techniques for extracting system models under real operating condi-

tions has become more prominent in the literature in recent years. In this work, new

techniques have been developed for the operational testing of automotive suspension

systems. The time and frequency domain approach developed here provides a foun-

dation for the further development of in situ suspension system testing techniques.

Key advancements which will further drive this area of research in the future are as

follows,

• This work attempted to replicate on–road vehicle conditions in the labora-

tory. The move towards full vehicle, on–road testing will be a key stage in the

development of operational suspension system identification. Very few inves-

tigations of this nature have been carried out and reported in the literature.

• The effect of full vehicle pitch, roll and yaw motions on the identification

process will need to be examined. This may be a case of measuring these

motions and including them in the identification algorithm in much the same

way that the unsprung mass displacement in three directions were included in

this investigation.
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• The operational identification of the tyre is an area which requires further

research. A combination of operational identified shock absorber and oper-

ationally identified tyre would provide a means of developing a full vehicle

simulation using operational testing techniques.
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Appendix A

Tyre identification

T
he pneumatic tyre serves an important purpose in suspension systems, with

respect to the isolation of road induced vibration. There are a variety of tyre

models in the literature with different levels of complexity. Tyre model complexity

is determined by the frequency range of interest of the study [147]. In this research,

the experimental identification of a tyre, taken from a quarter car suspension ex-

perimental test rig is documented. Experimental testing of the tyre is carried out

in isolation using an ESH R© servo–hydraulic testing machine.

Characterisation

The tyre force under loading is measured using the ESH R© machine load cell. The

load cell has a capacity of 100 kN. Maximum loads of less than 350 N are expected

during tyre testing. For this reason the ESH R© machine load cell is recalibrated in this

region using a Brüel & Kjær R© type 8200 force transducer, which has a compressive

load capacity of 5 kN.

Static compression tests are used to determine the linear stiffness of the tyre. Testing

is carried out at two tyre inflation pressures, 1.1 Bar and 2.0 Bar. The test setup

can be seen in Figure A.1. Figure A.2 shows force deflection plots for both inflation

pressures. The tyre is compressed by 10 mm in both cases and the corresponding

force is measured simultaneously. It is found that the tyre can be approximated

with reasonable accuracy by a linear spring. As expected higher inflation pressure
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Figure A.1: Tyre dynamic test setup

leads to a higher tyre stiffness value. Linear regression leads to static linear stiffness

values (kls) of 81.42 N/mm and 63.32 N/mm for the 2.0 Bar and 1.1 Bar tests,

respectively.

Static testing cannot be used to identify tyre damping. Dynamic testing is required

to test the damping properties of the tyre and also to determine if the linear spring

assumption holds under dynamic loading. The test setup is the same as for the static

testing. The quarter car rig has a combined sprung and unsprung mass of 33.2 kg,

which equates to a static load on the tyre of approximately 325 N. This preload is

applied to the tyre in the ESH R© machine before each test is carried out. This allows

for the characterisation of the tyre dynamics in its actual operating range.

The tyre is tested at four inflation pressures (P ), 1.1, 1.5, 1.8 and 2.0 Bar. The static

deflections under preload are 6.0, 4.8, 4.2 and 3.5mm, respectively. The tests are car-

ried out at selected frequencies between 1 Hz and 14 Hz, and at selected amplitudes

between 1 mm and 4 mm. Figure A.3 shows two typical work diagrams (force–
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Figure A.2: Tyre static test results at 2.0 Bar (top) and 1.1 Bar (bottom), showing
linear fit lines

displacement) for sinusoidal displacement excitation of the form x = A sin(2πfet).

Note the hardening/softening spring characteristic visible in both diagrams. The

tyre shows a hardening/softening spring characteristic at all frequencies and ampli-

tudes.

Hysteresis loops are also observed in the work diagrams. The area enclosed by

the loop denotes the energy dissipated by the tyre in one cycle of motion. The

type of damping (viscous or hysteretic) can be found by investigating the frequency

dependence of the energy dissipation. It has been found experimentally that the

energy loss per cycle, due to internal friction, is independent of frequency [172] or

decreases slightly with increasing frequency [171]. The energy loss per cycle is also

approximately proportional to the square of the amplitude [173]. Table A.1 shows

energy loss per cycle for a tyre inflation pressure of 1.5 Bar. It is noted that in general

the energy loss per cycle does not increase significantly with increasing frequency

and at higher frequencies it decreases slightly with increasing frequency. The energy

loss per cycle is also approximately proportional to the square of the excitation

amplitude. This leads to the assumption that the major damping mechanism of the

tyre is hysteretic damping.
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Figure A.3: Tyre work diagrams at fe = 5 Hz, A = 2 mm, 1.1 Bar (left) and fe =
2 Hz, A = 3 mm, 2.0 Bar (right)

Tyre Inflation Pressure 1.5 Bar
A 1mm 2mm 3mm 4mm
fe ∆W ∆W ∆W ∆W
1hz 27.12 100.57 208.16 329.85
2hz 27.45 101.35 211.37 341.23
4hz 28.29 104.11 214.79 343.31
5hz 27.24 102.57 211.98 -
7hz 27.14 101.26 205.83 -
10hz 24.45 89.51 - -
14hz 21.92 - - -

Table A.1: Tyre energy loss per cycle [mJ]
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Model selection

Both linear and nonlinear tyre models are developed. The tyre is modelled as a

linear spring and also as a hardening/softening nonlinear spring system. The linear

tyre force, Fl, and nonlinear tyre force, Fl, are given by,

Fl = klx (A.1)

Fn = kn(x+ ctx
2) (A.2)

where kl and kn are the linear and nonlinear spring constants, x is the tyre deflection

and ct is a constant which determines magnitude of the nonlinearity. First and

second order polynomials are fitted to the tyre work diagrams, in a least squares

sense, to determine the values of kl and kn, respectively. It is found that kl ≈ kn

in all cases. Therefore, a linear approximation of the hardening/softening nonlinear

spring model can be obtained by setting ct equal to zero. Figure A.4 shows two

typical second order polynomial curve fits to the measured data. Note that the

measured data are not symmetrical about the origin but tends to be offset along the

negative y-axis. This type of drift is a characteristic of asymmetric systems. Such

systems are prone to bias their response toward a preferred or weak direction [174].

