
Toward Automated Evaluation of Interactive

Segmentation

Kevin McGuinnessa,∗, Noel E. O’Connora

aCenter for Digital Video Processing, CLARITY: Centre for Sensor Web Technologies,
Dublin City University, Glasnevin, Dublin 9, Ireland

Abstract

We previously described a system for evaluating interactive segmentation by
means of user experiments [1]. This method, while effective, is time-consuming
and labor-intensive. This paper aims to make evaluation more practicable
by investigating if it is feasible to automate user interactions. To this end,
we propose a general algorithm for driving the segmentation that uses the
ground truth and current segmentation error to automatically simulate user
interactions. We investigate four strategies for selecting which pixels will form
the next interaction. The first of these is a simple, deterministic strategy; the
remaining three strategies are probabilistic, and focus on more realistically
approximating a real user. We evaluate four interactive segmentation algo-
rithms using these strategies, and compare the results with our previous user
experiment-based evaluation. The results show that automated evaluation is
both feasible and useful.

Keywords: Image segmentation, Interactive segmentation, Evaluation,
Simulation, Automation, User experiments

1. Introduction

Computer vision algorithms designed to emulate human perception are an
active research area. Many of the problems tackled by these algorithms are
ill-posed, in the sense that they do not have a unique solution, and accordingly

∗Corresponding author. Tel.: +353 1 7006830. Fax: +353 1 7005442.
Email addresses: kevin.mcguinness@eeng.dcu.ie (Kevin McGuinness),

oconnorn@eeng.dcu.ie (Noel E. O’Connor)

designing effective algorithms is very difficult. The quantity of data involved
necessitates an efficient implementation, and the lack of a unique solution
complicates evaluation. There are, therefore, usually a multitude of algorithms
available when confronted with a particular computer vision problem, and it is
often difficult to determine which is the most suitable for a given application.

In such situations it is important to develop a means to characterize and
compare the performance of different algorithms, in terms of how satisfactory
the solutions found by these algorithms are, and how efficient they are at
finding such solutions. Methods for evaluating computer vision algorithms are
not only important for application developers, who need to select the most
suitable component for their system, but also for researchers. The ability to
accurately gauge the performance of a computer vision algorithm gives insight
into what makes it good; it allows researchers to develop more sophisticated
algorithms by understanding which techniques are effective, and to justify
new methods by formal comparison with the state-of-the-art.

A core problem in computer vision is image segmentation, and image
segmentation algorithms are critical in many systems. The importance and
utility of segmentation has made it the subject of extensive research, resulting
in numerous proposed algorithms. Formal evaluation of image segmentation
algorithms is therefore important, and recently such evaluation has received
increased attention in the literature [2, 3, 4, 5, 6]. Much of this work has,
however, been focused primarily on evaluating automatic or semi-automatic1

segmentation algorithms; comparatively little attention has been dedicated
to evaluating interactive segmentation, particularly interactive segmentation
of natural images.

Our previous work [1] addressed interactive segmentation evaluation. We
focused on supervised evaluation by means of user experiments, and created
software, benchmarks, and a complete ground truth dataset for performing
this kind of evaluation. We compared four popular interactive segmenta-
tion algorithms using this system, and showed their relative performance
and characteristics. We validated our proposed measures against perceived
accuracy—approximated using questionnaires—and demonstrated their effec-
tiveness.

User experiments are arguably the most effective way to evaluate any

1By semi-automatic we refer to algorithms that require some level of user input, but do
not allow iterative refinement.

2

interactive system, interactive segmentation being no exception. Such exper-
iments are, however, often prohibitively time-consuming to run, especially
if many variations of an algorithm or system need testing. This paper aims
to develop a method for supervised evaluation of interactive segmentation
algorithms that eliminates the need for user experiments.

Automating the evaluation of interactive segmentation requires replacing
the human operator with an algorithmic process designed to emulate the
behavior of an operator as closely as possible. To achieve this, we propose
driving the segmentation by automatically generating the user interactions
from the current segmentation error and the ground truth data. This paper
explores four different strategies for generating these interactions. The first of
these strategies is deterministic, needing to be run only once to obtain a coarse
evaluation. The remaining three strategies are probabilistic: they aim to more
realistically approximate a real user, and may, therefore, produce different
interactions given the same inputs. We evaluate the same four algorithms
from our previous work using each of the automation strategies, and compare
the results with the user experiments.

Automated simulation of user interactions is not new; it has been applied
successfully to systems evaluation in several other fields. Riedl and Amant [7]
developed a system that autonomously carries out a limited form exploratory
navigation of graphical user interfaces, and used it to evaluate the usability
of these systems. Foley and Smeaton [8] used user simulation to evaluate
a synchronous collaborative information retrieval system, using logged data
from previous experiments to simulate interaction with their collaborative
system. Jung et al. [9] recently used user simulation for automating the
evaluation of spoken dialog systems.

Automation has also been used to evaluate medical image segmentation
algorithms. Mao et al. [10] proposed a system for automating performance
evaluation of semi-automatic segmentation algorithms on B-mode ultrasound
images of carotid arteries. Their technique assumes an algorithm that accepts
a single seed point as input and generates an object-background delineation
based on this point. Their automation algorithm systematically selects
different seed points in a matrix covering the relevant region of the carotid
image, thereby allowing evaluation of how sensitive the algorithm is to seed
point placement. More recently, Moschidis and Graham [11, 12] have used
automated seed selection for evaluating interactive segmentation of 3D volumes
in medical images, and used their technique to assess several algorithms.
Unlike Mao et al.’s technique, Moschadis and Graham’s method supports

3

multi-seed segmentation algorithms, and the authors propose two different
strategies for seed selection: random seed selection, and the selection of seeds
at a fixed distance to the boundary. Their technique can also be used on
interactive algorithms: it measures accuracy as new seeds are added, rather
than assuming a single is added prior to segmentation. Both Mao et al. and
Moschidis and Graham’s techniques focus on medical imaging; our primary
focus here will be on interactive segmentation of natural images.

The primary contributions of this paper are as follows: first, we propose a
general system for evaluating interactive segmentation algorithms that is not
dependent on user experiments. Second, we investigate four strategies that
may be used at each step in the automation to generate new interactions from
the current segmentation error. We further examine the effectiveness of each
of these strategies by correlating accuracy measured during the automated
evaluation with accuracy measured during the user experiments. We show the
results of the automated experiments to be very similar to those of the user
experiments, demonstrating that it is indeed feasible to usefully automate
interactive segmentation evaluation. Finally, we provide software and tools
for performing an automated evaluation, and discuss methods of aggregating
and interpreting the results.

The remainder of this paper is organized as follows. Section 2 briefly
reviews the relevant aspects of our previous work: the evaluation objectives,
measures, ground truth dataset, and the four segmentation algorithms evalu-
ated. Section 3 discusses the objectives of automating the evaluation. We
outline some general considerations, then develop four strategies for automat-
ing the user interactions, beginning with the simplest strategy and iteratively
developing more complex ones. Section 4 discusses an experiment designed to
evaluate four interactive segmentation algorithms using our new automated
system, and outlines the software and tools developed for this experiment.
Section 5 analyses the results of this experiment and compares them with the
previously conducted user experiments. Section 6 presents our conclusions
and makes some recommendations based on our findings.

2. Background

The objective of our previous work was to create a complete framework,
including benchmarks, ground truth, software, and tools, for evaluating
interactive segmentation algorithms by means of user experiments, and to
then evaluate four popular interactive segmentation algorithms using this

4

infrastructure. This paper builds directly upon this framework: our goal here
is to develop techniques for automating the evaluation, thus reducing the need
for user experiments, and to explore the validity of such automation techniques
by comparing them with user evaluation. To facilitate a direct comparison of
the automation strategies with the user experiments, we evaluate the same
segmentation algorithms, against the same ground truth, and using the same
benchmarks that we previously developed.

The remainder of this section gives a condensed overview of the previously
developed infrastructure. The software and ground truth dataset that we
describe are available from our website2. The interested reader is referred
to [1], which describes the user experiment based evaluation in detail, including
the evaluation measures, the experiment setup, and the evaluated algorithms.

