Structural systematics of drug-like molecules: from benzamides to tennimides

## by

Pavle Močilac, M. Pharm.
A thesis presented for the degree of Doctor of Philosophy at

## Dublin City University



Ollscoil Chathair Bhaile Atha Cliath
School of Chemical Sciences

May 2012
to my lovely wife Lei who was supporting me through rain and shine, and my parents Ivan and Barbara whose love, strength and wisdom sent me to the way I follow

## DECLARATION

I hereby certify that this material, which I now submit for the assessment on the programme of study leading to the award of Ph.D. is entirely my own fork and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work

Signed: $\qquad$ ID No: $\qquad$
Pavle Mocilac

Date: $\qquad$

## ACKNOWLEDGEMENTS

First and foremost I would like to thank to my supervisor, Dr. John F. Gallagher for his outstanding support, encouragement and patience during this work. I would also like to express my gratitude to:

Dr. Alan J. Lough at the Department of Chemistry, University of Toronto, Canada, for obtaining X-ray crystallographic data in period from January 2009 to January 2010.

Dr. Christine Loscher in the School of Biotechnology, Dublin City University, for excellently organised T3 programme.

Dr. Neal Lemon and Sharon Whyte for managing T3 programme.
Prof. Kieran Nolan in the School of Chemical Sciences, Dublin City University for useful advice and help.

Dr. Turlough Downes, in the School of Mathematical Sciences in Dublin City University on useful help on calculations.

All students that worked with me, Niall Hehir, Islam Ali Osman, Chloe Violin, Mark Farrell, Marie Bélières, Marion Lefevre and Fabian Pohl for their work and friendship, as well as to former students Mark Talon and Katie Donnelly for their contributions.

All technicians and staff of the School of Chemical Sciences especially to John McLoughlin for his excellent help and advice on NMR, as well as to Damien McGuirk, Veronica Dobbyn, Ambrose May, Vincent Hooper and Brendan Twamley for their high professionalism and excellent service.

Staff and professionals at Irish Centre for High-End Computing, Dr. Alin M. Elena, Eoin Brazil, Rosemarie Lalor and Dr. Jean-Christophe Desplat for their cooperation and help.

All my colleagues from organic lab, Sarrah Kebbell, Ian G. Beadham, Declan Daly, Andy Garry, Sharon Murphy, Brian Murphy, Oksana Shvydkiv, Kieran Joyce, William Butler, Monika Grubisz, Thomas Hayes, Marcello Iacono, Shelly Long, Rohitkumar Gore, Fadi Hatoum and Mukund Ghavre for their help, support and friendship.


#### Abstract

A structural systematic study was undertaken on benzamides, carbamates and substituted benzamide derivatives as $3 \times 3$ isomer grids comprising N (pyridyl)benzamide ( $\mathbf{F x x}$ and $\mathbf{M x x}$ ) ( $\mathbf{x}=$ para-/meta-/ortho-) and N (phenyl)pyridinecarboxamide ( $\mathbf{N x x F}$ and $\mathbf{N x x M}$ ) grids. These were synthesised and characterised, with their crystal structures determined by single crystal X-ray diffraction. Five series of $\mathbf{C x x R}\left(\mathbf{R}=\mathrm{CH}_{3}, \mathrm{OCH}_{3}, \mathrm{~F}, \mathrm{Cl}, \mathrm{Br}\right)$ carbamate isomer grids have been synthesised and characterised, with some pertinent structures determined by X-ray diffraction. Ab initio modelling, conformational analysis and comparisons of experimental solid state with optimised molecular geometries have facilitated an examination of the relationships between conformations and inter/intramolecular interactions, rationalisation of differences between the solid state and calculated structures, as well as the presence of molecular disorder and polymorphism.

New classes of macrocycles have been developed including tetramers and trimers, based on our earlier research on benzamides and carbamates. These systems include various para-substituted derivatives $\left(\mathbf{F}, \mathbf{C l}, \mathbf{B r}, \mathbf{C H}_{\mathbf{3}} \mathbf{C O}_{\mathbf{2}} \mathbf{C H}_{\mathbf{3}}\right)$ and have been fully characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ NMR and IR spectroscopy, while their crystal and molecular structures have been determined by single crystal X-ray diffraction.

The development of tennimides and trezimides as new macrocycles based on an imide backbone, presents an important entry point into a potentially fruitful area. Furthermore, discovery of trezimides is especially important since no analogous macrocycle has been reported. Synthesis of tennimides and trezimides has been accomplished using a one-step synthetic strategy over a range of derivatives and presents a basis for synthesis of analogous macrocycles. Tennimides and trezimides proved to be rigid and stable compounds. The determining factors in the cyclisation are ( $i$ ) the presence of the imide ortho-pyridine/pyrimidine rings and (ii) the inherent ability of the imide group to twist by $80-120^{\circ}$, as measured by the ' $\mathbf{C O} \cdots \mathbf{C O}$ ' torsion angle, providing a 'hinge' for ring closure or helical assembly. The trezimides can adopt two distinct conformations in the solid state, (though one is preferred), whereas the tennimides adopt discrete conformational states as $o c, c c$ and $o o$ that highlight subtle macrocyclic geometric changes on cavity opening (o) and closing (c) (though these interconvert in solution).


## ABBREVIATIONS

| ATR-IR | Attenuated Total Reflectance Infrared spectroscopy |
| :--- | :--- |
| B3LYP | Becke, Three-parameter, Lee-Yang-Parr |
| CBS-QB3 | Complete Basis Set-Quadratic Becke3 |
| CCD | Charge-Coupled Device |
| COSY | Correlation Spectroscopy |
| CSD | Cambridge Structural Database |
| DEPT | Distortionless Enhancement by Polarization Transfer |
| DEPTQ | Distortionless Enhancement by Polarization Transfer - Quaternery |
|  | atoms |
| DFT | Density Functional Theory |
| ESI | Electronic Supplementary Information file |
| HMBC | Heteronuclear multiple-bond correlation spectroscopy |
| HQSC | Heteronuclear single-quantum correlation spectroscopy |
| IR | Infrared spectroscopy |
| K channels | Voltage Gated Potassium Channels |
| m.p. | Melting Point |
| MALDI-TOF | Matrix-Assisted Laser Desorption/Ionization - Time-Of-Flight |
| MS | Mass spectroscopy |
| NMR | Nuclear Magnetic Resonance |
| NOESY | Nuclear Overhauser effect Spectroscopy |
| PCM | Polarizable Continuum Model |
| PES | Potential Energy Surface |
| RT | Room Temperature |
| SAR | Structure Activity Relationship |
| SMD | Solvation Model Density |
| SXRD | Single Crystal X-Ray Diffraction |
| TLC | Thin layer chromatography |
| XRD | X-Ray Diffraction |

Reagents and solvents:

| 2-AP | 2-aminopyridine |
| :---: | :---: |
| 26-APM | 2-aminopyrimidine |
| 3,4-DAP | 3,4-diaminopyridine |
| 3-AP | 3-aminopyridine |
| 4-AP | 4-aminopyridine |
| AP | Aminopyridine |
| $\mathrm{CDCl}_{3}$ | Deuterated chloroform |
| $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | Dichloromethane |
| $\mathrm{CH}_{3} \mathrm{CN}$ | Acetonitrile |
| $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ | Acetone |
| $\mathrm{CHCl}_{3}$ | Chloroform |
| $\mathrm{Cl}_{3} \mathrm{FC}$ | Trichlorofluoromethane |
| DBU | 1,8-Diazabicycloundec-7-ene |
| DMAP | Dimethylaminopyridine |
| DMSO | Dimethyl sulfoxide |
| DMSO- $d_{6}$ | Deuterated dimethyl sulfoxide |
| DPPA | Diphenylphosphoryl azide |
| $\mathrm{Et}_{2} \mathrm{O}$ | Diethyl ether |
| $\mathrm{Et}_{3} \mathrm{~N}$ | Triethylamine |
| EtOH | Ethanol |
| HCl | Hydrochloric acid |
| $\mathrm{H}_{2} \mathrm{SO}_{4}$ | Sulphuric acid |
| IPA | Iso-propyl alcohol |
| $\mathrm{KHCO}_{3}$. | Potassium Hydrogen Carbonate |
| MeOH | Methanol |
| $\mathrm{MgSO}_{4}$ | Magnesium Sulphate |
| $\mathrm{N}_{2}$ | Nitrogen gas |
| $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | Sodium Carbonate |
| NaCl | Sodium Chloride |
| NaOH | Sodium Hydroxide |
| $\mathrm{NH}_{4} \mathrm{Cl}$ | Ammonium Chloride |
| $\mathrm{SOCl}_{2}$ | Thionyl chloride |
| THF | Tetrahydrofuran |
| TTP | Triphenyl phosphite |

## TABLE OF CONTENTS

Title page ..... i
Dedication ..... ii
Declaration ..... iii
Acknowledgements ..... iv
Abstract ..... v
Abbreviations ..... vi
INTRODUCTION ..... 1

1. Basic concepts ..... 2
1.1. Structural systematics, crystallography and computational ..... 2 modelling
1.2. Conformational analysis ..... 3
1.3. Isomer grids ..... 6
2. Objectives ..... 9
2.1. Benzamides ..... 10
2.2. Pyridinecarboxamides ..... 11
2.3. Carbamates ..... 12
3. Pharmacological role of the selected compounds ..... 13
3.1. Potassium channels ..... 13
3.1.1. Structure and assembly of $\mathrm{K}_{\mathrm{v}}$ channels ..... 14
3.1.2. Physiology of $K_{v}$ channels ..... 16
3.2. Potassium channel modulators ..... 16
3.2.1. $\quad$ The $\mathrm{K}_{\mathrm{v}}$ blockers ..... 16
3.2.2. $\quad$ The $\mathrm{K}_{\mathrm{v}}$ activators ..... 24
4. Summary ..... 30
CHAPTER I: BENZAMIDES AND PYRIDINECARBOXAMIDES ..... 32
5. Benzamides ..... 33
1.1. Mxx isomer grid ..... 33
1.1.1. General description of synthesis ..... 33
1.1.2. General materials and equipment ..... 35
1.1.3. X-ray crystallography methods ..... 35
1.1.4. Computational methods ..... 36
1.1.5. Molecular and crystal structure data ..... 37
1.1.6. Ab initio calculations ..... 47
1.1.7. Comparisons of the solid state and modelling data ..... 52
1.2. Fxx isomer grid ..... 54
1.2.1. General description of synthesis ..... 54
1.2.2. X-ray crystallography methods ..... 55
1.2.3. Computational methods ..... 56
1.2.4. Comment on synthesis and general characteristics ..... 57
1.2.5. Comment on spectroscopic data ..... 57
1.2.6. Crystallographic data and analysis ..... 58
1.2.7. Ab initio calculations ..... 67
1.2.8. Comparisons of the solid state and modelling data ..... 75
6. Pyridinecarboxamides ..... 77
2.1. NxxF isomer grid ..... 77
2.1.1. General description of synthesis ..... 77
2.1.2. Comment on spectroscopic data ..... 79
2.1.3. X-ray crystallography methods ..... 80
2.1.4. Computational methods ..... 80
2.1.5. Molecular and crystal structure data ..... 81
2.1.6. Comments on molecular volumes and melting points ..... 93
2.1.7. Ab initio calculations ..... 94
2.1.8. Comparisons of the solid state and modelling data ..... 99
2.2. NxxM isomer grid ..... 102
2.2.1. General description of synthesis ..... 102
2.2.2. $\quad \mathrm{X}$ ray crystallography methods ..... 104
2.2.3. Computational methods ..... 105
2.2.4. Comment on spectroscopic data ..... 105
2.2.5. Crystallographic data and analysis ..... 106
2.2.6. Ab initio calculations ..... 118
2.2.7. Comparisons of the solid state and modelling data ..... 124
CHAPTER II: CARBAMATES ..... 127
7. General description of carbamate syntheses ..... 128
1.1. Method 1. Condensation of AP's with phenyl chloroformates ..... 129
1.2. Method 2. Condensation of 2-AP with phenyl ..... 130 chloroformates in solventless conditions
1.3. Method 3. Curtius rearrangement reaction, variant A ..... 131
1.4. Method 4. Curtius rearrangement reaction, variant $B$ ..... 132
8. Comment on synthesis and general characteristics ..... 133
9. Comment on spectroscopic data ..... 134
10. X-ray crystallographic methods ..... 135
11. Computational methods ..... 135
12. CxxM isomer grid ..... 137
6.1. Molecular and crystal structure data ..... 137
6.1.1. $\quad$ СрхМ isomer series ..... 138
6.1.2. CmxM isomer series ..... 141
6.1.3. CoxM isomer series ..... 143
6.2. Ab initio calculations and modelling data ..... 145
6.2.1. Structure optimisation ..... 145
6.2.2. Conformational analysis ..... 146
6.3. Comparisons of the solid state and modelling data ..... 149
13. CxxOMe isomer grid ..... 150
7.1. Molecular and crystal structure data ..... 150
7.1.1. $\quad$ CpxOMe isomer series ..... 151
7.1.2. CmxOMe isomer series ..... 154
7.1.3. $\quad$ CoxOMe isomer series ..... 157
7.2. Ab initio calculations and modelling data ..... 160
7.2.1. Structure optimisation ..... 160
7.2.2. Conformational analysis ..... 162
7.3. Comparisons of the solid state and modelling data ..... 166
14. CxxX compounds ..... 167
8.1. Molecular and crystal structure data ..... 167
8.1.1. CxxF isomer grid ..... 168
8.1.2. $\quad \mathbf{C x X C l}$ isomer grid ..... 172
8.1.3. $\quad \mathbf{C x x B r}$ isomer grid ..... 175
8.2. Ab initio calculations and modelling data ..... 178
8.2.1. Structure optimisation ..... 178
8.2.2. Conformational analysis ..... 180
8.3. Comparisons of the solid state and modelling data ..... 185
CHAPTER III: TENNIMIDES AND TREZIMIDES ..... 187
15. Introduction ..... 188
1.1. Idea ..... 188
1.2. Historical background and development timeline ..... 189
1.3. Polymer formation ..... 197
1.4. The labelling system and nomenclature ..... 198
1.5. Materials, equipment and spectroscopic methods ..... 199
1.6. X-ray crystallographic methods ..... 199
1.7. Computational methods ..... 199
16. Detailed descriptions of the synthetic procedures ..... 200
2.1. Synthesis of $N^{1}, N^{3}$-di(pyridin-2-yl)isophthalamide (H-DIP) ..... 200
2.2. Method 1: The " $2+2$ " synthesis of the $\mathbf{I O 4}$ tennimide ..... 200
2.3. Method 2: Standardised, " $4+4$ " synthesis of tennimides and ..... 200 trezimides
17. General comments on spectroscopic data ..... 201
18. IO3 and IO4 macrocycles ..... 202
4.1. Synthesis and purification ..... 202
4.2. General and spectroscopic data ..... 202
4.3. Crystallographic data and discussion ..... 204
19. 26 IO 3 and 26 IO 4 macrocycles ..... 208
5.1. Synthesis and purification ..... 208
5.2. General and spectroscopic data ..... 208
5.3. Crystallographic data and discussion ..... 209
5.4. Ab initio geometry optimisation, energies and ..... 213 conformational analysis
20. FIO 3 and FIO 4 macrocycles ..... 215
6.1. Synthesis and purification ..... 215
6.2. General and spectroscopic data ..... 216
6.3. Crystallographic data and discussion ..... 216
21. CIIO 3 and CIIO 4 macrocycles ..... 219
7.1. Synthesis and purification ..... 219
7.2. General and spectroscopic data ..... 219
7.3. Crystallographic data and discussion ..... 220
22. BrIO 3 and $\mathrm{BrIO4}$ macrocycles ..... 223
8.1. Synthesis and purification ..... 223
8.2. General and spectroscopic data ..... 223
8.3. Crystallographic data and discussion ..... 224
23. 26 BrIO 3 and 26 BrIO 4 macrocycles ..... 227
9.1. Synthesis and purification ..... 227
9.2. General and spectroscopic data ..... 228
9.3. Crystallographic data and discussion ..... 228
24. MIO4 macrocycle ..... 231
10.1. Synthesis and purification ..... 231
10.2. General and spectroscopic data ..... 232
10.3. Crystallographic data and discussion ..... 232
25. EsIO3 and EsIO4 macrocycles ..... 234
11.1. Synthesis and purification ..... 234
11.2. General and spectroscopic data ..... 234
11.3. Crystallographic data and discussion ..... 235
DISCUSSION AND CONCLUSIONS ..... 239
26. Benzamides and pyridinecarboxamides ..... 240
27. Carbamates ..... 244
28. Tennimides and trezimide ..... 248
29. Conclusions ..... 251
REFERENCES ..... 254