The fo value on the plot legend represents the offset of the polynomials fitted to the

data.

Tyre damping

Consider a linear spring and hysteretic damper connected in parallel. The force dis-

placement relation, assuming approximately harmonic excitation, can be expressed

as [173],

F = (k + ih)x (A.3)

where,

k + ih = k

(

1 + i
h

k

)

= k(1 + iη). (A.4)

The term k + ih is known as the complex stiffness and η = h/k is a constant, indi-

cating a dimensionless measure of damping. Complex stiffness represents both the

elastic and the damping force at the same time [171]. An equivalent viscous damping
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Figure A.4: Tyre work diagrams with second order polynomial curve fit at fe = 2
Hz, A = 2 mm, 1.5 Bar (left) and fe = 2 Hz, A = 4 mm, 1.5 Bar (right)

ratio and viscous damping constant can be calculated for hysteretic damping using,

ζeq =
η

2
(A.5)

ceq =
ηk

ω
. (A.6)

In terms of η, the energy loss per cycle is independent of frequency and can be

expressed as

∆W = πkηX2. (A.7)

Tyre parameter dependence

Table A.2 1 shows the values kn, ct and η obtained for each tyre test. The excita-

tion frequency, fe, excitation amplitude, A, and inflation pressure, P , dependence

of kn, ct and η are now investigated further. Examining Table A.2 and Figure A.5,

it can be observed that the tyre stiffness kn increases in a linear fashion with ex-

1Missing data outside ESH R© machine capability
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Tyre Inflation Pressure 2.0 Bar
A 1mm 2mm 3mm

fe kn ct η kn ct η kn ct η
1hz 92.36 0.018 0.092 86.43 0.035 0.086 79.06 0.044 0.083
2hz 93.13 0.019 0.096 87.63 0.036 0.090 80.00 0.046 0.084
4hz 94.79 0.021 0.096 88.66 0.036 0.091 86.43 0.049 0.089
5hz 95.38 0.021 0.093 89.30 0.036 0.087 85.94 0.054 0.080
7hz 96.82 0.023 0.095 90.31 0.037 0.089 86.63 0.055 0.081
10hz 97.76 0.019 0.085 91.48 0.035 0.079 - - -
14hz 100.36 0.020 0.082 - - - - - -

Tyre Inflation Pressure 1.8 Bar
A 1mm 2mm 3mm

fe kn ct η kn ct η kn ct η
1hz 86.40 0.033 0.097 82.84 0.039 0.092 80.80 0.049 0.087
2hz 86.44 0.032 0.099 83.19 0.036 0.096 81.39 0.048 0.089
4hz 88.60 0.033 0.100 84.75 0.036 0.097 82.57 0.050 0.089
5hz 88.83 0.033 0.096 85.04 0.036 0.087 82.80 0.050 0.085
7hz 90.00 0.033 0.098 85.30 0.036 0.089 83.37 0.050 0.087
10hz 92.22 0.033 0.087 87.41 0.036 0.079 - - -
14hz 93.72 0.034 0.085 - - - - - -

Tyre Inflation Pressure 1.5 Bar
A 1mm 2mm 3mm

fe kn ct η kn ct η kn ct η
1hz 83.32 0.072 0.102 79.69 0.061 0.099 76.80 0.052 0.095
2hz 81.64 0.047 0.104 78.07 0.053 0.101 75.98 0.050 0.097
4hz 84.64 0.049 0.104 81.08 0.056 0.101 78.38 0.052 0.096
5hz 83.67 0.063 0.100 81.44 0.059 0.097 79.14 0.055 0.092
7hz 84.88 0.064 0.102 81.63 0.059 0.099 79.70 0.056 0.094
10hz 87.09 0.065 0.090 83.51 0.060 0.088 - - -
14hz 88.23 0.064 0.088 - - - - - -

Tyre Inflation Pressure 1.1 Bar
A 1mm 2mm 3mm

fe kn ct η kn ct η kn ct η
1hz 74.92 0.117 0.119 71.68 0.082 0.117 69.61 0.065 0.112
2hz 74.54 0.103 0.121 70.54 0.076 0.119 68.67 0.062 0.115
4hz 77.78 0.105 0.120 73.93 0.079 0.117 71.37 0.065 0.113
5hz 76.94 0.100 0.116 72.73 0.076 0.113 70.74 0.064 0.109
7hz 79.20 0.103 0.113 75.18 0.079 0.115 72.47 0.066 0.110
10hz 79.54 0.100 0.107 76.01 0.079 0.104 - - -
14hz 81.98 0.104 0.104 - - - - - -

Table A.2: Identified tyre parameters for a range of excitation frequencies, ampli-
tudes and inflation pressures
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Figure A.5: Tyre parameter frequency dependance for A = 1mm

citation frequency, ct remains almost constant with increasing excitation frequency

and η tends to decrease slightly with excitation frequency. Structural damping as

mentioned above is independent of excitation frequency. From equation A.4 it can

be seen that η = h/k, which indicates that in the case of the tyre an increase in

frequency would indeed cause a decrease in η, due to the frequency dependence of

the tyre stiffness.

