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ABSTRACT

Advances in digital technologies for information capture combined with massive in-
creases in the capacity of digital storage media mean that it is now possible to capture
and store much of one’s life experiences in a personal lifelog (PL). Information can be
captured from a myriad of personal information devices including desktop comput-
ers, mobile phones, digital cameras, video recorders, and various sensors, including
GPS, Bluetooth, and biometric devices. The large personal archives that can be cap-
tured using these devices create new opportunities such as the chance to gain more
details on partially recalled life events, opportunities for self reflection, facilities to
share experiences, the potential to find partially remembered facts, etc, but also pose
new challenges to the research community, not the least of which is developing effec-
tive means of retrieval. This thesis centers on the investigation of the challenges of
retrieval in this emerging domain, and the proposal and evaluation of methods and
algorithms which seek to meet these challenges.

Methods to integrate implicitly recorded and derived context data types with content-
based search in information retrieval (IR) algorithms for PL retrieval are developed.
These algorithms focus on the use of an individual’s memories of items’ content and
associated context data and on the use of implicit biometric indicators of items’ im-
portance. These novel retrieval algorithms are evaluated over unique multimodal PL
collections of 20 months duration. We find support for the use of recalled context
data in retrieval using a novel algorithm which accounts for the structure of lifelog
collections and user queries. We also find support for the use of individuals’ past bio-
metric response associated with lifelog items to locate important items in lifelogs and
to re-rank ranked retrieval result lists.
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CHAPTER

ONE

Introduction

Vannevar Bush could never have envisaged the impact his 1945 article ‘As We May

Think’ [Bush, 1945] would have on modern science. In this article he presented his

vision of the Memex which would continue to inspire scholars decades after its con-

ception. This article is largely credited with proposing ideas that would lead to the

development of the World Wide Web. However, Bush presented far more than the

idea of linking pages of information. He provided a vision for a world where all of

a person’s personal information could be stored and importantly retrieved at a later

stage. With advances in modern technology Bush’s ideas are now coming to be real-

ized.

It is now possible to digitally record and archive for long-term preservation many

details of our lives. Details recorded can include everything from items read, writ-

ten and downloaded, to footage from life experiences including photographs taken,

videos seen, music heard, details of places visited, details of people met, etc. These

can be captured from various platforms using a range of devices such as comput-

ers, mobile phones, cameras, video recorders, audio recorders, GPS sensors, biometric

monitors, etc. When collected together these items form personal lifelog (PL) archives1

which provide a rich record of our experiences. The availability of cheap digital stor-

age means that it is in theory possible to easily store the digital experiences of an in-

dividual over their entire lifetime [Bell and Gemmell, 2009]. While whole lifetime PLs

are perhaps unlikely to appear in the near future, it is increasingly easy to collect PLs

over a period of years. Such PLs contain a rich record of our life experiences which

can potentially be used in many applications, from looking up partially remembered

1In this thesis the term ’lifelog’ is also used in reference to a personal lifelog (PL).
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details to forming personal narratives from our lives for self reflection or to share with

friends. However, any such applications will only be possible if relevant items can be

retrieved reliably from the PL archive. While some progress has been made in the field

of personal data retrieval, for example Gemmell et al [Gemmell et al., 2002], Cutrell et

al [Cutrell et al., 2006a] and Kim et al [Kim and Croft, 2009], this element of Bush’s vi-

sion largely remains an open challenge. This thesis seeks to progress research in this

domain.

PLs raise many new retrieval challenges. To illustrate some of these challenges con-

sider a sample scenario where a person is looking for a particular email within her

PL archive from amongst the many emails she received from a friend Jack. All she

now remembers is the sun glaring in the window, as she chatted with her friend Mary,

when she received Jack’s email. Conventional information retrieval (IR) techniques

would not be capable of retrieving the correct item based on these criteria which are

unrelated to the item’s content. New approaches to IR using context are required, e.g.

a system that could retrieve based on the weather and people present when the email

was received. This requires capture and association of potentially useful context data.

Further, since the PL in our sample scenario could potentially contain many emails

matching the subject’s recalled context details, techniques to detect the relevant one

from amongst these candidate emails are also required.

This thesis centers on the development of retrieval techniques for the PL domain.

Means to integrate subjects’ recalled content and context, associated with required

PL items, into successful retrieval algorithms are investigated. Developed algorithms

focus on the textual media within PLs, possibilities for extension to other types of PL

media, e.g. audio and images, are discussed in the context of future work. To improve

the performance of our algorithms, metrics to detect the importance of lifelog items

and ways to integrate these metrics into our IR algorithms are explored. Our inves-

tigation into the detection of important lifelog items from amongst the possibly vast

number of items within such collections also has direct utility in its own right, such as

in the suggestion of interesting items when browsing a lifelog collection for example.

Hence in exploring the issue of important item detection we also consider other types

of media beyond textual media.

To evaluate our retrieval techniques long-term PLs were created as part of the iCLIPS
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project2. These PLs contain 20 months of personal data, annotated with rich sources of

automatically derived context data, for 3 subjects. Content-and-context-based queries,

along with target result sets, were also created for these PLs.

In this chapter we highlight the retrieval challenges which motivate this work (Section

1.1), provide our hypothesis for the work (Section 1.2) and a summary of the contri-

butions and aims of the thesis (Section 1.3). The chapter concludes with an outline of

the remainder of the thesis.

1.1 Motivation

IR techniques have been applied to various types of collections, from early work on

structured library catalogues and text-based academic sources to more recent devel-

opments such as multimedia content (e.g. video archives) and the linked and meta

tagged World Wide Web. The focus of retrieval in these types of collections is pre-

dominantly on development of techniques to facilitate the finding of information, for

example finding scientific articles, related to the user’s need for information. IR tech-

niques are also now being applied to collections which are in some way personal to

the individual, such as collections of items on personal computers, email archives, etc.

Here the predominant focus is on finding previously seen information, e.g. re-finding

conference papers written or emails received. These types of personal collections may

be considered subsets of lifelogs. Both these subsets and more heterogeneous PLs

present new challenges for IR. PLs are fundamentally different from traditional con-

tent archives due to the following factors:

• A PL is typically a combination of many types of media, audio, video, images,

and many types of textual content;

• There is the potential for a large percentage of noisy data in these archives, e.g.

data which is incomplete (such as an email in the archive, for which the sender

of the email was not captured) or of no current and future interest to the user;

2The iCLIPS project focuses on the automated annotation of multimedia items within lifelog archives
to facilitate more effective browsing and searching through understanding of people’s memory for
lifelog items and development of backend retrieval techniques and suggestive user interfaces. See
http://www.cdvp.dcu.ie/iCLIPS/ (September 2011) for further details. iCLIPS project members: Gareth
J. F. Jones, Yi Chen, Liadh Kelly and Daragh Byrne (collaborator). Dublin City University.
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• Many items in the archive may be very similar, repeatedly covering the same

topic, hence making it difficult to extract the specific item(s) a user requires;

• A user may not be aware that a particular piece of data was captured (or have

forgotten about its existence), and is therefore available for retrieval, e.g. a user

forgetting that web pages on a programming problem they are currently trying

to solve were previously viewed and are stored in their lifelog;

• The user may not be able to describe clearly what they are looking for, e.g. a user

not recalling terms in an item they wish to retrieve;

• Items may not have formal textual descriptions, meaning that they cannot be

retrieved using standard text or meta-tag based retrieval methods;

• Items may not be joined by inter-item links, meaning link structure cannot be

utilized in the retrieval process.

It is this unique combination of attributes of PLs in comparison to document collec-

tions on which IR has traditionally focused that motivates this research into the cre-

ation of retrieval techniques specifically for the personal archive domain. This domain

is fundamentally distinct from traditional IR domains due to both the above combi-

nation of factors, and the fact that items in PLs are personal to the individual, in that

they have been created or obtained by the individual or represent an experience of the

individual (e.g., programme from a concert attended, news article relating to a sports

match attended). Since this is the case, the user may have personal experiences and

memories associated with the items in the archive. The combination of these factors

lead to the requirement of retrieval techniques specific to PLs.

1.1.1 Memory and Context

Existing work in personal data retrieval acknowledges that memory plays a vital role

in item retrieval, for example, [Cutrell et al., 2006b, Elsweiler et al., 2007]. That is, peo-

ple’s memories of past experience of items, such as the location at which a file was

stored, play an important role in relocating items. However, we find that current IR

systems do not fully exploit what people remember about items. Items for retrieval

from a PL may consist of the item itself, e.g. a document or email, and available as-

sociated context information, e.g. the time and date when a document was accessed
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or geo-location at which an email was written, captured automatically using relevant

sensor technologies, e.g. use of GPS tracking to infer geo-location. However, much

of the richer non-item related forms of context used in existing systems has generally

relied on manual annotation from the user. For example, the PHLAT system allows

individuals to add tags to their computer items [Cutrell et al., 2006b]. Also existing

backend algorithms, which allow retrieval of multiple types of personal items, appear

to operate on a simple boolean premise, for example Dumais et al [Dumais et al., 2003]

and Gemmell et al [Gemmell et al., 2006]. That is, the queried context data is either

present or not present in the database items. People’s memories are likely to be in-

complete or partially inaccurate, and thus the retrieval challenge is how to best make

use of the captured content and context in the PL with user queries for most effective

retrieval.

We assert in this thesis that to fully harness the power of people’s memories of PL

items, items should be implicitly annotated with rich sources of context data and so-

phisticated PL retrieval algorithms developed which can exploit these annotations to

achieve effective retrieval of items of interest from an individual’s PL, based on par-

tially remembered details of item content and/or context.

1.1.2 Implicit Indicators of Item Importance

Due to the difficulty in discerning important lifelog items from the possibly vast num-

ber of items contained in lifelogs any additional information which can assist in this

process is potentially very important. For example, identification of such items has

potential utility both in re-ranking IR result lists and in identifying items to sug-

gest to an individual when they are browsing their collection. Previous work has

shown that an individual’s biometric response is related to their overall arousal lev-

els [Lang, 1995]. Significant or important events tend to raise an individual’s arousal

level, causing a measurable biometric response [McGaugh, 2003]. Events that can be

recalled clearly in the future are often those which were important or emotional in our

lives [Gazzaniga et al., 2002]. Current technologies enable the capture of a number of

biometric measures on a continuous basis. For example, using a device such as the

BodyMedia SenseWear Pro II armband3. However, past research has not exploited

user biometric response associated with previous experience with an item in IR algo-
3http://www.bodymedia.com/ (September 2011)
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rithms. As part of this research we explore the use of this biometric information in the

re-ranking of IR result sets to make items which are more significant to the individual

more easily available to them.

The exploitation of biometric data combined with recalled content and context asso-

ciated with items in IR algorithms for effective PL search form the main objectives of

this thesis.

1.2 Hypothesis

We hypothesise that people’s memory of the generation of, and interaction with,

items stored in their PL can be used to improve retrieval performance in the PL do-

main. While re-finding can be based on memories of search terms contained within

items (i.e. item content), over time individuals’ memories of these terms fade, re-

sulting in increased difficulty in locating the required information/item. It is of-

ten easier to remember non-textual elements associated with items (e.g. date of

previous interaction with the item) than the content/terms of the items themselves

[Aizawa et al., 2004, Kelly et al., 2008]. These non-textual memories of items (context

associated with items) may include the people present when accessing a file, the loca-

tion one was in when they received an important SMS message, etc. With advances in

modern technology these and other types of context data can now easily be captured,

and used to automatically annotate PL items with rich sources of context data.

We further hypothesise that certain PL items are more important to the individual

than others, and that such items may be determined from an individual’s biomet-

ric response at the time of experiencing the item. In particular, we hypothesize that

adding query independent boosts (static scores) to important items in lifelog IR result

lists, where important items are detected based on recorded biometric levels associ-

ated with past accesses to the items, may improve retrieval performance.

The overall goal of the work reported in this thesis then is to develop and test methods

which integrate automatically recorded and derived context data types with implicit

indicators of item importance into IR algorithms for improved retrieval in the PL do-

main. In particular, it is hypothesised that integrating remembered and partially re-

membered context information into IR algorithms combined with implicit indicators
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of item importance will prove beneficial for PL retrieval.

1.3 Thesis Aims and Contributions

EXAMPLE 1 - ‘single item’ query:

Recalled Content (keywords):
Content term: personal
Content term: lifelog

Recalled Context type ‘weather’:
Context term: sunny

Recalled Context type ‘people present’:
Context term: Sarah

EXAMPLE 2 - query for multiple relevant items:

Recalled Content (keywords):
Content term: hashmap

Recalled Context type ‘extension’:
Context term: java

Recalled Context type ‘month’:
Context term: November

Recalled Context type ‘year’:
Context term: 2009

Figure 1.1: Sample content+context-based queries.

The aim of this research is to develop IR algorithms for a PL which will effectively

retrieve the required information in response to a user’s information need expressed

as a query combining content and context features. Figure 1.1 shows two sample

content+context queries. In the first example an individual wishes to retrieve a con-

ference paper they wrote based on recalled keywords (content) in the paper and re-

called weather conditions and people present (context) associated with creation of the

paper or a previous access to the paper. The second example shows a query to re-

trieve all code which performs a specific task based on recalled keywords (content),

extension type (context) and recalled month and year (context) of previous access.
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When searching, individuals may perform ‘single item’ searches (e.g. searching for

the camera ready version of a conference paper written), or searches where there may

be multiple relevant items (e.g. searching for publications by a specific author). The

developed algorithms could be, for example, plugged into a PL application which

allows content+context-based queries.

Within the PL domain this thesis focuses on: 1) understanding, at an observed level,

the types of data people recall about required items and on the integration of recalled

context data into retrieval algorithms; and 2) improving ranked retrieval performance

by investigating implicit indicators of lifelog item importance and exploring means

to integrate them into PL retrieval techniques. Specifically, we seek to establish the

following:

1. How can remembered context data best be combined into PL retrieval algo-

rithms?

2. Can observed biometric response be integrated into retrieval algorithms to im-

prove performance?

Answering these questions results in the following contributions being made by this

thesis:

• Review and critique of related work in personal information systems, as well as

existing work on the use of context data in retrieval and the use of biometrics in

retrieval.

• Design and implementation of methods to integrate personal data into lifelogs.

• Design, implementation and evaluation of PL IR algorithms which cater for con-

tent+context queries.

• Design, implementation and evaluation of techniques to extract important items

from PL collections using biometric response associated with past experience of

items.

• Design, implementation and evaluation of techniques to integrate biometric

measures associated with past experience of items into PL retrieval algorithms.
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1.4 Thesis Outline

This section describes the organisation of the thesis.

Chapter 2 - Towards Context Data for Personal Lifelog Retrieval: Existing work

in personal information access, content-based search, peoples’ memories of computer

activity, the use of context data in retrieval and biometric response analysis inform

our work. In this chapter we overview and analyse existing work in these areas, and

explain how it motivates our research to integrate implicitly recorded and derived

context data into retrieval techniques for the PL domain. The chapter also overviews

existing test set and test case generation approaches which inform our adopted test

set and test case approach described in Chapters 3 and 4.

Chapter 3 - Lifelog Test Sets: In order to analyse our proposed approaches to inte-

grate recalled context and query independent context into retrieval algorithms for the

PL domain, it was necessary to create lifelogs and test cases for experimentation pur-

poses. The chapter describes the contents of the lifelogs created for this study and the

techniques used to create them. 20 month lifelogs containing records of all accesses

to computer items (e.g., web pages, word documents, emails) and SMS messages sent

and received were created for 3 subjects. Lifelog data items were annotated with sev-

eral rich sources of automatically derived context data types, e.g. geo-location at the

time of item experience using collected GPS data. To explore the role of biometric

response in lifelog retrieval one month of the lifelogs was further annotated with bio-

metric response data and passively captured images depicting the subject’s life using

the Microsoft Research SenseCam4.

Chapter 4 - Towards Information Retrieval in the Lifelog Domain: In this chapter

we overview and analyse existing IR approaches which inform our work. We review

both existing ranked retrieval approaches and approaches for integrating static query

independent scores into ranked retrieval algorithms. We also describe how we in-

dexed the textual data in the lifelogs described in Chapter 3 to create test sets for the

retrieval experiments presented in this thesis. The process by which test cases and

result sets were generated for these experiments is also described.

Chapter 5 - Queried Content-and-Context-Based Retrieval Algorithms for the Lifel-

ogging Domain: This chapter presents our adopted approaches for integrating

4http://research.microsoft.com/sendev/projects/sensecam/ (September 2011)
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queried content and context into IR algorithms for textual data in the PL domain.

For search, the key research challenge is how to score the individual fields individu-

ally or in combination to generate the most effective overall score for retrieval. In this

chapter we explore two main approaches to this. The first approach, which acts as our

baseline, uses a simple data fusion approach, where the overall relevance score is the

sum of the individual field scores. The second uses a more sophisticated technique to

exploit field structure and importance to determine relevance scores for items. Experi-

ments to explore the effectiveness of these algorithms and analysis of results obtained

are also presented.

Chapter 6 - Extracting Important Items using Past Biometric Response: As a precur-

sor to integrating query independent biometric levels into the ranked retrieval algo-

rithms presented in Chapter 5, we explore the predictive power of biometric response

associated with previous experience of lifelog items in detecting lifelog items individ-

uals might want to view in the future. Identification of such potentially important

items within lifelogs also has other utilities, for example in the suggestion of interest-

ing lifelog items to an individual when they are browsing their lifelog. This chapter

presents a discussion of these topics, along with the setup of experiments to explore

our adopted use of biometric levels associated with lifelog items and analysis of re-

sults obtained.

Chapter 7 - Static Scores: Boosting Relevant Items in Result Lists using Past Bio-

metric Response: Following on from Chapter 6, this chapter presents the approaches

we investigated to potentially improve our ranked retrieval algorithms, presented

in Chapter 5, by integrating biometric levels associated with previous experience of

items into these algorithms. Experiments to establish the effectiveness of these ap-

proaches and analysis of experimental results obtained are also presented.

Chapter 8 - Conclusions and Future Work: This chapter presents a summary of

the scope and findings of the thesis, highlights the contributions made and provides

directions for future work.
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Background, Setup and Analysis



CHAPTER

TWO

Towards Context Data for

Personal Lifelog Retrieval

Chapter Overview: This thesis is concerned with the exploration of re-

trieval techniques for the PL domain. Such technologies will potentially

allow individuals to search a PL capturing aspects of their life based on

recalled content and context of items which they wish to find. The thesis

further examines the potential for improving the effectiveness of access-

ing relevant items by boosting the scores of items using the individual’s

biometric response associated with past interactions with these items. Ex-

isting work in the spaces of personal information access, content-based

search, people’s memories of computer activity, the use of recalled con-

text data and query independent context data in retrieval and biometric

response analysis inform our work. In this chapter we overview and anal-

yse this work, and explain how it motivates our research to explore inte-

grating implicitly recorded and derived context data types into retrieval

techniques for the PL domain. The chapter also reviews existing evalu-

ation approaches which inform the evaluation strategy we adopt later in

this thesis.
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2.1 Introduction

We are currently experiencing a digital revolution which is enabling the capture, stor-

age and transmission of previously unimagined amounts of information. One of the

features of this revolution is that people are storing increasing volumes and types of

personal information in digital format. A very wide range of the materials of indi-

viduals’ lives can now potentially be recorded through sound recording, photograph

capture, motion picture capture, etc, and through storing copies of web pages vis-

ited, personal emails, files created, music listened to, etc. Indeed it has been proposed

that we are moving towards a society of total digitization and the resulting ability

to relive or retrieve all details from our lives [Bell and Gemmell, 2009]. This notion

of being able to relive or retrieve all details from our lives through digital media is

referred to as ‘total recall’. While there is still some way to go to reach the state of

total recall envisaged by Bell et al [Bell and Gemmell, 2009], increasing evidence that

this society of ’total recall’ may be established in the not too distant future is emerg-

ing. Decreases in cost in parallel with massive increases in storage capacity coupled

with existing technologies mean that it is now in theory possible to store many details

of our lives in digital format for long term preservation. Coupled with this, recent

advances in research in the personal information space, which we look at in Section

2.2, mean that Bell’s vision may be closer than we think. Some contend however that

creating a society of ’total recall’ is undesirable. For example, Bannon argued that

there is a human need to forget [Bannon, 2006], which digital life stores would pre-

vent individuals from doing. While others oppose lifelogs because of their potential

intrusive nature [Nack, 2005]. Security issues pertaining to lifelogged data have also

been raised [Bell and Gemmell, 2007]. While we believe that these are valid concerns

which need to be addressed, further discussion of these topics is beyond the scope of

this thesis, which is concerned only with mechanisms for effective retrieval.

Existing research in the personal data retrieval space use personal collections con-

taining varying types and volumes of data [Cutrell et al., 2006a, Gemmell et al., 2002,

O’Hare et al., 2006]. Some collections are purely visual, e.g. containing photograph

collections representing snap shots from a person’s life. Others may be purely textual,

containing records of the computer activity engaged in by an individual - collections

of this nature may contain web pages viewed, emails sent and received, documents
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opened on computer, etc. Richer personal collections will contain a combination of

these image and data types, and may contain other sources of personal data such as

text messages, audio logs, videos from one’s life, etc. Items in personal collections

may additionally be annotated with rich sources of context data such as geographic

location, “date-time” information, weather conditions, etc.

The personal information space is a rapidly growing area of research, with re-

searchers exploring techniques to both manage and retrieve various types of personal

information [Barreau et al., 2009, Elsweiler et al., 2010, Gemmell and Sundaram, 2004,

Gemmell and Sundaram, 2005, Jones, 2006, Mase, 2006, Teevan and Jones, 2008]. Our

research focuses on the backend retrieval challenge associated with this space. Ex-

isting work in personal data retrieval finds that memory plays a vital role in item

retrieval, for example, [Cutrell et al., 2006b, Elsweiler et al., 2007]. In the next section

we review the role of people’s memories of personal items in the retrieval process and

explain how this motivates our research into exploring the role of recalled context data

in personal information retrieval. We believe that beyond recalled context data other

implicit context found in lifelogs can act as implicit indicators of item importance and

offer potential utility as a static score integrated into ranked retrieval approaches for

PL retrieval. We explore this topic in Section 2.3. Finally, in Section 2.4 we overview

evaluation approaches for the personal retrieval space.

2.2 Memory and Context

Large amounts of data can be captured in a PL with the result that searching through

one to find individual items is difficult, particularly when the user will often only

remember small amounts of information relating to them. Often remembering the

context of an experience with items can be easier than remembering these crucial key-

words [Aizawa et al., 2004].

People’s memory, or lack thereof, of items in their PLs is acknowledged as being cru-

cial for effective retrieval and the design of effective PL interfaces. Key benefits from

a greater understanding of how people remember, or forget, items should then lead

to a greater understanding of what context data and interfaces might prove benefi-

cial in aiding people recover, rediscover, or even discover items in their personal data

archives. Elsweiler et al. [Elsweiler et al., 2005, Elsweiler et al., 2007] carried out an ex-
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tensive user study to help them understand how people recover from memory lapses.

They put forward the hypothesis that memory lapses make it difficult for people to

find items in their personal archives, using traditional IR systems which require peo-

ple to remember enough information about the item they are looking for to generate a

query. Based on their findings they developed a photograph browser which exploits

people’s remembering mechanisms. More specifically the interface created always

displays a user’s entire photograph collection, photographs matching a user’s query

are enlarged and all other photographs are shrunk in size. Additionally, when a user

hovers over a photograph the photograph is enlarged and information related to the

photograph is displayed. They also provide a number of filtering options which they

classify as: visual filtering, semantic filtering by free-text, semantic filtering by groups,

temporal filtering via date line, spatial filtering by screen location and smart filtering.

In other memory related research, Jaimes et al. [Jaimes et al., 2004] use memory cues

for a meeting video retrieval system. From a user study, they found what types of

items people easily remember and easily forget about meetings. They used this infor-

mation in the design of an intuitive interface that uses information which will act as

memory cues, for the retrieval of the desired meeting video.

Much other research exists in support of the use of people’s recalled memory

of past interactions with items as a means to relocate them. Research such as

[Blanc-Brude and Scapi, 2007, Teevan et al., 2004] discovered many attributes individ-

uals recall about files such as location of a file, actions performed on the file, day-

light status, weather and local time, which they use as context data to retrieve them.

In other work standard forms of context data such as time, date, number of ac-

cesses, etc, have proved beneficial in retrieval from various types of collections (e.g.

[Elsweiler and Ruthven, 2007, O’Hare et al., 2006, Ringel et al., 2003]). There are many

other examples of the use of context in simple ways in existing work. We look at this

in more detail in the next section in combination with an investigation of the current

state of personal data retrieval/access systems and research.

2.2.1 Personal Information Systems

As mentioned in Chapter 1, in his seminal work Bush [Bush, 1945] proposed a fu-

ture where all of a person’s personal information could be stored and importantly
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retrieved at a later stage. “A Memex is a device in which an individual stores all

his books, records, and communications, and which is mechanized so that it may be

consulted with exceeding speed and flexibility. It is an enlarged intimate supplement

to his memory” [Bush, 1945]. With advances in modern technology, Bush’s ideas are

now coming to be realized. Microsoft’s Gordon Bell has dedicated many years to-

wards the realisation of this vision with the digital archiving of his life, as part of the

MyLifeBits project [Bell, 2004, Gemmell et al., 2002]. He has captured everything from

letters, books, CDs, to items viewed on computer, phone conversations, etc. Beyond

the capture of data, the MyLifeBits project is also looking at the retrieval of personal

data. To this end they have developed a database which organizes all a person’s per-

sonal data. Within this database items have context data associated with them. How-

ever at present this context data is limited to standard items such as file location or

date information. We believe that there are other rich sources of context information

associated with a file that could be exploited, for example, people present and weather

conditions. The MyLifeBits system only allows retrieval from PLs using simple inter-

faces based on timelines, context filtering and standard text based searching (which

performs ranked retrieval).

In other work at Microsoft, the “Stuff I’ve Seen” (SIS) system [Cutrell et al., 2006a,

Dumais et al., 2003] created an index of items previously viewed by the user on their

computer and metadata associated with these items, such as date, author, etc. SIS

contains an interface for retrieval of this previously viewed personal information. This

interface takes advantage of the fact that stored contextual data such as author, time,

thumbnails or previews of the item can act as cues to help trigger a user’s memory.

The user can perform keyword search, combined with narrowing the results to certain

types of files and items containing certain types of metadata (memory cues) such as

time. An extension of this system, Phlat [Cutrell et al., 2006b], allows the user to add

custom tags to items, which can then be used in future retrieval. However, we believe

this manual tagging places a burden on the user and may not capture all of the details

that an individual may recall about a searched for item.

Another example system Haystack [Karger et al., 2005] is an application that allows

users to organize all their personal information in whatever way makes most sense

to them. Similar to the MyLifeBits, Stuff I’ve Seen and Phlat systems, it removes the

barriers that normally exist between different types of items, such as emails and pho-
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tographs for example. Another system, Lifestreams [Freeman and Gelernter, 1996],

replaces the standard desktop with an interface that arranges items in time-order.

Using this interface a person can filter and order items. The VisMe system

[Gomes et al., 2010] also uses the notion of organising desktop items in a timeline,

with a linked graph style visualization displaying key terms and context associated

with items, which can be expanded to navigate through the personal collection.

Other research has looked at the automatic grouping of items into tasks and folders. In

this context a task is the user defined activity that they are engaged in, e.g. writing of

thesis. The system in [Stumpf et al., 2005] automatically determines what task a user

is engaged in, offers the facility to correct misclassified tasks, and groups items into

tasks for the user. This is achieved using a probabilistic framework which considers

personal items viewed and the context in which they are used. It also uses analysis

of the user’s current task to predict the next folder from which the user may wish to

access information.

As can be seen from these sample systems, the key idea common to all current efforts

in the personal data retrieval/access domain, is to create systems that make it easier

for users to (re-)access personal information. Commercial systems which help people

search through their personal files, while arguably not as sophisticated as some of

the systems already mentioned, are also showing signs of beginning to address the

personal file retrieval problem. For example, Google Desktop1 indexes all items a

person views and all items saved on the person’s computer. Users can then perform

text based queries to retrieve items at a later stage. Microsoft’s Windows Desktop

Search (WDS)2 also indexes files on a person’s computer and allows them easily query

the index from the Windows taskbar. Another system, i-sho3, organizes all a person’s

(or group of people’s) personal data in a horizontal time-line interface. More precisely

the interface is like a digital diary, grouping items by their timestamp. A separate

timeline (layer in the application) can be created for different categories. For example,

users can then choose to perform a search or view all photographs taken in a given

day, month or year.

However, a significant disadvantage of these current systems is that the retrieval ap-

proaches are limited, as discussed in the next section. In this thesis we will explore

1http://desktop.google.com/ (September 2011)
2http://www.microsoft.com/windows/desktopsearch/default.mspx (September 2011)
3http://www.i-sho.com/ (September 2011)

18



the development of new context-based retrieval algorithms for the PL domain (this

is explored in greater detail in the next section). Additionally, much of the burden

for annotating items with context features is placed on the user. Users of course are

often busy people, or perhaps just lazy, and very often will not take the time to add

annotations to items; but they would still like the benefits of a system enabling them

to search using rich annotations derived from context data. Widespread take-up of

context-based search clearly requires methods for automatic annotation of items with

minimal user involvement. The research presented in this thesis seeks, among other

things, to address this issue. Towards this end, Section 2.2.3 includes an exploration

of existing technologies for automatically generating rich sources of context data.

2.2.2 Recalled Context in Retrieval

As we have seen, existing research using context in the personal information retrieval

space has predominantly focused on the front-end retrieval challenge and how mem-

ory of context associated with required information can be harnessed in these inter-

faces. The existing backend algorithms supporting context-based retrieval in these

systems, which allow retrieval of multiple types of personal items, generally oper-

ate using a simple Boolean technique, for example [Dumais et al., 2003]. That is, the

queried context data is either present or not present in the database items, thus rely-

ing on the user having detailed and accurate recall of the required query elements to

locate relevant items. This is unlikely to be the case, given that queries will often be

generated for partially remembered events from a few or possibly many years previ-

ously. Further, even if the user has accurate detailed recall of these details, it is not

clear how best these multi-field semi-structured documents should most effectively

be scored if a more sophisticated ranked retrieval strategy were to be used.

In earlier work we demonstrated that content and context data can successfully be

combined to improve ranked retrieval effectiveness for a sample PL [Kelly et al., 2008].

This pilot study investigating the utility of remembered context data in desktop re-

trieval using 6 weeks of one subject’s desktop activity found support for the use

of context data in retrieval [Fuller et al., 2008, Kelly et al., 2008]. The context types

explored are shown in Table 2.1. In this study precise geo-location was manually

recorded by the subject, e.g., kitchen, office, and weather conditions for the region the

subject was in during data capture were obtained from a website containing hourly

19



General Information
Event ID Event content

Context Data
Title Month
Source e.g., Hour
Word, Firefox
Type e.g., Minute
document, Web
Location e.g., Weekday e.g., Mon, Tues
college, kitchen
Weather e.g., Surrounding Events
showers, cloudy Types
Season e.g. Surrounding Events
summer Sources
Day Surrounding Events

Content
Year

Table 2.1: Complete set of content and context.

weather history for Dublin Airport, Ireland4. This experiment was a known-item

search task where the user searched for single partially remembered items from within

the data collection. 27 tasks were created and the subject’s content and context mem-

ory of these tasks tested after the lifelog build up period and again after a 6 month

interval. Significant advantage was found for combining remembered content with

context as opposed to using remembered content only, for both the initially recalled

and recalled 6 months later data. Interestingly, for the recalled data 6 months later

this advantage is significantly greater than it is for the initially recalled data. These

results suggest support for the use of context data in retrieval, and that over time as

an individual’s memory of content data associated with lifelog items fades, the use of

context data in retrieval becomes more important. Despite the fact that this was just a

pilot study using one person’s personal data recorded over a period of 6 weeks, the re-

sults obtained using simple retrieval approaches are promising and indicate that over

the longer term, recalled context data could be used to improve content only retrieval

performance in the PL domain. These findings, using a ’simple’ retrieval approach,

suggest support for the use of recalled content and context in lifelog retrieval algo-

rithms.

In the next section we examine lifelogging beyond the desktop and how rich sources

of context data associated with lifelogged items might be automatically generated.

4http://www.freemeteo.com/ (2007)
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2.2.3 Beyond the Desktop

Various forms of visual logs, video logs, audio logs, mobile phone activ-

ity logs, accelerometer data, activity sensors, GPS, brainwave data and Blue-

tooth devices in the vicinity of the user, have been compiled and investigated

[Aizawa et al., 2004, Blum et al., 2006, Ellis and Lee, 2006, Hori and Aizawa, 2003,

Mase et al., 2006, Tancharoen et al., 2005].

An emerging area of lifelogging explored in this thesis is the proactive capture of

images using devices such as the Microsoft Research SenseCam5, see Figure 2.1, which

allows for the creation of a visual log of an individual’s activities [Gurrin et al., 2008].

The SenseCam is a digital camera, with fish-eye lens, worn around a subject’s neck,

which passively captures images depicting the wearers visual perspective. Image cap-

ture is triggered based on changes in sensor data captured by the device. For example,

high acceleration values, passive infrared (body heat detector) as someone walks in

front of the wearer or changes in light level. If no sensor has triggered an image to be

captured, the camera takes one anyway after a period of approximately 20 seconds.

When worn continuously roughly 3,000 images are captured in an average day. The

SenseCam stores images and a sensor file on board. The sensor file contains among

other things “date-time” stamps for images. These images, due to both sheer vol-

ume and unstructured nature, are impractical for a user to search through. Doherty

et al [Doherty et al., 2007] segment these images into events using SenseCam sensor

data. Key images, similar to keyframes in video search, are then extracted from each

event. These key images can be used as a summary of a day or as an entry point

into more images of a particular event. They also explore extracting the most impor-

tant SenseCam events in each day through facial analysis and image analysis of the

novelty of events relative to other days’ events [Doherty and Smeaton, 2008]. Other

work has explored detecting the similarity of SenseCam events using Bluetooth and

GPS data [Byrne et al., 2007]. These works represent promising progress in helping

people wade through potentially vast quantities of images depicting their lives. How-

ever, given the potentially huge numbers of images in personal SenseCam collections,

means to detect the most important or interesting SenseCam events from within these

collections as a whole are required. We investigate ways to do this using implicitly

5http://research.microsoft.com/en-us/um/cambridge/projects/sensecam/ (September 2011)
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Figure 2.1: The Microsoft Research SenseCam. (Images courtesy of Microsoft Research
website)

recorded context data in Chapter 6.

Ubiquitous computing also offers potential for automatically tagging lifelog items

with rich sources of context data. Bluetooth tracking devices allow for the detec-

tion of other Bluetooth devices in the nearby vicinity - in today’s society many peo-

ple have Bluetooth technology activated on their mobile phones [Byrne et al., 2007,

Lavelle et al., 2007]. This information may prove useful in subsequent search. For

example, by tagging lifelog items with people present information derived from Blue-

tooth information, an individual may be able to recall who was present when they

were working on or viewing a particular item. We investigate this in the next chapter

as part of our lifelog creation process.

GPS tracking devices also offer the potential to tag lifelog items with information of

potential use in ranked content+context retrieval approaches. A good example of this

is provided in the MediAssist project [O’Hare et al., 2005, O’Hare et al., 2006] which

provides an interface for search of digital photographs. Among other things they tag

photographs with geo-location, light status and weather conditions, and allow search

for images containing these tags. This is done by combining photographs timestamps

with GPS information (from which geo-location is inferred), and downloading the

light status and weather conditions for geo-locations from the web. This auto-context

generation process could be used to tag all lifelog items with geo-location, weather
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conditions and light status information. We also investigate this in the next chapter as

part of our lifelog creation process.

Personal information systems which stimulate remembering and allow the user to fol-

low memory cues are required. These systems exploit humans’ recognition and recall

processes [Norman, 1998]. In order to create these systems, it is necessary to capture

as much information as possible that people remember about items. Both suitable user

interfaces, which enable the user to follow memory cues, and backend context-based

search algorithms are required. In this thesis we focus on the exploration and devel-

opment of user query driven context-based search algorithms, and automatic context

generation to support these searches. Means to automatically tag items with rich con-

text sources are explored in the next chapter. In Chapter 5 we investigate using context

data in ranked retrieval.

2.3 Query Independent Context Data

Many systems obtain indicators of item importance from system users, either implic-

itly or explicitly in order to improve the performance of the system, or help locate

items or information of importance/relevance to the user. Explicit relevance feedback

is where the user themself informs the system of the importance of documents to their

interests and needs. This explicit relevance feedback can be obtained from a num-

ber of sources [Brusilovsky, 1996], for example through user feedback where the user

grades the relevance of items, a good example here is the ’thumbs up’ and thumbs

down’ facility offered in many blogging systems for example, or through adaptation

of the system at the backend (user model) or interface level, for example systems that

allow users to add or remove items from their ’interested in list’. While explicit feed-

back can be a good way to discern the interests of users, this benefit is at the cost of

the cognitive burden placed on the user [Belkin et al., 2000]. An alternative is implicit

relevance feedback, or as we refer to them in this thesis implicit indicators of item

importance, whereby the system attempts to infer how interesting the items are to an

individual [Balabanovic, 1998, Ruthven, 2005]. Implicit indicators of interest can po-

tentially be obtained from actions performed by individuals on items. Examples here

include: actions on the web such as printing, saving, forwarding, bookmarking, reply-

ing to and posting a follow-up message to an item can indicate interest; returning to
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the previous document without having either saved the target document or followed

further links can indicate disinterest; and since there is a tendency to browse links in a

top-to-bottom, left-to-right manner a link that has been ’passed over’ can be assumed

to be less interesting [Lieberman, 1997]. Other examples here include: the number of

times a person visits/views an item can indicate their level of interest in the item; and

the time a user spends reading an item can also indicate their level of interest in the

item [Nichols, 1997]. Much of this research on the use of implicit relevance feedback

has been focused on web search, information filtering applications and recommender

systems. Here implicit relevance feedback has been used either as a current indicator

of item importance to guide a current search (e.g. the ’show me more like this no-

tion’), or to form a user profile which provides details on the interests of users and

in turn can be used to guide future search tasks (explicit relevance feedback is used

in the same way). All of these implicit indicators of item importance, either future or

current, are personal to the individual.

A different type of indicator of item importance, which is not personal to the individ-

ual, is the use of the web’s link structure to detect the importance of web pages using

algorithms such as PageRank [Page et al., 1998] and HITS [Kleinberg, 1999]. These

implicit indicators of webpage importance are then used as static query independent

boosts in retrieval algorithms. Use of algorithms such as PageRank and HITS has

moved beyond the web into the personal file search space. [Chirita and Nejdl, 2006,

Chirita et al., 2006, Kurland and Lee, 2006, Kurland, 2006, Soules and Ganger, 2005,

Soules, 2006] used varying approaches to link items or result lists in desktop col-

lections. These future personal, link based, indicators of item importance, are

then used to re-rank the results of ranked retrieval result lists. More specifically,

[Chirita and Nejdl, 2006, Chirita et al., 2006] factor link based indicators of item im-

portance, derived based on access patterns between files and shared characteris-

tics of files (e.g. linking files in the same folder) into the ranked retrieval score;

[Kurland and Lee, 2006, Kurland, 2006] retrieve a set of documents in response to a

user query using traditional methods and then use inter-document relationships to

rank order the retrieved documents; and [Soules and Ganger, 2005, Soules, 2006] re-

ranks the results of text-based queries using link based indicators of item importance

derived from past access patterns between files.

Exploration of the many facets of implicit and explicit user feedback and user mod-
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elling is beyond the scope of this thesis. In this thesis we are interested in exploring

a new type of implicit indicator of future item importance and its potential utility

as a static, query independent, score integrated into ranked retrieval approaches for

the lifelogging domain, namely biometric response associated with past experience

of lifelog items. For the remainder of this section we overview biometric response

and its existing uses in the digital environment as an implicit indicator of current item

importance.

2.3.1 Biometric Response

As mentioned in Chapter 1.1.2, previous work has shown an individual’s biometric

response to be related to their overall arousal levels [Lang, 1995]. Significant or im-

portant events tend to raise an individual’s arousal level, causing a measurable bio-

metric response [McGaugh, 2003]. Events that can be recalled clearly in the future are

often those which were important or emotional in our lives [Gazzaniga et al., 2002].

It has been demonstrated that the strength of the declarative or explicit memory for

such emotionally charged events has a biological basis within the brain, specifically

involving interaction between the amygdala and the hippocampal memory system

[Ferry et al., 1999]. Variations in arousal level elicit physiological responses such as

changes in heart rate (HR) or increased sweat production. Thus one way of observing

an arousal response is by measuring the skin conductance response (SCR) (also re-

ferred to as galvanic skin response (GSR)). The GSR reflects a change in the electrical

conductivity of the skin as a result of variation in the activity of the sweat glands. It can

be measured even if this change is only subtle and transient, and the individual con-

cerned is not obviously sweating [W. Boucsein, 1992, Gazzaniga et al., 2002]. The rate

of heat exchange from a person’s body to the outside environment, called heat flux

(HF), also provides an indicator of an individual’s arousal levels. Arousal response

can also be observed through skin temperature (ST). With increased arousal levels,

sympathetic nervous activity increases, resulting in a decrease of blood flow in periph-

eral vessels. This blood flow decrease causes a decrease in ST [Kataoka et al., 1998,

Sakamoto et al., 2006]. Current technologies enable the capture of a number of bio-

metric measures on a continuous basis. For example using a device such as the Body-

Media SenseWear Pro II armband6 [Andre et al., 2006] which can continuously record

6http://www.bodymedia.com/ (September 2011)
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the wearer’s GSR, ST and HF, or using the Polar heart rate monitor7 which can con-

tinuously record the wearer’s HR.

A problem for arousal level detection using biometric response is that many fac-

tors, such as defective sensors and food intake, can cause noise in biometric data

[Jain and Ross, 2004]. Noise in biometric data when attempting to use it to infer

arousal levels is also caused by external factors such as physical activity, which also

causes changes in biometric levels [Nakayama et al., 1977, Torii et al., 1992]. One way

to measure levels of physical activity is through an energy expenditure calculation

which considers a person’s motion, age, weight and height. Energy expenditure is a

calculation of the energy used by the human body, based on physical activity, resting

metabolic rate and the thermic effect of food (cost of processing food for storage and

use) [Ainsworth et al., 1993, Ainsworth et al., 2000, Black et al., 1996, Brockway, 1987,

Denzer and Young, 2003]. Devices such as the BodyMedia SenseWear Pro 2 armband

record, in addition to biometric readings, a person’s acceleration and provide the op-

tion to enter one’s weight, age and height. Using this data the BodyMedia device

can calculate energy expenditure readings at a rate of once per minute, using propri-

etary algorithms which calculate energy expenditure based on the activity of the user,

inferred from the on device data [Andre et al., 2006]. The validity of the BodyMedia

SenseWear Pro 2 armband’s energy expenditure calculation has been shown in various

studies [Cole et al., 2004, Fruin and Rankin, 2004, Jakicic et al., 2004, King et al., 2005,

Mealey et al., 2007, St-Onge et al., 2007]. While not, to our knowledge, explored to

date, we believe that consideration of energy expenditure levels when attempting

to infer arousal levels from biometric data may remove the noise in biometric data

caused by some factors.

2.3.2 Biometric Response and the Digital Environment

Much research exists on exploring the relationship between biomet-

ric response and individuals’ arousal and emotional levels, for example

[Bradley et al., 2001a, Bradley et al., 2001b, Kim et al., 2004, Kim and Andre, 2008a,

Kim and Andre, 2008b, Lang et al., 1993, Lang, 1995, Lisetti et al., 2003,

Lisetti and Nasoz, 2004, Maltzman and Boyd, 1984]. Researchers have also begun

looking at how an individual’s biometric response may be used in emotion detec-
7http://www.polarusa.com/ (September 2011)
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tion for HCI systems, for example [Anttonen, 2002, Anttonen and Surakka, 2005,

Klein et al., 2002, Partala and Surakka, 2004, Picard, 2000, Picard et al., 2001,

Scheirer et al., 2002, Ward et al., 2002, Ward and Marsden, 2003] and in elic-

iting of emotional response to movies and movie scenes, for example

[Canini et al., 2010, Chen and Segall, 2009, Hettema et al., 2000, Mooney et al., 2006,

Rothwell et al., 2006, Smeaton and Rothwell, 2009, Soleymani et al., 2008].

Research has also been carried out looking at the use of observed biometric response

to detect tasks or items in different test sets which are of current relevance or im-

portance to the individual. To our knowledge, at present there is only one example

of work in this domain, that of selection and elicition of topical relevance for imper-

sonal multimedia collections (TRECVid [Smeaton et al., 2007] and TREC Web track

[Bailey et al., 2003] collections) [Arapakis et al., 2009]. In this work the authors show a

relationship between the topical relevance of search results and an individual’s emo-

tional response, where emotional response is detected by passing biometric measures

through a Support Vector Machine (SVM). This work represents exciting and promis-

ing progress in support of biometric response as an implicit indicator of current item

relevance (or importance) for retrieval systems. However, to our knowledge previous

research has not investigated the exploitation of observed biometric response as an

implicit indicator of future item importance, nor has it looked at personal lifelog col-

lections. This we believe is an important previously unexploited opportunity to gain

passive feedback from subjects to potentially improve the retrieval performance of fu-

ture searches in both lifelogging and other domains. In Chapter 6 we investigate our

hypothesis that there is a relationship between biometric response at the time of expe-

riencing items and the future importance of the items. Following this, in Chapter 7 we

investigate the utility of these biometric response measures in re-ranking ranked re-

trieval result lists by adding the biometric measures as static implicit indicators of item

importance to ranked retrieval algorithms. Our studies on the use of biometrics in re-

trieval are not comparable with those of Arapakis et al [Arapakis et al., 2009]. Their

studies recorded biometric response in a controlled lab environment, whereas ours

record biometric response ’in the wild’. Further, they used impersonal data, whereas

we are dealing with personal collections; and they are examining the use of observed

biometrics in the detection of current importance of items - that is they are attempting

to detect, using biometric response, the items which are relevant to a given search,
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whereas we are examining the use of observed biometric response as a future indi-

cator of item importance - that is we are attempting to determine whether biometric

response associated with previous experience of items indicates the importance of

items in collections as a whole.

2.4 Evaluation in the Lifelogging Domain

IR experiments often use test collections to evaluate techniques. These test collections

typically contain a set of documents (or items), queries to perform on the set and a

list of relevant target result items for each query. Collections of this nature follow

the now standard Cranfield model [Cleverdon and Keen, 1966]. Various evaluation

workshops, such as TREC8, offer standardized IR evaluation tasks, by providing test

collections, for various types of datasets, such as news archives and the linked and

meta tagged World Wide Web. The focus of retrieval in these types of collections

is predominantly on development of techniques to facilitate the finding of relevant

information, for example finding news items on a topic of interest. A common char-

acteristic of data sources that have been used for such standardized IR evaluation to

date is that, the test set data can be shared with workshop participants (subject to

copyright agreement). Further, the search requirements and information needs of tar-

get user groups of the collections can generally be captured and studied, and used to

develop experimental search topics for evaluation purposes. The success of these sys-

tems is then assessed based on manual post hoc assessment of the data by analysing

documents retrieved or submitted for assessment by workshop participants. Personal

collections differ from the data sources used for existing standardized IR evaluation

tasks in a number of ways. Firstly, these collections are personal to the individual,

in that they have been created or obtained by the individual or represent experiences

of the individual including for example, emails and SMS messages relating to con-

certs attended, news articles relating to sports matches attended. Since this is the

case, individuals will generally be unwilling to share these collections. The collec-

tion owner may have personal experiences and memories associated with the items

in their archive, which will inform, depending on their information needs at given

moments in time, the items they wish to retrieve from the archive and the query terms

8http://trec.nist.gov/ (September 2011)
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they will use in this retrieval process. This means that only the personal collection

owner can provide their real re-finding information needs and the terms they would

use for queries to retrieve relevant items. Further, only this individual can determine

the relevance of items retrieved for a given information need from their personal col-

lection. These key differences between personal collections and collections for which

TREC-like IR tracks exist are important, make evaluation in this domain challenging9

and to date have hindered formation of shared Cranfield style collections for personal

search evaluation.