## Appendix I: NMR and IR spectral data

Appendix II: Publications

Electronic supplementary information files (ESI) are provided comprising spectral, crystallographic and modelling information:
ESI I.pdf - benzamides and pyridinecarboxamides
ESI II.pdf - carbamates
ESI III.pdf - tennimides and trezimides

INTRODUCTION

## 1. Basic concepts

### 1.1. Structural systematics, crystallography and computational modelling

Structural systematics ${ }^{1,2}$ presents a systematic approach in structural science by the comprehensive multidisciplinary survey of structurally related compounds. This term is usually related to methods in solid-state chemistry with the central role of crystallography, however, investigations of structurally related compounds are important in other fields of chemistry where the solid state is not central, such as medicinal chemistry and drug design. The main concept of structural systematics is comparison of chemical structure data, usually derived from single crystal or powder Xray diffraction, with physical properties of structurally similar compounds (salts, complexes and small organic molecules).

The concept of structural systematics originates in inorganic, coordination and organometallic chemistry ${ }^{1}$ and later was extended to areas where more flexible molecules were in focus, such as drug-like small organic molecules. X-ray diffraction (XRD) has a key role in structural systematics, as the most powerful experimental structural method that enables scientists to "see" atoms and molecules, from simple arrays of ions to large, complex biomolecules. Advancement of crystallographic methods, computational power (including software for structure solving) ${ }^{3}$ makes XRD a routine analytical method of choice. Very often XRD analyses are done just for the sake of unambiguous identification. XRD is an experimental method that provides real, averaged information on the structure of crystallised compounds and/or co-crystals.

Structural systematics is a step beyond simple XRD analyses. It implies usage of structural data derived from many different but similar structures to compare amongst themselves or with known physical properties, in order to test hypotheses and eventually expand knowledge in different areas of chemical sciences.

Advances in quantum and computational chemistry, ${ }^{4}$ modelling methods ( $a b$ initio $^{5}$, semi-empirical ${ }^{6}$ and molecular mechanics methods ${ }^{7}$ together with increasing available computational power has brought in new, virtual methods of structural science, where a molecule is commonly viewed as an isolated entity in gas phase (vacuum) or as solvated if one of the solvation methods is introduced. A common name for this area is molecular modelling and is seen as part of theoretical and computational chemistry. Molecular modelling is usually a corner stone for physico-organic chemistry, atmospheric chemistry as well as for chemistry of the liquid phase. However, the most
important application of molecular modelling is in medicinal chemistry, drug design and drug development, as 'big pharma' heavily invests in molecular modelling in order to develop cheaper and structure based ways of drug design.

Structural systematics relies on merging several areas of structural research (including both crystallography and molecular modelling) and the ability to collate, integrate and correlate physico-chemical data to provide an insight into physical or chemical properties within, or between, molecular organic groups. ${ }^{8-11}$ Such studies and the comprehensive analyses of large groups of small organic molecules have undergone enormous advances in the past decade with the advent of information technologies and instrumentation. ${ }^{8,9,12}$ Studies combining high throughput syntheses, structural chemistry and $a b$ initio calculations provide chemical and structural information together with affording an insight into many physico-chemical properties and trends within molecular organic series. ${ }^{8,13-16}$ Advances in synthetic chemistry has allowed for the systematic synthesis of chemical analogues using reactions amenable to combinatorial chemistry and high through-put synthesis. ${ }^{17}$ In tandem, developments in crystallographic and computational (modelling) fields have facilitated a surge in data generation and structural analyses for publication and/or archiving ${ }^{8}$ and based on many classes of organic molecules. ${ }^{13-16}$ Structural systematic approaches have utilised polymorphs, ${ }^{9,12}$ solvates, salts, ${ }^{18}$ isomers ${ }^{13,16}$ and homologous series, ${ }^{19,20}$ with combinations thereof, to identify patterns of similarities or differences that can aid in the understanding of chemical and structural properties. ${ }^{8,9,12-16}$

Comprehensive chemical and computational analyses of small 'drug-like' molecules together with structural systematic approaches allow us to utilise an increasing data stream from both crystallography and computational resources. ${ }^{8,9,13,21}$ Integration can yield essential information for analysing trends and provide an insight into similar/different physical or chemical properties within or between molecular organic series. ${ }^{8,9,13,14,16}$

### 1.2. Conformational analysis

One of the important tools in structural systematics is conformational analysis. ${ }^{22}$ It is an assessment of the relative energies (or thermodynamic stabilities), reactivities, and physical properties of alternative conformations of a molecular entity, usually by the application of different modelling methods. Conformation can be defined as a
spatial arrangement of the atoms affording distinction between stereoisomers which can be interconverted by rotations about formally single bonds. ${ }^{23}$

Conformational isomers or conformers (specifically as rotamers) differ by rotation about only one single bond. Hence, interconversion of conformers does not involve breaking or reforming of chemical bonds. The rotational barrier, or barrier to rotation, is the activation energy required to interconvert rotamers. Rotation of a single bond in a molecular entity changes the total energy of a molecular system; one or more particular positions are stable (minimum). The most stable position is called the global minimum (GM), while others are local minima (LM) or meta-stable positions. An unstable position where a first derivation equals zero is called a transition state (TS).

Rotation of a single bond that links an individual atom (e.g. H, Cl, F, etc.) or a linear moiety (e.g. CN group) to a molecular entity will not change the geometry or energy of a molecular system and therefore, will be neglected in conformational analyses. Only rotable single bonds whose rotation changes the energy of a system can be considered. Those are usually bonds linking bulky and/or asymmetric groups and moieties, as well as rings. Each single bond whose rotation brings a change of energy presents one degree of conformational freedom (conformational coordinate). A molecular entity can have one or more degrees of conformational freedom (conformational coordinates).

In a crystalline solid state, molecular entities are constrained in the crystal structure by intermolecular interactions, typically in one particular conformation. A solid state conformation usually presents the most stable one (global minimum, $\left.\mathrm{GM}_{0}\right)^{22}$ however, in many cases meta-stable or unstable conformations can be adopted due to the energy compensation by strong and favourable intermolecular interactions. ${ }^{24}$ Sometimes different conformations can be found in different polymorphs of the same molecular entity.

In the liquid (solution, melt) phase or in the gas phase, free rotation is enabled, and therefore, different conformations are possible. A solution or melt is, in fact, a complex equilibrium of different conformers of the same molecular entity with the major prevalence of one, the most stable conformer. Prevalence of a particular conformation depends on the conformational energy difference between conformers as well as temperature and is driven by the Boltzmann distribution:

$$
\begin{equation*}
\frac{N_{i}}{N_{\text {total }}}=\frac{e^{-E_{\text {rel }} / R T}}{\sum_{k=1}^{N_{\text {total }}} e^{-E_{k} / R T}} \tag{Eq.1}
\end{equation*}
$$

The left hand side is the equilibrium ratio of conformer $i$ to the total number of conformers. $E_{\text {rel }}$ is the relative energy of the $i$-th conformer from the minimum energy conformer. $R$ is the molar ideal gas constant equal to $8.31 \mathrm{~J} / \mathrm{mol} . \mathrm{K}$ ) and $T$ is the temperature in Kelvin (K). The denominator of the right side is the partition function. For a molecular system that can adopt two conformations equation 1 can be rearranged into:

$$
\begin{equation*}
P=\frac{100}{1+e^{-E_{\text {rel }} / R T}} \tag{Eq.2}
\end{equation*}
$$

P represents the percentage of the lower energy conformer (Fig. 1). Energy differences between the conformational states are related thermodynamically to their populations, with a ratio of 1:10 for a free energy difference of $\approx 5.7 \mathrm{kJ.mol}^{-1}$ at room temperature. Consequently, conformations with relative free energies larger then 8.4 $\mathrm{kJ} . \mathrm{mol}^{-1}$ are populated to a very minor extent (Fig. 1). Conformational analysis can be accomplished by experimental or theoretical methods. Experimental methods imply spectroscopic techniques such as dynamic NMR (D-NMR) or IR.


Fig. 1: Boltzmann distribution as the percentage of the lower energy conformation in a two conformation equilibrating system as a function of conformational energy difference ( $x$-axis, $\mathrm{kJ} . \mathrm{mol}^{-1}$ ) at various temperatures ( ${ }^{\circ} \mathrm{C}$, colour).

Theoretical methods that are routinely used, however, differ by the approach and level of theory (Monte Carlo methods, molecular dynamics, molecular mechanics, semiempirical methods, $a b$ initio methods). ${ }^{4-7}$ Monte Carlo methods and molecular
mechanics are less accurate but they take into account the molecule as a whole. Alternatively, computationally costly $a b$ initio methods are robust and more accurate. Since computation of all possible conformational space can be very demanding, a specific, simplified approach can be applied in order to investigate each separate (isolated) but critical conformational coordinate that is not constrained due to delocalisation and is likely to be rotated under normal circumstances. ${ }^{4-7}$

In a particular molecular entity some conformational coordinates may be considered as generally constrained. One example is the amide bond (NH-C=O). Due to the delocalisation of electrons (partial double bond) the amide group is relatively planar, while rotation of the C-N bond at ambient temperature is less likely. Therefore, constrained conformational coordinates, such as amide C-N bonds, are excluded from conformational analyses.