Tyre stiffness, kn, decreases with increasing excitation amplitude as seen in Fig-

ure A.6. This figure also shows that the tyre shows more pronounced harden-

ing/softening spring effects at higher amplitudes, as indicated by an increasing ct

value. It can be concluded that the hardening/softening nonlinearity of the tyre

is only dependent on excitation amplitude and not frequency. The hysteresis loss,

η, decreases with increasing amplitude. Both η and ct are also found to decrease

with increasing tyre pressure, while tyre stiffness naturally increases with inflation

pressure.
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Figure A.6: Tyre parameter amplitude dependence for P = 1.8 Bar

Parameter estimation

From the analysis of the measured results presented above, it is found that a number

of factors effect the tyre properties. Assuming a constant inflation pressure of 1.8

Bar, first order polynomials can be fitted to Figure A.5 and Figure A.6 giving an

expression for kn, in terms of A and fe,

kn = −2.79A+ 0.5fe + 89.02. (A.8)

Similarly at constant pressure, ct and η depend only on excitation amplitude, there-

fore as above the following expressions are determined from Figure A.6,

ct = 0.0085A+ 0.0234 (A.9)

η = −0.0067A+ 0.1071. (A.10)
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Figure A.7: Proposed point contact tyre model

The proposed point contact tyre model consists of a hysteresis damper in parallel

with a nonlinear spring, as shown in Figure A.7. Using equation A.6 an equivalent

viscous damping coefficient can be found to represent the hysteretic damping in the

tyre. Therefore the equation for the force displacement relation can be expressed as

Ft = Fs + Fd (A.11)

= kn(x+ ctx
2) + ceq(ẋ) (A.12)

where, Ft, Fs and Fd represent the tyre force, the spring force and the damping

force, respectively.

Model Refinement

The proposed model is implemented in Matlab R© and a series of simulations are

carried out to determine the accuracy of the model. Two typical simulation work

diagrams are shown in Figure A.8. They are plotted with the corresponding mea-

sured values for comparison. In order to have an objective measure of ‘goodness of

fit’, the Mean Squared Error (MSE) is introduced,

MSE(x̂) =
100

Nσ2
x

N
∑

i=1

(xi − x̂i)
2 (A.13)

where, N is the number of data points and σ2
x is the variance of the measured data

record. Experience with this norm suggests that a value less than 5 % indicates a

good model, while less than 1 % indicates excellence [70]. Table A.3 shows the MSE

for the simulation results. The simulation error is seen to increase with increasing
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Figure A.8: Initial tyre model fit to measured data at fe = 2 Hz, A = 2 mm, 1.8
Bar (left) and fe = 5 Hz, A = 3 mm, 1.8 Bar (right)

Tyre Inflation Pressure 1.8 Bar
A 1mm 2mm 3mm 4mm
fe MSE MSE MSE MSE
1hz 0.5 0.6 1.4 3.0
2hz 0.0 0.6 1.2 3.1
4hz 0.1 0.5 1.2 2.9
5hz 0.2 0.6 1.5 -
7hz 0.4 0.4 1.5 -
10hz 0.6 0.6 - -
14hz 0.8 - - -

Table A.3: Nonlinear tyre model MSE

excitation frequency and amplitude. Further investigation revealed that the main

source of error in the nonlinear model is due to the offset observed in measured

data. Note in Figure A.8, at fe = 5Hz and A = 3mm, the simulation is centred

around zero force, while the measured data shows a negative offset along the y-

axis. This is also noted in Figure A.4 as the polynomials fitted to the data did

not pass through the origin. The absolute value of the offset fo, in Newtons, is

found to increase with increasing excitation amplitude while remaining relatively
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Figure A.9: Tyre polynomial fit offset versus excitation amplitude

independent of excitation frequency. The relationship between fo and excitation

amplitude is shown graphically in Figure A.9 for a tyre inflation pressure of 1.8 bar.

A third order polynomial fit is also shown in Figure A.9. This polynomial is used

to represent the relationship between offset and excitation amplitude allowing the

nonlinear spring model, given by equation A.2, to be modified to yield

Fs(x) = kn(x+ ctx
2) + fo(A) (A.14)

fo(A) = −0.44A3 − 0.61A2 − 0.23A (A.15)

where, ko is a nonlinear function of excitation amplitude. The modified nonlinear

tyre model therefore becomes

Ft = Fs + Fd (A.16)

= kn(x+ ctx
2) + fo(A) + ceq(ẋ) (A.17)

where Ft, Fs and Fd represent the tyre force, the spring force and the damping force,

respectively.

Model validation

Evaluation of this modified nonlinear tyre model revealed a significant improvement

over the original nonlinear tyre model. Table A.4 shows the MSE for a range of
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Tyre Inflation Pressure 1.8 Bar
A 1mm 2mm 3mm 4mm
fe MSE MSE MSE MSE
1hz 0.3 0.1 0.1 0.1
2hz 0.1 0.2 0.1 0.3
4hz 0.0 0.1 0.1 0.2
5hz 0.2 0.2 0.2 -
7hz 0.2 0.2 0.4 -
10hz 0.1 0.2 - -
14hz 0.1 - - -

Table A.4: Revised nonlinear tyre model MSE
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Figure A.10: Proposed tyre model fit to measured data at fe = 4 Hz, A = 3 mm,
1.8 Bar (left) and fe = 1 Hz, A = 4 mm, 1.8 Bar (right)

excitation frequencies and amplitudes at a pressure of 1.8 Bar. The inclusion of the

offset, fo, significantly improves the model accuracy at larger excitation amplitudes.

The average MSE across all measurement frequencies and amplitudes is found to be

0.17. This is compared with an average MSE of 1.0 for the original nonlinear tyre

model. The tyre model fit is shown for two example measurements in Figure A.10.
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Appendix B

Shock Absorber Identification

M
any works in the literature highlight the complex nonlinear nature of ve-

hicle shock absorbers [78, 82, 158, 159]. Their identification is usually

carried out experimentally using mechanical test stands [78] and harmonic exci-

tation [77, 158]. It has been common practice to model the damping of a shock

absorber as a linear viscous damper, as in the linear quarter car model. This linear

model is now commonly replaced with two and three slope models to account for

the major nonlinearities of the shock absorber [1]. Here, the identification of a shock

absorber used in a quarter car suspension experimental test rig is documented. The

shock absorber is a coil–over air damper. The spring is removed and the damper

dynamically tested in isolation to characterise its behaviour. Experimental testing

of the damper is carried out using an ESH R© servo–hydraulic testing machine.

