
Improving Software Development Process
through Economic Mechanism Design

Murat Yilmaz1 and Rory V. O’Connor2,3 and John Collins4

1 Lero Graduate School in Software Engineering, Dublin City University, Ireland
Murat.Yilmaz@computing.dcu.ie
2 Dublin City University, Ireland

3 Lero, the Irish Software Engineering Research Centre
roconnor@computing.dcu.ie

4 University of Minnesota, Minneapolis
jcollins@cs.umn.edu

Abstract. We introduce the novel concept of applying economic mech-
anism design to software development process, and aim to find ways to
adjust the incentives and disincentives of the software organization to
align them with the motivations of the participants in order to maximize
the delivered value of a software project. We envision a set of principles
to design processes that allow people to be self motivated but constantly
working toward project goals. The resulting economic mechanism will
rely on game theoretic principles (i.e. Stackelberg games) for leveraging
the incentives, goals and motivation of the participants in the service of
project and organizational goals.

1 Introduction

In this paper, we describe a novel approach by using economic mechanism de-
sign in software engineering to find ways to assemble the rules of interactions
and influence the behavior of rational players, and further, by game theoretic
principles to determine how a decision among a group of participants can be
organized to maximize the social and organizational productivity, and therefore
welfare of a software project.

1.1 Software Process

The software development process explains the methods and procedures which
an organization and individuals have to follow to create software products and
services [1]. A software process is a dynamic vehicle formed from a group of
interrelated activities employed by a project or an organization [2]. These activ-
ities not only produce products or services but also provide a road map for the
software development within the expected schedule and budget [3]. Each process
can be decomposed into its activities and each activity is characterized by its
tasks (smallest unit of work) [2]. In the generic model below (see figure 1), tasks
are the atomic structures designed to process the resources into products.

Fig. 1. The structure of a generic process from [4].

Because software organizations can be considered as social systems built on
people’s skills, these tasks and activities are tightly coupled with participants
that interact according to “certain theories of actions” [5]. Based on their re-
sources, values, goals, and skills, software organizations directly use or sometimes
tailor a process regarding to their needs [6]. Therefore, all software organizations
use a kind of process.

1.2 Software Process Models

A software process model is an abstract representation of a process and its com-
ponents which imposes the tasks and activities of software development [7]. These
models help practitioners to manage various aspects through the development
cycle. Over the years, many different process models have been introduced in-
cluding; waterfall model [8], iterative enhancement model [9], and spiral model
[10], and ISO/IEC 12207 (an international standard for software life-cycle pro-
cesses). ISO/IEC 12207 [2] furnishes a comprehensive set of process (i.e. activ-
ities and task structures) endowed with Plan-Do-Check-Act (PDCA) cycles for
administering the engineering activities of a software system.

Although there are many different approaches for modelling a software pro-
cess (e.g. work-flow diagrams, Petri nets, finite state machines), to the best of
our knowledge, there is neither a process model nor a paradigm which is based
on the social modelling of the human behaviour.

In this section, we briefly discuss the software process and process models, and
the rest of the paper is structured as follows. Section 2 provides an overview on
software process economics, some background about game theory, application of
game theory and economic decision making in software engineering research,and
followed by an introduction about mechanism design theory. Section 3 contains
our approach for software development process as a mechanism design problem
and a sample mechanism. Section 4 includes a conclusion and ideas about future
work.

2 Software Process Engineering Economics

Software Process Engineering deals with the global insights of software processes
by creating, designing and optimizing (a set of) solutions to obtain performance
targets (e.g. cost effective and sustainable software development) of a software
organization [11].

Levy [12] argues that although software economics is valuable in estimating
project costs by applying economic methods to software projects, researchers
should also create models for economic analysis of software engineering projects.
As a matter of fact, one different view of software economics is that participants
structure the actual products and the processes by their (investment) decisions
based on the options and available resources [13]. Although, it is not a common
tool in software engineering research, as in economics game theory has been used
to a great extent for understanding varieties of entities and their behaviours.
Besides, it is frequently used for mathematical modelling of human choices, and
social interactions. Most of the software development processes are based on
team work and collaboration so it is considered as the output of a set of social
activities [14]. In other words, software development teams consist of interacting
actors or entities with social concerns (e.g. motivation or knowledge sharing)
where economic and social modelling [15] should be useful to create a game
theoretic model based on a life-cycle of a development process.