Selected critical conformational coordinates are subjected to a method known as the "conformational scan" in which the conformational coordinate (dihedral angle) is rotated by a certain increment, and at each step the total energy is calculated. When the calculated energy is plotted against the corresponding angle the result is a potential energy surface (PES) diagram. The described method is approximate since it takes into account only the separated coordinates, and will not give total conformational space. On the other hand if the method used for energy calculation is accurate enough (ab initio, DFT) and includes partial optimisation (coordinate relaxation) that allows the entire molecule to adopt a new conformation, the resulting PES diagram can be considered as a very accurate model of conformational behaviour in one dimension. Theoretical conformational analyses are usually accomplished using available quantum chemistry software packages as Gaussian. ${ }^{25}$

Crystallisation is a complex process involving thermodynamic as well as kinetic and many other factors. Such studies with conformational analysis can provide valuable information on relative energies of different molecular conformations to aid in an indepth understanding of factors that promote the aggregation and isolation of distinct and favoured conformations in the solid state.

### 1.3. Isomer grids

The concept originates from combinatorial chemistry methods where isomers and moieties are combined into more complex compound libraries in order to yield numerous compounds that share similar structural motifs, as well as pharmacological
activities. ${ }^{26}$ In medicinal chemistry and drug design the purpose is to cover structural space in order to increase the probability of a positive outcome ("hit"). In structural systematics exploring isomer grids is a useful concept to examine the influence of position variation on structure, aggregation or physico-chemical properties such as morphology, melting point, reactivity, solubility, stability, crystallinity, optical and mechanical.

Isomer grids are specific sets of isomers where two or more identical (or different) substituents (or heteroatoms) exchange their places in a systematic and combinatorial manner. Isomer grids are based on a fixed scaffold, usually a simple ring system (6-, 5- or 4-membered aromatic or cycloalkane/ene ring), or complex systems like tropane, steroid, morphinan, porphyrin and calixarene. A good example of a simple scaffold is a six-membered aromatic ring. Systematic exchange of the place of the substituent(s) or heteroatom(s) will give an isomer grid. Two homo- or heterosubstituents or heteroatoms, (X-A, Y-B; X, Y = any moiety different from $\mathrm{H} ; \mathrm{A}, \mathrm{B}=\mathrm{N}$, $\mathrm{O}, \mathrm{S}$ ) can be arranged to give three different isomers (para, meta, ortho, Scheme 1). Addition of one more Y-B substituent can yield six possible isomers (Scheme 2). If there are three different substituents the number of possible isomers increases to ten (Scheme 3).




Scheme 1: Possible combinations with two different substituents (para, meta, ortho)

The examples represent simple, one-dimensional isomers grids. If a molecular scaffold contains two rings connected by a linker it can be used to build a two dimensional isomer grid. A linker can be symmetric (e.g. simple bond, hydrocarbon chain, methylene, amino, ether, thio, diazo, ureido, guanido, keto, sulpho, etc.) or asymmetric (amide, carbamate, ester, sulfonamide, etc.).

Two rings can be labelled $\mathbf{X}$ and $\mathbf{Y}$ according to the substituent/heteroatom (Scheme 4). For this particular example the number of possible isomers is 9 , since the combination of two rings with one substituent changing positions gives a $3 \times 3$ matrix i.e. isomer grid (Table 1). Similarly, a two ring scaffold with two identical substituents at
each ring gives a $6 \times 6$ isomer grid with 36 possible isomers (Table 2), while if substituents were dissimilar the number of isomers is $100(10 \times 10$ isomer grid $)$.





Scheme 2: Possible combinations (6) with three substituents (two being identical): " 23 ", " 24 ", "35", "26", "34", "25"











Scheme 3: Possible combinations (10) with three substituents (all different): 2Y3Z, 2Z3Y, 2Y4Z, 2Z4Y, 2Z5Y, 2Y5Z, 2Z6Y, 3Y4Z, 3Z4Y, 3Z5Y

Table 1: A two dimensional ( $3 \times 3$ ) isomer grid with each ring ( $\mathbf{X}$ or $\mathbf{Y}$ ) having one substituent/heteroatom (X/A or Y/B). A designated letter $\boldsymbol{p}, \boldsymbol{m}$ or $\boldsymbol{o}$ indicates positions of the substituent on each isomer.

| $\mathbf{X}$ | para | meta | ortho |
| :--- | :--- | :--- | :--- |
| para | XppY | XpmY | XpoY |
| meta | XmpY | XmmY | XmoY |
| ortho | XopY | XomY | XooY |

If three rings are connected with a trivalent linker then it is a tridimensional isomer grids with $27(3 \times 3 \times 3)$, $216(6 \times 6 \times 6)$ or $1000(10 \times 10 \times 10)$ possible isomers. Certainly, a complex system can be conceived with $n$ rings, giving a $n$-dimensional isomer grid. Therefore, an isomer grid is a matrix of all possible combinations of one
dimensional isomers based on an $n$-dimensional molecular scaffold. Synthesis of isomer grids has been useful in medicinal and combinatorial chemistry, however, their role in structural systematics and solid-state chemistry is yet to be established.


Scheme 4: A scaffold with two rings and a linker is the basis for a two dimensional isomer grid

Table 2: A two dimensional ( $6 \times 6$ ) isomer grid with each ring ( $\mathbf{X}$ or $\mathbf{Y}$ ) having two identical substituent/heteroatoms ( $\mathrm{X} / \mathrm{A}$ or $\mathrm{Y} / \mathrm{B}$ ). A designated number indicates the positions of the substituent on each isomer.

| $\mathbf{X}$ | $2,3-$ | $2,4-$ | $2,5-$ | $2,6-$ | $3,4-$ | $3,5-$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2,3-$ | X23-23Y | X23-24Y | X23-25Y | X23-26Y | X23-34Y | X23-35Y |
| $2,4-$ | X24-23Y | X24-24Y | X24-25Y | X24-26Y | X24-34Y | X24-35Y |
| $2,5-$ | X25-23Y | X25-24Y | X25-25Y | X25-26Y | X25-34Y | X25-35Y |
| $2,6-$ | X26-23Y | X26-24Y | X26-25Y | X26-26Y | X26-34Y | X26-35Y |
| $3,4-$ | X34-23Y | X34-24Y | X34-25Y | X34-26Y | X34-34Y | X34-35Y |
| $3,5-$ | X35-23Y | X35-24Y | X35-25Y | X35-26Y | X35-34Y | X35-35Y |

## 2. Objectives

Our research is directed towards structural systematics of isomer grids integrating crystal structure analyses with computational (ab initio) modelling methods to explore the influence of positions of different functional groups e.g. $\mathbf{F} / \mathbf{C l} / \mathbf{B r} / \mathbf{I} / \mathbf{M e} / \mathbf{O M e}$ and/or heteroatoms ( $\mathbf{N}$ ) in two dimensional isomer grids based on semi-rigid drug-like scaffold on inter- and intramolecular interactions, conformations, physicochemical properties and solid-state packing. Comparisons involve analysis of the (a) spectroscopic data (b) crystal structures, (c) computational calculations (geometry optimisation in the gas phase and solvated forms $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ ), molecular energies and $\Delta \mathrm{G}_{\text {solv }}$ and (d) conformational analyses of the optimised structures.

The questions to be addressed involve correlations between the various permutations of the group site with molecular conformation, solid-state aggregation and physicochemical properties. The formation of inter/intramolecular hydrogen bonds in
the solid state and their influences on molecular conformations are analysed and collated with conformational and structural differences between theory and experiment.

### 2.1. Benzamides

Benzamides are a simple molecular scaffold with two aromatic rings (not just a phenyl ring) connected by an amide moiety. Compounds selected for the structural survey are $N$-(pyridyl)benzamides (Table 3) having fluorine or methyl substituents i.e. methyl- $N$-(pyridyl)benzamides (generally named as the Mxx isomer grid) and fluoro- N (pyridyl)benzamides ( $\mathbf{F x x}$ isomer grid). Two isomer grids ( $3 \times 3$ ) were built by varying the position of the pyridine N atom and the $\mathrm{F} / \mathrm{CH}_{3}$ substituent at the aromatic rings.

Similar benzamide derivatives ${ }^{27,28}$ have importance as potential drugs e.g. antiulcer agents, modulators of human vanilloid receptor 1 (TRPV1) and as $K_{v}$ channel blockers and activators. ${ }^{29-32}$ The reasons for using $N$-(pyridyl)benzamides are multiple. The existence of both pyridine nitrogen and carbonyl oxygen as strong hydrogen bond acceptors and amide hydrogen as a hydrogen bond donor, as well as fluorine and methyl groups in the scaffold can promote different and unusual aggregation and physicochemical properties depending on the particular isomer combination.

Table 3: Structures and nomenclature of the Mxx and Fxx isomer grids


|  | Mxx |  |  | Fxx |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | p-methyl benzoyl | $m$-methyl benzoyl | o-methyl benzoyl | p-fluoro benzoyl | $m$-fluoro benzoyl | $o$-fluoro benzoyl |
| para (4-aminopyridinyl) meta (3-aminopyridinyl) ortho (2-aminopyridinyl) | $\begin{aligned} & \text { Mpp } \\ & \text { Mpp } \\ & \text { Mро } \end{aligned}$ | Mmp Mmm Mmo | $\begin{aligned} & \hline \text { Mop } \\ & \text { Mom } \\ & \text { Moo } \\ & \hline \end{aligned}$ | $\begin{gathered} \hline \text { Fpp } \\ \text { Fpm } \\ \text { Fpo } \end{gathered}$ | $\begin{aligned} & \hline \text { Fmp } \\ & \text { Fmm } \\ & \text { Fmo } \end{aligned}$ | $\begin{gathered} \hline \text { Fop } \\ \text { Fom } \\ \text { Foo } \end{gathered}$ |

Given the isosteric relationship that fluorine has with the hydrogen atom and the ability of fluorine to participate in weak interactions, ${ }^{33}$ there is ample evidence that a wealth of interesting structural motifs involving 'organic fluorine' will be revealed in systematic studies. $N$-(pyridyl)benzamides are derivatives of aminopyridine, a well known potassium channel blocker, ${ }^{34}$ and some of them have been identified ${ }^{32}$ to have pharmacological properties. Building isomer grids as a compound library would be useful for both structural and medicinal studies.

### 2.2. Pyridinecarboxamides

Pyridinecarboxamides are almost identical and isomeric to N (pyridyl)benzamides, however, with the amide linkage being swopped between the rings (Scheme 5) As in the previous group the fluoro and methyl groups were used as substituents, giving $N$-(fluorophenyl)pyridinecarboxamides ( $\mathbf{N x x F}$ isomer grid) and N (tolyl)pyridinecarboxamides ( $\mathbf{N x x M}$ isomer grid). All four isomer grids are in relationships regarding the substitent/amide linker variation (Scheme 5).

In contrast to benzamides, pyridinecarboxamides are not direct derivatives of 4AP, but rather the reverse or indirect pseudo-derivatives. A literature review reveals NppF has been used as an intermediate in the synthesis of 4-pyridinium cationic-dimer antimalarials. ${ }^{35}$ The NmxF triad has been studied in an unusual synthesis of nicotinamides ${ }^{36}$ and recently NmoF has been cited as a promising candidate for lead design as a selective inhibitor of LmSir2, a sirtuin protein from Leishmania, and therefore, a potential new drug and/or scaffold for leishmaniasis drug design. ${ }^{37}$

Table 4: Structures and nomenclature of the $\mathbf{N x x F}$ and $\mathbf{N x x M}$ isomer grids

|  |  |  |  |  | NxxM |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | p-fluoro phenyl | $m$-fluoro phenyl | $o$-fluoro phenyl | $p$-tolyl | $m$-tolyl | $o$-tolyl |
| para (4-pyridinoyl) <br> meta (3-pyridinoyl) <br> ortho (2-pyridinoyl) | NppF NmpF NopF | NpmF <br> NmmF <br> NomF | NpoF <br> NmoF <br> NooF | NppM <br> NmpM <br> NopM | NpmM <br> NmmM <br> NomM | NpoM NmoM NooM |

In the NoxF series, NopF has been used as a deprotonated ligand in a $\mathrm{Co}^{\text {III }}$ complex ${ }^{38}$ (its crystal structures has been published previously) ${ }^{39}$ and NomF as an intermediate in the synthesis of thioamide analogues; NooF has been employed as a ligand in a ruthenium complex developed as a potential cytotoxic agent. ${ }^{40}$ The $\mathbf{N p p M}$ isomer has been examined as a ligand in metal complexes and complex based polymers with $\mathrm{Cu},{ }^{41,42}$ whereas NoxM ligands have been widely studied in metal complexes e.g. Fe, ${ }^{43}$ $\mathrm{Ni},{ }^{43} \mathrm{Co},{ }^{43,44} \mathrm{Ru},{ }^{45,46} \mathrm{Ir},{ }^{47} \mathrm{Au}^{48} \mathrm{Mn}^{49,50}$ and $\mathrm{Pt}^{51}$ with potential and defined catalytic or electrochemical properties.


