New Functional Materials for Fluid Control and Sensing in Microfluidic Devices

Fernando Benito Lopez

CLARITY Centre for Sensor Web Technologies
National Centre for Sensor Research
Dublin City University
14th July 2011, University California Berkeley
A little bit about myself:
National Centre for Sensor Research

- 26 PI, 80 SENIOR RESEARCHERS AND ALMOST 120 POST-GRADUATE STUDENTS, SUPPORTED BY AN ADMINISTRATIVE TEAM OF 16.

- INVESTMENTS AND INCOME SINCE 1999 NOW APPROACHING €100 MILLION.

- 3200 m² WELL-EQUIPPED SPECIALIST LAB SPACE AND OFFICE.

- MULTIDISCIPLINARY COMPOSITION OF THE RESEARCH TEAM: PHYSICISTS, CHEMISTS, BIOTECHNOLOGISTS AND ENGINEERS.
• 5-YEAR, €16.4 MILLION RESEARCH PROGRAM TO DEVELOP NEXT GENERATION SENSOR WEB TECHNOLOGIES WITH SIGNIFICANT ENVIRONMENTAL FOCUS

• BRINGS TOGETHER FUNDAMENTAL MATERIALS SCIENCE, FUNCTIONAL POLYMERS, DEVICE PROTOTYPING, ENERGY MANAGEMENT, ADAPTIVE MIDDLEWARE, WEARABLE SENSORS, DISTRIBUTED ENVIRONMENTAL MONITORING
Direct Sensing vs. Reagent Based LOAC

DIRECT SENSING

OUTSIDE WORLD

SENSOR

SIGNAL

SAMPLE

MOLECULAR INTERACTIONS

LOAC ANALYSER

SAMPLE, REAGENTS, STANDARDS

SOURCE

S

SAMPLE

BLANK

T

REAGENTS

S

DETECTOR

WASTE

REACTION MANIFOLD

SAMPLE
Phosphate Analyser

- GEN1: component cost ca. €2,000 per unit
- GEN2 developed; component cost now < €200 per unit.
MANY PEOPLE, MYSELF INCLUDED, EXPECTED THAT THE ABILITY TO MANIPULATE FLUID STREAMS, IN MICROCHANNELS, EASILY, WOULD RESULT IN A PROLIFERATION OF COMMERCIAL LOC SYSTEMS, AND THAT WE WOULD SEE APPLICATIONS OF THESE DEVICES PROLIFERATING THROUGHOUT SCIENCE. IN FACT, IT HAS NOT (YET) HAPPENED.

EDITORIAL ‘SOLVING PROBLEMS’, GEORGE WHITESIDES
LAB CHIP 10 (2010) 2317-2318
Achieving Scale-up

1. Evolutionary Development, Cost Driven Down, Reliable, Improved Scalability

2. Revolutionary Materials Breakthroughs; Hidden Complexity, Biomimetic Platforms, All Fluid Handling Integrated on Chip, Indefinitely Self-Sustaining

Massively Scaled Deployments of the Future
Use of microfluidics for the solution of problems?

PROBLEM ↔ MICROFLUIDIC TECHNOLOGY

BETTER THAN EXISTING TECHNOLOGY

MARKET → DEVELOPMENT!!!
Disadvantage of Microfluidics

NEW GENERATION OF MICROFLUIDIC DEVICES

ADVANCES IN FUNDAMENTAL MATERIAL SCIENCE

Ionic Liquids

What is an Ionic Liquid (IL)?

• According to current convention, a salt melting below the normal boiling point of water is known as an “ionic liquid”

• The first IL was reported almost a century ago by Walden[1], who protonated ethylamine with nitric acid to yield ethylammonium nitrate

• The number of potential anion-cation combinations available reputedly equate to one trillion (10^12) different ILs[2]

\[
\begin{array}{c}
\text{H} \\
\text{N}^+ \\
\text{H}
\end{array} \quad [\text{NO}_3^-] \quad \text{M.P. 12ºC}
\]

Ionic Liquids

Why are ionic liquids “liquids”?