To sum up, an economical view of software engineering takes value creation
activities and value based project planing into account to support software pro-
cess evolution by value based process optimization. The two identified goals of
software process engineering suitable for a game theoretic model includes; (i)
allocating the organizational resources regarding to the task and activities of a
software project, (ii) maintaining a stable social environment by addressing tech-
nical or managerial conflicts to achieve and keep higher productivity. A game
theoretic model will be helpful to identify some potential points of concern (i.e.
conflicts, social dependencies, and actions) among the software organization and
to accomplish its objectives by creating several types of mechanism (i.e. regula-
tory rules).

2.1 Game Theory

Game theory is a well developed theory for describing the interactions of ra-
tional, independent agents in a variety of settings used for creating approaches
in fields including, economics, computer science, social science, political science,
and biology [16].

Game theory (i.e. interactive decision theory) investigates the outcomes of
interaction of entities. It is a collection of analytical methods or tools based on
mathematical models to define or observe social situations (e.g. conflicts) [16].
To this end, game theory outlines interaction of people in terms of mathematical
game forms. These forms consist of players (participants or actors), rules required
for their interactions, actions or strategies (strategy profiles) of participants,
and have definition of outcomes (i.e. payoffs) of their actions. One of the basic

assumption in classical Game Theory is that participants are rational, i.e. follow
the rules and play to win [17]. The types of common game forms, including; (1)
Non-cooperative games where participants only acts according to their benefits,
(2) Cooperative games where participants inclined for cooperative behaviour
(i.e. cooperation is used as the main motivator), (3) Zero Sum games where one
of the participants should win the game while other(s) lose, (4) Constant Sum
games where the reward for each participant is constant [18].

2.2 Game Theory in Software Engineering Literature

Because it is important to explore all the alternative paths (e.g. creating a pro-
totype versus the whole product) as measurable returns, it is becoming difficult
to ignore the fact that the economic value of software decision making should
be examined. As has happened in many other fields like sociology, economics or
computer science, there are some approaches for economic decision making in
software engineering research.

Theory W [19] is a software project management theory that has its roots
in economics and decision analysis. It not only helps managers (social plan-
ners) to identify stakeholders and their goals but also suggests ways to resolve
any conflicts among them by proposed methods (e.g. risk management). Based
on participants preferences, Lagesse [20] creates a game-theoretical model for
assigning tasks in software projects. Grechanik and Perry [21] argues that soft-
ware development is a non-cooperative game in which there may have some
observable goal conflicts between individuals and software organizations. Cock-
burn [22] claims that software development is a form of a game, which is based on
communication and coordination skills where project resources are one common
constraint. Baskerville et al. [23] investigates high speed internet development
which is based on rapid consumption of resources. Therefore, it depends more
on the developers and their decision making capabilities.

By using the theory of real options, Sullivan et al. [24] present an economical
approach for valuation of software design decisions which are somewhat similar
to capital investment decisions. Their aim is to optimize strategies by measuring
strategic outcomes. Vajja and Prabhakar [25] consider a design decision analysis
for architecture design problems by understanding conflicting situations created
by quality attributes, and seeking solutions using game theory. A recent study by
Sazawal and Sudan [26] involves with game theory to model decision making in
software design to shape its evolution. They design a model called software design
evaluation game which is playable by a developer and a customer. Moreover,
they propose that software development teams should use a lightweight game
theoretical analysis technique for situational analysis.

Social dilemmas are situations which arisen from the fact that there is a
conflict between collective and private interests (mostly long term versus short
term). In other words, participants may discover a better or a more feasible al-
ternative action to gain more by following their self interests other than team
based contributions. Prisoners Dilemma is a simple framework which has been

used frequently by researchers to observe conflicting situations. Hazzan and Du-
binsky [27] draws our attention to situations where Prisoners Dilemma can occur
in software development. In particular, they analyze cooperation in extreme pro-
gramming practices (e.g. pair programming). Feijs [28] provides a game theoretic
model for the tester and the programmer where he finds that the definitions of
outcomes could cause a hidden game of Prisoners Dilemma. In addition, Oza [29]
investigates client vendor relationships in offshore outsourcing by using Prisoners
Dilemma.