Scheme 5: Structural relationships between the four selected isomer grids

### 2.3. Carbamates

Generally, carbamates are derivatives of carbamic acid $\left(\mathrm{NH}_{2} \mathrm{COOH}\right)$, sometimes called urethanes. They are widely known as versatile protecting groups ${ }^{52}$ (BOC, FMOC, Cbz ) or as linkage functional group in polyurethane polymers. Furthermore, carbamates can be found among some insecticides (1-naphthyl methylcarbamate, Carbaryl) and drugs (neostigmin, meprobamate).

Table 5: Structures and nomenclature of the $\mathbf{C x x R}$ isomer grids

$\mathbf{C x x R}, \mathrm{R}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{OMe}\left(\mathrm{OCH}_{3}\right), \mathrm{M}\left(\mathrm{CH}_{3}\right)$

|  | $p$-R-phenyl | $m$-R-phenyl | $o$-R-phenyl |
| :--- | :---: | :---: | :---: |
| para (4-aminopyridinyl) | CppR | CpmR | CpoR |
| meta (3-aminopyridinyl) | CmpR | CmmR | CmoR |
| ortho (2-aminopyridinyl) | CopR | ComR | CooR |

From our interest are the phenyl- $N$-pyridinyl-carbamates (CxxR), where two aromatic rings (Table 5) with variable substituent/heteroatom positions make two dimensional isomer grids. These compounds are analogous to benzamides and pyridinecarboxamides with an additional oxygen atom between the carbonyl and phenyl
moiety. Therefore, they are direct derivatives of 4-AP. The rationale for exploring phenyl- $N$-pyridinyl-carbamates ( $\mathbf{C x x R}$ ) comes from the fact that similar carbamates were found to be blockers of potassium channels. ${ }^{30,53,54}$ Our intention is to create a small compound library suitable for screening of potassium channel modulators. More importantly, phenyl- $N$-pyridinyl-carbamates are relatively unknown and unexplored in structural science. There are no N -(pyridyl)phenyl carbamates found in CSD and just 29 basic phenylcarbamates structures are known. ${ }^{8}$

Some of the reasons might be difficulties in synthesis, the commercial unavailability of synthons, difficulties in their crystal growth, and instability ${ }^{55}$ (slow decomposition) over weeks. Despite the possible difficulties, two dimensional isomer grids of CxxR with halogen, methoxy or methyl as functional groups would be a challenging system for structural systematics studies. Some $N$-pyridinyl-carbamates have been found to have antifungal, ${ }^{56}$ herbicidal ${ }^{57}$ and plant anticytokinin activity. ${ }^{58-62}$

## 3. Pharmacological role of the selected compounds

An important rationale behind the selected isomer grids is that similar compounds have been found to have potential pharmacological activity as potassium channel modulators (blockers and/or openers). New studies ${ }^{32,63}$ show that two aromatic moieties, linked via an amide bridge, play critical pharmacological roles in the activation of $K_{v}$ channels. The main synthon in selected benzamide/carbamate grids is 4-aminopyridine (4-AP), a well know potassium channel blocker and recently approved by the FDA for the treatment of multiple sclerosis. ${ }^{34}$ Several derivatives of 4-AP are shown to have specific pharmacological activity. Nevertheless, the aim of our research is not the pharmacological evaluation of aminopyridine derivatives but their synthesis, characterisation and structural investigation.

### 3.1. Potassium channels

Voltage gated potassium channels ( $\mathrm{K}_{\mathrm{v}}$ channels) are a ubiquitous group of poreforming transmembrane proteins (Fig. 2) and play critical roles in a wide variety of physiological processes. $\mathrm{K}_{\mathrm{v}}$ channels participate in establishing and control of the voltage gradient across the cell membrane by allowing the flow of potassium ions across cell membrane. $\mathrm{K}_{\mathrm{v}}$ channels can be found in virtually any type of cell in the human organism. As a result, $\mathrm{K}_{\mathrm{v}}$ channels are involved in wide range of physiological processes ${ }^{64-69}$ like neuronal excitability, muscle contraction, heart rate, neurotransmitter
release, epithelial electrolyte transport, immunology and many other physiological processes. Also, $\mathrm{K}_{\mathrm{v}}$ channels are involved in huge number of pathophysiological processes responsible for various diseases, like epilepsy, ${ }^{70}$ arrhythmia ${ }^{71}$ and demyelinating diseases. ${ }^{72,73}$
$\mathrm{K}_{\mathrm{v}}$ channels have been recognized as potential drug targets for many years. However, knowledge about the $\mathrm{K}_{\mathrm{v}}$ channels function and structure has been notably improved this decade, due to the recent advances in technology. Now it is known that the list of diseases that could be alleviated by targeting a particular $\mathrm{K}_{\mathrm{v}}$ channel is significant, encompassing not only proven $\mathrm{K}_{\mathrm{v}}$ channelopathies, but also a range of other diseases. Therefore, development of selective $\mathrm{K}_{\mathrm{v}}$ channel modulators is attractive.

### 3.1.1. Structure and assembly of $K_{v}$ channels

The $\mathrm{K}_{\mathrm{v}}$ channel is a tetramer, consisting of four glycosylated transmembrane pore-forming $\alpha$-subunits that surround a water-filled, $\mathrm{K}^{+}$selective pore ${ }^{74}$ and, in some types of $K_{v}$ channels, $\beta$-subunits that interact with the intracellular surfaces of $\alpha$ subunits modifying their function. The transmembrane tetramer, consisting of $\alpha$ -


Fig. 3: Spatial orientation of the helixes of a single
$K_{v} \alpha$ subunit subunits, can be composed in the form of a homotetramer or heterotetramer. Homotetramers form a four fold symmetric $\left(C_{4}\right)$ complex arranged around a central ion conducting pore. Alternatively four related but not identical protein subunits may associate to form heterotetrameric complexes with pseudo $C_{4}$ symmetry.

Various $\beta$-subunits have been found in association with different $\mathrm{K}_{\mathrm{v}}$ channels. They also form a tetramer of with $C_{4}$ symmetry, and appear to be docked at the
cytoplasmic moiety of the $\alpha$-subunits. A single $\alpha$-subunit (Fig. 3) is a glycosylated ${ }^{75}$ protein, comprising 6 transmembrane spanning $\alpha$-helical regions (S1-S6) and a loop ( P segment) between the fifth and sixth $\alpha$-helical regions that, when $4 \alpha$-subunits associate, forms the selectivity filter of the pore. The selectivity filter passes through $\mathrm{Rb}^{+}$and $\mathrm{Cs}^{+}$ions and this possibility is used in $\mathrm{K}_{\mathrm{v}}$ channel research methods. ${ }^{76,77}$ Segments S 5 and S 6 together with the P loop are called a pore region, and transmembrane segments S1-S4 encompass a voltage-sensing region. The fourth helical region (S4) is the actual voltage sensor because it has a positively charged amino acid at every third residue so that it is polarized. The S 6 helix participates in gate forming, and the N-terminal part is a so-called "ball and chain" region since the bulky N-terminus is involved in N-type inactivation of the $\mathrm{K}_{\mathrm{v}}$ channel. It was shown that the ion translocation pore is occluded by the binding of a hydrophobic N-terminal "ball" to the cytoplasmic vestibule of the pore.

Although the fully assembled $\mathrm{K}_{\mathrm{v}} 1$ channel has been visualised by electron microscopy (Fig. 4), ${ }^{75}$ the described model of $K_{v}$ channel is mainly based on the well investigated bacterial KcsA potassium channel, shown by protein crystallography. ${ }^{78,79}$


Fig. 4: 3-D distribution of densities of the brain $\mathrm{K}^{+}$channel and views of the reconstruction

Also, $K_{v}$ channel structures from several other prokaryotic species such as KirBacl.1 channel, ${ }^{80}$ bacterial $\mathrm{K}_{\mathrm{v}} \mathrm{AP}$ channel ${ }^{81}$ from Aeropyrum pernix have been elucidated and a very important breakthrough was the crystallographic structure of mammalian (rat) $\mathrm{K}_{\mathrm{v}} 1.2$ channel. ${ }^{82}$ These structures enabled the emergence of a large number of simulation studies, ${ }^{76,83}$ where the structure of known $\mathrm{K}_{\mathrm{v}}$ channels were used as templates, combining computational methods of molecular modelling and primary structure of the various human $\mathrm{K}_{\mathrm{v}}$ channels to calculate/predict molecular structure of these human proteins without X-ray crystallography. Many of the simulation studies examined the relationship between the $\mathrm{K}_{\mathrm{v}}$ channel structure and their function. ${ }^{64-69}$

Recently, simulation studies based on 3-D homology models made further progress encompassing docking methods and SAR investigations of known and possible new $\mathrm{K}_{\mathrm{v}}$ channel modulators. ${ }^{84-86}$

### 3.1.2. Physiology of $K_{v}$ channels

There are three possible functional states of $\mathrm{K}_{\mathrm{v}}$ channels; closed, open and inactivated. The $\mathrm{K}_{\mathrm{v}}$ channel opens at the intracellular gate in response to membrane depolarization which raises the membrane potential from -70 mV to +40 mV . At that point $\mathrm{K}^{+}$ions pass through the ion translocation pore of the $\mathrm{K}_{\mathrm{v}}$ channel, causing the repolarisation down to the hyperpolarisation level. This triggers the next step, an inactivation of the $\mathrm{K}_{\mathrm{v}}$ channel.

There are two types of inactivation. The first type is called the rapid or N-type inactivation during which the ion translocation pore is occluded by the binding of a hydrophobic N-terminal "ball" to the cytoplasmic vestibule of the pore. ${ }^{87}$ A second type of inactivation, termed "C-type inactivation", emerges with prolonged depolarization leading to decrease of current flow due to structural changes that constrict the extracellular end of the ion translocation pore. ${ }^{88-92}$

Several models have been brought up for debate regarding the voltage-sensing mechanism. The best known of these are the "helical screw", ${ }^{93-95}$ the "gating pore", ${ }^{96}$ the "transporter", ${ }^{97}$ and the "paddle". ${ }^{81,98}$ The gating mechanism is also vague; however, the $\mathrm{K}_{\mathrm{v}} 1.2$ crystal structure ${ }^{82}$ indicates that the $\mathrm{S} 4-\mathrm{S} 5$ linker interacts with the S 6 gate suggesting strongly that it couples movement of the S 4 voltage sensor to opening of the S6 gate. The opening of the pore involves bending of the S 6 helices in a region occupied by a highly conserved glycine near the centre of the S 4 segment (Gly-bend). This bending allows the S 6 to swing away from the pore. The $\mathrm{K}_{\mathrm{v}} 1.2$ crystal structure ${ }^{82}$ and computational simulations ${ }^{84}$ revealed a second hinge region (PVP-bend) and outward rotation of the outer S 5 segments.

### 3.2. Potassium channel modulators

### 3.2.1. The $\mathrm{K}_{\mathrm{v}}$ blockers

There are three categories of known $\mathrm{K}_{\mathrm{v}}$ channel blocking agents, organic compounds, venom-derived peptide toxins and metallic ions. While some metallic ions
appeared to be just non-selective blockers, venom derived peptide toxins, originating from snakes, spiders, scorpions and anemones proved to be highly selective for particular types of $\mathrm{K}_{\mathrm{v}}$ channel, however, with low therapeutic potential. Therefore, venom derived peptide toxins have become long-standing primary tools in experiments for determination of $\mathrm{K}_{\mathrm{v}}$ channel function and differential localization. Also, some of them are good templates for the peptidomimetic drug design of new, specific small molecule $\mathrm{K}_{\mathrm{v}}$ channel therapeutics.

Organic compounds have potential to reach the clinical level; moreover, some of them are known drugs. There is a general lack of highly specific, small molecule $K_{v}$ channel blockers, with good drug-like characteristics and an acceptable safety profile. It is expected that new progress in $\mathrm{K}_{\mathrm{v}}$ channel knowledge when combined with advancements in drug design, protein modelling methods and high throughput screening technologies will ultimately result in new $\mathrm{K}_{\mathrm{v}}$ channel therapeutics.

Here, several representative examples of representative $\mathrm{K}_{\mathrm{v}}$ channel blocker classes are described. One of the best known groups of $\mathrm{K}_{\mathrm{v}}$ channel blockers is the tetraethylammonium (TEA) derivative group; however, due to the lack of potency and selectivity this group became obsolete.

### 3.2.1.1. Aminopyridines (APs)

Among all $\mathrm{K}_{\mathrm{v}}$ channel blockers, aminopyridines are the most investigated $\mathrm{K}_{\mathrm{v}}$ channel blockers. The lead compounds of this class are 4 -aminopyridine (4-AP, dalfampridine) and 3,4-diaminopyrinine (3,4-DAP) (Scheme 6).


1


Scheme 6: Chemical structures of 4-aminopyridine (1) and 3,4-diaminopyridine (2)

The ability of aminopyridines to block $\mathrm{K}_{\mathrm{v}}$ channels has been seen more than 30 years ago (in 1975 for $4-\mathrm{AP}^{99}$ and in 1978 for $3,4-\mathrm{DAP}^{100}$ ). Since then, 4-AP has been studied extensively, and, in fact, became a standard for synthetic $\mathrm{K}_{\mathrm{v}}$ blockers. Apart for the venom derived peptide toxins, 4-AP, as a small organic molecule, exhibits a very
broad range of affinities; 4-AP binds to various $K_{v}$ channels, from $K_{v} 1$ to $K_{v} 4$, having different intensities and mechanisms depending on the type of $\mathrm{K}_{\mathrm{v}}$ channel.

