
Development of Inorganic Dyes for the 
Application of Photocatalytic CO2 

Reduction. 

By 

Nadia Coburn, B.Sc. (Hon.) 

  

 

A Thesis presented to Dublin City University 

 for the 

 Degree of Master of Science.  

 

Under the supervision of Prof. J. G. Vos & 

 Dr. Mary. T. Pryce, 

School of Chemiscal Sciences, Dublin City University.  

 2011.  

 



ii 

 

Authors Declaration. 

 

I hereby certify that this material, which I now submit for assessment on the 

programme of study leading to the award of M.Sc. is entirely my own work, that I 

have exercised reasonable care to ensure that the work is original, and does not to the 

best of my knowledge breach any law of copyright, and has not been taken from the 

work of others save and to the extent that such work has been cited and 

acknowledged within the text of my work.  

Signed: ____________          ID No.:     

 

Date:                        _____                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

Acknowledgements 

There are so many people to thank that I am not sure I could do them all justice! But 

here it goes: 

Firstly, I would like to thank Prof. Han Vos for all his time, patience and guidance 

throughout my time here and Dr. Mary Pryce for the opportunity of working with her 

and all of her support and guidance. 

To my parents Patrick and Olive without whose love and support this research would 

not have been possible. Also I would like to thank my aunt May, for I would not be 

the person I am today without her love and guidance (and well for those who know 

her, her good natured stubbornness!) My brothers (Joe and Eugene) and sisters 

(Brenda and Fiona) who have spoiled me rotten for the last 28 years, thank you. 

To everyone past and present from the HVRG: the girls, Lynda, Laura, Yvonne and 

Jane and the boys, Rob, Dan, Bill, Declan, Hamid, Gourmet, Avi and Suraj and of 

course all the of the exchange students. I would especially like to thank Dan and Rob 

for their immense patience and or all of the times spent out of the lab you made my 

time here very special, There are too many times when both of you have helped me, 

to mention. 

Laura you get paragraph of your own, for without the everyday chats, guidance and 

honesty I never would have finished. Thank you, you are truly an amazing person 

and I wish you all the best. 

I would not have been able to get through the ups and downs of life at DCU without 

thanking two very special people, Nora and Sharon, for without the girly nights,  

dance classes, tea, cocktails and advice, life would have been truly gloomy. You two 

are ladies and don’t worry the Wisp and Dice are a coming!  

A thank you to all of the people across science for the help, laughs, parties, tea, 

ranting etc., Jamie, Will, Andy, Fadi, Siabh, Dennis, Dave, Kev, Debbie, Sonia, 

Ross, Ann-marie, David and to anyone I have forgotten please forgive me. 

An infinite number of thank yous to my non DCU friends: Mark, Liz, Dermot, John 

H., Cheryl, Eilish, Eilis, Clare, Aoife, Dave, Mick, Ger, Erin, Orla, John S. and 



iv 

 

Eimear. A special thank you to Erin for all the breakfast and coffee mornings, they 

won’t be forgotten and neither will your dancing skills! 

A million and one thank you’s to John for your love and support. I appreciate 

everything you have done for me over the last while no one has made me happier or 

laugh as much as you (or made me so many cups of tea!).  

To the DKC without you I would never have worked out my creativity. There are too 

many of ye to thank individually so collectively have a big THANK YOU for the 

knit nights, meetings and general excuses to meet for tea and cakes and laughter all 

of you brought to my life. 

Finally I would like to thank the chemistry technicians of DCU (past and present); 

John, Brendan, Damien, Vinnie, Veronica, Mary, Ambrose, Colette, Claire, Susanna 

for without you none of my experiments would ever have come to completion and I 

would have lost my sanity. Your’ patience has no limits and I appreciate everything 

you have done over the years.  

 

 

 

 

 

 

 

 

 

 

 

Be inspired to be brilliant, for we stand on the shoulders of giants, even if we hear 
nothing but the rain. –Anon. 



v 

 

research.  

 

Abstract. 

The work presented in this thesis focuses on the synthesis and characterisation of 

inorganic dyes which may be used as potential catalysts for CO2 reduction. Chapter 

1 is an introductory chapter concerned with introducing the area of CO2 reduction 

and the complexes developed to date.   It begins with a brief overview of the area of 

CO2 reduction before introducing the significant photocatalysts developed to date for 

this purpose. The chapter concludes with an introduction to the photocatalysts 

developed within this 

Chapters 3 and 4 of this thesis describe the synthesis and characterisation of 

mononuclear and dinuclear ruthenium (II) and rhenium (I) complexes using various 

synthetic routes and ligands. The experimental methodology (i.e. the materials, 

methods and instrumentation) used while conducting this research, is described in 

Chapter 2. 

The investigation into the preparation of photocatalysts begins in chapter 3 with the 

development of homonuclear and heteronuclear supramolecular complexes 

containing ruthenium and rhenium metal centers using the “complexes as metals / 

complexes as ligands” approach.  A range of ‘azole’ type bridging ligands 3,5-

bis(pyridin-2-yl)-1,2,4-triazole (Hbpt), 3,5-bis(pyridin-2-yl)-1,2,4-triazole (Hbpzt),  

2,5-Bis(2-pyridyl)-1,3,4-thiadiazole (dptd) were prepared to connect these two 

centres with an aim to study the effect of bridging ligands on catalytic activity. 

Characterisation was carried out by 1 HNMR, and CHN with a discussion of their 

electronic properities included.  

Chapter 4 continues with a description of a synthetic study to prepare 

[Ru(bpy)2(tpphz)Re(CO)3Cl](PF6)2.  Synthesis of the bridging ligand, 

tetrapyrido[3,2-a:2’,3’:3’’,2’’-h:2’’’,3’’’-j]phenazine  (tpphz) is described with 

subsequent novel synthetic routes leading to the development of ruthenium and 

rhenium precursor complexes. Further investigation in the preparation of 

[Ru(bpy)2(tpphz)Re(CO)3Cl](PF6)2 is detailed and characterisation is carried out by 
1 HNMR and IR. 
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Chapter 5 details the analysis of [Ru(bpy)2(bpt)Re(CO)3Cl]PF6 conducted by ion 

chromatography using a Dionex ICS-1500 system for oxalate and formate. System 

installation, calibration and validation are described with respect to the detection of 

oxalate and formate. Irradiation studies of the heteronuclear complex using blue light 

over a twenty four hour period are described. 

Chapter 6 concludes this thesis with a summary of the work completed during this 

research. Possible future work is also described before concluding remarks.  
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Chapter 1: Introduction. 
 

Chapter one acts as an introduction to 

CO2 reduction and the research that 

has been carried out to date. A brief 

discussion of artificial photosynthesis 

is presented, however the main focus 

of the chapter are those systems that 

are prepared to photocatalytically 

reduce CO2.   
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Chapter  1 – Introduction. 

 1.0 Introduction 

 

One of the greatest challenges facing our generation, is the reduction of greenhouse 

gases (GHG) in our atmosphere, thereby reducing the effect of climate change. As the 

world population grows, the demand for energy production increases, releasing yet 

more GHG and directly contributing to global warming.  To combat this, scientists 

around the world are working together to locate alternative fuel sources and to reduce 

carbon dioxide emissions. CO2 accounts for the largest share in the worlds GHG 

emissions1 2, inspiring scientists to inexpensively reduce CO2 to useful organic 

compounds. From this view point, the research reported here, was undertaken to 

prepare a series of transition metal complexes that would photocatalytically reduce 

CO2.  

Within the last twenty years a great deal of time and effort has been employed into 

the development of artificial systems that have the ability to reduce CO2. Research 

has mainly been divided into type I and type II catalysts: 

Type I catalysts: Use a biomolecular or supramolecur approach to CO2 

reduction.  

Type II catalysts: Are comprised of one single compound, which acts as both 

the photosensitiser and the catalytic centre for reduction. 

 

As the body of work reported here deals with artificial photocatalytic systems, these 

systems will be described in detail in the following subsections. The following 

section describes the initial research into the development of photocatalysts for CO2 

reduction.  
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Chapter  1 – Introduction. 

1.1 Artificial Photosynthesis 
 

The sun delivers ~ 120,000 TW of energy to the earth’s surface on average per 

second, the amount of energy that could potentially be harnessed is 4 times that of the 

current global energy requirement.3As current solar energy conversion technologies 

cannot compete with the energy generated from fossil fuels, scientists have turned to 

systems like artificial photosynthesis as a method of alternative energy production. 

Artificial photosynthesis is a direct pathway to produce fuel from carbon dioxide and 

water using solar energy, in an integrated system without the use of charge 

carriers.4, ,5 6 The main role of research into this area is to learn from the processes 

occurring in green plants and algae and to reproduce or ‘mimic’ this transisition to 

produce energy in a form that can be utilised in our everyday life. This system also 

has the added advantage of reducing the amount of CO2 in our atmosphere. 

 Figure 1.1 below shows the overview of photosynthesis, as shown this can be broken 

down into light and dark reactions (Calvin cycle). The light reactions are governed by 

photosystem I and photosystem II mediated by an electron transport chain, producing 

O2 from H2O.4,5,6 The energy produced from the light reactions is subsequently 

consumed by the dark cycle where CO2 is fixated. As CO2 is the main focus of this 

thesis only the dark reaction will be discussed further.  

 

Figure 1.1 General scheme of photosynthesis occurring within a chloroplast. 
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Chapter  1 – Introduction. 

1.1.1 Dark Reactions – The Calvin Cycle. 

Dark reactions deal predominately with carbon dioxide fixation and reactions that 

occur within the Calvin cycle where rubisco (Ribulose-1,5 -biphosphatecarboxylase: 

oxygenase) is the most abundant enzyme of the biosphere7. In 1989 a breakthrough in 

the structural elucidation of rubisco8 led to two decades of further research into 

improving the catalytic efficiency of the enzyme by genetic 

engineering.9,10,11,12,13,14,15,16,17,18 In 1996, T. J. Andrews published an article in 

Nature entitled “The Bait in the Rubisco Mousetrap” 19 which describes the unusual 

activation mechanism of rubisco in the presence of CO2 as described in Figure 1.2 

below. Figure 1.3 that follows shows the structure of the metal containing active site 

of the rubisco structure.  

 

Figure 1.2: Activation mechanism of rubisco in the presence of CO2. 
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Chapter  1 – Introduction. 

 

Figure 1.3: Structure of the metal containing segment of rubisco. 

Rubisco is  an enzyme consisting of eight large subunits (52,000 Mr) containing the 

active sites as depicted in Figure 1.2 along with eight smaller subunits of  13,000 Mr.  

As shown in Figure 1.3, carbon dioxide is bound in the form of a carbamate to the ε- 

amino group of lysine located within a cofactor attached to the protein. The cofactor 

then allows for further reaction with the active sites containing the divalent Mg2+. In 

1996 T.C. Taylor et al. reported that this carbamato ligand was found to have 

mondentate coordination, while the magnesium ion prefers to be penta-coordinated in 

substrate containing structures and octahedral coordination when substrate free.20 

CO2 fixation is then completed by a carbamylation reaction of lysine 201 converting 

a cationic side chain to an anionic one. More current research within this area has 

shown that crystal structure site-mutagenesis have met with limited success on  

catalytic activity and research has currently moved to bioselection as an alternative 

random mutagenic approach21 along with subunit loop alterations 22 with the aim of 

increasing catalytic activity.  
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Chapter  1 – Introduction. 

1.2 Photocatalytic CO2 Reduction 
 

Artificial photocatalytic systems that use light energy to reduce CO2 are the main 

focus of this thesis and will be discussed in detail. These systems in principle consist 

of:  

 A Photocatalyst: This contains the light harvesting species and the catalyst 

that will reduce CO2. 

 An electron relay : This acts as a mediator and is typically an iodide/triiodide 

species 

 A sacrificial donor: typically triethylamine. 

Typically transition metal complexes are reported for use23 within these artificial 

systems as they have long lived excited states, which are capable of electron transfer, 

and have the ability to absorb light in the visible range.25 Development of these 

systems is complex as the reduction of carbon dioxide to form formate, carbon 

monoxide or methanol has a number of difficult scientific challenges due to the 

stability of CO2 as the most oxidized carbon compound.24 A number of 

considerations must be taken into account in order to develop an effective system, 

which has the ability to reduce CO2 photocatalytically.  

1.2.1 Thermodynamic / Kinetic Considerations 

Kinetically there is an excess of energy produced or an ‘overvoltage’ during a one 

electron reduction from CO2 to CO2
·- due to the structural differences between linear 

CO2 and bent CO2
·-.25 Thermodynamically, the high reduction potential required for 

the one electron activation of CO2 (-1.9 vs. NHE), is not only unfavorable but also 

produces the unstable CO2
·-. This poses a challenge that may be overcome by 

introducing a multi electron transfer into the reduction of CO2. By introducing a step 

by step reduction the amount of energy required is reduced making the reduction of 

CO2 more practical. 
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Chapter  1 – Introduction. 

Figure 1.4 below details the redox reactions and the reduction potentials for these 

reactions at pH 7 at 25°C.26 These two electron reductions are shown to be more 

favorable at a low pH becoming less favorable then H2O reduction above pH 6.5. 

This is described in an experiment carried out by Fujita et al. shown in Figure 1.5 

below where the reduction potentials are shown against varying pH. Inflections were 

observed at the pKa of the carbon dioxide oxidant (6.3 and 10.5) and of the formate 

product (3.5). 

CO2 + 2H+ + 2e  HCOOH E° = -0.61 V (Eqn. 1) 

CO2+ 2H+ + 2e  CO + H2O E° = -0.53 V (Eqn. 2) 

CO2+ 4H+ + 4e  C+ 2H2O E° = -0.20 V (Eqn. 3) 

CO2+ 4H+ + 4e  HCHO + H2O E°= - 0.48 V (Eqn. 4) 

CO2+ 6H+ + 6e  CH3OH + H2O E° = -0.38 V (Eqn. 5) 

CO2+ 8H+ + 8e  CH4 + 2H2O E°= -0.24 V (Eqn. 6) 

Figure 1.4: Redox potentials vs. NHE for the multi electron reduction of CO2 at pH 7 

/ 25°C.27 

 

Figure 1.5: Shows the two electron reduction potentials as a function of pH for 
carbon dioxide to carbon monoxide, carbon dioxide to formic acid and hydrogen ion 
/water to dihydrogen.  
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Chapter  1 – Introduction. 

When taking into consideration the equations in Figure 1.4 above, the stable reduction 

products of CO2, CO (-0.53 V eqn 2) and formate (-0.61 V, eqn 1) occur at much 

lower potentials than the one electron reduction of CO2 (-1.9 V) This reduces the 

amount of energy required at each step indicating that a multi electron reduction route 

is more viable for CO2 reduction, and must be considered during the development of 

catalysts for this purpose. 

 

 The same considerations apply to photochemical CO2 reduction, the strong reducing 

agents that are required to reduce carbon dioxide to CO2
·- are difficult to obtain via 

photochemical methods. Generally photochemical electron transfer is a one electron 

process; a catalyst must be employed here to facilitate a multi-electron reduction of 

CO2, in addition to the photosensitiser. 

 

1.2.2 Excited State Electron Transfer Considerations 

 

Electron transfer is of vital importance in these systems as the photosensitiser has to 

be regenerated to its ground state after excitation, as well as electron transfer to the 

catalytic center. This occurs via a bimolecular approach from an independent 

sensitiser or covalently within a supramolecular complex and the understanding of 

electron movement is crucial.  

 

The two main types of electron transfer are oxidative and reductive quenching 

depending on whether an electron is donated (oxidative) from the excited state or 

accepted (reductive) from the substrate (quencher). Figure 1.6 below details examples 

of electron transfer pathways under discussion.  
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Chapter  1 – Introduction. 

*RuL3
2+ + A  RuL3

3+ + A-    (eqn. 1) 

*RuL3
2+ + D  RuL3

+ + D+     (eqn. 2) 

  RuL3
3+ + D  RuL3

2+ + D-    (eqn. 3) 

 

Figure 1.6: Shows the oxidative and reductive quenching equations as described by 

E. Fujita.  Where A = strong reducing agent and D = sacrificial donor.  

 

As mentioned previously strong reducing agents are required to reduce CO2 to CO -, 

here oxidative quenching forms RuL3
3+ (a strong oxidant, eqn. 1) while reductive 

quenching forms RuL3
+ (a strong reductant, eqn. 2). The sacrificial agent D (eqn. 3) 

is needed to reduce the strong oxidant RuL3
3+. Regeneration to the ground state is 

carried out by the sacrificial donor D, most commonly being triethylamine (TEA), 

nitilotriethanol (TEOA), ascorbic acid (H2A) and ethyenediaminetetraacetate 

(EDTA).  This reduction and regeneration process introduced here is employed in the 

photocatalytic systems under discussion within this thesis and will be discussed in 

subsequent sections within specific systems.   

 

1.2.3 Mechanistic Considerations 

 

The mechanism of CO2 reduction is still under investigation in most systems that 

have previously been prepared. Most of these difficulties arise as the reduction of 

CO2 can occur via two pathways as shown below, and are governed by the route that 

CO2 takes when introduced to the catalyst. 

 

1. Oxidative addition:  This involves the addition of the neutral CO2 ligand to 

M(I)L , oxidising the metal by 2e- to form a  metallacarboxylate M(III)L(CO-). 

The formation of the carboxylate species allows for stabilization of the 

reduced moiety, which further reacts with H+ to form M(III)L, CO and OH-, as 

shown in equations 1 and 2.28 
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Chapter  1 – Introduction. 

M(I)L + CO2  M(II)L(CO2
-)  M(III)L(CO2

2-)    (eqn 1) 

M(III)L(CO2
2-) + H+  M(III)L(-OCOH)  M(III)L+ CO + OH-   (eqn 2) 

 
 

2. CO2 Insertion:  Here CO2 “inserts” itself between a metal hydride bond 

causing the formation of a formato complex. This insertion is kinetically 

favoured over the formation of the carboxylate species.29,30 

 

M(III)(H-) + CO2   M(III)L(-OCOH)  M(III)L + HCOO-    (eqn 3) 

 

These reaction pathways as mentioned above, were described by Fujita et al.  as 

shown in Figure 1.7 below. 

 

 

Figure 1.7: Possible CO2 reduction pathways as described by Fujita et al. 

 

Taking these considerations into account many photocatalytic systems have been 

developed with one of the above methods in mind. The mechanistic advancements 

will be shown per individual catalyst as follows, which will be divided into type I and 

type II as most recently described by Morris et al. 31  

 

 

10 
 



Chapter  1 – Introduction. 

1.3 Type I Catalysts 

 

Morris et al.  describe type I catalysts as a photosensitized approach to CO2 reduction 

using either a bimolecular process or a supramolecular complex.  The bimolecular 

approach is described in Figure 1.8 below. 

 

P + hν  P*          (1) 

P* + Et3N  P- + Et3N·+       (2) 

P- +cat  P + cat-        (3) 

Cat- + CO2  cat + products      (4) 

Et3N·+ +Et3N  Et3NH+ + Et2NC*HCH3    (5) 

Et2NC*HCH3 + P (or cat)  Et2N+ = CHCH3 + P- (or cat-) (6) 

 

Figure 1.8: Equations for the bimolecular process for CO2 reduction. 

 

In this process a molecular light absorber (P) is promoted to its excited state (P*) (eq 

1). This then undergoes reductive quenching (as described previously in section 1.2) 

by a sacrifcial donor (D) to obtain the reduced sensitizer (P-) and oxidized donor 

(D·+) (eq 2) electron transfer then occurs from the reduced sensitizer (P-) to the 

catalyst (eq 3) where a reduced active site is generated (one electron reduced species 

OER) so CO2 reduction may occur (eq 3 + 4).  

 

Equations 5 and 6 above show the ability of the amine sacrificial donor to undergo 

hydrogen abstraction and radical rearrangements that can produce a carbon centered 

radical species. This species is known to have the ability to reduce a second 

photosensitiser.32  Tables 1.1 and 1.2 below describe a series of photocatalytic 

experiments carried out using type I catalysts. However catalytic systems based on 

this approach are known to have problems with the selectivity of products formed and 
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Chapter  1 – Introduction. 

the efficiency of CO2 reduction due to competing reaction of hydrogen evolution 

from the intermediate complexes. 33 Tables 1.1 and 1.2 that follow describe the 

photocatalysts under discussion in detail in the following subsections.  

 

 Photosensitiser Catalyst Reductant Product Φmol 

Einstein-1 

Ref 

1 [Ru(bpy)3]2+ Co2+/bpy TEA CO, H2,  27 

2 [Ru(bpy)3]2+ Co2+/Me2phen TEA CO, H2  0.012 (CO) 

 0.065 (H2) 

34 

3 [Ru(bpy)3]2+ [Ru(bpy)2(CO)(H)]+ TEOA  HCOO- 0.15 35 

4 [Ru(bpy)3]2+ [Nicyclam]2+ HA CO, H2 0.001 (CO) 36, 37 

5 [Ru(bpy)3]2+  [NiPr-cyclam]2+ HA CO, H2 0.005 (CO) 38 

6 [Ru(bpy)3]2+  [Ru(bpy)2(CO)2]2+ BNAH HCOO-, CO 0.03(HCOO-) 

0.15 (CO) 

39, 

40,41 

7 [Ru(bpy)3]2+ [Ru(bpy)2(CO)2]2+ TEOA HCOO- 0.14 39,40, 

41 

8 p-Terphenyl [Cocyclam]3+ TEOA CO,HCOO-, 

H2 

0.25 (CO + 

HCOO-) 

42, 43 

9 p-Terphenyl [CoHMD]2+ TEOA CO,HCOO-, 

H2 

- 42, 44 

10 Phenazine Cocyclam3+ TEOA HCOO- 0.07 45 

 

Table 1.1: Summary of Type I catalyst experiments for CO2 reduction via bimolecular 

process, where  

TEOA= triethanolamine,, TEA = triethylamine, bpy =2,2’-bipyridine, Me2phen = 

2,9-Dimethyl-1,10-phenanthroline, BNAH = 1-benzyl-1,4-dihydronicotinamide,  

HA = ascorbic acid, cyclam = 1,4,8,11-tetraazacyclotetradecane and Pr-cyclam,6-

((NR)pyridin-4-yl)methyl-1,4,8,11-tetraazacyclotetradecane where R = p-

methoxybenzyl and benzyl.  
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 Compound Reductant Product Φmol Einstein-1 TNco Ref 

1 Ru(mfibpy)Re BNAH  -  46 

2 Re(mfibpy)Ru BNAH  -  46 

3 b2Ru-Re BNAH  -  46 

4 d2Ru-Re BNAH CO 0.120  46 

5 tfbRu-Re BNAH  -  46 

6 RuRe3 BNAH CO 0.093  46 

7 Ru(phen)2(phen-

cyclam-Ni) 

ascorbate CO 0.09a 

(microliters) 

 47 

8 Ru2Re BNAH CO - 110b 61 

9 RuRe2 BNAH CO - 190b 61 

10 RuC3(OH)Re BNAH CO - - 62 

11 RuC2(OH)Re BNAH CO 0.13b 180 62 

12 RuC4(OH)Re BNAH CO 0.11b 120 62 

13 RuC6(OH)Re BNAH CO 0.11b 120 62 

 

Table 1.2: Summary of Type I catalyst experiments for CO2 reduction via bimolecular 
process, where  
BNAH = 1-benzyl-1,4-dihydronicotinamide 
mfibpy =4-methyl-4’-[1,10]phenanthroline-[5,6-d]imidazol-2-yl)bipyridine 
a = microliters of CO not Φmol Einstein-1 
b =  calculated on complex concentration. 
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1.3.1 Tetraaza-macrocycles ( Cyclams) 

 

Research into the use of cyclams, in the development of photocatalysts for CO2 

reduction, initially used the bimolecular approach discussed previously, using 

[Ru(bpy)3]2+,36, , ,37 38  p- Terphenyl42,  43 and phenazine as sensitizers. In 1990 Craig et 

al.  reported the use of [Ni(14-aneN4)]2+ and [Ni(12-aneN4)]2+ (Figure 1.9 below) to 

investigate catalytic ability, as previous investigations by  Sauvage 48,49  indicated a 

high selectivity for the electrochemical reduction of CO2 over that of water. 

 

 

 

Figure 1.9: Structures of [Ni(14-aneN4)]2+ and [Ni(12-aneN4)]2+ investigated by 

Craig et al. 33 

Photochemical studies by Craig of the 1,4,7,10-tetraazacyclotetradecanes confirmed 

that these complexes have the catalytic ability to reduce carbon dioxide, in the 

presence of a [Ru(bpy)3]2+ sensitizer with H2 as a minor product. These complexes 

displayed interesting differences during photochemical experiments; the [Ni(12-

aneN4)]2+ produced CO and formate as expected, while the [Ni(14-aneN4)]2+ 

produced only CO. This was explained by the structural differences of the two 

complexes with a view to further flash photolysis studies to determine the reason for 

these differences.    

That same year Kimura et al. 50 reported the preparation of a 1,4,8,11-

tetraazacyclotetradecane covalently bound to a ruthenium bipyridine moiety as shown 

below in Figure 1.10. However this was found to have limited catalytic activity due to 
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the configuration of the Ni(cyclam) unit and the rapid dissociation of the Ru(bpy)2 

moeity upon irradiation.51 This led to the development of the supramolecular 

complex, ([Ru(phen)2(phen-cyclam-Ni)(CIO4)4].2H2O)  illustrated in Figure 1.11 

below, to inhibit the photolability of the ruthenium sensitizer and increase catalytic 

activity.  