From software organizations perspective, these findings suggest that game
theory is applicable to various software engineering problems. As the outcome
of a software development process depends on many structural assessments on a
a social landscape, the value of understanding how individuals can be promoted
for cooperation is vitally important.

2.3 Mechanism Design

A mechanism can be defined as an organization, a procedure or a communication
system which takes the required information from participants as inputs and
determines a social outcome. The goal of mechanism design is to establish the
rules of interaction (e.g. protocols, regulatory rules, etc.) to satisfy the desired
conditions (e.g. control and coordinate the flow of the economic activity) [30].
These rules can be used for revealing true preferences of self interested actors,
optimizing usage of resources, exchanging information or coordinating economic
actors [31].

Hayek [32] developed the idea to view social organizations as mechanisms for
communication and information exchange. Hurwicz [30] introduces the concept
of economic mechanisms to model organizations where participants communi-
cate, and exchange information with each other. Further, he coined the term
incentive compatibility which ensures that self-interested individuals can be mo-
tivated to reveal their true preferences and their private information. His fur-
ther research aims to model organizations based on communications and actions
that are available to each participant in an institution. Harsanyi [33] developed
a model based on the theory of Bayesian games, (i.e., games with incomplete
information). He investigates situations where individuals have different infor-
mation. In particular the issues where participants have uncertainty about other
participants’ information (while the the rules of the game form is known by
all the participants). Moreover, he worked on models of incomplete information
based on issues of modeling participants’ actions in terms of each others’ in social
organizations.

3 Game Theoretic Perspective

We assume software organizations act as social (co-evolving) ecosystems. An
ecosystem can be any kind of environment with different type of entities which
are constantly interacting. Hence the relations among them are identified by their

interdependencies. Mitleton-Kelly [34] defines organizations as social ecosystems
where connectivity and relationships affects the actions, behaviours and decisions
of its members.

From a social perspective, a software process can be considered as a work
flow in social information streams. Consequently, a software organization can be
defined as combinatorial networks of people connected with various information.
Therefore, in order to address the adversities associated with human actors and
their connections, it is important to investigate the interactions of these actors
in these information streams. It has been suggested that improving the quality
of social interactions among the participants is an important factor for accom-
plishment of organizational goals [35]. The social information network created
by the software organization should be dominated by actions and characteristics
of actors (e.g. individualism, rationality) where the conflicts between individual
and team goals may hinder software development process [21].

A task is an atomic unit executed by individuals and teams of actors that
are interacting and making several investment decisions. Further, these decisions
are made regarding to the characteristics of these actors e.g. background, skills,
values and motivational needs. Beecham et al. [36] identifies several social factors
effecting software engineer characteristics. For example, software practitioners
prefer challenging tasks and therefore recognition in their work, stability in their
organization, and most importantly they prefer to be socially identified with
their team or group [36].

Software development is inherently a complex process in which a common
element of uncertainty is primarily caused by humans [37]. Software develop-
ment can be considered as the interaction among several actors that are playing
separated roles with different behaviour patterns. The roles typically include de-
velopers (designers and programmers), system analysts, testers, and customers
or users. Predictably, interpersonal conflicts between these roles are unavoidable
during the process [38, 39]. Therefore, the participants of software development
processes need to be identified by their private information, that is their goals,
aims, preferences and skills (We will refer to those as “types” in this paper).

Here we describe a generic view for the software process decisions with four
major components (see figure 2); (i) outcomes are the expected outputs achieved
during the execution of a decision; (ii) states are an observable set or sequence of
attributes (e.g. quality, stability, etc.) of a decision identified by a measurement
or an observer at a certain time, (iii) rules are the constraints that are prede-
fined during the creation of a decision, (iv) actions are the activities chosen with
the evaluation of the circumstances in various situation for an optimal outcome.
Moreover, we define software development tasks in terms of participants’ collec-
tive decisions, i.e. their strategies, actions, interaction types (i.e. cooperation or
competition) and private information (i.e. types). We assume strategies could
be formed from one or more strategies and they are decomposable. Strategies
are combined to form an action or an action set. The term “action” is used to
represent grounded states or collection of states and their interactions. In other
words, interactions are formed from the combination of actions, individual types

and ongoing situations. We presume observable events are emerged from these
set of intersections. A set of outcomes arise from different situations, sometimes
as a cooperation and sometimes in form of a competition.