Preliminary preclinical data ${ }^{101-104}$ have triggered series of clinical trials in patients with chronic spinal cord injury (SCI) and multiple sclerosis (MS), many of which have shown that 4-AP can produce just modest or little improvements. ${ }^{105-116}$ Despite the relatively poor benefit and considerable toxicity (particularly epileptogenesis) clinical trials ended positively. After extensive clinical studies 4-AP (with a generic name "dalfampridine") has been recently approved by the FDA for treatment of SCI and MS. ${ }^{34}$ Despite modest improvements in patients, toxicological concerns regarding 4-AP remain. One obvious reason is that the maximum tolerable blood level of 4-AP in both animals and humans is only $0.5-1 \mu \mathrm{M}$, while the most effective concentration determined in vitro is $100 \mu \mathrm{M} .{ }^{117}$ Concentrations above $1 \mu \mathrm{M}$ produce side effects such as respiratory distress, anxiety and epileptiform seizures. ${ }^{118-120}$


Scheme 7: The equilibrium of 4-AP in aqueous solution.

Possible reasons for the negative side effects associated with higher doses of 4AP are increased synaptic transmission or additional blockade of potassium channel currents associated with the resting membrane potential. ${ }^{117}$ Between the years 1990 and 2001, there have been a large number of studies on electrophysiologal aspects and kinetics of the 4-AP binding effect on native or mutated $K_{v}$ channels. These experiments partially revealed the mechanisms of 4-AP blockage of $K_{v}$ channels. For instance, it was noted that 4-AP blocks the $\mathrm{K}_{\mathrm{v}}$ channel only in its protonated, cationic form ${ }^{121}$ (Scheme 7), from the intracellular face of the $K_{v}$ channel. Also, some of the conclusions were about the probable binding site, and how 4-AP promotes the blockage. ${ }^{122}$

The real advance came only after the structure of the $K_{v}$ channel was revealed. The information about the structure of $\mathrm{K}_{\mathrm{v}}$ channels in conjunction with molecular modelling and theoretical (DFT) methods gave important conclusions regarding aminopyridine binding. ${ }^{123-125}$ The previous findings that aminopyridines bind to the $\mathrm{K}_{\mathrm{v}}$ channels in a protonated, cationic form is theoretically supported and explained.

Further, it was suggested that the pyridine ring plays an active role in the interaction with the receptor site. This interaction with the protonated pyridine nitrogen can involve a cation $-\pi$ interaction or a donor hydrogen bond. In fact, the pyridine ring was recognized as a pharmacophor, while a second amine group, at different relative positions of the pyridine nitrogen, can form one or more hydrogen bonds due to the $\mathrm{C}_{4}$ symmetry of the inner part of the pore in the $\mathrm{K}_{\mathrm{v}}$ channel. One of the important conclusions was that the $\mathrm{pK}_{\mathrm{a}}$ of 4-aminopyridine (9.4) is important for binding affinity. Future derivatives with decreased $\mathrm{pK}_{\mathrm{a}}$, but intact pyridine nitrogen might have a better potency than 4-AP.

### 3.2.1.2. Carbamates

Recently, new carbamate derivatives of 4-AP were identified to be evaluated in an electrophysiological test. ${ }^{53}$ The modifications were made by preserving the pyridine ring, but the amine nitrogen was alkylated and acylated to give amides, carbamates and urea derivatives of 4-AP. This way, the $\mathrm{pK}_{\mathrm{a}}$ fell from 9.4 to $c a$. 6.4. Biological evaluations pinpointed methyl, ethyl and tert-butyl carbamate of 4-AP (Scheme 8) as promising new candidates; all produced positive biological responses at or below the 4AP optimal concentration, with tert-butyl carbamate exhibiting a similar level of effect at $1 \%$ of the concentration required for 4-AP. Further experiments confirmed these results. ${ }^{30,54}$ Therefore, these derivatives, especially $N$-(4-pyridyl)-tert-butyl carbamate may represent an alternative to 4-AP.




Scheme 8: Chemical structures of $N$-(4-pyridyl)-methyl carbamate (3), $N$-(4-pyridyl)-ethyl carbamate (4) and $N$-(4-pyridyl)-tert-butyl carbamate (5); Each of the derivatives is similar in structure to 4-AP however, the side groups are modified.

The newest theoretical studies of 4-AP as applied to modern docking methods solved the binding site mystery - aminopyridines block the $\mathrm{K}_{\mathrm{v}}$ channel by forming
several $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with the tetrameric structure formed by the four carbonyl oxygens at the Thr 107 or Ala111 residues of the $K_{\mathrm{v}}$ channel $\alpha$-subunits. ${ }^{126}$ These findings could promote advances in the further design of new aminopyridine derivatives, that are more selective and potent blockers of $\mathrm{K}_{\mathrm{v}}$ channels.

### 3.2.1.3. Disubstituted cyclohexyl benzamides

An important group of small molecule $\mathrm{K}_{\mathrm{v}} 1.3$ blockers are the disubstituted cyclohexyl benzamides, i.e. 4,4-disubstituted cyclohexyl analogues. The lead compound was 4-phenyl-4-[3-(2-methoxyphenyl)-3-oxo-2-azaprop-1-yl] cyclohexanone (PAC) (6, Scheme 9), identified ${ }^{127}$ in a screening system that monitors ${ }^{86} \mathrm{Rb}^{+}$efflux from CHO cells stably transfected with $\mathrm{K}_{\mathrm{v}} 1.3$ channel; PAC blocked the efflux reaction with an $\mathrm{IC}_{50}$ value of 273 nM . Additional tests confirmed its good $\mathrm{K}_{\mathrm{v}} 1.3$ blockage activity. PAC has undergone electrophysiological tests by whole human T-lymphocytes recording, kinetics and specificity surveys and also proliferation assays.



Scheme 9: Molecules 6 (4-phenyl-4-[3-(2-methoxyphenyl)-3-oxo-2-azaprop-1-yl] cyclohexanone (PAC)) and 7 (trans- N -propylcarbamoyloxy PAC))

The results showed that PAC reversibly blocks currents through $\mathrm{K}_{\mathrm{v}} 1.3$ channels in human T-lymphocytes. PAC inhibited $\mathrm{K}_{\mathrm{v}} 1.1, \mathrm{~K}_{\mathrm{v}} 1.2, \mathrm{~K}_{\mathrm{v}} 1.5$, and $\mathrm{K}_{\mathrm{v}} 1.6$ with very similar potencies as had been found for $\mathrm{K}_{\mathrm{v}} 1.3$ ( $\mathrm{IC}_{50}$ of 200-400 nM). Thus, no selectivity is observed for blocking $\mathrm{K}_{\mathrm{v}} 1$ family channels by this compound. The following step is a chemical modification of PAC. Reduction of the $\mathrm{C}-1$ ketone in the A ring was used to generate trans (down) and cis (up) isomer pairs. A number of transand cis-N-carbamoyloxy-substituted analogues have been prepared at this position. The most potent compound in this series was the trans-N-propylcarbamoyloxy derivative (compound 7 in Scheme 9), which displayed an $\mathrm{IC}_{50}$ of 50 nM in the $\mathrm{K}_{\mathrm{v}} 1.3{ }^{86} \mathrm{Rb}^{+}$efflux assay, approximately 5-6-fold more potent than the PAC parent compound.

Another publication ${ }^{29}$ with benzamides also brought a new range of derivatives with similar activities, but without meaningful advances regarding potency and selectivity.

### 3.2.1.4. Porphyrins and calixarenes

The 4-AP acts on the inner portion of the potassium channel. Unfortunately this portion is evolutionally conserved which implies the absence of acceptable selectivity throughout different classes of $\mathrm{K}_{\mathrm{v}}$ channels, and therefore, the absence of therapeutic specificity towards certain maladies. On the other hand animal venoms like $\delta$ dendrotoxin are efficient blockers with selectivity towards certain subclasses. Since $K_{v}$ channels bear $C_{4}$ symmetry a concept using a macromolecule with the same $C_{4}$ symmetry appeared. It was postulated that a similar molecule would block the potassium channel from the extracellular side, have increased and easy controlled selectivity, therefore, capable of controlling major symptoms of MS and SCI. The two well known classes of compounds that bear $C_{4}$ symmetry are porphyrins and calixarenes. Therefore, Gradl and co-workers ${ }^{128}$ have synthesised various water-soluble tetraphenylporphyrin derivatives substituted with various amino acids, peptides, or diamines. The interaction of the porphyrin ligands with potassium channels was investigated in competitive binding assays with ${ }^{125}$ I-hongotoxin ${ }_{1}$-A19Y/Y37F and in electrophysiological assays using the Xenopus oocyte system. A cationic porphyrin (Scheme 10), was found to bind with the highest affinity $\left(\mathrm{K}_{\mathrm{i}}=13 \mathrm{nM}\right)$ and significantly inhibited the Shaker current, in a reversible fashion. Although porphyrins fulfil the symmetry requirements, they are flat macrocycles that do not ideally complement the conical pore entrance of the $\mathrm{K}_{\mathrm{v}}$ channels.


Scheme 10: Cationic porphyrin with its binding affinity ${ }^{128}$

In fact, solid-state NMR and molecular dynamics have shown that the porphyrins do not sit like a lid on top of the channel, which was the original model, but
are oriented in parallel to the channel axis, with only one positively charged side arm actually interacting with the selectivity filter. ${ }^{129}$

Unlike porphyrins, calixarenes display conical shapes that would likely complement the shape of the outer vestibule of a $\mathrm{K}_{\mathrm{v}}$ channel. Thus, calixarenes ligands ${ }^{130}$ (Fig. 5) were synthesized containing cationic substituents (guanidines) attached to the upper rim of the calixarenes to ideally complement the mainly negatively charged extracellular surface groups of the channel at the 'turret loop', specifically residue Asp-379 in $\mathrm{K}_{\mathrm{v}} 1.2$, thus improving binding affinities and selectivities by both electrostatic interactions and hydrogen bonding. The interaction of calixarene compounds with potassium channels was investigated by using electrophysiological methods on Xenopus laevis oocytes expressing the Shaker potassium channel, a prototypical member of the $\mathrm{K}_{\mathrm{v}} 1 . \mathrm{x}$ subfamily.


Fig. 5: Top and side wire frame views of calixarene ligand $\mathbf{4}$ docked into the X -ray structure of the human voltage dependent $\mathrm{K}_{\mathrm{v}} 1.2$ potassium channel. ${ }^{130}$

The ligand 4 (Fig. 5) ${ }^{130}$ bearing charged CO-Arg-OMe substituents, was found to be the most promising lead compounds with $35 \%$ of inhibition at $50 \mu \mathrm{M}$. Further functionalization of ligand 4 with suitable peptide chains attached to the upper rim is expected to increase the affinity of the channel-calixarene.

### 3.2.1.5. Other small molecule blockers of potassium channels.

Khellinones

Khellinone (Scheme 11) is a naturally occurring benzofuran derivative isolated from Ammi visnaga. Just recently, khellinone and khellinone derivatives were found to be blockers of $\mathrm{K}_{\mathrm{v}} 1.3$ channels with considerable potential as future immunosuppresive
agents. While khellinone itself only weakly blocks $\mathrm{K}_{\mathrm{v}} 1.3$ it also serves as a versatile starting material for at least two different classes of new $\mathrm{K}_{\mathrm{v}} 1.3$ blockers ${ }^{131}$ that block $\mathrm{K}_{\mathrm{v}} 1.3$ channels and inhibit anti-CD3 activated T-cell proliferation at submicromolar concentrations. The khellinones are indisputably a very promising group of potent $\mathrm{K}_{\mathrm{v}} 1.3$ blockers that possibly contain future potent immunomodulating drugs. Since there has been a significant rise of individual khellinone derivatives with good $\mathrm{K}_{\mathrm{v}} 1.3$ blocking activity, the next step in the search of an ultimate drug candidate should be modelling, QSAR and docking studies with the assistance of structural information (experimental or modelled) on $\mathrm{K}_{\mathrm{v}} 1.3$ channels.

