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Abstract 

LFG-DOP is a powerful, hybrid model of language processing where the tree representa- 
tions of Data-Oriented Parsing (DOP) are augmented with the functional representations 
of Lexical Functional Grammar (LFG). The result is a robust parsing rnodel which gener- 
ates linguistically informed output. However, difficulties arise in the accurate implemen- 
tation of fragmentation and sampling in this model. Due to these unresolved issues, therc 
is currently no satisfactory irrlplemerltation of the LFG-DOP model. 

In this thesis, we propose a backing-off to Grammatical Feature-DOP (GF-DOP). The 
GF-DOP rnodel differs from Tree-DOP and LFG-DOP in that the trees are annotated 
with selected features extracted from the f-structure, rather than explicitly linked to cor- 
responding f-structure units. In this way, we rnake use of the irlformation available to us in 
the f-structure, while avoiding the problems inherent in the implementation of LFG-DOP. 
We airn to improve the quality of the parses generated by rnodeling additional functiorlal 
arid feature information. 

Experiments on the HomeCentre corpus have shown this rnodel to be a valuable middle- 
ground between the two alternative models. GF-DOP has been show11 to outperform the 
Tree-DOP model, as a result of its ability to identify and make use of grammatical features, 
while rnairlt airling the integrity of the probability model. 
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Chapter 1 

Introduction 

In the field of parsing there are two fundament,al approaches employed to systern 

development. Following the first approach, systems are based on rrianually collected 

knowledge, normally provided by linguists. The second approach derives all knowl- 

edge automatically, e~tract~iiig the necessary information frorn treebanks created by 

humans (such as the Penn I1 treebank and the Homecentre corpus). Data-driven 

approaches yield systems which tend to  be easier to  create and c.onsiderably less 

expensive to  maintain than those which adhere t o  the first approach. 

One such parsing rnodel in the data-tlriven paradigm is the Data-Oriented Pars- 

ing (DOP) model; Tree-DOP combines 1iiig~istic.s~ statistics arid rules, all of which 

are extracted automatically from an example base. Although previous investiga- 

tions of this robust model have shown it to  yield high quality parses (Bod, 2003a), 

(Hearne, 2005), the rnodel is limited by the representations it assumes. 

An extension to  this model was proposed by Bod and Kaplan (1998); the integra- 

tion of Lexical Furlctional Gramrnar (LFG) into the DOP model results in a powerful 

hybrid inodel of language called LFG-DOP. In theory, augmenting the Tree-DOP 

model with LFG results in a more linguistically enriched inodel of parsing. I11 rc- 

ality, a satisfactory implementation of this model remains elusive. For this reason, 

we propose a new motlel which is an approximation of LFG-DOP, but avoids the 

associated implement ational difficulties. 



The primary cont,ribution of this thesis is a new model which we call Grammatical 

Feature Data-Oriented Parsing, GF-DOP; we base the practical irnplernentation 

of this model on Tree-DOP, but the theory on LFG-DOP. By combining certain 

elements of the two models, the new model benefits from each of their strengths while 

avoiding their principal weaknesses. Wc hypothesize that the GF-DOP model will be 

able to  learn grammatical features and use t,hern to improve the quality of the parses 

generated when compared to the Tree-DOP model. We empirically investigate this 

claim using treebanks for both English and French. Frorn the experiments carried 

out, we see clear evitlence to support the GF-DOP Hypothesis. Furthermore, we 

note that the rnodcl performs better overall for English than for French. Finally, wc 

consider extensions for the GF-DOP model. 

The remainder of this thesis follows the structure given below: 

Chapter 2 The Data-Oriented Parsing (DOP) model, which is based on a cogni- 

tive theory set out by Scha (1990), and first introduced by Botl (1992), is described 

in this chapter. Wc present thc Tree-DOP model before broaching some issues which 

arise in the implementation of the rnotlel. We also discuss some t,heoretical issues 

rclating t,o inconsisterlcics in the probability rnotlel. 

Chapter 3 The introtluction of the Lexical Functional Grammar (LFG), (Kaplan 

ant1 Bresnan, 1982), forinalisnl t,o the Tree-DOP model forms a powerful hybrid 

model of language, known as LFG-DOP Bod and Kaplan (1998). I11 this chapter, 

we present the LFG formalism and discuss the augmentation of the Tree-DOP model 

with LFG. We outline the reasoils why the satisfactory implementation of a LFG- 

DOP system is impeded, presenting the theoretical and practical issues involved. 

With this in mind, we consider the pros and cons of both the Tree-DOP and LFG- 

DOP models. Consequently, we propose a new model, GF-DOP, which combines 

the strengths of the two previous models, while avoiding difficulties which arise in 

their implement ation. 



Chapter 4 Having motivated the need for a new model in Chapter 3, we propose 

the Grammatical Feature-DOP (GF-DOP) model as an alternative. Based on a 

corpus of seiitcnces annotated with c- and f-structures, the GF-DOP rnodel extracts 

features from f-structures and appends them to  c-structure node labels. The Tree- 

DOP rnodel of parsing is then applietl. The new model is an approximation of 

the linguistically sophisticatetl LFG-DOP model, but is as feasible to  irnplernent as 

the robust Trcc-DOP model. This chapter describes the GF-DOP rnotlel in detail. 

We present the different features used for annotation and corlsitlcr several tiifferelit 

anrlotatiorl approaches. We examine where the GF-DOP model fits into the DOP 

spectrum, as each of the three models' strengths and weaknesses are compared. 

Finally, we put forward the GF-DOP hypothesis; we propose that thc new rnodel will 

be able t,o learn grarnmatical features accurately, and make use of this information 

to  produce more detailed, better quality parses than the Trec-DOP rnodel. 

Chapter 5 Following our introduction of the GF-DOP hypothesis, wc outline a 

series of experimcnts which are used to investigate the actual performance of the new 

motlel. This chapter presents the experirrieiltal set up used, covering the data set, a 

detailed breakdown of features investigated and all prcprocessing stcps performed on 

the data set. We present the parser used in the experiments and describe the various 

evaluation nleasures wl.lic.11 will be employed. Given that  the GF-DOP hypothesis 

comprises two assertions1, we will divide our cxperilnents illto two tasks, and present 

the results of our investigation over the following two chapters. 

Chapter 6 This chapter looks at the GF-DOP rnotlel's perforrnancc on task one, 

grarnmatical feature detcction accuracy, in both English and French. We examine 

t,he correlation between frequency of feature occurrences and detection accuracy 

scores. 

lThese assertions are that (1) the new model will be able to learn grammatical features accn- 
rately, and (2) make use of this information to producc more detailed, better quality parses. 



Chapter 7 T n  tohis c'11aptc:r wt? t:xainino thc GF-DOP rnodcl's pcrformnnct? on task  

t,wc), parse a(w:uracy, in bath English s n r  i Bcncl~. Wc r)bscrvt! how thc coml3inntior1 

nr strurturr! xssignmer~t and ld,c>Iirlg accuracy cornhine to haosf; ov~:rall parse rludit;y. 

Chapter 8 Suhst:qrxr:nt, to our examinat,ion of thc GF-DOP irlodcl's performrtnct! 

0x1 t h t x  t,wo inrlividuid tasks, wo focus o t ~ r  at,.ll;ts~ltian 0x1 thc trtor1el's ovt!rall porfor- 

m;i~lct:. After a. cantrnst,ivc cornpi~rison of tho morlel's achicv(sne1xts on the Erlglisll 

arid Frc:nr,h, wr! consiclcr thr! mt?rit,s of thc! GF-DOP 11lor1r:l whm romparcrl, to othc:~. 

npl>ront:bos to tllc same tasks. 

Chapter 9 Fin;dly, wr! c:al~cIurlc ant1 sug~$(:st sorxlc i~vc11uc.s for h r  turr: war k. 



Chapter 2 

DOP: Data-Oriented Parsing 

I11 Data-Oriented Parsing, we corlstruct a parse for new input from previously parsed 

examples of language. This parsing approach combincs linguistics, statistics and ex- 

amples. In this chapter we describe the DOP model, in particular Tree-DOP, with 

an illustration of the four principal elements which must be defined. We discuss some 

implemerltational issues, such as fragrnent pruning, and consider several disarnbigua- 

t,ion strategies. Finally, we discuss theoretical issues related to  inconsistencies in the 

probability model. 

2.1 What is DOP? 

DOP is an "experience-based approach t o  natural language parsing where input 

sentences are analysed by referencing prior analyses of similar sentences" (Hearne, 

2005). The cognitive theory behind DOP was set out by Scha (1990), and its 

earliest implementation developed by Bod (1992). Scha proposed to  irnplernent 

"performance-based" grammars, rather than "competence-based" grammars, on the 

basis that humans process language based on their previous experiences, as opposetl 

to  a set of acquired grammar rules. He suggested that these performance grammars 

should "not only contain irlforrnatiorl about the structural possibilities of the general 

language system, but also 'accidental' details of the actual language use in a language 



community, which determine the language experiences of an individual, and thereby 

influence what kind of utterances this individual expec.ts to encounter, and what 

structures and meanings these utterances are expected to have," (Scha, 1990). 

DOP exploits an example-base (a collection of annotated sentences) created from 

a monolingual 'orpus. The DOP Model comprises four elements which must be 

defined: how are the examples in the annotatecl. corpus represented? How are frag- 

rnents extracted from these representations? How are these fragments recombinetl 

t,o derive a parse for new input? How are parses for these new analyses ranked? 

2.1.1 Represent at ions 

In our DOP system the example-base consists of syntactically labelled context-free 

phrase structure trees, such as those given in the treebank in Figure 2.1 (A). There 

may be more than one occurrence of any tree. 

2.1.2 Fragment at ion 

During fragmentation, generalised fragrrlents are extracted from the examples present 

in the treebank. A fragment t, extracted from T, is valid if 

a every node in t is a node in T, 

each node in t has no children or the same number of children as the corre- 

sponding node in T, 

a t comprises more than one node. 

All valid fragments which can be extracted from Figure 2.1 (A) are given in Figure 

2.1 (B) . Examples of invalid fragments are given in Figure 2.2; fragment tl is invalid 

as it contains a node which was not present in the original tree T, Nrnotl. Fragment 

tz is invalitl as the node VPV does not have the same number of children in this 

fragment as it had in the original tree T; node VPV had two children in the original 



( A )  A sample treebank : -2) NPadj (Tz) - 
V N A  N 

I I I I 
printing documents printing documents 

NPadj ( T 3 )  - N ( T 4 )  (Tsl  (Tg) 
A  N I 
I I images copying tab 

printing documents 

(B) The fragment set extracted from the above treebank with their associated probabilities : 
VPv ( t l : l )  VPv ( t 3 : l )  NPadj ( t 4 : l )  

/ - 
V N V N V N A N 

I I I I I I 
printing documents printing documents printing documents 

NPadj ( t5:2)  NPadj ( t 6 : I )  NPadj ( t 7 : l )  NPadj ( t s : l )  - - - - 
A  Z A  N A N A  N 

I I I I I 
printing documents printing details details 

NPadj ( t9:2)  : I )  V ( t l l : l )  N ( t12:d)  A  (t13:Z) - I I I 
A  N V N printing documents printing 

det&ils images copying tab 

(C) Derivations for the string p r i n t i n g  i m a g e s  : 

NPadj 
Nadj ( t s )  A ( t l l )  N ( t 1 5 )  

D 3  : A- = A  N N O printing O images I I 
printing images 

(D) Calculation of probabilities of derivations for p r i n t i n g  i m a g e s  : 
P ( D 1 )  = P ( t 2 )  * P ( t 5 )  * P ( t 1 5 )  = * 3 * - 

1 
5 - 

- 
40 

P ( D 2 )  = P ( t 3 )  * P ( t 1 5 )  * - - a *  - - - 1 5 20 

p ( D 3 )  = P ( t s )  * P ( t 1 1 )  * P ( t 1 5 )  = - $ * 2 * 1 =  20 1 

p ( D 4 )  = p ( t 9 )  * P ( t 1 5 )  * - 2 1 - - 
8 * - - 20 

(E) Summing derivation probabilities to calculate the most probable parse for p r i n t i n g  i m a g e s  : 
P ( P 1 )  = P ( D 1 )  + P ( D 2 )  = 1 3 

40 

Figure 2.1: Illustration of (A) tree representations, (B) fragment ex- 
traction, (C) the composition process, (D) calculation of 
derivation probabilities and (E) parse ranking for the 
Tree-DOP model. 



T: VPV tz: VPV - t1 :  VPv I 
V N V t3: VPV 
I I 1 Nmod I 

documents I printing 

Figure 2.2: invalid fragments extracted from tree T. 

tree. Fragment ts is invalid as it comprises a single node, while the minimum possible 

DOP fragment is one parent node with one child node. 

Fragments are extracted from the treebank using the root and frontier opera- 

tions, which are defined as follows: 

Root: given a copy of tree T, called Tcopy, select a non-frontier, non-terminal 

node to  be root and delete all except the subtree it dorninates, 

Frontier: from tree Tcopy, select a set of nodes t o  be frontier nodes and delete 

the subtrees they dominate. 

For example, given Tlcopy, a copy of tree TI in Figure 2.1 (A), we extract fragment tlo 

(Figure 2.1 (B)) in two steps; we begin by selecting node VPV as root anti deleting 

all except the nodes dominated by VPV. Next we select V and N as the frontier 

set,; we delete all subtrees dominated by these nodes. The result is the fragment tlo. 

Note that the frontier set may be the empty set. For example, fragment tl 

(Figure 2.1 section (B)) was extracted from Tzcopy, a copy of tree TI in Figure 2.1 

section (A), by selecting VPV as root and the ernpty set as the frontier set. 

2.1.3 Composition 

To build a Tree-DOP derivation, a fragment is chosen at  random to begin the deriva- 

tion. This fragment may consist of either nodes labelled with syntactic categories 

only (such as fragment t9 in Figure 2.1 (B)) or nodes labelletl with a mixture of syn- 

tactic categories and words (such as fragment t5 in Figure 2.1 (B)). Nodes labelled 

with syntactic categories constitute open substitution sites1. 

'An open substitution site is a node at which another fragment may be substituted. 



Further fragments, whose root node labels match the current substitution site 

label, are composed at the open substitution sites until no further substitutiori 

sites remain and the derivation is complete. This is done using the composition 

operator, denoted by the symbol o.  This is a left-most substitution operation. 

Several examples of derivations may be seen in Figure 2.1 (C). 

If a fragment has more than one open substitution site, cornpositiorl always takes 

place at the left-most site. In this way, we are assured that each derivation is unique. 

For example, given the order of the composition sequence in Figure 2.3, there is only 

one possible combination for the fragments shown. 

VP VP 
---I--- v v 

0 - - - V CONJ V o I I V CONJ v 
I printing scanning I I I 

and printing and scanning 

Figure 2.3: Left-most composition of a sequence of fragments which 
ensures that each derivation is unique. 

2.1.4 The Probability Model 

There is often more than one possible analysis for an input string, as can be seen in 

Figure 2.1 (C); there are two distinct derivations for the sentence printing images. 

These analyses are ranked in DOP using the associated probabilities, to ascertain 

which is the most likely analysis given the example-base. 

The probability of a fragment is its relative frequency in the example-base, as 

in equation (2.1) : 

The probability of a derivation is the product of the probabilities of the frag- 

ments which are used to build that derivation, given in equation (2.2): 



The probability of a parse is the sum of the probabilities of the derivations 

which yield that exact parse, as in equation (2.3): 

D yields T, 

Calculating the most probable derivation is not the same as calculating the rriost 

probable parse. There may be several valid derivations derived for a given string. 

Some of these may yield identical parses. We sum over the probabilities of each 

derivation of a parse to calculate the probability for that, particular parse. 

Figure 2.1 (D) shows the calculation of probabilities of derivations for the sen- 

tence printing images. In Figure 2.1 (C), we see that there were four derivations. 

We calculate the probability for each of these derivations by multiplyiilg the prob- 

abilities of the fragments used to build eadi cierivdtion. 

Re-examining the resulting derivations in Figure 2.1 (C), we see that there are 

only two distinct parses: Dl and D2 yield the same parse (which we will call PI), as 

do D3 and Dq (which we will call P2). To calculate the probability of each of these 

parses we sum the probabilities of the derivations which yield that parse: summing 

the probabilities of Dl and D2, & + $, we get the probability of PI, &. The 

1 1 probability of P2 is equal to the sum of the probabilities of D3 and D4: & + 20 = 10 

(or &). The second parse, P2 is the most probable parse for the serlterlce printing 

images given the example-base in Figurc 2.1 (A). This calculation is illustrated in 

Figure 2.1 (E). 

Implementing DOP 

2.2.1 Fragmentation of the treebank 

As mentioned in section 2.1.1, examples of previously parsed language are repre- 

sented as context-free phrase-structure trees. From these examples, all possible 

fragments in a tree T are extracted. The rlurnber of fragine~its F which can be 



projected from a given node NodeT, which has n children, CT1 . . . CTn, can be 

calculated from the formula given in equation (2.4): 

The nurnber of fragrnents which can be extracted from the treebank is the sum of 

the number of fragments which can be projected from each node in the treebank. As 

can be seen in Figure 2.4, even a small tree can project a large number of fragments. 

Generating these fragments for every tree in a treebank results in a very large number 

of fragments: the English side of the HorneCentre corpus, which comprises only 980 

trees, yields 312,132,787,415 DOP fragments. 

F(RO0T)  = (F(S)+l) * (F(PERIOD)+l) = 94 

F(S) = (F(PRON)+l) * (F(VPcop)+l) = 46 
T: ROOT /-'---. F(PR0N) = - - 1 

PERIOD F(VPcop) = (F(Vcop)+l) * (F(NP)+l) = 22 A 1 F(Vcop) = = 1 
PRON VPcop 

I A F(NP) = (F(D)+l) * (F(NPzero)+l) = 10 

F(D) = - 
this Vcop - 1 

I A F(NPzero) = (F(N)+l) * (F(N)+l) = 4 
D 

is I 
NPzero 

A F(N) = = 1 

N N F(N) = = 1 

a I I F(PERI0D) = = 1 
safety feature 

Total = 94 + 46 + 22 + 10 + 4 + 1 = 182 

fragments + l + l + l + l + l  

Figure 2.4: Calculation of the fragments projected from each node 
in a tree, used to  calculate the total number of fragrnents 
extractable from that tree; this tree yields 182 fragments. 

Fragment Pruning 

It is unrealistic to  attempt to  parse with a grammar of such magnitude. Prurliilg 

techniques can be used to reduce the cxample base size, thus enabling a more efficient 

implement,ation. There are several ways to  do this; we may limit the number of open 

substitution sites per fragment, the iiumber of lexical items per fragment, or the 



T: ROOT 
A 
s PERIOD 
0 

PRON VPCOR I 
this v c i p  NP 

I - 
is D NPzero 

I - 
safkty feature 

fi: ROOT fz: s f3: VPcop n n ------- 
S PERIOD PRON VPcop Vcop h'P 

/-'---- I I /------ 

this Vcop NP 
I -.----. 

PRON VPcop . is D NPzero 
I - I A 

this Vcop NP is D NPzero ! N N 

Figure 2.5: Illustration of some of the depth 3 fragments which could 
be generated from the tree T, by applying the root oper- 
ation at  nodes ROOT, s and vpcop respectively, selecting 
the empty frontier set in each case, and pruning at  depth 
3. 

maxirnum fragment depth, among others. An example of the application of pruning 

by depth can be seen in Figure 2.5. 

While some sort of pruning is required t o  control the size of the example base 

generated, discarding fragments results in reduced sensitivity to  lexical and struc- 

tural dependencies. Although some of the relationships discarded will be statistically 

very weak, other more significant relationships can potentially be lost. 

The DOP Hypothesis 

The DOP Hypothesis states that as we increase the size of the fragment set extracted 

from the training data, and include larger fragments, parse accuracy should also 

increase. However, this has been shown not to  hold true in parsing experiments for 

both English and French by Hearne (2005), where decreases in f-scores were noted 

most frequently between fragments of depth 2 and 3, but also between fragments of 

depth 3 and 4. Furthermore, the incorporation of fragments of greater deptlls was 

shown to be unproductive by Bod (2001). 

Given that the DOP hypothesis has been shown not to  hold true always, and the 



fact that an "all fragments" approach is prohibitive to an efficient implementation, 

we do not follow Bod (1992)'s original implementation method, or Sima'an (1995a)'s 

subsequent, more efficient revision. We utilise an approach which guarantees sensi- 

tivity to lexical and structural dependencies and can be also efficiently implemented: 

the Goodman reduction model. 

2.2.2 Goodman Reduction Implement at ion 

The Goodman reduction model (Goodman, 2003) produces a grammar which is 

linear in size relative to the training data. This O(n) grammar substaritially re- 

duces parsing time when compared to parsing a standard DOP grammar, which is 

exponential relative to the training data; while a DOP grammar creates all possi- 

ble fragments, the Goodman model creates a Probabilistic Cont.ext Free Grammar 

(PCFG) which comprises (at most) eight rules per node in the training data. These 

PCFG rules generate the same strings with the same probabilities, and generate the 

same parse trees with the same probabilities. However, we must sum over several 

PCFG derivations for each DOP derivation. 

Every nodc in the training grammar is assignet1 a unique address, e.g. A@k is 

the node labelled A at address k. A new non-terminal node is creatcd for every tree 

in the treebank, e.g. Ak is the new non-terminal node created to correspond to node 

AQk. The original nodes are called "exterior" nodes, while the new non-terminals 

are called "interior". The number of subtrees with root node A@k is ak. The number 

of subtrees with root node A is a. For any node A@k with a set of children CH, 

(where CH = {BQl ... CQm)), we calculate ak, the number of subtrees which have 

AQk as their root node, based on the number of  fragment,^ each child node yields: 

' k  = n X Q n t C H  (z, + 1). The relative frequency estimator is used to calculate the 

probabilities of these rules. 

For a group of nodes, such as those shown in (2.5), we extract the eight PCFG rules 



shown in (2.6). Their associatetl probabilities are shown in brackets. Goodman 

(2003) proves by induction that these rules and their probabilities are equivalent to 

a DOP grammar. These rules correspond to  the fragment contexts the node group 

in (2.5) may appear in; in rules (1) - (4), A is an interior (non-root) node, while 

rulcs (5) - (8) show A as an exterior (root) node. In rules (1) and (5), B and C are 

external nodes (substitution sites in the fragment). In rules (2) and (6) B is internal 

(i.e. not a substitution site) to  the fragment, while C is an external node. Rules (3) 

and (7) show the reverse case, where B is the external and C is the internal node. 

Finally, in rules (4) and (8) B and C are both internal to  the fragment. 

As previously stated, a Goodman reduction projects at  most eight rules per node; 

this maximum number of rules is generated for each node which is internal to a 

tree and has t,wo internal children. For each node which is the root of a tree in the 

treebank, only four rules are projected. These root nodes can never be internal to  

a fragment, so rules of the type (1) - (4) in (2.6) are not produced. For any node 

which dominates a single terminal, only two rules are produced, as terminal symbols 

cannot be substitution sites. Handling of rules which have more than thrce children 

is discussed in section 2.2.3. 

Goodman (2003) states that a PCFG subderivation is horrlornorphic to a DOP 

tree "if the subderivation begins with an external non-terminal, uses internal non- 

terminals for intermediate steps, and erlcis with external lion-terminals", as illus- 

trated in Figure 2.6 (from (Gootlman, 2003)). 

2.2.3 Chart Parsing Algorithm: CKY 

Standard chart parsing techniques, such as the CKY (Cocke-Kasarni-Younger) al- 

gorithm (Younger, 1967), are employed to  create the derivation space. However, in 



S S (external) 
A 

N P  VP NPQ1 VPQ2 (internal) 
- 

A 
P N  P N  NP P N  P N  V NP  (external) 

/-'---. 
v 

/------ 

Figure 2.6: On the left, a DOP tree which is homornorphic to the 
PCFG subderivation on the right. 

order to use the CKY algorithm, all trees must be in Chomsky Normal Form (CNF), 

as shown in the example in Figure 2.7. CNF trees are of one of the forms described 

below: 

X + Y Z (one non-terminal rewrites as two nori-terminals) 

X t x (one non-terminal rewrites as one terminal) 

where X, Y ant1 Z are non-terminals, and x is a terminal. By inserting additional 

nodes we convert all trees to CNF, as in Figure 2.7, in advance of processing the 

input string. 

Original Rule: NodeA t NodeB NodeC NodeD 

NodeA + NodeB NodeB, 

NodeB, t NodeC NodeD 

Figure 2.7: Conversion of a non-CNF format fragment to  CNF for- 
mat. 

The notles inserted during conversion are given unique names, meaning that the 

subtree NodeA + NodeB NodeB, can only ever combine with the subtree NodeB, + 

NodeC NodeD. Subtrees with these artificial nodes as their root are assigned proba- 

bility 1, as there is only one occurrence of this exact subtree in the treebank, and no 

other subtree has the same root value as this subtree; the first subtree generated by 

t,he CNF coilversion in Figure 2.7, NodeA t NodeB NodeB,, will receive the proba- 

bility which was assigned to the original tree NodeA + NodeB NodeC NodeD. When 

these subtrees are recombined to produce the original tree, thc probabilit,y of the 



combinetl subtrees will be exactly equal to the probability of the original tree. The 

original DOP tree is easily retrieved by reversing thc CNF conversion process anti 

removing the insertcd artificial nodes. This reversal recovers the internal structure 

of the original txec. 

From the binarised treebank, Goodman reduction rules are extracted. These 

rules are in CNF which is required in order to  use the CKY algorithm. 

The CKY Chart Parsing Algorithm Having binarised the treebank and cx- 

tracted the Goodman PCFG reduction, we are ready to  apply the grammar rules 

to new input. We irlitialise the parse chart by counting the number of words in the 

input string. For an input string of length n words, we initialise a chart, size n by n. 

After this initialisation, the CKY algorithm comprises a base case, and a recursive 

case. The base case fills the bottom row of the chart (denoted [il [ I ] ,  where i is 

the column number and I is the row nurnber) with unary productions; that is, rules 

of the form X --t x, where X is the syntactic category corresponding t o  x, the lexical 

word. Only unary product,iorls are considered at  this stage. Binary productions 

(rules which span cxactly two constituents) will be consideretl during the recursive 

casc. The recursive case fills the chart bottom-up, left-to-right (column 1 to n ) ,  

from the sccond row on (row 2 to  n ) .  At any chart position [i] [j] (whcre [il is 

the column number and [k] is the row number), a rulc X t Element1 Element2 

may be inserted into the chart if there is already a rule with left hand side Element 1 

at position [i] [k] and a rule with left hand side Element2 at position [i+k] [j-kl , 

for i 5 k < j. A note of the combining chart positions is kept with each rule. 

For example, given the grainmar in Figure 2.8, and the input string printing 

documents, we can see that the rule NPadj + Acol N c l l  will coinbine with 

sorrle rule with left hand side A at  chart position [O] [I], aritl some rule with left 

hand side N at  chart position [I] [I] ; there may bc more than one rule in a particular 

chart position with the same left hand side value. Pscudocotle for chart parsing an 

input st,ring, of length n wortls, with this algorithrn is given in Figure 2.9. Having 
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documents 

Figure 2.8: The parse space for the input string printing documents 
according to the PCFG grammar on the left. 

completed the parse chart, we rnust now decide which of the derivations is the best 

parse. 

The Viterbi Algorithm The Viterbi algorithm is a dynamic prograrnrnirlg algo- 

rithm which calculates the most likely sequence of states. In the context of a parse 

chart, the Viterbi algorithm finds the rnost probable rule at each stage, and retains 

that rule only. In this way, we efficiently calculate the n-most likcly derivations. 

2.3 Disambiguation Strategies 

As more than one possible analysis is generally assigned to  an input string, we must. 

have a rnethod of selecting the best analysis. There are several methods to consider. 

2.3.1 MPP: Most Probable Parse 

The DOP model specifies that to  select the best ailalysis for an input string, we rnust, 

calculate the MPP. The probability of a parse is calculated by suinrrling over the 

probabilities of all derivations which yield that exact parse, as in equation (2.3). An 

example of this in practice can be seen in Figure 2.1 (E). However, exact calculation 

of the MPP has been shown to be an NP-hard problem by Sirna'an (1995b). Instead 



(A) The Base Case : 
f o r  (i = 0 up t o  n) 

f o r  (each unary production r u l e  i n  t h e  grammar) 

i f  (current ru l e ' s  RHS[l] == word[i]) 

i n s e r t  r u l e  i n t o  char t  pos i t i on  [i][l] 
(B) The Recursive Case : 

f o r  ( j  = 2 up t o  n) 

f o r  ( i  = 1 up t o  n) 

f o r  (k = 1 up t o  j - 1) 

Element 1 = [i] [k] 

Element2 = [i + k] [ j  - k] 

f o r  (each binary production r u l e  X 4 Elernentl Element2 i n  t h e  grammar) 

i f  (current  ru l e ' s  RHS[1] == Elementl) and (current  ru l e ' s  RHS[2] == Element2) 

i n s e r t  t h i s  r u l e  i n t o  cha r t  pos i t i on  [i][j] 

Figure 2.9: Pseudocode for implementing the CKY chart parsing 
algorithm, where LHS refers to the Left Hand Side of a 
rule, RHS refers to the Right Hand Side of a rule, RHS[l] 
is the first element of the RHS of the rule, RHS[2] is the 
second element in the RHS of the rule, and n is the 
length of the input string. 

we can calculate an approxirnation of the MPP using Monte Carlo disambiguation 

techniques (Chappelier ant1 Rajman, 2003). 

2.3.2 MPD: Most Probable Derivation 

The probability of a derivation is the product of the probabilities of the fragments 

used to build t,hat derivation, as in equation (2.2). Using the left-most composition 

operation ensures that each DOP derivation is unique. However, it is possible to  

derive the sarne tree i11 more than one way: Figure 2.1 (C) shows how identical 

derivations might be produced by different combinations of fragments. We sum over 

the probabilities of identical derivations to calculate the most probable parse. Corn- 

putirlg the MPD is a more viable option than calculating the MPP either exactly, 

or by random sampling, but Bod (2003b) has demonstrated a 16% drop in parse 

accuracy when maximizing derivation probability, rather than parse probability. For 

tthis reason, we concentrate on approximat,irlg the MPP. 



2.3.3 Approximating the MPP 

In order to approximate the MPP effectively, a relationship must be established 

between the sampling frequency of a parse and its DOP probability. These sam- 

pling frequencies are used to rank parses, with the most frequently sampled parse 

corresponding to the MPP. 

The Sampling Algorithm To begin sampling a derivation, a fragment is selected 

at random frorn the parse chart. Further random fragments, which are selected from 

the chart in a top-down left-to-right fashion, are composed with this derivation until 

there are no remaining substitution sites. The fragments are selected at random such 

that if the sampling probability of fa is n times that of f b ,  fa is n times more likely to 

be randomly selected than fb. When sampling DOP derivations, the distribution of 

parse trees in the sampled set must corresporld to  their DOP probability distribution. 

To do this, exact sarnpling may be employed. 

Exact Sampling Chappelier and Rajmarl (2003) have shown that the exact sam- 

pling method guarantees the sampling probability of a derivation is equal to its DOP 

probability conditioned on the input string. The parse with the highest sampling 

probability is the most frequent parse, and the most likely MPP candidate. 

The sarnpling probability of a fragment in chart position [il [ j I is the DOP 

probability (calculated according to equation (2.1)) of that parse tree multiplied by 

the total sampling probability mass at eizc,h of that fragment's substitution sites, 

clividec-1 by the total sarnpling probability mass of the fragments at chart position 

[i] [jl whidl have the same root node as that fragment, as in equation (2.7). This 

ensures we consider the total sampling probability rnass available at each substitu- 

tion site in the given fragment. 

Sampling probability of ( fij) 
P D O P  (fij) * TSPM(fij) 's substitution sites 

TSPM[i][j] with root = fij root 



where f i j  is a fragment in chart position [i] [j] , P DOP is t,he DOP probability of 

the fragment and TSPM is the total sampling probabilit,~ mass of the appropriate 

fragment or fragments. 

Controlling Sample Size As stated in section 2.3.1, calculating the MPP di- 

rectly is an NP-hard task, so we carry out exact sampling to approximate the MPP. 

However, we must control the size of the sample set to  ensure that we do not sam- 

ple too rnany or too few derivations. One approach to  coritrollirlg the size of the 

sample set is Bechhofer-Kiefer-Sobel rnethod (BKS) sampling, (Chappelier and Ra- 

jman, 2003). The BKS method is a sequential samplirig method, which combines 

two known properties: 

a "For any multinoinial raiidonl variable with K modalities such that pl > 0 

pz with 0 >1, the probability for the most frequent modality in a sample to  

effectively be the most, probable one is always bigger than the probability Pmin 

of selecting the most probable rriotlality in the case where all the motlalitics 

but the rnost probable one have equal probabilities. This lower bound Pmin 

can be a priori cornputed as a function of Kl 0 and n, the number of samples." 

a "For such a rnultinomial raritlorn variable, the probability for the most frequent 

rnorlality in a sample to be the most probable one is always bigger than & 
where 

and f[i1 is the relative frequency in the samples set of the i-th most frequent 

parse tree in that set." (Chappelier ant1 Rajman, 2003) 

Atloptirig the BKS method irivolves sampling derivations at ranclom, until we reach a 

stopping condition. This stopping coritlitiorl is defined in atlvance, but recalculated 

evcry time we select another sample. Having already comput,ed the parse chart 

wit,h all possible derivations (< p[l] . . .p[k] >) for the input string, we compute K, the 



rlunlber of different, parse trees for the input string. Next we define a priori values 

for 0 = and the error probability Per,. 
P [ i ]  ' 

Using the exact sampling method, we cxtract a derivation from the parsc chart. 

This derivation is stored in an orderetl list2. The frequencies3 of all the differcrlt 

sampled parse trees are updated and the list is reranked based on the updated 

values. Z is recornputetl. If the stopping condition has been achieved, sarrlpling 

halts and the rriost frequent parsc in the sampled set (thc ordered list) is selected 

as the MPP. If the stopping condition has not been achieved, that is Z > we 

continue sarnplirlg further derivations. 

2.3.4 Viterbi n-best Derivations 

Although the Goodinan reduction implernentatiorl guarantees sensitivity to  lexical 

and structural dependencies, and enables an efficient implementation of parse space 

creation, there is a trade-off; for any reasonable size data set, even allowing for t,he 

efficiency of the Goodman PCFG reduction, a complete derivation chart cannot be 

cornputetl for a reasonably long sentence. As we can no longer efficiently sample thc 

parse chart, we calculate the n most probable tlerivations by rneans of the Vitcrbi n- 

best optimisation. From these n derivations, we determine p, the nurnber of distinct 

parses seen. We surn over derivation probabilities to  approximate the most probable 

parse. 

2.3.5 Simplicity-DOP, Likelihood-DOP and Combinations 

Bod (2000) describes two further met,hods of disambiguation: Simplicity-DOP, which 

selects tlic parse with the shortest tlerivation in terrns of the fewest fraginerlts, ant1 

Likelihood-DOP, which selects thc parse constructed from the most probable frag- 

rncnts. He rcports that although Simplicity-DOP is outperforrncd by Likelihood- 

2All fi~rther derivations extracted will bc st,ored in decreasing order of occurrence, i.e. thc 
derivatioii which is sarnpled the iilost often will be at the top of the list, with derivatior~s seer1 less 
okeri followirig in their appropriate order. 

3That is thc frequency in the ordered list, or how many times this exact parse has been sampled 
so fir.  



DOP (f-scores of 87.049 and 89.39 respectively for fragments of depth 14 or less), 

its results are outstanding for such a simple model. In addition, he notes that 

the best parse trees selected by Simplicity-DOP are very different to  the best parse 

trees determined by Likelihood-DOP. With this in mind, he proposes two further hy- 

brid models: Simplicity-Likelihood-DOP (SL-DOP) and Likelihood-Simplicity-DOP 

(LS-DOP), (Bod, 2003a). 

SL-DOP vs LS-DOP The SL-DOP Model selects the simplest tree frorn the 

n most probable trees. The LS-DOP model selects the most likely tree frorn the 

n shortest derivations. If n is equal to  1, SL-DOP is equal to  LS-DOP, as there is 

only one most likely derivation and only one most siniple derivation to  choose from. 

As n increases, SL-DOP converges to Simplicity DOP. Likewise, LS-DOP converges 

to Likelihood-DOP. Empirical investigation by Bod (2003a) showed an increase in 

accuracy for both models as the value of n increases froin 1 to 12. From n=l4 

on, the accuracy of SL-DOP decreases, converging to Simplicity-DOP. However, the 

accuracy of LS-DOP continues to improve, and also converges to Likelihood-DOP. 

2.4 Bias in the Probability Model 

The probability of a fragment is taken to  be its frequency in the fragment set divided 

by the total number of fragments in the fragment set which have the same root 

node as that fragment. This method of estimating fragment probabilities has been 

shown t,o be both biased anti inconsistent by (Johnson, 2002); this relative frequency 

estimator irltroduces a bias in favour of larger trees. 

Figure 2.10 shows a practical example of this bias. The treebank in Figure 2.10 

(A) contains three trees; trees TI and T2 are identical. Their relative frequency 

in the treebarlk is a .  The relative frequency of tree T3 in the treebank is 4. All 

fragments which can be extracted from this treebarlk are shown in Figure 2.10 (B). 