To conduct experiments in personal data search, researchers largely need to create

their own test collections consisting of individuals’ data, queries and result sets. There

are a number of problems with this approach: 1) the effort required to create these col-

lections; 2) the difficulty in gaining large volumes of subjects for such experiments;

and 3) lack of comparability across research efforts. In an effort to overcome these

problems Kim et al [Kim and Croft, 2009] have created pseudo desktop test collections

for the desktop search space. The authors proposed amassing and creating 3 pseudo

desktop collections by extracting emails of 3 individuals prominent in the TREC Enter-

prise Track collection [Craswell and Vries, 2005] and locating web pages, word docu-

ments, PDF files and PowerPoint presentations related to these people by a web search

query consisting of the person’s name, organization and area of speciality (provided

by TREC expert search track). They randomly chose known items from these collec-

tions and used a modification of the approach proposed by [Azzopardi et al., 2007],

for simulated query generation for webpage re-finding, to generate simulated queries

across multi-field personal items. This approach presents a promising direction to-

wards larger scale test collection creation to support research in desktop search, and

provides a means to support research into the utility of desktop retrieval approaches

without the need for real users and their collections. However, these collections do

not represent the diversity of real users’ collections, and hence may not provide a re-

liable way to evaluate the performance of retrieval algorithms intended for personal

desktop collections. The created collections contain a limited number of item types

and the same volume of each provided item type across the three collections (with

the exception of emails the number of which showed large variation across the collec-

9Indeed the need to move towards standardization in this domain was highlighted at the recent SI-
GIR 2010 Desktop Search workshop [Elsweiler et al., 2010] and ECIR 2011 Evaluating Personal Search
workshop [Elsweiler et al., 2011].
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tions). Given the personal nature of desktop collections, we can expect individuals to

have different types of collections, with varying volumes and types of content, cov-

ering varying volumes of topics. Further it is not known to what extent the query

formulation approach used reflects what collection owners will actually recall about

required items and hence the query terms they will use. Indeed the query genera-

tion approach of Azzopardi et al [Azzopardi et al., 2007] which forms the core part of

this multi-field query formation approach was developed for webpage refinding, and

is acknowledged by its authors to require further analysis and refinement to exhibit

more of the characteristics observed by individuals in the webpage re-finding space

in which they were working.

Other researchers in conducting retrieval experiments for personal search have used

’real’ users and some form of their collection. In [Ringel et al., 2003], 30 queries with

target email items which had been sent to a large number of people in a company

were manually created. These queries were then entered by test subjects into the Stuff

I’ve Seen (SIS) interface, resulting in the retrieval of various items from their personal

collections including the target email. Subjects were then required to locate the tar-

get email, thus allowing for testing of various versions of the SIS interface. While

this technique proved useful for testing features of personal search interfaces, it is

not appropriate for evaluating PL retrieval algorithms where a user is required to use

recalled content and context to form a query. Even taking a modification of this ap-

proach where we generate tasks by giving a subject a task description of emails that

had been sent to a group would not be appropriate, as the subject may have no rec-

ollection of these emails, and therefore could not recall content or context data with

which to form a query. Further, by providing individuals with the required target

item, we are removing the real refinding requirements of individuals from the evalu-

ation process. Finally, and most obviously, the test sets used in this approach lack the

rich context sources we wish to explore in retrieval experiments.

Elsweiler’s work [Elsweiler et al., 2007], similar to the SIS evaluations, used a static

email collection for PL experimentation. That is, the interactions individuals have

with PL items were not recorded. This information is required to assign rich item

access related context types to items. For example, to tag an item with the months

an individual accessed an item, each access to the item needs to be recorded. How-

ever Elsweiler’s work did adopt a more personal approach to task generation. This
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work presented a framework for a task based approach to PL user evaluation. Specif-

ically, over a period of approximately three weeks subjects recorded web and email

related tasks (task = email viewed and the purpose for which it was viewed, e.g. re-

locate email which contains Joe Smith’s phone number). They also allowed for the

generation of additional tasks by the experiment investigator through observation of

the type of tasks recorded by subjects and by having a number of subjects in a given

group (e.g. students in the same class) provide a tour of their collections. This allowed

them form task descriptions which simulated a ‘real world’ task the subject may en-

gage in. Tasks were then categorized into three distinct types: tasks requiring a spe-

cific piece of information from within a computer item (lookup task); tasks requiring

a specific computer item (known-item tasks); and tasks requiring information from

multiple computer items (multi-item tasks). This approach allows for comparison of

retrieval performance across different task types (i.e., across ’lookup tasks’, ’known-

item tasks’ and ’multi-item tasks’), and importantly the evaluation of a personal in-

formation retrieval application in a structured manner using the personal information

owners themselves. Elsweiler et al. examined this task generation approach only on

emails and web pages, and thus its portability to other item types is not guaranteed.

Moving beyond emails and web pages and into the space of personal computer items

and of particular interest to us into the space of backend retrieval algorithm evalua-

tion, [Soules and Ganger, 2005, Soules, 2006] logged the computer activity (including

all accesses to items) of 6 subjects over a period of 6 months. The subjects submitted

3-5 content only queries, which they appeared to freely generate from their memory

with respect to the collection period. These were multi-item standard ad hoc type

queries, e.g. “locate all items associated with writing of thesis”. To create oracle re-

sults for these queries the results for each query across different search engines were

pooled together, and the subject rated the relevance of the pooled result set. This

evaluation approach is similar to standard TREC type pooling strategy and is of par-

ticular interest to us as it allows for a means to create Cranfield type test collections

containing accesses to personal items, which once created can be used for exploration

of and development of unlimited numbers of backend retrieval techniques without

requirement for user interaction.
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2.5 Conclusions

In this chapter we reviewed existing work in personal information retrieval and pro-

vided support for the retrieval techniques that we will explore in this thesis. These

retrieval techniques will explore the integration of recalled content and context with

query independent biometric context in retrieval techniques for the lifelogging do-

main. In order to explore such retrieval techniques test collections are required for

evaluation purposes. As we saw in this chapter evaluation in the personal domain is

challenging. Further PLs generally span a long time period, potentially up to a life-

time’s worth of digital data could be contained in a PL. PLs will additionally typically

contain many types of digital media, for example, computer activity, mobile phone

activity. This means that to reliably evaluate retrieval approaches in the PL domain

long term multimodal PLs are required. Further, in order to facilitate the automatic

annotation of rich context sources to PL items, both sensor readings (such as GPS to al-

low auto detection of geo-location) and individuals’ interactions (accesses) with lifelog

items (e.g. to facilitate tagging items with all geo-locations experienced by the indi-

vidual when accessing an item) need to be recorded. In the next chapter we describe

how we created such collections for our evaluation purposes.
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CHAPTER

THREE

Lifelog Test Sets

Chapter Overview: In order to investigate approaches to integrating re-

called context and query independent biometric context into retrieval al-

gorithms for the PL domain it was necessary to create test datasets for

experimentation purposes. This chapter describes the design and contents

of the PL test sets created for this study and the techniques used to cre-

ate them. We first introduce our lifelog test sets which consist of lifelog

items, including computer files interacted with, emails sent and received,

webpages viewed, SMS messages sent and received, and SenseCam im-

ages captured, and the context data associated with these items (i.e., title;

path to file; URL; extension type; to; and from) and context data associ-

ated with each access to these items (i.e., “date-time” related information;

geo-location when accessing the item; light status when accessing the item;

weather conditions when accessing the item; people present when access-

ing the item; and biometric response when accessing the item). We then

describe the database structure used to archive these test sets. This is fol-

lowed by technical details of the means used to log subjects activities to

populate these lifelog data sets and a detailed analyses of their contents.
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3.1 Introduction

PLs generally span a long time period, potentially up to a lifetime’s worth of digi-

tal data could be contained in an individual’s PL. They typically contain many types

of digital media, for example computer activity, mobile phone activity, digital pho-

tographs, etc. This means that in order to begin to explore and seek to evaluate re-

trieval approaches in what begins to approximate a PL of realistic size, personal data

collections gathered over a substantial period of time are required. With these points

in mind, as part of the iCLIPS project1, personal digital data was recorded over an

extended period by 3 postgraduate students within our research group (1 male, 2 fe-

males; from Asian and Caucasian ethnic groups)2. Specifically PC and laptop activity,

SMS messages sent and received, passively captured images depicting their life (using

the SenseCam device, described in Chapter 2.2.3), digital photographs taken, and loca-

tion and social context (i.e. geo-location and co-present Bluetooth devices from which

people present can be inferred, described in Section 3.3.4.3) were recorded over a pe-

riod of 20 months by the 3 postgraduate students. Biometric data was also recorded

for a one month period (September 2008). It was not possible to capture biometric data

for a longer time period due to the cumbersome nature of the biometric devices and

psychological burden placed on subjects recording biometric data, described in Sec-

tion 3.3.4.3. These recorded personal digital data types and the means used to record

them are described in detail in Section 3.3.

These personal data collections are larger and richer than any others we know of and

while collected for only 3 subjects their long term nature and richness provide us with

unparalleled real lifelogs for experimentation in this emerging domain. While these

lifelogs, to our knowledge, are unrivaled, it should be noted that this is not a commer-

cial system, rather a research driven approach to creating lifelogs for experimentation

purposes. The lifelogs consist of real data, gathered from real sensors and are sub-
1http://www.cdvp.dcu.ie/iCLIPS/ (September 2011).
2One of these test subjects was the thesis author. The other two subjects also conducted their own

research experiments using the generated lifelogs. In the investigations presented in this thesis, the
author was not an outlier in experimentation. Subjects, the author included, were provided instructions
for generation of queries on their personal collections (as will be described in Chapter 4). The author,
as a subject in the study, followed the same guidelines as the other two subjects. Subjects also rated the
relevance of retrieved results for their user queries, using a simple Boolean relevant/irrelevant rating
scale (also described in Chapter 4), which didn’t afford opportunity for removal of objectivity on the
author’s, as subject, part. As will be described in Chapter 5, subjects were also required to rate SenseCam
images and computer files, with varying associated biometric response, on a number of scales. Subjects,
the author included, were not aware of the biometric response associated with images and files, hence
objectivity was not removed by the use of the author in this study.
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ject to failures of hardware, software, input and output at various points in the data

processing chain [Byrne et al., 2010]. This is reflective of a real environment, although

hopefully a commercial system would be more reliable. In our personal data gath-

ering we are pushing the limits of the available data collection devices and software.

Further, this is real data from individuals, as such it is subject to the individual’s oc-

casional need for privacy, need for mental breaks from the lifelogging process, and

subjects’ forgetfulness in turning several lifelogging devices on, charging devices and

in downloading data from mobile devices before device memory fills (this forgetful-

ness results in inability to continue data recording until a download is made and in

extreme cases corruption of data onboard the device) [Byrne et al., 2010]. These issues

and the resulting implications on the make up of the personal data collections are

discussed in Sections 3.3 and 3.4.

This thesis centers on the development of IR algorithms to enable individuals to search

for items in their PL collections. We investigate the utility of using a subject’s recalled

content and context associated with required PL items for lifelog item retrieval and

investigate development of retrieval algorithms designed to exploit these recalled fea-

tures. Development of ranked retrieval techniques for the many types of media which

may be present in a lifelog, e.g., audio, images, textual items, etc, is beyond the scope

of one thesis. In this thesis we focus on the development of ranked retrieval algorithms

for the textual media within PLs. Possibilities for extension to other types of media

are discussed in the context of future work in Chapter 8.2.2. For the textual ranked

retrieval experiments presented in this thesis the 20 months of PC and laptop activ-

ity and SMS messages sent and received were organised into lifelog test sets. These

test sets contain the content of items (i.e., content of SMS messages and content of the

computer files, webpages and emails interacted with) annotated with rich sources of

context data derived using the location and social context and information contained

within the items. Our choice of context data types was motivated by existing memory

studies investigating individuals recall of context associated with items, discussed in

Chapter 2.2. Specifically, each item was annotated with the following context types:

words in item title (for computer files title = filename, for emails title = email subject

field, for webpages title = title of webpage); extension type; path to file; URL (for web-

pages only); and to/from (for SMS messages and emails only). Each access to these

items was also annotated with the following additional sources of context data: year;
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season; month; day of week; weekday or weekend; beginning of week, mid-week or

end week; part of day (i.e., morning, afternoon, evening and night); begin date and

time; end date and time; device (e.g., laptop, mobile phone); light status (i.e. daylight

and dark); weather; geo-location; and people present. Table 3.1 provides the complete

list of context types used. The derivation of context types and organising of recorded

personal digital data into lifelog test sets is described in Sections 3.2 and 3.3.

General Information
Item ID Item content

Item Specific Context Data
Title Extension Type
i.e., computer filename, email subject, webpage title e.g., Excel, Web
Path to File URL
To From
(for emails & SMS messages only) (for emails & SMS messages only)

Context Data Assigned to Each Access to an Item
Begin Date & Time End Date & Time
Year Season
Month Day of Week
Weekday or Weekend Part of Week

i.e., begin week, midweek, end week
Part of Day device
e.g., morning, afternoon e.g., PC, mobile phone
Geo-Location Light Status

i.e., daylight, dark
Weather People Present
e.g., raining, cloudy e.g. Joe Smith

Table 3.1: Complete set of content and context.

This thesis also explores the possibility of improving retrieval effectiveness using bio-

metric metrics captured (for one month) in the context of textual items in a PL and

methods by which these might be integrated into our IR algorithms. As part of our

investigation into improving ranked retrieval effectiveness for the textual items in PLs

using biometric metrics, we explore the utility of captured biometric metrics in detect-

ing important lifelog items. Using biometric significance measures to locate impor-

tant items from amongst the possibly vast number of items within PL collections also

has direct utility in its own right. For example, in the suggestion of interesting items

when browsing a lifelog collection. Hence, given the possibly vast number of Sense-

Cam images in a lifelog and difficulty in locating interesting images from within such

a collection, described in Chapter 2.2.3, in our investigation of important lifelog item

detection using biometrics we also consider, in addition to textual media, SenseCam

images as an example of the utility of our approach for other lifelog media types. To

36



facilitate experimentation into extracting important items from lifelogs using biomet-

ric response and into re-ranking ranked retrieval result lists using biometric data, one

month of the generated 20 month lifelog test set was further annotated with biometric

data (described in Sections 3.2 and 3.3). Specifically GSR, HF, ST, HR and energy ex-

penditure (described in Chapter 2.3.1) levels associated with accesses to lifelog items.

SenseCam images for this one month period were also added to the lifelog test set

(described in Sections 3.2 and 3.3) to examine important SenseCam event extraction

using biometrics.

Subjects’ lifelog test sets were stored locally on their PCs in an SQL database. The

structure of these lifelog databases is described in detail in Section 3.2. Following the

description of subjects’ lifelog databases, in Section 3.3 we describe how we logged,

derived and wrote subjects computer activity (Section 3.3.1), SMS messages (Section

3.3.2), SenseCam images (Section 3.3.3) and context data (Section 3.3.4) to the lifelog

databases. We then provide an analysis of each subjects resulting lifelog database in

Section 3.4. Finally, we conclude the chapter with pointers to the use of the test sets in

the remainder of the thesis.

3.2 Test Set Structure

As described in the introduction of this chapter, 20 month textual lifelogs annotated

with several rich sources of context data test sets were created to evaluate our ranked

retrieval approaches. To facilitate our investigations into the utility of biometric re-

sponse in retrieval, one of these months (September 2008) was further annotated with

biometric data. This means that all items which were created or/and accessed during

this one month period were assigned the biometric levels associated with the creation

or/and access(es) to the items observed during this period. SenseCam images were

also included in the lifelog for this month (September 2008). That is while subjects

wore the SenseCam for the 20 month lifelogging period, in the experiments presented

in this thesis we only use the one month of their SenseCam collections for which we

also have biometric data and hence only this month of SenseCam images are added to

subjects’ lifelog databases. In this section we describe the structure of these lifelogs.

The means by which the database tables were populated through lifelog data capture

and derivation is described in the subsequent section, Section 3.3.
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Figure 3.1: Lifelog database structure showing database tables, fields in each table,
and links between tables. Fields in bold font are used to link tables. Section numbers,
shown in red font, indicate the sections which describe how the lifelog data stored in
each field was captured or derived.

Each of our 3 subjects lifelogs was stored locally on their PC in a SQL database. Figure

3.1 depicts the structure of the database and provides pointers to the sections describ-

ing the logging and derivation of the personal data stored in the database tables. The

database contained an items table, item access table, Campaignr table3, weather tables

(one for each geo-location visited by the subject during lifelogging period), light status

tables (one for each geo-location visited by subject during lifelogging period) and a

biometrics table. The structure of these tables, along with sample fictitious data are

shown in Tables 3.2 - 3.7. The remainder of this section describes these tables.

Items Table:

The items table maintains a list of all distinct items accessed by subjects, see Table 3.2.

Specifically a unique id is stored for each distinct item, along with title, application

used to open the item (e.g., WINWORD.EXE, EXCEL.EXE, IExplorer), item content, to

3The Campaignr table stores geo-location and people present context data. This table derives it’s
name from the ‘Campaignr’ software which logs the data from which geo-location and people present
context data were derived, described in Section 3.3.4.3.
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Unique ID 528
title paper09

application WINWORD.EXE
contents In this paper we discuss....

to
from

file path C:\Documents and Settings\Jack\My Documents\paper09.doc
URL

extension word

Table 3.2: Items table fields and sample data. This table holds all unique items accessed
by a subject.

Unique ID 528 528
beginDate 2009-08-24 2009-09-09
endDate 2009-08-24 2009-09-09

beginTime 14:31:53 23:44:09
endTime 14:40:04 23:48:42

year 2009 2009
month August September
season Autumn Autumn

day of week Monday Wednesday
part of week Weekday Weekday

part of week1 beginWeek midWeek
part of day Afternoon Night

device laptop laptop

Table 3.3: Item access table fields and sample data. This table holds all accesses to items
by a subject.

and from information (for emails and SMS messages), file path, URL (for webpages)

and extension type (e.g., java (for java code file), excel (for XLS and XLSX files), word

(for DOC and DOCX files), web (for webpage viewed), email (for emails sent and

received), SMS (for text messages sent and received on mobile phone), SenseCam (for

SenseCam images captured)).

Item access Table:

The item access table, see Table 3.3, maintains information related to the date and

time for each individual access to computer items which can be linked to the items

table based on unique item ids. Specifically, the following date and time related in-

formation is held in the item access table for items: “begin” date and time of the

access to the item, “end” date and time of the access, along with year, month, sea-

son, day of week, whether the access happened at the weekend or during the week

(part of week) and whether the access happened at the beginning-of-week, mid-week

or at end-of-week (part of week1). The item access table also records the device on
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Date 2009-08-24 2009-10-01 2009-11-09
Time 14:32:00 16:01:25 19:51:22

country code IE IE IE
country Republic of Ireland Republic of Ireland Republic of Ireland
region Dublin City Wicklow Dublin City
county Dublin Wicklow Dublin

city Dublin NULL Dublin
street NULL NULL Kinvara Rd

street number NULL NULL 51-101
postal code Dublin9 NULL Dublin7

people present My Nokia,Fiona Sinead,Malcom

Table 3.4: Campaignr table fields and sample data. This table holds all geo-locations
and people present experienced by a subject.

Date 2009-08-24 2009-08-24 2009-08-24
Time 13:00:00 14:00:00 15:00:00

weather Light Rain Clear Scattered Clouds

Table 3.5: Weather table fields and sample data. A weather table was created for each
geo-location visited by a subject. Weather tables hold the weather conditions experi-
enced by a subject.

which the item access occurred. In our lifelogs the device is set to laptop or PC for

computer items. We do not actually maintain accesses to SMS messages sent/received

and SenseCam images captured in our lifelogs, rather just the “date-time” stamp for

SMS message send/receive and SenseCam image capture is stored. The item access

table also holds these timestamps and sets the device field to ‘mobile phone’ for SMS

messages sent/received and to ‘SenseCam’ for SenseCam images captured. Sections

3.3.2 and 3.3.3 discuss this topic in greater detail.

Campaignr Table:

The Campaignr table records details on the geo-locations in which a person was and

the people who were in their presence, along with date and time information, see

Table 3.4. Geo-location and people present data is indicated for every 20 seconds

(polled once every 20 seconds) in time over the 20 month lifelogging period (described

in Section 3.3.4.3). Specifically the following fields are in the Campaignr table: date,

time, country code, country, region, county, city, street, street number, postal code,

people present. This table can be linked to the item access table based on date and

time information present in both tables.

Weather Tables:

A separate weather table was created for each country or region (e.g. regions in the
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Date 2009-08-24 2009-08-24 2009-08-24
Time 14:32:00 14:33:00 14:34:00

light status daylight daylight daylight

Table 3.6: Light status table fields and sample data. A light status table was created for
each geo-location visited a subject. Light status tables hold the ambient light status
experienced by a subject.

Date 2008-09-03 2008-09-03 2008-09-03
Time 14:13:04 14:13:05 14:13:06
GSR 0.213277742 0.220610112 0.219143629
HF 160.03681530000003 160.13633590000003 160.23585650000004
HR 62 62 62
ST 26.24159524 26.24159524 26.24159524

energy expenditure 1.312743545 1.312743545 1.312743545

Table 3.7: Biometrics table fields and sample data. This table holds all raw biometric
data captured for a subject.

USA = Arizona, Chicago) visited by the subject over the 20 month lifelogging period.

Hourly weather information was available for each country or region (described in

Section 3.3.4.3). Each weather table holds date, time and weather conditions informa-

tion, see Table 3.5. The weather table for the appropriate region can be linked to the

item access table based on date and time information and geo-location information

present in the Campaignr table.

Light status Tables:

At the end of the lifelogging period, a separate ambient light status table was created

for each country or region visited by the subject over the 20 month lifelogging period,

see Table 3.6 for the structure of a light status table. Each light status table contains

date, time and light status fields. Light status is represented as ’daylight’ and ’dark’

as two classes. Light status is present for every minute in a day (described in Section

3.3.4.3). Similar to weather data, light status data can be linked to the item access

table based on date and time and geo-location information held in the Campaignr

table. Note, since we only require weather and light status information for each region

for the periods in time when the subject was in these regions, we only stored light

status and weather information in each region’s light status and weather tables for the

periods in which the subject was in these regions, as determined from the geo-location

and date and time information in the Campaignr table.

Biometrics Table:

Biometric data is held in the biometrics table. The biometrics table contains date, time,
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GSR, HF, HR, ST and energy expenditure fields (described in Section 3.3.4.4). This

tables structure, along with sample data is shown in Table 3.7. The biometrics table

can be linked to the item access table based on date and time stamps.

3.3 Test Set Creation

In this section we describe how our three subjects’ personal data was logged and

used to populate the lifelog databases described in Section 3.2. Specifically, Section

3.3.1 describes how emails, webpages and textual files interacted with by our three

subjects on their PCs and laptops were logged, using a combination of proprietary

and bespoke software, and used to populate the title, application, contents, to, from,

file path and URL fields of their lifelog database items table and the beginDate, end-

Date, beginTime, endTime and device fields of their item access table. Section 3.3.2

describes how SMS messages sent and received by subjects on their mobile phones

were logged, using bespoke software, and used to populate the contents, to and from

fields of their lifelog database items table and the beginDate, beginTime, endDate,

endTime and device fields of their item access table. Section 3.3.3 describes the cap-

turing of SenseCam images and how details on these SenseCam images were written

to the title and file path fields of subjects’ lifelog databases items table and beginDate,

endDate, beginTime, endTime and device fields of their item access table. Finally,

in Section 3.3.4 we describe how context data was derived and used to populate the

remaining fields of subjects’ items and item access tables and all fields of their Cam-

paignr table, weather tables, light status tables and biometrics table.

It should be noted that organising, time-aligning and joining lifelog data from diverse

sources is challenging [Byrne et al., 2010]. Timestamps and data across devices are in

different formats (text files, XML, CSV files, etc). Coupled with this, since our exper-

iments rely on accurate data alignment, particularly in the case of biometric readings

which can change on a second by second basis, it is imperative that timestamps across

data sources are fully in synch. Data from different sources had different timestamps,

e.g., laptop 5 minutes behind GMT, location data in UTC time, laptop and mobile data

timestamps changing between GMT and PST as a subject travels for example, and

some subjects mobile phones always recording time stamps in UTC time while others

recording in the local time of their given location, etc. All data was time-aligned by
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Field Windows OS Mac OS X
title Slife & Digital Memories Slife & Local script
application Slife Slife
contents Java script Java script
to Java script Local script
from Java script Local script
file path Digital Memories Local script
URL Slife Slife
beginDate Slife Slife
beginTime Slife Slife
endDate Slife Slife
endTime Slife Slife

Table 3.8: Source of information (for computer items) for title, application, contents,
to, from, file path and URL fields in items table and beginDate, beginTime, endDate
and endTime fields in item access table.

converting it to the local time in the person’s given location at any moment in time.

This allowed for accurate context annotations to be made.

3.3.1 Computer Activity Monitoring

In this section we describe how the PC and laptop activity of our 3 subjects was

logged4. Specifically, we describe how information for the title, application, contents,

to, from, file path and URL fields in the items table (see Table 3.2) and the beginDate,

beginTime, endDate, endTime and device fields in the item access table (see Table 3.3)

was obtained for emails, webpages and computer files interacted with.

Our subjects were users of the Windows operating system (OS) and Mac OS X. Log-

ging was carried out using a combination of the Slife package5 (details of this package

follow), Digital Memories software6 (details of this package follow), locally written

scripts7 and created Java scripts to record subject’s computer and laptop activity. Ta-

ble 3.8 provides a break down of the fields in our items and item access tables which

were populated from information derived from each of these sources.

Slife Package

Slife was the core component in our computer activity monitoring. Slife is a produc-

tivity management tool, for example, showing people how much time they spend

4Two of the test subjects used Windows OS on their PCs and the other used Mac OS X. On their
laptops one subject used Windows OS and the other two used Mac OS X.

5http://www.slifeweb.com/ (September 2011). We used the early 2008 version of the Slife application
which was available under licence for Windows OS and Mac OS X without source code.

6http://research.microsoft.com/en-us/projects/mylifebits/ (September 2011)
7Locally written scripts were created by Daragh Byrne, DCU.
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<?xml version=”1.0” encoding=”utf-8” ?>
- <EventHeader xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<Activities />

<Date>2009-04-27T17:57:02.5000000+01:00</Date>

<EndDate>2009-04-27T18:02:02.4687500+01:00</EndDate>

<Name>Microsoft Office Word</Name>

<Title>instruction manual - Microsoft Word</Title>

<Type>application</Type>

<Url />

<Subtitle />

<To />

<From />

<Path />

<Application>WINWORD.EXE</Application>

<Content />

</EventHeader>

Figure 3.2: Sample Slife XML file.

using different computer applications. It monitors computer activity and records the

event of a window being brought to the foreground (this we refer to as an item access).

For each event it records: type of application (e.g. iexplore.exe), document source (e.g.,

Microsoft Word, Microsoft Outlook), window title (e.g. instruction manual - Microsoft

Word), begin and end time of the event, URLs of webpages, and content of webpages

viewed using the Internet Explorer application. Each event captured by Slife is stored

in a separate XML file. Figure 3.2 shows a sample Slife XML file. While these Slife

XML files provided details of accesses to computer items, they did not provide the

‘raw’ titles8, path to files, to and from information for emails or the content of items

(with exception of webpages opened through the Internet Explorer application).

Titles were extracted for computer items from the window title provided by

Slife. For example, ‘Adobe Reader - [thesis.pdf]’ and ‘thesis.pdf’ become ‘the-

sis.pdf’, ‘Macromedia Dreamweaver 8 - [C:\Program Files\Apache Software

Foundation\Apache2.2\htdocs\diarystudy\databaseSettings.php (XHTML)]’ and

‘Macromedia Dreamweaver 8 - [C:\Program Files\Apache Software Founda-

tion\Apache2.2\htdocs\diarystudy\databaseSettings.php (XHTML)*]’ become

‘databaseSettings.php’. Title tags in Slife files were then updated with these extracted

8Slife captures titles in the window title tag, however ‘raw’ titles are not always captured, e.g., cap-
turing of window title ‘instruction manual - Microsoft Word’ as opposed to the title ‘instruction manual’.
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titles.

Path to files, to/from, and content information was obtained from the Digital Mem-

ories software9, locally written scripts and created scripts and augmented to the Slife

XML files (these we refer to as augmented Slife files). Sections 3.3.1.1 - 3.3.1.3 describe

this process. Specifically, Section 3.3.1.1 describes how ’to’, ’from’ and ’content’ in-

formation was obtained for Slife files representing accesses to emails, and how this

information was augmented to Slife files; Section 3.3.1.2 describes how file paths were

obtained for and augmented to Slife files which represented accesses to computer files

using the Digital Memories software for Windows OS users and using locally written

scripts for Mac OS X users; and Section 3.3.1.3 describes how the content was obtained

for and augmented to Slife files representing accesses to files and webpages using file

path and URL information.

After augmenting content, file path and to/from information to Slife files, the aug-

mented Slife files were written to the items and item access tables of our lifelog

databases. The items table, as shown in Section 3.2, holds details on each specific

item interacted with by the subject during the lifelogging period. The item access

table which links with the items table based on unique ID contains information on

each access to the specific items during the lifelogging period, also shown in Sec-

tion 3.2. To transfer a subject’s augmented Slife files, which contained all accesses to

computer items during the lifelogging period, into the items and item access tables

of their lifelog database bespoke code grouped all accesses to specific items together.

More specifically, augmented Slife files containing the same information for the title,

URL, path, to and from tags were grouped together. Each of these groupings consti-

tuted an item (entry) in the items table and was assigned an unique ID, along with the

common title, application, to, from, file path and content10 information of the group-

ing. The begin and end date and time information contained in each augmented Slife

file in the grouping was written as an entry to the item access table and assigned the

unique ID of the grouping. The device field in the item access table was assigned the

value ‘laptop’ or ‘PC’ depending on which device the Slife file originated from.

9Digital Memories is the name used for the MyLifeBits software that was made available under re-
search grant to a number of research centres. MyLifeBits (aka Digital Memories) runs on the Windows
OS and is described in Chapter 2.2.1. Details of the use of this software in our lifelogging process follow
later in this section.

10In the case of webpage or file content changing over the 20 month lifelogging period the most recent
version of the content is used.
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Problems Encountered:

Since Slife records all events of windows being brought to the foreground, much noise

in the form of events which were not accesses to computer items, emails or webpages

were present in the Slife collections. For example, opening folders in applications,

opening applications, unsaved Word documents, system functions, saving files, etc,

were captured as Slife events. This noise was removed from the Slife collections. To

determine if an Slife file represented an access to a computer file, email or webpage

generated scripts examined the application and title fields of Slife files (shown in Fig-

ure 3.2) and inferred from this information, using an extensive list of generated rules,

whether the Slife file represented an access to a valid lifelog item. For example, appli-

cation = Microsoft Word & title = paper2009.doc would represent an access to a computer

file [using the rule: if(application = ’Microsoft Word’ AND title = *.doc) then the Slife file

is not noise], whereas application = Microsoft Word & title = Save As would not represent

an accesses to a valid lifelog item [using the rule: if(application = ’Microsoft Word’ AND

title = ’Save As’) then the Slife file is noise].

3.3.1.1 Determining Sender/Receiver and Contents of Emails

Since Slife does not capture ’to’ and ’from’ (i.e., receiver, sender) information for

emails accessed, we obtained this information from a different source and augmented

it to the Slife files. In this section we describe this process.

In order to augment Slife files with ‘to’, ‘from’ and ‘content’ details for emails, a copy

of the emails sent and received by subjects was downloaded from the email appli-

cations used by subjects11. For subjects who used the Microsoft Outlook email ap-

plication, emails were downloaded to a structured Microsoft Access database using

the download emails facility available in Microsoft Outlook. All Slife files which rep-

resented an access to an email (i.e. Slife files where the application field = Microsoft

Outlook) were augmented with the appropriate ’to’, ’from’ and ’content’ information

available in the Microsoft Access database of emails. More specifically, to augment

these Slife files with ‘to’, ‘from’ and ‘content’ information we matched the “date-time”

information and ‘title’ information in the Slife files with the subject (title) and “date-

11Recall that Slife captures each access (interaction) to emails, i.e. “date-time” stamps for each time an
email was accessed. In contrast to this, the emails we downloaded from subjects email applications only
contain a copy of the emails sent and received by subjects, which only provide the date and time that an
email was sent or received, as opposed to “date-time” stamps for accesses (interactions) to the emails.
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time” information in the Microsoft access database of emails12. The same process was

used to augment Slife files with ‘to’, ‘from’ and ‘content’ information for subjects who

used the Mac Mail application, except that in these cases we were looking for Slife files

where the application field = Mail and emails were downloaded to a CSV file using

locally written scripts.

Problems Encountered:

It should be noted that Slife did not always capture the title of emails viewed by sub-

jects. Emails must be opened in a new window when using ’Microsoft Outlook’ for the

email title to be captured by Slife. If this is not done the title of viewing the window is

simply recorded as ’Microsoft Outlook’ by Slife. Subjects did not always open emails

in a new window meaning Slife could not capture the title of the emails in these cases.

While Slife still captures “date-time” stamps in these instances, with the ambiguous

title of ‘Microsoft Outlook’ we have no way of knowing whether the subject was inter-

acting with an email and if so which email. This means that Slife files with title field

containing ‘Microsoft Outlook’ could not be augmented with ‘to’, ‘from’ and ‘content’

information.

This problem combined with Slife not running on subjects computers on some occa-

sions, due to Slife crashes and subjects occasionally stopping the Slife application for

privacy reasons, resulted in the fact that some emails imported to Microsoft Access

and CSV files (as described previously) did not feature in subjects Slife collections.

Hence to obtain full coverage of the emails interacted with by subjects during the

lifelogging period we imported emails not captured by Slife directly from Microsoft

Access and CSV files into subject’s lifelog database. More specifically, these emails

were imported directly into the title, application, contents, to and from fields of the

items table (see Table 3.2) and the beginDate, endDate, beginTime, endTime and de-

vice fields of the item access table (see Table 3.3) of subjects lifelog databases. These

emails are referred to as IMPORTED EMAILS. Section 3.4 provides statistics on the

volume of IMPORTED EMAILS present in each subjects lifelog database. It should

be noted that, since only the exact date and time of email send or receive is available

for IMPORTED EMAILS (as described previously), in subject’s lifelog database both

the beginDate and endDate fields are populated with the date of email send/receive

12In matching Slife files with emails contained in the Microsoft Access database based on “date-time”
information we took the email in the Microsoft Access database which had a “date-time” stamp less than
or equal to the Slife files “date-time” stamp to be the matching email.
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and both the beginTime and endTime fields are populated with the time of email

send/receive. For received emails this timestamp does not necessarily always cor-

respond to the time that a subject actually read an email. Further for both sent and

received emails, it means we have no way of knowing how long the subject spent

reading or writing emails nor how often they re-accessed emails.

3.3.1.2 Determining Path to Files

Since Slife does not capture file paths, to obtain file paths we also ran a second logging

application on each subject’s computer. For Windows OS users we used the Digital

Memories software to capture the file paths of computer files interacted with and for

Mac OS X users we used locally written scripts. This section describes the Digital

Memories software and the locally written scripts used, and how path information

was extracted from them and augmented to Slife XML files.

The Digital Memories software (aka MyLifeBits) is a personal information access sys-

tem which runs on Windows OS, described in Chapter 2.2.1. Of interest to us in this

chapter, Digital Memories maintains, in a Microsoft SQL server database, among other

things the last access each day to files. Details stored include filename (title) and date

time information for the last access each day to computer files. The Digital Memories

database also holds the file paths for these computer files across several tables.

To augment Slife files representing accesses to computer files with file path informa-

tion we matched the “date-time” information and title information in the Slife files

with the date, filename (title) and path to file information extracted from Digital Mem-

ories. In matching Slife files with Digital Memories database entries based on “date-

time” information we matched based on exact date match and Slife end timestamp

less than or equal to Digital Memories timestamp.

The locally written Shell scripts generated for the Mac OS X, which were scheduled

to run on a nightly basis, wrote details on files accessed each day to a structured text

file. Details written to structured text file included filename (title), path to file and

“date-time” information for the last access each day to the computer file. To augment

Slife files with file path information we matched the “date-time” information and title

information in the Slife files with the date, filename (title) and path to file information

extracted from the structured text files. In matching Slife files with information con-
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tained in the structured text files based on “date-time” information we matched based

on exact date match and Slife end timestamp less than or equal to the timestamp of an

entry in a structured text file.

Problems Encountered:

Following addition of the file path information to Slife files, it was discovered that

for many file accesses captured by Slife, path to file information was missing for Win-

dows OS users. This was caused by the fact that subjects regularly stopped the Digi-

tal Memories software on the Windows XP operating system due to computer speed

issues. This meant that interactions with files were not captured for Windows OS

users in many instances, and hence path to file information could not be augmented

to Slife files during these periods. To locate missing file paths generated Java functions

searched subjects computers for files which matched the title (filename) captured by

Slife and which had a date of last modification subsequent or equal to the “date-time”

of access captured by Slife. This allowed for the addition of missing file paths to Slife

files for computer files which had not been deleted by the subject in the intervening

time or originally accessed from an external device.

3.3.1.3 Obtaining File and Webpage Content

Since Slife did not capture the content of items accessed (with the exception of web-

pages viewed using the Microsoft Internet Explorer application), we generated a se-

ries of Java scripts to obtain file content, webpage content and email content. Section

3.3.1.1 described the means by which email content was obtained and augmented to

Slife files. In this section we describe how file and webpage content data was obtained

and added to Slife files.

For Slife files representing accesses to computer files, the file paths in our augmented

Slife files were used to extract the content of files located at the given file paths. Func-

tions were written to extract the content of text files (which includes, code files (e.g.

.java), .tex, .dat, etc), PDF’s and files in the Open XML standards (OOXML) format

(which includes Microsoft Office 2007 and 2008 XLSX, DOCX and PPTX files) and

OLE 2 Compound Document (OLE2) format (which includes Microsoft Office 1997-

2007 XLS, DOC and PPT files)13. The obtained file content was then added to the
13Java libraries to extract content from OOXML and OLE2 format files are available at:

http://poi.apache.org/ (September 2011)
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content tag of the augmented Slife file.

For webpages, the URLs in the Slife files were used to extract the textual content of

(non-dynamic) webpages at the given URL. HTML/XML tags were removed from the

extracted webpage content and the resulting content added to the Slife file’s content

tag.

Problems Encountered:

Following addition of content information to Slife files, it was discovered that for

many file accesses captured by Slife, the content information was missing. This was

caused by files having been moved to a different location than that of the captured file

path. To obtain the content for these Slife files, functions were created to search the

computers of Windows OS users and local scripts searched the computers of Mac OS

users for files based on their title/filename. Slife files were then updated with their

new file paths. The content was also extracted from these new file paths and added

to the Slife files. This allowed for the addition of missing file paths and content to

Slife files, for computer files which had not been deleted in the intervening time or

originally accessed from an external device.

One subject used the Internet Explorer web browser (version IExplorer 7) on their PC.

Slife did not store webpage accesses correctly for the IExplorer 7 application, which

uses tabbed browsing. For webpages viewed in the first tab of an IExplorer 7 win-

dow, Slife recorded the correct webpage information. However, for webpages viewed

in subsequent tabs in the same IExplorer 7 window, incorrect webpage details were

stored. Specifically, when the subject was viewing webpages in these subsequent tabs

Slife incorrectly recorded that they were viewing the URL and content of the web-

page in the first tab. Slife did however record the correct “date-time” stamps and

title information for webpages viewed in these subsequent tabs. To overcome this

problem we consulted the subject’s Digital Memories database (see previous section,

Section 3.3.1.2, for a description of Digital Memories). Digital Memories contains a

table which holds a record of all webpages accessed by the subject using the IExplorer

application. Information stored includes “date-time” of webpage access, webpage

content, webpage title and URL. The Slife files were updated with the correct web-

page content and URL by matching the Slife files with the webpage accesses stored

in Digital Memories based on “date-time” stamp and title match. Since the facility

to record webpage accesses using Digital Memories slowed down the speed at which
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webpages were retrieved from the web, logging of webpage accesses by Digital Mem-

ories was sometimes disabled by the subject on their PC. This meant that not all Slife

files could be updated with the correct webpage content and URL using the approach

described. Hence, the webpage content and URL information was deleted for Slife

files for which the correct webpage content and URL was not available in the Digital

Memories database. Statistics on the percentage of Slife files representing accesses to

files which are missing webpage content are provided in Section 3.4.

3.3.2 Mobile Phone Activity Monitoring

In this section we describe how mobile phone SMS messages sent and received by

our 3 subjects were logged and used to populate the contents, to and from fields of

the items table (see Table 3.2) and the beginDate, endDate, beginTime, endTime and

device fields of the item access table (see Table 3.3).

In order to record the SMS messages sent and received by subjects on their mobile

phones we required subjects to use a mobile phone with an operating system which

would allow a script to be written to download SMS messages from the mobile phone.

Further, as will be described in Section 3.3.4, the mobile phone used also needed to

have GPS and Bluetooth capabilities and to use the Symbian 60 operating system

for context data logging. The Nokia N95 mobile phone14 which runs the Series 60

platform enabling mobile applications to be developed and deployed on it met these

capabilities. Hence all subjects used the Nokia N95 mobile phone.

Logs of SMS messages sent and received were generated using a created Python script

installed on the N95s. These logs contained SMS message content, name of SMS

message sender/receiver, and “date-time” of SMS message send/receive stored in

structured text files. A separate log file was created for SMS messages sent and re-

ceived. These log files were generated by subjects running the created Python script

on their mobile phone. Figure 3.3 provides an artificial sample log file for SMS mes-

sages received, showing the format of information stored in the log file. The log files

were stored onboard subjects mobile phones and transfered to PC via USB cable, from

where they were written to the subject’s lifelog database. Specifically, the log data was

used to populate the contents, to and from fields of the items table (see Table 3.2) and

14http://www.forum.nokia.com/devices/N95/ (September 2011)
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.

.
Jill
Sun Sep 21 09:04:03 2008
“See you later!”
Fred
Fri Sep 19 21:09:57 2008
“OK”
Fred
Fri Sep 19 20:25:30 2008
“Thanks for this. Talk later!”
.
.

Figure 3.3: Extract of an artificial sample mobile phone log file for received SMS mes-
sages.

the beginDate, endDate, beginTime and endTime of the item access table (see Table

3.3). The device field of the item access table was assigned the value ’mobile phone’

for these entries.

Problems Encountered:

At the time of writing the Python scripts (early 2008), capabilities did not exist to log

the date and time that subjects read SMS messages on their mobile phones. This meant

that when we logged SMS messages the only “date-time” information available was

the date and time that a subject received or sent the SMS message15. For received

SMS messages this timestamp did not necessarily always correspond to the time that

a subject actually read the SMS message. Further for both sent and received SMS mes-

sages, it meant that we have no way of knowing how long the subject spent reading

or writing SMS messages nor how often they re-accessed them.

3.3.3 Microsoft SenseCam Images

A visual log of our 3 subjects’ activities was created using a Microsoft Research Sense-

Cam, described in Chapter 2.2.3. In this section we describe how SenseCam image

information was written to our lifelog databases. Specifically we describe how the

title and file path fields of the items table (see Table 3.2) and the beginDate, endDate,

15Note: Since only the exact date and time of SMS message send or receive is available this means that
in subjects’ lifelog databases both the beginDate and endDate fields are populated with the date of SMS
message send/receive and both the beginTime and endTime fields are populated with the time of SMS
message send/receive.
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beginTime, endTime and device fields of the item access table (see Table 3.3) were

populated with information for SenseCam images captured during the month of bio-

metric data capture.

The SenseCam stores images and a sensor file (in CSV format) containing among other

things title/filename (e.g. 02763.jpg) and date time stamp recording when the image

was captured. SenseCam images and associated sensor file were regularly down-

loaded by subjects to a folder on their PCs hard drive. Generated Java code read

the sensor files and used the “date-time” stamp of an image to populate the begin-

Date, endDate, beginTime, endTime fields of the item access table16 and used the

title/filename to populate the title field of the items table. The file path field was

populated with the location of the SenseCam image on the subject’s hard drive (e.g.

C:\SenseCam images\July2009\02763.jpg). The device field of the item access table

was assigned the value ’SenseCam’.

Problems Encountered:

Due to space limitations onboard the SenseCam it was necessary for our subjects to

download SenseCam images from the device to a computer roughly every two weeks.

After each download the SenseCam resets its internal clock to synch with the clock

of the computer on which the download of SenseCam images occurred. Given that

subjects downloaded their SenseCam images to different computers, which were not

time aligned, at different times (e.g. downloading a set of SenseCam images to their

laptop at the beginning of September 2009 and downloading the next set of SenseCam

images to their PC in mid September 2009) this meant that SenseCam images were not

all time aligned, and further that timestamps did not always reflect the exact moment

in time when the images were captured. To overcome this issue all SenseCam images

were converted to the exact local time of image capture. Given that our subjects lived

in Ireland, for the most part this involved converting the majority of images to GMT.

However, our subjects also travelled to different time zones, e.g. PST. Images cap-

tured in such different time zones were also converted to the local time zone of image

capture, e.g. PST.

A further issue observed with SenseCam image timestamps, which was sporadically

16Note: an exact “date-time” stamp is provided for SenseCam images which represents the time that
an image was captured. This means that in our lifelog databases both the beginDate and endDate fields
are populated with the date stamp of the SenseCam image and both the beginTime and endTime fields
are populated with the timestamp of the SenseCam image.
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caused by file corruption onboard the SenseCam, was the conversion of images times-

tamps to a default date in the year 2000. These images timestamps were similarly

converted to GMT, PST, etc as appropriate.

It should be noted that all details of subjects lives are not captured in SenseCam im-

ages. SenseCam images are missing due to device crashes, corrupt images, data loss

on board the device, battery failure, subjects’ need for privacy, subjects’ need for psy-

chological break from the recording process, unwillingness of some people encoun-

tered to be captured by the SenseCam, and subjects’ feeling of being uncomfortable

wearing the SenseCam in some social settings.

3.3.4 Context Data Generation

In this section we describe how context data was obtained for lifelog items and added

to the lifelog databases (described in Section 3.2). Context data was firstly obtained

from information directly available in our augmented Slife files, SMS message logs

and SenseCam image collections. These context types are described in Section 3.3.4.1.

Additional types of context data were also derived from information available from

these sources. These context types, their derivation and how they were written to

the items and item access tables of subjects’ lifelog databases are described in Section

3.3.4.2. GPS data and co-present Bluetooth devices were also logged by our subjects

over the 20 month lifelogging period. In Section 3.3.4.3 we describe how this data

was logged, the context data types derived from it and how these context types were

added to the Campaignr, weather and light status tables of subjects lifelog databases.

Finally, in Section 3.3.4.4 we describe how biometric data was captured and added to

the biometric table of the subjects’ lifelog databases.

3.3.4.1 Context Data Available in Augmented Slife Files, SMS Message Logs

and SenseCam Image Collections

Context data associated with distinct items in our lifelogs consisted of title, applica-

tion, to, from, file path, URL and extension type. These context types were stored in

the items table of each subject’s lifelog database (see Table 3.2, which is described in

Section 3.2). Of these context types title, application, to, from, file path and URL in-

formation was directly available for computer items in the augmented Slife files (as

54



described in Section 3.3.1), for SMS messages in the SMS message logs (as described

in Section 3.3.2) and for SenseCam collections from the information downloaded from

the SenseCam device (as described in Section 3.3.3). Sections 3.3.1 - 3.3.3 describe how

distinct items and these available context types were written to the items table of the

subject’s lifelog database.

The item access table of the subject’s lifelog database held “date-time” related infor-

mation and the device type information for each access to lifelog items (see Table 3.3,

which is described in Section 3.2). Of the “date-time” related information associated

with an access to an item beginDate, beginTime, endDate and endTime were avail-

able in the augmented Slife files for computer items (as described in Section 3.3.1), in

the SMS messages logs (as described in Section 3.3.2) and for SenseCam collections

from the information downloaded from the SenseCam device itself (as described in

Section 3.3.3). The context data type ‘device’ was also obtained from these sources.