 

Figure 1.10: Preparation of the supramolecular complex [ Ru(II) (bpy)2(bpy-cyclam)Ni(II)] ( 

Cl04)4.2H20(3) via[ Ni(II) cyclam] (1) and [ Ru(bpy)2(bpy-H2cyclam2+)](Cl04)4.3H2O.50 
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Figure 1.11: Preparation of the supramolecular complex [Ru(phen)2(phen-cyclam-

Ni)(CIO4)4].2H2O from the Ni(II) cyclam ligand (1) and Ru(phen)2(phen-cyclam-

H2)(ClO4)4.3H20 (2).  

 

Subsequent photochemical studies of [Ru(phen)2(phen-cyclam-Ni)(CIO4)4].2H2O 

using [Ru(phen)3]2+ and [Ni(cyclam)]2+ as a reference system, displayed increased 

stability of [Ru(phen)2(phen-cyclam-Ni)(CIO4)4].2H2O over the reference system 

and the previous bipyridine analogue ([Ru(bpy)2(bpy-cyclam)Ni](C104)4.2H20) 

while prolonged irradiation in the presence of CO2 showed increased CO formation 

over the previous reported systems in conjunction with increased selectivity. 51 The 

small amount of CO produced was reportedly due to the hindered access of CO2 to 

the cyclam catalytic site. [Ru(bpy)2(bpy-cyclam-Ni)(CIO4)4].2H2O  because of steric 

hindrance, formed from the trans I configuration38 while [Ru(phen)2(phen-cyclam-

Ni)(CIO4)4].2H2O retained the more usual trans II configuration. However the 

emission lifetime of the Ru(phen)2 moiety was found to be too short to allow the 

reductive quenching of the excited state which led to the preparation of the 

supramolecular type I catalyst [Ru(bpy)2(4-((4-methylpyridinium-l-yl)methy1)-4’-

methyl-2,2’-bipyridine)](ClO4)3 shown in Figure 1.12 below.  
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Figure 1.12: Structure of [Ru(bpy)2(4-((4-methylpyridinium-l-yl)methy1)-4’-methyl-2,2’-

bipyridine)](ClO4)3. 

During the photochemical measurements of [Ru(bpy)2(4-((4-methylpyridinium-l-

yl)methy1)-4’-methyl-2,2’-bipyridine)](ClO4)3, the photodissociation of the Ru(bpy)2 

moiety was again observed along with increasing CO formation upon the exchange of 

the methyl group on the bipyridine ring with the more electron withdrawing p-

methoxybenzyl group and benzyl groups respectively, though further research in to 

these systems by Kimura has yet to be reported. 

The research of cyclams as potential catalysts for CO2 reduction was also reported by 

Futjita et al. with both Ni52 and Co53,54,55 ,56centers. These systems were similar to 

that of Kimura et al. but Fujita investigated the effect on bimolecular quenching52 on 

the Ni cyclam unit by ligand exchange , before moving on to the development of Co 

cyclams and further Co macrocycles. 

Fujita et al. investigated the use of cobalt macrocycles as stabilizers when using p-

terphenyl as a sensitizer for CO2 reduction. Previously Matsuoka et al.43, ,54 57 had 

reported the use of p –terphenyl (TP) to p-sexiphenyl as sensitizers during the 

photoreduction of CO2 to formate, though a competing photo-Birch reduction of the 

TP caused loss of photocatalytic acitivity of the TP rendering it useless. Fujita hoped 

to increase the amount of formate formed (and the amount of CO2 reduced) due to the 

stabilization of the TP by rapid electron transfer from the TP radical anion to the 

macrocycle. Investigation showed the increased yield of formate from 7.2 % to 25 % 

by using the macrocycle and a tertiary amine as a sacrificial donor.  
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Fujita et al. also studied a series of 14-membered macrocycles for the factors 

governing the binding of CO and CO2. Here Fujita reports the importance of back 

bonding upon the attachment of CO to the square planar low spin d8 cobalt (I) center, 

which was identified by a decrease of CO stretching frequencies as binding constants 

increase. Charge transfer from cobalt to CO is also mentioned as an important factor 

in the stabilization of the CO adducts formed during CO2 reduction. This paper led to 

further research into the mechanisms of CO2 reduction for macrocycles, which are 

still not fully understood.  Figure 1.13 describes the mechanisms researched so far for 

CO2 reduction by metaltetraaza-macrocycles described by Morris et al.   

 

Figure 1.13: Proposed mechanisms for CO2 reduction for metal metaltetraaza-
macrocycles. 
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1.3.2 Supramolecular Complexes 

Research into the development of supramolecular complexes for CO2 reduction i.e., 

attachment of a sensitizer to a catalytic center capable of CO2 reduction, was 

conducted with the premise of increasing the efficiency of excited- state electron 

transfer between the donor (sensitizer) and acceptor (catalyst) thereby increasing the 

amount of CO2 reduced. Table 1.2 on page 13 has a brief summary of supramolecular 

photocatalysts.  It was suggested that a supramolecular complex based on this design 

would have the following benefits:59 

 

1. Efficient formation of the one electron reduced species (OER) due to rapid 

quenching of the donor excited state by a sacrificial donor. 

2. Efficient reduction of CO2 adducts. 

3. Rapid loss of the monodentate ligand from the OER and its rapid reaction 

with CO2. 

4. Efficient reproduction of the parent ligand –complex by re-coordination of 

the ligand to the rhenium center after CO formation.  

 

As previously discussed, the supramolecular complexes containing cyclams by 

Kimura and Fujita, showed increased stability and turnover numbers. Complexes 

containing rhenium as a catalytic center have been investigated by Ishitani et al. over 

recent years. 58, 59, 60 Examples of the Ru(II)- Re(I) systems investigated are shown in 

Figure 1.14 below. 
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Figure 1.14: Supramolecular complexes studied by Ishitani et al.  

  

Photocatalytic experiments of the heterogeneous systems described above in Figure 

1.14 and Table 1.2, (tfbRu-Re, b2Ru-Re and d2Ru-Re), where shown to have efficient 

quenching of the Ru moiety in the presence of BNAH (1-benzyl-1,4-

dihydronicotinamide) though no quenching was observed in the presence of TEA.46   

In the case of  tfbRu-Re and b2Ru-Re the OER formation was found to be 

endothermic  ((ΔG ) +0.55 and +0.05eV respectively,) inhibiting the formation of the 

OER species, however the tfbRu-Re complex produced a small amount of CO. 

 

These photocatalytic experiments also indicated the importance of the bridging ligand 

chosen to covalently bind the sensitizer to the catalytic center. For the complexes 

Ru(mfiby)Re and Re(mfibpy)Ru (Figure 1.14) photocatalytic ability was low. 

However strong electronic communication between the sensitizer and catalytic center 

was indicated to decrease photocatalytic activity but maintain rapid electron transfer, 
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concluding that communication between the two moieties is essential but a slow 

transfer rather than a rapid transfer is required, as reaction of the catalytic site with 

CO2 is slow.45  

 

Using this information Ishitani et al. in 2008 61 further investigated the effect of  a 

bridging ligand and rates of electron transfer between the Ru(II) and Re(I) centers, 

using tris[(4′-methyl-2,2′-bipyridyl-4-yl)methyl]-carbinol as described in Figure 1.15 

that follows. This allowed for the study of trinuclear supramolecular complexes, 

using either two Ru centres and one Re centre or one Ru centre and two Re and the 

effects of this structure on catalytic ability under visible irradiation. Turnover 

numbers (TNco) for Ru2LRe and RuLRe2 were calculated as 110 and 190 

respectively based on complex concentration. These experiments were repeated using 

corresponding mononuclear complexes to deterimine catalytic efficiency for example 

for Ru2LRe (0.05mM, TNco:110) , [Ru(dmb)3]2+ (0.05 mM) and [(dmb)-Re(CO)3Cl] 

(0.025 mM) (TNco:55) were used. These experiments showed increased CO 

formation for the trinuclear complexes with RuLRe2 showing the most catalytic 

activity. As this complex has one sensitizer to two catalytic sites, this appears to 

confirm that a slow electron transfer to the catalytic site is preferred for CO2 

reduction to be efficient. 

 

 

Figure 1.15: Diagram of the trinuclear supramolecular structures investigated by 

Ishitani et al. 
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Most recently in 2009 Ishitani et al. investigated this theory further using 1,2-bis(4’-

methyl-[2,2’]bipyridinyl-4-yl)-ethane (MebpyC2H4Mebpy), 1,4-bis(4’-methyl-

[2,2’]bipyridinyl-4-yl)-butane (MebpyC4H8Mebpy), and 1,6-bis(4’-methyl-

[2,2’]bipyridinyl-4-yl)-hexane (MebpyC6H12Mebpy) as shown in Figure 1.16 

below.62 

 

Using these bridging ligands, structural rigidity is reduced allowing free rotation 

around the alkyl chains, in theory providing a less inhibited catalytic site for the 

attachment of CO2. However RuC2Re was found to have the best catalytic efficiency 

producing a turnover number of 180 while RuC4Re and RuC6Re yielded turnover 

numbers of 110 CO, similar to that of the reference complex RuC3(OH)Re. This 

increase in catalytic activity was due to the weak interaction between the Ru (II) and 

Re (I) centers observed only in the RuC2Re complex, resulting in increased reductive 

quenching by BNAH and subsequently increased CO2 reduction. Research within this 

area is ongoing as the mechanism for CO2 reduction using supramolecular complexes 

is still under investigation.   

 

 

 

Figure 1.16: Structures of Re(II)-Re(I) complexes using MebpyC2H4Mebpy, 

MebpyC4H8Mebpy, MebpyC6H12Mebpy and corresponding alcohol (1,3-bis(4_-

methyl-[2,2_]bipyridinyl-4-yl)-propan-2-ol ) as bridging ligands.62  
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1.4 Type II Catalysts 

Type II catalysts, as described by Morris et al., are those where one single compound 

acts as both the photosensitiser and the catalyst. Here the necessity for an electron 

mediator is negated as the excited photocatalyst (Pcat*) is reduced by an amine donor 

(Et3N). This reductive quenching occurs in the same manner as described for type I 

catalysis in section 1.3 above. The Pcat- now in its active state can react with CO2 as 

shown in equations 10,11 and 12 below. During type II catalysis the oxidized amine 

donor (Et3N·+) is capable of further reactions to form another reduced catalyst 

allowing for further reaction with CO2 (eqn 13 and 14). 

 

Pcat + hν  Pcat*         (eqn 10) 

Pcat* + Et3N Pcat- + Et3N·+   (eqn 11) 

Pcat- + CO2 Pcat + products        (eqn 12) 

Et3N·+ + Et3N Et3NH + EtNC·HCH3  (eqn 13) 

EtNC·HCH3 + Pcat  Et2N+= CHCH3 + Pcat- (eqn 14) 

Figure 1.17: Equations describing type II catalysis. 

 

Compounds that have been reported for type II catalysis for CO2 reductions are 

metallomacrocycles and mononuclear complexes containing Co, Ru and Re metal 

centers. These compounds will be discussed in the following sections. Mechanistic 

details for CO2 reduction of these compounds are still under investigation and will 

not be discussed in detail. Table 1.3 that follows gives a brief overview of the 

compounds investigated.63, 64, 65 
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 Compound Reductant Product TNco Ref 

1 [CoIITpp] Et3N CO ,HCO2
- >300 63 

2 [CoIITFPP] Et3N CO ,HCO2
- >150 63 

3 [CoIIT3CF3PP] Et3N CO ,HCO2
- >150 63 

4 [CoIITF5PP] Et3N CO ,HCO2
- >150 63 

5 [FeIIITM2PyP] Et3N CO ~ 70 64 

6 [CoIITTP] Et3N CO ,HCO2
- 3.1a 65 

7 [FeIITTP] Et3N CO ,HCO2
- 2.1a 65 

 
Table 1.3: Summary of Type II catalyst experiments for CO2 reduction where: 
A = mmolL-1 CO, Et3N = triethylamine, TPP = tetraphenylporphyrin, TFPP = TPP 
containing a 3-F group, T3CF3PP =TPP containing a 3-CF3 group,TF5PP = TPP 
with a perflourinated group. CoTTP = (cobalttetra-m-tolylporphyrin). 

 

1.4.1 Metallomacrocycles. 

A number of metallomacrocycles were investigated for CO2 reduction including 

corroles, corrins, porphyrins 63,64 and pthathocycanies containing iron and cobalt 

centers as depicted in Figure 1.18. The reason for such interest in this area is due to 

the wide visible spectral absorption displayed by these macrocycles and the ability to 

tune these bands by the addition of differing metals within their structure. These 

macrocycles proceed via a stepwise reduction to their active redox states, allowing for 

the stepwise reduction of CO2 accounting for the thermodynamic considerations 

mentioned earlier in section 1.2.   
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Figure 1.18: Metallomacrocycles investigated for CO2 reduction  where MP = 
metalloporphyrin, MN = metallocorrin, MPc = metallophthalocyanine, MC = 
metallocorrole.  

1.4.1.1 Metalloporphryins. 

Cobalt porphyrins (CP) and Iron porphyrins (FeP) have been reported to reduce CO2 

in homogenous solutions.63, ,  64 65 Closely related structurally to cyclams and 

tetrazamacrocycles, the rate of formation of CO is also strongly related to ligand 

structure and hence the steric effects of CO2 attachment that were problematic for the 

previous macrocycles are also a problem for metalloporphyrins. Generally porphyrins 

reduce CO2 in the active redox state of zero, which is obtained by either 

photochemical or chemical radiation techniques.31, , ,  63 64 65 Prolonged photolysis often 

shows increasing CO production over time with the eventual degradation of the 

photocatalyst.63, ,64 65  

Grodkowski et al. investigated the use of an iron porphyrin Fe(III)TPP 

(tetraphenylporphyrin) for photochemical CO2 reduction, reporting the stepwise 

reduction of Fe(III) to Fe(0) in three distinct steps. 64  This stepwise photoreduction is 

typical of porphyrin compounds where the initial reduction from FeIII to the stable 

FeII is known to occur for iron porphryins at the MLCT (Metal to Ligand Charge 

Transfer) band i.e. wavelengths below the Soret band, allowing the axial ligand to 

become oxidized. Subsequent reduction to Fe(I) was reportedly much more difficult 

and occurred in small concentrations under prolonged photolysis in the presence of 

CO2, leading to the eventual destruction of the porphyrin complex. However, 
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turnover numbers of CO reached a maximum of 40 before the destruction of the 

catalyst via the chlorin intermediate. The yield of CO increased with photolysis time, 

though destruction of the porphryins occurred before a turnover number of 100 was 

achieved, which is much lower than the reported values of electrochemical CO2 
66

es, and indicated that a sensitiser 

ents. The photochemical reduction 

 

reduction.   

Behar et al. continued the investigation of metalloporphryins, for photochemical CO 

reduction using a cobalt center instead of iron as previous electrochemical studies 

showed formation of formate and CO upon CO2 reduction.63 Co(II)P (cobalt 

tetraphenylporphryin) and derivatives were investigated photochemically with 

acetonitrile as a solvent in the presence of TEA. As for the iron prophryins, this lead 

first to the formation of Co(II)P and subsequently Co(I)P before producing formate and 

CO. Turnover numbers here were greater than the previously investigated iron 

macrocycles as CoP showed TN > 300. Behar et al. also indicated that the low 

turnover numbers in the other cobalt derivatives was due to the ineffective binding of 

TEA to the cobalt center in the CoII and CoI complex

such as p-terphenyl may increase the quantum yield. 

These experiments lead to the development of a type I catalyst with cobalt porphryins 

and p-terphenyl sensitizer, which was carried out by Fujita et al. displaying that 

indeed the quantum yield is increased in the presence of p-terphenyl as a reductive 

quencher. Here the p-terphenyl was photoreduced by TEA to form TP˙- which has a 

higher reductive ability to reduce cobalt and iron porphryins to their M0P (M = metal) 

state rapidly. The production rates of the M0P state was also found to be diffusion 

controlled by a series of pulse radiolysis experim

results of which are shown below in Figure 1.19. 
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Figure 1.19: Results of Photochemical production of CO in CO -saturated 

L-1, (O) 2.4 x10-5 mol L-1, (∆) 7 

 CO in CO2
- 

turated acetonitrile solutions containing 5% TEA and 3x 10-3 mol L-1 TP. Graph 

2

2

acetonitrile solutions containing 5% TEA and Co porphyrin conducted by Fujita et 
al.65  

Graph A(LHS): 1x10-5 mol L-1 CoIITPP with no TP; Graph B:  3 x 10-3 mol L-1 TP and 
various concentrations of CoIIT3FPP, (●) 9 x 10-5 mol 
x 10-6 mol L-1. Graph A (RHS): Yield of formate (O) without porphyrin; yield of 
formate (●) and CO (▲) with 1 x 10-4 mol L-1 CoTTP. 
Graph B(RHS) depicts the photochemical production of HCOO- and
sa
B(RHS): Yield of formate (●) and CO (▲) with 1 x 10-4 mol L-1 FeTTP. 
 

On a separate line of research porphyrin diads have been reported by Tokumaru et 

al.67 Hammerstrom et al.68 Perutz et al.69 and finally Ishitani et al. in 2009 who 

reported the synthesis of a zinc porphyrin – rhenium diad type I catalyst, as shown in 

Figure 1.20 that has the ability to reduce CO .70 These series of diads fall outside the 
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working principle behind the type II photocatalyst and for that reason will not be 

disused in more detail here. 

 

 

Figure 1.20: Structures of the zinc porphryin diad prepared by Ishitani et al.70 

 one major drawback of all 

hich in turn has an effect on their reduction reactions for CO2 

activity. This allows the metallocorroles to have a more negative reduction potential 

 

1.4.1.2 Metallocorroles. 

Progressing from the metalloporphyrins, Fujita et al. studied the effect of iron and 

cobalt corroles on CO2 reduction.71 Predominately

metallomacrocycles are the often long and tedious synthetic and purification methods 

required to produce the complexes. Recently synthetic aspects have improved 

allowing research within this area to expand.72, 73, 74, 75 

As shown previously in Figure 1.18 metallocorroles contain one less meso bridge 

then metalloporphryins and therefore have a smaller metal cavity. The corrole 

structure contain nitrogens with three protons where the prophryins have nitrogens 

containing only two protons, this allows stabilization of the metal centre at a higher 

oxidation state w

which increases the probability of reducing CO2 and in turn makes the metallocorrole 

a viable catalyst. 

Continuing the photoreduction experiments, Fujita et al. carried out CO2 reduction 

experiments of iron and cobalt corroles (type I) catalysts in deoxygenated acetonitrile 

in the presence of TEA with p-terphenyl as a sensitiser foreseeing the problems that 
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would arise from the lack of TEA binding. Formation of the p-terphenyl radical anion 

is highly efficient and is formed from the singlet state of the TEA. This allows for a 

fast reduction of the metallocorrole reducing the chance of unwanted side reactions 

occurring. ClFe (tpfc) (where tpfc is the is the trianion of 5,10,15-tris-

(pentafluorophenyl)corrole) was shown to exhibit [Fe (tpfc)]  as the first reduction 

product and was shown to strongly bind with CO to form [(CO)Fe (tpfc)] . This is in 

contrast to the cobalt corrole ([Co (tpfc)] ) as no CO binding activity was observed 

during these experiments. Prolonged photolysis of the metallocorroles

(IV)

(II) -

(II) -

II -

 leads to the 

estruction of the metallocorroles complex. Apart from the metallocorroles’ reaction 

xidation state, comparison of these corroles with their 

corresponding metalloporphyrin showed no increased catalytic activity. 

 only six double bonds in comparison to the 

ced from CO2 was controlled by parallel experiments carried out in 

e presence of He. These experiments indicated than the metallocorrins were stable 

d

with CO2 in their MI o

 

1.4.1.3 Metallocorrins. 

As research into metallomacrocycles provided some interesting results as potential 

catalysts for CO2 reduction, Grodkpwski and Neta76 investigated the activity of 

metallocorrins with cobalt as a metal center and to compare these to corresponding 

porphyrin macrocycle . Structurally metallocorrins are smaller in size having a similar 

tetrapyrrole structure but containing

porphyrin’s eleven, which may add stability to the structure as the probability of 

proton attack during the photochemical experiments is reduced. This was best 

described in Figure 1.18 previously.  

In contrast to the previous metallomacrocycles, the metallocorrin, B12 used by 

Grodkpwski and Neta was found to be insoluble in deoxygenated acetonitrile so a 

mixture of acetonitrile / methanol (9:1 v/v) was used along with TEA and p-terphenyl 

as a sensitiser. To allow accurate comparison of the corrin with the corresponding 

porphryin parallel experiments with CoTTP (cobalt(m-tolyporphyrin)) were carried 

out, the results of which are described in Figure 1.21 that follows. Confirmation that 

the CO was produ

th
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for longer reaction times that the prophyrin and also as a consequence had higher 

yield of formate. 

 

The results of these experiments indicated that the mechanism of reduction of CO2 is 

similar in both the metallocorrin and metalloporphyrin systems. Production of 

hydrogenated complexes as side reaction also occurred along with the 

hotodecomposition of the metallocorrin and accumulation of CO in solution. 

rodkpwski and Neta indicate that protection of the complex from hydrogenation 

may increase the catalyst activity and inhibit deactivation of the corrin.   

 

 

p

G

 

 
igure 1.21: Photochemical production of CO preformed by Grodkpwski and Neta F

(s
v

olid symbols) and H2 (open symbols). (a) CO2-saturated acetonitrile/methanol (9/1 
/v) solutions containing 5% TEA, 3 mmol L-1 TP, and 0.05 mmol L-1cobalt complex: 
yanocobalamin (circles), cobinamide (squares), and CoTTP (triangles). (b)Similar 
lutions containing hydroxocobalamin under CO2 (circles) and under He 

riangles). 
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1.4.1.4 Metallophthalocyanines. 

Metallophthalocyanines like their metallocorrin relatives above, have shown the 

ability to reduce CO2 at a redox state of +1 with a reduced phthalocyanine ring 

[MIPc•-]2-.  31 Research into the use of phthalocyanines as a catalyst for CO2 reduction 

was carried out due to their wide spectral range of absorbance in the visible region, 

though research into this area is much more recent then its predecessors’ discussed 

above due to the long and difficult preparations of the complexes. In 2007 Zhao et al. 

reported the development of a zinc-phthalocyanine that was loaded on to a titania 

support using a sol gel technique as shown in Figure 1.22 that follows. 77 The 

immobilization of the catalyst on a solid support offered a new approach to the 

reduction of CO2 while making the most out of small synthetic yields of catalyst, as 

smaller amounts of dye is required for catalytic reactions.  As a comparison TiO2 was 

also prepared with the catalyst by direct impregnation using both titanium dioxide and 

titanium butoxide powders.  
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Figure 1.22: Preparation of the Zn-Phthalcyanine catalyst reported by Zhao et al.77 

 

The subsequent photocatalytic experiments carried out by Zhao et al., were conducted 

using a pyrex glass cell with a 100 ml volume. The catalyst was placed in 0.1 M 

NaOH and illuminated using a 500 W tungsten – halogen lamp. The presence of 

formic acid was determined using a UV – Vis spectrophotometer and subsequent 

gaseous products using a GC – TCD system. The results of the photocatalytic 

reactions indicated the preferential formation of formic acid, CO and methane via the 

Zn – phthalocyanine / TiO2 rather than the butoxide derivative. The optimal loading 

of catalyst was found to be 1.0 wt % with an optimal CO2 conversion rate of 0.37%.  

Figure 1.23 below shows the dependence of catalyst loading weight along with time 

of illumination. 

 

Figure 1.23: Time dependence of formic acid yields of the various catalysts prepared 

by Zhao et al. 77 

In 2009 Zhao et al. 78continued this line of approach to CO2 reduction using a cobalt 

phthalocyanine loaded on to TiO2 using an improved sol-gel technique as shown in 

Figure 1.24 below. The photocatalytic reactions were carried out as described above 
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using a 1.0% catalyst loading. Here phthalocyanine containing Ni, Co and Zn metal 

centers were tested for photocatalytic ability with the CoPc/TiO2 producing the most 

reduction products. Interestingly Zhao reported that the location of the catalyst on the 

2 is very important as the isolated CoPc was found to be the primary active site 

for photoreduction, therefore the distribution of the c l 

have an effect on the amount of CO2 reduced.   

 

 

 

 

TiO

atalyst on the TiO2 particles wil

Titanium(IV) butoxide, 
alcohol and acetic aci

1,2-dicyanobenzene and cobalt 
d chloride

 
HCl 

 

 
Stewing, polycondensation 

 

sol 

 Gel and Aging 

Drying and calcining

 

 

Figure 1.24: Improved sol-gel technique by Zhao et al.78  

Unlike the previously discussed metallomacrocycles the mechanism of reduction of 

CO  proceeds initially with the catalysts acceptance of an electron from the TiO  

surface. Visible light allows the excitation of the metallophthalocyanine and the 

formation of electron hole pairs occurs as shown in Figure 1.25 below. The TiO  then 

2 2

2

In-situ Co/Pc/TiO2 
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traps the electron which inhibits recombination. As the TiO  is acting as an electron 

trap the metallophthalocyanine continues to transfer excited electrons to the TiO  

conduction band, increasing the separatio

2

2

n of the electron hole pairs and in turn 

increases photoefficiency. However Zhao has indicated that excess catalyst loading 

inhibits the reduction of CO2 as the catalyst can then mask the TiO2 surface which 

stops the CO2 from accessing an electron.  