All tlerivations for the input string printer paper are shown in Figurc 2.10 (C) . There 



(TI) N P  (Tz) N P  
A N  

(A) A sample treebank : p i n p e r  p r i n e  paper I 
printer 

I 
paper 

(B) The extracted fragment set and associated probabilities : 

A N  A N  A N  
printer I I I 

printer paper printer 
I 

paper 

( f f i : l )  A ( f 7 :  1) NP 
I 

A N  printer 
I 

paper 

(C) Derivations for the sentence printer paper : 

P(D1) = P ( f 1 )  - - g * - 2 - B 

P(D2) = P( f2 )  
1 - - - 1 - B 

P(D3) = P( f3 )  * P( f7 )  
1 - - ; * I  - - - 6 

p(D4) = P ( f 4 )  * P(t6) 
1 - - - - ; * 1  - - 
6 

p(D5) = P ( f 5 )  * P( t s )  * P(t6) = - ; * 1 * 1 = i  

PI:  N P  

(D) Two distinct parses are produced : prine A N 
paper I 

printer 
I 

Paper 

Figure 2.10: Illustration of bias in the probability model. Although 
the probability inodel has selected P2 (a)  to be the more 
probable than PI (i), evidence in the t,reebank shows 
PI (a)  to be rnore probable than P2 (i). 

are 5 derivations for this string, yielding 2 parses. Surriming over the probabilities 

of identical parses, we establish the probability of eadl of the two parses: parse PI is 

yielded by derivation Dl only, its probability is i .  Parse P2 is yielded by derivatiorls 

D2, D3, D4 and D5. Its probability is a. The DOP probability model therefore 

selects P2 to be the most probable parse for the input string printer paper. 

The relative frequency estimator has selected a large tree, with a probability 

which was surnnied over several derivations, as the rnost probable analysis, showing 

a bias for larger trees. Selection of parse P2 as the most probable parse for printer 

paper given the treebank in Figure 2.10 (A) is in direct conflict with the evidence in 

the treebank. The probability distribution in this example does not reflect the actual 

distribution of t,he treebank; thus it is inconsistent. Notwithstandirlg this shortcorn- 



irig, our DOP cxp(:rc:rimc!rlts, using the reIat,ivc frequancy .cwtimat.or, rlcmcn~st~rate very 

high parsr. quality. 

2.5 Summary 

In this cfl+~pbc:r wc! llavc givcr~ a tlrtailcrl dt?scrtl)tion OF t h o  DOP ino(lo1, rlr!firrillg 1,hc 

fonr rrlnin e1t:mr:nl;s with r:mghmis ou t l ~ c  Tr.ct+DOP application. Wc pn:selztc:d sotnc 

of tlie R~~>TO~C*I. ICS ti~ken in i~r~plcn~cntiug t hc DOP rno~lc1 a11( 1 1not ivatcd our c110icr: 

of mct,hoii, T;Vc outlinerl a viuicty of disamhiguat,ion tccl~niqnas bt?k~rc idatltilying 

soxna shortcomings ill thc ~~rohthilit~y ,ynocIcl, 



Chapter 3 

LFG-DOP: Lexical F'unct ional 

Grammar Data-Oriented Parsing 

In this chapter we introduce the Lexical Functional Grammar (LFG) formalism, 

describe how it is integrated into the Tree-DOP rnodel to form a powerful hybrid 

model of language processing known as LFG-DOP, and consider sorne of the diffi- 

culties surrounding the satisfactory implernentation of this model. 

3.1 What is LFG? 

LFG is a constraint-based theory of language which was developed by Joan Bres- 

nan and Ron Kaplan, (Kaplan and Bresnan, 1982). They advocated the view that 

there is more to  syntax than can be expressed using only phrase-structure trees. 

Two syntactic levels of representation are assumed by the original LFG model: 

constituert-structure (or c-structure), which encodes phrasal dominance and prece- 

dence relations, and functional-structure (or f-structure) which encodes syntactic 

predicate-argument relations. The c-structure is represented by a context-free, 

phrase-structure tree, while the f-structure is represented as an attribute-value rna- 

trix. LFG c-structures are annotated with equations, as illustrated in Figure 3.1, 

which are resolved to  produce the at,t,ribut,e-value pairs which form the corresponding 



{T~SlE~='rnary', mary {T~n~D='see<sun~,on~>' ,  sees john { f ~ m ~ = ' j o h n ' ,  

Figure 3.1: Illustration of a c-structure annotated with equations 
which are resolved to form the corresponding f-structure. 

f-structure. We examine the equations present in Figure 3.1 for a moment; in each 

rule, the T refers to the mother of the current, annotated c-structure node, while 

the L refers to the annotated non-terminal node itself. The equation { T S U B J = ~ }  on 

the node NP is interpreted as this NP'S mother node's SUBJ is equal to this NP. The 

equation {f=J,) on the VP node indicates that this node is the head of its mother 

node, s. Likewise, {T=L) on the v node indicates that this node is the head of 

its mother node, VP; that is, all equations and information relating to the v node 

percolate up to its mother node, VP, and from there on to VP'S mother node, S. 

In this example, v dominates the terminal node sees. Sees is arinotatetl with four 

equations: { ~ P R E D = ' S ~ ~ < S U B J , O B J > ' ,  TNS-pres, TSUBJ:PERS=~, TSUBJ:NUM=S~). 

These equations translate into the following inforination and constraints; the pred- 

icate of this verb is see, this verb must take an obligatory SUBJ and OBJ and this 

verb's form is in the present tense. Furthermore, the SUBJ required by this verb 

must be in third person singular form. 

From the equation { T s u B J = ~ )  on the node NP, we know that this NP is func- 

tioning as S's SUBJ. This NP dominates the terminal node mary whose equations 

tell us the surface form is mary, ant1 that mary is a third person singular form. 

To this point, we have resolved that sees requires a third person singular form 

SuBJ and some OBJ. In addition, there are equations which tell us mary is func- 

tioning as the SUBJ of sees and is a third person singular form. Sees has not placed 

any particular  constraint,^ on the OBJ required; the c-structure shows us there is 

an OBJ present (john). These equations will be successfully resolved to protluce an 
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Figure 3.2: $-linked c-structure and f-structare representations for 
the sentence mary sees john. 

f-structure, as seen in Figure 3.2. The relationship between the c- ant1 f-structures 

is illustrated using &links which connect corresponding c-structure nodes and f- 

structure units. 

-' con- The successful resolution of c-structure equations results in an f-structurc 

tairling detailed information regarding grammatical features and functions. This 

information is encoded as sets of at,tribute-value pairs. Attributes may have one of 

four value types; the value may be an atomic symbol, as in [PERS 31 where PERS 

is the attribute and 3 the atornic value. The value may be a semantic form, as in 

[PRED 'rnary'] where PRED is the attribute, and mary is the semantic form value. 

The value may be an f-structure, as in Figure 3.2, where SUBJ is an attribute, and 

its value is the f-structure unit containing attribute-value pairs defining the SUBJ. 

Finally, t,he value may be a set of f-structure units, an example of which can be seer1 

later, in Figure 3.9. 

The f-structure shown in Figure 3.2 was generated as the result of the successful 

resolutiorl of the equations on the c-structure shown in Figure 3.1. All equations 

were suc:cessfully resolved; all obligatory argurrlerlts were present anti unification 

was achieved. The result is a well-formed f-structure: that is, an f-structure which 

corlformed to each of the three wcll-forinedness conditions, discussed in section 3.1.1. 



3.1.1 Well-formedness conditions 

There are three well-formedness conditions which every f-structure must adhere to, 

as defined in (Butt et al., 1999), page 6: 

Uniqueness: In a given f-structure, a particular attribute may have at 

rnost one value. 

Completeness: An f-structure is locally complete if and only if it con- 

tains all the governable grammatical functions that its predicate gov- 

erns. An f-structure is complete if and only if it and all its subsidiary 

f-structures are locally complete. 

Coherence: An f-structure is locally coherent if and only if all the gov- 

ernable grammatical functions it contains are governed by a local pred- 

icate. An f-structure is coherent if and only if it and all its subsidiary 

f-structures are locally coherent. 

We can see that the example in Figure 3.2 adheres to these three conditions: no 

attribute has more than one value, all governable grammatical functions required 

to satisfy subcategorisation requirements are present, and all grammatical functions 

present are indeed governed by some predicate. An f-structure which violates any 

of these three conditions is invalid. The examples in Figurc 3.3 each violate one of 

these constraints. 

PRED 'see <SUBJ,OBJ > 
TNS pres 

PRED 'john' 
0 P ] 

PCRS 

Uniqueness violation : 
disagreement between 

N U M  f o r  the  verb 
and i t s  subject 

REn 'see <SUBJ,OBJ >'" 

Completeness  violation : 

verb  requires  a subject 
but none i s  present 

I PRED 
SUBJ NUM 

PERS 

PRED 'see <SUI 
TNS preb: 

PERS 

Coherence violation : 

O B J 2  is not governed 
by any local predicate 

Figure 3.3: F-structures which eadl violate a well-formedness con- 
dition. 



Figure 3.4: Illustration of a c-structure annotated with equations 
which cannot be fully resolved to produce a well-formed 
f-structure due clashing NUM values. 

In the case where c-structure equations do not unify, as those illustrated in Figure 

3.4, an ill-formed f-structure will be generated. Figure 3.4 shows a clash of equation 

values which must unify to satisfy the first well-formedness condition; the verb sees 

requires a third person singular form SUBJ. However, girls, which is functioning as 

SUBJ in this example, is third person plural. The ill-formed f-structure which woulcl 

result can be seen in the leftmost f-structure presented in Figure 3.3. 

What is LFG-DOP? 

Althougli the Tree-DOP model achicves excellent parse accuracy (Hearnc, 2005), 

the power of the model is lirnitecl by the corpus representations it assumes. Phrase- 

structare trees reflect only surface-level syntactic phenomena, and do not accurately 

tlescribc marly other aspects of language. However, thc incorporation of a linguis- 

tic formalisrn such as LFG, which is known to be beyond context-frce, brings the 

potential to capture rnany previously unhandled issues, such as number, person or 

gender agreement violations, and output a far more informative parse, for example 

showing grammatical functions and re-entrancies. 

Thc LFG-DOP Modcl, proposed by Bod and Kaplan (1998), is a robust, constraint- 

based approach to  parsing. The tree rcpresentations of DOP are augmented with 

the functional representations of LFG. As for the Tree-DOP Model, we formalize 

the four elements which define the model. 



3.2.1 Representations 

The example-bank consists of syntactically labelled context-free phrase-structure 

trees (c-structures), which are $-linked to their corresponding f-structures, such as 

the sample LFG-DOP representation given in Figure 3 .5  (A). There may be more 

than one occurrence of any given LFG-DOP representation in an example-base. 

3.2.2 Fragment at ion 

Fragments are extracted using the root arid frontier operations and must satisfy 

the same conditions for validity as Tree-DOP fragments, as given in section 2.1.2. 

However, these fragmentation operations are extended for LFG-DOP in order to de- 

compose f-structures appropriately. These extensions, as defined in Bod and Kaplan 

(1998), are as follows: 

"When a node is selected by the Root operation, all nodes outsidc of 

that node's subtree are erased, just as in Tree-DOP. Further, for LFG- 

DOP, all $ links leaving the erased nodes are removed and all f-structure 

units that are not $-accessible from the remaining nodes are erased. 

In addition, the Root operation deletes from the remaining f-structurc 

all semantic forms that are local to  f-structures that correspond to erased 

c-structure nodes, and it thereby also maintains the fundamental two- 

way connection between words and meanings. 

As with Tree-DOP, the Frontier operation then selects a set, of fron- 

tier nodes arid deletes all subtrees they dominate. Like Root, it also 

removes the $ links of the deleted nodes and erases any semantic form 

that corresponds to any of those nodes." 

The concept of $-accessibility is defined such that an f-structure unit is retained if 

it is $-linked to a node in the c-structure, or if it is contained within an f-structure 

which is @-linked to a node in the c-structure. 



(A) An LFG representation : 

PRED 'prinr/SUBJ.ORJ)' 1 

(B) T h e  fragment set extracted fram the representation In (A) using the 7not and jmntier operations : 

VPV ....... . 
... ::::, .... veN .......... 

I 1 
printing docurnenis 

PERS 3 

SUBJ [PEED 'prol] 

FRED *drrcumnnt~' 

(I1 1 (f2) 

{C) T.FG-DOP fregments extracted from Fragment f6 using the d&md operatton : 

( I s  1 (fd) 

.... . .. 
PRED 'rlecumnntpt* PRRn 'dociimnnte' PRED 'tlotu~munr~' 

w\r......s CASE ncc 
PERS 3 PERS 3 NUhl  pl 

I I 

RXD 'prInl(SUt3J,ORI) 

......... .......... v -.qq 
1 

ERs printing 

.. ::. .... ..... v ...... ......"N ....-.,, 
I I 

prinling dotx~rnants 

documents 

(f12) 

'PREU 'prlnt(SWB3,QBJ)' - 
NIJM n~ 
FERS 3 
S[Il3,1 [ P R E ~  bpror] 

PRED *dnm#rnr!tt~' 

md-,,"-- IN;11 CASE na-c 1.1 1, PTSRS 3 

NUM *g 
PGRS 3 

......... VpV SURJ [ P R E ~ ~  'prot] 

/-Y+-'' ->'-- I ..........A. ........... C A S E  act 

v "I 
PERS 5 

v p v  ............ A,., .. .':::::.-- 
................. v .-.....+.A. "N 

I 
documents 

..... ........ PRED 'dot:k~n\a~itu' I .. 
PR1213 'dor:\rrnonts* I PRISD 'dc>c~rrn~~nth' 

N 
I 1 I 

1 
documents doctiments rlocumentrr 

(j5) (la 
PRED 'tlor.u montrl' 

N ......-....... C A S E  acr 

1 PERS 3 ................. docnmenh 

1 
printing 

PEIIS 3 

NUM sg 

PERS 3 
SUBJ [PRED *prtr'] 

P W D  'documants' 

PERS 3 

, ..... [PRED .rlnrrrn~sntc'] 

(j13) N ......... 
I 

tloc~lrna~iti; 

Fig~ur: 3.5: Illust,ratian oF (A) arl LFG-DOP rcprc:scr~balion, (13) 
fr;tgl~~art;s wlri(:Ii can br: r?xtra(*tctl using thc mot i l~l(I 

froniier ol>t:r;lt,icorls, wlt1 (C) the discard ~porat~ion. 



LFG-DOP fragments which can be extracted from the representation in Figure 

3.5 (A) using the root and frontier operations are presented in Figure 3.5 (B). Let 

us examine how fragrncnt f6 would be extracted: node N is selected by the Root 

operation, and all nodcs which are riot dominated by this node are deleted. All 

&links leaving the erased nodes are also removed. Any f-structure unit which is not 

&accessible from the remaining nodes is removed. In the remaining f-structure, any 

scrnarltic fornis which are local to  f-structures corresponding to deletcd c-structure 

nodes are also deleted. This completes the Root operation. The Frontier operatio11 

sclects a set of frontier nodes, in this case tlie node labelled documents, arid all 

subtrees dominated by the frontier set are deleted. Any $-links or serriantic forms 

corresponding to the deleted nodes are also rerrioved from the remaining f-structure. 

The result of these operatioris is the fragrnerlt labelled f6. 

As can be seer1 in Figure 3.5 (B), LFG-DOP fragments provide a lot of contex- 

tual detail. Although this informatiori helps us to construct accurate, gramnlatical 

parses, it also reduces thc number of candidates suitable for ally composition. In- 

tleed there may be no canditlate fragments. We arc constrained by the level of 

detail provicled. If we could relax some of these constraints, we could propose rnore 

fragments as candidates for composition. 

Furthcr fragments may bc extracted using the discard operation: attribute-value 

pairs which are riot +-linked to  nodes in the reniairlirig c-structure, and are riot 

PRED values which correspond to  rernairiirlg c-structure terminals, may be deloted. 

No changes are rnatie to the c-st,ructure or the $-links, only f-structure attribute- 

value pairs are affected. A11 example of additional fragments which can be ext,racted 

from fragment f6 (Figure 3.5 (B)) are ill~lstratetl in Figure 3.5 (C): fragrncnts f7,  

fs and f9 cacli have one co~lst~raint relaxed. Fragilierits fro, fll and fiz have two 

 constraint,^ discardetl, while fragment fi3 has all attribute-value pairs dcleted, with 

the exception of the PRED feature. 



3.2.3 Composition 

As for Tree-DOP, composition takes place at the left-most open substitution site 

of the fragment c-structure. However, unification must also take place in the f- 

structures, ensuring that the three well-forrnedness corditions are met by the com- 

posed fragments. An example of composition resulting in a well-formed fragment is 

given in Figure 3.6. Uniqueness, coherence and completeness are maintained in the 

composed fragment. 

rPRCO 'print (SUBJ,OBJ)T 0 ~ P R E D  'docurnents'l = 

..... 

......... 

printing 

N .......-...... - I CASE acc 

I 
NU&! pl 
PERS 3 

documents I 
FRED 'print (SUBJ,OBJ)' 1 

Figure 3.6: Composition of these two fragments results iri a well- 
formetl LFG-DOP fragment which satisfies each of the 
well-formedness conditions. 

...... VPv ".'t. 

..... ::,..- 
v-N +-.... .... 

I I 
printing documents 

An example of composition resulting in an ill-formed fragment is given in Figure 

PERS 3 

SUBJ [PRED 'pro'] 

PRED 'dncumonts' 

PERS 

3.7. Uniqueness is not maintained in the resulting cornposed fragment, as the CASE 

attribute cannot have both the value 'acc' anti the value 'nom'. Any attribute can 

have at most one value. 

Figure 3.7: Cornposition of these two fragments results in an ill- 
formed LFG-DOP fragment, due to  a uniqueness vio- 
lation with regard to  the value of the attribute CASE. 

VPV ...... 
-,, .,+..... 
V .  ........ iq ......... 
I 

p r i ~ ~ t i ~ ~ g  

Wc can increase the robustness of the LFG-DOP model via discard-generatetl 

-PRBI) ' ~ r i n t  (SUBJ,OBJ) PI'CED *dorumrmrn' 
NUM sg CASE nom 
FCRS 3 

I r ERS S U B . ~  [ ~ R E D  'pro'] documents 
CASE acc 

O R d  .. NUM [ ] 



fragments. Where no parse is possible using root- and frontier-generated frag- 

rrlents only, due to  a violation of the unification condition, we can compose dis- 

card-generated fragments, thereby avoitling this violation, as in Figure 3.8. 

Strings whose parses rely on discard-generated fragmcnts arc corlsiclered un- 

grammatical with respect to  the corpus. These strings may be ill-formed, or may 

be wc:ll-formed but unaccounted for in the training data. 

3.2.4 The Probability Model 

In constructing a Tree-DOP derivation, a fragment is chosen at  random to  begin 

the tlerivation, and successive fragments are substituted into the left-most open 

substitutioii site, assuming their node labels match. The probability of each valid 

parsc is calculated from the associated probabilities. The probabilities of all valicl 

parscs which can be constructed sum t,o 1. 

The probability of an LFG-DOP derivation is calculated i11 the same way as that 

of a DOP derivation: the probabilit,y of a fragment is its relative frequency in the 

example-base, as in equation (2.1). The probability of a derivation is the product 

of the probabilities of the fragments which were used to  construct that (derivation, 

as in equation (2.2). The probahilit,y of a parsc is the sum of the probabilities of all 

clerivations which yield exactly that parse, as in cquatiorl (2.3). 

However, as demonstrated in Figure 3.7, not all constructed derivations yield 

valid parses. All parses must fulfil thc category matching requirements of the c- 

structure composition, but may fail t,o adherc t,o thc well-formedness requirements, 

resulting in an iilvalitl parse with respect to the corpus. If our LFG-DOP probability 

rnotlel works in the same way as the Tree-DOP probability model, in that the prob- 

ability distribution is defined accortiirlg to  fragment root nodes, the probabilities of 

all LFG-DOP derivations should also sum to 1. Given that not all LFG-DOP deriva- 

tions are valid parses accordillg to  the model, the probabilitics of valid parses no 

longer surn to 1; that is, there is no longer an accurate probability distribution as the 

model 'leaks' probability mass, Abney (1997). It is possible to normalise fragment 
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probabilities over the probabilities of valid parses, however Abney (1997) observes 

that this normalisation merely masks the fact that using relative frequency esti- 

mation to  establish grammar probabilities where context-sensitive dependencies are 

encoded does not yield good weights. There is currently no thoroughly satisfactory 

solution t o  this problem. 

3.3 Challenges for LFG-DOP 

Although it is clear that the LFG-DOP model is a robust, accurate model of lan- 

guage, the implementation of a system based on this model, is not a straightforward 

task. We are faced with many, as yet, unresolved issues relating to  a satisfactory 

LFG-DOP implementation. 

3.3.1 Theoretical Issues 

Hearne (2005) observes that although rec.ursive and re-entrant structures occur fre- 

quently in language, the root and frontier operations as defined by Bod and Kaplan 

(2003) do not sufficiently describe how to handle these structures. Additionally, 

information which is unrelated to  the corresporlding c-structure may remain in the 

f-structure after the root and frontier operations are applied. 

Consider the example in Figure 3.9 (from (Hearne, 2005)): the SUBJ of the 

sentence is the f-structure unit labelled f2, with PRED 'LED', which corresponds t o  

the noun LED in the c-structure. The f-structure defines yellow to  be the ADJUNCT 

of LED. In addition, LED is defined to be the SUBJ of yellow, denoted by co- 

indexation. The value of the SUBJ in this instance is the out,er f-structure unit 

labelled f 2 .  

When extracting fragments from the c-structure in this LFG-representation, the 

fragment A + yellow is encountered. By applying thc root operation to  the c- 

structurc, all except the subtree dominated by A is deleted. All $-links which 



t*Rl':l> aflash(SUBJ)' 
MOOD indicative 
PERF - 
PROG + 
TENSE pres 
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Figure 3.9: An example LFG represeiitation for the string "the yel- 
low LED is Bashing". 

connect deleted 11odes to  the f-structure are subsequently deleted. All f-structure 

units which are no longer $-accessible from the c-structure are deleted. Finally, 

any semantic forms remaining in the f-structure, which are local to  f-structure units 

correspondirlg to  deleted c-structure terminals are delet,ed. In this exarnple, the 

empty set is selectetl as the frontier set. 

By following the definition given, we cannot arrive a t  a conclusive f-structure 

corresponding to  the fragment A + yellow. The definition of $-accessibility states 

that an f-structure unit is ret,ained if it is $-linked to a node in the c-structure, or if 

it is contained within an f-structure which is $-linked t o  a node in the c-structure. 

From examining the original f-struct,ure, we can see that the f-structure unit which 

would appear to  correspond to  the fragment in question, labelled f3, does not contain 

the f-structure unit labelled f2. However, f2  is the value of an attribute within f3. 

In this case, it is unclear how we shoultl ascertain the f-structure which correspontis 

to the fragment A + yellow. A similar problem arises when re-entrant structures 

are encountered. 

As mentioned previously, the current fragmentation method, based on the defin- 

ition of $-accessibility, leads to  the preservation of f-structure attribute-value pairs 

which rnay not be merited given the evidence in the c-structure. In an f-structure 

which satisfies each of the well-forrnedness conditions, every f-structure unit is $- 

accessible froin the outerrnost f-structure unit. Eadl  inner f-structure unit is present 



Figure 3.10: An LFG-DOP fragment extracted from the LFG rep- 
resentation given in Figure 3.9 where the constraints 
present i11 the f-structure are deterinirled using the $- 
accessibility criterion. 

v ... =.. I -..-.. 
flashing 

because it is a requirement of some subcategorisation frame. Therefore, it must be 

linked to  some outer f-structure unit, a link which percolates back to the outer- 

most f-structure unit. As a result, any c-structure fragment which contairls at least 

one node which is $-linkec-i to the outermost f-structure unit also has thc ability to 

$-access every inner f-structure unit. 

Consider the example in Figure 3.10, (from (Hearne, 2005)), representing the 

fragment V + flashing. The f-structure specifies that the SUBJ of t,hc verb flashing 

rnust have an ADJUNCT. Givcn the little eviderlce prescnted by the c-structure 

fragment, this is perhaps an over-constraint,, for English at  least. It is possible that 

this constraint would be justified for a sirnilar fragment in another language. 

An alternative fragmentation process is proposcd by Hearnc (2005), whosc method 

deals with t,his constraint overspecification (while maintaining the language indepen- 

dency of thc model). In this modified fragmentation process, f-structure units which 

are supported by evidence in the c-struct,ure fragment are rctained. Initially, the 

c-structure fragment, is extracted using root anti frontier, as for Tree-DOP, while 

retaining the entire f-struct,urc given ill tile original represcntatio11. All f-st,ructure 

units and their associated attribut,es which arc not $-linkcd from some c-struct,ure 

notie are deleted, unless that f-structure unit is the value of ail attribute which is sub- 

categorised for by a PRED value whose corresponding terminal is dominated by the 

current fragment root node in the original representation. Where there are floating 

fl' r2 

1'R1.:13 'flash (SUBJ)'  
MOOD indicative 
PERF - 
PROG + 
TENSE pres 

SUBJ 

-C A.SE nom 
N U M  ag 
PERS 3 
SP1.X-TYPE d d  

ADIUNCI. i h [ S L T ~ l  a] 



f-structure units, retain the unit containing both floating f-structures with their at- 

tributes. Any semantic forms which are not associated with a remaining c-structure 

terminal are deleted, as in the revised fragment in Figure 3.11. The attribute-value 

pair ADJUNCT {[SUBJ f2]) was not supported by evidence in the c-structure, and 

has been deleted from this revised fragment. 

'lJtlK13 'flash(SUBJ)' 
MU013 indicative 
F'Elll' - 
FROG f 
Tt.:KSE pres 

 CASE nom 

Figure 3.11: A11 LFG-DOP fragment extracted from the LFG rep- 
resentation given in Figure 3.9 where the constrairlts 
present in the f-structure are determined using the sup- 
port criterion. 

While this approach avoids some overspecification, we are still left with the 

problem of how to distinguish between constraining anti informative features. Upon 

extracting the fragment on the right of Figure 3.12 from the LFG-DOP represen- 

tation on the left, we learn that the verb see rnust have a singular SUBJ, and also 

a singular OBJ. Admittedly this particular example is a language-dependent issue, 

but, nonetheless, an unresolved problenl which will occur in other languages. 

PRED 'mary' ............. 

.......... 

sees .......... 

PRED 'see <SUBJ,OBJ >' 

I 
sees 

Figure 3.12: Illustration of a fragment extracted, based on the sup- 
porting evidence in the c-structure, which is still over- 
constrained. 



In section 3.4.3 we will propose an alternative model which makes use of the 

irlformatiorl present in the f-structure, while managing t,o avoid the difficulties pre- 

sented here. 

3.3.2 Practical Issues 

While composition is a simple matter in Tree-DOP, based on local substitution, 

LFG-DOP composition must also deal with unification which is a global operation. 

In any LFG-DOP derivation, unification must be successful for every substitution. 

As in the example given in Figure 3.13, we see that a derivation may fail because of 

a single unification violation. 

0 1 O 

NP '--.: PRED 'john' 
1 ... [ 

john NUM sg 1 

Figure 3.13: An LFG-DOP derivation which fails due to a uaifica- 
tion violation during the final substitution; the previ- 
ously composed fragments expect a plural form OBJ in 
the final substitution. Instead a singular form fragment 
is proposed. This composition violates the uniqueness 
condition. 

Category-matching is not the only well-formetlness condition which must be sat- 

isfieti during composition; in LFG-DOP it is not the case that any fragment whose 

root node corresponds to the left-most open substitution site is eligible for composi- 

tion at this point. As a result,, the probability distribution for each conlpetitiorl set 

is not the sarne as the distribution of the fragments in the fragment set. 

A second difficulty arises from the fact that a partial derivation cannot be checked 

for completeness; it car1 orily be appraised when there are no further substitutioll 



sites, and no more compositions are possible. 

"The stochastic branching process by which derivations are constructed 

does not necessarily yield valid representations even when the other 

well-forrnedness conditions have been verified during fragment selection" 

(Hearne, 2005). 

This is the reason for normalisation of the probability mass which is assigned to 

valid derivations. 

Although a derivation must be complete to judge for completeness, uniqueness 

and coherence can be executed during or after the sampling process. Three different 

probability models, MI, M2 anti M3, are proposed by Bod and Kaplan (1998). 

Model MI This model is an extension of the Tree-DOP model, where only the cat- 

egory matching condition is enforced during sampling. Immediately after a complete 

derivation has been sampled, that sampled derivation is appraised for uniqueness, 

completerless and coherence to determine whether it is valid or not. We calculate 

the competition sets for Model MI according to equation (3.1), where CS is the 

competition set, LSS is the leftrnost substitution site, and f : r o o t  (f ) is the set of 

fragments whose root nodes match leftmost substitution site of derivation Di-1. 

csM, = {f : r o o t  (f = LSS ( ~ i - I ) )  

Model M2 The sampled (partial) derivations are checked for uniqueness at each 

sampling step in this model. Fragments must satisfy the category-matching and 

uniqueness conditions in order to be considered eligible for the colnpetitiorl set. 

After sampling, completed derivations are appraised for conlpleteness and coherence. 

Having completed derivation step DiPl, we calculate the competition sets for Model 

M2 according to equation (3.2). 

csM, = {f : r o o t  ( f )  = LSS ( D ~ - ~ )  A unique (Di-l 0 f ) ) 



Model M3 The competition sets in this model are checked for uniqueness and 

coherence at each sampling step. F'ragments must satisfy the category-matching, 

uniqueness and coherence conditions in order t o  be consitlered eligible for the com- 

petition set. Again, completeness can only be checked after completing a derivation. 

Having coinpleted derivation step DiPl, we calculate the competition sets for Model 

M3 according to equation (3.3). 

CSN, = {f :root ( f )  = LSS (Di-l) A unique (Di-, o f )  A coherent (Di-I 0 f 1) (3.3) 

Even using these probability rnotlels does not correct the problem of 'leaked' prob- 

ability mass (Abney, 1997); the only way to  avoid sampling invalid derivations is to  

check uniqueness, completeness and coherence at each step. However, this fourth 

motlel does not exist as completeness can only be checked once an entire parse 

has been obtained. Until this issue is resolved, we will be unable to  sample in an 

accurate, efficient way. 

Exact sampling for the Tree-DOP model, as described in sect,ioii 2.3.3, is a 

relatively straightforward task. The exact probability of sampling fragment f at  

chart position [i] [j], with root node VP, shown in Figure 3.14, is calculated by 

equation (2.7). We compute the DOP probability of fragment f, which is then 

multiplied by the sampling probability mass available at each of f ' s  substitutiorl 

sites, [i] [k] ,V and [i+k] [j -k] ,NP. This is then divided by the total sampling 

probability mass available at  chart position [il [jl for fragrnents with root node 

VP. 

[il [kl Citkl Cj-kl 

Figure 3.14: Tree-DOP fragment, f, occurring at  position [il [jl on 
the parse chart. 

Unfortunately, this is not such a sirnple task when applied to LFG-DOP frag- 



mcnts. Let us try to associate the fragment shown in Figure 3.14 with the ap- 

propriate $-linked f-structure representation. Calculating the exact probability of 

sampling fragment f at chart position [il [ j  1 , with root node VP, we attempt to 

follow the same procedure described above. However, we cannot know the sampling 

probability mass at substitution site [i+kl [ j  -kl , NP until [i+kl [ j  -kl , NP is the 

leftrnost substitution site. 

In exact sampling, we stop sampling when enough samples have been seen. To 

proceed with this, we must first establish how many valid parses there are in total. 

Until all constraints in all parses have been resolved, we cannot count the valid 

parses. 

3.4 Comparing Tree-DOP and LFG-DOP 

3.4.1 Advantages of Tree-DOP 

The primary advantage of the Tree-DOP model is that it is possible to  develop 

an implementation which adheres to  the model in practice. No difficulties arise 

in extracting fragments from the treebank. Dealing with recursive and re-entrant 

structures are not a problem when fragmenting c-structures only. The probability 

distribution for each competition set is the same as the distribution of the fragments 

in the fragment set; that is, the probability model can be accurately implemented. 

It is unnecessary to consider the generation of additional fragments using the dis- 

card operation, as category-matching is the only condition which is enforced during 

composition. 

One weakness in the Tree-DOP model is the limited form the rcpreserltations 

assuine. This model produces parses which are grammatical with respect to a lin- 

guistically simple treebank. As illustrated in Figure 3.15, a parse may be gener- 

ated which is grammatical, given the granlrnar extracted froin the treebank, but 

is otherwise an ungrammatical example of language. This issue is dealt with by 

the LFG-DOP model through the unification of features and functional information 



which are present in the f-structures. 

I I 
sees john 

Figure 3.15: This sequence of cornposed fragments would be consid- 
ered to yield a valid parse according t o  the Tree-DOP 
model. 

3.4.2 Advantages of LFG-DOP 

The LFG-DOP model improves on the Tree-DOP model. This strength comes 

from the representations it assumes; the additional information available in the 

f-structures ensures that the output produced is grammatical with respect to  the 

corpus, and also to  real world examples of language. The unification violation, shown 

in Figure 3.16, would be considered invalid according t o  the LFG-DOP model (but, 

could still be handled). 

PRED 'we' 

b:z ,",I ] 

Figure 3.16: This sequence of composed fragments would be consid- 
ered to  yield an invalid parse according t o  the LFG- 
DOP model, due t o  violations of the uniqueness contli- 
tion. 

0 s ..... 

-,. PRED 'see <SUBJ,OBJ >' 

Although the LFG-DOP model is clearly the preferred model in terms of its 

vQ<:::fb:,- 
I I ' I .  

sees john 

ability to  protluce linguistically accurate output, there remain several obstacles to  

be overcome before a satisfactory implementation is in place. With this in mind, 

TNS pres 
-.... I PRED 'john' 

~&"j'-....... NUM sg 1 

we propose an alternative model which has the ability t o  make use of linguistic 

functions and features, as in LFG-DOP, but avoids the implemeiitational difficulties 

inherent in this moc-iel. 



3.4.3 Considering an alternative model 

The model we propose is the GF-DOP model; Grammatical Feature Data-Oriented 

Parsing. This model appends features extracted from f-structures to c-structure 

category labels. We then apply the Tree-DOP model to the transformed treebank. 

As suinmarised in Table 3.1, this rnodel generates linguistically informed output, 

while maintaining the integrity of the probability model. We present this model in 

detail in Chapter 4. 

Table 3.1: Sunimary of the GF-DOP model as compared to the Tree- 
DOP and LFG-DOP models 

3.5 Summary 

LFG-DOP 

X 

J 

In this chapter we introduced the constraint-based theory of language krlowri as 

LFG, and described how it car1 be used to augment the Tree-DOP model, resulting 

in a robust, Iiriguistically informed model of parsing; LPG-DOP. We presented the 

LFG-DOP model formally, and discussed some of the theoretical and practical issues 

which impede a dependable implemelitation. Finally, in considering the pros and 

cons of the Tree-DOP model compared to the LFG-DOP model, we propose a third 

rnodel which combines the strengths of both models, while avoiding the difficulties 

inherent in the accurate irnplemeritat,ion of the LFG-DOP model. 

GF-DOP --- 
d --- 
d 

Tree-DOP 

Output corresponds to  the probability model 
(i.e. "no leaking probability mass) 

4 
grammatical features 

d 

X 



Chapter 4 

GF-DOP: Grammatical Feature 

Data-Oriented Parsing 

Given the theoretical and practical difficulties inherent in the LFG-DOP inotlel, 

as outlined in Chapter 3, we propose the GF-DOP model as an alternative. This 

chapter describes the GF-DOP model in &ail. It discusses the different annotation 

approaches considered, and classifies the features idertifietl. We describe where this 

inodel fits into the DOP spectrum, as strengths arid weaknesses of the models are 

compared and we develop our hypothesis, which will forrn the basis for experiments 

presented in later chapters. Finally, we consider future exterlsiorls of the GF-DOP 

model. 

4.1 What is GF-DOP? 

The GF-DOP model can be seen as an extension of the Tree-DOP model, and an 

approximation towards LFG-DOP. It combines the robustness of the DOP inodel 

with some of the linguistic corrlpeterlce of LFG. This model exploits a corpus of 

annotated c-structures: features are extracted frorn f-structures and appended to  the 

c-structure category labels. As this rriodel extends the Tree-DOP model, category- 

matching is the only restriction imposed on fragments which are candidates for 



composition. No restrictions are placed on the label form, so labels which incorporate 

features incur no extra computational cost; no changes to the model are required 

to handle the adapted labels. The Tree-DOP model is applied to the transformed 

treebank. This model can be as accurately and efficiently implernerlted as the Tree- 

DOP model, and produces linguistically detailed output, based on identification and 

incorporation of grammatical functions and features. 

Feature Classification 

LFG f-structures contain informative features (for example LAYOUT-TYPE may spec- 

ify that a sentence is a header, a listitem or is unspecified) and f~nct~ional information 

(such as SUBJ and OBJ which describe the grammatical features of the constituents 

in question). For the treebank used in our experiments (the Xerox Parc Homecentre 

corpus, described in section 5.1), 77 features were itleiitified in the English data set, 

and 80 were identified in the French data set. These features were grouped into five 

classes: 

grammatical function features, e.g. SUB J, XCOMP 

atomic features, e.g. NUM=sg, P E R S = ~  

lexical features, e.g. P R O N - F O R M = ~ ~ ~ S ,  SPEC-FORM=a 

non-grammatical function features which have an f-structure cont;aining a 

group of features as their values, e.g. T N S - A ~ ~ [ ~ ~ ~ D = i r n p e r a t i v e ,  PERF=- 

, PROG=-], N T Y P E [ G R A I N = ~ O U ~ ~ ~ ]  

predicates, e.g. PRED ' ~ ~ < [ x c o M P ] > ' [ ~ ~ o ]  

The classification of these features can be seen in Table 4.1 (PRED has been ex- 

cluded). 



Table 4.1: Classification of all features identified in the data set 
(excluding PRED) . 