For computer items interacted with, this context type provided information as to the

device from which the access to the lifelog data item occurred on (i.e. laptop or PC),

described in Section 3.3.1. For SMS messages the device was always ‘mobile phone’

(described in Section 3.3.2) and for SenseCam images the device was always ‘Sense-

Cam’ (described in Section 3.3.3). Sections 3.3.1 - 3.3.3 describe how this device context

data and “date-time” of item access context data was written to the item access table

of a subject’s lifelog database.

In the next section we describe how extension type and “date-time” related context

data was derived for lifelog items and added to the items and item access tables

of a subject’s lifelog database. That is, we describe how the remaining fields of the

items table (i.e. extension field) and of the item access table (i.e., year, month, season,

day of week, part of week, part of week1 and part of day fields) were populated.

3.3.4.2 Context Data Derived from Information Available in Augmented Slife

Files, SMS Message Logs and SenseCam Image Collections

As discussed in the previous section, each access to lifelog items was annotated with

several context types. This data is stored in the item access table of a subject’s lifelog

database (see Table 3.3, which is described in Section 3.2). In this section we describe

how “date-time” related information was derived from the beginDate, endDate, be-
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ginTime and endTime information available in the item access table of a subject’s

lifelog database. We also describe how extension types were derived for the distinct

lifelog items stored in the items table (see Table 3.2, which is described in Section 3.2)

of a subject’s lifelog database.

• Date time related information: Using the beginDate, beginTime, endDate and

endTime data available for item accesses in the item access table (see Table 3.3)

functions were written to determine, the year, season, month, day of week, part-

of-week (i.e., beginning of week, midweek or end of week), whether the item

was accessed during the week or at the weekend (i.e. weekend or weekday),

and period of the day (i.e., morning, afternoon, evening, night), in which the

event took place. This “date-time” related information was then added to the

item accesses in the item access table. This information allows for the possibility

to search based on “date-time” related recall beyond exact date and time. For

example, to search based on recall of the season an item was accessed in.

• SMS message and SenseCam image extension types: SMS messages sent and

received were assigned the extension type ‘SMS’. Similarly images originating

from the SenseCam were assigned the extension type ‘SenseCam’. These ex-

tension types were written to the items table of a subject’s lifelog database at

the same time as writing of SMS message and SenseCam image details to the

database, described in Sections 3.3.2 and 3.3.3.

• Computer items extension types: Using the title/filename and application

data available for items in the items table functions were written to determine

computer items extension types. Specifically, items opened using an internet

browser, as determined using the application field data, were assigned the exten-

sion type ‘web’; items opened using an email application, as determined using

the application field data, were assigned the extension type ‘email’; and com-

puter files extension types (e.g., pdf, doc) were determined from both the data

in the application field and the title field (e.g., application = ‘Adobe Reader’

AND title = ‘paper1.pdf’, means that the item receives the extension type ‘pdf’;

application = ‘Eclipse’ AND title = ‘test.java’, means that the item receives the

extension type ‘java’). Extension type data was added to computer items in the

items table.
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3.3.4.3 Context Data Derived from GPS and Co-present Bluetooth Device Log-

ging

In this section we describe how the Campaignr table (see Table 3.4), weather tables

(see Table 3.5) and light status tables (see Table 3.6) of a subject’s lifelog database were

populated.

Determining geo-location: Wireless network presence (Wifi) and Global System for

Mobile Communications (GSM) location data was captured by constantly running the

Campaignr software which runs on the Symbian 60 operating system, provided to us

by UCLA (USA) [Joki et al., 2007], on the N95 mobile phones carried by the subjects.

This data was polled once every 20 seconds. It should be noted that while it was also

possible to capture GPS data using the Campaignr software, due to battery life issues

GPS polling was deactivated. The Campaignr software stores polled data onboard

the mobile phone and provides the facility for subjects to upload the data to a remote

database. Geo-location was derived from the available Wifi and GSM data captured

by Campaignr using in-house scripts17. These scripts provided country code, coun-

try, county, region, city and street timestamped geo-location data in structured XML

files18.

Determining people present: The Campaignr software [Joki et al., 2007] also

recorded co-present Bluetooth devices to gain further information about a user’s ur-

ban environment. Use of Bluetooth networking enables us to monitor other devices

(with Bluetooth enabled) present in the nearby vicinity - in today’s society many peo-

ple have Bluetooth technology activated on their mobile phones. This Bluetooth infor-

mation was included in the structured “date-time” stamped XML files generated from

the Campaignr software, as described previously. Available Bluetooth information in-

cluded the ‘friendly’ names people had assigned to their mobile phones, e.g. Deirdre

mobile, Ireland10. This Bluetooth information provides a record of the mobile phones

(with Bluetooth activated) and in turn the people who were in our subject’s presence

at given moments in time. We converted Bluetooth ‘friendly’ names to the names of

the individuals who owned the mobile phones (where known), e.g., ‘Deirdre mobile’

17Thanks to Daragh Byrne, DCU for creating these scripts and managing Campaignr database.
18These scripts derived geo-location information by first converting the GSM/Wifi data to GPS

co-ordinates using the Google Gears API (http://code.google.com/apis/gears/api geolocation.html
(September 2011)). The GPS co-ordinates were then used to obtain the geo-location data using the GeoN-
ames API (http://www.geonames.org/ (September 2011))
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TimeGMT,TemperatureC,Dew PointC,Humidity,Sea Level Pres-
surehPa,VisibilityKm,Wind Direction,Wind SpeedKm/h,Gust
SpeedKm/h,PrecipitationCm,Events,Conditions,WindDirDegrees
12:00 AM,8.0,5.0,81,1026,10.0,SW,11.5,-,N/A,,Mostly Cloudy,230
12:30 AM,7.0,5.0,87,1026,10.0,SW,11.5,-,N/A,,Mostly Cloudy,230
1:00 AM,7.0,5.0,87,1026,10.0,SW,12.7,-,N/A,,Mostly Cloudy,230
1:30 AM,7.0,4.0,81,1026,10.0,WSW,12.7,-,N/A,,Mostly Cloudy,240
2:00 AM,7.0,4.0,81,1026,10.0,SW,11.5,-,N/A,,Mostly Cloudy,230
2:30 AM,7.0,5.0,87,1026,10.0,WSW,11.5,-,N/A,,Mostly Cloudy,240
3:00 AM,7.0,5.0,87,1026,10.0,SW,11.5,-,N/A,,Mostly Cloudy,230
3:30 AM,7.0,5.0,87,1026,10.0,WSW,12.7,-,N/A,,Mostly Cloudy,240
4:00 AM,7.0,5.0,87,1026,10.0,WSW,13.8,-,N/A,,Mostly Cloudy,240

Figure 3.4: Sample weather conditions file from wunderground.com.

became ‘Deirdre’, ‘Ireland10’ became ‘Sam’.

These XML files generated from Campaignr data were written to the Campaignr table

of subjects’ lifelog databases.

Determining light status: As described in Section 3.2 a separate light status table was

created for each country or region visited by the subject over the 20 month lifelogging

period. To obtain light status (e.g. dark) information for these tables we extracted light

status information for each geo-location visited by subjects from timeanddate.com19.

The light status information for each geo-location was written to light status tables

with date and time stamps.

Determining weather conditions: As described in Section 3.2 a separate weather table

was created for each country or region visited by the subject over the 20 month lifel-

ogging period. Hourly weather conditions (e.g, raining, snowing) were downloaded

from Wunderground20 in structured CSV format. Figure 3.4 provides a sample down-

loaded CSV file. “Date-time” stamps and weather conditions were extracted from

these CSV files and written to the weather table for each geo-location.

Problems Encountered:

For Campaignr data logging due to device crashing at various points during the 20

months collection period some periods of the lifelogs do not have Campaignr data

available. During the first 8 months of the logging, the Campaignr software was

undergoing iterative change and improvement. While these changes were being

19http://www.timeanddate.com/worldclock/sunrise.html (September 2011)
20http://www.wunderground.com/ (September 2011)
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made software crashes occurred intermittently, but went undetected until the subject

checked if the software was still running. Following the first 8 months a much more

stable platform was available resulting in less frequent crashing of devices. Further

periods of the 20 month lifelogs are missing Campaignr data due to subjects’ need to

conserve battery life, subjects forgetting to turn on the device and subjects’ occasional

need for privacy.

Examining the geo-location information it was found that country and region pro-

vided the most accurate geo-location information. Much noise, missing data and in-

accurate data was present for the other geo-location fields. Hence country and region

were the only geo-location data used in our experiments. Region information refers

to the town a subject was in, as opposed to the part of town, building or room for

example.

It should be noted that the utility of Bluetooth data in assigning people present con-

text tags to item accesses is limited. Bluetooth tracking is not always enabled on all

people’s mobile phones, indeed some users opt to never enable Bluetooth connec-

tivity on their phone. This is further complicated by the ’friendly’ names used by

people on their mobile phones. For example, use of innocuous ‘friendly’ names such

as ‘xx99now’, ‘U2forever’ or ‘My phone’. While mobile phone ’friendly’ names can be

obtained from people regularly encountered and matched to the person’s ’real’ name,

this is not practical for people encountered only once or twice.

It should also be noted that the accuracy of weather conditions context data is limited

by the location of weather stations. Weather conditions available in the weather tables

reflect the prevailing weather conditions at the nearest weather station to a subject’s

given location at a given moment in time. Since the weather station may be located

many kilometres from the subject’s current location, weather conditions at the nearest

weather station may not always represent the weather conditions observed by the

subject, e.g. raining in the subject’s current location, but sunny at the weather station.

3.3.4.4 Context Data Derived from Biometric Response Recording

The one month SenseCam image collection and one month of subject’s textual lifelog

collection were also annotated with biometric data from the subject. It was not pos-

sible to capture this data for the entire 20 month lifelogging period due to the cum-
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Figure 3.5: From left to right: the Polar heart rate monitor, and the BodyMedia
SenseWear Pro2 armband.

bersome nature of biometric recording devices and psychological burden placed on

subjects wearing these devices and recording biometric data. The following biomet-

ric measures were recorded: heart rate data (HR), galvanic skin response (GSR), heat

flux (HF), skin temperature (ST) and energy expenditure. These biometric data mea-

sures are described in Chapter 2.3.1. In this section we describe how biometric data

was captured and added to the biometrics table (see Table 3.7) of each subject’s lifelog

database.

Heart rate data was collected using a Polar heart rate monitor21, as shown in Figure

3.5. Heart rate was sampled once every 5 seconds, this is the maximum sample rate

afforded by the heart rate monitoring device. The heart rate monitor is worn around

the chest, and heart rate readings are transmitted to a watch worn on the subject’s

wrist. Data is transferred from the watch to a PC using an infra-red sensor. Software

provided with the device generates reports, graphs and text files of the heart rate

readings for data analysis.

All other biometric data was collected using a BodyMedia SenseWear Pro2 armband22

[Andre et al., 2006], as shown in Figure 3.5. The BodyMedia armband is worn on the

upper arm and measures a range of psychological data. Data captured includes GSR

along with transverse acceleration, longitudinal acceleration, heat flux and skin tem-

perature. Energy expenditure is calculated by the device every minute using inbuilt

software and stored onboard with the biometric readings. Data is transferred via a

USB cable from the device to a PC. PC based software provided with the device gen-

21http://www.polarusa.com/ (September 2011)
22http://www.bodymedia.com/ (September 2011)
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Captured Heart Rate Readings:
Timestamp: 15-09-2009:13:55:00 HR Reading: 77
Timestamp: 15-09-2009:13:55:05 HR Reading: 82

Heart Rate Readings with Missing Seconds Filled:
Timestamp: 15-09-2009:13:55:00 HR Reading: 77
Timestamp: 15-09-2009:13:55:01 HR Reading: 78
Timestamp: 15-09-2009:13:55:02 HR Reading: 79
Timestamp: 15-09-2009:13:55:03 HR Reading: 80
Timestamp: 15-09-2009:13:55:04 HR Reading: 81
Timestamp: 15-09-2009:13:55:05 HR Reading: 82

Figure 3.6: Approximating heart rate (HR) readings for seconds without HR readings.

erates graphs, reports and a CSV file of all the sensor output for data analysis. The

BodyMedia device samples the values from its inbuilt sensors at settable predefined

intervals. To allow for continuous recording over the course of a day without the de-

vice running out of memory, GSR was sampled once per second, heat flux once every

10 seconds and skin temperature once every 10 seconds23. Each time the device is

placed on an individual’s upper arm a calibration period is required in order for the

device to produce accurate readings. Hence the biometric data captured during the

first 45 minutes of each BodyMedia armband wearing period was removed from the

collection. Readings were also found to be skewed during the last 2 minutes of each

period of wearing the BodyMedia armband. This was the period when the device

was being removed from the arm. Hence these readings were also removed from the

collection.

Points in time for which biometric readings were absent due to the differing sample

rates for HR, ST and HF were populated by examining the difference between two

consecutive readings and filling in missing seconds readings with equal biometric in-

tervals between the two captured readings. An example of this approach is provided

in Figure 3.6. In this example two consecutively captured HR readings with times-

tamps of ‘13:55:00’ and ‘13:55:05’ are shown. In this example the difference between

the two consecutive known HR readings of ‘77’ and ‘82’ is ’5’. This means that to

populate seconds between these two timestamps with equal biometric intervals we

increase the HR readings by an interval of ’1’. The resulting HR levels are shown in

Figure 3.6. Seconds missing energy expenditure readings were similarly populated.

23Due to an error in recording ST was sampled once per minute for Subject 3.
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The timestamped biometric data was stored in the biometrics table of the subject’s

lifelog database. Various approaches to annotating item accesses with biometric data

based on “date-time” stamps were explored, these approaches are described in Chap-

ter 7.

Problems Encountered:

The heart rate recording device was subject to frequent crashes, resulting in missing

periods of heart rate data. In addition, clearly erroneous readings were often recorded

by the device on random occasions following which it automatically recovered to cor-

rect capture. Analysis of the heart rate readings showed that when subjects’ heart rate

readings were higher than 140 erroneous readings were being recorded. Hence, to

eliminate these erroneous readings, heart rate values greater than 140 and heart rate

values of 0 (which are impossible) were deleted from the collection.

Periods of the biometric data recording period are missing biometric data for our sub-

jects due to the psychological burden placed on subjects from continuous biometric

data recording and their resulting need for breaks from the recording process. This

need for breaks was due to the cumbersome nature of the biometric devices, physical

irritation and discomfort experienced by subjects from prolonged contact of the de-

vices with the skin, visibility (of the BodyMedia armband in particular) through one’s

clothing and knowledge that one’s biometric response (while only available to the test

subject) was being recorded.

Due to the storage constraints of the BodyMedia armband, which allowed for storage

of one days worth of biometric data (with the biometric data sampling rate used in our

studies), it was necessary for subjects to download biometric data from the armband

on a nightly basis. Should the subject forget this nightly download, no further data

could be captured until download was performed.

3.4 Test Set Contents Analysis

In this section a detailed breakdown of the lifelogs generated for experimentation pur-

poses is provided. We break down this analysis into two parts. The first part, Section

3.4.1, examines the 20 months worth of textual data and associated context data con-

tained in subjects’ lifelog databases (these collections are referred to as the ‘20 month
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Subject 1 Subject 2 Subject 3
Type Total Content Total Content Total Content
Code file 590 423 183 101 2,220 1,400
Excel file 455 266 66 40 141 69
Email 3,760 3,441 2,509 2,180 10,243 9,799
PDF 182 123 381 124 69 53
Presentation 92 82 147 124 95 23
SMS message 3,558 3,547 654 648 3,274 3,268
Webpage 3,895 1,248 15,642 12,697 44,457 39,545
Word file 311 162 310 209 373 277
Text file 381 273 81 46 308 238
Other 7 6 32 20 40 7
TOTAL 13,231 9,571 20,005 16,189 61,220 54,679

Table 3.9: Number of distinct items in each subject’s collection. Code file = java, c, h,
etc; Excel files = CSV, XLS and XLSX files; Presentation = Keynotes and PowerPoint
files; Text file = txt, dat, tex, etc, files; and Other = class files, bib’s, logs, etc.

Subject 1 Subject 2 Subject 3
Type Total Content Total Content Total Content
Code file 4,476 2,684 1,362 485 20,550 16,110
Excel file 831 566 240 175 1,158 959
Email 1,644 1,433 3,756 2,823 16,533 15,708
PDF 290 180 1,245 380 236 170
Presentation 363 259 384 246 1170 337
Webpage 3,022 829 27,209 21,823 96,833 91,544
Word file 400 263 1,558 869 4,392 2,897
Text file 542 491 175 95 1,491 1,365
Other 34 34 338 244 77 12
TOTAL 11,602 6,739 36,267 27,140 136,569 123,231

Table 3.10: Number of PC item accesses in each subject’s collection. Code file = java, c,
h, etc; Excel files = CSV, XLS and XLSX files; Presentation = Keynotes and PowerPoint
files; Text file = txt, dat, tex, etc, files; and Other = class files, bib’s, logs, etc.

textual lifelogs’). The second part, Section 3.4.2, examines the one month of subjects’

lifelogs which contain SenseCam images and biometric data in addition to textual data

and associated context data (referred to as the ‘biometric month lifelogs’).

3.4.1 20 Month Test Set

A detailed breakdown of the contents of the 3 subjects’ 20 month lifelog test sets is

presented in Tables 3.9 - 3.12.

As shown in Table 3.9, 13,231 distinct items were accessed by Subject 1 during the lifel-

ogging period, of these items content data was obtained for 9,571 items. This equates

to 72% of lifelog items having content data. Subject 2 accessed 20,005 distinct items

during the lifelogging period, of which content data was obtained for 16,189 items.
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Subject 1 Subject 2 Subject 3
Type Total Content Total Content Total Content
Code file 5,739 4,626 200 190 2,183 2,065
Excel file 2,823 1,497 23 23 153 84
Email 3,709 3,443 544 422 198 100
PDF 623 584 0 0 4 3
Presentation 536 531 50 45 659 7
Webpage 9,559 3,164 4,888 4,457 31,098 26,239
Word file 1,858 815 356 126 330 124
Text file 1,683 1,373 1 1 233 218
Other 128 127 0 0 1 0
TOTAL 26,658 16,160 6,062 5,264 34,859 28,840

Table 3.11: Number of laptop item accesses in each subject’s collection. Code file =
java, c, h, etc; Excel files = CSV, XLS and XLSX files; Presentation = Keynotes and
PowerPoint files; Text file = txt, dat, tex, etc, files; and Other = class files, bib’s, logs,
etc.

Device Subject 1 Subject 2 Subject 3
Mobile phone 2,184 (61%) 142 (22%) 2,660 (81%)
Laptop 18,893 (71%) 767 (13%) 26,091 (75%)
PC 9,836 (85%) 12,997 (36%) 134,215 (93%)
TOTAL 30,913 (74%) 13,906 (32%) 162,966 (93%)

Table 3.12: Total number of item accesses with geo-location tags in each subject’s col-
lection. The percentages in brackets provide the percentage of the total number of
item accesses on each device that these figures correspond to. The number of item ac-
cesses on the mobile phone with geo-location tags corresponds to the number of SMS
messages with geo-location tags.

This equates to 80% of lifelog items having content data. Subject 3 accessed 61,220

distinct items, of which 54,679 had content data. This equates to 89% of lifelog items

having content data. Content data missing from the subjects collections are mostly

attributed to the inability to locate the accessed files on the subjects’ computers due

to file deletion, file renaming or access to items located on some external device. The

remaining files missing content also arise due to the inability of the Java libraries used

to extract file content in all cases. Missing webpage content is attributed to dynamic

webpages for which content could not retrospectively be extracted. The large volume

of webpages missing content data for Subject 1 is attributed to the fact that this sub-

ject used tabbed IExplorer browsing thus preventing content extraction in all cases, as

described in Section 3.3.1.3.

The substantial difference in the number of distinct items accessed by subjects is

largely due to the significant difference in distinct webpages accessed by each sub-

ject. Subject 1 accessed 3,895 distinct webpages during the lifelogging period, while

Subject 2 accessed 15,642 and Subject 3 accessed 44,457. Subject 3 also accessed a larger
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number of emails than the other two subjects. Subject 3 accessed 10,243 distinct emails

(of these 5,870 were IMPORTED EMAILS (described in Section 3.3.1.1), while Subject

1 accessed 3,760 distinct emails (of these 2,122 were IMPORTED EMAILS) and Sub-

ject 2 2,509 distinct emails (of these 1,189 were IMPORTED EMAILS). Other notable

differences in subjects collections were the far greater number of distinct code files

accessed by Subject 3, relative to Subjects 1 and 2; the greater use of excel by Sub-

ject 1 relative to the other subjects; Subject 2’s greater access to distinct PDF files; and

Subject 2’s lesser access to distinct text files relative to the other two subjects.

Recall that Slife records the act of a window being brought to the foreground, this

means that every time a user switches between two windows (or brings a window

to the foreground) a new event (or item access) will be recorded by Slife. Tables 3.10

and 3.11 present a breakdown of item accesses by each subject on PC and laptop. As

can be seen, the majority of Subjects 2 and 3’s computer activity is carried out on their

PC’s, whereas Subject 1 makes greater use of their laptop.

The make up of subjects’ collections will have implications on the content and con-

tent+context retrieval algorithms. Items missing content data will not be retrievable

using content only retrieval; here the title of items will be the only content available

to retrieve items. Further differences observed in subjects’ collections will have im-

plications on retrieval. For example, subjects recalling that an item was accessed on a

laptop will narrow down the search space to a greater extent for Subjects 2 and 3 who

made less use of their laptop relative to their PC; and the ability of recalled extension

type to narrow down the search space will vary depending on the make up of individ-

ual subjects collections (e.g. given the relatively huge volume of webpages accessed

by Subject 3 the web extension will not be particularly useful in narrowing down the

search space for this subject, whereas use of the presentation extension type would be

useful in narrowing down their search space).

Table 3.12 shows the number of item accesses on each device annotated with geo-

location data for each subject and the percentage of their total accesses that these fig-

ures correspond to. The percentages of item accesses annotated with geo-location tags

also correspond to the number of item accesses annotated with weather and light sta-

tus information, for which geo-location information is required. Since the presence of

geo-location tags means that the Campaignr software (as described in Section 3.3.4.3

the Campaignr software logs subjects GPS location from which geo-location was in-
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ferred) was running on subjects mobile phones at those moments in time, and since

the Campaignr software also logs co-present Bluetooth devices from which people

present can be inferred (described in Section 3.3.4.3), the percentage of geo-location

tagged items also corresponds to the number of items which can have people present

annotations. Of the items accessed by subjects, 74% were annotated with geo-location

data for Subject 1, 32% for Subject 2 and 93% for Subject 3. As can be seen there

are wide differences between the percentages of lifelog item accesses annotated with

geo-location data across the three subjects. These differences are accounted for by sub-

jects’ different levels of need for privacy and break from geo-location logging, subjects’

varying levels of forgetfulness in turning the Campaignr software on, varying speed

at which subjects realised that the Campaignr software had crashed (as described in

Section 3.3.4.3) and restarted the Campaignr software, variations in the volume of cor-

rupt Campaignr databases across subjects (as described in Section 3.3.4.3), and sub-

jects’ varying level of need to conserve battery life. Missing weather, light status,

geo-location and people present tags will have implications on retrieval in so far as

recall of these context types only has the potential to aid retrieval of items which have

these context tags, and indeed could potentially have negative impact on required

items missing these tags, in so far as irrelevant items containing the tags will receive

an extra boost in retrieval scores or be selected based on some filtering criteria. This

potential problem could be particularly prevalent for Subject 2 given the particularly

low number of items in their collection containing these context tags.

3.4.2 Biometric One Month Test Set

A complete breakdown of the one month (September 2008) of the subjects’ lifelogs

which contain biometric data and SenseCam images is provided in Tables 3.13 - 3.16.

Table 3.13 shows the number of distinct items accessed during this period. Similar to

the statistics observed for the entire 20 month collection in the previous section, over

the biometric month the vast majority of the distinct items accessed by Subject 3 were

webpages. This subject also accessed a larger number of distinct emails and code files

than the other subjects. Also similar to the 20 month collections, Subject 2 accessed

a much higher volume of distinct PDF files and presentations than the other subjects

during the one month biometric period. However, while Subject 2 was also shown

to access a large number of distinct webpages over the entire 20 month lifelogging
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Subject 1 Subject 2 Subject 3
Type Total Content Total Content Total Content
Code file 117 92 3 1 264 117
Excel file 11 11 4 0 1 0
Email 201 181 152 125 669 634
PDF 27 21 71 16 16 12
Presentation 11 10 64 58 6 6
SMS message 139 139 24 24 135 135
Webpage 305 96 77 75 3,554 3,207
Word file 27 23 39 32 39 27
Text file 42 37 39 27 12 9
Other 2 2 11 9 10 2
TOTAL: 882 612 484 367 4,706 4,149

Table 3.13: Number of distinct items in each subject’s ‘biometric month’ collection.
Code file = java, c, h, etc; Excel files = CSV, XLS and XLSX files; Presentation =
Keynotes and PowerPoint files; Text file = txt, dat, tex, etc, files; and Other = class
files, bib’s, logs, etc.

Subject 1 Subject 2 Subject 3
Type Total Content Total Content Total Content
Code file 654 622 9 4 3,658 1,369
Excel file 18 18 5 - 1 -
Email 141 119 207 110 1,393 1,329
PDF 48 37 176 42 35 28
Presentation 19 17 74 1 81 81
Webpage 630 179 125 129 10,349 9,724
Word file 50 48 120 19 664 191
Text file 49 43 46 31 27 12
Other 1 1 25 16 23 7
TOTAL: 1,610 1,084 787 352 16,231 12,741

Table 3.14: Number of PC item accesses in each subject’s ‘biometric month’ collec-
tion. Code file = java, c, h, etc; Excel files = CSV, XLS and XLSX files; Presentation =
Keynotes and PowerPoint files; Text file = txt, dat, tex, etc, files; and Other = class files,
bib’s, logs, etc.

period, this was not the case for the biometric month. Subjects’ volume of access to

different media types during a one month period will naturally not always reflect their

general patterns of behaviour depending on their activities and information needs

during a given one month period.

Tables 3.14 and 3.15 present the number of item accesses on PC and laptop recorded

for each subject. No computer item accesses were recorded on the laptops of Subjects 2

and 3 during this month. This was caused by corrupt data, leading to impossibility in

recovering the Slife data from these subjects laptops. Contrary to the entire 20 month

lifelogging period, in the biometric month test set Subject 1 made greater use of their

PC than laptop.

In Table 3.16 we see that there was no geo-location data available for Subject 3 during
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Subject 1 Subject 2 Subject 3
Type Total Content Total Content Total Content
Code file 549 508 - -
Excel file 3 3 - -
Email 99 97 - -
PDF 27 27 - -
Presentation - - - -
Webpage 329 178 - -
Word file 66 56 - -
Text file 57 56 - -
Other 9 9 - -
TOTAL: 1,139 934 - -

Table 3.15: Number of laptop item accesses in each subject’s ‘biometric month’ collec-
tion. Code file = java, c, h, etc; Excel files = CSV, XLS and XLSX files; Presentation =
Keynotes and PowerPoint files; Text file = txt, dat, tex, etc, files; and Other = class files,
bib’s, logs, etc.

Device Subject 1 Subject 2 Subject 3
Mobile phone 82 (59%) 0 (0%) 0(0%)
Laptop 836 (73%) - -
PC 1,528 (95%) 396 (50%) 0 (0%)
TOTAL 2,446 (85%) 396 (50%) 0 (0%)

Table 3.16: Total number of item accesses with geo-location tags in each subject’s ‘bio-
metric month’ collection. The percentages in brackets provide the percentage of the
total number of item accesses on each device that these figures correspond to. The
number of item accesses on the mobile phone with geo-location tags corresponds to
the number of SMS messages with geo-location tags.

the biometric period. This was caused by a corrupt Campaignr database, from which

data could not be extracted. This means that recall of geo-location, people present,

weather conditions or light status during the biometric month cannot offer utility in

retrieval for this subject during this period. 85% of Subject 1’s and 50% of Subject 2’s

item access during the biometric month had geo-location tags.

With regard to SenseCam images, during the biometric one month period Subject 1

generated 28,929 SenseCam images, Subject 2 had 17,377 images and Subject 3 had

47,301 images. Some periods of subjects’ lives during the biometric month are not

captured in SenseCam images due to issues observed with using the SenseCam, as

described in Section 3.3.3. Further due to SenseCam data corruption (described in

Section 3.3.3), one week of Subject 2’s and Subject 3’s SenseCam images are missing.
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3.5 Conclusions

The lifelogs described in this chapter are used for the retrieval investigations described

in the remainder of this thesis. Specifically, in Chapter 5 the 20 month lifelogs gen-

erated for each subject are used to investigate content+context-based retrieval algo-

rithms for the personal lifelogging domain, and in Chapter 6 the biometric month

textual lifelogs, SenseCam images generated during the biometric month and biomet-

ric data are used to explore extraction of important items from personal lifelogs based

on biometric response associated with past experience of the items. Following on from

Chapters 5 and 6, in Chapter 7 the biometric month textual lifelogs and biometric data

are used to investigate integrating query independent biometric scores into the ranked

retrieval algorithms developed in Chapter 5.

Before moving on to our retrieval investigations in Chapters 5 - 7, the next Chap-

ter provides some background on information retrieval approaches of interest to our

research and presents the approaches we used to index the subjects lifelog database

content for retrieval experiments and to create search test cases for these investiga-

tions.
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CHAPTER

FOUR

Towards Information Retrieval in

the Lifelog Domain

Chapter Overview: This chapter serves as a precursor to Chapters 5 and

7, which describe our investigations into query driven retrieval algorithms

for lifelog search, and integrating query independent biometric scores into

these algorithms, for the textual data in the lifelogs. Following the chapter

introduction, we review existing query driven retrieval approaches (Sec-

tion 4.2). We then review approaches for integrating static query indepen-

dent scores into query driven retrieval algorithms (Section 4.2.3). Finally,

in Section 4.3, we describe how we created test set indexes from the lifelog

databases of the subjects described in Chapter 3 and test cases (i.e. queries

and target result sets) for these indexes based on subjects’ perception of

items they would like to retrieve from their lifelogs, and their recalled con-

tent and context associated with these items, which will be used for our

retrieval algorithm development investigations in Chapters 5 and 7.
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4.1 Introduction

Traditional content-based retrieval takes a number of words provided by a user as

a search request and seeks to retrieve documents or more generally items which are

relevant to the searcher’s underlying information need by finding those which best

match the query based on the IR content. However, other fields containing informa-

tion about documents are often available to query on in many collections (e.g. XML

document collections). Using these fields can offer potential for improving the re-

trieval process. Examples here include search of library records where searches can be

performed on the multiple fields associated with library holdings, such as year of pub-

lication, author, title, etc, and, most similar to our work on PL search, search of desktop

collections where document content can be associated with authors, date of creation

or access, and file location (e.g. Microsoft’s Windows Desktop Search (WDS)1). Such

systems use structured search where query terms are entered in separate fields for the

various context types associated with required documents. While multi-field struc-

tured search offers potential for improving the retrieval process, in so far as it can help

narrow down a search space, it places extra cognitive burden on subjects by requiring

them to enter query terms into several fields, and can also limit the scope for the use of

the context of the query in so far as it requires explicit association of query terms with

specific fields. Flat querying a queries elements represents a more flexible alternative

to this problem by enabling a searcher to enter all content and context associated with

required information in a single simple flat query. Search techniques for flat queries

over multi-field documents are important to a number of IR search tasks. A key ex-

ample of this is web data where the content of the webpage itself can be augmented

with the title, the page location and additional content derived from linked anchor text

for example [Craswell and Hawking, 2003]. Other important examples are search of

XML document structures of varying complexity [Carmel et al., 2003, Lalmas, 2009],

search of email collection with to, from, etc, fields [Craswell and Vries, 2005], and

search of movie collections containing such information as genre of movie, actors, etc,

[Kim et al., 2009]. Algorithmically, developing retrieval techniques to match simple

flat queries to structured multi-field documents for successful retrieval is a significant

challenge. We discuss this topic further in Section 4.2.2.2.

1http://www.microsoft.com/windows/desktopsearch/default.mspx (September 2011)
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In this thesis we are interested in developing effective retrieval algorithms for the lifel-

ogging domain which retrieve information relevant to the owner’s information need,

based on their memory of this information expressed as a query (we examine this in

Chapter 5). Such queries might potentially consist of individuals’ memories of the

content of required information (e.g., content of email, content of webpage) or both

the content and associated context (e.g., extension type of required item, prevailing

weather conditions when required item was previously accessed) of required infor-

mation. In the next section we overview existing query driven retrieval techniques.

Specifically, Section 4.2.1 examines content only retrieval and Section 4.2.2 examines

both structured and flat multi-field retrieval techniques.

Finding important relevant items from within collections in response to user queries

poses significant challenges. That is, given a number of items which match a user’s

query, how do we infer which of these items are likely to be the item or items which an

individual requires or which will be most useful to an individual. Any additional in-

formation which can assist query driven retrieval approaches in identifying important

items is thus potentially very important. This query independent evidence of items

importance can be referred to as static scores. There are many examples of the use of

various types of static scores to boost user query driven scores in different domains.

Examples include the well known PageRank algorithm which uses the structure of

the web to compute static scores indicating the expected significance of web pages

[Page et al., 1998], using webpage features such as document length and anchor text

as static scores [Richardson et al., 2006], and using links created between computer

files to infer static file importance scores [Soules, 2006]. Since we are interested in ex-

amining the potential utility of integrating biometric response, associated with past

experience of items, into retrieval algorithms for the lifelogging domain (we examine

this in Chapter 7), in Section 4.2.3 we review methods of integrating static scores into

retrieval algorithms.

In order to perform either content or content+context query driven retrieval an index

of the data to be queried is required. In Section 4.3.1 we describe the indexes of sub-

jects’ textual lifelog data which we created to allow us explore different retrieval tech-

niques in Chapters 5 and 7. To evaluate the performance of retrieval techniques a set

of user queries and target result sets are also required. In Section 4.3.2 we describe the

means by which we generated user queries and target result sets from subjects’ lifelog
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indexes to facilitate evaluation in our investigations of the development of retrieval

techniques, and analyse the created test cases. Finally, in Section 4.4 we conclude the

Chapter.

4.2 Query Driven Retrieval Approaches

In this section we review existing query driven retrieval approaches. Specifically, in

Section 4.2.1 we review retrieval approaches which retrieve items based on the match

between the users’ query and content of the items available in the archive (i.e. con-

tent only based retrieval). In Section 4.2.2 we review multi-field based retrieval ap-

proaches. This is divided into two parts: 1) retrieval across multi-fields where the

query is provided in a structured manner; and 2) retrieval across multi-fields where a

flat query is provided. Finally, in Section 4.2.3 we review the re-ranking of retrieved

result lists using static query independent scores.

4.2.1 Content Only Based Retrieval

Research in development of IR approaches which index the terms in documents to

facilitate content-based retrieval has been ongoing since its first proposal in the 1950’s

[Luhn, 1957]. Luhn proposed that keywords could be either manually or automati-

cally extracted from documents in a collection to create a representation of documents.

Each document’s representation (D) can be represented as a vector, as shown in Equa-

tion 4.1 where tk is a term in the document representation2. Queries (Q) can similarly

be represented as vectors, as shown in Equation 4.2 where qk is a term in the query

representation.

D = (t1, t2, ..., tn) (4.1)

Q = (q1, q2, ..., qm) (4.2)

2In modern retrieval systems generating automatic document representations for indexing purposes
(to create vector representations of documents in a collection) can consist of automatic tokenization,
stop word removal, stemming process, etc. The reader is referred to [Manning et al., 2009] for a good
introduction to this topic.
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In its simplest form retrieval of relevant textual documents which match a user’s text

query operates by searching the document collection for documents containing the

query terms, and returning these documents to the user as candidate relevant docu-

ments. In other words, documents either contain the query terms (in which case they

are retrieved for the user) or they don’t contain the query terms (in which case they

are not retrieved). This type of search uses Boolean algebra, and is hence referred to

as Boolean search. Naturally, using Boolean algebra individuals can create more com-

plex queries, using the Boolean operators, e.g., AND, OR or NOT (incidentally, in this

case a query vector might be something like Q = ((q1 AND q2) OR q3...). Boolean search

is described more fully in [Manning et al., 2009, van Rijsbergen, 1979].

A problem with simple Boolean search is that only queries which exactly match the

constraints of the Boolean query are returned as candidate relevant documents to the

user. That is, a simple Boolean matching approach performs ‘exact matches’ where it

checks for the presence or absence of query terms in combination with the constraints

of the specified Boolean query in documents to determine documents which may be

relevant to the query. Another problem with this approach is that no weighting of

the likely relevance of documents or ranking of the output based on level of relevance

occurs.

When determining if a document is relevant to a given query, it is useful to establish a

degree of likely relevance of each document and to rank result lists for users based on

these degrees of relevance. This is useful since the documents which are perceived to

be most relevant to a query will appear at the top of a result list, making them more

accessible to the individual performing the query. This led to the development of best

(or partial) match retrieval approaches which produce result lists ordered according to

the similarity of documents to the user query, where this similarity is some function of

the number of search terms a query and document have in common. Using best match

approaches documents and queries can be represented as vectors of weighted terms

in a t-dimensional space, where t is the number of terms in the document collection

representation (i.e. number of indexed terms). Equations 4.3 and 4.4 show the term

vectors for a document (D) and query (Q) using this approach, where wti is the weight

assigned to term ti in the document representation and wqi is the weight assigned to

term ti in the query. In these vector representations wti (or wqi) is set to 0 when the

term does not occur in D’s (or Q’s) representation.
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D = (wt1, wt2, ..., wtt) (4.3)

Q = (wq1, wq2, ..., wqt) (4.4)

To calculate the similarity between a query vector and document vector, the vec-

tors are compared using for example the dot product, shown in Equation 4.5

[Salton and Buckley, 1988]. In the simplest best match approach terms occurring in

a document (or query) are assigned a weight of 1. This results in a query document

similarity weight consisting of a count of the number of query terms present in a doc-

ument in Equation 4.5. Documents are then ranked according to decreasing matching

score. This is referred to as coordination-level matching.

Sim(Q,D) =
t∑

i=1

wti · wqi (4.5)

Coordination-level matching assumes that all terms are equally discriminating in a

document collection, and hence equally useful in determining the likely relevance of

a document to a query, which is not the case. Hence, best match retrieval approaches

which weight terms according to their discriminating power were developed. Term

weighting allows for selectivity, where a good query term is one which has a high

chance of selecting relevant documents from the many which will be non-relevant

[S. E. Robertson and S. Jones, 1994]. The three commonly used characteristics of terms

and document collections which are used to weight the occurrence of a query term in

a document are: term frequency, inverse document frequency and document length.

Term frequency (tf) counts the number of occurrences of a term in a document.

The rationale being that the more times a term occurs in a document the more rep-

resentative of a document it is. The term frequency can be normalised, for exam-

ple by dividing by the maximum term frequency (maxtf ) as shown in Equation 4.6

[Salton and Buckley, 1988], where tfd,t is the term frequency of term t in a document

d. Various variations of this weighting function are possible, such as that shown in

Equation 4.7 for example.
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tfd,t =
tfd,t

maxtf
(4.6)

tfd,t = 0.5 + 0.5 ·
tfd,t

maxtf
(4.7)

Inverse document frequency (idf): The concept underlying idf is that query terms

which occur in few collection documents are more selective, more useful, than those

which occur in many [Sparck-Jones, 1972]. An idf weight considers the number of

documents a query term t occurs in (df(t)) relative to the number of documents in the

collection (N), as shown in Equation 4.8. This idf weighting function always gives

positive weights, with terms which occur in all documents receiving a weight of 0,

which can be desirable given that the term offers no distinguishing power. Other

approaches, for example as shown in Equation 4.9, do not reduce the idf score to

zero for terms which occur in all documents. Some idf approaches, for example as

shown in Equation 4.10, give negative weights to terms occurring in more than half

the documents in the collection. Depending on the collection format this may or may

not be desirable. The logs in idf scoring functions can be taken to any convenient base.

idf(t) = log
N

df(t)
(4.8)

idf(t) = log(
N

df(t) + 1
) + 1 (4.9)

idf(t) = log
N − df(t) + 0.5

df(t) + 0.5
(4.10)

tf×idf: Idf scores are commonly multiplied by term frequency in term scoring,

this is referred to as tf×idf (term frequency times inverse document frequency)

[Salton and Yang, 1973, Salton et al., 1975b]. tf×idf weights allow for term discrimina-

tion, the idea being that terms which occur frequently in a document, but infrequently

in the collection as a whole, allow for the identification of individual documents from

within a collection, and hence are the best terms for identifying the content of a docu-

ment [Salton and Buckley, 1988].
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Document length normalisation: Documents which are longer may have more oc-

currences of a query term simply because they are long relative to much shorter doc-

uments. This has the potential to result in a long document receiving a higher term

score than a shorter document simply because it is longer, as opposed to as a result of

it holding greater potential relevance to an individual’s querying need. Several tech-

niques to account for this have been proposed, such as normalising using a vector

length normalisation factor (as shown next).

The vector space model [Salton et al., 1975a] uses the vector dot product function,

shown earlier in Equation 4.5. It performs document length normalisation on the

term weight by dividing the dot product by the moduli of the two vectors, as shown

in Equation 4.11.

Sim(Q,D) = |Q||D|cosθ =
Q ·D

‖Q‖ × ‖D‖
=

∑t
i=1 wti · wqi√∑t

i=1(wti)2
√∑t

i=1(wqi)2
(4.11)

4.2.1.1 Probabilistic Information Retrieval

An alternative to the Vector Space Model in IR is the probabilistic retrieval model.

This seeks to measure the probability of a document (item) being relevant to a

query given that the document possesses certain attributes (typically words or

phrases) occurring in the user’s request. Full details on the theory underly-

ing probabilistic model in IR is contained in [Robertson and Sparck-Jones, 1976].

A well proven implementation of probabilistic IR is the Okapi BM25 model

[Robertson et al., 1992, Robertson et al., 1993, S. E. Robertson and S. Jones, 1994]. Var-

ious term frequency and length normalisation approaches have been explored in the

Okapi model. Equation 4.13 shows the term weighting approach used in Okapi BM25

[S. E. Robertson and S. Jones, 1994]. For a given document d and a given query term t

the BM25 weighting function (shown in Equation 4.13) calculates a term weight (wt,d).

The overall probability of relevance (matching score ms(q,d)) for a document d is the

sum of the weights of the query terms present in the document, shown in Equation

4.12.

ms(q, d) =
∑

t∈q∩d

wt,d (4.12)
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wt,d = idf(t) ·
tfd,t ∗ (k1 + 1)

k1 ∗ ((1-b) + (b ∗ ld
avld

)) + tfd,t

(4.13)

where,

idf(t) = log N
df(t) in the implementation of BM25 presented in

[S. E. Robertson and S. Jones, 1994], where N = number of documents in

the collection, df(t) = number of documents term t occurs in. Of course other

approaches can be used to calculate the idf, as discussed earlier in this section.

tfd,t is the number of occurrences of term t in document d.

ld is the length of d.

avld is the average length of all documents in the collection.

k1 = Tunable parameter which modifies the extent of the influence of term frequency.

The higher values of k1 increase the influence of tf ; k1 = 0 eliminates the influence

altogether.

b = Tunable parameter which ranges between 0 and 1. Modifies the effect of docu-

ment length normalisation. b=1, the assumption that documents are long simply

because they are repetitive. b=0, assumption that documents are long because

they are multi-topic.

In Chapter 5.3 we explore the use of BM25 for content only based retrieval of items

in PL collections. Justification for use of BM25 in these investigations is provided in

Chapter 5.2.

4.2.2 Multi-field Based Retrieval

When allowing users to query over multi-field documents two approaches can be

taken. The first approach sees a user specify the query terms to be used for each field.

A retrieval system then performs a document field by field search, using the query

terms provided for each field. This is referred to as ‘structured search’, described in

Section 4.2.2.1. In the second approach the user specifies all the query terms to be used

in the search, without providing any indication as to the field each query term should

be targeted to. A retrieval system then performs a search across all document fields
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EXAMPLE 1 - structured query:

Content field query terms: content context lifelogs
Title field query terms: PhD thesis
Extension field query terms: pdf

EXAMPLE 2 - flat query:

Query terms: content context lifelogs PhD thesis pdf

Figure 4.1: Sample structured and flat queries.

using the provided query terms. We refer to this as ‘flat search’, described in Section

4.2.2.2. Figure 4.1 shows the difference between a structured query and flat query to a

retrieval system.

4.2.2.1 Structured Content+Context Search

A simple approach to scoring in structured search is using simple data fusion

[Belkin et al., 1995], whereby each field of a document is queried separately using the

query terms for that field, and a simple linear combination of the individual field

scores taken, as shown in Equation 4.14, where f is a field in document d, wf is a

weight assigned to each field f, and ms(qf , df ) is a matching score approach which

computes a matching score for field f of document d, given the query terms qf which

were used for this field. The ms(qf , df ) score can be calculated using any query-

document matching algorithm. For example, Equation 4.15 shows the use of BM25

(Equation 4.12 described in Section 4.2.1.1) in this process, where wtf ,f is the applica-

tion of Equation 4.12 to the field f of document d using a query term tf in qf . Indeed

in Equation 4.15, any matching score function can be used to calculate wtf ,f .

ms(q, d) =
∑
f∈d

wf ·ms(qf , df ) (4.14)

ms(q, d) =
∑
f∈d

(wf ·
∑

tf∈qf∩f

wtf ,f ) (4.15)

In Chapter 5.3 we investigate the performance of this simple data fusion approach for

structured content+context-based search on PL collections. This allows us to examine
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the effect of allowing the PL owner form structured queries based on their recalled

content and context associated with required items, relative to content only query-

ing. Since we use BM25 for our content only based retrieval investigations in Chapter

5, in exploring structured content+context-based retrieval the BM25 term weighting

function is used in this simple data fusion approach shown in Equation 4.15.

4.2.2.2 Flat Content+Context Search

As highlighted in Section 4.1 structured search can limit the scope for the use of the

context of the query in so far as it requires explicit association of query terms with

specific fields. Flat search represents a more flexible alternative by enabling a searcher

to enter all content and context associated with required information in a single simple

flat query. This suggests that in the development of IR methods for PLs, we should

focus on the need to support effective search of multi-field items using simple flat

queries.

Given a simple flat query for search, the key research challenge is how to score the

individual fields individually or in combination to generate the most effective over-

all score for retrieval. This issue is analyzed in detail in [Ogilvie and Callan, 2003,

Robertson et al., 2004, Wilkinson, 1994]. The simplest approach to this is to index all

item fields as one field, hence reducing the collection to a single field collection on

which queries can be processed using a content only retrieval approach, such as the

VSM or BM25, described in Section 4.2.1. This approach acts as a flat query based

retrieval baseline for the PL retrieval investigations in Chapter 5. However, by reduc-

ing multi-field documents to single field documents the rich information in structured

documents is lost. For example, consider a news articles archive with fields such as

content, title, author and a query looking for articles on a given topic by a given au-

thor. The presence of the queried for author field of a structured document would help

narrow the search space, however in a flat document this author information is essen-

tially lost, or not deemed as significant, amongst the many terms that are in the flat

representation of the document. Similarly, the significance of terms in a document’s

title field will be lost when a structured document is converted to a flat representation.

Hence, it is desirable to maintain the structure of documents.