Anthranilic amides

Discovery of anthranilic amides as potent blockers of $\mathrm{K}_{\mathrm{v}} 1.5$ is an interesting example of the so-called "pharmacophore based search" for new lead compounds. ${ }^{132,133}$ The result was several promising compounds


Scheme 11: Structure of khellinone having good potency $(0.5-0.7 \mu \mathrm{M})$, Scheme 12: Molecule 8 acceptable selectivity over $\mathrm{K}_{\mathrm{v}} 11.1$ (HERG), whereas compound $\mathbf{8}$ (Scheme 12) had oral bioavailability in animal model of $43 \%$ : therefore being a promising drug substance for a new and safe treatment of atrial fibrillation. ${ }^{132,133}$

## Correolide derivatives

Correolide (Scheme 13) is a nortriterpene isolated from the roots and bark of the Costarican tree Spachea correa. ${ }^{134}$ The compound has a large, complex pentacyclic triterpenoid, heavily oxygenated structure, displaying five acetoxy moieties and an epoxide group. It was proven ${ }^{135}$ to be a highly potent, reversible blocker of $K_{\mathrm{v}} 1.3$ channel, the first small molecule inhibitor of $\mathrm{K}_{\mathrm{v}} 1$ series potassium channels to be isolated from a natural, plant source. Preliminary ${ }^{86} \mathrm{Rb}^{+}$efflux assay from $\mathrm{CHO} / \mathrm{K}_{\mathrm{v}} 1.3$ cells showed high potency $\mathrm{IC}_{50}$ value of 80 nM . One of the most important features of
correolide is an excellent selectivity over other members of the $\mathrm{K}_{\mathrm{v}} 1$ family. That characteristic made correolide a likely candidate as a new immunosuppressant. However, the most serious obstacle for advancement of correolide towards drug candidate status was the fact that correolide and its analogues also appear to inhibit $\mathrm{K}_{\mathrm{v}} 1.1$ channels present in some peripheral nerve terminals, ${ }^{136}$ thereby causing acetylcholine release, which explains some of the limited toxicity observed in vivo with this structural series. Another problem is the structure of correolide; its molecular complexity makes organic synthesis of new analogues both challenging and expensive.


Scheme 13: Chemical structure of correolide

### 3.2.2. The $K_{v}$ activators

In comparison with $\mathrm{K}_{\mathrm{v}}$ channel blockers, the $\mathrm{K}_{\mathrm{v}}$ channel activators can be regarded as an emerging group, since just recently there was no known $\mathrm{K}_{\mathrm{v}}$ activator, and efforts in this field have become intensive. Modern drug discovery methods accompanied with structural information on $\mathrm{K}_{\mathrm{v}}$ channels made the pursuit of new $\mathrm{K}_{\mathrm{v}}$ activators easier. Several groups are known, comprising benzamides, acrylamides, difenylurea derivatives and fenamates. There is only one $\mathrm{K}_{\mathrm{v}}$ channel activator in clinical usage, retigabine, as a new anti-convulsive. It is expected that the $\mathrm{K}_{\mathrm{v}}$ activators of future will take place in the therapy of epilepsy, neuropathic pain, arrhythmia, deafness (DFNA) and episodic ataxia 1. Several representative examples of $\mathrm{K}_{\mathrm{v}}$ activators and groups are described.

### 3.2.2.1. Retigabine (ezogabine)

Retigabine or ezogabine, previously known as D-23129 (Scheme 14), was recently approved by FDA under the trade names Potiga and Trobalt as an anticonvulsant for the treatment of partial epilepsies. ${ }^{137}$ It was identified in 1994, based
on flupirtine, a centrally acting analgesic that was discovered to have anticonvulsive activity. ${ }^{138}$ Retigabine was found to activate neuronal potassium channels in different cell preparations. ${ }^{139,140}$ The channel targeted was later identified as a member of the KCNQ channel, lately renamed the $\mathrm{K}_{\mathrm{v}} 7$ channel. ${ }^{141}$ This channel has long been known to control excitability of neuronal cells. Furthermore, mutation of the $\mathrm{K}_{\mathrm{v}} 7$ channel subunits has been identified in a hereditary epilepsy syndrome, benign familial neonatal convulsions (BFNC). ${ }^{70}$


Scheme 14: Retigabine, ethyl-4-(4-fluorobenzylamino)-2-aminophenylcarbamate

Retigabine has been shown to activate human $\mathrm{K}_{\mathrm{v}} 7.2$ and $\mathrm{K}_{\mathrm{v}} 7.3$ expressed either alone or as a heterotetramer in Xenopus oocytes, and it appears highly selective for neuronal $\mathrm{K}_{\mathrm{v}} 7.2-\mathrm{K}_{\mathrm{v}} 7.5$ channels over cardiac $\mathrm{K}_{\mathrm{v}} 7.1$, but it has much lower selectivity among the neuronal family members. ${ }^{142-144}$ The exact molecular mechanism of retigabine is $\mathrm{K}_{\mathrm{v}} 7.2$ activation by binding of lipophilic fluorophenyl ring of retigabine to tryptophan in the cytoplasmic end of S 5 (W236) in $\mathrm{K}_{\mathrm{v}} 7.2$ channel. Consequently, the open form of $K_{\mathrm{v}} 7.2$ is stabilised. ${ }^{145}$ Retigabine is considered as the prototype KCNQ activator and has the triggered pursuit of new $\mathrm{K}_{\mathrm{v}}$ activators.

### 3.2.2.2. Benzamides and ICA-27243

Generally, several studies ${ }^{63,146-148}$ have shown that $N$-pyridylbenzamides or the pyridinecarboxamide scaffold, where two aromatic moieties are linked via an amide bridge, play a critical pharmacological role in the activation of potassium channels. It is important to emphasize that the same scaffold was used in our structural research.

In series of studies ${ }^{63,146-148}$ simple $N$-pyridylbenzamides and pyridinecarboxamides (Scheme 15), are found to be activators of BK potassium channels. The BK potassium channels play a fundamental role in the regulation of the tone of smooth muscle cells. Therefore, the availability of exogenous compounds able to activate BK channels can guarantee an innovative pharmacological tool for the clinical management of many pathological states, due to a cell hyperexcitability, such as
asthma, urge incontinence and bladder spasm, gastric hypermotility, neurological and psychiatric disorders. Examples of isolated BK activators are shown in Scheme 15.

Recently, a report ${ }^{63}$ was published about the discovery of a $\mathrm{K}_{\mathrm{v}} 7$ channel activator possibly representing a new class of $\mathrm{K}_{\mathrm{v}} 7.2$ highly selective activators, with code name ICA-27243 (Scheme 16). This new molecule appears to be a selective activator of the $\mathrm{K}_{\mathrm{v}} 7.2 / 3$ channels. In human neuroblastoma cells, ICA-27243 produced membrane potential hyperpolarization that could be prevented by co-administration with the Mcurrent inhibitors XE-991 and linopirdine. This compound enhanced both ${ }^{86} \mathrm{Rb}^{+}$efflux $\left(\mathrm{EC}_{50}=\right.$


Scheme 15: Typical BK activators


Scheme 16: ICA-27243 $0.2 \mu \mathrm{M})$ and whole-cell currents in Chinese hamster ovary cells stably expressing heteromultimeric $\mathrm{K}_{\mathrm{v}} 7.2 / 3$ channels $\left(\mathrm{EC}_{50}=0.4 \mu \mathrm{M}\right)$. Activation of $\mathrm{K}_{\mathrm{v}} 7.2 / 3$ channels was associated with a hyperpolarizing shift of the voltage dependence of channel activation.

In contrast, the compound has no effect on cardiac $\mathrm{K}_{\mathrm{v}} 7.1$ channels. The compound was found to reversibly suppress seizure-like activity in an ex vivo model of epilepsy and demonstrated in vivo anticonvulsant activity $\left(\mathrm{ED}_{50}=8.4 \mathrm{mg} / \mathrm{kg}\right)$ in the mouse maximal electroshock epilepsy model.


Scheme 17: N-(5-chloropyridin-2-yl)-4-fluorobenzamide, ZTZ240

The next step in the quest for new $\mathrm{K}_{\mathrm{v}} 7.2 / 3$ activators was a recent study ${ }^{32}$ that revealed new types of benzamide, $N$-(5-chloropyridin-2-yl)-4-fluorobenzamide (ZTZ240, Scheme 17), as an effective activator of $K_{v} 7.2 / 3$. The potentiation of outward current was dose-dependent, with a half-maximal value ( $\mathrm{EC}_{50}$ ) of $5.8 \pm 0.9 \mu \mathrm{M}$ and, more dramatically, it slowed the deactivation. The molecular mechanism of the ZTZ240
effect is unique, mediated by specific molecular determinants, and hence consistent with recognizing a new site. ${ }^{32}$

### 3.2.2.3. Acrylamides

An important group of $\mathrm{K}_{\mathrm{v}} 7$ activators are the acrylamides or cinnamic amides. The lead compound $\mathbf{8}$ ((S)-1, Scheme 18), has an improved pharmacokinetic profile and is able to produce a remarkable increase ( $163 \pm 9 \%$ ) in the $\mathrm{K}_{\mathrm{v}} 7.2$ current at $10 \mu \mathrm{M}$ (the estimated $\mathrm{EC}_{50}$ value appears to be $6.0 \mu \mathrm{M}$ ). ${ }^{149}$ The compound (S)-1 enhances currents through all human neuronal $\mathrm{K}_{\mathrm{v}} 7$ channels expressed in Xenopus laevis oocytes ${ }^{150}$ with partially stronger preference towards $\mathrm{K}_{\mathrm{v}} 7.4$ and $\mathrm{K}_{\mathrm{v}} 7.5$ subunits.




Scheme 18: Molecule 8 or (S)-1 ((S)-N-(1-[3-morpholin-4-yl-phenyl]-ethyl)-3-phenylacrylamide) and $\mathbf{9}$ ((S)- $N$-(1-(benzo[ $d][1,3]$ dioxol-5-yl)-ethyl) )-3-phenyl-acrylamide).

The (S)-1 has hydrophobic binding site at S 5 segment of $\mathrm{K}_{\mathrm{v}} 7.2$ channel. Interestingly, the stereoisomeric centre of (S)-1 plays a fundamental role in the biological activity. Further lead optimisation efforts by restriction of the conformation, led scientists to conformationally-resticted analogues include the methylene dioxybenzene (compound 9 in Scheme 18), with an $\mathrm{EC}_{50}$ value on $\mathrm{K}_{\mathrm{v}} 7.2$ of approximately 20 nM (retigabine shows an $\mathrm{EC}_{50}$ of about 1 mM ). ${ }^{151}$ A number of these acrylamides have shown to have positive effects in vivo studies involving animal models of migraine, anxiety and neuropathic pain. Further research on this group of compounds potentially may bring new molecules that would have enhanced selectivity toward particular member of $\mathrm{K}_{\mathrm{v}} 7$ channel family with clinical use as therapy for BFNC, DFNA2 or age-related deafness.

### 3.2.2.4. Diphenylurea derivatives

The diphenylurea group is a recently established group of $\mathrm{K}_{\mathrm{v}} 11.1$ (HERG, KCNH2) channel activators, potential anti-arrhythmia therapeutics suitable for treatment of LQT2. ${ }^{152-154}$ This group comprises two members, NS1643 ${ }^{152}$ and

NS3623 ${ }^{153}$ (structures 10 and 11, Scheme 19). In the experimental model with cardiomyocytes of guinea pig application of $10 \mu \mathrm{M}$ of NS1643 activated $\mathrm{K}_{\mathrm{v}} 11.1$ and significantly decreased the action potential duration to $65 \%$ of the control values. Exposure of $\mathrm{K}_{\mathrm{v}} 11.1$ channels to NS3623 affected the voltage-dependent release from inactivation, resulting in a half-inactivation voltage that is rightward-shifted by 17.7 mV .



Scheme 19: Structures 10 (NS1643, 1,3-bis-(2-hydroxy-5-trifluoromethyl-phenyl)-urea) and 11 (NS3623, N-(4-bromo-2-(1H-tetrazol-5-yl)-phenyl)-N'-(3'-trifluoromethyl phenyl) urea)

Experiments ${ }^{154,155}$ explained the mechanism of action of diphenylurea derivatives NS1643 and NS3623: they were found to be both activators and inhibitors of $\mathrm{K}_{\mathrm{v}} 11.1$ channels, e.g. partial agonist of $\mathrm{K}_{\mathrm{v}} 11.1$ channels and that the mechanism of activation is reduced channel inactivation. Another study ${ }^{156}$ found that NS1643 also activates the $\mathrm{K}_{\mathrm{v}} 11.2$ channel. Taken together, the present data strongly support the concept of using $\mathrm{K}_{\mathrm{v}} 11.1$ activators as a treatment for certain kinds of arrhythmias and suggest further investigation of this new approach.

### 3.2.2.5. Fenamates

The fenamate group has the same $N$-phenylanthranilic acid structural basis, however, regarding their pharmacological activity they are diverse; different members possess $\mathrm{K}_{\mathrm{v}}$ channel activation activity against different $\mathrm{K}_{\mathrm{v}}$ channel types, including $\mathrm{K}_{\mathrm{v}} 7.1, \mathrm{~K}_{\mathrm{v}} 7.2 / 3$ and $\mathrm{K}_{\mathrm{v}} 11.1$.

The fenamate scaffold has served as a template for the development of new $\mathrm{K}_{\mathrm{v}}$ channel modulators. Fenamates has been reported ${ }^{157}$ with two prominent members, lead compound PD-118057 ( $\mathbf{1 2}$ in Scheme 20) and PD-307243 (13 in Scheme 20). PD118057 produced increase of $111.1 \pm 21.7 \%$ in the peak tail $\mathrm{K}_{\mathrm{v}} 11.1$ current at $10 \mu \mathrm{M}$ and showed satisfactory selectivity and prevented action potential duration and QT prolongation caused by dofetilide.