Non-Grammatical Lexical Grammatical Atomic 
Functions 

ARG-EXT 

ARGS-INT 

ASPECT 

CONJ-FORM-COMP 

FIN 

NON-DEP 

NTYPE 

PRECONJ-FORM 

TNS-ASP 

I 

I 

Features 

AUX-SELECT 

COMP-FORM 

CONJ-FORM 

FORM 

DEP 

NEG-FORM 

PCASE 

PRON-FORM 

PREDET-FORM 

PREDET 

PRT-FORM 

Functions 

ADJUNCT 

APP 

APSEC 

ASPEC 

COMP 

COMP-EX 

COMPOUND 

OBJ 

OBJ2 

OBL 

OBL-AGT 

Features 

ABBREV NEG-FORM 

ACONSTR NUM 

ADEG-DIM NUMBER-TYPE 

ADEGREE PASSIVE 

ADJUNCT-LAYOUT PCASETYPE 

ADJUNCT-TYPE PERF 

ADV-TYPE PERS 

ANIM POL 

APOS PREDET-TYPE 

ATYPE PREVERB-OB J 

AUX-FORM PROG 

OBL-COMP 

PRON-INT 

PRON-REL 

SPEC 

SUB J 

TOPIC-INT 

TOPIC-REL 

XCOMP 

CASE PRON-TYPE 

CONJOINED PROPER 

CONJTYPE PSEM 

DEIXIS PTYPE 

EMPH REFL 

EMPHASIS SPEC-TYPE 

FOO STATUS 

GEND STMT-TYPE 

GERUND STRESSED 

GRAIN TEMPORAL 

INF TENSE 

INV TIME 

SPEC-FORM 

LAYOUT-TYPE TYPE I 

MOOD VCONSTR 

NE VFORM 

NEG VTYPE 



Figure 4.1: A c-structure with its corresponding 4-linked f- 
structure, from which we extract features. 

4.3 Annotating Trees with Grammatical Features 

We begin with a corpus of sentences, represented as c-structures. Each c-structure 

is &linked t o  its associated f-structure. An example of such a representation can be 

seen in Figure 4.1. We divide the discussion of feature annotation into two groups: 

annotation of functions and annotation of all other features. The annotation of all 

other features is further subdivided in two: annotation with root-based features and 

annotation with preterminal based features. Subsequently, we present an example 

of annotation for each feature class. 

Let us begin by colisiderirlg how we might annotate the tree with function fea- 

tures. By examining the f-structure, we can see how the constituents of the c- 

structure function. Beginning with the main verb in the sentence, described in the 

outermost f-structure unit as PRED Lbe< [XCOMP] >'[pro], consider its subject, de- 

sc.ribed by the f-structure unit labelled SUBJ. Its $-link shows that the leftmost 



constituent in the tree, N P - - ~ P R O N + ~ ~ ~ S ,  functions as the SUBJ of the rnain verb in 

this sentence. Now that we have identified the function of this constituent, we must 

decide how we will denote this. 

In the first approach considered, we annotate each non-terminal node which 

forms part of constituent whose function is SUBJ. The result of this annotation 

approach can be seen in Figure 4.2. Both the NP and PRON nodes have labels 

indicating that they function as the SUBJ of the sentence. The function is appended 

to the category label using the logical "and" symbol ( A )  which we reserve for this 

purpose only. This reserved symbol enables us to  evaluate parses in several different 

ways and this is discussed in section 5.4. 

I I 
PRONASUBJ VPcop 

I 
this 
n 

vcop  
I 
is D A NPadj 

I I 
a NPaero 
n 

Nmod N 
I I 

N feature 
I 

safety 

Figure 4.2: A c-structure annotated with SUBJ on all non-terminal 
nodes which form the SUBJ constituent. 

Upon reviewing the annotated tree in Figure 4.2, we see that multiple annota- 

tions of this sort result in falsely inflated annotation frequencies; for example, in 

a given sentence, there may be three constituents which function as the SUBJ of 

various predicates. If each node which forms part of the SUBJ constituents is anno- 

tat,ed with the SUBJ label, we will count more than three SUBJ annotations in the 

sentence. Annotating several nodes as SUBJ where there is actually only one subject 

function results in linguistically inaccurate representations. A side-effect of this is a 

difficulty in calculating the exact frequency of feature annotations. This issue has 

no effect on the implementation of the GF-DOP model per se, but the distribution 



of features is pertinent in the analysis of parses produced. These figures assist us in 

the interpretation of scores achieved and can help us to  draw correlations between 

parse quality, coverage and feature occurrences. 

In order to ensure that we have the same number of functional annotations as 

functions, we make only one annotatioli per function. We place this arlrlotation on 

the highest node in the constituent which corresponds to the furlctiorl in question. 

All nodes dominated by this annotated node are part of the const,ituerlt which fulfils 

this function, but they are no longer individually annotated. For example, the 

annotated tree shown in Figure 4.2 will now have only one SUBJ label, placed on the 

NP node, as illustrated in Figure 4.3. 

ROOT - 
Sadj PERIOD 

PRON vpCoP 
I A 

this Vcop 
I 

is D A NPadj 

I I 
NPzero 
A 

Nmod N 
I 

N 
I 

feature 

safety 

Figure 4.3: A c-structure annotated with SUBJ on the topmost notie 
of the SUBJ constituerlt,. 

There may be more than one SUBJ (or other such function) in a sentence. All 

constituents which fulfil a function are arlr~otated with the appropriate label. Further 

examination of the f-structure in Figure 4.1 shows that there are two constituents in 

the c-structure which function as SUBJ; the main verb of the sentence, be, requires a 

SUBJ (PRED ' b e < [ x ~ o ~ ~ ] > ' [ p r o ] ) ,  as does feature which operat,es as an XCOMP in 

this sentence (PRED 'feature<[S~B~]>') .  In this example, the same rlotles serve as 

the SUBJ of both be and feature. The highest node of the appropriate constituent 

receives an annotation for each function it serves, as can be seen in Figure 4.4. 

As there may be more than one of a particular function in any givcn sentence, we 



ROOT ------- 
Sadj PER IOR 

I 
S - 

NPASUI~JASIJI~J IT 
I I 

PRON vPmp 
I - 

this Vcop 
t 
is 
A 
D NPaclj 
I I 
I 
a NP&ao 
n 

Nmod N 
I I 
N Feature 
I 

Figure 4.4: A c~sttucturt! annott~tcd with  SUB^ on t,hc: topmost notit: 
oT r:at.:h of the SUBJ conxtiti~rwts. In this case, one noria 
rt:c:civr!s two annot,ations tw if, is tllc topmost norlc: in R 

const,it,l~cnt which sr:rvt:s F L ~  two f~~nctinns. 

The nocics arc mnota,l.crI with t,lieir S~i~lction i u ~ l  thr! Icrnrnrt of t,he pr~licata wliost! 

runctiou ttlcy fulfil. For tlke c?xa~nplc c-struc; uril given in Figure 4.1, thc mxlotations 

ty-pc of annotatioii can bc seen in Figura 4.5, 

ROOT - 
Sodj PEKIOD 

I 
S - 

MPnsu~~anL~~svn~-ofJ~fif r ~ a  VP 
I I 

PROM Vl'mp 
I - 

l.hie Vmp NP 
I 
is 
a 
I3 NPadj 
I t 

Figiu'c! 4.5: A c-strut:f;~rrr? rzn~~otat;c?rl with spocdfir. lahcls whiell illcot.- 

por?~tc th(! fiwrt inn SUBJ and t,hc rc lntd  1om111a. 

'The implcmcntation of the mnntatinn npprwnch rcqnirca ns maintain singl'lr tnkrn noclr? 
labds, For tlris reason, wc 11sc uridcrscorcs iii pIwc or' spwca in riorlc iabds. 

52 



This approach is used to  annotate all functions. However, not all features can 

be annotated in this way. All other features are divided into two groups: 

a root-based annotations 

a preterminal-based annotations. 

Features in the first group provide iiiforrnatiorl about one or more c~nstit~uents, and 

are annotated i11 the sarne way as functions; they are placed on the uppermost node 

which dominates all appropriate constituents. For example, the features LAYOUT- 

TYPE or STMT-TYPE tlescribe the structure of the sentence; these annotations will 

be placed on the root node of the constituents they dominate. The feature ANIM 

intlicates whether or not some constituent describes an animate concept; this an- 

notation will be placed such that it dominates all constituents with this aniinate 

property. Examination of the f-structure in our original example, Figure 4.1, shows 

that there are two ANIM features; we see that the XCOMP has an ANIM value of -, 

which will be annotated on the highest notie in the XCOMP constituent, NP. The 

second ANIM feature occurs within the COMPOUND f-structure unit, indicating that 

safety, which forms a compound with feature, is also inanimate. This is annotated 

on the node ~ m 0 d .  Figure 4.6 illustrates this type of feature annotation. 
R O O T ~ s ~ ~ ~ - ~ ~ ~ ~ = d e c l a r a t i v e  - 

Sadj PERIOD 
I 
S I - 

NP VP 
I I 

PRON VPcop 
I 

this VCOD NPAAXPM=- 
I - 
is D NPadj 

I I 
a NPzero 

/------ 

N~O~AANIM=-  N 
I I 

N feature 
I 

safety 

Figure 4.6: A c-structure with root-based feature annotations: STMT- 
TYPE on ROOT (root of the constituent whose STMT-TYPE 
is declarative), ANIM on NP, (root of the constituent whose 
ANIM value is negative).   mod is annotated as it is the 
highest node in a constituent which is also &linked to an 
f-structure unit with ANIM. 



The second group consists of features which are related to particular terminal 

nodes in the c-structure. These features are annotated on preterminal nodes. Anno- 

tating t,hese features higher up the c-structure would enforce inappropriate restric- 

tions on many more fragments than are necessary. Figure 4.7 illustrates the second 

type of feature annotation. 

ROOT - 
Sadj PERIOD 

I I s ! - 
NP VP 

I I 
P R O N r \ ~ ~ o l v - ~ o ~ ~ = t h i s  VPcop 

I 
this V c o p ~ ~ ~ ~ ~ = ~ n d ~ c a t ~ v e  NP 

I 
is 
- 

D NPadj 
I I 

NPzero 
a 

Nmod N 
I I 

N feature 
I 

safety 

Figure 4.7: A c-structure with preterrninal-based feature annota- 
tions: PRON-FORM on PRON - this annotation indicates 
that this is the most appropriate word to appear in this 
position, and MOOD on  cop - this annotation signals 
that an indicative verb should appear in this position. 

As can be seen in this example, the feature PRON-FORM is annotated on the 

node which directly precedes the pronoun. In a fragment where this node is an open 

substitution site, this annotation indicates which pronoun fragments are most ap- 

propriate for cornposition at this site. Likewise, MOOD is arlnot,atetl on preterminals 

corresponding to only those rlotles which have a modal aspect; annotatirlg an cntire 

constituent with this fulldioil would wrongly imply that, for example, a nominal 

object of a verb phrase also has a lnotial aspect. The sub-division of atomic and 

lexical features into features which are placed on the root of dominated nodes ar,nd 

preterrninal nodes is shown in Tables 4.2 and 4.3. 



Table 4.2: ROOT: atomic and lexical features which are annotated 
on the root of the dominated constituents. 

Atomic 

ACONSTR DEIXIS PREVERB-OBJ 

ADEG-DIM FOO PROG 

ADEGREE GEND PSEM 

AD JUNCT-LAYOUT GERUND PTYPE 

AD JUNCT-TYPE LAYOUT-TYPE SPEC-TYPE 

ADV-TYPE NE STATUS 

ANIM NEG STMT-TYPE 

APOS PASSIVE TEMPORAL 

ATYPE PCASE-TYPE TENSE 

CASE PERF TYPE 

CONJOINED POL VTYPE 

CONJTYPE PREDET-TYPE VCONSTR 

- 
Lexical 

COMP-FORM 

COMP-FORM-ANAPH 

CONJ-FORM 

CONJ-FORM-COMP 

FORM 

PCASE 

PREDET-FORM 

SPEC-FORM 

Table 4.3: PRETERMINAL: atomic and lexical features which are an- 
notated on pretermirlal nodes. 

Atomic 

ABBREV NUMBER-TYPE 

GRAIN PERS 

INF PRON-TYPE 

INV PROPER 

MOOD REFL 

NUM VFORM 

4.3.1 Grammatical F'unct ions 

Lexical 

AUX-SELECT 

NEG-FORM 

PRECONJ-FORM 

PRON-FORM 

Using 4-linketl f-structure units, we identify functions of constituents wit,hin the c- 

structure. The leftnlost N P  in the c-structure representation in Figure 4.1 functions 

as the SUBJ of the main verb in the sentence, be. As there may be more than one 

occurrence of a particular function in any given sentence, we use specific labels, indi- 

cating the exact relationship between nodes; a node is annotated with its f~~nction,  

anti also with the lenlrna of the predicate governing it. We construct an annotation 

which denotes that the node N P  functions as the SUBJ of be: NPASUBJ-of-be. We 

place this annotation on the topmost node in the constituent which corresponds to 

the function in question. All nodes dominated by this aiiiiotatetl node form the 



ROOT - 
Sadj PERIOD 

I 
S ! 

P R ~ N  vPCop 
I - 

this Vcop N P n x ~ o r n ~ a L I ~ e  
I 
is 
- 

D NPadj 

N 
I 

safety 

feature 

Figure 4.8: A c-structure annot,ated with some functional infor- 
mation on the topmost nodes of the appropriate con- 
stituents. It is possible for any node to fulfil more than 
one function; such a node receives an annotation for each 
function. An example of this can be seen in the leftrnost 
NP; this node functions as t,he SUBJ of both be and fea- 
ture, and so is annotated with both functions. 

constituent which fulfils this function. 

Where a constituent fulfils more than one function in the sentence, we append a 

label for each function to the topmost node in the constituent which fulfils that func- 

tion. Upon further examination of the f-structure, we see that the NP node also func- 

tions as the SUBJ of feature; this label becomes NPAsu~~-o f -beA~u~~-o f f ea tu r e .  A 

c-structure annotated with functions can be seen in Figure 4.8. 

4.3.2 Atomic Features 

The second class is atomic features. These features have a small set of closed class 

items as possible values; for example the feature NUM can only ever have the value 

1, 2 or 3. A single atomic feature may apply to more than one node; in this case, 

each applicable node receives the atomic annotation. 

As described in section 4.3, features are divided into two groups: features which 

are annotated on the root node of the const,ituent, and features which are annotated 

on the preterminal nodes dominating t,he terminals to which they specifically apply. 



Figure 4.9 shows the sentence previously illustrated in Figure 4.1 with atomic anno- 

tations for the features ANIM and NUM; in this example we can see that the nodes 

N P  and Nmoti are annotated with the feature ANIM. Iri a fragment where this N P  is 

an open substitution site, we know that the NP-rooted fragment which is substituted 

at this point must include an inanimate (ANIM=-) concept. 

The feature NUM is applied to preterminals. As can be seen in Figure 4.9, 

the node dominating the this is annotated PRONANUM=~.  The f-structure for this 

sentence, given in Figure 4.1, also shows that safety and feature have NUM of 3 each. 

The preterminals to these nodes are also annotated. 

Looking at the $-linked f-structure for the sentence in Figure 4.1, we see that 

the outermost f-structure is linked to the ROOT notle, which dominates all other 

nodes. If we consider the features whidi lie within this f-st,ructure unit, but outside 

other inner units, it might appear that the feature PASSIVE should be annotated 

on all preterminal nodes, even to those which, logically, we know to be unrelated; 

for instance, we know that dcterminers, such as the terminal a, do not have a 

PASSIVE quality. However, this does not occur in the GF-DOP model; noties which 

correspond to inner f-structure units are $-linked t,o their respective f-structure units, 

rather than the outermost unit which dominates them. In the c-structure shown in 

Figure 4.1, only the vcop node receives this annotation, as illustrated in Figure 4.9. 

ROOT 

Sadj PERIOD 

PRONANUM=~ Vpcop 
I 

this VCO~APASSIVE=- NPAANIM=- 
I 

is ? NPadj 

N A X U M = ~  feature 
I 

safety 

Figure 4.9: A c-structure with both root-based and preterminal- 
based atomic annotations. ANIM is placed on the root 
of the constituent which dominates all words in the ani- 
mate concept. NUM is on preterrrlinal nodes only. 



Although the preterminal PERIOD is also dominated by this f-structure unit, and 

not 4-linked to any other unit, we do not annotate preterrninals of punctuation. 

4.3.3 Lexical Features 

The third class of features mentioned is lexical features. These features have one of 

a small number of lemmas as their vahles; for example, CONJ-FORM can have one 

of and, or, and-or, then, plus or null as its value. As for atomic features, lexical 

annotations are divided into two groups: those which are placed on the constituent- 

root, and those which are placed on preterminals. Predicates are not inclutied in this 

group; these will be considered separately in section 4.3.5. An example of a lexically 

annotated c-structure can be seen in Figure 4.10.The PRON-FORM is specified as 

this. The SPEC-FORM used with feature is specified as a, which is also indicated on 

this c-structure. 

ROOT - 
Sadj PERIOD 

I I 

PRONAPRON-FORM=~~~S VPcop 
I 

this vcop NPASPEC- FORM=^ 
I 

is D NPadj 
I I 
a NFsrcro - 

Nmod N 
I I 

N 
I 

safety 

feature 

Figure 4.10: A c-structure with lexical annotations on preterminal 
nodes; PRON-FORM is specified as this. SPEC-FORM 
used with feature is specified as a. The singular form 
specifier a influences the form of the noun 'feature'. 

As can be seen in this exarnple, where a feature applies to one specific node, the 

annotation is placed on the preterminal dominating the terminal, (PRON-FORM=tJhis). 

Where a feature is $-linked to  several nodes, as can be seen in the f-structure in 

Figure 4.1 (SPEC- FORM=^), it is placed on the highest node which dominates those 

constituents only . 



4.3.4 Non- Grammat ical Function Features 

The fourth class of are non-grammatical function features. These features have a set 

of atomic features as their value. Intuitively, it is more useful to annotate the node 

with the contents of the feature's f-structure value: that is, rather than identifying 

that a node has, for example, tense and aspect, denoted by the feature TNS-ASP, 

( V ~ O ~ A T N S - A S P ) ,  we annotate it with the features which define the tense and aspect: 

V ~ ~ ~ A M ~ O D = ~ ~ ~ ~ ~ ~ ~ ~ V ~ A P E R F = - A P R ~ G = - A T E N S E = ~ ~ ~ S .  These features are added 

in the same manner as atomic features, as tiescribed in section 4.3.2. An example 

of these annotations can be seer1 in Figure 4.11. 

ROOT 

Sadj PERIOD 
I 
S I 

NP V P  
I I 

PRON VPcop 
- - 

this V ~ ~ ~ A M O O D = ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ / \ P E R F = - ~ \ P R ~ G = - A T E N S E = ~ ~ ~ S  N P A S P E C - T Y P E = ~ ~ ~ ~ ~  
I 

is D NPadj 
I I 
a NPzero - 

N ~ O ~ A S P E C - T Y P E = ~ ~ ~  N 
I I 

N feature 
I 

Figure 4.11: A c-struct,ure with super-feature atomic annotations on 
the nodes preceding the relevant terminal word. 

The features which describe the tense and aspect are annotated on the  cop 

node, rather than on the VP or  cop nodes. If these features were added to the VP 

or v ~ c o p  nodes, there would be the implication that the other nodes dominated by 

VP or v ~ c o p  carry these precise tense and aspect features also. 

4.3.5 Predicates 

A final, single feature class coritaiils the PRED feature. This feature has a lemma as 

its value, but it differs from the lexical features described in section 4.3.3 because 

lexical features call have only a small number of lemmas, essentially a closed class 

set, as their values, while PRED can have any word as its value. The PRED feature 



may also have subcategorisation arguments; this is a list of arguments which are 

required by a verb or other predicate. For example, one possible subcategorisation 

frame for the verb to eat as a PRED feature in an f-structure might be written 

PRED ' ~ ~ ~ < s u B J ,  OBJ>'; in this context, the predicate eat requires a SUBJ and 

an OBJ in order to satisfy its subcategorisation requirements, and fulfill the LFG 

well-formedness conditions. 

Let us consider t,he annotation possibilities for this feat,ure. From the PRED we 

can establish the lexical word and the list of obligatory arguments. There is perhaps 

no great advantage in extracting the lexical word from the value, as this word fea- 

tures in the c-structure as a terminal anyway. However, the subcategorisation frame 

might be used to  specify the context in which this word can appear. For example, 

if we encounter a sentence with the word eat, we might use the subcategorisation 

requirements to check that the sentence also has some node which is labelled SUBJ 

of eat and a node labelled OBJ of eat. However, using this type of annotation would 

require us to implement, unification. The philosophy behind GF-DOP is to trans- 

form the treebank, rather than the parser. With this in mind, we propose another 

way to incorporate subcategorisation information. 

ROOT - 
Sadj PERIOD 

PRON VPcop 
I 

this Vcop NPAXCOMP-of-be 
I 
is D NPadj 

I I 

N 
I 

safety 

feature 

Figure 4.12: A c-st,ructure annotated with subcategorised functions 
only. 

From the subcategorisation frames, we can determine which functions are oblig- 

atory arguments of predicates; from this we can create a treebank annotated with 

these fuiictions only. An example of this type of annotation can be seen in Figure 



4.12. Rom the set of functions which appear in the f-structure, we aim to identify 

specific functions which arc important in the given corlt,ext. 

4.4 Preserving Robustness 

Data sparseness is a promillent issue in implemcntirlg Tree-DOP antl is further 

exacerbatetl by the detailed notie labels in GF-DOP. The GF-DOP model's use of 

additional feature information rnay mean it does not gencrat,e some parscs which 

woultl be proposed by the Tree-DOP motiel. This reduction in coverage might be 

seen as a weakness in the GF-DOP rnotlel. To prcserve robustness in tlle model, 

we incorporate a 'backing-off' technique in the GF-DOP model; after extracting 

the GF-DOP grarnmar from the annotated corpus, we extract a second grarnmar 

from a copy of the treebank with all annotations rcmoved. I11 effect,, we extract a 

Tree-DOP grammar. We assign the majority of the probability mass (Wl) to the 

GF-DOP grammar, and allocate a small amount of probability mass (Wz) to thc 

Tree-DOP grammar, such that Wl + W2 = 1. These two grammars arc merged and 

their probabilities smoothed. By merging the GF-DOP and Tree-DOP grammars, 

we erlsure some valid parse is obtained for sentences which might not be parsed by 

the GF-DOP grarnmar alone. We maint1ain at least the same level of coverage and 

robustness as the Tree-DOP model. 

We present here a practical illustration of the impact of featurc aiinotatiorls and 

back-off. As discussed iri section 3.4.1, the Tree-DOP model is lirnitcd by the rep- 

resentations it assumes. The parses generated are grammatical with respcct to  the 

given corpus. Figure 4.13 (C) shows how fragments (Figure 4.13 (B)), derived from 

t,he trccbailk giver1 in Figure 4.13 (A), inay be combined to protluce a parse for a 

seiitcace which is grammatical give11 the grammar, but would otherwise be consitl- 

ered ungrammatical; Tree-DOP has no way of modeling such ungrarnlnaticalitics. 

Thcre are several possible derivations for this sentence, as can be seen in Figure 4.13 

(C). 



(A) A sample DOP treebank : 
TI : 5 T2 : S 

#-----. 

VP 
/-'---. 

NP NP VP 
I - I/-----. 

m ~ r ~  v i V NP 
I I I I 

& me & mary 
T e  nsetextractedmthaebovetreebank witht occuofrenurr ; 

12 : ( 1 )  S f 4 : ( l ) i  s ------. 
VP N P  VP 

/----=. 
NP VP NP NP VP 

I ---'--. /-'--. #-----. 

V NP 
,"--. 

mmy V NP Y NP V NP 
t 

Ems 
I 

nlo 
I 

scm 
I 

me 
I 

seen 
I 

me 
fs : (1) S S7 : (13 s /-----. ------. 

NP VP NP VP N P  VP NP VP 
t A I - I /'--. NP mary V WP mnry V NP i V V NP 

I 1 I I I 1 
me s k  -Y mary 

NP VP NP VP NP VP NP VP /----. I 1 
Y NP V N1) i V NP i V PIP 
I I 

see 
I 

mary w e  
I 

m w '  
fis : (1) s 1 1 4  : [ I )  S !IS : ( 1 )  s 
-/--". -.----% /-----. 
NP YP NP VP NP VP NF VP 
I I 

NP i Y N P  
/'---. 

mary V V 
I 

NF mary 
f17 : (1) S 1 2 0 : ( 1 1  'vp 

f1s 
VP v 

------. 
NP NP V NP 

I NP I I 

124 : (1) vp 
fa5 

V NP V NP V NP V NP 
I I I I I V FP 
me see mury sn: mnV 

120 : (2) NP J27 : (1) WP fm : (1) V fm : (1) V f30 : (1) NP 
I I 1 I 

mary i IIW see me 
(C) Derivations For the string mary sees i : 



(A) A sample G8'-UOP treebank: (annotated with case feature) 

(B) The fragment set extracted from the above treebank with the number of occurrences : 

NPcAsE=nom V P  NPcAsE=nom VP N P C A S E = ~ O ~  V P  
I V A NPcASE=acc /------ 

mary V NPCASE=acc V NPCASE=acc 
I 

sees me 
I 

sees 
I 

me 
I 

sees - - -- 

NPCASE=nom NPcAs~=nom V P  NPcAsE=nom VP A I /----- I A 
V N P c ~ s ~ = a c c  mary V N P c ~ s ~ = a c c  mary V NPCASE=ZC 

I I I 
me sees me 

see marv see m a w  see 

I I 
mary 

I 
see mary 

NPCASE=nom VP NPcAsE=norn V P  NPcAsE=nom VP 
1 /--'--. I ,----. /--'--. 

mary V NPCASE=acc 1 V NPCASE=acc V NPcASE=acc 
f l 6  : (1) s f19 : (1) VP - f l 8  : (2) s 

NPcAs~=nom V P  NPcAs~=nom V P  - v N P c a s ~ = a c c  
I 1 NPcAsE=norn vp I I 
I 

mary i sees me 

v N P c ~ s ~ = a c c  V N ~ C A S E = ~ C C  
I 

sees 
I I I 

me see mary see 
1 

f26 : (1) NPcAsE=nom fz7 : (1) N P c ~ s ~ = a c c  
v NPcAsE=acc I 

V NPCASE=~CC marY 
I 

I mary 
mary 

f is  : (1) N ~ C A S E = ~ O ~  f zg  : (1) V f30 : (1) V f31 : (1) NPcAsE=acc 
I I I I 
i sees see me 

(C) Combinations such as this will never be attempted as category matching is enforced : 

Figure 4.14: Illustration of the GF-DOP model parse for the sen- 
tence mary sees i. There are no valid derivations for 
this sentence given the GF-D OP grammar extracted 
from the corpus. i is never annotated CASE=acc, and 
can never appear in OBJ position in this example. 



Through probabilistic weighting and annotation of the corpus with features, 

GF-DOP is less likely to produce ungrammatical parses than Trec-DOP. Figure 

4.14 illustrates how GF-DOP excludes the possibility of generating a parse for the 

sentence mary sees i given the treebank in Figure 4.14 (A). Thc fragment set which 

be extracted is shown in Figure 4.14 (13). Before ariiiotation (Figure 4.13 (B)), 

we can see that there are two fragments of the form NP -t mary; aRer annotation 

(Figure 4.14 (B)), we have two distinct fragments: in the first instance, fragment 

f26, the NP is annotated CASE=nom. In thc second instance, fragment fi7, the 

N P  is annotated CASE=acc. Thus NP -t mary can cornpose with a leftmost opcn 

substitution site with label NP, appearing in a rlorninative or accusative role (by 

selecting the appropriately annotated fragment,). However, there is only orie frag- 

ment of the form NP + i, fragment fis; this fragment is annotated CASE=nom. In 

a parse generated from the treebank given in this example, i can only ever appear 

in a nominative role. Therefore, no valid parscs are possible for the scritence mary 

sees i given thc extrac.ted grammar. 

In this example, the GF-DOP model cxhibits recluccd robustness. However, 

backing-off is a furidameiital element of the rrlodcl arid so the fragment set available 

to  the GF-DOP rrlodel is in fact the union of the fragments in Figure 4.13 (B) and 

Figurc 4.14 (B). As a result, somc parse will be generated for the input sentence mary 

sees i, although it is most probable that  fragments involved would have originally 

been ext,ract,ed from the Tree-DOP fragment set, shown in Figure 4.13 (B). 

How does GF-DOP improve on Tree-DOP? 

The prcvailirlg advaiitagc of GF-DOP over Tree-DOP is that GF-DOP has the ca- 

pacity to generate more inf~rmat~ive parses than Tree-DOP alone. In particular, the 

use of functio~lal annotations i11 GF-DOP provides a considerable amount of detail 

regarding the relationships between constituents. Let us compare the parses which 



would be generated for the sentence i see me2 given the treebanks in Figure 4.13 (A) 

and Figure 4.14 (A), as illustrated in Figure 4.15; parse (A) has been constructed 

from Tree-DOP fragments, extracted from the treehank in Figure 4.13 (A), while 

parse (B) has been constructed from GF-DOP fragments, extracted from thc tree- 

bank in Figure 4.14 (A). Although both parses have the same internal structure, 

parse (B) provides us with additional grammatical information. We can identify 

the CASE of i and me; N P c A s E = ~ ~ ~  d i ident,ifies i as a noniinat,ive NP. This 

can only be composed wit,h a11 open substitution site NP in a nominative position. 

N P c A s E = ~ ~ ~  --+ me identifies me as an accusative NP. This can only be composed 

with an open substitution site NP in an accusative position. 

Parse (B) is generated from GF-DOP fragments. As this rnodel is trained 011 

data with a greater degree of linguistic detail than the Tree-DOP rnodel, the parses 

generated contain more detailed information than those generated by the Tree-DOP 

model, such as parse (A) in this example. This level of annotation may provide us 

information as to which constituents are likely to function as the subject or object 

of this sentence. Tree-DOP provides none of this detail. 

parse (A)  S parse ( B )  S 
,-'---- A 

N P  VP NPcAsE=nom V P  
I A I 
i v NP 1 v NPc~sE=acc 

I I I I 
see me see me 

Figure 4.15: Parse (A) shows a parse for the sentenex i see me, 
constructed from the Tree-DOP fragments in Figure 
4.13 (B). Parse (B) shows a parse for the sentence i see 
me, constructed from the GF-DOP fragments in Figure 
4.14 (B). 

2Althongh this sentence is ungrammatical, it may be considered grammatical with respect to 
the given treebank; the GF-DOP parser must still be able to deal with such examples of language. 
We have chose11 this sentence to ernphasise the poirit that the GF-DOP model can correctly place 
riornirlative forms in subject positiorl arid accusative forms in object position. 



4.6 How does GF-DOP improve on LFG-DOP? 

LFG-DOP's strength comes from the representations assumed by its fragments. 

The unification of feat,ures ensures well-formed grammatical parses are generated. 

However, not all LFG-DOP derivations unify globally, or they may fail to  meet (one 

or more of) tlle three well-formedness conditions, defined in section 3.1.1, which are 

required to  produce a valid parse. Bccause we exclude these ill-formed derivations 

as they are encount,ered, we lose probability mass; the probability distribution of 

derivations does not correspond to the probability model. As a result of this, there 

is currently no satisfactory realisation of the LFG-DOP model. 

The GF-DOP model extracts information from LFG f-structure representations, 

ant1 appends this irlforrnatioii to  the c-stzucture category labels. Category-matching 

is the only constraint which is required to  be enforced during compo~it~ion; as a result,, 

only valid derivations are constructed. 111 this way, we make use of available featurc 

and functional information, while avoiding the probabilistic difficulties which arise 

clue to  the generation of invalid parses. 

Parallels may be drawn between the 'backing-off' technique employed by the GF- 

DOP model ant1 the 'tliscouiited relative frequency' technique in LFG-DOP (Bod and 

Kaplan, 2003). The number of discartl-gencratetl fragments generated in LFG-DOP 

is exporleiitial compared to  the number of root- aiid frolitier-generated fragments. 

In order to ensure that the probability rnodcl exhibits a preference for tlle more 

specific representations (root- and frontier-generated fragments), the 'discounted 

relative frequency' techriique is applied. This approach separates root- and frontier- 

generated fragments and discard-generated fragment s into two separate bags. The 

root- and frontier-generated bag is treated as a bag of "seen" events, while the 

discard-generated bag is treated as a bag of "unseen" events. The total probability 

mass (W) is divided; a small amount of probability mass (W1) is assignet1 to the 

'(unseen" events, the remainder (W2) is assigned to  the "seen" events, such that 

W1 + W2 = W = 1. The probability of each fragment is calculated as its relativc 



frequency in the bag multiplied by the probability mass assigned to  that bag. 

Similarly, the GF-DOP nlotlel assigns the majority of the total probability mass 

(W3) to annotated fragments, and a small amount (W4) to  back-off-generated frag- 

rnents, such that W3 + W4 = 1. By assigning only a small amount of proba- 

bility rrlass to  Tree-DOP and discard-generated fragments ("unseen" events), we 

promote the use of GF-DOP and root- and frontier-generated fragments as our 

"first choice" fragments. Probabilistic weighting encourages t,he use of back-off- or 

discard-generated fragments only where no other fragments are possible. 

However, the inclusion of discard-generatred fragments in LFG-DOP increases 

the size of the trcebank exponentially compared to  that of the Tree-DOP model; 

all possible combinations of attribute-value pair deletions are applietl. The result is 

computationally very expensive. As thc GF-DOP model deletes all feature annota- 

tions at once, only one backcd-off fragment is created pcr GF-DOP fragment. The 

backed-off GF-DOP model generates at  most double the number of fragments of the 

Tree-DOP model. The resulting modcl is less powerful than the LFG-DOP modcl, 

but computationally much more managcable. 

The GF-DOP model combines the robustness of t,he DOP model with some of the 

linguistic. competence of LFG and can bc seen as an approximation towards LFG- 

DOP. Through use of the discard operator, LFG-DOP can gcnerate a parsc for input, 

whether it is well- or ill-formed with respect t,o the corpus, incorporating considerable 

real-world linguistic detail. I11 GF-DOP, we aim to  model as much of this linguistic. 

dctail as possible, with the objective of approximating LFG-DOP, without adversely 

affecting the coverage of the grammar extracted from the annotated treebank. Any 

loss in coverage would equate to  losing some of the robustness which is characteristic 

of the Tree-DOP model. 



4.7 The GF-DOP Hypothesis 

Having dcsr:rihad t hc? GF-DOP moclcl, and higl:light,trrl its principal strengths, wr: 

consirtor what the irnl>licatians of this new r~11)d~l might hc. W(? hj~pot~icsisr: t,hat 

throrrgh 1 . 1 ~  insorportittion r d  grrzrnlnatic:al annotbat ions, t he GF-DOP model can 

xcuratcly lc>trlm graamat,ir:;21 f(:atuscs, a1,xlrl apply this acqukctd hiowlcdge to l>c:t,t,c!r 

model la~iguagc:, produring morr! at:curatztc, mtl  rriotr! informat,ivt!, phrase-str~lct,~~rt: 

trees than thc Tr(l(+DOP madcl. 

4.8 Summary 

In this cl~npt,or we have pr.cscnt,r!rl, in rk:t;zil t,hc? ncw   nod el wt! propost!: the GF- 

DOP tnodcl. Wc diucusu scvc:ral xpprnaclles cousiderr:tl for anaotating tlr r! trt!chank 

wl~irti is cxploitcti Fly thr: modcl. W(: classifit?d fcaburi?~ foui~ l  in Ihr: trt!cba~~k, n11rI 

l~rcjat-?~lf, t:xarnplcs of ~~lmotat~ions from cat1.11 (clnss. Aft'er prascntiilg llrrw we maintain 

rol~ustness in the new GF-DOP mnrlel, wc: rr.dati:d GF-DOP to tllc Trr:r+DOP mrl 

LFGDOP models, comparing the stn:agtlr~s and wcnk~~csscs of alzt.11. Wc I~ypothcsixe 

what. wwc! llopc tlzc GF-D 0 P moc1r:l will t~dlievc cxpori111t:rit a1 ly and, finl-xlly, sngges t, 

sornr! F~tturc avr:nrics lor cxptmsion of tBr! modcl. 



Chapter 5 

Experimental Set Up 

The GF-DOP hypothesis stpates that through the incorporation of functions and fea- 

ture annotations, the GF-DOP model can produce more accurate phrase-structure 

trees than the Tree-DOP model. The GF-DOP model should also enable us to learn 

grammatical features accurately. In this chapter, we outline the experimental set 

up which will be used to investigat,e the actual performance of the new model. We 

present the data set and give a breakdown of features found in the data, and used in 

thc experiments. We describc our treebank preparation before giving an overview 

of the parser used. Finally, wc describe the evaluation rnctrics employed. Exami- 

nation of the new mociel with respect to English and French, both individually and 

contrastively, is reserved for discussion in Chapters 6, 7 and 8. Figure 5.1 illustrates 

the relationship between these four chapters, with the current chapter highlighted. 

C h a p t e r  5 :  
Expe:  

Chapter 6: Task 1 Chapter 7: Task 2 
Feature Detection Accuracy Parse Accuracy - - 
English French mW m.aah 

Chapter 8: 
Comparison - 

languages task performance 

Figure 5.1: Illustration of relat,ionships between Chapters 5, 6, 7 and 
8. 



The Data Set 

The corpus used in the experiments presented in this chapter is the Xerox Home- 

Centre corpus. This corpus comprises 980 sentences in English and their translation 

into 930 sentences in French (several n-to-m translations occur). There are an av- 

erage of 8.54 words per sentence in the English side of the corpus, and an average 

of 9.87 words per sentence for the French side. Each sentence is annot,atetl with a c- 

structure representation and its corresponding $-linked f-structure. The corpus was 

created from an ilistruction manual for a home printer. Each sentence was automat- 

ically parsed at Xerox Parc using their XLE grammars,1 and the 'best' annotation 

was manually selected. 

Table 5.1: ENGLISH: Classification of 76 features identified in the 
English section of the data set. 