Characterisation

Figure B.1 shows a close up of the shock absorber test set–up, which is based on

the methods used by Centro Ricerche FIAT (CRF) of Torino, Italy, as presented

in a case study by Worden and Tomlinson [11]. A novel force measurement system

is developed allowing the measurement of shock absorber force during isolated and

operational testing (in the quarter car test rig), using an identical force transducer

set–up. A force measurement set–up of this nature has, to the author’s knowledge,

not been previously reported in the literature. The set–up, shown in Figure B.2, uses

a Kistler R© 9021A load washer sandwiched between two 5 mm thick steel washers. A
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Figure B.1: Shock absorber experimental test set–up

Figure B.2: Custom shock absorber force measurement setup
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Figure B.3: Shock absorber characteristic and work diagrams at fe = 2 Hz, A = 0.5
mm (left) and fe = 5 Hz, A = 2 mm (right)

high precision rod end provides the shock absorber attachment to the sprung mass.

The complete set–up is mounted on a steel shaft running through the rod end, steel

washers and load washer. A preload of 6 kN is applied to the load washer using

the preload nut. The complete set–up is dynamically calibrated using a Brüel &

Kjær R© Type 8200 force transducer on the ESH R© machine. The Type 8200 force

transducer can only be used in the ESH R© machine where displacements are in the

vertical direction only. It is not designed to handle the multi–directional loading

which exists during quarter car rig operation. The type 9021A set–up is designed

so that it can be used in both the ESH R© machine and the quarter car rig, without

any danger of damaging the transducer. Both transducers can be seen in position

during testing in Figure B.1.

Figure B.3 shows typical characteristic diagrams (force–velocity) and work diagrams

(force–displacement) for the damper, subject to displacement excitation of the form

x = A sin(2πfet). Initial observation of the characteristic diagram indicate the

presence of static friction in the damper. This can be seen as the shock absorber

velocity increases from zero. Note the sharp increase in force (sticking) followed by

a decrease in force (slipping). Due to the low velocity of the damper at 2 Hz 0.5
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mm, the friction force dominates, a common property of coulomb friction [11]. The

characteristic diagram shows stick-slip behaviour with the breakaway force (i.e. the

force required to stop sticking and initiate slipping) equal to approximately ±13 N.

As the velocity increases the friction force exhibits velocity dependence (stribeck

effect). The damper force decreases as the velocity increases to its maxima of ±6.3

mm/s. The force, as the velocity decreases from its maximum is lower than the

corresponding force as the velocity increases to its maximum. This phenomenon,

known as frictional lag, was observed experimentally by Hess and Soom [175]. Note

that as the velocity returns to zero from the maxima, the damper again enters the

stick state at approximately ±0.6 mm/s. The velocity dependence friction model

is the most prominent in system dynamics literature and is given by the equation

[190]

µ (Vrel;µ0, µ1, α) = µ0 + µ1exp (−α |Vrel|) (B.1)

where µ0 governs the large relative velocity behaviour, µ1 governs the low velocity

behaviour and α governs the rate of change of friction with change in relative velocity.

Pre–sliding displacement of approximately 83 µm can also be seen in the work dia-

gram (Figure B.3). This spring like behaviour in stiction is due to relative displace-

ment between the cylinder wall and the piston seal prior to slipping. The pre–sliding

displacement increases with excitation frequency to a value of approximately 153 µm

at 14 Hz, 0.5 mm amplitude. It also increases with amplitude and a value of 110 µm

is recorded at 2 Hz, 4 mm amplitude. This indicates that pre–sliding displacement is

dependent on the acceleration of the damper piston in the sticking phase of motion.

Figure B.4 shows the excitation amplitude and frequency dependence of static fric-

tion, pre–sliding displacement and pre–sliding to sliding transition velocity. As

expected static friction is greatest at low amplitudes and low frequencies. Static

friction is also seen to increase at higher frequencies. The rate of increase is larger

for larger excitation amplitudes. The effect of excitation frequency on pre–sliding

displacement is seen to increase with increasing amplitude. At low amplitudes (< 1

mm) the frequency dependence of the pre–sliding displacement is almost negligible.

The frequency dependence of the pre–sliding displacement becomes more significant

at larger excitation amplitudes. The sticking to slipping transition velocity shows

similar trends to the pre–sliding displacement.

Different combinations of excitation frequency and amplitude are used to compare

the damper characteristic at equivalent excitation velocities. Figure B.5 shows the
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Figure B.4: Frequency and amplitude dependence of friction phenomena observed
in the shock absorber characteristic diagrams

results of two such comparisons. A reasonable correlation is seen in the first plot.

The second plot however highlights a dependence on shock absorber acceleration.

The transition velocity at 10 Hz is significantly greater than that at 5 Hz, despite the

fact that the piston velocities are equal. The transition velocities are approximately

24 mm/s and 38 mm/s, at 5 Hz and 10 Hz respectively. This acceleration dependence

is also apparent, but to a lesser extent, in the first plot.
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Figure B.5: Shock absorber acceleration dependence

Model selection

Commonly used static friction models are shown in Figure B.6. The friction model

which best represents the phenomena observed from damper test results is the

stribeck–coulomb–viscous Friction model. The stribeck effect is the negatively sloped

characteristic taking place at low velocities [191]. Static friction models cannot suffi-

ciently describe all the dynamic effects of friction, such as pre–sliding displacement,

friction lag and variable break away force [176, 177].

