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Abstract 

This thesis presents work on electrohydrodynamic focusing (EHDF) and photon 

transmission to aid the development of species preconcentration and identification. EHDF is an 

equilibrium focusing method, where a target ion becomes stationary under the influence of a 

hydrodynamic force opposed by an electromigration force. To achieve this one force must 

have a non-zero gradient. In this research a novel approach of using a 2-dimensional planar 

microfluidic device is presented with an open 2D-plane space instead of conventional 

microchannel system. Such devices can allow pre-concentration of large volume of species and 

are relatively simple to fabricate. 

Fluid flow in these systems is often very complex making computer modelling a very 

useful tool.  In this research, results of newly developed simulations using COMSOL 

Multiphysics® 3.5a are presented. Results from these models were compared to experimental 

results to validate the determined flow geometries and regions of increased concentration. 

The developed numerical microfluidic models were compared with previously published 

experiments and presented high correspondence of the results. Based on these simulations a 

novel chip shapes were investigated to provide optimal conditions for EHDF. The experimental 

results using fabricated chip exceeded performance of the model. A novel mode, named 

lateral EHDF, when test substance was focused perpendicularly to the applied voltage was 

observed in the fabricated microfluidic chip. 

As detection and visualisation is a critical aspect of such species preconcentration and 

identification systems. Numerical models and experimental validation of light propagation and 

light intensity distribution in 2D microfluidic systems was examined. 

The developed numerical mode of light propagation was used to calculate the actual 

light path through the system and the light intensity distribution. The model was successfully 

verified experimentally in both aspects, giving results that are interesting for the optimisation 

of photopolymerisation as well as for the optical detection systems employing capillaries.  
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Chapter 1 – Introduction 

 Electrohydrodynamic focusing as an alternative for the sample 1.1.

preconcentration 

Microfluidics is a major branch of the broader multidisciplinary field known as 

Micro-Electro-Mechanical Systems (MEMS), which is a relatively new field of study that 

combines physics, chemistry and engineering. Microfluidics has been defined as the 

“study of flows that are simple or complex, mono or multi-phasic, which are circulating 

in artificial microsystems” (1). The term microfluidics is used to refer to objects with 

geometrical dimension scale ranging typically between 100nm and 300µm (2; 3). In the 

1980’s major breakthroughs in miniaturisation allowed the development of systems 

down to sub-micrometric scales introducing MEMS. Later on, in the 1990’s this spread to 

a multitude of chemical, biological, biomedical, and analytical applications (1). 

Microfluidics is regarded as a new application of the old discipline of hydrodynamics to 

the novel area of lab-on-a-chip type applications, driven by the idea of combining entire 

laboratories in a small compact form (4). 

Electro-hydrodynamic focusing (EHDF) is a novel microfluidic chip-based 

equilibrium method of preconcentration of an analyte using a combination of 

electromigration and pressure-driven flow (5).  The main principle of EHDF within 

microfluidic chips is the formation of a region of stable equilibrium between the forces 

imposed by the pressure-driven fluid flow and by electrophoretic migration driven fluid 

flow (see Figure 1).  

 

Figure 1: A simplified diagram showing the general principle of electro-hydrodynamic focusing 
(EHDF), blue arrows represent vectors of hydrodynamic forces FH (imposed by pressure-driven flow), 

red arrows represent vectors of electromagnetic forces FE (imposed by applied electic field) and 
green arrows represent the vector summation of both. 

Purple area shows where the EHDF takes place. 
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In order to create an analyte-specific focusing zone, that will separate the target 

analyte of known electrophoretic mobility from the matrix that contains it a net motive 

force must drive it toward the focusing point, ideally regardless of the analytes initial 

location. EHDF can be achieved my modifying flow pressure and applied potential 

difference in a specially designed microfluidic device. When all parameters are adjusted 

suitably a constant increment of concentration of the analyte should be observed within 

the designated stationary zone when the analyte is introduced into the system. 

Currently the most common methods for detection of low-abundance, non-volatile 

analytes (such as drugs or proteins) in complex matrices (e.g. biological, forensic or 

environmental samples) are based on adsorption of a target analyte on specially 

prepared chromatographic columns. Appropriate stationary phases are immobilised on 

the columns are subsequently washed by the sample. Elution can then allow for 

extraction of pre-concentrated and purified analyte. This process is known as Solid 

Phase Extraction (SPE) (6). Other methods used for preconcentration of low-abundance 

analytes are based on liquid-liquid extraction, precipitation and crystallisation (7). SPE is 

a very well established analytical method, but has a few restrictions: 

 The possibility of interactions between the adsorbent and the sample content 

(such as precipitation of proteins) 

 The need of specialised, selective materials that are not easily available 

 Optimisation of SPE methods is limited to empirical approaches as the modelling 

of chromatographic materials selectivity is too complex to employ in practice 

EHDF is a process with the potential for being a rapid and automated 

preconcentration method. The design and manufacture of a new device overcoming the 

limitations of conventional SPE would allow fast and effective pre-treatment of 

challenging samples. EHDF is a versatile technique that could be adapted to virtually any 

ionic sample making it simple and cost-effective alternative to SPE. 

The concept for EHDF design and development of controlled flow is that the net 

force imposed by hydrodynamic pressure-driven flow is balanced within a specific chip 

region by application of the electromagnetic force. A necessary condition is that there is 

a varying value of at least one force along the selected the dimension (separation 

dimension). In other words, the gradient of at least one force must be non-zero. To 

improve the performance and the control within the device for EHDF, it would be better 
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that both forces could have a non-zero gradient. This is schematically presented in 

Figure 1. 

To achieve the required conditions, both experiments and modelling were 

performed in a microfluidic chip, inspired by (8), with rectangular chamber, of 

dimensions 100mm × 20mm, with different thicknesses varying from 50µm to 500µm 

fitted with multiple openings acting as inlets and outlets. Both ends of the chamber 

were connected to tanks containing conducting agarose gel, which housed the 

electrodes. The electrodes were immersed in the conducting agarose gel to prevent 

undesired electrochemical effects, such as electrolysis and bubble formation on the 

electrodes. The results from this modelling were used to change the design of chips 

presented previously in (8). 

A non-zero gradient of the electric field was achieved by using solutions with 

different conductivities that were introduced into the microfluidic chip through separate 

inlets. During the modelling phase, the installation of multiple outlets was tested to 

achieve a non-zero gradient of hydrodynamic force. In the experiments a non-zero 

gradient of hydrodynamic force along the separation dimension was achieved by 

installation of outlets in such a way that a flowstream was turned from the separation 

dimension. 

 Research questions and hypotheses 1.2.

In this project the control of multiple fluid flows in microfluidic devices and the 

detection of said flow patterns was investigated. Presently all practical methods of 

focusing in microfluidic devices have been based on physical boundaries restricting flow 

patterns. In this project the implementation of dynamically shaped regions of high and 

low conductivity giving ability to alter not only intensity but also the shape of the electric 

field was investigated. Successful identification of the significance of parameters for 

EHDF in “open space” designed microfluidic chips gives the potential for development of 

a new generation of chip-based microfluidic devices which could be used for 

preconcentration and separations. Determination of low-abundance components in 

complex matrices is a difficult and important problem for science and industry. 

Development of a method with the potential for full automation could provide a 

replacement for expensive and time-consuming methods of sample preparation. 
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Investigation of modern optical detection techniques using cutting-edge light 

sources is important for developing effective sensor and detectors. The main aim of the 

visualisation part of this project was to gain knowledge for designing novel optical 

detection systems such as required for imaging on the microfluidic chip used in the 

experiments. 

The model of device for EHDF was designed based on following hypotheses: 

 It is possible to attain a stable high conductivity stream of varying cross-section using 

multiple inlets and outlets (referred further in this thesis as the flow pattern) in a 

planar two-dimensional microfluidic chip (see Figure 2) 

 The presence of such a flow pattern will allow for the formation of an electric field 

gradient and velocity gradient along the separation dimension 

 A stable trapezoidal flow pattern base on this generated flow pattern will allow for 

focusing of at least one compound 

 Simultaneous concentration measurements can be made across the whole chip with 

a developed photometric detection system, based and optimised on the investigation 

of simpler capillary-based microfluidic photometric detection systems 

The main difference between the EHDF and other focusing techniques is the 

replacement of a fixed geometry with an adjustable one in EHDF. Instead of employing 

channels with predefined geometry with varying cross-sectional area, a rectangular 

microfluidic chamber can be used with two liquids of different conductivity to create a 

varying cross-section of high-conductivity (see Figure 2). 

 

Figure 2: Schematic illustration of microfluidic device for electro-hydrodynamic focusing. 

 Project aims and adopted methodology 1.3.

The development of a two-dimensional model of electrophoresis was regarded 

as a key element required to understand and develop the EHDF system. Currently there 

is no commercially available software that allows full modelling of electrophoresis in all 
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aspects, but there are packages (such as COMSOL) that allow implementing defined 

equations. Verification of the model with appropriate experiments was a necessary step 

for validation of developed simulations. This would allow for confirmation or exclusion 

of the first three research hypotheses. 

The experiments in the fabricated microfluidic chip required development of an 

optical detection method. Light Emitting Diodes (LEDs) were used as light source for 

numerous reasons, mostly due to their adequate spectral properties in conjunction with 

the ability to correlate these with the absorbance spectrum of dyes.  Investigation of the 

LED properties as well as their novel application was orientated toward the design of a 

better optical detection system, with increased performance for miniaturized devices. 

Modern science generally relies on teamwork where different approaches from 

different specializations are used to solve existing problems. Identification of the 

problems and solving them, using synergies of different backgrounds. The study of light 

propagation in capillaries and microfluidic chips as well as the modelling of EHDF 

presents an example of the application of multidisciplinary approach for developing the 

EHDF platform for analyte detection. This addresses the fourth research hypothesis. 

Advances in Micro Total Analysis Systems (µ-TAS) are regarded as important for 

the future development of analytical sciences. Microfluidic chips for electro-

hydrodynamic focusing will require suitable light sources for optical detection systems. 

Due to the goals of this project (i.e.: simultaneous visualisation of an entire two-

dimensional planar chip) there was no previously implemented cheap and popular 

method to be employed. A one point of detection can be very precise in that point but 

does not inform about processes in the other part of the chip. The relatively high 

thickness (10mm) of PMMA layers inhibited easy direct application of conductivity 

detection. The necessity of whole chip visualisation led to the choice of a digital camera 

for detection and data acquisition. 

The advantages of LEDs over traditional light sources include that they are small 

in size compliant with miniaturisation and can be powered with batteries. This can allow 

to integrated EHDF devices to be developed as a new µ-TAS detection platform. A 

microfluidic chip with a light source integrated in one chip layer and a CCD or CMOS 

matrix in the opposite is easy to imagine as a possible sensing system. Within this 

project a novel µ-TAS device based on such a system layout was developed. 
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The work presented in this thesis has three main research areas:  

1. Numerical modelling of processes in COMSOL Multiphysics® 

2. Experimental verification of developed microfluidic models 

3. Investigation of the light propagation in microfluidic systems 

 There is no commercially available software that can directly conduct two or 

three-dimensional simulations of electrophoresis with existing commercial software 

being limited to one dimension (9; 10). The two-dimensional model was developed from 

first principles as a simplified portrayal of the general three-dimensional problem. 

COMSOL is regarded as a user-friendly commercial package for scientific simulations. It 

has the capability of handling a multitude of physical simulations ranging from acoustics 

and electromagnetism, through heat transfer, fluid flow, convection and diffusion. 

Initially, a numerical recreation of already conducted experiments was 

performed with COMSOL. This allowed familiarisation with the modelling environment 

and demonstrated the suitability of the chosen software options for subsequent work. 

The next part of the project was devoted toward developing a complete model of EHDF 

for the designed microfluidic chips, with inclusion of the principal theoretical 

mechanisms that were driving it. Following this the experimental verification of the 

constructed models was performed. A new microfluidic chip was fabricated and used to 

validate the modelling. Finally data acquisition from the two-dimensional microfluidic 

device, and modelling of the light propagation through the microfluidic devices 

(capillaries and microfluidic chips) was conducted. Results of this modelling were also 

verified experimentally. 

Microfluidics is a relatively new but already well-established branch. Novel 

methods of illumination using light emitting diodes (LEDs) and laser diodes (LDs) are 

discussed extensively (11; 12; 13; 14). LEDs have numerous advantages over traditional 

light sources, namely high robustness, quasi-monochromacity, low heat emission, low 

energy consumption and high compliance with miniaturisation making them a “light-

source-of-choice” for microfluidic applications (13). 

An important aspect of this project was the implementation of data acquisition 

in used microfluidic chips and visualisation of flow patterns. Optical properties of the 

microfluidic chips, light sources and image capturing devices needed to be considered in 

order to design an appropriate optical detection system. Working with aqueous 
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solutions and with dyes, in a two-dimensional planar microfluidic chip suggested the 

application of appropriate photographic equipment. 

 Gap in the literature filled by this work 1.4.

This project was inspired by a combination of previously conducted 

experiments, which indicated the possibility of coexistence of multiple flowstreams in 

same microfluidic chamber (15). This combined with successful reported experiments 

employing conductivity gradient focusing (CGF), using a relatively simple device (see 

Figure 3) (8), led to the supposition of more general category of focusing techniques and 

to the development of EHDF. EHDF can be regarded as a general technique, whereas 

CGF is its particular form. In EHDF there is a velocity gradient present inside the 

microfluidic chamber, while in CGF fluid velocity was constant. Also a different approach 

for formation of electric field gradient is used in EHDF: not only flowstreams have 

different conductivity but also different distribution along the chip cross-section. 

 

Figure 3: A schemat of microfluidic chip used for generating conductivity gradient focusing, after (8). 

This microfluidic device had the form of a rectangular chamber (14cm x 2cm) 

with a thickness of 200µm. This was achieved by placing a micro-scale gasket (spacer) 

between two sheets of transparent plastic polymethyl methacrylate (PMMA). On the 

two ends two chambers were drilled and filled with agarose gel that held electrodes 

immersed in the gel. Difficulties with explanations of two-dimensional electrophoresis 

observed during experiments with CGF formed the basis in this thesis for development 

of a theoretical model explaining all properties of the used system. This was addressed 

in the chapter 4, in section concerning modelling of microfluidic systems. 
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One of key aspects of work presented in this thesis was the employment of 

microfluidics. It not only allowed a significant reduction in the amount of used solvents 

and analytes, but requires consideration of the fundamental changes in the importance 

of physical properties. Tabeling and others (2; 3) uses the term “microfluidic” to refer to 

research with at least one linear system dimension being in the order of between 300 to 

1 µm (1; 4). Wilkes and others set the lower dimension limit even at 100nm. The change 

of the scale down to micrometre-size results in a change of the importance of physical 

properties. For this project the most important aspect is that generally flow in 

microfluidic systems is laminar. As a consequence, the flow is smooth and gives the 

possibility of the simultaneous appearance of unmixed fluids in one channel or chamber. 

The idea of multiple fluids flowing through a microfluidic chip was explored by Dasgupta 

et al. resulting in series of interesting pictures which are presented in Figure 4 (15). 

 

Figure 4: Pictures of flow patterns achieved using pressure-driven flow in microfluidic chip (15). 

This experiment was an excellent illustration of the possible co-existence of 

different flowstreams in the same microfluidic chamber for a relatively large volume 

(10mm x 10mm, cell volume of 9μl) as long as a laminar regime was maintained. Also it 

can be seen in Figure 4 that the formation of even very complicated flow patterns is 

possible provided appropriate geometry and experimental conditions are employed. 

Presented results of multiple flowstreams coexisting in one chip were not previously 

applied for sample separation (15). Application of two flowstreams with different 

electrical properties combined with shaping of the flow pattern was a key element to 

achieve successful focusing. The results of microfluidic experiments based on these 

principles are presented in chapter 5 of this thesis. 
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 Merits and limitations of the study 1.5.

 Application of the computer modelling software allows studying of the  microfluidic 

systems in different aspects and gives flexibility not available to traditional 

experimental systems 

 COMSOL Multiphysics software package is a user-friendly environment with 

numerous adjustable parameters helps identifying potential experimental problems 

and allows to optimise and the developed system 

 Developed numerical model of the EHDF allowed for the prediction of the results 

 The developed light propagation model visualised interesting light distribution 

pattern that can be useful for design and optimisation of capillary-based 

photodetection and photochemical system 

 Numerical models are only an approximation of the real systems and if 

inadequately defined might produce misleading or physically incorrect results 

 Microfluidic devices due to their small dimensions require a high manufacturing 

precision, which if not maintained may eventually affect the obtained results 

 On this step of research the focusing of the  only one compound was tested to 

confirm the research hypotheses and the mechanism of the EHDF 

 Scope of the thesis 1.6.

Chapter 1 is a general introduction to the field of microfluidics applied for 

sample separation and preconcentration, provides the theme and concepts relevant to 

the field of study and the thesis, outlines research questions and hypotheses, explains 

used methodology, unexplored scientific areas and presents strengths and weaknesses 

of the investigation. In conclusion of the Chapter 1 outlines the scope of the particular 

chapters in the thesis. 

Chapter 2 provides information about current state of knowledge in the areas 

that are relevant to the thesis: microfluidics, encompassing its brief history, fabrication 

methods, physical aspects and its applications; different focusing methods, with 

particular consideration of electrofocusing techniques; numerical modelling including 

computational fluid dynamics; study of optical detection techniques with application of 

solid state lighting, especially laser diodes and light emitting diodes. Chapter 2 is 

concluded by providing information how EHDF is related to the previously published 

research. 
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Chapter 3 gives information about used equipment and materials with 

description of all applied research procedures. The first part of this chapter relates to 

conducted simulations, with description of used hardware and software and specifies 

simulation parameters in all presented models. The second part of this chapter provides 

informations of the developed microfluidic chip, used detection system and individual 

experimental conditions relevant to all presented microfluidic experiments. The third 

part relates to modelling and experiments on light propagation and light intensity 

distribution in microfluidic devices and photopolymerisation of monoliths inside 

capillaries. 

Chapter 4 presents the results of conducted modelling of microfluidic systems. 

Stating with general assessment of the chosen software and simulation quality, 

numerical reproduction of previously published experiments and study of the multi-

outlet chip properties and development of the optimal chip design for EHDF. This 

chapter is concluded by presenting the results achieved with the working model of EHDF 

that was subsequently tested experimentally. 

Chapter 5 presents the experimental results obtained with developed 

microfluidic chip. In the first part of this chapter are presented experiments with chip 

layout used in numerical simulations and observation of an unexpected phenomenon 

named “lateral EHDF”. In the second part there are results of studies of formation and 

equilibration of the lateral EHDF. In the third part are presented results of experiments 

on lateral EHDF with multiple parallel flowstreams. This chapter is concluded by the 

comparison of conducted modelling with experimental results. 

Chapter 6 presents result of the experimental verification of developed model of 

the light propagation and light intensity distribution for capillaries. In the first part are 

presented results of the macro- and micro-scale experiments. In the second part of this 

chapter an application of the developed model to explanation of the polymerisation 

within the capillary system is presented. 

Chapter 7 presents conclusions for the whole thesis. 
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Chapter 2 – Literature review 

In this chapter, a topical review of microelectromechanics (MEMS) and 

microfluidics, separations with specific attention on focusing techniques of analytes, 

different methods of focusing, numerical modelling used in computational fluid 

dynamics (CFD), illumination and visualisation of the species and application of light 

emitting diodes (LEDs) for optical detection in microfluidics is provided. 

 MEMS and Microfluidics 2.1.

The first miniaturised chip device was constructed around 1975 and presented 

in 1979 (16). It was a miniature gas analysis system based on the principles of gas 

chromatography (GC). The novelty of this device was mostly related to the application of 

photolithography and chemical etching as micromachining techniques that allowed an 

unprecedented miniaturisation of the large laboratory device – a gas chromatograph in 

this case. Achieved results were satisfactory and there was the possibility of 

performance improvement even within the technology at the time. Despite its small size 

and rapid separations capability it took almost 25 years to develop the first portable GC 

system (17), and almost 30 years to couple it with a mass-spectrometer for detection 

(18). This was due to a lack of deeper interest of separation sciences in applying MEMS 

and can be attributed to a lack of technological advancement in small device fabrication 

technology (19). MEMS and microfluidic devices technologies were used extensively in 

this project and therefore this chapter presents the background of these technologies. 

2.1.1. Overview and brief history of microfluidics 

In general, the term “microfluidics” is used to refer to all devices that have 

geometrical dimension typically in order of tens or hundreds micrometres, and which 

employ fluid flow for its main application (20). Notably, the size definition has also been 

presented with a lower limit set above 1 micron in 1999 (21), to above 100 nanometres 

in 2008 (2; 3). This illustrates how rapidly the area of microfluidics is developing. Before 

the 1990s fluid flow through sub-millimetre channels was discussed in other subject 

areas such as for fluid transfer in plants (22). In 1990 the novel idea of combining sample 

handling, analysis and detection in one device was introduced by Manz (23). This is 

regarded as a major breakthrough and acknowledgement of microfluidic technology as 

an important quasi-independent interdisciplinary science (19; 24). Initially major 
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problems were centred on the lack of availability of high pressure pumps compliant with 

miniaturisation which were needed for efficient transport in microchannels (19). As an 

alternative electroosmotic pumps were presented, discussed and implemented 

successfully (25; 26). In 1992 for the first time electrophoresis on a silicon and glass 

substrate chip were demonstrated (27; 28). After 1994, numerous applications of 

microfluidics led to the development of range of commercial products from many 

companies (19). In the mid-90s microfabrication technologies were based on those used 

in the microelectronic industry (19). Whitesides presented four major pillars that formed 

a basis for microfluidics development as a quasi-independent science, but definitely, a 

new technology area (29): 

 Microanalytical methods – gas chromatography (GC), high-performance liquid 

chromatography (HPLC) and capillary electrophoresis (CE) combined with laser-

based optical detection 

 Need for inexpensive, portable, field-deployable systems to deal with chemical 

and biological weapons threats 

 Need for high throughput methods of microanalysis in molecular biology 

 Microelectronics and related technologies for use in microfluidics. 

2.1.2. Fabrication methods 

New prototyping and manufacturing techniques or their method of application, 

such as micro-contact printing (30), micro-transfer moulding (31), low temperature 

bonding (32), and development and application of SU-8 negative photoresist (33; 34), 

helped engineering microfluidics to cover a broader area of demand especially in 

chemistry. At the end of 1990’s the application of organic polymers begun to 

revolutionised again the area of microfluidics. Cheap, disposable, easy to produce plastic 

chips became broadly used and commercialised. 

Polydimethylsiloxane (PDMS) chips were introduced in 1993 by Kumar and 

Whitesides (35). Quick, cheap prototyping method of photolithography with PDMS was 

presented in 2000 which allowed rapid development and deployment chips for various 

microfluidic experiments (36). A typically problem associated with PDMS is its porosity 

and significant gas permeability, allowing vapours created by Joule heating during 

electrophoresis to penetrate into the bulk material, changing buffer concentration, and 

rate of electro-osmotic flow (EOF) (3). Typical PMDS chips are made from two pieces of 

polymer that are bonded together either in a reversible or irreversible manner (36). 
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Reversible bonding is performed by Van Der Waals contact, which can sustain up to 

35kPa. Irreversibly exposing both surfaces to be bonded together by air plasma, and 

allowing formation of Si-O-Si bonds between the PDMS layers and can sustain typically 

between 205 to 345kPa (36). Such pressure limits are rather low when compared to 

modern leading high-end commercial HPLC systems with pressures exceeding 60MPa. 

Gas permeability and low pressure resilience make PDMS rather unsuited for pressure-

driven flows, but electrokinetic driven flow can work very well. The high interest and 

popularity of PDMS for microfluidic applications can be observed by the number of 

citations of the pioneering articles. The article with the highest number of citation is 

“Rapid prototyping of microfluidic systems in polydimethylsiloxane” (37) with 1,793 

citations1, followed by “Fabrication of microfluidic systems in polydimethylsiloxane” (36) 

with 1,023 citations2. 

2.1.3. Micro Total Analysis Systems (µ-TAS) 

In 1990 Manz et al. presented a novel approach to chemical analysis based on 

microfluidics – miniaturised or micro total analysis system (µ-TAS) (23). The concept of 

µ-TAS was based on the combination of sampling, sample pretreatment, calibration and 

detection with a built-in transportation system that would be carrying analyte from the 

injection point to the waste collection. Initially the idea was not to decrease the size of 

the sensing system but to increase its separations performance (19; 23). At micrometre 

dimensions, physical behaviour of the fluid flow changes resulting that a better 

performance could be achieved with µ-TAS, when compared to more traditional macro-

scale laboratory systems. To exploit the full potential of polymer chips, a technology to 

manufacture vital parts of microfluidic systems such as pumps, valves and mixers was 

needed. This issue was addressed successfully by Thorsen et al. presenting an array of 

thousands valves and hundreds of individually addressable chambers in a single 

microfluidic chip (38).  

The possibility of better separations efficiency, faster separations and shorter 

transport time based on miniaturisation and integration with a micro-analytical 

assembly has been previously presented (23). Later on, the term µ-TAS coming from 

chemistry origins was broadened to a more general category of laboratory-on-a-chip (or 

lab-on-chip, LOC). This terminology could be regarded to encompass miniaturised 

                                                           
1
 Retrieved March 7, 2011, by ISI Web of Knowledge 

2
 Retrieved March 7, 2011, by ISI Web of Knowledge 



14 | P a g e  
 

devices that are able to perform various mechanical, chemical and biological tasks, such 

as synthesis, analysis or treatment of a sample (39). 

The µ-TAS as a very rapidly developing field, which requires constant experience 

exchange and thus in 1994 regular research meetings were started, named “µ-TAS – the 

International Conference on Miniaturized Systems for Chemistry and Life Sciences”. 

Since 2001, RSC Publishing founded new journal entitled “Lab on a Chip” dedicated 

toward “…significant and original work related to miniaturisation (on- or off-chips) at the 

micro- and nano-scale across a variety of disciplines including: chemistry, biology, 

bioengineering, physics, electronics, clinical/medical science, chemical engineering and 

materials science, which is likely to be of interest to the multidisciplinary community…” 

(40)3. 

2.1.4. Physics of microfluidics 

Sir Isaac Newton’s law of viscosity is presented in Eq. 1, where 𝜂 is viscosity; 𝜏xy 

is the force in x-direction on a unit area perpendicular to y; 
 

  
vx is the change of x-

component of the velocity along y. Gases and liquids, which follow this law are called 

Newtonian fluids (41). Newton’s law of viscosity states that shearing force per unit area 

is proportional to the negative velocity gradient. Microfluidics operates in dimension 

ranges where a continuity approach is fully valid, and contrary to nanofluidics, no 

molecular effect has to be discussed (4; 42). Fluids are assumed to be continuous 

materials incompressible materials, with constant density and viscosity, for which their 

flow can be described by Navier-Stokes equation (Eq. 2), where 𝜌 is the density, 
 

  
 is the 

time derivative; 𝚞 the velocity vector; 𝚙 the pressure; and 𝛻 is the nabla operator (del 

operator)4. 

𝜏    𝜂
   
  

 Eq. 1 

𝜌 (
 

  
  (  𝛻) )   𝛻  𝜂𝛻   Eq. 2 

 

                                                           
3
 Retrieved 9 Mar 2011 from http://www.rsc.org/Publishing/Journals/LC/about.asp 

4
 Defined as ∑   
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At t=0 velocity V 
appear in the system, 
at distance Y from the 
wall 

For t close to 0 flow 
build-up is observed, 
and unsteady flow 

For t >> 0 steady state 
is achieved, and 
velocity distribution is 
linear with distance 
from walls 

Figure 5: Laminar flow build-up and simplified time evolution of velocity distribution as function of 
the distance from the wall (after (41)). 

Intermolecular forces are the summation of quantum and electromagnetic 

interactions that in many cases can be expressed in the simplified form of Lennar-Jones 

potential, see Eq. 3 and Figure 6 (1; 4; 41). At close distances interactions are strongly 

repulsive but with an increase of the distance become weakly attractive. Typical 

intermolecular dimensions for liquids are at order of 0.3nm and for gases around 3nm. 

When compared to typical dimensions of microfluidic devices (order of 10-100µm), 

these can be completely neglected thus allowing the approach of continuous solution 

fields (1; 4). In microfluidics analytes are carried by a solvent and, although 

intermolecular interactions are neglected, their effects are not, for example, upon the 

formation of ions. Ions have a non-zero net charge which is used as a principle element 

of electromigration. 

 ( )    ((
 

 
)
  

 (
 

 
)
 

) Eq. 3 

where V(r) is a potential as a function of distance r,  is potential depth, and  is a 

distance at which potential is equal zero. 
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Figure 6: Graph of Lennard-Jones potential V(ε) versus distance     
(   ⁄ ), where ε is maximal 

attraction energy and σ is characteristic molecule diameter (43). 

The scaling of the process is an important subject for chemical engineering. 

Research conducted in laboratories (analytical scale) typically operates with 10-3 litres 

sized samples, while industrial plants typically use 103 litres sized batches. The most 

relevant up-scaling problems are typically related to heat and mass transfer that can 

significantly affect overall efficiency of the process (42). 

Microfluidic devices are relatively small from our daily point of view. Although 

the same physical laws regulate the behaviour of the fluids inside microfluidic chip some 

of them have a much greater importance in micro-scale systems when compared to 

macro-scale system. The consequence of size scaling on an example of surface forces is 

considered following paragraph. 

As a consequence, volume forces, such as gravity, that are dominant in our daily 

life become generally negligible on the microscale. Eq. 4 shows that as the linear 

dimension 𝑙 goes to the zero ratio between surface forces and volumetric forces goes to 

positive infinity showing the predominance of surface forces at the micrometre scale (4). 

              

  𝑙          
 
𝑙 

𝑙 
 𝑙  

   
→    Eq. 4 

Janasek et al. presents a very detailed method to understanding effects of 

scaling using dimensionless numbers (42). The most meaningful numbers are: 

 Reynolds number,    
     

 
 (Eq. 5), where v0 is tangent linear velocity; 𝑙0 is 

characteristic linear dimension; 𝜌 is density; 𝜂 is dynamic viscosity. Re is a ratio 
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of inertial forces to viscous forces and informs about flow type tendency – 

laminar or turbulent (41); 

 Peclet number,    
    

 
 (Eq. 6), where v0 is tangent linear velocity; 𝑙0 is 

characteristic linear dimension; D is the diffusion coefficient. Pe is the number 

defining ratio of convective to diffusive flux, informs about importance of 

advection with respect to diffusion (1); 

 Fourier number, τ – average number of times molecule contacts the capillary 

wall (42); 

 Bodenstein number  Π – backmixing (or axial mixing) within the system (or 

pressure drop) (42); 

Other useful and important dimensionless numbers, provided in excellent review by 

Squires and Quake (44), are: 

 Capillary number as ratio of viscous to interfacial forces; 

 Weissenberg number as the ratio of polymer relaxation time to shear rate time; 

 Deborah number as the ratio of polymer relaxation time to flow time; 

 Elasticity number as the ratio of elastic effects to inertial effects; 

 Grayhoff number as the  Reynolds number for buoyant flow; 

 Rayleigh number as the Peclet number for buoyant flow; 

 Knudsen number as the ratio of slip length to macroscopic length; 

Using these numbers one can compare an existing or known system of given 

dimensions to a scaled device and conclude in what way the miniaturised system should 

work at all. System forces with higher exponents are the first to become less relevant 

during the system analysis or optimisation. 

Quantity Scaling law 

Intermolecular Van der Waals force 𝑙-7 
Density of Van der Waals force between interfaces 𝑙 -3 
Diffusion time 𝑙 -2 
Fluid velocity, pressure due to surface tension, evaporation 
rate 

𝑙 -1 

Time, applied pressure 𝑙 0 
Capillary force, distance, flow velocity, thermal power 
transferred by conduction, length 

𝑙 1 

Electrostatic force, diffusion time, Reynolds number 𝑙 2 
Volume, mass, force of gravity, magnetic force with exterior 
field, electrical motive power 

𝑙 3 

Magnetic force without an exterior field, centrifugal force 𝑙 4 

Table 1: Scaling laws for different physical quantities, after (1) and (45). 
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The most characteristic feature of flow inside microfluidic devices is its very 

strong tendency for a laminar flow due to low Reynolds number (Re), typically Re > 1 (1; 

41; 4; 42; 44; 45). With decreasing Re inertial forces are dominated by viscous forces 

which results in a steady, non-perturbed flow. For Re > 1 the left hand side of Eq. 2 can 

be disregarded as it is not contributing significantly, leaving a linear Stokes equation (Eq. 

7) (46): 

𝜂𝛻   𝛻  Eq. 7 

As a low Reynolds number results in no time derivative, all motion is directly 

controlled by the driving force and is symmetric in time, i.e. if any force exerted on the 

fluid is reversed fluid motion is reversed as well (45). Typically microfluidic devices are 

characterised by a very low Reynolds number implicating linear and laminar flow within 

channels and chambers. As miniaturisation increases, inertia plays an even less 

significant role, and without the nonlinearity provided by the inertial term of Eq. 2, 

microfluidic flow devices are characterised by predictable and deterministic flow 

patterns (44). 

The ability to contain two unmixed flowstreams in one microfluidic device can 

be either a helpful or an undesired feature depending on the application. In general 

mixing occurs due to convection and diffusion. In every day large scale applications 

convective mixing is predominant. With system dimensions downscaling, convective 

mixing becomes less relevant compared to the diffusive mixing. The Peclet number (Pe) 

defines the ratio of these types of mixing. A practical application of low Re and Pe 

numbers can be, for example, a membraneless H-filter (see Figure 7). In a H-filter, two 

streams are brought together in one microfluidic channel, and for the chosen channel 

length, only one species of interest will diffuse across the channel (44; 45). 

 

Figure 7: A schemat showing the principle of membraneless H-filter. For a specific length 𝑙, only the 
target analyte (blue) with appropriate diffusivity will merge into the other stream, while impurities 

(red dots) will be washed away (44). 
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Many situations require rapid methods of mixing of non-homogenous solutions. 

This issue has been addressed by many scientists in numerous publications and can be 

generally grouped in two categories (after (44)): 

 Passive mixing, where mixing occurs due to the interaction between the flow 

and the channel geometry (e.g. staggered herringbone mixer presented by 

Stroock et al. (47)) 

 Active mixing, where mixing occurs due to the presence of external oscillatory 

forces (mechanical or electrical) within the channel (e.g. microfabricated rotary 

mixer presented by Chou et al. (48)) 

2.1.5. Benefits and limitations of microfluidics 

Lab-on-a-chip systems were initially developed as an attempt to improve the 

performance of analytical devices. The first and most obvious advantage of using 

miniaturised systems is the ability to handle minimum amounts of sample, solvents and 

reagents thus reducing the amount of waste (29; 39). The ability to work with volumes 

on the scale of microliters (or less) brings a number of advantages on its own (49; 50): 

 Enhanced environmental protection – small waste quantities are easier to 

handle and will result in less pollution 

 Improved economic aspects – solvents and reagents are not cheap, with the 

reduction of waste comes also reduction of fluid costs and waste disposal costs 

 Increased safety – chemicals compounds used in chemical synthesis and analysis 

are often volatile, harmful or toxic, while smaller volumes are less likely to be 

dangerous in the case of an accident 

 More convenience  – miniaturised hand-held devices facilitate operations and 

allow conducting in-field analysis or diagnose 

 Decreasing sample volume size resulted in speeding up analysis, for example for 

DNA or protein electrophoresis, by an order of magnitude 

 Increased detection sensitivity – possibility of detecting single molecule by 

reducing background signal 

Miniature systems allow the integration of multiple units with different 

functions for reactions, including propelling, mixing, heating, separating and detecting, 

permitting simplified serial sample processing and the possibility of parallelization for 

almost no additional cost (see Figure 8) (39). Microfluidic have some limitations, which 

are related to the generation and control of small feature size, but are not impossible to 
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overcome. As noted by Whitesides, clinical samples have complex matrices (such as 

blood) which are typically problematic for analysis (29). Currently there are problems in 

the analysis of biological species, mostly due to sample preparation and detection. The 

detection is typically conducted outside of the microfluidic chip typically under a 

microscope combined with laser-induced fluorescence (LIF). A dominating problem here 

is the lack of widely available and appropriate miniaturised components and the 

application of traditional style pumping, valves and power supplies, bottles for solvent 

and reagent storage, turning small microfluidic lab-on-a-chip devices into heavy, bulky, 

cumbersome and expensive chip-in-the-lab devices (51). 

 

Figure 8: Miniaturisation of fluidic systems allowing for multiple processes and sample detection in 
biological and chemical applications (39). 

2.1.6. Technologies of microfluidic devices 

The performance and capabilities of microfluidic devices is dependent on the 

available technology that is used for fabrication, surface modification and detection 

(19). Initially micro devices were micro-fabricated in glass and silicon. As time passed 

and more interest was attracted to the microfluidic field, a wide variety of approaches in 

manufacturing in different materials were reported. Over 20 years of research 

developments were covered in a series of review articles (19; 24; 39; 52). These reviews 

cover almost 2000 journal papers, books, book chapters and conference proceedings, 

which brought novelty and developed the area of microfluidics. This included 

descriptions of major advancements in different technologies including micro-contact 

printing, injection moulding, applications of laser ablation, photopolymerisation, the 

wide range of photolithographic techniques, different etching methods (electrochemical 

and plasma), micro-machining, numerous bonding techniques and surface 

modifications. 
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2.1.7. Applications of microfluidic devices 

Microfluidic devices are most extensively used in chemical and biological 

engineering. Typical applications revolve around various tasks required for a chemical 

analysis, synthesis, bioassays, mostly µTAS-type systems. Typical analytical operations 

involve sample preparation, injection, fluid and particle handling, separation and 

detection (53). 

Examples of Polymerase Chain Reaction (PCR), measurements of cellular 

metabolism and flow cytometry using microfluidic chips were presented before the year 

1993 (54; 55; 56). Subsequently several electrophoretic separation modes such as 

Micellar Electrokinetic Chromatography (MEKC) (57; 58), Free Flow Electrophoresis (FFE) 

(59; 60) and capillary gel electrophoresis (61; 62) were successfully tested in microchips. 

During this period microfluidics was also applied to biological testing such as high-speed 

DNA sequencing and separation (63), novel PCR systems (64; 65) and blood serum 

analysis (66). Detection techniques were focused on absorbance, fluorescence (67), 

electrochemoluminescence (68; 69) and particle counting (70). 