2.1. Algorithms

As noted in [3], the application domain of interest should be identified from
the outset when performing image segmentation evaluation, to ensure a fair
and consistent evaluation. We focus on evaluating interactive segmentation
techniques appropriate for object extraction from photographs and natural
scenes. Based on this, we chose four well-known algorithms suited to this
task for evaluation:

1. BPT: Interactive segmentation using Binary Partition Trees [13];

2. IGC: Interactive Graph Cuts [14];

3. SRG: Seeded Region Growing [15];

4. SIOX: Simple Interactive Object Extraction [16].

We selected these algorithms so as to provide good coverage of the underlying
algorithmic approaches used by most methods in the literature designed for
object extraction from natural scenes. We selected only algorithms whose
input can be modeled by pictorial input on an image grid [17], allowing
transparent integration into our scribble-driven segmentation tool (Figure 1).
We did not consider boundary-based algorithms (e.g. [18, 19]), as these require
a different interaction model, and tend to be better suited to medical image
segmentation applications.

2http://kspace.cdvp.dcu.ie/public/interactive-segmentation

5

http://kspace.cdvp.dcu.ie/public/interactive-segmentation

Figure 1: Screenshot of the interactive segmentation tool

2.2. Evaluation

To obtain a comprehensive evaluation of an interactive segmentation
algorithm, three criteria should be considered [17, 3]:

• Accuracy: the degree to which the delineation of the object corre-
sponds to the truth;

• Efficiency: the amount of time or effort required to perform the
segmentation; and

• Repeatability:3 the extent to which the same segmentation would be
produced over different sessions when the user has the same intention.

To measure accuracy and efficiency, it must be possible to measure how
well a segmentation matches the true object over time. For a supervised
evaluation, two resources are necessary: a ground truth, which represents the
required object as closely as possible, and a set of benchmarks to determine
how well a particular segmentation matches the ground truth.

3Udupa et al. suggest the same three criteria, referring to repeatability as precision in
their work [3]

6

a b

Figure 2: Example task image and the expected object. The task description is “Extract
the white flower in the upper part of the image. Do not include the stem.”

For the user experiments, we measured repeatability implicitly: by requir-
ing multiple segmentations by different users of the same image using the
same segmentation algorithm. We also consider repeatability when developing
the automation strategies in Section 4.

2.2.1. Ground truth dataset

We compiled the dataset for the experiment by selecting 100 objects
from 96 images in the Berkeley segmentation dataset [20]. We only selected
images that contained objects that could be concisely and unambiguously
be described to the experiment participants. Each object was segmented
by hand using a graphics tablet to create the ground truth, then annotated
with a task description, producing a database of 100 tasks for the experiment.
Figure 2 shows a typical task image, task description, and corresponding
ground truth object.

2.2.2. Evaluation benchmarks

We use two benchmarks to measure the accuracy of a segmentation against
the ground truth object: the boundary accuracy BA, and the object accuracy
OA. The boundary accuracy benchmark is designed to measure how well
the boundary of the segmented object corresponds to the ground truth. The
object accuracy benchmark measures how well the entire region matches the
ground truth.

Let v ∈ Z2 be any pixel inside the ground truth object, and GO = {v} be
the set of all of these pixels. Similarly, define MO to be the set of all pixels
in the machine-segmented object. GB and MB denote the complements of
these sets. Let Nx be the standard set of eight-neighbors of any x ∈ Z2. The
internal border pixels for the ground-truth object are defined as the set BG,

7

and for the machine-segmentation, the set BM , as follows:

BG = {x : x ∈ GO ∧Nx ∩GB 6= ∅} (1)

BM = {x : x ∈MO ∧Nx ∩MB 6= ∅} (2)

Our object accuracy measure is simply the Jaccard index used to measure
the overlap between the machine segmented object and the ground truth
object:

AO =
|GO ∩MO|
|GO ∪MO|

(3)

This index is sometimes written as the ratio between true positives and the
sum of true positives, false positives, and false negatives: AO = TP/(TP +
FP + FN), and has been used previously by several authors for comparing
segmentations (e.g., [4, 5, 3, 21]).

To compute boundary accuracy, we could adopt a similar strategy by
substituting the sets BG and BM in place of GO and MO in Equation (3):

AB =
|BG ∩BM |
|BG ∪BM |

(4)

Unfortunately, however, this benchmark is extremely sensitive to small
errors near the boundary of the object. Since the precise boundary of an
object on a raster grid is inherently ambiguous (see Ref. [1]), and since humans
are generally less sensitive to small errors near the object boundary than, say,
large holes in the object, the values given by Equation (4) will almost always
be excessively low.

To adapt the Jaccard index so that it is more appropriate for our purposes,
we introduce some tolerance to error near the border pixels. We accomplish
this by transforming the sets BM and BG to their fuzzy analogs B̃G and B̃M

as follows:

B̃G(x) = exp

(
−‖x− x̂‖2

2σ2

)
(5)

x̂ = arg min
y∈BG

‖x− y‖ (6)

where the fuzzy set B̃M is similarly defined, and σ is a parameter that
quantifies the degree of uncertainty in the boundary pixels. We then define
the boundary accuracy using a fuzzy version of the Jaccard index:

AB =

∑
x min(B̃G(x), B̃M(x))∑
x max(B̃G(x), B̃M(x))

(7)

8

which can be computed in linear time using a fast distance transform algorithm
(for example, the algorithm by Fabbri et al. [22]) to evaluate Equation (6).

Both the object accuracy and boundary accuracy benchmarks are sym-
metric, and produce values in the interval [0, 1], where larger values imply
more accurate segmentation.

2.3. User experiments

A total of 20 volunteers participated in the user experiments. Each
participant was asked to extract 25 objects with each of the four segmentation
algorithms being evaluated—100 objects in total. A time limit of two minutes
was imposed for each extraction.

To facilitate the experiments and host the segmentation algorithms, we
developed the interactive segmentation tool (see Figure 1). The application
was developed as a general purpose interactive segmentation tool, but includes
an “experiment mode” for running timed user experiments. In this mode the
segmentation algorithm is locked by the tool, and users are presented with a
series of object extraction tasks that must be completed within the time limit.
As the user marks the image with the mouse, the segmentation is updated
and the accuracy measures previously discussed are computed and stored
along with the elapsed time.

The result is, for each user and object, a series of accuracy measurements,
giving a profile of how accuracy varies over time. We discuss the analysis of
this time-series data in Section 5, and compare it with the time-series data
gathered from the automated experiments.

3. Automation

When evaluating interactive segmentation by means of user experiments,
the participant is required to provide seed pixels for the object and back-
ground regions by marking the image with the mouse. The segmentation
algorithm builds an initial segmentation using these seed pixels as priors, and
provides feedback to the participant. The participant may then iteratively
refine this segmentation by marking additional pixels until either a satisfac-
tory segmentation is obtained, or the allotted time expires. This kind of
experiment, while invaluable for establishing the usability of an algorithm, is
often prohibitively difficult and time-consuming, especially considering that
it needs to be repeated each time a new algorithm is evaluated. The idea
behind automating the evaluation is to devise an algorithmic process that can

9

MachineHuman

Mark initial foreground and
background pixels

Satisfactory?

Mark additional foreground or
background pixels

Assess segmentation

Stop

Start

Initialize segmentation

Update segmentation

Object and background seeds

Object or background seeds

Feedback

No

Yes

Data flow:

Figure 3: Flow chart of user activity when performing a segmentation task

simulate, in some reasonable way, all the actions that are usually performed
by the human operator, thereby eliminating the need for user experiments.

When first considering this problem, one might initially reason that since
we have already performed the user experiments, we can simply record each
interaction performed by the participants and automate the procedure by
replaying these interactions. Inspection reveals this reasoning to be flawed:
although the first set of foreground and background seeds supplied by the user
could indeed be used by an automation algorithm, all subsequent interactions
are reactive. That is, at each step, the user is attempting to correct the current
segmentation error. This error depends on the algorithm being evaluated,
and on the interactions from previous steps.

Automating the evaluation requires us to identify each decision that is
made by the user, so that it can be replaced by an automated action. Figure 3
depicts a high-level view of the flow of activity for a user during a segmentation
task. From this we can identify the following user responsibilities:

10

1. Identify the object to be extracted from the task description;

2. Select initial foreground and background seed pixels;

3. Correct errors in the segmentation by selecting additional foreground
or background seed pixels; and

4. Decide after each interaction if the segmentation is satisfactory.

Identifying the object to be extracted from the task description is, un-
doubtably, the most difficult of these tasks to automate. It is, however,
possible to bypass this step: we are performing a supervised evaluation, so
the object to be extracted is coded exactly in the ground truth. Step 2 can be
accomplished by selecting, in some way, the initial seed pixels from the object
and background regions in the ground truth. After an initial segmentation
has been found, we can find the mislabeled pixels by comparing this initial
segmentation against the ground truth. This gives us the means to automate
Step 3: by selecting the additional object or background seed pixels from the
set of mislabeled pixels.