Much of the research exploring the challenge of retrieval from structured documents
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using flat queries has focused on using content only retrieval algorithms (described

in Section 4.2.1) to determine field weights (where each field is queried against all

the terms in the flat query) and then using various approaches to combine the indi-

vidual field scores [Chowdhury et al., 2003, Savoy and Rasolofo, 2003, Xu et al., 2003],

the simplest of these being the linear sum of individual field scores, described in

the context of structured queries in Section 4.2.2.1. However, as highlighted in

[Robertson et al., 2004] for flat queries simple data fusion of multi-field document ap-

proaches suffers a number of weaknesses3. In particular, linearly combining scores

across fields can lead to a great over-estimation of the importance of terms occur-

ring in multiple fields at the expense of a term occurring in only one field. They also

highlight that careful exploitation of field structure is important for optimal retrieval

performance. Their proposed solution, BM25F, is to weight terms at the field level

and linearly combine these weights. This overall term weight is then applied to the

BM25 saturating function. In subsequent work, they refined their BM25F term scoring

approach to also consider field length at the term scoring level [Zaragoza et al., 2004],

to account for fields of extremely different length, e.g. title and content fields. The

BM25F term scoring approach [Zaragoza et al., 2004] for calculating the weight w̄t,d of

term t in document d is presented in Equation 4.16. The term weight w̄t,d is applied to

the BM25 saturating function, presented in Equation 4.17.

w̄t,d =
∑
f∈d

tfd,f,t · wf

((1− bf ) + bf ·
lf

avlf
)

(4.16)

where,

tfd,f,t is the frequency of term t in field f of document d.

lf is the length of f in d.

avlf is the average length of field f.

wf is the field weight assigned to f.

bf is a length normalising parameter for f.

3This makes no claim as to the utility, or lack there of, of using a simple data fusion approach for
structured queries.
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ms(q, d) =
∑

t∈q∩d

w̄t,d

k1 + w̄t,d
· idf(t) (4.17)

where,

k1 is a saturating parameter.

idf(t) = log N−df(t)+0.5
df(t)+0.5 in the BM25F implementation [Robertson et al., 2004,

Zaragoza et al., 2004], where N is the number of documents in the collection,

df(t) is the number of documents containing term t. Of course other approaches

can be used to calculate the idf, as discussed in Section 4.2.1.

BM25F provides a simple but effective state-of-the-art solution to flat querying on

multi-field documents, and we investigate its utility in PL retrieval in Chapter 5.4.

However, it should be noted that BM25F was developed for flat querying on col-

lections where query terms may match any number of fields, e.g. abstract, ti-

tle and main body of text fields, and that its utility was shown for web retrieval

[Zaragoza et al., 2004] and email content retrieval, combined with other query inde-

pendent measures [Craswell et al., 2005b]. Our multi-field lifelog collections are dif-

ferent in that the fields from a querying point of view are independent of each other in

that different fields do not have common meaning (with the exception of the title and

content fields). Mapping of query terms to their target field may therefore be impor-

tant in flat content+context retrieval approaches for the lifelogging domain. In related

work Kim et al [Kim et al., 2009, Kim and Croft, 2009] argue that the importance of

individual terms to individual fields should be captured in the term’s weight when

searching semi-structured documents. Clearly an approach using structured queries

where the user enters search terms for fields separately represents one extreme where

the term is only searched for in this field and its presence in other fields makes no

contribution to the score. However, as noted previously users generally prefer to en-

ter simple flat queries, which while they know the expected importance of terms to

fields, e.g. the name of a place in the location field, this is not captured in a flat query.

In their work Kim et al [Kim et al., 2009, Kim and Croft, 2009] explore the mapping

of flat query terms to semi-structured movie database and desktop collections, where

fields from a querying view point have separate meaning. Their retrieval technique for

known-item desktop search uses the content field, context fields related to the content
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of the item (specifically title and abstract), and item specific context data (specifically

to, from, URL and modified date). The focus of their investigations was how to com-

bine fields for scoring within the language modelling IR framework. They found ben-

eficial, a term scoring adaptation which weights the term score for each field according

to the frequency of the term in the given field relative to its frequency across all fields

in the document, with the expectation that this maps query terms to their target field.

In so doing, they form a type of structured query where the presence of a query term is

treated individually for each field. This process is referred to in the literature as query

transformation [Croft, 2009], and is attractive since it introduces some of the strengths

of structured queries, by mapping query terms to their target fields, without requiring

users to understand or engage in the process of creating such queries. In Chapter 5.5

we examine the application of Kim et al’s [Kim et al., 2009, Kim and Croft, 2009] query

transformation approach to PL retrieval, and based on the findings of this study de-

velop a novel approach to query transformation for PL retrieval.

4.2.3 Integrating Query Independent Evidence

To assist with item scoring in query driven retrieval, query independent evidence of

item importance is sometimes considered. Query independent evidence (static scores)

provides an indicator of the importance of a document in the collection as a whole

(discussed in Chapter 2.3). Various approaches can be used for integrating static scores

with query dependent scores.

Past research has investigated using static scores to re-rank the output of query driven

result lists, whereby the static scores contribute to or determine the ordering of items

in a result list. Examples here include, the desktop space where query driven result

lists for desktop search are re-ranked using static link scores [Soules and Ganger, 2005,

Soules, 2006], and web search where static features of web pages are used to contribute

to the re-ranking of content-based search [Cai et al., 2004, Upstill et al., 2003].

In other work static scores are combined with query dependent scores. Chirita

et al [Chirita, 2007] multiply various static scores in the desktop search space by

query driven retrieval scores calculated using a tf×idf approach. Kraaij et al

[Kraaij et al., 2002] also multiply static scores by query driven retrieval scores (calcu-

lated using language modelling approach) in the web space. Multiplying static scores

83



by query driven scores results in items with high importance in the collection (de-

tected through static scores) and high match with the user’s query (detected through

query driven scores) being moved to the top of result lists.

Others use a linear combination of query dependent scores and static scores, which re-

sults in boosting items query dependent scores by a factor which reflects their impor-

tance in the collection as a whole. In this linear approach either raw static scores can be

used (e.g. [Kang and Kim, 2003]) or non-linear transformations of the static scores, e.g.

the log of static scores [Upstill, 2004]. A particularly promising approach for calculat-

ing non-linear transformations of static scores is presented in [Craswell et al., 2005a]

where a sigmoid functional form is used to transform PageRank scores, link indegree,

ClickDistance and URL length into static scores.

w · Sa

ka + Sa
(4.18)

w · ka

ka + Sa
(4.19)

This transformation is shown in Equations 4.18 and 4.19, where S is the raw static

score and w, k and a are tuneable parameters. Equation 4.18 is used to transform

static relevance scores for features where higher values indicate greater importance

(e.g. PageRank). Equation 4.19 is used to transform static relevance scores for features

where lower values indicate greater importance (e.g. ClickDistance on the web). In

Chapter 7 we investigate the use of these and other transformations to convert biomet-

ric response into a static score for linear combination with a query dependent score in

PL retrieval.

4.3 Created Test Sets and Test Cases for Ranked Retrieval

Technique Development

In order to explore ranked retrieval techniques for the textual data in PL collections

we indexed the textual data and associated context data in our three subjects lifelog

databases and each subject created test cases (i.e. queries and target result items) for

their collection. In the next section we describe the indexing process used to create
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our test sets. In Section 4.3.2 we describe the process used to generate the test cases

and provide an analysis of the generated test cases. These test sets and test cases are

used in our ranked retrieval technique investigations presented in Chapters 5 and 7.

4.3.1 Textual Test Set Indexing

In order to facilitate investigation of ranked retrieval techniques, presented in Chapter

5, on the textual items in our 3 subjects lifelog test sets, described in Chapter 3, we

indexed the SMS messages, computer file, email and webpage accesses and associated

context data (i.e., extension type; path to file; URL (for web pages only); to/from

(for SMS messages and emails only); year; season; month; day of week; weekday

or weekend; beginning of week, mid-week or end week; part of day (i.e., morning,

afternoon, evening and night); begin date and time; end date and time; device (e.g.,

laptop, mobile phone); light status (i.e. daylight and dark); weather; geo-location;

and people present) in each subjects collection. These we call the 20 month indexes.

To facilitate the ranked retrieval approaches with static biometric scores investigated

in Chapter 7, we also created indexes consisting of the SMS message, computer file,

email and webpage accesses and associated context data4 from the biometric month

(described in Chapter 3.4) in subjects’ collections. These we refer to as the biometric

month indexes. In this section we describe how the 20 month and biometric month

indexes were generated.

4.3.1.1 Indexing the Collections

Lucene5, an open source search engine, was used to index SMS messages and com-

puter item accesses and their associated context data into different fields (e.g. day

of week field). We also included in these indexes an additional field consisting of all

content+context associated with the item access6. Table 4.1 shows the complete set of

fields included for each item access in our indexes.

Prior to indexing, the StandardAnalyzer built into Lucene was used to parse the con-

4Note: biometric data is not included in the indexes. As we will see in Chapter 7, biometric data is
used as a query independent measure and is read directly from subjects lifelog database biometrics table
(this database table was described in Chapter 3.2).

5http://lucene.apache.org/java/docs/ (September 2011)
6As we will see in Chapter 5, this field is required to investigate flat querying using BM25.The reader

is referred back to Section 4.2.2.2 for full details on flat querying using BM25.
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Item ID Item content
Title (i.e., computer filename, Extension Type
email subject, webpage title)
Path to File URL
To (for emails & SMS messages only) From (for emails & SMS messages only)
Begin Date Begin Time
End Date End Time
Year Season
Month Day of Week
Weekday or Weekend Part of Week (i.e., begin week,

midweek, end week)
Part of Day device
Geo-Location Light Status
Weather People Present
Item content + all above context fields

Table 4.1: List of fields indexed for each textual lifelog item access.

tent and context fields. The StandardAnalyzer tokenizes text based on a sophisticated

grammar that recognises email address, acronyms, alphanumeric and more; converts

to lowercase, and removes stopwords using it’s inbuilt stopword list. It was neces-

sary for us to parse all fields using this approach, since in the flat ranked retrieval

investigations presented in Chapter 5 we have no way of knowing which field each

query term corresponds to and hence we parse all query terms using Lucene’s Stan-

dardAnalyzer. That is, since all terms/fields in a query are tokenized, converted to

lowercase and stop words removed, for consistency we also performed the same op-

erations on all fields in the indexes. The terms in many collections are also stemmed

as part of the indexing process. However, we found stemming our collections re-

sulted in overall inferior retrieval performance; hence we did not stem the terms in

our collections. We examined retrieval performance on the stemmed and unstemmed

collections using the biometric month indexes and corresponding test sets (described

later in this Chapter in Section 4.3.2.3). The PorterStemmerAnalyzer built into Lucene,

which stems the text that has passed through Lucene’s StandardAnalyzer was used to

stem the content and context fields of the queries and indexes. In this examination

we compared average precision (AveP), precision after 5 documents retrieved (P@5)

and precision after 10 documents retrieved (P@10) on the stemmed and unstemmed

collections using each of the retrieval approaches that will be investigated in Chapter

5. The resulting decrease in performance observed using the stemmed collections is

likely due to the loss of the context of some searches. For example, taking ’computers’

as a content field query term, in a stemmed collection this would also match the query
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terms ’compute’ and ’computing’. Stemming would also decrease the distinguishing

power, in flat queries, of context query terms. For example, given a flat query con-

taining the term ’web’ intended for the extension type context field, in a stemmed

collection this query term would incorrectly match occurrences of the term ’web’ and

’webs’ in the content field of items. Whereas in an unstemmed collection it would

only incorrectly match occurrences of the term ’web’.

Since we wished to explore the use of BM25 and BM25F in lifelog retrieval, our indexes

needed to store the average length of fields (see Sections 4.2.1.1 and 4.2.2.2 for the use

of average field length in BM25 and BM25F). However, standard Lucene does not sup-

port the BM25 and BM25F retrieval algorithms, and therefore does not store the aver-

age length of fields. Hence during the indexing process we stored the average length

of each field in a structured text document using the CollectionSimilarityIndexer pro-

vided with the open source BM25&BM25F Lucene library [Pérez-Iglesias et al., 2009].

We then also used this open source library when investigating the use of BM25 and

BM25F in content+context-based lifelog retrieval, described in Chapter 5.

The BM25 implementation in this library did not include the multiplication of the

term weight by the (k1+1) parameter. This parameter is used to normalize the weight

of query terms with frequency of 1 in average length fields, hence we edited this BM25

implementation to include this (k1+1) parameter. The resulting BM25 implementation

is shown in Equation 4.12. The BM25F implementation provided with the library is

that shown in Equation 4.17.

4.3.2 Textual Test Case Creation

As highlighted in Chapter 2.4 test case creation in the lifelogging domain is challeng-

ing due to the personal nature of lifelogs, and the need for test case creation to at-

tempt to mimic the ‘real’ re-finding requirements of individuals, and details that they

are likely to recall about required items as closely as possible. Hence, in generating

test cases for our experiments we first asked our lifelog owners to list search tasks

they would be likely to perform on their collections and the content+context they re-

called for the required items. This process is described in the next section. We then

asked subjects to indicate the items from their collections which were relevant for

these search tasks, described in Section 4.3.2.2. Using this approach we believe we are
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obtaining a realistic approximation to ‘real’ re-finding requirements of lifelog owners,

a good spread of the type of search tasks they may perform on their collections and

the content and context they recalled about these items at a given moment in time.

These test cases are used in our ranked retrieval investigations presented in Chapter

5. We also used a subset of these test cases, described in Section 4.3.2.3, to examine

the utility of our biometric static scoring functions, presented in Chapter 7. A detailed

breakdown of the generated test cases is provided in Section 4.3.2.4.

4.3.2.1 Query Generation

The following procedure was used to generate 100 search tasks and content+context-

based queries for these tasks for each of our 3 test subjects:

1. Half way through the lifelog collection build up process subjects were provided

with an excel form containing a field to enter retrieval tasks they might want to

perform in the future from their lifelogs and several fields to enter query terms

associated with the retrieval tasks. Subjects were instructed to complete the pro-

vided form, in their own time, by listing 50 retrieval tasks they might want to

perform in the future from their lifelogs and keywords and recalled context as-

sociated with the tasks. Further details on the provided form and instructions

given to subjects follow.

(a) Listing retrieval tasks: Subjects were aware of the reason for listing retrieval

tasks and informed that there was no restriction on the type of retrieval

tasks that they could list, but that they should be tasks they imagined they

might have a need or desire to perform in the future. Subjects were also in-

formed that the item types available for retrieval were computer files, web

pages viewed, emails sent or received, and SMS messages sent or received

during the lifelogging period, and that where possible examples of each of

these item types should be included in the list of 50 tasks. Sample retrieval

tasks were provided and a list of some possible general topics for task for-

mation. This list of topics were for our research student subjects, details

related to a conference attended or trip taken, papers written or read, de-

tails related to development work. Subjects managed to freely recall 35-40

retrieval tasks. To complete the list of 50 retrieval tasks subjects were then
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free to browse their computer folder structure to ‘jog their memories’ on the

type of activities they had engaged in during the lifelogging period, follow-

ing which they were able to complete the list of 50 retrieval tasks. Typical

retrieval tasks generated by subjects were: ‘show me documents I created

associated with conference X’, ‘show me SMS messages on topic Y’.

(b) Entering query terms: The provided Excel form contained, in addition to

a field to list task descriptions in, the following fields: content keywords;

title keywords; extension type(s); file location; date(s); time(s); year(s); sea-

son(s); month(s); day(s) of week; part(s) of week; part(s) of day; light status;

people present; device; weather; geo-location. A sample completed entry

was provided in the form along with details on the context types associ-

ated with each context field. Subjects were also free to ask the investigator

questions about the form. Subjects were instructed to enter keywords and

remembered context, e.g. extension type, associated with the retrieval sce-

nario into the provided form.

2. Subjects returned the completed Excel form (minus the task descriptions for pri-

vacy reasons) to the investigator, who manually transformed the query terms

(i.e. the recalled content and context) into the format required for querying, for

example extension type ’word documents’ and ’doc’ were changed to the ex-

tension type ’word’. In the future, such mappings of written query text could

be automatically transformed to the required format, however automatic query

transformation extended beyond the scope of our current work. Transformed

queries were assigned unique IDs and stored in a structured table in subjects’

lifelog databases, for use by the ranked retrieval experiments described in Chap-

ters 5 and 7.

3. At the end of the lifelog collection build up process an additional 50 retrieval

tasks and queries were generated for each subject’s lifelog using the process de-

scribed in steps 1-3 above.

Queries generated by subjects included:

• Content: java regular expressions, Title: java regular expressions, Year: 2009,

Extension: web, Month: October, Season: Autumn, Part of Week: Weekday, Part
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of Day: morning afternoon, Light Status: daylight, Device: laptop, Geo-location:

Dublin.

• Content: transfer report, Extension: word, Month: July August October, Season:

Summer Autumn, Location: Dublin, Device: PC, Year: 2008.

• Content: elsweiler, Extension: pdf, Location: Dublin, Year: 2009.

• Content: virtual memory eclipse java IDE, Extension: web, Month: November

December, Season: Winter, Location: Dublin, Device: laptop, Year: 2008.

• Content: examples csvreader java, Extension: text web, Month: August Septem-

ber December, Year: 2008.

• Content: lifelogging, Extension: web, Year: 2008.

4.3.2.2 Result Set Generation

In this section we describe the means by which we created lists of relevant items for

the user queries created in the previous section.

Using the generated queries described in the previous section, pooled result lists

were created by entering content only, context only, content+extension type, and con-

tent+context query types into each subject’s 20 month test set indexes (these indexes

were described in Section 4.3.1) using two standard retrieval systems: the vector space

model (VSM) and BM25 (see Section 4.2.1 for full details on VSM and BM25), to re-

trieve as many relevant items from subjects’ collections as possible. As is standard

in IR experiments in the TREC tradition, the top 1000 results were taken in each case.

The Lucene implementation of the VSM7 and an open source implementation of BM25

for Lucene8 were used to process these queries. Queries were parsed using Lucene’s

StandardAnalyzer, described in the previous section’s index creation process. Queries

combining content and context were straightforward concatenations of the content

data score with the individual context types scores (see Section 4.2.2.1 for full de-

tails on this retrieval approach). The results from each of the BM25 and VSM content

and/or context retrieval techniques were pooled and the top 500 pooled results for

7See http://lucene.apache.org/java/2 3 0/api/core/index.html (September 2011) for full details on
the Lucene implementation of VSM.

8See [Pérez-Iglesias et al., 2009] for full details on this implementation of BM25
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each query presented to the relevant subject for relevance judgment. A binary rele-

vance judgement was used, i.e., 0 = irrelevant; 1 = relevant. These were recorded in an

Excel form which contained an entry for each query, the retrieval scenario followed by

the title, contents, file path/URL, to/from information (for emails and SMS messages)

and extension type of the items to be judged as relevant or irrelevant to the retrieval

scenario/query. The items rated as relevant for each query by the subject formed the

result set for their queries. As will be seen in the ranked retrieval experiment in Chap-

ters 5 and 7, TrecEval for Windows OS9 was used to examine retrieval performance.

TrecEval requires the subject’s result set to be stored in a structured text file. Details

stored include the query IDs and the unique IDs of relevant items for the queries. Our

subjects result sets were written to files structured in the manner required by TrecEval.

4.3.2.3 Biometric One Month Test Cases

In order to examine the utility of our biometric static scoring functions, presented in

Chapter 7, it was necessary to generate test cases for the biometric month test set. The

result set for the queries used needed to be items which were accessed during the

biometric response capture month, in order to allow us examine the impact of adding

static scores to these items. Hence, we used the subsets of each subject’s 100 test

cases which contained relevant items occurring during the biometric capture month.

That is, our biometric one month test cases consisted of the queries which contained

relevant items occurring during the biometric capture month, and the result sets for

these queries were the relevant items for the queries which were accessed during the

biometric capture month. Subject 1 had 22 such test cases, Subject 2 had 8 and Subject

3 had 36. These test cases and the biometric month test set are used for retrieval

algorithm parameter tuning, described in Chapter 5.2.

4.3.2.4 Test Case Contents Analysis

Table 4.2 shows the total number of relevant items across the 100 queries for each

subject’s test cases and the average number of relevant items per query. As can be

seen the total number of relevant items across the 100 queries in these test cases, was:

for Subject 1 942 items; for Subject 2 244 items; and for Subject 3 3,067 items. This

9http://www2.sims.berkeley.edu/academics/courses/is240/s05/trec eval.zip (September 2011)
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Subject 1 Subject 2 Subject 3
Rel Items 942 244 3,067
Ave 9.42 2.44 30.67

Table 4.2: Total number of relevant items (Rel Items) per subject across the 100 test
case queries and average number of relevant items per query (Ave).

Subject 1 Subject 2 Subject 3
Rel Items 154 69 560
Ave 7 9.86 15.56

Table 4.3: Total number of relevant items (Rel Items) per subject across the biometric
month test case queries and average number of relevant items per biometric month
query (Ave).

corresponds to an average of 9.42 relevant items per query for Subject 1, an average

of 2.44 relevant items per query for Subject 2 and an average of 30.67 relevant items

per query for Subject 3. The particularly high average of relevant items for Subject 3 is

explained by the fact that this subject performed very broad searches, for example ’I’m

looking for all code files on topic X’, ’I’m looking for all details related to a conference I

attended’. Comparatively Subjects 1 and 2 performed much narrower searches, hence

the lower average observed for these subjects. Of the queries generated by subjects,

10 of Subject 1’s, 21 of Subject 2’s and 3 of Subject 3’s were targeted at retrieving only

one relevant item. Subjects’ remaining queries were targeted at retrieving multiple

relevant items.

Table 4.3 shows the total number of relevant items across the queries in the subjects’

biometric month test cases and the average number of relevant items for these queries.

As can be seen the total number of relevant items across the biometric month queries

was: for Subject 1 154 items; for Subject 2 69 items; and for Subject 3 560 items. The

average number of relevant items occurring across these tasks during the biometric

month was 7 for Subject 1, 9.86 for Subject 2 and 15.56 for Subject 3. The lower av-

erages observed here for Subjects 1 and 3 relative to those observed on the 100 test

cases is explained by the fact that not all relevant items associated with queries oc-

curred during the biometric month (recall, we are only using the relevant items for

queries which were accessed in the biometric month in our biometric month result

sets, as described in the previous section). The higher average observed for Subject

2 is caused by one query which had a relatively large number of relevant items, a

lot of which were accessed in the biometric month. While these biometric month test

cases are small, given the difficulties in generating test cases in the lifelogging do-
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Subject 1 Subject 2 Subject 3
Num Ave Num Ave Num Ave

content keywords 99 7.59 96 3.08 99 5.27
title 61 2.08 15 1.67 23 3.52
extension 98 1.47 99 1.16 98 2.14
date 0 0.00 22 1.00 37 1.00
month 76 2.68 83 1.31 86 1.73
season 83 1.55 95 1.09 57 1.30
dayOfWeek 9 2.56 6 1.17 13 2.15
partOfWeek 25 1.00 54 1.00 6 1.33
partOfWeek1 4 1.00 3 1.00 10 1.30
partOfDay 31 1.68 31 1.03 15 1.73
timeRange 4 1.00 7 1.00 1 1.00
lightstatus 35 1.17 6 1.00 8 1.25
peoplePresent 16 1.63 17 1.35 34 1.44
region 76 1.41 94 1.09 93 1.13
weather 3 1.00 9 1.33 1 1.00
from 9 1.00 9 1.00 19 1.84
to 0 0.00 2 1.00 19 1.84
device 77 1.32 71 1.00 94 1.41
year 100 1.00 100 1.00 100 1.00
country 0 0.00 1 1.00 12 1.00

Table 4.4: Number of fields containing query terms (Num) and average number of
terms per query field (Ave) for each subject across their 100 queries.

Extension code dat email excel pdf powerpoint SMS tex text web word
Subject 1 6 2 10 6 16 10 2 13 14 38 26
Subject 2 6 0 15 0 25 8 9 0 0 31 21
Subject 3 15 0 61 2 40 5 11 0 3 43 30

Table 4.5: Number of uses of extension types in queries per subject. Note the code
extension type is an aggregate of the different code extensions searched for (e.g., java,
mxml).

main, described in Chapter 2.4, they provide means for us to explore the use of static

biometric scores in lifelog retrieval and means for us to compare different static scor-

ing approaches, in Chapter 7, using ‘real’ user target items and recalled content and

context associated with these items.

Tables 4.4 and 4.5 show the breakdown of the subjects’ 100 queries. Specifically, Table

4.4 presents the number of queries that each context type was used in and the average

number of query terms used in each field by each of our 3 subjects, and Table 4.5

presents the number of queries that each extension type was used in. These tables

provide an insight into the use of context data in querying by subjects, which will

be important when we move on to investigate retrieval algorithms for the lifelogging

domain in Chapter 5. We return to these tables in Chapter 5 when we are analysing

retrieval performance using different context types. For now we provide an overview
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of the makeup of users queries exhibited through the statistics in these tables.

As can be seen in Table 4.4 different recall processes are exhibited by the subjects with

differing importance levels being placed on various context types. Subject 1 exhibits

longer text searches relative to the other subjects. This subject also makes far greater

use of the facility to search based on title (recall that title is the filename of computer

files, the subject of emails, and the title of web pages). In contrast Subject 2 uses the

least number of words to form queries and makes the least use of titles in the querying

process. Subject 3 performs the broadest searches, evidence for this is shown in the

larger number of extension types used per query. This is also shown in the query types

performed by this subject, queries for all travel information associated with attending

a conference for example, as opposed to a query for hotel information for a location

visited in the past. This subject also makes greater use of date ranges and of the device

field in their queries than the other subjects. Light status is most used by Subject 1.

Season, part of week, time range and weather are recalled more by Subject 2. Full

path to files and URLs were not recalled by subjects and hence are not included here.

For the remainder of this thesis the use of the term ‘context data’ refers to all the

context types listed in Table 4.4. These findings show that different types of context

data will be more or less important for different subjects in the retrieval process, but

also show the important role context data plays in subjects’ recall of items required

from their lifelogs. However, it should be noted that the volumes of recalled context

data was not distributed evenly across queries. Some queries had very little associated

context data (e.g., extension type and year only, extension type, year and month range

of previous access only), while others had several rich sources of recalled context.

Further, it should be noted that the nature of the query generation process described in

Section 4.3.2.1 prompts subjects to enter the context types used in our investigations.

In a flat querying approach, where individuals are not provided with context type

prompts the same volume of context data might not be recalled.

As can be seen in Table 4.5, Subject 3 has a greater number of multi-type queries than

the other subjects. Overall this subject queried for emails and PDFs to a far greater

extent than the other subjects. Subject 1 performed the greatest number of queries for

textual items authored by themself relative to the other subjects. Subject 3 carried out

the greatest number of searches for code. Items which show interaction with others,

namely SMS messages and emails are least searched for by Subject 1, while Subject
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3 shows greatest amount of search for these types of items particularly in the case of

emails. These observations give us insight into the item types queried for by sub-

jects. Given the varying volumes of different information types in subjects’ collections

(shown in Chapter 3.4), different item types will be more or less useful in narrowing

the search space in the retrieval process, for example we imagine that use of the ex-

tension type pdf will provide greater utility in narrowing the search space than use of

extension type web (given the volumes of these item types which we saw to be present

in subjects collections in Chapter 3.4).

4.4 Conclusions

Search of semi-structured lifelogs has similarities to both web search and standard

desktop search. However, PLs have a greater number of more diverse fields available

than seen in either of these scenarios. Also, as discussed in Chapter 3, real PL collec-

tions are likely to have large amounts of missing data arising from various sources

including equipment and software failure during data gathering. In this chapter we

overviewed existing retrieval techniques of interest to this research. In the next chap-

ter we investigate the use of both structured and flat content+context retrieval algo-

rithms in the lifelogging domain using our created 20 month textual test sets and test

cases. Following this, in Chapter 6, we explore the potential utility of biometric re-

sponse as an indicator of lifelog item importance, before moving on to investigate the

potential utility of integrating biometric response as a static score into ranked retrieval

algorithms using our biometric month test collections.
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Part III

Experimentation



CHAPTER

FIVE

Queried

Content-and-Context-Based

Retrieval Algorithms for the

Lifelogging Domain

Chapter Overview: In this chapter we investigate the utility of recalled

content and context types in lifelog retrieval and various approaches to

integrate recalled context with recalled content in retrieval algorithms.

We first describe the setup of our experiments to investigate the role of

recalled context data and various content+context retrieval algorithms

in lifelog retrieval. Following this we present and analyse the results

of structured content only and content+context retrieval algorithms us-

ing BM25, flat content+context retrieval algorithms using both BM25 and

BM25F. We then explore developing novel extensions to BM25F for flat

content+context querying in the lifelogging domain and present the results

of this investigation.
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5.1 Introduction

As highlighted in Chapter 1.1, items in PLs are personal to the individual PL owner,

in that they have been created or obtained by the individual or represent one of their

life experiences. Since this is the case, the individual will often have personal experi-

ences and memories associated with the items in their archive. This means that items

for retrieval from a PL consist of the item itself, e.g. a document or SMS message,

and possibly available associated context information, e.g. the time and date when a

document was viewed or the location from which an SMS message was sent. We seek

to explore if there is benefit in allowing individuals query based on recalled context

data associated with required lifelog items and the types of context data which might

prove most beneficial in this process. However, content only search is a valid possi-

bility to support PL search, and adding context to search (beyond filtering) might not

improve retrieval performance. Content only based retrieval therefore forms a base-

line for PL search. We hypothesise that including recalled context with content in the

retrieval process will improve content-based retrieval. In this chapter we explore this

hypothesis.

In integrating recalled context into the retrieval process it is not clear how best these

multi-field semistructured documents should most effectively be scored for retrieval.

Additionally, users of existing search engines show a strong preference for enter-

ing simple single field queries. This suggests that in the development of IR meth-

ods for PLs, we should examine methods to support effective search using sim-

ple flat queries. PL data and the preference for simple queries has strong similari-

ties to the type of semi-structured data considered for retrieval in [Kim et al., 2009,

Kim and Croft, 2009], as discussed in Chapter 4.2.2.2.

In this chapter we investigate the use of the textual content of items combined with

multiple context fields in PL retrieval. BM25 content only retrieval (see Chapter 4.2.1.1

for details) is used as a baseline for this investigation. For field combination we ap-

ply BM25 [S. E. Robertson and S. Jones, 1994] (see Chapter 4.2.1.1 for details) to struc-

tured queries and also explore its utility across flat collections (see Chapter 4.2.2.2 for

details). We also apply BM25F [Robertson et al., 2004] (see Chapter 4.2.2.2 for details)

to flat content+context queries for field combination, and various novel extensions

of BM25F based on the characteristics of the fields of PL items and the findings of
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[Kim and Croft, 2009] (see Chapter 4.2.2.2 for details). The experimental procedure is

presented in the next section. BM25 in PL fielded retrieval is investigated in Section

5.3. The retrieval effectiveness of BM25 and BM25F for flat querying is described in

Section 5.4. Section 5.5 focuses on our novel extensions to BM25F for PL retrieval.

Finally, in Section 5.6 we conclude the chapter.

5.2 Experiment Procedure

In this section we describe the setup of our experimental studies to examine perfor-

mance of content only retrieval on PL collections. Content only retrieval then acts as

our baseline to explore: (1) the role of recalled context data in lifelog retrieval; (2) the

performance of existing structured and flat content+context retrieval approaches on

PL collections; and (3) novel flat content+context retrieval approaches which we de-

veloped for the lifelogging domain. For simplicity we describe the setup of all these

experiments in this section. Further details on the rational for conducting each indi-

vidual investigation are provided in the description of each investigation later in this

chapter.

Existing Querying Approach Selection

As we saw in Chapter 4.3.2.2 queries consisting of various combinations of content

and context were used to obtain pooled result lists for subjects to rate, using both

the vector space model (VSM) and BM25. Looking at the result lists generated using

the VSM and those generated using BM25, we found that using BM25 retrieved more

relevant results at top rank than when using the VSM. Given this observation and

since BM25 forms a solid well proven retrieval approach, BM25 is used as the content

only querying baseline (described in Chapter 4.2.1.1 and shown in Chapter 4 Equation

4.12) and for structured content+context querying (described in Chapter 4.2.2.1 and

shown in Chapter 4 Equation 4.15). We also use BM25 on flat queries where all item

fields are indexed as one field, hence reducing the collection to a single field collection

(described in Chapter 4.2.2.2). For simplicity, in this chapter we refer to this approach

as flatBM25. This acts as a flat query based retrieval baseline. The performance of

BM25F (described in Chapter 4.2.2.2 and shown in Equation 4.17) on flat queries is

also examined, since it is a state-of-the-art flat query retrieval approach.

Code Base

99



Standard Lucene1, an open source search engine, and an open source library contain-

ing BM25 and BM25F implementations for Lucene [Pérez-Iglesias et al., 2009] were

used in our investigations, and are described in Chapter 4.3.1.1. We edited the li-

braries BM25F implementation to include our novel extensions to BM25F described in

this chapter (Section 5.5).

Test Collection

Our generated indexes of the textual data in our 3 subjects 20 month lifelogs, described

in Chapter 4.3.1, and the 100 queries and result sets generated by each subject, de-

scribed in Chapter 4.3.2, were used in these experiments. Since the textual test set was

parsed using the StandardAnalyzer built into Lucene, user content+context queries

were also parsed using this StandardAnalyzer. Details of this process and Analyzer

are available in the description of the test set indexing process in Chapter 4.3.1.

Parameter Tuning

FlatBM25 parameters and both BM25 and BM25F field weights and parameters were

manually tuned using a one month subset (the biometric month test set index, de-

scribed in Chapter 4.3.1) of the subjects’ 20 month test sets and the test cases for which

relevant items occurred during this one month period (the biometric month test cases,

described in Chapter 4.3.2.3). To determine the best settings in the tunings we used

average precision, precision after 5 documents retrieved (P@5) and precision after 10

documents retrieved (P@10). The absolute parameter values may vary depending on

the order they are optimized in, but variation on retrieval performance should be min-

imal. Exhaustive testing of all possible combinations was not feasible. We adopted the

following parameter tuning approach.

The BM25 b and k1 parameters were tuned for flatBM25 based retrieval by setting the b

parameter to 1 and tuning the k1 parameter to give overall best retrieval performance

across the 3 subjects. With the k1 parameter set to it’s tuned value, the b parameter

was then tuned to give overall best retrieval performance across the 3 subjects. This

process resulted in the b parameter being tuned to a value of 0.8 and the k1 parameter

being tuned to 4.0.

In the case of BM25 parameter tuning for fielded retrieval, we first tuned the content

field’s parameters by not considering the other fields in the retrieval process. To do

1http://lucene.apache.org/java/docs/ (September 2011)
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this content field parameter tuning, the content field weight and b parameter were set

to 1 and the k1 parameter tuned to give overall best retrieval performance across the

3 subjects. The b parameter was then tuned to give overall best retrieval performance

across the 3 subjects by setting the weight to 1 and the k1 parameter to its tuned value.

Note, the content fields weight parameter (w) was not tuned at this point as more

than one field (i.e. more than the content field) needs to be considered in the retrieval

process to tune a field’s weight.

We then considered the title field combined with the content field in retrieval (i.e.

content+title retrieval), to allow us tune the title fields weight and parameters. In

tuning the title fields weight and parameters, we set the content field weight to 1 and

the b and k1 parameters to their tuned values. The procedure for tuning the title fields

parameters began by setting the title field weight and b parameter to 1 and tuning

the k1 parameter to give overall best retrieval performance across the 3 subjects. The

b parameter was then similarly tuned by setting the title fields weight to 1 and the

title fields k1 parameter to its tuned value. Finally, the weight was similarly tuned by

setting the title fields k1 and b parameters to their tuned values.

We then added the extension field to the content and title fields in retrieval (i.e. con-

tent+title+extension retrieval) and tuned the extension fields weight and parameters

using the same technique as that used for title field weight and parameter tuning.

All remaining fields weights and parameters were tuned using the same approach

as that used for the extension field, by iteratively adding these fields to the retrieval

process and tuning their weights and parameters. Having tuned all context fields

weights and parameters, we then tuned the content fields weight with it’s k1 and b

parameters set to their previously tuned values, and using all context fields and their

tuned parameters in the retrieval process, to give overall best retrieval performance.

The weight (w) assigned to each field when using BM25 with the corresponding k1

and b parameter tunings for each field is shown in Table 5.1. As can be seen in Table

5.1, with the exception of the content and title fields, all fields k1 and b parameters

were tuned to 1. This means that for fields of length 1 and average length of 1, at the

term scoring level, these fields’ term weights w(i,j) reduce to tf×idf with no document

length compensation.

To tune BM25F field weights and parameters we used a similar approach to that
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Field w k b
content 1 3 0.9
title 5 2 0.75
extension 0.5 1 1
year 0.01 1 1
month 0.1 1 1
date 0.2 1 1
time range 0.1 1 1
season 0.05 1 1
day of week 0.08 1 1
part of week 0.05 1 1
part of week 1 0.1 1 1
part of day 0.05 1 1
light status 0.01 1 1
from 0.3 1 1
to 0.3 1 1
device 0.05 1 1
people present 0.5 1 1
weather 0.3 1 1
region 0.1 1 1
country 0.1 1 1

Table 5.1: BM25 k, b and weight (w) parameter tuning for fields used in retrieval.

used for BM25 fields weights and parameters tuning. That is, in parameter tun-

ing, we first tuned using content only retrieval, then content+title retrieval, then

content+title+extension retrieval, etc. Given that the BM25F k1 parameter was

field independent, we re-tuned this parameter after each field tuning (i.e. k1 was

tuned for content only retrieval, and then retuned for content+title retrieval, con-

tent+title+extension retrieval, etc). The BM25F k1 parameter was tuned to 3.0. The

weight (wi) and bi parameter assigned to each field (i) when using BM25F are shown

in Table 5.2. As can be seen with the exception of the content field, each field’s b pa-

rameter was tuned to 1. This means that for the fields of length 1 and average length

1, the term score for the fields reduces to tf.

Choosing the Optimal IDF approach

As described in Chapter 4.2.1 various approaches can be used to calculate the idf score

used to weight query terms appearing in documents/fields. Having tuned parame-

ters using the ’default’ BM25 and BM25F idf calculating approaches (i.e. idf = log N
df(t)

in the case of BM25 [S. E. Robertson and S. Jones, 1994] and idf = log N−df(t)+0.5
df(t)+0.5 in the

case of BM25F [Zaragoza et al., 2004], presented in Chapter 4 Equations 4.8 and 4.10),

as described above, we then examined the retrieval performance obtained using each

of the idf approaches presented in Chapter 4 Equations 4.8 to 4.10 in the BM25 content,
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Field wi bi

content 0.2 0.9
title 4.0 1.0
extension 1.5 1.0
year 8.0 1.0
month 0.5 1.0
date 1.0 1.0
time range 0.2 1.0
season 1.0 1.0
day of week 0.01 1.0
part of week 3.0 1.0
part of week 1 1.0 1.0
part of day 1.0 1.0
light status 0.1 1.0
from 1.0 1.0
to 2.0 1.0
device 0.001 1.0
people present 1.0 1.0
weather 1.0 1.0
region 0.001 1.0
country 1.0 1.0

Table 5.2: BM25F bi and weight (wi) parameter tuning for fields used in retrieval. k1

parameter was tuned to 3.0.

BM25 content+context, flatBM25, BM25F and our extensions to BM25F retrieval algo-

rithms on our test collection. Use of the idf approach presented in Equation 4.8 (idf =

log N
df(t) ) in each of these retrieval algorithms gave overall best performance. Hence,

in this chapter we present the results obtained using this idf approach.

Evaluation Metrics

As is standard in IR experiments, the top 1000 results were taken in each case. Recall

that during the indexing process (described in Chapter 4.3.1), we index all accesses

to items to allow for retrieval based on details recalled about an access to an item. In

examining the utility of our retrieval approaches we then merge the result set. That is,

we only maintain the highest ranked occurrence of each item ID in the result set. The

rank of the relevant items in the (merged) result sets was noted. Average precision

(AveP), precision after 5 documents retrieved (P@5) and precision after 10 documents

retrieved (P@10) were investigated for BM25 content only retrieval, structured BM25

content+context retrieval, flatBM25 content+context retrieval, BM25F content+context

retrieval and retrieval performance on our modified versions of BM25F. These eval-

uation metrics were chosen since the majority of subjects’ queries were targeted at

retrieving multiple relevant items, as discussed in Chapter 4.3.2.4. TrecEval for Win-
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Technique Subject 1 Subject 2 Subject 3
AveP P@5 P@10 AveP P@5 P@10 AveP P@5 P@10

Content 0.230 0.228 0.193 0.149 0.098 0.084 0.404 0.508 0.457
C+C 0.314 0.281 0.235 0.177 0.102 0.091 0.459 0.575 0.521

(37%) (24%) (22%) (19%) (5%) (8%) (14%) (13%) (14%)

Table 5.3: BM25 content and content+context (C+C) retrieval results, using subjects’
20 month collection and full set of 100 queries, for average precision (AveP), P@5 and
P@10. Percentage improvement of BM25 C+C over the BM25 content only baseline
shown in brackets.

dows OS2 was used to calculate AveP, P@5 and P@10. Sections 5.3 - 5.5 present the

results of these experiments.

5.3 Investigation 1: Structured BM25 Content+Context-

Based Retrieval - The Utility of Recalled Context in

Lifelog Retrieval

In this section the utility of using recalled context data in lifelog retrieval is examined

on our 3 subjects’ PL collections. We take content only retrieval using BM25 as our

baseline and analyse the impact of using recalled context data for retrieval from each

subject’s collection by adding the queried context scores to the base content score (i.e.

each of the item’s context types were given appropriate weights and then summed).

Here a structured approach is used, whereby each context field is queried separately

using the recalled term(s) for that field. This retrieval algorithm is shown in Chapter

4 Equation 4.15. This approach acts as our content+context retrieval baseline for the

other content+context retrieval approaches which will be investigated in this chapter.

While the results observed on our 3 subjects collections cannot be generalised to the

wider populous, they do provide unique insights into querying using recalled context

data.

5.3.1 Results and Analysis

Table 5.3 presents the AveP, P@5 and P@10 results obtained using BM25 content only

retrieval and using BM25 content+context retrieval averaged across the 3 subjects.

P@5 and P@10 show how effective our techniques were at moving relevant items to-

2http://www2.sims.berkeley.edu/academics/courses/is240/s05/trec eval.zip (September 2011)
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Subject 1 Subject 2 Subject 3
content+ AveP P@5 P@10 AveP P@5 P@10 AveP P@5 P@10
content only 0.230 0.228 0.193 0.149 0.098 0.084 0.404 0.508 0.457
+context 0.314 0.281 0.235 0.177 0.102 0.091 0.459 0.575 0.521

+title 0.302 0.267 0.228 0.154 0.093 0.080 0.441 0.556 0.502
+extension 0.246 0.251 0.205 0.158 0.098 0.091 0.411 0.521 0.463
+date 0.230 0.228 0.193 0.161 0.098 0.084 0.408 0.515 0.460
+year 0.232 0.228 0.193 0.150 0.098 0.084 0.405 0.510 0.458
+season 0.230 0.228 0.193 0.150 0.098 0.087 0.404 0.508 0.459
+month 0.231 0.228 0.193 0.139 0.098 0.084 0.406 0.508 0.458
+part of week 0.231 0.228 0.193 0.150 0.098 0.087 0.404 0.508 0.457
+part of week1 0.231 0.228 0.193 0.150 0.098 0.087 0.404 0.508 0.457
+part of day 0.230 0.226 0.193 0.150 0.098 0.087 0.404 0.508 0.457
+lightstatus 0.231 0.228 0.193 0.150 0.098 0.087 0.404 0.508 0.457
+peoplepresent 0.231 0.228 0.193 0.150 0.098 0.087 0.405 0.515 0.458
+region 0.231 0.228 0.193 0.149 0.098 0.084 0.404 0.508 0.458
+country 0.230 0.228 0.193 0.150 0.098 0.087 0.404 0.508 0.457
+to 0.230 0.228 0.193 0.152 0.102 0.087 0.406 0.513 0.459
+from 0.231 0.228 0.193 0.155 0.102 0.089 0.406 0.513 0.458
+device 0.231 0.228 0.193 0.150 0.098 0.087 0.404 0.508 0.456
+timerange 0.231 0.228 0.193 0.150 0.098 0.087 0.404 0.508 0.457
+weather 0.231 0.228 0.193 0.150 0.098 0.087 0.404 0.508 0.457
+dayofweek 0.231 0.228 0.193 0.150 0.098 0.087 0.404 0.508 0.456

+title+extension 0.314 0.279 0.236 0.162 0.093 0.087 0.448 0.567 0.506
+all “date-time” 0.231 0.228 0.193 0.149 0.098 0.082 0.411 0.519 0.462
information
+region+country 0.231 0.228 0.193 0.149 0.098 0.084 0.404 0.508 0.458
+to+from 0.231 0.228 0.193 0.155 0.102 0.089 0.407 0.515 0.462

Table 5.4: Individual subjects’ results, on their 20 month collections using full set of
100 queries, for average precision (AveP), P@5 and P@10 by adding context types to
the content only retrieval baseline.

wards the top of the result lists. The percentage improvement over the content only

baseline for content+context retrieval averaged across the 3 subjects is also provided

in Table 5.3. As was expected, the addition of queried context data to content-based

queries improves retrieval performance in our subjects’ collections, since it helps dis-

ambiguate it with respect to the content field. Indeed it greatly improves overall per-

formance across the 3 subjects with 37%, 24% and 22% improvement in AveP, P@5

and P@10 respectively being observed for Subject 1, 19%, 5% and 8% improvement in

AveP, P@5 and P@10 for Subject 2 and 14%, 13% and 14% improvement in AveP, P@5

and P@10 for Subject 3, as shown in Table 5.3. This is a positive result for the use of

recalled context data in lifelog retrieval. While we cannot generalise to the entire pop-

ulous based on 3 subjects collections it does provide initial support for our research

hypothesis that allowing individuals to query based on their memories of the context
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Subject 1 Subject 2 Subject 3
content+ AveP P@5 P@10 AveP P@5 P@10 AveP P@5 P@10
+context 37% 24% 22% 19% 5% 8% 14% 13% 14%

+title 32% 17% 18% 3% -5% -5% 9% 9% 10%
+extension 7% 10% 6% 6% 0% 8% 2% 3% 1%
+date 0% 0% 0% 8% 0% 0% 1% 1% 1%
+year 1% 0% 0% 1% 0% 0% 0% 0% 0%
+season 0% 0% 0% 1% 0% 3% 0% 0% 1%
+month 1% 0% 0% -6% 0% 0% 0% 0% 0%
+part of week 1% 0% 0% 1% 0% 3% 0% 0% 0%
+part of week1 1% 0% 0% 1% 0% 3% 0% 0% 0%
+part of day 0% -1% 0% 1% 0% 3% 0% 0% 0%
+lightstatus 1% 0% 0% 1% 0% 3% 0% 0% 0%
+peoplepresent 1% 0% 0% 1% 0% 3% 0% 1% 0%
+region 1% 0% 0% 0% 0% 0% 0% 0% 0%
+country 0% 0% 0% 1% 0% 3% 0% 0% 0%
+to 0% 0% 0% 2% 5% 3% 1% 1% 1%
+from 1% 0% 0% 4% 5% 5% 1% 1% 0%
+device 1% 0% 0% 1% 0% 3% 0% 0% 0%
+timerange 1% 0% 0% 1% 0% 3% 0% 0% 0%
+weather 1% 0% 0% 1% 0% 3% 0% 0% 0%
+dayofweek 1% 0% 0% 1% 0% 3% 0% 0% 0%

+title+extension 37% 23% 22% 9% -5% 3% 11% 12% 11%
+all “date-time” 1% 0% 0% 0% 0% -3% 2% 2% 1%
information
+region+country 1% 0% 0% 0% 0% 0% 0% 0% 0%
+to+from 1% 0% 0% 4% 5% 5% 1% 1% 1%

Table 5.5: Subjects’ percentage improvement, rounded to nearest whole number, on
their 20 month collections using full set of 100 queries, for average precision (AveP),
P@5 and P@10 by adding context types to the content only retrieval baseline.

associated with required information is beneficial in the lifelogging domain. While

these results are promising, the improvement of content+context search over content

only search on the subjects collections are not statistically significant for AveP, P@5

or P@10 (100 samples, Welch two sample t-test, p>0.05), with the exception of the

improvement in AveP for Subject 1 (100 samples, Welch two sample t-test, p<0.05).