Atomic Features 

ACONSTR NUMBER-TYPE CONJ-FORM 

ADEG-DIM PASSIVE CONJ-FORM-COMP 

ADEGREE 

COMPOUND ADJUNCT-TYPE PERS PRECONJ-FORM 

ADV-TYPE POL PREDET-FORM 

PREDET-TYPE PRON-FORM 

ATYPE PROG PRT-FORM SPEC I 

AUX-FORM PRON-TYPE SPEC-FORM TNS-ASP 

OBL-COMP CASE PROPER 

PSEM 

PRON-REL EMPH PTYPE 

SPEC 

SUB J 

TOPIC-INT 

TOPIC-REL 

XCOMP 

EMPHASIS SPEC-TYPE 

FIN STMT-TYPE 

GEND TEMPORAL 

GERUND TENSE 

GRAIN TIME 

INF TYPE 

LAYOUT-TYPE VFORM 

MOOD VTYPE 

NEG-FORM 



5.1.1 English Features 

In the English side of this data set, 76 features (exclutling PRED) were identified. 

These features were divided into four classes, as described in section 4.2. Thc classi- 

fication of these features can be seen in Table 5.1. As stated in section 4.3.4, we do 

not annotate trees with non-grammatical function features directly, but rather use 

the features listed within t h i r  f-structure values. These features are grouped under 

the atomic and lexical feature categories. In adtlition to  11011-grarnrnatical fuiictiori 

feat,ures, there are five othc-,r features we do not use: 

AUX-FORM: although this feature is a form like most of the lexical features, 

only one valuc is possible: contracted. This feature is used to  indicate that an 

auxiliary forrn is contracted, for example here's rather than here is, or you're 

iristeatl of you are. This feature occurs only 11 times in thc data set. We 

manually 'cleaned upi the corpus by removing all contracted forms from the 

c-structures, so this f-structure feature is no longer relevant. In addition, this 

step helps slightly counteract the effect of data sparseness. 

NEG-FORM: like AUX-FORM, NEG-FORM has contracted as its only value. This 

feature works in the same way as AUX-FORM: it indicates that a negative forrn 

has becn contracted, for example doesn't rather than does not, or don't in 

place of do not. This feature occurs only 14 times in the data set. We removed 

occurrences of contracted negative forms from the c-structures, making this 

f-structure feature retlundaiit, and again modestly reducing the effects of data 

sparseness. 

VFORM: despite this feature being called a form, it appears to  behave more like 

an atomic feature in that it has a small set of non-lexical values: presp, base, 

passp and perfp. Upon examination of the corpus, we found that this feature 

was contained in f-structure units which were neither linked to the main f- 

structure unit, nor to  any c-structure nodes. As this feature is not connected 

t o  c-structure nodes either directly, via $-links, or indirectly, through another 



f-structure unit which is $-linked to some c-structure node, we do not generate 

a treebank arlnotated with this feature. Any such treebank would essentially 

be the same as the baseline (original, unannotated) treebank. 

FIN: this atomic feature occurs in f-structure units which are not linked to the 

main f-structure, and are not linked to  any c-structurcl: nodes. Thus we do not 

generate a treebank annotated with this feature. 

INF: this atomic feature occurs in the same situations as FIN: in f-structure 

units which are not linked to the main f-structure, or linked to c-structure 

units. We do not generate a treebank annotated with this feature. 

We clarify how a feature might be present in an f-structure but not linked to the 

main f-structure unit with the illustration in Figure 5 .2 .  For each pair of linked c- 

and f-structures used in the experiments carried out, we have textual representations. 

Figure 5 . 2  shows a section of the textual representation of an f-structure. The unit 

shown is referred to  as "%40". It contains three features, ARG-EXT, DEP and FIN. 

The value of the attribute ARG-EXT is the f-structure unit labellcd "%41" and the 

value of DEP is the f-structure unit labelled "%42". These units (%41 and %42, not 

shown here) are nested one level deeper than unit %40. Any attribute which has 

%40 as its value will have the f-structure unit shown as its value. However in our 

data set, the f-struct,ure units containing FIN (and also those containing INF) are 

never the value of any attribute. Neither are these units $-linked to any node in the 

corresponding c-structure. As a result, we say that these features are not linked to  

the main f-structure, or to  any c-structure nodes. 

( %40 ARG-EXT = %41 

( %40 DEP = %42 

[ %40 FIN ) = + 

Figure 5.2 :  Illustration of the textual representation of an f- 
structure. 



Upori generating our initial treebanks, we excluded four further features: ACON- 

STR, EMPH, EMPHASIS ant1 PRECONJ-FORM. We made this decision as each of these 

features resulted in only one or two annotations in the entire treebank, resulting in 

very little information for the parser to use to learn appropriate feature environ- 

ments. 

Thus the rlurnber of features we use when generating treebanks is reduced to 

58; these features are listed and classified in Table 5.2. A treebank is generated for 

each of the features listed, a single feature annotated on each treebank. In addition 

to these singly-annotated treebanks, we generate several treebanks annotated with 

cornbinations of features. We generate eight multi-feature treebanks, using the most 

frequently occurring features: 

a treebarik annotated with all grammatical functions (as listed in the leftmost 

column in Table 5.2) 

a treebank annotated with the five most frequently occurring grammatical 

functions in the data (ADJUNCT, OBJ, SUBJ, COMPOUND arid XCOMP) 

a treebank annotated with the functions SUBJ and OBJ only. 

a treebank annotated with the atomic features NUM and PERS 

a treebank annotated with the atomic features PERF, PROG and TENSE 

a treebank annotated with the atomic features PERF, PROG, TENSE, PASSIVE 

and MOOD 

a treebank annotated with the coinbination of atomic and lexical features 

PREDET-TYPE and PREDET-FORM 

a treebank annotated with the combination of atomic and lexical features 

SPEC-TYPE and SPEC-FORM. 



Table 5.2: ENGLISH: List and classification of the 58 English fea- 
tures for which we generated singly-annotated corpora. 

5.1.2 French Features 

Lexical Features - Functions 

In the French side of the data set 79 features were identified (excluding PRED). These 

fcatures were divided into four classes, as described in section 4.2. The classification 

of these features can be seen in Table 5.3. As for English, wc do not annotate 

with all 79 of these features; we exclutle all non-grammatical function features. We 

initially classified APSEC as a non-grammatical function; however manual inspection 

of the data set shows that this featurc occurs in one sentence only. Furthermore, 

it appears where we would normally have seen the feature ASPEC, so we conclude 

t,hat this feature is an error. In addition to the named excludetl features, we do not 

anilotat,e with the following: 

Atomic Features 

VFORM: as for English, VFORM has more in c.ornrnon with atomic features than 

lexical features. As this feature is only  resent, in f-structure units which are 

neither #-linked to any other f-structure units nor ally c-structure nodes, we do 

not generate a treebank for this feature. Any such treebank would essentially 

be the same as the baseline (original, unannotated) treebank. 

COMP-FORM 

CONJ-FORM 

CON J-FORM-COMP 

PCASE 

PREDET-FORM 

PRON-FORM 

PRT-FORM 

SPEC-FORM 

I 

ADJUNCT 

APP 

COMP 

COMP-EX 

COMPOUND 

OBJ 

OBJ2 

OBL 

OBL-AGT 

I OBL-COMP 
PRON-INT 

PRON-REL 

SPEC 

SUB J 

TOPIC-INT 

TOPIC-REL 

XCOMP 

ABBREV PERF 

ADEG-DIM PERS 

ADEGREE POL 

ADJUNCT-TYPE PREDET-TYPE 

ADV-TYPE PROG 

ANIM PRON-TYPE 

ATYPE PROPER 

CASE PSEM 

DEIXIS PTYPE 

GEND SPEC-TYPE 

GERUND STMT-TYPE 

GRAIN TEMPORAL 

LAYOUT-TYPE TENSE 

MOOD TIME 

NUM TYPE 

NUMBER-TYPE VTYPE 

PASSIVE 



Table 5.3: FRENCH: Classification of 79 features identified in the 
French section of the data set. 

FIN: this atomic feature also occurs in f-structure units which are not linked 

to the main f-structure, and are not linked to any c-structure nodes. We do 

not generate a treebank annotated with this feature. 

1 

Non-Grammatical 
Functions 

ACONSTR 

APSEC 

ARG-EXT 

ARGS-INT 

ASPEC 

DEP 

FIN 

INF 

NON-DEP 

NTYPE 

PREDET 

TNS-ASP 

VCONSTR 

INF: this atomic feature occurs in the same situations as FIN: in f-structure 

units which are not linked to the main f-structure, or linked to c-structure 

units. We do not generate a treebank annotated with this feature. 

Lexical Features 

AUX-SELECT 

COMP-FORM 

COMP-FORM-ANAPH 

CONJ-FORM 

CONJ-FORM-COMP 

FORM 

NEG-FORM 

PCASE 

PRECONJ-FORM 

PREDET-FORM 

PRON-FORM 

SPEC-FORM 

Functions 

ADJUNCT 

COMP 

COMPOUND 

OBJ 

OBJ2 

OBL 

OBL-AGT 

OBL-COMP 

PRON-REL 

SPEC 

SUB J 

TOPIC-REL 

XCOMP 

The number of features we actually use for annotation is reduced, in this case to 

65; the features used can be scen in Table 5.4. We generate a treebank annotated 

with each of these 65 single features, and also several treebanks annotated with 

Atomic Features 

ADEG-DIM PASSIVE 

ADEGREE PCASE-TYPE 

ADJUNCT-LAYOUT PERF 

AD JUNCT-TYPE PERS 

ADV-TYPE PREDET-TYPE 

APOS PREVERB-OB J 

ATYPE PRON-TYPE 

CASE PROPER 

CONJOINED PSEM 

CONJTYPE PTYPE 

DEIXIS REFL 

FOO SPEC-TYPE 

GRAIN STATUS 

combinations of features: 

GEND STMT-TYPE 

INV STRESSED 

LAYOUT-TYPE TENSE 

MOOD TIME 

NE TYPE 

NEG VFORM 

NUM VTYPE 

NUMBER-TYPE 

a treebaiik annotat,ted with all grammatical functions (as listed in the leftmost 

column in Table 5.4) 



a treebank annotated with the five most frequently occurring grammatical 

functions in the French data (ADJUNCT, COMPOUND, OBJ, OBL and SUBJ) 

a treebank annotated with the five most frequently occurring grammatical 

functions in the English data (ADJUNCT, COMPOUND, OBJ, SUBJ and XCOMP) 

a treebank annotated with the functions SuBJ and OBJ only 

a treebank annotated with the atomic features NUM and PERS 

a treebank annotated with the atomic features NUM, PERS and GEND 

a treebank annotated with the atomic features PERF and TENSE 

a treebank annotated with the atomic features PERF, TENSE, PASSIVE and 

MOOD 

a treebank annotated with the combination of atomic and lexical features 

PREDET-TYPE and PREDET-FORM 

a treebank annotated with the combination of atomic and lexical features 

SPEC-TYPE and SPEC-FORM. 

We have used some slightly different combinations of features in generating French 

treebanks. The five most frequently occurring features in the French data set are not 

the same as the five most commonly occurring features in the English data set. To 

facilitate comparison of performance later, we have generated two TOPS treebanks: 

F R E ~  which is annotated with ADJUNCT, COMPOUND, OBJ, OBL and SUBJ, and 

E N G ~  which is annotated with ADJUNCT, COMPOUND, OBJ, SUBJ and XCOMP. 

For both English and French we generated treebanks annotated with NUM and 

PERS. However, as GEND is particularly salient for French, and a wortl's surface 

form is frequently related to number, person and gentler, we have also generated a 

treebank NUM~ERS-GEND. 

As the feature PROG was not present in the French data set, we have gener- 

ateti treebanks PERF-TENSE and PERF-TENSE~ASSIVEJVIOOD to  correspond to  the 



Table 5.4: FRENCH: List and classification of the 65 French features 
for which we generated singly-annotated corpora. 

English treebanks PERFPROG-TENSE and P E R F ~ R O G - T E N S E P A S S I V E ~ D  re- 

spect ively. 

Lexical Features Functions 

Experimental Set-Up 

Atomic Features 

As stated in sections 5.1.1 and 5.1.2, we identified 75 features in the English data 

set and 79 in the French. However, for reasons also outlined in sections 5.1.1 and 

5.1.2, the number of features we actually annotated the treebanks with is reduced 

to 58 for English and 65 for F'rench. For each feature identified we generated a copy 

of the original treebank; exarriirlation of f-structure units enables us to determine 

the presence or absence of the feature in question in each sentence, and we annotate 

the copy of the treebank as describeti in section 4.3. By tracking the nurnber of 

annotgations per treebank, we ident,ify the rnost frequently and infrequeiitly occur- 

ring features. Where a feature annotation occurs only once or twice in the entirc 

AUX-SELECT 

COMP-FORM 

COMP-FORM-ANAPH 

CONJ-FORM 

CONJ-FORM-COMP 

FORM 

NEG-FORM 

PCASE 

PRECONJ-FORM 

PREDET-FORM 

PRON-FORM 

SPEC-FORM 

ADJUNCT 

COMP 

COMPOUND 

OBJ 

OB J2 

OBL 

OBL-AGT 

OBL-COMP 

PRON-REL 

SPEC 

SUB J 

TOPIC-REL 

XCOMP 

ADEG-DIM NUMBER-TYPE 

ADEGREE PASSIVE 

ADJUNCT-LAYOUT PCASE-TYPE 

AD JUNCT-TYPE PERF 

ADV-TYPE PERS 

APOS PREDET-TYPE 

ATYPE PREVERB-OBJ 

CASE PRON-TYPE 

CONJOINED PROPER 

CONJTYPE PSEM 

DEIXIS PTYPE 

FOO REFL 

GRAIN SPEC-TYPE 

GEND STATUS 

INV STMT-TYPE 

LAYOUT-TYPE STRESSED 

MOOD TENSE 

NE TIME 

NEG TYPE 

NUM VTYPE 



treebank, the data is too sparse for us to draw any informative conclusions. We 

cannot identify useful patterns, for example is this feature useful in improving the 

quality of the phrase-structure trees generated? Is there a correlation between the 

irnpact this feature has on the parser's performarlce anti the feature's frequciicy of 

occurrence? How often is this feature accurately itleiitifietl? In a treebank with rnul- 

tiple feature annotations, if this feature is not accurately identified, what alternative 

feature is proposed by the parser? For several English features, such as ACONSTR, 

EMPH, EMPHASIS and PRECONJ-FORM there were very low feature occurrences, and 

so we do not include these treebanks in our experiments. 

Having dcterrnined which features will provide sufficient data to  attempt to avoitl 

the issue of feature-sparseness, we pause for a moment to  considcr other sources 

which might irttroduce this problem. Although the approach outlincd in section 4.3 

is our itleal function annotation method for the GF-DOP model, the experiments 

carried out here make use of a very limited data set. In ensuring a very fine-grained 

description of functional relationships in the trecbanks, we may reintroduce feature 

sparseness; that is, the bascline parser coverage is not affected, but a high rlumbcr of 

infrequently occurring features will hinder the parser's ability to  'learn' about these 

featurcs and rrlost likely result in low feature detect,ion accuracy scorcs. To verify if 

this is indced the case, we generate two furtllcr treebanks per function. 

We will refer to  the original treebank, generated according to  the approach out- 

liried in section 4.3 as a "Type 1 Lexicalised Duplicate Functions" treebank. The two 

additional treebanks will be generated in almost the same way as the Type 1 Lex- 

icalised Duplicate Functions treebank, the only difference being in the annotation 

generation. When generating the Type 1 Lexicalised Duplicate Functions treebank, 

any node which f~~lfils a function (or number of functions) is annotated with the 

function and the lemma of the predicate whose function it serves. An example of 

such an annotation can be seen in (5.1). 



A "Type 2 Duplicate Functions" treebank has some of the fine-grainedness of these 

annotations removed. The annotations in the Type 2 Duplicate Functions treebank 

will only reflect the functions fulfilled, but will not specify the related predicate. The 

adaptation of the Type 1 Lexicalised Duplicate Functions annotation in (5.1) to a 

Type 2 Duplicate Functions annotattion can be seen in (5.2). This serves to boost 

the number of occurrences of identical functions in the treebank, thus assisting in 

reducing feature sparseness. 

N P  A SUBJ A SUBJ 

A "Type 3 Minimal Functions" treebank has further simplified labels: no duplicate 

labels are permitted. Where a node fulfils the same function for more than one 

predicate, only one annotation is appended to the syrlt,actic category label. This 

reduces the number of distinct node labels, increases feature occurrence counts and 

further reduces feature sparseness. The adaptation of the Type 1 Lexicalised Dupli- 

cate Functions annotation in (5.1) to a Type 3 Minimal Functions annotation can 

be seen in (5.3). 

N P  A SUBJ (5.3) 

In a rnulti-feature annotated treebank, a node which fulfils two or more different 

functions is annotated with a single instance of each of the functions. An example 

of such an annotation can be seen in (5.4). 

N P  A SUBJ A OBJ 

In the final preparatory step, we remove all unary branching structures from the 

treebanks. This is riec.essary because of our choserl chart parsing algorithm, the 

CKY algorithm described in section 2.2.3. In truncating the fragments, we have 

two options: first, we could concatenate the labels from the truncated nodes to 

form precise, long labels, which maintain the level of detail provided by the corpus. 



Secondly, we could keep only one node label and discard the rest. We chose to take 

the second option as this will avoid contributing to the data sparseness issue any 

further. We elected to keep the bottom-most label, as this nodc is rnost closc-:ly 

related to  the dominated subtree. 

From each of the training treebanks we generated eight training sets and eight 

corresponding test and reference sets. These splits were generated at rantiom such 

that every word in the test set occurs in the corresponding training set, thus avoitl- 

ing the issue of unknown words. For the English experiments, each trailling set 

contained 890 training sentences, and 90 tcst sentences along with their gold stan- 

dard reference trees. For the French experiments, each training set coiltailled 840 

training sentences, and 90 test ant1 reference sentences. 

For each of the features presented in Tables 5.2 ant1 5.4, and each of the rnulti- 

feature treebanks described in sections 5.1.1 and 5.1.2, an annotated treebank is 

created. The eight pre-established splits are applied. For each split, the training set 

is used to train the parser. The parser is tested on the test set and evaluated on 

the corresponding reference set. Scores are calculated for each split and averaged 

over the eight splits for each annotated treebank. The scores presented in Chapters 

6 and 7 are thus averages of the scores for each of t,he eight splits. 

Parser Details 

5.3.1 Training 

During training, the parser extracts two PCFG grarnrrlars from tlle annotated trcc- 

hank: a GF-DOP (annotated) grarninar and a Trce-DOP (unannotated) grammar. 

These grammars are wcightetl; 99% of t,he probability irlass is assigncd to the GF- 

DOP grammar, with 1% assignet1 to  the Tree-DOP grammar. The relative frequency 

estimator, given in equation (2.1), is uscd to  calculate all probabilities. The gram- 

mars are then nlergetl and their probabilities smoothed. As we usc the Gootlrnan 

reduction isnplenlent,ation approach, we incorporate no pruning techniques. This 



concludes the training process. 

5.3.2 Parsing 

The system creates a parse chart for each new input string. The parse chart is filled 

with Goodman retluction rules by means of the CKY algorithm, described in section 

2.2.3. Upon completion of the chart, we calculate the n-most probable derivations, 

where n is equal to 2000, using the Viterbi algorithm, as described in section 2.2.3. 

From these n derivations, we determine the number of distinct parses and surn over 

their derivation probabilities to find the most probable parse. 

5.4 Evaluation 

Several different evaluation metrics were used to evaluate output parses. We count 

the constituents in the output parse, and also in the reference parse, where a con- 

stituent comprises a syntactic category label, a starting position, and a span. Their 

intersection indicates how many correct constituents arc: present in the output parse. 

The first metric is precision, calculated according to equation (5.5). Of t,he total 

number of constituents in the output parse, how many are correct? That is, how 

many of these constituents occur in the reference parse? 

t he  number of  correct consti tuents in t h e  output parse 
precision = 

t h e  total number  o f  consti tuents in the  output parse 

The second metric is recall, calculated according to equation (5.6). Of the total 

number of constituents in the reference parse, how many occur in the out,put parse? 

tlae number a j  correct ronelitumts in the mttput parse 
recall = 

the total numhet 01 co~~st i t l~eats  in the ~ e f e r e n c e  {Jflrse 

Subsequently, we calculate the harmonic mean of these two scores, or thc f-score, 

the formula for which is given in equation (5.7). 

precision * recall * 2 
f - score = 

precision + recall 



The output from each experiment is transformed in three different ways and preci- 

sion, recall and f-score are calculated. The purpose of these transformations is to 

determine how effectively the GF-DOP model performs on three different tasks. 

The first treebank transformatiorl replaces all non-terminal node labels with the 

generic '.' label. An example of this transformation can be seen in Figure 5.3. This 

transformatiorl enables us to calculate the unlabelled precision, recall and f-score for 

the output parses. Unlabelled scores show how well the parser chunks the sentence, 

or how well it determines the constituent hierarchy (ignoring constituent labels) 

Figure 5.3: Transformation One: tree (a) shows the output from the 
parser, tree (b) shows the transformed output, with all 
non-terminal node labels replaced with the generic '.' 
label. 

The second transformation strips all node labels of feature annotations, with 

only syntactic category labels remaining. An example of this transformation can be 

seen in Figure 5.4. From this transformation, we calculate labelled precision, recall 

and f-score for output parses. These scores illustrate the parser's phrase-structure 

tree accuracy. 

NPASIIDCA~,~~TCS~ VP NP VP 
I - 

YOU V NPAOBJ-of-press you V NP 
I - 

I I I I 
press print press print 

Figure 5.4: Transformation Two: tree (a) shows t,he output from the 
parser, tree (b) shows the transformed output, with all 
features rernoved from node labels. 

The third transformation strips all syntactic node labels, with only annotated 

features remaining. An example of this transformation car1 be seen in Figure 5.5. 



This transformation allows us to  evaluate feature annotation accuracy. 

(a)  (b )  
S - 

NP ASUB J-~f-preSS VP ~ ~ ~ ~ - o f - p r e s s  

I - v NP~o~~-of-press  
A 

You You 0~~-0f-preSS 
I t n 

press print press print 

Figure 5.5: Transformation Three: tree (a) shows the output from 
the parser, tree (b) shows the transformed output, with 
all syntactic category labels removed, only feature labels 
remain. 

5.5 Summary 

In this chapter, we have given a detailed account of the experimental set up we in- 

tend to use to verify the GF-DOP hypothesis. We began by presenting the bilingual 

corpus used, c.lassifying the features present in the data set and giving an account 

of the features to be included or excluded in our experimental investigation. Subse- 

queiitly, we presented the parser used and evaluation inetrics which we will apply. 

Having put forward our experimental set up, t,he results of our experiments with 

the GF-DOP model are presented in the next two chapters. Given that the GF- 

DOP hypothesis comprises two assertions, we divide the results of our experiments 

into two sections: we examine feature detection accuracy (for both English and 

French) in Chapter 6, then present parse accuracy (again for both English and 

French) in Chapter 7. We consider the performance of the GF-DOP model in both 

languages before comparing our approach to  related work on feature detection anti 

parse accuracy in Chapter 8. 



Chapter 6 

Task 1 Results and Discussion: 

Feature Detection Accuracy 

This chapter examines the GF-DOP model's performance at feature detection accu- 

racy. As illustrated in Figure 6.1, we present results first for the English experiments 

carried out, and then for the French. 

Chapter 5: 
Experimental Set Up 

Chapt* 
peature Detection 

- 
~ s k  1 Chapter 7: Task 2 

Parse Accuracy 

F'rinch English pi-ench 

-- b y , .  -/ 
- 

Chapter 8: 
Comparison - 

languages task performance 

Figure 6.1: Illustration of relationships between Chapters 5, 6, 7 arid 
8. 

Further to the language division shown in Figure 6.1, and the feature classifi- 

cation described in section 4.2, we group our experiments as illustrated in Figure 

6.2. The three main feature cat,egories are functions, atomics and lexicals. Each 

of these comprises several smaller subdivisions; function features are annotated in 

three ways, as described in section 5.2, resulting in Type 1 Lexicalised Duplicate 

Functions treebanks, Type 2 Duplicate Functions treebanks and Type 3 Minimal 



language 

function atomic lexical 

Type 1 lexicalised Type 1 lexicalised preterminal root multiple preterminal root multiple 
duplicate duplicate multiple atomic atomic atomic lexical lexical lexical 
functions functions 

I I 
Type 2 Type 2 

duplicate duplicate multiple 
functions functions 

I 
Type 3 

I 
Type 3 

minimal minimal multiple 
functions functions 

Figure 6.2: Illustration of feature subdivisions. 

Functions treebanks. For each of these three treebank types, we also generated tree- 

banks annotated with combinatiorls of features: Type 1 Lexicalised Duplicate Mul- 

tiple Functions, Type 2 Duplicate Multiple Functions and Type 3 Minimal Multiple 

Functions. As describetl in section 4.3, atomic and lexical features are subdivided 

into those features which are annotated at the root of the dominated constituents, 

and those which are annotated on preterminal nodes. Consequently, the atomic and 

lexical categories comprise preterminal-annot ated features, root annotated features 

and their cornbinations. The result is twelve subdivisions of features, as illustrated 

in Figure 6.2; the same subdivisions are seen in both English and French. 

For each table of results presented in this chapter, the first colunln names the 

feature-annotated treebanks being investigated. The second column, marked fea- 

tures, give the results for feature detection accuracy. Precision, recall anti f-scores 

are given; however we concentrate our arialysis on f-scores. The third colurnrl (occ) 

indicates the number of feature aliliotatiorls present in the reference set (the total 

nurnbcr of feature annotat,ions we airn to identify across the 8 test splits). No BASE- 

LINE scores are presented as rrleasuring featurc detection accuracy for this treebank 

is inappropriate; no features are present in the test data, and no features are found, 

so the score would be 100%. 

Complete score charts for each of these experiments are given in the appendix 



(sections A and B) for completeness, but here we focus on those subsets of the results 

which illustrate t,he most important points; we show here only those features which 

have one or rnore feature occurrences in the testing data. 

We begin with English t,reebanks annotated with a single function, before pro- 

ceeding to multi-function annotated treebanks, treebanks with atomic annotations, 

and finally treebanks with lexical annotations. We then examine the same groups 

of features for French. 

One factor which we expect to influence the feature detection accuracy scores is 

the frequency of occurrences of features in the training data. Where we can train the 

parser on a treebank with a very high number of features, we expect the parser to 

learn these features well; that is, the parser should identify appropriate environments 

for certain features, and be able to apply this pattern accurately. Where there are 

very few features present in the training data, or a very high number of distinct, 

features, we expect feature sparseness to  impair the parser's pattern detection and 

ultimately to impinge upon the parser's performance. The distribution of features in 

the reference sets corresponcis roughly to the distribution of features in the treebank; 

from treebanks with few features we generate reference sets with few features, and 

the oppositc is true for t,reebanks with high feature occurrenccs. 

English: Feature Detection Accuracy 

6.1. I Functional Annotations 

Type 1 Lexicalised Duplicate Function Annot at ions 

A selection of the scores for Type 1 single function experiments are shown in Table 

6.1. We show here only those features which have one or rnore featmes in the test, 

set. Scores which are not displayed here, and which had no features to identify in 

their test sets, are APP, COMP-EX, O B J ~  and OBL-AGT. These features occurred very 

rarely in the original annotated treebanks (4, 3, 3 anti 2 occurrences respectively). 



Table 6.1: Selected feature detection scores for Type 1 Lexicalised 
Duplicate Function annotated treebanks. 

F-scores for Type 1 feature annotations range from 50.2632 (SUBJ) to 100 (OBL- 

COMP, TOPIC-INT). Scores of 100 were achieved only by features which had a 

very low occurrence count (OBL-COMP 3, TOPIC-INT 25); whcre there are not many 

features to he correctly identified, it is easier to  get them all right. If we narrow our 

focus to  only those features which have an occurrence count of 100 or more, this range 

is narrowed from 50.2632 to 71.9858. Only the 5 most frequently occurrirlg features 

fall into this range; ADJUNCT, COMPOUND, OBJ, SUBJ and XCOMP. Of these, the 

highest feature accuracy score is achieved by COMPOUND, and the lowest by SUBJ. 

An interesting correlation rnay be noted between the f-scores for these 5 features 

and their occurrence counts. The features with the highest number of occurrences 

seein to  achieve lower feature accuracy scores. We list here these features and their 

occurrence counts in decreasing order according to  their f-scores: 

ADJUNCT 

COMP 

COMPOUND 

OBJ 

OBL 

OBL-COMP 

PRON-INT 

PRON-REL 

SPEC 

SUB J 

TOPIC-INT 

TOPIC-REL 

XCOMP 

COMPOUND (306) f-score = 71.9895 

features 

precision recall f-score 

58.1465 46.6427 51.7631 

77.2727 77.2727 77.2727 

78.6822 66.3399 71.9858 

63.4615 59.5361 61.4362 

75.0000 56.2500 64.2857 

100.0000 100.0000 100.0000 

100.0000 91.6667 95.6522 

100.0000 75.0000 85.7143 

85.5072 83.0986 84.2857 

55.8480 45.6938 50.2632 

100.0000 100.0000 100.0000 

100.0000 66.6667 80.0000 

75.0000 58.5366 65.7534 

OCC 

# 
834 

22 

306 

776 

16 

3 

24 

4 

71 

418 

25 

3 

123 

XCOMP (123) f-score = 65.7534 

1 

OBJ (776) f-score = 61.4362 

ADJUNCT (834) f-score = 51.7631 



SUBJ (418) f-score = 50.2632. 

However, if we consider how many features were actually correctly identified, we see 

an altered picture. Now we list these features and the number of correctly identified 

features in decreasing order according to the number of correctly identified features: 

OBJ features correctly identified = 477 

ADJUNCT features correctly identified = 432 

COMPOUND features correct,ly identified = 220 

SUBJ features correctly identified = 210 

XCOMP features correctly identified = 81. 

Although OBJ and ADJUNCT have comparatively low f-scores, we see that they man- 

age to correctly identify over 430 features each, approximately twice the number of 

features identified by the best performing feature COMPOUND. At this stage, we 

point out that Type 1 feature annotated treebanks tend to  comprise a high number 

of different node labels with very low frequencies; we have a high number of distinct 

types relative to  the number of tokens present, leading to  feature sparseness. A 

reduction in feature sparseness may paint a considerably different picture. 

Type 2 Duplicate Function Annotations 

A selection of the scores for Type 2 single function experiments are shown in Table 

6.2. As for Type 1 features, we show here only those features which have one or 

more features in the test set. F-scores for Type 2 feature annotations range from 

64.2857 (OBL) to 100 (OBL-COMP, TOPIC-INT). Scores of 100 were achieved by the 

same features as for Type 1. SUBJ was previously the lowest scoring feature, but, 

i t  has seen a large increase for Type 2 features arid OBL is now the lowest scoring 

feature. This feature has a very low number of occurrences (16) and showed no 

improvement between Types 1 and 2. 



features OCC 

precision recall f-score # 

77.2727 77.2727 77.2727 22 

88.4058 86.4691 87.4267 776 

75.0000 56.2500 64.2857 16 

100.0000 97.1831 98.5714 71 

85.1175 77.2512 80.9938 422 

77.5510 61.7886 68.7783 123 

Table 6.2: Selected feature detection scores for Type 2 Duplicate 
Function annotated treehanks. 

Narrowing our focus to  features which have an occurrence count above 100, the 

range of f-scores is reduced to 68.7783 to 87.4267. Agaili, only the 5 most frequently 

occurring features fall into this range. This time the highest feature accuracy score 

is achieved by OBJ, and the lowest by XCOMP. We see that the reduction in feature 

sparseness has greatly boosted scores for some frequent features; ADJUNCT achieved 

an actual increase of over 33.5%, SUBJ has seen an actual increase of over 30% 

and OBJ shows an actual increase of almost 26%. However, there has beer1 a much 

smaller impact on features which are less frequent; compound achieved an actual 

increase of 12.39% while xCOMP has seen an actual increase of only 3%. We see that 

the decrease in feature sparseness has had a hugely positive irnpact on thc parser's 

ability to  correctly identify features, particularly features with a high number of 

occurrences. The parser has clearly been better able t o  learn these features. 

Type 3 Minimal Function Annot at ions 

A selection of the scores for Type 3 single function experinients are shown in Table 

6.3. As for Type 1 features, we show here only features which have one or more 

features in the test set. F-scores for Type 3 feature annotations range from 64.2857 

(OBL) to 100 (OBL-COMP, TOPIC-INT). Scores of 100 were achicved by the same 



features as for Type 1. Again, OBL is the lowest scoring feature, having shown no 

irnprovement over the previous two annotation types. Focusing again on features 

which have an occurrence count above 100, the range of f-scores is reduced t o  68.7783 

to  87.4267, exactly the same range as for Type 2 and the sarne 5 most frequently 

occurring features. We note that the exact same range is due t o  t,he fact, that 

the highest and lowest scoring features have the sarne number of features for both 

Types 2 and 3. Changes between Type 2 and 3 scores are usually the result of a 

small reduction in the feature occurrences. 

features occ 

precision recall f-score # 

Table 6.3: Selected feature detection scores for Type 3 Minimal 
Function annotated treebanks. 

The largest Type 3 increase in any f-score over ally Type 2 figure was achieved 

by COMPOUND, with an increase of 3.4195%, surpassing OBJ as the highest scoring 

function. Only 2 other Type 3 functions show any irnprovement over their Type 2 

scores. Those features are SUBJ with an actual increase of 2.4708% and ADJUNCT 

with an actual increase of 1.4416%. These increases can probably be attributed to  

the reduction in feature occurrences over the reference set; there were slightly fewer 

features t o  identify, so proportionally they identified more correct functions. 



Type 1 Lexicalised Duplicate Multiple Function Annot at ions 

Scores for Type 1 multi-function experiments are shown in Table 6.4. These tree- 

banks are annotated with all functions, the top five most frequently occurring func- 

tions, and SUBJ and OBJ; as a result each treebank has a high number of features 

present. F-scores for these experiments range from 56.4711 to 57.71 1, with SUBJ-OBJ 

achieving the best feature itlentification score. As was the case for Type 1 single 

functions, a high number of infrequently occurring types makes it difficult to  learn 

features. 

features 

precision recall f-score 

TOP5 

Table 6.4: Feature detection scores for Type 1 Lexicalised Duplicate 
Multiple Function annotated treebanks. 

Type 2 Duplicate Multiple Functions Annot at ions 

Scores for Type 2 multi-function experiments are shown in Table 6.5. F-scores for 

these experiments range from 84.4528 to  85.1899, with SUBJ-OBJ again achieving 

the best feature identification score. We note that each of these treebanks has shown 

an f-score increase of approximately 28%, a result of the reduction in the number of 

tiistinct node labels. It appears that SUBJ-OBJ is t,he best performing combination 

of functions, and proportionally it is, correctly identifying 1021 of 1198 features. 

However, when we consider how many features each experiment aims to  correctly 

features 

precision recall f-score 

TOP5 

Table 6.5: Feature detection scores for Type 2 Duplicate Multiple 
Function annotated treebanks. 



identify, we see that ALL and TOPS each identify a very high number; ALL identifies 

2209 features, while TOPS identifies 2083. 

Type 3 Minimal Multiple F'unct ions Annotat ions 

Scores for Type 3 multi-function experiments are shown in Table 6.6. F-scores for 

these experiments range from 85.5295 to 86.2402, a slight increase on Type 2 f- 

scores due to a small reduction in the number of features present in the data. Each 

treebank shows an increase on its Type 2 scores; ALL increases by 1.1202%, TOPS 

by 1.0767% and SUBJ-OBJ by 1.0503%. However SUBJ-OBJ again achieves the best 

feature identification score, showing consistency across all three types. 

features 

precision recall f-score 

TOP5 

Table 6.6: Feature detection scores for Type 3 Miniinal Multiple 
Function annotated treebanks. 

6.1.2 Atomic Feature Annotations 

Atomic Pret erminal Annot at ions 

Scores for these exy~eriments are shown in Table 6.7. F-scores range frorn 84.7458 

(PROPER) to  100 (ABBREV, NUMBER-TYPE). Scores of 100 were achieved only by 

features which had relatively low occurrence counts (ABBREV 30, NUMBER-TYPE 

95). We narrow our focus to only those features which have an occurrence count 

of 100 or more which reduces the range of f-scores t o  88.0303 to  95.5182. This 

threshold discards all but the 5 most frequently occurring features: GRAIN, MOOD, 

NUM, PERS and PRON-TYPE. Of these features, the highest feature accuracy score 

is achieved by PERS, and the lowest by MOOD. We are satisfied that where there is 

a good atomic preterminal feature distribution, we accurately identify a very high 

proportion (on average 90.8289% of the time). 



ABBREV 

GRAIN 

MOOD 

NUM 

NUMBER-TYPE 

PERS 

PRON-TYPE 

PROPER 

features 

precision recall f-score 

100.0000 100.0000 100.0000 

92.8678 91.4988 92.1782 

90.4984 85.6932 88.0303 

94.4909 92.8678 93.6723 

100.0000 100.0000 100.0000 

96.2170 94.8294 95.5182 

95.2795 90.7692 92.9697 

100.0000 73.5294 84.7458 

- 
OCC 

# - 
30 

2035 

678 

2678 

95 

2843 

845 

34 

Table 6.7: Feature detection scores for Atomic Preterminal anno- 
tated treebanks. 

Atomic Root Annotations 

A selection of the scores for this experiment is shown in Table 6.8. We show here only 

features whidl have 100 or more features in the reference set,. Features (and their 

occurrences) which are not displayed here are ADEG-DIM (ll), DEIXIS (ll), GEND 

(34), POL (3), PREDET-TYPE (4), TEMPORAL (1) and TIME (1). These features are 

omitted due t o  their low frequency of occurrence, which usually results in easily 

achieved high scores. It is interest,ing t o  note, however, that POL, TEMPORAL and 

TIME achicve f-scores of 0; the parser failed to  correctly identify a single feature. 