Fig. 2. Extended generic process for software development

3.1 Software Development Process as an Economic Mechanism

Information has an economic value, which should enable software decision mak-
ers to make better decisions for maximizing the productivity of software devel-
opment. Therefore, we consider software development process as an economic
activity (i.e. production/distribution of project tasks and organizational ser-
vices) based on an information exchange economy. From this perspective, it can
be understood as a social ecosystem that can be materialized as interconnected
networks of actors, their actions and relationships. The goal is to create incen-
tives to support and incrementally feed the participants interests.

Our setting relies on; (i) multiple participants with different individual types
that are continually adapting to the environment and each other, (ii) partici-
pants have asymmetric imperfect information, they know their own type, but
not all the other types (i.e. goals, aims, preferences, skills), in other words, par-
ticipants have insufficient information about the characteristics of other players,
(iii) therefore, communication is constrained.

Software development process can be considered as an economic activity inside
an information exchange economy

ξsoftware := {ti, θi, ui, si}i∈I ⊗A (1)

which is an economy with a finite set of actors i with a set of possible actions
A , for each participant, T is a set of tasks of project, where t represents tasks
assigned for each participant, an actor chooses a strategy si from a finite set of
strategies S, where θi is participants i’s type space with a possible probability
distribution pi over types, utility function ui shows participant’s payoffs.

We define productivity of a participant, x;

x = φ(ti, θi) (2)

φ : T ⊗ Θ → <, where Θ is a set of type profile space of the participants’
types θ = (θ1,,....,θn), hence we can calculate the total productivity as;∑

i∈I

φ(ti, θi) (3)

In the light of these remarks, we assume organization of software development
can be viewed as an economic mechanism where manager (i.e. social planner)
allocates resources and adjusts the incentives and disincentives to maximize the
likelihood of a desirable outcome.

A perfect information exchange in this information economy will be a map-
ping from types to actions, si : θi → Si, however, capturing the true preferences
of participants is a challenging process.

A conceptual solution for social planing problem in a software development
organization can be solved by;

– First, requesting the participants to reveal their types, θi
– Second, using them directly to compute the intended social outcome.

On the other hand, the ‘participants’ preferences over the set of actions A
depend on the realization of types Θ. It won’t yield an utility of intended social
outcome if it results from participants taking actions that maximize their own
expected utilities. Actor i may reveal untruthful type to manager (i.e. social
planner), however, the manager can tackle this problem by forming a Stackelberg
game.

A Sample Mechanism

During software development process, individuals’ incentives may be inconsistent
with expected efficiency, so here we form a sample mechanism appropriate for
organization of software development. We form a Stackelberg game [40], which
has been well-studied in the game theory literature [41, 42].

Stackelberg game (interaction model) is based on leaders (a dominant player
type) who simultaneously choose a strategy first, and then regarding the strat-
egy chosen by their leaders, the followers act to maximize their payoffs [40].
Similarly, we will use a mechanism, in which a leader (usually a project leader is
responsible for assigning tasks to followers), aims to maximize her profit subject
to all of other team members (followers). The problem is then to establish a

strategy for leaders that motivates these followers to react in a way such that
an equilibrium relative to the leader’s strategy not only optimizes their rewards
but also increases the overall project outcomes [43].

Software teams consist of team leaders and team members (followers). In our
game (form), it is assumed that there is only one type of leader (team leaders),
although there are multiple followers (a category that includes programmers,
systems analysts, designers, testers).

Fig. 3. Information Exchange in Stackelberg form in a Software Organization

A sample mechanism proceeds through a sequence of states by considering
the fact that motivating team members is to ask them what or who motivates
or demotivates them. Our aim is to classify participants as leaders and followers
and decouple them to understand their real preferences easily (see figure 3).

– Team leaders identify available motivators of followers (e.g. rewards, hidden
goals) and demotivators (e.g. social interaction problems, problems among
the people) and align them with their team development activities that will
help for the success of the components they will deliver.

– From their perspectives, team leaders create some priorities among their
members that incentivize their team’s development effort (e.g. a reward for
teams after an iteration) for the software development process.

– For each activity, they classify these priorities to highlight the most valuable
ones for the individuals and team.