Friction behaviour can be divided into two regimes, pre–sliding and sliding. In the

pre–sliding regime the friction force is a hysteretic function of the position. In the

sliding regime the friction is a nonlinear function of velocity. A dynamic friction

model is required to model such behaviour. One such model, called the LuGre

model, was developed by Canudas de Wit et al. [178]. The LuGre model supports

hysteretic behaviour due to friction lag, spring like behaviour in stiction and gives a

varying break away force depending on the rate of change of the applied force. It is

a combination of the static friction model and the Dahl friction model. The LuGre
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Figure B.6: Examples of static friction models

model is a bristle type friction model and is given by,

dz

dt
= v − σ0

|v|

g(v)
z (B.2)

g(v) = Fc + (Fs − Fc)e
−(v/vs)2 (B.3)

F = σ0z + σ1ż + f(v) (B.4)

where z is the average unmeasurable deflection of the bristles, σ0 is the bristle

stiffness and σ1 is the bristle velocity dependent damping coefficient [178]. Fs and

Fc represent the static friction force and the Coulomb friction force, respectively.

The term vs is the stribeck velocity and the function g(v) characterises the stribeck

effect. The function f(v) is a function which represents lubrication and viscous

friction effects. The function f(v) in the model allows for the inclusion of the damper

viscous damping characteristics as the piston velocity and displacement increases.

Figure B.7 shows the LuGre model with optimised parameters to fit the experimental

data for an excitation frequency of 4 Hz and an amplitude of 4 mm. Optimisation is

carried out in Matlab R© using the pattern search optimisation function patternsearch.

Pattern search algorithms are a subclass of direct search algorithms, the minimiser
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Figure B.7: LuGre friction model approximation of measured data

of a continuous function is sought without the use of derivatives. This function

is chosen due to its ability to find global minima unlike other derivative based

optimisation functions which may return local minima. The optimised model shows

a good fit with measured data. It models the asymmetric behaviour of the damper

in acceleration and deceleration well and also includes hysteresis effects and pre–

sliding displacement. Dynamic friction models such as the LuGre model are known

to be complex and hard to implement in practical engineering applications [179].

Significant hysteresis can also be observed in Figure B.3 at low velocities. Figure B.8

shows energy dissipated per cycle (∆W ) for various amplitudes plotted against ex-

citation frequency. ∆W is seen to increase in an approximately linear fashion with

excitation frequency at the larger amplitudes of excitation, indicating that the damp-

ing mechanism is viscous damping. At the lower amplitudes (0.5 mm and 1 mm) the

energy dissipation does not show strong dependence on excitation frequency. This

is believed to be due to friction in the damper. At low amplitudes of excitation,

friction damping would account for most damping force due to the relatively small
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Figure B.8: Damper energy dissipation dependence on excitation frequency

motion of the piston and hence movement of the fluid within the damper. Hysteresis

modelling in dampers has received much attention in the literature. The Bouc–Wen

hysteresis model is often used in the modelling of magnetorheological dampers. The

force, F (t), of a Bouc–Wen damper in parallel with a spring and viscous damper is

given by,

F = csẋ(t) + ksx(t) + αν(t) (B.5)

where the evolutionary variable ν is governed by

ν̇(t) = Bẋ(t)− β |ẋ(t)| ν(t) |ν(t)|n−1 − γẋ(t) |ν(t)|n . (B.6)

The shape of the hysteric loop is governed by the coefficients B,α, β, γ and n. Opti-

mal parameters of the model are found using pattern search optimisation. Figure B.9

shows the Bouc–Wen simulation results superimposed on experimental results for

an excitation frequency of 4 Hz and an amplitude of 4 mm. The Bouc–Wen model

shows a good fit with measured results. It does not however model the stiction

observed in the measured data.

Due to the asymmetric nature of many shock absorbers, piecewise linear models

have been increasingly used in place of linear models. A trilinear model is selected

to model the shock absorber based on the observation of three distinct regions in

the characteristic diagrams in Figure B.3. A viscous damping characteristic at high

velocities in compression and rebound and a static friction zone at low shock absorber

213



−100 −50 0 50 100

−10

−5

0

5

10

Damper Characteristic Diagram

Velocity [mm/s]
F

or
ce

 [N
]

 

 
f
e
: 4Hz

A: 4mm
B: 87.3
β: 104.7
γ: −10
n: 1
α: 6
k

0
: −0.12N/mm

c
0
: 0.05Ns/mm

Meas
Simu

−4 −2 0 2 4

−10

−5

0

5

10

Damper Work Diagram

Displacement [mm]

F
or

ce
 [N

]

Figure B.9: Optimized Bouc–Wen damper model

velocities. The equations representing the trilinear characteristic are given by [78],

fd(ż) =



















c3(ż − c5) + c1c5 for ż > c5,

c1ż for c4 ≤ ż ≤ c5,

c2(ż − c4) + c1c4 for ż < c4

(B.7)

where, fd is the damper force, ż is damper piston velocity and the parameters c1,

c2, c3, c4, c5 to be identified, are shown in Figure B.10. The equations of the

trilinear model are more intuitive than the Bouc–Wen or LuGre models. It allows a

reasonable approximation of both friction and pre–sliding displacement.
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Figure B.10: Damper piecewise linear function (adapted from [78])

Parameter estimation

It is evident from the complex nature of the damper characteristic diagram that a

simple linear model will not accurately represent the damper. Initial investigations

are carried out to identify the optimal parameters of the LuGre and Bouc–Wen

models across the frequency and amplitude range of the experimental tests. The

Bouc–Wen hysteresis model and LuGre friction model are found to accurately model

the major phenomena of the damper at discrete frequencies and amplitudes. At-

tempts are made to determine generalised parameters for these models across a wide

range of frequencies and amplitudes. Both direct search methods and the genetic al-

gorithm are used to identify global optimisation minima for each experimental data

set. The identified parameters do not show a strong pattern across the frequency and

amplitude range of the experimental data. This can be seen in Figure B.11, which

shows optimised LuGre model coefficient dependence on the excitation frequency.