For features displayed in Table 6.8, f-scores range frorn 70.3614 (TENSE) to 92.283 

(PSEM), while occurrences range from 108 (TYPE) up t o  1115 (CASE). It is interesting 

to note that the least frequelit feature TYPE achieves the second highest f-score 

of 90.4977, while the second least frequent fcature TENSE scores the lowest of all 

(70.3614). In addition, the third least frequent feature scores 87.9079, one of the 

highest f-scores for this experiment. We conclude that for a reasonable distribut,ion 

of features, we accurately identify them on average 85.07% of the time. 

Multiple Atomic Annot at ions 

The scores for this experiments are shown in Table 6.9. Although scores for each 

treebarlk are quite high, they are quite different to the average scores achieved by 

these features singly. The average for NUM and PERS irldividually would be 94.595; 



Table 6.8: Selected feature detection scores for Atomic Root anno- 
tated treebanks. 

although these features appear to  perform better when used separately, the parser 

has still managed t o  accurately identify 3707 features. The average f-score for PERF, 

PROG and TENSE is 79.044; an actual increase in score of 4.8986 for the combined 

features indicates that these features work well together. The average for PERF, 

PROG, TENSE, PASSIVE and MOOD is 81.3224; their colnhined treebank achieves an 

f-score increase of 1.8588%. This suggests that associated features do better when 

they are all present. 

OCC 

# 
467 

265 

416 

451 

260 

precision recall f-score 

ADJUNCT-TYPE 

ADEGREE 

ADV-TYPE 

ANIM 

ATYPE 

Table 6.9: Feature detection scores for Multiple Atomic annotated 
treebanks. 

90.1442 80.2998 84.9377 

86.2454 87.5472 86.8914 

85.0394 77.8846 81.3049 

84.7826 77.8271 81.1561 

87.7395 88.0769 87.9079 

CASE 

GERUND 

T features OCC 

precision recall f-score # - 
NUMPERS 

PERF-PROG-TENSE 

PERFTROG-TENSE- 
PASSIVE-MOOD 

87.5676 84.1558 85.8278 

88.4956 92.5926 90.4977 

1155 

108 

90.3162 86.4839 88.3585 

88.0822 80.1746 83.9426 

87.7579 79.0582 83.1812 

820 

772 

788 

800 

309 

308 

1009 

884 

218 

108 

796 

LAYOUT-TYPE 

PASSIVE 

PERF 

PROG 

PSEM 

PTYPE 

SPEC-TYPE 

STMT-TYPE 

TENSE 

TYPE 

VTYPE 

4195 

802 

807 

91.8991 84.3902 87.9847 

84.9508 78.2383 81.4565 

87.2456 81.5990 84.3279 

85.9079 79.2500 82.4447 

92.7835 87.3786 90.0000 

91.4013 93.1818 92.2830 

90.2045 83.0525 86.4809 

87.7256 82.4661 85.0146 

74.1117 66.9725 70.3614 

88.4956 92.5926 90.4977 

85.3061 78.7688 81.9073 



6.1.3 Lexical Feature Annot at ions 

Lexical Pret erminal Annot at ions 

The scores for this experiment are shown in Table 6.10. There is only one feature, 

PRON-FORM, in this category. It achieves a comparatively high feature identification 

f-score of 92.1833. 

Table 6.10: Feature detection scores for Lexical Preterminal anno- 
tated treebariks. 

Lexical Root Annotations 

OCC 

# 
194 PRON-FORM 

The scores for this experiment are shown in Table 6.11. A pattern we have observed 

to this point iridicates that a very low number of feature occurrences results in easy 

feature identification and high f-scores. This holds for CONJ-FORM-COMP which has 

only 3 occurrences and achieves an f-score of 100. However, PREDET-FORM occurs 

only 4 times, and although a high f-score would be expected, 44.444 is the result 

achieveti. From this figure, we can see how one or two misidentified features in a 

treebank wit,h a low feature distribution can drastically alter scores. 

features 

precision recall f-score 

96.6102 88.1443 92.1833 

Table 6.11: Feature detection scores for Lexical Root annotated tree- 
banks. 

CONJ-FORM 78.7879 50.3226 61.4173 155 

.r of occur- Again we focus our attention on features which have a high numbt 

rerices, over 100. The 4 remaining features, COMP-FORM, CONJ-FORM, PCASE and 

CONJ-FORM-COMP 

PCASE 

PREDET-FORM 

PRT-FORM 

SPEC-FORM 

100.0000 100.0000 100.0000 

69.8171 69.6049 69.7108 

40.0000 50.0000 44.4444 

55.5556 41.6667 47.6190 

87.7193 83.4725 85.5432 

3 

329 

4 

12 

599 



SPEC-FORM, achieve f-scores in the rarige 61.4173 t o  85.5432, with the highest score 

yielded by SPEC-FORM, the most frequently occurring feature. 

Multiple Atomic Lexical Annot at ions 

The scores for this experiment are showri in Table 6.12. As we observed for LEXI- 

CAL ROOT features, where a feature has a very low occurrence count, any mistake 

costs dearly, as can be seen by the very poor f-score achieved here by PREDET- 

FORMJREDET-TYPE: 44.444. This score is consistent with the f-scores achieved by 

PREDET-FORM and PREDET-TYPE separately; they both score 44.444. Table 6.12 

clearly shows the contrast between frequently and infrequently occurring features. 

Where we have a generous frequency distribution, the parser does well a t  learning 

features, and can achieve very high f-scores. 

Table 6.12: Feature detection scores for Multiple Atomic Lexical an- 
notated txeebanks. 

6.1.4 English: Discussion 

OCC 

# 
4 

1022 

PREDET-FORMPREDET-TYPE 

SPEC-TYPESPEC-FORM 

From the results presented in section 6.1, we identify some interesting trends which 

show a strong correlation between the number of feature occurrences and the parser's 

ability t o  correctly identify features. 

It is clear from the very high results achieved by low occurring features, such as 

OBL-COMP and TOPIC-INT which yield feature identification f-scores of loo%, that 

where there are very few features t o  correctly detect, high f-scores can geiierally be 

expected, but cannot always be guaranteed. When there are very few features to  

detect, even a single misidentification has a huge impact on feature accuracy scores; 

that is, getting 1 out of 3 features wrong will show a much bigger decrease in scores 

features 

precision recall f-score 

40.0000 50.0000 44.4444 

91.1514 83.6595 87.2449 



than 1 out of 100. 

Furt,hermore, in cases where the nurrlber of feature occurrences is very low, t,he 

parser does not really learn anything about these features. In the sarrle way that 

we require a detailed analysis of a varicty of expcrimerlts to establish how well the 

GF-DOP model performs, the parser cannot establish a performance pattern from 

one or two features tlistributcd over an entire treebank. We examine the GF-DOP 

rnotlel's f-scores for groups of fcatures t o  identify trends, for example which feature 

corrlbirlatiorls perform best? In t,he same way, t,he GF-DOP model must be trained 

on a generous tlistributiorl of featurcs to identify real pattcrns and trcnds; that 

is, which features have the greatest impact, eithcr positive or negative, 011 parses 

generated? 

One fact we ascertain from our experiment, scores is that feature sparseness has 

an enormously negative impact on the parser's performance. For Type 1 Lexicalised 

Duplicate Functions, the parser manages to  correct,ly identify over half the features 

present,. Although this result is hardly trivial, we rlot,e that the reduction in feature 

sparseness between Type 1 and Type 2 Duplicate Functions boosts scores by 30% 

for the most frequently occurring functions. The same trend is seen for Type 1 and 

Type 2 multiple function annotated treebanks; over 56% of the time, Type 1 features 

are correctly identified. Upon reductioll of the number of distinct annotations, that 

is using Typc 2 annotations, we see increases of approximately 29%. 

With regard to atomic features (which form the bulk of the inforrnation present in 

f-structures) we conclude that these features are accurately identified 85590% of the 

time. We see that some combillations of atomic features work well together and may 

lead to improved perforinance when compared to  the features in use individually. For 

example, the combined use of PERF, PROG and TENSE shows an increase of almost 

5% over the average scores achieved by the individual features. Furthermore, the 

combined use of PERF, PROG, TENSE, PASSIVE and MOOD shows an increase of 

almost 2% over the average scores achieved by the features individually. 

Generally lower scores were observed for lexical features when compared to 



atomic features, although promisingly, for lexical features with a good number of 

occurrences, scores of at least 61% were achieved. Treebanks annotated with com- 

bined atomic and lexical features showed most clearly that  for low frequency features 

even a single mis-itiertification costs dearly in f-scores, while high frequency features 

provide much more material to  learn from, resulting in rnuch higher scores. 

6.2 French: Feature Detection Accuracy 

6.2.1 Functional Annotat ions 

Type 1 Lexicalised Duplicate Function Annot ations 

A selection of the scores for Type 1 single function experiments are shown in Table 

6.13. We show here only those features which have one or more features in the test 

set. The only score not displayed here, and which had no features to  identify in the 

test set, is OBL-COMP; this feature occurred very rarely in the original annotated 

treebarlk (only 6 occurrences). 

ADJUNCT 1 COMP 

COMPOUND 

OBJ 

OBJ2 

OBL 

OBL-AGT 

PRON-REL 

SPEC 

SUB J 

TOPIC-REL 

XCOMP 

features 

precision recall f-score 

73.6348 68.5465 70.9996 

54.1667 65.0000 59.0909 

82.5243 69.6721 75.5556 

79.2672 75.4252 77.2985 

94.1176 64.0000 76.1905 

89.2308 85.9259 87.5472 

100.0000 100.0000 100.0000 

100.0000 100.0000 100.0000 

100.0000 100.0000 100.0000 

66.8151 66.2252 66.5188 

100.0000 100.0000 100.0000 

72.3404 55.7377 62.9630 

- 
OCC 

Table 6.13: Selected feature detection scores for Type 1 Lexicalised 
Duplicate Function annotated treebanks. 

F-scores for Type 1 feature annotations range from 59.0909 (COMP) to  100 (OBL- 

AGT, PRON-REL, SPEC, TOPIC-REL). Scores of 100 were achieved only by features 



which had a very low occurrence count (OBL-AGT I, PRON-REL 15, SPEC 1, TOPIC- 

REL 15); where there are not many features to  be correctly identified, it is easier 

t o  get them all right. If we narrow our focus t o  only those features which have an 

occurrence count of 100 or more, this range is narrowed from 66.5188 to  87.5472. 

Only the 5 most frequently occurring features fall into this range; ADJUNCT, COM- 

POUND, OBJ, OBL and SUBJ. Of these, the highest feature accuracy score is achieved 

by OBL, and the lowest by SUBJ. An interesting correlation may he noted between 

the f-scores for these 5 features and their occurrence counts. As for English, the 

features with the highest numl>er of occurrences seem to  achieve lower feature ac- 

curacy scores. We list here these features and their occurrence counts in decreasing 

ortler according t o  their f-scores: 

a OBL (135) f-score = 87.5472 

a OBJ (1176) f-score = 77.2985 

COMPOUND (122) f-score = 75.5556 

ADJUNCT (1259) f-score = 70.9996 

a SUBJ (453) f-score = 66.5188. 

However, if we consider how many features were actually correctly identified, we see 

an altered picture. Now we list these features arid the number of correctly identified 

features in decreasing order according to  the number of correctly identified features: 

a OBJ features correctly identified = 909 

a ADJUNCT features c.orrectly identified = 894 

a SUBJ features correctly identified = 301 

a OBL features correctly identified = 118 

a COMPOUND features correctly identified = 92. 



Although ADJUNCT and SUBJ have comparatively low f-scores, we see that they 

manage to  correctly identify 894 and 301 features respectively, over 7.2 and 2.5 

times the number of features identified by the best performing feature OBL. At 

this stage, we remind the reader that Type 1 feature annotated treebanks tend t o  

comprisc a high number of different node labels with very low frequencies, leading to  

feature sparseness. A reduction in feature sparseness paints a considerably different 

picture. 

Type 2 Duplicate Function Annot at ions 

A selection of the scores for Type 2 single function experiments are shown in Table 

6.14. As for Type 1 features, we show here only those features which have one or 

more features in the test set. F-scores for Type 2 feature annotations range from 

62.2222 (COMP) to  100 (OBL-AGT, PRON-REL, SPEC, TOPIC-REL). Scores of 100 

were achieved by the same features as for Type 1. COMP is again the lowest scoring 

feature; this feature has a very low number of occurrences (20) and shows little 

improvement between Types 1 and 2 (actual increase of 3.1313%) 

ADJUNCT 

COMP 

COMPOUND 

OBJ 

OBJ2 

OBL 

OBL-AGT 

PRON-REL 

SPEC 

SUB J 

TOPIC-REL 

XCOMP 

features 

precision recall f-score 

91.0095 88.9746 89.9805 

56.0000 70.0000 62.2222 

86.5546 84.4262 85.4772 

88.2096 85.8844 87.0315 

85.0000 68.0000 75.5556 

89.9225 85.9259 87.8788 

100.0000 100.0000 100.0000 

100.0000 100.0000 100.0000 

100.0000 100.0000 100.0000 

81.5678 84.9890 83.2432 

100.0000 100.0000 100.0000 

78.7234 60.6557 68.5185 

Table 6.14: Selected feature detection scores for Type 2 Duplicate 
Function arlnotatetl treebanks. 

Narrowing our focus t o  features which have an occurrence count above 100, 

the range of f-scores is reduced to 83.2432 to 89.9805. Again, only the 5 most 



frequently occurring feat,ures fall into this range. This time the highest feature 

accuracy score is achieved by ADJUNCT, and the lowest again by SUBJ. We see that 

the reduction in feature sparseness has greatly boostcd scores for some frequent 

featurcs; ADJUNCT achieved an actual increase of almost 19%, suBJ has seer1 an 

actual ir1crc;ase of almost 17% while COMPOUND anti OBJ show actual increases of 

almost 10% each. Normally, we see a mudl smaller impact on featurcs which are 

less frequent; however in this case, COMPOUND (whose occurrence count is 1176) 

anti OBJ (whose occurrence count is only 122) have seen almost exactly the same 

increase. In keeping with the expected trend, OBL has an actual increase of only 

0.3316%. We see that the decrease in feature sparseness has had a positive impact 

on the parser's ability to  correctly identify featurcs, normally features with a high 

number of occurrenccs, The parser has been able to learn these features quite well. 

Type 3 Minimal Function Annotations 

A selection of t,he scores for Type 3 single function cxperiments are shown in Ta- 

ble 6.15. As for Type 1 features, wc show here only features which have one or 

rnorc features in the test set. F-scores for Type 3 feature ariii~t~ations range from 

62.2222 (COMP) to  100 (OBL-AGT, PRON-REL, SPEC, TOPIC-REL). Scores of 100 

were achieved by the same features as for Types I and 2. Again, COMP is the lowest, 

scoring feature, having shown no improvcmerlt over the previous annotation types, 

and very little improvement when compared t o  Type 1 (actual increase of 3.1313%). 

Focusing again on features which have an occurrence count above 100, the range of 

f-scores is reduced to  84.1699 to  89.9682, a slightly narrower range than for Type 2, 

but the same 5 most frequently occurring features. Changes between Type 2 and 3 

scores are usually the result of a reduction in the feature occurrences. 

Of the 5 most frequently occurring Type 3 features, 3 achieve small actual in- 

creases over their Type 2 scores: OBJ 0.4128%, COMPOUND 0.7153%, SUBJ 0.9267%. 

OBL yields exactly the same score, while ADJUNCT shows an actual decrease of - 

0.0123%. Where we see an increase in score, this may be attributed to a reduction 



in the number of features we aim to  identify; where there are fewer features to  de- 

tect, the parser rnay get a larger proportioli of them right. Correspondingly, where 

a decrease is observed, this may be attributed t o  the increased number of features to 

identify; features which the parser had previously accurately identified are no longer 

present, so it ident,ifies proportionally less. 

Table 6.15: Selected feature detection scores for Type 3 Minimal 
Function annotated treebanks. 

Type 1 Lexicalised Duplicate Multiple Function Annot at ions 

OCC 

# 
1271 

20 

122 

1140 

25 

135 

1 

15 

1 

384 

15 

61 

ADJUNCT 

COMP 

COMPOUND 

OBJ 

OBJ2 

OBL 

OBL-AGT 

PRON-REL 

SPEC 

SUB J 

TOPIC-REL 

XCOMP 

Scores for Type 1 multi-function experiments are shown in Table 6.16. These trce- 

banks are annotated with all functions, the top five most frequently occurring func- 

tions (in both the English ant1 French data sets), and SUBJ and OBJ; as a result each 

treebank has a high number of features present. 

features 

precision recall f-score --- 
91.0556 88.9064 89.9682 

56.0000 70.0000 62.2222 

88.0342 84.4262 86.1925 

88.7884 86.1404 87.4443 

85.0000 68.0000 75.5556 

89.9225 85.9259 87.8788 

100.0000 100.0000 100.0000 

100.0000 100.0000 100.0000 

100.0000 100.0000 100.0000 

83.2061 85.1562 84.1699 

100.0000 100.0000 100.0000 

78.7234 60.6557 68.5185 

Table 6.16: Feature detection scores for Type 1 Lexicalised Dupli- 
c.ate Multiple Function annotated treebanks. 

features 

F-scores for these experiments range from 72.4321 to  74.2696, with SUBJ-OBJ 

102 

ALL 

ENG5 

FRE5 

SUBJ-OBJ 

77.0169 69.7789 73.2195 

76.2230 69.0003 72.4321 

77.0091 70.0795 73.3811 

76.0618 72.5599 74.2696 

3256 

3071 

3145 

1629 



achieving the best feature identification score. We observed for Type 1 single func- 

tions, a high number of infrequently occurring features makes it difficult to learn 

features; however, these scores are non-trivial; between 1210 and 2384 Type I multi- 

function features are correctly identified in this experiment. 

Type 2 Duplicate Multiple Function Annot at ions 

Scores for Type 2 multi-function experiments are shown in Table 6.17. F-scores for 

these experiments range from 86.0602 to 87.5306, with E N G ~  (previously the lowest 

scoring combination) achieving the best feature identification score. SUBJ-OBJ now 

scores the lowest of the four combinations. The reduction in feature sparseness has 

had greater impact on the treebanks with the highest numbers of occurrences; E N G ~  

shows an actual increase of over 15%, F R E ~  and ALL show actual increases of almost 

14%, while SUBJ-OBJ shows an actual increase of over 11.7%. 

Table 6.17: Feature detection scores for Type 2 Duplicate Multiple 
Function annotated treebanks. 

Type 3 Minimal Multiple Function Annot at ions 

, occ 

# 
3294 

3109 

3183 

1629 

features 

precision recall f-score 

Scores for Type 3 multi-function experiments are shown in Table 6.18. F-scores 

for these experiments range from 86.5711 to 87.9343, a slight increase on Type 2 

f-scores due to a small reduction in the number of features present in the data. Each 

treebank shows an increase on its Typc 2 scores; ALL increases by 0.336%, E N G ~  

by 0.4037%, F R E ~  by 0.2956% and SuBJ-OBJ by 0.5109%. As for Type 2, E N G ~  

achieves the best feature identification score, with SuBJ-OBJ again scoring lowest. 

ALL 

ENG5 

FRE5 

SUBJ-OBJ 

88.5256 85.4888 86.9807 

88.9701 86.1370 87.5306 

88.7484 85.9881 87.3464 

87.0603 85.0829 86.0602 



Table 6.18: Feature detection scores for Type 3 Minimal Multiple 
Function annotated treebanks. 

precision recall f-score # 

6.2.2 Atomic Feature Annotations 

ALL 

ENG5 

FRE5 

SUBJ-OBJ 

Atomic Preterminal Annotations Scores for these experiments are shown in 

Table 6.19. F-scores range from 92.4370 (PROPER) to  100 (INV, NEG-FORM). Scores 

of 100 were achieved only by features which had relatively low occurrence counts 

(INV 3). We narrow our focus to only those features which have an occurrence count 

of 100 or more which reduces the range of f-scores to  92.437-96.4386. This threshold 

retains the 7 most freque~lt~ly occurring features: GRAIN, MOOD, NUM, PERS, PRON- 

TYPE, PROPER ant1 REFL. Of these features, the highest feature accuracy score is 

achieved by REFL (96.4286), and the lowest by PROPER (92.437). We are satisfied 

that where t,here is a good atomic preterminal feature distribution, we accurat,ely 

itlentify a very high proportion (on average 94.7185). 

GRAIN 

INV 

MOOD 

NUM 

NUMBER-TYPE 

PERS 

PRON-TYPE 

PROPER 

REFL 

89.0533 85.6465 87.3167 

89.6684 86.2660 87.9343 

89.3733 85.9764 87.6420 

87.9485 85.2362 86.5711 

3163 

2978 

3052 

1524 

Table 6.19: Feature detection scores for Atomic Preterminal anno- 
tated treebanks. 

I features 

precision recall f-score 

96.5622 94.7886 95.6672 

100.0000 100.0000 100.0000 

97.5652 92.5743 95.0042 

95.2782 92.4714 93.8538 

100.0000 98.8095 99.4012 

96.6993 94.9580 95.8207 

95.2135 92.4623 93.8177 

94.8276 90.1639 92.4370 

97.6845 95.2045 96.4286 

Atomic Root Annotations A selection of the scores for Type 1 single function 

experiments are shown in Table 6.20. We show here only features which have 100 

104 

OCC 

# 
2341 

3 

606 

1 3666 

84 

3332 

796 

244 

709 



or more features in the reference set. Features (and their occurrenccs) which are 

not displayed here are ADJUNCT-LAYOUT (55), CONJOINED (63), CONJTYPE (49), 

ADEG-DIM (5), DEIXIS (23), F00 (2), N E  (67), NEG (4), PCASE-TYPE (20), PREDET- 

TYPE (O) ,  PREVERB-OBJ (3), STRESSED (O) ,  TIME (6) and TYPE (54). These features 

are omitted due to  their low frequency of occurrence, which usually results in easily 

achievetl high scores. It is interesting to  notc, however, that FOO and PREVERB-OBJ 

achieve f-scores of 0; these experiinents failed to  correctly identify a single feature. 

Table 6.20: Selected feature detection scores for Atomic Root anno- 
tated treebanks. 

For features displayed in Table 6.20, f-scores range from 82.7149 (LAYOUT-TYPE) 

to 94.7748 (ATYPE), while occurrences range frorn 179 (APOS) up to  2018 (GEND). 

' 

, 

If we exarnine the relatioilship between f-score and number of occurrences for the 17 

feat,ures preseilted in Tablc 6.20, we sec an interesting correlation; t,he four highest 

occ 

# 
204 

features 

precision recall f-score 

scoring feat,ures7 (ATYPE, ADEGREE, PSEM, APOS) numbers of occurrences are some 

of the lowest ranks presented (13th, 1Gtl.1, 12th and 17th respcctively) . The features 

with the highcst number of occurrences (GEND, SPEC-TYPE, STATUS, CASE) show 

some of thc lower scorcs in this group (ranking 16th, 8th, 12th and 13t,h re~pcct~ively). 

ADEGREE 

As rrlentioned above, where there arc very few fcatures, it is generally easy to  achieve 

93.7500 95.5882 94.6602 

ADJUNCT-TYPE 

ADV-TYPE 

APOS 

94.2073 87.7841 90.8824 

88.7550 80.9524 84.6743 

95.4286 93.2961 94.3503 

352 

273 

179 

278 

1124 

2018 

573 

760 

687 

322 

918 

1853 

1395 

426 

212 

749 

ATYPE 

CASE 

GEND 

LAYOUT-TYPE 

PASSIVE 

PERF 

PSEM 

PTYPE 

SPEC-TYPE 

STATUS 

STMT-TYPE 

TENSE 

94.9458 94.6043 94.7748 

90.8560 83.0961 86.8030 

86.3399 82.0614 84.1463 

85.9023 79.7557 82.7149 

92.1127 86.0526 88.9796 

91.9685 85.0073 88.3510 

95.5556 93.4783 94.5055 

94.5736 93.0283 93.7946 

90.0442 87.8575 88.9374 

90.8676 85.5914 88.1506 

93.0591 84.9765 88.8344 

89.4737 80.1887 84.5771 

VTYPE 91.1807 85.5808 88.2920 



a high score. These trends suggest that we must find a balance between a generous 

distribution of features and the distinct number of features present; too few features 

present results in an easily achieved very high score, too many distinct features 

results in feature sparseness and low feature detection accuracy score. For treebanks 

in this group with a reasonable distribution of features, we are satisfied that we 

accurately identify them on average 89.26% of the time. 

Multiple Atomic Annotations The scores for this experirrlents are shown in Ta- 

ble 6.21. Feature detection accuracy scores range from 87.832 to  88.9632. Although 

precision recall f-score # 
P T z T  

NUM-PERS-GEND 90.5897 85.0490 87.7320 5003 

PERF-TENSE 92.0312 84.7482 88.2397 695 

PERF-TENSEPASSIVE-MOOD 92.7476 85.4756 88.9632 778 

Table 6.21: Feature detection scores for Multiple Atomic annotated 
treebanks. 

scores for each treebank are quite high, they are quite different to  the average scores 

achieved by these features singly. The average for NUM and PERS individually would 

be 94.8372; although these features appear to  perform better when used separately, 

the parser has still managed to  accurately identify 4377 features. The average for 

NUM, PERS and GEND'S individual scores is 91.2736, 3.5416% higher than their corn- 

bined treebank's f-score. The average f-score for PERF and TENSE is 86.454; an 

actual increase i11 score of 1.786% for the combined features indicates that these 

features work well together. The average for PERF, TENSE, PASSIVE and MOOD is 

89.2279; their conlbined treebank does not manage to  achieve an f-score increase, 

instead yielding a decrease of -0.2647%. This suggests that associated features rnay 

not be as helpful in French as we had seer1 in our English experiments. 



6.2.3 Lexical Feature Annotations 

Lexical Pret erminal Annot ations 

The scores for this experiment are shown in Table 6.22. Only the features with low 

feature occurrences obtain f-scores of 100. The 2 remaining features we consider to 

have a reasonable feature distribution (AUX-SELECT 1040, PRON-FORM 170); these 

features achieve very high scores of 96.0275 and 95.7055 respectivc2ly. 

Table 6.22: Feature detection scores for Lexical Preterlninal anno- 
tated treebanks. 

Lexical Root Annot ations 

occ 

# 
1040 

30 

14 

170 

AUX-SELECT 

NEG-FORM 

PRECONJ-FORM 

PRON-FORM 

The scores for this experiment are shown in Table 6.23. We show here only features 

which had at  least 1 occurrence in the reference set. A pattern we have observed 

to this point indicates that a very low number of feature occurrences results in easy 

feature identification and high f-scores; although this is frequently the case, we have 

here another example of a feature with a low number of occurrences, but for which 

the parser fails to  identify even one (FORM). 

features 

precision recall f-score 

97.9980 94.1346 96.0275 

100.0000 100.0000 100.0000 

100.0000 100.0000 100.0000 

100.0000 91.7647 95.7055 

Table 6.23: Selected feature detection scores for Lexical Root anno- 
tated treebanks. 

features OCC 

Now we focus our attention on features which have a high number of occurrences, 

107 

- 
COMP-FORM 

CONJ-FORM 

FORM 

PCASE 

SPEC-FORM 

82.7160 74.0331 78.1341 

90.3226 87.5000 88.8889 

0.0000 0.0000 0.0000 

88.3173 84.2536 86.2376 

88.6541 85.5150 87.0563 

181 

160 

3 

978 

932 



over 100. The 4 remaining features, COMP-FORM, CONJ-FORM, PCASE anti SPEC- 

FORM, achieve f-scores in the range 78.1341 to  88.8889, with the highest score yielded 

by CONJ-FORM, the least frequently occurring feature. 

Multiple Atomic Lexical Annotations 

The scores for this experiment are shown in Table 6.24. We show again only results 

for treebanks with one or more features present in the reference set. Of the two 

features in this category, one combined treebank had no feature occurrences present 

(PREDET-FORMJREDET-TYPE), consistent with its features's individual treebanks; 

the other (SPEC-TYPESPEC-FORM) had a very high number of occurrences, 1854. 

We see SPEC-TYPESPEC-FORM achieves a reasonably high feature detection accu- 

racy score of 88.8525. Examination of our data set shows that SPEC-TYPE may have 

one of nine values, and SPEC-FORM one of fifteen; although there are Elany possible 

distinct combinations of values for SPEC-TYPESPEC-FORM, we can see that the high 

number of occurrences has enabled us t o  learn these features well. 

Table 6.24: Feature detection scores for Multiple Atomic Lexical an- 
notated treebanks. 

SPEC-TYPESPEC-FORM 

6.2.4 French: Discussion 

The results presented in section 6.2 display meaningful trends whidl support the 

GF-DOP hypothesis with regard to  task 1, feature detection accuracy. 

Some general trends (which can also be seen from the English results) concern 

the number of occurrences of features i11 a treebank. We have seen very infrequently 

occurring features, such as INV, NEG and NEG-FORM, yield feature identification 

scores of 100%; where there are very few features to correctly detect, we firlti that 

we normally score very highly, although this is not guaranteed. Misidentification 

features 

precision recall f-score 

90.0332 87.7023 88.8525 

occ 
' 

# i  
1854 



of features in a treebank which has very few features present has a vcry noticcable 

detrirncntal effect on featurc detection accuracy scores. 

Furthermore, where there are very few features present in the training data, the 

parser cannot establish any useful patterns; it does not learn how to  apply sparse 

features well. 

We ascertain from our experirnents, particularly visible in the results for func- 

tional annotations, that for a good distribution of features, we correctly identify fea- 

tures a large proportion of the time. Although TYPE 1 LEXICALISED DUPLICATE 

FUNCTIONS are correctly identified at  least two thirds of the time, the difference 

made by thc reduction of feature sparseness is c,learly evitlerlt when comparing the 

feature detect,ion accuracy scores for TYPE 1 and TYPE 2 DUPLICATE FUNCTION 

annotations. For most of the frequently occurring features we see an actual in- 

crease of between 10 and 19%. Similarly, while TYPE 1 LEXICALISED DUPLICATE 

MULTIPLE FUNCTIONS are corrcctly identified at least 72% of the time, actual in- 

creases of approxirrlately 12 to  15% are observed i11 the movenlent from TYPE 1 

LEXICALISED DUPLICATE MULTIPLE FUNCTIONS to TYPE 2 DUPLICATE MUL- 

TIPLE FUNCTIONS annotations. These leaps in feature detection accuracy are due 

to the reduction in feature sparscness; that is, therc are fcwer distinct annotations 

present, and so rnore examples of each from which tlic parser establishes feature 

ervironrnents. 

Focussing next on atorriic features, we conclude that for a reasonable distribution 

of features, the parser accurately identifies this class 82.7-96.4% of the time. By far 

the most common group of features, this wide range is the result of a subset of 40 

features of varying degrees of frequency. The range of feature detection accuracy 

scores for combined atomic features is considerably narrower; 87.7-88.9% over four 

groups of combined features. However, these groups of combined features did not 

manage to  outperform their average individual scores, indicating that groups of 

associated features may not provide the boost we had hope for, for French at least. 

A noticeably wider range of feature detection accuracy scores is noted for the 



smaller group (12) of lexical features, 78-96% for 6 treebanks with a reasonable 

feature distribution. Only 1 feature distorts this range, as the majority of these fea- 

tures score between 86 and 96%. Recalling that lexical features showed the greatest 

overall increases and decreases, we coiiclude that the few lexical features present in 

the corpus have a considerable impact on the performance of the parser. 

Giver1 the generally high feature detection scores achieved by the parser, we 

conclude that the GF-DOP model has succeeded at its first t,ask, feature detection 

accuracy. This evidence supports the GF-DOP hypothesis' first assertion: that the 

parser can learn grammatical features accurately. 

6.3 Summary 

Results for these experiments show that, for a training set with a reasonable distribu- 

tion of features, the parser is able to establish useful patterns which it then reapplies 

to accurately identify a high proportion of features in test sentences. Where there 

are very few training features, one of two things may happen; for a very low number 

of features, the parser often correctly achieves a high score, but for a simplified task. 

In such an instance, even a single misidentification dramatically reduces the f-score 

achieved. The second possibilit,y is that there is a handful of features present, in 

the training data; there are not enough to learn the appropriate environmeiits well, 

but this higher frequency of occurrences in the treebank means there will be more 

features to be correctly identified in the test set. Most likely, the parser will not 

have learned enough to score well at this task. 

The results of these experiments are conclusive evidence to  support the GF-DOP 

hypothesis' assertion that the parser can learn gramrriatical features accurately. In 

the next chapter, we will examine how well the parser uses this information to 

produce more accurate phrase-structure trees. 



Chapter 7 

Task 2 Results and Discussion: 

Parse Accuracy 

This chapter exarnirles the GF-DOP model's perforrnance at parse accuracy. As 

illustrated in Figure 7.1, we present results first for the English experiments carried 

out, and then for the French. Further to the language division shown in Figure 7.1, 

Chapter 5: 
Experimental Set Up 

/ I------. 
Chapter 6: Task 1 

Feature Detection Accuracy 
: Task 2 

? Accur 

English French Fr 
/ 

chapter 8: 
Comparison 
1-\ 

languages task performance 

Figure 7.1: Illustration of relationships between Chapters 5, 6, 7 arid 
8. 

antl the feature classification described in section 4.2, features are again divided into 

three main categories (functions, atomics and lexicals), with further subdivisions as 

illustrated in Figure 6.2. 

For each table of results presented in this section, the first colunin names the 

feature-annotated treebanks being investigated. The secontl and third columns, 

rnarked unlabelled and labelled, give the results for parse accuracy. The fourth 



column (occ) indicates the number of feature annotations present in the reference 

set; that is t,he total number of feature annotations we airn to  identify across the 8 

tcst splits (720 test sentences in both English and French.) Where an occurrence 

count is zero, this irltlicates that while the feature was prescnt in the training set 

(we only annot,ate with features which occur inore t,harl once in the treebank, as 

ticscribed in section 5.2), no arlnotatioll occurrences werc found in thc reference set. 

For each table in sections 7.1 (English parse accuracy) anti 7.2 (French parse 

accuracy), the first line of scores presented corresponds to the baseline: the experi- 

ment described carried out on a trecbank with no grammatical feature annotations. 

The baseline scores in each table are identical anti repeatred for convenience only. 

Coverage for the English baselino is 93.89% and for French is 95.6944%. It remains 

constant for all cxperil-ncnts clue to the GF-DOP model's backing-off capability. Any 

sentence which could not be fully parsed was assigned the most probable sequence 

of partial parses and groupeti together urldcr a durrirny root node labelled 'TOP'. 

Complete score charts for each of the experiments are given in the apperltiix 

(sections A and B) for completeness, but, here we focus on those subsets of results 

which illustrate the most import,arlt points; we show here only thosc features which 

outperformed the BASELINE with either unlabelled or labelled f-score, as well as the 

features which result in the greatest decrease in score. 111 each table, the BASELINE 

scores are shown in blue, as are any scores which match the BASELINE exactly. Un- 

labelled and labelled scores which outperform the BASELINE are shown in red. The 

remaining unlabelled and labelled figures, in black, scored lower than the BASELINE. 

The highest and lowest overall scores are emphasized in bold. 

As for task 1, we begin with English treebanks annotated with a single f~~nc t ion ,  

before proceeding to multi-function annotated treebanks, treebanks with atomic 

annotations, and finally treebanks with lexical annotations. We then examine the 

same groups of features for French. 

We expect that the addition of functions will greatly improve the parser's accu- 

racy. In particular, we believe Type 1 Lexicalised Duplicate Functions (both singly 



and multiply annotated trecbanks) will provide the most useful information. How- 

ever, we concede that it is likely that Type 1 features' performance will be hindered 

by feature sparseness. This hypothesis will be tested by arlalysis of the performance 

of Type 2 Duplicate Furictiorls and Type 3 Minimal Functions. No score increases 

between Types 1 and 2 will indicate either that furrlctions are actually not as help- 

ful as we hati expected, or that feature sparseness has riot been a problcm. Large 

irlcreases will suggest that delexicalised function annotation is wort,hwhile, but the 

parser has had insufficient data on which to train. 

Furthermore, we believe that treebariks annotated with ~ombinat~ions of related 

features will outperform avcrage scores for treebanks annotated with these features 

individually. As the GF-DOP model is an approximatiori of the LFG-DOP model, 

we endeavour to generate treebanks which compreh(-:nsively replicate the LFG-DOP 

model; the irlteraction of related features is one LFG behaviour we attempt t o  rnodcl. 

The bulk of the features present in the f-structures from which we generated 

our anrl~tat~ions were features which we classed as "atomic". As these features forrn 

the majority, arid provide much grammatical detail, we expect these features to  

greatly assist thc parser's performance, particularly when we combine cornrrlorlly 

co-occurring and co-dependent features. 

The remaining features we classified as "lexical". Lexicalisatioil often shows 

irrlprovernents in PCFG parsing. However, the frcquerlcy of occurrerlcc of lexical 

features in our data set is generally quite low. Given their overall lower frequency of 

occurrence, and the fact that they provide specific information which is most useful 

at a limited surface level, rather than internal structure, we do not expect these 

features to  be as beneficial as atomic or functional features. 

A final factor we expect to  influence parse accuracy is the frequency of occur- 

rences of features in the training data. We expect to  see the greatest impact on 

treebanks with very high frequencies of annotation occurrences. Where we train the 

parser on a treebank with a very high number of features, we expect that the parser 

will learn these features well, thus boosting the overall parse accuracy. 



English: Parse Accuracy 

For all experiments in this section, the ualabelled BASELINE f-score was 96.245%. 

The labelletl BASELINE f-score was 92.863%. Coverage for a11 cxperiineilts was 

93.8889%. 

7.1.1 Functional Annot at ions 

As describetl in section 5.2, for each functional annotation we generate three tree- 

banks which we call Type 1 Lexicalised Duplicate Functions, Type 2 Duplicate 

Functions arld Type 3 Minimal Functions (samples illustrated in equations 5.1, 5.2 

and 5.3 respectively). Here we examine t,he results from our preferred annotation 

type, Type 1, and compare its performance to our Type 2 and Type 3 treebanks. 