While overall the addition of recalled context data greatly improves over content-

based retrieval for our 3 subjects, certain context types had different impacts on per-

formance. Table 5.4 presents a breakdown of results observed across each subject’s

100 queries, providing details of the impact of the addition of each context type in iso-

lation to content only retrieval. Table 5.5 provides the percentage improvement over

content only retrieval. Table 5.6 (which is a copy of Table 4.4 presented in Chapter 4)

shows the number of queries each context type was used in by the subjects. Overall,
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Subject 1 Subject 2 Subject 3
Num Ave Num Ave Num Ave

content keywords 99 7.59 96 3.08 99 5.27
title 61 2.08 15 1.67 23 3.52
extension 98 1.47 99 1.16 98 2.14
date 0 0.00 22 1.00 37 1.00
month 76 2.68 83 1.31 86 1.73
season 83 1.55 95 1.09 57 1.30
dayOfWeek 9 2.56 6 1.17 13 2.15
part of week 25 1.00 54 1.00 6 1.33
part of week1 4 1.00 3 1.00 10 1.30
part of day 31 1.68 31 1.03 15 1.73
timeRange 4 1.00 7 1.00 1 1.00
lightstatus 35 1.17 6 1.00 8 1.25
peoplePresent 16 1.63 17 1.35 34 1.44
region 76 1.41 94 1.09 93 1.13
weather 3 1.00 9 1.33 1 1.00
from 9 1.00 9 1.00 19 1.84
to 0 0.00 2 1.00 19 1.84
device 77 1.32 71 1.00 94 1.41
year 100 1.00 100 1.00 100 1.00
country 0 0.00 1 1.00 12 1.00

Table 5.6: Copy of Table 4.4 which was presented in Chapter 4: Number of fields
containing query terms (Num) and average number of terms per query field (Ave) for
each subject across their 100 queries.

Subject 2 who had the lowest default AveP, P@5 and P@10 for content only retrieval,

and who also made the least use of the title field (see Table 5.6) for querying bene-

fited the most from the use of the other types of context data. These differences in

results, and greater dependency on context data to improve retrieval performance for

Subject 2 can be explained by the fact that Subject 2 had shorter content (keyword)

query lengths than the other subjects (average query length of 3.08 terms versus aver-

age query length 7.59 terms and 5.27 terms for Subjects 1 and 3 respectively, as shown

in Table 5.6). This coupled with their relatively lower use of the title field in querying

resulted in a higher dependency by Subject 2 on the other types of context data to im-

prove retrieval performance. This is a promising result for the use of context data in

retrieval, as people’s content queries often just contain a few terms. In the next section

we take a more detailed look at the impact of using queried context data with queried

content terms in PL retrieval.
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5.3.1.1 Impact of Different Context Types on Retrieval

Analysing the individual context types we see that content + title field retrieval had

the greatest impact on improving performance for Subjects 1 and 3. Use of title field

had relatively little positive impact for Subject 2 (indeed, for P@5 and P@10 perfor-

mance decreased by 5%, possibly caused by the use of title query terms which did not

occur in required items), who did not make as much use of this field in retrieval. As

shown in Table 5.6 only 15 of Subject 2’s queries used the title field, with an average ti-

tle field query length of 1.67 terms. Use of extension field had least impact for Subject 3

who entered the broadest queries (i.e. queries for multiple items and extension types),

with an average extension field query length of 2.14. Use of extension field yielded

2% improvement in AveP and 3% and 1% improvement in P@5 and P@10 respectively

for this subject. This compares to 7%, 10% and 6% improvement in AveP, P@5 and

P@10 respectively for Subject 1 and 6%, 0% and 8% improvement in AveP, P@5 and

P@10 for Subject 2. Using both title and extension field with content retrieval near full

content+context retrieval performance was observed for Subjects 1 and 3 relative to

Subject 2 (as shown in Table 5.5). That is the addition of further context types did not

substantially improve performance for Subjects 1 and 3, whereas Subject 2 who used

shorter keyword queries and who made less use of the title field relied more on richer

context types to improve retrieval performance. This is reflected in the impact these

context types taken in isolation had on content only retrieval in Subject 2’s queries,

relative to Subjects 1 and 3. This impact can be seen in Table 5.5 where for Subject 2 all

context types taken in isolation, with the exception of region and month, yielded great

improvement over content only retrieval relative to Subjects 1 and 3. We next analyse

these results in greater detail.

To and From Fields:

The ’to’ and ’from’ fields were available to query on for the SMS messages and emails

in the subjects’ collections. In Chapter 3, Table 3.9 provided details of the numbers of

these item types in each subjects collection. As can be seen (from Table 3.9), emails

were one of the most prevalent item types in each subject’s collection. In the case of

Subjects 1 and 3, SMS messages were also one of the highest occurring item types in

their collection.

Subject 3 performed the greatest number of queries using the ’to’ and ’from’ fields.
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This subject executed 19 queries in total using the ’to’ field and 19 queries using the

’from’ field. Subject 2 used the ’to’ field in 2 of their queries and the ’from’ field in 9 of

them. Subject 1 did not use the ’to’ field in their queries, but used the ’from’ field in 9

of them. These figures are shown in Table 5.6.

Use of the ‘to’ and ‘from’ fields with the content field proved beneficial, particularly

in the case of Subject 2 where 2%, 5% and 3% improvement was observed for AveP,

P@5 and P@10 respectively using the ‘to’ field and 4%, 5% and 5% improvement for

AveP, P@5 and P@10 respectively using the ‘from’ field. Using both the ‘to’ and ’from’

fields in this subject’s queries did not improve over the results observed for the ’from’

field. Subject 1 did not use the ‘to’ field in their queries (see Table 5.6), however using

the ‘from’ field yielded a 1% improvement in performance for AveP. For Subject 3,

a 1% improvement in AveP, P@5 and P@10 was observed for the ‘to’ field and 1%

improvement in AveP and P@5 for the ’from’ field; using both the ‘to’ and ‘from’

fields, yielded the same results as using the ’to’ field in isolation.

“Date-time” Fields:

As can be seen in Table 5.6 subjects had far greater recall of vague “date-time” informa-

tion such as month, season and year, than more precise “date-time” information such

as exact date and time. The use of individual “date-time” information types in iso-

lation had little impact on improving retrieval performance for Subjects 1 and 3 who

performed rich term based queries. No improvement in performance was observed

for Subject 3 by including any of the “date-time” information context types in isolation

in the queries, with the exception of use of the season and the ‘date’ context types. Use

of the season context type here resulted in 1% improvement in P@10. Use of the ’date’

context type yielded 1% improvement in each of AveP, P@5 and P@10. However, us-

ing all “date-time” context types in the querying process provided greater utility in

assisting to locate relevant items for this subject, with 2% improvement in AveP, 2%

improvement in P@5 and 2% improvement in P@10.

Subject 1 did not use the exact ’date’ field in their queries (as shown in Table 5.6), hence

content+date retrieval could not improve over content only retrieval for this subject.

A 1% decrease in P@5 was yielded for Subject 1 using the part of day field, possibly

caused by incorrect recall on the part of the subject. Minimal improvement in perfor-

mance was observed for Subject 1 using the year, month, part of week, part of week1,
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timerange and day of week fields where a 1% improvement in AveP was noted using

each of these context types in isolation with the content field. Using all “date-time”

information in queries provided no further improvement in retrieval performance for

this subject.

Use of the content field with the ’season’, ’part of week’, ’part of week1’,

’part of day’, timerange or ’day of week’ fields proved beneficial in moving relevant

items towards the top of the result list for Subject 2, who relied more on recalled con-

text data in the retrieval process due to the vaguer nature of their content queries. This

subject also performed more precise “date-time” queries than the other two subjects.

For example, using ’morning’ as query term for the ’part of day’ field, as opposed to

’morning or afternoon’ (see Table 5.6). 3% improvement in performance was observed

for P@10 for each of the aforementioned “date-time” related context types. Using each

of these context types a 1% improvement in AveP was also noted. 1% improvement

in AveP was also observed for this subject using the ’year’ field. Use of the ’date’

field yielded an 8% improvement in AveP, but did not help move items to the top

of the result list. Use of the month field resulted in a 6% decrease in performance,

possibly caused by incorrect recall on the part of the subject. While overall, taken in

isolation with content only querying, “date-time” context types improved retrieval

performance for Subject 2, using all “date-time” information in queries did not prove

useful for this subject, with 3% decrease in P@10 being observed.

Device Field:

Overall the ’device’ field had a low discriminating power within subjects collections.

Given that the majority of their queries were for items on their laptops or PCs, and

relatively few for items on their mobile phones which was more discriminating within

their collections. Despite this, some improvement in performance over the content

only baseline was noted using the device field in queries. Use of the ‘device’ field

with the content field in retrieval proved most useful for Subject 2 who only ever

used one device query term in their queries (e.g. using the query term ’laptop’, or

query term ’PC’, but not both the query terms ’laptop’ and ’PC’ in a query), where

3% improvement in P@10 and 1% improvement in AveP was observed. A minimal

1% improvement in AveP was gained here for Subject 1 who sometimes used both the

query terms ’laptop’ and ’PC’, for example, in their queries. No improvement over the

content only baseline was yielded for Subject 3, who performed the largest number of
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queries using more than one device type as query terms.

Light Status Field:

Use of recalled ’light status’ with content in retrieval proved most useful for Subject

2, who used a single query term in the ’light status’ field for all queries in which they

used this field (i.e. either ’daylight’ or ’darkness’). 3% improvement in P@10 and 1%

improvement in AveP over content only retrieval was observed for this subject. A

minimal 1% improvement in AveP was obtained for Subject 1 using the ’light status’

field in retrieval. On examining the make up of this subjects’ queries (see Table 5.6),

we observed that they sometimes removed the discriminating power of ’light status’

in retrieval by entering both ‘daylight’ and ‘darkness’ as query terms in this field.

Subject 3 had a higher rate of removing the discriminating power of ’light status’ in

retrieval (also shown in Table 5.6). For this subject no improvement over content only

retrieval was obtained for content+light status-based retrieval.

Weather Field:

Use of weather information, which was only recalled for 3 queries by Subject 1,

yielded a minimal 1% improvement in AveP for this subject. Weather conditions were

only used in 1 of Subject 3’s queries. Here no improvement over content only retrieval

was observed. These results can be partly explained by the large percentage of items

missing weather data in the subjects’ collections and the imprecise nature of weather

data, as discussed in Chapters 3.3.4.3 and 3.4. Subject 2 made a little more use of the

’weather’ field in their queries, recalling weather information for 9 queries. For this

subject 1% improvement in AveP and 3% improvement in P@10 was observed. This

is a surprising but promising result given the exceptionally low number of items an-

notated with weather information in Subject 2’s collection (as described in Chapter

3.4.1).

People Present Field:

Recall of people present when interacting with an item improved retrieval perfor-

mance to a certain extent for all three subjects. 1% improvement in AveP was observed

for Subject 1, 1% in AveP and 3% in P@10 for Subject 2, and 1% improvement in P@5

for Subject 3. Similar to the use of the ’light status’ field, retrieval performance might

have been affected by the number of items in the subjects’ collections which were

missing ’people present’ annotations (as discussed in Chapter 3.4.1). Another factor
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which could potentially have negatively impacted on retrieval performance here, is

that the recalled people present may not have had Bluetooth activated on their mobile

phones (which is required to detect that the people were present) at the points in time

the subjects are recalling.

Geo-location Fields:

Use of context type ‘country’ with content in retrieval provided 1% improvement in

AveP and 3% improvement in P@10 for Subject 2. This subject only used the ’country’

field in 1 query (see Table 5.6). The ’country’ recalled was a country in which the

subject spent very little time. This fact means that the ’country’ query term had good

discriminating power in the retrieval process. No improvement in performance was

noted for Subject 3 using the ’country’ field. Subject 1 did not use the country field

in their queries (shown in Table 5.6). The only improvement in retrieval performance

observed using the ’region’ field was 1% in AveP for Subject 1.

Missing geo-location data tags, described in Chapter 3.3.4.3, most likely also impacted

on the utility of the ’region’ and ’country’ fields observed here. As would the low

granularity of these location features (described in Chapter 3.3.4.3)

5.3.2 Concluding Remarks

While we cannot read too much into the results obtained using our relatively small

data and query sets, the use of context data appears to be beneficial in lifelog retrieval.

Using all our context fields in the retrieval process provided a measurable improve-

ment over content only retrieval in the results presented in this section.

As highlighted in this section, different subjects have different recall and perform dif-

ferent types of queries on their unique collections with differing make up. For exam-

ple, searching based on title (i.e., filename for computer files, subject of email, title of

webpage) was important for Subject 1, and Subjects 1 and 2 had a tendency to perform

narrower searches than Subject 3. Different context types prove more useful for dif-

ferent subjects, showing the need to allow subjects to make use of the different types

of context that they recall in their queries. In other words, a retrieval approach which

caters for the different querying habits and recall of different individuals is required.

We believe that our retrieval approach, which allows for querying based on many

context types accommodates this.
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In a ’real’ use scenario, we believe it unlikely that subjects will enter query terms

reflecting their recall for the many context types used in our study in all their querying

tasks. Rather it is more likely that a few key query terms will be used for different

content and/or context fields. Which and how many fields this may result in being

used will most probably vary from query to query, subject to subject and the difficulty

of the retrieval task (difficulty in obtaining the required information).

As discussed in Chapter 3.1, ‘real’ personal collections are likely to have large amounts

of missing data arising from various sources including equipment and software fail-

ure during data gathering. For example, the problems observed in our test collec-

tions with geo-location and co-present Bluetooth device data logging which yielded

geo-location, people present, lightstatus and weather context types, as discussed in

Chapter 3.3.4.3, meant that a large percentage of items in subjects collections were

not tagged with these context types. This can negatively impact on retrieval perfor-

mance in two ways. Firstly, items for which a queried context type is missing would

result in relevant item(s) not receiving a contribution to their matching score from the

context field, and secondly, non-relevant items tagged with the queried context type

would receive score contribution which the relevant item(s) did not receive. Coupled

with this, the nature of the data sets does not exercise the potential of all contexts, e.g.

geo-location where the subjects are not moving around much and our low granular-

ity of location features (described in Chapter 3.3.4.3) means that their potential utility

in longer-term collections or collections for more mobile individuals is not properly

explored here.

Further we also acknowledge that in our experiments there is the potential for incor-

rectly recalled context on the subjects’ part and poor choice of content query terms

may also impact on retrieval behaviour here further complicating our attempts to un-

derstand the potential of context in PL search techniques.

Exploration of all the issues discussed in this conclusions section forms a significant

body of research in its own right and hence is beyond the potential of our current

research, and indeed not possible using the small number of data sets and queries

available to us. What we are particularly interested in exploring, having established

that recalled context data may be useful in retrieval, is its utility in simple flat queries.

The next section begins our exploration of this topic.
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5.4 Investigation 2: Flat BM25 and BM25F

Content+Context-Based Retrieval

Given the utility of allowing our 3 test subjects to enter queries based on content and

context associated with required PL items in a structured manner (as shown in Investi-

gation 1), we wished to establish if similar benefit over content only retrieval could be

obtained if users were allowed to enter their recalled content and context associated

with required items in a simple flat query. As highlighted in [Robertson et al., 2004]

and discussed in Chapter 4.2.2.2, for flat queries, linear combination of separate field

scores obtained using a content only retrieval algorithm can lead to over estimation of

the importance of documents where a term occurs across multiple fields. The content

field and the title context field in our lifelog collections share the same vocabulary,

and hence would be susceptible to such an over estimation were a linear combination

of field scores to be used in extracting relevant documents for flat queries. The use

of scoring at term level employed by BM25F (described in Chapter 4.2.2.2) overcomes

this problem. While BM25F can be used effectively for flat querying on collections

where terms across all fields are drawn from the same vocabulary, given that it is a

state-of-the-art field combination algorithm and will not lead to over estimation on

our lifelog collections where the title and content fields share the same vocabulary, we

wished to explore how it would perform on our multi-field PL collections in which

fields from a querying point of view are independent (with the exception of the title

and content fields). As a baseline for our flat experiments, we also examine the use

of the simplest approach to flat querying. In this approach all item fields are indexed

as one field, hence reducing the collection to a single field collection on which queries

can be processed using the BM25 content only retrieval approach (also described in

Chapter 4.2.2.2). We refer to this approach as flatBM25.

The purpose of the investigation presented in this section then is to examine the per-

formance of BM25 on flat lifelog collections containing multi-field information (i.e. to

examine the performance of flatBM25) and of BM25F in fielded lifelog search. The

performance of these approaches is compared to the BM25 content only retrieval and

the BM25 structured query results described in the previous section.
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Technique Subject 1 Subject 2 Subject 3
AveP P@5 P@10 AveP P@5 P@10 AveP P@5 P@10

BM25 (C) 0.230 0.228 0.193 0.149 0.098 0.084 0.404 0.508 0.457
BM25 (C+C) 0.314 0.281 0.235 0.177 0.102 0.091 0.459 0.575 0.521
flatBM25 (C+C) 0.247 0.177 0.184 0.145 0.089 0.087 0.357 0.494 0.453
BM25F (C+C) 0.326 0.279 0.235 0.179 0.133 0.124 0.421 0.558 0.505

Table 5.7: Comparison of results for each subject for structured content (C) and con-
tent+context (C+C) retrieval using BM25 and flat content+context (C+C) based re-
trieval using flatBM25 and BM25F, on the 20 month collections using the full sets of
100 queries, for average precision (AveP), P@5 and P@10.

Technique Subject 1 Subject 2 Subject 3
AveP P@5 P@10 AveP P@5 P@10 AveP P@5 P@10

BM25 (C) 0.230 0.228 0.193 0.149 0.098 0.084 0.404 0.508 0.457
flatBM25 8% -22% -5% -2% -9% 3% -12% -3% -1%
BM25F 42% 22% 22% 20% 36% 47% 4% 10% 10%

BM25 (C+C) 0.314 0.281 0.235 0.177 0.102 0.091 0.459 0.575 0.521
flatBM25 -21% -37% -22% -18% -13% -5% -22% -14% -13%
BM25F 4% -1% 0% 1% 30% 37% -8% -3% -3%

Table 5.8: Subjects’ percentage improvement over BM25 content (C) and BM25 con-
tent+context (C+C) retrieval, rounded to nearest whole number, on their 20 month
collections using full set of 100 queries, for average precision (AveP), P@5 and P@10
using flatBM25 and BM25F.

5.4.1 Results and Analysis

Tables 5.7 and 5.8 show a comparison of the results obtained by using flatBM25 and

BM25F as opposed to the structured BM25 content and BM25 content+context ap-

proaches presented in Section 5.3 for the 3 subjects. These results are examined in this

section.

5.4.1.1 Comparison of flatBM25 and BM25 Based Retrieval

Using the flatBM25 approach the only improvement over BM25 content only retrieval

observed was an 8% improvement in AveP for Subject 1 and a 3% improvement in

P@10 for Subject 2. The fact that flatBM25 content+context retrieval outperformed

BM25 content only retrieval in these two instances might be explained by the make

up of these subjects queries shown in Table 5.6. Subject 1, relative to the other two

subjects, makes much greater use of the title field in querying. When we convert this

subject’s structured queries to flat queries, their title query terms can be queried across

all fields in the collection, including importantly the content field. This may have
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factored in improving the average percision observed for this subject using flatBM25.

Subject 2 had short content-based queries and did not make much use of the title field

in retrieval, relative to the other two subjects. As we saw in the previous section, this

subject therefore relied more on the other rich context types to improve on content

only retrieval performance. These factors, may partly explain why we observed an

improvement over content only retrieval using flatBM25 retrieval for this subject.

In all other cases substantial decreases in performance relative to using BM25 content

only retrieval were observed. These decreases were: for Subject 1, 22% and 5% in P@5

and P@10 respectively; for Subject 2, 2%, 9% for AveP and P@5 respectively; and for

Subject 3, 12%, 3% and 1% for AveP, P@5 and P@10 respectively. These results suggest

that use of BM25 content only retrieval would be a better alternative than allowing

subjects to query based on recalled context using the flatBM25 approach, certainly in

the case of our subjects’ collections and their queries. In the flatBM25 results we also

note that performance against BM25 structured content+context retrieval was unsur-

prisingly even worse (given that BM25 structured content+context retrieval outper-

forms BM25 content only retrieval). Here decreases in performance were: for Subject

1, 21%, 37% and 22% for AveP, P@5 and P@10 respectively; for Subject 2, 18%, 13%

and 5% for AveP, P@5 and P@10 respectively; and for Subject 3, 22%, 14% and 13% for

AveP, P@5 and P@10 respectively. These results are unsurprising given that in using

the flatBM25 approach we have pooled all item fields together and hence are losing

the rich information we had in the structured documents, as discussed in Chapter

4.2.2.2.

5.4.1.2 Comparison of BM25F and BM25 Based Retrieval

BM25F content+context retrieval V BM25 content only retrieval:

In contrast to the use of flatBM25 in retrieval using the BM25F flat content+context

querying approach provides dramatic improvement over content only retrieval for

Subjects 1 and 2, with increases in AveP, P@5 and P@10 of 42%, 22% and 22% for

Subject 1 and 20%, 36% and 47% for Subject 2. For Subject 3, for whom high default

content only scores were obtained, the improvement was not as dramatic, but still

substantial, with improvement of 4%, 10% and 10% being observed for AveP, P@5 and

P@10 respectively. These improvements over content only retrieval by allowing sub-
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jects to also provide recalled context data associated with required items in a simple

flat query are promising.

BM25F content+context retrieval V BM25 content+context retrieval:

Using BM25F the field level score for a query term is calculated based on the term

frequency in the field and the length of the field only. Whereas our structured query-

ing approach presented in Investigation 1 (Section 5.3) calculates the field score based

on, in addition to the term frequency in the field and the length of the field, the idf of

the field. That is, using BM25 in structured queries the idf of a query term is calcu-

lated at the field level. The idf score using BM25F is calculated at the document level.

Further in calculating weights using BM25F each query term, regardless of the target

field intended by the subject, is tested for relevance against each field in the document.

Whereas using BM25 query terms are only tested for relevance against the target field

intended for the terms by the subject. Based on the different content of subjects’ col-

lections and their query construction approaches, BM25F gave optimal performance

for some subjects while the structured BM25 content+context approach gave superior

performance for others (see Tables 5.7 and 5.8).

Subject 2 benefited the most from addition of further context types to content+title

retrieval using the structured BM25 content+context retrieval approach, as we saw

in the previous section. For this subject, great improvement over structured BM25

content+context retrieval was observed using BM25F, with increases of 1%, 30% and

37% in AveP, P@5 and P@10 respectively. For Subject 1, 1% improvement in AveP

over BM25 content+context-based retrieval was observed using BM25F. However, no

improvement for P@10 was yielded and for P@5 a decrease in performance of 1% was

observed. For Subject 3, who benefited the least from addition of context types to

BM25 content+title retrieval (as we saw in the previous section), BM25F gave inferior

performance to structured BM25 content+context retrieval. Decreases in performance

of 8%, 3% and 3% in AveP, P@5 and P@10 respectively were observed.

Across the three subjects, we note that as the BM25 content only retrieval baseline

and in turn the BM25 content+context baseline increases the percentage improvement

gained by using BM25F decreases. Leading from greatest utility being observed for

Subject 2 with the lowest BM25 content+context baseline, to no utility for Subject 3

with the highest baseline.
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We further note that for Subject 2, who made the least use of the title field in retrieval

and who had the shortest content-based queries (see Table 5.6), BM25F yielded great-

est improvement over structured BM25 content+context retrieval. Given that the title

and content query terms share a common vocabulary, using BM25F their content field

query terms are matched against both the content and title field. Similarly their title

field query terms are matched against both fields. One would assume that matching

the subjects query terms from these two fields against both the content and title field

is helping negate the fact that they did not have as many query terms for these two

fields as the other subjects.

The inferior performance observed for Subject 3 using the BM25F retrieval technique,

may partially be explained by the nature of this subject’s queries. The query terms

used in the content field of their queries often contain terms which occur in con-

text fields. For example, use of geo-location, year, month, etc, type terms as search

terms for the content field of their queries. While this does not create a problem

for structured content+context querying where each field and its associated terms are

weighted separately, it has the potential to create a problem when we convert the sub-

ject’s structured queries to flat queries. The result being that terms which relate to the

content of the item but also occur as context types in other fields, are now potentially

contributing greater weight to non-relevant items, at the expense of relevant items. To

highlight this with an example, consider a query where a term in the content field is

’Paris’, as the subject wishes to look up web pages regarding sight seeing in ’Paris’

which they previously looked at from the geo-location ’Dublin’ before making a trip

to ’Paris’. In this example, high weight will be incorrectly given to items accessed in

the geo-location ’Paris’. Using flat queries, these words which do not relate to memory

of context associated with the required information, will be matched to these context

fields, negatively impacting retrieval performance where these words do not match

the context associated with the required items. This issue was not observed for Sub-

jects 1 and 2 due to their choice of query terms for the content field.

These are just some of the factors which may have contributed to the differences ob-

served in this section’s results across our three subjects. A detailed in-depth analysis

of the make up of subjects collections, queries and relevant items and how they impact

on each other in retrieval is beyond the scope of this research.
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5.4.2 Concluding Remarks

Despite the mixed results observed in this section using BM25F relative to using BM25

in content+context-based retrieval, BM25F did greatly out perform content only re-

trieval across the three subjects. Given that BM25F allows subjects to search across

multiple fields using simple flat queries, which as discussed in Section 5.1 is desirable,

we wish to explore the use of BM25F in lifelog retrieval further to establish whether

we can improve its performance by considering some of the attributes of our subjects’

collections and queries and modifying BM25F based on this analysis. We explore this

topic in the next section.

5.5 Investigation 3: Flat BM25F mod Content+Context-

Based Retrieval - Moving Beyond the State of the Art

The retrieval challenge for lifelog collections is fundamentally different to that for

which BM25F was originally created, in that in our multi-field lifelog collections fields

from a querying point of view are independent of each other in that different fields

do not have common meaning (with the exception of the title and content fields).

That is, in entering flat queries for these collections, subjects have particular types of

context in mind. For example, when a subject recalls that they were in ‘Rome’ when

they previously interacted with a required lifelog item, they are specifically thinking

of the geo-location context field per se and not looking for items which contain the

term ‘Rome’ in the main body of text. Such mappings of query terms to their intended

target fields is considered in [Kim et al., 2009, Kim and Croft, 2009] and discussed in

Chapter 4.2.2.2.

When considering multi-field documents for retrieval using flat queries, the standard

BM25F strategy extends the traditional BM25 model in enabling the importance of

individual terms retrieval effectiveness to be captured in the field weights. Terms

which have higher term frequency in high weighted fields then have overall greater

influence on document scores. This however assumes that a single scalar weighting

on each field is sufficient to capture the optimal contribution each term can make

to retrieval. To accommodate lifelog retrieval and better map query terms to their

intended field, we modify BM25F at the term scoring level. Our proposed modified
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BM25F term scoring approach (BM25F mod) for calculating the weight w̄t,d of term t

in document d is shown in Equation 5.1.

w̄t,d =
∑

f in d

tfd,f,t ·Wf

((1− bf ) + bf ·
lf

avlf
)
·md,f,t (5.1)

where,

tfd,f,t is the frequency of term t in field f of document d.

lf is the length of f in d.

avlf is the average length of field f.

Wf is the weight assigned to f.

bf is a length normalising parameter for f.

md,f,t is an importance calculation for the score assigned to term t in field f of docu-

ment d.

md,f,t is our proposed modification to BM25F term scoring. Setting md,f,t to 1, reduces

the equation to BM25F’s standard term scoring approach described in Chapter 4.2.2.2.

In Sections 5.5.1 - 5.5.3 we motivate and investigate techniques for calculating md,f,t

to map query terms to their intended target field. As with standard BM25F, the term

weight w̄t,d is applied to the BM25 saturating function shown in Equation 5.2.

BM25F mod(q, d) =
∑
t in d

w̄t,d

k1 + w̄t,d
· log N

df(t)
(5.2)

where,

N is the number of documents in the collection.

df(t) the number of documents containing term t.

k1 is a saturating parameter.
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5.5.1 BM25F mod1

To begin our investigation of modifying BM25F at the term scoring level to map query

terms to their intended target field, we investigate the term scoring adaptation put

forward by Kim et al [Kim et al., 2009, Kim and Croft, 2009] and validated in their lan-

guage modelling approach to IR. This term scoring adaptation weights the term score

for each field according to the frequency of the term in the given field relative to its

frequency in the entire document, with the expectation that this maps query terms to

their target field. Application of this approach to our BM25F term scoring approach

presented in Equation 5.1 results in the md,f,t function shown in Equation 5.3.

m1
d,f,t = (1− α) + α

tfd,f,t

tfd,t
(5.3)

where,

tfd,f,t is the frequency of term t in field f of document d.

tfd,t is the frequency of t in d.

α is a tuneable parameter. Setting α = 1 reduces the equation to tfd,f,t

tfd,t
, setting α to

0 results in no term field to document weighting. For our experiments α was

manually tuned using the biometric month test set and associated queries (de-

scribed in Chapters 4.3.1 and 4.3.2.3) to give overall best retrieval performance

across the three subjects. This resulted in α being set to 0.2.

For the remainder of this Chapter we use BM25F mod1 to refer to the use of m1
d,f,t in

Equation 5.2.

5.5.1.1 Results and Analysis

Table 5.9 shows the performance of BM25F mod1 for the 3 subjects. For comparison

purposes we also include the performance of BM25 content, BM25 content+context

and BM25F. The percentage improvement over structured BM25 content and over

BM25 content+context retrieval for BM25F mod1 for the 3 subjects is presented in Ta-

bles 5.10 and 5.11. For comparison purposes we also include the percentage improve-

ment for BM25F over structured BM25 retrieval in these tables. Table 5.12 provides

the percentage improvement over BM25F observed using BM25F mod1.
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Technique Subject 1 Subject 2 Subject 3
AveP P@5 P@10 AveP P@5 P@10 AveP P@5 P@10

BM25 (C) 0.230 0.228 0.193 0.149 0.098 0.084 0.404 0.508 0.457
BM25 (C+C) 0.314 0.281 0.235 0.177 0.102 0.091 0.459 0.575 0.521
BM25F 0.326 0.279 0.235 0.179 0.133 0.124 0.421 0.558 0.505
BM2525F mod1 0.322 0.274 0.234 0.189 0.129 0.118 0.419 0.558 0.506
BM25F mod2 0.339 0.291 0.240 0.174 0.133 0.129 0.421 0.563 0.503
BM25F mod3 0.334 0.281 0.240 0.177 0.129 0.124 0.420 0.567 0.505

Table 5.9: BM25F mod1, BM25F mod2 and BM25F mod3 results, using subjects’ 20
month collection and full set of 100 queries, for average precision (AveP), P@5 and
P@10. BM25 content only (C), BM25 content+context (C+C) and BM25F results shown
for comparison purposes.

Technique Subject 1 Subject 2 Subject 3
AveP P@5 P@10 AveP P@5 P@10 AveP P@5 P@10

BM25 (C) 0.230 0.228 0.193 0.149 0.098 0.084 0.404 0.508 0.457

BM25F 42% 22% 22% 20% 36% 47% 4% 10% 10%
BM25F mod1 40% 20% 21% 27% 32% 40% 4% 10% 11%
BM25F mod2 48% 28% 24% 17% 36% 53% 4% 11% 10%
BM25F mod3 46% 23% 24% 19% 32% 47% 4% 11% 10%

Table 5.10: BM25F, BM25F mod1, BM25F mod2 and BM25F mod3 percentage im-
provement over BM25 content only (C) retrieval, rounded to nearest whole number,
on subjects’ 20 month collection using full set of 100 queries, for average precision
(AveP), P@5 and P@10. For comparison purposes the percentage improvement of
BM25F over BM25 content only retrieval is also presented.

Similar to the results observed using BM25F in the previous section, BM25F mod1 pro-

vides improvement over content only retrieval for all 3 subjects, as shown in Tables

5.9 and 5.10. However, BM25F mod1 did not overall fare as well as standard BM25F

in comparison to BM25 content+context retrieval, shown in Tables 5.9 and 5.11. Sub-

sequently, little overall improvement was observed over BM25F using BM25F mod1,

as shown in Tables 5.9 and 5.12. Specifically, as can be inferred from Table 5.12, reduc-

tions of 1%, 2% and 1% were observed for BM25F mod1 relative to BM25F in Subject

1’s case for AveP, P@5 and P@10 respectively, 3% for P@5 and 5% for P@10 reduction

was observed for Subject 2 and in the case of Subject 3 no improvement over BM25F

was observed using BM25F mod1. The only improvement over BM25F observed was

a 6% improvement in AveP for Subject 2 using BM25F mod1.

On analysis, the reason for this overall under performance becomes apparent. In cases

where a query term occurs multiple times in the content field as well as in a context

field (e.g. the term ’web’ occurring in extension field and multiple times in the con-

tent field), the term score of the context field will be downgraded relative to standard
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Technique Subject 1 Subject 2 Subject 3
AveP P@5 P@10 AveP P@5 P@10 AveP P@5 P@10

BM25 (C+C) 0.314 0.281 0.235 0.177 0.102 0.091 0.459 0.575 0.521

BM25F 4% -1% 0% 1% 30% 37% -8% -3% -3%
BM25F mod1 2% -2% -1% 6% 26% 29% -9% -3% -3%
BM25F mod2 8% 3% 2% -2% 30% 41% -8% -2% -3%
BM25F mod3 6% 0% 2% 0% 26% 37% -8% -1% -3%

Table 5.11: BM25F mod1, BM25F mod2 and BM25F mod3 percentage improvement
over BM25 content+context (C+C) retrieval, rounded to nearest whole number, on
subjects’ 20 month collection using full set of 100 queries, for average precision (AveP),
P@5 and P@10. For comparison purposes BM25F percentage improvement over BM25
content+context retrieval is also presented.

Technique Subject 1 Subject 2 Subject 3
AveP P@5 P@10 AveP P@5 P@10 AveP P@5 P@10

BM25F 0.326 0.279 0.235 0.179 0.133 0.124 0.421 0.558 0.505

BM25F mod1 -1% -2% -1% 6% -3% -5% 0% 0% 0%
BM25F mod2 4% 4% 2% -3% 0% 4% 0% 1% 0%
BM25F mod3 3% 1% 2% -1% -3% 0% 0% 2% 0%

Table 5.12: BM25F mod1, BM25F mod2 and BM25F mod3 percentage improvement
over BM25F retrieval, rounded to nearest whole number, on subjects’ 20 month collec-
tion using full set of 100 queries, for average precision (AveP), P@5 and P@10.

BM25F. This occurs because BM25F mod1 multiplies the field’s term score by the fre-

quency of a term in a field divided by the frequency of the term in the document as

a whole. To illustrate this, consider the first sample term scoring scenario presented

in Figure 5.1, in which a subject used the query term ‘February’ because they recalled

accessing the required item in the month of ‘February’. Applying this query term to

the sample lifelog item presented in Figure 5.1, the term score for the content field

obtains a boost of 4/5 while the month fields term score is reduced. Similarly in the

second sample scenario presented in Figure 5.1, the term score of the title field for the

query term ‘retrieval’ gets reduced due to the more frequent occurrence of the query

term in the content field. Further, a rich context query term which does not occur in

the target context field of an item, but occurs one or several times in the content of a

non-relevant item, will give the same incorrect term scoring boost to this non-relevant

item as the standard BM25F term scoring approach. To highlight this with an example,

consider a non-relevant item which contains 3 occurrences of a queried context term

(e.g. ‘Summer’) in the content field of the item and 0 occurrences of this query term

in the target context field. In this example, the m1
d,f,t score for this context query term

in the content field will be 1, hence reducing the term scoring approach to standard
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BM25F term scoring.

With the exception of the improvement in AveP observed for Subject 2, this approach

is clearly not appropriately mapping queried context terms to their intended tar-

get field in our lifelog collections. We suppose that this problem would not mani-

fest itself in the desktop and movie database collections considered for retrieval in

[Kim et al., 2009, Kim and Croft, 2009], discussed in Chapter 4.2.2.2, where the query

independent context fields were unlikely to contain terms in common with the con-

tent field. However, in our collections where terms have separate meaning but share

the same vocabulary, instead of boosting the occurrence of rich context query terms

in their intended fields, it potentially has the opposite effect. This problem could be

overcome by using a different vocabulary for rich context terms, e.g., using the suf-

fix ‘ext’ with extension types (e.g., web ext), using the extension ‘season’ for season

field items (e.g., summer season). However, this would essentially reduce to struc-

tured querying, place extra burden on individuals, and does not fit with the spirit of

allowing individuals to enter simple flat open vocabulary queries.

5.5.2 BM25F mod2

Given that a problem with term scoring is the mapping of rich context sources to

appropriate fields (as shown in the preceding BM25F mod1 results analysis) and that

these rich context sources have short fields, we propose that boosting the occurrence

of query terms in short fields should prove an effective way to map queried context

terms to the fields intended by the individual performing the query. To achieve this

we propose considering the length of fields (the field length is obtained by counting

the number of terms in the field) relative to the length of the documents (the document

length is obtained by counting the number of terms in all fields of the document) in our

field term score boosting approach. This led to the modified approach to calculating

md,f,t in Equation 5.1, shown in Equation 5.4.

m2
d,f,t = (1− β) + β

1
avlf/avld

(5.4)

where,

avlf is the average field length.
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EXAMPLE 1 - query term ‘February’

Content field contents:
...February...February...February...

Month field contents:
February

Term score boosts:
Content field term score boost = 3/4
Month field term score boost = 1/4

EXAMPLE 2 - query term ‘retrieval’

Content field contents:
...retrieval...retrieval...retrieval...retrieval...

Title field contents:
...retrieval...

Term score boosts:
Content field term score boost = 4/5
Title field term score boost = 1/5

Figure 5.1: Sample term score boost scenarios using BM25F mod1’s m1
d,f,t term score

boosting approach (i.e. (1− α) + α
tfd,f,t

tfd,t
) with α set to 1.

avld is the average document length.

β is a tuneable parameter. Setting β = 1 reduces the equation to 1
avlf /avld

, setting β

to 0 results in no field length boost being applied. For our experiments β was

manually tuned using the biometric month test set and associated queries (de-

scribed in Chapters 4.3.1 and 4.3.2.3) to give overall best retrieval performance

across the three subjects. This resulted in β being set to 0.00043.

For the remainder of this Chapter we use BM25F mod2 to refer to the use of m2
d,f,t in

Equation 5.2.

3Although this value may appear small the fraction is often very large.
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5.5.2.1 Results and Analysis

Similar to BM25F mod1, using BM25F mod2 provides improvement over content

only retrieval, as shown in Tables 5.9 and 5.10. Overall BM25F mod2 also performs

better than BM25F mod1, as shown in Tables 5.9 - 5.12. Further, using BM25F mod2

improvement in performance over both BM25 content+context retrieval and BM25F

retrieval was observed for Subjects 1 and 2, as shown in Tables 5.11 and 5.12. For

Subject 1, 8%, 3% and 2% improvement in AveP, P@5 and P@10 respectively was ob-

served using BM25F mod2 as opposed to BM25 content+context retrieval and 30%

and 41% improvement in P@5 and P@10 observed for Subject 2 (2% reduction in AveP

was noted for this subject). Using BM25F mod2 as opposed to BM25F, 4%, 4% and 2%

improvement in AveP, P@5 and P@10 respectively was observed for Subject 1 and 4%

improvement in P@10 was observed for Subject 2 (no improvement in P@5, and 3%

disimprovement in AveP were noted for this subject).

For Subject 3, no improvement over BM25 content+context was obtained using

BM25F mod2, with 8%, 2% and 3% decreases in AveP, P@5 and P@10 yielded here (see

Table 5.11). However, for this subject, 1% improvement in performance over BM25F

was observed using BM25F mod2 for P@5 (see Table 5.12), showing this technique

to be slightly better at moving relevant items to the top of result lists. Although no

improvement in AveP or P@5 was gained here. The minimal improvement in per-

formance observed for Subject 3 may be explained by the fact that this subject used

content query terms which shared the same vocabulary with context field terms, e.g.

using location and month as query terms to the content field which did not correspond

to the location and month in which the required item was accessed but rather related

to the content of the required item(s). This issue was not observed for Subjects 1 and

2 who did not use content query terms sharing the same vocabulary as context fields.

Overall, the results obtained for BM25F mod2 show some utility for a field length nor-

malisation term score in mapping queried context types to the intended target field.

5.5.3 BM25F mod3

While field length normalisation term score boost (i.e. BM25F mod2) gave overall su-

perior performance to BM25F (as shown in Section 5.5.2), there is the potential that

too much weight will be given to terms occurring in shorter context fields at the ex-
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Technique Subject 1 Subject 2 Subject 3
AveP P@5 P@10 AveP P@5 P@10 AveP P@5 P@10

BM25F mod2 0.339 0.291 0.240 0.174 0.133 0.129 0.421 0.563 0.503
BM25F mod3 0.334 0.281 0.240 0.177 0.129 0.124 0.420 0.567 0.505

(-1%) (-3%) (0%) (2%) (-3%) (-3%) (0%) (1%) (0%)

Table 5.13: BM25F mod2 and BM25F mod3 results comparison, using subjects’ 20
month collection and full set of 100 queries, for average precision (AveP), P@5 and
P@10. Percentage improvement of BM25F mod3 over BM25F mod2 shown in brack-
ets.

pense of the content field. To highlight this with an example, if the average field

length across all documents fields for a subject is: 494; the average length of this sub-

jects content field is: 476; and the average length of their extension field is: 1.0. The

extension fields term score will be divided by a boost of: 1/494 (weighted accord-

ing to the tuned parameter in BM25F mod2), which is a huge boost relative to the

content field’s boost of division by 476/494 (weighted according to the tuned parame-

ter in BM25F mod2). We hypothesise that using length normalisation in combination

with term frequency normalisation will prove most beneficial for lifelog retrieval. This

leads to BM25F mod3 which combines the approaches adopted in BM25F mod1 and

BM25F mod2. BM25F mod3 calculates md,f,t in Equation 5.1 as shown in Equation

5.5.

m3
d,f,t = ((1− α) + α

tfd,f,t

tfd,t
) · ((1− β) + β

avld
avlf

) (5.5)

where,

tfd,f,t is the frequency of term t in field f of document d.

tfd,t is the frequency of term t in document d.

avlf is the average field length.

avld is the average document length.

α and β are tuneable parameters set to 0.2 and 0.0004 respectively as described in the

preceding subsections.
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5.5.3.1 Results and Analysis

Our hypothesis that combining field length normalisation with term frequency

normalisation to boost field term score only proved true for Subject 3. Where

BM25F mod3 was a little more successful in moving relevant items to the top of

the result list than the other flat querying techniques (i.e., BM25F, BM25F mod1 and

BM25F mod2), as shown in Tables 5.9 - 5.13. For this subject BM25F mod3 yielded 4%,

11% and 10% improvement over BM25 content only retrieval for AveP, P@5 and P@10

respectively (see Table 5.10). Similar to the other flat querying approaches it gave in-

ferior performance to BM25 content+context retrieval (see Table 5.11). It yielded 2%

improvement in P@5 over BM25F (see Table 5.12). It also yielded 1% improvement in

P@5 over BM25F mod2 (see Table 5.13).

Of the flat retrieval techniques tested on Subjects 1 and 2’s collections up to this point,

BM25F mod2 yielded greatest performance. For these subjects, BM25F mod3, while

performing better than BM25F mod1, did not outperform BM25F mod2 (see Tables

5.9 - 5.12) in retrieving relevant items at top rank. That is, for these two subjects the

term frequency normalisation boost is degrading the utility of the field length normal-

isation boost in retrieving relevant items at top rank. Table 5.13 shows the percent-

age improvement for BM25F mod3 over BM25F mod2. For Subject 1, BM25F mod3

yielded 3% and 0% reduction in P@5 and P@10 respectively over BM25F mod2 re-

trieval, and for Subject 2, BM25F mod3 yielded 3% reduction in both P@5 and P@10

over BM25F mod2 retrieval. BM25F mod3 also yielded a 1% reduction in AveP over

BM25F mod2 for Subject 1. However, in the case of Subject 2 a 2% improvement in

AveP was observed. Tables Tables 5.10 - 5.12 show that for Subject 1, BM25F mod3

yielded 46%, 23% and 24% improvement in AveP, P@5 and P@10 respectively over

BM25 content only retrieval (see Table 5.10), 6%, 0% and 2% improvement in AveP,

P@5 and P@10 respectively over BM25 content+context retrieval (see Table 5.11), and

3%, 1% and 2% improvement in AveP, P@5 and P@10 respectively over BM25F re-

trieval (see Table 5.12). For Subject 2, BM25F mod3 yielded 19%, 32% and 47% im-

provement in AveP, P@5 and P@10 respectively over BM25 content only retrieval (see

Table 5.10), 0%, 26% and 37% improvement in AveP, P@5 and P@10 respectively over

BM25 content+context retrieval (see Table 5.11), and 1%, 3% and 0% reduction in AveP,

P@5 and P@10 respectively over BM25F retrieval (see Table 5.12).
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5.5.4 Concluding Remarks

Overall we observed BM25F mod2 to yield the greatest improvement in performance

over BM25F. While not outperforming BM25 content+context retrieval across all sub-

jects, BM25F mod2 benefits from the fact that it allows individuals to enter simple flat

queries using their recalled content and context associated with required lifelog items,

resulting in greater retrieval performance than entering content only based queries (as

we observed from the performance of BM25F mod2 relative to BM25 content only re-

trieval).

While we state that overall BM25F mod2 was the best performing flat querying ap-

proach examined, we note that in the case of Subject 3 better performance was ob-

tained using BM25F mod3. And that in the case of Subject 2, while BM25F mod2

showed greatest utility in moving relevant items to the top of result lists, it under per-

formed BM25F for AveP. Indeed it could be argued that Subject 1 was the only of our

three subjects for which real performance gains were achieved using BM25F mod2.

What causes the differences in performance across our three subjects is unclear, as is

how this technique would fare over other personal collections. That being said, based

on the results observed in this section we draw the conclusion that of the tested flat

querying approaches, BM25F mod2 is the best flat querying approach on our three

subjects’ collection and queries. However, it should be noted that the improvements

in retrieval performance using BM25F mod1, BM25F mod2 and BM25F mod3 relative

to BM25F on the subjects collections are not statistically significant for AveP, P@5 or

P@10 (100 samples, Welch two sample t-test, p>0.05).

5.6 Conclusions

The use of many rich sources of context data in retrieval is a complex process and

the factors influencing its utility are complex. Individuals’ queries can vary in length,

context types used and query term to target field mapping complexity. Target result

sets for queries can vary in size and diversity of item type. Individuals underlying

lifelogs show significant diversity in the amount of interaction with item types and

in the volume of items in their collections. These complexities are exacerbated by

missing context data and the possibility of incorrect recall on the part of the individual
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(analysis of whether the subjects in our studies had such incorrect recall is beyond the

scope of this study). Additionally, since we are using multi-item queries (i.e. there

may be several relevant target items for a subjects query), all query terms will not

map, nor are they intended to map, to each of the target items of the query. Rather

in querying of this nature, individuals are providing all recalled content and context

associated with the set of required items in one query.

Significant manual analysis was conducted examining the make up of fields in sub-

jects’ queries and the relationship of this to individual queries retrieval performance

using the techniques investigated in this chapter, however no clear trends were ap-

parent. In this chapter we reviewed some of the issues which can potentially affect

retrieval performance stemming from the make up of subjects’ collections and the

types of queries they enter. Full analysis of the make up of individuals’ collections

and queries is beyond the scope of one thesis. This chapter served to highlight some

of the possible issues, and to show that despite them, there appears to be utility in

using queried context data in retrieval. Importantly for the goal of this chapter, utility

is demonstrated in allowing individuals to enter this recalled context with recalled

content in simple flat queries. This is only the beginning of explorations in this space,

and much further analysis using larger groups of subjects is required. This further

work is required to validate our findings on larger groups of individuals, explore the

issues raised in this chapter further, gain further understanding of the make up of in-

dividuals collections, the make up of their queries, the make up of these two things

combined and the implications they have on each other in retrieval.

Despite the complexities associated with retrieval in this domain, in this chapter we

have proposed retrieval algorithms which allow subjects to enter query terms associ-

ated with their recalled content and context of required items in a simple flat query.