After the year 2000, a multitude of new methods and applications employing 

microfluidics were presented. Numerous methods of sample preparation have been 

reported, including: sonication and mechanical cell lysis (71; 72), degassing (73; 74), free 

flow isoelectric focusing (75; 76), DNA purification from blood (77; 78), microdialysis (79; 

80) and liquid-liquid phase extraction (81; 82). Recently more complex systems such as 

high throughput microfluidic processing (83), coupling of SPE with various techniques 

such as MEKC or PCR on chip (84; 85; 86), or completely integrated analysis systems 

entitled “sample-in answer-out” (87) were presented. Typical recent biological 

applications of microfluidics include DNA purification (88; 89), single molecule isolation 

(90; 91), sequencing (92; 93), separation (94; 95) and analysis (96; 97), protein 

preparation (98; 99), cell selection (100; 101), cell lysis (102; 103), cell cytometry (104; 

105) and cell separation (106; 107). Microfluidics is gaining popularity in clinical 

diagnostics, in applications for simultaneous measurements of several biomarkers (108), 

biomarker detection straight from blood using disposable chips (109), detection of 

pathogens, reverse transcription PCR (rt-PCR) and toxin detection in whole blood (110). 

One of the novel and potentially revolutionising microfluidic development is the 

technology of microdroplets extensively discussed elsewhere (111). 
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 Focusing 2.2.

Giddings argued, that separation is as old as the earth, probably as old as the 

universe itself (112). Separation processes are responsible for formation of celestial 

phenomena from stars and planets to galaxies and superclusters. Different separation 

methods accompanied development of human civilisation throughout the ages. From 

food processing, through plant extract acquisition, dyes, flavours, medicine extraction to 

metallurgical processes, some kind of separation was required.  Separation for analytical 

purposes dates back to the invention of the chromatography by Tsvet in 1903 (113). 

Within 100 years, separations became complex, important and an informative branch of 

science. Today separation sciences are successful in attempting to answer the most 

basic questions about our life, its origins and history as well as being routinely used in 

forensics, hospitals and pharmaceutical industry for diagnostic, quality control and 

product development applications. 

Microfluidic separations present new possibilities for separation sciences but 

are typically currently limited to electro-driven flow and thus are typically compared 

with capillary electrophoresis (CE) separations. CE is a well-respected separation 

technique and has numerous advantages such as high efficiency of sample separation, 

small size that enforces reduction of chemical reagents and solvents and small 

requirements for sample size. Despite these advantages CE had not been widely 

introduced for industrial uses except for highly specialised applications such as DNA and 

protein separations (114).  A typical disadvantage associated with the application of CE 

is the loss of sensitivity when using the most popular photometric detectors. Path length 

for optical detection is of comparable size with the capillaries used and is in range of 

tens of micrometres. With the tendency to use of smaller diameter capillaries, which is 

beneficial for separation efficiency, optical detection becomes more problematic. As the 

capillary internal diameter decreases, the length for absorption decreases as well 

making absorbance-based techniques less accurate. Developments in the field of pre-

concentration have led to 100 to 1000 fold improvement of detection sensitivity (115). 

2.2.1. Overview of different focusing methods 

Giddings categorised separation techniques into nine basic categories (112). He 

introduced chemical potential profile µ* as the sum of external field effects and 

intermolecular reactions which he divided into three subcategories of potential profile: 

continuous (c), discontinuous (d), and combined (cd). As an independent variable he 
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took flow field and divided it into three categories: static/non-flow (S), flow 

perpendicular to µ* gradient (F), and flow parallel to µ* gradient (F∥). The nine 

separation technique categories based on these defined parameters are presented in 

Table 2 . 

  Chemical potential profile µ* 

  Continuous (c) Discontinuous (d) Combined (cd) 

Flow 
profile 

Static/  
non-flow 

Electrophoresis 
Isoelectric focusing 
Isotachophoresis 
Rate-zonal 
sedimentation 
Isopycnic 
sedimentation 

Extraction 
Adsorption 
Crystallisation 
Distillation 
Evaporation 
Sublimation 
Ion exchange 
Dialysis 

Electrodeposition 
Electrostatic 
precipitation 
Electrolytic refining 
Electrodialysis 
Equilibrium 
sedimentation 

(F µ*) gradient Elutriation 
Countercurrent 
electro-phoresis 

Filtration 
Ultrafiltration 
Reverse osmosis 
Pressure dialysis 
Zone melting 

Electrofiltration 

(F∥ µ*) gradient Hyperlayer field-flow 
frac-tionation 

Chromatography 
Countercurrent 
distribution 
Fractional 
distribution 
Foam fractionation 
Multistage two-
phase processes 

Field-flow 
fractionation 
Thermogravitational 
separation 
Electrodecantation 

Table 2: Nine basic categories of separations (112). 

It is a well-known phenomenon that a fluid tends to fill available space. It is 

particularly valid for gases. One can observe this process in liquids as the colour changes 

after adding a small sample of colour dye until whole volume reaches the same colour. 

With removal of all such convective effects, observation of this phenomenon led to the 

discovery of Fick’s first law (Eq. 8), formulated in 1855 (116). Giddings presents the full 

derivation of Fick’s first law from first principles reaching to its well known form (112): 

    
  

  
 Eq. 8 

         
  

 
 Eq. 9 

where J is flux density; D is diffusion coefficient; 
  

  
 is concentration gradient. The 

diffusion coefficient D is related with more fundamental properties in Nernst-Einstein 

relationship (Eq. 9), where R is gas constant, T is the temperature and f is the friction 
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coefficient. Studies of transport within a concentration profile led to Fick’s second law 

(Eq. 10): 

  

  
  

   

   
 Eq. 10 

Afterwards he considered a 1-dimensional space with a sample of concentration c 

located at x0 at time t=0, where the concentration profile can then be represented by 

the following function (Eq. 11): 

 (   )   ( )   ( )(    )
 
 Eq. 11 

where c(x, t) is concentration dependent on time and space; F(t) and g(t) are unspecified 

functions time dependent only; W is overall component velocity (sum of drift velocity 

due to external fields and flow velocity); t is time. This form of the concentration profile 

allows reduction of the concentration function to a δ-function5 as t0 (117).  The full 

analytical solution gives a Gaussian concentration profile (Eq. 12) as a valid solution for 

the basic diffusion model: 

  
 

√    
 
[
 (    ) 

   
]
 Eq. 12 

where n is the number of moles (or molecules) and other symbols as noted previously. 

The most important conclusion from Eq. 12 is that a Gaussian concentration profile 

(peak) in the absence of external forces will broaden in time and decrease in its height 

(112). Focusing in general is an attempt to prevent or minimise this effect. 

In this work the emphasis was on electro-focusing methods. Ivory grouped 

separation techniques into four major categories: isocratic, isotachic, non-equilibrium 

gradient (NEGM) and equilibrium gradient methods (EGM) (118). He pointed out that 

EGM methods are unique due to their ability to simultaneously separate and 

concentrate the target analyte. Moreover EGM are characterised by the existence of a 

self-correcting stationary state independent of the initial conditions. 
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2.2.2. Isocratic separations 

The typical isocratic (equal strength) separation technique is known as High-

Performance Liquid Chromatography (HPLC). The sample is injected as a short pulse into 

a separation channel and driven through by hydrodynamic force (pressure). 

Constituents separate by either differential migration or by partitioning into a second 

(stationary) phase. Isocratic separations are characterised by a steady increase of a 

sample peak variance (σ2 for Gaussian profiles), while effective zone width w (w=4σ) is 

proportionate to square root of variance. As a result the displacement between peak 

maxima increases more quickly than the peak width itself and separation can occur 

(112; 118). An inconvenience associated with isocratic separation is that there is no 

mechanism that could prevent or diminish diffusion. Peak broadening is irreversible in 

purely isocratic methods, see Figure 9.  

 

Figure 9: Diagram of isocratic separation (peaks not to scale), after (118). 

2.2.3. Isotachic separations 

Isotachic (with same speed) separations can be electro-driven – known as 

isotachophoresis (ITP) or pressure driven – known as displacement chromatography 

(118; 119). A general principle of isotachic separations is that the species are separated 

according to their velocities, which is a function of mobility in the mobile phase, from 

the fastest to the slowest one. As separation occur the first analyte to leave the system 

is the one with the highest velocity, which was attained due to the highest mobility of 

the species. In isotachophoresis it is effective ion mobility, which depends on other 

variables, such as pH, temperature or viscosity (120). 

Sample with mixture 
of two species 

t0 t1 t2 t3 

Species 1 Species 2 
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In ITP, initially the separation channel is filled with the leading electrolyte which 

is composed of the highest mobility ion mixed with a counter-ion6 characterised by a 

good buffering capacity. The sample is introduced between the leading and a 

terminating buffer which has the lowest mobility of all ions in the system. Afterwards 

voltage is applied to both ends of the separation channel during which continuous 

supply of the terminating buffer is provided.  Ions are separated according to their 

velocities v (effective mobilities μ); the fastest ion of the leading electrolyte comes out 

first (μmax), followed by the slower ones of the sample, until only the ion of the 

terminating buffer is present (μmin). Forward and rear edges of zones are constantly 

refocused by the presence of the electric field gradient on the border between 

electrolytes (120; 121). Figure 10 shows schematically zone formation during ITP. Due to 

the self-sharpening of zones, isotachic separations are an excellent choice as a first step 

in multidimensional separations. Moreover, ITP is the only known isotachic separation 

that has a stationary state when used in conjunction with pressure-driven flow. Applying 

a counter-flow velocity between the leading and terminating buffer operator can stop 

outflow at any desired point (118). 

 

Figure 10: Diagram showing formation of separate zones during isotachophoresis, after (118). 

2.2.4. Non-equilibrium gradient methods (NEGM) 

Non-equilibrium gradient methods are generally gradient-elution adsorptive 

chromatographies (122). The NEGMs ability to focus components to high concentration 

and separate peak at very high resolution is due to the presence of a non-stationary 

gradient that travels along the separation channel (chromatographic column).  The 

                                                           
6
 Counter-ion is an ion of the opposite sign provided in the leading electrolyte 

Sample with mixture 
of two species Terminating 

electrolyte 
Leading electrolyte 

Species 1 Species 2 

t0 t1 t2 

μmax; 
vmax 

μmin; 
vmin 

μmin  <  μ1 < μ2   < μmax 
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presence of this gradient is sufficient to prevent zone dispersion and form sharp peaks. 

A benefit of NEGM is its ability of peak’s self-sharpening which allows correction after 

temporary increment of dispersion (see Figure 11). NEGM does not have stationary state 

formation and typically requires some additional length of column to allow formation of 

a slowly changing quasi-steady state (118). 

 

Figure 11: Schematic of formation of separate peaks in non-equilibrium gradient method. As it is 
shown gradient travels together sample along separation channel, after (118). 

2.2.5. Equilibrium gradient methods (EGM) 

Equilibrium gradient methods employ the fact that in the presence of an 

external linear gradient of “restoring force” for every compound in the solution, the flux 

equation predicts the existence of Gaussian peaks centred on a unique focal point. A 

typical “restoring force” is an electric field, schematically shown in 1D in Figure 12. The 

focal point for the analyte is where the restoring force is zero. Outside the focal point 

the restoring force is non-zero and increases in value with distance, always pointing 

toward focal point. Without diffusion, the stationary state of the peak shape would 

attain a δ-function as tIncluding diffusion peak assumes a Gaussian shape, as 

diffusion is overcome and any molecule moving outside the equilibrium zone is moved 

back by the restoring force prevailing over diffusion. This gives one of the fundamental 

advantages of EGMs – an existing stationary state independent of the initial sample 

conditions. In other words, peak position and shape is not a function of time, while in 

other chromatographic methods they are (118). 

t0 t1 t2 t3 

Sample with mixture 
of two species 

Species 1 Species 2 Non-stationary 
gradient 
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Figure 12: Schematic of peak formation around focal point by net force (red) as a sum of external 
force gradient (blue) and diffusion force (green). Peak shape coloured with grey, after (123). 

Typical well-established EGMs are Isoelectric Focusing (IEF) and Counteracting 

Chromatographic Electrophoresis (CACE). Isoelectric focusing is a separation technique 

for zwitterionic analytes or ampholytes – ionic species with ability to become cation or 

anion depending on pH of the environment. To achieve IEF separation a separation 

channel is filled with a pH gradient in which the sample is placed. After applying an 

external electric field the particular species migrate toward their respective isoelectric 

points (IeP) – the only place where they attain electric neutrality being no longer 

susceptible to a force imposed by electric field. When a molecule departs from its IeP, it 

immediately attains a charge due to the different pH and is pushed back toward its IeP 

(120; 121). 

Another EGM technique is known as Electric Field Gradient Focusing (EFGF).  The 

general idea behind EFGF is the application of the electric field gradient by specific 

device geometry, being balanced by constant convective force. The idea of using a non-

uniform electric field to improve the performance of electro-separations has been 

previously reported. Different approaches were tested, such as area-shaping (124; 125), 

electrode shaping (126) (127), and the use of multiple electrodes (128). In previously 

reported EFGF work a Plexiglas cylinder with funnel-like cavity was used with an internal 

dialysis tube placed at the system symmetry axis (123; 127). The area between the 

Plexiglas funnel and the dialysis tube was filled with electrolyte to permit current flow. 

The dialysis tube was used to allow interaction with the electric field but to prevent 
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contact between the sample and buffer. On the top and bottom surfaces, electrodes 

were attached. Cross-sections of the channel with smaller area have a higher current 

density and thus electric field density. The shape was adjusted to achieve a linear 

electric field gradient (see Figure 13) (123; 127) . 

 

Figure 13: Cross-section of EFGF focusing unit showing current lines (A) and flow lines (B), (127). 

 Modelling 2.3.

2.3.1. Modelling of fluid dynamics 

Fluid dynamics is one of the areas where computer simulations can help very 

significantly. There are two general approaches in fluidic simulations. The first one is 

based on the infinite possibility of divisions and does not take into account the 

molecular shape of matter. These types of models are called continuum models. Good 

accuracy is maintained as long as the properties can be defined as averages over large 

elements and compared to the size of the molecules therefore making them appropriate 

when working in macro- and mesoscale (characteristic dimension is above 50 nm) (4). 

Continuum models are regarded as easier to implement, as they are based on traditional 

mathematical equations describing material properties, such as heat transfer, fluid 

motion etc. For a brief history of computers see Appendix A. 

The second approach is established on the molecular structure of the matter. 

This type of simulations uses either deterministic or statistical approaches to describe 

molecular movement. Such models could be regarded as superior, due to calculating 

properties such as position, momentum and velocity of all particles at the same time, 

giving more realistic results, but are not practical is many applications due to limitation 

of computational power (21; 129). 
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2.3.2. Computational Fluid Dynamics (CFD) 

Some experiments with fluid flows require difficult conditions to implement, 

while some are close to impossible to conduct. Lack of accessibility to the measurement 

point or alterations of the experiment itself due to the presence of measuring 

equipment are typical experimental difficulties. In such cases instead of problematic 

experiments, a simulation method can be employed (130). 

Mathematical modelling is an attempt to describe properties of a system using 

the language of mathematical formulas (131). Computer modelling is a branch of 

mathematical modelling where either analytical solutions would take very long to 

calculate or are not possible to obtain such that some approximations are needed. 

Initially mathematical modelling was limited to continuum models, somehow per 

definition, as solving differential equations was one of the first tasks for computers. 

Early molecular models were developed already in the 1960s (132). Solving problems 

with continuum model approach in fluid dynamics requires solving of nonlinear partial 

differential equations (PDE) (such as Navier-Stokes equations) or integro-differential 

equations, which are still not possible to solve analytically in general form. Although 

known for over a century, they are still analytically solvable for a narrow quantity of 

cases. 

Employing the computational power of modern machines allows solving many 

problems not analytically, but rather approximately using numerical methods. The 

general interest in numerical methods gave birth to the Computational Fluid Dynamics 

(CFD) as a field of fluid dynamics that relies on numerical simulation using either custom 

derived programs or commercially available packages. Modern computers deliver high 

computational power which can be easily employed to solve approximately a set of PDEs 

using numerical methods (133). Currently there are several commercial packages 

available for microfluidic simulations such as: CFD ACE+, ANSYS CFX, ANSYS FLUENT, 

FLOW 3D and COMSOL (134; 135; 136; 137). 

CFD has several different methods of solving PDEs that rely on a certain number 

of similar or even identical techniques. The commencing element of any numerical 

simulation is a mathematical model that describes the problem as well as possible with 

available knowledge. Some simplifications are already included in this step, such as 

limiting the number of dimensions. 
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The first key element to solve numerically any equation is the discretisation of 

the solution space where a given macro-field equation is approximated by set of 

algebraic equations. This gives a limited number of discrete locations in space and time 

where numerical results are calculated. The quality of discretisation highly influences 

the final quality of the simulation. The most significant methods are Finite Difference 

Method (FDM), Finite Volume Method (FVM) and Finite Elements Method (FEM) which 

are described in Appendix B. Other noteworthy methods are Boundary Elements 

Method (BEM) and Lattice Boltzmann Method (LBM). After selecting discretization type, 

a coordinate system (Cartesian, cylindrical, spherical or other) is chosen and numerical 

grid (also called mesh) based on the discretisation method is composed. There are 

several types of mesh that can be employed: 

 Regular or structured mesh, the simplest mesh structure, where each grid 

line crosses any other only once. In such grid each grid point (vertex) is 

uniquely assigned with the number of indices equal to the number of 

dimensions. 

 Block-structured mesh is a gird type with at least two different grids 

combined together. This type of meshing can be used for precise divisions 

around points of interest and a coarser grid where high gradient changes are 

not expected. 

  Composite mesh is a sub-type of block structured mesh where two (or 

more) grids are overlapping. 

 Unstructured mesh is generally any that does not fall into any of previous 

categories. There are no strict rules about the number of lines and crossings, 

and a single mesh cell can have a different shape along the entire solution 

domain. The most typically encountered shapes are triangular and 

tetragonal for 2D geometries and tetrahedral and hexahedral for 3D 

geometries. 

After generation of the geometry an approximation method, solver and 

convergence criteria are chosen. In the case of commercial packages, these features are 

typically limited to a certain number as provided by the software developers (130). 

There are several properties of a simulation that have to be achieved in order to 

recognise the numerical approximate solution as the correct one. The error introduced 

by approximation at a point, called the truncation error, tends toward 0 as the distance 

between vertices goes to 0. A method with such solution is called consistent. A next 
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criterion for correct simulation is numerical stability, defined as the lack of magnification 

of errors that appear during the process of numerically solving the problem. Numerical 

methods have potential loss of precision at every step. A method is considered stable 

when all accumulated errors do not influence the overall result. The numerical method 

must display convergence of the solution. The appearance of artificial sources and drains 

that are affecting overall simulation must be avoided. The next important quality is 

boundedness understood as displaying only physically reasonable values, avoiding for 

example negative mass or concentration. Numerical methods should display realistic 

solutions as they are not exact experiments and giving extreme conditions may result in 

meaningless or non-physical solutions (130; 138). 

2.3.3. Independently developed modelling software 

Computers gave the opportunity to simulate processes that are very difficult 

and modelling of electro-migration is a good example. The most commonly used theory 

of electrophoresis was developed by Smoluchowski in 1903 (139). First attempts to 

simulate electro-migration problems date back to the mid-1970’s, after (140).  Following 

the popularisation of personal computers in 1980s, several researchers started intensive 

work in this field. Works of Thormann, Mosher, Palusinski and others paved way for 

modern simulations of electromigration (141; 142; 143; 144; 145). Numerical simulation 

studies led to the development of software used for the investigation of ITP, adsorption 

effects, thermal effects and migration in microchannels (146; 147; 148; 149; 150; 151). 

Non-commercial freeware programs for Capillary Zone Electrophoresis (CZE) 

“Peakmaster” and for more general one dimensional electrophoresis “SIMUL” were 

developed by Gas et al. (9; 10). Works of Ivory et al. on a modelling of the focusing 

shows a practical approach in the application of commercially available packages as well 

as good agreement of developed simulations with experimental results (118; 152; 153; 

154; 155). 

2.3.4. COMSOL Multiphysics software 

COMSOL Multiphysics® is a commercial software environment based on the 

Finite Element Method, designed for simulation problems up to three dimensions 

defined in partial differential equations. First version of COMSOL appeared on the 

market at end of 90’s. Currently it is well established brand in scientific software 

especially for engineering applications (137). One of the most important features of 

COMSOL is its ability to handle different problems simultaneously, such as flow and heat 
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transfer, in the form of the interface called multiphysics. COMSOL has a set of 

predefined computational modes (like Incompressible Navier-Stokes mode, Brinkman 

Flow mode, or Nernst-Planck mode) which are particular forms of generic PDE’s. 

COMSOL also allows using the general forms of PDEs with full liberty of defining all 

terms in the equation. PDEs can be defined in general, coefficient or weak form 

depending on needs. 

COMSOL is well-recognised software in the market of simulation packages. 

There are hundreds of scientific papers from various disciplines where COMSOL was 

successfully used: from purely numerical simulations of MEMS, through studies of 

biological to physics and chemistry applications. (156; 157; 158; 159). There are 

reported applications of COMSOL for simulating electrokinetic flow in two-dimensional 

planar microfluidic devices, focusing with ITP or simulations of hydrodynamics in 

microfluidic systems and others proving reliability and effectiveness of that software in 

chosen field (160; 161; 162). 

At the start of the project, COMSOL presented a unique feature of modelling 

fluidic subjects with the possibility of implementing any user-defined PDEs combined 

with significant database of examples from the field of microfluidics. Later on with 

version 3.5a, a Nernst-Planck mode for electromigration modelling was implemented, 

which was not available in other leading commercial packages. 

 Illumination for visualisation – choice of Solid State Light (SSL) 2.4.

sources 

2.4.1. Light sources in chemistry 

The potential of LEDs as light sources has been gradually recognised in research 

including chemical sciences.  LEDs have become competitive light sources in optical 

analytical techniques such as photometry and fluorometry as well as in photochemistry 

and other areas.  As the technical parameters of LEDs continuously improve, a growing 

number of applications of LEDs in chemistry can be anticipated.  With increasing 

radiative power and life expectancy and decreasing wavelength and cost, LEDs are 

getting increasingly attractive as alternative light sources to the classical deuterium 

xenon and other lamps, both in chemistry research and in the industry (163; 164). The 

number of scientific papers on LEDs published per year has been growing on an 

exponential scale as shown in Figure 14.  The number of publications on LEDs was below 
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500 publications per year in 1970s and 1980s, even with a declining trend.  Then in 1991, 

the introduction of the blue LED presented a breakthrough in the LED technology and is 

clearly represented by the growth seen in Figure 14.  The last bar represents only a 27 

months period already exceeding output of the 1999-2003, 60-months period. For a 

brief history of Solid State Lighting see Appendix C. For physical principle of LEDs see 

Appendix D. 

 

Figure 14: Number of publications and patents for LEDs from 1960 till 2008. Search conditions: Sci 
Finder Scholar database (Apr 2011), search topic "Light emitting diodes".  

2.4.2. Advantages and limitations of LEDs 

Justifiably, solid-state (semiconductor) light sources are the light sources of 

tomorrow. LEDs possess numerous merits that make them increasingly popular in 

science in general and in chemistry specifically, including: very low prices for well-

established LEDs, robustness of solid state technology including long life expectancy, 

small size compatible with miniaturisation, relatively low power consumption and heat 

production, cold light sources exhibiting low radiative heating, very low optical noise etc.  

In the following sections the technical parameters of LEDs in respect to their use are 

discussed.  Some features of light emitting diodes can be either beneficial or undesirable 

depending on the specific application.  Especially deep-UV-LEDs are still at a stage of 

development and therefore some shortcomings must be mentioned. 
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The low cost, around or even below $1 for visible spectral range of emission is a 

very important advantage of LEDs.  Evolution of the prices for LEDs during the last years 

clearly indicates the trend of decreasing prices for LEDs in the visible emission spectrum 

range down into UV spectral range.  Another benefit is virtually no maintenance is 

needed for solid state light sources.  Only UV-LEDs are still considered expensive with 

2011 prices of up to several hundred of $ per unit (165). 

Typical a commercially available light emitting diode has the form of a plastic 

(the most commonly used is epoxy resin) cylinder with diameter ranging from 3 to 10 

millimetres with an integral hemispherical lens at the end (166). They are waterproof 

and compared to classical light sources such as glass bulbs extremely shock resistant.  

Some still suffer minor problems such as delamination of epoxy from the chip through 

temperature cycling which has been suggested is induced by the process of mounting of 

LEDs (167; 168; 169). One of the future directions of research is the application of 

ceramic materials with special attention to the mounting process to improve thermo-

mechanical properties of LEDs (170). 

Light emitting diodes are now providing to the longest working life light sources 

available.  The average life expectancy of LEDs exceeds 105 working hours however this 

life time is achieved when the LED is operated under optimal thermal conditions.  With 

increased ambient temperature LEDs present shorter life expectancy, therefore 

accelerated tests of lifetime of LEDs are conducted at increased temperature (171; 172). 

LEDs have far better scaling properties than incandescent, fluorescent or arc 

light sources.  LEDs are the only light sources considered for any highly miniaturised 

devices requiring illumination.  Consequently on-chip microfabricated LEDs have found 

utilisation in optical detection in lab-on-chip microfluidic chips (120; 173; 174). A 

demand for even smaller light sources led to the development of micro-LEDs with a 

diameter in the order of 10 µm (175). The possibility of using such small light sources 

opens a new chapter for portable detection devices. 

Incandescent and fluorescent light sources have low energy conversion 

efficiencies resulting in the remainder of the supplied electrical energy being converted 

to very significant amounts of undesired heat, both radiatively emitted and convectively 

dissipated.  The higher Overall Energy Conversion Efficiency (OECE) of LEDs quasi-

monochromatic nature of light is free of undesired infrared radiation.  LEDs are heated 

by the electrical current and convective heat can be observed. LEDs operating in the 



36 | P a g e  
 

ultra violet range are still burdened with several technological problems that result in a 

high degree of heating of the diode. For instance the external quantum efficiency is 

lower by two orders of magnitude when compared to blue LEDs. Further due to 

requirement of wide bandgap carriers can easily undergo non-radiative transition (176). 

AlGaInN is expected to provide better efficiency for UV emission, but the quality of 

crystal structure is generally insufficient, resulting in an inferior performance of AlGaInN 

LEDs over AlGaN (177). 

Today SSL sources offer higher luminous efficacy than incandescent light sources 

in 1999. Currently the most luminous LEDs have reached luminous efficacy of 169 lm/W 

(178). A typical white 5 mm LED as one of the most common of all LEDs, consumes 

80 mW while having a luminosity of 18-20 candelas (165) while the newest super-bright 

LED consumes 100 mW, giving 25-30 candelas.  The OECE reaching 50.8 % for some 

white LEDs makes SSL the most energy efficient light sources ever manufactured. 

Possibly the largest benefit of using LEDs in mass scale is very significant 

reduction of electricity consumption (179). Ireland was the first European country to ban 

traditional incandescent light bulbs and it was estimated that it will reduce electricity 

costs by €185 million and emission of carbon dioxide by 700,000 tons per year (180). By 

definition LEDs require a direct current power supply but responding to market needs 

there are currently efforts undertaken to construct LEDs capable to be driven by 

alternating current.  Although mostly at a stage of laboratory research, there have been 

already reported successful constructions (181). 

The optical noise is a combination of several factors: spatial stability, intensity 

stability, output at a specified wavelength, electronic power source noise, temperature 

fluctuations, mechanical stability of optics etc. Generally LEDs provide a far more stable 

signal than traditional light sources (182). Considerably lower overall fluctuations of the 

emitted light intensity result in lower signal noise thus lowering the limits of optical 

detection as illustrated in Figure 15 (183). Therefore the usage of LED based optical 

detectors showed an advantage of using solid state light sources over classical light 

sources such as deuterium, mercury and tungsten lamps (184; 185; 186). 
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Figure 15: Comparison of signal stability for deuterium lamp (pink) and LED (blue). Signal coming 
from traditional light source (pink) has significantly larger fluctuations of intensity compared to solid 

state light source (184). 

Well defined narrow band emission spectra of LEDs exhibit typically full width at 

half intensity maximum (FWHM) bandwidth of around 20-25 nm. It has been shown that 

this degree of polychromacity of the emitted is applicable for analytical applications 

such as absorption photometric detection in capillary electrophoresis (186; 187). For 

most chemistry applications this size of LED emission bandwidth is narrower than the 

absorption bands of most compounds in solutions and therefore LEDs can be fully 

acceptable as quasi-monochromatic light sources. They include photochemistry 

applications (again the typical absorption bandwidth of a compound in solution will be 

broader) and photometry and photometric detection in flow-through detectors in 

analytical methods including FIA, CE and LC (174; 188; 189; 190; 191). For other 

applications, such as fluorometry, where the longer-wavelength portion of the emission 

spectrum would be interfering with a sensitive detection of the red-shifted emitted 

light, high quality cut-off or band-width filters have to be additionally applied (192). By 

the end of 2010 the lowest commercially available wavelength was 245 nm thus defining 

the limits of the chemistry applications (166), and 210nm is still being developed (193). 

Whenever a broad spectrum light source is needed, such as for illumination with 

white light, visualisation and spectrophotometry, so called white LEDs may be 

employed. White LEDs are realised in two ways, both of which are commercially 

available: (i) “RGB LEDs” - combined LEDs containing multiple LEDs with different 

wavelengths of peak emission within one bulb – a blue, a green and a red emitting chip, 
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as illustrated in the emission spectra for a ‘RGB LED’ in Figure 16; (ii) Phosphorus-based 

white LEDs, based on a blue or UV LED and a broad-spectrum phosphorescence 

compound admixed to the LED bulb that creates a combined emission spectrum with a 

peak in the blue region of the visible spectrum and a wide band with a maximum in the 

green region but reaching well into the red region, thus giving a white light appearance. 

Depending on the application, either RGB or phosphorus-based white LEDs can be used, 

but it is important to realise that solid state light sources are not yet true wide-

bandwidth emitters. 

To make a comparison of different white light sources possible, the Commission 

Internationale d’Eclairage (CIE) introduced temperature definitions of four standard 

sources of the white light: A - tungsten at 2856 K, B - direct sunlight of approximately 

4870 K, C - overcast sunlight at 6770 K and D65 - daylight at 6504 K (194). In 

phosphorus-based white LEDs the ratio between the heights of the first maximum in the 

blue and the second maximum in the green region is described by the temperature of 

the emitted light. LEDs with a white light temperature of 9000K (cold white) will have an 

intensity of the blue emission peak significantly higher than the green one, while an LED 

with a light temperature of 3000 K (warm white) (Figure 17) will have a more intense 

green peak than blue (195). A different approach is based on additive colour synthesis - 

white light is obtained by combining three diodes (red, green and blue) in one case ()). 

The advantage of the RGB white LED is a possibility to mix different relative intensities of 

the blue, green and red light components. The three emitters can be operated 

separately (there is 1 common electrode, and an opposite polarity electrode is provided 

independently for each chip (165) giving more flexibility over light temperature than in 

phosphorus-based LEDs. 

 

Figure 16: Example of the measured spectrum of RGB-type white LED (three different diode chips 
red, green and blue in one casing. 
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Figure 17: Emission spectra of white ‘blue + phosphorus’ LEDs: 3 different LEDs of varying light 
temperature: blue line – cold white; green – neutral white; red – warm white, CCT – Correlated 

Colour Temperature (195). 

LEDs (unlike lasers) do not emit coherent light and in principle are not 

directional light sources. Currently used photon extraction techniques, especially the 

application of a reflector on one side of the semiconductor chip, results in these LEDs 

are pseudo-directional light sources. The high refractive index of used semiconductors 

(even up to 3.5 in InGaP) also contributes to much higher directionality of emission (196; 

197). Also optical elements affixed in front of the emitter or in the form of a 

hemispherical lens integrated with the polymer body of the LED provides some degree 

of collimation, and is one of the most vulnerable parts to damage and loss of 

transparency. 

 Detection and data acquisition 2.5.

An important aspect of the work presented in this thesis is data acquisition from 

the developed microfluidic chips and visualisation of flow patterns. Microfluidic chips 

require novel design to provide appropriate or enhanced optical detection systems. 

Working with aqueous solutions, often dyes, suggests the application of optical 

detection systems.  

Imaging of large two dimensional microfluidic structures can be easily 

performed using appropriate photographic equipment. In order to design a properly 

working detection and imaging system for whole-chip visualisation a good 
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understanding of optical detection techniques, light properties, available light sources 

and photodetectors is needed. 

2.5.1. LEDs in photometric detection 

Photometry is a detection technique used to determine concentration of target 

species in a liquid sample based on interaction between the probe light and species. 

Typically it is a measurement of the light intensity before and behind the sample or 

more commonly with and without a sample placed in the light path. A scheme of the 

light intensity measurement with the sample located for detection is presented on 

Figure 18. The sample transmittance T is defined as a ratio of the initial light intensity I0 

to the recorded light intensity I (Eq. 13). The I0 should be measured with the sample 

holding cuvette empty to correct its value for reflections and potential absorption by the 

cuvette material. The cuvette length 𝑙 is known, as well as species molar absorptivity 

coefficient α, which is an individual characteristic of every species. Light attenuation 

along the light path is governed by Beer-Lambert’s law (Eq. 15) (198): 

 

Figure 18: Schematic of light intensity with sample located for photometric detection (199). 
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where T is transmission through the sample, I0 is initial light intensity, I is light intensity 

behind the sample, A is sample absorbance, α is the species molar absorptivity 

coefficient, 𝑙 is length and c is molar concentration. 

For optical detection (absorbance measurements) in photometry LEDs can be 

used as light sources and as LED-based optical detectors.  A narrow peak emission 

wavelength is the key in a photometric detection system, which relies on a matching of 

the emission intensity maximum with an absorbance maximum of the analyte.  

Matching spectra lowers the limits of detection and in consequence improves the 

performance of the detector.  As LEDs provide almost monochromatic light they are very 

appropriate for photometric detections. The small size of these light sources makes 

them attractive for miniature analytical devices. 

The first application of LED for photometric detection was presented by Flashka 

et al. in 1973, but according to authors the first experiments were proposed by Barnes in 

1970 (191; 13). The first flow through LED detector was presented by Betteridge et al. 

(200). While the first successful attempt to use light emitting diode coupled with 

photodiode detector was presented by Anfalt et al. (201), this setup was developed and 

significantly upgraded by Dasgupta and co-workers making photodiodes the most 

common detectors for LED based photometry (202; 203; 204; 205; 206; 207; 208; 209; 

210). The first use of blue LED as a spectroscopic source was presented by Hauser and 

co-workers (211; 212; 213; 214). A simple reflectometer for colorimetric diffuse 

reflectance measurements based on green LED was presented by Matias et al. (215). 

LEDs as an almost heatless light source was use for first time in absorption and detection 

system in capillary electrophoresis by Tong and Yeung in 1995 (216). Subsequent works 

by Macka et al. had shown that light emitting diodes present better stability than 

tungsten, mercury or deuterium lamps (187). Over the last decade LEDs were used in 

miniaturised photometric detectors for capillary electrophoresis resulting in lower base 

line noise and improved detection limits (164; 181; 217). A very simple and effective way 

of detecting the effective pathlength and stray light has been suggested by Macka 

values for which would be used to evaluate detector’s performance (218). 

Several experiments conducted with LED-based detectors showed the broad 

application of such constructions (185; 219; 220; 221; 222). The use of LEDs in 

photometric detection is growing as LEDs are becoming better and more widely 

available. Light emitting diodes were also tested in paired setups with one LED used as 

the light source and the second acting as the photodetector. The first attempts were 



42 | P a g e  
 

based on the measurement of LED photocurrent which was acting as the photodetector 

(223; 224; 225). Lau et al. presented a novel approach where instead of measuring 

photocurrent a timer circuit was implemented and discharge time of the photodetector 

LED was measured. The benefits of such an approach included removing the necessity of 

using an analogue-digital converter and operation amplifier (226; 227; 228; 229; 230). 

Fabrication of a simple flow-through multi-wavelength absorbance/fluorescence 

detector with additional spectroelectrochemical detection has been suggested by 

Dasgupta et al. (164). LED based broadband photometers have been tested for several 

years but they have still not been widely accepted commercially and are still a small 

margin of commercial products (231; 232; 233). 

2.5.2. LEDs in fluorometric detection 

Fluorescence is defined as a luminescence of the medium that immediately after 

an excitation is extinguished, typically ≈10-8 s (234). This categorisation comes from 

times when it was not possible to observe such short events. Currently there is entire 

branch of fluorometric techniques relying on measurements of the emission spectra 

decay times (163). 

The phenomenon of fluorescence is associated with changes of the electronic 

states under the influence of an external light. Electrons in the compound molecule 

move from ground state to excited state upon absorbing light. After reaching the excited 

state they can return to ground (or less excited) state producing light emission. The 

difference in energy of initial and final state determines the wavelength of the 

absorbed/emitted light (Eq. 24). The probability of transition between two states was 

first explained by the Franck-Condon principle, stating that probability of the electronic 

transition is proportional to the overlap of the wave functions of both states (235; 

236)(Figure 19). Later on it was significantly developed by Jablonski, who is regarded as 

the father of fluorescence spectroscopy. He presented a theory why absorption and 

emission spectra are often not symmetrical. Diagrams named after him Jablonski 

diagrams, are often the starting point for discussion about light absorption and emission 

and are excellent to show processes occurring in excited molecules (234), see Figure 20. 
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Figure 19: Illustration of Franck-Condon principle. Blue arrows represents light absorption, green 
arrows represents light emission Peak height represents transition intensity. Transitions within E 1 

states are not marked (237). 

 

Figure 20: Jablonski diagram showing the most important transition types within illuminated 
fluorophore (238). 

The most important light source for fluorometry is the laser, although with 

recent breakthroughs in LED construction and materials sciences, resulting in lower 

emission wavelengths and increased power, light emitting diodes are gaining significant 

popularity in this field. LEDs are currently used as powerful alternatives to lasers for 

both time and frequency domain fluorometry. The possibility of direct modulation, their 

stability resulting in low optical noise, and robustness are principal factors for using LEDs 
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in fluorometry. First attempts of application of the fast pulsed (300 MHz) LEDs in 

frequency-domain fluorometry dates back to the year 2000 (239) and 2001 in 

frequency-domain fluorescence microscopy based on LED illumination (240). 

Experiments with fast pulsed LEDs conducted by Herman and Vecer show that light 

emitting diodes can be used in frequency domain fluorometry (241). 

LEDs suitable for time-resolved fluorometry have been available for a 

significantly longer period of time. There are several time-resolved techniques which are 

explained in detail elsewhere (163). UV-LEDs present an alternative for xenon flash 

lamps or nitrogen lasers. The most important features giving LEDs the edge over 

previously mentioned light sources are the reduction of delay time for time-resolved 

techniques from 60 µs to 1 µs and much faster repetition rate (242). 