                   

Figure 1.25: Illustration of photo-catalytic reduction of CO

     

ently illuminated. 

Both the porphyrin and phthalocyanine catalysts produced reduction products and 

rnover numbers  ranging in the region of 40 

 300. Research into the individual methods of CO2 reduction are still under 

2 at ZnPc absorbed 

TiO2.77  

In addition to the research conducted by Zhao, Premkumar and Ramaraj reported the 

photocatalytic reduction of metalloporphyrin and metallophthalocyanine irriversibly 

absorbed on a Nafion membrane.79 However the photocatalytic experiments here 

were carried out in the presence of a sacrificial donor (TEA) where the catalyst coated 

membranes were dipped in a saturated CO2 solution and subsequ

both membranes were shown to be highly stable and produced reproducible results 

though turnover numbers were between 2 and 4 for both catalysts.  

The metallomacrocycles discussed above are a small indication of a wider area of 

research of these catalysts for CO2 reduction. In summary the active catalytic states 

found by cyclic voltamatry are a formal oxidation state of zero for metalloporphyrins 

[M0P]2- and corrins [M0N]2-, +1 for corroles [MIC]2-, and +1 with a reduced 

phthalocyanine ring [MIPc•-]2- with the tu

–
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investigation, though the best representative mechanisms were reported by Morris et 

al. and are shown in Figure 1.26 below. 

 

Figure 1.26: Proposed Mechanistic Steps in the Reduction of CO2 by Metal 
Fe or Co) via a Type II catalysts by Morris et al. Where:  

Hydrogen production (blue), formate production (red), CO formation (brown and 
ink), and putative intermediates (green); as a representative compound, 

metalloporphyrin is illustrated. 

Porphyrin Derivatives (M ) 

p
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1.4.2 Rhenium Mononuclear Complexes. 

Rhenium (I) carbonyl complexes are one of the most intensely studied complexes for 

CO2 reduction. Initially investigated by Hawecker et al. in 1983 using fac-[Re 

(L)(CO)3X]80 where L =4,4’-R2-2,2’-bipyridine ( R = H, CH3) or 1,10-

phenanthroline and X = Cl- or Br-, results showed the selective formation of CO with 

a quantum yield of 0.14 when chlorine is in the axial position.81 Due to the success of 

these investigations Sullivan et al. carried out a dark reaction in the presence of CO2 

using fac-[Re(bpy)(CO)3H]82 in which he investigated the first kinetic study of CO2 

insertion into the metal hydride bond. Here Sullivan discussed the solvent effects 

upon insertion reporting that fac-[Re(bpy)(CO)3H] undergoes a thermally activated 

reaction with CO

fac-[Re(bpy)(CO)

2 in THF, acetone and acetonitrile to produce the formate complex 

3OC(O)H]. Sullivan also discussed the remarkable solvent effects 

that occurred with increasing dielectric constant. These results are displayed in Figure 

1.27 below.  

 

[C  (Ds- +1) Solvent O2],M kobed S-1 Ki, M
-1s-1 Ds 1)/(2Ds

T  etrahydrofuran

(THF) 

0.33 (6.50 ± 0.23) x 10-5 (1.97 ± 0.07) x 10-4 7.32 0.404 

1/7 Ac/THF 0.32 (9.73 ± 0.04) x 10-5 (3.04 ± 0.11) x 10-4 9.1 0.422 

1/2 Ac/THF 0.30 (1.84 ± 0.07) x 10-4 (6.13 ± 0.23) x 10-4 12.1 0.440 

Acetone (Ac) 0.28 (7.05 ± 0.27) x 10-4 (2.52 ± 0.05) x 10-3 20.7 0.465 

Dimethylformamide 0.23 (2.21 ± 0.09) x 10-3 (9.67 ± 0.39) x 10-3 36.7 0.480 

Acetonitrile 0.14 (7.62 ± 0.14) x 10-3 (5.44 ± 0.10) x 10-2 36.1 0.480 

Figure 1.27: Kinetic results reported for CO2 insertion for fac-[Re(bpy)(CO)3H] by 

Sullivan et al.82 

These results were the beginning of an ever expanding research area for rhenium 

tricarbonyl complexes within CO2 reduction. Progressing from these results Ishitani 

et al. have conducted over a decade of research into this area with a strong focus on 
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deciphering the mechanism of reduction, though today this is still under much 

discussion. Ishitani continued research using complexes of the type [XRe(CO)3(LL’)] 

reporting that these complexes contain low lying MLCT states that when excited at 

these wavelengths are better oxidants and reductants than in the corresponding 

ground states.83 Ishitani also reported that in the excited state these complexes can 

undergo substitution reactions more readily than in the ground state.83 This lead to the 

first photochemical synthesis and isolation of mer-[Re(bpy)(CO)3Cl] as shown below 

stigations into photochemical ligand 

substitutions of fac-[Re(bpy)(CO)3Cl].84 

 

in Figure 1.28 along with further inve

 

Figure 1.28: First reported photochemical synthesis of mer-[Re(CO)3(bpy)Cl]. 

In 2008 in order to develop a better catalyst for photochemical CO  reduction, 

Ishitani et al. studied three rhenium (I) complexes: fac-[Re(bpy)(CO) L] (L =  SCN- 

(1-NCS), Cl- (1-Cl), and CN- (1-CN)) focusing on how they reduced CO with the 

premise that if one knows the mechanism of CO  reduction then development of a 

catalyst becomes more manageable.

,  but a number of 

questions still remain unanswered. It is unknown as to how the OER species interacts 

and reduces CO , the source of the second electron for the reduction is not known 

along with how the photocatalyst is regenerated after the reduction. These questions 

are what prom

2

3

2 

2

85 The initial steps of reduction are known; the 

fac-[Re(bpy)(CO) L] is excited at its MLCT which in turn is quenched by a tertiary 

amine which produces a one electron reduced species (OER). The production of the 

OER species has been proven by laser flash photolysis studies

3

85 86

2

pted Ishitani to use the anionic ligands mentioned above to determine 

37 
 



Chapter  1 – Introduction. 

which (if any) ligand is removed from the OER complex during reduction 

periments wererepeated, the decay profile of which 

owed no acceleration in the presence of CO2 proving the requirement of formation 

 the solvent complexes 

ompete with recombination of the ligand.  From these experiments Ishitani was able 

to propose the mechanism shown in Figure 1.29 that follows. 

 

experiments. 

 

The initial results of the experiments showed that 1-CN could not act as a 

photocatalyst while the complexes 1-Cl and 1-NCS produced turnover numbers of 15 

and 30 respectively. To prove that the first steps in the reduction process were the 

excitation of the MLCT and quenching by the amine, the compounds were studied by 

flow cell electrolysis, which showed the formation of the OER species in both cases 

but the 1-Cl complex formed in a much smaller yield. The decay profiles of these 

complexes were then followed immediately after excitation in the dark in the 

presence and absence of CO2. Both decay profiles showed faster decays in the 

presence of CO2 indicating an interaction between the OER and CO2.  Using the 1-

CN species as a control, the ex

sh

of the OER  for the reduction of CO2.  

 

To determine which of the ligands were lost during the reaction the solutions were 

studied by HPLC and capillary electrophoresis pre and post photocatalytic 

experiments. These results showed the formation of SCN- and Cl- at the time when 

CO production occurred. From here Ishitani followed the work reported by Fujita et 

al.,87 were the reduced species [Re(bpy-·)(CO)3] rapidly takes up a solvent molecules 

such as THF or acetonitrile to produce [Re(bpy-·)(CO)3S] which in turn slowly reacts 

with CO2. Ishitani also reported that recombination of the dissociated ligand 

depended strongly on the ligands chosen as the formation of

c
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Figure 1.29: Proposed mechanism for CO2 reduction using a rhenium mononuclear 

complex by Ishitani et al. 

From these experiments Ishitani proposed that a photocatalyst for CO2 reduction 

should consist of the following properties: 

1. Efficient formation of the OER species by quenching of the 3MLCT excited state 
by the reducing reagent. 
 

2. Effective production of [Re(LL·)(CO)3] by dissociation of  the ligand from the 
OER species. Where LL = 2,2-bipyridine 

 
3.  Efficient reduction of the CO2 adduct(s) by a further OER species. 
 
4.  High-yield recovery of the starting complex by recoordination of a ligand after 

CO formation. 
 

To determine if the above properties did indeed have an effect, the complexs fac-

[Re(bpy)(CO)3(MeCN)]+ and fac-[Re{4,4’-(MeO)2bpy}(CO)3{P(OEt)3}]+   were 

prepared as photosensitsers at a ratio of 1:25 respectively and analysed in the same 

manner as above. The results of this experiment showed the quantum yield of CO 

formation to be 0.59 which is the highest reported for a homogeneous system.85 More 

recently Ishitani et al. reported that the CO2 adduct formed (Figure 1.29) is reduced 
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by another OER species of a rhenium complex, reporting that the most effective 

photocatalyst would be a mixture of two rhenium complexes.88 

 

1.5 Scope of Thesis. 

The work presented in this thesis details investigations into the development of a 

supramolecular photocatalyst that can potentially reduce CO2 containing a ruthenium 

moiety and a rhenium tri carbonyl species. Research discussed above has indicated 

that the architecture of which is by no means trivial. The photocatalyst itself must be 

engineered on a molecular level in such a way as to allow electron exchange between 

the light absorbing species and the catalytic center in a manner that is efficient and 

nondestructive. 

 

 Rhenium was chosen as the catalytic center as the most promising photocatalyst to 

date is one that contains a rhenium tricarbonyl complex due to its relatively high 

quantum yields and high selectivity of products. 80, ,81 83 However, there are many 

unanswered questions with rhenium as a catalyst. As discussed above the controlling 

parameters surrounding structural requirements and electrochemical properties have 

not been investigated fully and the mechanism for CO2 reduction is not fully 

understood. Rhenium also has a weak absorptivity in the visible region which has 

been overcome by the attachment of a ruthenium bipyridyl moiety via a mediating 

bridging ligand. The pairing of these three individual components (i.e. photosensitiser 

bridge and catalytic centre) are crucial as electron transport from the Ru center must 

be able to cross the bridging ligand and reach the rhenium metal center to allow 

regeneration of the catalyst after the formation of the one electron reduced species.  

For this reason the bridging ligands Hbpt, Hbpzt and tpphz have been chosen as 

electron transport has been shown to progress from the ruthenium center to the 

bridging ligand.  Figure 1.30 below describes the complexes that have been 

investigated.  
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Re(CO)3Cl
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N

N

N
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Figure 1.30: Dinuclear complexes prepared as potential photocatalysts for CO2 

reduction. (bpy = 2,2-bipyridine). 

This thesis is comprised of six chapters. Chapter one describes the research carried 

out to date, chapter two details the instrumental methods and chemical reagents used 

throughout this body of work. Chapter three relays the synthesis and characterisation 

of a series of ruthenium (II)/ rhenium (I) complexes containing azole type bridging 

ligands while chapter four deals with the number of routes taken to synthesise 

[Ru(bpy)2(tpphz)Re(CO)3Cl]2(PF)6. Chapter five contains the analysis of 

[Ru(bpy)2(bpt)Re(CO)3Cl](PF)6 and its ability to reduce CO2 by ion exchange 

chromatography to determine the presence of formate. Chapter six concludes this 

body of work with reference to future work to be carried out.  
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and accessories are described along 

with chemicals, reagents and any special 

techniques required. Software packages 

are also described where ever possible.  
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Chapter 2 – Instrumentation.  

2.1. General. 

The synthetic materials and reagents used throughout this thesis were of reagent 

grade or better. The compounds 2,2’-bipyridine (bpy), 1,10-phenanthroline (phen), 

1,10-phenanthroline-5,6-dione (phendione) were purchased from Aldrich and used 

without further purification.  All solvents were used as purchased. Column 

chromatography was performed using neutral activated aluminum oxide (150 mesh) 

with an acetonitrile/methanol mobile phase. Alumina TLC plates used during the 

purification processes were purchased from Aldrich and used as received.  

2.2. Instrumental Methods 

 

2.2.1 NMR Spectroscopy. 

 
1H NMR  and 1H NMR COSY spectra were obtained on a Bruker Advance 400 NMR 

Spectrometer at 400 MHz. Analysis was carried out in deuterated solvents (DMSO, 

d3- ACN, d3- Acetone and CDCl3) depending on substance solubility. Spectra were 

calibrated using either the relevant solvent peaks or TMS was added to the NMR tube 

as an internal reference. Some solutions required sonication for approximately five to 

ten minutes to ensure a fully dissolved solution due to low compound solubility. 

Samples containing a rhenium carbonyl species or the ligand tpphz were analysed 

immediately in the dark to ensure no photodecomposition.  

 

2.2.2 Infrared Spectroscopy (IR). 

 

Infrared spectra of compounds in solution were measured using CH2Cl2 or THF as 

solvents. A Perkin Elmer 2000 FTIR spectrometer was used and scans were carried 

out initially in the 4000 cm-1 to 600 cm-1 range before reducing to the carbonyl 

stretching frequency 2200 cm-1 1800 cm-1 . An average of 25 scans was carried out 

per sample using an Omni cell with NaCl windows. To obtain a clear spectrum, 

resolution was set to 4 cm and an interval of 1 cm were used.  
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2.2.3 Ultra Violet/Visible Spectroscopy. (UV/Vis) 

 

UV−Vis absorption spectra were recorded on a Shimadzu 3100 UV-Vis instrument. 

Sample measurements were carried out using 1 cm quartz cells and a relevant solvent 

blank. Solvents used for UV-Vis analysis were spectroscopy grade ethanol, DCM or 

acetonitrile. Cleaning of the quartz cells were carried out using a  Kuvettol cleaning 

solution used as directed or an acid solution of  1:1 (v/v) conc. H2SO4/HNO3 to 

remove any remaining metal residue followed by washing with water. As the latter 

leads to glass etching and eventually the destruction of the cell it was only used in 

severe cases.  

 

 

2.2.4 Emission Spectroscopy. 

 

Emission spectra were collected on a Perkin-Elmer LS50B luminescence 

spectrometer equipped with a red sensitive Hamamatsu R928 detector. A 1 cm, 4 

sided quartz cell was used. Emission and excitation slit widths were typically 3, 5 or 

10 nm depending on individual circumstances. Cuvettes were cleaned and cared for 

as described above. 

 

2.2.5 Mass Spectrometry. 

 

Mass spectra were recorded with a Bruker-Esquire LC-00050 electrospray ionisation 

mass spectrometer at positive polarity with cap-exit voltage of 167 V. Each spectrum 

was recorded by summation of 20 scans. The experiments were performed on a 

Bruker Esquire LC_00050 electro spray interface (ESI). Spectra were collected by 

constant infusion of the analyte dissolved in acetonitrile, with a positive ion polarity.  
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2.2.6 Elemental Analysis. 

 

Carbon, hydrogen and nitrogen (CHN) elemental analyses were carried out on an 

Exador Analytical CE440 by the Microanalytical Department, University College 

Dublin. The CHN analyzer used an Exador analytical CE440.    

 

 

2.2.7 High Performance Liquid Chromatography. (HPLC) 

 

HPLC measurements were performed on a JVA analytical HPLC system consisting 

of a Varian Prostar HPLC pump using a Partisil P10 SCX-3095 cation exchange 

column (HiChrom) and a Varian Prostar photodiode array detector. A 20 μL injection 

loop delivered the sample to the column using typically 0.08 M LiClO4 in 

MeCN/H2O (80/20) mobile phase at a flow rate of 1.8 cm3 min-1. The chromatogram 

was monitored at 280 nm and analysed using Varian proStar software. 

 

2.2.8 Ion Chromatography. 

 

Ion Chromatography was carried out using a Dionex ICS 1500 system with the 

Chromeleon software package. Seperation was achieved using an IonPac AS22 

column with an attached IonPac AG22 guard column. The ICS 1500 system employs 

the use of an ASRS 300 4 mm self - regenerating  4mm suppressor with a DS6 heated 

conductivity cell for detection.  A Mobile phase of 4.5 mM Na2CO3 / 1.4 mM 

NaHCO3 (pH = 11.8) was used in all cases with a flow rate of 1.2 cm3/min. 
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3.0 Synthetic Considerations. 

This section describes the techniques employed to carry out synthetic reactions 

including apparatus set up and any special requirements carried out.  

 

3.1 Apparatus Setup. 

 

 Glassware set up and reflux reactions 

were carried out as shown in Figure 

2.1. In some cases reactions were 

carried out in the presence of nitrogen 

were the drying tube is replaced with a 

nitrogen bubbler connected to a 

constant, steady nitrogen flow. Sand 

baths were used in general, apart from 

the synthesis of the ruthenium 

bipyridine dichloride starting material 

were a blue heating mantle with glass 

wool was employed along with the 

addition of a cracking tube. 

Figure 2.1: Diagram of Reflux Setup.1 

 

3.2 Glassware Preparation.  

Synthetic reactions containing the rhenium pentacarbonyl starting material required 

very clean dry glassware. All glassware was taken directly from the oven and allowed 

to cool to room temperature. Reflux setup was shown above with the addition of a 

nitrogen bubbler. In some cases metal residue was removed from glassware using a 

small acid wash consisting of 1:1 (v/v) HNO3:H2SO4, which was then neutralised 

and placed into relevant waste containers. 

                                                 
1 http://www.uvkchem.com/checm3ab/checm3ab.htm 
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 Chapter 3: Synthetic Approaches 

to the preparation of 

mononuclear and dinuclear 

photocatalysts using azole 

ligands. 

The subject of the work presented in this 

chapter is the development of an 

alternative synthetic pathway to prepare 

the heteronuclear complex 

[Ru(bpy)2(tpphz)Re(CO)3Cl)](PF6)2. 

Synthesis and characterisation of the 

ruthenium(II) and rhenium(I) 

mononuclear complex intermediates are 

described. Preparation of the symmetric 

tetrapyrido[3,2-a:2’,3’:3’’,2’’-

h:2’’’,3’’’-j]phenazine (tpphz) ligand is 

discussed along with the mononuclear 

and dinuclear complexes containing this 

ligand.  
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3.0 Introduction. 

Previously in chapter 1 the development of photocatalysts has been discussed. This 

chapter and the work described herein, details the synthetic strategies using the 

“complexes as metals / complexes as ligands approach” 1,2,3 to prepare these 

photocatalysts. The main work in this chapter is the discussion of the procedures 

involved in the preparation of these metal complexes which are described in Tables 

3.1, 3.2, and 3.3 that follow.  The synthesis involved is a multi step procedure, 

involving the preparation and purification of precursor complexes before the final 

synthesis of the more complex photocatalysts.  

 To design these supramolecular complexes, the [Ru(bpy)2] moiety was chosen as a 

light absorbing centre. This offers a decent starting point due to the well documented 

electrochemical and photochemical properties, reported as early as the late 1960’s by 

Crosby and co-workers 4,5 and subsequently by Gafney and Adamson 6 in the 

seventies and by Hage and co-workers in the eighties and early nineties.7,8 ,9  This 

Ru (II) centre was then combined with a [Re(CO)3Cl] moiety to act as a catalytic 

centre for CO2 reduction. Rhenium was chosen as the metal of choice to act as the 

centre for CO2 reduction due to its relatively high quantum yields and high 

selectivity of products during the reduction process as described in detail previously 

in chapter 1. 10,11,12,13   As demonstrated from the  supramolecular photocatalysts 

discussed in chapter 1, the potential for CO2 reduction to occur while using these 

two metal centres relies heavily on the bridging ligand chosen and its ability to allow 

a communication pathway between them.  

The triazole ligands and their derivatives Hbpt (3,5-bis(pyridin-2-yl)-1,2,4-triazole) 

and Hbpzt (3,5-bis(pyrazin-2-yl)-1,2,4-triazole) were chosen due to their well 

documented properties7, , , ,8 9 10 14 The first reported bis(bpy) ruthenium complexes 

containing 1,2,4-triazoles was as in the eighties by Vos and co – workers  who 

studied these ligands due to their σ-donor properties and the differing coordination 

isomers that formed. These investigations and subsequent reports are important to 

the synthesis and characterisation of the complexes discussed in this chapter, as these 

studies found that the metal ion can coordinate via the N4 or the N2 sites on the 

triazole ligand as shown in Figure 3.1 below. 
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N

N N

N

N
H

 

N4 

N2

Figure 3.1:  An example of the triazole ligand Hbpt with the coordination sites N2 

and N4 available.  

Another important finding from these investigations was the stronger donating 

ability of the N2 site over that of the N4 which has been shown to affect the 

electronic and electrochemical properties of the complex. The favorability of 

coordination occurring of the N2 site over the N4 site is highly dependent on the 

substituents present (if any) on the five membered ring of the triazole. 15,16 

Apart from the coordination modes available and the σ – donating abilities of the 

triazole ligands, another important feature of these metal complexes of the type 

[(Ru(bpy)2)2(bpt)](PF6)3 are the well documented electronic spectra which are 

dominated by intense adsorption bands between 450 – 470 nm. This is the result of 

CM3CT (metal to ligand charge transfer) band a dπ-π* interaction occurring at lower 

energy; the ligand π –π* transitions are also observed in the 250 – 300 nm region. 

These findings were of particular use during the synthesis and characterisation of the 

complexes under discussion in this chapter.  

The complexation reaction described by Vos and co-workers was of great interest as 

the “metals as ligands / metals as complexes” approach was used which gave a solid 

starting point from the preparation of such complexes within this chapter. Figures 

3.2, 3.3 and 3.4 that follow demonstrate the general synthetic approach taken to 

prepare the supramolecular photocatalysts under discussion in this chapter: 
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RuCl3.H2O  + NN                     

N

N
N

N
Ru

Cl
Cl

 
 

 

Figure 3.2: General synthesis of a mononuclear complex. 

 

Figure 3.2 above details the preparation of a mononuclear complex buy the reaction 

of a metal with free ligand. As shown above this mononuclear complex has two 

chlorine groups attached which allow for further reaction with coordinating ligands 

such as the triazole ligands mentioned earlier. Synthesising mononuclear precursors 

like that in Figure 3.2 allows for the preparation of homonuclear and heteronuclear 

complexes as shown in Figure 3.3 and 3.4 below. The synthesis of the homonuclear 

complex is a relatively straightforward synthesis that requires the addition of the 

metal precursor in a 2:1 ratio to bridging ligand. 

 

2

EtOH/H2O

PF6 / 8 Hours
PF6

 

Figure 3.3: Example of a homonuclear complex synthesis. 
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2

PF6

EtOH/H2O

PF6 /8Hours

Re(CO)5Cl MeOH

PF6

 

Figure 3.4: Example of a heteronuclear complex synthesis. 

 

The work outlined in this chapter generally requires the synthesis of heteronuclear 

complexes. This is achieved by the addition of a second metal centre to a 

mononuclear complex. This is a challenging synthesis which requires the preparation 

of a pure mononuclear complex before the addition of the second metal centre.  This 

is the traditional method used for the synthesis of metal complexes of this type and 

the subsequent sections will detail the synthesis of the mixed ligand systems as 

shown above.  
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3.1 Aim.  

The synthesis and characterisation of ruthenium (II) and rhenium (I) mono- and 

dinuclear complexes containing the asymmetric ligands 3,5-bis(pyridin-2-yl)-1,2,4-

triazole (Hbpt), 3,5-bis(pyridin-2-yl)-1,2,4-triazole (Hbpzt) and 2,5-Bis(2-pyridyl)-

1,3,4-thiadiazole (dptd)  are described. The structures of the ligand employed and 

metal complexes are described in Figures 3.5, 3.6 and 3.7. 

 

NN  

bpy 

(2,2-bipyridine) 

 

N

N N

N

N
H

 

Hbpt 

(3,5-bis(pyridin-2-yl)-1,2,4-triazole) 

 

N

N N

N

NN

N

H

 

Hbpzt 

(3,5-bis(pyrazin-2-yl)-1,2,4-triazole) 

 

 

Figure 3.5: Depicts the structures of the ligands discussed in this section. 
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Cl(CO)3Re

N
N

N

N N
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[Re(CO)3HbpztCl] 

 

Figure 3.6: Depicts the structures of the mononuclear complexes discussed in this section.  
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N
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Figure 3.7: Depicts the structures of the dinuclear complexes discussed in this section. (bpy 
= 2,2-bipyridine). 
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3.2 Synthetic Procedures. 

3.2.1 Ligand Preparation 
 

3,5-bis(pyridin-2-yl)-1,2,4-triazole (Hbpt)  

3,5-bis(pyridin-2-yl)-4-amino-1,2,4-triazole 

2-cyanopyridine (10 g, 96.2 mmol) and hydrazine monohydrate (4.95 cm3, 96.2 

mmol) were heated for three hours under reflux at 100ºC. The orange product that 

was formed was collected by vacuum filtration, washed with cold ethanol and 

diethyl ether. The orange solid was then dissolved in 2M HCl (20 cm3) and stirred 

for thirty minutes. This was then cooled to room temperature and made alkaline by 

the addition of ammonia. This was then cooled to +4 ºC. After 2 hours the tan 

product was washed with alkaline H2O to yield the intermediate 3,5-bis(pyridin-2-

yl)-4-amino-1,2,4-triazole.Yield: 6.87 g, 28.8 mmol, 30 %. 1HNMR (DMSO, 400 

MHZ) δ in ppm: 8.79 (d,2H), 8.20 (d, 2H), 8.02 (dd, 2H), 7.88 (s, 1H), 7.43 (dd, 2H).  