These algorithms greatly outperform content only retrieval for the lifelogging domain.

Of the algorithms we proposed, overall BM25F mod2 showed the greatest utility in PL

retrieval.

Having explored the utility of recalled context in lifelog retrieval, in the next chapter

we begin our exploration of the utility of an implicit context source, namely biometric

response, in lifelog retrieval. That is, in the next chapter we move towards further im-

provement of the BM25F mod2 retrieval approach through the exploration of obtain-

ing implicit indicators of lifelog item importance. The subsequent chapter, Chapter 7,
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integrates these implicit importance indicators, based on biometric response, into the

BM25F mod2 retrieval algorithm presented in this chapter for further exploration of

PL search.
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CHAPTER

SIX

Extracting Important Items using

Past Biometric Response

Chapter Overview: We postulate that (1) biometric response at the times

of experiencing lifelog items/events will act as an indicator of the future

importance of items/events, and (2) that biometric response can there-

fore provide utility as a static query independent significance factor in

ranked content+context retrieval algorithms in the lifelogging domain. In

this chapter we investigate the first part of this hypothesis. We first de-

scribe the setup of our experiments to investigate the relationship between

biometric measures of Galvanic Skin Response, Heat Flux, Skin Temper-

ature and Heart Rate associated with past experience of computer items

and events recorded by the SenseCam and the current importance of these

items/events to the individual. We then provide a detailed analysis of the

results obtained from these investigations before concluding the chapter

with the motivation to the second part of our hypothesis which is then

investigated in the next chapter (Chapter 7).
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6.1 Introduction

Finding important relevant items from within PLs in response to user queries, or pre-

senting interesting data to a subject browsing through their archive, poses signifi-

cant challenges. Any additional information which can assist in identifying impor-

tant items is thus potentially very important. Such information could potentially be

used in the re-ranking of IR result sets, or for the promotion of interesting items when

browsing a lifelog collection. One potential source of useful information is the user’s

biometric response associated with an item. As highlighted in Chapter 2.3.2 past re-

search has shown that biometric response can be used as an indicator of a person’s

current engagement with digital data. However research has not looked at the pos-

sibility of using this biometric response as a future indicator of item importance. We

propose that items or events which are important to an individual at the time they

occurred, may be useful to the individual again in the future, and further that such in-

cidents are associated with responses that can be detected by measuring the individ-

ual’s biometric response when experiencing these events. Thus recording biometric

response as part of a lifelog may enable us to identify important items or events in the

lifelog which would be most interesting for an individual to browse through in the

future or which would be most important in a given information searching task. In

our study, we explore four biometric responses which can be associated with lifelog

items, namely galvanic skin response (GSR), heat flux (HF), heart rate (HR) and skin

temperature (ST).

In this chapter we present an exploration of this hypothesis. We describe a study

designed to assess the potential for use of biometric data in detecting useful lifelog

items/events for future browsing or retrieval. More specifically we explore the use of

biometric response at the time of SenseCam image capture to identify events which

the subject may wish to view in the future, and the use of biometric response asso-

ciated with previous computer item accesses to extract computer items from lifelogs

which may be of future significance. The next section describes the study setup. Re-

sults and analysis are provided in Section 6.3. We then discuss some key points on the

topic of this chapter before concluding the chapter with a discussion of the findings

and highlight how these findings support investigating using observed biometric re-

sponses associated with past experience of lifelog items as query independent (static)
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scoring factors to items in computation of best-match ranked retrieval lists. An exper-

imental investigation of the use of biometric score factors in this way for PL search is

described in Chapter 7.

6.2 Experiment Setup

In this section we describe the setup of a study to examine whether biometric data can

be useful in identifying important and memorable events (an event here is defined

as a temporal group of SenseCam images) and computer activity (i.e., emails sent or

received, web pages viewed and computer files interacted with) which the subject

may wish to view again in the future.

The one month period from our three subjects’ lifelog databases which contain Sense-

Cam images and computer items annotated with biometric data were used as the test

set for this experiment (subjects lifelog databases are described in Chapter 3.21). For

the experiments presented in this chapter, the biometric data is read from the biomet-

rics table of these databases, and both SenseCam and computer item details are read

from the items and item access tables. These tables are also described in Chapter 3.2.

How biometric data, SenseCam images and computer activity were logged to pop-

ulate these tables is described in Chapter 3.3. Finally, the content of these tables is

described in Chapter 3.4.2.

The remainder of this section explains our use of biometric data to extract important

SenseCam events2 and computer items, and details the user study conducted to de-

termine the utility of our approach.

6.2.1 Extracting Important Events

Biometric response changes all the time and many factors cause these changes, e.g.,

internal thought processes of the individual, external temperature, a fright caused by

sudden noise, eating (see Chapter 2.3.1). Using biometric response associated with

past experience of lifelog items in suggesting items to individuals which they might

be interested in viewing (during a random browsing session or in a specific informa-

1Note: The imported emails in these databases, which do not have “date-time” of access information
available, were excluded from this experiment (imported emails are described in Chapter 3.3.1.1).

2We use the term ’SenseCam events’ to refer to life events captured by the SenseCam.
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tion type targeted session) is therefore a very complex process. Physiological research

focuses on attempting to understand changes in physiological response caused by

different factors, or conversely the changes in physiological response caused by dif-

ferent emotional and other situations (see Chapter 2.3.1). Researchers have however

not looked at patterns of physiological response variation associated with items in

individuals’ personal digital collections or indeed patterns which will indicate the fu-

ture importance of items to individuals. We cannot attempt in one thesis to extract

all such patterns (if such patterns do indeed exist), rather in this chapter, as an initial

exploration into this new space of research, we attempt to establish if there is indeed a

relationship between biometric response at the time of experiencing lifelog items and

an individual’s desire to view such items/events in the future.

It is known that with increased arousal levels, GSR, HR and HF levels increase and

ST levels decrease (described in Chapter 2.3.1). As an initial investigation into the role

of biometric response associated with past experience of lifelog items and an individ-

ual’s future desire to view these lifelog items, we look at the periods where maximum

GSR, HR and HF biometric response and minimum ST response were observed in our

subjects’ lifelog collections, and investigate if the lifelog items/events experienced at

these times are more important to the individual than other periods in their collec-

tions. The hypothesis then which we wish to explore in this chapter is:

Important events/items from a lifelog archive are coincident with maximum ob-

served GSR, HF and HR readings and with minimum observed ST readings at

the original time of event occurrence, and that these events would be most inter-

esting for subjects during future archive browsing.

Variations in biometric response occur all the time and as stated previously can be

caused by many things, for example changes in arousal level or changes in physical

activity such as walking down a corridor or running. A problem in analysis of biomet-

ric data for the purposes of this experiment is to identify variations in biometric data

which are likely to be the result of variations in arousal levels, as opposed to external

physical reasons, e.g., walking, eating (as described in Chapter 2.3.1). An additional

source of data that can be inferred from captured biometric data using the BodyMedia

armband is the energy expenditure (also described in Chapter 2.3.1) of the individual.

Energy expenditure correlates well with periods of physical activity in subjects’ collec-
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tions and given the nature of the energy expenditure calculation (described in Chapter

2.3.1) should account for other external physical reasons. Thus we put forward that:

Measured energy expenditure can be used in our lifelog collections to differentiate

between high GSR, HF and HR biometric data levels and low ST biometric data

levels, resulting from physical reasons and those arising from events experienced

from the environment.

We explored two techniques to remove the effect of physical activity on biometric

levels. The first removes periods of high energy expenditure (referred to as removeEng)

and the second divides the GSR, HR, HF and ST readings by the associated energy

expenditure level (referred to as divEng). These techniques are described in Sections

6.2.1.1 and 6.2.1.2.

To determine relationship between item/event importance and GSR, HR, HF or ST,

we extracted periods of high GSR, HR, HF and low ST from each subject’s collection

(we refer to these periods as max GSR/HR/HF/ST) using the removeEng and divEng

techniques. For comparison purposes periods of both average GSR, HR, HF, ST, (re-

ferred to as average GSR/HR/HF/ST), and low GSR, HR, HF and high ST (referred to as

min GSR/HR/HF/ST) were also extracted.

In total 5 computer items and 5 SenseCam events were extracted, using the removeEng

and divEng techniques, for each of max, min and average GSR, HR, HF and ST (tech-

niques used to extract items/events are described in Sections 6.2.1.1 and 6.2.1.2). Our

choice of 5 items/events for each GSR, HR, HF and ST level was a reasonable num-

ber for values not to be selected by chance. This number of items/events also did

not place too high a burden on the subjects performing the experiment described later

in this section. Further, as we shall explain in the next section, given the size of our

SenseCam collections and our adopted SenseCam event extraction process it was not

possible to extract large numbers of SenseCam events. Indeed, as we shall also explain

in the next section, it was not possible to even extract 5 SenseCam events in all cases.

The procedure for extraction of the max, min and average SenseCam and computer

items/events using the removeEng and divEng techniques is described next.
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6.2.1.1 Extracting SenseCam Events

Before extracting SenseCam events associated with max, min and average biometric

response, each subject’s biometric data was processed to remove the effect of physical

reasons on the recorded biometric levels. Our first technique (removeEng) to remove

the effect of physical reasons on biometric levels deleted biometric data captured dur-

ing periods of energy expenditure above the average energy level × α (α = empiri-

cally determined scalar constant, set to 1.5 in this experiment) from the data set. For

example, given our set of recorded GSR levels with “date-time” stamps, GSR read-

ings which were recorded at the time of high energy expenditure were removed from

the GSR readings set, as shown in the algorithm in Figure 6.1. Our second technique

(divEng) divided GSR, HR and HF readings by energy expenditure and multiplied ST

readings by energy expenditure. To highlight the use of the divEng technique with an

example, the algorithm in Figure 6.2 shows the use of the divEng technique to trans-

form raw GSR readings to account for energy expenditure levels.

Using each of the resulting biometric datasets in turn we extracted the time frames

which corresponded with periods of max GSR, HR, HF and ST response. We then lo-

cated the SenseCam images which were captured at these times of max GSR, HR, HF

and ST response as candidate important events within a subjects collection. For com-

parison purposes we also located the periods of average and min GSR, HR, HF and

ST response within subjects collections and extracted the SenseCam images captured

during these periods. These sets of SenseCam images were then presented to subjects

for rating to establish if there was a relationship between biometric levels and event

importance (as will be described in the next section). We next describe in greater detail

this process by which SenseCam images which occurred during periods of max, min

and average GSR, HR, HF and ST response were extracted for this experiment. This

process was as follows:

1. Determining begin and end timestamps of max GSR, HF and HR: Begin and

end timestamps for periods in a subject’s GSR/HF/HR dataset where the

GSR/HF/HR level was greater than a preset threshold for an empirically deter-

mined number of seconds were recorded. (Threshold = average of GSR/HF/HR

data * β, β = empirically determined scalar constant). In this experiment we

sought to locate 5 SenseCam events for each of max GSR, HR and HF, hence the
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Function: Get GSR removeEng values
INPUT: GSRarrayIN = ArrayList≺double biometricLevel, String datetime�
INPUT: EnergyArray = ArrayList≺double energyLevel, String datetime�

INPUT: α = double
double EnergyThreshold = (average of all energy level values)*α

for(int i = 0; i ≺ EnergyArray.length; i++)
[
if(¬ EnergyArray[i] � EnergyThreshold)
GSRarrayOUT = GSRarrayIN[i]
]

OUTPUT: GSRarrayOUT

Figure 6.1: Function to remove GSR data associated with periods of high energy ex-
penditure (i.e., the removeEng technique).

Function: Get GSR divEng values
INPUT: GSRarrayIN = ArrayList≺double biometricLevel, String datetime�
INPUT: EnergyArray = ArrayList≺double energyLevel, String datetime�

for(int i = 0; i ≺ EnergyArray.length; i++)
[
GSRarrayOUT = GSRarrayIN[i]/EnergyArray[i]
]

OUTPUT: GSRarrayOUT

Figure 6.2: Function to divide GSR data by energy expenditure level (i.e., the divEng
technique).

number of seconds and scalar constant (β) were manually tuned for each subject

to obtain, where possible, 5 periods of max GSR, HR and HF response corre-

sponding to periods of SenseCam image capture. The empirically determined

number of seconds and scalar constant were similarly set for each of the other

techniques described in the remainder of this section.

Determine begin and end timestamps of max ST: Timestamps were obtained by tak-

ing periods where ST levels were less than a preset threshold for an empirically

determined number of seconds. (threshold = average of ST data / β, β = empir-

ically determined scalar constant)

Determining begin and end timestamps of min GSR, HF and HR: Timestamps were
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obtained by taking periods where GSR/HF/HR levels were less than a preset

threshold for an empirically determined number of seconds. (threshold = aver-

age of GSR/HF/HR data / χ, χ = empirically determined scalar constant)

Determining begin and end timestamps of min ST: Begin and end timestamps for pe-

riods in a subject’s ST dataset where the ST level was greater than a preset thresh-

old for an empirically determined number of seconds were recorded. (threshold

= average of ST data * χ, χ = empirically determined scalar constant)

Determining begin and end timestamps of average GSR, HF, HR and ST: Times-

tamps were obtained by taking periods where GSR/HR/HF/ST levels were >

threshold1 and < threshold2 for an empirically determined number of seconds.

(threshold1 = average of GSR/HR/ST data - δ, δ = empirically determined scalar

constant; threshold2 = average of energy expenditure data + σ, where σ = δ)

Figure 6.3 shows an example of SenseCam event extraction, for max GSR. Part

(1) in this figure shows the ’determining begin and end timestamps’ of max GSR

process described above.

2. Extracting events from the subject’s lifelog: The begin and end timestamps from

Step 1 were used to extract SenseCam events as follows (and shown in part (2)

of Figure 6.3):

• A window of 20 seconds was taken before the begin timestamp and after

the end timestamp. This window was chosen as SenseCam images were

captured every 20 seconds.

• If SenseCam images occurred between the begin and end timestamps with

20 second window and there was no computer activity during this period3,

these images were chosen for presentation to subject for the user study

which is described in Section 6.2.2.

3. Removing duplicates: Obviously, the use of a 20 second window for begin and end

timestamps can result in 2 separate SenseCam events in the same category (e.g.

3Computer activity detected by Slife item accesses occurring during the time period. However, some
SenseCam images showing the subject working on their computer still remained due to Slife crashes
and manual stopping of the Slife software. In future studies image recognition techniques could be
used to remove remaining SenseCam events showing computer activity. Our reasons for not including
SenseCam images showing computer activity in this experiment stems from an earlier pilot study in
which SenseCam images depicting computer activity were not considered interesting by subjects.
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Figure 6.3: Extracting SenseCam events associated with periods of max GSR.

max GSR) having image(s) in common. In cases where this occurred we merged

the images from the 2 events to create one event (with duplicates removed).

This 20 second window also allowed for a given biometric type (e.g. HR) im-

ages to occur across different thresholds (e.g. common image(s) in max HR and

average HR events). In this instance the event generated from the higher oc-

curring threshold was chosen as the event to present to the subject in the user

study described in Section 6.2.2, and the event generated from the lower occur-

ring threshold ignored (e.g. in the situation where there are common image(s)

in a max HR event and an average HR event, only the max HR event would be

selected for presentation to the subject for our experiment).

It should be noted that for max GSR/HR/HF and min ST events the ≤ 5 events con-

taining the highest biometric reading for each biometric type were chosen. Similarly

for min GSR/HR/HF and max ST the ≤ 5 events containing the lowest biometric

readings for each biometric type were chosen, and events containing readings closest

to the average were chosen for average GSR/HF/HR/ST. On completion of the above

process, having expanded thresholds as far as possible, we had sets of ≤ 60 SenseCam

events using the first technique for accounting for physical activity and ≤ 60 Sense-

Cam events using the second technique for accounting for physical activity from each

subject’s lifelog4. The breakdown of the number of SenseCam events presented to

4We did not end up with 5 events for each max, min and average category as it was not possible to
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Sub1 Sub2 Sub3 Sub1 Sub2 Sub3 Total
Technique removeEng divEng
GSR max 5 5 5 5 4 5 29
GSR ave 4 2 3 3 5 5 22
GSR min 3 5 5 3 2 5 23
HF max 3 3 5 5 5 5 26
HF ave 5 2 5 4 2 5 23
HF min 4 4 4 2 2 5 21
HR max 5 0 0 4 4 5 18
HR ave 5 0 0 3 2 5 15
HR min 5 0 0 2 2 5 14
ST max 2 5 5 2 3 5 22
ST ave 3 3 5 3 4 5 23
ST min 5 1 5 3 4 5 23
Total 49 30 42 39 39 60 259

Table 6.1: Number of SenseCam events retrieved per subject (Sub).

subjects in each category is shown in Table 6.1.

6.2.1.2 Extracting Computer Items

As for the extraction process used for SenseCam events (described at the beginning

of the previous section), before extracting computer items associated with max, min

and average biometric response, the subjects’ biometric datasets were processed using

the removeEng and divEng techniques to remove the effect of physical activity on the

recorded biometric levels.

Similar to the SenseCam event extraction process described in the previous section,

in extracting computer items to present to subjects in our user study (described in

the next section), we wished to obtain the computer items with max GSR, HR, HF

and ST levels. To do this, using each of the resulting biometric datasets in turn, we

assigned computer items accessed with the highest GSR, HR, HF and 1/ST5 values

observed across all seconds of accesses to the items. We then chose the computer

items with highest associated GSR, HR, HF and ST levels for presentation to subjects

for rating in the user study described in the next section. For comparison purposes we

also chose the computer items with average and min GSR, HR, HF and ST levels for

presentation to subjects for our user study. The remainder of this section describes in

greater detail this process by which computer items which occurred at points of max,

expand the thresholds any further without periods of max biometric response moving into the average
biometric response range, for example.

5Note since ST values are inversely related to arousal level we take the inverse of ST levels to indicate
arousal level. Using inverse ST values (i.e., i/ST) increases in ST indicate increases in arousal levels.
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min and average GSR, HR, HF and ST response were located and extracted for this

experiment. This process proceeds as follows:

1. Each computer item was assigned its highest associated GSR, HR, HF and ST

readings (note here that in the case of the divEng technique we are referring to

the biometric readings after energy has been accounted for, e.g., 1/(ST× energy),

GSR/energy) across all seconds of access to the item.

2. Extracting max GSR, HR, HF and ST items: The 5 items with highest GSR, the 5

items with highest HR, the 5 items with highest HF and the 5 items with high-

est ST readings were selected for presentation to the subject for the user study

described in the next section.

Extracting average GSR, HR, HF and ST items: The 5 items closest to the subject’s

average GSR, the 5 items closest to the subject’s average HR, the 5 items closest

to the subject’s average HF and the 5 items closest to the subject’s average ST

reading were selected for presentation to the subject for the user study described

in the next section.

Extracting min GSR, HR, HF and ST items: The 5 items with lowest GSR, the 5

items with lowest HR, the 5 items with lowest HF and the 5 items with low-

est ST readings were selected for presentation to the subject for the user study

described in the next section.

As described in Chapter 3.3.1.3, it was not possible to capture the content of all

computer items accessed by subjects on their PCs and laptops. In this experi-

ment in extraction of lifelog items, items for which content data had not been

captured were not considered for presentation to subjects in the above process.

6.2.2 Experiment Procedure

The goal of this research is to establish if periods associated with max GSR, HR, HF

and ST are good indicators of lifelog items/events which are most useful for presen-

tation to subjects when browsing their personal information archives. Personal lifelog

items of varying GSR, HR, HF and ST were presented to subjects and a questionnaire

completed to determine if GSR, HR, HF and ST corresponded with memorable-ness,

significance of events and desire to view events again. Post questionnaire interviews
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were then conducted. This section describes the details of these procedures.

We wished to establish the relationship between biometric response at time of

item/event creation/access on subjects’ desire to re-view lifelog items/events over the

long-term. We thus waited for 22 months after the test set collection period to present

subjects with a set of events taken from their lifelogs6. A total of ≤ 240 items/events

generated using the techniques described in Section 6.2.1 were presented to subjects

in this set. The set included (as shown in Table 6.2): for each of GSR, HR, HF and ST 5

computer items with the max GSR/HR/HF/ST and ≤ 5 SenseCam image events cor-

responding to the max GSR/HR/HF/ST for each of the two techniques for accounting

for energy expenditure (described in Section 6.2.1); and for comparison purposes sim-

ilar sets of items/events with average GSR, HR, HF, ST and min GSR, HR, HF, ST. For

each of average GSR, HR, HF and ST the 5 computer items and ≤ 5 SenseCam events

closest to the subjects’ average GSR, HR, HF and ST were chosen for each of the two

techniques for accounting for energy expenditure (as described in Section 6.2.1). For

each of min GSR, HR, HF and ST the 5 computer items and ≤ 5 SenseCam events

closest to the subject’s lowest min GSR/HR/HF/ST were chosen for each of the two

techniques for accounting for energy expenditure (also described in Section 6.2.1).

Each subject was presented with their set of 120 computer items and < 120 SenseCam

events, and a questionnaire. Subjects were aware that the sets presented to them con-

tained events with varying associated biometric levels and of the specific hypothesis

we wished to test. However, they were not aware of the biometric response associated

with each event. The questionnaire was explained to subjects and sample answers

provided. Each subject completed the questionnaire for their < 240 items and events

(and returned the completed questionnaire to the investigator). The questions posed

in the questionnaire are shown in Figure 6.4.

Questions 2 and 3 in the questionnaire specifically look at whether the subject has

previously retrieved the items/events and how likely they are to retrieve them in the

future. Questions 1 and 4 - 6 examine the activity depicted by the item/event to help

determine the factors that might influence a subject’s desire to retrieve items/events

in the future. Question 1 examines how habitual the activity represented by the

6It should be acknowledged however that subjects had prior exposure to some of this biometric period
test set from preliminary prior experiments (see [Kelly and Jones, 2009, Kelly and Jones, 2010b] for full
details on these studies), which we carried out one and nine months after biometric test set buildup.
Comparison between these prior experiments and the current experiment is drawn in the discussion
section at the end of this chapter.
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Sub1 Sub2 Sub3 Sub1 Sub2 Sub3
Technique removeEng divEng

SenseCam
GSR max 5 5 5 5 4 5
GSR ave 4 2 3 3 5 5
GSR min 3 5 5 3 2 5
HF max 3 3 5 5 5 5
HF ave 5 2 5 4 2 5
HF min 4 4 4 2 2 5
HR max 5 0 0 4 4 5
HR ave 5 0 0 3 2 5
HR min 5 0 0 2 2 5
ST max 2 5 5 2 3 5
ST ave 3 3 5 3 4 5
ST min 5 1 5 3 4 5

Computer Item
GSR max 5 5 5 5 5 5
GSR ave 5 5 5 5 5 5
GSR min 5 5 5 5 5 5
HF max 5 5 5 5 5 5
HF ave 5 5 5 5 5 5
HF min 5 5 5 5 5 5
HR max 5 5 5 5 5 5
HR ave 5 5 5 5 5 5
HR min 5 5 5 5 5 5
ST max 5 5 5 5 5 5
ST ave 5 5 5 5 5 5
ST min 5 5 5 5 5 5
Total 109 90 102 99 99 120

Table 6.2: Number of SenseCam events and computer items retrieved per subject
(Sub).

computer item or SenseCam images is for the subject. For example, for computer

items sending an email requesting information from a researcher in a different re-

search group might be very unusual, whereas writing a conference paper might be

less unusual; for events depicted by the SenseCam a regular lunch date with a group

of friends would be more habitual than attending a concert. It should be noted how-

ever that for some events which subjects could not recognise at all, e.g. where blank

images were presented, subjects could not rate how habitual the event was. The re-

maining questions, i.e. questions 4, 5 and 6, examine the moment in time depicted by

the item/event. Specifically they look at the subjects recall of the activity, how impor-

tant the activity was to them at the time and the current importance of the activity.

For questions 5 and 6 it was necessary to provide a sixth option to accommodate sit-

uations where subjects could not properly recall or distinguish the event/item from
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1. Generally, considering the types of activities you engage in, how com-
mon/distinctive is the event/item? (5-point scale: 0 = Very habitual → 4
= Very unusual).

2. Have you retrieved this event/item to date? (5-point scale: 0 = I have
never retrieved this event/item, 1 = I can’t recall retrieving this event/item,
but it is possible that I have, 2 = I have retrieved this event/item, 3 = I
have retrieved this event/item several times, 4 = I regularly retrieve this
event/item).

3. Is this an event/item that you would or would like to retrieve (or be pre-
sented with) in the future? (5-point scale: 0 = I definitely won’t retrieve this
event/item in the future, 1 = It is unlikely that I will retrieve this event/item
in the future, 2 = I might retrieve this event/item in the future, 3 = I will
probably retrieve this event/item in the future, 4 = I will definitely retrieve
this event/item in the future).

4. How well do you recall this event/item? (5-point scale: 0 = Could not
work out what the event/item was, 1 = I could only get a gist of what the
event/item was, 2 = I could work out what the event/item was but it took
some time, 3 = I could quickly work out what the event/item was, 4 = I
could immediately recognise what the event/item was).

5. How important/significant was the event/item to you at the time? (5-point
scale: 0 = Not at all important, 1 = Of some/little importance, 2 = Of average
importance, 3 = Above average importance, 4 = Very important, and extra
option X = Don’t recall).

6. How important/significant is the event/item to you now? (5-point scale: 0
= Not at all important, 1 = Of some/little importance, 2 = Of average impor-
tance, 3 = Above average importance, 4 = Very important, and extra option
X = Can’t say).

7. Comments on your ratings.

Figure 6.4: Questions posed on the questionnaire completed by subjects.

the provided information. Question 7 was a free text optional field where subjects

could provide details of the type of event they rated (e.g. working on computer) and

an explanation of their ratings. Post questionnaire informal interviews with subjects

provided further insight into their ratings. The following sections discuss the findings

of this study.

6.3 Experiment Results and Analysis

Figures 6.5 and 6.7 (at the end of the chapter) show the results of user item ratings

averaged over the three subjects for questions 1-6 of the questionnaire using the re-

moveEng technique (i.e., the technique which removes biometric data associated with

periods of high energy expenditure, described in the previous section). The average

results of user item ratings across the three subjects for the questionnaire using the
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divEng technique (i.e., the technique which divides the biometric data by energy ex-

penditure (multiplies in case of ST), described in the previous section) are shown in

Figures 6.6 and 6.8 (at the end of the chapter). For ease of viewing and analysis pur-

poses, for each of questions 1-6 we also grouped the 5-point scale ratings; that is a

score of 3 or 4 was grouped together and a score of 0 or 1 was similarly grouped to-

gether. Figures 6.5 - 6.8 also show the percentages for each score averaged across the

3 subjects for questions 1-6 using this grouping. Figures 6.9 - 6.20 (at the end of the

chapter) present the individual breakdown of results for each subject. More specifi-

cally, Figures 6.9 - 6.14 show the individual breakdown of results for each subject for

SenseCam events using the removeEng and divEng techniques. Figures 6.15 - 6.20 show

those for computer items using the removeEng and divEng techniques.

Using the results presented in these figures, in this section we analyse the average

results obtained across the three subjects, explore the differences in performance for

individual subjects and suggest ways the presented techniques may be used in the

future. Specifically Section 6.3.1 analyses the results obtained for the SenseCam event

extraction experiment and Section 6.3.2 analyses the results obtained for the computer

item extraction experiment.

6.3.1 Detecting Important SenseCam Events

Our main objective in doing this experiment is to determine whether past biometric

response associated with events can be used to detect SenseCam events which indi-

viduals might like to retrieve or be presented with in the future. Naturally, perception

of what one might like to view in the future is just that - a perception. The events

individuals will actually want to view can change over time due to personal circum-

stances, information needs, desires at given points in time, etc. Thus in the question-

naire when we ask subjects whether they would like to retrieve or be presented with

different SenseCam events in the future, they can only rate this from their current per-

spective - e.g., a subject might now rate a past once off work meeting with a person

as something they would not want to view in the future, however were they in the

future to get to know this person on a personal level it might then be interesting to

view the images relating to their first ever meeting; or a subject might now rate im-

ages of them in their home as mundane and not something they want to view in the

future, however years from now if the subject is living somewhere different it might
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be interesting to view images of their previous home and the ’old fashioned’ devices,

etc, contained within it! This of course is pure speculation. All we attempt to do in

this study is take the subject’s current perspective and examine whether two years

after SenseCam images were captured, the biometric response associated with these

images is representative of images they might wish to view in the future. Question

3 of our questionnaire looks at this. The remaining questions help us to gain some

insight into the types of events subjects might want to view from their collections and

whether biometric levels relate to these types of event. This may be useful for future

studies in this space which seek to progress the approach presented here - e.g. perhaps

subjects are likely to want to retrieve events they have retrieved to date or events de-

picting a more unusual activity. We next examine the overall results obtained. We then

examine results across individual subjects. This section then concludes with overall

conclusions on the use of biometrics as an enabling technology for applications sup-

porting SenseCam browsing.

6.3.1.1 Overall Results

Using removeEng technique:

Overall observed results suggest some relationship between GSR levels associated

with images using the removeEng technique (See Figure 6.5) and subjects’ desire to

view the SenseCam events in the future. Subjects would not want to view 20% of

the max GSR events in the future, this compares to not wanting to view 22% of the

average GSR events and 46% of the min GSR events (see GSR results with rating of

0 for ‘Retrieve in Future’ in Figure 6.5). Considering both SenseCam events subjects

would not and were unlikely to want to view in the future shows that subjects would

not or are unlikely to want to view 27% of max GSR events compared to 55% of ave

GSR and 61% of min GSR events respectively (see GSR results with rating of 0 and

1 for ‘Retrieve in Future’ in Figure 6.5). Relationship is also observed between GSR

levels and importance of the events at the original time of event occurrence, current

importance of the events depicted by the images and images that have been retrieved

to date. This also relates to how habitual the events were and subjects recall of the

events. See GSR results in Figure 6.5.

HF levels were also a good indicator of images subjects would like to view again in
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the future using the removeEng technique, also shown in Figure 6.5. Subjects would

not want to view 18% and would not or were unlikely to view 27% of max HF events,

compared to not wanting to view 42% of ave HF events and 58% of min HF events and

not wanting or being unlikely to want to view 50% of ave and 75% of min HF events

(see HF results with ratings of 0 and 1 for ‘Retrieve in Future’ in Figure 6.5). HF

levels also correlated with images subjects have retrieved to date. This too is related

to how habitual the events were, but had no bearing on subjects’ recall of the events,

importance at time of event occurrence or current importance of events. See HF results

in Figure 6.5.

No relationship was observed between HR and ST using the removeEng technique for

the questions posed in our questionnaire (see HR and ST results in Figure 6.5).

Using divEng technique:

The removeEng technique removed periods of high energy expenditure from the col-

lection, as described in Section 6.2.1.1. The remaining biometric levels are raw bio-

metric readings which do not consider the associated energy expenditure levels. We

speculated that the divEng technique which divides the biometric levels by energy ex-

penditure (multiplies in the case of ST) might better get at the true biometric responses

with external factors removed, as this technique factors associated energy expenditure

levels into all biometric readings (described in Section 6.2.1.1). Figure 6.6 presents the

average results obtained using the divEng technique to extract SenseCam events for

the three subjects.

Averaged across the three subjects, are speculation that the divEng technique would

perform better than the removeEng technique did not hold true for HF. Dividing HF

values by energy expenditure no relationship between HF levels and the questions

posed in our questionnaire were observed (see HF results in Figure 6.6). This is in con-

trast to the results observed when using HF with the removeEng technique described

previously. However, different patterns emerge when we examine the performance

for individual subjects, described later.

GSR levels still correlated to a certain extent with subjects’ desire to retrieve the images

in the future using the divEng technique. Subjects would not want to retrieve 29% of

max GSR events, compared to not wanting to retrieve 46% and 30% of average and

min GSR events respectively, and would not or were unlikely to want to retrieve 29%
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of max GSR, 62% of average GSR and 50% of min GSR events (see GSR results with

ratings of 0 and 1 for ‘Retrieve in Future’ in Figure 6.6). Some relationship was also

shown between GSR levels and images current importance using the divEng technique

(see GSR results for ‘Current Importance’ in Figure 6.6). However, in this case, this did

not relate to whether subjects had retrieved the images to date, importance at time of

event occurrence, recall of the events, nor how habitual the events were (see GSR

results in Figure 6.6).

Similar to the use of HR levels with the removeEng technique, using the divEng tech-

nique HR levels did not provide insight into the events subjects may wish to view in

the future (see HR results for ‘Retrieve in Future in Figure 6.6). Despite this HR lev-

els did correlate with the distinctiveness of events and the importance of the events

at the time of occurrence to the subjects (see HR results in Figure 6.6). This suggests

that while HR levels might be useful for inferring events which are important to our

subjects as they are occurring, and also for detecting distinctive events from their col-

lections, events of this nature detected through HR levels are not necessarily the events

subjects will want to view in the future.

Using the divEng technique with ST did not provide insight into the events subjects

may wish to view in the future. Nor did ST levels show relationship with the other

questions posed in the questionnaire (see ST results in Figure 6.6). This is similar

to the results observed previously using ST levels in the removeEng technique where

there was no relationship between ST levels and the six questions posed in the ques-

tionnaire.

6.3.1.2 Performance Across Individual Subjects

In this section we analyze the results obtained for each of the three subjects. A sum-

mary of these results are provided in Figure 6.3 (at the end of the chapter).

Comparison with Average Results:

Analysing the individual ratings of subjects (see Figures 6.9 - 6.14) shows that the

relationship between GSR using the divEng technique, and both GSR and HF using the

removeEng technique, and subjects desire to view SenseCam events in the future are

present for Subject 1. Subjects 1 and 3 only show such relationship for HF using the

removeEng technique. Additionally, further relationships which were not present in

149



the average results (described in the previous section) are also observed, particularly

in the case of Subjects 1 and 2. These relationships are discussed in this section.

Patterns of Past Interaction with SenseCam Collections (‘Retrieved to Date’):

Different patterns of past interaction with SenseCam collections were noted in these

figures (see ‘Retrieved to Date’ in Figures 6.9 - 6.14). Subject 2 had never retrieved the

images presented to them in this study. In fact, on questioning this subject, they have

never looked back over their SenseCam images, with the exception of one episode

which they decided to consult to locate information captured in the images. Subject

1 looked at very few of the SenseCam events presented to them in the study, and

on consultation with this subject it was found that they have rarely browsed their

SenseCam collection to date. Subject 3 on the other hand had viewed more of the

SenseCam events presented to them in this study in the past, and quite regularly,

relative to the other subjects, browses their SenseCam collection.

Using the removeEng Technique:

As mentioned at the beginning of this section, GSR levels and HF levels to a certain

extent correlated with Subject 1’s desire to retrieve SenseCam events in the future

using the removeEng technique (see ’Retrieve in Future’ in Figure 6.9). Further, GSR

levels also correlated here with this subject’s desire to retrieve SenseCam events in

the future (Spearmans Rank Correlation Coefficient, rho= 0.698, p<0.05). GSR levels,

using this technique, also correlated with how distinctive the event captured in the

SenseCam images was, recall of the event, whether the images had been retrieved

to date, the importance of the event to the subject at the time of occurrence and the

current importance of the event to the subject. Relationship was also observed for HF

levels, using the removeEng technique and events retrieved to date for this subject, see

GSR and HF results in Figure 6.9.

HF levels, using the removeEng technique, also showed some relationship with Subject

2’s desire to retrieve SenseCam events in the future, as mentioned at the beginning of

this section. This too showed some relationship with the distinctiveness of the events.

See HF results for ’Retrieve in Future’ and ’Common/distinctive Activity’ in Figure

6.11. While using the removeEng technique GSR levels also showed some relationship

for Subject 2 with the distinctiveness of events, recall of events, importance of events

at the time of occurrence and current importance of events, this did not correlate with
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the subject’s desire to view events in the future (see GSR results in Figure 6.11). An-

other biometric measure, namely ST levels, did however show a relationship with this

subject’s desire to view events in the future using the removeEng technique. ST levels

for this subject also correlated with the current importance of the events depicted in

the SenseCam images to the subject, see ST results in Figure 6.11.

The only relationship between biometric levels and the subject’s desire to retrieve

events in the future observed for Subject 3 using the removeEng technique was for

HF levels. HF levels also correlated with events the subject had retrieved to date and

to a certain extent with how distinctive the events were, see Figure 6.13.

While certain levels of relationship between biometric response levels and desire to

view events were observed using the removeEng technique, as highlighted at the be-

ginning of this section, the divEng technique performed better. We next examine this

effect.

Using the divEng Technique (Subjects 1 & 2):

The divEng technique is better than the removeEng at pin-pointing events Subjects 1

and 2 might view in the future (see ’Retrieve in Future’ in Figures 6.9 and 6.11 for

results using the removeEng technique, and Figures 6.10 and 6.12 for results using the

divEng technique for Subjects 1 and 2 respectively). The divEng technique gives supe-

rior performance than the removeEng technique for Subjects 1 and 2, in particular for

ST, HR and HF. Relationship was observed for both Subjects 1 and 2 for ST, HR and HF

levels and the subject’s desire to view events in the future using the divEng technique

(correlation was also observed here for Subject 2, for ST and HR: Spearmans Rank

Correlation Coefficient - ST: rho= 0.629, p<0.05; HR: rho= 0.713, p<0.05). In fact, nei-

ther of these subjects had any desire to retrieve SenseCam events in the future which

did not have an associated max ST, HR or HF response (see Subject 1’s and Subject 2’s

results for ‘Retrieve in Future’ in Figures 6.10 and 6.12 respectively).

Analysing the images with associated max biometric response for HR, HF and ST

which these subjects did not wish to view in the future, we found that they were

blank images, images captured when driving, images depicting working in isolation

on a computer and images showing beneath a table. These types of images could sim-

ply be distinguished in the future by use of automatic image analysis techniques and

not presented to subjects. Subjects could recall some of these computer events with
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associated max biometric response which they did not wish to view in the future, due

to distinguishing factors such as working on another person’s computer for example.

Indeed some of these events were also important to the person at the time. While we

endeavoured to remove SenseCam events depicting the subject working on their PC

through the use of the computer activity we logged with Slife, some PC activity was

not removed using this technique due to subjects stopping Slife tracking (during high

computer processing activities), Slife crashes, and subjects working on PCs other than

their own (as described in Section 6.2.1.1).

We also note in Figure 6.10 that Subject 1, who had retrieved some items to date,

had only retrieved events with max biometric response for ST, HR and HF using the

divEng technique. However this had little relationship with how common/distinctive

the events were, the subject’s recall of the events, the importance of the events at the

time of event occurrence, and current importance of the events (see Figure 6.10).

As mentioned earlier in this section, Subject 2 has not retrieved the events presented

to them in this study to date. However, relationship between biometric levels and

this subject’s recall of the events and perceived current importance of the events was

observed using the divEng technique for HR, HF and ST (see Figure 6.12).

Regarding, the utility of GSR levels using the divEng technique in detecting events

Subjects 1 and 2 might want to retrieve in the future, some relationship was noted for

Subject 1 but none for Subject 2 (see GSR results for ’Retrieve in Future’ in Figures 6.10

and 6.12). While GSR levels using the divEng technique related to Subject 1’s desire

to view the events in the future (correlation was also observed here: Spearmans Rank

Correlation Coefficient, rho= 0.611, p<0.05), they did not relate to the other questions

posed in our questionnaire (see Figure 6.10). However, despite not relating to Subject

2’s desire to view events in the future, GSR levels using the divEng technique did

correlate with the subject’s recall of the events and their perceived current importance

of the events (see Figure 6.12).

Using the divEng Technique (Subject 3):

The relationships between biometric levels and subjects’ desire to view events in the

future observed for Subjects 1 and 2 using the divEng technique were not present for

Subject 3 (see ’Retrieve in Future’ in Figure 6.14). Indeed no relationship between

biometric levels and the questions posed in the questionnaire was observed for this
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subject.

Using the divEng technique this subject had previously retrieved some of the events

presented to them from each of the max, min and average biometric categories, with

the exception of events from the average HR category, none of which had previously

been retrieved. Further, they only rated one event (a max GSR event) as being an event

they would definitely not want to view in the future (see Figure 6.14). Incidentally this

event, which the subject would not want to view again, was talking to someone who

was regularly encountered. It should be noted though that no conclusions can be

drawn from this observation, as other events showing people regularly encountered

were also presented to the subject in the study, and for these other events the subject

did not state that they definitely would not want to view the events again in the future.

Further, no distinguishing characteristics were noted in the events the subject would

be most interested in viewing again.

This subject, as distinct from the other two subjects, has often looked at their Sense-

Cam images in the past. Also, as distinct from the other subjects, enjoyed looking at

what might be considered mundane repetitive events such as images depicting cook-

ing in a kitchen, watching TV, etc. On questioning this subject as to their SenseCam

reviewing behaviour, they stated that they found it interesting to view such events

again. This is similar to the findings of [Harper et al., 2008] where mundane Sense-

Cam events depicting one’s life were found to be interesting to view, albeit this study

was dealing with subjects for who it was novel to be wearing a SenseCam and thus

also novel to be viewing SenseCam images of their lives, while our subjects are regu-

lar SenseCamers. Further their subjects were looking at images from the recent past,

while our subjects were looking at images which were captured some 22 months pre-

viously.

6.3.1.3 Concluding Remarks

Overall results showed that the divEng technique performed best for Subjects 1 and

2 in detecting events they might want to view in the future (with ST showing the

greatest utility in detecting events the subjects might want to view in the future). All

biometric measures showed some utility for Subject 1 in this regard, and all but GSR

showed utility for Subject 2 in this regard. The divEng technique did not show utility
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in detecting events Subject 3 might want to view in the future. Using the removeEng

technique, GSR and HF levels correlated with Subject 1’s desire to view events in the

future. ST and HF levels showed utility for Subject 2 here. While HF levels using

the removeEng technique were the only measure which showed any relationship with

desire to view events in the future for Subject 3.

As we saw in this section, while GSR performed best for Subject 1 in detecting events

they might want to view in the future using the removeEng technique, the other mea-

sures performed better in this regard using the divEng technique. Showing that factor-

ing energy expenditure is important for HF, HR and ST, but has a negative effect on

GSR for this subject. This however did not hold true for Subject 2, where GSR was not

shown to provide utility in this regard using either technique. We also saw in these

results that biometric levels were not particularly useful in detecting events which

Subject 3, who regularly browsed their SenseCam collection, might want to view in

the future.

Overall from these results we conclude that for subjects who infrequently browse their

collections use of biometrics in locating interesting items combined with image anal-

ysis techniques (e.g. do not present individuals with blank images or blurred images)

may be a good enabling technology component in lifelog search and evaluation (as

we saw in this section for Subjects 1 and 2). However, for individuals who regularly

browse their collections and find everything from the mundane to the unusual in-

teresting, biometrics may not be useful (as we saw in this section for Subject 3). We

acknowledge that this study was conducted on a small sample of individuals and that

further analysis is required with a much larger set of subjects to properly substantiate.

6.3.2 Detecting Important Computer Items

Similar to the SenseCam events, our main objective in doing this experiment is to

determine whether past biometric response associated with computer items can be

used to detect items which an individual might like to retrieve or be presented with

in the future from their lifelog. The next section examines the overall results obtained,

following which Section 6.3.2.2 examines performance across individual subjects. The

section concludes with a summary of the overall conclusions on the use of biometrics

in detecting important computer items which can be made on the basis of this study.
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6.3.2.1 Overall Results

Using the removeEng Technique:

Overall results suggest that the removeEng technique is not useful for detecting com-

puter items which subjects may wish to view in the future (see ’Retrieve in Future’

in Figure 6.7). The only relationship observed between biometric levels and subjects’

desire to retrieve items in the future using the removeEng technique is the small rela-

tionship observed using ST levels. Subjects would want to retrieve 20% of items with

max ST, > 10% of items with average ST and < 10% of items with associated min ST

using the divEng technique (see ST results with rating of 4 for ‘Retrieve in Future’ in

Figure 6.7). Subjects would or probably would want to retrieve < 50% of items with

max ST, 20% of items with average ST and < 30% of items with min ST (see ST results

with rating of 3 and 4 for ‘Retrieve in Future’ in Figure 6.7). ST levels here also have

marginal relationship with subjects recall of the items, the current importance of the

items to the subjects and whether the subjects have retrieved the items to date, but no

relationship with the other questions posed in the questionnaire (see Figure 6.7).

Using the divEng Technique:

The divEng technique shows greater utility in locating items subjects may wish to view

in the future (see ’Retrieve in Future’ in Figure 6.8) using ST levels. Here subjects

would want to retrieve in the future 40% of items with max ST verses < 10% of items

with average ST and < 10% of items with min ST (see ST results with rating of 4 for ST

for ‘Retrieve in Future’ in Figure 6.8). They would or probably would wish to retrieve

60% of items with max ST, this compares with < 10% of average ST items and < 10%

of min ST items (see ST results with ratings of 3 or 4 for ST for ‘Retrieve in Future’

in Figure 6.7). A limited relationship between ST levels and the current importance

of items, whether the items have been retrieved to date and importance at the time of

previous interaction with the items is also observed here for subjects (see ST results in

Figure 6.8).

Some relationship is also observed, using the divEng technique, between HR levels

and subjects’ desire to retrieve items in the future. Using HR levels with the divEng

technique subjects would or probably would want to retrieve in the future > 20% of

items with max HR, this compares with < 10% of average HR items and 0% of min

HR items (see HR results with ratings of 3 or 4 for ’Retrieve in Future’ in Figure 6.8).
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A relationship is also observed between HR levels, using the divEng technique, and

both items subjects have retrieved to date and the current importance of the items to

the subjects (see HR results in Figure 6.8).

HF levels, using the divEng technique, show some relationship with the distinctive-

ness of the items in subjects’ collections. HF levels, using the divEng technique, also

correlate with whether the items have been retrieved to date , subjects recall of items

and the importance to the subjects of the items at the time of previous interaction.

However, HF levels, using the divEng technique, do not correlate with the current im-

portance of the items to the subjects and show little relationship with their desire to

retrieve the items in the future, see results for HF in Figure 6.8.

GSR levels, using the divEng technique, while correlating with the distinctiveness of

the items in subjects collections, do not relate to the subjects’ desire to retrieve items

in the future, nor to any of the other questions posed in the questionnaire (see results

for GSR in Figure 6.8).

Overall then we find that across the 3 subjects, ST levels using the divEng technique,

show the greatest utility in locating the computer items which the subjects may wish to

view in the future. In the next section we analyse performance across each individual

subject.

6.3.2.2 Performance Across Individual Subjects

In this section we analyze the results obtained for each of the three subjects. A sum-

mary of these results are provided in Figure 6.4 (at the end of the chapter).

Comparison with Average Results:

Analysing the results observed across individual subjects (Figures 6.15 - 6.20), we find

that the relationship between ST and HR using the divEng technique and desire to

view the items in the future, observed in the average results shown in the previous

section, are present for Subjects 1 and 3 (see Subject 1 and 3’s ratings for ST and HR

for ’Retrieve in Future’ in Figures 6.16 and 6.20 respectively). Beyond this relationship

other biometric types levels are shown to correspond with a desire to view items in

the future for our 3 subjects using the divEng technique (see ratings for ‘Retrieve in

Future’ in Figures 6.16, 6.18 and 6.20).
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The relationship between subjects’ desire to view items in the future and ST levels us-

ing the removeEng technique found in the previous section, is only present for Subject

1 (see ST ratings for ‘Retrieve in Future’ in Figure 6.17). Indeed no other relationships

between biometric response and the subjects’ desire to view the items in the future

using the removeEng technique is observed across the three subjects (see ratings for

‘Retrieve in Future’ in Figures 6.15, 6.17 and 6.19). This suggests that factoring of en-

ergy expenditure readings into biometric levels is important for computer items. For

the remainder of this section we analyse these results in greater detail.

Subject 1 Results Analysis:

As mentioned at the beginning of this section, ST and HR levels, using the divEng

technique, show utility for Subject 1 in locating items that the subject may wish to

retrieve in the future (see ST and HR ratings for ‘Retrieve in Future’ in Figure 6.16). In

addition to this, HF levels using the divEng technique, also correlate to a certain extent

with the subject’s desire to retrieve items in the future (see HF ratings for ‘Retrieve

in Future’ in Figure 6.16). Further, correlation between both ST and HF levels and

events this subject may wish to view in the future are also present (Spearmans Rank

Correlation Coefficient - ST: rho= 0.845, p<0.05; HF: rho= 0.574, p<0.05).