Typical ions to form ionic liquids

Hydrophilic
Tg -81°C only

Hydrophobic
M.P. of 6.4°C
Ionic Liquids features:

Very low vapor pressure
High thermal stability (~250-400°C)
Variable viscosity
Hydrophobic or hydrophilic

Capable of undergoing multiple solvation* interactions
(excellent solvents for a wide range of inorganic, organic, and polymeric materials)

broad liquid range
renewable & reusable
may be air & water stable; otherwise inert
non-flammable
may be water immiscible

may exhibit BrÖnsted, Lewis, and super-acidity

*Solvation: attraction and association of solvent and solute hydrogen bonding, ion-dipole and dipole-dipole attractions or van der Waals forces
Ionic Liquids applications:

Analytical extractions and separations

Liquid/liquid extraction and liquid phase microextraction

Mobile phase additives in HPLC

Stationary phases in GC

Run buffer additives in CE
Ionic Liquids
Photoswitchable Materials

- Optically actuate between two distinct isomers
- Control physico-chemical properties of system
- Non-contact spatial control of actuation
Solvatochromic effect of spiropyran

Ethanol Acetonitrile DMF Acetone Chloroform Toluene

Thermochromic effect of spiropyran

Multiple Personalities!
Photo-responsive polymer

PROTONATED ISOMER INCORPORATED INTO CROSS LINKED THERMORESPONSIVE HYDROGEL

IRRADIATION OF BLUE LIGHT RESULTS IN CONTRACTION OF HYDROGEL

EXCELLENT SPATIAL RESOLUTION

TECHNICAL ISSUES INCLUDE EVAPORATION OF WATER FROM HYDROGEL

Ionic Liquids - photoresponsive liquids

NEGligible Vapour Pressure, NON-Flammable, ThErmaLly StabLe At High TemPeratures

designer solvents (Viscosity, Polarity, Acidic-Basic, Electrochemical, ...)

ability to tune ion composition

Preparation of photo-responsive ionogel

1- IL + PHOTO-INITIATOR
2- 365 nm IRRADIATION
3- 1mM HCl

R. Byrne, C. Ventura, F. Benito-Lopez et al., Biosens & Bioelectron, 26, 2010, 1392-1398
Multiple valves on one chip, using one actuation source!

Introduction

SWEAT, WHY IS IMPORTANT?

Sweat is naturally generated during exercise.

Monitoring its contents provides very rich information about the physiological condition of the individual.

Rehydration and re-mineralisation

↓

Improve performance and general health

Sweat analysis: identify pathological disorders

- cystic fibrosis*
- information on dehydration
- changes in the concentration of biomolecules and ions.

- hyponatremia (low sodium concentration)

*Common hereditary disease which affects the entire body, causing progressive disability and often early death.
Introduction

PHYSIOLOGICAL SENSORS

Breath rate, heart rate, activity, posture, skin temperature...

LIFESHIRT®

TRAINTRAK™

NIKE-APPLE IPOD SPORTS KIT
Device Evolution

Glucose Detection by Organic Electrochemical Transistor (OECT)

Prototype configuration of the PEDD system with schematic of circuit used in the system.

Wireless Paired Emitter Detector Diode Device as Optical Sensor for Lab-on-a-disc Applications
Conclusions

• MICROFLUIDICS HAS ACHIEVED MUCH IN TERMS OF DELIVERING A BASIC UNDERSTANDING OF FLUID HANDLING AND ANALYTICAL MEASUREMENTS IN MICRO/NANO-CHANNELS.

• THE NEXT PHASE HAS TO DELIVER FULLY INTEGRATED AND FUNCTIONING ‘MICRO-TOTAL ANALYSIS SYSTEMS’ THAT CAN PROVIDE SOLUTIONS WITH REAL SOCIO-ECONOMIC IMPACT.

• VITAL TO COMBINE STRONG APPLIED EFFORT TO PRODUCE NEXT GENERATION PLATFORMS & PROTOTYPES (EVOLUTIONARY ADVANCES) WITH FUNDAMENTAL BREAKTHROUGHS IN MATERIALS SCIENCE (REVOLUTIONARY ADVANCES).
Thanks to.....

Dr. SHIRLEY COYLE, Dr. ROBERT BYRNE
KEVIN FRASER

LARISA FLOREA
CAROLINE BARRY
VINCENZO F. CURTO
MONIKA CZUGALA

Prof. DERMOT DIAMOND

07/CE/I1147
QUESTIONS?