– From their perspectives, team members also identify and classify the most
valuable motivators and demotivators. Later, all information is submitted to
the manager.

– The manager, as a social planner, invites team leaders to reveal their pref-
erences (their privately held information about motivators) simultaneously.

– The manager broadcasts a part of this information (i.e. list of prioritized
motivators) among the followers.

– Followers respond to this by revealing their preferences about these moti-
vators simultaneously. This process continues until all the participants an-
nounce their preferences.

– After receiving all the preferences from individuals, manager form and an-
nounce an organizational decision.

4 Conclusions and Future Work

Software development requires teams of self-interested individual actors to con-
tribute effectively to organizational goals. Organizations that fail to account for
the motivations of individual participants often experience difficulty accomplish-
ing their goals [44]. Game theory suggests that we view the organization and its
goals from the standpoint of individual rational actors, who choose actions that
maximize their expected utilities, subject to their incomplete knowledge of the
motivations and likely actions of others, and their limited ability to predict future
outcomes. The challenge for software organizations is to allocate resources and
create incentives and disincentives in such a way that participants are motivated
to take actions that contribute effectively to organizational goals.

The aim of this research is to model software development as economic ac-
tivity, and the organization of software development as an economic mechanism
problem. We have described how software development might be viewed as a
Stackelberg game, in which the individual motivations of the participants are
discovered and used to tune the organization and its relationship to the partic-
ipants in a way that can maximize the expected outcome of the project as a
whole.

In order to evaluate the value of this approach, it will be important to conduct
rigorous analysis of actual software projects, understanding their underlying eco-
nomic mechanisms and discovering how the participants view and interact with
those mechanisms. Next, we will apply our revised models to one or more actual
projects and analyze their effectiveness. This may require separate “control”
and “test” projects, because the effort to clearly understand a project’s goals,
without taking any other action, may itself have significant impact on a project.

Acknowledgments

This work is supported, in part, by Science Foundation Ireland grant number
03/CE2/I303-1 to Lero, the Irish Software Engineering Research Centre (www.lero.ie).

References

1. O’Connor, R.V.: Human aspects of information technology development. Interna-
tional Journal of Technology, Policy and Management Vol. 8, No. 1 (2008)

2. ISO/IEC: Amendment to ISO/IEC 12207-2008 - Systems and software engineering
Software life cycle processes. (2008)

3. Pressman, R.S., Ince, D.: Software engineering. McGraw-Hill (2000)
4. Singh, R.: International Standard ISO/IEC 12207 software life cycle processes.

Software Process Improvement and Practice 2 (1996) 35–50
5. Conradi, R.: Software process improvement: results and experience from the field.

Springer-Verlag New York Inc (2006)
6. Persse, J.R.: Process Improvement Essentials. O’Reilly Media, Inc. (2006)
7. Acuna, S.T., Juristo, N., Moreno, A.M., Mon, A.: A Software Process Model

Handbook for Incorporating People’s Capabilities. Springer-Verlag New York, Inc.
(2005)

8. Royce, W.: Managing the development of large software systems. In: Proceedings
of IEEE Wescon. Volume 26. (1970)

9. Basili, V.R., Turner, A.J.: Iterative enhancement: A practical technique for soft-
ware development. IEEE Transactions on Software Engineering 4 (1975) 390–396

10. Boehm, B.: A spiral model of software development and enhancement. Computer
21 (1988) 61–72

11. Madachy, R.J.: Software Process Dynamics. Wiley-IEEE Press (2008)
12. Levy, L.S.: Taming the tiger: software engineering and software economics.

Springer-Verlag New York, Inc. (1987)
13. Biffl, S., Boehm, B., Erdogmus, H.: Value-based software engineering. Springer-

Verlag New York Inc (2006)
14. Dittrich, Y., Floyd, C., Klischewski, R.: Social thinking-software practice. The

MIT Press (2002)
15. Yu, E.: Social Modeling and i*. Springer (2009)
16. Dixit, A.K., Skeath, S.: Games of Strategy. W. W. Norton & Company (1999)
17. Osborne, M.J., Rubinstein, A.: A course in game theory. MIT Press (1994)
18. Binmore, K.G.: Playing for real. Oxford University Press US (2007)
19. Boehm, B., Ross, R.: Theory-W software project management principles and ex-

amples. Software Engineering, IEEE Transactions on 15 (1989) 902–916
20. Lagesse, B.: A Game-Theoretical model for task assignment in project manage-

ment. In: 2006 IEEE International Conference on Management of Innovation and
Technology, Singapore (2006) 678–680