Using ST, with the divEng technique, this subject would definitely want to retrieve

40% of items with associated max ST, 0% of items with average ST and 0% of items

with min ST (see ratings of 4 for ST for ‘Retrieve in Future’ in Figure 6.16). ST levels

here also correlate with the current importance of items for this subject, but not with

the other questions posed in the questionnaire (see Figure 6.16).

Using HR, with the divEng technique, the subject would definitely or probably want to

retrieve 60% of items with associated max HR, 20% of items with average HR and 0%

of items with min HR (see ratings of 3 and 4 for HR for ‘Retrieve in Future’ in Figure

6.16). HR levels here, using the divEng technique also correlated with the subjects re-

call of items and the current importance of the items, but not with the other questions

posed in the questionnaire (see Figure 6.16).

Finally, using HF, with the divEng technique, the subject would probably want to re-

trieve 40% of items with max and average HF and 0% of items with min HF (see

ratings of 3 for HF for ‘Retrieve in Future’ in Figure 6.16). A limited relation between

the subject’s recall of the items and the importance of the items to the subject in the
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past is also observed. No relationship between HF levels, using the divEng technique,

and the other questions posed in the questionnaire is observed, see results for HF in

Figure 6.16.

No relationship was observed for Subject 1 between GSR levels, with the divEng tech-

nique, and the questions posed in our questionnaire (see GSR results in Figure 6.16).

As mentioned at the beginning of this section, using the removeEng technique, the

only relationship observed for Subject 1 and desire to view items in the future was that

observed using ST levels (correlation is also present here: Spearmans Rank Correlation

Coefficient, rho= 0.560, p<0.05). Using ST levels, with the removeEng technique, the

subject would definitely want to retrieve 40% of items with associated max ST, and

0% of items with average and min ST (see ratings of 4 for ST for ‘Retrieve in Future’

in Figure 6.15). ST levels did not correlate with any of the other questions in the

questionnaire for this subject (see ST results in Figure 6.15).

Beyond ST levels, using the removeEng technique, the only other relationship observed

for the questions posed in the questionnaire was between HR and HF levels and the

importance of the items during past interaction for the subject, and between GSR lev-

els and the distinctiveness of the items (see results in Figure 6.15).

Subject 3 Results Analysis:

As mentioned at the beginning of this section, for Subject 3, similar to Subject 1, ST

and HR levels show a relationship with the subject’s desire to view items in the future

using the divEng technique, see ST and HR results for ‘Retrieve in Future’ in Figure

6.20.

Subject 3 would definitely or probably want to retrieve 60% of the items with asso-

ciated max ST, using the divEng technique, in the future, relative to 0% of items with

associated average and min ST levels (see ST results with ratings of 3 and 4 for ‘Re-

trieve in Future’ in Figure 6.20). ST levels here also showed some relationship with the

subject’s recall of items, whether they had retrieved the items to date and the current

importance of the items to the subject (see results for ST in Figure 6.20). Relationship

between ST levels, using the divEng technique, was not observed for the importance

of the items at the time of previous access to the subject and the distinctiveness of the

items (again see results for ST in Figure 6.20).

Using HR levels with the divEng technique, Subject 3 would definitely or probably
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want to retrieve 20% of the items with associated max HR levels and 0% of items with

average and min HR levels (see HR results with ratings of 3 and 4 for ‘Retrieve in

Future’ in Figure 6.20). No relationship was observed between HR levels, using the

divEng technique, and the other questions posed in the questionnaire (see results for

HR in Figure 6.20).

Relationship was not observed between Subject 3’s desire to view items in the future

and GSR or HF levels using the divEng technique (see GSR and HF results in Figure

6.20). The only relationship observed between either of these biometric measures,

using the divEng technique for this subject and the questions posed, was the limited

relationship between HF levels and the subject’s recall of the items (see ‘Recall’ results

for HF in Figure 6.20).

As can be seen in Figure 6.19, no relationship was observed between GSR, HR, HF

or ST levels, using the removeEng technique, and any of the questions posed in the

questionnaire for Subject 3.

Subject 2 Results Analysis:

Across the three subjects, Subject 2’s biometric levels showed the least relationship

with computer items for the questions posed in our questionnaire. Using the re-

moveEng technique the only relationship observed was that between ST levels and the

distinctiveness of the items (see ratings for ‘Common/distinctive Activity’ in Figure

6.17).

Using the divEng technique GSR levels were the only biometric measure which corre-

lated somewhat with Subject 2’s desire to retrieve items in the future (see results for

‘Retrieve in Future’ in Figures 6.17 and 6.18). Here the subject would want to retrieve

40% of items with associated max GSR, compared to wanting to retrieve 20% of items

with average GSR and 20% of items with min GSR (see ratings of 4 for ‘Retrieve in

Future’ for GSR in Figure 6.18). GSR levels, using the divEng technique, also showed

some relationship with items the subject had retrieved to date (see GSR results for

‘Retrieved to Date’ in Figure 6.18).

The only other relationship observed between biometric measures using the divEng

technique and the questions posed in our questionnaire was the relationship between

the distinctiveness of items and HR levels (see HR ratings for ‘Common/distinctive

Activity’ in Figure 6.18).
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The relationship between GSR levels and desire to view items in the future observed

for Subject 2 using the divEng technique is the opposite of what was observed for the

other two subjects, where GSR levels were not useful in this regard. Further, for the

other two subjects relationship between HR, HF and ST levels using the divEng and

the subjects’ desire to view the items in the future were observed - this relationship

was present for Subject 1 for HR, HF and ST levels; and for Subject 3 for HR and ST

levels (as described earlier in this section).

6.3.3 Concluding Remarks

Overall the divEng technique shows greatest utility in locating items subjects might

want to view in future. However while GSR proves most useful for Subject 2, it is

not useful for Subjects 1 and 3, and contrastingly HR and ST which are useful for

Subjects 1 and 3 (ST being the more useful of the two) are not useful for Subject 2.

While this anomaly cannot be explained here, the utility of biometric response with

energy expenditure factored in provides support for exploring the use of this approach

to re-rank ranked result lists. This analysis is presented in the next chapter. In this

next chapter we explore in greater detail the types of biometric responses which pro-

vide greatest utility in helping locate relevant items from collections, specifically in

re-ranking ranked result lists.

6.4 Discussion

Preliminary experiments exploring the utility of biometric response associated with

past experience of lifelog items in detecting the importance of lifelog items to indi-

viduals were conducted on an earlier version of the test sets used in this chapter

[Kelly and Jones, 2009, Kelly and Jones, 2010b]. These experiments showed a relation-

ship between biometric response and the importance of lifelog events to individuals

(albeit 1 and 9 months after the lifelog data had been captured as opposed to the 22

month time interval explored in this chapter). However, these experiments suffered

a number of shortcomings in the experimental procedure adopted. In particular, the

biometric data from the beginning and end of each period of wearing the biometric

devices which was skewed (as discussed in Chapter 3.3.4.4) was not removed from

the dataset. Also, energy expenditure values were not calculated on the given sub-
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jects personal details (i.e., age, weight and height), due to the devices not being set

with the subjects’ personal details (as discussed in Chapter 2.3.1 these personal details

are used in the energy expenditure calculation). The experiments presented in this

chapter addressed these problems.

Further, a number of lessons were learned from these earlier experiments and subse-

quently the experiments presented in this chapter differ in a number of key ways:

1. In this chapter’s experiments for SenseCam events a 20 second window was

allowed each side of the events;

2. An additional form of biometric data, heat flux, was considered in this chapter’s

experiments;

3. The earlier experiments showed failure to capture textual content for computer

items to negatively impact on a subject’s ability to recall items in some instances,

hence items missing textual content were not considered in the experiments pre-

sented in this chapter;

4. Our prior experiments presented subjects with temporal groups of computer

items (events) to rate, however many of the items in such events were unrelated

(e.g. viewing email and then returning to a coding task). Subjects’ rating such

events does not provide an indication of the role of biometric response in de-

tecting the future importance of individual computer items, hence in the study

presented in this chapter subjects were presented with single items to rate;

5. In our prior experiments the only way physical activity and other external fac-

tors were accounted for was through the deletion of biometric data captured

during periods of high energy expenditure (i.e. an earlier version of the re-

moveEng technique). Similar to use of the removeEng technique in this chapter,

the only computer and SenseCam events which were available for presentation

to the subjects’ were the ones which occurred at the times of the remaining bio-

metric data captured. In using this approach we removed the possibility for

suggestion of potentially interesting computer and SenseCam events which oc-

curred during the periods of deleted biometric levels. As highlighted earlier, it

is also possible in using this technique that the remaining biometric levels were

still influenced by external factors. Hence in the experiments presented in this
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chapter, we also explored factoring energy expenditure levels into the biometric

readings (i.e. the divEng technique) as opposed to just looking at the removal of

periods of high energy expenditure.

While these factors would have negatively impacted on the experiments in the prior

work, the experiments nevertheless provided an insight into the utility of biomet-

ric response in locating events from lifelogs which individuals may be interested in

viewing. The experiments also provide us with some insight into how the SenseCam

images individuals wish to view change over time. This was particularly apparent

for Subject 3, who soon after capturing SenseCam images and while still actively en-

gaged in SenseCam image capture, did not wish to view a lot of mundane events such

as cooking dinner captured by the SenseCam. However over time this changed and

while no longer lifelogging and capturing such repetitive life events, the subject found

pleasure in viewing these ‘mundane’ events (as discussed earlier in this chapter). We

can only speculate as to whether further in the future the same will hold true for the

other subjects. However we feel that individual difference will come into play both

from the point of view of what will be interesting to view and how often subjects will

consult their lifelogs. Future work should consider use of qualitative user studies to

establish the different patterns of lifelog browsing exhibited by individuals. Lifelog

viewing patterns will also, we believe, depend on personal circumstances at given

moments in time and on the different stages in one’s life.

From the findings of our studies we speculate that biometrics may prove to be a more

useful tool for occasional lifelog browsers, as opposed to those who appear to browse

collections on a more regular basis. We also believe that biometrics on their own are

by no means the full solution, however integrated into an application which supports

lifelog browsing using category facilities, e.g., show me images on topic x, images

in y location, images with z person in them, it could prove a useful tool. Further

investigation on this topic appears to be justified for future work.

6.5 Conclusions

In this chapter we set out to explore the role of biometric response in detecting impor-

tant items within lifelogs. We investigated whether items coincident with maximum
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observed biometric galvanic skin response (GSR), heat flux (HF) and heart rate (HR)

and with minimum observed skin temperature (ST) readings were more important to

subjects, and whether this would mean they would be most useful or interesting for

subjects to view in the future. From this study, relationship between biometric levels

and both SenseCam event and computer item importance was observed. The Sense-

Cam event selection results are important since ability to extract interesting events

from vast SenseCam collections is challenging but important, if these archives are to

have long-term use. As mentioned previously, while these results are promising, it is

acknowledged that this study was conducted on a limited number of subjects over a

short period of time. Investigation using more participants over a longer timeframe is

required to further test our suggested conclusions.

Overall we saw that HF levels with periods of high energy expenditure removed (i.e.,

removeEng technique) is most beneficial for detecting SenseCam events subjects may

wish to view in the future, but that consideration of other additional factors beyond

biometric response may improve performance. ST proved most beneficial for detect-

ing computer items individuals may wish to view in the future using the divEng tech-

nique.

However, different pictures began to emerge when we looked at the results of individ-

ual subjects. HF levels using the removeEng technique was the only one which showed

relationship with subjects’ desire to view SenseCam events in the future across the 3

subjects. Indeed, for Subject 3 who regularly browsed their SenseCam collection, no

other relationship between biometric response (using either the removeEng or divEng

technique) and the subject’s desire to view SenseCam events in the future was ob-

served. However, for Subjects 1 and 2 who rarely if ever browsed their SenseCam col-

lections, the divEng technique, showed greatest utility in detecting SenseCam events

these subjects might want to view in the future, with ST levels showing the greatest

utility in this regard. For computer items, while ST levels using the divEng technique

proved to be the most useful technique in detecting items Subjects 1 and 3 might want

to view in the future, this technique did not prove useful for Subject 2. For Subject 2

GSR level using the divEng technique was the only technique which showed relation-

ship with items that the subject might wish to view in the future.

Overall from these results we can suggest that factoring of energy expenditure into

the individual biometric readings (through the use of the divEng technique) is impor-
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tant. However, it is hard to draw conclusions on a biometric measure which may

prove most useful in detecting events/items subjects may wish to view in the future.

Rather, we conclude that biometric levels associated with past experience of lifelog

items seem to show promise in detecting important items/events in individuals per-

sonal digital collections. Future work needs to be done to explore the nature of bio-

metric response associated with lifelog items and the role of this response in detecting

important lifelog items in greater detail. This caveat notwithstanding, the results ob-

served in this chapter support investigating the use of the biometric tags that can be

assigned to lifelog items as static scores for ranked retrieval of personal items in a

lifelog. The next chapter combines the work of this chapter with the techniques for

ranked retrieval from lifelogs investigated in Chapter 5.
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Subject 1 Subject 2 Subject 3
Retrieve Other Retrieve Other Retrieve Other
in Future Questions in Future Questions in Future Questions

divEng
< GSR GSR:

current
importance;

recall
ST ST: ST ST:

retrieved current
to date importance;

recall
HR HR: HR HR:

retrieved current
to date importance;

recall
HF HF: HF HF:

retrieved current
to date importance;

recall
removeEng

GSR GSR: GSR:
distinctiveness; distinctiveness;

current current
importance; importance;
importance importance

at time; at time;
recall; recall

retrieved
to date

ST ST:
current

importance

HF HF: < HF HF: HF HF:
retrieved distinctiveness retrieved
to date to date;

< distinctiveness

Table 6.3: Summary of the relationship observed between subjects’ ratings for Sense-
Cam events and biometric levels. Best performing biometric measure for each subject
highlighted in bold font, ’<’ refers to little relationship.

165



Subject 1 Subject 2 Subject 3
Retrieve Other Retrieve Other Retrieve Other
in Future Questions in Future Questions in Future Questions

divEng
< GSR GSR:

retrieved
to date

ST ST: ST ST:
current current

importance importance;
recall;

retrieved
to date

HR HR: HR: < HR
current distintiveness

importance;
recall

< HF HF: < HF:
importance recall

at time;
recall

removeEng
GSR:

distinctiveness
ST ST:

distinctiveness
HR:

importance
at time

HF:
importance

at time

Table 6.4: Summary of the relationship observed between subjects’ ratings for com-
puter items and biometric levels. Best performing biometric measure for each subject
highlighted in bold font, ’<’ refers to little relationship.
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Figure 6.5: Questionnaire results - average SenseCam event ratings for the three sub-
jects combined for max, average (ave) and min GSR, HR, HF and ST using the re-
moveEng technique. Note the graphs on the left column present a break down of the
results, while the right column graphs present a grouping of the questions 5-point
scale.
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Figure 6.6: Questionnaire results - average SenseCam event ratings for the three sub-
jects combined for max, average (ave) and min GSR, HR, HF and ST using the divEng
technique. Note the graphs on the left column present a break down of the results,
while the right column graphs present a grouping of the questions 5-point scale.
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Figure 6.7: Questionnaire results - average computer item ratings for the three subjects
combined for max, average (ave) and min GSR, HR, HF and ST using the removeEng
technique. Note the graphs on the left column present a break down of the results,
while the right column graphs present a grouping of the questions 5-point scale.
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Figure 6.8: Questionnaire results - average computer item ratings for the three sub-
jects combined for max, average (ave) and min GSR, HR, HF and ST using the divEng
technique. Note the graphs on the left column present a break down of the results,
while the right column graphs present a grouping of the questions 5-point scale.
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Figure 6.9: Questionnaire results - SenseCam event ratings for Subject 1 for max, av-
erage (ave) and min GSR, HR, HF and ST using the removeEng technique.

Figure 6.10: Questionnaire results - SenseCam event ratings for Subject 1 for max,
average (ave) and min GSR, HR, HF and ST using the divEng technique.
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Figure 6.11: Questionnaire results - SenseCam event ratings for Subject 2 for max,
average (ave) and min GSR, HR, HF and ST using the removeEng technique.

Figure 6.12: Questionnaire results - SenseCam event ratings for Subject 2 for max,
average (ave) and min GSR, HR, HF and ST using the divEng technique.
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Figure 6.13: Questionnaire results - SenseCam event ratings for Subject 3 for max,
average (ave) and min GSR, HR, HF and ST using the removeEng technique.

Figure 6.14: Questionnaire results - SenseCam event ratings for Subject 3 for max,
average (ave) and min GSR, HR, HF and ST using the divEng technique.
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Figure 6.15: Questionnaire results - computer item ratings for Subject 1 for max, aver-
age (ave) and min GSR, HR, HF and ST using the removeEng technique.

Figure 6.16: Questionnaire results - computer item ratings for Subject 1 for max, aver-
age (ave) and min GSR, HR, HF and ST using the divEng technique.
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Figure 6.17: Questionnaire results - computer item ratings for Subject 2 for max, aver-
age (ave) and min GSR, HR, HF and ST using the removeEng technique.

Figure 6.18: Questionnaire results - computer item ratings for Subject 2 for max, aver-
age (ave) and min GSR, HR, HF and ST using the divEng technique.
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Figure 6.19: Questionnaire results - computer item ratings for Subject 3 for max, aver-
age (ave) and min GSR, HR, HF and ST using the removeEng technique.

Figure 6.20: Questionnaire results - computer item ratings for Subject 3 for max, aver-
age (ave) and min GSR, HR, HF and ST using the divEng technique.
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CHAPTER

SEVEN

Static Scores: Boosting Relevant

Items in Result Lists using Past

Biometric Response

Chapter Overview: Given the relationship observed in the previous

chapter between biometric response at the time of experiencing lifelog

items/events and the future importance of items to the individual, we

wished to explore our hypothesis that use of biometric response as a static

query factor boost in ranked content+context retrieval algorithms in the

lifelogging domain would prove useful. In this chapter we investigate this

hypothesis. Following the chapter introduction the setup of this investiga-

tion is described. We then provide a detailed analysis of the results of using

Galvanic Skin Response, Heat Flux, Skin Temperature and Heart Rate as

static scores in content+context-based retrieval algorithms for the lifelog-

ging domain. This is followed by a discussion of the topic of this chapter,

and concluding remarks.
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7.1 Introduction

In Chapter 6 we showed that lifelog items which are important to an individual at the

time they are experienced may be useful to the individual again in the future, and fur-

ther that such incidents are associated with physiological responses when accessing

these items that can be captured using digital sensors. Based on these findings we pro-

pose that recording biometric response as part of a lifelog may enable us to identify

items which may be the most important in a future information searching task. We

hypothesize that adding a query independent static score factor to items in lifelog IR

result lists may improve ranked retrieval performance by promoting the rank of items

with significant biometric responses.

This chapter describes our study to investigate the utility of biometric response in re-

ranking traditional information retrieval result lists. Since BM25F mod2, described in

Chapter 5, was our overall best performing content+context ranked retrieval model,

we use BM25F mod2 to generate the ranked result lists. We explore the use of the

following biometric measures as static scores for re-ranking these retrieved result lists:

galvanic skin response (GSR), heat flux (HF), heart rate (HR) and skin temperature

(ST).

As discussed in Chapter 4.2.3 various approaches can be used to explore integrating

static scores into ranked retrieval algorithms. In this chapter we explore using a linear

combination of the ranked retrieval and static biometric scores. We also investigate

various approaches for transforming the biometric response into a static score. In par-

ticular raw biometric scores and various nonlinear transformations of the biometric

readings are explored. A promising technique for score transformation is presented in

[Craswell et al., 2005a] where a sigmoid functional form is used to transform PageR-

ank, link indegree, ClickDistance and URL length features into static scores (discussed

in Chapter 4.2.3). This technique forms part of our investigation.

The next section presents our experimental setup. Section 7.3 provides the results of

our experiment along with detailed analysis. We then discuss some key points on the

topic of this chapter before concluding the chapter with a discussion of findings.

178



7.2 Experiment Procedure

In this section we describe the setup of our study to examine the utility of GSR, HR,

HF and ST biometric data at the time of previous item access in re-ranking the output

of a ranked retrieval result list.

Our generated indexes of the textual data in the one month subset of our 3 subjects’

20 month lifelogs which coincided with the period of biometric data capture (i.e. the

biometric month), described in Chapter 4.3.1, are used in this investigation1. The bio-

metric data is obtained from the biometrics table in the subjects’ lifelog databases,

described in Chapter 3.2.

The queries and result sets used for this investigation were those contained in the

subset of the 100 test cases generated for each subject which contained items occurring

during the biometric capture month. Full details of these queries and result sets are

provided in Chapter 4.3.2.3 and 4.3.2.4. SMSs and imported emails were also excluded

from these biometric month test cases, in this study. Removing these items does not

greatly alter the makeup of the biometric month test cases: 1 of Subject 2’s biometric

month queries was for SMS only; 2 of the relevant items for Subject 2’s biometric

queries and 27 of the relevant items for Subject 3’s biometric queries were SMSs and

imported emails. The makeup of the resulting test cases, including total number of

relevant items across the queries in the subjects’ biometric month tests cases and the

average number of relevant items for these queries, are shown in Table 7.1.

Since content+context-based retrieval using BM25F mod2 was the overall best per-

forming ranked retrieval approach for our collections (described in Chapter 5), we

used BM25F mod2 to obtain the queried content+context retrieval scores. Static bio-

metric scores were added to the BM25F mod2 scores (techniques used to obtain static

biometric scores are described in Section 7.2.1). The rank of the relevant items in the

result sets were noted.

The remainder of our experiment procedure is the same as that used for the ranked

retrieval investigations described in Chapter 5.2.

1Note: The SMSs and imported emails in these indexes, which do not have “date-time” of access
information available, were excluded from this experiment (imported emails are described in Chapter
3.3.1.1).
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Subject 1 Subject 2 Subject 3
Test Cases 22 7 36
Rel Items 154 67 533
Ave 7 9.57 14.81

Table 7.1: Total number of test cases, total number of relevant items (Rel Items) per
subject across the test case queries and average number of relevant items per query
(Ave).

7.2.1 Static Relevance Scores

Recall that with increased arousal levels GSR, HR and HF levels increase and ST levels

decrease (described in Chapter 2.3.1). Since we seek to gain an understanding of the

importance of the item to the individual in the collection as a whole, in these initial

experiments into the utility of biometric response associated with past experience of

items as a static score, we intuit that the maximum biometric response observed for

an item across all past accesses to the item will indicate the importance of the item

in the collection (or the importance of the item to the user in the collection)2. Thus

each retrieved item for content+context retrieval was annotated with the maximum

observed GSR, maximum observed HR, maximum observed HF and minimum ob-

served ST across all accesses to the item3

As described in Chapter 2.3.1, increases in physical activity (detected through in-

creases in energy expenditure) cause GSR, HR and HF levels to increase and ST levels

to decrease. To discern changes in GSR, HR, ST and HF caused by changes in arousal

level as opposed to changes in physical activity, we also tagged items with the max-

imum observed GSR, HF and HR with energy expenditure factored4 and with the

minimum observed ST with energy expenditure factored5 across all accessed to the

item. To factor energy expenditure into the biometric readings we divided GSR, HF

and HR levels by their associated energy expenditure readings (i.e., GSR
engGSR , HR

engHR

and HF
engHF ) and we multiplied ST levels by their associated energy expenditure read-

ings (i.e. ST ·engST ). As explained in Chapter 2.3.1, the lower the ST level the greater

the arousal level, hence items were also tagged with the inverse of ST and the inverse

2This is the same premise as we took in Chapter 6 to explore the relationship between computer item
importance and biometric response associated with previous item interaction.

3We acknowledge that biometric response when accessing files outside the biometric month, had it
been recorded, may have resulted in different biometric levels being assigned to items, and that lack of
this information may have negatively impacted on the results we will present in this chapter.

4Energy expenditure readings associated with GSR, HF and HR are referred to as engGSR, engHF
and engHR respectively.

5Energy expenditure readings associated with ST are referred to as engST.
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Tag Type Subject1 Subject2 Subject3
GSR,ST,HF 35% 67% 60%
HR 53% 83% 85%

Table 7.2: Percentage of retrieved items missing galvanic skin response (GSR), skin
temperature (ST), heat flux (HF) and heart rate (HR) biometric tags, across each sub-
ject’s queries.

Type Subject1 Subject2 Subject3
stNorm 0.5325 0.6253 0.4792
stMultEngNorm 0.0238 0.02566 0.0373
inversStNorm 0.3936 0.3240 0.4674
inversStMultEngNorm 0.8324 0.8775 0.8450
gsrNorm 0.1369 0.2623 0.3044
gsrDivEngNorm 0.2654 0.2498 0.3485
hrNorm 0.2877 0.25 0.3418
hrDivEngNorm 0.3367 0.5180 0.5172
hfNorm 0.3067 0.3734 0.2309
hfDivEngNorm 0.5172 0.6148 0.6047

Table 7.3: Default normalised biometric tags assigned to items with missing biometric
tags.

of ST · engST .

Items in the ‘biometric month’ test set which had no associated biometric readings,

due to biometric recording devices being removed for data downloading purposes,

the subjects need for mental break from wearing of devices, and in the case of the

heart rate monitor errors in recorded readings, etc (as described in Chapter 3.3.4.4),

were assigned default biometric tags. The default value used was the median of the

biometric tag associated with retrieved items. Examining the items retrieved for each

subject for BM25F mod2 retrieval reveals that 35% of the items retrieved for Subject 1

had no GSR, HF and ST tags and 53% had no HR tags, for Subject 2 67% had no GSR,

HF and ST tags and 83% were missing HR tags, and for Subject 3 60% were missing

GSR, HF and ST tags and 85% were missing HR tags. These results are shown in Table

7.2. Table 7.3 provides the normalised default tags assigned to items with missing

biometric tags for each subject.

All biometric tags associated with retrieved items were normalised using min-max

normalisation. For example, to normalise each GSR tag associated with retrieved

items we use: (GSRtag - minGSRtag)/(maxGSRtag - minGSRtag). The following ap-

proaches for calculating static relevance scores using the normalised biometric data

tags were investigated:
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BIObase = w · se (7.1)

logBIO = w · log(s) (7.2)

logBIOeng = w · log(se) (7.3)

sigmBIO = w · sa

ka + sa
(7.4)

sigmBIOeng = w · sea

ka + sea
(7.5)

sigmIncST = w · ka

ka + sta
, where st = ST (7.6)

sigmIncSTeng = w · ka

ka + sta
, where st = ST × engST (7.7)

In the above equations s = 1
ST , GSR, HR or HF and se = 1

ST×engST (i.e.,
1

ST
engST ), GSR

engGSR ,
HR

engHR or HF
engHF . For the remainder of this chapter we use STbase to refer to the the use

of ST data in the BIObase equation, logGSR to refer to the use of GSR data in the logBIO

equation, etc. Following parameter tuning using the full set of the 3 subjects’ biometric

month test cases, the static score’s weight of importance (w) and parameters k and a

(where applicable) were set for each equation. Our parameter tuning approach was

the same as that used for tuning retrieval algorithms parameters, described in Chapter

5.2. That is, for each static scoring approach we manually tuned the weight (w) to give

overall best retrieval performance, and where applicable the k and a parameters were

set to 1 during this process. For the static scoring approaches which contained k and

a parameters, we then manually tuned the k parameter to give overall best retrieval

performance using the tuned weight (w) and leaving the a parameter set to 1. Finally

using the tuned weight (w) and k parameter we manually tuned the a parameter to

give overall best retrieval performance. Table 7.4 provides these tuned parameter
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w k a
STbase 0.04 - -
logST 0.03 - -
logSTeng 0.05 - -
sigmST 1 9 3
sigmSTeng 1 0.1 0.2
sigmIncST 0.001 1 0.001
sigmIncSTeng 0.4 0.9 0.1
GSRbase 0.02 - -
logGSR 0.002 - -
logGSReng 0.003 - -
sigmGSR 0.9 8 2
sigmGSReng 0.5 7 1.2
HFbase 0.04 - -
logHF 0.09 - -
logHFeng 0.03 - -
sigmHF 0.8 1.2 1.1
sigmHFeng 0.9 0.2 0.1
HRbase 0.001 - -
logHR 0.0001 - -
logHReng 0.0001 - -
sigmHR 2 8 3.5
sigmHReng 0.1 1 0.001

Table 7.4: Parameter tunings for static biometric functions.

values.

Equation 1 is our baseline static scoring approach, used to examine the effect of the

raw ST, HR, HF and GSR values with energy expenditure factored in on re-ranking

result lists. The remaining equations investigate the use of non-linear transforma-

tions of the biometric score. Equations 2 and 3 examine the effect of using logs of

ST, HR, HF and GSR. The performance of our biometric scores using the transfor-

mation approach from [Craswell et al., 2005a] described in Chapter 4.2.3 is examined

with Equations 4 and 5. This approach is used to generate static relevance scores for

features where higher values indicate greater importance. An approach for calculat-

ing static relevance scores for features where lower values indicate greater importance

is also provided in [Craswell et al., 2005a] and described in Chapter 4.2.3. This tech-

nique’s performance using our ST data is investigated with Equations 6 and 7. The

effect of accounting for energy expenditure is investigated in Equations 1, 3, 5 and 7.

The static scoring techniques presented in this section are added to content+context

relevance scores generated using the BM25F mod2 model, described in Chapter 5.5.

The next section discusses results obtained using these approaches.

183



7.3 Results and Analysis

Retrieval effectiveness is measured here using average precision (AveP), P@5 and

P@10. P@5 and P@10 show how effective our techniques were at moving relevant

items towards the top of the result lists. Table 7.5 shows the retrieval scores for

BM25F mod2+static score retrieval, averaged across the three experiment subjects,

and percentage improvement over the BM25F mod2 baseline that these scores corre-

spond to. Table 7.6 presents the individual breakdown of results for each subject and

Table 7.7 provides the percentage improvement over the BM25F mod2 baseline that

these scores correspond to. Table 7.9 presents results obtained for each subject when

we consider only items with ‘real’ biometric tags (i.e. not considering items assigned

default biometric tags) in retrieval. Table 7.10 presents the percentage improvement

over the BM25F mod2 baseline that these scores correspond to. The results presented

in these tables suggest that adding biometric static scores to content+context IR scores

is useful for re-ranking PL text-based collections. In this section we analyse these re-

sults.

7.3.1 Overall Static Score Performance

The total number of relevant items retrieved across all queries using BM25F mod2 on

the biometric month collections was: for Subject 1 144 items; for Subject 2 67 items;

and for Subject 3 479 items.

Considering BM25F mod2 content+context retrieval the addition of a static score us-

ing HF with energy expenditure levels factored resulted in the greatest percentage

improvement over the content+context baseline. The three techniques which factor

energy expenditure, i.e., HFbase, logHFeng and sigmHFeng, yielded 1%, 3% and 3%

improvement in AveP, P@5 and P@10 respectively over the content+context baseline.

Overall, when energy expenditure was not factored into the HF levels negative per-

formance was obtained from the use of HF as a static score. Exceptions here are the

AveP and P@10 results obtained using logHF, for which marginal improvement was

noted, see Table 7.5.

Similar to the use of HF as a static score, factoring of energy expenditure was gener-

ally important when calculating static scores using ST, with 1% improvement in P@10
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Static Technique Average Score
AveP P@5 P@10

BM2F mod2 0.382 0.290 0.229
STbase 0.384 (0%) 0.290 (0%) 0.232 (1%)
logST 0.385 (1%) 0.289 (0%) 0.228 (0%)
logSTeng 0.383 (0%) 0.287 (-1%) 0.232 (1%)
sigmST 0.382 (0%) 0.287 (-1%) 0.229 (0%)
sigmSTeng 0.383 (0%) 0.287 (-1%) 0.232 (1%)
sigmIncST 0.382 (0%) 0.287 (-1%) 0.229 (0%)
sigmIncSTeng 0.383 (0%) 0.290 (0%) 0.232 (1%)
GSRbase 0.384 (0%) 0.294 (2%) 0.231 (1%)
logGSR 0.384 (0%) 0.294 (2%) 0.232 (1%)
logGSReng 0.384 (0%) 0.294 (2%) 0.231 (1%)
sigmGSR 0.384 (0%) 0.294 (2%) 0.232 (1%)
sigmGSReng 0.385 (1%) 0.294 (2%) 0.229 (0%)
HFbase 0.386 (1%) 0.299 (3%) 0.236 (3%)
logHF 0.384 (1%) 0.281 (-3%) 0.230 (0%)
logHFeng 0.387 (1%) 0.299 (3%) 0.236 (3%)
sigmHF 0.377 (-2%) 0.279 (-4%) 0.226 (-1%)
sigmHFeng 0.386 (1%) 0.299 (3%) 0.236 (3%)
HRbase 0.384 (0%) 0.292 (1%) 0.231 (1%)
logHR 0.385 (1%) 0.296 (2%) 0.232 (1%)
logHReng 0.384 (0%) 0.292 (1%) 0.231 (1%)
sigmHR 0.385 (1%) 0.296 (2%) 0.232 (1%)
sigmHReng 0.384 (0%) 0.292 (1%) 0.231 (1%)

Table 7.5: Average score and average percentage improvement, rounded to nearest
whole number, for average precision (AveP), P@5 and P@10, by adding a static score
to the BM25F mod2 baseline.

observed using STbase, logSTeng, sigmSTeng and sigmIncSTeng. However, in the case

of logSTeng and sigmSTeng 1% reduction in P@5 was noted. The only improvement

noted when energy expenditure was not factored was 1% improvement for AveP us-

ing logST. These results are shown in Table 7.5.

Adding HR static scores also improved retrieval performance. More so than the use of

ST although not quite to the same extent as the addition of HF static scores. Using HR

greatest improvement in performance was obtained when energy expenditure was not

factored. Specifically, using logHR and sigmHR yielded 1%, 2% and 1% improvement

in performance for AveP, P@5 and P@10 respectively. The use of energy expenditure

with HR to calculate static scores also showed utility, albeit not to the same extent as.

These results are shown in Table 7.5.

Averaged across the 3 subjects all GSR static scoring techniques showed utility in re-

ranking the content+context retrieval result lists. As shown in Table 7.5, 2% improve-

ment in P@5 was noted for each static scoring technique using GSR, 1% improvement

in P@10 for all techniques using GSR except sigmGSReng, and 1% improvement in
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Static Subject 1 Subject 2 Subject 3
Technique

AveP P@5 P@10 AveP P@5 P@10 AveP P@5 P@10
BM2F mod2 0.515 0.360 0.273 0.229 0.114 0.057 0.403 0.395 0.357
STbase 0.519 0.360 0.280 0.230 0.114 0.057 0.404 0.395 0.360
logST 0.519 0.353 0.270 0.230 0.114 0.057 0.405 0.400 0.357
logSTeng 0.517 0.353 0.280 0.230 0.114 0.057 0.404 0.395 0.360
sigmST 0.514 0.353 0.273 0.229 0.114 0.057 0.404 0.395 0.357
sigmSTeng 0.517 0.353 0.280 0.230 0.114 0.057 0.404 0.395 0.360
sigmIncST 0.515 0.353 0.273 0.229 0.114 0.057 0.403 0.395 0.357
sigmIncSTeng 0.517 0.360 0.280 0.229 0.114 0.057 0.404 0.395 0.360
GSRbase 0.521 0.373 0.280 0.229 0.114 0.057 0.403 0.395 0.357
logGSR 0.521 0.373 0.283 0.227 0.114 0.057 0.403 0.395 0.357
logGSReng 0.521 0.373 0.280 0.229 0.114 0.057 0.403 0.395 0.357
sigmGSR 0.521 0.373 0.283 0.227 0.114 0.057 0.403 0.395 0.357
sigmGSReng 0.520 0.373 0.277 0.229 0.114 0.057 0.405 0.395 0.354
HFbase 0.524 0.387 0.293 0.231 0.114 0.057 0.404 0.395 0.357
logHF 0.510 0.340 0.273 0.235 0.114 0.057 0.408 0.389 0.360
logHFeng 0.524 0.387 0.293 0.231 0.114 0.057 0.406 0.395 0.357
sigmHF 0.501 0.327 0.267 0.228 0.114 0.057 0.401 0.395 0.354
sigmHFeng 0.524 0.387 0.293 0.231 0.114 0.057 0.404 0.395 0.357
HRbase 0.520 0.367 0.280 0.228 0.114 0.057 0.403 0.395 0.357
logHR 0.523 0.380 0.283 0.228 0.114 0.057 0.403 0.395 0.357
logHReng 0.520 0.367 0.280 0.228 0.114 0.057 0.403 0.395 0.357
sigmHR 0.523 0.380 0.283 0.228 0.114 0.057 0.403 0.395 0.357
sigmHReng 0.520 0.367 0.280 0.228 0.114 0.057 0.403 0.395 0.357

Table 7.6: Individual subjects scores for average precision (AveP), P@5 and P@10 by
adding a static score to the BM25F mod2 baseline.

AveP for sigmGSReng.

7.3.2 Performance Across Individual Subjects

Overview:

Analysing the individual results of each subject in Tables 7.6 and 7.7 we see that over-

all for Subject 1 HF with energy expenditure factored in provided the greatest utility

in re-ranking the ranked retrieval result lists (see Subject 1’s results for HFbase, logH-

Feng and sigmHFeng in these tables). Indeed as we look at the three subjects results in

these tables we see that it was Subject 1’s results for HF which influenced the superior

utility observed for HF with energy expenditure considered in the average results re-

ported in the previous section. For Subjects 2 and 3 greatest utility was also observed

using HF. However, in these subjects’ cases, greatest utility was observed when en-

ergy expenditure was not factored into the HF readings, and in particular through the

use of logHF (see Subjects 2 and 3’s results for HF in Tables 7.6 and 7.7).
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Static Subject 1 Subject 2 Subject 3
Technique

AveP P@5 P@10 AveP P@5 P@10 AveP P@5 P@10
BM2F mod2 0.515 0.360 0.273 0.229 0.114 0.057 0.403 0.395 0.357
STbase 1% 0% 2% 0% 0% 0% 0% 0% 1%
logST 1% -2% -1% 1% 0% 0% 0% 1% 0%
logSTeng 0% -2% 2% 0% 0% 0% 0% 0% 1%
sigmST 0% -2% 0% 0% 0% 0% 0% 0% 0%
sigmSTeng 0% -2% 2% 0% 0% 0% 0% 0% 1%
sigmIncST 0% -2% 0% 0% 0% 0% 0% 0% 0%
sigmIncSTeng 0% 0% 2% 0% 0% 0% 0% 0% 1%
GSRbase 1% 4% 2% 0% 0% 0% 0% 0% 0%
logGSR 1% 4% 4% -1% 0% 0% 0% 0% 0%
logGSReng 1% 4% 2% 0% 0% 0% 0% 0% 0%
sigmGSR 1% 4% 4% -1% 0% 0% 0% 0% 0%
sigmGSReng 1% 4% 1% 0% 0% 0% 0% 0% -1%
HFbase 2% 7% 7% 1% 0% 0% 0% 0% 0%
logHF -1% -6% 0% 3% 0% 0% 1% -1% 1%
logHFeng 2% 7% 7% 1% 0% 0% 1% 0% 0%
sigmHF -3% -9% -2% 0% 0% 0% -1% 0% -1%
sigmHFeng 2% 7% 7% 1% 0% 0% 0% 0% 0%
HRbase 1% 2% 2% 0% 0% 0% 0% 0% 0%
logHR 2% 6% 4% 0% 0% 0% 0% 0% 0%
logHReng 1% 2% 2% 0% 0% 0% 0% 0% 0%
sigmHR 2% 6% 4% 0% 0% 0% 0% 0% 0%
sigmHReng 1% 2% 2% 0% 0% 0% 0% 0% 0%

Table 7.7: Subjects’ percentage improvement, rounded to nearest whole number, for
average precision (AveP), P@5 and P@10 by adding a static score to the BM25F mod2
baseline.

In the remainder of this section we analyse each subjects results in greater detail.

Subject 1:

Across the three subjects, Subject 1 benefited by far the most from the use of static

scores in re-ranking content+context IR result lists. With each biometric measure (i.e.,

ST, GSR, HF and HR) showing utility as a static biometric score. Some form of im-

provement over BM25F mod2 was observed using all techniques with the exception

of sigmST, sigmIncST, logHF and sigmHF. The superior results observed for Subject 1

relative to the other two subjects is unsurprising given the much higher number of

items assigned recorded biometric tags in this subjects result set (see Table 7.2).

For this subject, ST proved least useful in re-ranking the result lists relative to the other

biometric measures, while HF proved most useful. Factoring energy expenditure into

the biometric readings proved useful for HF, but not for HR and GSR. Use of energy

was useful when using a sigmoid functional form to calculate the static score for ST.
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Subject 2:

Only HF and ST proved useful as static scores in re-ranking content+context IR re-

sult lists for Subject 2. Of the two HF proved most useful. With all HF techniques

except sigmHF yielding improvement in AveP. Greatest improvement here was noted

when energy expenditure was not considered using logHF. The only improvement in

performance noted through the use of ST as a static score was in AveP using the log

approach which did not consider energy expenditure (logST).

Subject 3:

Similar to Subject 2, only HF and ST proved useful as static scores in re-ranking con-

tent+context IR result lists for Subject 3. Of the two biometric types, ST arguably

proved most useful as a static score for this subject. All techniques which factored en-

ergy expenditure into the ST readings improved P@10. The logST technique (a tech-

nique which does not consider energy expenditure) yielded improvement in AveP.

Using HF, only the log techniques were useful.

We next compare the utility of each of HF, ST, GSR and HR as static scores across the

three experiment subjects.

HF:

As already noted Subjects 1 and 2 benefited the most from use of HF static scores. In-

deed in the case of Subject 1 substantial improvement over the BM25F mod2 baseline

was noted. This is a promising result given that BM25F mod2 itself out performed

state of the art techniques, as shown in Chapter 5. For this subject each of the tech-

niques which factored energy expenditure into the HF readings (i.e., HFbase, logHFeng

and sigmHFeng) yielded a 2%, 7% and 7% improvement in AveP, P@5 and P@10 re-

spectively.

Subject 2 did not benefit to the same extent as Subject 1 using HF as a static score.

Similar to Subject 1 use of energy expenditure with the HF readings proved useful,

with 1% improvement in AveP being observed using each of HFbase, logHFeng and

sigmHFeng, and 3% improvement being observed using logHF (a technique which does

not factor energy expenditure into the HF levels).

Subject 3 benefited to a certain extent using HF. However, while for the other two

subjects improvement was noted using all the techniques which considered energy
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expenditure, only logHFeng yielded improvement for Subject 3 (1% improvement in

AveP). Not considering energy expenditure, logHF resulted in 1% improvement in

AveP and P@10.

ST:

Use of ST as a static score was arguably more beneficial for Subject 3 than use of HF.

All ST techniques which considered energy expenditure (STbase, logSTeng, sigmSTeng

and sigmIncSTeng) helped move relevant items upwards in the result list, with 1% im-

provement in P@10 being observed for this subject. Improvement was also observed

using the logST technique, where 1% improvement in P@5 was obtained.

Use of ST as a static score also proved useful for Subjects 1 and 2, however not to the

same extent as the best performing HF static scoring approaches. Best performance

here was observed for Subject 1 using STbase with a 1% improvement in AveP and a

2% improvement in P@10. For Subject 2 using logST resulted in a 1% improvement in

AveP.

GSR:

GSR static scores did not prove as useful for Subject 2 and Subject 3 as ST and HF static

scores, with no improvement over BM25F mod2 being observed. However, in the case

of Subject 1 improvement in AveP, P@5 and P@10 was noted across all GSR static scor-

ing functions. Interestingly for this subject, while HF readings required consideration

of energy expenditure to provide utility, greatest improvement in performance using

GSR was noted using the two techniques which do not consider energy expenditure,

namely logGSR and sigmGSR. Using these two techniques 1%, 4% and 4% improve-

ment in AveP, P@5 and P@10 was achieved.

HR:

HR static scores also proved useful for Subject 1. Similar to use of GSR, all techniques

proved useful with HR in improving retrieval performance. As for GSR, the two tech-

niques which did not consider energy expenditure proved most useful. Using these

techniques (i.e. logHR and sigmHR) 2%, 6% and 4% improvement in AveP, P@5 and

P@10 respectively were obtained. Which was better than the results observed using

GSR. Although not as good as the results, shown earlier, obtained using HF with en-

ergy expenditure considered. In contrast to the positive results obtained using HR for

Subject 1, no benefit was obtained using HR as a static score for the other subjects.
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Subject 1 Subject 2 Subject 3
Rel Items 154 67 533
Rel Retrieved [full] 144 67 479
Rel Retrieved [reduced] 99 36 226
(for GSR, ST, HF)
Rel Retrieved [reduced] 78 15 56
(for HR)

Table 7.8: Total number of relevant items (Rel Items) per subject across the biometric
month test case queries and total number of relevant items retrieved using the full
and reduced result lists. Note the reduced result lists only contain items which were
tagged with recorded biometric response.

This is unsurprising given the exceptionally high number of retrieved items which

were missing HR tags for Subjects 2 and 3, as was shown in Table 7.2.

7.3.3 Performance of Biometric Tagged Result Set

Given the percentage of retrieved items which were missing biometric tags and hence

assigned default biometric tags, we wished to establish the impact of using default

biometric tags on static scoring performance.

In this experiment we investigate performance of our static scoring functions on the

items in the subset of each subject’s result list which were assigned biometric tags cor-

responding to the subject’s max observed biometric response when experiencing the

item. That is, items which had been assigned default biometric tags are removed from

the result list. Since less items were tagged with HR than GSR, ST and HF (discussed

in Section 7.2.1) this will result in the reduced HR result list being smaller than the

result list generated for items with GSR, HF and ST tagged items. The total number

of relevant items retrieved across all queries using the GSR, HF and ST reduced result

lists was: for Subject 1 99 items; for Subject 2 36 items; and for Subject 3 226 items. The

total number of relevant items retrieved across all queries using the HR reduced result

lists was: for Subject 1 78 items; for Subject 2 15 items; and for Subject 3 56 items. For

ease of comparison we show the statistics for these reduced result lists along side the

full result lists in Table 7.8. Tables 7.9 and 7.10 present the results of this experiment.

Results Overview:

Greater improvement over the BM25F mod2 baseline was observed in this experi-

ment; particularly in the case of Subjects 2 and 3. This is unsurprising given the higher

percentage of items assigned default biometric tags for these two subjects, as shown
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Static Subject 1 Subject 2 Subject 3
Technique

AveP P@5 P@10 AveP P@5 P@10 AveP P@5 P@10
BM25F mod2 0.304 0.267 0.203 0.117 0.029 0.114 0.213 0.281 0.241
(for GSR,)
(HF,ST tags)
STbase 0.310 0.267 0.207 0.115 0.057 0.114 0.214 0.281 0.246
logST 0.303 0.260 0.197 0.118 0.057 0.129 0.214 0.287 0.249
logSTeng 0.308 0.267 0.207 0.116 0.057 0.114 0.214 0.281 0.249
sigmST 0.302 0.260 0.197 0.115 0.029 0.114 0.214 0.281 0.241
sigmSTeng 0.308 0.267 0.207 0.116 0.057 0.114 0.214 0.281 0.249
sigmIncST 0.303 0.260 0.197 0.116 0.029 0.114 0.213 0.281 0.241
sigmIncSTeng 0.310 0.267 0.207 0.115 0.057 0.114 0.214 0.281 0.249
GSRbase 0.313 0.280 0.203 0.115 0.057 0.114 0.213 0.281 0.241
logGSR 0.313 0.280 0.207 0.115 0.029 0.114 0.213 0.281 0.241
logGSReng 0.313 0.280 0.203 0.115 0.057 0.114 0.213 0.281 0.241
sigmGSR 0.313 0.280 0.207 0.115 0.057 0.114 0.213 0.281 0.241
sigmGSReng 0.312 0.280 0.203 0.115 0.057 0.114 0.214 0.281 0.246
HFbase 0.311 0.293 0.213 0.116 0.057 0.114 0.214 0.281 0.241
logHF 0.298 0.260 0.200 0.121 0.086 0.129 0.216 0.297 0.251
logHFeng 0.311 0.293 0.213 0.116 0.057 0.114 0.214 0.281 0.241
sigmHF 0.293 0.260 0.200 0.113 0.057 0.114 0.208 0.292 0.249
sigmHFeng 0.311 0.293 0.213 0.116 0.057 0.114 0.214 0.281 0.241
BM25F mod2 0.238 0.253 0.163 0.028 0.086 0.114 0.055 0.119 0.103
(for HR tags)
HRbase 0.243 0.260 0.170 0.028 0.086 0.114 0.056 0.119 0.103
logHR 0.246 0.273 0.173 0.028 0.086 0.114 0.055 0.119 0.103
logHReng 0.243 0.260 0.170 0.028 0.086 0.114 0.055 0.119 0.103
sigmHR 0.246 0.273 0.173 0.028 0.086 0.114 0.055 0.119 0.103
sigmHReng 0.243 0.260 0.170 0.028 0.086 0.114 0.055 0.119 0.103

Table 7.9: Individual subjects scores for average precision (AveP), P@5 and P@10 for
BM25F mod2+static score approaches using the subset of the full result set which was
tagged with recorded biometric response.

in Table 7.2. We observe that HF with energy expenditure considered is still overall

the best performing static scoring technique for Subject 1. Similarly HF without en-

ergy expenditure remains the best performing technique for Subject 2. For Subject 3,

while use of ST resulted in the greatest improvement over the BM25F mod2 baseline

on the full result lists, using the reduced result lists HF, with energy expenditure not

considered, provided greatest utility.