 

3,5-Bis(pyridin-2-yl)-1,2,4-triazole 

The intermediate was then dissolved in boiling 5M nitric acid (11 cm3). This was 

then immediately cooled to 0°C and sodium nitrite solution was added slowly until 

no brown fumes were noticed, the solution was allowed to stir for 2 hours and a 

white precipitate was formed. This was collected by filtration and dissolved in 

aqueous ammonia and boiled for 5 minutes. The white product was then formed by 

evaporation of the liquid phase and was recrystallised from ethanol. Yield: 5.95 g, 

Calc for C12H11N5, Mw: 224.23 g/mol. 1HNMR (DMSO, 400MHZ) δ in ppm: 7.50 

(dd, 2H), 7.98 (dd, 2H), 8.12 (d, 2H), 8.75 (d, 2H). 
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3,5-bis(pyrazin-2-yl)-1,2,4-triazole (Hbpzt) 17 

2-Pyrazinecarboxylic acid (8.0 g, 65 mmol) and conc. H2SO4 (2 cm3) were heated at 

reflux in EtOH for 3 h. Sodium carbonate was added to neutralize the H2SO4 after 

which excess hydrazine hydrate (5.05 g, 101 mmol) was added. The solution was 

stirred at 0C for 3 h. The precipitate was filtered and washed with cold EtOH. 2-

Cyanopyrazine (4.2 g, 40 mmol) was converted to 2-pyrazylmethylimidate by 

heating it at reflux with Na metal in MeOH for 3 h. The hydrazide from above was 

added and the solution heated for an additional 1 h. The yellow precipitate was 

filtered and washed with cold EtOH. 3,5-(pyrazin-2-yl)-1,2,4-triazole was obtained 

by heating the pyrazine-2-carboxylic acid N’-(imino-pyrazin-2-yl-methyl)-hydrazide 

at reflux in ethylene glycol for 1 h. The product was then recrystallised from ethanol. 

Yield 6.0 g, 27 mmol, 42%. Calc for C10H7N7, Mw: 226.23 g/mol 1HNMR (DMSO, 

400MHz) δ in ppm: 9.35 (s, 2H), 8.81 (d, 2H), 8.78 (d, 2H).  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

65 
 



Chapter 3: Synthetic Approaches to the Preparation of Mononuclear and Dinuclear 
Photocatalysts. 

 

3.2.2 Preparation of Mononuclear Complexes 
 

[Ru(bpy)2Cl2].2H2O 18 

2,2’-bipyridine (6.02 g, 38.5 mmol), RuCl3.H2O (4.00 g, 7.7 mmoles) and LiCl (1.15 

g, 26.7 mmol) were placed in 30 cm3 of DMF and refluxed for 4 hours. The solution 

was then cooled to room temperature and transferred to 80 cm3 of acetone along with 

washings from the condenser and left overnight at –4 °C. The dark purple crystals 

were recovered by vacuum filtration and washed with water and acetone respectively 

until the filtrate became clear. Yield: 5.60 g, 10.8 mmol, 78 %. Calc for C20H18N4 

O2Cl2Ru1, Mw: 520.21 g/mol.1HNMR (DMSO, 400 MHz) δ in ppm: 7.12 (dd, 2H), 

7.56 (d, 2H), 7.63 (dd, 2H), 7.69 (dd, 2H) 8.49 (dd, 2H), 8.63 (d, 2H), 9.79 (d, 2H). 

[Ru(bpy)2bpt](PF6).1/2H2O  

[Ru(bpy)2Cl2]·2H20 (1.16 g, 2.23 mmol) was dissolved in 30 cm3 of solvent (EtOH: 

H2O (2:1 v/v)) and brought to 90 °C. Hbpt (500 mg, 2.22 mmol) was dissolved in 20 

cm3 of the solvent and added slowly to the [Ru(bpy)2Cl2]·2H20  in small portions. 

This was then brought to reflux temperature (120 °C) and left for 6 hours. The 

reaction was then cooled to room temperature and the ethanol removed by rotary 

evaporation. 10 cm3 of H2O was then added and aqueous NH4PF6 was added 

dropwise until no more precipitate was formed. The reaction was then left at +4 °C 

overnight. The orange solid was then recovered by vacuum filtration and allowed to 

dry. This was then purified using alumina with acetonitrile mobile phase then 

recrystallised from acetone: H2O (1:1v/v).Yield: 0.33g, 0.417 mmol, 19 %. Calc for 

C32H26N9 Ru1PF6(1/2H2O), Mw: 790.45 g/mol.1HNMR (DMSO, 400 MHz) δ in 

ppm: 7.05 (dd, 1H), 7.15 (dd, 1H), 7.19 (dd, 1H), 7.30 (m, 3H) 7.44 (d, 1H), 7.65 

(dd, 1H), 7.74 (dd, 2H), 7.78 (d, 4H), 7.78 (m, 5H), 8.05 (d, 1H), 8.35 (m, 4H), 8.45 

(d, 1H).  
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[Ru(bpy)2bpzt](PF6) 19 

As for [Ru(bpy) bpt](PF ).1/2H O except  [Ru(bpy) Cl ] ·2H 0  (500 mg, 0.96 

mmol) and Hbpzt (500 mg, 2.21 mmol) was used. Yield: 0.29g, 0.37 mmol, 38 %. 

Calc on C H N Ru PF  Mw: 783.43 g/mol. 

2 6 2 2 2 2

30 22 11 1 6
1HNMR (DMSO, 400 MHz) δ in 

ppm: Ring A: (H , 9.34),  (H , 7.58), (H , 8.55), Ring B: (H , 8.86),  (H , 77.21), 

(H , 8.22), bpy

3 5 6 3 5

6 : 8.48 (dd, 2H), 8.60 (dd, 2H), 7.43 (dd, 2H), 7.62 (dd, 2H), 8.13 (m, 

H), 8.78 (m, 4H). 

tone, 400 MHz) δ in ppm: 7.82 (m, 2H), 8.35 (m, 2H), 8.69 (d, 

H), 9.11 (d, 2H). 

.78). E.A for ReC15H9N5O3Cl: Calculated: C 34.1, H 1.8, N 13.3, 

Found: C 33.64, H 1.93, N 12.87. 

4

 

[Re(CO)3(bpy)Cl]  

20 cm3 of anhydrous toluene was purged for 5 minutes. [Re(CO)5Cl] (100 mg, 0.277 

mmol) was weighed out carefully under nitrogen and added to the toluene along with 

of 2,2’-bipyridine (0.0432g, 0.276 mmol). This was heated to reflux and left for 2.5 

hours. The reaction had turned a dark yellow colour and was allowed to cool to room 

temperature and placed at +4 ºC overnight. The yellow product was collected by 

vacuum filtration and to ensure the entire product was collected the toluene was 

evaporated. Yield: 0.124, 97%. Calc on C13H8N2O3ClRe1 Mw: 461.78 

g/mol.1HNMR (ace

2

 

[Re(CO)3Cl(Hbpt)]  

As For [Re(CO)3(bpy)Cl] except [Re(CO)5Cl] (100 mg, 0.277 mmol) and Hbpt (70 

mg, 0.312 mmol) was used. Yield: 88 mg, 0.166 mmol, 60 %. Calc on 

C15H11N5O3Cl Re1 Mw: 529.89 g/mol.1HNMR (acetone, 400 MHz) δ in ppm: Ring 

A: (H3, 8.42), (H4, 8.26), ( H5, 7.52),  (H6, 9.05) Ring B: (H3, 8.40), (H4, 8.22), ( 

H5, 7.52),  (H6, 8
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3.2.3 Preparation of Dinuclear Complexes 
 

[Ru(bpy)2(bpt)Re(CO)3Cl](PF6).3H2O  

(200 mg 0.256 mmol) of [Ru(bpy)2bpt](PF6)1/2.H2O was reacted with (100 mg, 

0.277 mmol) of [Re(CO)5Cl]  in 50cm3 of methanol for 6 hours. The solvent was 

then removed. The complex was then recrystallised from acetone/ethanol (2/1 

v/v).Yield: 0.3493 g, 0.306 mmol, 115%. Calc on C35H32N9O6ClRu RePF6 Mw: 

1141.02 g/mol.1HNMR (DMSO, 400 MHz) δ in ppm: 6.74 (dd, 1H), 6.91( dd,1H), 

7.02 (dd, 1H), 7.13 (dd, 1H), 7.26 (m 2H), 7.32(dd,2H), 7.38(m, 2H), 7.43 (dd, 2H), 

7.58 (m,3H), 7.81 (m, 4H), 8.09 (dd, 1H), 8.12( dd, 1H), 8.20 (dd 1H), 8.38 (m, 1H). 

E.A for Ru1Re1C35H27N9O6ClPF6: Calculated: C 38.6, H 2.4, N 11.6, Found: C 

35.42, H 2.72, N 10.47. 

 

[{Ru(bpy)2}2bpt](PF6)3  

[Ru(bpy)2Cl2].2H2O (1.00g, 1.922 mmol) and Hbpt (0.186g, 0.830 mmol) were 

placed in 50cm3 of 2:1 ethanol:H2O and refluxed for 6 hours.  The reaction was then 

brought to room temperature and the ethanol removed by rotary evaporation.  The 

orange product was precipitated by the addition of NH4Pf6 and the solution was left 

at +4ºC overnight. The crude product was then collected by filtration. Purification 

was carried out using an alumina column with acetonitrile as a mobile phase and 

recrsytallised from 1:1 acetone: H2O. Yield: 683 mg, 0.46 mmol, 55 %. Calc on 

C52H42N13Ru2P3F18 Mw: 1484.58 g/mol 

1HNMR (DMSO, 400 MHz) δ in ppm: 6.68 (dd, 1H), 6.84 (dd, 1H), 7.04 (dd, 1H), 

7.13(dd, 1H), 7.23(m, 2H), 7.38( m, 2H), 7.48(m, 2H), 7.63(m, 2H), 7.73 (m, 2H), 

7.85(m, 1H), 7.93(dd, 1H), 8.28 (m,2H), 8.36 (dd, 1H), 8.51(m, 2H), 8.58 (dd, 1H), 

8.68 (m, 2H), 8.82( dd,2H). 
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[{Ru(bpy)2}2bpzt](PF6)3 
7 

As for [{Ru(bpy)2}2bpt](PF6)3 except that [Ru(bpy)2Cl2].2H2O (1g, 1.922 mmol) 

and Hbpzt (0.186g, 0.822 mmol) were reacted. Yield: 576 mg, 0.387 mmol, 47 % 

Calc on C50H39N15Ru2P3F18 Mw: 1486.56 g/mol. 1HNMR (DMSO, 400 MHz) δ in 

ppm:6.62 (dd, 1H), 6.93 (dd,1H), 7.23 (dd,1H), 7.53(m, 2H), 7.42(m, 2H), 7.51 (, 

2H), 7.36(m, 2H), 7.72 (m, 2H), 8.02(m, 2H), 8.28(m, 2H), 8.43(m, 2H), 8.63 (m, 

2H), 9.19 (dd, 1H).  

[{Re(CO)3Cl}2bpt]  

20cm3 of anhydrous toluene was purged for 5 minutes. [Re(CO)5Cl] (0.2g, 0.553 

mmol) was weighed out carefully under nitrogen and added to the toluene along with 

of Hbpt (0.06g, 0.268 mmol). This was heated to reflux and left for 2.5 hours. The 

reaction had turned a dark yellow colour and was allowed to cool to room 

temperature and placed at +4ºC overnight. The yellow product was collected by 

vacuum filtration and to ensure the entire product was collected the toluene was 

evaporated. The product was then recrsytallised from acetone.Yield: 0.1385g, 0.166 

mmol, 62%. Calc on C18H10N5O6Cl2Re2Mw: 834.37 g/mol. 1HNMR (DMSO, 400 

MHz) δ in ppm: 8.25 (dd, 2H), 7.68 (m, 2H), 9.02 (dd, 2H).  

[{Re(CO)3Cl}2bpzt] 

As for [{Re(CO)3Cl}2bpt] except Re(CO)5Cl (100 mg, 0.277 mmol)  and Hbpzt 

(0.06g, 0.265 mmol) was used. Yield: 68 mg, 0.081 mmol, 31 %. Calc on 

C18H10N5O6Cl2Re2Mw: 834.37 g/mol.1HNMR (DMSO, 400 MHz) δ in ppm:  9.38 

(s, 2H), 8.82 (dd, 2H), 8.79 (dd, 2H). 
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3.2.4 Attempted Synthesis. 

[Ru(bpy)2(bpzt)Re(CO)3Cl](PF6) 

As for [Ru(bpy)2(bpt)Re(CO)3Cl]PF6 except (100 mg 0.128 mmol) of 

[Ru(bpy)2bpzt]PF6 was reacted with (100 mg, 0.277 mmol) of [Re(CO)5Cl]. The 

desired product was not obtained. 

 [Re(CO)3Cl(Hbpzt)] 

As For [Re(CO)3bpyCl] except [Re(CO)5Cl] (100 mg, 0.277 mmol) and Hbpzt (72 

mg, 0.314 mmol) was used. The desired product was not obtained. 
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3.3 Results and Discussion. 

3.3.1 Synthetic Procedures - Ligand Preparation. 
 

The Hbpt synthesis used was that previously reported by L. Cassidy, as this method 

did not employ the use of sodium metal and also offered an increased yield 

compared to previously reported synthesis by Hage and earlier by Geldard.20  The 

ligand was prepared in two stages firstly preparing the 3,5-bis(pyridin-2-yl)-4-

amino-1,2,4-triazole intermediate, then refluxing this in concentrated HNO . This 

can be seen in Figure 3.8 below. The synthesis of the ligand can be problematic and 

care must be taken during the addition of the sodium nitrite solution. The reaction at 

that point must be allowed to stir until the brown fumes are no longer seen and a 

clear solution is obtained.  The white precipitate does not always form at this point 

but the addition of concentrated ammonia and reduction of the mother liquor 

generally yields the required ligand.   

3
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Figure 3.8: Synthetic route used to synthesise Hbpt. 
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The synthesis of the pyrazine analogue, Hbpzt was carried out as previously reported 

by Hage and co-workers.7,9 The most problematic part of this synthesis was the 

intramolecular ring closure. It was found that the ligand was obtained pure and in 

high yield when the ligand was heated until molten and allowed to stir at this 

temperature for an hour. Upon cooling the ligand was obtained. Figure 3.9 below 

details the steps taken during this synthesis.  
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Figure 3.9: Route used to synthesise Hbpzt. 
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3.3.2 Synthetic Procedures - Preparation of Mononuclear Complexes. 
 

The synthetic preparation of the ruthenium mononuclear complexes were relatively 

straightforward. The starting material cis-[Ru(bpy)2Cl2].2H20 was prepared by 

refluxing RuCl3.H2O for four hours in the presence of 2,2-bipyridine as previously 

reported by Meyer in 1978, 18 the only difference to those methods reported, was the 

increase of refluxing temperature and a decrease in the time the solution was 

refluxed which was reduced to four hours. The deuteriated form was also prepared in 

this manner but using the deuterated 2,2-d-bipyridyl. This was used in subsequent 

analysis as a starting and a reference compound. Yields for the deuteriated and non 

deuteriated reactions were typically around 70%.  

The formation of the Ru(II) mononuclear complex [Ru(bpy)2(bpt)]+  was carried out 

as previously reported by Hage et al.,7 the only difference was in the purification 

procedure where the mononuclear complex was separated on neutral alumina using 

acetonitrile as a mobile phase. The synthesis of the [Ru(bpy)2(bpzt)]+  complex was 

more complicated, it was found that the best purification was using neutral alumina 

with acetonitrile with a methanol gradient.  

The preparation of the Rhenium(I) mononuclear complexes [Re(CO)3HbptCl] and  

[Re(CO)3bpyCl]  were carried out as previously reported with no variations. These 

reactions were followed using infra-red analysis by monitoring the disappearance of 

the rhenium pentacarbonyl peaks and the formation of the tricarbonyl species. The 

one important difference between the preparations of both of these mononuclear 

complexes was the time required to reach completion. The rhenium(I) complexes 

required 3-3.5 hours of refluxing time to reach completion, were the Ru(II) 

complexes required 6 hours.  

For the formation for both the ruthenium and rhenium mononuclear species, it was 

important to fully dissolve the ligand before the addition of either the 

[Ru(bpy)2Cl2].2H2O or the rhenium pentacarbonyl. This limited the amount of 

dinuclear species formed along with using a 1:1.2 metal to ligand ratio. This often 

meant, that during the purification procedure only the unreacted ligand needed to be 

removed.  
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3.3.3 Synthetic Procedures - Preparation of Dinuclear Complexes. 

The preparation of the homonuclear dinuclear complexes, [{Ru(bpy)2}2bpt]3+ and 

[{Re(CO)3Cl}2Hbpt] were carried out as previously reported using the complexes as 

metals and complexes as ligands strategies.21, 22 The purification procedure 

employed here for [{Ru(bpy)2}2bpt]2+    was  a neutral alumina column instead of 

the reported sephadex SP C-25 resin.75 The heteronuclear complex 

[Ru(bpy)2(bpt)Re(CO)3Cl] was prepared as reported previously with no variations. 

The same method was employed for the synthesis of the 

[Ru(bpy)2(bpzt)Re(CO)3Cl]+  and [Ru(bpy)2(bptd)Re(CO)3Cl]2+ complexes. Below 

is a schematic representation of the formation of the dinuclear complexes.  

Ru3Cl.xH20
bpy

[Ru(bpy)2Cl2].2H20 [(Ru(bpy)2)2L]3+ / 4+
L

L

[Ru(bpy)2L]+ / 2+ [Re(CO)5Cl]+

L

[Ru(bpy)2LRe(CO)3Cl]+ / 2+

[Re(CO)5Cl]
L

L

[Re(CO)3ClL]

[(Re(CO)3Cl)2L]
 

Figure 3.10: Schematic representation of the pathways employed in the synthesis of the 

dinuclear metal complexes. (L = Hbpt, Hbpzt, dptd ). 

To determine the formation and purity of the mononuclear and dinuclear complexes 

discussed the 1HNMR spectra of the mononuclear complex was compared to that of 

the intermediate [Ru(bpy)2Cl2].2H20 and that of the free ligand, an example of 

which is detailed in Figure 3.11 below.  
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6.57.07.58.08.59.09.510.0 ppm 

 

7.47.57.67.77.87.98.08.18.28.38.48.58.68.78.88.99.09.1 ppm 

Figure 3.11: 1HNMR spectra for [Ru(bpy)2Cl2] and [Ru(bpy)2bpt]+ carried out in DMSO at 

298K.  

3.3.4. 1H NMR Spectroscopy. 

NMR was employed here as a structural characterization technique for the free 

ligand,  rhenium (I) and ruthenium (II) mono- and di-nuclear complexes. It is used 

extensively in this thesis in the structural elucidation and identification of 

compounds, reaction monitoring and determination of purity.  Proton assignments 

were made with the use of a 2D-COSY spectrum where possible and all spectra are 

calibrated to the relevant solvent peak. 

Interpretations of the dinuclear complexes described here became difficult at times 

due to the high number of protons present. Deuteriation of the bipyridyl ligand was 

carried out on some monoculear and dinuclear complexes in order to simplify 

structural assignment where ever possible. This lead to the removal of the bipyridyl 

protons which left the proton signals of the remaining ligands available for 

assignment.  Figure 3.12 below shows the structures of the free ligands and the NMR 

assignment, while Table 3.1 indicates the chemical shifts in ppm, while Figure 3.13 

shows the NMR spectra obtained.   
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3.3.4.1 1H NMR of Free Ligands. 
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Figure 3.12: Labeling of the triazole ligands for 1H NMR assignment. 

 

Ligand H3 H4 H5 H6 

Hbpt 8.15 7.98 7.50 8.75 
Hbpzt 9.36 - 8.68 8.75 

 

Table 3.1: Chemical shifts in ppm of the ligand protons measured in DMSO. 

The NMR results obtained for the free ligands are uncomplicated and splitting 

patterns observed are as expected.  Due to the symmetry of the free ligands only half 

the number of signals are observed as the protons are equilivant.  For the azole 

ligands shown above the position of the H6 proton, located next to the nitrogen, is 

found farthest downfield due to the shielding effect of the nitrogen. H4 and H5 of 

Hbpt and dptd are seen as mulitplets and are located further upfield than the H6 

protons. In the Hbpzt ligand the H5 and H6 protons were found to overlap between 

8.6 and 8.8 ppm, this is similar to the results reported by Hage et al.7 while the 

proton signal for H3
 on the pyrazine ligand is located furthest downfield at 9.36 ppm. 

This NMR data will be used to aid in the assignment of the mononuclear and 

dinucelar complexes that follow. 
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7.47.57.67.77.87.98.08.18.28.38.48.58.68.78.88.99.09.1 ppm 

7.27.47.67.88.08.28.48.68.89.09.29.49.69.8 ppm 

 

Figure 3.13: 1H NMR spectra for the Hbpt (top) and Hbpzt (bottom) carried out in DMSO at 

298K. 

The NMR results obtained for the free ligands are uncomplicated and splitting 

patterns observed are as expected.  Due to the symmetry of the free ligands only half 

the number of signals are observed as the protons are equilivant.  For the azole 

ligands shown above the position of the H6 proton, located next to the nitrogen, is 

found farthest downfield due to the shielding effect of the nitrogen. H4 and H5 of 

Hbpt and dptd are seen as mulitplets and are located further upfield than the H6 

protons. In the Hbpzt ligand the H5 and H6 protons were found to overlap between 

8.6 and 8.8 ppm, this is similar to the results reported by Hage et al.8,  9 while the 

proton signal for H3
 on the pyrazine ligand is located furthest downfield at 9.36 ppm. 

This NMR data will be used to aid in the assignment of the mononuclear and 

dinucelar complexes that follow. 
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3.3.4.2  1H NMR of Complexes. 

3.3.4.2.1 Complexes Containing Hbpt 

The 1H NMR spectra of the complexes under discussion in this section are compared 

to that of the free ligands and relevant publications of known complexes. Complexes 

containing Hbpt will be discussed first followed by Hbpzt. The NMR spectrum of 

[Ru(bpy)2bpt]+ has been well documented2, , , , ,3 7 8 9 14 and is extremely complex. Hbpt is 

an asymmetric ligand forming N2 and N4 isomers upon coordination with 

ruthenium(II) as shown in Figure 3.14 below.  The 1H NMR spectra obtained for 

these complexes gives rise to a more complicated spectrum in the aromatic region 

then that previously observed for the free ligands.  However due to the nature of 

coordination there is a clear difference between the bound and unbound pyridine of 

the bpt- ligand.  

   

  

  
N4 Isomer N2 Isomer

Figure 3.14: Structure of the N2/N4 isomers of [Ru(bpy)2bpt]+ 

 

 

 

 

 

78 
 



Chapter 3: Synthetic Approaches to the Preparation of Mononuclear and Dinuclear 
Photocatalysts. 

7.47.57.67.77.87.98.08.18.28.38.48.58.68.78.88.99.09.1 ppm 

7.47.57.67.77.87.98.08.18.28.38.48.58.68.78.88.99.09.1 ppm 

 

 
 

 

 

7.07.58.08.59.09.5 ppm  

Figure 3.15: 1H NMR spectrum for Hbpt ligand (top), [Ru(bpy)2bpt] (middle)+ 

and[{Ru(bpy)2}2bpt]3+(bottom) carried out in DMSO at 298K.  

Figure 3.15 above shows the numbering of the bpt- protons of the mononuclear 

ruthenium (II) complex, while Table 3.2 below details the chemical shift values. The 

bpy protons occur in the range expected and will not be further discussed here. 

Firstly the mononuclear complexes of bpt- containing Ru II) and Re(I) will be 

discussed followed by the subsequent dinuclear complexes. Due to the nature of 

coordination of metal center to free ligand, the symmetry of the Hbpt previously 

observed, becomes lowered splitting the degeneracy and increasing the number of 
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protons signals in the aromatic region, this can be seen in Figures 3.14 and in 3.15 

above in the mononuclear spectrum. The NMR data for these protons are reported as 

coordinated ring and free ring in Table 3.2 below.   

 ppm 

  H3 H4 H5 H6 

Hbpt 8.15 7.98 7.5 8.75 

[Ru(bpy)2bpt]+     
Ring A (co-ord) 8.54 8.29 7.62 7.91 
Ring B (free) 8.43 8.11 7.54 8.92 
bpy 8.81 - 8.89 8.18 - 8.21 7.69 - 7.71 8.37 - 8.31 
[Re(CO)3Cl(Hbpt)]     
Ring A (co-ord) 8.42 8.26 7.52 8.78 
Ring B (free) 8.40 8.22 7.52 9.05 
[(Ru(bpy)2)2bpt]3+ 7.85 8.36 7.13 8.58 
[(Re(CO)3Cl)2(Hbpt)] 8.25 8.25 7.68 9.02 
[Ru(bpy)2(bpt)Re(CO)3Cl
] 8.09 7.43 6.74 8.38 
 

3+

], [(Re(CO)3Cl)2(Hbpt)] and[Ru(bpy)2(bpt)Re(CO)3Cl]    measured in 

DMSO at 298 K.  

which would result in an upfield shift of the protons in closest proximity.   

,9,17

are recorded in deuteriated acetone where as DMSO was the solvent of choice here. 