As a result, it proved difficult to identify generalised optimisation parameters for all

experimental frequencies and amplitudes.

Focus turns to the more intuitive trilinear damper model to identify the shock ab-

sorber. The trilinear model parameters can be directly related to phenomena iden-

tified in the shock absorber characteristic diagrams. The friction which dominates

at low velocities can be related to parameter c1 which represents the trilinear damp-

ing at low velocities. The sticking to sliding transition velocity to parameters c4

and c5 while the viscous damping outside the static friction zone can be related

to parameters c2 and c3. Optimised trilinear damper coefficients are identified at
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Figure B.11: Optimsed LuGre model coefficient dependence on fe

each experimental data set. The dependence of the trilinear damper coefficients on

excitation frequency and amplitude can be seen in Figure B.12. At low excitation

frequencies and amplitudes the presence of friction in the damper has a larger effect

on the identified coefficients. Large values of c1 and negative values of c2 are seen

at low amplitudes and low frequencies due to these friction effects. At higher piston

velocities, coefficients c2 and c3 show a slight decrease with increasing frequency and

amplitude. The absolute values of c4 and c5 increase with increasing frequency and

amplitude. Notice the similarities between parameters c4 and c5 and the sticking

to slipping transition velocity in Figure B.4. Although the parameters of the model

are intuitive it also proves difficult to identify expressions for the parameters across

the frequency and amplitude range of the experimental tests.
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Figure B.12: Damper coefficient dependence on fe
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Appendix C

Matlab algorithms

Matlab R-MISO function

function [A F CC OC PC MC] = rmiso v2(x,y,fs,varargin)

%RMISO performs a reverse MISO analysis with multiple inputs

% --INPUT ARGUMENTS

% - x(Nxm) input vector

% N - number of data points in each signal

% m - Number of input signals

% - y(Nx1) output vector

% --OUTPUT ARGUMENTS

% - A(N/2+1,m) Frequency spectra

% - F(N/2+1,1) Frequency vector

% - CC(N/2+1,m) Cumulative coherence

% - OC(N/2+1,m) Ordinary coherence

% - PC(N/2+1,m) Partial coherence

% - MC(N/2+1,1) Multiple coherence

% Damien Maher

% Mechanical and Manufacturing Engineering

% Dublin City University

% 08.02.10

% Matlab 7.1.0.246 (R14) Service Pack 3
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% --OPTIONS

options.overlap = 50; % percent

options.N = 2048;

options = parseargs(options,varargin{:});

% --SIGNAL POST PROCESSING PARAMETERS

N = options.N;

olap = options.overlap/100;

win = window(@hann ,N);

overLap = round(length(win).*olap);

% Add y to end of x

x = [x,y];

size x = size(x,2);

%--CALCULATING ALL AUTOSPECTRA AND CROSSSPECTRA

for j = 1:size x

for k = 1:size x

[Sxy 0(:,(j-1)*size x + k), F] =

cpsd(x(:,j),x(:,k),win,overLap,[],fs);

end

end

% --LINEAR FRF’S, CONDITIONED AUTOSPECTRA & CROSSSPECTRA

for r = 1:size x-1

for ii = 1:size x

eval(strcat(‘Lxy(:,(r-1)*size x + ii) = Sxy ’, num2str(r-1),

‘(:,(r-1)*size x + ii)./Sxy ’, num2str(r-1),

‘(:,(r-1)*size x + r);’));

end

for ii = 1:size x

for jj = 1:size x

if ii == jj

eval(strcat(‘Sxy ’,num2str(r), ’(:,(ii-1)*size x + jj) =

Sxy ’, num2str(r-1), ‘(:,(ii-1)*size x + jj) -

(abs(Lxy(:,(r-1)*size x + jj)).^2).*Sxy ’,

num2str(r-1), ‘(:,(r-1)*size x + r);’))

else

eval(strcat(‘Sxy ’, num2str(r), ’(:,(ii-1)*size x + jj) =
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Sxy ’, num2str(r-1), ‘(:,(ii-1)*size x + jj) -

Lxy(:,(r-1)*size x + jj).* Sxy ’, num2str(r-1),

‘(:,(ii-1)*size x + r);’))

end

end

end

end

% --ORDINARY COHERENCE FUNCTIONS

OC = zeros(size(Sxy 0,1), size x-1);

for ii = 1:size x-1

OC(:,ii) = (abs(Sxy 0(:,ii*size x)).^2)./

(Sxy 0(:,(ii-1)*size x+ii).*Sxy 0(:,size x^2));

end

% --PARTIAL COHERENCE FUNCTIONS

PC = zeros(size(Sxy 0,1), size x-1);

for ii = 1:size x-1

eval(strcat(‘PC(:,ii)=(abs(Sxy ’,num2str(ii-1),

‘(:,ii*size x)).^2)./(Sxy ’,num2str(ii-1),

‘(:,(ii-1)*size x+ii).*Sxy ’,num2str(ii-1),

‘(:,size x^2));’));

end

% --CUMULATIVE COHERENCE FUNCTIONS

CC = zeros(size(Sxy 0,1), size x-1);

for ii = 1:size x-1

eval(strcat(‘CC(:,ii) = (abs(Sxy ’,num2str(ii-1),

‘(:,ii*size x)).^2)./(Sxy ’,num2str(ii-1),

‘(:,(ii-1)*size x+ii).*Sxy 0(:,size x^2));’));

end

% --MULTIPLE COHERENCE FUNCTIONS

MC = zeros(size(Sxy 0,1), 1);

for ii = 1:size x-1

MC = [MC + CC(:,ii)];

end

% --GENERATING FRFS A1, A2

A = zeros(size(Sxy 0,1), size x-1);