The final step is to decide if the segmentation is satisfactory, and if so,
terminate the process. A straightforward criterion is to declare a segmentation
to be satisfactory if and only if it exactly matches the ground truth. In
our experiments, however, we observed that this strategy often results in a
great deal of time toward the end of the segmentation process being spent
correcting insignificant errors along the boundary of the object. Since, as
noted earlier, the true boundary of an object is inherently ill-defined, and
since human operators do not normally notice such slight error, much less
spend time correcting it, we recommend terminating the segmentation if the
only remaining error pixels lie on the inner or outer boundary of the object.

We have not yet specified how to select the seed pixels in the initialization
stage or correction stage. Furthermore, we have made some important
assumptions in the above discussion that warrant further consideration. We
address both these issues shortly. First, let us outline the general automation
algorithm by drawing on the above discussion. We use the following notation
for important sets of pixels in the machine segmentation and ground truth:

• GO: the set of all pixels inside the ground truth object;

• GB: the set of all pixels outside the ground truth object;

• MO: the set of all pixels inside the machine segmented object;

• MB: the set of all pixels outside the machine segmented object;

11

• BG: the set of internal border pixels for the ground truth object;

• BM : the set of internal border pixels for the ground truth background
region.

Note that the set of internal border pixels for the background region equals
the set of external border pixels for the object region, and similarly, the set of
internal border pixels for the object region equals the set of external border
pixels for the background region.

In addition to the above definitions, we denote the initialization seeds, the
update seeds, and the current segmentation error as follows:

• IO and IB are the sets of object and background seeds used by the
automation algorithm to initialize the segmentation;

• UO and UB are the sets of object and background seeds used to update
(refine) the segmentation;

• EO and EB are the sets of object and background pixels that have been
misclassified by the segmentation algorithm (the error).

Using this notation, our proposed general automation algorithm proceeds
as follows:

1. Initialize: Select the initial object seed points IO, and the initial back-
ground seed points IB, such that IO ⊆ GO and IB ⊆ GB. Mark these
points as object and background and update the segmentation.

2. Compute error : Determine the set of misclassified object pixels EO,
and the set of misclassified background pixels EB, as:

EO = MB ∩GO (8)

EB = MO ∩GB (9)

3. Check for termination: If the sets of misclassified pixels above contain
only pixels from the object’s internal or external border, terminate the
algorithm. More formally, the algorithm terminates if:

EO ⊆ BG ∧ EB ⊆ BM

Note that the above holds when both EO and EB are the empty set.

12

4. Correct : Update the segmentation by selecting either additional object
seeds UO ⊆ EO, or additional background seeds UB ⊆ EB, and return
to Step 2.

There are two important, and related, implications of the above algorithm
that need to be addressed. First, if the interactive segmentation algorithm
being evaluated is not “well-behaved” the algorithm may never halt. By
well-behaved, we mean that if we mark a pixel as object, the algorithm will
always classify it as object, and if we mark it as background, the algorithm will
always classify it as background. We believe that it is justified to assume such
behavior, as we explain shortly. It is straightforward to modify an existing
segmentation algorithm to conform to this behavior by post-processing the
output.

The second implication is that since the automation algorithm only ever
chooses object seeds that are inside the ground truth object, and background
seeds that are outside the ground truth object, it is impossible for our
automation algorithm to ever make a mistake—i.e., to incorrectly mark an
object pixel as background or vice versa. Our experiments have shown that
users, in general, are not so diligent.

However, we believe that both these assumptions are sensible design de-
cisions. In our user experiments, participants universally agreed that they
preferred algorithms with predictable behavior [1]. So although it is possible
for an interactive segmentation algorithm to compensate for inaccurate inter-
actions, we do not necessarily believe that they should: such compensation
is a direct violation of the user’s instructions, however imprecise. This kind
of behavior may be helpful in a few cases, but more often than not, is an
endless source of frustration to users [23]. The desire for predictable behavior
justifies the requirement that algorithms must be well-behaved; well-behaved
algorithms are, by definition, incapable of compensating for user errors.

What remains is to decide a suitable way of selecting the initialization
seeds IO and IB, and the update seeds UO and UB. We now explore four
strategies for their selection.

3.1. Strategy 1

We begin by investigating a very simple deterministic strategy for choosing
the initialization and update seed pixels. We do so to set up a baseline
approach against which we can compare more sophisticated strategies, which
attempt to more closely approximate real user interactions.

13

The basis of this strategy is the observation that users tend to begin
extracting objects by marking as foreground some pixels in the middle of the
object, and marking as background some pixels well outside the object. They
then proceed to refine the initial segmentation by marking pixels that lie
inside large areas of misclassified pixels. To emulate this behavior, strategy 1
initializes the segmentation by selecting pixels that are near the center of the
ground truth object as object seeds, and selecting pixels that are near the
center of the background region in the ground truth as background seeds.
Similarly, to update the segmentation, the strategy chooses those pixels that
are farthest from the correctly classified pixels as the update seeds.

Let D(x, R) be the minimum distance from a pixel x to any pixel in the
set R:

D(x, R) = min
y∈R
‖x− y‖ (10)

and let the Z(Q,R) be the set of all points in Q that are are maximally
distant to their nearest points in R:

Z(Q,R) = arg max
x∈Q

D(x, R) (11)

We choose the initial seed points IO and IB as:

IO = {x : x ∈ Br(y, GB),y ∈ Z(GO, G
C
O)} (12)

IB = {x : x ∈ Br(y, GO),y ∈ Z(GB, G
C
B)} (13)

where GC denotes the complement of the set G, and Br(y, R) is a brush
function that returns all pixels within a fixed radius of y:

Br(y, R) = {x : ‖x− y‖ ≤ r(y, R)} (14)

The brush radius is given by the r(y, R) function. It is chosen proportional
to the minimum distance from the center seed points y to the object boundary,
within the constraints of the interactive segmentation tool. Note that all such
points y ∈ Z(GO, G

C
O) are equidistant from the background, and similarly

all points y ∈ Z(GB, G
C
B) are equidistance from the object. The interactive

segmentation tool has a maximum brush radius of 20 pixels, so we define our
brush radius function as:

r(y, R) = min

(
1

2
D(y, R), 20

)
(15)

14

Our reasoning here is simple: users tend to use larger brush sizes to correct
larger errors, and smaller brush sizes to correct minor details; they cannot
set the brush to a size larger than 20 because our tool does not support it.

To update the segmentation we follow a similar strategy, this time tak-
ing the update seeds UO and UB from the sets of misclassified object and
background pixels EO and EB:

UO = {x : x ∈ Br(y, EC
O),y ∈ Z(EO, E

C
O)} (16)

UB = {x : x ∈ Br(y, EC
B),y ∈ Z(EB, E

C
B)} (17)

In the interactive segmentation tool, the segmentation is updated after each
interaction; it is impossible for users to simultaneously mark object and back-
ground pixels in a single interaction. We therefore update the segmentation
using only one of the above sets: UO or UB. We select the set of update pixels
U to be the set that has larger minimum distance between its center and the
external border of the set of misclassified pixels it is drawn from:

U =

UO maxy∈UO D(y, EC

O) >

maxz∈UB D(z, EC
B)

UB otherwise

(18)

Figure 4 shows the first few steps of this strategy when evaluating the
IGC algorithm. As can be seen, the strategy begins by placing one or more
circular blobs of seed pixels in the center of the object to be extracted, and
one or more blobs of seed pixels in the center of the background region. Each
update then corrects errors in the segmentation by placing seed pixels in the
center of the largest regions of misclassified pixels.

The strategy can be efficiently implemented using a fast 2D Euclidean
distance transform algorithm. Our implementation uses the linear time
algorithm proposed by Meijster et al. [24], demonstrated in [22] to be one
of the fastest 2D Euclidean distance transform algorithms available. This
allows us to evaluate Eq. (10) for all values of x in a region in linear time,
and therefore initialization and each update also run in linear time.

This strategy has some advantages; it is relatively quick to compute, and
since it is deterministic, it will produce the same sets of seed points given the
same segmentation algorithm and ground truth each time it is run (provided,
of course, that the segmentation algorithm is also deterministic). It therefore
needs to be run only once for each algorithm being evaluated.

15

Figure 4: An illustration of the first few the steps of automation strategy 1. The seg-
mentation algorithm being evaluated is IGC [14]. Each update adds one or more circular
blobs of seed pixels to correct errors in either the object or background regions. (a) is the
initialization step; (b) and (c) show the effect of the first two updates; (d) shows the image
after nine updates.