 

Table 3.2: Chemical shifts in ppm obtained for Hbpt, [Ru(bpy)2(bpt)]+,[(Ru(bpy)2)2(bpt)] , 

[Re(CO)3Cl(Hbpt) +

A clear observation of the effect of complexation is shown by the H6 bpt- proton for 

[Ru(bpy)2bpt]+. The metal bound H6 proton experiences changes in electron density 

due to the presence of the metal centre and adjacent bpy protons. This ring current of 

the adjacent bpy has a deshielding effect on the H6 proton resulting in a strong 

upfield shift from 8.92 ppm (free ring) to 7.91 ppm (co-ord). This is due to the 

presence of the bpy proton which decreases the applied magnetic field experienced at 

the nucleus of the H6 bpt- proton resulting in a lower frequency observed. The 

presence of the large metal centre also has a shielding effect on neighbouring protons 

The results obtained above in general, are in agreement to those previously reported 

by Hage and co-workers. 8  A shift of 1+ ppm can be observed due to the effect of 

the differing deuteriated solvents used for NMR analysis. Those reported by Hage 
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The remaining proton assignment for the H3, H4 and H5 protons of the bpt- ligand 

were assigned with the use of a 2D- COSY and previously reported spectra.2, , ,3 7 8 

Comparrison of the deuteriated and non deuteriated spectra also greatly assisted in 

the assignment of the proton signals. A general shift can be observed from the free 

Hbpt protons to those located within the Ru (II) mononuclear complex which is 

reported to be due to the through space interactions between the bpy protons and 

those of the bpt- ligand. 

The rhenium mononuclear complex of Hbpt has a much less complicated spectrum 

than that of the Ru monomer, due to the lack of the bpy protons. Assignment of the 

proton signals in the rhenium (I) complex was carried out by comparison with the 

spectra obtained for the free ligand. Again here the symmetry of the complex is 

reduced upon complexation of Re(CO)3Cl moiety resulting in the individual signals 

observed for free ring  and  coordinated ring of the triazole ligand. The H6 proton is 

again observed furthest downfield at 9.05 ppm (free) / 8.78 ppm (coord) due to the 

presence of the N atom and the Re (I) centre which is in agreement with previous 

publications of rhenium (I) bipyridine complexes. 2,30 The doublet furthest downfield 

at 8.78 ppm as the H6 proton of the coordinated Hbpt the signals for the H3, H4 and 

H5 protons were then assigned accordingly. Unlike the ruthenium monomer 

[Re(CO)3Cl(Hbpt)] gave rise to no isomers in either the NMR or IR spectra.  

Upon coordination of the second Re(CO)3Cl fragment to [Re(CO)3Cl(Hbpt)]  the 

symmetry of the complex is reinstated and the number of proton signals observed are 

reduced as seen in Figure 3.16 below. Here proton H3 and H4 are seen to overlap as 

a multiplet at 8.25 ppm. H6 is again seen as farthest downfield at 9.02 ppm with H5 

furthest upfield at 7.68 ppm. In progressing to the dinuclear [(Ru(bpy)2)2bpt]3+ the 

spectra becomes more complicated due to the presence of the bipyridine protons, and 

the presence of geometrical isomers shown in Figure 3.14. The proton signals of 

[(Ru(bpy)2)2bpt]2+ have obtained much attention3, , ,7 8 9 resulting in reported detailed 

characterization which greatly assisted in the assignment of this complicated spectra. 

The isomers observed are due to the orientations of the bipyridine rings but the 

formation of diastereoisomers of  [(Ru(bpy)2)2(bpt)]3+. These separated isomers can 

be observed in Figure 3.16 below. 
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7.07.58.08.59.09.5 ppm 

7.07.58.08.59.09.5 ppm  

6.76.86.97.07.17.27.37.47.57.67.77.87.98.08.18.28.38.48.58.68.7 ppm 

Figure 3.16: 1H NMR spectra for [(Re(CO)3Cl)2(Hbpt)](top) , [(Ru(bpy)2)2bpt]2+ (middle) 

and [Ru(bpy)2(bpt)Re(CO)3Cl]+  (bottom) carried out in DMSO at 298K. 
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Figure 3.17: 1HNMR spectra obtained for fraction A (top) and B (bottom) of 

[(Ru(bpy)2)2bpt]3+in d3-acetonitrile at 298K. 

 

The heteronuclear complex [Ru(bpy)2(bpt)Re(CO)3Cl]+ also gives rise to isomers as 

can be seen in Figure 3.14 above indicated by the  protons at 6.78 ppm and 6.91 

ppm, as observed previously in the homonuclear Ru (II) complex.  Upon 

coordination of the Re(CO)3Cl moiety to the [Ru(bpy)2bpt]+ there is a characteristic 

shift upfield for all of the protons observed.  Here the resonances of the triazole 

protons bound to the Re metal center are found at a higher chemical shift value than 

those of the ruthenium bound ring this has also been previously observed by C. 

Brennan.2 The spectrum of [Ru(bpy)2(bpt)Re(CO)3Cl]+ is complex and the values 

assigned to the proton signals have been carried out with the aid of the deuteriated 

complex [Ru(d-bpy)2(bpt)Re(CO)3Cl]+  signals reported by C. Brennan2 and are 

reported previously in Table 3.5.  

3.3.4.2.2 Complexes Containing Hbpzt. 

Hbpzt coordinates to the ruthenium centre in the same way as the Hbpt complexes 

giving rise to the N2 andN4 isomers (Figure 3.14). Table 3.3 that follows contains 

the NMR data obtained for these systems, the bipyridine protons occur as expected 

and so will not be discussed in detail here.  
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 ppm 

  H3 H5 H6 

Hbpzt 9.36 8.68 8.75 

[Ru(bpy)2bpzt]+    
Ring A (free) 9.34 7.58 8.55 
Ring B (co-ord) 8.86 7.21 8.22 
 
 
bpy  8.48 - 8.60 7.43 - 7.62 8.13 - 8.78 
 
[(Ru(bpy)2)2bpzt]3+    
ligand (Hbpzt) 7.82 7.92 9.16 
[(Re(CO)3Cl)2(Hbpzt)] 9.38 8.82 8.79 

 

Table 3.3: Chemical shifts in ppm obtained for Hbpzt, 

[Ru(bpy)2(bpzt)]+,[(Ru(bpy)2)2(bpzt)]3+and [(Re(CO)3Cl)2(Hbpzt)]  measured in 

DMSO at 298 K.    

Figure 3.18 below shows the spectra for [Ru(bpy)2(bpzt)]+,[(Ru(bpy)2)2(bpzt)]3+and 

[(Re(CO)3Cl)2(Hbpzt)]  measured in DMSO at 298 K. Here the free ligand proton 

furthest downfield is the H3 proton at 9.36 ppm due to the presence of the two 

neighboring N substituents of the pyrazine ring. Upon complexation with the 

ruthenium centre this shifts to 8.86 ppm for the co-ordinated pyrazine ring of the 

triazole, which is a similar effect to that reported by Hage7 and Browne.23 The H6 

proton again here demonstrates the greatest effect of complexation with an upfield 

shift of approximately 0.5 ppm. Again the loss of symmetry is displayed upon 

formation of the Ru(II) mononuclear complex, with an increase in the number of 

proton signals for the free and coordinated triazole rings. 
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6.57.07.58.08.59.09.5 ppm 

6.57.07.58.08.59.09.5 ppm 

 

6.57.07.58.08.59.09.5 ppm 

Figure 3.18: 1H NMR spectrum for  [(Ru(bpy)2bpzt]+ (top), [(Ru(bpy)2)2bpzt]3+ (middle) 

and [(Re(CO)3Cl)2(bpzt)](bottom)  in DMSO at 298K. 

The complexity of the homonuclear ruthenium dimer spectra in Figure 3.18 indicates 

the progression from the mononuclear to the dinuclear complex. Here the presence 

of isomers is also clearly seen due to the signals at 6.62 ppm and 6.97 ppm, though 

separation of these isomers has not yet been completed by HPLC the method of 

separation underway is that previously reported by Hughes et al.19,23 Again the 

proton signals here for the bpzt- ligand were compared to those reported by Hage and 

Browne. As both the ligand rings are now coordinated the proton signals are 

expected to be similar.  However, this is not the case with regard to the H6 proton. 

The H6 proton was previously observed at 8.22 ppm for the coordinated ring of 

[Ru(bpy)2bpzt]+ but is now seen at 9.16 ppm for [(Ru(bpy)2)2bpzt]3+, this is thought 
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to be due to the presence of the electronegative nitrogen atoms. The H3 protons of 

bpzt- shift upfield as expected due to the presence of the second metal centre in 

progressing from[Ru(bpy)2bpzt]+ to [(Ru(bpy)2)2bpzt]3+. The H5 proton has a slight 

downfield shift which again may be due to the presence of the electronegative 

nitrogen atoms.  

Attempts of Re (I) coordination to the free Hbpzt ligand has always resulted in the 

dinuclear [(Re(CO)3Cl)2bpzt] complex described in Figure 3.18 bottom spectra, the 

mononuclear complex has not been obtained. The proton signals for the H5 and H6 

protons almost overlap, but the symmetry of the complex is maintained with only 

half the number of signals visible in the NMR spectra similar to the Hbpt rhenium 

dinuclear complex previously discussed. These can be further separated with the use 

of different deuteriated solvents. On complexation of the Re (I) centre with the bpzt- 

ligand, a shift downfield is observed for the H3, H5 and H6 protons, which is similar 

to that observed for [(Re(CO)3Cl)2bpt] which could be due to the presence and 

proximity of the two  electronegative chlorine atoms. 

3.4.2 Infra-red Spectroscopy. 

IR spectra of the azole complexes were carried out in the CO vibrational region 

(2200 – 1700 cm-1) of the IR spectrum in dichloromethane. All of the complexes 

show CO bands, which are summarised in Table 3.4 below.  

Complex νCO (cm-1) 

[Re(CO)3(bpy)Cl] 2024 1990 1898 

[Re(CO)3(Hbpt)Cl] 2020 1914 1894 

[Re(CO)3Cl}2Hbpt] 2023 1916 1902 

[{Re(CO)3Cl}2Hbpzt] 2025 1922 - 

[Ru(bpy)2(bpt)Re(CO)3Cl]+ 2022 1913 1896 

 

Table 3.4:  IR data for the carbonyl stretching obtained for the triazole complexes 
synthesised in this section carried out in DCM 
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[Re(CO)3(bpy)Cl] was prepared as a reference compound as the carbonyl bands in 

the IR spectrum are well understood 24 and is typical of complexes of the type 

[Re(CO)3(L)X].  From Table 3.8 above it can be seen that the IR spectra for the 

above compounds shows that the facial isomer for the triazole complexes is 

dominant. This implies that the triazole ligands are bound in the equatorial region, 

trans to two carbonyls with a chlorine atom in the axial position and a CO in the final 

axial position. This is best described in Figure 3.16 below. These complexes are 

known to possess Cs symmetry 25, 26 where the IR bands from highest to lowest 

wavenumbers (cm-1), are assigned the symmetry labels A’ (1), A’’ and A’ (2) 

respectively. 27 

 

Re

CO

Cl
N

CON

CO

(axial)

(equatorial)

(equatorial)

 

 

Figure 3.19: Example of the facial coordination of the rhenium tricarbonyl complexes 

discussed where N-N denotes the bidentate ligand. 

The IR spectral results for the complexes [Re(CO)3(Hbpt)Cl],  [Re(CO)3Cl}2Hbpt] 

and [Ru(bpy)2(bpt)Re(CO)3Cl]+ agree with those previously obtained.28 Upon 

coordination of the second rhenium centre on the Hbpt ligand there appears to be 

very little spectral changes with the CO bands moving only slightly higher in 

frequency (3 cm-1 for the A’ (1) band). Upon coordination of the ruthenium metal 

center there is a slight shift from 2020 to 2022 cm-1 for the A’ (1) band. Figure 3.20 

below details a typical example for the IR spectra obtained for the Hbpt complexes.  
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Figure 3.20: I.R. of [(Re(CO)3)2Hbpt] (green) and [Ru(bpy)2(bpt)Re(CO)3Cl] (black) in 

DCM at 298K. 

 

IR spectra obtained for the complexes [(Re(CO)3Cl)2(Hbpzt)] and 

[Ru(bpy)2(dptd)Re(CO)3Cl] show a combined A’’ and A’ (2) bands, as a broad peak 

in the 1900 cm-1 region, an example of which can be seen in Figure 3.21 below. 

Shoulders in both spectra can be seen at 1907 cm-1 for  [(Re(CO)3Cl)2(Hbpzt)] and 

1894 cm-1 for [Ru(bpy)2(dptd)Re(CO)3Cl] indicating the formation of the fac isomer 

but due to solvent effects and solubility of these complexes, this band could not be 

resolved. Previous results for rhenium complexes containing bppz (2,3-bis2-pyridyl 

pyrazine) and ddpq (6,7-dimethyl2,3-di(2-pyridyl)quinoxaline) ligands have also 

shown A’’ and A’ (2)  unresolved bands which may indicate the presence of isomers 

.29,30  
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Figure 3.21: I.R. of [Ru(bpy)2(dptd)Re(CO)3Cl] in DCM at 298K. 

Comparison of the results obtained for the [Re(CO)3Cl)2Hbpt] and 

[Re(CO)3Cl)2Hbpzt] show small shifts in the IR bands to higher frequencies. 

Pyrazine triazoles are known to exhibit stronger π-acceptor abilities than bpt- and π*- 

level of the pyrazine analogue reside at lower energies to that of the pyridine 

analogue. The CO band shift observed for the pyrazine complex could be attributed 

to the competition between the carbonyl and pyrazine ligands for π –electron density 

from the Rhenium metal centre.  

3.4.3 Absorption Spectroscopy. 

Examination of the electronic properties of the complexes prepared in this chapter, 

offers an insight to the effects of the bridging ligand on the ruthenium and rhenium 

metal centres. The introduction of electron withdrawing / donating ligands on the 

metal complexes can introduce a CM3CT band shift which can be monitored by 

absorption spectroscopy. The intensity of absorption at a particular wavelength can 

also indicate how effective the ruthenium moiety is as the light harvesting species of 

the photocatalyst.  

Analysis of the complexes in this chapter were carried out in aerated acetonitrile at 

298K, in the 200 nm – 800 nm region of the UV-vis spectrum. Absorption and 
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emission data for the complexes prepared in this section are shown in Table 3.5 

below. Ruthenium complexes will be discussed first followed by rhenium, 

homonuclear and heteronuclear complexes.  

Complex λabs (nm) ε (LM-1cm-1)x 103 λem (nm) 

[Re(CO)3(bpy)Cl] 390 3.5 600 

[Re(CO)3(Hbpt)Cl] 360 4.0 540 

[Re(CO)3Cl}2Hbpt] 319 7.8 533 

[{Re(CO)3Cl}2Hbpzt] 334 5.2 589 

[Ru(bpy)3]2+ 452 12.9 612 

[Ru(bpy)2bpt]+ 480 10.8 677 

[(Ru(bpy)2)2bpt]2+ 450 20.2 637 

[Ru(bpy)2(bpt)Re(CO)3Cl]2+ 440 15.8 640 

[Ru(bpy)2bpzt]+ 450 10.5 650 

[(Ru(bpy)2)2bpzt]2+ 455 22.4 680 

 

Table 3.5: Combined emission and absorption data carried out in aerated acetonitrile at 

298K.  
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Figure 3.22 Absorption spectra of Hbpt (yellow), [Ru(bpy)2bpt]+(Pink) and 

[Ru(bpy)2(bpt)Re(CO)3Cl]+ (blue) carried out at room temperature in acetonitrile. 

 

Figure 3.23 Absorption spectra [(Ru(bpy)2)2bpt]+(Pink) and [Ru(bpy)2(bpt)Re(CO)3Cl]+ 

(yellow)  and [(Re(CO)3Cl)2Hbpt] (blue) at room temperature in acetonitrile. 
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Figures 3.22 and 3.23 above display typical absorption spectra obtained from the 

complexes containing the Hbpt ligand.  The extinction coefficients and CM3CT 

bands for the [Ru(bpy)2bpt]+ and [Ru(bpy)2)2bpt]3+ agree with those previously 

reported by Hage and co-workers.8 Comparison of the CM3CT bands of these 

complexes to the reference material [Ru(bpy)3]2+, the CM3CT band is red shifted 

from 452 nm to 480 nm. This corresponds to the bpt- ligand donating electron 

density towards the metal center due to its strong σ – donor ability.31 Upon 

complexation with another ruthenium center the electron density is spread between 

the two metal centers resulting in an CM3CT band that is blue shifted at 450 nm.  

Similar CM3CT shifts are seen for the rhenium mononuclear and dinuclear 

complexes containing Hbpt. The CM3CT bands for [Re(CO)3(Hbpt)Cl] and 

[Re(CO)3Cl}2Hbpt] occur at 360 nm and 319 nm respectively, and concur with those 

previously reported. Comparing these to the reference  [Re(CO)3(bpy)Cl] with an 

CM3CT band at 390 nm, indicating an increased energy gap between the HOMO 

and LUMO of [Re(CO)3(Hbpt)Cl] compared to the reference material. Coordination 

of the second Re(CO)3CL fragment increases the energy gap between the HOMO 

and LUMO levels by stabilization of the HOMO level which results in the increased 

absorption of the CM3CT band. Carbonyl π* transitions are masked here for the 

rhenium tricarbonyl species as the Re π *(CO) are known to be weak in intensity32 

and are overshadowed by the intense π  π* transitions of the triazole ligand. These 

bands can be seen in [Re(CO)5Cl] located at 280 nm in dichloromethane.  

On comparison of the homonuclear complexes [(Ru(bpy)2)2bpt]3+  and [(Re 

(CO)3Cl)2Hbpt] to that of the heteronuclear complex [Ru(bpy)2(bpt)Re(CO)3Cl]+, 

the CM3CT band at 440 nm is allocated to the Ru π* (bpt-), as the Re π* (bpt-) 

in the mononuclear and dinuclear complexes occur at higher energies. The decrease 

in intensity of the band at 440 nm can also be attributed to the sharing of the negative 

charge of the triazolate anion upon coordination of the Re(CO)3Cl fragment to the 

ruthenium mononuclear complex. A rhenium CM3CT band in the heteronuclear 

complex is hard to distinguish as this band coincides with the intense LC transitions, 

which are commonly found in ruthenium bpt- complexes.3,7 
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Figure 3.24 Absorption spectra [(Ru(bpy)2)2bpzt]3+(Pink) and [Ru(bpy)2(bpzt)]+ (blue)  and 

at room temperature in acetonitrile. 

 

Figure 3.25 Absorption spectra [(Ru(bpy)2)2bpzt]3+(Pink) and 

[(Re(CO)3CL)2Hbpzt] (blue)  and at room temperature in acetonitrile. 
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Figures 3.24 and 3.25 details the spectra obtained for the Ru(II) / Re(I) complexes 

containing the Hbpzt ligand. Pyrazine triazoles are known to exhibit stronger π-

acceptor abilities than bpt- and π*- level of the pyrazine analogue reside at lower 

energies to that of the pyridine analogue. Comparison of the spectra obtained for the 

complexes [Ru(bpy)2bpzt]+ and [(Ru(bpy)2)2bpzt]3+  to the reference [Ru(bpy)3]2+, 

show no significant shifts of the  CM3CT bands at  450 nm and 455 nm respectively 

which would agree with the π – acceptor quality of the ligand. Though comparison 

of  [Ru(bpy)2bpzt]+ to  [Ru(bpy)2bpt]+, the CM3CT transition is blue shifted form 

480 nm to 450 nm indicating the weaker σ – donor ability of the pyrazine triazoles 

compared to the pyridine triazoles. This trend agrees with that previously reported by 

Hage et al.7, ,8 9 Upon complexation of the second ruthenium there is a red shift from 

450 nm to 455 nm, this is due to the lowering of the LUMO π* level of the bpzt-. 

Comparison of the CM3CT bands of the dinuclear [(Re(CO)3CL)2Hbpzt] complex 

to [(Re(CO)3CL)2Hbpt] show a red shift of 15 nm which is expected due to the 

increased π- acceptor strength of the pyrazine triazole ligand. Similar trends are 

reported by Yoblinski and co-workers for pyrazine containing complexes.  

3.4.4 Emission Spectroscopy 
 

Emission analysis offers information about the 3CM3CT and when combined with 

absorbance measurements can describe excited state geometries.33After the intake of 

energy an electron has moved from the HOMO to LUMO orbitals. Emission is then 

seen as the energy is rereleased from either the lowest singlet (fluorescence) or 

triplet state (phosphorescence). Table 3.5 above details the λem observed for the 

complexes under discussion in this chapter. All analysis was carried out at 298K in 

acetonitrile. All complexes exhibit strong emission bands between 580 and 720 nm. 

Complexes containing the Ru(bpy)2 fragment will be compared to the reference 

[Ru(bpy)3]2+ while those containing Re(CO)3Cl fragment will be compared to 

[Re(CO)3Cl(bpy)].   

Figure 3.29 below shows typical emission spectra obtained for the complexes 

containing the Hbpt ligand. Comparing [Ru(bpy)2(bpt)]+ to [Ru(bpy)3]2+ there is a 

red shift of 25 nm from 612  to  637 nm. This trend agrees with those previously 

reported by Hage et al.7, ,  8 9 and further indicates the σ- donor ability of the Hbpt 
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ligand. In passing from the mononuclear [Ru(bpy)2(bpt)]+ to the dinuclear 

[(Ru(bpy)2)2(bpt)]3+ there is a blue shift of 40 nm from 677 to 637 nm respectively. 

The addition of the second metal centre causes the negative charge on the triazole to 

be delocalized over both centers, therefore reducing the electron donating ability of 

the Hbpt ligand. This results in the red shift observed in both the absorption and 

emission spectra. Emission spectra for [Ru(bpy)2(bpt)]+  and [(Ru(bpy)2)2bpt]3+ are 

well understood and the bands observed at 677 and 637 nm are assigned as a decay 

from the  3CM3CT state and is known to be a bpy based emission.2,   3
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Figure 3.26: Emission spectrum of [Ru(bpy)2(bpt)Re(CO)3Cl]+ (pink) and 

[(Ru(bpy)2)2bpt]3+ (blue)  in aerated acetonitrile solution. λexc = 460 nm. 

In progressing from [Re(CO)3Cl(Hbpt)] to [(Re(CO)3Cl)2(Hbpt)] a blue shift is also 

seen in progressing from the mononuclear to the dinuclear complex, 540 to 533 nm 

respectively, resulting in the stabilization of the t2g energy level and an increase in 

the t2g – 3CM3CT energy gap.  Both of these transitions are assigned as 3CM3CT 

bands and agree with results previously obtained.2 Comparison of these emission 

bands to those obtained for [Re(CO)3Cl(bpy)] at 600 nm show a blue shift in 

emission, this is in trend with previous publications where the addition of electron 
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donating groups near the metal centre cause a blue shift of the emission 

maxima.26, ,24 29 

The heteronuclear complex [Ru(bpy)2(bpt)Re(CO)3Cl]+ was found to have an 

emission maxima of 640 nm in acetonitrile at 298K. This emission appears to be 

based around the ruthenium fragment of the dinuclear complex as the previously 

described rhenium mononuclear and dinuclear complex have shown emission 

maxima around 540 nm. Upon coordination of the Re(CO)3Cl to the 

[Ru(bpy)2(bpt)]+ there is a blue shift from 677 to 640 nm much like the homonuclear 

dimers of Hbpt. Indicating that again the electron density around the metal centres is 

shared resulting in the stabilisation of the t2g level. These results are in keeping with 

the Ru(II)/Re(I) photocatalysts developed by Ishitani and co-workers34
Error! 

Bookmark not defined.
 where the Ru/Re binuclear complex containing the bridging 

ligands 1,3-bis(4’-methyl-[2,2’]bipyridinyl-4-yl)propan-2-ol (bpyC3-bpy) and  4-

methyl-4’-[1,10]phenanthroline-[5,6-d]imi4-methyl-4’-[1,10]phenanthroline-[5,6-

d]imidazol-2-yl)bipyridine (mfibpy) showed emission maxima of 631nm and 646 

nm respectively.  
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Figure 3.27: Emission spectrum of [Ru(bpy)2(bpzt)]+ (blue), [(Ru(bpy)2)2bpzt]3+ (pink) and 

[(Re(CO)3Cl)2Hbpzt] (green)  in aerated acetonitrile solution.  
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Figure 3.27 details the emission spectra obtained for [Ru(bpy)2(bpzt)]+, 

[(Ru(bpy)2)2(bpzt)]3+ and [Re(CO)3Cl(Hbpzt)] and exhibit emission maxima of 650 

nm, 680 nm and 589 nm respectively. For the ruthenium complexes these emissions 

are in agreement with those reported by Hage et al. 7, ,8 9. As previously described 

Hbpzt is a weaker σ–donor than Hbpt but is a better π–acceptor.79 This can be seen 

by the shift in emission maxima of the complexes containing Hbpzt when compared 

to Hbpt. There is a blue shift of 27 nm in passing from [Ru(bpy)2(bpt)]+ (677 nm) to  

[Ru(bpy)2(bpzt)]+ (650 nm).  As Hbpzt is a weaker σ electron donor, the electron 

density around the Ru metal center in the pyrazine is reduced compared to that of the 

pyridine analogue due to the lower lying π* orbital of the pyrazine ligand. 