Scheme 20: PD-1 18057 (12) and PD-307243 (13)

The similar compound PD-307243 has been shown to increase the $\mathrm{K}_{\mathrm{v}} 11.1$ tail current by $58 \%$ at $1 \mu \mathrm{M}$; this was more potent than PD-118057. A recent study ${ }^{158}$ describes the mechanism of action of PD-307243. In experiments with $\mathrm{K}_{\mathrm{v}} 11.1$, channeltransfected CHO cells PD-307243 increased tail currents by slowing the channel deactivation, but had no effect on channel activation, e.g. markedly slowed $\mathrm{K}_{\mathrm{v}} 11.1$ channel deactivation and inactivation. Further optimisation could pave the way towards new pharmaceuticals for patients with inherited or acquired long QT syndrome, congestive heart failure, and diabetes.

### 3.2.2.6. $\mathrm{K}_{\mathrm{v}} \mathbf{1} .1$ disinactivators

Another recent publication ${ }^{159}$ described a new chemically diverse class of $K_{v}$ activators (Scheme 21) that can be regarded as $\mathrm{K}_{\mathrm{v}} 1.1$ disinactivators, compounds that specifically target $\mathrm{K}_{\mathrm{v}} \beta 1$-mediated inactivation of $\mathrm{K}_{\mathrm{v}} 1.1$ channels in the brain. This was accomplished by testing compounds selected by high-throughput reverse yeast two hybrid based primary screening (among 500,000 random compounds), structure similarity searches, and engineering on $\mathrm{K}_{\mathrm{v}} 1.1 / \mathrm{K}_{\mathrm{v}} \beta 1$ channels. The identified compounds blocked inactivation by several different mechanisms or sites of action, apparently including direct and indirect mechanisms.

These disinactivators are the first small molecules reported to specifically interfere with the protein-protein interaction of the $\mathrm{K}_{\mathrm{v}}$ ball-and-chain N-type inactivation process. It is likely that these disinactivators act directly on the $\mathrm{K}_{\mathrm{v}} \beta 1 \mathrm{~N}$ terminus or its receptor site on $\mathrm{K}_{\mathrm{v}} 1.1$, thus preventing it from blocking $\mathrm{K}_{\mathrm{v}} 1.1$ channels.

They are effective in blocking seizure activity both in vitro and in vivo. Many of the disinactivators are efficacious in the PTZ-induced seizure model, and some are also active in the MES-induced seizure model. Small molecule $\mathrm{K}_{\mathrm{v}} 1.1$ channel disinactivators thus represent a new class of potential anticonvulsant drugs, and as such they may have
unique properties and usefulness in various diseases as epilepsy, episodic ataxia-1 and neuropathic pain.
14



15


16





Scheme 21: Structures of $K_{v} 1.1$ disinactivators: cyclohexadiones (14, 15), hydantoins (16, 17) and 1,3-dione-2-carboxamides (18, $\mathbf{1 9}$ and $\mathbf{2 0}$ )

## 4. Summary

The therapeutical needs for $\mathrm{K}_{\mathrm{v}}$ channels modulators are still to be answered, bringing both potent and selective compounds. This is especially important for the peripheral neural Kv channels involved in pathophysiology of multiple sclerosis and spinal cord injuries. Currently, extracellular $\mathrm{K}_{\mathrm{v}}$ blockers do not meet desired requirements regarding the potency, selectivity, and toxicity. Furthermore, internal blockers, based on 4-AP are still in basic development and future screening of many libraries of potential derivatives are still mandatory. The carbamate ${ }^{53}$ and benzamide ${ }^{63,146-148}$ blockers provide a solid ground for expansion of libraries involving both simple and advanced derivatives. Also, new approaches have to be explored in order to develop and design new scaffolds that might be a basis for the design of new, extracellular blockers of potassium channels.

Compound libraries for targeting of $\mathrm{K}_{\mathrm{v}}$ channels formed on basis of isomer grids can be used for extensive structural systematic studies involving solid state investigation, ab initio molecular modelling and conformational analysis. This quest is not directly related to pharmacological success of a particular drug candidate, but rather uses drug-like compound libraries and the concept of isomer grids as a tool for an independent structural systematics survey. Therefore, the purpose of this study is to synthesise benzamide, pyridinecarboxamide and carbamate isomer grids, characterise them spectroscopically, determine their molecular and crystal structure, investigate their optimised structures, perform conformational analysis, correlate solid state structures with the modelled ones analysing differences and patterns as well as analysis and correlations of solid state crystal packing with physico-chemical properties. Finally, another important task is to explore and develop new scaffolds for future extracellular targeting of potassium channels.

## CHAPTER I: BENZAMIDES AND PYRIDINECARBOKAMIDES

## 1. Benzamides

### 1.1. Mxx isomer grid

### 1.1.1. General description of synthesis

The classical nucleophilic acyl substitution reactions (Schotten-Baumann, Scheme 22) between the 4-, 3- or 2-aminopyridines and 4-, 3- or 2-toluoyl chlorides were used to produce a set of the nine methyl- $N$-(pyridinyl) benzamides ( $\mathbf{M x x}$ ) (where $\mathbf{x}$ = para-/meta-/ortho-). Reactions were performed in anhydrous conditions in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (under $\mathrm{N}_{2}$ ), initially at $5^{\circ} \mathrm{C}$ and then at room temperature. A by-product was HCl , and $\mathrm{Et}_{3} \mathrm{~N}$ was employed, to move the reaction equilibrium towards the product; in total, one molar equivalent of $\mathrm{Et}_{3} \mathrm{~N}$ was added. The 4-, 3- or 2-aminopyridine ( $0.9411 \mathrm{~g}, 10.0$ mmol ) was added to a 250 ml round bottom flask placed on an ice bath with stirring. Then, 30 ml of solvent $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was added to the flask, followed by addition of $\mathrm{Et}_{3} \mathrm{~N}$ $(1.5 \mathrm{ml}, 10.76 \mathrm{mmol})$. Finally, the 4 -, 3- or 2-toluoyl chlorides ( $\sim 1.5 \mathrm{ml}, 11.0 \mathrm{mmol}$ ) were added in excess directly into the solution mixture. The reaction mixture was allowed to warm to room temperature and stirred overnight.

The standard washing was the same for all groups of compounds: the organic reaction phase was washed with 30 ml of $\mathrm{KHCO}_{3}(0.1 \mathrm{M})$ solution ca. 3-7 times. Then, 1.5 g of anhydrous $\mathrm{MgSO}_{4}$ was added to the organic solutions for 20 minutes. The flask contents were filtered through a Büchner funnel (under vacuum) to remove $\mathrm{MgSO}_{4}$. The filtrate was evaporated under vacuum and the product dissolved in minimal volumes of warm $\mathrm{CHCl}_{3}$. A saturated solution was placed on ice and re-crystallization induced. The resulting product was dried overnight and weighed. Silica was used as the stationary phase and mixture of $\mathrm{CHCl}_{3}$, ethyl acetate and cyclohexane (4:2:1) was used as the mobile phase.

Table 6: Quantities, yields and melting points of Mxx compounds

| $\mathbf{M x x}$ | $\mathbf{m} / \mathbf{g}$ | yield/\% | $\mathbf{m} . \mathbf{p} \cdot /^{\circ} \mathbf{C}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{M p p}$ | 0.662 | 31.1 | $180.2-180.8^{\dagger}$ |
| Mmp | 0.235 | 11.1 | $73.8-74.5^{\ddagger}$ |
| Mop | 0.412 | 19.4 | $128.6-129.1$ |
| Mpm | 0.416 | 19.5 | $128.2-128.8^{*}$ |
| Mmm | 1.490 | 70.0 | $90.0-91.0$ |
| Mom | 0.903 | 42.5 | $107.5-108.5$ |
| Mpo | 0.581 | 39.6 | $104.0-106.0$ |
| Mmo | 0.498 | 37.6 | $78.8-80.0$ |
| Moo | 0.504 | 38.2 | $115.0-117.1$ |

[^0]

4-Aminopyridine (4-AP)


3-Aminopyridine (3-AP)


2-Aminopyridine (2-AP)




Scheme 22: The synthesis of the Mxx isomer grid and Mxod by-products

Since the purity of 3-aminopyridine was poor, column chromatography was employed for the Mxm compounds with success. This procedure was appropriate for the first six isomers ( $\mathbf{M x p}$ and $\mathbf{M x m}$ ), however, if 2 -aminopyridine was used the products were almost exclusively imides, 4-/3-/2-methyl- $N$-(4-/3-/2-toluyl)- $N$-(pyridin-2-yl) benzamides (Mxod). The formation of imides with 2-aminopyridine has been well described, ${ }^{160-162}$ and depends on the ortho-pyridine nitrogen atom that destabilises and weakens the neighbouring $\mathrm{N}-\mathrm{H}$ bond, with a second substitution by an acyl moiety yielding the Mxod series, depending on the reaction conditions. ${ }^{163,164}$

Exclusion of the $\mathrm{Et}_{3} \mathrm{~N}$ improved formation of Mxo but not in sufficient ratio ( $14 \%$ of Mxo). Finally, the Mxo compounds were synthesised by performing the reaction without solvent and $\mathrm{Et}_{3} \mathrm{~N}$ by simply mixing 2-aminopyridine and toluoyl chlorides in a round bottom flask until a crude product is formed, containing $50 \%$ of Mxo and $50 \%$ Mxod. After standard washing, separation of the compounds was performed using column chromatography.

In most cases, yields were modest to good (19-70\%), with the exception of Mmp (11\%). All Mxx products are white, odourless, crystalline solids, insoluble in water, but readily soluble in organic solvents such as $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CHCl}_{3}$, though less so in cyclohexane and isopropyl alcohol. The Mxx isomer characterisation data show a degree of modularity and patterns will be discussed below. Spectroscopic data including ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$ and IR are listed in Appendix I (Sections 1.1), while the spectra are shown in the ESI I (Section 1.1)

### 1.1.2. General materials and equipment

All chemicals, including reagents, solvents and supplies were purchased from Sigma Aldrich except for 2-pyridinoyl chloride (Fluorochem). TLC alumina and silica plates were purchased from Fluka. Melting points were analysed using a Stuart Scientific SMP40 automated melting point apparatus. The solid state IR spectroscopy was performed using the attenuated total reflection (ATR) method on a Perkin-Elmer Spectrum 100 FT-IR Spectrometer. NMR spectroscopy was performed on Bruker BioSpin UltraShield NMR spectrometers at $293 \pm 1 \mathrm{~K}$, operating at 400 or 600 MHz for ${ }^{1} \mathrm{H}, 100.62 \mathrm{MHz}$ for the ${ }^{13} \mathrm{C}$ (on both instruments) and 376.46 MHz for ${ }^{19} \mathrm{~F}$ resonances (on 400 MHz only). The ${ }^{1} \mathrm{H}$ spectra were recorded in two solvents: in $\mathrm{CDCl}_{3}$ and DMSO- $d_{6}$ (in $\mathrm{CDCl}_{3}$ and acetone- $d_{6}$ for carbamates) while the ${ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ spectra were only recorded in DMSO- $d_{6}$ (acetone- $d_{6}$ for carbamates); in $\mathrm{CDCl}_{3}$ and while the ${ }^{13} \mathrm{C}$ spectra were only recorded in acetone $-d_{6}$. The NMR chemical shifts values ( $\delta$ ) are expressed in ppm and referenced to TMS $\left(\mathrm{Cl}_{3} \mathrm{FC}\right.$ for ${ }^{19} \mathrm{~F}$ NMR) and coupling constants $(J)$ are quoted in Hz. Ab initio molecular modeling and conformational analysis for the gas phase was performed at the B3LYP/6-311++G level using the Gaussian $03^{25}$ package (version E.02) for the MS Windows XP SP3 operating system running on a PC (Intel Core i7-940 $2.93 \mathrm{GHz}, 8 \mathrm{~GB}$ ). The solvated form computations (PCM-SMD/B3LYP/6-311++G), conformational analyses and high accuracy energy (CBSQB3) calculations were undertaken using Gaussian $09^{25}$ for Linux/Unix operating on a Bull Novascale R422-E2 system provided by the Irish Centre for High-End Computing.