A(:,size x-1) = Lxy(:,((size x)^2)-size x);

for kk = 2:size x-1
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i = kk;

A(:,size x-kk) = Lxy(:,((size x)^2)-size x*kk);

while i > 1

A(:,size x-kk) = A(:,size x-kk) - Lxy(:,((size x)^2)-

size x*kk-(kk-i+1)).*A(:,size x-(kk-i+1));

i = i - 1;

end

end

%--EOF
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Matlab least squares function

function [X, covarX, signifX, sizeA, rankA] = lssvd(A,Y)

%LSSVD Solves the overdetermined set of equations (Ax = Y) in a

%least squares sense using singular value decomposition, where:

% - A = [M x N]

% - x = [M x 1]

% - Y = [N x 1]

% --INPUT ARGUMENTS

% - A [M x N]

% - Y [N x 1]

% --OUTPUT ARGUMENTS

% - X [M x 1], LS solution vector

% - covarX, covariance matrix

% - signifX, significance factors of elements of X

% - sizeA, size of matrix A

% - rankA, rank of matrix A

% Damien Maher

% Mechanical and Manufacturing Engineering

% Dublin City University

% 19.10.10

% Matlab 7.1.0.246 (R14) Service Pack 3

%--SVD

[U,E,V] = svd(A,0);

% remove values in E less than tol

tol = length(Y)*eps*E(1,1);

index = find(diag(E)< tol);

rE = diag(1./diag(E));

rE(index,index) = 0;

X = V*rE*(U’*Y);

%--COVARIANCE MATIX

covarX = V*(rE^2)*V’;

%--SIGNIFICANCE FACTORS

for ii = 1:min(size(A))
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var 1(ii) = var(X(ii).*A(:,ii));

end

signifX = 100.*var 1./sum(var 1);

%--SIZE AND RANK OF A

rankA = rank(A);

sizeA = min(size(A));
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Appendix D

QcAT - Quarter car Analysis Tool

Quarter car Analysis Tool (QcAT) is a custom experimental test and simulation

analysis tool developed in Matlab R©. QcAT gives the user control of the complete

data acquisition-analysis-presentation process from a single Graphical User Interface

(GUI). The acquisition tab allows the user to enter experimental and simulation

parameters. QcAT implements ActiveX control of both Pulse R© and Labview R© to

set data acquisition and experimental test rig parameters. A basic motor control

loop uses the National Instruments R© USB-6009 I/O module to set the motor speed

via a control voltage to the motor inverter. After acquisition data can be visualised

and further processed in QcAT or exported for presentation. A diagram summarising

the hardware/software implementation is shown in Figure D.1.
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Figure D.1: Experimental testing hardware/software implementation

Data acquisition and simulation setup

Data acquisition and simulation setup are controlled inside the acquisition tab. The

acquisition tab is shown in Figure D.2. The analysis options are divided into three

sections;

Simulation setup allows the user to control the simulation parameters. Option

are available for the setup of quarter car parameters, including the selection

of a nonlinear shock absorber, nonlinear tyre and simulation input.

Measurement setup controls the settings of the Pulse R© data acquisition system

and quarter car rig. The length of the experimental test can be controlled
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Figure D.2: Data acquisition and simulation options

along with transducer auto-ranging, quarter car rig cam frequency and rig

warm up time.

Acquisition type allows the user to set averaging properties, multiple experimen-

tal test runs, frequency sweeps. Additional arguments for the various analysis

methods can be entered in the text box. The user can choose to filter the

results or export raw data following data acquisition.

Data analysis and presentation

Following data acquisition, acquired experimental and simulation data are automat-

ically loaded into the analysis tab for further processing. The analysis tab is shown

in Figure D.3. Data can be analysed directly after acquisition or saved to universal

file format for future analysis. Saved data sets can also be loaded into the analysis
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Figure D.3: Analysis tab

tab.

The data available for analysis populates the load data frame as shown in Fig-

ure D.4a. This represents a menu of what signals are available in the loaded data

sets. Single or multiple signals can be selected for analysis. The signal name gives

details of the data contained in the signal. For example, the first entry in the load

data form is ‘MAUZ 064 A000 4N 40’. This represents a measured unsprung mass

acceleration in the z direction, the time history is 64 seconds long, with zero averages

and acquired using a 4 lobed cam at a frequency of 0.4 Hz. Plotting options are

set using the plot options frame, shown in Figure D.4b. The user can chose from a

number of different time and frequency domain representations of the data.

The presentation of data acquired and analysed in QcAT is achieved using the export

tab. Multiple data sets can be loaded and exported to a figure for presentation

purposes. Figure D.5 shows the export setup screen and Figure D.6 shows the

output generated by QcAT.
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(a) Load Data (b) Plot Options

Figure D.4: Data load and analysis options

Figure D.5: Export setup
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Figure D.6: Automated figure generation

Version history

v1.0 QcAT is initially developed for the purpose of quickly carrying out simulations

for comparison with experimental data. The acquisition of experimental data

is controlled using an implementation of Visual Basic for Applications R© (VBA)

inside Pulse R©. Control of the quarter car rig is implemented in Labview R© via

a USB-6009 input/output module.

v1.1 A stand alone Visual Basic R©(VB) executable application to control Pulse R©

and Labview R© is developed. This allows a VB experimental setup graphical

user interface to be developed which can be called directly from QcAT.

v1.2 An option to use an electromagnetic shaker, to excite the quarter car rig,

is included in the simulation and experimental options in QcAT. Figure D.7

shows a screen shot of QcAT v1.2. Cam excitation options are on the left and

shaker excitation options on the right.

v2.0 The need to have Visual Basic R©, Labview R©, Matlab R©, and Pulse R© open in

order to conduct experimental tests is eliminated by implementing Matlab R©

ActiveX control of Pulse R© and the rig control hardware. The user interface is
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Figure D.7: QcAT v1.2

redesigned to accommodate this change. All experimental data sets are now

stored in universal file format 58b. This facilitates accurate documentation of

experimental and simulation results.