HF:

Similar to the results observed in the previous section, overall best performance was

obtained through the use of HF as a static score. What causes this superior perfor-

mance using HF is not known. As for the previous section, factoring of energy ex-

penditure was important here for Subject 1 but the reverse held true for Subjects 2
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Static Subject 1 Subject 2 Subject 3
Technique

AveP P@5 P@10 AveP P@5 P@10 AveP P@5 P@10
BM25F mod2 0.304 0.267 0.203 0.117 0.029 0.114 0.213 0.281 0.241
(for GSR,)
(HF,ST tags)
STbase 2% 0% 2% -1% 100% 0% 0% 0% 2%
logST 0% -3% -3% 1% 100% 13% 0% 2% 3%
logSTeng 2% 0% 2% -1% 100% 0% 0% 0% 3%
sigmST 0% -3% -3% -1% 0% 0% 0% 0% 0%
sigmSTeng 2% 0% 2% -1% 100% 0% 0% 0% 3%
sigmIncST 0% -3% -3% -1% 0% 0% 0% 0% 0%
sigmIncSTeng 2% 0% 2% -2% 100% 0% 0% 0% 3%
GSRbase 3% 5% 0% -1% 100% 0% 0% 0% 0%
logGSR 3% 5% 2% -1% 0% 0% 0% 0% 0%
logGSReng 3% 5% 0% -1% 100% 0% 0% 0% 0%
sigmGSR 3% 5% 2% -1% 100% 0% 0% 0% 0%
sigmGSReng 3% 5% 0% -1% 100% 0% 0% 0% 2%
HFbase 3% 10% 5% 0% 100% 0% 0% 0% 0%
logHF -2% -3% -2% 4% 200% 13% 1% 6% 5%
logHFeng 2% 10% 5% 0% 100% 0% 0% 0% 0%
sigmHF -3% -3% -2% -4% 100% 0% -3% 4% 3%
sigmHFeng 3% 10% 5% 0% 100% 0% 0% 0% 0%
BM25F mod2 0.238 0.253 0.163 0.028 0.086 0.114 0.055 0.119 0.103
(for HR tags)
HRbase 2% 3% 4% 0% 0% 0% 1% 0% 0%
logHR 3% 8% 6% 0% 0% 0% 0% 0% 0%
logHReng 2% 3% 4% 0% 0% 0% 0% 0% 0%
sigmHR 3% 8% 6% 0% 0% 0% 0% 0% 0%
sigmHReng 2% 3% 4% 0% 0% 0% 0% 0% 0%

Table 7.10: Subjects’ percentage improvement, rounded to nearest whole num-
ber, for average precision (AveP), P@5 and P@10 over BM25F mod2 for
BM25F mod2+static score approaches using the subset of the full result set which was
tagged with recorded biometric response.

and 3. However, it should be noted that these improvements in retrieval performance

on the subjects’ collections are not statistically significant for AveP, P@5 or P@10 (100

samples, Welch two sample t-test, p>0.05).

Increases in the percentage improvement, relative to use of the full result lists in the

previous section, were noted for AveP and P@5 using HFbase, logHF and sigmHF for

Subject 1. However, P@10 disimproved.

For Subject 2, AveP results using logHF improved from 3% in the previous sections

experiment to 4% in this experiment. While HFbase, logHFeng, sigmHF and sigmH-

Feng did not yield improvements for P@5 for this subject in the previous experiment

using the full result lists, in this experiment using the reduced result lists a substan-

tial 100% improvement in P@5 was noted using this technique. However, using these
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techniques on the reduced result lists resulted in decreases in AveP.

Subject 3, similar to Subject 2, still benefited the most from the logHF technique. On the

reduced result list this benefit was much greater than that observed on the full result

list. 1%, 6% and 5% improvement in AveP, P@5 and P@10 respectively were obtained

using logHF. sigmHF also proved benefical at moving relevant items upwards in the

retrieved result list with 4% improvement in P@5 and 3% improvment in P@10.

HR:

Use of HR did not prove useful for Subject 2, with no improvement over BM25F mod2

being observed. This is the same as we observed using the full result lists in Table

individPercent.

However, for Subject 3 improvement over the BM25F mod2 baseline which was not

present using the full result lists was noted, in particular using the HRbase technique.

Using the reduced result lists, HF results for Subject 1 showed improvement over

those observed on the full result list, with the two techniques which do not consider

energy expenditure (logHR and sigmHR) still proving most useful.

GSR:

We observe improvements over BM25F mod2 in AveP and P@5 across all techniques

which used GSR for Subject 1. Similar to the results observed on the full result lists,

not factoring energy expenditure into the GSR readings proved most useful. 3% and

5% improvement in AveP and P@5 respectively were obtained using logGSR and sig-

mGSR. However, while 4% improvement in P@10 was noted using these techniques

on the full result lists, only 2% improvement in P@10 was obtained here.

For Subjects 2 and 3 for whom no utility was observed using GSR as a static score

when using the full result set, improvement over the BM25F mod2 baseline was ob-

tained using the reduced result list. 100% improvement in AveP using GSRbase, log-

GSReng, sigmGSR and sigmGSReng was noted for Subject 2. 2% improvement in P@10

using sigmGSReng was obtained for Subject 3.

ST:

The techniques which yielded improvement in P@10 using ST as a static score noted

on the full result lists for Subject 1 remained the same using the reduced result lists,

with all techniques which considered energy expenditure yielding 2% improvement
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in P@10 using the reduced result lists. However, for this subject the improvements in

AveP increased to 2% for all techniques which considered energy expenditure using

the reduced result list.

The 1% improvement in AveP using logST observed on the full result lists for Subject

2 remained unchanged. However, further improvements, which were not observed

on the full collection, were also gained using the reduced result lists for this subject.

Specifically, 100% improvement in P@10 using STbase, logST, logSTeng, sigmSTeng and

sigmIncSTeng. 13% improvement in P@10 was also obtained for logST.

For Subject 3, the 1% improvements in P@10 observed on the full result lists, increased

to 2% using STbase and 3% using logSTeng, sigmSTeng and sigmIncSTeng on the reduced

result lists. However, logST was the best performing ST technique for this subject on

the reduced result lists, yielding 2% improvement in P@5 and 3% improvement in

P@10.

7.3.4 Further Analysis

Based on the results in the previous sections, we can arguably say that overall across

the three subjects greatest utility was found using HF as a static score to re-rank ranked

retrieval result lists. Greatest utility is observed for Subject 1 when energy expenditure

is factored and greatest utility is observed for Subjects 2 and 3 when energy expendi-

ture is not factored in. Specifically, using HFbase, logHFdivEng and sigmHFdivEng gave

the best performance for Subject 1 and using logHF yielded the best performance for

Subjects 2 and 3.

What causes HF to provide greater utility than GSR, ST and HR is unclear, and anal-

ysis of this topic is beyond the scope of our current work. What causes the factoring

of energy expenditure into the HF readings for Subject 1 to be important and not for

the other subjects is also unclear. To analyse this further, we examine the heat flux and

energy expenditure readings recorded for each subject, shown in Table 7.11. In this ta-

ble we see variations in the energy expenditure readings across the three subjects, but

nothing that makes Subject 1 stand out as different from the other two subjects. Sub-

ject 3 is observed to have the highest maximum energy reading and the largest range.

Subject 2 has the lowest maximum energy reading and the smallest range. However,

for HF Subject 1 has a notably larger range of readings than the other two subjects. If
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Measure Subject1 Subject2 Subject3
Energy Expenditure

Range 9.4210 6.2306 11.3546
Min 0.9611 0.9097 1.3364
Max 10.3821 7.1403 12.6910
Median 1.2261 1.0743 1.5294
Average 1.7459 1.4159 1.8698
Standard deviation 1.2056 0.9199 0.9875

Heat Flux
Range 418.6397 184.2164 292.8851
Min 0.0623 13.2509 50.3201
Max 418.7020 197.4673 343.2052
Median 122.9309 89.7858 104.2617
Average 127.6795 91.3807 106.8151
Standard deviation 26.5487 14.3210 19.0009

Table 7.11: Statistics on heat flux and energy expenditure readings recorded for sub-
jects.

Measure Subject1 Subject2 Subject3
Heat Flux

Range 343.5474 49.5711 180.9575
Min 44.7479 87.4216 61.4442
Max 388.2953 136.9927 242.4017
Median 150.1228 97.9087 103.2233
Average 162.4652 98.8280 105.2820
Standard deviation 51.9503 8.8796 17.2874

Heat Flux divided by Energy Expenditure
Range 182.6907 39.7705 83.4845
Min 17.3788 82.3389 16.7783
Max 200.0696 122.1094 100.2628
Median 111.8734 90.5645 67.2640
Average 114.6962 91.8826 66.4827
Standard deviation 24.3706 7.9073 12.0835

Table 7.12: Statistics on heat flux and heat flux divided by energy expenditure readings
captured by the biometric device and assigned to items retrieved for subjects.

and why this results in the necessity to factor energy expenditure into HF readings for

this subject is not clear. Further, if and why this would lead to factoring energy expen-

diture readings into HF for the other subjects not being as effective as considering HF

levels on their own is unknown based on the study.

We next analyse the HF and HF/engHF readings which were captured by the biomet-

ric device (calculated based on data captured by the biometric device in the case of

HF/engHF) and tagged to items retrieved for BM25F mod2 content+context retrieval.

This revealed the statistics shown in Table 7.12. We observe that the HF/engHF statis-

tics for Subject 1 are more inline with the HF statistics for Subjects 2 and 3. For all

subjects dividing HF by the energy expenditure reduces the variance from the aver-
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age; in the case of Subject 1 this reduction is dramatic. This leads us to the supposition

that Subject 1’s HF readings may have been more affected by unknown external fac-

tors than the other subjects, in particular when interacting with computer items (as

the HF levels under investigation here were tagged to retrieved computer items). Fac-

toring of energy expenditure into the HF readings appears to counter these external

factors. Again though why the reverse would be true for Subjects 2 and 3 and why this

would result in consideration of energy expenditure in their HF readings resulting in

inferior performance is not known. Of course, other unknown factors could also be

playing a part here. Further analysis on this topic and understanding of the role of en-

ergy expenditure in HF readings could form the basis of future physiological research

using larger groups of subjects.

As a final note on this topic we observe, in Tables 7.9 and 7.10, for Subject 1 that

consideration of energy expenditure in the ST readings is also important. Suggesting

that whatever external factors are causing the increases in HF are also present for ST

readings.

7.4 Discussion

Prior experiments similar to those presented in this chapter were conducted

[Kelly and Jones, 2010a]. These experiments also showed potential utility for biomet-

ric response associated with past experience of lifelog items as a static score in ranked

retrieval result lists. However, these experiments suffered a number of short comings

which the experiments presented in this chapter addressed. Further these experiments

did not go as far, in analysing the use of biometric response as a static score. In partic-

ular in our prior experiments:

• An earlier version of the test sets was used, from which all noise/problems for

computer items discussed in Chapter 3.3.1.3 were not removed. Specifically sev-

eral items for which we subsequently obtained content data did not have content

data in these experiments. This would have impacted on the ranked retrieval

performance.

• Our prior experiments explored adding the biometric static scores to BM25 con-

tent only retrieval and to BM25 structured content+context retrieval algorithms,
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whereas in this chapter we use our best performing content+context retrieval

algorithm namely BM25F mod2.

• Our prior experiments only used a subset of the context types used in the exper-

iments presented in this chapter for content+context ranked retrieval.

• The biometric data from the beginning and end of each period of wearing the

biometric devices which was skewed (as discussed in Chapter 3.3.4.4) was not

removed from the dataset.

• Energy expenditure values were not calculated on the given subject’s personal

details (i.e. age, weight and height), due to the devices not being set with the

subject’s personal details.

• Items assigned default biometric readings in the experiment were assigned the

average of available biometric readings as opposed to the median used in this

chapter’s experiments.

• In the previous experiments when tagging items with biometric data with en-

ergy expenditure factored in items were tagged with their highest GSR, HR, HF

and 1/ST response across all accesses to the items, and these highest GSR, HR,

HF and 1/ST readings were divided by their corresponding energy expenditure

readings. On consideration, this breaks with the spirit of factoring energy ex-

penditure readings into the GSR, HF, HR and 1/ST readings, where the purpose

of factoring energy expenditure readings into the biometric readings is to get at

the true biometric levels with certain external factors removed. Hence in the ex-

periments presented in this chapter we tagged items with their highest GSR
engGSR ,

HR
engHR , HF

engHF and
1

ST
engST readings.

• Heat flux was not considered in the prior experiments.

• Experiments to explore the effect of assigning default biometric tags to items

missing biometric readings were not conducted. This issue was examined in the

experiments presented in this chapter in Section 7.3.3.
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7.5 Conclusions

In this chapter we set out to investigate the role of biometric response in lifelog item

retrieval. We presented a novel approach for calculating a static score factor based on

an individual’s biometric response combined with ranked retrieval relevance scores.

Results obtained show some support for the utility of biometric response as a score

factor in lifelog search. Greatest overall improvement in performance was found by

the addition of a static HF score, with greatest improvement being observed for Sub-

ject 1 when energy expenditure was factored into the HF levels and for Subjects 2 and 3

when energy expenditure was not factored into the HF levels. These results are in con-

trast to those observed in Chapter 6 using biometrics to extract important computer

items, where ST levels with energy expenditure factored (i.e. the divEng technique)

proved most beneficial for Subjects 1 and 3, and GSR levels with energy expenditure

factored (i.e. the divEng technique) proved useful for Subject 2. These differences in

results across experiments and subjects suggest that: there may not be one overarch-

ing ’best’ biometric measure for detecting item importance based on biometric levels

associated with past experience of items; that the same biometric measures may not

be useful across different retrieval scenarios; and that individual difference is an im-

portant factor affecting the utility of different biometric measures. Future studies on

these topics are merited.

That being said, the results observed in this chapter are promising. However it is ac-

knowledged that this study was conducted on a limited number of subjects over a rel-

atively short period of time. Further experiments with larger numbers of subjects are

required to establish the scalability of the technique presented in this chapter. How-

ever, due to the large psychological burden placed on subjects wearing the biometric

devices for extended periods of time, and the difficulty in gaining participants willing

to partake in experiments which log their personal data, this initial study formed a

good means to establish if further research in this domain is warranted. Given the

results presented in this chapter we believe it is worth investing in further research in

this space using larger collections of subjects. In the future work section of the next

chapter we discuss some avenues for such research.
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Part IV

Conclusions



CHAPTER

EIGHT

Conclusions and Future Work

Technological developments are enabling individuals to store increasing amounts of

digital data pertaining to their lives. As these personal archives grow ever larger, re-

liable ways to help individuals locate required items from these collections become

increasingly important. In this thesis we set out to further research this space through

consideration of the backend retrieval challenge. Our exploration focused on the role

of recalled context data and biometric indicators of item importance in lifelog retrieval.

We developed algorithms which allow individuals to query their PLs based on their

recalled content and context associated with lifelog items, and which also factor bio-

metric response associated with past experience of items into the retrieval process. In

the next section we conclude this thesis, providing an overview of each chapter and

the main outcomes from them. We also overview how the thesis objectives listed in

the introduction chapter have been met. In Section 8.2 we move on to provide several

avenues for future research in the scope of the work presented in this thesis.

8.1 Conclusions

In this thesis we set out to explore the utility of implicitly recorded and derived context

types in lifelog retrieval. In the next section we provide a summary of key points in the

thesis, along with key observations and findings. The following section then revisits

the thesis objectives presented in Chapter 1, and overviews how these objectives have

been met.
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8.1.1 Summary of Presented Work

Chapter 2:

We presented a discussion of research related to this space and explained how it mo-

tivates the studies presented in this thesis. A summary of existing research was pro-

vided showing that memory associated with past experience of digital items plays a

vital role in retrieval. It was also shown that this memory can be harnessed in the

form of context data associated with items, e.g. date of last access to an item. We

could however, not find evidence that this memory of past experience with items has

been used in previous work on advanced retrieval algorithms for the personal space.

We put forward that this is an important, previously unexploited opportunity to help

people locate required data in personal collections.

We highlighted past research which showed that significant or important events tend

to increase arousal levels and that in turn biometric levels increase. Based on this, we

proposed that moments of increased biometric response associated with interaction

with lifelog items, or based on life experiences captured by the SenseCam, might indi-

cate the events/items in lifelogs which would be most interesting for the lifelog owner

to view or most important to them. We further supposed that this might result in such

biometric response being useful in re-ranking ranked result lists.

We also highlighted the challenges associated with evaluation in this space. A review

of evaluation approaches taken to date was provided, which led to the evaluation ap-

proach taken in this thesis. Based on this research, we decided to adopt the approach

of creating lifelogs by recording subjects digital activity over an extended period of

time. This approach was taken given the unavailability of existing test sets and test

cases for research in this space.

Chapter 3:

We presented the test sets created for experimentation in this study. These test sets

consisted of laptop and PC files interacted with, emails sent and received, web pages

viewed, SMS messages sent and received, and SenseCam images captured. These

lifelog items were annotated with several sources of automatically generated context

data. Specifically, each item was annotated with title, path to file, URL, extension

type, to and from information. The following context data types associated with each
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access to these items were also included: begin date and time; end date and time;

year; season; month; day of week; whether access happened during the week or at

weekend; whether access happened during the beginning of week, mid week or at

end of week; whether the access happened in the morning, afternoon, evening or

night; device used to access the item (e.g. laptop); geo-location when accessing the

item; light status when accessing the item; weather conditions when accessing the

item; people present when accessing the item; and biometric response when accessing

the item.

To our knowledge these are the largest and most heterogeneous test sets of their nature

in existence. We described the process by which these test sets were created, along

with the challenges and problems encountered in creating them. We also showed the

resulting size of our test sets and statistics on their make up and suggested how this

might impact on retrieval from them.

These test sets were just for three subjects, all of whom were post-graduate students

within our department. Despite this similarity in our test subjects, variation was ob-

served in the make up of the three subjects collections. These variations were high-

lighted and indicators presented as to how this might impact on the utility of context

data in retrieval on the subjects collections. As an aside, given the individual differ-

ences observed in our three, quite similar, subjects’ collections one can expect much

larger variations to occur across the personal collections of the wider populous. This

leads to the need for flexible retrieval techniques which can cater for individual dif-

ferences.

Chapter 4:

We explored retrieval algorithms of interest to our research, and described the state-of-

the-art in this space which we used as a basis for our retrieval algorithm investigations

presented in Chapters 5 and 7. We also described how we created indexes of the

textual content of our generated lifelog test sets for the retrieval approaches we wished

to investigate. The means by which we generated user queries and result sets for these

queries was also described. These user queries were based on subjects’ perception

of items they would want to retrieve from their lifelogs and their recalled content

and context associated with these items. Result sets were generated based on manual

user ratings of pooled result lists generated using a combination of different retrieval
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approaches.

Chapter 5:

In Chapters 5-7 we described our experimental studies, the justification for these stud-

ies, and provided a detailed analysis of results obtained. Specifically, in Chapter 5 we

explored developing ranked retrieval algorithms for the lifelog domain. Ranked re-

trieval approaches explored allowed individuals to search based on both their recall

of the content in their collections and several rich sources of associated context data.

As part of this exploration we analysed the utility of recalled context in improving

content only based retrieval for our three experiment subjects. We looked at a struc-

tured querying based retrieval approach and several flat querying based retrieval ap-

proaches. Our primary contribution in this chapter was the suggestion and validation

of a novel flat retrieval technique. This technique was an extension of the state-of-

the-art BM25F retrieval approach. This technique modified BM25F at the field term

scoring level, with the aim of accounting for the structure of lifelogs. Our first modifi-

cation, consisted of a term frequency normalization of the term score. This approach

weighted term field scores based on the frequency of the term in the document field

relative to its frequency across all fields of the document. This approach did not show

utility in our collections in which context terms were also liable to occur in the content

field of documents. Our second, and overall most successful, modification consisted

of a field length normalization of the term score. This approach weighted term field

scores based on the length of the field relative to the length of the document as a whole.

In this approach the occurrence of terms in shorter fields received a higher boost than

the occurrence of terms in longer fields. Overall, this approach showed utility in the

experimental lifelog collections, in which context query terms could also occur in the

content of documents. However, with this approach we noted the least improvement

in performance for the one subject who used context query terms in the content field

of their queries. For this subject our adopted approach was liable to give incorrect

extra weighting to content query terms which occurred in the context fields of non-

relevant items. We hypothesized that combining our term frequency normalization

and length normalization approach in weighting the BM25F terms scores would help

dampen this effect. This supposition was shown to be correct in the case of this sub-

ject. However, for the other two subjects using this approach was not as effective as

using length normalization to weight the field level scores in isolation.
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Chapter 6:

In Chapter 6 we began our exploration into the use of biometric response associated

with past experience of lifelog items as static scores in ranked retrieval algorithms. To

begin this exploration we attempted to establish if such biometric response indicated

future importance of items in lifelogs. We were particularly interested in the textual

content in subjects’ lifelogs, since this was the data for which we were developing

retrieval techniques. However, given the multimedia nature of lifelogs, and the par-

ticular benefit we felt might be achieved using biometric response in detecting impor-

tant SenseCam events and the large need for extracting interesting SenseCam events

from amongst the potentially vast quantities of images available, we also explored the

utility of biometrics in extracting such events.

We proposed a mechanism to extract possibly important or interesting SenseCam

events and computer items from lifelogs using biometric response levels observed

from past experience of lifelog items. The biometric measures we explored were gal-

vanic skin response (GSR), heat flux (HF), skin temperature (ST) and heart rate (HR).

This represented the first time that biometric response had been used in this way, i.e.

as a future indicator of item/event importance. We also proposed that energy ex-

penditure associated with biometric response could be used to remove some external

factors (e.g., motion, eating) that affect biometric response. In other words, that fac-

toring associated energy expenditure readings into biometric readings could help in

‘getting at’ the true biometric response associated with interesting items/events. Re-

sults obtained validated our approaches, but highlighted the need for further research

in this space. Different biometric measures and approaches showed greater utility for

different subjects. That is, no clear ’best’ biometric measure for important item/event

detection was observed. Further, in the case of one subject who regularly browsed

their SenseCam collection and found everything from the mundane to the novel in-

teresting to view, past biometric response did not provide much utility as an enabling

technology for interesting SenseCam event detection.

Chapter 7:

Having gained positive results in Chapter 6 investigations, in Chapter 7 we moved

on to explore the utility of integrating past biometric response as a static score in the

overall best performing ranked retrieval technique which we developed in Chapter 5.
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In this investigation we used the item biometric tagging approach used in Chapter 6.

Our investigation showed utility for using biometric static scores, but again no clear

candidate biometric measure for use in this approach was observed. HF was found

to be the overall most useful biometric measure for static score creation across the

three subjects. However, for two subjects greatest utility was observed when energy

expenditure was not factored into the HF readings. For the other subject the reverse

was true. We suggested that this was due to the unexplained large HF level variations

in this subject’s collection relative to the other subjects’ collections, which factoring in

of energy expenditure appeared to remove.

Remarks:

As acknowledged at several points throughout this thesis, while the results of our ex-

periments are promising, our studies were conducted on only three subjects over a

20 month period using 100 queries per subject for our ranked retrieval investigations

presented in Chapter 5, and using a one month subset of our three subjects lifelogs for

the biometric investigations presented in Chapters 6 and 7. That being said, these col-

lections are larger and more heterogeneous than any other collections used to date in

this space. Further, this is a new space of research, in which retrieval algorithm devel-

opment using rich context data has not previously been explored. Indeed even across

other spaces of research, no work exists to our knowledge which explores the inte-

gration of the rich context types we looked at into ranked retrieval algorithms. Our

studies also present the first use of biometric response associated with past experience

of digital content as a future indicator of that contents importance. And subsequently

the first studies examining the integration of such biometric response as static scores

in ranked retrieval approaches. Importantly in these experiments we suggested and

showed utility in using energy expenditure as a means to remove some external influ-

encing factors from biometric readings - this appears to be important in helping get

at a truer indication of underlying arousal levels using biometric response in some

cases. We believe that the work presented in this thesis motivates further research in

this space using larger scale studies and that it sets the foundations for such further

research. We also believe that we have opened the doors to exciting new spaces of re-

search, from which there is much scope for future research. In the future work section

of this chapter we highlight some of these avenues for future research.
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8.1.2 Achievement of Thesis Objectives

The primary contributions of this thesis can be summed up as:

• Review of related work in personal information systems, context data in re-

trieval and the use of biometrics in retrieval, from which we showed:

Support for using recalled context data in retrieval; Lack of sophisticated re-

trieval algorithms for the personal space; Lead up to the use of biometric re-

sponse associated with experience of lifelog items as a future indicator of the

item’s importance through review of biometric response research and current

state of explorations in biometric response in the digital environment.

• Test set generation:

Creation of the largest known most heterogeneous test sets for experimentation

in this space, and details of how these collections were created along with the

challenges in creating such collections. A unique insight into the make up of

such collections was also provided.

• Generation of lifelog IR algorithms which cater for content+context queries:

We explored the utility of recalled context data in IR retrieval algorithms. We ex-

amined this from two perspectives: 1) structured content+context queries; and 2)

flat content+context queries. We showed support for the use of queried context

data in lifelog retrieval. We introduced a novel flat ranked retrieval approach to

account for the make up of our subjects’ collections and querying approaches.

Preliminary support for this retrieval approach was shown.

• Generation of techniques to extract important items from lifelog collections us-

ing biometric response associated with past experience of items:

We provided evidence, through experimentation using our generated test sets,

to support our hypothesis that biometric response associated with previous ex-

perience of lifelogged items/events can be used to detect items/events that our

subjects may wish to view in the future.

• Generation of techniques to integrate biometric measures associated with past

experience of items into lifelog retrieval algorithms:
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Based on our observed utility of past biometric response in detecting important

computer items in lifelog collections, we explored the utility of past biometric

response in re-ranking ranked result lists. We found support for the addition of

maximum observed biometric levels, associated with past interaction with com-

puter items, as a static score to our developed content+context ranked retrieval

approach.

8.2 Future Work

PL retrieval research is a new and exciting domain. This is just the beginning of the

story. There is much work still to be done. Further work on applications to allow indi-

viduals to manage, browse through and search their lifelogs; examination of security

and privacy issues to be accounted for; establishing provisions for sharing of lifelog

content; the list goes on. The future in this domain of research is set to be interesting!

Specifically from the point of view of the retrieval element of PL research, this and

other existing work just forms the beginning of the story. Some possibilities for the

next chapter of the story follow.

8.2.1 Evaluation Techniques

Given the complexity of creating lifelogs and the problems we encountered with our

approach (described in Chapter 3), we would recommend adopting a different lifelog

creation approach in future lifelog studies. One possibility is to create an integrated

lifelog capturing solution from the ground up. Such a solution should automate data

capture, data integration, time aligning and writing to final lifelog database.

Alternatively, existing systems could be extended. For example, for studies conducted

on the Mac operating system, the Slife application is now available in open source for

this operating system. This could be easily extended, towards a lifelogging solution,

to capture item content, file path and the ’to’ ’from’ fields of emails.

Whatever solution is adopted, reducing the computer speed of the user while logging

is not an acceptable option, as we found with even our dedicated lifeloggers. In gen-

erating a lifelogging solution, information such as file path, webpage URL, email title

and timestamp could be logged live. With further details, such as item content, con-
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text tagging, time aligning and database updates conducted during system idle time.

Complete control by subjects of their personal logged data, using local to the subject

stores only, and zero personal data access to investigators are also imperative factors

to incorporate into a lifelog generation and evaluation solution using these lifelogs.

Given the personal nature of such lifelog collections and resulting difficulties asso-

ciated with gaining subjects, the over head involved in creating lifelogs for exper-

imentation purposes and the lack of cross comparability of techniques developed

on the same lifelogs across institutions, there is need to move towards standardiza-

tion in evaluation in this domain. A point which formed the focus of the ECIR 2011

workshop on evaluating personal search1. We propose that one possible solution to

this problem and avenue for future research is through generation of pseudo collec-

tions which exhibit the characteristics of ‘real’ user collections. To create such col-

lections a detailed understanding of the make up of real users desktop collections,

items they retrieve from these collections and query formation styles is required. Part

of such an analysis could take the form of observations, user studies, diary studies,

etc, as are carried out in the personal information management (PIM) community

[Jones, 2006, Teevan and Jones, 2008, Barreau et al., 2009]. However, a detailed statis-

tical analysis of the make up of the collections and querying behaviour of a large cross

section of the populous is also required in order to move to a situation where real

users collections can be replicated in a pseudo way. To understand the make up of

individuals desktop collections, statistics need to be built up on the volume of differ-

ent information types in these collections, the volume of topics covered, the amount

of similarity between items, etc. This analysis could potentially be conducted through

a drive within the research community, with either clear guidelines on the statistics to

gather or crawlers to automatically generate statistics from participants PCs provided.

We propose that required statistics for target result items would include: extension

type of target item, distinctiveness of target item in collection as a whole, recency of

last access to target item, etc; and that required statistics for user queries would in-

clude: query length, frequency of query terms in target item, frequency of query term

in collection as a whole, etc. Similar to gaining statistics on the content of individu-

als desktops, a stand alone search application or a tool which plugs into individuals

current search application (e.g. Google Desktop2) could be provided to the research

1http://www.cdvp.dcu.ie/iCLIPS/EPS2011/ (September 2011)
2http://desktop.google.com/ (September 2011)
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community to log statistics on the nature of queries performed and items retrieved on

subjects computers.

Using the statistics gathered for each individuals desktop contents, query format and

items retrieved, we believe the techniques developed in [Azzopardi et al., 2007] and

[Kim and Croft, 2009] provide a strong foundation from which to build pseudo test

collections which mimic the characteristics of ‘real’ test collections. We propose mim-

icking desktop content by using the statistics gathered on the make up of individuals’

desktop content to lay user profiles on top of an extension to the pseudo desktop

collection creation approach proposed in [Kim and Croft, 2009]. In extending this ap-

proach, other information which could be mined in creating these collections includes

the details provided by people on their homepage, e.g. many people provide lists of

personal and work interests and details on co-workers (either explicitly or through

inferred means, e.g. co-authorship of papers in the case of academics) on their home-

pages. We also envisage possibilities to extend the content gathering approach to in-

clude other item types and items generated from web content using existing summa-

rization, extraction and rephrasing approaches, for example. Having created pseudo

desktop collections we propose extracting target result sets from each user’s collection

using the available statistics on what the ’real’ user retrieves from their collection. To

form the queries for the target items, a query generation process which uses the statis-

tics on the ’real’ users query formation for the given target item is required. We envis-

age the query generation approach proposed by [Azzopardi et al., 2007] and refined

to facilitate multi-field retrieval by [Kim and Croft, 2009], coupled with the informa-

tion gained by our proposed statistical analysis would form a good starting point for

development of a query generation process for this space.

8.2.2 Context Data in Retrieval

There is much scope for future research in the space of using recalled context data

in IR algorithms in the lifelogging domain. In our investigations we used a wide

selection of automatically generated context types. However, there are possibly many

other forms of rich context which people recall associated with items. Possibilities

here might include items accessed around the same time as the required item, SMS

messages sent/received or phone calls made around the same time as the required

item, etc. Qualitative research exploring this topic, along with means to capture or
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derive ’new’ context types would be useful.

In our studies we did not differentiate between recalled context associated with cre-

ation of items and that associated with subsequent accesses to items. Future studies

could look at the impact of making such a distinction, both from the point of view

of individuals’ recall of creation and access context and the impact on retrieval per-

formance of making this distinction. Further, in our retrieval experiments, presented

in Chapter 5, we acknowledged that it was possible that errors in subjects’ memories

of content and context associated with required items could have occurred. Future

research could explore sophisticated techniques to account for the possibility of incor-

rect recollection. We further highlighted in our retrieval experiments that retrieval is

most probably impacted by missing context data in our collections. Future, more reli-

able lifelogging solutions will be more robust and should not suffer from missing data

to the same extent. However, there will most likely still remain a certain amount of

missing context data in collections. It would be useful to investigate means to account

for such missing data. Perhaps through the filling in of missing data using surround-

ing available data with predetermined confidence rules.

Another issue affecting the querying using context experiments of Chapter 5, is that

predefined context terms were used (e.g. the term ’web’ was used in the ’extension

type’ field to indicate web pages). In the future simple mappings would be required to

disambiguate where an individual enters for example the query term ’webpage’ that

they mean ’web’. This is an achievable aim in the structured query space. However,

presented with a flat query, in which the target fields for query terms are not known

generation of such mappings will be a complex task.

The results obtained from our ranked retrieval investigations in Chapter 5 suggest

that it will not be possible to develop one overarching technique that is most successful

across all PL collections and collection types. Rather a personalised retrieval approach,

such as a suite of functions for retrieval of different item types and different functions

which work under different conditions are required. Such functions would respond

differently to queries of varying length and might down or up weight different fields

depending on the volumes of different types of data in a field (for example, a geo-

location field could be down weighted for an individual who rarely moves between

locations). Retrieval functions of this nature might be informed by a statistical analysis

of the nature of individuals’ personal collections, of the type described in the previous
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evaluation approach section.

A final point on the use of recalled context in retrieval. While it was beyond the scope

of this thesis to explore retrieval algorithms for all types of items which may be con-

tained in a PL, development of retrieval techniques for these item types is necessary.

An initial exploration of this topic could explore the utility of the retrieval techniques

presented in this thesis across other item types (i.e. retrieval of non-textual items), by

allowing people to query based on their recalled context associated with these items.

Further context types could also be added to these items, for example people in pho-

tographs, artist associated with music, etc. The possibility of linking non-textual items

to textual items in lifelogs to gain content for these items could also be explored. Such

linking might be based on weighted temporal links for example.

8.2.3 Biometrics in Retrieval

The results of our biometric experiments presented in Chapters 6 and 7 indicate that

biometric readings serve as a useful tool for aiding extraction of important items from

long-term lifelogs. Our adopted approaches for using biometric levels in this regard

were intended as a first pilot venture into this space. Future research needs to be car-

ried out to gain greater understanding of the patterns of biometric response observed

when individuals are experiencing interesting or important events (or other types of

lifelogged events), which they will wish to retrieve in the future. Given the mixed

utility we observed from factoring energy expenditure into biometric levels in our ex-

periments, future research should also seek to gain greater understanding of the use

of energy expenditure with biometric levels. Findings from such studies could form

the basis of improved techniques for using biometrics to aid lifelog item extraction.

Additionally, beyond the lifelogging domain, we envisage several possible applica-

tions of the biometric techniques presented in this thesis both in the archive searching,

recommendation space and in particular to SenseCam images helping locate impor-

tant events for memory impaired individuals engaged in SenseCam focused mem-

ory therapy [Baecker et al., 2007, Berry et al., 2007]. Indeed in a future where biomet-

ric recording is prevalent, the same patterns of biometric response may be observed

across individuals for the same items in shared archives (e.g., digital libraries, pho-

tograph archives, retail websites), which might allow such items to be given query
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independent boosts for all users of the archive. Current research exploring develop-

ment of less cumbersome biometric recording devices, for example research at MIT

Media Lab3, provides indication that reliable unobtrusive biometric devices embed-

ded in individuals clothes or bracelets for example will be widely available for use by

such tools.

8.3 Summary

Research into retrieval from personal lifelogs is becoming increasingly important. The

Ph.D. research programme presented in this thesis, aimed to contribute to this rapidly

growing area of research by exploring methods to integrate implicitly recorded and

derived context data types into traditional IR algorithms for the lifelog retrieval do-

main.

We postulated that context data can be used to harness the way people remember

items in their lifelogs and that past biometric context can be used to locate important

lifelog items. If this context information is exploited correctly, we demonstrated that

it may be possible to create a system that retrieves items based on both an individual

user’s unique information needs and on what they remember about items.

Personal digital archives are increasingly becoming part of our present. In the near

future we believe it will be hard for people to imagine a world where personal lifel-

ogs did not exist. In this thesis we embraced this future by investigating retrieval

techniques that integrated recalled content and context with biometric response as-

sociated with past experience of lifelog items to address some of the unique retrieval

requirements of personal lifelogs.

3http://affect.media.mit.edu/index.php (September 2011)
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Appendix



APPENDIX

A

List of Publications

This Ph.D. research was carried out as part of the Science Foundation Ireland Research

Frontiers Programme 2006 funded iCLIPS project. Further details of the iCLIPS project

are available at: http://www.cdvp.dcu.ie/iCLIPS/ (September 2011). The following

publications arrive wholly or partially out of this Ph.D. research. However, much of

their content does not appear in this thesis, rather they were explorations conducted

in this space prior to writing the thesis and conducting thesis experiments. These pub-

lications inform much of the thesis. Copies of these publications can be obtained from

the iCLIPS project website at: http://www.cdvp.dcu.ie/iCLIPS/publications.html

(September 2011).

A.1 Towards Context Data in Lifelog Retrieval

These publications were written early in the Ph.D. They propose and explore the idea

of using context data and memory in lifelog retrieval. Many of the ideas expressed in

these publications explore the premises of this thesis.

• L. Kelly. “The Information Retrieval Challenge of Human Digital Memories”.

In Proceedings of the BCS IRSG Symposium: Future Directions in Information

Access (FDIA 2007), pg. 114-122, Glasgow, Scotland, 28-29 August 2007, British

Computer Society.

• L. Kelly and G.J.F. Jones. “Venturing into the Labyrinth: the Information Re-

trieval Challenge of Human Digital Memories”. Proceedings of the Workshop

on Supporting Human Memory with Interactive Systems, at HCI 2007: The 21st
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British HCI Group Annual Conference, pg. 37-40, Lancaster, U.K., 3-7 September

2007.

• L. Kelly. “Searching Heterogeneous Human Digital Memory Archives”. In K-

Space Jamboree Workshop, Berlin, Germany, 14 September 2007.

• L. Kelly. “Context and Linking in Retrieval from Personal Digital Archives”. SI-

GIR 2008 - Doctoral Consortium, 31st Annual International ACM SIGIR Confer-

ence on Research and Development in Information Retrieval, pg. 899, Singapore,

20-24 July 2008, ACM.

A.2 Context Data in Lifelog Retrieval

These publications present the first explorations into using several rich sources of con-

text data to retrieve items from one subject’s sample personal collection consisting of

six weeks of computer activity. The first publication is a result of the M.Sc. project of

Marguerite Fuller, where retrieval effectiveness using recalled content and context was

tested directly after the six weeks of data capture. The second publication presents a

follow up study conducted six months later to examine the change in recalled mem-

ory of content and context, and resulting change in retrieval effectiveness after the six

month interval.

• M. Fuller, L. Kelly and G.J.F. Jones. “Applying Contextual Memory Cues for

Retrieval from Personal Information Archives”. In Proceedings of Personal In-

formation Management (PIM 2008), workshop at CHI 2008, Florence, Italy, 5-6

April 2008.

• L. Kelly, Y. Chen, M. Fuller and G.J.F. Jones. “A Study of Remembered Context

for Information Access from Personal Digital Archives”. In Proceedings of the

2nd International Symposium on Information Interaction in Context (IIiX 2008),

pg. 44-50, London, U.K., 14-17 October 2008.

The following publications propose ideas for developing applications which allow

people search their lifelogs using their episodic memory of lifelog items. This is the

work of Yi Chen also engaged as a researcher on the iCLIPS project, and hence is

not discussed in this thesis. My contribution to these publications is provision of the
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backend content+context retrieval algorithms. These algorithms are those described

in Chapter 5. However precise implementation details of these algorithms, nor evalu-

ation of them are discussed in these papers.

• Y. Chen, L. Kelly and G.J.F. Jones. “Memory Support for Desktop Search”. In

Proceedings of Desktop Search Workshop at SIGIR 2010, pg. 13-16, Geneva,

Switzerland, 23 July 2010.

• Y. Chen, L. Kelly and G.J.F. Jones. “Supporting Episodic Memory from Personal

Lifelog Archives using SenseCam and Contextual Cues”. Poster presentation at

SenseCam Symposium 2010, Dublin, Ireland, 16-17 September 2010.

This paper explores the distinguishing ability of geo-location information on a subset

of our 3 subjects 20 month lifelogs. This paper is joint work with Daragh Byrne. It

should however be noted that the statistics presented in this paper are not comparable

with our 20 month lifelogs as these experiments were conducted on the earlier version

of our lifelogs (described in Chapter 7.4). This paper raises some important issues for

the use of geo-location in lifelog item retrieval and the underlying premise of the paper

remains valid for the 20 month lifelogs used in this thesis.

• L. Kelly, D. Byrne and G.J.F. Jones. “The Role of Places and Spaces in Lifelog

Retrieval”. In Proceedings of Personal Information Management (PIM 2009),

Workshop at ASIST 2009, Vancouver, Canada, 7-8 November 2009.

A.3 Biometrics in Lifelog Item Importance Detection

This paper presents the concept of using biometrics to extract important lifelog events

(SenseCam images and computer files), which individuals may wish to view using

biometric response at the time of experiencing the lifelogged events. To do this the

first approach presented in Chapter 6 was used. Specifically, removing periods of

high energy expenditure. This experiment differs from that presented in Chapter 6

in a number of ways (as discussed in Chapter 6.4) and formed part of our initial ex-

plorations on this topic, from which further insight into the use of biometrics in im-

portant item selection was obtained and the approach for doing this refined (refined

approach presented in Chapter 6 of this thesis). Given the results of this experiment
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we were motivated to explore this topic further, as described in Chapter 6, and in par-

ticular explore the long-term utility of biometrics in locating interesting lifelog events.

Comparison between the experiment in this paper and that presented in this thesis is

drawn in Chapter 6.4.

• L. Kelly and G.J.F. Jones. “Examining the Utility of Affective Response in Search

of Personal Lifelogs”. In Proceedings of the 5th Workshop on Emotion in HCI,

British HCI Conference 2009, Cambridge, U.K., 1 September 2009.

The following paper presents a related study on biometrics not directly relevant to this

thesis. In this paper another possible use of SenseCam and computer events extracted

from lifelogs based on biometric response levels is explored. Specifically the utility

of these events in self-reflection. Although this paper was just published in 2010, the

experiments were conducted in 2008, one month after the subjects had collected the

biometric data. These experiments too use an earlier version of our lifelogs (described

in Chapter 6.4).

• L. Kelly and G.J.F. Jones. “An Exploration of the Utility of GSR in Locating

Events from Personal Lifelogs for Reflection”. In Proceedings of the 4th Irish Hu-

man Computer Interaction Conference (iHCI2010), Dublin, Ireland, 2-3 Septem-

ber 2010.

The annual SenseCam symposium provided an opportunity for us to share the Sense-

Cam element of the aforementioned biometrics in lifelog event extraction experiments

with the SenseCam community. This was done in the following poster presentations.

• L. Kelly and G.J.F. Jones. “Examining the Utility of Biometric Response for

SenseCam Archive Browsing”. Poster presentation at SenseCam Symposium

2009, Chicago, USA, 16-17 October 2009.

• L. Kelly and G.J.F. Jones. “An Exploration of the Utility of Affective Response

in SenseCam Archives”. Poster presentation at SenseCam Symposium 2010,

Dublin, Ireland, 16-17 September 2010.

The following paper explored the use of biometric response levels associated with past

experience of lifelog items as a static score in ranked retrieval algorithms. It too used
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an earlier version of our lifelogs. The results of this paper raised many interesting

points and gave us greater insight into use of biometrics as static scores. Comparison

between this static scoring experiment and that presented in this thesis is drawn in

Chapter 7.4.

• L. Kelly and G.J.F. Jones. “Biometric Response as a Source of Query Indepen-

dent Scoring in Lifelog Retrieval”. In Proceedings of 32nd European Conference

on Information Retrieval (ECIR 2010), pg. 520-531, Milton Keynes, UK., 28-31

March 2010, Springer-Verlag.

A.4 Supporting Evaluation in the Lifelogging Domain

This paper was an effort exploring issues of evaluation for applications in the lifelog-

ging domain.

• G.J.F. Jones, C. Gurrin, L. Kelly, D. Byrne and Y. Chen. “Information Access Tasks

and Evaluation from Personal Lifelogs”. In Proceedings of the 2nd International

Workshop on Evaluating Information Access (EVIA 2008), pg. 75-86, A Satellite

Workshop of NTCIR-7, Tokyo, Japan, 16 December 2008.

The following book chapter was written in collaboration with Daragh Byrne as a re-

view of our experiences in collection of large scale long-term personal lifelogs. In

it challenges associated with creating lifelogs are explored, along with possible solu-

tions and guidelines for those wishing to create lifelogs for experimentation purposes.

While the challenges associated with creating lifelogs are described in Chapter 3 of this

thesis, the guidelines presented for future lifelog test set creators are those of Daragh

Byrne, and hence do not feature in this thesis. I would recommend reading this book

chapter to anyone considering working with the lifelogging technologies discussed in

this thesis.

• D. Byrne, L. Kelly and G.J.F. Jones. “Multiple multimodal mobile devices:

Lessons Learned from Engineering Lifelog Solutions”. In: Handbook of Re-

search on Mobile Software Engineering: Design, Implementation and Emergent

Applications, IGI Publishing, 2010.
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In this publication a means to move towards standardized evaluation in the personal

search space is presented. The ideas presented in this paper are included in the future

work section of this thesis (Chapter 8.2.1).

• L. Kelly, G.J.F. Jones. “Information Access Tasks and Evaluation from Personal

Lifelogs”. In Proceedings of Evaluating Personal Search Workshop, ECIR 2011,

18 April 2011.

A.5 SIGIR 2010 Desktop Search Workshop

The following proceedings are those of the SIGIR 2010 Desktop Search Workshop and

the report is a write-up of the outcomes of this workshop. These provide a concise

insight into the current state of research in the desktop search space.

• D. Elsweiler, G.J.F. Jones, L. Kelly and J. Teevan (editors). “Proceedings of the

SIGIR 2010 Workshop on Desktop Search”. Geneva, Switzerland, July 2010.

• D. Elsweiler, G.J.F. Jones, L. Kelly and J. Teevan. “Report on Desktop Search

Workshop”. SIGIR Forum, Vol 44(2), December 2010.

A.6 ECIR 2011 Evaluating Personal Search Workshop

The following proceedings are those of the ECIR 2011 Evaluating Personal Search

Workshop. At the time of writing (September 2011), a write-up of the outcomes of

this workshop is due to appear later this year. These provide a good insight into

where this emerging space is currently at.

• D. Elsweiler, L. Kelly and J. Kim (editors). “Proceedings of the ECIR 2011 Work-

shop on Evaluating Personal Search”. Dublin, Ireland, April 2011.
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