There are, however, two distinct disadvantages of this approach. First,
since it is deterministic, it does not evaluate repeatability. The strategy
gives no indication of how robust the algorithm being evaluated is to small
variations in markup: it always produces the same markup given the same
algorithm and input. This behavior is in direct contrast to real users, who are
unlikely to produce the same sets of markings when extracting a given object.
Second, the strategy produces pixel blobs instead of lines and curves, similar
to a user repeatedly clicking the mouse on the misclassified regions each time
they wish to correct the segmentation. Although this is a perfectly valid way
of extracting objects, observation indicates that users prefer to draw lines or
curves.

We address both of these issues as we investigate more complex automation
strategies. Strategy 1 is a useful baseline against which we can compare more
sophisticated approaches.

3.2. Strategy 2

Recall that choosing our initialization and update seeds requires selecting
a set of seed pixels S from a set of candidate pixels C. For strategy 1, we
selected the set of pixels from C that were maximally distant from their
nearest neighbors in Cc, then expanded our selection using a brush function.
We do the same for strategy 2, except this time we select pixels from C

16

non-deterministically. We propose selecting pixels from C such that the
probability of selecting x ∈ C is proportional to the spatial distance from
x to Cc. This way we are more likely to select pixels that are nearer to the
center of the object on initialization, and nearer to the center of groups of
misclassified pixels on update.

To achieve this, we need to define a discrete probability distribution
for selecting pixels from C based on their spatial distances to their nearest
neighbors in Cc. Such a distribution could be defined in various ways; for
simplicity, we opted to design our distribution using sum-normalized distances.
This gives the following discrete probability mass function:

Pr[X = x] =
D(x, Cc)∑
y∈C D(y, Cc)

(19)

The above mass function can be used to select seeds with the desired
probabilities using the inversion method [25] as follows:

1. First, compute a discrete estimation of the cumulative distribution
function for Eq. (19) as:

F(x) =
∑

y∈C≤x

Pr[X = y] (20)

The above requires defining a partial order over C. Any such order will
do; we used the row-major (lexicographical) order of the vectors in C
for convenience in our implementation.

2. Generate a random number u ∈ (0, 1) from the standard uniform
distribution.

3. Find the smallest value xi such that F(xi) ≥ u. Binary search on F can
be used to find xi in O(log n) time.

The brush function is then applied as before to expand the selection. Since
we now have a non-deterministic method of selecting the initialization and
update pixels, we can evaluate repeatability by using multiple runs of the
method, simulating multiple users.

3.3. Strategy 3

We noted previously that users tend to draw lines and curves to mark up
objects, rather than simply pointing and clicking. To make the evaluation

17

a b c d e

Figure 5: Extracting a non-convex object with straight line segments: (a) is a synthetic,
non-convex object, designed so that it has two distinct maxima that cannot be joined using
a straight line. (b) is the distance transform of (a). (c) is the maxima of the distance
transform overlaid on the object. (d) shows a dashed line segment joining the maxima
points. (e) is the ideal solution we would like to approximate.

more realistic, we would prefer if our automation strategy provided similar
interactions.

Our goal here is to select a sequence of seed points P = (x1,x2,x3, ...,xn)
from our candidate points C, such that each seed point is a neighbor of a
previously selected point:

xi ∈ P =⇒ xi ∈ C (21)

xi ∈ P ∧ i > 1 =⇒ xi−1 ∈ N (xi) (22)

where N (xi) is the set of 8-neighbors of xi.
There are typically many sequences P which satisfy the above predicates.

Most of these, however, are not usually what we would (intuitively) consider
realistic for a user to draw when marking up objects. Our experiments suggest
that users tend to draw smooth, simple curves; we would ideally like to devise
a strategy that emulates this behavior.

The path P = (x1,x2,x3, ...,xn), has a start point x1, and an end point xn.
A logical way to create such a path is to select the start and end point using the
strategy outlined in Section 3.2, and find a sequence of adjacent pixels joining
the start and end points. The simplest and shortest path of pixels joining
x1 and xn is a straight line rasterized on the pixel grid. Unfortunately, since
the required objects are not always convex, a straight line is not guaranteed
to fall entirely within the region we are marking. Figure 5 illustrates this
issue. Figure 5(a) shows a synthetic non-convex object; 5(b) illustrates its
distance transform. Figure 5(c) shows the maxima of the distance transform.
These are also the two most likely points to be selected as endpoints by the
method described in Section 3.2. Figure 5(d) shows that the line joining
these two points lies outside the object. The ideal solution we would like to
approximate is shown in Figure 5(e).

18

a b c

Figure 6: Paths between the maxima points of Figure 5. (a) shows the ideal solution; (b)
shows the path found automation strategy 3; (c) shows the path found by automation
strategy 4.

Our first approach for approximating the kind of lines and curves generated
by human operators uses the shortest spatial path on the image grid between
points x1 and xn that lies completely inside the candidate region. To compute
this path, we construct a graph G = (V,E) from the candidate pixels C, such
that each pixel x ∈ C is a vertex in the graph, and each vertex is connected
to all of its eight neighbors also in C. That is:

G = (V,E) (23)

V = {x : x ∈ C} (24)

E = {(x,y) : x ∈ C,y ∈ Nx ∩ C} (25)

Each edge in E is then given a weight equal to the spatial distance between
the vertices it joins. Since we are operating on an 8-connected graph, these
weights are equal to 1 for horizontal and vertical edges, and

√
2 for diagonal

edges. Having constructed G, we can now use Dijkstra’s algorithm [26] to
find the shortest path between x1 and xn. Figure 6(b) shows the path found
using this approach on the example in Figure 5.

The algorithm, as specified thus far, will fail if x1 and xn lie in regions
that are spatially disjoint. We must, therefore, avoid this situation and only
choose our endpoints so that there always exists a path between them. The
final strategy 3 algorithm is as follows:

1. Construct the candidate graph G.

2. Select an initial point x1 using the non-deterministic strategy in Sec-
tion 3.2.

3. Determine which other vertices in G are connected to x1 using Dijkstra’s
algorithm. This also gives us the shortest path from x1 to every other
connected vertex in G.

19

4. Remove x1 and all vertices not connected to x1 in G from the candidate
pixels C.

5. Select a second point xn, again using the non-deterministic strategy in
Section 3.2.

6. Set P equal to the shortest path between x1 and xn as found in step 3.

The set of seed pixels P ′ is then chosen by expanding the path P using a
brush function similar to that in Equation (14). In this instance, the brush
radius is chosen relative to the minimum distance from any pixel on the path
P to one of the non-candidate pixels Cc as follows:

P ′ = Br′(P,Cc) (26)

Br′(P,R) = {y : ‖x− y‖ ≤ r′(P,R),x ∈ P} (27)

r′(P,R) = min
x∈P

r(x, R) (28)

3.4. Strategy 4

The paths found by strategy 3 are the shortest possible. They will,
therefore, often yield paths that pass very close to the boundary of the
candidate region (see Figure 6(b)). We would prefer to generate paths that
stay closer to the center of the region, as in Figure 6(a).

To achieve this, we propose adjusting the weights on the candidate graph
G, so that paths that move toward the center of the object are preferred over
the shortest possible path. Previously we set the weight for the edge between
vertex x and y equal to the spatial distance between them:

wx→y = ‖x− y‖

Modulating the above by the exponent of the normalized distance from y to
the boundary introduces a preference to move toward the center of the object.
Our modified distance function is:

w′x→y = ‖x− y‖ exp

(
D(y, Cc)

maxz∈C D(z, Cc)

)
(29)

which, for our previous example, yields the path in Figure 6(c). The path
is again expanded using the brush function to form the set of seed pixels.
Figure 7 shows a more realistic example of this strategy in action.

20

Figure 7: An illustration of the first few the steps of automation strategy 4. The segmenta-
tion algorithm being evaluated is IGC [14]. (a) is the initialization step; (b) and (c) show
the effect of the first two updates; (d) shows the image after nine updates.

4. Evaluation

To run the automated evaluation we developed the automation tool, shown
in Figure 8. The tool allows configuration of all aspects of the evaluation,
including: the algorithm being evaluated, the automation strategy, the input
and ground truth files, and the evaluation measures to use. When the evalua-
tion is run, the tool processes each input image and corresponding ground
truth with the selected automation strategy. After each automation step is
taken, the segmentation is updated, and accuracy is computed against the
ground truth using the selected accuracy measures. For the non-deterministic
automation strategies, the process is repeated the desired number of times.