The hindering factor for the application of LEDs in fluorometry is the bandwidth 

of emitted light (excitation) that can overlap with the emission spectrum (243; 234). In 

this case the use of commercially available LEDs with built-in filters is needed. Such 

experiments were conducted by Dang et al. (244; 245; 246) and Lucy (247). Another 

approach was presented by Uchiyama and co-workers. Instead of using sophisticated 

focusing optics integration of LEDs in chips was presented with only spectral filters used 

to narrow down emission spectrum (248). The combination of multiple LEDs with 

different peak emission wavelengths was tested in the field of Excitation Emission 

Matrix Spectroscopy (EEMS) by Hart and JiJi (249). 

A novel approach by using combination of three detection modes was presented 

by Ryvolova et al with a detector measuring simultaneously absorbance, fluorescence 

and contactless conductivity (250). In presented design the same LED was used as the 

light source for absorbance photometric detection and as the excitation source for 

fluorometry. 

 Electro-hydrodynamic focusing (EHDF) as a development of EGM 2.6.

methods 

Electrohydrodynamic focusing is an equilibrium gradient method of focusing and 

can be regarded as a development of electric field gradient focusing (EFGF) (127). EHDF 

has been used for the generation of liquid droplets, by application of large electrical 

potential difference (251), and has been considered for application in the semiconductor 

industry (252). 
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The idea of EHDF is based on the further development of successful experiments 

with conductivity gradient focusing (8). For CGF, the microfluidic device used in (8) had 

the form of a rectangular chamber (14cm by 2cm) with a height of 200µm, made by 

placing a microscale gasket (spacer) between two sheets of transparent plastic 

polymethyl methacrylate (PMMA). On both ends two chambers were drilled to be filled 

with agarose gel and to hold the electrodes. Three inlets and two outlets were placed in 

the chip. The device was initially filled with 0.2mM malachite green solution (MG) with a 

conductivity of 71µS·cm-1. The same concentration of malachite green was introduced 

through auxiliary inlets (labelled “sample” in Figure 2) with a flowrate of 15µl·min-1. The 

central inlet was used to introduce 20 mM citrate buffer (pH 4.9, 403 µS·cm-1) with a 

flowrate of 2µl·min-1. A schematic of the used apparatus is presented in Figure 3 (8). 

Initially the collection valve was closed and the outlet valve was open. Three 

separate parallel flowstreams formed inside chamber, as shown in Figure 21, in 

proximity to the inlets. After 300 seconds a potential difference of 280V was applied. 

After 1980 seconds, the voltage was turned off, and the sample was collected through 

the collection valve. The concentration of the sample was determined using absorbance 

photometric detection. The authors pointed to the fact that the presence of regions of 

different conductivity affects the electrical field which is deflected toward the central 

region of higher conductivity. As a result, migration of MG toward the central 

flowstream was observed to the point where electromigration was equilibrated by 

pressure driven flow and a region of increased concentration of MG was formed. The 

development of a numeric model to visualise the electric field distribution of that 

experiment was mentioned as the direction required for future research. 

 

Figure 21: Photo of a microfluidic chip with region of preconcentrated malachite green using field 
gradient focusing (253) 

 Conclusions from the literature review 2.7.

In this project the control of multiple fluid flows in microfluidic devices and the 

detection of said flow patterns were investigated. Presently all practical methods of 

Inlets 

Outlets 
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focusing in microfluidic devices have been based on physical boundaries restricting flow 

patterns. In this project the implementation of dynamically shaped regions of high and 

low conductivity giving ability to alter not only intensity but also the shape of the electric 

field was investigated. The application of unrestricted fluid flow with the simultaneous 

presence of multiple flows in one microfluidic chamber was not previously explored 

thoroughly and presents a novel area of research. Due to this fact the computer 

modelling of processes was selected as the first step of the research to provide 

constrains for engineering of the microfluidic chip. In the next step fabricated chip was 

cross-referenced with the developed model to check the model validity and observe 

actual performance of EHDF. 

 Successful identification of the significance of parameters for EHDF in “open 

space” designed microfluidic chips gives the potential for development of a new 

generation of chip-based microfluidic devices which could be used for preconcentration 

and separations. Determination of low-abundance components in complex matrices is a 

difficult and important problem for science and industry. Development of a method with 

the potential for full automation could provide a replacement for expensive and time-

consuming methods of sample preparation. 

Investigation of modern optical detection techniques using cutting-edge light 

sources is important for developing effective sensor and detectors. The main aim of the 

visualisation part of this project was to gain knowledge for designing novel optical 

detection systems such as required for imaging on the microfluidic chip used in the 

experiments. 
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Chapter 3 – Materials, methods 
and procedures 

This chapter presents the general materials, consumables, chemicals, 

instruments and procedures used during the research. Results and discussion are 

presented in the subsequent chapters. 

Section 3.1. provides details on the hardware and the software used for 

numerical modelling, outlines model development procedure, justifies values of used 

physical parameters and gives all the individual parameters and conditions for all models 

presented and discussed in this thesis. Results of these simulations are presented in the 

Chapter 4. 

Section 3.2. gives information about the microfluidic chip used for EHDF 

experiments; all instrumentation and chemicals used with these experiments; outlines 

the method of concentration calculation using digital camera and the 

spectrophotometer; provides details on used different sets of outlets; and gives 

individual parameters for all presented experiments. Results of these experiments are 

presented and discussed in the Chapter 5. Full photographic documentation of all 

conducted experiments is given in Appendix I. 

Section 3.3. details the methods of calculation the light path and the light 

intensity distribution in the developed numerical model for the light propagation, 

outlines experimental procedure with which this model was verified and provides 

information on photopolymerisation of organic monoliths inside the capillaries. Results 

of this modelling and experimental work are presented in the Chapter 6.  

 Numerical modelling of microfluidic systems 3.1.

3.1.1. Computers used 

A custom-built computer PC-class was assembled to gain a maximum 

performance for modelling. This consisted of a motherboard Asus® P5E64 WorkStation 

Evolution, processor Intel® Core™2 Quad Q9450, cooler Zalman CNPS9500A-LED Aero 

Flow, RAM memory 4GB DDR 3 OCZ PC3-10666 Special Ops Edition, graphic card Asus® 

GeForce ENGTX 280/HTDP/1Gb DDR3 PCI-E, hard disk drive 2x Seagate Barracuda 

7200.11 ST31000340AS 1TB 7200 RPM 32 Mb Cache SATA 3.0Gb/s 3.5” working in Raid 
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0 mode, optical drive LG 20x DVDRW +/- SATA, power supply unit Antec TruePower 

Quattro 850W 80PLUS, case Antec Nine Hundred. The operating system used was 

Microsoft® Windows XP™ 64-bit version 2003, Service Pack 2. 

3.1.2. Software used and model procedure development 

All fluidic simulations were conducted using COMSOL Multiphysics® 3.5a 

standard commercial package modelling software with Chemical Engineering Module 

and MEMS Module (for microelectromechanics and microfluidics) developed by 

COMSOL AB, Stockholm, Sweden. 

 Model design 3.1.2.1.

COMSOL has a simplified CAD design interface for model drawing. There are no 

precision drawing tools in COMSOL, but it is possible to implement user defined grid 

with Snap-On function. This allows drawing simple shapes, but becomes awkward or 

impractical with more complicated shapes. Some geometries are too complicated to be 

replicated precisely with this interface. In such a situation it is possible to import a 

designed geometry from any CAD software with standard *.DWG or *.DXF format. A 

typical schematic drawing in COMSOL is presented in Figure 22. Once the designed 

geometry is ready it is possible to add or remove simulation modes. 

 

Figure 22: COMSOL drawing interface with typical drawing of the EHD focusing chip. 
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 Subdomain definitions 3.1.2.2.

The finished drawing contains a set of regions separated by lines. In COMSOL 

these regions are called subdomains and relevant equations specified in each region are 

solved inside thereof. Boundary conditions are defined on these lines. Subdomain 

settings describe appropriate physics for the associated part of the model and can have 

the form of constants or space and/or time-dependant functions. 

Momentum transport modelling was performed with application of 

“Incompressible Navier-Stokes” mode or “Brinkman Equations” mode (for simulations 

involving flow through porous media). Mass transport was modelled with “Nernst-

Planck with the electroneutrality condition” mode. For Navier-Stokes and Brinkman flow 

modes, water with density, ρ = 1000 [kg·m-3] and dynamic viscosity, η=0.001 [Pa·s] was 

used. Diffusion coefficients, electrophoretic mobilities and charge used in Nernst-Planck 

mode are presented in Table 3: 

Name 
Diffusion coefficient 

(isotropic) d 
Electrophoretic 

mobility μ 
Charge 

z 

Malachite green 3e-10 [m2·s-1] 1.12e-13 [mol·s·kg-1] +1 

Tris(hydroxymethyl)amino-
methane 

6.667e-10 [m2·s-1] 2.69e-13 [mol·s·kg-1] +1 

Chloride 2.032e-9 [m2·s-1] 8.02e-13 [mol·s·kg-1] –1 

Table 3: Physical parameters of substances used in models with Nernst-Planck mode. 

The entire model domains were drawn on a 1:1 scale, see Figure 23. Three 

subdomains were defined: one and three as the agarose gel tanks and subdomain two 

was microfluidic chamber. In subdomain three inlets and two outlets were placed. The 

entire model consist two layers: the momentum transport was solved with a Brinkman 

equation for flow through porous media and mass transport solving Nernst-Planck 

equation. The line between central inlet and outlet 2 (called a “virtual object”) had no 

physical property and was used to increase mesh density locally. 
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Figure 23: Engineering schematic of the model used for simullations. 

The presented model is a two-dimensional approximation of the three-

dimensional problem. It assumes that along Z-axis (perpendicular to the model plane) 

the boundaries extend to the infinity. As in fluid dynamics dimensions that are in order 

of magnitude of microns can play a significant role, to model fluid flow properly in a thin 

channel an approximation was needed. To address this problem Brinkman flow mode 

was used instead of Incompressible Navier-Stokes flow mode. A defined parameter of 

channel permeability was set to simulate the influence of channel thickness on the fluid 

flow. 

Subdomains one and three were filled with porous media (agarose gel) for 

which permeability was approximated using the Blake-Kozeny equation (Eq. 16): 

      
𝜂(  𝜉)

𝜌   
 Eq. 16 

where f is permeability, 𝜂 is dynamic viscosity, 𝜌 is fluid density,   is fluid velocity, Dp is 

average gel spherical “particle” diameter, and 𝜉 is volume of empty space (occupied by 

the pores) per medium unit volume (gel porosity). This equation reproduces 

experimental data for flow through porous media of identical spheres of given diameter 

for laminar flow. Sometimes a value of 180 determined from experiments is 

recommended instead of 150, and then this equation is called Carman-Kozeny (254). For 

modelling it was assumed that agarose gel was composed of 100 nm spheres and had 
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90% porosity (void space). Modelled solutions were highly diluted (up to 20 mM/l) and 

did not contribute significantly to different density and viscosity values. 

Subdomain two (main chamber) had three inlets: two auxiliary through which 

model dye (cationic) and a central inlet through which a buffer was introduced. Only 

initial concentrations of the dye and the cation in buffer were set in the model. COMSOL 

automatically adjusts concentration of anion to satisfy electroneutrality. 

All models were developed to account for the physics of the electromigration 

process and no buffering or pH changes were implemented. 

 Boundary definitions 3.1.2.3.

Boundaries for the designed model were of two types: outer boundaries which 

impose limits and were set according to desired properties (i.e.: walls, inlets, outlets and 

electrodes) and internal boundaries (between subdomains) on which the continuity 

requirements were set. COMSOL enforces continuity condition on an internal boundary 

if a constitutive equation is to be solved in adjacent subdomains. 

Boundary conditions, similarly to the subdomain settings, can have the form of a 

constant value or space and/or time-dependant functions. Features such as inlets and 

outlets are defined through appropriate boundary conditions. 

The velocity for auxiliary inlets was set to 2-4 m·s-1 (malachite green) and the central 

inlet velocity was set to 2-5 m·s-1 for (buffer). Corresponding experimental values were 

15 µl·min-1 and 2 µl·min-1 respectively. The thickness of the gasket used to produce the 

chip thickness was 200μm and the chamber width was 20mm, which gave a cross-

section of 4mm2. For a flowrate of 15 µl·min-1 with flat profile, a velocity of 3.75 

mm·min-1 is required to satisfy the mass conservation in a time unit.  When the flow is 

pressure driven, then flow profile is parabolic rather than flat, which leads to a situation 

as shown in Figure 24. This data leads to the integral equation shown in Eq. 17. 

 

Figure 24: Schematic of the plan view of the velocity profile inside a microfluidic chamber. 
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      Eq. 17 

Where a is unknown parameter defining the parabolic flow, integration interval is 

defined by chip width (20mm) and 75 is the surface area given by the chip width and  

velocity of flat profile (3.75mm·min-1   20mm). 

Solving this equation give    
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which is 5.625mm·min-1. This approximation (correction of the velocity due to parabolic 

flow profile along only two dimensions) showed that the assumed values were of the 

correct order of magnitude (i.e. between 2-4mm·s-1 or 12 mm·min-1 for the auxiliary inlet 

and 2-5mm·s-1 or 1.2mm·min-1 for the central inlet). 

The applied voltage was defined as a time dependant boundary conditions using 

either an error function (erf) (Eq. 18) or a smoothed Heaviside step function (flc1hs) with 

continuous first derivative (Eq. 19). 

 ( )     
     [    (     )]

 
 

Eq. 18 
 

 ( )      𝑙    (        ) Eq. 19 

where V(t) = time dependent value of voltage, V0 = given voltage value, t = time, erf = 

error function, flc1hs = Heaviside step function with continuous first derivative; the first 

parameter (t-600s) defined the position of 0.5V0 value, (for t=600s, V=0.5V0); the second 

parameter (10s) was the time during which voltage increase from 0 to V0. With this 

definition V=0 for t=0 to t=600-5 (time taken from the first parameter minus half of the 

second parameter value) and V=V0 for t>600+5 (time taken from the first parameter plus 

half of the second parameter value). For specific model boundary conditions refer to 

section “3.1.3 Model setups”. 

 Meshing 3.1.2.4.

The prepared geometric model was partitioned into simple small geometrical 

figures (triangles or tetragons for 2D models, see Figure 25 and Figure 26). When 

simulating the migration of species in an aqueous solution sometimes concentration 

oscillations occur, significantly slowing solving procedure and in some cases leading to 

incorrect results. These oscillations occur as a result of the numerical solving of partial 
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differential equations. Increasing mesh density in regions where oscillations were 

appearing is generally the best method of removing this problem. Example of 

concentration oscillations appearing in the system is shown in Figure 27. Computational 

hardware employed for modelling sets a practical limit on the mesh density. In practice 

models with this system could be solved with a maximum of 40,000 elements 

(polygons). Denser meshes would result in a very long simulation time and often in 

memory overload error. 

 

Figure 25: Example of triangular mesh structure. 

 

Figure 26: Close-up of employed mesh structure around inlets 

 

Figure 27: Concentration oscillations due to inadequate mesh density. 



54 | P a g e  
 

 Solving 3.1.2.5.

There are several different numerical solving methods (solver types) 

implemented in COMSOL that differ in utilisation of memory, CPU (or multiple cores in 

CPU), have different methods of linearization and so on. For the PC in this work the most 

effective solver was the Pardiso solver which employed multi-core support as well as 

loading the entire model to the computer memory. In case of insufficient memory, 

GMRES (Generalised Minimum Residual Solver) was used, but this was significantly 

slower. 

Separately there are two types of available solver modes: the stationary solver 

that calculated only the stationary state for a given set of conditions and time-

dependent solver, which conducts the time evolution of the system giving results in 

predefined intervals for a specified period of time. Typically momentum transport 

equations (Navier-Stokes or Brinkman mode) were solved using the stationary solver as 

no changes in the flow field were made and mass transport equations were solved using 

the time-dependent solver. This coupling allowed the evolution of the species 

distribution to be determined. 

 Postprocessing and result visualisation 3.1.2.6.

The calculated simulation result could be displayed in many forms. Scalar 

quantities are typically presented as multi-colour gradient maps with blue representing 

minimum and red maximum. Vector quantities (like velocity or electric field) are 

typically displayed as arrows or streamlines (traces left by test particle). A typical 

example of simulation output is presented in Figure 28. 

 

Figure 28: An example of possible result display: color map shows concentration of model compound  
(blue indicates low concentration, red for high); streamlines (red) – the velocity; and arrows (yellow) 

– the total flux of model compound 

3.1.3. Model setups 

This section provides details on the conditions of individual models. Please refer 

to appropriate section for the results (e.g. results for model setup described in the 

section 3.1.3.1. are presented in the next chapter in Section 4.1.). 
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 Analysis of the mesh density impact on a simulation results 3.1.3.1.

The analysis of the mesh density and mesh quality and how it affects the 

produced results was conducted early using a relatively simple model with a pressure 

driven flow and no electromigration implemented. 

The chip had a form of a square 20mm by 20mm with eight trapezoidal via 

ended with semi-circular connector. Six of these were modelled as inlets and two as 

outlets in the system shown in Figure 29 in order to compare with previous work. The 

test compound (malachite green) at a concentration of 0.1mM was introduced through 

three inlets located on the left side of the chip (marked with yellow arrows), and pure 

solvent (water) was introduced through the inlets located on the right side (marked with 

blue arrows). Two outlets were installed on top and bottom edge of the chip (marked 

with red arrows), see Figure 29 for details. The circles located in the central part of the 

chip had no use in this evaluation. 

 

Figure 29: Chip geometry and location of inlets and outlets used for mesh quality evaluation. 

COMSOL has pre-defined mesh density types labelled as: extremely coarse, 

extra coarse, coarser, coarse, normal, fine, finer, extra fine and extremely fine. Five pre-

set mesh density types were tested – extremely coarse, coarser, normal, finer and 

extremely fine. It is possible to define meshing parameters manually for local increase of 

density or to increase overall density higher than that given by using the “extremely 

fine” pre-set. This model was developed using “Incompressible Navier-Stokes” flow and 

“Convection and Diffusion” modes. For exact mesh geometry and mesh parameters see 

Appendix C. Settings for the boundary conditions are presented in Table 4. 
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Inlets I1 I2 I3 

Velocity 5·10-3 m·s-1 5·10-3 m·s-1 5·10-3 m·s-1 

MG Concentration 0.1M 0.1M 0.1M 

Inlets I4 I4 I6 

Velocity 5·10-3 m·s-1 5·10-3 m·s-1 5·10-3 m·s-1 

MG Concentration 0 0 0 

Outlets O1 O2 

Velocity Pressure = 0, no viscous stress Pressure = 0, no viscous stress 

Concentration Convective flux option selected Convective flux option selected 

Applied modes 
Incompressible Navier-Stokes 
Convection and diffusion 

Table 4: Modelling boundary conditions for experimental setup shown in Figure 29. 

 1st Navier-Stokes flow with convection and diffusion in a multi-3.1.3.2.

outlet chip 

As a starting example a set of pictures from (15)(see Figure 4), portraying flow of 

coloured solutions in microfluidic chip with numerous inlets and outlets was chosen. The 

model was recreated using reasonable parameters (line inflow velocity in order of mm 

per second) that are typical in other microfluidic systems. This model was developed 

using “Incompressible Navier–Stokes” flow and “Convection and Diffusion” modes. 

The chip schematic was drawn in COMSOL on a 1:1 scale (Figure 30).  Semicircles 

in the corners and in the middle of each side represent the inlets or outlets depending 

on the boundary settings of particular model variant. Circles in the centre of the chip 

represent outlets installed in the bottom of the device. The model was developed using 

the “Navier-Stokes” mode for momentum transport and “Convection and Diffusion” 

mode for the mass transport. Although the “Navier-Stokes” mode assumes infinite 

distance along z-axis (perpendicular to the plane of picture), the result of stationary 

state is the same as when using the Brinkman mode for simulating thin channel flow. To 

provide a clear description of the model parameters, inlets around the chip are labelled 

using geographical directions (N, NE, E, and so on) and central outlets were numbered 

(O1, O2, O3 and O4) – see Figure 30. Figure 30 represents the experimental setup 

recorded in Figure 4d  which represents the experimental setup presented in Figure 4d. 

Settings for the boundary conditions are given in Table 5. 
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Figure 30: Schematic of chip used to model the experiment shown in Figure 4d drawn in COMSOL for 
simulations with description of inlets (blue and yellow arrows) and outlets (red arrows).  

Inlets NW N E 

Velocity 5·10-3 m·s-1 5·10-3 m·s-1 5·10-3 m·s-1 

Concentration 0 0 0 

Inlets SE SW  

Velocity 5·10-3 m·s-1 5·10-3 m·s-1  

Concentration 0 0.1M  

Outlets NE W S 

Velocity 
Pressure = 0, no 
viscous stress 

Pressure = 0, no 
viscous stress 

Pressure = 0, no 
viscous stress 

Concentration 
Convective flux 
option 

Convective flux 
option 

Convective flux 
option 

Outlets O1 O2 

Velocity Wall/no slip option Wall/no slip option 

Concentration Insulation/symmetry option Insulation/symmetry option 

Outlets O3 O4 

Velocity Wall/no slip option Wall/no slip option 

Concentration Insulation/symmetry option Insulation/symmetry option 

Applied modes 
Incompressible Navier-Stokes 
Convection and diffusion 

Table 5: Boundary conditions for experimental setup shown in Figure 30. 

 2nd Navier-Stokes flow with convection and diffusion in a multi-3.1.3.3.

outlet chip 

The flow pattern shown in Figure 4e was selected for comparison of the 

experimental results with the modelled results. As in the previous setup, this model was 

developed using “Incompressible Navier-Stokes” and the “Convection and Diffusion” 
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modes. Figure 31 shows the location of inlets and outlets. Settings for boundary 

conditions are given in Table 6. 

 

Figure 31: Schematic of chip used to model the experiment shown in Figure 4e drawn in COMSOL for 
simulations with description of inlets (blue and yellow arrows) and outlets (red circle).  

Inlets NW N NE E 

Velocity 5·10-3 m·s-1 5·10-3 m·s-1 5·10-3 m·s-1 5·10-3 m·s-1 

Concentration 0.1M 0.1M 0 0.1M 

Inlets SE S SW W 

Velocity 5·10-3 m·s-1 5·10-3 m·s-1 5·10-3 m·s-1 5·10-3 m·s-1 

Concentration 0.1M 0 0 0 

Outlets O1 O2 O3 O4 

Velocity 
Pressure = 0, no 
viscous stress 

Wall/no slip Wall/no slip Wall/no slip 

Concentration 
Convective flux 
option 

Insulation/ 
symmetry  

Insulation/ 
symmetry  

Insulation/ 
symmetry  

Applied modes 
Incompressible Navier-Stokes 
Convection and diffusion 

Table 6: Boundary conditions for experimental setup shown in Figure 31. 

 The mesh type assessment: comparison of triangular and 3.1.3.4.

quadrangle meshes 

COMSOL provides two types of meshing: triangular and quadrangular. Triangular 

meshing, the default method of mesh creation, was used in most cases. Sometimes the 

solver could not find a solution to a problem even for the most dense mesh grid. In 

some cases changing the meshing method allowed for solving of the problem. Solving 

the problems over quadrangular mesh (also called quad mesh) typically takes longer 
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than with the application of the triangular mesh. Also quad mesh implies more degrees 

of freedom per mesh element and thus a higher memory usage limiting overall number 

of mesh elements that can be used effectively. This model was developed using 

“Incompressible Navier–Stokes” flow and “Convection and Diffusion” modes. Schematic 

of the used chip layout is shown in Figure 32. Table 7 shows the boundary condition set 

for this model. 

 

Figure 32: Chip geometry for comparison between triangular and quad mesh. 

Table 7: Boundary conditions for the experiment shown in Figure 32. 

 Modelling of the Conductivity Gradient Focusing 3.1.3.5.

A numerical recreation of the previously conducted and published experiment was 

recognised as an important step toward successful development of the EHD simulation. 

Information about the original microfluidic device used for conductivity gradient 

experiment and its schematics (see Section 1.4 and Figure 3) were taken from (8). The 

microfluidic models were developed to incorporate electrophoretic and hydrodynamic 

equilibrium. The recreation of the conducted experiments with the numerical simulation 

was used to prove the reliability of the COMSOL software as scientific tool and its utility 

in the field of electrophoresis and microfluidics. A two-dimensional model of was 

designed to compare the numerical simulation with experimental results (see Figure 33). 

Settings for boundary conditions are given in Table 8. This model was developed using 

“Brinkman Equations” and “Nernst-Planck” modes. 

Inlets I1 I2 I3 

Velocity 2·10-5 m·s-1 2·10-4 m·s-1 2·10-4 m·s-1 

MG Concentration 0 0.1mM 0.1mM 

Tris-HCl Concentration 20mM 0 0 

Outlets O1 O2 

Velocity 
Pressure = 0, no viscous 
stress 

Pressure = 0, no viscous 
stress 

Concentration Convective flux Convective flux 

Electrodes E1 E2 

Potential 0V to 600s, 280V from 600s 0V 

Applied modes 
Incompressible Navier-Stokes 
Convection and diffusion 

O2 

 
O1 

 I1 

 I3 

 

I2 

 E1 

 
E2 

 



60 | P a g e  
 

 

Figure 33: Schematic of the chip used for the modelling of the conductivity gradient focusing.  

Inlets I1 I2 I3 

Velocity 2·10-5 m·s-1 2·10-4 m·s-1 2·10-4 m·s-1 

MG Concentration 0 0.1mM 0.1mM 

Tris-HCl Concentration 20mM 0 0 

Outlets O1 O2 

Velocity 
Pressure = 0, no viscous 
stress 

Pressure = 0, no viscous 
stress 

Concentration Convective flux Convective flux 

Electrodes E1 E2 

Potential 0V to 600s, 280V from 600s 0V 

Applied modes 
Brinkman Equations 
Nernst-Planck (with electroneutrality) 

Table 8: Boundary conditions for experimental setup shown in Figure 33. 

 Investigation of the multi-outlet chip properties 3.1.3.6.

The initial layout tested had three inlets (see Figure 35: central inlet I1 and 

auxiliary inlets I2 and I3), three outlets located on the opposite side to the inlets (later 

called main outlets O1-3), and six outlets located along walls (later called auxiliary outlets, 

AO1-6). Settings for boundary conditions are provided in Table 9. Later on layouts with 

eight and ten auxiliary outlets were tested (see Figure 36 with Table 10 and Figure 37 

with Table 11 for details and settings for boundary conditions). Agarose gel tanks were 

not implemented in this model, as the interest was in the flow pattern inside the 

microfluidic chamber. The main chamber dimensions were 10cm by 2cm. When all inlets 

were aligned in a straight line transversal to the chip length (see Figure 34) a stream 

moving toward the back wall and along side walls (marked with red arrows in) appeared. 

Presence of such “back-flow” dramatically increased calculation time. Although not 

critical in this step, it could significantly complicate the model with the introduction of 

the different conductivity fluids. The central inlet was therefore shifted slightly toward 

the outlets to avoid this problem (see Figure 35). A second reason for the central inlet 

shift came from dimensions of the HPLC fittings that are commonly used in the 

microfluidics. The outer diameter of a typical fingertight connector is 9.2mm and such 

two connectors’ would not fit together if distance between ports I1 and I2 or I3 was less 

than about 5mm.  
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In this model different concentration distributions were tested depending on 

the velocity ratio between the central and the auxiliary inlets. These models were 

developed using “Incompressible Navier–Stokes” flow and “Convection and Diffusion” 

modes. 

 

Figure 34: Schematic illustration of microfluidic device for electro-hydrodynamic focusing (253). Red 
arrows indicate “backflow” when the central inlet was in line with auxiliary inlets.  

  

Figure 35: Layout of microfluidic chip with three main and six auxiliary outlets.   

Inlets I1 I2 I3 

Velocity 
From 2·10-5 m·s-1 
to 2·10-4 m·s-1 

2·10-4 m·s-1 2·10-4 m·s-1 

HCl Concentration 1M 0 0 

Outlets O1-3 AO1-6 

Velocity 
Pressure = 0, no viscous 
stress 

Pressure = 0, no viscous 
stress 

Concentration Convective flux Convective flux 

Applied modes 
Incompressible Navier-Stokes 
Convection and diffusion 

Table 9: Boundary conditions for experimental setup shown in Figure 35. 

 

Figure 36: Layout of microfluidic chip with three main and eight auxiliary outlets.  

I1 

I2 

I3 

O1 

O2 

O3 

AO1 AO3 AO5 

AO2 AO4 AO6 

I1 

I2 

I3 

O1 

O2 

O3 

AO1 AO3 AO5 

AO2 AO4 AO6 

AO7 

AO8 



62 | P a g e  
 

Inlets I1 I2 I3 

Velocity 4·10-5 m·s-1 2·10-4 m·s-1 2·10-4 m·s-1 

HCl Concentration 1M 0 0 

Outlets O1-3 AO1-8 

Velocity 
Pressure = 0, no viscous 
stress 

Pressure = 0, no viscous 
stress 

Concentration Convective flux Convective flux 

Applied modes 
Incompressible Navier-Stokes 
Convection and diffusion 

Table 10: Boundary conditions for experimental setup shown in Figure 36. 

 

Figure 37: Layout of microfluidic chip with three main and ten auxiliary outlets. 

Inlets I1 I2 I3 

Velocity 4·10-5 m·s-1 2·10-4 m·s-1 2·10-4 m·s-1 

HCl Concentration 1M 0 0 

Outlets O1-3 AO1-10 

Velocity 
Pressure = 0, no viscous 
stress 

Pressure = 0, no viscous 
stress 

Concentration Convective flux Convective flux 

Applied modes 
Incompressible Navier-Stokes 
Convection and diffusion 

Table 11: Boundary conditions for experimental setup shown in Figure 37. 

 Development of an optimal chip for the EHDF 3.1.3.7.

The initial idea for the chip for EHDF is presented in Figure 2. To achieve the 

trapezoidal flow pattern of the central flowstream the application of additional multiple 

outlets was proposed. This series of experiments was conducted to determine the 

optimal shape and location as well as the overall influence of such outlets located along 

the side walls of the chip. 

Basing on the previous simulations and observations of prof. Dasgupta’s results 

a different approach to inlets and outlets was tested. Instead modelling circles, 

representing tubing collecting fluid, gate-like structures with short collection channels 

along the walls were implemented. Different shapes and positions were tested until the 

optimal design was chosen. Schematics are shown in Figure 38-43 with settings for the 
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boundary conditions provided in the tables below each figure. These models were 

developed with “Incompressible Navier–Stokes” and “Convection and Diffusion” modes. 

 

Figure 38: Test of gate-like inlets and outlets. 

Inlets I1 I2 I3 

Velocity 5·10-5 m·s-1 5·10-5 m·s-1 5·10-5 m·s-1 

HCl Concentration 0.1M 0 0 

Outlets O1-3 AO1-10 

Velocity 
Pressure = 0, no viscous 
stress 

Pressure = 0, no viscous 
stress 

Concentration Convective flux Convective flux 

Applied modes 
Incompressible Navier-Stokes 
Convection and diffusion 

Table 12: Boundary conditions for experimental setup shown in Figure 38. 

 

Figure 39: Test of gate-like inlets and outlets. 

Inlets I1 I2 I3 

Velocity 5·10-5 m·s-1 5·10-5 m·s-1 5·10-5 m·s-1 

HCl Concentration 0.1M 0 0 

Outlets O1-3 AO1-8 

Velocity 
Pressure = 0, no viscous 
stress 

Pressure = 0, no viscous 
stress 

Concentration Convective flux Convective flux 

Applied modes 
Incompressible Navier-Stokes 
Convection and diffusion 

Table 13: Boundary conditions for experimental setup shown in Figure 39. 
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Figure 40: Test of gate-like with outlets rounded entrance with an open-end outlet. 

Inlets I1 I2 I3 

Velocity 2·10-4 m·s-1 2·10-4 m·s-1 2·10-4 m·s-1 

HCl Concentration 0.1M 0 0 

Outlets O1 AO1-4 

Velocity 
Pressure = 0, no viscous 
stress 

Pressure = 0, no viscous 
stress 

Concentration Convective flux Convective flux 

Applied modes 
Incompressible Navier-Stokes 
Convection and diffusion 

Table 14: Boundary conditions for experimental setup shown in Figure 40. 

 

Figure 41: Test of gate-like with outlets rounded entrance with two main outlets located aside each 
other. 
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Inlets I1 I2 I3 

Velocity 2·10-4 m·s-1 2·10-4 m·s-1 2·10-4 m·s-1 

HCl Concentration 0.1M 0 0 

Outlets O1-2 AO1-4 

Velocity Pressure = 0, no viscous stress Pressure = 0, no viscous stress 

Concentration Convective flux Convective flux 

Applied modes 
Incompressible Navier-Stokes 
Convection and diffusion 

Table 15: Boundary conditions for experimental setup shown in Figure 41. 

 

Figure 42: Test of long separation chamber with two main outlets located aside each other.  

Inlets I1 I2 I3 

Velocity 1·10-4 m·s-1 1·10-4 m·s-1 1·10-4 m·s-1 

HCl Concentration 0.1M 0 0 

Outlets O1 O2 

Velocity Pressure = 0, no viscous stress Pressure = 0, no viscous stress 

Concentration Convective flux Convective flux 

Applied modes 
Incompressible Navier-Stokes 
Convection and diffusion 

Table 16: Boundary conditions for experimental setup shown in Figure 42. 

 Models incorporating pressure-drive flow and electromigration 3.1.3.8.

with the selected chip layout 

Investigation of different inlet and outlet layouts for pressure driven flow 

(presented in the Section 3.1.3.7.) gave a potential layout candidate for focussing 

attempts with both pressure- and electro-driven flow. Limitations imposed by 

fabrication process lead to few adjustments in the chip design. The new chip based on 

preliminary experiments and investigation of the multi-outlet chip was designed and is 

presented in Figure 43. 

 

Figure 43: Schematic drawing of new chip for testing of simultaneous pressure- and electro-driven 
flow. 
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All three inlets (I1, I2 and I3) were shifted to a distance of 1.5cm from the agarose 

gel tank by 1 cm (compared to model of original chip). In this model only two outlets 

were present as shown in Figure 43. Also test substance (malachite green, MG) was 

introduced though the central inlet I1. By making these adjustments, the distance 

between the inlets and outlets was increased, which should improve the separation 

performance. Using presented outlet location (two outlets located aside each other) 

should allow for the formation of the trapezoidal region of high conductivity fluid and 

thus enabling EHD focusing. This model was developed using “Brinkman Equations” and 

“Nernst-Planck” modes. 

Inlets I1 I2 I3 

Velocity 2·10-5 m·s-1 2·10-4 m·s-1 2·10-4 m·s-1 

MG Concentration 1mM 0 0 

Tris-HCl Concentration 20mM 0 0 

Outlets O1 O2 

Velocity 
Pressure = 0, no viscous 
stress 

Pressure = 0, no viscous 
stress 

Concentration Convective flux Convective flux 

Electrodes E1 E2 

Potential 200V, 1400V and 2000V 0V 

Applied modes Brinkman Equations, Nernst-Planck (with electroneutrality) 

Table 17: Boundary conditions for experimental setup shown in Figure 43. 

 The first model of EHDF 3.1.3.9.

In the next series of simulations chip layout remained unchanged (see Figure 43) 

malachite green was introduced thought inlets I2 and I3 and other parameters remained 

unchanged (see Table 18). This model was developed using “Brinkman Equations” and 

“Nernst-Planck” modes. 

Inlets I1 I2 I3 

Velocity 2·10-5 m·s-1 2·10-4 m·s-1 2·10-4 m·s-1 

MG Concentration 0 0.1mM 0.1mM 

Tris-HCl Concentration 20mM 0 0 

Outlets O1 O2 

Velocity 
Pressure = 0, no viscous 
stress 

Pressure = 0, no viscous 
stress 

Concentration Convective flux Convective flux 

Electrodes E1 E2 

Potential 0V to 600s, 280V from 600s 0V 

Applied modes 
Brinkman Equations 
Nernst-Planck (with electroneutrality) 

Table 18: Boundary conditions for experimental setup shown in Figure 43. 
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 The second model for EHDF 3.1.3.10.

In the second model for EHDF boundary condition for walls was changed from 

“Insulation/Symmetry” implying no flux through the boundary to “Concentration = 0” 

(see Figure 44 and Table 19). This model was developed using “Brinkman Equations” and 

“Nernst-Planck” modes. 

 

Figure 44: Boundaries with changed boundary condition are marked with black line. All other ettings 
as in figure Figure 43. 

Inlets I1 I2 I3 

Velocity 2·10-5 m·s-1 2·10-4 m·s-1 2·10-4 m·s-1 

MG Concentration 0 0.1mM 0.1mM 

Tris-HCl Concentration 20mM 0 0 

Outlets O1 O2 

Velocity 
Pressure = 0, no viscous 
stress 

Pressure = 0, no viscous 
stress 

Concentration Convective flux Convective flux 

Electrodes E1 E2 

Potential 0V to 600s, 300V from 600s 0V 

Applied modes 
Brinkman Equations 
Nernst-Planck (with electroneutrality) 

Table 19: Boundary conditions for experimental setup shown in Figure 44. 

 Experiments with microfluidic systems 3.2.

This section provides information about instrumentation, materials and 

procedures used during experiments with microfluidic chips. 

3.2.1. Instrumentation 

 Microfluidic chips 3.2.1.1.

The microfluidic chip used for fluid focusing experiments was custom made in-

house from polymethyl methacrylate (PMMA) sheet, 10 mm thick, bought from 

Goodfellow, UK. The PMMA sheet was cut into 160mm  40mm rectangles, to form the 

upper and the lower part of the chip body. Both parts of the chip were drilled with 

fourteen threaded 5mm diameter holes to allow both pieces to be clamped together. In 

the upper part, two 20mm  20mm square openings (to act as agarose gel tanks) and 
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nine microfluidic ports (inlets, outlets and electrode ports) were machined. Three ports 

were used to act as inlets, four as outlets (with possibility of blocking them 

independently, depending on the tested chip layout) and two as openings for electrodes 

(see Figure 45a). Full technical drawings of the microfluidic chip and the port fabrication 

process are presented in Appendix D. 

PMMA layers were separated by a spacer made from polytetrafluoroethylene (PTFE) 

bought from Goodfellow, UK. PTFE sheets were cut into 160mm  40mm rectangles with 

fourteen holes and with a 140mm  20mm rectangular internal cutout (see Figure 45b). 

PTFE spacers used were of 50μm, 100μm, 200μm and 500μm thickness to provide the 

microfluidic chambers with variable thickness. 

Agarose gel tanks were covered with a layer of 12.7μm (0.5mil) transparent polyester 

self-adhesive film ARcare® 92712 which came with a 17.78μm (0.7mil) MA-78 acrylic 

medical grade adhesive (giving a total combined thickness of 30.48μm). This film was 

bought from Adhesives Research, Ireland. 