Coordination of a second ruthenium metal to bpzt- leads to a red shift of 30 nm from 

650 nm to 680 nm as can be seen in Table 3.5 previously. This is in contrast to that 

of the pyridine analogues where a blue shift is seen on coordination of a second 

ruthenium centre. Previously it was seen that he second metal center caused a 

stabilization of the t2g energy level, thus increasing the t2g – 3CM3CT energy gap 

resulting in a blue shift. Here a lowering of the π* level of bpzt- is observed. These 

results agree with those previously reported for ruthenium complexes containg the 

Hbpzt ligand and other pyraine based ligands35,19 ,36 

 

The [(Re(CO)3Cl)2(Hbpzt)]  has a broad, featureless band whose position and shape 

are  akin to previously reported rhenium carbonyl emitting complexes.37,38 

Comparison of [(Re(CO)3Cl)2(Hbpzt)] (589 nm) to [(Re(CO)3Cl)2(Hbpt)] (533 nm) 

shows a red  shift of 56 nm. This again shows the π- acceptor qualities of the Hbpzt 

ligand over Hbpt.  This also suggests a lower lying π* orbital. Comparison of 

[(Re(CO)3Cl)2(Hbpzt)] to the results reported for [Re(CO)3Cl(dpp)] (where dpp = 

2,2’-bipyrazine) by Cambron and co-workers39 are interesting, the dimetallic 

[(Re(CO)3Cl)2(dpp)] was found to be non emissive in fluid solution where the 

mononuclear pyrazine Re(I) complex was found to have an emission maxima at 670 

nm in acetonitrile at room temperature. The red shift in the emission maxima of the 

dinuclear rhenium complex does follow a trend with the monodentate pyrazine 

triazoles previously reported by C. Brennan,2 where the mononuclear 
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[Re(CO)3Cl(Hpztr)] was found to have an emission of 535 nm  where the pyridine 

analogue has a maxima of 493 nm.  

3.5 Conclusions 

This section describes the preparation and analysis of the complexes prepared for the 

purpose of reducing CO2 catalytically. 1HNMR spectroscopy detailed the formation 

of the complexes and the effects of the ligand protons upon complexation with a 

ruthenium or rhenium metal centre. IR analysis indicated that the rhenium (I) 

complexes prepared are all of the fac isomer due to the presence of the three 

carbonyl bands in the 1700cm-1 - 2200 cm-1 of the IR spectrum.   

The effects of the bridging ligands Hbpt and Hbpzt where clearly seen in the IR, UV-

vis and fluorescence measurements. Hbpzt was shown to be a better π-acceptor than 

Hbpt and dptd and results obtained are in agreement by those obtained by Hage et al.  

Further synthetic studies are required to prepare the complexes [Re(CO)3Cl(Hbpzt)], 

[Re(CO)3Cl(dptd)] and [Ru(bpy)2(dptd)Re(CO)3Cl]2+ to allow for comparison with 

the complexes already prepared.  Lifetime measurements and excited state studies 

should be carried out to determine the location of the excited state in the dinuclear 

complexes obtained.  
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Chapter 4: Synthetic Routes to 

[Ru(bpy)2(tpphz)Re(CO)3Cl)](PF6)2. 

 

The subject of the work presented in this 

chapter is the development of a synthetic 

pathway to prepare the dinuclear complex 

[Ru(bpy)2(tpphz)Re(CO)3Cl)](PF6)2. Synthesis 

and characterisation of the ruthenium (II) and 

rhenium (I) mononuclear complex 

intermediates are described. Preparation of 

the symmetric tetrapyrido[3,2-a:2’,3’:3’’,2’’-

h:2’’’,3’’’-j]phenazine (tpphz) ligand is 

discussed both as a free ligand and contained 

within mononuclear and dinuclear complexes.  
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4.0 Introduction  
 
The development of supramolecular assemblies for use as photocatalysts has 

received much attention throughout the years, as these assemblies allow for 

photoinduced electron and energy transfer processes under well defined 

geometries.1,2,3,4,5,6,7 Of those complexes one particular bridging ligand, the 

symmetric tetrapyrido[3,2-a:2’,3’:3’’,2’’-h:2’’’,3’’’-j]phenazine (tpphz) has received 

extensive attention and has been applied to areas such as molecular electronics 8, 

DNA intercalators9 and in the construction of rigid polymers10 and dendrimers.11,12 

 

The reason for such an in depth study, is due to the rigidity of the complex when 

tpphz is used. Due to the high number of conjugated bonds within its structure, this 

ligand offers a rod like composition that is both longitudinally and torsionally rigid 

allowing a defined internuclear distance between the attached metal centres.13 Such a 

defined orientation is desirable to increase the probability of communication between 

the metal centres. A reported consequence of this high degree of conjugation is the 

ability of the tpphz ligand, to act as an electron reservoir by storing an electron in the 

pyrazine midsection of its structure. 14  

 

One of the most successful photocatalysts in terms of its Hydrogen formation ability 

is a ruthenium/ palladium tpphz dimer ([Ru(bpy)2(tpphz)PdCl2]2+ ) by Rau et al. as 

shown in Figure 4.1 below.15 For the formation of hydrogen, turnover numbers 

(TON) as high as 56 have been achieved using visible light  (λ ≥ 450 nm) in 

acetonitrile using TEA (triethylamine) as a sacrificial donor to re-reduce the 

photocatalytically formed Ru(III) centre.  These results also showed that the amount 

of hydrogen formed is highly dependant on the TEA concentration and the amount 

of time the photocatalyst is exposed to light the optimum of which was found to be 

29 hours with 2 mol L-1 of TEA.  
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Figure 4.1: Hydrogenation of Tolane to cis-stilbene using 

[Ru(bpy)2(tpphz)PdCl2]2+. 

 

In addition to the formation of hydrogen, [Ru(bpy)2(tpphz)PdCl2]2+ was also shown 

to selectively reduce tolane (diphenylacetylene) to cis-stilbene with a TON of 63 . 
14,15  The activity of the catalytic center (PdCl2) was illustrated by the generation of 

the cis- stilbene isomer only and the inactivity of the palladium free derivative. 

These results are much improved from those previously reported in 2006 by Sakai et 

al16 who reported TON of 2 and 4 mol of H2 per mol of catalyst. The photocatalyst 

used by Sakai shown in Figure 4.2 was a ruthenium/platinum dinuclear complex but 

using a bridge that has lesser conjugation within its structure, indicating the 

importance of a reducible π-electron system as a bridging ligand.  

 

 

 

Figure 4.2: Structure of the photocatalyst reported by Saki et al.16 

104 
 



Chapter 4: Synthetic Routes to [Ru(bpy)2(tpphz)Re(CO)3Cl](PF6)2. 

 

Consideration of the success of the photocatalyst by Rau et al.,14, 15 leads to an 

interesting postulation, on replacement of the catalytic centre with a rhenium moiety, 

a photocatalyst with the ability to reduce CO2 may be prepared. As previously 

discussed in Chapter 1, rhenium has been shown to be a metal of choice for the 

reduction of CO2, 
17,18,19,20,21 so a dinuclear complex containing a ruthenium centre 

(as a light absorbing species), rhenium as a catalytic centre and tpphz ligand as a 

communication pathway has a high probability of working as a photocatalyst that 

reduces CO2. The importance of using tpphz as a bridging ligand for intramolecular 

photoinduced electron transfer was also shown by Chiorboli et al. 22 in 2002 who 

found that in acetonitrile, electron transfer rates of a few picoseconds were observed. 

In the same study it was also determined that the presence of the tpphz ligand is that 

of a molecular component which actively participates in the energy and electron 

transfer process between the two metal centres.  

 

With this in mind a study into the synthetic preparation of the dinuclear complex   

[Ru(bpy)2(tpphz)Re(CO)3Cl)](PF6)2 was conducted. Previous publications indicate 

the preparation of ruthenium tpphz dinuclear complexes are prepared from a 

condensation reaction between 1,10-phenanthroline and 1.10-phenanthroline-5,6-

diamine.,22,23,24 Though in 2003 Mosurkal et al. reported a biocatalytic synthesis of 

[(Ru(bpy)2)2(tpphz)]4+ using Hematin as a catalyst in the presence of H2O2.25 

Hematin (hydroxyl ferriprotoporphyrin) the catalytic centre in certain enzymes, 

undergoes redox changes in the presence of H2O2 in organic solvents such as 

DMF26. This unique approach taken by Mosurkal et al. shows the synthesis of the 

tpphz ligand, this is the first reported use of hematin for a small molecular system 

and the approach taken is shown below in Figure 4.3.25 Carrying out the synthesis 

biocatalytically negated the use of long multistep synthesis and high reaction 

temperatures (180°C) that have been carried out previously. The reaction also 

appears to be specific as no formation of side products as reported. Currently the 

reported yields using hematin are low though it is suggested this could be improved 

during the work up procedure. Formation of the complex by Mosurkai was 

confirmed by UV-vis and emission spectra. MLCT based absorption bands were 

observed at 445 nm and an emission λmax was found at 670 nm.  
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Figure 4.3: Biocatalytic synthesis reported by Mosurkal et al. 

 

4.1 Aim. 
  
The work under discussion in this chapter describes the synthetic approaches 

undertaken to synthesise [Ru(bpy)2(tpphz)Re(CO)3Cl)](PF6)2. Tables 4.1, 4.2 and 

4.3 that follow describe the ligands and complexes under discussion in this chapter.  

Initially the reactions reported by Bolger and Rau15 amongst others, were used to 

create the tpphz ligand by means of a phenanthroline and phendiamine condensation 

reaction, from here novel synthetic routes were carried out to prepare 

[Ru(bpy)2(tpphz)Re(CO)3Cl)](PF6)2.    
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NN  
bpy, (2,2-bipyridine) NN  

Phen, (1,10-phenanthroline) 

NN

OO

 

Phendione, (1,10-phenanthroline-5,6-dione) 

NN

HON NOH

 

Phendioxime, (1,10-phenanthroline-5,6-dioxime) 

NN

NH2 NH2

 

Phendiamine, (1,10-phenanthroline-5,6-

diamine) 

N

N

N

N

N

N

 

Tpphz, (tetrapyrido[3,2-a:2’,3’:3’’,2’’-h:2’’’,3’’’-

j]phenazine) 

 
Table 4.1: Depicts the abbreviations and structures of the ligands discussed in this section. 
 

 

[Ru(bpy)2(tpphz)Re(CO)3Cl](PF6)2 
 

(bpy)2Ru

N

N

N

N

N

N
Re(CO)3Cl

 

2+

 

[{Ru(bpy)2}2tpphz](PF6)2 
 

(bpy)2Ru

N

N

N

N

N

N
Ru(bpy)2

 

4+

 

[{Re(CO)3Cl}2tpphz] 
 

Cl(CO)3Re

N

N

N

N

N

N
Re(CO)3Cl

 
 

 
Table 4.2: Depicts the structures of the dinuclear complexes discussed in this section. bpy = 
2,2-bipyridine. 
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(bpy)2Ru

N

N

 

2+

 
[Ru(bpy)2(phen)]·(PF6)2 

(bpy)2Ru

N

N

O

O

 

2+

 
[Ru(bpy)2(Phendione)] ·(PF6)2 

(bpy)2Ru

N

N NOH

NOH

 

2+

 
[Ru(bpy)2(Phendioxime)] ·(PF6)2 

(bpy)2Ru

N

N NH2

NH2

 

2+

 
[Ru(bpy)2(Phendiamine)] ·(PF6)2 

Cl(CO)3Re

N

N

O

O

 
 

[Re(CO)3Cl(phendione)] 

Cl(CO)3Re

N

N

 
 

[Re(CO)3Cl(phen)] 

(bpy)2Ru

N

N

N

N

N

N

 

2+

 
[Ru(bpy)2(tpphz)] ·(PF6)2 

 

Cl(CO)3Re

N

N

N

N

N

N

 
 

[Re(CO)3Cl(tpphz)] 

 
Table 4.3: Depicts the abbreviations and structures of the mononuclear complexes discussed 
in this section. bpy = 2,2-bipyridine. 
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4.2 Synthetic Procedures 

4.2.1 Preparation of Ligands. 
 
1,10-phenanthroline-5,6-dione (dione)27 
 

1,10-phenanthroline monohydrate (10.00 g, 50.46 mmol) was added in small 

portions to a stirring solution of 60 cm3 concentrated sulphuric acid in a 500 cm3 

round bottom flask equipped with a reflux condenser. When the solid was 

completely dissolved, sodium bromide (5.19g 50.44 mmol) was added in small 

portions followed by 30 cm3 of 70% HNO3. This was then brought to reflux (110 ºC) 

for six hours and then the temperature was reduced to 95 ºC, the reflux condenser 

removed to allow the bromine vapours to escape and left for sixteen hours.  

 

The reaction was then brought to room temperature and poured over 800 g of ice and 

was carefully neutralised to pH 7 with approximately 300 cm3 of 10 M NaOH. At 

this point the solution turned a green colour with a yellow precipitate. This 

precipitate was then collected, and this step repeated. The combined precipitate was 

then placed in a round bottom flask and refluxed in 200 cm3 of water for 1 hour and 

the insoluble material was collected by vacuum filtration. This was repeated twice 

more and then the water was extracted with DCM until the organic layer remained 

clear. The DCM was then removed by rotary evaporation and an NMR obtained of 

the crude material. This was then recrystallised from toluene.  

Yield:  8.16 g, 38.83 mmol, 77%. 

Calc on C12H6N2O6 ,Mw: 210.12 g/mol  
1H NMR: (d6- acetone, 298K) : 8.99 (2H, dd), 8.39 (2H, m), 7.67 (2H, d). 
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Tetrapyrido[3,2-a:2’,3’:3’’,2’’-h:2’’’,3’’’-j]phenazine (Tpphz) 
 
1,10-phenanthroline-5,6-dione (0.3045 g, 1.449 mmol), sodium hydrosulphite 

(0.0318 g, 0.1826 mmol) and ammonium acetate (1.594 g, 20.67 mmol) were placed 

into a 50 cm3 round bottom flask which was previously purged with nitrogen. This 

was slowly heated to 190ºC with constant stirring for two hours. After the reagents 

have melted the reaction turns a yellow/brown colour. The reaction was then cooled 

to room temperature and 3cm3 of water was added. The yellow precipitate was then 

collected under a vacuum, washed with water, methanol and acetone. The product 

was then triturated in refluxing ethanol, hot filtered, washed with ethanol and dried 

under vacuum. 

Yield: 0.1526 g, 0.397 mmol, 52.8%.  

Calc on C24H12N6 , Mw: 384.39 g/mol 
1H NMR:  

(CDCl3 TFA, 298K) : 10.06(dd, 4H), 9.47 (dd, 4H), 8.47 (dd, 4H). 

(d3-ACN, TFA, 298K) : 10.03 (dd, 4H), 9.17 (dd, 4H), 8.25 (dd, 4H). 

 

4.2.2 Preparation of Mononuclear Complexes. 
 
[Ru(bpy)2(1,10phenanthroline)](PF6)2

28 
 
[Ru(bpy)2Cl2]·2H20 (0.200 g,  0.3845mmol) and (0.099 g, 0.549 mmol) of 1,10-

phenanthroline monohydrate were refluxed at 120ºC for 3 hours in 2:1 (v/v) ethanol : 

water. The reaction was cooled to room temperature and the ethanol removed. 5 cm3 

of water was added and the product was obtained by the addition of KPF6. The 

product was stored at +4 °C overnight and recrystallised from 2:1 (v/v) acetone: 

water.  

Yield: 0.223 g, 0.253 mmol, 66%. 

Calc on C32H22N6 Ru1(PF6)2, Mw: 883.27 g/mol. 
1H NMR (acetone, 298K)  8.91 (m, bpy, 4H), 8.88 (m, phen, 2H), 8.40 (s, phen, 

2H), 8.23 (dd, phen, 2H), 8.14 (dd, bpy, 4H), 7.89 (m, bpy, 4H), 7.58 (m, bpy, 4H), 

7.38 (dd, phen, 2H). 
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 [Ru(bpy)2(phendione)](PF6)2(method 1) 
 
 
[Ru(bpy)2(phenanthroline)]·2(PF6) (0.500g, 0.566 mmol) was dissolved in 10cm3 of 

conc. H2SO4 with stirring at room temperature. (0.858g, 8.34 mmol) of NaBr was 

added until completely dissolved. 7 cm3 of 70% HNO3 was added and reaction was 

brought to 120 ºC for 20 min. The reaction was cooled to room temperature and 

poured over 70 cm3 of cold saturated KPF6 solution. This was stored at +4 ºC 

overnight. The brown precipitate was collected by vacuum filtration and allowed to 

dry. The complex was recrystallised from 2:1 (v/v) acetone : water. 

Yield: 0.465 g, 0.509 mmol, 90%. 

Calc on C32H22N6O2 Ru1 (PF6)2, Mw: 913.25 g/mol. 

. 

1H NMR (acetone, 298K)  8.52 (m, dione, 2H), 8.10 (dd, bpy, 2H) 7.98 (d, dione, 

2H), 7.79 (d, bpy, 2H),  7.61 (d, dione 2H), 7.43 (dd, bpy, 2H) 

 

 

[Ru(bpy)2(phendione)](PF6)2
28 (method 2) 

 

[Ru(bpy)2Cl2]·2(H2O) (0.074 g, 0.142 mmol) was dissolved in 5 cm3 of ethanol. 

1,10-phenanthroline-5,6-dione (0.029 g, 0.138 mmol) was added slowly with 

constant stirring. This was refluxed for 4 hours at 70 ºC. The reaction was then 

cooled and filtered and saturated ethanolic KPF6 was added. The reaction was then 

placed at -20 ºC overnight and a black solid was obtained. This was recrystallised 

from 1:1 (v/v) acetone: water. 

Yield: 0.046 g, 0.048 mmol, 34 %.  

Calc on C32H22N6O2 Ru1(PF6)2, Mw: 913.25 g/mol
1H NMR (acetone, 298K)  8.52 (m, dione, 2H), 8.10 (dd, bpy, 2H) 7.98 (d, dione, 

2H), 7.79 (d, bpy, 2H),  7.61 (d, dione 2H), 7.43 (dd, bpy, 2H). 
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[Re(CO)3Cl (phen)]29 
  
20 cm3 of anhydrous toluene was purged for 10 min. [Re(CO)5Cl] (0.100 g, 0.277 

mmol) was weighed out carefully under nitrogen and added to 10 cm3 of toluene. 

1,10-phenanthroline monohydrate (0.0403 g, 0.203 mmol) was dissolved in 10 cm3 

of solvent along with a few drops of triflouroacetic acid and brought to 25 °C. The 

[Re(CO)5Cl] was added slowly over a 15 minute period and then this solution was 

heated to reflux and left for 3 hours. The reaction had turned a bright yellow colour 

and was allowed to cool to room temperature and as this occurred, a bright yellow 

precipitate formed. The yellow product was collected by vacuum filtration and 

recrsytallised from acetone: water 1:1 (v/v). 

Yield: 0.093g, 0.191 mmol, 84%. 

Calc on C15H8N2O3 Cl1 Re1, Mw: 485.80 g/mol. 

 

1H NMR (acetone, 298K) : 9.41 (dd, phen 2H), 8.85 (m, phen, 2H), 8.22 (s, phen, 

2H), 7.38 (m, phen, 2H) 

IR (CO) υcm-1: 2020, 1918, 1894. 

 

 [Re(CO)3Cl (phendione)] 
 
As above except 1,10-phenanthroline-5,6-dione (0.0403 g, 0.192 mmol) and 

[Re(CO)5Cl] (0.100g, 0.276 mmoles) were used.    

Yield: 0.085 g, 0.165 mmol, 86%. 

Calc on C15H6N2O5 Cl1 Re1, Mw: 515.78 g/mol.
1H NMR (acetone, 298K) : 9.22 (dd, phen, 2H), 8.77 (dd, phen, 2H), 7.98 (m, phen, 

2H) 

IR (CO) υcm-1: 2023, 1923, 1989. 
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[Re(CO)3Cl (tpphz)] 

    

Tpphz (0.192 g, 0.499 mmol) was dissolved in two drops of concentrated TFA and 

then placed in 10 cm3 of anhydrous toluene and brought to 25 °C. To this a solution 

of [Re(CO)5Cl] (0.200 g , 0.553 mmol) in 10 cm3 of anhydrous toluene was added 

over a 15 minute period.  This was refluxed for three hours, toluene removed. The 

residue dissolved in acetone and filtered. The acetone was evaporated slowly to yield 

the yellow product. 

Yield: 0.095g, 0.0954 mmol,19. %. 

Calc on C27H12N6O3 Cl1 Re1, Mw: 995.71 g/mol. 

l. 

1HNMR (acetone, 298K) δ: 7.07(m, tpphz, 2H), 8.46(dd, tpphz, 1H), 9.66(m, tpphz, 

2H) 10.46 (dd, tpphz, 1H). 

IR (CO) υcm-1: 2026, 1927, 1908. 

 

 

4.2.3 Preparation of Dinuclear Complexes 

 

[Ru(bpy)2(Tpphz)Re(CO)3Cl]·(PF6)2 

 

[Re(CO)3Cl(tpphz)] (0.050g, 0.07 mmol) was dissolved in ethanol. 

[Ru(bpy)2Cl2].2H20 (0.042g, 0.08mmol) was added slowly over a twenty minute 

period. This was left to reflux for six hours and the ethanol removed. 5 cm3 of H20 

was added and the solution filtered. The product was obtained by the addition of 

KPF6.  

Yield 0.0137 g, 12%, 0.0097mmol.  

Calc on C47H28N10O3Cl1Re1Ru1(PF6)2, Mw:1411.18 g/mo
1HNMR (ACN, 298K) δ: 5.98 (dd, 2H), 6.05 (dd,  2H), 6.52 (m,  2H), 6.63 (m,  2H), 

6.74 (m, 2H), 6.97 (m, 2H), 7.27 (m, 2H) 7.48 (dd, 2H), 7.51 (m, 2H), 7.63 (m, 2H) 

8.46 (dd, 2H), 8.49 (dd, 2H), 8.97 (dd, 2H) 9.02 (dd,2H) . 

 

 

 

 

113 
 



Chapter 4: Synthetic Routes to [Ru(bpy)2(tpphz)Re(CO)3Cl](PF6)2. 

[(Ru(bpy)2)2(Tpphz) ]·(PF6)4 

 

[Ru(bpy)2Cl2]·2H20 (0.200g, 0.385 mmol) and tpphz (63mg, 0.165 mmol) were 

refluxed in 20cm3 of  2:1 (v/v) ethanol: water for 24 hours. The reaction was cooled 

to room temperature and the ethanol removed. The reaction was allowed to stand at 

+4C overnight and the reaction was filtered to remove any unreacted ligand. 10cm3 

of water was added and the product was obtained by the addition of KPF6 and was  

recrystallised from 2:1 (v/v) acetone : water. 

Yield: 0.465 g, 0.260 mmol, 67%.  

Calc on C64H44N14Ru1(PF6)4, Mw:1790.41 g/mol. 

 

1HNMR (ACN, 298K) δ: 7.00 (dd, bpy 2H), 7.25 (dd, bpy, 2H), 7.63 (m, bpy, 2H), 

7.74 (m, bpy, 2H),   7.75 (dd, tpphz, 2H), 7.77 (m, bpy, 2H), 7.81 (m, bpy 2H) 7.96 

(m, tpphz, 2H), 8.28 (m, bpy, 2H), 8.31 (m, bpy, 2H) 9.70 (dd, tpphz, 2H). 

 

[(Ru(d-bpy)2)2(Tpphz) ]·(PF6)4 

 

As above except [Ru(d-bpy)2Cl2]·2H20 (0.100g, 0.198 mmol) and tpphz (0.035g, 

0.09 mmol) were used. 

Yield: 0.198g, 0.113mmol, 57%.  

Calc on C64N14Ru1(PF6)4,Mw:1746.41 g/mol.
1HNMR (ACN, 298K) δ: 7.75 (dd 2H), 7.96 (m, 2H), 9.70 (dd, 2H). 
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4.2.4 Attempted Synthesis 

1,10-phenanthroline-5,6-dioxime (Phenoxime) 

 

1,10-phenanthroline-5,6-dione (0.420g, 2.00 mmol), NH2OH.HCl (0.486g, 7.00 

mmol) and BaCO3 (0.529g, 3.00 mmol) was refluxed in 50cm3 of ethanol for 12 

hours.  The ethanol was then removed and the residue was stirred with 40cm3 of 

0.2M  HCl for 1 hour and then filtered. The light yellow solid obtained was washed 

with water (20cm3), ethanol (20cm3) and finally dried under a vacuum at 80ºC. 

   

 

 
[Ru(bpy)2(Tpphz)Re(CO)3Cl]·(PF6)2 

 

[Re(CO)3Cl(dione)] (50mg, 0.097mmol), [Ru(bpy)2(dione)]2PF6 (91mg, 0.10 

mmol) and ammonium acetate and NaHS were placed together in a round bottom 

flask and heated to 40C until all of the ammonium acetate melted and a slurry was 

formed. The temperature was then brought to 100°C and left to stir for 5 hours. This 

was then cooled to room temperature and 5 ml of H2O was added. A yellow 

precipitate was formed and removed by filtration. KPF6 was then added dropwise 

and a red precipitate was obtained.  

.  

 

[(Re(CO)3Cl)2(tpphz)] 

 

As for [Re(CO)3Cl(tpphz)] except [Re(CO)5Cl] (0.10g, 0.2 mmol) and tpphz 

(0.053g, 0.1mmol) were used and the reaction was refluxed for 6 hours.  

IR (CO) υcm-1: 2026, 1927, 1908.  
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4.3 Results and Discussion. 