We set an upper limit of 100 steps for each automation strategy. This
limit is imposed not only to ensure that the automation strategies terminate
in a reasonable amount of time, it is also important during the analysis of the
results, as we show in the next section. To effectively evaluate repeatability,
evaluation using the non-deterministic strategies needs to be repeated several
times to simulate different users; we used five repetitions for our experiments.

An upper limit of 100 steps may seem quite excessive, given that real users
usually provide less than 50 or 60 interactions, and only rarely as many as 100
(see Figure 9). The size of these interactions may vary widely however, from
single point clicks, to wide scribbles and curves. Our automation strategies
also vary in the amount of input provided per step, and so we deliberately set

21

Figure 8: Screenshot of the configuration window for the automated evaluation tool.

user interactions (steps)

co
un

t

0

20

40

60

80

BPT

0 20 40 60 80 100

IGC

0 20 40 60 80 100

SIOX

0 20 40 60 80 100

SRG

0 20 40 60 80 100

Figure 9: Histogram of the number of interactions per task provided by users during the
user evaluation experiments.

this limit high for now to observe the behavior of these strategies after many
interactions. Since we measure accuracy over time, we can always truncate
the results if they stabilize earlier. We recommend a more realistic upper
limit that can be used for practical experiments in Section 6.

The time required to run the automated experiments depends on the
automation strategy used, on the algorithm being evaluated, on the number
of images in the dataset, and on the number of repetitions when using a non-
deterministic automation strategy. Strategy 1 is the least computationally
intensive automation strategy, and strategy 4 is the most intensive. To give
an idea of the typical time required to run an automated evaluation, Table 1

22

Strategy Algorithm Reps. Time

Server 1 IGC 1 17 min
Server 4 IGC 5 2 hr 18 min
Desktop PC 1 IGC 1 46 min
Desktop PC 4 IGC 5 7 hr 13 min

Table 1: Indicative runtimes of the automation strategies. Both strategies were run for a
maximum of 100 steps on all 100 objects in the database.

shows the runtimes for two automation tasks on a server4 and desktop PC.5

5. Analysis

The objective of our analysis is twofold. First, since there is a large amount
of data generated by the experiments, we need to develop a effective means
to reduce and interpret this data. We can then apply this to each evaluation
strategy to investigate the characteristics of the evaluated algorithms. Second,
we want to compare each of the evaluation strategies, and determine which
best approximates full user experiments.

Every ground truth object evaluated results in a time series of object
accuracy and boundary accuracy values. Figure 10 shows two such time series
from our experiments. Each interactive segmentation algorithm evaluated
produces 100 of these time series (one for each ground truth object). This is
increased to 500 for the non-deterministic strategies, since the evaluation is
run five times. To allow us to more easily interpret these data, we aggregate
it in two ways.

The first way is to examine the average accuracy over all images as a
function of time. We refer to this as the time-accuracy profile curve. The
aim is to determine how, on average, accuracy varies over time for each
evaluated algorithm. To compute time-accuracy profile curves, we first need
to expand the time series data to the maximum number of steps. This is
done by duplicating the final accuracy measured (i.e. the accuracy when the

4DellTM PoweredgeTM 1900, 3GHz Intel R© Xeon R© 5160 CPU, 1333MHz front-side bus,
8GB 667MHz RAM, Linux kernel 2.6.20 x86 64

5DellTM OptiplexTM GX520, 3GHz Intel R© Pentium R© 4 CPU, 800MHz front-side bus,
1GB 533MHz RAM, Linux kernel 2.6.31 i386

23

time [steps]

ac
cu

ra
cy

0.2

0.4

0.6

0.8

IGC − Image 196015

●

●

●

●

● ●
●

●
● ●

0 2 4 6 8

SIOX − Image 196015

●
●
●●●

●

●
●●●●●

●●
●

●

●●
●

●●●

●

●

●

●●
●

●●

●●
●

●●●●
●●●

●●

●●

●●●

●●
●

●

●●
●

●●

●●

●●
●●●●●●●

●●●●●

●

●●

●
●

●

●

●●
●
●●
●●

●

●

●
●●
●

●

●
●
●
●●●●

0 20 40 60 80

Benchmark

● boundary

object

Figure 10: Sample time series data for individual images. The time series were created
by evaluating the IGC algorithm (left) and the SIOX algorithm (right) with automation
strategy 1 against the same ground truth image.

automation terminates) for each subsequent step up to the maximum. Once
the time series data have been expanded to equal length, they are sampled
at regular intervals using a fixed sampling window. These samples are then
averaged to produce the time-accuracy profiles.

The second way we aggregate the data is by computing scalar features of
the individual time series, and averaging these features across the collected
data. We use two scalar features. The first is final accuracy, defined as the
accuracy measured when the automation terminates; it gives an indication of
the accuracy that can be achieved in a reasonable amount of time using a
given segmentation algorithm. In Figure 10 this is simply the last value on
the right hand side of the curves.

The second feature we compute is termed integrated accuracy. Consider
again the time series in Figure 10. The time series on the left clearly indicates
better performance than the time series on the right: it achieves a higher
accuracy in less steps. Observe that algorithms that are performing well tend
to produce curves that increase quickly at first and then gradually level-off;
algorithms that are performing poorly tend to have more gradual, “choppy”
curves. One useful way to reduce these curves to a scalar value is to examine
the area under the curves.

If we expand each time series data so that they are of equal length (in

24

the same way as when computing the time-accuracy profile curves) then
the area under the time series curve is a good indication of the overall
performance of an algorithm. A large area relative to another indicates
that one segmentation algorithm maintains a higher average accuracy than
the other, usually as a result of achieving an accurate segmentation faster
and subsequently maintaining, or slowly improving upon, this segmentation.
Furthermore, this area is bounded by the area of the unit height rectangle
that is the same width as the expanded time series, and can therefore be
easily normalized to the range (0..1).

It is possible to approximate the area under a time series by summation
when the data points for the time series are unit spaced. The data points col-
lected during an automated evaluation experiment are unit spaced: accuracy
is measured after each step in the automation process. The area beneath this
time series can, therefore, be approximated by the sum of all data points in
the series.

We also need to calculate the integrated accuracy feature for the user
experiments so that we can determine how well they correlate with the
automated experiments. This again necessitates determining the area beneath
the time series curves. However, the data points from the user experiments
are non-unit spaced: accuracy is measured at different points in real time, i.e.,
every time the user refines the segmentation by marking additional pixels as
object or background. To approximate the area under these time series using
summation, linear resampling can be used to coerce the series to one that
is unit spaced. It is also possible to approximate the area under non-unit
spaced points using the trapezoid rule for numeric integration [27].

DenotingA(a) the area under the expanded time series a = (a1, a2, . . . , ak),
as computed using one of the above procedures, we define the integrated
accuracy feature as this area A(a) normalized by the area of the minimal unit
height rectangle that encloses these points. For our experiments, we resample
each time series so that all data points are unit spaced, then approximate
the area under the curves using the summation method. In this case, the
integrated accuracy feature I(a) is equivalent to the area under the expanded
time series normalized by the number of data points (i.e., it is the mean of
the expanded time series):

I(a) =
1

k

k∑
i=1

ai (30)

25

time (seconds)

m
e
a
n
 a

c
c
u
ra

c
y

40%

50%

60%

70%

80%

90%

40%

50%

60%

70%

80%

90%

l l

l

l

l

l
l

l
l

l l l l l l l l l l l l

l l

l
l

l
l

l
l l l l l l l l l l l l l l

0 10 20 30 40 50 60 70 80 90 100 110 120

b
o
u
n
d
a
ry

 a
c
c
u
ra

c
y

o
b
je

c
t a

c
c
u
ra

c
y

Algorithm

l BPT

IGC

SIOX

SRG

Figure 11: Mean accuracy over time as measured during the user experiments.

Once the final accuracy and integrated accuracy features for each image
have been computed, they can be averaged across all objects in the dataset
to obtain an indication of the overall performance of the evaluated algorithm.
Furthermore, they can be used to compare the output of the automation
strategies with the user experiments. Section 5.2 uses these scalar features to
investigate how well the four automation strategies approximate a real user.