 

 

Figure 45: (a) 3D schematic of the assembled microfluidic chip and (b) PTFE gasket. 
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 Pumps used 3.2.1.2.

For fluidic experiments two HPLC pumps were used. The first one was Waters 600E 

Gradient Module HPLC system bought from AGB Scientific, Germany and the second one 

was Knauer Smartline Pump 100 bought from Kinesis Ltd. Cambs, UK. 

Visualisation experiments were conducted using a milliGAT® pump, bought from 

Global FIA, Fox Island, WA, USA. 

 High voltage source 3.2.1.3.

EMCO High Voltage USB20P (HVUSB20P) high voltage source, USB connected 

with 0 to +2000V output, bought from Condatas AG, Zürich, Switzerland was used as a 

voltage source in conjunction with PMMA microfluidic chip. The HVUSB20P was 

connected to the two electrodes immersed in the agarose gel tanks. 

 HPLC tubing, fittings and connectors 3.2.1.4.

Upchurch Scientific universal PEEK HPLC fittings 1/16” diameter, thread 10-32 

size bought from Sigma-Aldrich Ireland were used. Specifically F-120X fingertight fittings, 

P-890 microtee, 5-9722 slip-on filter and 1/16” PEEK tubing with 250μm inner diameter 

were used with these fittings. 

 Optical detection equipment 3.2.1.5.

Ocean Optics MayaPRO spectrophotometer, coupled with Ocean Optics various 

diameter fibre optic waveguides, and Ocean Optics Spectrasuite software were used. 

The conditions of specific spectrum measurements are described later in details for all 

setups. The MayaPRO spectrophotometer was also used as an absorbance detector 

(working in absorbance mode) during experiments with focusing. Integrating sphere 

Ocean Optics FOIS-1 and calibrated light source Ocean Optics LS-1 tungsten halogen 

light source were used for radiometric measurements. 

 Microscopes 3.2.1.6.

A LabSmith SVM340 Synchronised Video Microscope, digital microscope fitted 

with Zeiss 4x and 10x magnifying lens (DIN standard) connected by Hauppauge WinTV 

television tuner and uScope Software for image capturing and video recording, program 

version 1.013 was used for visualisation of the capillary end in the experiments with 

photopolymerisation of monoliths. 
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Olympus BH-2 BHSP microscope fitted with a 20x magnifying lens and an 

Imagingsource 1.2 megapixel USB camera was used to capture images for the light 

intensity distribution inside the capillary filled with a light absorbing dye. 

Veho Discovery VMS-001 USB digital microscope with adjustable magnification 

ranging from 20x to 200x was used for real-time visualisation of the fluorescent dye in 

the microfluidic chip. 

 Camera 3.2.1.7.

Panasonic DMC FZ-30 digital camera with 8 megapixel CCD matrix fitted with 35-

420mm lens (35mm frame equivalent) mounted on a TD-1932 tripod was used for 

whole-chip imaging during experiments in PMMA microfluidic chip. The parameters for 

taking photos were: 1/50s exposure time, f/6.3 aperture, ISO 100 sensitivity, and 

uncompressed JPEG file with 3264x2448 pixels resolution output. 

 Power supply unit 3.2.1.8.

Switching mode power supply unit N93CX bought from Maplin, Ireland was used 

to drive the LED at constant current 20 mA. 

 Computer used in microfluidic experiments 3.2.1.9.

A Sony Vaio FZ-11z laptop was used for data acquisition and driving various 

devices (microscopes and high voltage source). This laptop contained a processor Intel® 

Centrino™2 Duo T7300, 2GB SO-DIMM PC2-5300, graphic card GeForce 8400M GT 

256MB, hard disk drive200GB 5400RPM 4MB cache and was run under Microsoft XP 

Professional operating system. 

 Other equipment 3.2.1.10.

An A4 size lightbox (part number 948088) with 20W compact fluorescent lamps 

installed and illumination area of 292mm by 197mm bought from LightboxUK.net was 

used for bright field imaging and the illumination of the dye distribution during the 

electrohydrodynamic focusing experiments. 
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3.2.2. Materials (chemicals and consumables) 

The chemical reagents used during the EHD focusing experiments are listed in 

the Table 20. 

Chemical Structure Manufacturer Purity 
CAS 

Number 

Malachite 
Green 

 

Sigma-Aldrich® >96.0% 569-64-2 

TRIS 

 

Sigma >99% 77-86-1 

HCl H–Cl Sigma 37% solution 7647-01-0 

Table 20: Table of chemicals used during experiments on EHD focusing. 

The LED (type LED430-06) of 5mm diameter and 430 nm central wavelength (violet) 

was purchased from Roithner Lasertechnik, GmbH, Vienna, Austria. The white LED of 5 

mm diameter manufactured by Nichia (type NSPW500GS-K1), was purchased from 

Dotlight, Jülich, Germany. 

3.2.3. Description of the general experimental setup 

The microfluidic chip presented in 3.2.1.1 was connected to two pumps. The 

first pump (Waters system) was used to pump the low conductivity (0.039 S/m) 100μM 

malachite green solution in deionised water at pH 7.0 through two auxiliary inlets (both 

off-centre inlets) at a flowrate ranging from 10 to 40μl/min (see individual experimental 

setup description for details). The chip was connected to the pump using a microtee 

connector acting as a 50/50 flow splitter to provide flow to the two parts of the 

microfluidic chamber. Initially a 6 ml custom made sample loop and an injection valve 

were tested, but such large loop turned out to be ineffective and allowed diffusion 

played a significant role affecting the overall results. With this loop sample 

concentration was decreased with time. The sample was being diluted toward the end 

of the inject volume due to the relatively large loop volume and low flowrate applied 

http://www.sigmaaldrich.com/catalog/Lookup.do?N5=CAS+No.&N3=mode+matchpartialmax&N4=569-64-2&D7=0&D10=&N25=0&N1=S_ID&ST=RS&F=PR
http://www.sigmaaldrich.com/catalog/Lookup.do?N5=CAS+No.&N3=mode+matchpartialmax&N4=77-86-1&D7=0&D10=&N25=0&N1=S_ID&ST=RS&F=PR
http://www.sigmaaldrich.com/catalog/Lookup.do?N5=CAS+No.&N3=mode+matchpartialmax&N4=7647-01-0&D7=0&D10=&N25=0&N1=S_ID&ST=RS&F=PR
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and one could not assume a constant concentration of the injected sample.  The 

injection valve and the loop were therefore removed and the sample was pumped 

straight through the pump. 

Pump number two (Knauer system) was used to pump the high conductivity 

(0.697 S/m) 20mM TRIS-HCl buffer of pH 4.9 at a flowrate ranging from 2 to 10μl/min, 

depending of the experiment. Initially the entire chip was primed with 100μM malachite 

green solution. After 10-20 minutes (see individual experiment description) the high 

voltage unit was turned on and the voltage was applied. Data points were gathered 

using the digital camera to capture at constant time intervals to capture the time 

evolution of the dye inside the chip. The experimental setup is shown in Figure 46. 

 

Figure 46: Photo of the experimental setup for the EHD focusing. 

3.2.4. Procedure of the concentration and its error calculation 

using digital photos 

The concentration measurements inside the chip were based on an absorbance 

photometry. The used test compound (malachite green) is a highly absorbing dye with a 

very intense blue-green colour even at a very low concentration. Entire chip was placed 

on a lightbox and was constantly illuminated with white light. 

Due to the significant planar size of the chip (100mm  20mm) in order to 

acquire data over the entire chip chamber a two-dimensional sensor was needed. 

Detector (camera) 

Sample 

Sample pump 

Buffer pump 

Waste 

Microfluidic chip 

High voltage source 
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Currently there are two major types of two-dimensional sensors available on the 

market: charged coupled device matrices (CCD) and complementary metal oxide 

semiconductor matrices (CMOS), both most commonly found as light-sensitive elements 

in digital cameras. Thus a camera was selected as the data recorder. It allowed 

visualising the entire chip at the same time which helped to observe and analyse the 

processes occurring inside the chip as well as directly comparing results to those from 

the modelling work. The rather low sensitivity of the camera matrix was complimented 

by direct measurement of the concentration changes using a fibre optic 

spectrophotometer working in absorbance measurement mode. A drawback associated 

with using a spectrophotometer is its one-point measurement mode. Thus it was used in 

later parts of experiments where focal points and flow paths were already identified. 

 

Figure 47: Calibration curves for the microfluidic chip with a 500μm gasket for images from digital 
camera (blue and red) and for spectrophotometer (green). AU stands for arbitrary unit. 

The first tested method of calculating concentration values from photos 

involved picture conversion from colour RGB 8-bits per channel to 8-bit grayscale format 

and reading the light intensity value from the area of interest. Then a linear trend was 

fitted to the acquired data points. 

As it can be seen from Figure 47, image conversion to grayscale lead to 

significant loss of precision and data (24-bit to 8-bit conversion) resulting data points 

lying further from the trend. R2 value of 0.93 suggests that there is an error incorporated 

in the measurements. The second method using luminosity values of the selected area 
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of the chip interior proved to have a lower error (R2 = 0.979) and the fitted line of linear 

trend remained within calculated errors. Basing on this result, the concentration 

calculation method involving grayscale conversion was abandoned. Data gathered with 

the spectrophotometer are much more precise lying on a nearly perfectly fitted line (R2 

= 0.9995) showing a high confidence level in the measurements. 

For concentration measurements, standard calibration curves were made for 

each PTFE gasket thickness for each microfluidic chip set-up. The chip was filled with the 

malachite green of known concentrations (0.1, 0.2, 0.4, 0.6 and 0.8mM) and each one 

was photographed. Next the colour luminosity7 L (average luminosity of the selected 

region and its standard deviation SL) was read using Adobe Photoshop CS3 software. An 

area of 20mm by 20mm close to the central outlet was selected during chip filling with 

the Tris-HCl buffer and a 3mm by 3mm area was selected of the focused dye to measure 

the real concentration inside the chip (see Figure 49). 

Several picture-to-picture differences in luminosity measured from these areas 

were noted. The first pictures taken each day had lower average luminosity than those 

take later on. This was attributed to heating of the light box and stabilisation of the light 

output. The second observed problem was decreased luminosity after taking of a series 

of pictures and this was attributed to heating of the CCD matrix in the camera. In order 

to standardise luminosity values, to allow a direct picture comparison and to lower the 

error of the concentration calculation luminosity values were normalised. To do this a 

white area of typically 40mm by 80mm of the lightbox surface on each picture (a 

fragment typically located at the bottom of picture) was selected and its average 

luminosity W and its standard deviation SW were measured (see Figure 48). Next the 

value of luminosity L measured from the selected test area was divided by white 

standard luminosity W. For combined luminosity variance evaluation from the 

luminosity standard deviation from the selected test area (given by SL), and from the 

white area (SW), a new combined standard deviation was calculated (D), as in the Eq. 20. 

       (
    
    

 
    
    

 
    
    

 
    
    

) Eq. 20 

                                                           
7
 Defined as weighted nonlinear sum of each channel (red, green and blue) intensity 

                        



75 | P a g e  
 

After introduction of the reference white area was introduced, R2 dropped from 

0.979 to 0.973 and average dispersion calculated according to the Eq. 20 increased from 

4.45% to 6.14% (see Figure 48). 

The associated precision loss is inevitable as the introduced white standard is 

biased by its own error. Although theoretical precision dropped, the average 

concentration values calculated using this method were significantly closer to the actual 

values. After priming chip with 0.1mM malachite green and during the filing of the chip 

with high conductivity buffer calculated concentration values should be around 0.1mM 

and without normalisation with the white standard, these were often shifted by 0.2mM 

or even more from the actual values. 

 

Figure 48: Calibration curve for 500μm gasket with light intensity correction based on luminosity of 
the reference white area.  

  

Figure 49: Localisations of the test areas for luminosity measurements and concentration 

calculations (a) 2020mmaera used during filling the chip with Tris-HCl buffer, (b) 33mm aera used 
during focusing. 
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is presented in Figure 50. Until 900s (before applying the voltage) no significant changes 

in concentration should be observed, and this is concurrent with concentration values 

calculated using the mentioned normalisation method. For this period, the calculated 

concentration was within the error margin around the initial value (0.1mM). Also central 

points were closer to this value after normalisation. An increasing luminosity of the test 

area is visible as well. 

 

Figure 50: Comparison of the concentration calculations using non-corrected (blue points) and 
normalised luminosity (red point). Luminosity of the test area (green points) is presented as a 

reference. 

3.2.5. Absorbance measurements in the chip 

To check concentration measurements with those obtained from photos, a 

spectrophotometer Ocean Optics MayaPRO 2000 was used. A 50μm Premium Grade 

Optical Fibre QP50-2-UV/VIS, with numerical aperture 0.22, bought from Ocean Optics, 

UK was installed in a custom made aluminium holder above the chip (see Figure 51). 

Depending on the experiment (placement of fitting blocking outlets), the optical fibre 

was installed between 20mm and 35mm from the outlets in the centre of the chip (see 

Figure 49). Opposite to the collecting fibre a violet LED (type LED430-06) of 5mm 

diameter and 430nm central wavelength, purchased from Roithner Lasertechnik, GmbH, 

Vienna, Austria was installed. The 430nm LED was chosen due to the presence of the 

malachite green local absorbance maximum around that wavelength. See Figure 52 for 

LED emission spectrum and malachite green absorbance spectrum in the same 

wavelength range. 
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Figure 51: Schematic of the absorbance measurements setup using LED illumination and fibre optic 
spectrophotometer as absorbance detector (picture in scale). 

 

Figure 52: 430nm LED emission spectrum (blue line) for use as a light source in absorbance 
photmoetric detection of malachite green (red line). 
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3.2.6. Individual conditions for experiments on EHD focusing in 

microfluidic chip 

The fabricated chip had three inlets and four outlets installed that could be 

enabled or disabled individually depending on the experimental setup (see Figure 53). 

 

Figure 53: Plan schematic of the microfluidic chip used in focusing experiments.  

Three general chip layouts were tested, which are named according to the 

outlet layouts used. The first series of experiments are named after using two peripheral 

outlets (O1 and O2) and was labelled 2P (see Figure 54). The second tested layout 

employed two outlets placed in line (O3 and O4) in the centre of the chip and was named 

2L (see Figure 55). The third series employed application of three outlets placed in line 

transversally to the flow direction (O1, O2 and O3) and was labelled 3T (see Figure 56). 

The number following these prefix is the particular experiment number and can also be 

read from the presented photos documenting each experiment. Conditions for 

experiments 2P-14, 2P-22, 2P-30, 2P-47, 2L-15, 2L-16, 2L-17, 2L-26, 2L-40, 2L-41, 3T-20, 

3T-21, 3T-24, 3T-31, 3T-36, 3T-43 AND 3T-58 are presented in Sections 3.2.6.1 to 

3.2.6.17. Corresponding results are presented in Chapter 5 in Sections 5.1 to 5.17. 

 

Figure 54: Schematic of the inlets and outlets and outlets used in the 2P-series experiments. 
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Figure 55: Schematic of the inlets and outlets and outlets used in the 2L-series experiments. 

 

Figure 56: Schematic of the inlets and outlets and outlets used in the 3T-series experiments. 

 Problems observed during the initial stage of experiments 3.2.6.1.

The initial experiments with the two peripheral outlets (2P experiment series) 

showed problems associated with the tubing used for waste collection. The two 

fingertight fittings with polymer tubing glued in were used to gather the outflowing 

fluid. Initial experiments showed that it was very difficult to maintain similar flow rates 

through each of these outlets. Even simple droplet counting showed significant 

discrepancies in the outflow rates. As even pressure distribution and equal outflow was 

regarded as a necessary condition to achieve the desired flow patterns, the fittings with 

tubing were removed and the outlets were left unrestricted. Overflowing liquid was 

gently removed with small piece of absorbing medium. 

 

Figure 57: Schematic of the expected pattern of malachite green during a focusing experiment.  

Figure 57 shows a schematic how a fluid would be expected to behave in the left 

part of the chip during a focusing experiment. A region of higher concentration should 

appear centrally in the chip, ideally along a symmetry axis of the chip and should start 

dispersing toward installed outlets. During experiments flow had tendency to divert 

toward one wall (e.g. to the bottom wall on the schematic, see Figure 58). 

It was quite difficult to maintain even outflow even with tubing removed. Flow 

inside the chip showed tendencies to twist and turn instead of flowing smoothly. Comb-
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like structures visible on Figure 58d are discussed later in this section. Typical problems 

associated with flow stability can be divided into categories: 

- Oscillations of flow axis 

- Uneven reach of the outlets 

- Different wetting of the outlet 

  

  

  

Figure 58a-f: Photos of observed problems with flow stability inside the chip.  

The first two are attributed to unevenness in the surface morphology of the 

used chip. Occurrences did not appear random and repeated several times. Careful 

application of small pieces of tissue to simultaneously collect droplets forming in the 

outlets allowed minimising these effects. These effects intensified with reduction of the 

thickness of the used gasket.  It was possible to maintain stable flow with 100μm thick 

gasket. The third problem was especially visible with thin gaskets (50μm and 100μm) 
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where the capillary action of the tissue was strong enough to drain completely one 

outlet, which diverted the flow after a while to the other outlet, which remained wet. 

The thinnest gasket (50μm) proved to be too thin to allow unrestricted flow and after 

several attempts to stabilise flow was abandoned.  

 Experiment 2P-14 3.2.6.2.

The chip was primed with 0.1mM malachite green (MG). For 900s 20mM Tris-

HCl buffer was pumped into the system at a flowrate of 4μl/min through the I1 inlet. 

Malachite green at concentration of 0.1mM was pumped into the chip through the I2 

and I3 inlets at a flowrate of 20μl/min. After 900s, a potential difference of 300V was 

applied. During the filling with Tris-HCl photos were taken every 300s, after applying the 

voltage photos were taken every 120s. The 500μm PTFE gasket was used. Figure 54 

shows schematic of experimental setup and Table 21 provides summary of conditions. 

Inlets I1 I2 I3 

Flowrate 4μl/min 20μl/min 20μl/min 

Compound 20mM Tris-HCl 0.1mM MG 0.1mM MG 

Gasket thickness 500μm 

Filling time 900s 

Voltage 300V after 900s 

Experiment time 1860s 

Table 21: Conditions for the experiment 2P-14. 

 Experiment 2P-22 3.2.6.3.

The chip was primed with 0.1mM malachite green (MG). For 900s 20mM Tris-

HCl buffer was pumped into the system at a flowrate of 5μl/min through the I1 inlet. 

Malachite green at concentration of 0.1mM was pumped into the chip through the I2 

and I3 inlets at a flowrate of 19μl/min. After 900s, a potential difference of 280V was 

applied. During the filling with Tris-HCl photos were taken every 300s, after applying the 

voltage photos were taken every 120s. 500μm PTFE gasket was used. Figure 54 shows 

schematic of experimental setup and Table 22 provides summary of conditions.  

Inlets I1 I2 I3 

Flowrate 5μl/min 19μl/min 19μl/min 

Compound 20mM Tris-HCl 0.1mM MG 0.1mM MG 

Gasket thickness 500μm 

Filling time 900s 

Voltage 280V after 900s 

Experiment time 3060s 

Table 22: Conditions for the experiment 2P-22. 
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 Experiment 2P-30 3.2.6.4.

The chip was primed with 0.1mM malachite green (MG). For 1200s 20mM Tris-

HCl buffer was pumped into the system at a flowrate of 2μl/min through the I1 inlet. 

Malachite green at concentration of 0.1mM was pumped into the chip through the I2 

and I3 inlets at a flowrate of 20μl/min. After 1200s, a potential difference of 300V was 

applied. During the filling with Tris-HCl photos were taken every 300s, after applying the 

voltage photos were taken every 120s. 500μm PTFE gasket was used. Figure 54 shows 

schematic of experimental setup and Table 23 provides summary of conditions.  

Inlets I1 I2 I3 

Flowrate 2μl/min 20μl/min 20μl/min 

Compound 20mM Tris-HCl 0.1mM MG 0.1mM MG 

Gasket thickness 500μm 

Filling time 1200s 

Voltage 200V after 900s 

Experiment time 2520s 

Table 23: Conditions for the experiment 2P-30. 

 Experiment 2P-47 3.2.6.5.

The chip was primed with 0.1mM malachite green (MG). For 600s 20mM Tris-

HCl buffer was pumped into the system at a flowrate of 2μl/min through the I1 inlet. 

Malachite green at concentration of 0.1mM was pumped into the chip through the I2 

and I3 inlets at a flowrate of 20μl/min. After 600s, a potential difference of 300V was 

applied. During the filling with Tris-HCl photos were taken every 300s, after applying the 

voltage photos were taken every 120s. 200μm PTFE gasket was used. Figure 54 shows 

schematic of experimental setup and Table 24 provides summary of conditions.  

Inlets I1 I2 I3 

Flowrate 2μl/min 20μl/min 20μl/min 

Compound 20mM Tris-HCl 0.1mM MG 0.1mM MG 

Gasket thickness 200μm 

Filling time 600s 

Voltage 300V after 600s 

Experiment time 2760s 

Table 24: Conditions for the experiment 2P-47. 

 Experiment 2L-15 3.2.6.6.

The chip was primed with 0.1mM malachite green (MG). For 1200s 20mM Tris-

HCl buffer was pumped into the system at a flowrate of 2μl/min through the I1 inlet. 
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Malachite green at concentration of 0.1mM was pumped into the chip through the I2 

and I3 inlets at a flowrate of 10μl/min. After 1200s, a potential difference of 300V was 

applied. During the filling with Tris-HCl photos were taken every 300s, after applying the 

voltage photos were taken every 120s. 500μm PTFE gasket was used. Figure 55 shows 

schematic of experimental setup and Table 25 provides summary of conditions. 

Inlets I1 I2 I3 

Flowrate 2μl/min 10μl/min 10μl/min 

Compound 20mM Tris-HCl 0.1mM MG 0.1mM MG 

Gasket thickness 500μm 

Filling time 1200s 

Voltage 300V after 1200s 

Experiment time 2520s 

Table 25: Conditions for the experiment 2L-15. 

 Experiment 2L-16 3.2.6.7.

The chip was primed with 0.1mM malachite green (MG). For 900s 20mM Tris-

HCl buffer was pumped into the system at a flowrate of 4μl/min through the I1 inlet. 

Malachite green at concentration of 0.1mM was pumped into the chip through the I2 

and I3 inlets at a flowrate of 20μl/min. After 900s, a potential difference of 300V was 

applied. During the filling with Tris-HCl photos were taken every 300s, after applying the 

voltage photos were taken every 120s. 500μm PTFE gasket was used. Figure 55 shows 

schematic of experimental setup and Table 26 provides summary of conditions. 

Inlets I1 I2 I3 

Flowrate 4μl/min 20μl/min 20μl/min 

Compound 20mM Tris-HCl 0.1mM MG 0.1mM MG 

Gasket thickness 500μm 

Filling time 900s 

Voltage 300V after 900s 

Experiment time 2140s 

Table 26: Conditions for the experiment 2L-16. 

 Experiment 2L-17 3.2.6.8.

The chip was primed with 0.1mM malachite green (MG). For 1200s 20mM Tris-

HCl buffer was pumped into the system at a flowrate of 2μl/min through the I1 inlet. 

Malachite green at concentration of 0.1mM was pumped into the chip through the I2 

and I3 inlets at a flowrate of 20μl/min. After 1200s, a potential difference of 300V was 

applied. During the filling with Tris-HCl photos were taken every 300s, after applying the 
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voltage photos were taken every 120s. 500μm PTFE gasket was used. Figure 55 shows 

schematic of experimental setup and Table 27 provides summary of conditions. 

Inlets I1 I2 I3 

Flowrate 2μl/min 20μl/min 20μl/min 

Compound 20mM Tris-HCl 0.1mM MG 0.1mM MG 

Gasket thickness 500μm 

Filling time 1200s 

Voltage 300V after 1200s 

Experiment time 2160s 

Table 27: Conditions for the experiment 2L-17. 

 Experiment 2L-26 3.2.6.9.

In this experiment the outlet O1 was blocked. The chip was primed with 0.1mM 

malachite green (MG). For 900s 20mM Tris-HCl buffer was pumped into the system at a 

flowrate of 2μl/min through the I1 inlet. Malachite green at concentration of 0.1mM was 

pumped into the chip through the I2 and I3 inlets at a flowrate of 20μl/min. After 900s, a 

potential difference of 295V was applied. During the filling with Tris-HCl photos were 

taken every 300s, after applying the voltage photos were taken every 120s. 500μm PTFE 

gasket was used. Figure 55 shows schematic of experimental setup and Table 28 

provides summary of conditions. 

Inlets I1 I2 I3 

Flowrate 2μl/min 20μl/min 20μl/min 

Compound 20mM Tris-HCl 0.1mM MG 0.1mM MG 

Gasket thickness 500μm 

Filling time 900s 

Voltage 295V after 1200s 

Experiment time 2940s 

Table 28: Conditions for the experiment 2L-26. 

 Experiment 2L-40 3.2.6.10.

The chip was primed with 0.1mM malachite green (MG). For 600s 20mM Tris-

HCl buffer was pumped into the system at a flowrate of 2μl/min through the I1 inlet. 

Malachite green at concentration of 0.1mM was pumped into the chip through the I2 

and I3 inlets at a flowrate of 20μl/min. After 600s, a potential difference of 595V was 

applied. During the filling with Tris-HCl photos were taken every 300s, after applying the 

voltage photos were taken every 120s. 200μm PTFE gasket was used. Figure 55 shows 

schematic of experimental setup and Table 29 provides summary of conditions. 
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Inlets I1 I2 I3 

Flowrate 2μl/min 20μl/min 20μl/min 

Compound 20mM Tris-HCl 0.1mM MG 0.1mM MG 

Gasket thickness 200μm 

Filling time 600s 

Voltage 595V after 600s 

Experiment time 2640s 

Table 29: Conditions for the experiment 2L-40. 

 Experiment 2L-41 3.2.6.11.

In this experiment the outlet O1 was blocked. The chip was primed with 0.1mM 

malachite green (MG). For 900s 20mM Tris-HCl buffer was pumped into the system at a 

flowrate of 2μl/min through the I1 inlet. Malachite green at concentration of 0.1mM was 

pumped into the chip through the I2 and I3 inlets at a flowrate of 20μl/min. After 600s, a 

potential difference of 750V was applied. During the filling with Tris-HCl photos were 

taken every 300s, after applying the voltage photos were taken every 120s. 200μm PTFE 

gasket was used. Figure 55 shows schematic of experimental setup and Table 30 

provides summary of conditions. 

Inlets I1 I2 I3 

Flowrate 2μl/min 20μl/min 20μl/min 

Compound 20mM Tris-HCl 0.1mM MG 0.1mM MG 

Gasket thickness 200μm 

Filling time 600s 

Voltage 750V after 600s 

Experiment time 2160s 

Table 30: Conditions for the experiment 2L-41. 

 Experiment 3T-20 3.2.6.12.

The chip was primed with 0.1mM malachite green (MG). For 900s 20mM Tris-

HCl buffer was pumped into the system at a flowrate of 2μl/min through the I1 inlet. 

Malachite green at concentration of 0.1mM was pumped into the chip through the I2 

and I3 inlets at a flowrate of 20μl/min. After 900s, a potential difference of 280V was 

applied. During the filling with Tris-HCl photos were taken every 300s, after applying the 

voltage photos were taken every 120s. 500μm PTFE gasket was used. Figure 56 shows 

schematic of experimental setup and Table 31 provides summary of conditions. 
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Inlets I1 I2 I3 

Flowrate 2μl/min 20μl/min 20μl/min 

Compound 20mM Tris-HCl 0.1mM MG 0.1mM MG 

Gasket thickness 500μm 

Filling time 900s 

Voltage 280V after 900s 

Experiment time 3540s 

Table 31: Conditions for the experiment 3T-20. 

 Experiment 3T-21 3.2.6.13.

The chip was primed with 0.1mM malachite green (MG). For 600s 20mM Tris-

HCl buffer was pumped into the system at a flowrate of 2μl/min through the I1 inlet. 

Malachite green at concentration of 0.1mM was pumped into the chip through the I2 

and I3 inlets at a flowrate of 20μl/min. After 600s, a potential difference of 250V was 

applied. During the filling with Tris-HCl photos were taken every 300s, after applying the 

voltage photos were taken every 120s. 500μm PTFE gasket was used. Figure 56 shows 

schematic of experimental setup and Table 32 provides summary of conditions. 

Inlets I1 I2 I3 

Flowrate 2μl/min 20μl/min 20μl/min 

Compound 20mM Tris-HCl 0.1mM MG 0.1mM MG 

Gasket thickness 500μm 

Filling time 600s 

Voltage 250V after 600s 

Experiment time 1920s 

Table 32: Conditions for the experiment 3T-21. 

 Experiment 3T-24 3.2.6.14.

The chip was primed with 0.1mM malachite green (MG). For 600s 20mM Tris-

HCl buffer was pumped into the system at a flowrate of 5μl/min through the I1 inlet. 

Malachite green at concentration of 0.1mM was pumped into the chip through the I2 

and I3 inlets at a flowrate of 20μl/min. After 600s, a potential difference of 350V was 

applied. During the filling with Tris-HCl photos were taken every 300s, after applying the 

voltage photos were taken every 120s. 500μm PTFE gasket was used. Figure 56 shows 

schematic of experimental setup and Table 33 provides summary of conditions. 
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Inlets I1 I2 I3 

Flowrate 5μl/min 20μl/min 20μl/min 

Compound 20mM Tris-HCl 0.1mM MG 0.1mM MG 

Gasket thickness 500μm 

Filling time 600s 

Voltage 350V after 600s 

Experiment time 2280s 

Table 33: Conditions for the experiment 3T-24. 

 Experiment 3T-31 3.2.6.15.

The chip was primed with 0.1mM malachite green (MG). For 900s 20mM Tris-

HCl buffer was pumped into the system at a flowrate of 2μl/min through the I1 inlet. 

Malachite green at concentration of 0.1mM was pumped into the chip through the I2 

and I3 inlets at a flowrate of 20μl/min. After 900s, a potential difference of 310V was 

applied. During the filling with Tris-HCl photos were taken every 300s, after applying the 

voltage photos were taken every 120s. 500μm PTFE gasket was used. Figure 56 shows 

schematic of experimental setup and Table 34 provides summary of conditions. 

Inlets I1 I2 I3 

Flowrate 2μl/min 20μl/min 20μl/min 

Compound 20mM Tris-HCl 0.1mM MG 0.1mM MG 

Gasket thickness 500μm 

Filling time 900s 

Voltage 310V after 900s 

Experiment time 2340s 

Table 34: Conditions for the experiment 3T-24. 

 Experiment 3T-36 3.2.6.16.

The chip was primed with 0.1mM malachite green (MG). For 600s 20mM Tris-

HCl buffer was pumped into the system at a flowrate of 2μl/min through the I1 inlet. 

Malachite green at concentration of 0.1mM was pumped into the chip through the I2 

and I3 inlets at a flowrate of 20μl/min. After 600s, a potential difference of 300V was 

applied. During the filling with Tris-HCl photos were taken every 300s, after applying the 

voltage photos were taken every 120s. 500μm PTFE gasket was used. Figure 56 shows 

schematic of experimental setup and Table 35 provides summary of conditions. 
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Inlets I1 I2 I3 

Flowrate 2μl/min 20μl/min 20μl/min 

Compound 20mM Tris-HCl 0.1mM MG 0.1mM MG 

Gasket thickness 500μm 

Filling time 900s 

Voltage 300V after 900s 

Experiment time 1860s 

Table 35: Conditions for the experiment 3T-36. 

 Experiment 3T-43 3.2.6.17.

The chip was primed with 0.1mM malachite green (MG). For 600s 20mM Tris-

HCl buffer was pumped into the system at a flowrate of 2μl/min through the I1 inlet. 

Malachite green at concentration of 0.1mM was pumped into the chip through the I2 

and I3 inlets at a flowrate of 20μl/min. After 600s, a potential difference of 600V was 

applied. During the filling with Tris-HCl photos were taken every 300s, after applying the 

voltage photos were taken every 120s. 200μm PTFE gasket was used. Figure 56 shows 

schematic of experimental setup and Table 36 provides summary of conditions. 

Inlets I1 I2 I3 

Flowrate 2μl/min 20μl/min 20μl/min 

Compound 20mM Tris-HCl 0.1mM MG 0.1mM MG 

Gasket thickness 200μm 

Filling time 600s 

Voltage 600V after 600s 

Experiment time 1800s 

Table 36: Conditions for the experiment 3T-43. 

 Experiment 3T-58 3.2.6.18.

The chip was primed with 0.1mM malachite green (MG). For 300s 20mM Tris-

HCl buffer was pumped into the system at a flowrate of 2μl/min through the I1 inlet. 

Malachite green at concentration of 0.1mM was pumped into the chip through the I2 

and I3 inlets at a flowrate of 20μl/min. After 300s, a potential difference of 1200V was 

applied. During the filling with Tris-HCl photos were taken every 300s, after applying the 

voltage photos were taken every 120s. 100μm PTFE gasket was used. Figure 56 shows 

schematic of experimental setup and Table 37 provides summary of conditions. 
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Inlets I1 I2 I3 

Flowrate 2μl/min 20μl/min 20μl/min 

Compound 20mM Tris-HCl 0.1mM MG 0.1mM MG 

Gasket thickness 100μm 

Filling time 300s 

Voltage 1200V after 300s 

Experiment time 2580s 

Table 37: Conditions for the experiment 3T-58. 

 Reproducibility of the EHDF 3.2.6.19.

The chip was primed with 0.1mM malachite green (MG). For 1200s 20mM Tris-

HCl buffer was pumped into the system at a flowrate of 2μl/min through the I1 inlet. 

Malachite green at concentration of 0.1mM was pumped into the chip through the I2 

and I3 inlets at a flowrate of 20μl/min. After 1200s, a potential difference of 250V was 

applied. During the filling with Tris-HCl photos were taken every 300s, after applying the 

voltage photos were taken every 120s. 500μm PTFE gasket was used. Six series of 

experiment with the same set of conditions were conducted. Figure 54 shows schematic 

of the experimental setup used and Table 38 provides a summary of the conditions. 

Inlets I1 I2 I3 

Flowrate 2μl/min 20μl/min 20μl/min 

Compound 20mM Tris-HCl 0.1mM MG 0.1mM MG 

Gasket thickness 500μm 

Filling time 1200s 

Voltage 250V after 1200s 

Experiment time 3120s 

Table 38: Conditions for the experiment on repeatability. 

 Modelling and experiments of the light propagation in 3.3.

microfluidic systems 

3.3.1. Software used 

The Light propagation and light intensity distribution models were developed 

under LabVIEW™8.2, 8.5.1 and 2009 (9.0.1) graphical programming environment 

developed by National Instruments. Graphic-related work, such as generation of multi-

colour maps, reading pixel colours etc. were conducted with Adobe Photoshop CS 3 ver. 

10.0.1. Dimension and angle measurements on taken photos were performed using 

ImageJ 1.43u software. 
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3.3.2. Materials and chemicals used in experiments on light 

propagation 

Two sets of macroscale experiment with the polymer tubes made of 

polymethylmetacrylate (PMMA) and polycarbonate (PC) were purchased from Access 

Plastic Company, Ireland. The two sets of concentric plastic cylinders were made with 

outer and inner diameter as follows Set A: 80x74mm PC and 70x60mm PMMA and Set B: 

80x70mm PMMA and 70x64mm PC.  The refractive indices used in the developed 

models for PMMA and PC were 1.495 and 1.592 respectively (255). 

The used Polymicro Technologies transparent PTFE coated fused silica capillaries of 

100 µm internal diameter were purchased from Composite Metal Services Ltd (UK). 

The LED (type LED430-06) of 5mm diameter and 430 nm central wavelength 

violet was purchased from Roithner Lasertechnik, GmbH, Vienna, Austria. The white LED 

of 5 mm diameter was manufactured by Nichia (type NSPW500GS-K1), was purchased 

from Dotlight, Jülich, Germany. 

Name Structure Manufacturer Purity 
CAS 

Number 

Tartrazine 
 

Sigma-Aldrich® >85% 1934-21-0 

Table 39: List of chemicals used in experiments on light propagation. 

3.3.3. Materials and chemicals used in experiment with 

photopolymerisation of monoliths in capillaries 

Polymicro Technologies Inc. (Phoenix, AZ, USA) transparent polytetrafluoro-

ethylene (PTFE) coated fused silica capillaries (100 µm i.d.) were purchased from 

Composite Metal Services Ltd, UK. 365 nm light emitting diodes were purchased from 

Roithner Lasertechnik, GmbH (Vienna, Austria). HPLC pump (Waters 510) was used to 

flush the capillaries after the polymerisation. 

  

http://www.sigmaaldrich.com/catalog/Lookup.do?N5=CAS+No.&N3=mode+matchpartialmax&N4=1934-21-0&D7=0&D10=&N25=0&N1=S_ID&ST=RS&F=PR
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Name Structure Manufacturer Purity 
CAS 

Number 

Glycidyl 
methacrylate 

 

Sigma-Aldrich® 97% 106-91-2 

Ethylene 
dimethacrylate  

Sigma-Aldrich® 98% 97-90-5 

Michler’s 
ketone 

 

Sigma-Aldrich® 98% 90-94-8 

Cyclohexanol 

 

Riedel-de Haën ≥99% 108-93-0 

1-decanol  Sigma-Aldrich® ≥98% 112-30-1 

Table 40: List of chemicals used for photopolymerisation of monoliths in capillaries for verification 
of the light propagation model. 

3.3.4. Procedure of development of the light propagation model 

Whenever light is incident on the boundary of two transparent dielectrics part 

of it is reflected and part is transmitted, see Figure 59. The angle of incidence is related 

with the angle of transmittance by Snell’s Law (Eq. 21). In the case of cylindrical 

symmetry, as in capillaries, it is possible that the exiting ray will not be parallel with the 

incident, see Figure 60. 

 

Figure 59: Light incident on boundary of two different dielectrics. 

(b) 

http://www.sigmaaldrich.com/catalog/Lookup.do?N5=DISPLAY_CAS&N3=mode+matchpartialmax&N4=106-91-2&D7=0&D10=&N25=0&N1=S_ID&ST=RS&F=PR
http://www.sigmaaldrich.com/catalog/Lookup.do?N5=DISPLAY_CAS&N3=mode+matchpartialmax&N4=97-90-5&D7=0&D10=&N25=0&N1=S_ID&ST=RS&F=PR
http://www.sigmaaldrich.com/catalog/Lookup.do?N5=DISPLAY_CAS&N3=mode+matchpartialmax&N4=90-94-8&D7=0&D10=&N25=0&N1=S_ID&ST=RS&F=PR
http://www.sigmaaldrich.com/catalog/Lookup.do?N5=DISPLAY_CAS&N3=mode+matchpartialmax&N4=108-93-0&D7=0&D10=&N25=0&N1=S_ID&ST=RS&F=PR
http://www.sigmaaldrich.com/catalog/Lookup.do?N5=DISPLAY_CAS&N3=mode+matchpartialmax&N4=112-30-1&D7=0&D10=&N25=0&N1=S_ID&ST=RS&F=PR
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Figure 60: Schematic of light transmission through, (a) a flat transparent material and (b) a 
cylindrical capillary, showing curvature affects on angle of incidence and transmittance. 