4.3.1 Synthesis 
Ligand Preparation 
 
The tpphz ligand was prepared as described by Bolger et al  with a  solventless 

reflux using the solid with the lowest melting point (ammonium acetate) to form a 

slurry and then further reaction with the 1,10- phenanthroline-5,6-dione in the 

presence of a hydrogen donor (NaHS). The product was easily purified by trituration 

in ethanol. The reaction proceeded via a Schiff-base reaction between the amine and 

the aldehyde an example of such a reaction reaction is shown in Figure 4.4 below. 
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Figure 4.4: Example of a Schiff-base reaction.10  
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Problems were encountered as the ligand was found to be highly insoluble due to the 

high conjugation in its structure. Though the ligand itself is easily obtained, 

complexation to a metal(e.g. Ru or Re), or to gather experimental data, became a 

challenge. 1HNMR was carried out by the addition of TFA (triflouroacetic acid) to 

the ligand and the deuteriated solvent was then added, though the ligand was found 

to be sparingly soluble in dichloromethane.  

 

To overcome this problem it was thought that building the ligand on to the ruthenium 

and rhenium centres offered an increase in solubility. This required the preparation 

of an amine ligand bound to either the ruthenium or rhenium metal centers and an 

aldehyde on the remaining metal, followed by a coupling reaction. The approaches 

undertaken are described in the following section.  

 

Complex Preparation 
 
Previous publications 24, , ,22 27 30 describe the formation of the mononuclear 

[Ru(bpy)2tpphz](PF6)2, via a Schiff base coupling reaction between 5,6-diamino-

1,10-phenanthroline and [Ru(bpy)2phendione]2+ as shown in Figure 4.5 below. 

However the synthetic preparation of the 5,6-diamino-1,10-phenanthroline proved to 

be difficult. The publications mentioned above, report the formation of the diamine 

from a phendioxime intermediate. Phendioxime was formed from phendione in the 

presence hydroxylamine hydrochloride and barium carbonate as described in Figure 

4.5. This reaction was problematic and 1HNMR data indicated that conversion of the 

C=O to the -NOH group only occurred on one side of the phendione ligand. Many 

attempts of synthesizing the phendioxime were made on the free phendione ligand 

itself and on [Ru(bpy)2(phendione)](PF6)2 , in preparation of the phendiamine but 

there were all unsuccessful, the reaction conditions used are described in Table 4.4 

below.  
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Figure 4.5: Synthetic Route 1 to the formation of the desired Ru (II) mononuclear complex 

and subsequent heterodimer.  
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Reaction #  Phendione 

mmol 

NH2OH.HCl 

mmol 

 BaCO3 

mmol 

 

Reaction 

Time (Hr) 

Reaction 

Temp (˚C) 

1 2 7 3 6 107 

2 2 7 3 12 107 

3 2 7 3 24 120 

4 2 8 4 48 120 

5 2 9 4 12 120 

6 2 9 4 24 120 

 
 

Table 4.4: Reaction conditions used in the preparation of the phendioxime ligand. 

 

As the afore mentioned route was time consuming and problematic, a novel synthetic 

route was considered to prepare the Ru (II) mononuclear tpphz complex. The free 

tpphz ligand as shown above, was formed form the condensation of phendione with 

ammonium acetate. A new synthetic approach was subsequently taken to determine 

if the ruthenium when bound to the phendione ligand would couple with ammonium 

acetate to give the desired product shown in Figure 4.6 below.   

 

The preparation of the ruthenium dione complex was interesting, as it was found that 

oxidation of the phenanthroline ligand while bound to the ruthenium gave a higher 

yield (89%) than the complexation of [Ru(bpy)2Cl2] to a free ligand (tpphz) (34%). 

However upon coupling the [Ru(bpy)2phendione]2+ with free dione ligand no 

reaction was observed. Reactions of this type are very sensitive to the hydrogen 

donor. 10 Imine formation is fastest between pH 4 – 8 and though the catalyst is only 

required for the elimination of water, if too much amine is protonated the rate of 

reaction is slow to nonexistent. The amount of acid was varied along with the 

reaction solvent when no reaction was seen the hydrogen donor was also varied. 

Each reaction was monitored closely to determine if any signs of reaction were 

occurring e.g. colour change. These reactions are displayed below in Table 4.5.  
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Figure 4.6: Synthetic Route 2 to the formation of the desired Ru (II) mononuclear complex 

and subsequent heterodimer. 

 

 

Reaction 

# 

[Ru(bpy)2(dione)]2+ Free 

Dione 

Ammonium 

Acetate 

H+  

Donor 

Solvent Temp. 

(˚C) 

Time  

(Hr) 

1 1 1 6 NaHS none 150 3 

2 1 1 6 NaHS none 150 6 

3 1 1 6 NaHs none 100 12 

4 1 1.5 6 H2SO4 Ethanol 80 6 

5 1 1.5 8 H2SO4 Ethanol:Water 120 6 

6 1 1.5 8 H2SO4 Ethanol:Water 120 12 

7 1 1.5 8 HNO3 Ethanol:Water 120 6 

 

Table 4.5: Test reactions for the preparation of [Ru(bpy)2tpphz]2+. 
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Even though the preparation of the ruthenium (II) mononuclear complex 

[Ru(bpy)2tpphz]2+ was desired to complete the study, it is not necessary for the 

formation of the required Ru /Re dinuclear species. Following on from the previous 

reactions, a coupling reaction was conducted using ruthenium and rhenium 

phendione mononuclear complexes, in the presence of ammonium acetate and a 

hydrogen donor. This condensation reaction described in Figure 4.7, was carried out 

initially in 2:1 ethanol/ water (v/v) but no reaction was observed. The reaction was 

repeated using no solvent and the desired [Ru(bpy)2(tpphz)Re(CO)3Cl]2+ was 

obtained in a small yield. This reaction is problematic as it may also give rise to 

[(Ru(bpy)2)2(tpphz)]4+ and [(Re(CO)3Cl)2(tpphz)]. 
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                  Figure 4.7: Synthetic Route 3 to the formation of the desired heterodimer. 
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 A final route, (Figure 4.8) was devised in which the tpphz ligand was dissolved in a 

small amount of TFA and reacted with [Re(CO)5Cl] using toluene as a solvent to 

form the mononuclear complex. This reaction allowed the insoluble tpphz to be 

protonated turning a dark brown colour and dissolve into solution. Upon addition of 

the pentacarbonyl, a bright yellow solution was formed upon reaching the reflux 

temperature. As this formed a single mononuclear species [Re(CO)3Cl(tpphz)] 

within 3 hours, the ruthenium bipyridyl moiety [Ru(bpy)2] was less complicated to 

attach. This attachment was carried out using methanol as a solvent with a 6 hour 

reaction time, though this dinuclear species so far has only been obtained in small 

yield.  
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    Figure 4.8: Synthetic Route 4 to the formation of the desired heterodimer. 
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4.3.2 1H NMR. 

 
1H NMR was used in the elucidation of the structures of both the ligand and metal 

complexes with ruthenium (II) and rhenium (I). These metal centers form 

diamagnetic low-spin d6 complexes that can be characterised with NMR 

spectroscopy. Firstly the NMR spectra obtained for the ligands will be discussed 

followed by the analysis of the NMR spectra of mononuclear and dinuclear species. 

Proton signals were assigned with the use of a 2D-COSY and all NMR spectra were 

calibrated to the correct solvent peak. 

 

4.3.2.1 1HNMR – Ligands. 
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Figure 4.9: Labeling of the phenanthroline  based ligands for 1HNMR assignment. 

 

Ligand Solvent H1 H2 H3 H4 

phen CD3CN 9.11 7.71 8.37 7.98 

phendione CD3CN 9.07 7.67 8.39 - 

phendione CDCl3 8.99 7.67 8.39 - 

phendione C3D6O 8.98 7.60 8.40  

tpphz CD3CN 10.08 8.25 9.18 - 

tpphz CDCl3 10.06 8.47 9.47 - 

tpphz C3D6O 10.09 8.63 9.49  

 
Table 4.6: 1H NMR data in ppm for phen, phendione and tpphz ligands. 
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The signals in the 1H-NMR spectra of free ligands 1,10-phenanthroline (phen), 1,10-

phehanthroline-5,6-dione (phendione) and Tetrapyrido [3,2-a:2’,3’:3’’,2’’-

h:2’’’,3’’’-j]phenazine (tpphz) have been correctly assigned with the aid of 2D- 

COSY spectra, an example of which is shown below in Figure 4.10. The data 

obtained have been compared to the literature values reported. 11,7 Chemical shift 

values are presented in Table 4.6 above and relevant spectra can be observed in 

Figures 4.10 and 4.11 that follow.  
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Figure 4.10 1HNMR COSY of tpphz ligand in d3-acetonitrile at 298K.  
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7.58.08.59.09.510.010.5 ppm 

TFA 

 
 

Figure 4.11: 1HNMR of phenanthroline (top), phendione (middle) and tpphz (bottom) 
ligands in d3-acetonitrile at 298K.TFA peak can be seen at 9.66 ppm in the tpphz spectra.  
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The splitting obtained in the above spectra are explained with the use of a 2D- 

COSY analysis in each case. Observation of the data obtained indicated that the H2 

proton lies the most upfield, as its position is far from the oxygen or nitrogen present 

to have an effect. The splitting of the H2 proton is also explained, as it is split by 

both the H1 and H3 protons. H1 is located as expected, the most downfield in each 

case due to the proximity of the nitrogen atom. The H3 proton in each case lies 

between the H1 and H2 protons, as the nearby oxygen deshielding the protons.     

 

Comparison of the 1H-NMR data for a given proton, shows that in passing from the 

phenanthroline to phendione, a shift upfield is obtained. This is expected due to the 

presence of the oxygen on the phendione ligand that has a shielding effect on the 

protons. The C2 symmetry of phenanthroline and phendione ligands is revealed by 

the presence of 4 proton signals, each equivalent to 2 protons. In passing from 

phendione to the tpphz ligand, a down field shift is seen for a given proton, due to 

the absence of the oxygen and formation of the pyrazine center.  

 

Obtaining an NMR spectrum of the tpphz ligand was much more complicated that 

the previous ligands due to the insolubility of the tpphz ligand in common organic 

solvents. TFA (tetrafluoroacetic acid) was required to dissolve the ligand (this peak 

can clearly be seen in Figures 4.10 and 4.11 at 9.66 ppm), followed by dissolution of 

the protonated ligand in a deuteriated solvent. Tpphz proton shifts are in agreement 

with those published by Bolger et al.2 Due to high symmetry in the tpphz ligand, 

only three signals are observed for the 12 protons on the ligand itself, each signal 

referring to 4 protons.   
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4.3.2.2 1H NMR - Mononuclear Complexes. 

The NMR spectra of the mononuclear complexes discussed in this section have been 

assigned with the use of a COSY spectrum in the aromatic region. Table 4.7 below 

contains the values obtained for the ligand protons (1,10-phenanthroline, 1,10-

phenanthroline-5,6-dioneand tpphz) of the mononuclear complexes prepared in d6-

acetone. As the bipyridine ligand proton signals appear as expected (see section 4.2), 

they are not further discussed here. 

 

 

Complex H1 H2 H3 H4 

[Ru(bpy)2(phen)]2+ 8.84 7.38 8.22 8.41 

[Ru(bpy)2(phendione)]2+ 8.58 7.61 7.98 - 

[Re(CO)3Cl(phen)] 9.41 8.85 8.03 8.22 

[Re(CO)3Cl(phendione)] 9.22 8.77 7.98 - 

[Re(CO)3Cl(tpphz)] 10.46 9.66 8.46 7.07 

 
 

Table 4.7: 1H NMR data for the ligand protons of the Re (I) and Ru (II) mononuclear 

complexes carried out in d6-acetone at 298K. 
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7.47.57.67.77.87.98.08.18.28.38.48.58.6 ppm 

Figure 4.12 1HNMR spectrum for [Ru(bpy)2(phen)]2+ (top) and [Ru(bpy)2(phendione]2+ 

(bottom) in  d3-acetone at 298K. 

 

Figure 4.12 above details the spectra obtained for [Ru(bpy)2(phen)]2+  and 

[Ru(bpy)2(phendione)]2+ in d6-acetone. There is a clear transformation in moving 

from the phenanthroline to the dione complex. There is a loss of 2 protons due to the 

formation of two oxygen double bonds, in the phenanthroline complex these two 

protons appear as a clear singlet at 8.23 ppm. This peak is absent from the dione 

complex which is a good indication of the formation of the [Ru(bpy)2(phendione)]2+ 

complex. This was further confirmed by the IR data obtained for 

[Ru(bpy)2(phendione)]2+. 
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There is a small shift in the protons of the phenanthroline and the phendione when 

complexed to the Ru metal centre as the effect of binding is similar in both 

complexes. Comparing the free dione ligand and the complex  [Ru(bpy)2(dione)]2+ a 

shift  of 0.41 ppm is observed for the H1 proton closest to the nitrogen, from 8.99 

ppm to 8.58 ppm. This shift is due to the electron density of the metal centre which 

has a shielding effect on the hydrogens of the ligand resulting in an upfield shift of 

0.33 ppm in this case.  

 

 

Figure 4.13 below shows the proton NMR obtained for the free dione ligand, 

[Re(CO)3(phen)Cl] and  [Re(CO)3(phendione)Cl]. The effect of complexation here 

is more prominent due to the lack of other protons in the complex.  A clear shift of 

0.2 – 0.4 ppm upfield for the ligand protons, is seen upon complexation of the dione 

ligand with the rhenium carbonyl species. Again only a small shift up field is noticed 

in progressing from [Re(CO)3(phen)Cl]  to [Re(CO)3(phendione)Cl]. The singlet 

that appears at 8.22 ppm is missing from the dione complex indicating the formation 

of the two carbon – oxygen double bonds. This was further confirmed by IR analysis 

which showed peaks present at 2023 cm-1, 1923 cm-1 and 1898 cm-1. This is 

discussed in further detail in section 4.3.3. 
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7.77.87.98.08.18.28.38.48.58.68.78.88.99.0 ppm 

7.58.08.59.09.510.0 ppm 
 

7.58.08.59.09.510.0 ppm 
 

Figure 4.13: 1H NMR spectrum for phendione (top) ,[Re(CO)3(phen)Cl](middle) 

and [Re(CO)3(phendione)Cl](bottom) in  d6-acetone at 298K. 

 

Analysis of the mononuclear complex [Re(CO)3Cl(tpphz)] was difficult to obtain 

due to solubility issues and resulting NMR spectra depicted broad peaks with no 

identifiable proton signals. However IR data of this complex indicated that some 

formation had occurred due to a shift of carbonyl bands from 2046 cm-1 and 1922cm-

1 of the rhenium pentacarbonyl to 2022 cm-1, 1923 cm-1 and 1902 cm-1 for 

[Re(CO)3Cl(tpphz)] This is further discussed in section 4.3.3 that follows.  It is of 

note that Bolger et al. have reported that the NMR spectra obtained for mononuclear 

complexes containing the tpphz ligand are concentration dependant due to the π-π 

stacking that can occur on the free end of the ligand. The planarity and rigidity of the 

ligand allows for orientations were the stacking can occur thought this has been 

shown to be solvent and concentration dependant. In the case of the rhenium 
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mononuclear complex [Re(CO)3Cl(tpphz)]  further nmr studies should be carried out 

to determine if this is what is occurring in this case.  

 

4.3.2.3 1H NMR - Dinuclear Complexes 

 

To date the complexes [(Ru(bpy)2)2(tpphz)](PF6)4, [(Ru(d-bpy)2)2(tpphz)](PF6)4 

and [Ru(bpy)2(tpphz)Re(CO)3Cl](PF6)2
  have been synthesized. All NMR spectra 

carried out were calibrated to the relevant solvent peak and protons have been 

correctly assigned using a COSY spectra, an example of which can be seen in Figure 

.14. 
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[(Figure 4.14: 2D-COSY spectrum for the complex, Ru(d-bpy)2)2(tpphz)]2+ in d3-acetonitrile 

at 298K. 

                 

 
 
Figure 4.15 displays the NMR spectra obtained for [(Ru(bpy)2)2(tpphz)]2+,   

[(Ru(d-bpy)2)2(tpphz)]2+ and free tpphz ligand. Here the deuteriated complex was 

used to determine the position of the tpphz protons. The effect of complexation here 

can clearly be seen by a shift upfield for all ligand protons of approx 0.5 ppm for 

each proton. The NMR spectrum for [(Ru(bpy)2)2(tpphz)]2+, still contains some 
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mononuclear [Ru(bpy)2(tpphz)]2+ which is indicated by the presence of the two 

proton peaks at 9.48 ppm and 9.97 ppm which are in agreement with those reported 

by Bolger et al. 24 These peaks present are known to be the H1 and H4 protons 

located nearest to the N atom of the ligand.  (see Figure 4.9 above and Figure 4.15 

elow.) 

 

b

 

6.57.07.58.08.59.09.510.010.5 ppm 

H1 

H4 

 

6.57.07.58.08.59.09.510.010.5 ppm 

6.57.07.58.08.59.09.510.010.5 ppm 

2 2 3 98K. Tpphz 
gand was recorded in the presence of TFA (triflouroacetic acid).  

 
 

 
Figure 4.15:1HNMR spectra for the complexes[(Ru(bpy)2)2(tpphz)]2+(top),[(Ru(d-
bpy) ) (tpphz)]2+ (middle) and free tpphz ligand(bottom) in d -acetonitrile at 2
li

132 
 



Chapter 4: Synthetic Routes to [Ru(bpy)2(tpphz)Re(CO)3Cl](PF6)2. 

5.56.06.57.07.58.08.59.09.510.0 ppm 
 

Figure 4.16: 1HNMR spectrum for[Ru(bpy)2(tpphz)Re(CO)3Cl]2+  in  d3-Acetonitrile at 
298K. 

 
The NMR spectrum for the heteronuclear complex [Ru(bpy)2(tpphz)Re(CO)3Cl]2+ is 

presented in Figure 4.16 above. This spectrum is difficult to interrupt due to the 

presence of isomers which can be observed by the complexity of the spectrum 

obtained, and the presence of the peaks at 9.02 ppm, 9.04 ppm 8.38 ppm and 8.41 

ppm . To date the separation of these isomers has not been obtained. The separation 

of similar isomers has been reported by Bergman and Koi 23 using HPLC. To 

determine the positioning of the ligand protons a deuteriated complex [Ru(d-

bpy)2(tpphz)Re(CO)3Cl]2+ is required, but on comparing the NMR obtained by those 

presented by Bergman and Koi and Bolger, it can be theorized that the peaks at 9.04 

ppm and 8.41 ppm are the H1 proton of the tpphz ligand of two differing isomers. It 

is also possible to say that the formation of the dinuclear complex has occurred due 

to the complexity of the spectrum and the positioning of the bpy protons, if a 

mononuclear species had formed the spectrum would be less complex and integrate 

for fewer protons.  
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4.3.3 Infra-red Analysis 
 
IR spectra for the tpphz and related reactions were recorded in the carbonyl 

stretching region (2200 – 1700 cm-1) in THF as a solvent. Table 4.6 below contains a 

summary of the results obtained while Figures 4.17 and 4.18 that follow, show IR 

spectra obtained for complexes of this type.  

 

 

Complex ν (CO) cm-1 ν (CO) cm-1 ν (CO) cm-1 

[Re(CO)5Cl] 2046 1922 - 

[Re(CO)3Cl(phen)] 2020 1918 1894 

[Re(CO)3Cl(phendione)] 2023 1923 1898 

[Re(CO)3Cl(tpphz)] 2022 1923 1902 

[Ru(bpy)2tpphzRe(CO)3Cl]2+ 2024 1923 1900 

 
 
 
Table 4.8:  IR data for the carbonyl stretching region of the metal complexes in THF.   
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Figure 4.17: I.R. of [Re(CO)5Cl](black)and [Re(CO)3Cl(tpphz)] (green) in THF at 298K. 
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Figure 4.18: I.R. of [Re(CO)3Cl(dione)] in THF at 298K. 
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All of the spectra obtained for the complexes [Re(CO)3Cl(phen)], 

[Re(CO)3Cl(phendione)], [Re(CO)3Cl(tpphz)] and [Ru(bpy)2-tpphz-Re(CO)3Cl]2+ 

contain three carbonyl bands, which possess Cs symmetry 12, 13 where the IR bands 

from highest to lowest wavenumbers (cm-1), are assigned the symmetry labels A’ (1), 

A’’ and A’ (2) respectively.14 Comparing these bands to those reported for 

[Re(CO)3Cl(phen)]14,15 indicate that the CO ligands are arranged around the Re 

metal center in a facial orientation. This means that the ligands are bound in the 

equatorial region, trans to two carbonyls with a chlorine atom in the axial position 

and a CO in the final axial position. This is best described in Figure 4.19 below. 
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Figure 4.19: Example of the facial coordination of the rhenium tricarbonyl complexes 

discussed where N-N denotes a phenanthroline based ligand. 

 

 

Upon chelation of the phenanthroline type ligands, these CO bands were found to 

move to a lower frequency compared to that of the pentacarbonyl complex as shown 

in Table 4.8 above. This is typical in the formation of a rhenium tricarbonyl species 

of the type [Re(CO)3(L)X] where L is a bidentate N-coordinated ligand.14, 15  This is 

due to the presence of back bonding on the Re centre. As the ligand becomes bound 

to the rhenium metal centre electron density of the rhenium dπ orbitals becomes 

increased and back bonding occurs between these and the CO π* orbitals. 

Coordination of the ruthenium moiety to the [Re(CO)3tpphz] monomer results in 

minor IR spectral changes (2 cm-1 for the A’ (1) band).  This indicates that the 

ruthenium centre has no significant effect on the electron density around the tpphz 

ligand bound to the Re center and in turn the carbonyl ligands. This could be due to 
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the length of the planar tpphz ligand allowing both metal centers to coordinate to the 

ligand itself without changing electron density around the Re centre. If the Ru(bpy)2 

segment was to pull density away from the Re centre it would appear in the IR 

spectra as a shift in the CO bands to higher energies.16,17.  

 

4.4 Conclusions. 
 
Preparation of the free ligands, mononuclear and dinuclear complexes discussed in 

this section have been confirmed by NMR spectroscopy with assignment of the 

peaks with the use of a 2D-COSY technique. Synthetic studies have shown that the 

preparation of the desired [Ru(bpy)2(tpphz)Re(CO)3Cl]2+  is achievable from either 

a condensation reaction with the ruthenium and rhenium dione monouclear 

complexes in the presence of ammonium acetate and a hydrogen donor or by 

coordination of the [Ru(bpy)2] moiety to the [Re(CO)3Cl(tpphz)] mononuclear 

complex. The latter giving the highest yield with fewest impurities.  

 

The rhenium mononuclear complexes obtained during this study have been analysed 

by IR spectroscopy and have shown that all of the complexes have formed in the fac 

isomer due to the three carbonyl bands present in the 1700 cm-1 – 2200 cm -1 region 

of the IR spectrum.  

 

For the complex [Ru(bpy)2(tpphz)Re(CO)3Cl]2+ and precursors further analysis is 

required such as UV-vis analysis, flouresence, mass spec and elemental analysis. At 

present the heteronuclear complexes that have been prepared and purified are 

currently under analysis for CO2 reduction, to determine the efficiency of the dyes 

prepared. Gas chromatography, ion chromatography IR and UV-vis measurements 

will be employed to determine the side products formed and the quantity in which 

they are formed. Results from these studies will determine those complexes which 

will require attachment groups for surface analysis. Due to the wide range of 

bridging ligands prepared an analysis of the effects of the ligand on CO2 reduction 

will also be studied 
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Chapter 5 Photochemical CO2 Reduction Experiments 

 

Chapter 5: Photochemical CO2 

Reduction Experiments. 

Chapter 5 describes the analysis of the 

products of photochemical CO2 

reduction, formate and oxalate, using 

ion chromatography. The efficiency of 

the previously prepared photocatalysts 

in chapters 3 and 4 is discussed along 

with method development and the dionex 

1500 ion chromatography system set up.  
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5.0 Introduction. 

The work described in chapter 5 was carried out to determine the efficiency of the 

previously prepared photocatalysts (Chapter 3 and 4) to reduced CO2 by 

photochemical means. As shown in Figure 5.1 below, formate is a product, during the 

multi-step reduction of CO2, in the presence of a photocatalyst akin to those described 

in this body of work.  An accurate determination of the quantity of formate and 

oxalate produced can lead to the determination of efficiency of a photocatalyst along 

with an insight to the mechanism and kinetics of CO2 reduction occurring. 

 

CO2 + 2H + 2e  HCOOH E° = -0.61 V (Eqn. 1) 

CO2+ 2H + 2e  CO + H2O E° = -0.53 V (Eqn. 2) 

CO2+ 4H + 4e  C+ 2H2O E° = -0.20 V (Eqn. 3) 

CO2+ 4H + 4e  HCHO + H2O E°= - 0.48 V (Eqn. 4) 

CO2+ 6H + 6e  CH3OH + H2O E° = -0.38 V (Eqn. 5) 

CO2+ 8H + 8e  CH4 + 2H2O E°= -0.24 V (Eqn. 6) 
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Figure 5.1: Redox potentials vs. NHE for the multi electron reduction of CO2 at pH7 

/ 25°C1

This chapter is broken down into four main sections; section 5.1 relays the theory 

behind ion chromatography, specifically related to the work carried out within this 

chapter. Section 5.2 describes the system installation and initial calibration while 

section 5.3 details the method development for the anions oxalate and formate 

Section 5.4 concludes with sample analysis for formate and oxalate and an overview 

of suitability of the method chosen. 
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5.0.1. Ion Chromatography. 