5.1. Experiments

We evaluated each interactive segmentation algorithm using all four au-
tomation strategies. When computing the time-accuracy profiles and the
aggregate features, each time series is expanded to the maximum number
of steps by duplicating the final accuracy value. The time series values for
each of the non-deterministic automation strategies (strategies 2, 3, and 4) is
averaged across all the repetitions. Figure 11 shows the time-accuracy profiles

26

Step

ac
cu

ra
cy

20%

30%

40%

50%

60%

70%

80%

90%

20%

30%

40%

50%

60%

70%

80%

90%

20%

30%

40%

50%

60%

70%

80%

90%

20%

30%

40%

50%

60%

70%

80%

90%

boundary accuracy

●

●

●

●
●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
●

●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 20 40 60 80 100

object accuracy

●

●

●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 20 40 60 80 100

strategy 1
strategy 2

strategy 3
strategy 4

Algorithm

● BPT

IGC

SIOX

SRG

Figure 12: Mean accuracy over time for each of the automation strategies.

from the user experiments, and Figure 12 shows the step-accuracy profiles for
each of the four automation strategies. Figures 13 and 14 show the average
final accuracy and integrated accuracy features.

Visually comparing the profile curves from strategy 1 with the profile
curves for the user experiment indicates that strategy 1 does indeed give similar
results to the user experiments. Furthermore, we can draw similar conclusions
from the profile curves from strategy 1 as we did from the user experiments.
The strategy 1 profile curves again indicate that the BPT and IGC algorithms
are comparable, both demonstrating the best overall performance. The SIOX
algorithm initially performs better than the SRG algorithm. After about

27

m
ea

n
fin

al
 a

cc
ur

ac
y

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

strategy 1

0.87 0.87
0.73 0.63

0.97 0.97 0.89 0.87

BPT IGC SRG SIOX

strategy 2

0.79 0.82

0.49 0.56

0.94 0.95
0.73 0.81

BPT IGC SRG SIOX

strategy 3

0.84 0.87
0.73 0.62

0.96 0.96 0.91 0.87

BPT IGC SRG SIOX

strategy 4

0.84 0.87
0.74

0.63

0.95 0.96 0.92 0.87

BPT IGC SRG SIOX

boundary accuracy
object accuracy

Figure 13: Mean final accuracy after 100 steps for each of the automation strategies

60 steps the performance of the SIOX and SRG algorithms are comparable.
The SRG algorithm surpasses the SIOX algorithm in terms of boundary
accuracy after about 60 steps, again indicating that the SRG algorithm is
more receptive to iterative refinement.

Visual comparison shows that strategy 2 is less effective that strategy 1
at approximating the results of the user experiments. In particular, the time-
accuracy profile for strategy 2 suggests that the SIOX algorithm consistently
outperforms that SRG algorithm, a conclusion not supported by the user
experiments. Strategy 3 and 4 rectify this, giving the most satisfactory visual
correspondence with the profile curves from the user experiments. The same
conclusions can be drawn from these profile curves as were found in the user
experiments [1].

Figure 13 shows the final accuracy values for each of the strategies. The
results from strategy 1, 3, and 4 largely agree. The final accuracy values for
the BPT and IGC algorithms are comparable. The BPT and IGC algorithms
give higher final accuracy than the SIOX and SRG algorithms. For strategy 3
and 4 the SRG algorithm gives higher final accuracy than the SIOX algorithm.
Again, strategy 2 gives different results, showing the SIOX algorithm to have
higher final accuracy than SRG. The integrated accuracy features in Figure 14
give similar rankings to the final accuracy features.

The reduction in accuracy between strategy 1 and 2 can be attributed
to strategy 1 producing seed points closer to the center of the candidate

28

m
ea

n
ac

cu
ra

cy

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

strategy 1

0.77 0.77
0.55 0.54

0.91 0.91
0.77 0.8

BPT IGC SRG SIOX

strategy 2

0.68 0.69

0.42 0.5

0.87 0.87
0.66 0.75

BPT IGC SRG SIOX

strategy 3

0.75 0.77
0.6 0.56

0.91 0.92 0.83 0.82

BPT IGC SRG SIOX

strategy 4

0.75 0.76
0.6 0.56

0.91 0.91 0.83 0.82

BPT IGC SRG SIOX

boundary accuracy
object accuracy

Figure 14: Mean integrated accuracy for 100 steps for each of the automation strategies

regions than strategy 2; seed points close to the center appear to produce
better results for the algorithms tested than seed points nearer the boundaries.
Similarly, the increased accuracy for strategy 3 and 4 can be ascribed to their
producing many more seed points than strategy 2. Our primary goal, of
course, is not necessarily to create an automation strategy with high accuracy,
but rather one that facilitates a realistic evaluation, the results of which
correlate well with those of the user experiments.

Figure 15 shows the average number of steps executed before the automa-
tion strategy terminated, for each of the segmentation algorithms evaluated.
From the figure, it is clear that first strategy—that of deterministically se-
lecting the centermost candidate pixels for each interaction—is an effective
interaction pattern for the algorithms tested; on average it obtains a more
accurate segmentation with less interactions than the other three strate-
gies. This is somewhat expected, however, since the other strategies are
non-deterministic, and will therefore produce interactions closer to the bound-
aries of the candidate regions. The overlaid bars in Figure 15 show the
confidence intervals for the mean, which were computed using bootstrapping
(N = 1000, p = 0.95). As expected, these are wider for strategy 1, since there
are no repetitions, and therefore less samples.

29

st
ep

s
 u

nt
il

 te
rm

in
at

io
n

0

20

40

60

80

100
strategy 1

BPT IGC SRG SIOX

strategy 2

BPT IGC SRG SIOX

strategy 3

BPT IGC SRG SIOX

strategy 4

BPT IGC SRG SIOX

Figure 15: Average number of steps executed before the automation strategy terminates.

5.2. Correlation and validation

It is difficult to formally compare the time-accuracy profiles from the user
experiments (Figure 11) with those from the automated experiments. This is
due to the difficulty in aligning the time series—such alignment would require
equating effort spent by an automated algorithm with effort spent by a human
user in a meaningful way. The y-axis on the time-accuracy profiles is designed
to quantify this effort. For the user experiments, the actual elapsed time, in
seconds, is a meaningful indicator of effort. For the automated experiments,
however, the number of steps is more appropriate, as each step invokes the
same procedure. To compute a direct correlation between the time-accuracy
profiles for the user experiments and the same profiles for the automated
experiments necessitates aligning the data in some way.

To sidestep the alignment problem somewhat, we can assume that the
amount of effort required by each user interaction should, on average, be
roughly equivalent to the amount of effort required by each algorithmic
interaction if the algorithm is roughly approximating user behavior. This
is a significant assumption, and requires some further justification. First,
note that while users may vary widely in the amount of effort, or markup,
provided per interaction, the average value of this effort should be relatively
stable (by the central limit theorem, assuming the effort-per-interaction
is normally distributed across users). For an automation strategy to be
effective at emulating human interactions it should produce interactions that
closely correspond to those an average user would perform: the average effort-
per-interaction for an automation strategy should closely correspond to the
average effort-per-interaction of a user. From this, we can conclude that if an
automation strategy is effective, then the accuracy profile will, on average,
be well aligned with the user accuracy profile at the interaction (or step)

30

strategy

co
rr

el
at

io
n

0.0

0.2

0.4

0.6

0.8

1.0
boundary accuracy

0.91 0.85
0.95 0.950.9 0.85 0.94 0.94

1 2 3 4

object accuracy

0.89 0.84
0.95 0.960.9 0.85

0.95 0.95

1 2 3 4

Method

Spearman

Pearson

Figure 16: Stepwise mean accuracy correlation between the user experiments and the
automation strategies.

level. A direct comparison between the step-accuracy profiles from the user
experiments and those from each automation strategy will therefore produce
higher correlation values if a given strategy is effectively emulating human
interactions, since the profiles will be better aligned and the accuracy values
at each step will be more similar.

Based on the above, we measured the correspondence between each of the
automation strategies and the user experiments using the correlation between
accuracy measures, taking as observations the mean accuracy value after
each interaction, or step. The correlation was computed based on the first 60
steps only, since the majority of real users provide fewer than 60 interactions
(Figure 9), and the average accuracy for the automation strategies does not
change significantly after this point (Figure 12)6. Any missing values that
arise from either the user or the automation strategy completing before 60
steps were taken to be equal to the final accuracy value.

Figure 16 compares the step-accuracy profile correlation statistics for the
Spearman coefficient and the Pearson product-moment coefficient. It is clear
from the Figure that the difference in correlation between strategy 3 and 4 is
not significant, and that both strategy 3 and 4 correlate better with the user
experiments than strategy 1 and 2.

Another method of examining the correspondence between interactions
provided by real users and those provided by the automation strategies is
to examine the correlation between aggregate features of the profile curves.
Suppose a user is tasked with extracting two separate objects from different

6The extension to all 100 steps gives very similar results.