                  Eq. 21 

where ni is the refractive index of the incident ray transmission medium, θi is the angle 

between incident wavevector and the normal to surface, nt is the refractive index of the 

material through with the transmitted ray passes and θt is the angle between 

transmitted wavevector and normal to the surface. Light attenuation inside the 

absorbing medium is governed by Beer-Lambert law (Eq. 15). 

      
     Eq. 15 

 

where I is the initial light intensity, I0 is the light intensity behind the sample, α is the 

molar absorptivity coefficient, c is concentration of the compound and 𝑙 is length is the 

absorption path length. 

The numerical modelling software was developed to calculate the light ray path 

through multi-layered cylinders, and the light intensity distribution map through the 

cylinder cross-sectional area. Light propagation within multimode optical fibres occurs 

by the phenomena of total internal reflection, where the values of refractive indices and 

fibre diameter remain within the limits of geometrical optics. The size of the capillary 

used in this work was comparable with the size of multimode optical fibres. It was 

assumed that capillary body, coating and bore were perfectly cylindrical and concentric. 

A second assumption was that the incident light had the form of parallel rays (spatially 

collimated), similar to laser beam light. Only the right half of the capillary cross-section is 

displayed in the developed model, as the diameter acts as the modelled axis of 

(a) 
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symmetry and no light ray could propagate through from left to right side. In general 

such occurrence is possible, but only for higher values of refractive indices 

approximately twice those of glass and PTFE which were used in this work. 

The programmed model calculated the light ray path equations in the Cartesian 

coordinate system. Separate linear functions to describe each of the light ray path 

segments were used (for example between air/tube, tube/tube or tube/liquid). Each 

light path segment was calculated in a separate subroutine calculating the light path in 

each zone. Incident light was in the form of rays parallel to y-axis, see Figure 61. The first 

subroutine calculated the coordinates of the light incident from infinity on the 

air/coating boundary. This point of incidence of the ray a1 on outermost circle c1 was 

assigned as p1. An extended radius r1 going from (0, 0) through p1 was drawn for 

calculation of angle of incidence θi1 and in turn angle of transmission θt1 was calculated 

from Eq. 21, for the use inputted values of refractive indices ni and nt. A line a2 through 

p1 was drawn representing the refracted ray in the coating with θt1 as the angle between 

a2 and r1, ending the first program subroutine, see Figure 61A. The next subroutine 

began with calculation of point p2 (where line a2 crossed boundary c2) and the drawing 

of extended radius r2 from (0, 0) through p2. Angle of incidence θi2 was calculated as the 

angle bounded by r2 and a2, see Figure 61B. Angle of transmittance θt2 was calculated 

from Eq. 21 and the line a3 was drawn where θt2 was and angle between r2 and a3, 

ending the second program subroutine, see Figure 61B. This subroutine was iterated a 

further three times to calculate light ray paths segments along lines a4, a5 and a6 after 

refraction on each encountered boundary. These next subroutines of the light path 

formation are illustrated in Figure 61C to E and the complete generated light path is 

presented in Figure 61F without reference lines. The entire light path was represented 

as a sum of individual rays calculated separately according to the symbolic algorithm: 

  ∑(                        )

  

   

 

where r is a light ray path, k is a step number; n is a number of layers; a, c, p, r, θi and θt 

are as described earlier. 
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Figure 61: Schematic of reference lines and points, and light ray path calculated by each sub-routine 
for light passing through a three layer system in which the light ray  path is passing through a coated 

hollow capillary 

For light intensity calculations the entire capillary bore (100 µm inner diameter 

which was modelled) was divided into a 0.1 x 0.1 µm grid and assigned with initial light 

intensity values of zero, see Figure 62. This resolution was determined to be adequate 

giving 500 cells along capillary radius and 1000 cells across capillary diameter. The 

external capillary surface was illuminated by a set of parallel light rays spaced 0.1 µm 

apart. Each individual light ray was propagated through the entire capillary, giving a 

single light path for each incident light ray at each x-value. Modelled light ray incidence 

direction and x-axes direction are the same as sown in Figure 61 and Figure 62. Note a 

new origin (0, 0) and y-axis direction are shown in Figure 62. For light intensity modelling 

it was assumed that there was no light absorption or attenuation in the capillary coating 

and capillary wall. Cell references for each light ray inside capillary bore were calculated 

to allow attribution of light intensity values from each ray to related cells, see Figure 62. 

Along each ray path, the light intensity at each cell was calculated as a percentage of 

initial intensity from Eq. 15. The intensity contribution from each ray to each cell was 

calculated separately and summed to give the total light intensity value in each cell. Due 

to the finite size of the cells and finite distance between incident rays, digitisation of the 

light intensity values across the capillary resulted. To visualise a more physically correct 

result all values were averaged using a 19 point moving average calculation along the x-

(a) (b) (c) 

(d) (e) (f) 
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axis. By using this 19 point moving average method, there was a loss of accurate 

information for a 1.9 µm region (i.e. 19 × 0.1µm) at the outer diameter of the 100 µm 

bore (for x-values from 231 to 250). 

 

 

Figure 62: Scheme of method used by algorithm for allocation of cell x and y reference values to a 
light ray for calculation of related light intensity values at each location. 

3.3.5. Light propagation model verification procedure 

The green laser of 5 mW with wavelength of 532nm which was used as the light 

source was mounted on a micrometric stage pointing parallel to the axis of symmetry (y-

axis) as shown in Figure 63. The laser was aligned to shine exactly along the longitudal 

axis of symmetry of the tube and then moved 40mm along the x-axis such that the laser 

line formed a tangent to the outer cylinder. During the experiment the laser was moved 

by 1mm increments toward the cylinder’s centre. 

 

 

Figure 63: Schematic plan view of initial positions of laser with the (a) 80x74mm PC and 70x60mm 
PMMA concentric cylinders (Set A) and the and (b) 80x70mm PMMA and 70x64mm PC concentric 

cylinders (Set B). 

(a) (b) 
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At each increment a picture, taken with a Panasonic LUMIX DMC-FZ30 digital 

camera mounted vertically overhead, was taken to measure the reflection and 

transmission angles in each cylinder for comparison with the corresponding numerical 

model results. Measurements were taken for points between from 15 to 40mm from 

the central axis point. These tests were repeated three times with average reflectance 

and transmission angles being recorded. Confidence intervals for these results using a 

95% level and t-distribution were calculated. 

The microscale experimental measurements of the optical light intensity in a 

100 µm internal diameter capillary were recorded. These measurements were 

compared with the theoretical values as determined from numerical simulations. The 

capillary of 1 cm length was filled with 0.01M solution of tartrazine and illuminated with 

white and 430nm violet LEDs. Tartrazine is a yellow food dye with the maximum 

absorbance for which was measured around 425 nm, and thus an LED with emission 

maximum in the range where tartrazine is highly absorbing was chosen, see Figure 64.  

The experimental setup is presented in Figure 65. 

 

Figure 64: (a) Absorbance spectrum of tartrazine, (b) relative emission spectrum of the 430nm violet 
LED, and (c) relative emission spectrum of the white LED. 
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Figure 65: Schematic of the experimental setup for the light intensity distribution measureme nts 
inside the 100μm inner bore capillary. 

3.3.6. Procedure of obtaining monoliths by photopolymerisation in 

capillaries for observation of light propagation changes 

Methacrylic monoliths were synthesised using glycidyl methacrylate (GMA) and 

ethylene dimethacrylate (EDMA) (1/1 v/v). Cyclohexanol and decanol (1/2 v/v) were 

used as porogens. The photopolymerisation experiments are described in (256) with 

details briefly summarized as follows. The polymerisation mixture (400 μl) consisted of 

60 μl GMA, 60 μl EDMA, 1.26 mg (1% to monomer) photoinitiator MK, 95 μl of 

cyclohexanol, and 185 μl of decanol (1/2 v/v). After sonication and purging with nitrogen 

polymerisation mixture was filled into the silanized fused silica capillary and both ends 

were sealed with a rubber septum. In order to have sharp edges of monolith, the 

capillary was masked using a black tape. 

An experiment demonstrating the real-time visualisation of the fluorescent dye is 

presented separately in the Appendix F. 

 Summary of experimental approach 3.4.

The final goal of this work was the development of a novel microfluidic platform 

for preconcentration of analytes. The experimental approach was based on 

development of theoretical models of microfluidic systems that were verified 

experimentally. During this study a need for deeper understanding of the optical 
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properties of the used systems emerged. This section of work was studied using the 

same experimental approach: development of appropriate numerical model that 

followed by its experimental cross-examination. 

The analysis of microfluidic systems was conducted using COMSOL Multiphysics 

software. The development of the numerical model of EHDF allowed for verification of 

the first research hypothesis: ability to attain the flow pattern needed to observe the 

EHDF. Although the initial assumptions on application of multiple additional outlets 

were discarded after an extensive study of the numerical models, a new chip was 

developed with the flow pattern properties remaining unchanged. 

During the investigation of flow properties using numerical models the second 

and the third research hypotheses were confirmed: that the presence of trapezoidal 

flow pattern allows for formation of the electric field gradient and focusing of at least 

one compound. 

To confirm the fourth research hypothesis a numerical model of light 

propagation and light intensity distribution in capillaries and microfluidic chips was 

developed. This model was positively verified experimentally and used to optimise the 

detection system in the chip for EHDF. 
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Chapter 4 – Modelling of 
microfluidic systems: results 
and discussion 

Following chapter presents results of numerical simulations using COMSOL 

Multiphysics® and experiments with microfluidic chips. The modelling results includes 

comparison with previously conducted and published experiments, as well as studies of 

completely new designs, investigation how installation of multiple outlets affects flow 

pattern and preliminary results of preconcentration of analyte. The experimental results 

show different approaches to EHDF using different outlet layouts and gasket 

thicknesses. Final part concerns experimental results with on-line fluorescent detection 

in microfluidic chips. 

 Analysis of mesh density impact on simulation results 4.1.

Although meshing is just a step during model development if inadequate it can 

seriously affect overall model quality and final results. Used mesh density should be as 

high as the parameters of the used computer can allow. One model discussed late in 

details was chosen as an example how mesh quality influence modelled result. Later 

models were developed using mesh at the computational limit of the used computer. 

Five different mesh densities were tested, namely: extremely coarse, coarser, normal, 

finer and extremely fine. 

The first tested mesh density was extremely coarse, and as it can be seen from 

Figure 66 results were very inadequate. The maximum recorded concentration is 

0.487M, while it should not exceed the initial concentration of 0.1mM, as the model 

involves only flow, convection and diffusion.  A large part of the graph is white – these 

are areas where calculated concentration is either above initial value of 0.1M or below 

0. The calculation error of almost 400% shows very significant inadequacy of used mesh 

density. The modelled negative concentration of -0.134M also informs about very 

significant numerical oscillations in the chip (white and blue stripes oppositely). 
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Figure 66: Modelling result for extremely coarse mesh grind. The colour to concentration assignment 
is on the left. White areas show where calculated concentration exceeds given range from 0 to 0.1M. 

The second tested mesh density was named coarser. This mesh (presented in 

Figure 67) despite increase of the mesh elements number by 20% shows even more 

erroneous results with observed maximum of 0.570M and minimum of -0.384M. Even 

though absolute values of incorrectly calculated concentration are higher than in in the 

extremely coarse mesh case, white area is noticeably smaller. This implies that with 

mesh refinement overall quality of the simulation is increasing. 

 

Figure 67: Modelling result for coarser mesh grid. The colour to concentration assignment is on the 
left. White areas show where calculated concentration exceeds given range from 0 to 0.1M.  
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Further mesh refinement (mesh density “normal”, see Figure 68), doubling 

initial number of mesh elements increased modelling quality and reduced error to 56% 

with maximum recorded concentration of 0.156M (0.1M initial). The observed minimum 

of -0.05M and large white area shows that numerical oscillations are still very significant 

and further mesh refinement is needed. Noticeably white areas are taking less surface 

than in previous simulations. 

 

Figure 68: Modelling result for normal mesh grid. The colour to concentration assignment is on the 
left. White areas show where calculated concentration exceeds given range from 0 to 0.1M.  

Figure 69 and Figure 70 are presenting modelling results for finer mesh and 

extremely fine respectively. Increasing mesh the density to maximum (using pre-defined 

settings) allowed reducing the concentration error to 40% and the value of negative 

concentration error to 20%. Such results were still unsatisfactory and significant 

improvements were needed. With further refinement of the mesh amount of data 

exceeding realistic values dropped visibly.  To achieve this manual meshing was used 

and grid consisting over 119,000 elements was used to reduce error below 2% for 

positive (1.02mM) and 1.5% for negative concentration (-0.015mM). 
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Figure 69: Modelling result for finer mesh grid. The colour to concentration assignment is on the left. 
White areas show where calculated concentration exceeds given range from 0 to 0.1M.  

 

 

Figure 70: Modelling result for extremely fine mesh grid. The colour to concentration assignment is 
on the left. White areas show where calculated concentration exceeds given range from 0 to 0.1mM.  

The progressing mesh refinement resulted in improved simulation performances 

but also increased time needed to find solution as well as operating memory 

requirements. Figure 71 summarises time needed to obtain full solution depending on 

the used mesh density. 

A A 

B B 
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Figure 71: Graph showing comparison of number of mesh elements, degrees of freedom, solution 
times and memory usage for different mesh densities. 

Concentration profiles measured on both profiles (along A-A and B-B, presented 

in Figure 72 and Figure 73) show significant influence of numerical oscillations affecting 

calculations of the concentration. With refinement of the mesh grid oscillations are 

reduced what can be measured by comparing a standard deviation values for each 

graph (see Figure 74). The more significant reduction of the oscillations along A-A 

compared to B-B is attributed to the I2 and I5 inflows location. The flow leaving both I2 

and I5 inflows travels directly along A-A profile to meet each other in the centre. There is 

no flow parallel to B-B, only under angle coming from I1 and I4 and that may complicate 

overall result in that area. Cross-section B-B was chosen as particularly disturbed region 

for evaluation. The drop of oscillations can be assessed quantitatively by comparison of 

the standard deviation values along both profiles for all used mesh types. In both cases 

there is a downward trend, with more slope for A-A than for B-B. 
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Figure 72: Comparison of the concentration values along A-A (Figure 70) for different mesh densities. 

 

Figure 73: Comparison of the concentration values along B-B (Figure 70) for different mesh densities. 
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Figure 74: Comparison of standard deviations for different mesh densities. 

The different mesh settings were tested to provide information about the 

optimal settings. The relation between mesh density and simulation quality was 

investigated. The growing mesh density resulted in reduction of local error, as well as in 

increasing smoothness of the results. The relation between the number of mesh 

elements and the time needed to complete the calculation was linear for models that 

required less RAM than amount of the memory installed. Significant increase of the time 

needed to complete the simulation was observed for larger models. 

 1st Navier-Stokes flow with convection and diffusion in multi-4.2.

outlet chip 

The first step in project was to assess qualitatively numerical simulations of 

microfluidic systems. In general approach microfluidic chip is a three dimensional 

structure of defined width, length and depth (channel or chamber thickness). Three 

dimensional simulations are much more complicated and demanding from technical 

point of view. The second objective of modelling of shown chip was to assess accuracy 

of two-dimensional approximation of 3-D problem. Test compound (1M solution of 

malachite green) was introduced through NE inlet (marked with yellow arrow) and 

water through remaining (blue arrows). COMSOL can display concentration of one 

compound at a time, thus as three different colour regions are visible in the experiment 
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(see Figure 75a) in simulation test compound was introduced to form the central blue 

region and water was selected to fill white and pink regions. 

 

Figure 75: Comparison of (a) experimentally achieved flow pattern with (b) numerical simulation. 
Yellow arrow indicates inlet of the test compound for the model, blue arrows inlets of water and red 

arrows outlets. 

 

Figure 76: Velocity field map associated with the experiment shown in Figure 75. Blue colour 
represents the minimum, red the maximum. 

As it can be observed, the modelled distribution of test compound is very similar 

to one presented in Figure 75a. Main discrepancies are around outlets O1 and O3 – 

these outlets are modelled as voids in chip due to limitations of two-dimensional 

modelling. There is no flow through or over central outlets what results in alteration of 

flow streamlines around obstacle. Modelled concentration near outlets S and W are 

showing very high similarity to the picture – blue dye is entering both outlets in very 

alike manner. Differences observed in distribution of test compound along walls are 

attributed to the noticeable lack of the perfect symmetry of the chip used in the 

experiments, while the numerical model possessed such symmetry. It is especially visible 

around inlets N, NE, SE and S. As it can be read from Figure 76 velocity near outlets is 

(a) (b) 
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roughly three times higher than of the inlets. This is expected value provided installation 

of six inlets and two outlets. 

 2nd Navier-Stokes flow with convection and diffusion in a multi-4.3.

outlet chip 

The second selected pattern obtained experimentally (fig. Figure 77a) was 

successfully recreated numerically. In this simulation all inlets and outlet O4 were 

turned on. Test compound (again 1M solution of malachite green) was introduced 

through inlets NW, N, E and SE (marked with yellow arrows) while water through other 

(blue arrows). Linear velocity of fluid for all inlets was set to 5 mm·s-1 normal to curve. 

Figure 77a show photo of experiment and Figure 77b result of numeric simulation. In 

Figure 78 velocity field of that simulation is presented. 

 

Figure 77: Comparison of (a) experimentally achieved flow pattern with (b) numerical simulation. 
Yellow arrow indicates inlet of the test compound for the model, blue arrows inlets of water and red 

circle localises used outlet. 

 

Figure 78: Velocity field map associated with the experiment shown in Figure 77. Blue colour 
represents the minimum, red the maximum. 

(a) (b) 
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As it can be seen from comparison of Figure 77a and Figure 77b the result of 

modelling is highly similar to the experiment. The main difference can be observed in 

the vicinity of O4 (active) outlet. On the photo one can see boundaries between fluids 

disappearing in one point. Due to the model limitations the region inside circle is not 

simulated and cannot be observed. Differences in fluids’ flow near N inlet are attributed 

to different viscosity of used liquids – in the experiment white liquid was diluted coffee 

creamer while in simulation all liquids have dynamic viscosity of water 𝜂 = 0.001 Pa·s. 

Also it is possible that pressure around N inlet was lower or not equal to the pressure of 

the NE inlet resulting in a shift of a boundary between liquids. 

Simulations of microfluidic systems with only pressure-driven flow gave 

satisfactory results. Small discrepancies can be observed depending on complexity of 

model, accuracy of drawing and precision of devices used in experiments. Schemes used 

for modelling represent ideal systems and often do not take into account imperfectness 

of real apparatuses. 

 The mesh type assessment: comparison of triangular and 4.4.

quadrangle meshes 

The first tested mesh density (an extremely coarse) did not converge and no 

stable solution was found in case of both triangular and quad mesh. Simplifications in 

the mesh outlook (squares instead of circles for inlets and outlets) and large size of 

individual mesh cell resulted in too large error value to achieve solution convergence. All 

other tested mesh densities (normal, extremely fine, 10% maximum growth of the 

adjacent element, and 2% maximum growth of the adjacent element) allowed for stable 

solution. In normal mesh density there were numerical oscillation present and overall 

solution accuracy was not satisfactory. In case of the triangular mesh minimum noted 

concentration was -0.204 (20.4% error, see Figure 79) and in case of the quad mesh it 

was -0.157 (15.7% error, see Figure 80).   
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Figure 79: Modelling result for normal density triangular mesh. 

 

Figure 80: Modelling result for normal density quad mesh. 

The extremely fine mesh had a number of errors reduced but they were still 

visible. To achieve satisfactory result and model quality, manual definition of the mesh 

parameters was required. The growth of a single mesh cell was limited to maximum 10% 

while generating the mesh grid, limiting the maximal size of a single mesh cell and 

increasing their total number. Measured concentration error was 0.6% for triangular 

mesh (see Figure 81) and 3% for quad mesh (see Figure 82). Further mesh refinement 

lead to reduction of error to 0.01% for triangular mesh and 0.04% for quad mesh. 
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Figure 81: Modelling result for “10% growth” density triangular mesh. 

 

Figure 82: Modelling result for “10% growth” density quad mesh. 

Figure 83 and Figure 84 shows comparison of model parameters and calculation 

performance of four different mesh densities using triangular and quadrangular meshes. 

Tested problem was complicated enough that “extremely coarse” mesh did not allow for 

achieving convergence and produced no result at all for both meshing types. Used mesh 

types “normal” and “extremely fine” are pre-set in COMSOL, “10% growth” and “2% 

growth” were manually set and have all other properties of “extremely fine” meshing, 
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except mesh element growth rate which are as given. Detailed parameters of used mesh 

grids are attached in Appendix E. 

 

Figure 83: Comparison of model properties for four mesh densities using two different meshing 
methods. 

 

Figure 84: Comparison of calculation performances for four mesh densities using two different 
meshing methods. 
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The first visible tendency is that triangular mesh produces lower errors. The 

second observed feature is that application of quad mesh typically requires more system 

memory and is more time consuming. It is especially visible when model size exceeded 

amount of installed physical memory (4GB) and data swap between physical and virtual 

memory was required. In this case time to complete calculations was approximately ten 

times longer in case of quad mesh than for triangular one. Despite these deficiencies 

quad mesh allowed for to achieve model convergence and stable result in some cases 

where triangular mesh did not. All further models were developed using triangular mesh 

at the computer performance limit. 

 Modelling of the Conductivity Gradient Focusing 4.5.

Conducted simulation shows concentration of model dye in central region of 

microfluidic device similar to this obtained in experiments. The highest concentration of 

MG was observed after 930 seconds form starting the experiment (330 after turning on 

voltage). The distribution of MG at the moment of the highest concentration is shown in 

Figure 85. Figure 86 shows concentration profile along cross-section A-A. 

 

Figure 85: Concentration of Malachite Green after 930 s from beginning of simulation – moment 
when the highest concentration was observed. 

A A 
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Figure 86: Concentration profile along A-A from Figure 85. 

In conducted simulation movement due to pressure-driven flow was higher than 

electromigration induced by applied potential difference. After 1730 seconds 

concentrated MG in central channel reaches outlet and starts to escape system. At this 

moment area of complete depletion of the MG replaced by Tris pumped through central 

inlet takes significant part of microfluidic chamber near inlets (Figure 87a). At 2000 s 

(time at which simulation stops) this region is slightly larger (Figure 87b). 

 

Figure 87: Concentration of MG (a) after 1730s and (b) after 2000s. 
Concentration scale as in Figure 85 

Conducted simulation shows results qualitatively very similar to those obtained 

experimentally by Potter et al. Region of increased concentration forms in same place – 

central channel and behaves similarly (8). The main difference between experiment and 

simulation is that the highest concentration of the dye was observed at the end of the 

experiment, while simulated occurred significantly earlier. This fact is attributed to 

number of simplifications in the model. Noteworthy is that the concentration drops 

from the highest recorded to the end of the simulation is small (around 10%). 

(a) (b) 
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20mM Tris buffer introduced through the central inlet had significantly higher 

conductivity than the surrounding 1mM MG. Until 600s Tris formed a region 

approximately 40mm long from the central inlet toward the outlets (Figure 88). When 

voltage was applied, region filled with Tris presented lower resistivity thus diverting 

current into it rather than passing through regions filled with MG. As a result a non-zero 

potential gradient is observed. Figure 89 shows spatial distribution of electric field 

intensity at 600s. 

 

Figure 88: Graph of ionic conductivity [S/m] at 600s with overlay of lines of electric field. 

 

Figure 89: Spatial distribution of electric field intensity at 600s. 
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The largest difference in conductivity near the central inlet results in the highest 

changes in the electric field (Figure 89). The electric field intensity is more than two 

times higher outside high conductivity region than in it. In front of Tris filled area one 

can observe high electric field intensity in which malachite green is starting to 

concentrate. Strange formations around corners are results of different boundary 

conditions that overlap in one vertex. Inlets and outlets are modelled as void regions 

and there is no valid solution inside it. This results  values and should be neglected. 

Presence of a small area with higher conductivity than surrounding solution 

results in deformations in electric field. One can observe as lines of electric field are 

deflected toward the high conductivity region. Because voltage applied to the electrode 

is positive and MG is cationic, there is repulsion between electrode and analyte. Figure 

90 shows how electric field compress MG into narrow region in front of high 

conductivity area filled with Tris. Concentration of MG is represented with colour map, 

lines of electric field are marked black continuous lines and arrow plot shows direction 

of electric repulsion. As it can be seen lines are convergent toward the line of symmetry 

of the device. Positively charged particles of malachite green are therefore focused 

along y-axis. Shape of electric field in presented device is entirely dependent on flow 

pattern of low and high conductivity solutions. In order to achieve better focusing along 

y-axis different placements of inlets, outlets and flow velocities were investigated and 

are described in later part of this work. Main contribution to focusing along x-axis is a 

result of the applied potential difference. Due to the high symmetry of the modelled 

microfluidic device electric field has only x-component along symmetry axis. Differences 

in conductivity will result in local changes in the electric field x-component that may lead 

to different retardation speed of analyte. Region of increased concentration does not 

remain stable because permanent equilibrium between electromigration and pressure 

was not achieved. Constant flow of Tris buffer results in pushing plaque of focused 

analyte out of the system. 
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Figure 90: Formation of region of increased concentration of analyte. Arrows show direction of 
electric force focusing cationic dye (MG) in front of high conductivity buffer (Tris). Black lines are 

lines of electric field. 

The developed model was used to recreate the experiment with conductivity 

gradient focusing (CGF) described in reference (8). The numerically calculated 

concentration distribution of the malachite green (see Figure 91) shows a three times 

concentration increase compared to the initial value. The area of increased 

concentration was formed between the first outlet and the central inlet, similarly as in 

the experiments. Figure 92 shows the experimentally obtained zone of focused 

malachite green using CGF. The authors of (8) noted concentration increase of 

approximately 3.2 times. This good correlation between the model and the published 

experiment indicated correct performance of the developed simulation. Similarly to the 

model, in the experiment there was a wide central stream of high conductivity 

transparent buffer and two flowstreams of MG at the walls. 
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Figure 91: Modelled concentration distribution after 2000s in CGF. 

 
 

Figure 92: Photo of the CGF experiment at a time of 1980s. 

 Investigation of the multi-outlet chip properties 4.6.

The development of several models of different chips with multiple outlets 

allowed concluding that although in principle this layout produces the required flow 

characteristic, it has a few imperfections. In order to achieve trapezoidal-like flow 

pattern, different flow rates ratios were tested and compared. Inlet fluid velocity for 

auxiliary inlets was set to 0.2 mm·s-1 (velocity normal to inlet contour) and for the 

central inlet, simulations were carried out at a range of velocities from 0.02 to 0.2 mm·s-

1. To observe behaviour of formed flow pattern mass transport model including 

convection and diffusion was implemented. The possibility of observation of test 

substance allowed for conclusive comparison of different flow rate ratios. Attempts to 

simulate velocities above 0.5 mm·s-1 did not give satisfactory results because simulation 

Inlets Outlets 

+280V 0V 

Inlets Outlets 

+280V 
0V 
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became unstable and convergence was not achieved – relative and absolute errors were 

too high to calculate solution. 

In the chip with no auxiliary outlets ratio between flow rates defines a ratio of 

widths of central and side streams. In the chip with auxiliary outlets amount of fluid 

being flushed away from system depends on throughput of the outlet. All outlets were 

modelled similarly as free outlets (boundary condition pressure=0, no viscous stress). 

The most interesting results are shown below for discussion in Figure 93, Figure 94, 

Figure 95 and Figure 96. All graphs are showing concentration distribution of a 

constantly introduced model compound when the hydrodynamic equilibrium is reached. 

Observed regions of zero concentration for distance of 5cm from the left wall of 

the chip are result of two-dimensional simplification of the problem. Concentrations 

profiles are read along defined lines where outlets are designed as void spaces and thus 

no concentration can be calculated inside. 

 Combination of mass transport mode with momentum transport allowed for 

studying diffusion effects. To observe the trapezoidal flow pattern, flow from the central 

inlet must reach any outlet beside O1 (central main outlet, see Figure 35 for numbers). 

As it can be seen in Figure 93, Figure 94, Figure 95 and Figure 96 this principle is satisfied 

in all simulations, yet flow patterns differs significantly, as the diffusion plays an 

important role in compound distribution, and a high concentration of the test 

compound is recorded in the stationary state. For the lowest tested flow rate of 0.02 

mm·s-1 (10% of auxiliary inflow) concentration does not drop on a distance of few 

millimetres only (Figure 93a). 4 cm from further (Figure 93b, profile “4cm”) drops to 20% 

of the initial, and in vicinity of main outlets (Figure 93b, profile “8cm”) is around 17%. 

Noteworthy is that behind the last auxiliary outlet diffusion is strong enough to 

distribute model substance across entire chip. This occurs even despite the fact that 

flow from auxiliary inlets is reaching central main outlet (there are streamlines 

connecting I3 and O1). As it can be seen on subsequent graphs (Figure 94, Figure 95 and 

Figure 96) with increased central inlet velocity streamlines from auxiliary inlets I2 and I3) 

are no longer able to reach central main outlet (O1). For higher central inflow velocities 

(40% and 100% of auxiliary inflow velocity, Figure 95 and Figure 96 respectively) already 

at distance of 5cm from the inlet I1 (roughly half of chip length) the concentration of 

model compound near walls was above zero. For case illustrated in Figure 95a 

compound concentration 5cm from inlet I1 is slightly above zero (Figure 95b, profile 

“5cm” shows it precisely). There is a flow coming from auxiliary inlet reaching side main 
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outlet (shown with streamlines connecting inlet I2 and outlet O2). When central inlet 

velocity is equal to the velocity of the auxiliary inflows flow from auxiliary inlets is 

completely diverted to auxiliary outlets – there is no streamline connecting inlets I2 or I3 

with outlets O2 or O3. A strong flow from central inflow I1 combined with diffusion results 

in a high concentration of the model substance between AO1/2 and main outlets. 

Simulation predicts that for given conditions in outlet area it will be around 70% of 

initial, as it can be seen on Figure 96b, profile “9cm”. 

 

Figure 93a: Graph of flow pattern for velocities ratio 1:10. 

 

Figure 93b: Concentration profiles across the chip for given distance from the inlet. Distancees 
provided in Figure 93a. 
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Figure 94a: Graph of flow pattern for velocities ratio 2:10. 

 

Figure 94b: Concentration profiles across the chip for given distance from the inlet. Distancees 
provided in Figure 94a. 
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Figure 95a: Graph of flow pattern for velocities ratio 4:10. 

 

Figure 95b: Concentration profiles across the chip for given distance from the inlet. Distancees 
provided in Figure 95a. 
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Figure 96a: Graph of flow pattern for velocities ratio 1:1. 

 

Figure 96b: Concentration profiles across the chip for given distance from the inlet. Distancees 
provided in Figure 96a. 

 

The second observed problem is the shape of flow in vicinity of auxiliary outlets. 

Theoretically the best flow pattern would have a shape of a trapezoid with a narrow end 

at the inlet and wide and on the opposite side of the chip. As one can see this is 

generally realised quite well in region from inlet to second auxiliary outlet Figure 93, 

Figure 94 and Figure 95). Too high inlet velocity, (Figure 96a) makes already the first 
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transition steep. The presence of second pair of outlets (AO2/4) affects flow pattern more 

noticeably. Figure 97a and b are showing x- and y-component of velocity vector 

respectively measured nearby ao2 for simulation shown in Figure 97b (2mm from AO2 

toward chip centre, 12,5mm each side). Velocity vector x-component is negative due to 

direction of velocity vector. 

 

Figure 97: Velocity (a) x-component near auxiliary outlet and (b) y-component near auxiliary outlet. 

Figure 97a shows that x-component of the velocity vector, changes considerably 

in the proximity of the outlet. Limited number of auxiliary outlets (only three 

implemented in this model) results in formation of step-like flow pattern, especially 

visible for higher velocities of central inlet. For lower velocities diffusion compensates 

presence of outlets making flow pattern smoother. 

The third problem that had to be considered is shape and location of outlet. In 

this model, outlets (and inlets) were modelled as void spaces, and no equation was 

solved inside. For flow analysis this did not affect significantly overall results. Electric 

field will be applied to the model and the presence of void zones in main chip area could 

have significant impact on overall results – due to requirements of the COMSOL 

software boundary condition have to be the electric insulation around such object. 

Presence of such zone would affect local parameters of electric field and could lead to 

either wrong conclusions or prevent successful solving of the problem. Installation of 

additional auxiliary outlets has reduced problems. There are slight improvements in 

overall performance but steepness of the flow pattern can still be observed. Figure 98 

and Figure 99 are showing comparative results for four and five pairs of auxiliary outlets 

installed. To achieve significant improvement the number of outlets would have to be 

increased to eight or even ten pair what is rather inconvenient from engineering point of 

view. 

(a) (b) 
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Figure 98: Graph of flow pattern for velocities ratio 2:10 with 4 pairs of auxiliary outlets.  

 

Figure 99: Graph of flow pattern for velocities ratio 2:10 with 5 pairs of auxiliary outlets.  

Three chips with additional outlets (six, eight and ten) located along the chip 

side walls were investigated. The anticipated trapezoidal flow pattern and velocity 

gradient were achieved. With increased number of additional outlets, the flow pattern 

was smoother, and the velocity drop in the vicinity of the additional outlet was lower, 

producing a more uniform flow pattern. The different ratios of flow velocity between 

the central and auxiliary inlets were investigated. Increasing the flow velocity at the 

central inlet allowed for formation of the trapezoidal flow pattern to fill a larger part of 
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the chip. With more substance introduced into the chip within a given time unit, 

diffusion played a more significant role which was recognised as an undesired feature. 

Precise spatial distribution of the analyte introduced through the central inlet was 

regarded as a key element for EHDF and thus utilising multiple additional outlets was 

recognised as an inadequate approach for further work on EHDF. 

 The development of an optimal chip for the EHDF 4.7.

Based on the presented simulations and observations of Dasgupta’s results (15), 

a different approach to inlets and outlets was tested. Instead of modelling circle that 

represented tubing collecting fluid, gate-like structures with short collection channels 

along walls were implemented. Different shapes and positions were tested until optimal 

design was chosen. 

The result of the first tested layout is presented in Figure 100 and it shows the 

first attempt of modelling side outlets with channels replacing circular inlets and outlets. 

Two different approaches were tested simultaneously: three rectangular inlets (marked 

with “R” in Figure 100) and outlets with trapezoidal channel. Semi-circles in channels are 

a representation of tubing pumping in or collecting solutions and inlet/outlet boundary 

conditions are applied only there. One can see completely incorrect value of 

concentration on the walls between inlets (marked with arrows). There are clearly 

visible problems with calculation in large part of the model (marked with an ellipse). 

There is a lot of numerical “artefacts” on the verge of two streams where is boundary 

between high concentration of test substance and pure solvent. Refining mesh to the 

computational limits of the used machine did not solve that problem. These erroneous 

calculation results are propagating along boundary of fluid stream but with distance 

diffusion plays more significant role and flow pattern stabilise. 
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Figure 100: Test of circular inlets and outlets replaced by side channels with semi-circles. 

The second tested layout is presented in Figure 101. Presence of numerical 

errors and incorrect values visible in Figure 100 was attributed to right angle between 

wall and channel leading do semi-circular inlet. All rectangular inlets were adjusted to 

match geometry of outlets and got trapezoidal shape. Also side outlets were shifted to 

the corners of the chip to improve capability of achieving trapezoidal flow pattern. 

Replacement of rectangular inlets reduced numerical problems very significantly. Small 

variations of concentration distribution are observable but they are occurring only for 

first 5 mm from the inlets and are disappearing completely afterwards. Flow pattern 

presented in Figure 101 is much more stable than the one presented in Figure 100. As it 

can be seen concentration of test substance at walls gradually increases away from 

inlets and with each outlet that increment is clearly visible. It is difficult to discuss any 

flow pattern behind the last pair of side outlets as differences in concentration levels are 

around 20% only. Also flow pattern achieved using mentioned outlets placement did not 

balance diffusion to sufficient degree. 

Basing on simulations presented in Figure 100 and Figure 101 a completely 

different approach was tested: a chip with unrestricted broad outlet. Chip proportions 

were changed from 1:5 (width to length) to 1:3. Its schematic is shown in Figure 102. 

Inlets were remodelled due to previously observed problems. Auxiliary outlets got 

rectangular form with arcs connecting outlet channel wall with the main chamber wall 

to allow smooth continuous flow. Results of this simulation were encouraging to go 

R 

R 

R 
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further, close the unrestricted open boundary but with implementation two main 

outlets (in form of circles). 

 

Figure 101: Test of trapezoidal side channels with semi-circles. Position of end outlets (O) was 
shifted compared to previous test. 

 

Figure 102: Test of the unrestricted outflow with auxiliary outlets. Trapezoidal side outlets were 
replaced with rectangular with smooth arcs connecting channel with main chamber.  

Results of previously mentioned simulation were encouraging to go further, 

close the unrestricted open boundary, with implementation two main outlets (in form of 

circles). Achieved flow pattern and concentration distribution (Figure 103) shows 

trapezoid-like figure with small deformations due to the diffusion. This flow pattern was 

O 

O 
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regarded as potentially the one that will be used to simulate electrohydrodynamic 

focusing. 

 

Figure 103: Test of the chip with two main and four auxiliary outlets. 

The last tested model was a simplification of multi-outlet layout and somehow 

return to original idea of chip used for conductivity gradient focusing. All auxiliary 

outlets were removed and chip was elongated again (returned to 1:5 proportions) and 

two outlets located aside at the opposite end of the chip were located. Although 

achieving of the trapezoidal pattern was main goal, length of the separation channel (or 

separation chamber) has important role on separation efficiency. As it can be seen in 

Figure 104, flow is nicely stabilised and trapezoidal-like concentration distribution with 

low dispersion to the diffusion was achieved. Velocities in all inlets were same and equal 

0.2 mm·s-1, diffusion coefficient was taken for chloride and equal 2.032·10-9 m2·s-1. 
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Figure 104: Test of the chip with only two main outlets located aside. 