Type 1 Lexicalised Duplicate Function Annot at ions 

A selection of the scores for Type 1 experiments are shown in Table 7.1. Focusirlg 

initially on the urilabelled f-scores, of 17 functions, 6 outperform the baseline score 

(ADJUNCT, APP, OBJ, OBL, SPEC, XCOMP: average iricrease of 0.0.0489%) ; ADJUNCT 

and XCOMP give the highest improvements (of 0.0886% and 0.0728% respectively). 

Of the remairliilg functions, 8 maintain the BASELINE score (COMP, COMP-EX, OBL- 

AGT, OBL-COMP, PRON-INT, PRON-REL, TOPIC-INT, TOPIC-REL), while 3 yicld a 

decreasc (COMPOUND, O B J ~ ,  SUBJ: average decrease of -0.026%). 

Table 7.1: Selected parse accuracy scores for Type 1 Lcxicalised Du- 
plicate Funct,ioii annotated treebanks. 

OCC 

# 
0 

834 

0 

776 

16 

71 

418 

123 

labelled 

precision recall fscore 

92.7148 93.0117 Y2.8tiYU 

92.7204 93.0894 92.9045 

92.7148 93.0117 92.8630 

92.8371 93.2156 93.0260 

92.7825 93.0797 92.9309 

92.8005 93.0797 92.9399 

92.5041 92.8273 92.6654 

92.6768 92.9826 92.8295 

BASELINE 

ADJUNCT 

APP 

OBJ 

OBL 

SPEC 

SUBJ 

XCOMP 

unlabelled 

precision recall fscore 

96.0913 96.3991 96.2450 

96.1427 96.5253 96.3336- 

96.1010 96.4088 96.2547 

96.1141 96.5059 96.3096 

96.1107 96.4185 96.2644 

96.1390 96.4282 96.2834 

96.0344 96.3700 96.2019 

96.1594 96.4768 96.3178 



The labellcd f-scores show that 4 of 17 furlctions outperform the baseline (ADJUNCT, 

OBJ, OBL, SPEC: average increase of 0.0873%), with the greatest ialprovement 

achieved by OBJ, with an increase of 0.163%. Of the remainder, 8 maintain the BASE- 

LINE score (APP, COMP, COMP-EX, OBL-COMP, PRON-INT, PRON-REL, TOPIC-INT, 

TOPIC-REL) and 5 yield a decrease (COMPOUND, O B J ~ ,  OBL-AGT, SUBJ, XCOMP: 

average decreasc of -0.05334%). A single annotation, SuBJ, yields the biggest drop 

for both urllabclled and labelled scores, with decreases of -0.0431% and -0.1976% 

respec,tively. 

Although unlabclletl scores show a greater rlumber of improvements over the 

BASELINE, labelled scores show the greatest average increase (unlabelled average 

increase of 0.0489% versus labelled average increase of 0.0873%); we see many small 

improvements in cliuliking performance, ant1 fewer larger improvements in labelling 

accuracy. In addition, the absolute average increases for both evaluation types are 

grcater than absolute average decreases (unlabelled -0.026%, labelled -0.05334%). 

Thus far, this arlrlotatiorl type shows promising irrlprovement over the parser's BASE- 

LINE sc.ores; this is particularly evident in tlic labellcd f-scores. 

One feature which yielded particularly iiiteresting results is APP; although there 

were zero occurrerlces in the reference set, (that is we were airning to  identify zero 

features in our output parses) we have seer] an improvement over the uiilabelled 

BASELINE score. Examination of the original annotated trceballk shows very few 

occurrences of APP (4). However, these 4 arlrlotatioils have clearly altered the prob- 

ability mass assigned to fragments. It appears that this slightly altered probability 

distribution has lead the parser to  select a different fragment set to  parse some in- 

put strings; this has lead to all improvement in the structure assigned by it to some 

input strings, and as a result, a higher unlabelled f-score. 

Type 2 Duplicate f inct  ion Annot at ions 

A selection of the scores for Type 2 experiments are shown in Table 7.2. Unlabelled 

Type 2 f-scores show that of 17 functions, 4 outperformed the BASELINE figure 



(ADJUNCT, APP, OBJ, XCOMP: average increase of 0.090875%), 10 maintained the 

score and 3 yielded a dec,rease ( 0 ~ ~ 2 ,  SPEC, SUBJ: average dccrease of -0.0144%). 

This time OBJ and ADJUNCT give the greatest overall improvements (of 0.1938% 

and 0.1453% respectively). Here XCOMP achieves the third highest score, whereas 

for Type 1 the top three features (in decreasing order) were ADJUNCT, XCOMP anti 

OBJ. 

BASELINE 

ADJUNCT 

APP 

OBJ 

SUBJ 

XCOMP 

- 
occ 

# 
0 
m 

0 

776 

422 

123 - 
Table 7.2: Selected parsc accuracy scores for Type 2 Duplicate Func- 

tion annotated t,rcebanks. 

Looking now at labelled scores, we see that only 3 outperform the BASELINE 

(ADJUNCT, OBJ, OBL, average increase of 0.0906%), 11 rrlaintain thc score and 5 

features cause a decrease (COMPOUND, O B J ~ ,  OBL-AGT, SUBJ, XCOMP, average de- 

crease of -0.05784%). The largest improvements are achieved by OBJ (0.3101%) anti 

ADJUNCT (0.2229%). For both unlabelled and labelled f-scores, SUBJ again causes 

the greatest tlecrease (-0.187% and -0.1439% rcspectively). 

Again, unlabelled scores show a greater number of improvements over the BASE- 

LINE. Howevcr labelled scores show the greatest average increase (unlabelled averagc 

iiicrease of 0.090875% versus labelled average increase of 0.2665%: labelled increase 

is almost three times the unlabelled increase). For Type 2 annotations, the absolute 

~lnlabelled average increase is over sevca times greater than the absolute urllabclled 

average decrease (increase of 0.090875% versus decrease of -0.0144%). This is also 

the case for labelled averages, wllcre the absolute average incrcase is almost five times 

the average decreasc (increase of 0.2665% versus decrease of -0.05784%). Overall, 

Type 2 ailiz~tat~ioiis appear to have a very positive impact on the parser's chunking 



ability, illustrated by generally improved unlabelled scores, but perhaps less so on 

labelling accuracy, shown in the comparatively weaker labelled scores. 

Type 3 Minimal Function Annotations 

A selection of the scores for Type 3 expcrirnents are shown in Table 7.3. The fi- 

nal filrlctiori annotation typc shows similar trerltls to thc previous two: unlabelled 

f-scores show 5 functions outperforming the BASELINE figure (ADJUNCT, APP, COM- 

POUND, OBJ, XCOMP, average irlcrease of 0.08146%), 9 rrlaintaining the score and 

3 causing a decrease ( O B J ~ ,  SPEC, SUBJ, average tiecrease of -0.0144%). Again, the 

greatest increases are yielded by OBJ (0.2035%) and ADJUNCT (0.16%). 

Table 7.3: Selected parse accuracy scores for Type 3 Miriirnal Func- 
tion annotated treebanks. 

Type 3 labelletl f-scores show similar patterns to  those of Type 2: we see this timc 

that only 3 outperform the BASELINE (ADJUNCT, OBJ, averagc increase of 0.3127%), 

10 rriairltain the scorc and 5 featJures cause a decrease (COMPOUND, O B J ~ ,  OBL-AGT, 

SUBJ, xCOMP, average decrcase of -0.0559%). As for Type 2, the only i~icreases are 

achieved by ADJUNCT and OBJ, but this time in reverse order. ADJUNCT has t,he 

greatest increase (of 0.3153%), followed closely by OBJ (0.3101%). As was noted for 

both Type 1 and Type 2 scores, the grcatest decrease is yielded by SUBJ, for both 

unlabelletl (-0.187%) and labelled f-scorc (-0.1342%). 

Unexpectedly, results of Type 3 annotation have much in common with those 

of Type 1. Unlabelleti scores show a greater nurnber of irnprovernents over the 

BASELINE, but again labelled scores show the greatest average increase (unlabelled 

OCC 

# 
0 

802 

0 

274 

776 

331 

123 

labelled 

precision recall fscore 

92.7148 93.0117 92.8630 

93.0251 93.3320 93.1783 

92.7148 93.0117 92.8630 

92.6471 92.9438 92.7952 

BASELINE 

ADJUNCT 

A P P  

COMPOUND 

unlabelled 

precision recall fscore 

96.0913 96.3991 96.2450 

96.2465 96.5641 S6.4U50 

96.1010 96.4088 96.2547 

96.1107 96.4185 96.2644 

OBJ 

SUBJ 

XCOMP 

96.2945 8 96.4485 L 144 9: 23 93 1 

96.0542 Y ~ ; . Y Y Y ~  C -  -263 82.5629 92.8Y53 92.7288 

96.1014 96.4185 bu.1597 92.6478 92.9535 92.8004 



average increase of 0.08146% versus labelletl average increase of 0.3127%). In addi- 

tion, the absolute average increases for both evaluation types (unlabelled 0.08146%, 

labelled 0.3127%) are greater than absolute average decreases (unlabelled -0.0144%, 

labelled -0.0559%). Type 3 labelled f-scores show the greatest average increase of the 

three types (Type 1 0.0873%, Type 2 0.2665%, Type 3 0.3127%), while maintaining 

roughly the same labelleti average decrease as Types 1 anti 2 (Type 1 -0.05334%, 

Type 2 -0.05784%, Type 3 -0.0559%). 

Figures 7.4, 7.5 and 7.6 show scores for treebanks annotated with multiple furic- 

tioris. Annotation type ALL refers to  the treebank annotated with all 17 functions 

listed as single annotations. Annotation type TOPS refers to  the treebank annotated 

with the 5 most frequently occurring furlctioiis (ADJUNCT, OBJ, SUBJ, COMPOUND 

and XCOMP). Annotation type SUBJ-OBJ refers to the treebarik annotated with 

those two functions only. 

Type 1 Lexicalised Duplicate Multiple Function Annot at ions 

All scores for Type 1 multi-function annotated experiments arc shown in Table 7.4. 

From this table we can see that Type 1 multi-function annotations consistently 

outperforni the BASELINE figures, for both unlabelled and labelled f-scores for each 

of the three treebanks. Improvernerlt,~ range from 0.1274% (ALL) to 0.2235% (TOPS) 

for urilabelled f-scores, and 0.1384% (ALL) to  0.249% (TOPS) for labclled f-scores. 

The average increase for mllabelled evaluat,ion is 0.1818%, and for labelled evaluation 

0.1762%. 

Table 7.4: Parse accuracy scores for Type 1 Lexical Duplicate Mul- 
tiple Function annotated treebanks. 

unlabelled labelled occ 

precision recall fscore precision recall fscore # 
BASELINE 96.0913 96.3991 96.2450 92.7148 93.0117 92.8630 0 - 

ALL 

TOP5 

SUBJ-OBJ 

96.1814 96.5641 96.3724 

96.2959 96.6418 96.4685 

96.2669 96.6126 96.4395 

92.8171 93.1865 93.0014 

92.9014 93.2350 93.0679 

92.8820 93.2156 93.0485 

2590 

2453 ' 1190 



Type 2 Duplicate Multiple Function Annot at ions 

Scores for Type 2 multi-function annotated experiments are shown in Table 7.5. 

As for Type 1 multi-function annotations, Type 2 consistently outperform the 

BASELINE. Improvements over unlabelleti f-scores range from 0.1794% (SUBJ-OBJ) 

to 0.2626% (TOPS), arid for labelled f-scores range from 0.2959% (SUBJ-OBJ) to 

0.5143% (ALL). The average increase in unlabelled f-score is 0.2314% and labelled 

f-score is 0.4354%. Although  TOP^ was the overall highest scoring annotation for 

Type 1 multi-function annotations, for Type 2 it achieves the greatest improvement 

over the BASELINE figures for unlabellctl f-score only; ALL yields the highest increase 

in labelled f-score. 

Table 7.5: Pmse accuracy scores for Type 2 Duplicate Multiple 
Function annotated treebariks. 

Type 3 Minimal Multiple F'unct ion Annot at ions 

OCC 

# 
unlabelled 

precision recall fscore 

Scores for Type 3 rnulti-function annot,at,ed experiments are showri in Table 7.6. 

Scores for Type 3 rnulti-function annotations show the samc trend as for Type 2: all 

annotation types outperform the BASELINE figures for both unlabell(-:d ant1 labclletl f- 

scorcs. Iinproveirlerits over the unlabelled BASELINE rarlge from 0.2085% (SUBJ-OBJ) 

to 0.282% (ALL), and for t,he labelled BASELINE range from 0.325% (SUBJ-OBJ) 

to 0.4865% (ALL). The average increase in unlabelled f-scores is 0.2415%, anti in 

labclled f-scores is 0.4201%. 

Across all three arlriotation types, 110th unlab(-,lleti arid labclled multi-function an- 

riotatioii f-scores show increases over BASELINE scores; an average (across all 3 types) 

ulllabelled increase of 0.218266% and arl average labelled incrcase of 0.343966%. 

labelled 

precision recall fscore 

BASELINE 
-- 

ALL 

TOP5  

SUBJ-OBJ 

0 96.0913 96.3991 96.2450 92.7148 93.0117 92.8630 

96.3339 96.6612 96.4973 

96.3257 96.6903 96.5076 

96.2658 96.5835 96.4244 

93.2192 93.5359 93.3773 

93.1831 93.5359 93.3592 

93.0057 93.3126 93.1589 

2603 

2466 

1198 



unlabelled 

precision recall fscore precision recall fscore # 
BASELINE 96.0913 96.3991 96.2450 92.7148 93.0117 92.8630 0 

ALL 96.3450 96.7097 96.5270 93.1735 93.5262 93.3495 , 2445 

TOP5 96.2788 96.6806 96.4792 93.1181 93.5067 93.3120 2306 

Table 7.6: Parse accuracy scores for Type 3 Miriirnal Multiple Func- 
tion annotated treebanks. 

The smallest average increase rioted in multi-function annotations was the Type 1 

labelled f-score, 0.176266%. The largest average increase was the Type 2 labelled 

f-score, 0.435466%; this is the largcst average increase of scores to this point. None 

of the combinations of features tested in these experiments yielded scores exactly 

equal to, or less than, the BASELINE f-scores. This indicates that, annotating with 

combinations of frequently occurring functions decidedly improves a parser's ability 

to  gerleratc highly accurate phrase-structure trees. 

7.1.2 Atomic Feature Annotations 

Atomic Pret erminal Annot at ions 

The result of this experimcrit is shown in Table 7.7. Focusing initially on the un- 

labelled f-scores, of 8 atomic pre-terminal features, 4 outperform the basclirle scorc 

(ABBREV, MOOD, PERS, PRON-TYPE, average increase of 0.053825%) : PRON-TYPE 

anc-l PERS give the greatest iinprovernents (of 0.131% and 0.0402% respectively). Of 

the rernairlirig features, none maintain t,hc BASELINE score exactly, while 4 yield a de- 

crease (GRAIN, NUM, NUMBER-TYPE, PROPER average decrease of -0.04335%). The 

largest decrease is seen in the urllabellcd f-score for NUM, with a drop of 0.0858%. 

The labelled f-scores show that only 2 of 8 atomic pre-terminal features outper- 

form the basclirle (PERS, PRON-TYPE, average illcrease of 0.21715%), with the great- 

est ilnprovernerlt achieved by PERS, with an increase of 0.2353%. Of the remaintier, 

a further 2 maintain the BASELINE score (ABBREV, NUMBER-TYPE) and again, 4 

yield a decrease (GRAIN, MOOD, NUM, PROPER, average decrease of -0.2087%). The 



Table 7.7: Parse ac.curacy scores for Atomic Preterminal annotated 
treebanks. 

largest tiecrease is seen in the labelled f-score for GRAIN, with a drop of -0.3436%. 

Although urllabelled scores show a greater number of improvements over the 

BASELINE, labelled scores show thc greatest average increase (unlabelled average 

increase of 0.053825% versus labelleti average increase of 0.21715%). In atldit,ion, 

the absolute average increases for both evaluation types (unlabelled 0.053825%, la- 

belled 0.21715%) are greater than absolute average decreases (unlabelled 0.04335%, 

labelled 0.2087%). Thus far, this annotation type shows promising improverriellt over 

the parser's BASELINE scores; this is particularly evident in the labelled f-scores. 

occ 

# 

30 

2035 

678 

2678 

95 

2843 

845 

34 

ABBREV 

GRAIN 

MOOD 

NUM 

NUMBER-TYPE 

PERS 

PRON-TYPE 

PROPER 

Atomic Root Annot at ions 

A section of t,he results of this experiment are showri in Table 7.8. Unlabelled f- 

scores show that of 25 atomic root features, 14 outperformed the BASELINE figurc 

(ADJUNCT-TYPE, ADEGREE, ADV-TYPE, ANIM, ATYPE, CASE, GEND, POL, PTYPE, 

SPEC-TYPE, STMT-TYPE, TEMPORAL, TENSE, TIME, average irm"ease of 0.05449%), 

rloue rriaintained t,he scorc exactly and 11 yielded a decrease (ADEG-DIM, DEIXIS, 

GERUND, LAYOUT-TYPE, PASSIVE, PERF, PREDET-TYPE, PROG, PSEM, TYPE, VTYPE, 

avcrage tlecreasc of -0.06008%). This time ADJUNCT-TYPE and ANIM give the great- 

est overall improveine~its (of 0.1744% and 0.1356% respect,ively). The largest tie- 

crease is seen in the unlabelled f-scorc for PASSIVE, with a drop of -0.1031%. 

Looking now at  labellcd scorcs, we see that 16 atomic root features outperform 

unlabened 

precision recall fscore 

- P P T  
96.1300 96.4379 96.2837 

96.0337 96.3506 96.1919 

96.0828 96.4185 96.2504 

95.9687 96.3506 96.1592 

96.0720 96.3797 96.2256 

96.0944 96.4768 96.2852 

96.2175 96.5350 96.3760 

96.0902 96.3700 96.2299 

hbdii& 
precision recall fscore 

92.7148 93.0117 92.8630 

92.3672 92.6720 92.5194 

92.6589 92.9826 92.8205 

92.4207 92.7885 92.6043 

92.7148 93.0117 92.8630 

92.9138 93.2835 93.0983 

92.9090 93.2156 93.0620 

92.5385 92.8079 92.6730 



Table 7.8: Selected parse accuracy scores for Atomic Root annotated 
treebanks. 

the BASELINE (ADJUNCT-TYPE, ADEGREE, ANIM, ATYPE, CASE, GEND, GERUND, 

PASSIVE, PERF, PROG, SPEC-TYPE, STMT-TYPE, TEMPORAL, TENSE, TIME, TYPE, 

average increase of 0.08915%), 2 maintain the score (DEIXIS, POL) and 7 features 

cause a decrease (ADEG-DIM, ADV-TYPE, LAYOUT-TYPE, PREDET-TYPE, PSEM, 

PTYPE, VTYPE, average decrease of -0.04611%). PREDET-TYPE yields the great- 

est drop in f-score, with a decrease of -0.0955%. 

This is the only (English) experiinent where labelled scores achieved a greatcr 

number of irnprovernellts over the BASELINE scores than urilabelled scores. Promis- 

ingly, the labelled f-scores also show a greater average increase than unlabelled 

f-scores (average unlabclled increase of 0.05449% versus average labclled increase 

of 0.08915%), and the average labelled decrease is less than the average unlabelled 

decrease (average unlabelled decrease of -0.06008% versus average labelled decrease 

of -0.0461%). This is a promising indication that feature anliotations, particularly 

OCC 

# 
0 

467 

265 

416 

451 

260 

1155 

34 

108 

772 

788 

3 

4 

800 

308 

1009 

884 

1 

218 

1 

108 

796 

BAKEXINE 

ADJUNCT-TYPE 

ADEGREE 

A D V - T Y P E  

ANIM 

A T Y P E  

C A S E  

GEND 

GERUND 

PASSIVE 

PERF 

POL 

PREDET-TYPE 

PROG 

P T Y P E  

SPEC-TYPE 

S T M T - T Y P E  

T E M P O R A L  

T E N S E  

T I M E  

T Y P E  

V T Y P E  

unIabeIIed 

precision recall fscore 

96.0913 96.3991 96.2450 

96.2655 96.5738 96.4194 

96.1501 96.4768 96.3132 

96.1018 96.4282 96.2647 

96.2268 96.5350 96.3806 

96.1401 96.4573 96.2984 

96.0847 96.4670 96.2755 

96.1777 96.4670 96.3221 

96.0724 96.3894 96.2306 

96.0209 96.2632 96.1419 

96.0403 96.2826 96.1613 

96.1204 96.4282 96.2740 

96.0155 96.3603 96.1876 

96.1084 96.3603 96.2342 

96.0735 96.4185 96.2457 

96.1312 96.4670 96.2988 

96.1096 96.3894 96.2493 

96.1587 96.4573 96.3078 

96.0824 96.4088 96.2453 

96.1490 96.4476 96.2981 

96.0724 96.3894 96.2306 

96.0321 96.3118 96.1717 

Wslld 
precision recall fscore 

gP.Tl48 98.Q117 93.863Q 

92.9373 93.2350 93.0859 

92.8129 93.1282 92.9703 

92.6485 92.9632 92.8056 

92.7728 93.0700 92.9212 

92.8219 93.1282 92.9748 

92.8654 93.2350 93.0498 

92.8005 93 0797 92.9399 

92.8122 93.1185 92.9651 

92.7679 93.0020 92.8848 

92.7583 92.9923 92.8751 

92.7148 93.0117 92.8630 

92.6015 92.9341 92.7675 

92.7880 93.0312 92.9094 

92.6499 92.9826 92.8160 

92.8136 93.1379 92.9755 

92.7998 93.0700 92.9347 

92.8108 93.0991 92.9547 

92.7162 93.0312 92.8734 

92.8108 93.0991 92.9547 

92.8122 93.1185 92.9651 

92.7223 92.9923 92.8571 



this group of atomic root feature annotations, not only improve the parser's chunk- 

ing ability, but also its labelling accuracy; this feature appears to boost the overall 

quality of phrase-structure trees generated. 

Multiple Atomic Annot ations 

The scores for this experiment are shown in Table 7.9. Unlabelled f-scores show that 

of the 3 multi-annotated treebanks (NUM-PERS, PERF_PROG_TENSE9ASSIVE_MOOD, 

PERFJROG-TENSE), none outperform the BASELINE figure. In fact, all 3 score be- 

low the BASELINE, with an average decrease of -0.3243%; this is the largest decrease 

we note to this point. It is approximately 5.5 times greater than the next largest 

unlabelled average decrease of 0.06008, yielded by the atomic root group, and ap- 

proximately 1.5 tirnes the greatest labelled decrease (-0.2087% yielded by the atomic 

pre-terminal group). 

unlabelled labelled occ 

precision recall fscore precision recall fscore # - 
BASELINE 96.0913 96.3991 96.2450 92.7148 93.0117 92.8630 

N U M P E R S  

O 
I 

95.9695 96.3700 96.1693 92.5382 92.9244 92.7309 4195 

PERF-PROG-TENSE 96.1088 96.3700 96.2392 92.7597 93.0117 92.8855 802 

PERF-PROG-TENSE 96.1080 96.3506 96.2292 92.8551 93.0894 92.9721 807 
_PASSIVESVIOOD 

Table 7.9: Parse accuracy scores for Multiple Atomic annotated tree- 
banks. 

Labelled scores show an improvement in the case of 2 out of the 3 features: 

PERF-PROG-TENSE and PERFJROG-TENSETASSIVE-MOOD improve over the BASE- 

LINE by an average of 0.0658%. Only N U M J E R S  yields a decrease of -0.1321%. That 

PERFPROG-TENSE_PASSIVE_MOOD performs better than PERFTROG-TENSE is an 

irldication that additional detailed information proves useful in assisting the parser 

to generate better quality phrase-structure trees. 



7.1.3 Lexical Feature Annotat ions 

Lexical Pret erminal Annot at ions 

Only I feature is classified under this heading, PRON-FORM. It outperforrns both 

the unlabelled and labelled scores for the BASELINE, by 0.0581% and 0.0485% re- 

spectively. 

Table 7.10: Parse accuracy scores for Lexical Preterminal arirlotated 
treebanks. 

BASELINE - 
PRON-FORM 

Lexical Root Annotations 

The result of this experiment is shown in Table 7.11. Focusing initially on the 

unlabelled f-scores, of 7 lexical root features, 3 outperform the baseline score (COMP- 

FORM, PCASE, SPEC-FORM, average increase of 0.0505%): SPEC-TYPE gives the 

greatest improvement (of 0.0926%) overall. Of the remaining features, none maintain 

the BASELINE score exactly, while 4 yield a decrease (CONJ-FORM, CONJ-FORM- 

COMP, PREDET-FORM, PRT-FORM average decrease of -0.0227%). 

occ 

# 
0 

194 

I unlabelled 

precision recall fscore 

96.0913 96.3991 96.2450 

96.149496.4573 

Table 7.11: Parse accuracy scores for Lexical Root annotated tree- 
banks. 

labelled 

precision recall fscore 

92.7148 93.0117 92.8630 

13 22.)3m 

The labelled f-scores show that only 2 of the 7 lexical root features outperform 

OCC 

# 
0 

124 

155 

3 

329 

4 

12 

599 

BASELINE 

COMP-FORM 

CONJ-FORM 

CONJ-FORM-COMP 

PCASE 

PREDET-FORM 

PRT-FORM 

SPEC-FORM 

unlabelled 

precision recall fscore 

96.0913 96.3991 96.2450 

96.1107 96.4185 96.2644 

96.1096 96.3894 96.2493 

96.0817 96.3894 96.2353 

96.1122 96.4573 96.2845 

96.0155 96.3603 96.1876 

96.0720 96.3797 96.2256 

96.1698 96.5059 96.3376 

labelled 

precision recall fscore 

92.7148 93.0117 92.8630 

92.6761 92.9729 92.8243 

92.6546 92.9244 92.7893 

92.7148 93.0117 92.8630 

92.8627 93.1962 93.0291 

92.6015 92.9341 92.7675 

92.7148 93.0117 92.8630 

92.8426 93.1670 93.0046 



t,he baseline (PCASE, SPEC-FORM, average increase of 0.15385%), the greatest im- 

provement achieved by PCASE, with an irlcreasc of 0.1661%. Of the remaintler, 

a further 2 rnairltain the BASELINE score (CONJ-FORM-COMP, PRT-FORM) ant1 9 

yield a decrease (COMP-FORM, CONJ-FORM, PREDET-FORM, average decrease of - 

0.0693%). The largest tlecrease in both unlabelled arid labelled f-scores is yielded 

by just one feature, PREDET-FORM, with a drop of -0.0574% for urilabelled scores 

and -0.0955% for labelled. 

Again here unlabelletl scores show a greater number of improvernellts over the 

BASELINE, but labelled scores show the greatest average increase (unlabelled average 

irlcreasc of 0.0505% versus labelled average increase of 0.15385%). In addition, the 

absolute average increases for both evaluation types (unlabelled 0.0505%, labelled 

0.15385%) are greater than absolute average tlecreases (unlabelletl0.0227Y0, labelled 

0.0693%). This patt,erri has occurretl for several different annotation types and 

appears to be a comrnon trend. 

Multiple Atomic Lexical Annot at ions 

The result of this experirncnt is sllowrl in Table 7.12. Only 2 cornbilled atomic-lexical 

treebariks were generated as we set out to  test groups of related features, or features 

which commorlly co-occur in f-structures. For both uiilabelled and labelled f-scores, 

unlabelled labelled occ 

precision recall fscore precision recall fscore # 
BASELINE 96.0913 96.3991 96.2450 92.7148 93.0117 92.8630 0 

PREDET-FORM-PREDET-TYPE 96.0155 96.3603 96.1876 92.6015 92.9341 92.7675 4 

SPEC-TYPESPEC-FORM 96.1505 96.4865 96.3182 92.8523 93.1767 93.0142 1022 

Table 7.12: Parse accuracy scores for Multiple Atomic Lexical anno- 
tated trcebanks. 

1 feature combination outperformed the BASELINE figurc, SPEC-TYPESPEC_FORM, 

with an unlabelled increase of 0.0732% and a labelled increase of 0.1512%. The 

other feature combination, PREDET-FORMTREDET-TYPE underperformed for both 

evaluation types, with an unlabclletl tlecrcase of -0.0574% arld a labellcd decrease 



of -0.0955%. This raises the suggestion that some coinbinations of features provide 

rnore useful detail than others, although for this pair of treebanks, it appears that 

the number of occurrences of features could provide more clarity. The feature combi- 

nation which outperformed the BASELINE had a high number of feature occurrences, 

1022, while the feature which scored lower had only 4. Given the large difference in 

the number of features present for each experiment, it is difficult to say conclusively 

which feature combination is most useful for a, parser. From the number of annota- 

tions, we surmise that the more frequent feature is the more useful feature within a 

treebank; given that it occurs more often, it provides clarification more often than 

the lower occurring feature combination. 

7.1.4 English: Discussion 

We surrlmarise the average increases and decreases for unlabelled anti labelled scores 

for each of the twelve groups of experiments in Table 7.13 for ease of reference during 

this discussion. The greatest increases and decreases are highlighted in bold. Where 

there was no average increase or decrease, we indicate this was not applicable. 

Table 7.13: Summary of averagc illcreases and decreases for unla- 
belled and labelletl scores for each annotation type. 

A first glance at this table shows that for unlabelled evaluation, I1 of the 12 

126 

labelIed (%) 

average increase average decrease 

0.0873 0.05334 

0.2665 0.0578 

0.3127 0.0559 

0.17626 n/a 

0.4354 n/a 

0.4201 n/a 

0.2171 0.2087 

0.0891 0.0461 

0.0658 0.1321 

0.0485 n/a 

0.1538 0.0693 

0.1512 0.0955 

unlabelled (%) 

average increase average decrease 

TYPE 1 SINGLE FUNCTIONS 

TYPE 2 SINGLE FUNCTIONS 

TYPE 3 SINGLE FUNCTIONS 

TYPE 1 MULTIPLE FUNCTIONS 

TYPE 2 MULTIPLE FUNCTIONS 

TYPE 3 MULTIPLE FUNCTIONS 

ATOMIC PRETERMINAL 

ATOMIC ROOT 

MULTIPLE ATOMIC 

LEXICAL PRETERMINAL 

LEXICAL ROOT 

MULTIPLE ATOMIC LEXICAL 

0.0489 0.026 

0.0908 0.0144 

0.0814 0.0144 

0.1818 n/a 

0.2314 n/a 

0.2415 4. 

0.05382 0.0433 

0.0544 0.06008 

n/a 0.3244 

0.0581 n/a 

0.0505 0.0227 

0.0732 0.0574 



experiments showed some improvement over the BASELINE, with average increases 

ranging from 0.0505% (LEXICAL ROOT) to 0.2415% (TYPE 3 MULTIPLE FUNC- 

TION). The only experiment which did not yield an average increase was MULTIPLE 

ATOMIC which in fact showed the greatest average decrease. Encouragingly, only 8 

out of 12 experiments yiclded an average decrease, ranging from -0.0144% (TYPE 

2 SINGLE FUNCTIONS anti TYPE 3 SINGLE FUNCTIONS) to -0.3244% (MULTIPLE 

ATOMIC), nieariirlg that the remaining 4 experixlents consistently outperformed the 

BASELINE; that is, for each of the remaining exy>erimerits (TYPE 1 MULTIPLE FUNC- 

TIONS, TYPE 2 MULTIPLE FUNCTIONS, TYPE 3 MULTIPLE FUNCTIONS, LEXICAL 

PRETERMINAL) incorporation of fkature anriotations lead to a consistent overall im- 

provement in churlking performance. 

It is interesting t o  note that the average increase is alrnost always grcater in mag- 

nitude than t,he average decrease, with only two exceptions to  this pattern, ATOMIC 

ROOT and MULTIPLE ATOMIC. We conclude that annot,at,ion with grammatical 

features assist,~ the parser to determine the sentence structure, with functions, par- 

ticularly combinations of frequer1tJy occurrilig functions, providing the rnost useful 

inforrnation. 

Consider now the scores for labelled evaluation; we sec that each experiment 

yielded some average increase, ranging from 0.0485% (LEXICAL PRETERMINAL) to 

0.4354% (TYPE 2 MULTIPLE FUNCTIONS); the greatest average increase here is 

almost nine times the slnallest average increase. As for unlabelled scores, only 8 

out of 12 experiments yielded an average decrease, ranging from -0.0461% (ATOMIC 

ROOT) to -0.2087% (ATOMIC PRETERMINAL). These figures illustrate a similar 

trend to those for unlabelled evaluation; the net increase in scores is greater than 

net decrease. This is evidence that ailnotation with features improves the quality of 

phrase-structure trees generated by the parser. Thus the GF-DOP hypothesis has 

been shown to hold true for the second task; the GF-DOP model can produce more 

accurate phrase-structure trees than the Tree-DOP model. 

Having concluded thus far that the GF-DOP model, through the incorporation 



of functions and feature annotations, can indeed produce more accurate phrase- 

structure trees than the Tree-DOP model alone, we focus for a mornent on what 

type of features produce the best results. The surrlrrlary of results in Table 7.13 

shows that the largest increases were found in the MULTIPLE FUNCTION group; 

the biggest unlabelled increase was the result of the TYPE 3 MULTI-FUNCTIONS 

experiment, while the biggest labelled incrcase was achieved by TYPE 2 MULTIPLE 

FUNCTIONS. Score trends in Table 7.13 suggest that SINGLE FUNCTION experiments 

yieldeci the next best parses. This suggests that aannotation wit,h functions provides 

considerable assistance to the parser, and that cornbinations of frequently occurring 

functions rnakes the best use of these features. That the MULTIPLE FUNCTION 

group yields the best overall unlabelled and labelled scores indicates that this is the 

function type which best supports thc GF-DOP hypothesis; it facilitates the best 

structure assignation arid the best phrase-structure trees are generated. 

The result we found most surprising was the comparatively poor performance 

achieved using ATOMIC annotations. This annotation type did not yield as large 

increases as we had hoped. This expectation was based on the fact that ATOMIC 

ann~t~ations provide such detailed information. Some of the ATOMIC annotations 

used provided us with descriptions ranging from sentence/phrase-structure, such 

as STMT-TYPE, (which we expccted might bc particularly useful given thc data 

set used in these cxperiinelits) to  grammatical agreements such as nurnber, person 

and case. We had expected this type of information, which forms the bulk of the 

features in f-structures, to prove more helpful. We suggest that some features which 

performed well individually, such as PERS, ADJUNCT-TYPE, PRON-TYPE and CASE, 

were averaged with features which did not prove as useful (GRAIN, PROPER and, most 

unexpectedly, NUM), thus bringing down the average performance of the group. 

Given our initial high expectation for ATOMIC annotations, we did not suppose 

that LEXICAL annotations would perform quite so well. However we were pleasantly 

surprised by this category, whose promising average results are shown in Table 

7.13. LEXICAL annotations indicate the required surface form. It appears that this 



concrete information is of greater assistance than was initially expected. Unlabelled 

scores show slightly better performance for the LEXICAL group corrlpared to  the 

ATOMIC group. Labclled scores show a comparable average increase, and slightly 

srnaller average decreases for the LEXICAL group. 

7.1.5 English: Other Points of Interest 

We now present sorne rnore focused points of interest which arose from these exper- 

iments. 

An irltercstirlg variation was noted for unlabelled evaluation of the functioil COM- 

POUND. As a Type 1 Lcxicalised Duplicate Function al-lnotation, COMPOUND scored 

lower than the BASELINE with a tiecrease in f-score of -0.0298%. As a Type 2 Du- 

plicate Function annotation, it matched the BASELINE score exactly, and as a Type 

3 Minimal Furlctiorl annotation it exceeded t,he BASELINE by 0.194%. This was the 

only feature which exhibited this behaviour. As coverage over all experirnerlts re- 

rnairls constant, we hyp~t~hesise that this increase in scorc was influenced by feature 

sparseness, with the score rising when fewer distinct annotations were present. This 

leads us t,o reflect on the size of our data set and the irnplications it has on tho ideal 

functional annotation st,ylc for the GF-DOP model. Wc conclude that better parses 

will be achieved by training t,he parser on a data set which has a lower ratio of 

feature types to  feature tokens; that, is, we need high numbers of repeated features 

to rcduce the impact of feature sparseness. 

As rnentiorled in section 7.1.1 sornc iilteresting behaviour was obscrvetl on the 

t,reebank annot,ated with APP (TYPE 1 SINGLE FUNCTIONS). Although there were 

no features present in the reference set (that is we wcre not airnirlg to  identify any 

features in our test sentences), the few features present in the original aililotated 

trecbarik (4 for APP) showed a significant irnpact on thc probability distribution of 

the fragment set. This alteration in the probability distribution led the parser to 

select a different fragment set to parse some input strings; this different fragment 

set yielded an increase in score over the BASELINE figure. This improvement was 



repeated across Type 2 and Type 3 trcebanks. 

This behaviour appears to be the cxception rather than the rule, as other fea- 

tures which had no occurrences in the ref(>rence sets, but a few occurrences in the 

annotated treebank (COMP-EX 3, O B J ~  3, OBL-AGT 2), did not achieve the same 

improvements. 

As described in section 5.1, the data sct uscd in these expcrirnerits was lirnitetl 

to a total of 980 English sentcnces, allowing us 890 sentcnces for training, and 90 

for testing. Even for our limited data set, Type 1 functiorial annotations managed 

to achieve an overall improvcmerlt in scores, with average increases for both unla- 

belled and labelled evaluation exceeding the absolute value for average decreases. 