v2.1 Options are added for transducer auto-ranging, cam sweep input, automated

multiple experimental test runs and signal averaging.

v2.2 A simulation tab is added to conduct simulations separately from experimental

data and the analysis tab is expanded to include more analysis options, as

shown in Figure D.8.

v2.3 Acquisition of lateral unsprung mass acceleration is added. A 3D visualisation

tool is implemented to allow animation of simulated and measured quarter car

rig motion, as shown in Figure D.9

v3.0 Complete revision of user interface. Analysis tab developed to allow analysis

and visualisation of multiple data sets simultaneously. Export tab added to

allow presentation of the data outside QcAT.
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Figure D.8: QcAT v2.2 Analysis Tab

Figure D.9: QcAT v2.3 3D analysis and visualisation

231



Appendix E

Universal File Formats

Universal File formats (UF) were originally developed by the Structural Dynamics

Research Corporation (SDRC) in the late 1960s to facilitate data transfer between

computer aided test (CAT) and computer aided design (CAD) software and in an

effort to facilitate computer aided engineering (CAE).

The formats were originally developed as 80 character ASCII records that occur

in a specific order according to each UF format. As computer files became rou-

tinely available, single UF formats were concatenated into computer file structures.

Recently, a hybrid UF file structure (UF Dataset 58 Binary) was developed for ex-

perimental data that allows data to be stored in a more efficient binary format. The

use of the Universal File Format as a de facto standard has been of great value to

the experimental dynamics (vibration and acoustic) community, particularly in the

area of modal analysis.
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Universal Dataset Number: 58

Universal Dataset

Number: 58

Name: Function at Nodal DOF

Status: Current

Owner: Test

Revision Date: 23-Apr-1993

Record 1: Format(80A1)

Field 1 - ID Line 1

Record 2: Format(80A1)

Field 1 - ID Line 2

Record 3: Format(80A1)

Field 1 - ID Line 3

Record 4: Format(80A1)

Field 1 - ID Line 4

Record 5: Format(80A1)

Field 1 - ID Line 5

Record 6: Format(2(I5,I10),

2(1X,10A1,I10,I4))

DOF Identification

Field 1 - Function Type

0 - General or Unknown

1 - Time Response

2 - Auto Spectrum

3 - Cross Spectrum

4 - Frequency Response Function

5 - Transmissibility

6 - Coherence

7 - Auto Correlation

8 - Cross Correlation

9 - Power Spectral Density

10 - Energy Spectral Density

11 - Prob Density Function

12 - Spectrum
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13 - Cumulative Freq Distribution

14 - Peaks Valley

15 - Stress/Cycles

16 - Strain/Cycles

17 - Orbit

18 - Mode Indicator Function

19 - Force Pattern

20 - Partial Power

21 - Partial Coherence

22 - Eigenvalue

23 - Eigenvector

24 - Shock Response Spectrum

25 - Finite Impulse Resp Filter

26 - Multiple Coherence

27 - Order Function

Field 2 - Function Id Number

Field 3 - Version or sequence number

Field 4 - Load Case Id Number

0 - Single Point Excitation

Field 5 - Response Entity Name

(‘NONE’ if unused)

Field 6 - Response Node

Field 7 - Response Direction

0 - Scalar

1 - +X Translation

-1 - -X Translation

2 - +Y Translation

-2 - -Y Translation

3 - +Z Translation

-3 - -Z Translation

4 - +X Rotation

-4 - -X Rotation

5 - +Y Rotation

-5 - -Y Rotation

6 - +Z Rotation

-6 - -Z Rotation
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Field 8 - Reference Entity Name

(‘NONE’ if unused)

Field 9 - Reference Node

Field 10 - Reference Direction

(same as field 7)

Record 7: Format(3I10,3E13.5)

Data Form

Field 1 - Ordinate Data Type

2 - real, single precision

4 - real, double precision

5 - complex, single precision

6 - complex, double precision

Field 2 - Number of data pairs

for uneven abscissa

spacing, or number of

data values for even

abscissa spacing

Field 3 - Abscissa Spacing

0 - uneven

1 - even

(no abscissa values stored)

Field 4 - Abscissa minimum

(0.0 if spacing uneven)

Field 5 - Abscissa increment

(0.0 if spacing uneven)

Field 6 - Z-axis value

(0.0 if unused)

Record 8: Format

(I10,3I5,2(1X,20A1))

Abscissa Data

Characteristics

Field 1 - Specific Data Type

0 - unknown

1 - general

2 - stress

3 - strain
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5 - temperature

6 - heat flux

8 - displacement

9 - reaction force

11 - velocity

12 - acceleration

13 - excitation force

15 - pressure

16 - mass

17 - time

18 - frequency

19 - rpm

20 - order

Field 2 - Length units exponent

Field 3 - Force units exponent

Field 4 - Temperature units exponent

Field 5 - Axis label

(‘NONE’ if not used)

Field 6 - Axis units label

(‘NONE’ if not used)

Record 9: Format

(I10,3I5,2(1X,20A1))

Ordinate Numerator

Data Characteristics

Record 10: Format

(I10,3I5,2(1X,20A1))

Ordinate Denominator

Data Characteristics

Record 11: Format

(I10,3I5,2(1X,20A1))

Z-axis Data

Characteristics

Record 12:

Data Values
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Ordinate Abscissa

Case Type Precision Spacing Format

1 real single even 6E13.5

2 real single uneven 6E13.5

3 complex single even 6E13.5

4 complex single uneven 6E13.5

5 real double even 4E20.12

6 real double uneven 2(E13.5,E20.12)

7 complex double even 4E20.12

8 complex double uneven E13.5,2E20.12
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Appendix F

Engineering drawings
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