Five different chip layouts were investigated to produce an optimal chip with 

adequate properties for EHDF. An interesting relation between shape of the inlet/outlet 

and number of numerical errors was observed (see Figure 100 and Figure 101). An 

optimal chip with velocity gradient along x-axis (separation dimension) and low flow 

pattern broadening due to the diffusion was developed (see Figure 104). This chip layout 

was used for further work on EHDF. 

 Models incorporating pressure-drive flow and electromigration 4.8.

with the selected chip layout 

Several different simulations were run to test how new layout performs in terms 

of achieved preconcentration and spatial stability of formed higher concentration 

region. First simulations were run for applied potential difference of 200V, 600 seconds 

after begin of the simulation. At around 900s region increased concentration can be 

clearly visible, and at 980s in exceeds 1.5 times of the initial concentration of malachite 

green (Figure 105). Maximum concentration is achieved at 1420s (Figure 106 – overlay 

of streamlines graph of pressure-driven flow). Figure 107 shows close-up of focused 

region. Total flux (vector sum of convective, diffusive and electrophoretic flux) of 

malachite green in marked with arrows. As it can be observed arrows on both sides of 

high concentration region are directed oppositely proving focusing along x-axis. 

However tested flow pattern constrain anti-focusing along y-axis – flux vectors are 

directed away from each other. This is result of convective flux (result of pressure driven 
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flow) and diffusive flux toward outlets (high concentration region in centre). A mid-point 

between outlets was taken as a reference point for the concentration profile (see Figure 

108). The concentration shows initial drop after applying voltage (at 600s), then rapid 

increase, maximum at 1420s, and rapid drop afterwards. As it can be seen time when 

concentration is two times higher than initial is only 80s leaving very small window for 

any operations such as analyte extraction. 

 

Figure 105: Concentration distribution of MG in new chip at 980s. 

 

Figure 106: Concentration distribution of MG in new chip at 1420s overlay of pressure-driven flow 
streamlines. 

Concentration profile acquisition point 
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Figure 107: Close-up of high concentration region from Figure 106. Arrows are showing direction of 
total flux for malachite green at 1420s. 

 

Figure 108: Concentration profile in the centre of the chip between outlets.  

The selected chip layout was tested for different values of applied voltage. For 

potential difference of 1400V an interesting pattern has been observed – single central 

region of high concentration has been divided into two regions along symmetry axis of 

the chip (Figure 109). Unusual shape of preconcentrated analyte is a result of inlets 

shape. Applied voltage is strong enough to completely block significant amount of 

malachite green behind the central inlet. This can be observed after long experiment 

time (Figure 110). Inlets are modelled as circles but two dimensional models do not 
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allow any flow through it. As a result in front and behind the central inlet a zone of 

significantly lower velocity for pressure driven flow is formed (Figure 109c). Total 

migration of species is a result of convective flux due to applied pressure and 

electrophoretic flux due to applied voltage, corrected by diffusion. For 1400 V 

electromigration is almost equal modelled convection resulting formation of unusual 

high concentration area near central inlet for prolonged experiment (see Figure 110). 

Zone of high concentration of model compound on the right side of the central inlet is 

small – flow from auxiliary outlet is too weak to prevent MG build-up (see Figure 111). 

For higher voltages (2000V) electromigration dominates convection and MG cannot 

escape region of low velocity (Figure 112). 

 

Figure 109: Distribution of concentration of MG after 960s,  for 1400V. 

To evaluate precisely achieved preconcentration four points were selected – 

50mm and 60mm from the left wall of the chip in the middle (10mm from upper wall) 

and where maximum concentration was recorded (4.5mm from upper wall), see Figure 

109 where these points are marked. 

 

Concentration profile acquisition points 
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Figure 110: Distribution of concentration of MG after 3000 s, for 1400V. 

 

Figure 111: Map of the velocity value with streamlines for pressure driven flow. 
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Figure 112: Distribution of concentration of MG after 3000 s, for 2000V applied.  

 

Figure 113: Concentration profiles for points located 60mm from the left chip wall.  
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Figure 114: Concentration profiles for points located 50mm from the left chip wall.  

Concentration profiles for points located 60mm from the left wall show similar 

tendency as it was demonstrated in Figure 108. It these conditions almost 5.5 times 

concentration increase was recorded (see Figure 113), however achieved zone did not 

remain completely stable. Region of increased concentration travels toward outlets and 

predominant diffusion start to disperse the analyte. It would be possible to install 

microfluidic ports suitable for the extraction of the analyte in the central region, 

however relatively short period of time of good preconcentration (roughly 120s for four 

times concentration increase, see Figure 114). Also location of the highest increase of 

the concentration shifted from the middle of the chip suggests that a better 

optimisation of the chip is needed. 

The model incorporating electromigration and pressure driven flow was 

developed. A five-fold concentration increase was observed, although no equilibrium 

between the hydrodynamic and electromagnetic forces was achieved. The observed 

stable zone in the vicinity of the central inlet was the result of the two-dimensional 

approximation of three-dimensional problem. In the used approach the fluid cannot 

pass underneath the inlet what creates an artificial zone of very low velocity due to the 

pressure-driven flow. Although this result is regarded as an undesired in this thesis, it 

might be used in other experiments with such features fabricated in the chip. The 

general principle of EHDF was observed and obtained results suggested a need of 

further optimisation of modelling conditions. 
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 The first model of EHDF 4.9.

In the following series of simulations malachite green was introduced thought inlets 

I2 and I3 as in previously published papers. For applied potential difference of 280V a 

quasi-stable focusing was observed. A region of 2.5 times increased concentration was 

formed. The maximum recorded concentration was 2.7 times of the initial at 1220s after 

begin of the experiment. After time of 1220s concentration dropped to around 2.5 times 

of the initial. The zone of increased concentration was slowly shifted toward the left wall 

of the microfluidic chip, even behind the outlets. There are noticeable numeric 

oscillations on the border of high and low concentration of the malachite green, but 

their overall influence is rather negligible as they are located in very limited area. Two 

points for acquisition of the concentration profiles were selected: one 5mm in front of 

the line connecting outlet centres and one 5mm behind that line (see Figure 115 and 

Figure 116). 

 

Figure 115: Concentration distribution of MG at 1220s. 
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Figure 116:  Concentration distribution of MG at 1390s. 

 

Figure 117: Concentration profiles for points located 5mm in front and behind outlets line. 

As it can be read from concentration profiles (see Figure 117) it would be 

recommended to locate the collection valve close to the outlets line, preferably behind 

it. Although the highest recorded concentration occur in front of the outlets, but region 

of alleviated concentration is pushed behind that line after roughly 400s. Obtained flow 

pattern stabilises around 1600s and there are no major shifts in the position of the high 

concentration area. 

0

0.5

1

1.5

2

2.5

3

0 500 1000 1500 2000

C
o

n
ce

n
tr

at
io

n
 [

m
M

] 

Time [s] 

Data collection point A

Data collection point B

Concentration profile acquisition points 

A B 



138 | P a g e  
 

 The second model for EHDF 4.10.

As previous model looked very promising it was used to theoretically optimise 

the performance of EHDF. The model was redesigned, virtual lines were removed and 

applied meshing was pushed to the limits of the used computer. A region of 2.4 times of 

increased concentration was recorded, moreover with stable region where an extraction 

valve could be located. Figure 118 and Figure 119 shows time evolution of focused MG 

zone in time of 700s. The displacement is small (≈1cm) and this result can be regarded 

as a stable solution for EHDF. 

 

Figure 118: Concentration distribution of MG at 1600s. 

 

Figure 119: Concentration distribution of MG at 2300s. 
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Concentration profiles graph (see Figure 120) shows stable region of over two 

times concentration increase, giving large area where extraction valve could be located 

allowing for simultaneous collection of large amounts of preconcentrated analyte. 

 

Figure 120: Concentration profiles for points located 2mm in front and 3mm behind outlets line.  

A working model of quasi-stable electrohydrodynamic focusing (EHDF) was 

developed. Two and half times concentration increase was observed in the model and of 

focused analyte moved around 10mm in time of 900s. The zone of focused analyte 

remained in a well-defined region of the chip allowing for determination of a possible 

extraction outlet (not implemented) in the fabricated chip. The used chip layout reduced 

the influence of the diffusion hence improving the focusing performance. The results 

were found satisfactory, and the used chip layout was selected for fabrication and 

further experimental work, which results are presented in Chapter 5. 

 Conclusions and the key modelling results 4.11.

This chapter presents a summary of the modelling of the EHDF. Initially, the 

basic properties of fluidic models developed in COMSOL were investigated, together 

with its numerical parameters such as mesh shape, density, and boundary conditions. 

Results of these simulations allowed for determination of key computing parameters 

combining consideration for the time needed to solve the presented problem with 
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quality of the results. In the next step COMSOL was tested for its accuracy of flow 

pattern prediction and cross-examined with previously published experiments. 

The positive recreation of conductivity gradient focusing (CGF) was a starting 

point for the work on the optimal chip for electrohydrodynamic focusing (EHDF). 

COMSOL was used to test the initially presented hypothesis on a multi-outlet chip and 

investigate its properties. The results of these simulations revealed a need of different 

chip design as the presence of undesired flow properties were found unsatisfactory. 

COMSOL was used to develop an optimal chip for EHDF that was characterised by a 

trapezoidal flow pattern, a low influence of the diffusion, and a velocity gradient along 

the separation dimension. For simplicity of engineering of the chip a compromise 

between all these factors had to be established. Finally, the optimal chip layout was 

used for modelling of the EHDF. Results of these simulations are presented in Sections 

4.9 and 4.10. Two and a half times concentration increase was observed from the model 

and the spatial distribution of the analyte was found to be adequate. The modelled chip 

was then verified experimentally. 
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Chapter 5 – Experiments in 
microfluidic systems: results 
and discussions 

Based on the results of conducted simulations presented in Chapter 4 a new 

chip was fabricated, which is described in detail in section 3.2.6 and technical drawing 

are in Appendix D. Three inlets (I1, I2 and I3) were located in one end of the chip and four 

outlets (O1, O2, O3 and O4) on the opposite end. All inlets in the fabricated chip were 

shifted 5mm toward the agarose gel tank compared to the numerical model to increase 

length of the separation chamber. This way the inlet I1 was located 10mm from the right 

agarose gel tank and inlets I2 and I3 were located 5 mm from the right tank.  Inlets I2 and 

I3 were shifted 3mm apart from the chip symmetry axis to provide enough space for 

standard fingertight HPLC fittings used to secure the tubing. After this adjustment, inlets 

I2 and I3 were located 2mm from the chip long wall.  

Four outlets were installed: two main outlets (O1 and O2) close to the chip walls 

(2mm from the wall) and the central collection outlets (O3 and O4, 10mm apart from 

each other), O3 in line with outlets O1 and O2 and O4 10mm behind them, 5mm from the 

left agarose gel tank. The positive electrode (anode) was immersed in the agarose gel 

tank close to the outlets (left). The ground was immersed in the right tank, close to the 

inlets.  

 Description of experiments 5.1.

The experiments on EHDF conducted in the microfluidic chip are arranged in 

three groups according to the implemented layouts of outlets. The exact conditions and 

precise description of each layout is presented in the section 3.2.6. Below, a table 

summarises used chip outlet layouts. 

In the 2P-series, two peripheral outlets located close to the chip walls were used 

to form the flow pattern that was modelled. During these experiments a novel 

phenomenon named lateral electrohydrodynamic focusing was observed, which is 

discussed in greater detail in the later part of this thesis. The investigation of the lateral 

EHDF led to employment of two following chip layouts. 



142 | P a g e  
 

In the 2L-series of experiments the formation of lateral EHDF was investigated 

using two central outlets located on the chip symmetry axis. This chip layout was 

employed to verify any relation between the location of the outlets and the formation of 

the highly concentrated flowstream of the test analyte. 

In the 3T-series further study of more practical applications of lateral EHDF were 

investigated. Three outlets were open to allow for formation of three parallel 

flowstreams within the chip. This layout was used to positively identify key parameters 

of lateral EHDF. All the experimental setups are summarised in the Table 41. 

Experiment 
series 

Experiment 
number 

Used 
outlets 

Chip layout schematic 

2P 14, 22, 30, 47 O1 and O2 

 
2L 15, 16, 17, 26, 

40, 41 
O3 and O4 

 
3T 20, 21, 24, 31, 

36, 43, 58 
O1, O2 and 
O3 

 

Table 41: Summary of the experiment series, experiment numbers and relevant chip layout.  

 Results of the experiment 2P-14 5.2.

Experimental set-up for the experiment 2P-14 is presented in section 3.2.6.2. 

After solving problems with the flow stability, a series of experiments to achieve 

successful focusing was conducted. Different flow rates were tested to find that optimal 

ratio between the central and auxiliary inflows. This was found to be 1:5 – half as was 

used in the COMSOL model (see section 4.9 and 4.10). For these initial tests the 500μm 

gasket was used. Sometimes a higher ratio of flow velocities resulted in an unstable flow 

and focused stream tend to stick to the wall (Figure 58f) in the early stage of 

experimental work. 

Figure 121 presents six chosen time moments of the experiment 2P-14, labelled 

according to the time from the moment of introduction of the high conductivity buffer 

into the chip. Concentration values were read according to the method described in 

section 3.2.4 and are presented in Figure 122. There was initially a slight concentration 

drop (transparent buffer slowly reaching detection point diluting the MG) and after 

applying voltage a significant concentration increase was observed. The highest 

registered concentration was 0.82mM0.094mM what was 8 times concentration 

increase compared to the concentration of the compound introduced into the chip at 
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0.1mM MG. Concentration profile obtained experimentally was similar to that predicted 

using numerical modelling. The most important differences were higher performance of 

the focusing (8 times, compared to a maximum of 4.5 times predicted from the model), 

and size of the focused area. The size of the focused area was larger than that found 

from the model. Instead of forming a single focused zone, focusing occurred not only 

along the chip symmetry line, but also perpendicularly to this, thus narrowing the zones 

of MG into a thin concentrated line. 

  

  

  

Figure 121: Focusing in the microfluidic chip, experiment 2P-14. 
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Figure 122: Graph of concentration vs. time of the focused analyte from experiment 2P-14 shown in 
Figure 121. 

 Results of the experiment 2P-22 5.3.

With the changing of flowrates for the central and auxiliary inflows and 

decreasing of the applied voltage, a higher focusing ratio was achieved. This experiment 

is especially important as high flow stability was maintained successfully. The process of 

formation of the focused zone is documented (see Figure 123). The chip was primed 

with 0.1mM MG (Figure 123 – 600s) and at 900s filling with Tris-HCl took place. During 

the filling the flow was stable and a clear area of transparent fluid was slowly travelling 

along the chip. The flow was stable and only colour gradient between MG and Tris-HCl 

due to the diffusion could be observed (Figure 123 – 600s). 
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Figure 123: Focusing in the microfluidic chip, experiment 2P-22. 

Almost immediately after applying the voltage an interesting situation 

developed. The MG filling the chip was pushed toward right side of the chip with inlets 

more rapidly near walls than in the centre of the chip forming a plough-shaped front of 

highly concentrated dye (Figure 123 – 1140s). With time the high concentration of MG 

migrated visibly to the central stream of high conductivity buffer. The desired flow 

patter with equal outflow through both outlets was maintained well during the 

experiment. There were clearly visible comb-like structures and tiny vortices on the 

boundary between MG and the solvent shortly after applying the voltage (Figure 123 – 

1140s). Their formation is attributed to the rapid movement of the MG toward the 

centre of the chip. With increased time diffusion stabilised that effect and it was no 

longer observed. Shortly after applying the voltage there was a significant concentration 
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increase (Figure 123 – 1140 to 1900s) which dropped with time. Eventually when entire 

MG stored in the chip in the beginning of the experiment was either diverted to the 

central stream and flushed away from chip, or migrated beyond the inlets. The inflow of 

MG was too low compared to the inflow of the high conductivity buffer and therefore a 

reduction in focusing was observed with increased time. Figure 124 presents the 

concentration versus time graph for experiment 2P-22. A Seven to nine fold 

concentration increase for about 1000s was observed followed by flushing the MG from 

the chip as the MG inflow quantity was insufficient to susustain continuous focusing. 

 

Figure 124: Concentration profile for experiment 2P-22 shown in Figure 123. 

 Results of the experiment 2P-30 5.4.

Reducing the inflow of the Tris-Hcl to 2μl/min, increasing the inflow of MG to 

40μl/min and increasing voltage to 300V allowed for achieving a flow pattern with 

continuous focusing of the inflowing test compound. The MG remained focused despite 

problems with flow pattern stability and non-equal outflow through both outlets. 
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Figure 125: Focusing in the microfluidic chip, experiment 2P-30. 

After filling the chip for 1200s with high conductivity buffer a potential 

difference of 300V was applied. As it can be observed in Figure 125 at 1440s, formation 

of the highly concentrated central stream was turbulent and flow was diverted toward 

O1 outlet. Despite numerous attempts to stabilise flow with draining mostly outlet O2 to 

divert flow to its original path, the flow pattern remained almost unchanged. 

Concentration calculations using taken photos allowed for selecting any set of data point 

within initially selected region. Concentration measurements with the fibre optic 

spectrophotometer required installing the illuminating LED and collecting fibre at one 

point. Recalibration of the sensor at each point of the chip was necessary as each point 

has slightly different transmittance (scratches, stains, etc.). A numerical aperture of 

0.220.02 of the used 50μm fused silica optical fibre resulted in the formation of cone of 
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acceptance with a 4.740.24mm base radius (see Figure 51). When a fluid is highly 

focused or diverted from its path, an area of transparent solvent can take up significant 

part of the set detection area limiting its usefulness. As it can be seen in most of the 

time steps in Figure 125, the flow has an asymmetric pattern and a significant part of the 

detection area was taken by the solvent, reducing the usefulness of data acquired from 

the spectrophotometer. 

 

Figure 126: Comparison of the concentration of MG in experiment 2P-30. 

Both methods (spectrophotometer and image analysis of photos) agree in 

concentration measurements during the filling with Tris-HCl (see Figure 126). 

Concentration values read with the spectrophotometer were far more precise than 

those read from photos, however calculated concentration values form photos remain 

correct within error margins. When transparent Tris-HCl reached the detection zone and 

analyte started focusing fluctuations could be observed. The lower reading from the 

spectrophotometer at 1320s could be explained as the width of focused MG zone was 

around 5-6mm at this stage, which left around 25% of detection area for transparent 

solvent. There were similar tendencies in concentration for both detection methods – 

increase from 1200s to 1920s, stabilisation to 2280s and drop afterwards. The 

concentration drop observed from the spectrophotometer at the 2040s time step, was 

observed to be due to a flow shift away from the detection point. Despite problems with 

the flow stability, MG was focused by at least 3.5 times (spectrophotometer data). 
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Moreover, the most important observation was this experiment was the successful 

achievement of a continuous flow of focused analyte, which lead to investigation of 

different flow patterns. 

 Results of the experiment 2P-47 5.5.

The same set of conditions as in the experiment 2P-30 was tested on the 200μm 

PTFE gasket. Results are presented in Figure 127. The achieved flow pattern is very 

chaotic. There are visible regions of focused malachite green separated by low 

concentration regions (see Figure 127 – 840s). The flow pattern stabilised around a time 

of 1320s (720s after voltage application). Uneven flow was observed: the stream of 

focused MG shifted from one outlet to the other. 

  

  

  

Figure 127: Focusing in the microfluidic chip, experiment 2P-47. 
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The acquired concentration profile shows a high dispersion of results (see Figure 

128). This was a result of the thinner gasket reducing the light absorption path by 60% 

(comparing to the 500μm gasket) and low focusing performance, which gave a high 

standard deviation of the luminosity measurement. The applied voltage was too low to 

compensate for the pressure driven flow and focusing was only marginally observable. 

 

Figure 128: Concentration profile for experiment 2P-47. 

 Results of the experiment 2L-15 5.6.

During experiments in 2P-series with outlets O1 and O2 open (see Figure 53) an 

interesting property of the flow pattern was observed – focusing of the MG already in 

the vicinity of the inlets. According to the developed COMSOL models MG should start 

focusing a few centimetres from the inlets. A series of experiments was conducted to 

investigate unpredicted before behaviour of the MG. With two outlets open (O1 and O2) 

problems with flow stability were observed. To enforce flow stability a different layout 

of outlets was selected for 2L-series of experiments - O1 and O2 were closed and O3 and 

O4 were open. Open outlets lying on the chip axis of symmetry should increase flow 

stability as the entire flow has to move toward the chip centre. This outlet layout was 

used by Potter (8) and allowed for the comparison of results. 
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Figure 129: Experiment 2L-15 - focusing in the central flowstream. 

Figure 129 shows the formation of the highly concentrated MG in the central 

part of the chip where high conductivity buffer was flowing. The equilibrium between 

opposing forces imposed by pressure driven flow and electromigration was established 

at a time of 1800s – 600s after applying the voltage. Since that time, the flow pattern did 

not change significantly. Initially MG was migrated toward the inlets (Figure 129 – 

1440s). During the entire experiment a transparent region of clear high conductivity Tris-

HCl buffer was visible for around 2cm from the I1 inlet. After that distance MG was 

forced into the central stream and then moved toward the open outlet. 
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 Results of the experiment 2L-16 5.7.

Increase of the flowrate of the Tris-HCl to 4μl·min-1 in this experiment was 

compensated by reduction of the filling time to 900s to have a similar length of high 

conductivity buffer (Tris-HCl) in the chip compared to the experiment 2L-15. 

  

  

  

Figure 130: Experiment 2L-16 - focusing in the central flowstream. 

Doubling the flow rates for all inlets in this experiment, compared to the 

previous tests yielded very interesting results. The observed flow pattern (Figure 130) 

was similar to the on presented in Figure 129. The “Y” shaped region near first outlet 

formed quickly but did not move toward the inlets. Comb-like structures can be 

observed on the edge between the focused MG and the clear solvent (Figure 130 –

1140s). The turbulences are significant and focused MG formed in several small regions 

before the flow pattern stabilised (Figure 130 – 1500s). Around a time of 1860s, 
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diffusion overcame the initial separation of MG patches and a more uniform flow 

pattern was observed. Again a region of lower concentration of MG from the central 

inlet I1 to the focused zone is visible – at these conditions MG was not forced completely 

into the high conductivity buffer but only partially. Also it is visible that equilibrium was 

not reached. The initial pattern resembling the letter “Y” (Figure 130 – 1140s) was slowly 

pushed out of the chip and at time of 1900s the flow pattern resembled letter “V”. 

 Results of the experiment 2L-17 5.8.

In this experiment the flowrate of the Tris-HCl was reduced in order to maintain 

flowrate ratio of 1:10 between central (Tris-HCl) and auxiliary inflows (MG). Also the 

applied voltage was reduced by 20% (compared to experiment 2L-16) to observe the 

behaviour of the MG. 

  

  

  

Figure 131: Experiment 2L-17 - focusing in the central flowstream. 
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After applying the voltage, MG was slowly pushed from the outlet region toward 

the inlets. The applied voltage was too weak to compensate for inflow of the MG thus in 

no chip region was completely depleted of MG. The inflow of Tris-HCl visibly darkens 

with time as more and more MG was pushed into it. After 2160s a well visible stream of 

concentrated MG in a stable flow pattern was observed. There were also some remains 

of the initial MG close to the walls. 

Concentrations calculated from the obtained photos showed the visible 

tendencies in the concentration values. Figure 132 provides a comparison of 

concentration values from three experiments (2L-15, 2L-16 and 2L-17). In experiment 

2L-15 (see Figure 129), concentration slowly rose, reached maximum and eventually 

started decreasing. In experiment 2L-16 (see Figure 130), there was a rapid 

concentration rise after applying the voltage followed by a small drop and then, a quasi-

equilibrium formed as a region of stable concentration was slowly pushed out of the 

chip resulting in an acceleration in drop of the concentration. In experiment 2L-17 (see 

Figure 131) there was initial concentration drop as the transparent Tris-HCl reached the 

measurement area followed by slow and constant rise in concentration. The 

concentration increased between five to nine times. 

 

Figure 132: Comparison of concentration changes in three experiments (2l-15, 2L-16 and 2L-17) 
involving focusing of the MG in the central flowstream. 

 Results of the experiment 2L-26 5.9.

Knowing conditions required to observe the malachite green focusing in the 

central flowstream, another series of experiments were conducted with the 

spectrophotometer installed for additional precise concentration measurements. 
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Compared to the previously mentioned experiments, tubing in outlet O3 (see Figure 53) 

was blocked to minimise the influences of the uneven outflow. This experiment was 

conducted to establish how a stable focusing in the central flowstream occurs. 

  

  

  

Figure 133: Experiment 2L-26 - focusing in the central flowstream. 

The chip was primed with malachite green and filled for 900s with Tris-HCl 

buffer. After 900s a 295V was applied. MG located outside the central flowstream was 

pushed from the outlet region toward the inlets (Figure 133 – 1380s), but it can be 

considered as completely depleted 600 seconds later – at around 1980s. During the 

stabilisation time there were two regions of higher MG concentration lying on both sides 

of the central flowstream (Figure 133 – 1380s). At time mark of 1620s diffusion was 

already prevalent and there was one stream of MG visible. There were two turns in the 

central flowstream visible, which straightened with time and at time mark 2940s the 
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central flowstream was almost straight. These turns are attributed to unevenness of 

both the upper and bottom chip surface as the flow tries to flow through the line of the 

lowest resistance. This result is important as the focusing occurred perpendicularly to 

applied potential difference. A possible explanation of this observed phenomenon is 

presented later in this thesis in section 5.19. 

One point on the chip axis of symmetry, close to outlet O3 (see Figure 49), was 

selected and an optical fibre leading to the spectrophotometer was installed to provide 

concentration measurements of the test compound. The schematic of the optical fibre 

holder is presented in Figure 51. Initially the concentration of the MG was stable at 

0.1mM. Concentration calculated from the photos shows some problems with 

calibration, but generally agrees within error margin (see Figure 134).  

 

Figure 134: Comparison of concentration values calculated from photos (blue points) with read from 
spectrophotometer (red points).  

After applying voltage there was a slow constant increase of the concentration 

to time mark of 2100s, which was followed by small drop and stabilisation. The 

maximum was reached when there was still some MG from initial chip priming not 

flushed away. After the time mark of 2100s, the only MG in the chip was introduced 

through inlets. The concentration of MG does not vary significantly after time step 

1740s. This experiment shows that a stable focusing of a test compound five to six times 

of the initial concentration perpendicularly to the applied electric field can be achieved 

using fluids of different conductivity. Once it is known that this is possible, only 

conditions for convenient extraction of the test compound are needed for effective pre-

concentration. 
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 Results of the experiment 2L-40 5.10.

The experiments with the two in-line outlets open were conducted using the 

200μm gasket. Employment of this gasket highlighted surface unevenness as there was 

a clearly visible bend in the flow pattern around 20mm from the central inlet (see Figure 

135). There were also visible spots of malachite green close to the inlets, which did not 

migrate during the experiment. Generally the flow pattern was stable and focusing in 

the central flowstream was achieved successfully. 

  

  

  

Figure 135: Experiment 2L-40 – focusing in the central flowstream with 200μm gasket used. 

The graph presented in Figure 136 shows a comparison of the concentration 

values measured with the spectrophotometer and calculated from the photos. After 

applying the voltage at 600s there was a significant rise (four to five times depending on 

the method of measurement) of the concentration of MG to 1080s followed by 
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stabilisation at this concentration level. Only a slow rise between 1080s and end of the 

experiment at 2640s was. Variations in spectrophotometric measurements are 

attributed to flow fluctuations and movement of the flow of highly concentrated MG 

from the detection area. 

 

Figure 136: Comparison of concentration values calculated from photos with values acquired using a 
spectrophotometer in experiment 2L-40. 

 Results of the experiment 2L-41 5.11.

In this experiment the value of applied voltage was increased to observe 

focusing performance. The increase of voltage by 25% (compared to the experiment 2L-

40) resulted in the formation of a stable stream of malachite green in the central 

flowstream of the high conductivity Tris-HCl. The observed average increase in 

concentration was six times compared to the initial value. Lower readings from the 

spectrophotometer are attributed to the presence of a narrow central flowstream that 

did not cover entirely data acquisition field. The concentration drops observed at 1320s 

and 2040s are a result of flow instability and movement of the focused fluid from the 

acquisition field (see Figure 137 and Figure 138). 
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Figure 137: Experiment 2L-41 – focusing in the central flowstream with 200μm gasket used. 

 

Figure 138: Comparison of concentration values calculated from photos with values acquired using a 
spectrophotometer in experiment 2L-41. 
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 Results of the experiment 3T-20 5.12.

The observation of an unexpected phenomenon of lateral focusing in the central 

flowstream perpendicularly to the applied voltage led to investigation how to exploit it 

for practical use. Both tested chip outlet layouts showed that lateral focusing can occur 

already after a few millimetres from inlets. Knowing the behaviour of laminar flow an 

attempt was made to achieve three parallel flowstreams inside the microfluidic chamber 

leading to three separate outlets. With employment of this observed focusing mode a 

test compound introduced as diluted solution through two auxiliary inlets (I2 and I3, see 

Figure 53) should be focused into the central stream of a high conductivity buffer and 

flushed away from chip through the central outlet (O3). Outlet O4 was blocked for these 

experiments. The schematic of the expected result is shown in Figure 139. 

 

Figure 139: Expected flow pattern for successful lateral electrohydrodynamic focusing.  

Initial experiments were dedicated to find a set of optimal conditions where 

previously observed lateral focusing was the most efficient. Figure 140 shows the result 

of the first experiment in 3T-series (see Figure 56) employing three parallel flowstreams. 

After applying voltage, the malachite green migrated toward the central 

flowstream. The initial MG present in the chip after priming depletes around the time 

mark of 2460s. The observed concentration rose at 900s. After the initial rise to the 

maximum of 0.42mM, concentration in the focused stream slowly decreased indicating 

that no equilibrium between pressure driven flow and electromigration was achieved. 

The observed flow pattern was stable and the stream of the focused MG was flushed 

away only through the central outlet O3 (see Figure 141). 
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Figure 140: Experiment 3T-20 – lateral focusing in the microfluidic chip. 

 

Figure 141: Concentration profile for the experiment 3T-20. 
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 Results of the experiment 3T-21 5.13.

In this experiment (3T-21) the applied voltage level (250V) was reduced 

compared to the experiment 3T-20 (280V)(see Figure 142). 

The applied voltage was too low for substantial concentration increase and 

malachite green did not migrate into the central flowstream. The front of MG present in 

the chip after priming moved only around 20mm from the central outlets. The central 

flowstream (Tris-HCl) was still transparent throughout the majority of the distance 

between I1 and O3. Compared to the experiment 3T-20, in the experiment 3T-21 the 

applied voltage was too low and Tris was not migrated toward the right gel tank right 

after entering the chip. Presence of the positively charged Tris inhibited MG migrating 

into the central flowstream what reduced focusing performance to the minimum. 

  

  

  

Figure 142: Experiment 3T-21 – lateral focusing in the microfluidic chip. 
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 Results of the experiment 3T-24 5.14.

In experiment 3T-24 the value of applied voltage (350V) was increased 

compared to the experiment 3T-20 (280V)(see Figure 143). 

After applying voltage the malachite green present in the chip after priming was 

quickly moved into the central flowstream. However, the value of applied voltage was 

too high and all malachite green coming through the inlets was migrated toward the 

right side of the chip and no MG was delivered to sustain the focusing. After exhausting 

the initial supply no focusing was observed. 

  

  

  

Figure 143: Experiment 3L-24 – lateral focusing in the microfluidic chip. 

Experiments 3L-21 (see Figure 142) and 3L-24 (see Figure 143) showed how 

delicate the equilibrium between opposing forces is. The comparison of the results from 
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experiment 3L-21 and 3L-24 (see Figure 144) showed in both cases an initial rise of MG 

concentration, as MG initially present in the chip was migrated into the central 

flowstream which was followed by a decline in concentration. In experiment 3L-21 (blue 

points) recorded concentration rise was around 5.3 times the initial value (see Figure 

144). A quasi-stable region between 960s and 1680s (concentration drop is within error 

margin) was reached, followed by a significant drop. In the experiment 3L-24 (red 

points) the concentration rise was very high (8.5 times from the initial value), but was 

followed by a fast drop. At a time of 1440s, average concentration in the test area was 

the same for both experiments, despite a 60% higher focusing ratio in the experiment 

3L-24. This is attributed to a presence of too high electric field – applied voltage was 

40% higher in 3L-24 than in 3L-21. As a result MG was very quickly migrated from the 

inlet toward the right side and the applied pressure driven flow was too weak to 

counteract it resulting in a lack of material to focus. 

 

Figure 144: Comparison of achieved focusing in experiment 3L-21 (Figure 142) and 3L-24 (Figure 
143). 

 Results of the experiment 3T-31 5.15.

Experiments 3T-20, 21 and 24 provided with a good range of the experimental 

conditions in which the lateral focusing should occur (Figure 145). 

Application of the potential difference of 310V yielded a stable flow pattern of 

the focused dye.  The voltage value provided constant inflow of the malachite green to 

the central part of the chip, which allowed for sustained focusing (see Figure 146). A six 
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fold increase in concentration was recorded on average for times over 1500s. Shifts in 

concentration values recorded with the spectrophotometer are attributed to the lateral 

flow instability allowing regions of significantly lower absorptivity to enter the detection 

field and thus reduce the overall measured absorbance. 

  

  

  

Figure 145: Experiment 3T-31 – lateral focusing in the microfluidic chip. 
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Figure 146: Comparison of concentration values calculated from photos (blue points) with values 
measured using spectrophotometer (red points) in the experiment 3L-31. 

 Results of the experiment 3T-36 5.16.

In the experiment 3T-36 the application of slightly lower voltage value (300V) 

compared to the experiment 3T-31 slightly improved achieved focusing performance. 

Also there were fewer problems with flow stability recorded during the experiment 

which improved the overall focusing. Experiments 3L-31 (Figure 145) and 3L-36 (Figure 

147), showed almost perfect lateral electrohydrodynamic focusing of malachite green. 

The achieved flow pattern was stable in the sense that the focused MG reached 

only the central outlet throughout the entire experiment. A six to seven fold 

concentration increase was recorded and it did not drop with time (see Figure 146 and 

Figure 148). Small fluctuations of the position and width of the central flowstream still 

occurred, which were especially evident from the photometric detection. In the 

experiment 3L-36 at a time mark 1380s, a larger patch reached the detection area which 

is visible with the sudden concentration surge (see Figure 148). Obtained results show 

sustained concentration raise four to six times depending on the measurement method 

and experiment. 
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Figure 147: Experiment 3L-36 – lateral focusing in the microfluidic chip. 

 

Figure 148: Comparison of concentration values calculated from photos (blue points) with values 
measured using spectrophotometer (red points) in the experiment 3L-36. 
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 Results of the experiment 3T-43 5.17.

In the experiment 3L-43, the 500μm thick PTFE gasket was replaced with the 

200μm thick gasket. Lateral focusing was observed even though the flow was unstable 

and stream of focused MG often shifted between outputs O1 and O3 (see Figure 149). 

The flow pattern fluctuations are especially visible in comparison of the concentration 

measurements (see Figure 150). The central flowstream shifting its position did not 

cover the spectrophotometer detection area consistently producing significant 

variations of the recorded values. Concentration values calculated from the photos were 

more consistent. As the flowrate could not be set to lower values and still provide stable 

flow, the linear velocity of the fluids inside the chip increased approximately 2.5 times, 

the voltage value was increased, in order to compensate for this pressure driven flow. 

  

  

  

Figure 149: Experiment 3L-43 – lateral focusing in the microfluidic chip. 
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Figure 150: Comparison of concentration values calculated from photos (blue points) with values 
measured using spectrophotometer (red points) in the experiment 3L-43. 

 Results of the experiment 3T-58 5.18.

In experiment 3L-58, the 200μm PTFE gasket was replaced with the 100μm thick 

gasket. After testing a series of different voltage values no fully successful lateral 

focusing was observed (see Figure 151). The central flow stream was not filled 

completely with MG although regions of visibly higher concentration formed on the 

border between the central flowstream (coming from inlet I1) and side flowstreams 

(coming from inlets I2 and I3). As in the case of the 200μm gasket the flow instabilities 

were observed. 

The concentration of MG recorded was around 0.8mM (see Figure 152), but this 

was not a continuous flow, but rather patches or regions forming locally on the border 

between central and side flowstreams. The high dispersion of calculated concentration 

values was a result of the applied method. Measured luminosity of the selected area 

was the average value for the region with given standard deviation. As there were 

regions of high concentration separated by region of visibly lower concentration a high 

standard deviation in the measurement was introduced for this experiment. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 500 1000 1500 2000

C
o

n
ce

n
tr

at
io

n
 [

m
M

] 

Time [s] 

Concentration values calculated from
photos

Concentration values measured using
spectrophotometer



170 | P a g e  
 

  

  

  

Figure 151: Experiment 3L-58 – lateral focusing in the microfluidic chip. 

 

Figure 152: Experiment 3L-58 – concentration values calculated from photos. 
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 Repeatability of the EHDF 5.19.

Series of five consecutive experiments using exactly the same experimental 

conditions was conducted in order to determine the repeatability of the observed fluid 

behaviour in the fabricated chip. 

For this experiment the layout with the two peripheral (2P) outlets open was 

selected (Figure 54) as the most difficult one to provide a stable flow pattern. Using this 

layout it was easier to determine the contribution of each element: chip flatness, 

wetting of the outlets, or the focusing mechanism itself. 

  

  

  

Figure 153: Picture of the microfluidic chip at 2040s in each experiment under same conditions to 
observe repeateability of the EHDF. 

Typical observed problems were related to the flow stability. The central 

flowstream had a tendency to shift between the open outlets (see Figure 153 – 
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experiments 1r and 3r). One point for concentration measurements was chosen, the 

same location as point A in section 4.10 (see Figure 118 and Figure 119). 

   

  

  

Figure 154: Picture of the microfluidic chip at 3120s in each experiment under same conditions to 
observe repeateability of the EHDF. 

During the early stage of focusing – 240 to 480 seconds after voltage application 

there were discrepancies observed in the distribution of the malachite green. This is 

attributed to uneven distribution of the high conductivity buffer which could be affected 

the same way as was shown in Figure 153. The uneven outflow of the Tris-HCl buffer 

could result in one-sided focusing and removal of the material from the test area. During 

the filling of the chip with the Tris buffer, the concentration of MG was 0.1mM, after 

chip priming. The measured concentration values showed results typically shifted by of 

0.07 to 0.1 mM depending on the experiment. 
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Figure 155: Concentration profiles for all six experiments (labeled 1r, 2r, etc.) on repeatability of the 
focusing. 

 

Figure 156: Average concentration (with exclusion of the experiment 5r). Error bars represents the 
standard deviation of concentration values. 