31

images using a particular segmentation algorithm. Usually, one of these
objects will be more difficult to extract than the other; extracting it will
require more time and more interactions. If an automation strategy is effective
at emulating user behavior, then we would expect the same objects to be
proportionately difficult for the automation strategy.

The previously discussed aggregate time series features—integrated accu-
racy and final accuracy—can be interpreted as being indicative of the difficulty
of a segmentation. High integrated accuracy and final accuracy values indicate
that segmenting a particular image is easier, low values indicate that it is
more difficult. Therefore, the rank correlation over all images between the
features produced by an automation strategy and the user experiments should
be relatively high if the automation strategy is successfully emulating user
interactions.

To perform the comparison, we proceed as follows. First, we compute the
integrated score and final accuracy features for each time series generated from
the user experiments. When several users have segmented the same image
with the same segmentation algorithm, we average the features across the
different users. This gives us two integrated score values (one for boundary
accuracy and one for object accuracy) and two final accuracy values for
each image and algorithm evaluated. We follow a similar procedure for each
automation strategy, this time averaging over runs for the non-deterministic
strategies.

For each algorithm and image pair, the result is a set of four feature
values for each of the automation strategies: mean final boundary accuracy,
mean final object accuracy, mean integrated boundary accuracy, and mean
integrated object accuracy. From this we calculate the correlation between the
automation strategies and the user experiments, for the two integrated score
values and the two final accuracy values. We used two correlation coefficients:
Spearman’s ρ to measure rank correlation, and Pearsons’s product-moment
coefficient to measure linear correspondence.

Figure 17 demonstrates a high rank correlation between aggregate accuracy
features in the user experiments and the automated experiments. Specifically,
when tasks are ranked based on the average final accuracy and integrated
score measures, the ranking produced by the user experiments exhibits a high
correlation with that of the automated experiments. If we relate these scores
to task difficulty (i.e. if we assume more difficult tasks result in lower aggregate
accuracy values) then we can conclude that the real users and the simulated
users generally agree on how difficult a segmentation task is. This correlation

32

strategy

co
rr

el
at

io
n

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

boundary accuracy

0.79 0.78 0.81 0.810.78 0.78 0.82 0.81

0.71 0.72 0.77 0.77
0.66 0.67 0.75 0.75

1 2 3 4

object accuracy

0.74 0.74 0.76 0.760.73 0.73 0.79 0.78

0.79 0.72 0.79 0.78

0.51 0.53
0.68 0.68

1 2 3 4

m
ean

final

Method

Spearman

Pearson

Figure 17: Correlation between aggregate features from the user experiments and each of
the automation strategies.

is evidence that the automation strategies are, indeed, approximating user
behavior in some useful way. The Spearman values are very similar for each
of the strategies, strategies 3 and 4 giving the best overall correlation with the
user experiments for integrated boundary accuracy, integrated object accuracy,
and final boundary accuracy. The Pearson values show that strategies 3 and
4 give the highest linear correlation for all four aggregate features.

Figure 18 shows a scatterplot of the accuracy features from the user
experiments plotted against the same features from the automated experi-
ments. Systematic deviations from the regression line (dashed black) indicate
disagreement between the accuracy values produced by the user experiments
and those produced by the automated experiments. The figure clearly shows
that there are fewer such deviations for strategies 3 and 4 than there are for
strategies 1 and 2: further evidence that the more complex strategies better
approximate real users. This is also supported by the Pearson coefficients in
Figure 17.

6. Conclusion

When introducing a new interactive segmentation algorithm it is important
to be able to compare its performance with the state-of-the-art. In our previous
paper we developed a set of benchmarks and software for supervised evaluation

33

accuracy − user experiments

ac
cu

ra
cy

 −
 a

ut
om

at
ed

 e
xp

er
im

en
ts

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Strategy 1

0.0 0.2 0.4 0.6 0.8 1.0

Strategy 2

0.0 0.2 0.4 0.6 0.8 1.0

Strategy 3

0.0 0.2 0.4 0.6 0.8 1.0

Strategy 4

0.0 0.2 0.4 0.6 0.8 1.0

boundary − m
ean

object − m
ean

boundary − final
object − final

Algorithm

BPT

IGC

SIOX

SRG

Figure 18: Accuracy features for the user experiments plotted against the same features
from the automated experiments. The panels depict the automation strategies from left to
right, and the accuracy features from top to bottom.

of interactive segmentation using user experiments. Carrying out these user
experiments is, however, a time-consuming and labor-intensive exercise, often
prohibitively so.

This paper focused on eliminating the need for user experiments. To
this end, we investigated four strategies for automating the evaluation of
interactive segmentation algorithms. The objective of these strategies is to
simulate interactions that would normally be provided by a human operator
using the ground truth and current segmentation error.

The first of these strategies is a simple, deterministic strategy: it always
produces the same set of interactions given the same segmentation algorithm
and input. The remaining three strategies are non-deterministic, and therefore
also allow evaluating the repeatability of an algorithm. Strategies 3 and 4

34

produce lines and curves instead of simple point interactions, aiming to more
closely approximate the kinds of interactions usually produced by humans.

The experiments demonstrated that the results of the automated experi-
ments are very similar to those of the user experiments. Evaluating the four
segmentation algorithms using strategies 1, 3, and 4 all produced similar
conclusions about the evaluated algorithms, and these conclusions agreed
with the previously conducted user experiments. The correlation between the
user experiments and the automation strategy using both stepwise accuracy
and aggregate features indicated that strategy 3 and 4 are the most effective
at approximating real user input.

Based on this analysis, we recommend using automation strategy 4 for
practical experiments; of the four strategies, strategy 4 produced the time-
accuracy profile curve that had the closest visual correspondence with the
profile curves from the user experiments, and, along with strategy 3, produced
aggregate features that had higher rank correlation with the user experiments.
We recommend using a maximum of 60 steps; overall accuracy does not
vary much after this point, and using too many steps can result in a rather
unrealistic evaluation, since users rarely spend a lot of time correcting minor
errors near the boundary of objects.

If user experiments are feasible, then they are certainly the most effective
way to evaluate interactive segmentation: it is difficult to evaluate any
interactive system without getting feedback from real users. The automation
strategies that we discussed in this paper are perhaps most useful when
used as a preliminary step in an evaluation process. They allow algorithm
developers to experiment with different variants of an algorithm to determine
which is the most effective, without having to re-conduct an entire set of
user experiments each time. Automated evaluation also provides a means for
researchers to determine if a particular approach to interactive segmentation
appears to have practical merit, if it requires further consideration, if it needs
modification, or if it should be abandoned, before expensive user-experiments
are undertaken.

Of course, if they are feasible, user experiments should be performed for
the final evaluation of an algorithm when comparing it against the state-
of-the-art. In their absence, however, an automated evaluation, even if it
is imperfect, will be more informative than no evaluation whatsoever. Our
system enables researchers to perform a useful and informative evaluation of
their algorithms, even when full user experiments are impracticable.

35

6.1. Future work

There are several aspects of the automation algorithms that could be
improved. In particular, for strategy 3 and 4 the generated interactions are
not as smooth as we would expect human interactions to be. This could be
at least partially ameliorated by convolving the generated list of points with
a Gaussian kernel, provided sufficient precautions are taken to ensure the
convolved points do not intersect the set of non-candidate pixels.

We used sum-normalized distances in our a probability mass function for
selecting candidate pixels (Eq. (19)); although this appears to give reasonable
results in practice, alternative mass functions may be worth investigating.
Other possible weighting functions for the shortest path algorithm used by
strategy 4 (Eq. (29)) may also merit investigation.

A method for directly comparing real users interactions and simulated
interactions would undoubtedly simplify any investigation of potential im-
provements to the automation strategies. Developing such a method is,
however, far from straightforward. The user interactions and automated
interactions are both reactive and non-deterministic, which precludes a direct
spatial comparison. It may, however, be possible to compare interactions
based on shape or some other feature. A detailed analysis of user interactions
may provide more insight into how direct comparison may be realized.

Finally, although we use five repetitions to ensure repeatability in our
experiments, it is unclear whether this number is sufficient or necessary.
Analyzing the accuracy variance for increasing repetition counts my help
answer this.

Acknowledgements

This material is based upon the work supported by the European Com-
mission under Contract FP6-027026, K-Space: Knowledge Space of semantic
inference for automatic annotation and retrieval of multimedia content. This
work is supported by Science Foundation Ireland under Grant 07/CE/I1147
(CLARITY: Center for Sensor Web Technologies).

