Towards Wearable Sensors for Wireless pH Monitoring in Sweat

Giusy Matzeu, Claudio Zuliani, Dermot Diamond

Clarity, Centre for Sensor Web Technology, Dublin City University, Ireland

Pittcon, 14/03/2012
Disposable solid-contact ion-selective electrodes for environmental monitoring of lead with ppb limit-of-detection

Salzitsa Anastasova, Aleksandar Radu, Giusy Matzeu, Claudio Zuliani, Ulriika Mattinen, Johan Bobacka, Dermot Diamond

a CLARITY Centre for Sensor Web Technologies, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
b Åbo Akademi University, Process Chemistry Centre, Laboratory of Analytical Chemistry, and Centre for Process Analytical Chemistry and Sensor Technology ‘ProSens’, Biskopsgatan 8, FI-20500 Åbo/Turku, Finland

Sensors for the Digital World

- Analyte
- Chemo/Bio Sensing
- Wireless data transmission
Sensors for the Digital World

✓ Cost
✓ Reproducibility
✓ Compatible with Wearable & Environmental Applications

IS-Membrane
Conducting Polymer
Silver
Carbon
Resist
PET Substrate
pH ISE – An Initial Design

1st calibration after overnight conditioning

\[y = -52.1x + 521.2 \]
\[R^2 = 0.994 \]

\[y = -53.8x + 524.8 \]
\[R^2 = 0.996 \]

2nd calibration after 3 days in the conditioning solution

\[y = -53.3x + 537.1 \]
\[R^2 = 0.970 \]

\[y = -54.9x + 544.1 \]
\[R^2 = 0.972 \]

\[y = -53.2x + 504.8 \]
\[R^2 = 0.973 \]

Loss of linearity & offset change over time.

May we improve this limit working on SPE fabrication?
“Initial” vs “New” SPE
“Original” vs “New” SPE

Original SPE

\[y = 21.5x + 1.53 \quad R^2 = 0.986 \]

\[y = -52.4x - 0.21 \quad R^2 = 0.999 \]

New SPE

\[y = 71.9x + 1.27 \quad R^2 = 0.997 \]

\[y = -65.1x - 2.71 \quad R^2 = 0.996 \]

\[\sigma \approx 1.6 \]
pH ISEs – Silverless-SPE and Membrane Thickness

Carbon prints were masked used PSA and PMMA. PET substrate were laminated with PSA and PMMA after that tracks carbon was screen printed: Integration of ISE within microfluidic system

175 \mu m PMMA + 50 \mu m PSA as masking layer

\begin{align*}
 y &= -48.55x + 529.1 \\
 R^2 &= 0.988 \\
 y &= -54.2x + 529.8 \\
 R^2 &= 0.996 \\
 y &= -53.6x + 522.2 \\
 R^2 &= 0.996 \\
 y &= -53.1x + 522.7 \\
 R^2 &= 0.995
\end{align*}

500 \mu m PMMA + 50 \mu m PSA as masking layer

\begin{align*}
 y &= -48.55x + 529.1 \\
 R^2 &= 0.988 \\
 y &= -52.6x + 530.8 \\
 R^2 &= 0.973 \\
 y &= -49.6x + 524.3 \\
 R^2 &= 0.989 \\
 y &= -57.0x + 572.3 \\
 R^2 &= 0.998
\end{align*}

550 \mu m well allows a better reproducibility!
pH ISEs – Performance over Time & Storage

Calibration repeated after 5 days storage in conditioning solution

- Day 0
- Day 5 (kept in conditioning solution)
- Day 19 (kept in dry conditions)

Printing protocols, e.g., presence of Ag,, have a significant impact in sensor reproducibility over time!

Dry storage may preserve sensor functionality!

\[y = -55.2x + 563.5 \quad R^2 = 0.997 \]
\[y = -54.3x + 552.4 \quad R^2 = 0.997 \]
\[y = -57.9x + 579.0 \quad R^2 = 0.995 \]

\[y = -53.5x + 524.3 \quad R^2 = 0.996 \]
\[y = -55.8x + 565.0 \quad R^2 = 0.997 \]
\[y = -55.8x + 544.6 \quad R^2 = 0.992 \]
Reference Electrodes based on Lipophilic Salts on SPE

- SC=PEDOT
- SC=POT

Cl⁻ \(\approx 20\) mV/decade

Need optimisation

Possibility for RE where [Cl⁻] is constant
Mote Interface and Wireless Communication

- Bias between motes and standard instrumentation < 0.3 mV
- Bias between motes < 0.1 mV
Dual SPE – Integration of pH & RE on same substrate

- The two carbon disks printed on the PET substrate will be modified to give a pH and a reference electrode.
- The substrate can also be laminated with PSA and PMMA for further integration within microfluidics.

Work currently under progress to optimize sensor response!!
Wearable pH Sensor – Concept

- Mote Casing
- Strap
- Patch
- Sensor + Microfluidic
Wearable pH Sensor – Layers

Mote

Mote Casing

Patch

pH ISE & RE

Microfluidics
Acknowledgements

Dr. Salzitsa Anastasova, Dr. Aleksandar Radu, Dr. Ulriika Mattinen, Prof. Johan Bobacka

Dr. Fiachra Collins, postdoc

Giusy Matzeu, PhD student

Javier Torres, Tyndall
CLARITY Centre & Ecosystem

INDUSTRY COLLABORATORS
Thank You for Attention
pH ISEs – Role of SPE Design

A comparison between 1° calibration for (Ag+C) SPE & C (Batch II) SPE

\[y = -51.9x + 519.6 \quad R^2 = 0.997 \]

\[y = -53.4x + 523.9 \quad R^2 = 0.996 \]

• (Ag+C) SPE
• C SPE