All acquired concentration profiles presented the same tendencies (see Figure 

155). There was an initial rise observed immediately after applying the voltage typically 

six to eight times. In the experiment 3r some turbulence was observed and the flow 
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pattern stabilised around 600s after the voltage application. Figure 156 shows the 

average of measured concentration values. The highest error observed at 1680s was a 

result of the very low concentration value at the acquisition point in experiment 3r. 

Lateral focusing was observed in all experiment. Typically a stream of the highly 

focused malachite green in the central flowstream was observed from time of 1700s 

(500s after the voltage application). Even the presence of an obstacle (small piece of 

agarose gel that separated from the tank) affecting the flow stability problems did not 

prevent formation of the highly focused stream of MG in the vicinity of inlets, which 

slowly propagated through the chip. For photos of these experiments see Appendix H. 

 Comparison of the modelling and experimental results 5.20.

The first series of experiments was focused on recreation of the numerical 

simulations discussed in chapter 4.  At the start there was only one chip outlet layout to 

be tested and additional outlets were installed for possible extraction of the 

concentrated species. 

The electrohydrodynamic focusing in its most general form can be regarded as a 

focusing technique that allows two dimensional focusing employing the counteracting 

forces of pressure and electromigration. Numerical models were designed to form a 

stable equilibrium where the net force acting on the target analyte was zero rendering 

at immobile in one point. An ion leaving this place, for example due to the diffusion 

would be exposed to non-zero force pushing it back into the focusing area. This EHDF 

mode was modelled are successfully experimentally replicated (see sections 4.10 and 

5.3). 

There are two main items that are compared simultaneously when discussing 

results of numerical simulations and experiments. The first is the actual concentration 

distribution across the microfluidic chip during the EHDF obtained from modelling and 

from experiments. The second important comparison criterion is the information of 

concentration values and focusing performance. 
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Figure 157: Comparison of the malachite green concentration (a) obtained by simulation and  (b) 
experimentally. 

The concentration distribution shows significant similarities in the vicinity of 

outlets and is clearly different in the central part of the chip. In the developed model 

malachite green moved in two flowstreams parallel to the central flowstream and the 

concentration value drops with distance from the inlets. In the vicinity of the outlets 

there was a crescent-shaped region of high concentration of MG (see Figure 157a). In 

the fluidic experiment, with the same set of conditions a different behaviour of MG was 
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observed compared to the numerical model. The malachite green was migrating into the 

central flowstream already at a distance close to inlets (up to 20mm) forming a one 

stream of alleviated concentration. The crescent-shaped area near the outlets was 

observed similar to the model. In the model this crescent-shaped region was pushed 

toward the left agarose gel tank for up to 10mm more than in the experiments. 

The discrepancies in concentration distribution between the developed model 

and the experimental result make direct comparison of the concentration value 

complicated. In the model the region of increased concentration was pushed 

approximately to the line connecting outlet centres which prevents easily comparing 

with the experimental results, as this region was obscured by the fitting blocking 

installed outlet. The modelled outlet diameter was 1mm. The microfluidic port installed 

in the upper PMMA layer of the chip had the diameter of 1/16” (1.58mm) on the side 

contacting the fluids, but over 4mm on the side of the camera. It resulted in reduction of 

the available field of view for concentration measurements. 

 

Figure 158: Comparison of the performance of modelled EHDF (red line) and experimental values 
(blue points) 

One point was selected to compare the concentration value (see Figure 157a 

and b). The concentration values during the experiment were approximately three to 

four times higher than those numerically predicted. In the model, a region of higher 

concentration of MG formed and was pushed into the area where test point is located. 

The MG was in a quasi-stable state. From 2000s it was slowly pushed behind outlets. In 
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the experiment, the highly concentrated region formed much quicker, then a quasi-

stable situation similarly to the model was formed, and after around 2000s inflow of the 

MG was too weak to sustain the focusing and the MG was washed away from the 

system. This comparison shows that generally such model developed using COMSOL 

contains too many simplifications to accurately predict the observed concentration 

distribution, however trends in concentration distribution have been predicted. 

 Proposed mechanism of microdrople electrohydrodynamic 5.21.

focusing 

During the fluidic experiments a new mode of electrohydrodynamic focusing 

was discovered and tested extensively.  Instead of creating a stationary zone of focused 

analyte a constant stream of analyte focused laterally to the applied electric field 

without application of physical boundaries or multiple electrodes was achieved. It is a 

novel method which was not predicted by computer modelling that was tested and 

proved successful. 

 

Figure 159: The comparison of schematics of (a) a modelled flow pattern and (b) obtained 
experimentally. 

Simulations conducted in COMSOL are in agreement with experiments in the 

vicinity of the outlets (see Figure 159). Concentration values obtained during simulations 

were lower than the values measured experimentally. According to the conducted 

simulations expected concentration increment should be in range between two to five 

times. Experimentally registered concentration rise was up to eight times for the 

maximum values and from four to six times for sustained flow conditions. 

The most unexpected result was the formation of a highly concentrated stream 

of malachite green along the entire chip that led to experiments with outlets aligned on 

the chip axis of symmetry and the development of the second mode of 
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electrohydrodynamic focusing. Series of experiments in the prototype chip for lateral 

focusing yielded successful results. During these experiments MG was focused four to six 

times compared to the initial concentration with continuous outflow. Initially the 

anticipated EHDF would operate according to the schematics: priming chip with analyte, 

introduction of the high conductivity buffer, application of voltage, focusing, extraction, 

and flushing the chip with solvent. The discovered mode of lateral focusing allows for 

continuous operation allowing for much easier automation of the process. 

 

Figure 160: Schematic of the mechanism leading to lateral electrohydrodynamic focusing: (a) initial 
state with MG present in the chip and Tris-HCl filling the central flowstream, (b) situation shortly 

after applying positive voltage, (c) stabilised lateral focusing. Deep blue arrows mark force imposed 
by pressure driven flow, light blue arrows mark net force acting on MG, red arrows mark net force 

acting on chlorine, and yellow arrows mark net force acting on Tris.  

Figure 160 shows a schematic of the proposed mechanism that has led to the 

observed lateral focusing and which is concurrent with conducted experiments. Initially 

the chip was filled with low conductivity malachite green (0.1mM), which was constantly 

pumped into the chip at high flowrate and highly conductive Tris-HCl buffer was 

introduced at low flowrate through the central inlet. Shortly after applying a positive 

voltage (see individual experiment condition for specific values) positively charged Tris 

(counter-ion) was retarded and for low flow rates for I1 it was prevented to reach outlet 

(electromigration prevailed over pressure). Negatively charged chlorine (a supporting 

ion) was accelerated toward the outlet. In short time, Tris and chlorine were separated. 

For low flow rates of Tris-HCl only chlorine ions are present in the zone between I1 and 

O3. As the electric field is diverted into the region of higher conductivity it decreases the 

diffusion effect acting as a stabilising mechanism and focusing chlorine. Malachite green 
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is exposed to three separate forces: pressure pushing toward outlets (and anode), 

electromigration pushing away from the anode and electrostatic attraction toward the 

negatively charged chlorine. As a result near the walls MG is predominantly pushed 

toward the inlets. The distance of 10mm between the walls and central flowstream was 

long enough to mitigate MG and Cl attraction. In the central part of the chip MG was 

quickly moved into the central flowstream. This explains the observed plough-like shape 

of the MG front during the stabilisation phase. For higher flow rates of the Tris-HCl (see 

Figure 131) the applied voltage was too weak to counteract the pressure and as a result 

positively charged Tris was still present in the central flowstream nullifying the 

attraction created by the negative chlorine. In order to achieve successful lateral 

electrohydrodynamic focusing several criteria must be met at the same time: 

- It can only be performed on charged species. 

- Only one charge sign species might be focused at a time (either positively or 

negatively) determining the supporting ion sign to be present in the central 

flowstream. 

- The analyte and supporting ion must have opposite signs. 

- Velocity of the analyte imposed by electromigration must be lower than the 

velocity imposed by the pressure. 

- Velocity of the counter-ion in the central flowstream imposed by 

electromigration must be higher than the velocity imposed by the pressure 

driven flow to ensure the presence of only one ion in the central flowstream. 

The major problem associated with the tested chip design is flow stability, which 

is crucial for the focusing process and the extraction of the focused analyte. To improve 

focusing performance a high degree of precision of chip flatness is required. The 

tolerance for the chip flow region thickness of 7.5μm, to ensure maximum error of 3% 

error in the chip chamber height (for 500μm gasket), is suggested. For thinner gaskets 

the tolerance should be even higher. 

The second problem discovered during experiments was related to the method 

of isolating electrodes. The high pressure present in the chip resulted in deterioration of 

the polymer layer and leaks coming through agarose gel tanks. Especially the tank close 

to inlets was vulnerable to this problem. This problem could be solved if the gel tanks 

were not present in a milled cavity which exposed the agarose gel through the entire 
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upper chip layer, but for a part of it. Such an approach would remove the problem of 

using transparent polymer film to cover the gel tanks.  

 Conclusions from the conducted experiments 5.22.

The developed numerical model of EHDF, presented in the Section 3.1 and in the 

Chapter 4, was verified experimentally. The appropriate microfluidic chip was 

engineered, assembled and tested. The initial employed chip layout was directly 

transferred from the model. During these experiments the basic principle of EHDF was 

confirmed. The performance of the manufactured chip exceeded the modelled 

performance, allowing for up to nine fold concentration increase. In order to generate 

the flow pattern needed to establish the electric field gradient, the conflicting 

requirements between, influence of the diffusion and velocity gradient resulted in 

difficulties with maintaining the perfect equilibrium between the hydrodynamic and 

electromagnetic forces. Despite this occurrence, a quasi-stable equilibrium was 

achieved, and was presented in the Section 5.4. 

Some discrepancies in the spatial distribution of the test compound in the 

vicinity of the inlets between the developed model and fabricated chip were observed. 

The further study of these divergences led to observation of an unexpected and 

previously unreported phenomenon named lateral EHDF. Two series utilizing two other 

chip layouts were conducted to investigate this phenomenon further. In the second 

series the possible relation between the used chip layout and the occurrence of the 

lateral EHDF was explored and eventually ruled out. The third series of the experiments 

was an attempt to exploit the lateral EHDF for possible practical uses. The experiments 

on lateral EHDF exhibited a four to six fold concentration increase with the constant 

outflow of the preconcentrated analyte. 

The lateral EHDF presents an interesting method of rapid preconcentration with 

relatively simple process of possible automation. The major benefit of the lateral EHDF is 

possibility of the continuous outflow of the preconcentrated target analyte as long as it 

is supplied to the system, simplifying the experimental protocol. Also it is possible to 

employ the lateral EHDF for the role of purification. Instead of preconcentrating the 

analyte, the two auxiliary outflows could provide the original solvent with reduced 

number of ionic impurities. 
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Chapter 6 – Modelling and 
experiments for the light 
propagation: results and 
discussion 

This chapter summarises all results of the light propagation modelling, results of 

the experimental verification of the developed model and results on 

photopolymerisation of the monolithic stationary phases in capillaries for verification of 

the theoretical models explaining observed problems associated with photoinitiated 

polymerisation in capillaries. 

 The experimental verification of the developed light propagation 6.1.

model 

A series of photos of the polymer cylinders illuminated by green laser were used 

to measure angle of reflectance and transmittance as light propagates through the 

material and compare it with theoretical predictions from the developed numerical 

model of light propagation. Procedure of data acquisition and angle measurement is 

described in section 3.3.4. 

6.1.1. Experimental and model results for first macro-simulation 

tests (set A) 

Figure 161 shows a picture of the laser light (532 nm) passing through the macro 

experimental configuration as per experimental set A (see 3.3.4). The reflection and 

transmission angles (θR1, θT1 and θT2) presented in this picture were those selected for 

comparison with the numerical model results. The results of the angle measurements of 

θR1, θT1 and θT2 from these experiments and the numerical models are presented in 

Figure 162, Figure 163 and Figure 164 respectively. 
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Figure 161: Picture showing plan view of laser light passing though the outer cylinder made PC, then 
air and then the inner cylinder made of PMMA. The drawn solid arrow lines (yellow) show the laser 

path and construction lines (red) show the location of reflection and transmission angles (θ R1, θT1 
and θT2). 

 

Figure 162: Comparison of theoretical calculations from the developed software (solid blue line) 
with experimentally measured values for the reflection angles inside the outer cylinder (angle θR1 in 

Figure 161). 

20

30

40

50

60

70

80

90

100

110

120

15 20 25 30 35 40

A
n

gl
e

 θ
R

1
 [

d
e

g]
 

Displacement [mm] 

theory

average



183 | P a g e  
 

 

Figure 163: Comparison of theoretical calculations from developed software (solid blue line) with 
experimentally measured values for the transmission angles between the first cylinder and air (angle 

θT1 in Figure 161). 

 

Figure 164: Comparison of theoretical calculations from developed software (solid blue line) with 
experimentally measured values for the transmission angles from air to the inner cylinder (angle θT2 

in Figure 161). 

 

130

135

140

145

150

155

160

165

170

175

180

15 20 25 30 35 40

A
n

gl
e

 θ
T1

 [
d

e
g]

 

Displacement [mm] 

theory

average

130

135

140

145

150

155

160

165

170

175

180

15 20 25 30 35 40

A
n

gl
e

 θ
T2

 [
d

e
g]

 

Displacement [mm] 

theory

average



184 | P a g e  
 

6.1.2. Experimental and model results for second macro-simulation 

tests (set B) 

Figure 165 shows a picture of the laser light (532 nm) passing through the macro 

experimental configuration as per experimental set B. The reflection and transmission 

angles (θR1, θT1 and θT2) presented in this picture were those selected for comparison 

with the numerical model results. The results of the angle measurements of θR1, θT1 and 

θT2 from these experiments and the numerical models are presented in Figure 166, 

Figure 167 and Figure 168 respectively. 

 

Figure 165: Picture showing plan view of laser light passing though the outer cylinder made PMMA 
and then the inner cylinder made of PC. The drawn solid arrow lines (yellow) show the laser path 
and construction lines (red) show the location of reflection and transmission angles (θR1, θT1 and 

θT2). 

 

20

30

40

50

60

70

80

90

100

110

120

15 20 25 30 35 40

A
n

gl
e

 θ
R

1
 [

d
e

g]
 

Displacement [mm] 

theory average



185 | P a g e  
 

Figure 166: Comparison of theoretical calculations from the developed software (solid blue line) 
with the experimentally measured values for the reflection angles inside outer cylinder (θR1 angle in 

Figure 165). 

 

Figure 167: Comparison of theoretical calculations from the developed software (solid blue line) 
with experimentally measured values for the transmission angles through air (θT2 angle in Figure 

165). 

 

Figure 168: Comparison of theoretical calculations from the developed software (solid blue line) 
with experimentally measured values for the transmission angles through air (θT2 angle in Figure 

165). 
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6.1.3. Micro-scale experiments and model results for intensity 

distribution tests 

Figure 169 shows the 3D theoretically calculated light intensity distribution inside 

half of the 100 µm capillary filled with light absorbing solution and its 2D plan view 

projection. As the capillary was optically symmetrical and light ray paths could not pass 

from one half to the other, only half of the capillary is shown here. The light intensity 

values recorded in the model were divided into six ranges as represented by the colour 

map shown in Figure 169. The values from the model were scaled to fall within the 

range of intensity values from 135 to 255. The values shown against each colour 

represent the mid-point value for a range of 20 on the colour intensity with values 

above 255 being assigned within the 255 to 236 range. This scaling allowed for direct 

comparison with the experimental results shown in Figure 170b. The range of 20 on the 

colour map represents a span of 7.8% in light intensity values on the scale of 0 to 255. 

Light was incident along the y- axis (i.e. from the left side in Figure 169b). 

A series of colour photos were taken of the tartrazine filled 100 µm inner bore 

diameter capillary under illumination of the LEDs. These images were saved as 256 level, 

gray scale, ‘.PSD’ format images. Such images directly indicate light intensity values. All 

pixels of intensity within a ±10 grey scale range were selected together and a colour was 

assigned. For example, level 225 included all pixels within grey scale intensity level range 

from 216 to 235. Theoretical predictions were compared with these experimentally 

measured light intensity maps. Figure 170a shows the photograph of the light intensity 

distribution inside a capillary filled with tartrazine and illuminated with the white LED 

and Figure 170b shows the same image processed into a colour map representing light 

intensity distribution inside the capillary. Figure 171a shows the same capillary 

illuminated with the 430 nm violet LED Figure 171b and shows the same image 

processed into a colour map representing light intensity distribution inside the capillary. 

A small shadow effect is present in the upper part of the photographs (Figure 170b and 

Figure 171b) as a result of the capillary not being perfectly cut. When compared to 

theoretical predictions, shown in Figure 169, similar profiles can be observed. 

An interesting feature clearly displayed in the theoretical model is the location of a 

highest intensity point at the capillary wall. Its location is a result of capillary focusing, 

where the capillary walls act like a lens. Although this point is not directly measured 

from experiment (due to too low a detector sensitivity) the layers of crescent-like 

distributions of the same intensity concurs well with the theoretical predictions. 
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Figure 169: (a) 3D theoretically calculated light intensity distribution inside the 100 µm inner 
diameter capillary filled with light absorbing solution (b) and its 2D top view projection. Light was 

incident along the y- axis (from the left side in (b)). 

 

Figure 170: (a) Capillary filled with 0.01M tartrazine solution illuminated with white LED and (b) a 
colour map representing light intensity distribution inside the capillary. Arrows represent direction 

of illumination. 

 

Figure 171: (a) Capillary filled with 0.01M tartrazine solution illuminated with 430nm violet LED and 
(b) a normalised colour map representing light intensity distribution inside the capillary. Arrows 

represent direction of illumination. 

(a) (b) 

(a) (b) 

(a) (b) 
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6.1.4. Discussion of the developed light propagation model 

For set A macro tests, comparison of the experimental and model results for the 

reflection and transmission angles (θR1, θT1 and θT2) showed good agreement between 

these with model values largely lying within the 95% confidence intervals of the 

experimental results. The results from the models and experiments also trended well 

together. For set B macro tests, the θR1 and θT1 experimentally measured results were 

found to match only reasonably well with the theoretical results. These results were 

found to largely lie within the confidence intervals if a 2mm additional displacement was 

applied to the incident light. The correlation coefficients for the set B results were 

higher than the values for set A indicating the closer trending of the experimental data 

with the model values despite higher absolute error. Reasons for observed discrepancies 

between theoretical and measured values are most likely due to experimental error. 

Much effort was invested to ensure alignment of the individual components, including 

mounting the experiment on an optical bench, attaching the laser on a micrometre 

stage which in turn was set up perpendicular to the edge of the cylinder’s base plate, 

checking alignment of the reflected beams before measurement for height and 

perpendicularity adjustments and mounting the camera on an optical bench stand 

perpendicular to the top of the cylinders. However, over the scale of the experiment, 

alignment errors could be present due to imperfect alignment of the camera resulting in 

slight tilt of the incident laser beam; imperfect alignment of the laser pointer in the x-y 

plane resulting in a tilt of the beam; imperfect alignment of the laser pointer parallel to 

the x-axis of the micrometric stage; and difficulties in determination of laser beam edges 

in photographs resulting in inaccurate angle measurements. A slight shift and tilt of the 

beam from the true theoretical position could therefore be present along with some 

inaccurate edge detection in used image analysis routines. 

From the light intensity distribution simulation an interesting focusing lens 

behaviour effects of the capillary were detected. The model clearly displayed the highest 

intensity location point at the capillary wall. These simulation results also predicted light 

intensities of similar magnitude in crescent-like regions emanating from the capillary 

walls. These distributions corresponded well with the light intensity distribution regions 

as measured experimentally. The shape of regions of equal intensity, their numerical 

values and the relative percentage changes are almost identical between the simulation 

and experimental results. These experimental validations show encouragingly good 

agreement between theoretical predictions and measured results which could allow for 



189 | P a g e  
 

optimisation of associated regions for monolith synthesis and use in fluidic 

chromatography, optical detection systems and flow cells for capillary electrophoresis 

and flow injection analysis. 

6.1.5. Conclusions from the model verification 

A numerical model of light propagation and intensity distribution for coated 

fused silica capillaries was developed. Theoretical predictions of the light paths are 

concurrent with previous publications, and are presented with improved capability 

allowing taking into account the presence of coating materials and their optical 

properties. The model itself has high flexibility allowing calculations for multiple coatings 

and capillary body materials with differing dimensions (coating, capillary wall thickness, 

and bore diameters) and optical properties (refractive indices and light absorptivities). 

The model has been tested experimentally and showed good agreement between 

theoretical predictions and measured results. 

The numerical model was developed to provide a limited alternative to 

commercially available software such as Zemax or Optica Software. The model uses a 

simple geometrical approach to calculate the actual light path through a multilayered 

system with cylindrical symmetry. The results obtained from this model were cross-

examined with the experiments to verify accuracy of the developed model. 

The macro-scale verification process yielded positive results, with only one 

minor discrepancy between theoretical and experimental values. This was attributed to 

misalignment of the experimental setup affecting values of the measured angles. In all 

other cases theoretical values calculated using the developed model were in good 

agreement with the measured values. The micro-scale experiments on the light intensity 

distribution concurred with the theoretical prediction. A counter-intuitive result from 

the theoretical model is localisation of the highest intensity point within the capillary 

bore. Due to the lensing effect of the capillary, the highest light intensity is not located 

precisely on the illumination axis, but is shifted away from it. This effect may be 

exploited further for optimisation of the capillary-based optical detection systems, as 

well as for alignment and localisation of the light sources in the photo-induced 

polymerisation inside capillaries. The developed model could be easily adapted for such 

an application. 
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 Growth of the monolithic polymers in photoinitiated 6.2.

polymerisation in non-illuminated region 

6.2.1. Results of the monoliths growth 

A series of experiments were conducted in order to evaluate the degree of 

monolith growth under the masked region of a capillary where direct light should not 

enter. Observed results in experiments with photopolymerisation using same mixture 

and light sources showed that monolith can grow few millimetres under the mask. Such 

growth is considered undesired. Table 42 and Figure 173 shows average of three results 

of photoinitiated polymerisation of monolith with measured distance of the part formed 

under the photomask – in a region where direct light should not reach and therefore 

polymerisation would not be anticipated or well controlled. There was a clear trend of 

increased length of monolith grown under the mask as the LED was placed closer to the 

capillary. Also when the LED was tilted by an angle of 45° growth was significantly larger 

that side compared to when the LED was held perpendicularly. The light source was 

located directly over the edge of the photomask as shown in Figure 172. 

 

Figure 172: (a) schematic of the LED placement versus the capillary for perpendicular illumination 
and (b) for illumination under 45° angle. Red arrow marks distance from capillary to the LED, blue 

arrows marks distance of the monolith growth. 

  

(a) (b) 
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LED perpendicular LED tilted by 45° 

LED distance from 
capillary 

Growth length 
LED distance from 
capillary 

Growth length 

0 cm 1.1 mm 0 cm 2.3 mm 
1 cm 0.7 mm 1 cm 1.9 mm 
2.5 cm 0.5 mm 2.5 cm 1.7 mm 
4 cm 0 mm 4 cm 1.4 mm 

Table 42:  Monolith growth depending on light source position. 

 

Figure 173: Graph showing relation between distance from the light source and monolith growth in 
non-illuminated region for LED shining perpendicularly to the capillary and under angle 45 °. 

6.2.2. Discussion of the results 

Previously described theoretical model for light propagation was used in order 

to understand what is happening during photopolymerisation with light, solution and 

monolith. Tilting of the LED and thus delivering significantly more light to one side of the 

monolith suggest that capillary geometry plays significant role. 

When the light is incident on a boundary of two dielectrics with different 

dielectric constant (e.g. PTFE/fused silica, fused silica / polymerization mixture) a portion 

of it undergoes reflection reducing the intensity of transmitted light. The intensity of the 

reflected and transferred light is given by Fresnel’s equations (Eq. 22) separately for 

each polarisation of light: 

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5

M
o

n
o

lit
h

 g
ro

w
th

 u
n

d
e

r 
th

e
 p

h
o

to
m

as
k 

[m
m

] 

Distance from LED to capillary [cm] 

LED perpendicular

LED tilted by 45°



192 | P a g e  
 

   [
   (     )

   (     )
]

 

   [
   (     )

   (     )
]

 

 Eq. 22 

The uncollimated light is mixture of all possible polarisations, that is 

combination of linear polarisations and can be separated for p polarisation (vector of 

the electric field is parallel to plane of incidence) and s polarisation (vector of the 

electric field is perpendicular to plane of incidence). Graph on Figure 174 shows 

percentage of light being reflected on boundary PTFE/fused silica (light coming from 

medium with lower refractive index to medium with higher one) versus angle of 

incidence for both polarisations calculated from Eq. 22. 

 

Figure 174:  Graph of theoretical reflectance of s and p polarised light incident on boundary 
PTFE/fused silica vs. angle of incidence calculated from Eq. 22. 

The light that reflects multiple times on dielectric boundary quickly loses 

intensity. The developed numerical model showed that incidence angles that are 

present in a capillary at the fused silica/PTFE boundary illuminated from outside do not 

provide significant reflectance and light is quickly transmitted outside of the capillary. 

Figure 175 provide information with upper limits of the light intensity that can be 

reflected by the capillary assuming total lack of absorption at this stage. 
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Figure 175: Schematic of the light propagation by multiple reflections inside PTFE-coated fused silica 
capillary with upper limit of the initial intensity I0 (no more than). Dark blue – PTFE, light blue – 

fused silica, white – polymerisation mixture, red – light path 

Figure 175 shows schematic cross-section of capillary with sample light ray. 

After two reflections (first on boundary fused silica/polymerisation mixture, second on 

boundary fused silica/PTFE) not more than 0.16% of intensity from point A is delivered 

to point B. The real value of the light intensity in point A is already lower than I0 due to 

reflection on boundary air/PTFE and boundary PTFE/fused silica, but these effects are 

neglected and rounded to I0 is this discussion. After three reflections intensity drops to 

not more than 0.06% of initial, and after four to not more than 0.02%. Dimensions of the 

capillary and refractive indices of PTFE, fused silica and polymerisation mixture are 

enforcing angles in further reflections and transmittances – after around 300 µm from 

initial point of illumination total delivered light intensity is below 0.2% of the initial light 

intensity I0 delivered to the capillary is available. This calculations are based on 

assumption that all materials (air, PTFE, fused silica and polymerisation mixture) are 

completely transparent and do not absorb any light. Because their transmission 

coefficients are below 1 total amount of light available will be significantly lower, making 

impossible to penetrate distances observed in the experiments. 

The size of a standard capillary is comparable with size of multimode optical 

fibres, where geometrical optics is sufficient to explain observations and calculate 

results. Capillaries and coating have form of coaxial cylinders. The basic principle of 

optical (multimode) waveguide is total internal reflection (TIR). This phenomenon is 

occurring when dielectric with refractive index n1 (e.g. fused silica (FS)) is covered with 

dielectric with refractive index n2 < n1 (e.g. PTFE, nPTFE < nFS). The light wave incoming 

from medium with higher refractive index to boundary can undergo TIR provided angle 
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of incidence is high enough. The graph on Figure 176 shows dependence of intensity of 

reflected light versus angle of incidence (for fused silica/PTFE boundary). 

 

Figure 176: Graph showing the theoretical reflectance on boundary fused silica/PTFE vs. angle of 
incidence. Reflectance of 1 (starting at 64.8°) shows where total internal reflection occurs and no 

light is transmitted through the boundary (from Eq. 22). 

In order to observe total internal reflection for light incident on fused silica/PTFE 

boundary, angle of incidence must be higher than 64.8°, otherwise some light will be 

transmitted through the boundary resulting with loss of the light intensity. The 

developed numerical model showed that no angle higher than 44.7° is available in any 

part of the capillary meaning that no light introduced to capillary from source placed 

above the capillary can achieve angle sufficient to reflect totally within the fused silica. 

Capillaries are made of fused silica and have very similar diameters to optical 

fibres. PTFE has lower refractive index than fused silica. Initially a hypothesis about the 

capillary acting as an optical waveguide was discussed to explain occurrences of 

monolith growth under the photomask. There were two major contradictions: light 

coming from outside of cone of acceptance (i.e. from source located above the capillary) 

for optical fibre it cannot be transmitted over longer distance. The value of the highest 

possible angle of incidence on boundary fused silica/PTFE for light interacting with 

capillary content obtained from the developed model is significantly lower than required 

for the TIR. Graph on Figure 176 shows that for angles of incidence below 45°, 

reflectance is very low, and light is mostly transmitted through the boundary. 

The last possibility was reflection on boundary PTFE/air – the highest possible 

ratio of refractive indices. In order to observe TIR on this boundary the incidence angle 
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of light must not be lower than 49.25°8. The highest incidence angle on fused silica/PTFE 

boundary calculated using light propagation model gives angle of 44.57°. Although 

amount of light reflected on that boundary is around 10% it does not satisfy the 

condition to observe total internal reflection and could not explain growth of few 

millimetres. 

These attempts mentioned above to explain observed result were based on a 

static system with constant time-independent properties. A capillary with on-going 

polymerisation reaction is a dynamic system, which changes its physical and optical 

properties in time. A hypothesis that a monolith forming inside capillary is changing 

optical properties of the setup during the polymerisation was posed. To prove this 

hypothesis, new photographs of capillary filled with polymerisation mixture and 

monolith were taken to show the transmission of light when the LED was shining on the 

capillary.  The capillary was installed vertically above the digital microscope. In order to 

prevent any undesired light, a black cardboard separated the microscope objective from 

the rest of the setup and photos were taken in total darkness. Any possible openings 

near capillary wall were covered with a sealant. Schematic of that setup is shown on 

Figure 177. 

 

Figure 177: Schematic of experimental setup for observing light waveguiding inside the capillary 
with monolith. 

                                                           
8
 Calculated from Eq. 22, refractive index of PTFE nPTFE  = 1.32 and refractive index of air nair = 1 
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Figure 178: (a) capillary with monolith and (b) empty capillary. Image collected by digital microscope 
using setup from Figure 177. 

It can be clearly seen in the Figure 178a that light was transmitted through the 

fused silica. The distance from the light source to the microscope was 20 mm to prevent 

any other discussed method than waveguiding to propagate light toward the end of 

capillary. To confirm that the observed effect has nothing to do with collimation of the 

light the experiment was repeated using 532 nm green laser as light source. Result is 

shown on Figure 179. Black spots are effect of destructive interference of laser beam 

with itself after multiple reflections inside fused silica. LED light is non-collimated thus 

the interference effect was not observed. 

 

Figure 179: Image observed when 532 nm green laser is used as light source (setup same as on  
Figure 177). 

The monolith inside the capillary has a very irregular surface. Moreover the 

refractive index of a polymer is higher than of the fused silica. The incident light was 

scattered on the monolith surface (polymerisation mixture/monolith boundary) and due 

to the morphology of the monolith surface it was scattered in all directions (Figure 180). 

This type of reflection is is called diffuse reflection or diffuse scattering. In this situation 

light can be reflected under an angle sufficient to undergo total internal reflection on 

boundary fused silica/PTFE. These angles are not available for light that is not a subject 

to diffuse reflection. The refractive index of polymethacrylic polymer is higher than 

(a) (b) 
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fused silica and ranges from 1.472 to 1.506 (255). Light reflected diffusively in one part 

of monolith can propagate through the monolith, cross the boundary monolith/fused 

silica, and then remain in the TIR regime in regions where no monolith is present, 

effectively turning capillary into an optical waveguide.  

Also diffuse scattering allows photons entering fused silica under angles higher 

than for those coming directly from light source. Wherever total internal reflection is 

occurring, on opposite side of boundary an evanescent field appears strong enough to 

initiate photopolymerisation. Figure 181 shows a schematic of that principle. 

 

Figure 180: Schmatic of the diffuse scattering of incident light on the porous surface of the monolith 
that has formed inside the capillary. 

 

Figure 181: Schematic showing formation of the evanescent field (yellow arrow) outside dielectric 
inside which light undergoes total internal reflection. Dark blue – PTFE, light blue – fused silica, 

transparent – polymerisation mixture. 
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6.2.3. Conclusions from the monolith photopolymerisation 

The developed numerical model was used for investigation of the capillary 

optical properties during the photopolymerisation reaction. The main goal was finding a 

relation between alignment of the light source versus the capillary and the shape and 

size of polymerised monoliths. The previous observations suggested that a light 

transmission through the capillary fused silica body occurs in a similar manner as in an 

optical fibre. The numerical model was used to determine conditions necessary for total 

internal reflection of the light used to initiate the polymerisation reaction, which in 

consequence would lead to waveguiding of the light through the capillary and enabled 

evanescent polymerisation in an obscured region under the photomask. 

Studies of the empty capillary and capillary filled with photopolymerisation 

mixture yielded conclusive results that the light does not propagate in the system under 

the photomask. The minimum required angle to observe total internal reflection was not 

present in the system. This result is concurrent with basic knowledge of the optical 

fibres: the light must be introduces into the waveguide under a sufficient angle to 

remain within total internal reflection regime. If the initial angle of incidence is higher 

than required the beam will eventually escape the waveguide. This hypothesis was 

tested using an empty and filled with polymerisation mixture capillary illuminated 

perpendicularly and a photodetector that was recording light emitted though the 

capillary cross-section. The results were in both cases negative. Meanwhile the 

conducted experiments relating position of the light source and its distance from the 

capillary clearly suggested that such a relation exists. 

During this investigation a dynamics of the polymerisation process affecting 

optical properties was studied. The polymerisation process and thus the formation of a 

monolith inside the capillary could affect the optical properties of whole system. An 

organic monolith is a highly porous, amorphic structure, that when illuminated reflects 

significant amount of light. Presence of the monolith formed during the reaction 

changes the optical properties of the capillary that may longer be regarded as a uniform 

cylindrical structure with constant refractive indices across its whole cross-section. The 

experiment with a capillary with monolith formed inside proved dramatic changes of the 

optical properties of the capillary, resulting in the light transmission through the fused 

silica capillary body. The monolith inside the capillary bore provided a surface for diffuse 

light reflection. The monolith’s surface morphology allowed for presence of the angle 

that are normally unavailable inside the capillary system, but with monolith the 
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waveguiding of the light becomes possible. As the light can be transmitted along the 

capillary for significant distances (measured distance was 20mm) utilising the total 

internal reflection mechanism. On the side opposite to the light reflecting of the 

boundary evanescent field forms, strong enough to initiate the reaction of 

photopolymerisation. The increase of the distance between the capillary and the light 

source significantly reduces amount of light reflected from the monolith surface and 

thus amount of light that can propagate through the capillary. Placing the light source 

too close to the capillary may result in over-illumination of the region of interest and 

allow for some light to propagate through the capillary body. 
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Chapter 7 – Conclusions 

Presented thesis contains several separate work packages that can be divided 

into three sections:  computer modelling of the microfluidic processes, experimental 

verification of developed models and the study of the light propagation for microfluidic 

devices. Two main areas of interest studied were the fluid dynamics with 

electroseparations and the optical detection via designated and tested visualisation 

methods. 

 Conclusions form the scientific work 7.1.

In the area of fluid dynamics, a microfluidic platform for separation and 

preconcentration was investigated. The initial idea based on previously published 

experiments was modelled and tested experimentally; see results in section 4.10 and 

5.3. The electrohydrodynamic focusing (EHDF) was designed as an equilibrium 

separation method of analyte preconcentration. The designed platform had to be easily 

automated allowing a continuous mode of operation “sample in – selected 

preconcentrated substance out”. Numerous advantages of microfluidics suggested its 

application for the design. Small scales, compliance with miniaturisation, possibility of 

full automation of the process and potential of integrating sample handling, separation 

and detection in one device were regarded as key elements during this research. 

A typical microfluidic device design resembles often an electronic circuit. 

Numerous tanks containing reagents are connected by micrometre-scale width and 

height channels with micro-reactors, inlets and outlets. The majority of microfluidic 

devices rely only on electromigration, though there are platforms using pressure-driven 

flow as well (e.g. Agilent Bioanalyser 2100). In this project a novel idea of planar two 

dimensional microfluidic devices with multiple parallel flow streams present at the same 

time was investigated. EHDF was designed as a development of other methods: 

Conductivity Gradient Focusing and Electric Field Gradient Focusing. The novelty was in 

the application of adjustable geometry created by different conductivity regions instead 

of using a fabricated device with defined geometry. 

At the start of the project, a numerical model of occurring processes inside the 

chip using COMSOL Multiphysics was developed. Initial models provided results 

concurrent with those previously published indicating applicability of this method for 
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the simulation of this process. During the modelling work several different chip layouts 

were investigated and one was selected for manufacturing of the chip used for focusing 

experimental work. The model theoretical predictions suggested the presence of a 

quasi-stationary zone of analyte with a two to five fold increase of concentration that 

could be extracted for further applications. 

The microfluidic chip based on the developed model was manufactured and 

used to cross reference results of numerical simulations with results of experiments, see 

sections 5.1, 5.2, 5.3, 5.4, and 5.19. During the experiments the performance of the 

fabricated microfluidic chip exceeded predictions from the conducted modelling. The 

observed concentration increase was as high as nine times compared to the initial value, 

making it two to three times more efficient than estimated by simulations. The modelled 

flow pattern was in general achieved and there were observed problems with flow 

stability. To maintain the necessary flow pattern in the chip the same outflow rate 

through both outlets where peripheral outlets were used had to be maintained. This 

proved to be difficult but possible. 

Testing of different gasket thicknesses exposed the necessity of surface flatness 

and maintaining a constant thickness throughout the flow chamber. Variable chamber 

height can decrease flow stability and as the device relies on symmetry of the different 

conductivity solution distributions. This requirement can completely prevent the device 

from working as was the case with the thinnest gasket used. Also difficulties with 

installation of electrodes in the agarose gel tanks were noted. Tanks were machined 

throughout the upper layer of the chip and then blocked with an adhesive polymer. The 

presence of the increased pressure resulted in deterioration of the agarose gel and the 

adhesive layer itself leading to leaks and reduced overall performance of the device. 

The developed numerical model of EHDF displayed parallel flowstreams (two 

streams of low conductivity test compound separated by a stream of the high 

conductivity buffer) up to the focusing zone and was in agreement with previously 

published work. During the experiments a novel unexpected mode of focusing was 

discovered. Immediately after applying voltage to the system the test compound 

(malachite green) started migrating into the central flowstream and forming a thin line 

along the chamber. This phenomenon was investigated to try to understand the reasons 

of such behaviour. This was unexpected as the focusing occurred along the line 

perpendicular to the applied electric field more so than along the applied field. The chip 

geometry and flow pattern variablity were dismissed as causes, as repeated experiments 
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produced highly similar results. The observed occurrence of lateral electrohydrodynamic 

focusing was tested as a potential method for separation and preconcentration of 

analytes. A series of experiments with multiple parallel flowstream in the same 

microfluidic chamber was conducted to present a possible theoretical explanation for 

this event. Two flowstreams of a low conductivity analyte (malachite green) were 

separated by a stream of a high-conductivity buffer (Tris-HCl). After applying the voltage, 

Tris was migrated on the other side of the chip, while Cl was accelerated toward the 

outlets. The central flowstream had an excess of negatively charged Cl ions, which were 

attracting positively charged MG ions. As a result MG was migrated into the central 

flowstream (perpendicularly to the applied field). 