5.0.1.1 Dionex ICS 1500 -  Mode of Operation 

To best describe the mode of operation of the ICS 1500, the flow of the mobile phase 

through the instrument will be described prior to sample injection, sample injection 

and system re-equilibration with the aid of Figure 5.2 below. 

 

Figure 5.2: Diagram of Direction of Analysis Flow for the ICS 1500.2 

As shown above, the mobile phase (NaHCO3 / Na2CO3) passes from the reservoir 

through to the eluent valve, where it is pushed through to the pressure transducer 

which monitors the systems pressure. From here the mobile phase is pushed towards 

a pulse dampener, which minimises pressure variations from the pump, reducing 

background noise. From here the eluent passes on to the injection valve. 
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After a sample is loaded into the sample loop and injected, the mobile phase enters 

the loop, picks up the sample and moves on towards the heat exchanger, which 

warms the eluent to column temperature. This mixture (mobile phase\ sample) then 

passes through the guard column, separator column and towards the suppressor. From 

here the eluent / sample mixture passes through to the conductivity cell for detection. 

After detection the eluent is then passed back into the suppressor to act as a water 

source for the regenerant chamber. The flow is then directed towards waste and the 

cycle begins again.  

 

5.0.2. Separation – Ion Exchange Chromatography. 

In order to discuss the mode of separation used within this chapter it is first important 

to understand the principles of ‘ion – exchange’ chromatography.  Separation within 

an ion chromatography (IC) system is carried out within the analytical column 

containing anions, cations and water, where either the cations or anions are bound to 

an insoluble matrix (polymer resin), which are known as the fixed ions.3 These fixed 

ions are the active sites of the exchange resin which determines the mode of exchange 

i.e. an anion exchange resin carries a fixed ion of positive charge. The ion – exchange 

capacity is then determined by the number of these active sites (functional groups) 

per weight of resin. Separation occurs stoichiometricly; as the electoneutraility of the 

solution is maintained during the exchange process e.g. a single monovlaent anion 

displaces a single monovlaent counter anion.3   

The mode of separation used here is anion exchange and the discussion of the mode 

of separation will be limited to the exchange interactions occurring within our system.  

The specifications of the columns fitted are located in Table 5.1 that follows along 

with limits of the parameters of operation.  
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Packing Specifications 

 IonPac As22 (4 x 250 mm), 

Analytical 

IonPac Ag22, (4 x 50 mm), 

Guard 

Particle Diameter 6.5 11 

% Substrate X - linking 55 55 

Column Capicity (µeq / 

column) 

210 6 

Functional Group Alkyl / Alkanol  Quaternary 

Ammonium 

Alkyl / Alkanol  Quaternary 

Ammonium 

Hydrophobicity Low Low 

Resin Supermacroporous PVB 

ammonium polymer, (X - link 

=  DVB) 

Microporous PVB ammonium 

polymer, (X - link =  DVB) 

Operating Parameters 

Typ. Back Pressure psi, 

(MPa) 

≤1600 (11.03) 

≤1900 (11.03)a 

≤300 (2.07)a 

≤1900 (11.03)a  

Standard Flow Rate (mL / 

min) 

1.2 (1.2)a 2.5 (1.2)a 

Maximum Flow Rate (mL 

/ min) 

1.2 (1.2)a 2.5 (2.5)a 

a = values for analytical and guard columns run in series, PVB = polyvinylbenzyl, DVB = 

divinylbenzene. 

Table 5.1: Column specifications and Operation Parameters for Dionex ICS 1500.  
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As can be seen in table 4.1 above the analytical column (ionpac AS22) contains a 

macroporous resin constructed from polyvinylbenzyl (PVB) ammonium polymer 

backbone with a 55% crosslinking with divinylbenzene to allow for mechanical 

strength.2,3 This macroporous resin has a large surface area for surface derivitisation 

to give a high number of active sites for ion – exchange. The guard column is 

constructed from a microporous polymer of the same PVB polymer and degree of 

cross linking but with an increased pore size (and reduce surface area) as the function 

of the guard column is to protect the analytical column.  

The Ionpac AS22 is an agglomerated ion exchange resin where the resin acts an 

internal core particle to which the functional groups (active sites) are attached. These 

functional groups are amminated latex particles and can be attached in three ways: 

electrostatic binding where the central core is functionalised with ionic groups of 

opposite charge to the functionalised latex, hydrophobic binding using an electrical 

double layer between the core and the latex or mechanical binding were a binding 

material is used to fix the latex to the neutral core.3,7  

The addition of these functional groups will determine the ion exchange capacity of 

the resin which is varied by altering the type of latex particle. Extensive studies by 

Barron and Fritz were carried out to determine the effect of the alkyl linkage groups 

on the quaternary ammonium ion concluding that relative retention times are 

decreased with longer spacers only for large polariziable ions.4,5,6  

The AS22 analytical column offers high chromatographic efficiency as the diffusion 

path is short leading to high mass transfer rates during exchange. The agglomerated 

exchanger is stable over a wide pH range with high selectivity which is required for 

most IC separations. The low degree of hydrophobicity within both the guard and 

analytical columns used here reduces the risk of column fouling by lipophilic sample 

components which may arise from sample analysis containing trace amounts of 

photocatalyst.7  
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5.0.3 Eluent 

Changing the eluting power of a solvent will alter the retention times of sample 

analytes, as the concentration of the eluent ions is increased more eluent ions are 

present to compete with the sample ions, therefore reducing the retention times of the 

sample ions. Ultimately the detector/ supressor type used within a system will 

determine the types of eluent that can be used.   

1. Type of eluent used. 

Retention time of the analyte ion increases when the eluent ion is replaced by one 

with greater potential for dipole – dipole induction (increased polarizability). 

Anion exchange: sulphate > nitrate > phosphate > chloride > hydroxide. 

2. Ionic strength of eluent. 

Retention time increases as concentration of eluent ions is decreased. 

3. pH of eluent. 

The exchange capacity of the exchange resin depends on the ph level at which it is 

used, which in turn affects the retention time of the analyte ions. The pH also affects 

the form in which the analyte ions are in and the eluent ions exist with the 

dissociation of the molecules depending on the pH 
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5.0.4. Suppression. 

The suppressor type used within the described system is the ASRS 300 4 mm self - 

regenerating suppressor 4mm. The role of a suppressor is to “suppress” the 

background conductance of the eluent (carbonate/bicarbonate mobile phase) thereby 

increasing the sensitivity of the detector. This is carried out by exchanging hydrogen 

ions from the membrane in the suppressor for cations in the eluent, prior to 

measurement of conductance by the detector. Figure 5.3 below describes the 

suppression mechanism with a carbonate/bicarbonate mobile phase.   

 

Figure 5.3: Mechanism of suppression for the Anion Self- Regenerating 

Supressor.3, ,7 8 

This ASRS suppressor is an electrolytic suppressor which electrolyses water to 

produce H+ ions at the anode where they make their way across the first cation – 

exchange membrane where they come into contact with the mobile phase. The H+ 

ions neutralise the basic eluent allowing the counter Na ions to make their way 

towards the negatively charged cathode to combine with hydroxide ions.  An example 
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of this exchange is described below in equations 5.1 (eluent reaction in suppressor) 

and 5.2 (solute reaction), where Cl- ions denotes the solute and the eluent is sodium 

hydrogen carbonate. 
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(5.1) Resin-H+ + Na+HCO3
-  (eq arrow) Resin-Na+ + H2O  

Resin-H+ + Na+ +Cl-  (eq arrow) Resin-Na+ + H+ + Cl- (5.2)  

The advantages of suppression are best described by Haddad and Jackson3 are as 

follows: 

 Decreased baseline noise resulting from pump pulsations. 

 Decreased baseline conductance 

 Virtual elimination of the water and carbonate dips from final chromatogram. 

 Enhanced detectability of eluted anions since there is no loss of conductance 

signal due to reaction of H+ ions in the analyte band with H2CO3 in the 

suppressed eluent. 

 

5.0.5. Conductivity Detection. 

Conductivity is the ability of a solution containing a salt to conduct electricity across 

two electrodes in the presence of an electrical field. The intensity of conductance is 

directly proportional to the salt content i.e. as ionic strength increases, conductivity 

increases.2, ,3 7 For this reason conductivity detection is commonly used in conjunction 

with suppressors as described above in section 5.1.4. Conductivity detection can 

either be direct (where the solute has a higher conductance than the eluent) or indirect 

(where the solute has a lower conductance than the eluent). 
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 Here the DS6 conductivity cell is a flow through cell, using a direct detection method 

as is the most common mode of detection for the analysis of anions.3 This cell is of 

simple design and is composed of two passivated stainless steel electrodes 

permanently sealed into the cell body with a volume of 1µL.2  This is based on an 

alternating current bridge which supplies the electric potential between the two 

electrodes. Under the influence of this field the anions move towards the anode and 

the cations towards the cathode. The resulting current is dependent on the applied 

potential and the nature and concentration of the anions in the mobile phase. 

As reported by Braunstein and Robbins9 a cell design of this type can give rise to 

some problems as described below: 

 Electrolytic processes (Faradaic) can occur  at the electrodes, if removal of the 

ions at the electrodes occurs at a faster rate than supplied by the bulk solution.  

 A double layer of ions can occur at the electrode surface which can act as a 

capacitor which is capable of storing a charge. 

 The mobile phase in the cell itself can impose a resistance to the motion of 

ions in solution as they must overcome friction forces. 

 The effects mentioned above can be reduced by the introduction of a variable 

capacitance into the circuit, which can minimilise the phase shift between the 

current and voltage. This is carried out by the introduction of parallel resistance-

capacitance balancing arms as they can achieve smaller capacitances with higher 

accuracy.10 

5.1 Aim 

The Aim of this chapter is to describe the installation and calibration of the 

Dionex ICS 1500 system. Further described are the method developed for the 

analysis of the CO2 reduction products formate and oxalate and the analysis of the 

previously synthesised dye [Ru(bpy)2(bpt)Re(CO)3Cl] 2+ described in chapter 3.  
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5.2 System Installation and Calibration. 

 5.2.1. System Installation.  

As the Dionex ICS-1500 system was unused, an initial system calibration was carried 

out to determine the reliability of the system and the results generated. System 

calibration was carried out by three repeated injections of a 20 ppm mixed anion 

standard containing fluoride, chloride, nitrite, bromide and nitrate. This was then 

injected using the parameters described below in Table 5.2 and compared to the 

reported values by Dionex for the same separation of mixed anions. 

  

Separation Parameters for 20 ppm Mixed Anion Standard. 

Eluent: 4.5 mM Na2CO3 / 1.4 mM NaHCO3 (pH = 9.1) 

Flow Rate: 1.2 mL/min 

Column Temperature: 30 C 

Detection: Suppressed Conductivity Detector (CD25) @ 35 C 

Suppressor: ASRS Ultra II, 4 mm 

Applied Current: 31 mA  

Injection Volume:  25 L 

 

Table 5.2: Operation parameters for the separation of a 20 ppm mixed anion 

standard.  
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5.2.2 Chemicals and Reagents. 

Sodium formate, ≥99.0 % ACS reagent Sigma,  potassium oxalate monohydrate 

≥99.0 % ACS reagent Sigma, sodium carbonate ≥99.0 % ACS reagent Sigma, sodium 

hydrogen carbonate and sodium chloride ≥99.5 % ACS reagent Sigma. All the above 

solid reagents were used as received. 

Deionised water was obtained prior to use from a Millipore milliQ plus system only 

used when above 18M. 

5.2.3. Separation and Resolution. 

 

Figure 5.4: Separation chromatogram of a 20 ppm mixed anion standard. 
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Analyte Ret (tr) Void (t0) 
Adjusted ret 

(t’r) K' α 

 

N Rs 

Fluoride 3.12 2.12 1.00 0.47 -     6812 - 

Chloride 4.53 2.12 1.14 0.54 1.14 9817 1.06 

Nitrite 5.5 2.12 1.59 0.75 1.40 9741 3.02 

Bromide 6.58 2.12 2.10 0.99 1.32 10209 3.31 

Nitrate 7.47 2.12 2.52 1.19 1.20 9829 2.23 

Where :  

(α) = Selectivity Factor (relative retention) = (tr’2-tr’1)/0.5(w2+w1),  

K’ = Capacity Factor = ((tr-t0) / t0) 

Rs = Resolution = ¼ (K’/K’+1)(N)1/2(α-1/ α) 

Table 5.3: Separation and Resolution results obtained for the 20 ppm mixed anion 
standard.  

Figure 5.4 above depicts the separation achieved for a 20 ppm mixed anion standard 

for an initial system check. Table 5.3 above details the separation achieved for each 

individual anion. The above anions were deemed adequately resolved as there were 

no overlap of peak areas observed. For reasonable accuracy peak maxima must be at 

least 4σ apart which is equivalent to an Rs = 1.0.10 Capacity factors and selectivity 

factors for each of the anions are reasonable. 
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The relative retention times were compared to those obtained by Dionex as shown in 

Table 5.4 below. One difference of note between the system tested by Dionex and the 

system used here was injection volume, the Dionex system ran with an injection 

volume of 10 L where here an injection volume of 25 L was used. As the system 

peaks were eluting in the same order with similar retention times the system was 

deemed ready to use and a series of experiments were carried out to determine 

reproducibility and efficiency.  
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Analyte Ret (tr) Ret (tr) (Dionex) 

Fluoride 3.12 2.88 

Chloride 4.53 4.33 

Nitrite 5.5 5.30 

Bromide 6.58 6.41 

Nitrate 7.47 7.32 

Table 5.4: Comparison of retention times obtained by in house ICS- system and those 

reported by Dionex. 

5.2.4. Reproducibility and Efficiency 

Analyte Avg. Rt %RSD Rt %RSD Pk 

Area 

HETP 

(L/N) 

N K’ (tr-t0)/t0 

Flouride 3.12 0.834 0.55 0.036 6812 0.47 

Chloride 4.53 0.47 0.54 0.025 9817 1.14 

Nitrite 5.35 0.43 0.49 0.026 9741 1.52 

Bromide 6.58 0.32 0.49 0.244 10209 2.10 

Nitrate 7.47 0.39 0.56 0.254 9829 2.52 

Where: L= column length (250mm), T0 (void volume) = 2.12 min,  

Table 5.5: Results obtained for the 20 ppm mixed anion standard, containing average 

retention time and relative standard deviation (%RSD) for peak area and retention 

time and column efficiency (HETP, N and capacity factor). 
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Reproducibility and efficiency were carried out using triplicate injections of the same 

standard. The relative percentage standard deviations of retention time and peak area 

where then calculated as shown above in Table 5.5. as can be seen above all %RSD 

for retention time and peak area are below 1%, the system has proved to be reliable 

when tested to the specification laid out by Dionex.  

5.2.5. Conclusion. 

As seen above all % RSD for retention time and peak areas are below 1%, the system 

has proved to be reliable and reproducible when tested to the specification laid out by 

Dionex.  The separation achieved for each of the anions is above those required for a 

reliable quantification method. These experiments have shown that the system can 

give reproducible and efficient results, knowing this the development of a method for 

oxalate and formate can be preformed. 

 

5.3 Method Development for the Analysis of Oxalate and Formate. 

The following section describes the steps taken to determine the retention times and 

reproducibility of the anions oxalate and formate, upon obtaining these values limits 

of detection and linearity where determined using sodium formate and potassium 

oxalate as standards. System suitability was then determined before the development 

of a sample pre-treatment with a view to analysis of irradiated samples of previously 

prepared photocatalyst. Each of these steps will be described in detail below with a 

final section on CO2 irradiation experiments carried out.   
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5.3.1 Determination of Retention Times and Reproducibility. 

Determination of retention times for oxalate and formate were carried out by 

preparing a series of solutions containing 20 ppm NaCl, 20 ppm Sodium Formate and 

20 ppm potassium oxalate. The NaCl was used as an internal standard to determine 

the retention times of the other anions, as the retention time of the chloride peak was 

determined during the 20 ppm mixed anion standard injections described previously 

in section 5.2. Initial system conditions are described in Table 5.6 below.  

 

Separation Parameters for Chloride, Oxalate and Formate Standards 

Eluent: 4.5 mM Na2CO3 / 1.4 mM NaHCO3 (pH = 9.1) 

Flow Rate: 1.2 mL/min 

Column Temperature: 30 C 

Detection: Suppressed Conductivity Detector (CD25) @ 35 C 

Suppressor: ASRS Ultra II, 4 mm 

Applied Current: 31 mA  

Injection Volume:  25 L 

Run Time: 15.00 mins 

Table 5.6: Operation parameters for chloride, oxalate and formate standards. 
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Figure 5.5: Chromatogram obtained for chloride, oxalate and formate standards.   

Initially a series of triplicate injections of a 20 ppm solution containing the internal 

standard NaCl and oxalate and formate were injected on to the system. The results 

obtained are shown above in Figure 5.5. As can be seen from the chromatogram the 

run time of the experiment at 15 mins was too short, it did allow time for the oxalate 

peak to resolve but subsequent experiments were extended to 20 mins.  The retention 

times for the formate and oxalate peaks were determined as 3.8 mins and 14.4 mins 

respectively. Knowing this the internal standard could be removed allowing the 

system to be calibrated with oxalate and formate standards. The results of this 

calibration are shown in Table 5.7 that follows. 
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5.3.2. Calibration and Quantification. 

Calibration of the internal standards oxalate and formate was carried out by a 3 

injection repeat from a 10-3M standard where retention time and peak area where 

monitored. Quantification was carried out by preparing 3 different solutions of 10 –3M 

with two injections per sample. % RSD Rt and % RSD Pk area were monitored to 

determine that the system was reliable.  

 

Figure 5.6: Chromatogram of 10-3M oxalate/ formate standard repeat injections 

using the system parameters described in Table 5.6.  

Analyte Avg. Rt %RSD Rt %RSD Pk 
Area 

HETP (L/N) N 

Formate 3.8 0.46 0.57 0.031 9835
Oxalate 14.4 0.38 0.64 0.22 9972

Table 5.7: Results obtained for formate and oxalate internal standards, containing 

average retention time and relative standard deviation (%RSD) for peak area and 

retention time and column efficiency (HETP and N). 
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5.3.3 Detection Limits.  

Dilute standards were made up and diluted until no longer discernable from the 

baseline. Detection limits were then calculated as the concentration of each anion that 

was equivalent to three times the signal to noise ratio. Initial blank injections were 

carried out to determine any interference from water / eluent and to determine if any 

carry over was occurring between injections. The detection range was found to be 

≥10-5M.  

 

Figure 5.7: Chromatogram of oxalate and formate standards during limit of 

detection studies.  

Linearity was then carried out between 10-2M and 10-5M with duplicate injections of 

each standard. With such a wide range linearity is difficult to obtain, but with each 

sample injection the system showed a significant response in peak area.  
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5.4. Photochemical CO2 Reduction Experiment. 

A series of standards (10-2M, 10-3M, 10-4M, 10-5M) were prepared using oxalate and 

formate. Each of these solutions were injected in duplicate, using the system set up 

parameters described previously in Table 5.6. 4 samples of 10-3M 

[Ru(bpy)2(bpt)Re(CO)3Cl]2+ were prepared in acetonitrile with TEA as a sacrificial 

donor. These solutions were then degassed with argon followed by purging with CO2. 

These were then irradiated at 0, 6, 12 and 24 hours under blue light. Table 5.8 

describes the results obtained for this experiment while Figure 5.10 shows the 

chromatogram from the 24 hour sample.  

 

Figure 5.8: Chromatogram of [Ru(bpy)2(bpt)Re(CO)3Cl]2+ after 24 hours 

irradiation under blue light.  
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Hours 
Irrad. Analyte Ret.Time Area Amount Height Rel.Area Area  
  min µS*min  µS % µS*min

6 formate 3.52 0.5992 0.3078 3.707 58.28 0.599
6 oxalate 0 0 0 0 0 0

12 formate 3.467 0.0858 0.0441 0.426 13.42 0.086
12 oxalate 14.247 0.0319 0.0199 0.078 4.99 0.032
24 formate 3.553 0.7573 0.3891 3.793 41.42 0.757
24 oxalate 14.297 1.071 0.6698 2.625 58.58 1.071

Table 5.8: Results obtained from the 24 hour irradiation study of 

[Ru(bpy)2(bpt)Re(CO)3Cl]2+. 

From the above results, it is clear that some CO2 reduction is occurring during 

irradiation due to the presence of formate and oxalate in the above samples. For this 

method to be quantitative another method of degassing the samples needs to be found 

so that the amount of CO2 in each sample vial can be monitored and assessed. From 

the above results the formation of formate and oxalate appears to form in higher 

yields at longer irradiation times. A further time dependant study should be 

performed to determine if/ when the dye decomposes and the reduction process 

appears to cease. From the above results it is also of interest that the amount of 

formate in the 12 hour sample compared to the 6 hour sample is much less. This 

could be due to a badly sealed vial or student error. These measurements should be 

repeated in full to check the amounts of formate and oxalate formed. The 

chromatograms also show the elution of other products between the formate and 

oxalate peaks which could be decomposition products of the dye itself. Further 

investigations are required to determine a proper quantitative analysis where a rate of 

reduction and turn over numbers can be calculated.  
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5.5 Conclusions and Future Work. 

Installation and calibration of the Dionex ICS 1500 was carried out successfully. The 

retention times of the oxalate and formate standards were determined independently 

and relative to the internal standard NaCl. This method was then used to determine if 

any CO2 reduction products were observed when [Ru(bpy)2(bpt)Re(CO)3Cl]2+ was 

irradiated under blue light for a period of 24 hours. These results showed that the dye 

did produce the CO2 reductions products oxalate and formate with the oxalate 

forming between the 6 hour and 12 hour period.  

Subsequent investigations are required to determine the CO2 turnover numbers for 

the dye along with investigations into the degassing procedure of the dye samples. 

These results are encouraging and prompt further investigation into the use of the 

inorganic dye [Ru(bpy)2(bpt)Re(CO)3Cl]2+ to reduce carbon

 

5.6 Bibliography. 

1 Lhen, J.M.,  Zeissel, R., Proc. Natl. Acad. Sci. USA.,79, 1982, 701. 

2 Dionex Manual of Operation, 2005, Dionex Cooperation. 

3 Haddad P.R., Jackson P.E., Ion Chromatography: Principles and Applications, 

Journal of Chromatography Library vol. 46, Elssvier 1990 

4 Barron R.E., Fritz J.S., J. chromatography., 316 1984 201. 

5 Barron R.E., Fritz J.S., J. chromatography., 284 1984 13. 

6 Warth L.M., Fritz J.S., Naples J.O., J. chromatography., 462 1989 165. 

7 Fritz J.S., Gjerde D.T., Ion Chromatrogaphy wiley VCH 1995 

8 Rabian S., Stillian J., Barreto V., Friedman K., Toofan M., J. Chromatogr., 640, 
1993, 97. 

9 Braunstein J., Robbins G.D., J. Chem. Educ., 48, 1983, 1129. 



Chapter 5 Photochemical CO2 Reduction Experiments 

163 

 

                                                                                                                                                                          

10 Willard H.H., Merritt L.L. Jr., Dean J.A., Settle F.A. Jr., Instrumental methods of 
Analysis, 7th ed., wadsworth publishing company 1988.  



Chapter 6: Conclusions and Future Work.   

 

Chapter 6: Conclusions and 

Future Work. 

Chapter 6 concludes this thesis by 

providing an overall conclusion from the 

investigations carried out in the previous 

chapters. Future work into the area of 

CO2 reduction is also proposed.  
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6.0 Conclusions and Future Work. 

The main focus of this thesis has been synthetic investigations into the development 

of inorganic dyes to be used within the area of CO2 reduction. Due to the increasing 

size of the bridging ligands and of the ruthenium and rhenium moieties themselves 

novel synthetic pathways were developed, before and initial investigation into the 

ability of the dye to reduce CO2.  

It was described in chapter 3 that the traditional approach “complexes as metals / 

complexes as ligands” was successful in the development of the inorganic complex 

[Ru(bpy)2(bpt)Re(CO3)Cl]2+. Investigations into the development of the pyrazine 

analogue where unsuccessful and further synthetic investigations into the attachment 

of the rhenium moiety to the [Ru(bpy)2(bpzt)]+ mononuclear complex still need to be 

carried out possibly in the direction of a new synthetic pathway.  

However this traditional approach to the preparation of inorganic supramolecular 

complexes was unsuccessful in the development of [Ru(bpy)2(tpphz)Re(CO)3Cl]2+ 

discussed in chapter 4. This spurred the development of novel synthetic pathways, the 

most successful of which required the “building” of the complex stepwise from the 

rhenium moiety. Further analysis and investigations of this complex are required 

including life time of the excited state along with photochemical CO2 reduction 

studies. The novel complexes [Ru(d-bpy)2(tpphz)]2+ and [(Ru(d-bpy)2)2(tpphz)]4+ 

were also prepared with high purity, these also required further investigation and 

analysis including adsorption and emission studies.  

Chapter 5 describes the initial installation and calibration carried out on the Dionex 

ICS 1500 system. The retention times and calibration of the internal standards oxalate 

and formate was also carried out before the initial investigation of the photochemical 

reduction of CO2 using [Ru(bpy)2(bpt)Re(CO)3Cl]2+. Initial results showed that 

oxalate and formate are produced during this reduction process but further 

investigation into the degassing of the samples prior to irradiation under blue light is 

required to determine an accurate and quantifiable method.  
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