21. Grechanik, M., Perry, D.E.: Analyzing software development as a noncooperative
game. In: IEE Seminar Digests. Volume 29. (2004)

22. Cockburn, A.: Agile software development: the cooperative game. Addison-Wesley
(2007)

23. Baskerville, R.L., Levine, L., Ramesh, B., Pries-Heje, J.: The high speed balancing
game: How software companies cope with internet speed. Scandinavian Journal of
Information Systems 16 (2004) 11–54

24. Sullivan, K., Chalasani, P.: Software design decisions as real options. (1997)
25. Vajja, K.K., TV, P.: Quality attribute game: a game theory based techniquefor

software architecture design. In: Proceeding of the 2nd annual conference on India
software engineering conference, Pune, India, ACM (2009) 133–134

26. Sazawal, V., Sudan, N.: Modeling Software Evolution with Game Theory. (Trust-
worthy Software Development Processes) 354–365

27. Hazzan, O., Dubinsky, Y.: Social perspective of software development methods:
The case of the prisoner dilemma and extreme programming. In: Extreme Pro-
gramming and Agile Processes in Software Engineering. Springer (2005) 74–81

28. Feijs, L.: Prisoner dilemma in software testing. Computer Science Reports 1 (2001)
65–80

29. Oza, N.: Game theory perspectives on client: vendor relationships in offshore
software outsourcing. (2006) 54

30. Hurwicz, L., Reiter, S.: Designing economic mechanisms. Cambridge Univ. Pr.
(2006)

31. Myerson, R.B.: Perspectives on mechanism design in economic theory. American
Economic Review 98 (2008) 586–603

32. Hayek, F.A.V.: The use of knowledge in society. American Economic Review 35
(1945) 519530

33. Harsanyi, J.C.: Games with incomplete information played by ”Bayesian” players,
I-III: part i. the basic model&. MANAGEMENT SCIENCE 50 (2004) 1804–1817

34. Mitleton-Kelly, E.: Complex systems and evolutionary perspectives on organisa-
tions. Emerald Group Publishing (2003)

35. Ryan, S., O’Connor, R.V.: Development of a team measure for tacit knowledge in
software development teams. Journal of Systems and Software 82 (2009) 229–240

36. Beecham, S., Baddoo, N., Hall, T., Robinson, H., Sharp, H.: Motivation in software
engineering: A systematic literature review. Information and Software Technology
50 (2008) 860–878

37. Ziv, H., Richardson, D., Klosch, R.: The uncertainty principle in software engineer-
ing. In: Proceedings of the 19th International Conference on Software Engineering
(ICSE’97). (1997)

38. Barki, H., Hartwick, J.: Interpersonal conflict and its management in information
system development. Mis Quarterly (2001) 195228

39. Zhang, X., Dhaliwal, J.S., Gillenson, M.L., Moeller, G.: Sources of conflict between
developers and testers in software development. AMCIS 2008 Proceedings (2008)
313

40. Stackelberg, H.V., Peacock, A.T.: The theory of the market economy. Oxford
University Press (1952)

41. Bloem, M., Alpcan, T., Basar, T.: A stackelberg game for power control and chan-
nel allocation in cognitive radio networks. In: Proceedings of the 2nd international
conference on Performance evaluation methodologies and tools, Nantes, France
(2007) 1–9

42. Pita, J., Jain, M., Ordez, F., Tambe, M., Kraus, S., Magori-Cohen, R.: Effective
solutions for real-world stackelberg games: when agents must deal with human
uncertainties. In: Proceedings of The 8th International Conference on Autonomous
Agents and Multiagent Systems - Volume 1, Budapest, Hungary (2009) 369–376

43. Ichiishi, T., Yamazaki, A.: Cooperative Extensions of the Bayesian Game. World
Scientific Publishing Company (2006)

44. Rasch, R.H., Tosi, H.L.: Factors affecting software developers’ performance: An
integrated approach. MIS Quarterly 16 (1992) 395–413