A similar effect was observed in thin channel microfluidic chips as a result of 

interaction with charge located on the walls (257; 258).  The observed lateral EHDF 

works in a very simple routine allowing continuous extraction of preconcentrated 

analyte without pausing in the system flow. The observed lateral electrohydrodynamic 

focusing presents a novel opportunity as a separation and preconcentration technique 

which should be pursued. 

The second part of this project was dedicated to the investigation of a solid state 

light sourced (mostly light emitting diodes) in the area of visualisation, optical detection 

and application for photoinitiated polymerisation of organic monoliths for separation 

sciences. A numerical model for light propagation and intensity distribution in multi-

layered cylindrical systems was developed from first principles using the LabVIEW 

programming environment. 

The model was initially design to provide answers about occurrences of 

photopolymerisation of monolith in capillaries in regions covered by the photomask. The 

model was designed to provide information as to the extent of photopolymerisation 

beneath the edges of the photomask. The completed model was used for simulation the 

actual light path in multilayer system with cylindrical symmetry and for simulating the 

light intensity distribution in such systems and was cross referenced with experimental 

results both on the macro and the micro-scales. The experiments validated the model 

calculations of the light paths geometry (ray-tracing) and calculations of light intensity 

distribution inside the capillary filled with the light absorbing medium. 

Light emitting diodes (LEDs) were used extensively throughout the project as a 

main type of light source for both visualisation and optical detection. The unique 
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spectral properties combined with the small scale of the LEDs made them suitable for 

use during the experiments in the microfluidic chip where an LED coupled to the 

spectrophotometer was used as a light source for the optical absorbance detection. An 

LED was also used as a light source for light intensity distribution measurements in the 

light propagation experiments. A high-power LED was used for low-cost real-time 

visualisation of fluorescent dye in the chip. An UV-LED was also used for experiments to 

investigate polymerisation of the monoliths under the photomask. LEDs are currently 

regarded as a new generation of light sources with multitude of applications including 

photometric detection, fluorometry and visualization. A part of this project was related 

to imaging and data analysis from digital photos to determine concentration values in 

the microfluidic chip or the light intensity distribution inside the capillary. Two scientific 

papers were published from this work. The first paper was on the development and 

validation of the light propagation model (259), and the second one on the employment 

of the white LEDs as light sources for optical detection (260). This work highlights the 

usefulness and good applicability of both LEDs and light path and distribution modelling 

for μ-TAS system design and development. An example of the use of this photometric 

detection is given in the photo-absorption experimental validation work presented in 

Chapter 5 of this thesis. 

7.1.1. Testing of the hypotheses 

The work presented in this thesis was based on few research hypotheses: 

  It is possible to attain a stable high conductivity stream of varying cross-section using 

multiple inlets and outlets (referred further in this thesis as the flow pattern) in a 

planar two-dimensional microfluidic chip 

 The presence of such a flow pattern will allow for the formation of an electric field 

gradient and velocity gradient along the separation dimension 

 A stable trapezoidal flow pattern base on this generated flow pattern will allow for 

focusing of at least one compound 

 Simultaneous concentration measurements can be made across the whole chip with 

a developed photometric detection system, based and optimised on the investigation 

of simpler capillary-based microfluidic photometric detection systems 

The first hypothesis as the base for EHDF was tested extensively with 

investigation of the numerical models and during the experiments. The initial 

assumption on application of multiple additional outlets that would withdraw auxiliary, 
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low-conductivity flowstreams and allowed for broadening of the central, high 

conductivity flowstream proved to be hindered by unwanted species distribution due to 

the diffusion. This approach was abandoned during the modelling stage. The second 

principle of this hypothesis, formation of triangular flow pattern, remained unchanged 

throughout the rest of the numerical modelling process. Eventually a different chip 

layout was developed that allowed for formation of the trapezoidal flow pattern needed 

for the formation of the electric field gradient. As a cost associated with the employed 

approach a velocity gradient along only x-axis resulted. This lead to complexities with 

attaining a perfect equilibrium between the pressure-driven flow and the 

electromigration. The lack of perfect balance between these two forces yielded a quasi-

stable EHDF that could still be employed practically. The developed model also could be 

used for better theoretical explanation of CGF presented in (8). The achieved EHDF 

presents a novel method for preconcentration of the analytes that is not based on 

fabricated features of the microfluidic chip, but rather on a balance between fluid flows. 

The second hypothesis was tested positively and was used extensively both in 

modelling and during the experiments. The formation of the trapezoidal flow pattern is 

regarded as a key element for EHDF. In other approaches presented in Chapter 2 either 

specific geometry or multiple electrodes were employed to achieve electric field 

gradient. Application of a flowstream with adaptable cross-section and thus adjusting 

the electric field parameters using only two electrodes has not been published 

previously. 

The third research hypothesis was verified positively. The focusing of the test 

compound was observed during the modelling stage and in the experiments on EHDF. 

The performance of the developed chip exceeded the numerically predicted values. Also 

during the experiments, an unexpected behaviour of the focused analyte was observed, 

named lateral EHDF. The investigation of this mode of EHDF yielded very encouraging 

results in terms of preconcentration efficiency, simplicity and robustness of the used 

chip and repeatability. The previously published works on lateral focusing occurred 

within narrow microfluidic channels and were based on particle-wall electrostatic 

interaction (257; 261).   

The study of the optical properties during the experiments on EHDF led to the 

development of a numerical model of the light propagation and the light intensity 

distribution for microfluidic devices – mostly capillaries and chips. The model was 

successfully verified experimentally, and results were published in (259). The application 
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of this model was demonstrated in explanation of monolith photopolymerisation in 

theoretically impossible place.  

 Future work 7.2.

The presented thesis structures research directions for future studies of the 

electrohydrodynamic focusing. This work should be regarded as the proof of concept of 

the EHDF and lateral EHDF. There are several objectives that have to be investigated to 

fully develop EHDF as a laboratory or industrial technique: 

 A better control of the velocity gradient. Currently employed method proved to 

be not efficient enough, although allowed for the observation of the EHDF. 

 A higher precision of the chip upper and lower surface flatness is required in 

order to test thinner gaskets. Suggested tolerance is ±1μm for 50μm gasket, to 

have the maximal combined chamber thickness error of 4%. 

 Materials harder than PTFE as gaskets could be tested, combined with torque 

measurement of the supporting screws to minimise the changes in the chamber 

thickness 

 A more robust material than agarose gel should be used to support the 

electrodes. The deterioration of the agarose gel required its often replacement 

to minimise the undesired effects 

 The electrode housings should not be drilled through the upper chip layer. Only 

a cavity instead of the hole is suggested to simplify the experimental procedure, 

reduction of leaks and undesired backflows 

 At the current stage only one analyte was focused at the same time. In order to 

use EHDF in laboratory of industrial scale a focusing of several analytes is 

required 

 A detection system based on a CCD or CMOS matrix should be integrated into 

one of the chip layers. It is suggested to use the opposite part than the one with 

fluidic ports. 

 LEDs could be integrated in such chip to provide the illumination for the 

photometric detection 

 Lateral EHDF could be used for purification of the solutions focusing all 

impurities in one flowstream 
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The EHDF presents novel, interesting method for preconcentration of the 

analytes. There are several obstacles to overcome but the potential for this technique, 

especially when automated can be enormous.  
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Appendix A – Brief history of 
computers 

There is no other single invention that revolutionised our lives in the way that 

computers did. When looking back at the prognoses of the future from the beginning of the 

20th century, the expansion of aviation and mechanics could have been foreseen. Historically in 

1947 Bardeen, Brattain and Shockley had presented the transistor (196). Since then 

development of integrated circuits has revolutionised our lives affecting even the most basic 

phenomena such as interpersonal communication (262). 

The word “computer” in the English language originally meant “one who computes; a 

calculator, reckoner; specifically a person employed to make calculations in an observatory, in 

surveying etc.” (263). The oldest machines designed to help counting, such as the abacus, 

dates back to ancient era; it was not until 17th century when William Oughtred developed a 

slide rule, a device based on logarithm theory that allowed not just simple adding but 

multiplication, division and calculating the logarithm of a number. Different scientists 

throughout the ages tried to develop a computing machine, such as Blaise Pascal, Gottfried 

Leibnitz, Charles Babbage, Alan Turing, Konrad Zuse and George Stibitz.  Although the first 

programmable devices are reported as early as 12th century (264), the first programmable 

machines that really affected the world were mechanical looms designed by Joseph Marie 

Jacquard. His design relied on a mechanical system of handles and cogs deciphering a 

demanded pattern from perforated cards. Notably perforated cards remained in use until late 

1970s already in era of semiconductor computers (263). 
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Figure 182: Members of the ENIAC team at work in the 1940s (265). 

Machines developed to solve difficult mathematical problems were somehow already 

designed for simulations and modelling. Formulated laws could be processed with ease, 

allowing personal manipulation, even things difficult or impossible to change in experimental 

practice. This made modelling and simulations an integral part of the applications of the early 

computational machines which led to development of modern computers during the 1940’s. 

From the viewpoint of the history of computers the most important events occurred during 

World War II and early-post war years. The first machine that was able to perform universal 

computation was the electromechanical Z3 computer, made by Zuse in Berlin in 1941 (266). 

Meanwhile in 1937 in US a non-programmable computer (calculator) made by Atanasoff and 

Berry (Atanasoff-Berry Computer, ABC) were displayed (267). In UK a secretly developed series 

of “Colossus” electronic computers was introduced in 1943 (268) and ENIAC (Electronic 

Numerical Integrator And Computer) in the 1946 (269). What made ENIAC different from other 

machines was the combination of design and non-specified purpose. The Z-series were not 

purely electronic and ABC were not programmable, ENIAC was. While “Colossus” computers 

were designed to break codes, ENIAC was intended for different tasks. Those features made 

ENIAC the predecessor of modern computers from table-top PCs to mainframes and 

supercomputers. Some of very famous quotes related to computers and computer industry: 

 “Future computers will have only around 1000 vacuum tubes, and should weigh 

less than 1.5 ton”, Article in “Popular Mechanics”, march 1949  
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 “I think there is a world market for maybe five computers”, Thomas Watson, 

Chairman of IBM, 1943 

 “What the hell it might be useful for…?”, Robert Lloyd, Dept. of Advanced 

Computational Systems, IBM, c.a. 1968 referring to microprocessor 

 “There is no reason anyone would want a computer in their home”, Ken Olson , 

President, Chairman and founder of Digital Equipment Corp., 1977 

Rapid developments in computers in last two decades of 20th century resulted in the 

popularisation of personal computers and the increased availability of the computer to 

average researcher. A law predicted by Gordon Moore in 1965 stating that the number of 

transistors per surface unit will double every 18 months, interpolated to doubling the 

computational power every 24 months still remains valid (see Figure 183) (270).  With quickly 

escalating accessible computational power, problems that a few years earlier required a 

supercomputer could then be performed with a table-top PC allowing the individual 

researcher to use software that was unavailable for the average user just a few years 

previously. Also it allowed an increased complication of models, increased number of 

parameters, and increased precision of solutions. 

 

Figure 183: Graph showing evolution of Moore’s law from 1972 to 2003 on semiconductors and data storage 
density (270). 
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Appendix B – Description of 
different methods used in CFD 

 Finite Difference Method (FDM) 8.1.

This is the oldest known computationally designed method of numerical solving PDEs, 

which introduction is attributed to Leonhard Euler in the 18th century. FDM is started as all 

numerical methods with a construction of the grid over the solution space. At each node point 

the differential equation is approximated, typically by Taylor series expansion or polynomial fit 

to approximate first and second derivative of the variable with respect of the coordinates 

system. The main problem is that although FDM can be applied to any mesh type, the only 

known applications are to structured mesh, where grid lines serve as coordinate systems. The 

second disadvantage associated with FDM is that special attention has to be paid for securing 

conservation laws and boundary settings (130; 138). 

 The Finite Volume Method (FVM) 8.2.

The FVM divides the computational domain into a finite number of test volumes, each 

being equivalent to a single point located at a centroid. These points serve as nodes for solving 

the governing equations where values of variables are calculated with the respect of the 

coordinates system. The FVM differs from FDM in that it uses an integral form of conservation 

equations. Calculated variables values for the centres of test volumes are then interpolated. 

The FVM can work with any type of mesh and works well for complex geometries. The grid 

defines how test volumes are located and is independent of the coordinates system. The FVM 

is regarded as the easiest one to implement programmably. FVM is also known for its 

difficulties in dealing with equations which have non-zero viscous terms somewhat reducing its 

usefulness for microfluidics (130; 138). 

 The Finite Elements Method (FEM) 8.3.

A FEM has similar structure to FVM but equations are multiplied by a weight function 

prior to the integration. A typical feature of the FEM is the application of unstructured grids – 

triangles and quadrangles (in two dimensions) and tetrahedrons and hexahedrons (in three 

dimensions) to produce a mesh with rather circumstantial shape depending on preferred mesh 

density. In the simplest approach the solution and weight are approximated by a linear 

function with a secured continuity condition set between each mesh cell. The approximation is 

replaced by a weighted integral function of the conservation function and solved such that the 
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derivative of the integral with respect to each mesh cell value is zero.  As a result a set of non-

linear algebraic equations is produced. FEM works well with flux or gradient based boundary 

conditions making it very useful for microfluidic applications. Also it excels in difficult 

geometries that can be easily refined with a more dense or simplified grid. One difficulty with 

FEM is in handling geometries with dimensions which differ by several orders of magnitude 

(130; 138). 

 Other methods 8.4.

There are other numerical methods that are employed in seeking solutions of PDEs. All 

previously mentioned methods were based on some form of anchor points filling the entire 

solution domain. The Boundary Element Method (BEM) represents a different approach. 

Approximations are made only on the perimeter of the computational area – the 

circumference in case of 2D problems and the surface of the test volume for 3D. There are two 

basic types of BEMs: indirect and direct. Indirect BEMs are characterised by an intensity 

distribution (density) function over which superposition of fundamental solutions is sought. 

The boundary integral equation analytical solution that cannot be found in general is replaced 

by an approximate solution of the varying density function over the boundaries. For direct 

BEMs the integral equation is calculated using the divergence theorem9. With appropriate 

substitutions and use of arbitrary functions, an integral equation over the boundary is 

obtained. This approach is called “direct” because functions appearing in the equation are 

physically meaningful equations contrary to the density function in indirect method (271). 

A relatively new and not yet fully explored method is called Lattice Boltzmann Method 

(LBM). LBM was developed from kinetic gas theory where the primary variability described by 

one-particle probability distribution function, Boltzmann’s H theorem, stating that for fixed 

volume entropy never decreases and collision interval theory. LBM employs mathematical 

description of pseudo particles, that represent no single molecules but rather clusters of them. 

LBM is considered a molecular technique rather than continuum but is still under development 

(272; 273). 

  

                                                           
9
 Also known as Gauss theorem, Ostrogradsky theorem or Gauss-Ostrogradsky theorem:  

∮    

 

 ∫      
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Appendix C – Brief history of Solid 
State Lighting 

The Solid State Light (SSL) presents a new quality resource in the world of illuminating 

techniques. SSL is composed of light sources belonging to a fourth generation of light sources: 

after burning a fuel and using bare fire (1st), passing current through metallic fibre to induce 

light through thermoluminescence (2nd), and inducing fluorescence in gases (3rd), light can be 

generated directly from the electric current carriers passing through a semiconductor (4th 

generation).  The underlying physical phenomenon is called the electroluminescence – 

semiconductors emit a stream of electromagnetic energy – photons, when they return to the 

ground state after being excited by electrons (274; 275). 

The first documented observation of electroluminescence comes from Henry Joseph 

Round in 1907 (276). During an investigation of silica carbide he observed light emission as a 

result of radiative recombination of electrical carriers.  The first publication concerning the 

theory on which this phenomenon is based was brought out by a little known Russian scientist 

Oleg Vladimirovich Losev  who published several papers in British and German journals 

between 1928 and 1933 (277; 278; 279; 280; 281). Lack of co-workers, his premature death in 

1941 and the situation after the World War II resulted in his works being forgotten.  The first 

demonstration of coherent light emission from a semiconductor (first laser diode) was 

conducted by Hall and his team in 1962 (282). Later the same year, visible red light emission 

from semiconductor diode (the first light emitting diode) was demonstrated by Holonyak  

(283). In 1969 Maruska and Pankove studied fundamental properties of gallium nitride (GaN) 

(284; 285) which resulted in the first solid state source of blue light from a metal-insulator-

semiconductor structure (MIS–structure) (286). Their light source, although working, was far 

from perfect. Development of vapour-phase epitaxy allowed Crawford in 1970 to produce 

high-performance amber, yellow and yellow-green electroluminescent sources (287). Solid 

state infrared emitters based on GaAs were constructed in 1950, before the first visible light 

emitting diode (288). In 1962 extremely efficient infrared emissions with energies close to 

bandgap energy were observed in the infrared range (289). 

In 1991 the world first blue laser was demonstrated by Haase and co-workers at the 

3M Company (290). Their achievement however was only a proof of a theoretical concept, but 

not a technically optimal solution for a blue solid state light source.  Another design based on 

ZnSe/CdZnSe junction was toxic and therefore short lived.  In 1992, Akasaki demonstrated 

stimulated light emission from a GaN semiconductor (291), but it was Nakamura who 



vii | P a g e  
 

introduced around the same time a method of mass production of high luminosity, long life-

time and non-toxic blue LEDs (292). From that moment the world turned its attention to a new 

era of illumination, the era of solid-state lighting.  Continuous developments in the area of 

semiconductors and material physics working their way through the light spectrum down into 

the UV-spectral range allowed in 2006 an LED with peak emission at 210 nm to be constructed 

(193). Meanwhile a silent revolution took place in the world of red LEDs – the luminous 

efficacy reached up to 80 lumens per watt.  In 2008 white LEDs for the first time exhibited a 

luminous efficacy higher than red LEDs, namely 169 lumens per watt (178). While there is no 

official definition of ‘ultra-bright’ LEDs, generally it is assumed that such diodes have luminous 

efficacy at least 150 lm/W (196). With continuous development of new LED technologies and 

constant increases in LED manufacturing volumes, which brought the lowering of the costs per 

unit, the transition to solid state lightning has begun (293). Among many other benefits, 

environmental impact due to the reduced energy consumption is important.  It was estimated 

in the USA in 2006 that with 80% market penetration by solid state lighting the total electrical 

energy consumption would be lowered by approx. 11% (179). 
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Appendix D – Physical principles 
of LEDs 

A light emitting diode (LED) is a semiconductor diode that emits specific light when 

electrical current is flowing in forward bias.  The energy (or wavelength, Eq. 24) of the emitted 

photon depends on the physical properties of the used semiconductors (bandgap energy Eg).  

A range of semiconductor materials have been developed for particular wavelength ranges. 

Most commonly used materials are gallium arsenide (GaAs) for infrared emission (wavelength 

of emitted radiation λ>760 nm); aluminium gallium arsenide (AlGaAs) (610-760nm); gallium 

(III) phosphide (GaP) (500-760nm); indium gallium nitride (InGaN) (400-570nm when combined 

with gallium (III) nitride (GaN)); aluminium gallium nitride (AlGaN) and indium aluminium 

gallium nitride (AlInGaN) both below 400nm (294). 

LEDs can be built from semiconductors with a straight bandgap only. Bandgap is 

defined as straight when the maximum energy of the valence band equals the minimum 

energy of the conduction band in momentum space (see Figure 184). Only the vertical 

transitions are radiative. The horizontal transitions results in increased oscillations of the 

crystal lattice (phonons) and contributes only toward heat generation. Therefore it is not 

possible to create LED from pure silicon as it has indirect bandgap. GaSa, the first material to 

be used in massive scale for LED construction has a direct bandgap (295). This can be 

schematically represented as in Figure 184. Band energy extremum mismatch results in 

increased non-radiative transitions and lowers overall light generation efficiency. 

 

Figure 184: Schematic comparison of the population of charge carriers at 0K in semiconductor with indirect 
bandgap (Si) and with direct bandgap (GaAs). 
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Maximising the light output and at the same time minimising the undesirable heat 

production and overall energy consumption are major considerations for all LED 

developments.  As photons are created at the contact of the two semiconductors they can be 

easily lost by being absorbed by the overlaying material.  A major engineering challenge to 

produce an efficient high-luminosity LED is to extract as many photons as possible from the 

place of the electron-hole recombination and deliver them outside of the chip.  It is easier to 

increase the LED luminosity by increasing the extraction efficiency, than by improving the 

internal quantum efficiency (ratio of radiative transitions to all transitions in a junction) (296). 

The most important factor to improve the internal quantum efficiency is to reduce the amount 

of heat generated by the LED. 

For a semiconductor in the thermodynamic equilibrium above 0K some electrons have 

enough energy to transfer from the valence band to the conductivity band. Contrary to metals, 

with increased temperature, semiconductors display better conductivity. Increase of the 

carrier density in the conductivity band with temperature is greater than losses due to crystal 

lattice oscillations. The density distribution of electrons in the valence band is governed by the 

Fermi-Dirac distribution (Eq. 23) (see Figure 184 and Figure 185): 

 ( )  
 

 
 (
    
  

)
  

 Eq. 23 

where f(E) is the electron density function, E is energy, Ef is Fermi’s energy10, k is Boltzmann 

constant, T is the absolute temperature. 

 

Figure 185: Graphical representation of a carrier density distribution a T>0K; n(E) and p(E) are density 
functions for negative and positive carriers. 

                                                           
10

 Defined as maximal energy of an electron at 0K (35). 
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To improve achieve appropriate electrical properties semiconductors are admixed with 

different elements, see Figure 186, Figure 187 and Figure 188. There are two types of doping 

semiconductors: 

 Type N (negative) when a semiconductor is admixed with an element with more 

valence electrons – phosphor (V) doping silica (IV) 

 Type P (positive) when a semiconductor is admixed with an element with less 

valence electrons – indium (III) doping silica (IV) 

 

Figure 186: Scheme of the crystal lattice in doped semiconductor: type n on the left, type p on the  right. 

 

Figure 187: Carrier density distribution for n-type doped semiconductor. 
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Figure 188: Carrier density distribution for p-type doped semiconductor. 

Bandgap energy defines minimum frequency (maximum wavelength) of the emitted by 

Planck’s relation (Eq. 24): 

      Eq. 24 

No transition might occur with ΔE<Eg, thus Eg is minimal energy of emitted photon, 

defining minimal frequency of the emitted light. The LED spectrum is result of the carrier 

concentration function. Also with increasing temperature (for example due to inadequate 

cooling) emission spectrum from the LED will broaden, and colour will have tendency to shift 

toward blue, as bandgap energy defines maximum wavelength of the emitted light, peak 

emission is shifted toward lower wavelengths (see Figure 189 and Figure 190). 

 

Figure 189: Energies of possible transitions between conductivity band and valence band in  a 
semiconductor and resulting spectrum. 
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Figure 190: Spectrum shape of the emitted light from LED chip, due to carrier distribution.  

Semiconductors typically have rather high refractive indices, making light extraction 

from the place of origin even more challenging due to the total internal reflection 

phenomenon. To maximise the Overall Energy Conversion Efficiency (OECE, mW of optical 

power for mW of electric power, also called Wall Plug Efficiency/WPE) (178) and luminosity of 

LEDs several technologies have been developed as follows: flip-chip construction (contacts are 

placed in bottom part of chip), patterned chips (engraved 3 dimensional structures on upper 

surface of chip), implementation of distributed Bragg mirrors (mirrors composed of layers of 

different dielectrics), thin film epitaxy (thickness of active layer is much lower than planar 

dimensions), using high reflectance contacts, minimising the surface of the contacts and 

removing base material used for the growth of the semiconductor layer (Figure 191 and Figure 

192). The highest OECE is displayed by blue LEDs and can reach up to ca. 68.5 % (294). It 

typically goes down with wavelength and while it is possible to manufacture blue LEDs with 

WPE above 50%, commercially available UV-LEDs are still far less efficient, although the first 

UV-LEDs with WPE just above 20% were reported (297). The portion of supplied electrical 

energy not converted to light ends up as heat that must be effectively dissipated for the LED to 

avoid too high rise in temperature resulting in LED damage and reduced optical output. Figure 

193 shows schematically loss sources for of delivered power converted in the LED chip. 
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Figure 191: Different approaches to maximise light extraction from LED chip: AS – absorbing substrate, TS – 
transparent substrate, DBR – Distributed Bragg Reflector, RS – Reflective Susbstrate. Black cones represent 
angle values for which photon can may escape the chip and will not be  lost due to total internal reflection 

(294). 

 

Figure 192: More modern approaches to manufacture LED chips: (a) application of semi-transparent 
contacts, (b) reflective p-contact, (c) application of reflective layer between host substrate and 

semiconductor, (d) combination of techniques used in (b) and (c).  

Increase of the light emission can be divided into two regions: increased efficiency of 

photon creation and increased efficiency of extracting photons from place of origin outside. 

The resistive loses are of purely electrical origin, and are regarded as the most difficult to 

overcome. The nonradiative loses are mostly due to bandgap extremum mismatch and 

presence of horizontal transitions. This can be improved by application of semiconductors with 
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lower number of defects per unit volume. The extraction loses can be compensated by 

employing more efficient chip design such as textured surface, shaped chip or flip-chip 

technologies (294). 

 

Figure 193: Graph illustrating losses in LED chip, after (294). 

Laser diodes (LDs) are based on the same principle as LEDs (p-n junction and carrier 

recombination).  Stimulated emission and optical gain are achieved by shaping active region of 

the chip into a form of optical waveguide closed by parabolic mirrors forming an optical 

resonator.  Laser diodes are often used as a pumping laser for other laser devices.  By 

principle laser diode is a semiconductor laser (Light Amplification by Stimulated Emission of 

Radiation (298)) device.  The main differences between LDs and LEDs are in spectra, coherent 

emission pattern, and output power.  LDs emit a much narrower spectrum than LEDs in the 

range of few nm. Compared to LEDs, LDs emitted light has higher time and spatial coherence.  

Laser diodes of near infrared region can have output power reaching even 15kW (165). 

Probably the most common application of LDs is usage as an optical pumping device for other 

lasers (197; 299). 
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Appendix E – Experiments on real 
time visualisation of fluorescent 
dye in a microfluidic chip 

Visualisation experiments were performed in a thinkXXS Snake Mixer Slide SMS 0104 

microfluidic chip, bought from thinkXXS Microtechnology, Zweibrücken, Germany, see Figure 

194. 

 

Figure 194: Photo of thinkXXS Snake Mixer Slide SMS 0104 microfluidic chip. 

The following chemical reagents were used during the visualisation of fluorescent dye 

experiments. 

Chemical Structure Manufacturer Purity 
CAS 

Number 

Fluorescein 

 

Aldrich® >95% 2321-07-5 

Table 43: Table of chemicals used during experiments on real-time visualisation of the fluorescent dyes in 
microfluidic chip. 

Real-time on-line visualisation of fluorescent dye (fluorescein) was performed in a 

SMS0104 microfluidic chip. Sample of known concentration was introduced to the injection 

valve sample loop, and afterwards was pumped through the chip with low pressure pump (6 

bars max pressure) at low flow rate (<2-5μl/min). The chip channel was illuminated with 

Luxeon LED and emitted light was collected by a small USB microscope. The experimental 

setup is presented in Figure 195 and Figure 196. Luxeon LED was driven at 700mA (maximum 

allowed stable current for that model). The current was reduced during picture taking to 

290mA to reduce brightness of the LED. Two different excitation filters were used to test the 

http://www.sigmaaldrich.com/catalog/Lookup.do?N5=CAS+No.&N3=mode+matchpartialmax&N4=2321-07-5&D7=0&D10=&N25=0&N1=S_ID&ST=RS&F=PR
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system efficiency. Their transmission spectra overlaying excitation and emission spectrum of 

used fluorescent dye are shown on Figure 197. Emission filter was fitted directly to the USB 

microscope objective to prevent registration of any parasitic light from the used light source or 

environment (e.g. light emitted by laptop screen). Experiments were conducted in a dark 

room. Data was recorded in the form of pictures and movies by microscope software and 

stored in the form of *.jpg and *.mov files.  

The sample was introduced to the system using a Rheodyne 7125 Injector valve, fitted with 

a custom made 10μl loop. The used LED was a 3W Luxeon V Star, bought from Dotlight, Jülich, 

Germany. Excitation filter used was BrightLine Basic Fluorescence Filter 460/60 F39-461, 

purchased from AHF Analysentechnik, Tübingen, Germany with 460nm central wavelength and 

60 nm full width at half maximum (FWHM) and Edmund Optics NT-62-081 442nm CWL, 10nm 

bandwidth filter. Emission filter was Edmund Optics NT-46-057 GG-475 12.5mm long pass 

filter, with cut-off wavelength at 4756 nm. 

A switching mode power supply unit N93CX bought from Maplin, Ireland was used to drive 

the LED and constant current 700 mA. 

 

Figure 195: Schematic of the experimental setup for real-time visualisation of a fluorescent dye in the 
SMS0104 microfluidic chip. 
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Figure 196: Photography of the experimental setup for visualisation of a fluorescent dye in the SMS0104 
microfluidic chip. 

 A series of simple experiments was conducted to find a cheap alternative for real-time 

on-chip fluorescent imaging. The fluorometric detection was discussed as an alternative 

method for experiments with EHD focusing in microfluidic chips. This method was not selected 

as the used chip dimensions were significantly larger that the used microscope field of view 

(FOV) and whole chip imaging was not possible. Nevertheless this method could be employed 

in other fluidic experiments where the area of interest is smaller than the FOV of the used 

microscope. 

 

Figure 197: Absorption (a) and emission (b) spectra of fluorescein with overlaying transmission spectra for 
two excitation filters: red line – bandpass filter, green line – interference filter and blue line – emission 

filter 
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Figure 198 and Figure 199 shows difference in the amount of light reaching the 

detector if different filters are employed. The difference is one order of magnitude – 

fluorescein at 10-7M is easily visible. The LED was installed 12mm from the chip channel 

(marked with white arrow in Figure 198 and Figure 199). Measured radiometric power of the 

used LED was 24mW, the channel width 600μm and channel length was 6mm giving a total 

cross-sectional area of 3.6mm2, which is equivalent to provide a solid angle of 0.0062sr. As the 

energy emission is close to a maximum along the illumination axis, assuming uniform energy 

distribution it gives 152μW of energy delivered to the chip channel (without filter). After 

calculating transmission loss due to filter presence, energy delivered with the bandpass filter 

was 12μW and with the interference filter it is 53μW. The amount of energy delivered to the 

chip channel with the interference filter if over four times higher. The emitted light was 

collected 44mm from the chip by a 3mm diameter objective. This gave solid angle of only 

0.0073sr. Assuming 100% efficient isotropic fluorescence gives 0.7μW delivered to the CCD 

matrix in the microscope for the bandpass filter and 3μW for the interference filter. 

  

Figure 198: Images of the fluorescein at (a) 10
-5

M and (b) 10
-6

M recorded with used bandpass filter. White 
arrow indicated direction of the illumination in the picture plane. 

  

Figure 199: Images of the fluorescein at (a) 10
-6

M and (b) 10
-7

M recorded with used interference filter. 
White arrow indicated direction of the illumination in the picture plane.  

Traditionally visualisation of fluorescent compounds is conducted using large and 

expensive optical microscopes. Also it is typically conducted with shutter-equipped digital 

(A) (B) 

(A) (B) 
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cameras that are gathering light for a predefined period of time. In this experiment a real-time 

visualisation was demonstrated using significantly cheaper and portable equipment. Although 

visualisation of fluorescein at concentration of 10-7 is not setting a new record, conducted 

calculations show where to look for improvements in energy transfer. Fluorescent detection is 

very sensitive and the possibilities of integrating it into a portable μ-TAS device should be 

explored thoroughly. 
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Appendix F – Mesh structures and 
convergence graphs 

 

 

Figure 200: Extremely coarse mesh grid. 

 

Figure 201: Convergence graph for extremely coarse mesh. 

Extremely coarse mesh grid parameters: 
Mesh: 9,178 elements 
Degrees of Freedom: 79,636 
Solution time: 145.02s 
Memory usage: 275MB 

Table 44: Summary of the extremely coarse mesh. 
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Figure 202: Coarser mesh grid. 

 

Figure 203: Convergence graph for coarser mesh. 

Coarser mesh grid parameters: 
Mesh: 11,188 elements 
Degrees of Freedom: 96,892 
Solution time: 209.19s 
Memory usage: 344MB 

Table 45: Summary of the coarser mesh. 
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Figure 204: Normal mesh grid. 

 

Figure 205: Convergence graph for normal mesh. 

Normal mesh grid parameters: 
Mesh: 21,284 elements 
Degrees of Freedom: 183,473 
Solution time: 499.951s 
Memory usage: 347MB 

Table 46: Summary of the normal mesh. 
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Figure 206: Finer mesh grid. 

 

Figure 207: Convergence graph for finer mesh. 

Finer mesh grid parameters: 
Mesh: 25,886 elements 
Degrees of Freedom: 223,022 
Solution time: 550.551s 
Memory usage: 345MB 

Table 47: Summary of the finer mesh. 
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Figure 208: Extremely fine mesh grid. 

 

Figure 209: Convergence graph for extremely fine mesh. 

Extremely fine mesh grid parameters: 
Mesh: 31,166 elements 
Degrees of Freedom: 268,298 
Solution time: 761.551s 
Memory usage: 366MB 

Table 48: Summary of the extremely fine mesh. 
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Appendix G – Technical drawings 
for the microfluidic chip for EHDF 

 

Figure 210: Lower layer of PMMA chip for EHDF. 
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Figure 211: The PTFE gasket (thickness varies) used in the PMMA chip for EHDF. 
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Figure 212: upper layer of the PMMA chip used for EHDF. 
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Figure 213: Details of standard 10-32 microfluidic port (nine installed in the upper layer). 
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Figure 214: Side ports orientation. 
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Figure 215: Details of technological process of the microfluidic port fabrication (steps one and two).  
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Figure 216: Details of technological process of the microfluidic port fabrication (steps three and four).  
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Figure 217: Details of technological process of the microfluidic port fabrication (step five). 
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Appendix H – Mesh parameters 
used for comparison of mesh types 

 

Figure 218: Extremely coarse triangular mesh. 

 

Figure 219: Extremely coarse quad mesh. 

 

Figure 220: Normal triangular mesh. 

Normal triangular mesh grid parameters: 
Mesh: 3,927 elements 
Degrees of Freedom: 42,469 
Solution time: 237.29s 
Memory usage: 413MB 

Table 49: Summary of the normal triangular mesh. 

 

Figure 221: (a) Reciprocal of time step and (b) error in each iteration for normal triangular mesh.  

 

(a) (b) 



xxxiv | P a g e  
 

 

Figure 222: Normal quad mesh. 

Normal quad mesh grid parameters: 
Mesh: 1,814 elements 
Degrees of Freedom: 39,335 
Solution time: 236.681s 
Memory usage: 965MB 

Table 50: Summary of the normal quad mesh. 

 

Figure 223: (a) Reciprocal of time step and (b) error in each iteration for normal quad mesh.  

 

Figure 224: Extremely fine triangular mesh. 

Extremely fine triangular mesh grid parameters: 
Mesh: 7,248 elements 
Degrees of Freedom: 77,829 
Solution time: 421s 
Memory usage: 552MB 

Table 51: Summary of the extremely fine triangular mesh. 
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Figure 225: (a) Reciprocal of time step and (b) error in each iteration for the extremely fine triangular mesh.  

 

Figure 226: Extremely fine quad mesh. 

Extremely fine quad mesh grid parameters: 
Mesh: 4,057 elements 
Degrees of Freedom: 87,538 
Solution time: 526.441 
Memory usage: 1,049MB 

Table 52: Summary of the extremely fine quad mesh. 

 

Figure 227: (a) Reciprocal of time step and (b) error in each iteration for extremely fine quad mesh.  

 

Figure 228: 10% growth triangular mesh. 

(a) (b) 

(a) (b) 
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“10% growth” triangular mesh grid parameters: 
Mesh: 19,620 elements 
Degrees of Freedom: 208,879 
Solution time: 1,126.221s 
Memory usage: 1,161MB 

Table 53: Summary of the “10% growth” triangular mesh. 

 

Figure 229: (a) Reciprocal of time step and (b) error in each iteration for the “10% growth” triangular mesh. 

 

Figure 230: 10% growth quad mesh. 

“10% growth” quad mesh grid parameters: 
Mesh: 7,516 elements 
Degrees of Freedom: 160,573 
Solution time: 3,321.3s 
Memory usage: 1,116MB 

Table 54: Summary of the “10% growth” quad mesh. 

 

Figure 231: (a) Reciprocal of time step and (b) error in each iteration for  the “10% growth” quad mesh. 

(a) (b) 

(a) (b) 
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Figure 232: 2% growth triangular mesh. 

“2% growth” triangular mesh grid parameters: 
Mesh: 38,825 elements 
Degrees of Freedom: 409,619 
Solution time: 10,462.445s 
Memory usage: 1,467MB usage 

Table 55: Summary of the “2% growth” triangular mesh. 

 

Figure 233: (a) Reciprocal of time step and (b) error in each iteration for the “2% growth” triangular mesh.  

 

Figure 234: “2% growth” quad mesh. 

“2% growth” quad mesh grid parameters: 
Mesh: 26,561 elements 
Degrees of Freedom: 562,729 
Solution time: 100,579.331s 
Memory usage: 6,382MB 

Table 56: Summary of the “2% growth” quad mesh. 

(a) (b) 
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Figure 235: (a) Reciprocal of time step and (b) error in each iteration for the 2% growth” quad mesh. 
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Appendix I – Photos of all 
presented microfluidic 
experiments 
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2. Experiment 2P-22 
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4. Experiment 2P-47 
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5. Experiment 2L-15 
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6. Experiment 2L-16 
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8. Experiment 2L-26 
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9. Experiment 2L-40 
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10. Experiment 2L-41 

0s 600s 

720s 840s 

960s 1080s 

1200s 1320s 



lxii | P a g e  
 

 

  

1440s 1560s 

1680s 1800s 

1920s 2040s 

2160s 



lxiii | P a g e  
 

11. Experiment 3T-20 
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12. Experiment 3T-21 
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14. Experiment 3T-31 
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16. Experiment 3T-43 
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