However, the considerable increase in average scores between Type 1 arid Type 2 

(unlabelled average increase Type 1 0.0489% versus Type 2 0.090875%) labelled av- 

erage increase Type 1 0.0873% versus Type 2 0.2665%) for which there are exactly 

t,he same nurrlber of annotations (although dramatically fewer distinct types relative 

to the number of feature tokens), acts as an indicator that feature sparseness has 

negatively impacted upon our Type 1 performance. We have seen that Type 1 an- 

notations can improve the parser's performance, and given enough data, we suggest 

that Type 1 experiments would perform as well as Type 2. Scaling up these exper- 

iments would be an interesting avenue for future work, with particular attciltion to  

Type 1 annotation experiments, and a comparison of the proportional improvements 

over each of the three functional annotation types. 

Despite the somewhat limited scale, we believe these experiments have shown the 

first part of the GF-DOP hypothesis to  hold true (for English): the GF-DOP model 

has produced better quality parses than the Tree-DOP model alone. We have iden- 

tified functions, in particular combinations of the most frequently occurring func- 

tions, as the feature classification which leads to the greatest overall improvement, 

although we feel that even better results might be achieved on a larger data set with 

a more generous feature distribution. 



7.2 French: Parse Accuracy 

For all experiments in this section, the uillabelled BASELINE f-score was 96.3590%. 

The labelled BASELINE f-score was 93.3002%. Coverage for all experiments was 

95.6944%. 

7.2. I Functional Annot at ions 

As tiescribed in section 5.2, for each functional annotation we generate three tree- 

banks which we call Type 1 Lexical Duplicate Function, Type 2 Duplicate Function 

and Type 3 Minimal Function (samples illustrated in equations 5.1, 5.2 and 5.3 re- 

spectively). Here we exarnirle the results from our preferred annotation type, Type 

1, and compare its performance to  our Type 2 and Type 3 treebanks. 

Type 1 Lexicalised Duplicate Function Annot at ions 

A selection of the scores for Type 1 experiments are shown in Table 7.14. Focus- 

ing initially on the unlabelled f-scores, of 13 functions, 5 outperform the baseline 

score (ADJUNCT, COMPOUND, OBJ, SUBJ, XCOMP, average increase of 0.06768%); 

ADJUNCT and XCOMP give the highest improvements (of 0.1561% and 0.0779% re- 

spectively). Of the remaining functions, 6 maintain the BASELINE score ( O B J ~ ,  

OBL, OBL-AGT, OBL-COMP, PRON-REL, SPEC, TOPIC-REL), while 2 yield a decrease 

(COMP, OBL, average tiecrease of -0.03465%). 

The labelled f-scores show that 6 of 13 functions outperform the baseline (ADJUNCT, 

COMPOUND, OBJ, O B J ~ ,  SPEC, XCOMP, average increase of 0.1075%), with the great- 

est improvement achieveti by COMPOUND, with an increase of 0.2681%. Of the re- 

mainder, 4 inairitair1 the BASELINE score (OBL-AGT, OBL-COMP, PRON-REL, TOPIC- 

REL) ant1 3 yield a decrease (COMP, OBL, SUBJ, average decrease of -0.0526%). A 

single ailnotation OBL yields the biggest drop for both unlabelled anci labelled scores, 

with decreases of -0.0463% and -0.0693% respectively. 

For this annotation type, labelled scores show the greatest number of improve- 



Table 7.14: Selected parse accuracy scores for Type 1 Lexicalised 
Duplicate Furlction annotated treebanks. 

rrlerlts over the BASELINE anci the greatest average increase (unlabelled average 

increase of 0.06768% versus labelled average increase of 0.1075%.) We note that 

for both unlabelled and labelled scores, the increases are approximately twice the 

absolute decreases (unlabelled averagc irlcrcase 0.06768% versus unlabelled average 

clecreasc -0.03465%, labelled average increase 0.1075% versus labelleti average cie- 

crease -0.0526%). Thus far, this ani~otation type shows promising improvement over 

the parser's BASELINE scores; this is particularly evident in the labelled f-scores. 

occ 

# 
0 ' 

I259 

122 

1176 

135 

25 

1 

453 

61 

C 

BASELINE 

ADJUNCT 

COMPOUND 

OB J 

OBL 

OBJ2 

SPEC 

SUBJ 

XCOMP 

Type 2 Duplicate Function Annot at ions 

A section of the scores for Type 2 experiments are shown in Table 7.15. Unla- 

belled Type 2 f-scores show that of 13 functions, 5 outperformed the BASELINE 

figure (ADJUNCT, COMPOUND, OBJ, SUBJ, XCOMP, average increase of 0.0738%), 

6 maintained the scorc anti 2 yielded a tiecrease (COMP, OBL, average decrease of 

-0.03465%). This time ADJUNCT and OBJ givc thc greatest overall improvements 

(of 0.1172% anti 0.0966% res~~ectively). 

Looking now at  labelled scores, we see that 6 outperform the BASELINE (ADJUNCT, 

COMPOUND, OBJ, SPEC, SUBJ, XCOMP, average increase of 0.0849%), 4 lrlaintairl 

the score and 3 features cause a decrease (COMP, O B J ~ ,  OBL, average decrcase of 

-0.041%). The largest iinprovements are achieved by OBJ (0.1662%) and ADJUNCT 

(0.1102%). For both unlabelled and labelled f-scores, OBL again causes the greatest 

unlabeIled labelled 

precision recall fscore precision recall fscore 

1723 96.5464 96.3590 93.1195 93.4816 93.3002 

96. 96.7253 9 151 9 53 93.6917 93. 

96. 96.6 1 )96 93.3834 93.7539 93.5683 

96. j 1464 1 93.2253 6 93.3882 

96.1187 96.5075 9 127 9 - - ' 3 1  Y? 14 93.---9 

96.1723 96.5464 bU.,S90 9,.,,72 9S.=,J4 93.,uY3 

96.1723 96.5464 96.3590 

96.2036 96.5853 96.3941 

96.2426 96.6319 96.4369 

93.1272 93.4894 93.3080 

93.0580 93.4272 93.2422 

93.1980 93.5750 93.3861 



1 I I &belled unlabelled OCC 

precision recall fscore 

93.1195 93.4816 93.3002 

93.2079 93.6139 93.4104 

93.2197 93.5750 93.3970 

93.2961 93.6372 93.4664 

93.0353 93.4116 93.2231 

93.1272 93.4894 93.3080 

93.1964 93.5516 93.3737 

93.1670 93.5439 93.3551 

BASET;TmE 

ADJUhTCT 

COMPOUND 

OB J 

OBL 

SPEC 

SUB J 

XCOMP 

Table 7.15: Selected parse accuracy scores for Type 2 Duplicate 
Function annotated treebanks. 

precision recall fscore 

96.1723 96.5464 96.3590 

96.2670 96.6864 96.4762 

96.2185 96.5853 96.4015 

96.2799 96.6319 96.4556 

96.1187 96.5075 96.3127 

96.1723 96.5464 96.3590 

96.2340 96.6008 96.4171 

96.2194 96.6086 96.4136 

(iecrease (-0.0463% ant1 -0.0771% respectively). 

We have seen the identical trends in Type 1 and Type 2 scores; for unlabelleti 

scorcs 5 features improve over the BASELINE, 6 features irlairltain the BASELINE and 

2 yield a decrease. For labelled scores 6 improve over the BASELINE, 4 maintain 

thosc scores and 3 yield a decrease. Again, labelled scores show the greatest average 

increase (unlabelled average increase of 0.0738% versus labelled average increase of 

0.08495%). For Type 2 annotations, the absolute unlabelled average increase is over 

twice the absolute unlabelled average decrease (increase of 0.0738% vcxsus decrease 

of -0.03465%). This is also the case for labelled averages; the absolute average 

increase is over twice the average decrease (increase of 0.0849% versus decrease of 

-0.041%). 

Overall, Type 2 annotatioiis show a positive impact on the parser's churlking 

ability, illustrateti by improveti unlabelled scores when compared to Type 1; we see 

an increase in the unlabelled average improvement (Type 1 0.06768% versus Type 2 

0.0738%) anti no extra decrease (Type 1 -0.03465% and Type 2 -0.03465%). How- 

ever, Type 2 annotations do not show the sainc improvement for labelling accuracy, 

cietermiried by tlle labelled scores. Type 2 shows a slightly sinaller average decrease 

than Type 1 (Type 1 labelled average decrease -0.0526% versus Type 2 labelled 

average decrease -0.041%) and a smaller average increase (Type 1 labelled average 

increase 0.1075% versus Type 2 labelled average increase 0.0849%). We note that 



the magnitude lost by the Type 2 average increase is almost twice the magrlitutle of 

the improvement seer1 in the Type 2 average decrease. 

Type 3 Minimal Function Annotations 

A selection of the scores for Type 3 experiments are shown in Table 7.16. The final 

function annotation type shows siinilar trerltis to  the previous t,wo: unlabelled f- 

scorcs show 5 functions outperforming the BASELINE figure (ADJUNCT, COMPOUND, 

OBJ, SUBJ, XCOMP, average increase of 0.08%), 6 maintaining the score and 2 caus- 

ing a decrease (COMP, OBL, average decrease of -0.03465%). Again, the greatest 

increases are yieldeti by ADJUNCT (0.1172%) anti OBJ (0.0966%). 

Table 7.16: Selected parse accuracy scores for Type 3 Minimal Func- 
tion annot,atcd treebanks. 

Type 3 labelleti f-scores also show similar patterns t o  those of Typc 2: we see 

that ,  again, 6 outperform t,he BASELINE (ADJUNCT, COMPOUND, OBJ, SPEC, SUBJ, 

XCOMP, average increase of 0.0797%), 4 maintain the score arid 3 features cause a 

ciccrease (COMP, O B J ~ ,  OBL, average decrease of -0.041%). The greatest increases 

are achieved by OBJ and COMPOUND; OBJ has the greatest iilcreasc (of 0.1506%), 

followed by COMPOUND (0.0968%). As was noteti for both Type 1 anti Type 2 

scores, the greatest decrcase is yielded by OBL, for both unlabelled (-0.0463%) arld 

labelled f-score (-0.0771%). 

Two clear patterns emerge froin tho results for Type 1, Typc 2 and Type 3 

exact same sets annotations; exactly the same number of featurcs (although not thc 

occ 

# 
0 

1271 
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1140 

135 

1 

384 

61 

labelled 

precision recall fscore 

93.1195 93.4816 93.3002 

93.1924 93.5983 93.3949 

93.2197 93.5750 93.3970 

93.2806 93.6217 93.4508 

93.0353 93.4116 93.2231 

93.1272 93.4894 93.3080 

93.1964 93.5516 93.3737 

93.1670 93.5439 93.3551 

BASELINE 

ADJUNCT 

COMPOUND 

OBJ 

OBL 
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SUBJ 

XCOMP 

unlabelled 

precision recall fscore 

96.1723 96.5464 96.3590 

96.2670 96.6864 96.4762 

96.2185 96.5853 96.4015 

96.2799 96.6319 96.4556 

96.1187 96.5075 96.3127 

96.1723 96.5464 96.3590 

96.2650 96.6319 96.4481 

96.2194 96.6086 96.4136 



of features) show increases and decreases for both unlabelled and labelled scores 

across all three types. ADJUNCT, OBJ and COMPOUND generally perform the best 

across all three types for both unlabelled and labelled scores, while OBL consistently 

scores lowest in each category. Furthermore, average increases in scores are always 

very close to, or rnore than, twice the avcrage tiecreases in scores. We conclude that 

arirlotation with each of the three function types assists the parser in both churlking 

accuracy and parse accuracy; at  the very least, use of functions is approxirnately 

twice as beneficial as it is Ilarmful. 

Type 1 Lexicalised Duplicate Multiple Function Annot at ions 

All scores for Type 1 multi-function annotated experiments are shown in Table 

7.17. In the parallel English experiment we gcnerated thrce feature-combination 

treebanks: ALL,  TOP^ anti SuBJ-OBJ. For French we have generat,etl four treebanks 

as the top five most frequently occurring features in French were not the same as the 

top five most frequently occurring features in English. For English those features 

were ADJUNCT, COMPOUND, OBJ, SUBJ and XCOMP. For French the top five were 

ADJUNCT, COMPOUND, OBJ, OBL and SUBJ. In order to  rnore directly compare 

our parser's performance in both languages, we gcnerated trecbanks with both the 

English top five features (called E N G ~ )  and thc French top five (called F R E ~ ) .  

0 CC 

precision recall fscore precision recall fscore # 

95.9421 96.3675 96.1543 92.7050 93.1161 92.9101 3256 

95.9721 96.3752 96.1733 92.7730 93.1627 92.9675 3071 

95.9340 96.3519 96.1425 92.8748 93.2794 93.0767 3145 

SUBJ-OBJ 96.1386 96.4452 96.2917 93.0526 93.3494 93.2008 629 

Table 7.17: Parse accuracy scores for Type 1 Lexicaliscd Duplicate 
Multiple Function ailnotatetl treebanks. 

From Table 7.17 we see disappointing results. No combination of features has 

managed to outperform the BASELINE figure. The average unlabellcd decrease is 

-0.1685% and, surprisingly, F R E ~  has scored the lowest of all combinations, with 



a decrease of -0.2165%. The average labelled decrease is -0.2614%; this time ALL 

scores lowest, showing a decrease of 0.3901%. As F R E ~  and ALL have very high 

numbers of occurrences, we must conclude that feature sparseness has had a very 

strong, negative impact. 

Type 2 Duplicate Multiple Function Annot at ions 

Scores for Type 2 multi-function annotatetl experiments are shown in Table 7.18. 

Scores for Type 2 multi-function annotation experiments are more encouraging that 

those of Type 1; unlabelled scores show 3 combinations outperforming the BASE- 

LINE with an average increase of 0.087%, the highest scoring combination being 

SUBJ-OBJ with an increase of 0.1081%. The only combination continuing to yield 

low unlabelled scores for Type 2 is F R E ~ ,  showing a decrease of -0.1398%. Labelled 

scores fare better, however; all four c~rnbinat~ions outperforming the BASELINE score, 

with an average improvernerlt of 0.07735%. The highest individual increase is again 

yielded by SUBJ-OBJ (0.1387%). 

Table 7.18: Parse accuracy scores for Type 2 Duplicate Multiple 
Function annotated treebanks. 

The reduction in feature sparseness has hatl a clear impact on scores with every 

score in every category (in Table 7.18) showing some improvement. Unfortunately, 

F R E ~  does not provitle the assistance we had expected, with E N G ~  yielding greater 

increases in both unlabelled and labelled evaluations. 

OCC 

# 
0 

3294 

3109 

3183 

1629 

labelled 

precision recall fscore 

93.1195 93.4816 93.3002 BASELINg 

unlabelled 

precision recall fscore 

96.1723 96.5464 96.3590 
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FRE5 

SUBJ-OBJ 
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96.1 96.6164 96 4 ,1691 ' 16 

518 9 86 96 7 9 93.6061 93.3990 

490 9 75 96.2428 ~ u . 1 1 ~ 8  93.4894 93.3007 

3u.1951 9,.,,97 96.4671 93.2724 93.6061 93.4389 



Type 3 Minimal Multiple Function Annot at ions 

Scores for Type 3 multi-function annotated experiments are shown in Table 7.19. 

We see similar trends in the unlabelled scores as for Type 2, with 3 combinations 

outperforming the BASELINE (ALL, E N G ~ ,  SUB J-OB J) resulting in an average increase 

of 0.0971%. Again, only F R E ~  yielded a decrease (of -0.1398%). The same pattern is 

seen in the labelled evaluation; the same 3 counbinations yield increases, on average 

0.0844%, and F R E ~  shows a decrease of -0.0776%. 

Table 7.19: Parse accuracy scores for Type 3 Minimal Multiple 
Function annotated treebanks. 

BASELINE 

ALL 

ENG5 

FRE5 

SUBJ-OBJ - 

7.2.2 Atomic Feature Annotations 

Atomic Preterminal Annot at ions 

The result of this experiment is shown in Table 7.20. Focusing initially on the 

unlabelled f-scores, of 9 atomic pre-terminal features, 4 outperform the baseline score 

(MOOD, PRON-TYPE, PROPER, REFL, average increase of 0.0876%): REFL and PRON- 

TYPE give the greatest improvements (of 0.186G% and 0.1127% respectively). Of the 

remaining features, 2 maintain the BASELINE score exactly (INV, NUMBER-TYPE), 

while 3 yield a decrease (GRAIN, NUM, PERS, average decrease of -0.051%). The 

largest decrease is seen in the unlabelled f-score for PERS, with a drop of 0.0886%. 

Again the unlabelled average increase is larger than the absolute unlabelled average 

decrease. 

The labelled f-scores show that 4 of 9 atomic pre-terminal features outperform 

the baseline (GRAIN, PRON-TYPE, PROPER, REFL, average increase of 0.1185%), with 

OCC 

# 
0 

3163 

2978 

3052 

1524 

9 
precision recall fscore 

96.0913 96.3991 96.2450 

96.2435 96.6553 96.4489 

96.2822 96.6942 96.4878 

96.0329 96.4063 96.2192 

96.2710 96.5930 96.4318 

precision recall fscore 

92.7148 93.0117 92.8630 

93.2151 93.6139 93.4141 

93.1919 93.5905 93.3908 

93.0420 93.4039 93.2226 

93.1933 93.5050 93.3489 



I unlabelled I iabeIled OCC 

BASELINE 

GRAIN 
MOOD 

NUM 

PERS 

PRON-TYPE 

PROPER 

REFL 

precision recall fscore 

96.1723 96.5464 96.3SU 

96.1637 96.5152 96.3391 

96.1965 96.5930 96.3943 

Table 7.20: Parse accuracy scores for Atomic Preterininal annotated 
treebanks. 

precision recall fscore 

93.1195 93.4816 93.3002 

93.1644 93.5050 93.3344 

93.0978 93.4816 93.2893 

92.9721 93.4350 93.2030 

93.0757 93.4739 93.2743 

93.2982 93.6683 93.4829 

93.1515 93.5283 93.3395 

93.3297 93.7072 93.5181 

the greatest improvement achieved again by REFL, with an increase of 0.2179%. Of 

the remainder, noiie maintain the BASELINE score, and a furthcr 5 yield a decrease 

(INV, MOOD, NUM, NUMBER-TYPE, PERS, avcrage decrease of -0.0299%), with the 

largest decrease seer1 in the labclleti f-score for NUM, with a drop of -0.0972%. We 

note that the labelled average increasc is approximately 4 tirrles the absolute labelled 

average decrease. 

Although unlabelled scores show a greater riurnber of improvements over the 

BASELINE, labelled scores show a much greater average increase (unlabelled averagc 

irlcrcase of 0.0876% versus labelled average illcrease of 0.1185%) and less that two 

thirds the average decrease (unlabelled average decrease of -0.051% versus labelled 

average decrease of -0.0299%). In addition, the absolute average increases for both 

evaluation types are greater than absolute average decreases. This annotation t,ype 

shows a coiisiderable improvement over the parser's BASELINE scores. 
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2341 

606 

3666 

3332 

796 

244 

709 

Atomic Root Annotations 

A selection of the results of this expcrimeilt are shown in Table 7.21. Unlabelled 

f-scores show that of 31 atomic root features, 12 outperforined the BASELINE fig- 

ure (ADEGREE, CASE, CONJTYPE, DEIXIS, LAYOUT-TYPE, PASSIVE, PCASE-TYPE, 

PREDET-TYPE, PSEM, STMT-TYPE, TENSE, TYPE, average irlcrease of 0.0274%), 

10 maintained the score exactly (ADJUNCT-LAYOUT, CONJOINED, ADEG-DIM, FOO, 



NEG, PREVERB-OBJ, STRESSED, TIME) and 11 yielded a decrease (ADJUNCT-TYPE, 

ADV-TYPE, APOS, ATYPE, GEND, NE, PERF, PTYPE, SPEC-TYPE, STATUS, VTYPE, 

average decrease of -0.0376%). This time CONJTYPE and PSEM give the greatest 

overall improvements (of 0.0768% and 0.0615% respectively). The largest decrease 

is seen in the unlabelled f-score for PTYPE, with a drop of -0.1208%. 

precision recall fscore precision recall fscore # 
BASELINE 96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 0 

ADEGREE 96.1652 96.5541 96.3593 93.0896 93.4661 93.2774 204 

96.1494 96.5308 96.3397 93.1278 93.4972 93.3121 179 

96.1807 96.5697 96.3748 93.1051 93.4816 93.2930 1124 

CONJTYPE 96.2713 96.6008 96.4358 93.1938 93.5128 93.3530 49 

96.1878 96.5619 96.3745 93.1350 93.4972 93.3157 23 

96.1416 96.5230 96.3319 93.3292 93.6994 93.5140 2018 

LAYOUT-TYPE 96.2033 96.5775 96.3900 93.0342 93.3961 93.2148 573 

96.1899 96.6164 96.4027 93.0922 93.5050 93.2981 760 

PCASE-TYPE 96.1878 96.5619 96.3745 93.1195 93.4816 93.3002 20 

PREDET-TYPE 96.1878 96.5619 96.3745 93.1195 93.4816 93.3002 0 

96.2486 96.5930 96.4205 93.2414 93.5750 93.4079 322 

96.0629 96.4141 96.2382 93.0016 93.3416 93.1713 918 

STMT-TYPE 96.1881 96.5697 96.3785 93.0503 93.4194 93.2345 426 

TENSE 96.2021 96.5464 96.3739 93.0708 93.4039 93.2371 212 

TYPE 96.1953 96.5619 96.3782 93.1499 93.5050 93.3271 54 

Table 7.21: Selected parse accuracy scores for Atomic Root anno- 
tated treebanks. 

Looking now at labelled scores, we see that only 6 atomic root features out- 

perform the BASELINE (APOS, CONJTYPE, DEIXIS, GEND, PSEM, TYPE, average 

increase of 0.0714%), 7 maintain the score (CONJOINED, ADEG-DIM, FOO, PCASE- 

TYPE, PREDET-TYPE, PREVERB-OB J, STRESSED) anc-1 18 features cause a decrease 

(ADEGREE, ADJUNCT-LAYOUT, ADJUNCT-TYPE, ADV-TYPE, ATYPE, CASE, LAYOUT- 

TYPE, NE, NEG, PASSIVE, PERF, PTYPE, SPEC-TYPE, STATUS, STMT-TYPE, TENSE, 

TIME, VTYPE, average decrease of -0.0488%). Again PTYPE yields the greatest chop 

in f-score, with a decrease of -0.1289%. 

Although unlabelled scores show a greater number of improvements over the 

BASELINE, labelletl scores show the greatest average increase (unlabclled average 

increase of 0.0274% versus labelled average increase of 0.0714%). Interestingly, PSEM 



is the second highest scoring unlabelled and labelled feature, while PTYPE and SPEC- 

TYPE are the lowest aiid second lowest scoring unlabelled and labelled features. 

Multiple Atomic Annot at ions 

The scores for this c-:xperiment arc shown in Table 7.22. For our French experiments, 

we have generated orie atlditional treebank; previously we tested the feature cornbi- 

nation NUM-PERS, but now we test this combination anti also NUMJERS-GEND as 

GEND has shown itself t o  be corisiderably more informative for French than for Erig- 

lish. Furthermore, the English treebank PERFTROG-TENSE generated is replicated 

for French, but called PERF-TENSE only; no PROG feature was present in the Frcrlch 

data set. 

Table 7.22: Parse accuracy scores for Multiple Atomic annotated 
treebanks. 

RASELINE 

NUM-PERS 
NUMSERS-GEND 

PERF-TENSE 
PERF-TENSE-PASSIVE-MOOD 

Urilabelled f-scores show that of the 4 multi-annotated treebanks, 3 outperform 

the BASELINE figure (NUM-PERS, NUMPERS-GEND, PERF-TENSETASSIVE-MOOD) , 

with an average increase of 0.0584%. The highest scoring unlabellcc-1 combiiiatiori 

is NUM-PERS with an increase of 0.1046%. This is an uriexpecteti ranking; we 

hatl expected that N U M J E R S - G E N D  would scorc higher than NUM-PERS. However, 

unlabelled scores are an indication of chunking performance only, so we expect that 

NUM-PERS-GEND will show an irnprovcment in parse accuracy. 

The only unlabclled fcature combination which scores lower than thc BASELINE 

.re we is PERF-TENSE, with a decrease of -0.0808%. As noted in section 7.1.2, whc 

usc coinbinations of related features, the parser performs better by incorporating 

all features; the incorporation of PASSIVE and MOOD with PERF-TENSE leads to an 

occ 

# 
unlabelled 

precision recall fscore 

labclled 

precision recall fscore 

96.1723 96.5464 96.3590 

96.2805 96.6475 96.4636 

96.1652 96.5541 96.3593 

96.0731 96.4841 96.2782 

96.2277 96.6319 96.4294 

93.1195 93.4816 93.3002 0 

93.2817 93.6372 93.4591 

93.3607 93.7383 93.5491 

92.9905 93.3883 93.1890 

93.1139 93.5050 93.3090 

4948 

5003 

695 

778 



improvement in f-score of 0.1512%. 

Labelled f-scores show 3 feature cornbinations outperforming the BASELINE with 

an average increase of 0.1388%. As we hoped, NUM-PERS-GEND improves parse ac- 

curacy more than N U M T E R S  (by 0.09%), and in fact is the highest scoring labelled 

feature combination, showing an increase over the BASELINE of 0.2489%. The in- 

corporatiori of GEND has shown the expected improvement. 

Again, PERF-TENSE is the only combination which scores lower than the BASE- 

LINE, showing a decrease of -0.1 112%. We also see a difference of 0.12% be- 

tween the labelled scores for PERF-TENSE and PERF-TENSE_PASSIVE_MoOD. That, 

PERF~TENSE_PASSIVEJ~IOOD has again performed better than PERF-TENSE is con- 

firmati011 that additional detailed information proves uscful in assisting the parser 

to  generate better quality phrase-structure trees. 

7.2.3 Lexical Feature Annotations 

Lexical Preterminal Annot at ions 

For Frerich we identifietl a larger group of lexical pre-terminal annotated treebanks 

than for English; there are two language-specific features (AUX-SELECT and NEG- 

FORM), as well as a greater distribution of the feature PRECONJ-FORM (for English 

PRECONJ-FORM oc,curred in only a single sentence, and so we could not havc deter- 

mined any useful patterns). 

Table 7.23: Parse accuracy scores for Lexical Preterminal annotated 
treebanks. 

unlabelled lnbellerl OCC 

precision recall fscore precision recall fscore # 
BASELINE 

Urllabelled scores show that the two languagc-specific features outperforrn the 

141 

AUX-SELECT 

FORM 

NEG-FORM 

PRECONJ-FORM 

PRON-FORM 

96.2584 96.6553 96.4564 

96.1723 96.5464 96.3590 

96.1726 96.5541 96.3630 

96.1723 96.5464 96.3590 

96.1267 96.5230 96.3245 

93.2295 93.6139 93.4213 

93.1195 93.4816 93.3002 

93.1123 93.4816 93.2966 

93.1195 93.4816 93.3002 

93.0126 93.3961 93.2040 

1040 

3 

30 

14 

170 



BASELINE at chunking: AUX-SELECT and NEG-FORM, with an average increase of 

0.0507%. AUX-SELECT by itself shows quite a high increase (actually the highest 

for this group) of 0.0974%. PRON-FORM is the only score which is lower than the 

BASELINE, showing a drop of -0.0345%. 

AUX-SELECT also performs best according to labelleti scores; it is the only feature 

which outperforms the BASELINE score, with an increase of 0.1211%. PRECONJ- 

FORM again maintains the BASELINE, while NEG-FORM and PRON-FORM yield an 

average labelled decrease of -0.0499%. Interestingly, NEG-FORM shows almost the 

sarne labelled decrease (-0.0036%) as it, does labelled increase (0.004%). 

Lexical Root Annot at ions 

The result of this cxperirrlerlt is shown in Table 7.24. Focusing initially on the un- 

labelled f-scores, of 8 lexical root features, 3 outperform the baseline score (CONJ- 

FORM, PCASE, PREDET-FORM, average increase of 0.1244%): PCASE gives the great- 

est improvement (of 0.2853%) overall. Of the remaining features, 3 maintain the 

BASELINE score exactly (COMP-FORM-ANAPH, CONJ-FORM-COMP, FORM), while 2 

yield a decrease (COMP-FORM, SPEC-COMP, average tiecrease of -0.4224%). 

unIabelled 

Table 7.24: Parse accuracy scores for Lexical R.oot annotated tree- 
banks. 

Iabelld OCC 

BASELINE 

The labelled f-scores show that only 2 of the 8 lexical root features outperform the 

baseline (CONJ-FORM, PCASE, average increase of 0.2414%), the grcatest improve- 

ment achieveti again by PCASE, with an increase of 0.3725%. Of the remainder, a 

precision recall fscore 

96.1723 96.5464 96.3590 

COMP-FORM 

COMP-FORM-ANAPH 

CONJ-FORM 

precision recall fscore 

93.1195 93.4816 93.3002 

# 
0 - 

95.3244 95.7752 95.5493 

96.1723 96.5464 96.3590 

96.2782 96.5853 96.4315 

91.3278 91.7597 91.5433 

93.1195 93.4816 93.3002 

93.2620 93.5594 93.4105 

CONJ-FORM-COMP 

FORM 

PCASE 

PREDET-FORM 

SPEC-FORM 

181 

0 

160 

93.1195 93.4816 93.3002 

93.1195 93.4816 93.3002 

93.4370 93.9095 93.6727 

93.1195 93.4816 93.3002 

93.0957 93.4505 93.2728 

96.1723 96.5464 96.3590 

96.1723 96.5464 96.3590 

96.4012 96.8886 96.6443 

96.1878 96.5619 96.3745 

96.1410 96.5075 96.3239 

0 

3 

978 

0 

932 



further 4 maintain the BASELINE score (COMP-FORM-ANAPH, CONJ-FORM-COMP, 

FORM, PREDET-FORM) and 2 yield a decrcase (COMP-FORM, SPEC-FORM, average 

decrease of -0.89215%). The largest decrease in both unlabelled and labelleti f-scores 

is yielded by just one feature, COMP-FORM, with a drop of -0.8097% for unlabelled 

scores and -1.7569% for labellcd. 

Again here unlabelled scores show a greater number of improverrielits over the 

BASELINE, but labelled scores show the greatest average increase (unlabelled average 

increase of 0.1244% versus labelled average increase of 0.2414%). For the first time, 

absolute average decreases far outweigh average increases; unlabelletl average de- 

crease (0.4224%) is more than 3.5 times the unlabelled average increase (0.1244%), 

while absolute labelled average decrease (0.89215%) is rnore than 3.7 times the la- 

belled average increase. 

Multiple Atomic Lexical Annot at ions 

The rcsult of this cxperirnent is shown in Table 7.25. Only 2 combined atomic- 

lexical treebarlks were generated as we set out to test groups of related features, or 

feat,ures which commonly co-occur in f-structures. Fbr both uiilabelled and labelled 

f-scores, PREDET-FORMTREDET-TYPE performs best; unlabelletl scores show this 

cornbirlatiori outperforms the BASELINE by 0.0155%, and labelled scorcs show it, 

maintaining the BASELINE scores. SPEC-FORMSPEC-TYPE yields a decrease for 

both unlabelled ariti labelled scores, of -0.0667% and 0.0595% respectively. 

Table 7.25: Parse accuracy scores for Multiple Atomic Lexical anno- 
tatod t,reebanks. 

BASELINE -- 
PREDET-FORMSREDET-TYPE 

SPEC-FORMSPEC-TYPE 

This cornbination of results was most unexpected; if we consitler the number of 

occurrences of features in thc reference data, for PREDET-FORMPREDET-TYPE there 

unlabelled labelled occ 

precision recall fscore precision recall fscore # 

96.1878 96.5619 96.3745 93.1195 93.4816 93.3002 0 

96.1243 96.4608 96.2923 93.0781 93.4039 93.2407 1854 



were no instances of annotations in the reference data. Examination of the annotat,ed 

treebank shows that only 8 annotations were present in the treebank. Alt,hougl.1 we 

were riot aiming to  identify any features in the test sentences, features in the training 

data ].lave shown their influence over the parser's choice of fragments, improving the 

parser's chunking perforinance, yet having no impact on parse accuracy. 

Although SPEC-FORMSPEC-TYPE has a very high nurrlber of features, it scores 

lower than the BASELINE for both unlabelled and labelled evaluation. Furthermore, 

it performs slightly worsc: than the averago scorcs of thc features individually, Thc 

average unlabelled score for SPEC-FORM and SPEC-TYPE is 96.29255, 0.00025% more 

than thc score for their coinbincd use (96.2923). The average labelled score for SPEC- 

FORM and SPEC-TYPE is 93.2412, 0.0005% more than the score for their corn1)ined 

use (93.2407). Although this rcsult corlflicts with t,rends we have secn elsewhere 

(for most other combined groups of fcat,ures, a high nurrlbcr of occurrences yielded 

improved f-scores, and a higher score than the average of individual scores) the 

differences in scores here are so small as to be insignificant. 

7.2.4 French: Discussion 

We sul-nmarise the average increases and decreases for unlabelletl anti labelled scores 

for each of the twelve groups of experinlerlts in Table 7.26 for ease of reference during 

this discussion. The greatest increases and decreases are highlightcd in bold. Where 

there was no average increase or decrease, we intlicatc this was not applicable. 

Looking first at  scores for unlabellcd evaluation, we see that 11 of the 12 experi- 

merits shows some irnprovenlerit over the BASELINE, with average increases ranging 

frorn 0.0155% (MULTIPLE ATOMIC LEXICAL) to 0.1244% (LEXICAL ROOT). The 

only experiinerlt which did not achieve an avcrage increase was TYPE 1 MULTI- 

PLE FUNCTIONS. All experirrlcrlts show some unlabcllcd average tiecrease, ranging 

frorn -0.0345% (LEXICAL PRETERMINAL) to  -0.4224% (LEXICAL ROOT). Calcula- 

t,ion of the overall average unlabelled increase (0.0641%) and the absolute average 

unlabelled decrease (-0.1452%) shows that thc GF-DOP model's ovcrall chunking 



Table 7.26: Summary of average increases and decreases for unla- 
belled and labelled scores for each anrlotation type. 

unlabelled (%) 
average increase average decrease 

performance has not improved for French. 

A pattern which was frequently observed for English was that the average in- 

crease was generally larger than the average decrease. For the urllabelled scores 

sumrriariseti in Table 7.26, we see that 5 times out of 12 thc average increase is 

greater than the averagc decrease. Oiice there is no average increase (TYPE 1 MUL- 

TIPLE FUNCTIONS) anti 6 tirnes the average decrease is greater than the average 

increase. Thc magnitude of sorne average decreases (particularly LEXICAL ROOT) 

coinpared with their averagc inc,reases suggests that the GF-DOP model has not 

performeti well for task 2. 

Moving on t,o labelled evaluation scores, we see that only 10 out of 12 experi- 

ments have shown an average increase, ranging from 0.0714% (ATOMIC ROOT) to  

0.3094% (TYPE 2 MULTIPLE FUNCTIONS). Again TYPE 1 MULTIPLE FUNCTIONS 

and also MULTIPLE ATOMIC LEXICAL have failcd to  achieve an average increase. All 

experiments show some labelled average tlccreaso, ranging fro111 0.0299% (ATOMIC 

PRETERMINAL) to 0.8921% (LEXICAL ROOT). Of the 12 experiments, 9 show a 

greater labelled avcrage increase than avcrage decrease, 2 show no averago increase 

and twicc the avcrage decrease is the larger number. Although it appears that, an 

labelred (%) 

average increase average decrease 

0.1075 0.0526 

0.0849 0.041 

0.0797 0.041 

n/a 0.2614 

0.3094 0.0773 

0.0844 0.0776 

0.1185 0.0299 

0.0714 0.0488 

0.1388 0.112 

0.1211 0.0499 

0.2414 0.8921 

n/a 0.0595 

TYPE 1 SINGLE FUNCTIONS 

TYPE 2 SINGLE FUNCTIONS 

TYPE 3 SINGLE FUNCTIONS 

TYPE 1 MULTIPLE FUNCTIONS 

TYPE 2 MULTIPLE FUNCTIONS 

TYPE 3 MULTIPLE FUNCTIONS 

ATOMIC PRETERMINAL 

ATOMIC ROOT 

MULTIPLE ATOMIC 

LEXICAL PRETERMINAL 

LEXICAL ROOT 

MULTIPLE ATOMIC LEXICAL 

0.0676 0.0346 

0.0738 0.0346 

0.08 0.0346 

n/a 0.1685 

0.087 0.1162 

0.0971 0.1398 

0.0876 0.051 

0.0274 0.0376 

0.0584 0.0808 

0.0507 0.0345 

0.1244 0.4224 

0.0155 0.0667 
- 



ovcrall improvement has been achieved, a closer examination of the figures shows 

that the average decrease (-0.1452%) is in fact larger than the average increase 

achieved (0.1131%). Again, the rrlagrlitude of some of the decreases (particularly 

LEXICAL ROOT) far outweighs the gains aclrlicved by the increases. Thus, it is clear 

that the GF-DOP model has not performed as well for French as it has for English 

on this task. 

Although we have not seen the expected overall improvement in performance 

from the GF-DOP model applied to a French data set, we note that some promising 

results were observed for several feature groups. The summary of results in Table 

7.26 shows some interesting trends. 

For Type 1 single functiolis we liotetl some promising results; although Type 

1 single functions are likely to  suffer from feature sparseness, both unlabelled and 

labelled increases were double the magnitude of their respective tlecrcases, Moving 

on t,o Type 2 and Type 3 single functions, we note t,hat while each of their unla- 

belled average increases show improverncnt over thc previous type, their unlabclletl 

average decrease remains constant. The reduction in feature sparseness has led to 

larger average unlabelled increases but has not yicltled a reduced average unlabelled 

decrease, as we would have expected. 

The perforrrlarlce of all three types of multi-functions is also a little disappointing. 