Appendix

The interactive segmentation tool, ground truth dataset, and instructions
for developing plugin modules are available are available on our interactive

36

segmentation website:
http://kspace.cdvp.dcu.ie/public/interactive-segmentation

Software for performing and visualizing an automated evaluation are
available on our interactive segmentation evaluation website:
http://kspace.cdvp.dcu.ie/public/segmentation-evaluation

References

[1] K. McGuinness, N. E. O’Connor, A comparative evaluation of interactive
segmentation algorithms, Pattern Recognition 43 (2) (2010) 434–444.
doi:10.1016/j.patcog.2009.03.008.

[2] J. K. Udupa, Y. Zhuge, Delineation operating characteristic (DOC) curve
for assessing the accuracy behavior of image segmentation algorithms,
Proceedings of the SPIE 5370 (1) (2004) 640–647. doi:10.1117/12.

535808.

[3] J. K. Udupa, V. LeBlanc, Y. Zhuge, C. Imielinska, H. Schmidt, L. Currie,
B. Hirsch, J. Woodburn, A framework for evaluating image segmentation
algorithms, Computerized Medical Imaging and Graphics 30 (2) (2006)
75–87. doi:doi:10.1016/j.compmedimag.2005.12.001.

[4] X. Jiang, C. Marti, C. Irniger, H. Bunke, Distance measures for image
segmentation evaluation, EURASIP Journal on Applied Signal Processing
1 (2006) 290–300. doi:10.1155/ASP/2006/35909.

[5] F. Ge, S. Wang, T. Liu, New benchmark for image segmentation eval-
uation, Journal of Electronic Imaging 16 (3) (2007) 033011. doi:

10.1117/1.2762250.

[6] H. Zhang, J. Fritts, S. Goldman, Image segmentation evaluation: a survey
of unsupervised methods, Computer Vision and Image Understanding
110 (2) (2008) 260–280. doi:10.1016/j.cviu.2007.08.003.

[7] M. Riedl, R. Amant, Toward automated exploration of interactive sys-
tems, in: Proceedings of the 7th International Conference on Intelligent
User Interfaces, 2002. doi:10.1145/502716.502738.

37

http://kspace.cdvp.dcu.ie/public/interactive-segmentation
http://kspace.cdvp.dcu.ie/public/segmentation-evaluation
http://dx.doi.org/10.1016/j.patcog.2009.03.008
http://dx.doi.org/10.1117/12.535808
http://dx.doi.org/10.1117/12.535808
http://dx.doi.org/doi:10.1016/j.compmedimag.2005.12.001
http://dx.doi.org/10.1155/ASP/2006/35909
http://dx.doi.org/10.1117/1.2762250
http://dx.doi.org/10.1117/1.2762250
http://dx.doi.org/10.1016/j.cviu.2007.08.003
http://dx.doi.org/10.1145/502716.502738

[8] C. Foley, A. F. Smeaton, Synchronous collaborative information retrieval:
Techniques and evaluation, in: Advances in Information Retrieval, Pro-
ceedings of the 31st European Conference on Information Retrieval, 2009,
pp. 42–53. doi:10.1007/978-3-642-00958-7_7.

[9] S. Jung, C. Lee, K. Kim, M. Jeong, G. G. Lee, Data-driven user simulation
for automated evaluation of spoken dialog systems, Computer Speech &
Language 23 (4) (2009) 479–509. doi:10.1016/j.csl.2009.03.002.

[10] F. Mao, J. D. Gill, A. Fenster, Technique for evaluation of semi-automatic
segmentation method, Proceedings of the SPIE: Medical Imaging 3661
(1999) 1027–1036. doi:10.1117/12.348496.

[11] E. Moschidis, J. Graham, Simulation of user interaction for performance
evaluation of interactive image segmentation methods, in: Proceedings of
the 13th Medical Image Understanding and Analysis Conference, 2009,
pp. 209–213.

[12] E. Moschidis, J. Graham, A systematic performance evaluation of inter-
active image segmentation methods based on simulated user interaction,
in: Proceedings of the IEEE International Symposium on Biomedical
Imaging, 2010, pp. 928–931.

[13] T. Adamek, Using contour information and segmentation for object
registration, Ph.D. thesis, Dublin City University, Ireland (2006).

[14] Y. Boykov, M.-P. Jolly, Interactive graph cuts for optimal boundary and
region segmentation of objects in N-D images, in: Proceedings of the 8th
IEEE International Conference on Computer Vision, 2001, pp. 105–112.
doi:10.1109/ICCV.2001.937505.

[15] R. Adams, L. Bischof, Seeded region growing, IEEE Transactions on
Pattern Analysis and Machine Intelligence 16 (6) (1994) 641–647. doi:
10.1109/34.295913.

[16] G. Friedland, K. Jantz, R. Rojas, SIOX: simple interactive object extrac-
tion in still images, in: Proceedings of the 7th IEEE International Sympo-
sium on Multimedia, 2005, pp. 253–260. doi:10.1109/ISM.2005.106.

38

http://dx.doi.org/10.1007/978-3-642-00958-7_7
http://dx.doi.org/10.1016/j.csl.2009.03.002
http://dx.doi.org/10.1117/12.348496
http://dx.doi.org/10.1109/ICCV.2001.937505
http://dx.doi.org/10.1109/34.295913
http://dx.doi.org/10.1109/34.295913
http://dx.doi.org/10.1109/ISM.2005.106

[17] S. D. Olabarriaga, A. W. M. Smeulders, Interaction in the segmentation
of medical images: a survey, Medical Image Analysis 5 (2) (2001) 127–42.
doi:10.1016/S1361-8415(00)00041-4.

[18] A. X. Falcão, J. K. Udupa, S. Samarasekera, S. Sharma, B. E. Hirsch,
R. de A. Lotufo, User-steered image segmentation paradigms: live wire
and live lane, Graphical Models and Image Processing 60 (4) (1998)
233–260. doi:10.1006/gmip.1998.0475.

[19] J. Liu, J. K. Udupa, Oriented active shape models, IEEE Transactions
on Medical Imaging 28 (4) (2009) 571–584. doi:10.1109/TMI.2008.

2007820.

[20] D. Martin, C. Fowlkes, D. Tal, J. Malik, A database of Human seg-
mented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics, in: Proceedings of the 8th
International Conference Computer Vision, Vol. 2, 2001, pp. 416–423.
doi:10.1109/ICCV.2001.937655.

[21] F. Ge, S. Wang, T. Liu, Image-segmentation evaluation from the per-
spective of salient object extraction, in: Proceedings of IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2006,
pp. 1146–1153. doi:10.1109/CVPR.2006.147.

[22] R. Fabbri, L. D. F. Costa, J. C. Torelli, O. M. Bruno, 2D Euclidean
distance transform algorithms: a comparative survey, ACM Computing
Surveys 40 (1) (2008) 1–44. doi:10.1145/1322432.1322434.

[23] J. Spolsky, User Interface Design for Programmers, Apress, Berkely, CA,
USA, 2001.

[24] A. Meijster, J. Roerdink, W. Hesselink, A general algorithm for com-
puting distance transforms in linear time, in: Proceedings of the 5th
International Symposium on Mathematical Morphology and its Appli-
cations to Image and Signal Processing, Vol. 18, Springer, 2000, pp.
331–340. doi:10.1007/0-306-47025-X_36.

[25] W. Hörmann, J. Leydold, G. Derflinger, Automatic Nonuniform Random
Variate Generation, Springer, 2004.

39

http://dx.doi.org/10.1016/S1361-8415(00)00041-4
http://dx.doi.org/10.1006/gmip.1998.0475
http://dx.doi.org/10.1109/TMI.2008.2007820
http://dx.doi.org/10.1109/TMI.2008.2007820
http://dx.doi.org/10.1109/ICCV.2001.937655
http://dx.doi.org/10.1109/CVPR.2006.147
http://dx.doi.org/10.1145/1322432.1322434
http://dx.doi.org/10.1007/0-306-47025-X_36

[26] T. H. Cormen, S. Clifford, C. E. Leiserson, R. L. Rivest, Introduction to
Algorithms, 2nd Edition, MIT Press, 2001.

[27] K. E. Atkinson, An Introduction to Numerical Analysis, 2nd Edition,
Wiley, 1989.

40

	Introduction
	Background
	Algorithms
	Evaluation
	Ground truth dataset
	Evaluation benchmarks

	User experiments

	Automation
	Strategy 1
	Strategy 2
	Strategy 3
	Strategy 4

	Evaluation
	Analysis
	Experiments
	Correlation and validation

	Conclusion
	Future work