Unlabellcd scores show an overall impairment to the parser's chuiikirlg performance; 

average unlabelled decreases outweigh average unlabelled increases. Labelled scores 

fare slightly better; TYPE 1 MULTIPLE FUNCTIONS show only an average decrease, 

no increase. TYPE 2 MULTIPLE FUNCTIONS show an  average increase four times 

the average decrease; this is in fact the largest average labelled iacrease. This 

result supports our assertion that for a generous distribution of frequently occurring 

features, particularly for combinations of co-occurring features, we can improve the 

quality of c-structures generated. TYPE 3 MULTIPLE FUNCTIONS result in a larger 

average increase than decrease, but this average increase is notably lower than that 

of TYPE 2 MULTIPLE FUNCTIONS. 



Of all the groups of experiments, the ATOMIC group seems to  be more beneficial 

to the quality of the phrase-structure trees generated rather than the chunking 

ability of the parser. Labelled average increases are coiisisteiitly larger than absolutc 

labelled average decreases. This is in line with our a priori expectations; given the 

addition of detailed grammatical features, we hoped t o  see an improvement in the 

quality of the parses generated. 

Features frorn the LEXICAL group have shown the greatest impact on parser 

perforrnancc; the greatest average unlabelled increases and decreases are yielded by 

LEXICAL ROOT features, as is the greatest avcrage labelled decrease. Our initial 

expectat,ion was that LEXICAL features would not exhibit such a strong influence. 

7.2.5 French: Other Points of Interest 

We now focus on sorne more particular points of interest which arose frorn these 

experiments. 

In an English cxperirncnt, interesting behaviour was obscrved 011 the treebank 

annotated wit,h the feature APP; although there were no features to  identify when 

cornparing output parses to the reference set, an increase in the unlabelled evaluation 

f-score showed some improvement in the parser's churlking performance. We note 

similar behaviour for two indivitlual French features, PREDET-FORM and PREDET- 

TYPE (which have 4 occurrences each in their rcspectivc treebanks, ant1 0 in their 

reference sets), and onc multi-annotated treebank PREDET-FORMYREDET-TYPE 

(which has a total of 8 features in the annotated treebank and again 0 in the reference 

set). Each of these threo experirrlerlts has shown an in~provenlent in unlabelled 

evaluation scores; this suggests that the ar~notation of h e b a n k s  with even a few 

features has a striking influence over the parses output. A small rmrnber of featuros 

show enougll iinpact on the fragmcnt probability distribution to  alter the fragments 

chosen by the parser, and transform the output parse. 

Although our discussion of results in section 7.2.4 conclutles that tlie GGF-DOP 

model has not been shown to  perforin sufficielitly well overall, on task 1 or task 2 



for French, we suggest two reasons for this shortcoming. 

Firstly, we suggest that our experiments have been negatively affected by data 

sparseness. As mentioned in section 7.1.5, the data set used in these experiments 

was very limited: only 930 serlterlces for French, irlcorporatirlg 79 features. While 

tlata sparseness is intleed an issue for English, the French data set has more features 

distributecl over fewer sentences; necessarily, these features have fewer occurrences 

each. Furthermore, these experiments allow 840 sentences for training and reserve 

90 for testing aritl evaluation (the reference set,). This is a particularly small data set 

for statistical work and data sparseness is inevitable. Furthermore, longer average 

test sentences are more likely to  lcad to  reduced f-scores. 

Secondly, the French BASELINE f-scores we compare the GF-DOP model's per- 

formance to are very high t o  begin with (unlabelled 96.359, lal~elled 93.3002). These 

scorcs are even higher than the BASELINE scores achieved for English: unlabelled 

96.245, labelled 92.863. Given such high BASELINE figures, it is difficult to  yield a 

significant improvement. 

7.3 Summary 

Some interesting trends were observed in this chapter. Experiments on the Eng- 

lish data set achieved improvements in both chunking performance and labeling 

accuracy. These illcreases indicate an improvclnent t o  overall parse accuracy. Fur- 

thermore, average f-score increases were almost always greater than absolute average 

f-score decreases; that is, the bencfit,~ gained through the illcorporation of feat,ures 

outweigh any losses incurred. In addition, for English, we iderltified treebanks with 

~rlultiple furlct,iorl annotations as the foat,ures which protiucc the best results. We 

coilclutle that the GF-DOP model has succeeded at this ttask for English. 

Experiments on the French data set showed quite different results; we did not 

see an overall improvement in chunking performance, although wc: note that we 

started with a higher baseline for French than for English. Although English average 
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Figure 8.1: Illustration of relationships between Chapters 5, 6, 7 and 
8. 



English vs. French 

Although our discussions in sections 6.1.4 and 6.2.4 conclude that the GF-DOP 

model pcrforrns reasonably wcll at  task one (feature detection accuracy) for both 

English and French, an(1 our tliscussiorls in sections 7.1.4 and 7.2.4 coilclude that 

the GF-DOP rrlodel performs better for English t,harl for French at  task two (parsc 

accuracy), we now concentrate our attention on some interesting points of cornpar- 

isori. 

We begin with a juxtapositioii of the starting points for each language. For Eng- 

lish, we trairied on eight training sets 890 sentences, producing average urllabelled 

baseline f-scores of 96.245 and labelled baseline f-scores of 92.863. For French, we 

trained on eight, sets of 840 sentences, producing average unlabclled baselinc f-scores 

of 96.359 and labelled baseline f-scores of 93.3002. As a result of fewer training sen- 

tences, we might have expected slightly lower baseline scores for French. However, 

as stated in scction 5.1, the average number of words per English sentence is 8.54, 

while the average number of words per French sentence is 9.87. Upon scaling the 

number of sentcnces by the average scntence length, wc see that there are approx- 

irnatcly 7600 words in each English training set and 8921 in each French training 

sct. This difference probably explains why the Frcrlch baselines are higher than 

the English baselines even though therc are fewer training sentences. However, wc 

must apprcciate that the averagc test seiltciice length was longer for Frcncli than 

for English, thus lower f-scores are inore probable. This conflicting evidence makes 

it difficult to  deduce coliclusively why the parser achieves higher overall scores for 

French. Although such high baseline scores are a credit to the Tree-DOP model, 

the GF-DOP model must score very highly to show any positive impact of feature 

annotations; it is quite difficult to  outperforin the baseline. 

Now we compare the impact of features on each language, beginning with TYPE 1 

LEXICALISED DUPLICATE FUNCTION annotations. Comparison of scores for this an- 

notation type shows that ADJUNCT is universally the most 'helpful' feature, yielding 



the greatest urilabelled increase for both English and French, the greatest labelled 

increase for English and the second highest labelled increase for French. Knowledge 

and presence of 'helpful' features may be useful in applications which attempt to 

decompose sentences into smaller, more manageable chunks: for example in order to 

apply machine t,ranslatioli to simpler constituents, such as that of Mellebeek et al. 

(2005). 

However, some features which perform particularly well for one language are con- 

siderably weaker for the other; for example, COMPOUND yields the highest labelled 

increase for French, arid also outperforms the unlabelled baseline, but yields lower 

urilabelled and labelled scores compared to the English baseline; this trend might be 

expected given the differing linguistic forms of compounds in English and French. 

Similarly, SUBJ consistently underperformed for English, while improving unlabelled 

scores for French. Conversely, OBL shows some overall improvements for English, 

while yielding the largest overall decreases for French. 

Examination of feature detection scores for TYPE 1 LEXICALISED DUPLICATION 

FUNCTION arinotations show considerably higher scores for F'rench than for English 

(for cornrnonly occurring features). The following features score higher for French 

than for English: 

ADJUNCT scores 19.24% higher 

COMPOUND scores 3.66% higher 

OBJ scores 15.86% higher 

OBL scores 23.26% higher 

SUBJ scores 16.26% higher 

We note that XCOMP is the only commonly occurring feature whose detection score 

is higher for English than for French (by 2.8%); however, XCOMP shows an improve- 

ment in both unlabelled and labelled scores for French, but only unlabelled scores 

for English. 



For TYPE 2 DUPLICATE FUNCTION anrlotations we note a slight alteration of 

rank in features; ADJUNCT is now the second rnost 'helpful' feature overall, yielding 

the second. highest improvement for both unlabelled and labelleti scores in English, 

the second highest irnproverneiit for labelled French scores and the highest improve- 

ment for urllabelled French scores. OBJ is now the rnost 'useful' feature overall, bcilig 

ranked first for unlabelled and labelled scores in English, first for labelled scores in 

French and secoiid for unlabclled scores in French. We note that while SUBJ has 

again been the lowest scoring feature for English, it corttinues to  outperform the 

French BASELINE scores. 

Feature detection scores for TYPE 2 DUPLICATE FUNCTIONS show a rnuch nar- 

rower, difference than for TYPE 1 LEXICALISED DUPLICATE FUNCTIONS. For rnost 

commonly occurring features an evenly spread tiiffercrlce of less than 4.5% is ob- 

served; OBL shows an except(iorla1 difference of 23.59% between scores (the higher 

score was yielded by the French experiment). Similar peaks and troughs, arc rlotetl 

for TYPE 3 MINIMAL FUNCTION annotations. 

Comparison of MULTIPLE FUNCTION annotat,ions shows sevcx-a1 large differences 

between languages; for TYPE 1 English experiments all combinations of functions 

outperformed the bascline. For TYPE 1 French experiments no combination outper- 

formed the baseline. We note much higher numbers of features in each of the French 

treebanks, and also higher French feature detection scores (in the range 72.4-74.2 

for French, 56.4-57.7 for English). 

TYPE 2 DUPLICATE MULTIPLE FUNCTION features show considerable improve- 

ment for French; three of the four function combinatiolis outperform the BASELINE, 

with only F R E ~  lagging behind, agaiii underperforming when compared to  the unla- 

belled BASELINE, but managing to show a small increase over the labelled BASELINE. 

English feature detection scores show a much larger actual increase (approximately 

27-28%) than French (approximately 12-15%). TYPE 3 MULTIPLE FUNCTION fea- 

tures show the same trends as TYPE 2 MULTIPLE FUNCTION, although English 

feature detection scores each show actual increases of just over 1% (compared to  



TYPE 2) while Frerlch features show actual increases of only 0.3-0.5%. 

Although MULTIPLE FUNCTION annotations were seen to  have the greatest irn- 

pact on English parse accuracy scores, LEXICAL features appear to  show the most 

influence on Frerlch scores, with very high feature tletection scores for this group 

(from 95.7-96 for LEXICAL PRETERMINALS and 78.1-88.8 for LEXICAL ROOTS with 

a gootl feature distribution) compared to  their English equivalerlts (92.1 for the sin- 

gle LEXICAL PRETERMINAL featme and 61.4-85.5 for LEXICAL ROOTS). This was 

an urlexpectetl result from the smallest group of features (only 8 English a i d  12 

French features). 

As stated in section 7.1.4, we had expected good performance frorn ATOMIC 

feat,ures as they forin the bulk of the information in thc f-structure and provide a 

lot of grammatical and structural detail. However, we did not quitc achieve the 

large increases we hopetl for; scores for Frcndl show only slightly better parse ac- 

curacy perforrnarlce than for English. Feature det,ectioii scores for ATOMIC features 

fare better, showing results which arc cornparable with LEXICAL and FUNCTIONAL 

annotations; English scores range from 88-95.5 for ATOMIC PRETERMINALS anti 

81.1-92.2 for ATOMIC ROOTS for a total of 33 features. French scores range frorn 

92.4-96.4 for ATOMIC PRETERMINALS and 82.7-94.4 for ATOMIC ROOTS for a total 

of 39 features. 

From a first glance at this comparison, the GF-DOP rrlodel appears to perform 

best overall for English, yielding satisfactory overall increases on parse accuracy and 

competently high feature-detection scores. This consistent performance on tasks one 

and two shows solid support for the GF-DOP hypothesis. 

Experiments on the French data set yielded some increases in parse accuracy 

although the benefit of these appears t o  be negated by the larger average decreases 

in scores. Performance at feature detection accuracy restores our confidence in the 

GF-DOP model when applied to  a French data set, yielding generally higher f- 

scores than English; this improved performance on task two shows support for the 

hypothesis that the GF-DOP model can accurately learn grammatical features. 



Comparing the GF-DOP Model's Task Per- 

formance 

We have seen from the experiments described in Chapters 6 and 7 that the GF-DOP 

hypothesis holds true; the GF-DOP model produces more accurate phrase-structure 

trees than the Tree-DOP model. In addition to this, the GF-DOP model can learn 

grammatical features accurately. Now we t,urri our focus to comparing the GF-DOP 

model's performance on the two tasks described to recent work by Chrupala and 

van Genabith (2006). 

Chrupala and van Genabith (2006) describe a variety of parsing experiments 

carried out using Bikel (2002)'s parser on the Cast3LB treebank, a Spanish treebank 

containing around 3,500 trees annotated with comprehensive grammatical functions. 

17 simple format labels are described; that is, the functions indicate the function 

fulfilled only, but there is no indication as to the dominating predicate. Chrupala 

and van Genabith (2006) train the parser on 80% of the Cast3LB data, reserving 

10% for development arid 10% for testing. The parser is corifiguretl to produce both 

annotated parses and plain parses, with no functional labels. 

Their experiments most closely resemble the experiment we carried out on a 

treebank annotated with all functions (17 for English, 13 for French), using our 

simplest style of function annotations, TYPE 3 MINIMAL FUNCTIONS. Our functiori 

detection scores are calculated based on the parser's output with all syntactic cate- 

gories removed; our labelled scores are calculated based on the parser's output with 

all functional inforlnation removed. 

8.2.1 Task 1: Accurately Identifying Features 

Chrupala and van Genabith (2006) run a baseline experiment which parses sentences 

with Bikel (2002)'s parser trained on an annotated treebank; functioris are output as 

part of the parse. They then run a comparative experiment which removes all func- 



tions assigned by the parser, and re-annotate using inachine learning techniques.' 

They evaluate thesc experirncnts for function accuracy only. Thc scores achieved 

are comparable with our feature detection accuracy scores. 

The score for funct,ion identification achieved by Bikel (2002)'s parser alone is 

59.93. Chrupala and van Geriabith (2006) find that using rnachine learning tech- 

niques to annotate parse trees in a preprocessing step outperforms this figure sig- 

nificantly; they score 66.67 using this approach. We compare this to our function 

detection scores for the treebanks annotated with all functions using Type 3 an- 

notations; we score (English) 85.5652 and (French) 87.3167. It is difficult to rnakc 

a direct cornparison between these scores as they have been derived from different 

parsers trained on different corpora in different languages. However we note that our 

expcrimelit, which relies solcly on the parser to  identify functions correctly, achieves 

a proportionally higher score than either of the two other expcriments. 

8.2.2 Task 2: Improving the Quality of Parses Produced 

Next we conipare the baseline scores achieved by Bikel (2002)'s parser trained on 

an annot,ated trcebarlk to  our parser trained on an annotated treebank. The f- 

score reported in Chrupala and van Gellabit11 (2006) is 83.96. The scores for our 

experirnerlt are (English) 93.3495 arid (French) 93.4141. It is difficult to cornpare the 

two systems directly, as stated in section 8.2.1, altho~lgh given that Bikel (2002)'s 

parser was trained or1 morc than thrce tiines the data our parser was trained on, we 

arc content that our system has shown at least some irnprovernerlt over our baseline 

score (English 92.863, French 93.3002). 

'(Chrupala and van Genabith, 2006) test three machine learning techniqnes: Til\/IBL (Daele- 
mans et al., 2004) for Memory-Based Learning, the MaxEnt Toolkit (Le, 2004) for Maximuln 
Entropy arid LIBSVM (Chang and Lin, 2001) for Support Vector Machines. Thc liighest scorcs 
were achieved by the latter approach and these are the scores wc use for comparison. 



8.3 Summary 

Having disct~sst:rl our c~qcrirncnts' rcs~~l t~s  in Cha,ptxrs G I-ti1c.l 7, wc? mnsitlcr the GF- 

DOP rnoclcl's ov(:rdl pc?r.Ihrrnrzncc by examining how the nlndol operates in E~~glish 

mrl ficnch, coxn~>~irat,ivt!ly a11d coldr~~tivr!ly. Ahcct,rrling to those exl~crirnant,~, thr! 

moclcl ;Z~)~CILTS to IWC: sEight,ly hottr:r S t x  English than for Frexlr:l~. St~bsequa~~t~ly,  

we c:omparc?rl tho GF-DOP rnodc!l's pcrformnnc~:c! to t,Irnt of ot,l~i:r npprowlics to 

improving parfir? ql~alit~y mlrl ii:at,~lrr: id(:iitaificrzi;ion; ~-~ltltougll it is rlificult to draw 

n tIirt:ct rompartrisotl! w: Bxld that our ~notlcl has pcrformttd rncwc? than mlc!quntcly 

when comparcrl tun ai1of;hcr :~~~loclel. Finally, we cc~ncludc tho GF-DOP model 

llm shown satisfactory pc?rforul:xncc! st, both ft:at,tlrc ~1t:ter;tion wcuracy and parsc 

a(.rmlrRX:y task. WE! ;LIT: C ( J I I ~ ; C I ~ ~  that we hwi! sccri suficici~t cvidcnt ti, slipport thr? 

GI?-DOP h)q>Oth(!sis. 



Chapter 9 

Conclusions and Future Work 

9.1 Conclusions 

I11 this thesis we have presented the GF-DOP model; despite being an approximation 

of the LFG-DOP model, its practical implementation is based on the Tree-DOP 

model. We describe each of these two rnotlels, discuss some approaches to  various 

aspects of their implementation and consider some of the theoretical and practical 

issues which affect each of the models. 

Having examined the Tree-DOP and LFG-DOP models in some depth, we pro- 

posed a new model which draws upon each of the earlier models' strengths, while 

rrianagiiig to avoid the practical, implementational difficulties which arise. Follow- 

ing a det,ailed description of the GF-DOP model, we propose a hypothesis which 

states that through the incorporation of grammatical functions arid features, the 

GF-DOP rnodel can accurately learn grammatical features, and apply this acquired 

knowledge to  model language better, producing more accurate arid more informative 

phrase-structure trees than the Tree-DOP model. 

An empirical invest,igatioii of the GF-DOP model, and the GF-DOP Hypothesis 

on the Homecentre corpus shows some ericouraging results, which are sumrnarised 

below: 

GF-DOP improves parse accuracy over Tree-DOP; 



the GF-DOP model performs well at the feature detection accuracy task for 

both English and French, thus supporting the hypothesis that GF-DOP should 

perform well in learning grammatical features; 

the GF-DOP model performs well at overall parse accuracy for English, sup- 

porting the hypothesis that the GF-DOP model can improve the quality of 

phrase-structure trees produced; 

the GF-DOP model does not perform quite so well at the parse accuracy task 

for Frenc.h. Any improvemellts in average score increases rioted for French are 

negated by larger average decreases; 

GF-DOP models our English data better than our French data; 

overall, we have seen sufficient evidence to support the GF-DOP Hypothesis. 

We conclude that the GF-DOP model has showri it can accurately learn gram- 

matical features and employ this knowledge to improve overall parse accuracy. 

9.2 Future Work 

From our evaluation of the GF-DOP model, wc note some points which rnerit further 

investigation. The first point is that while the GF-DOP Hypothesis was shown to 

hold true (on both tasks) for English, for French the evidence was not so conclusive. 

Although the GF-DOP model is language-independent, the model (lid not achieve 

the same success at overall parse accuracy for F'rencli as for English. In addition, 

data sparseness has clearly had a significant impact, on experiment results; this is 

most evident from the large differences in scores noted between Type 1 Lexicalisetl 

Duplicate Functions arid Type 2 Duplicate Functions experiments, where the ratio 

of types to tokens is often very high. To this end, we propose further investigation of 

the GF-DOP model on (a) more uniform data sets, (b) larger data sets, preferably 

with minimum thresholds of feature occurrences, ( c )  and data sets in other language 

pairs. 



Some additional experiments which we feel might yield interesting results, but 

were outside the scope of the current work, include a more detailed investigation of 

subcategorisation frames. Although some of the highest scores achieved were oh- 

tained as a result of treebanks annotated with all functions and the most frequently 

occurring functions, we expect that experiments including only those functions which 

are governed by predicates would yield positive results; we anticipate that by only 

using features which are essential to  the training set, the parser will learn crucial 

features, arid not be distracted by less important elements. 

Data-Oriented Translation (DOT), the statistical approach to  machine transla- 

t,iori based on DOP, is presented by (Po~rtsma, 2000), (Hearne, 2005). Linked source 

and target language subtree pairs are composed to form bilingual derivat,ions for an 

input sentence; translation is achieved through synchronous parsing. We feel that 

the GF-DOP model applied to  translation, GF-DOT, is likely to  improve over the 

DOT model. Given that the incorporation of features has been shown to improve 

monolingual parse accuracy, surely rnore accurate bilingual parsing will produce sim- 

ilar improvement in translation quality. Indeed, we expect that the incorporation 

of grammatical features is likely to show a great,er improvement in translation than 

in parsing, due t o  the rniniinal occurrence of features across languages, e.g. a first 

person singular subject in the source language is very likely t o  translate as a first 

person singular subject in the target language. 
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Appendix A 

English Tables of Results 

We include a note here on some of the parse accuracy scores; where there are no 

features in the reference set, and the parser has produced parses with no features, 

the experil-neilt f-score is 100%. That is, the parser has not proposed any parses 

incorporating features, which would be incorrect. An example of this can be seen in 

section A. l . l ,  for the feature APP. 

A. l  Functional Annotations 
A. 1.1 Type 1 Lexicalised Duplicate Function Annotations 

~easures  occ 

precision recall fscore precision recall fscore precision recall fscore # 

96.1010 96,4088 96.2547 92.7148 93.0117 92.8630 100.0000 100.0000 100.0000 0 

96.0913 96.3991 96.2450 92.7148 93.0117 92,8630 77.2727 77.2727 77.2727 22 

COMP-EX 96.0913 96.3991 96.2450 92.7148 93.0117 92.8630 100.0000 100.0000 100.0000 0 

COMPOUND 96.0801 96.3506 96.2152 92.7120 92.9729 92.8423 78.6822 66.3399 71.9858 306 

96,1141 96.5059 96.3096 92.8371 93.2156 93.0260 63.4615 59.5361 61.4362 776 

I 

OBL 

OBL-AGT 

OBL-COMP 

PRON-INT 

PRON-REL 

SPEC 

SUBJ 

TOPIC-INT 

TOPIC-REL 

XCOMP 

96.0910 96.3894 96.2399 

96.1107 96.4185 96.2644 

96.0913 96.3991 96.2450 

96.0913 96.3991 96.2450 

96.0913 96.3991 96.2450 

96.0913 96.3991 96.2450 

96.1390 96.4282 90.2834 

96.0344 96.3700 96.2019 

96.0913 96.3991 96,2410 

96,0913 96.3991 96.2450 

96.1594 96.4768 96.3178 

92.7141 93.0020 92.8578 

92.7825 93.0797 92.9309 

92.7051 93.0020 92.8533 

92.7148 93.0117 92.8630 ' 92.7148 93.0117 92.8630 

92.7148 93.0117 92.8630 

92.8005 93.0797 92.9399 

92.5041 92.8273 92.6654 

92,7148 93.0117 92.8630 

92.7148 93.0117 92.8630 

92.6768 92.9826 92.8295 

100.0000 100.0000 100.0000 

75.0000 56.2500 64.2857 

100.0000 100.0000 100.0000 

100.0000 100.0000 100.0000 

100.0000 91.6667 95.6522 

100.0000 75.0000 85.7143 

85.5072 83.0986 84.2857 

55.8480 45,6938 50,2632 

100.0000 100.0000 l00.WW 

100.0000 66.6667 80.0000 

75.0000 58.5366 65.7534 

0 

16 

0 

3 

24 

4 

71 

418 

25 

3 

123 



A.1.2 Type 2 Duplicate Function Annotations 

A.1.3 Type 3 Minimal Function Annotations 

A.1.4 Type 1 Lexicalised Duplicate Multiple Function An- 
not at ions 

A. 1.5 Type 2 Duplicate Multiple Function Annotations 



A. 1.6 Type 3 Minimal Multiple Function Annotations 

A.2 Atomic Feature Annotations 
A.2. I Atomic Preterminal Annotations 

A.2.2 Atomic Root Annotations 

A.2.3 Multiple Atomic Annotations 

DEIXIS 

GEND 

GERUND 

LAYOUT-TYPE 

PASSIVE 

P E R F  

POL 

PREDET-TYPE 

PROG 

PSEM 

P T Y P E  

SPEC-TYPE 

STMT-TYPE 

TEMPORAL 

TENSE 

TIME 

TYPE 

VTYPE 

96.0720 96,3797 96.2256 

96.1777 96.4670 96.3221 

96.0724 96.3894 96.2306 

96.0043 96.3118 96.1578 

96.0209 96.2632 96.1419 

96.0403 96.2826 96.1613 

96.1204 96.4282 96.2740 

96.0155 96.3603 96.1876 

96.1084 96.3603 96.2342 

95.9780 96.3506 96.1639 

96.0735 96.4185 96.2457 

96.1312 96.4670 96.2988 

96.1096 96.3894 96.2493 

96.1587 96.4573 96.3078 

96.0824 96.4088 96.2453 

96.1490 96.4476 96.2981 

96.0724 96.3894 96.2306 

96.0321 96.3118 96.1717 

92.7148 93.0117 92.8630 

92.8005 93.0797 92 9399 

92.8122 93.1185 92.9651 

92.7051 93.0020 92.8533 

92.7679 93.0020 92,8848 

92.7583 92.9923 92.8751 

92.7148 93.0117 92.8630 

92.6015 92.9341 92.7675 

92.7880 93.0312 92.9094 

92.6037 92.9632 92.7831 

92.6499 92.9826 92.8160 

92 8136 93.1379 92.9755 

92.7998 93.0700 92.9347 

92.8108 93 0991 92 9547 

92.7162 93.0312 92.8734 

92.8108 93 0991 92 9547 

928122 93.1185 92.9651 

92.7223 92.9923 92.8571 

75.0000 27.2727 40.0000 

100.0000 73.5294 84.7458 

88.4956 92.5926 90.4977 

91.8991 843902 87.9847 

84.9508 78.2383 81.4565 

87.2456 81.5990 84.3279 

0,0000 0.0000 0.0000 

40.0000 50.0000 44.4444 

85.9079 79.2500 82.4447 

92.7835 87.3786 90 0000 

91.4013 93.1818 92.2830 

90.2045 83 0525 86 4809 

87.7256 82.4661 850146 

0.0000 0.0000 0.0000 

74.1117 tiG.9725 70.3614 

0.0000 0.0000 0.0000 

88.4956 92.5926 90.4977 

85.3061 78.7688 81.9073 

11 

34 

108 

820 

772 

788 

3 

4 

800 

309 

308 

1009 

884 

1 

218 

1 

108 

796 



A. 3 Lexical Feature Annot at ions 

A.3.2 Lexical Root Annotations 

A.3.1 Lexical Preterminal Annotations 

A. 3.3 Multiple Atomic Lexical Annot at ions 

labelled features occ 

----- 
92.7632 93.0603 92.9115 96.6102 88.1443 92.1833 194 PRON-FORM 

unlabelled 

precision recall fscore 

B K S E I ; I N E P  

96.1494 96.4573 96.3031 



Appendix B 

French Tables of Results 

B. 1 Functional Annot at ions 

B. 1.1 Type 1 Lexicalised Duplicate Function Annotations 

B. 1.2 Type 2 Duplicate Function Annot at ions 

OCC 

# 
0 

20 

122 

1176 

25 

135 

1 

0 

15 

1 

453 

15 

6 1  

labelled 

precision recall fscore 

93.1195 Q3.4816 93.3U02 

96.1419 96.5308 96.3360 93.0818 93.4583 93.2697 

COMPOUND 96.2191 96.6008 96.4096 93.3834 93.7539 93.5683 

96.2096 96.5464 96.3777 93.2253 93.5516 93.3882 

96.1723 ' 96.5464 96.3590 93.1272 93.4894 93.3080 

96.1187 96.5075 96.3127 93.0431 93.4194 93.2309 

OBL-AGT 96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 

OBL-COMP 96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 

PRON-REL 96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 

96.1723 96.5464 96.3590 93.1272 93.4894 93.3080 

96.2036 96.5853 96.3941 93.0580 93.4272 93.2422 

TOPIC-REL 96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 

96.2426 96.6319 96.4369 93.1980 93.5750 93.3861 
I 

features 

precision recall fscore 

0.0000 0.0000 0.0000 

9 3 . 2 8 5 3 p -  
54.1667 65.0000 59.0909 

82.5243 69.6721 75.5556 

79.2672 75.4252 77.2985 

94.1176 64.0000 76.1905 

89.2308 85.9259 87.5472 

100.0000 100.0000 100.0000 

100.0000 100.0000 100.0000 

100.0000 100.0000 100.0000 

100.0000 100.0000 100.0000 

66.8151 66.2252 66.5188 

100.0000 100.0000 100.0000 

72.3404 55.7377 62.9630 

unlabelled labelled features 

precision recall fscore precision recall fscore precision recall fscore 

occ 

# 
0.0000 0.0000 o.uou0 I 0 ; 

1297 

20 

122 

1176 

25 

135 

1 

0 

15 

1 

453 

15 

6 1  

COMP 

COMPOUND 

OBJ 

OBJ2 

OBL 

OBL-AGT 

OBL-COMP 

PRON-REL 

SPEC 

SUBJ 

, TOPIC-REL 

XCOMP 

96.1419 96.5308 96.3360 

96.2185 96.5853 96.4015 

96.2799 96.6319 96.4558 

96.1723 96.5464 96.3590 

96.1187 96.5075 96.3127 

96.1723 96.5464 96.3590 

96.1723 96.5464 96.359O 

96.1723 96.5464 96.3590 

96.1723 96.5464 96.3590 

96.2340 96.6008 96.4171 

96.1723 96.5464 96.3590 

96.2194 96.6086 9G.4136 

93.0818 93.4583 93.2697 

93.2197 93.5750 93.3970 

93.2961 93.6372 93.4664 

93.1040 93.4661 93.2847 

93.0353 93.4116 93.2231 

93.1195 93.4816 93.3002 

93.1195 93.4816 93.3002 

93.1195 93.4816 93.3002 

93.1272 93.4894 93.3080 

93.1964 93.5516 93.3737 

93.1195 93.4816 93.3002 

93.1670 93.5439 93.3551 

91.0095 88.9746 89.9805 

56.0000 70.0000 62.2222 

86.5546 84.4262 85.4772 

88.2096 85.8844 87.0315 

85.0000 68.0000 75.5556 

89.9225 85.9259 87.8788 

100.0000 100.0000 100.0000 

100.0000 100.0000 100.0000 

100.0000 100.0000 100.0000 

100.0000 100.0000 100.0000 

81.5678 84.9890 83.2432 

100.0000 100.0000 100.0000 

78.7234 60.6557 68.5185 



B.1.3 Type 3 Minimal Function Annotations 

COMP 

COMPOUND 

OBJ 

OBJ2 

OBL 

OBL-AGT 

OBL-COMP 

PRON-REL 

SPEC 

SUBJ 

TOPIC-REL 

XCOMP 

precision recall fscore 

96.1723 96.5464 96.3590 

96.2670 96.686a 96.4762' 

96.1419 96.5308 96.3360 

96.2185 96.5853 96.4015 

96.2799 96.6319 96.4556 

96.1723 96.5464 96.3590 

96.1187 96.5075 96.3127 

96.1723 96.5464 96.3590 

96.1723 96.5464 96.3590 
.. 

-3,5464 i90 

,,, 5,5464 LIY.YS90 

G50 j.G319 96.4481 

96.1723 96.5464 96.3590 

96.2194 96.6086 96.4136 

a e e  a occ 

B. 1.4 Type 1 Lexicalised Duplicate Multiple Function An- 
notations 

B. 1.5 Type 2 Duplicate Multiple Function Annotations 
I I unlabelled I labelled I features I occ 

B. 1.6 Type 3 Minimal Multiple Function Annotations 

919 93.5905 

SUBJ-OBJ 96.2710 96.5930 96.4318 93.1933 93.5050 93.3489 87.9485 85.2362 86.5711 1524 

Atomic Feature Annotations 

B. 2.1 Atomic Preterminal Annotations 
I] unlabel e a elle eatures occ 

ecision recall fscore 

96.0654 96.4764 96.2704 

PROPER 96,1807 96.5697 90.3748 

96.3511 96.7408 96.5456 

precision recall fscore precision recall fscore # 
- W ; I f S B P  

- u 
93.1644 93.5050 83.3344 96.5622 94.7886 95.6672 2341 

93.1117 93.4739 93.2924 100.0000 100.0000 100.0000 3 

93.0978 93.4816 93.2893 97.5652 92.5743 95.0042 606 

92.9721 93.4350 93.2030 95.2782 92.4714 93.8538 3666 

93.1117 93.4739 93.2924 100.0000 98.8095 99.4012 84 

93.0757 93.4739 93.2743 96.6993 94.9580 95.8207 3332 

93.2982 93.6683 93,4829 95.2135 92.4623 93.8177 796 

93.1515 93.5283 93.3395 94.8276 90.1639 92.4370 244 

93.3297 93.7072 93.5181 97.6845 95.2045 96.4286 709 



B.2.2 Atomic Root Annotations 

ADV-TYPE 

APOS 96.1494 96.5308 96.3397 93.1278 93.4972 93.3121 95.4286 93.2961 94.3503 179 

ATYPE 96.1649 96.5464 96.3552 93.0735 93.4428 93.2578 94.9458 94.6043 94.7748 278 

CASE 96.1807 96.3748 93.1051 93.4816 93.2930 90.8560 83.0961 86.8030 1124 
- -  - - -  

CONJOINED 96.1723 96.3590 O7 ' 0" " 'L ' f i  1 79.7297 93.6508 86.1314 63 

CONJTYPE 96.2713 96.4358 938 89.5833 87.7551 88.6598 49 

DEIXIS 96.1878 96.5619 96.3745 93.1350 93.4972 93.3157 95.6522 95.6522 95.6522 23 

FOO 96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 0.0000 0,0000 0.0000 2 

GEND 96.1416 96.5230 96.3319 292 9: 4 93.5140 86.3399 82.0614 84.1463 2018 

INV 96.1723 96.5464 96.3590 yd.1117 93.4139 93.2924 100.0000 100.0000 100.0000 3 

LAYOUT-TYPE 96.2033 96.5775 96.3900 93.0342 93.3961 93.2148 85.9023 79.7557 82.7149 573 

NE 96.1488 96.5152 96.3317 93.1034 93.4583 93.2805 93.2203 82.0896 87.3016 67 

NEG 0 13 , 9t n 93.1117 07 4714 93.2924 100.0000 100.0000 100.0000 4 

PASSIVE 29 96.6164 9t 93.0922 93.2981 92.1127 86.0526 88.9796 760 

PCASE-TYPE 78 96.5619 9t 5 93.1195 -3.4816 93.3002 100.0000 45.0000 62.0690 20 

PERF  9 70 96.5308 96.3285 93.0364 93.4272 93.2314 91.9685 85.0073 88.3510 687 

PREDET-TYPE 78 96.5619 96.3745 93,1195 93.4816 93.3002 100.0000 100.0000 100.0000 0 

PREVERB-OBJ Y " n o * r 0 r  "3,3590 93.1195 93.4816 93.3002 0.0000 0,0000 0.0000 3 

PSEM 9 5,4205 93.2414 93.5750 93.4079 95.5556 93.4783 94.5055 322 

PTYPE 96.0629 96.4141 96.2382 93.0016 93.3416 93.1713 94.5736 93.0283 93.7946 918 

SPEC-TYPE 96.0933 96.4297 96.2612 93.0471 93.3727 93.2096 90.0442 87.8575 88.9374 1853 

STATUS 96.1485 96.5075 96.3276 93.0719 93.4194 93.2453 90.8676 85.5914 88.1506 1395 

STMT-TYPE 96.1881 96.5697 96.3785 93.0503 93.4194 93.2345 93.0591 84.9765 88.8344 426 

STRESSED 96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 100.0000 100.0000 100.0000 0 

TENSE 96.5464 96.3739 93.0708 93.4039 93.2371 89.4737 80.1887 84.5771 212 

TIME 96.5464 96.3590 93.4739 93.2924 100.0000 100.0000 100.0000 6 "n "'" 

TYPE 96.5619 96.3782 93.5050 93.3271 98.0769 94.4444 96.2264 54 

VFORM 96.1723 96.5464 96.3590 93,1195 93.4816 93,3002 100.0000 100.0000 100.0000 0 

VTYPE 96.1649 96.5464 96.3552 93.0658 93.4350 93.2500 91.1807 85.5808 88.2920 749 

B .2.3 Multiple Atomic Annot at ions 

B.3 Lexical Feature Annotations 
B .3.1 Lexical Preterminal Annotat ions 
I 1 unlabelled 1 labelled I features occ 



B.3.2 Lexical Root Annotations 

B. 3.3 Multiple Atomic Lexical Annot at ions 

features 

precision recall fscore precision recall fscore precision recall fscore 

-7 
P T  

100.UUOO 100.0000 100.0000 

96.2782 96.5853 96.4315 93.2620 93.5594 93.4105 B0.32ZR 87.5000 88.M88 
100.ouoo IO~.OOUO 100.000a 

96.1723 96.5464 96.3590 93.1195 93.4816 93.3002 0.DOOo 0.C-DVO 0.DOnfl 
96.4012 96.8886 96.6443 93.4370 93.9095 93.6727 88.31m 84.253IT 80.2370 

PREDFII*I'OA,M 96.1878 96.5619 96.3745 93.1195 93.4816 93.3002 lD0.0000 100.0000 1QO.OOW 

SPEC-FORM 96.1410 96.5075 96.3239 93.0957 93.4505 93.2728 88.G543 86.5160 87.USH3 

precision recall fscore  recision recall fscore precision recall fscore # 

PREDET-TYPE 

SPEC-TYPE- 96.1243 96.4608 96.2923 93.0781 93.4039 93.2407 90.0332 87.7023 88.8525 1854 

SPEC-FORM I 

OCC 

# 

0 

160 

o 
3 

978 

0 

932 