### 1.1.3. X-ray crystallography methods

The single crystal X-ray data for eight Mxx isomers were collected on an EnrafNonius к-CCD diffractometer at 150 (1) K and for Mpo on a Bruker ApexII: $\theta$ range
from $2-27.5^{\circ}$ with $100 \%$ data coverage to $25^{\circ} .{ }^{165,166}$ Data reduction procedures are standard and details have been published previously. ${ }^{167}$ All structure solutions were obtained using the SHELXS97 direct methods program and refined by full matrix least squares calculations on $F^{2}$ with all non-H atoms having anisotropic displacement parameters (except for the minor component C in Mop). ${ }^{3}$ The H atoms were treated as riding atoms in SHELXL97 ( 150 K defaults) except for the amide $\mathrm{N}-\mathrm{H}$ (isotropic refinement) using the OSCAIL suite of programs ${ }^{168}$ with selected crystallographic and structural data in Tables 7 and $\mathbf{8}$ and in the ESI I (Section 2.1). Molecular and hydrogen bonding diagrams were generated using Mercury or PLATON (Figs. 6-11). ${ }^{169}$ All CSD searches on the Cambridge Structural Database (CSD) were performed with the November 2009 release (version 5.31). ${ }^{8}$

### 1.1.4. Computational methods

$A b$ initio calculations have been used to predict and optimize the nine methyl- $N$ (pyridyl)benzamide ( $\mathbf{M x x}$ ) structures and energies, both in gas phase and solvated forms $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ and $\left.\mathrm{H}_{2} \mathrm{O}\right)$ to ascertain the energetically preferable conformations, global minima and rotational energy barriers between conformations. ${ }^{25}$ The nine Mxx isomer structures were generated using GaussView with optimizations performed using the B3LYP/6-311++G method. Optimizations using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (non-polar) or $\mathrm{H}_{2} \mathrm{O}$ (polar) were performed using the PCM-SMD model ${ }^{170}$ in Gaussian 09.

The Mxx compounds contain two aromatic rings linked by the amide group. A total of four distinct conformations are possible for the aromatic N atom and methyl group positions relative to the amide: this is relevant for Mxx isomers with a meta-lortho-pyridine N atom or $\mathrm{CH}_{3}$ group (Scheme 23). The rings can have syn ( $\mathbf{P}-\mathbf{s y n}$ or M-syn) or anti (P-anti, M-anti) conformations (Scheme 23): logically Mpp is not subject to this convention.


Scheme 23: The four possible Mxx conformations
Conformational analysis was performed by rotation of the $\mathrm{C} 16-\mathrm{C} 11-\mathrm{C} 1=\mathrm{O} 1$ ( $\alpha$ dihedral, Mx-ring) and C26(N22)-C21-N1-C1 dihedral angles ( $\beta$ dihedral, p/m/o-
pyridine ring), respectively, by $5^{\circ}$ increments from their optimised points through $\pm 180^{\circ}$. Local relaxation (optimisation) was performed at every point and single point energies were calculated using the methods and basis sets detailed above. Potential energy surface (PES) diagrams were obtained where energy values are plotted against dihedral angle $\left({ }^{\circ}\right)$ in Figs. 7 and 8. Differences ( $\Delta \theta$ ) between the $\alpha$ and $\beta$ dihedral angles and corresponding solid-state angles marked $(\cdot)$ can be ascertained in each isomer PES diagram for comparison purposes. The $\Delta \theta$ represents the deviation of the solid-state angle from the optimised angle as a basis point.

In addition, high accuracy energies including electronic energy and Gibbs free energy values were calculated using the Complete Basis Set (CBS-QB3) compound method ${ }^{171}$ (ESI I, Section 3.1.1). Absolute energies are expressed in Hartrees, while relative energies are expressed in $\mathrm{kJ} . \mathrm{mol}^{-1}$.

### 1.1.5. Molecular and crystal structure data

The principal intermolecular feature for eight of the Mxx crystal structures ( $\mathbf{x}=$ para-/meta-/ortho) is that they aggregate in the solid-state via $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ hydrogen bonds, but in different space groups. The $\mathrm{O}=\mathrm{C}$ carbonyl group only participates in weak intra- and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts in the majority of structures. Only for the Mpm structure is the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interactions the primary hydrogen bonding feature. However, in the Mxo series cyclic $R^{2}{ }_{2}(8)$ rings of $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intermolecular interactions are the main hydrogen bonding feature.

Table 7: Selected crystallographic data for the nine $\mathbf{M x x}$ isomers ${ }^{\dagger}$

| Mxx | Space group | $\boldsymbol{Z}$ | Volume $\left(\AA^{3}\right)$ | $\boldsymbol{R}$-factors |
| :--- | :---: | :---: | :---: | :---: |
| Mpp | $P 2_{l} / n$ | 1 | $1038.49(12)$ | $0.066,0.202$ |
| Mmp | $P \bar{l}$ | 2 | $1056.41(16)$ | $0.066,0.183$ |
| Mop | $P c$ | 2 | $1123.65(12)$ | $0.056,0.161$ |
| Mpm | $P \overline{1}$ | 4 | $1071.37(8)$ | $0.059,0.154$ |
| Mmm | $P \bar{l}$ | 2 | $1079.21(9)$ | $0.076,0.254$ |
| Mom | $P c a 2_{l}$ | 1 | $1109.94(5)$ | $0.041,0.096$ |
| Mpo | $P \bar{l}$ | 1 | $525.04(5)$ | $0.039,0.109$ |
| Mmo | $P 2_{l} / c$ | 1 | $1065.04(15)$ | $0.065,0.195$ |
| Moo | $P \bar{l}$ | 1 | $546.42(6)$ | $0.063,0.184$ |

$\dagger$ Complete crystallographic, refinement and structural details for all nine Mxx isomers $\left(\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}\right)$ are listed in the ESI I (Section 2.1).

The $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions form $C(6)$ chains in the Mxp series, $C(5)$ chains in Mmm, Mom and cyclic $R^{2}{ }_{2}(8)$ hydrogen bonded rings in the Mxo triad. In Mpm, amide $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interactions form classical $C$ (4) chains. Diagrams highlighting the main
features are presented in Figs. 6-11 and salient features of the nine Mxx structures are provided in Tables 1 and 2. The $\alpha, \beta$ torsion angles for each Mxx isomer are plotted with gas-phase conformations (Fig. 12).

### 1.1.5.1. Mxp isomer series

## Mpp molecular and crystal structure

Apart from rotational disorder in the $\mathrm{CH}_{3}$ group, the molecular structure is as expected for benzamides. The crystal structure in space group $P 2_{l} / n$ is similar to the reported Fpp ${ }^{162}$ structure in terms of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ bonding ( $\mathrm{N} \cdots \mathrm{N}$ is $3.105(3) \AA$ ) and is isostructural with the series of five molecules in Table 5. ${ }^{172}$


Fig. 6: An ORTEP diagram of Mpp

It is not isomorphous with Fpp but for the $a b, c$ cell swop (Unit cell parameters for $\mathbf{F p p}=a=5.65, b=11.39, c=15.43 \AA, \beta=95.60^{\circ}$; transformed unit cell parameters for $\left.\mathbf{M p p}=a=5.70, b=16.89, c=11.34 \AA, \beta=107.88^{\circ}\right)$.


Fig. 7: The primary $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding along the $c$-axis direction in Mpp and isostructural with the related fluoro derivative Fpp

The $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ hydrogen bonding dominates the primary interactions in the Fxp structures where the pyridine N atom is para-substituted. Mpp (Fig. 6) differs from Fxp by having a $\mathrm{CH}_{3}$ group and the parent benzamide in Table 5. ${ }^{172}$ The $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions in Mpp form a one-dimensional chain along the $c$-axis direction as $C(6)$ chains (and parallel to the [ $\overline{1} 01$ ] plane) and augmented by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and C $\mathrm{H} \cdots \pi$ (arene) interactions involving the $\mathrm{C} 26-\mathrm{H} 26$ atoms. The $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ interplanar angle is 46.03(9) ${ }^{\circ}$.

## Mmp molecular and crystal structure

The Mmp structure crystallizes in $P \overline{1}$ with $Z^{\prime}=2$ and with differences between the $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 11$ angles of $\left[121.2(2)^{\circ}, 119.7(2)^{\circ}\right]$ and $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 21\left[127.6(2)^{\circ}, 125.5(2)^{\circ}\right]$ for molecules A and B, respectively. Torsion angle differences of $c a .8^{\circ}$ are evident by different A, B molecular data values for C1-N1-C21-C22 of 12.9(4) ${ }^{\circ}$, 20.2(4) ${ }^{\circ}$, respectively. Aggregation is driven by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ hydrogen bonding. This involves alternating ${ }_{A / B} \mathrm{~N} \cdots \mathrm{~N}_{\mathrm{B} / \mathrm{A}}$ distances of 3.058(3), 3.059(3) $\AA$, but with $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ angles of $142(3)^{\circ}$ (for $\left.\mathrm{A} \rightarrow \mathrm{B}\right), 172(3)^{\circ}$ (for $\mathrm{B} \rightarrow \mathrm{A}$ ). This highlights the strain and distortions in incorporating two molecules within the asymmetric unit and with the molecular packing as the $\mathrm{A} \rightarrow \mathrm{B}$ molecules link by $C(6)$ chains and vice versa. The two $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds combine and aggregate as a one-dimensional column parallel to the (110) plane.

Table 8: Salient structural features in the nine $\mathbf{M x x}$ isomers ${ }^{\dagger}$

| Mxx | $\mathbf{C}_{6} / \mathbf{C}_{5} \mathbf{N}\left({ }^{\circ}\right)$ | $\mathbf{C}_{6} /$ amide | $\mathbf{C}_{5} \mathbf{N} / \mathbf{a m i d e}$ | $\mathbf{N} \cdots \mathbf{N} / \mathbf{O}(\mathbf{\AA})^{\ddagger}$ | Packing |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Mpp | $46.03(9)$ | $28.99(11)$ | $17.40(13)$ | $3.105(3)$ | 1-D chains |
| Mmp | $4.84(15)$ | $15.70(13)$ | $10.94(13)$ | $3.058(3)$ | 2-D sheets |
|  | $5.47(12)$ | $19.88(10)$ | $17.73(9)$ | $3.059(3)$ |  |
| Mop | $8.79(15)$ | $54.00(17)$ | $28.34(17)$ | $2.952(5)$ | 1-D chains |
|  | $81.58(14)$ | $54.85(15)$ | $27.96(16)$ | $2.950(5)$ |  |
| Mpm $^{*}$ | $65.13(11)$ | $29.45(15)$ | $35.83(14)$ | $3.029(6)$ | 1-D chains |
|  | $64.04(10)$ | $29.70(15)$ | $34.57(13)$ | $3.016(5)$ |  |
|  | $1.5(2)$ | $24.47(16)$ | $24.16(16)$ | $3.085(6)$ |  |
|  | $1.9(2)$ | $24.79(16)$ | $24.79(16)$ | $3.085(5)$ |  |
| Mmm | $55.57(10)$ | $25.55(8)$ | $31.33(14)$ | $2.998(4)$ | 1-D chains |
|  | $65.70(10)$ | $36.43(10)$ | $29.54(14)$ | $3.006(4)$ |  |
| Mom | $71.20(5)$ | $57.33(6)$ | $13.91(10)$ | $2.946(2)$ | 1-D chains |
| Mpo | $45.34(4)$ | $35.93(5)$ | $17.51(8)$ | $3.1081(15)$ | Dimers |
| Mmo | $70.55(7)$ | $35.99(8)$ | $35.05(11)$ | $3.106(3)$ | Dimers |
| Moo | $84.79(5)$ | $77.28(6)$ | $10.93(10)$ | $3.076(3)$ | Dimers |

$\dagger$ Full structural details are in the ESI I (Section 2.1).
$\ddagger$ The primary ${ }_{\text {amide }} \mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ or $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}^{*}$ interaction distances.

These 1-D columns interlock with symmetry related columns along the $c$-axis direction forming 2-D sheets via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (involving C17A). The 3-D crystal structure assembles between parallel sheets with weak interactions via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (involving C23A) and short $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) interactions involving $\mathrm{C} 25 \mathrm{~A} \cdots[\mathrm{C} 11 \mathrm{~B}, \ldots, \mathrm{C} 26 \mathrm{~B}]$, with a $\mathrm{H} 25 \mathrm{~A} \cdots \mathrm{Cg}$ distance of $2.65 \AA$, where Cg is the aromatic ring centroid. Unlike the $\mathbf{M p p}$ structure, the $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ interplanar angles are essentially co-planar at $4.84(15)^{\circ}, 5.47(12)^{\circ}$ for molecules A and B, respectively.

## Mop molecular and crystal structure

Mop crystallises in $P c$ with $Z^{\prime}=2$ and with molecular disorder in one of the molecules. The solution of the Mop structure failed in space group $P 2_{1} / \mathrm{c}$ despite the systematic absences indicating that this was a favourable choice. However, attempts to solve and refine in both $P c$ and $P 2_{l}$ proved successful. The $P c$ structure provides the better solution and refinement to an R-factor of 0.076 , a WGHT card of 0.14 and residual electron density for the top 26 peaks of $+0.57 \mathrm{e} . \AA^{-3}$ to $+0.26 \mathrm{e} . \AA^{-3}$ and indicating possible molecular disorder at molecule A. Refinement of these residual peaks as sensible chemical sites as a minor conformation of molecule A labelled as C drops the $R$-factor from 0.076 to 0.057 and a final $R$-factor of 0.056 , WGHT of 0.09 and a range of residual electron density from $+0.18 \mathrm{e} . \AA^{-3}$ to $-0.20 \mathrm{e} . \AA^{-3}$. The minor component C has $10.1(6) \%$ site occupancy and occupies the same molecular volume element as the major A sites. Of the nine Mxx isomers the volume of the Mop is the largest and this is almost certainly due to the disordered $\mathrm{A} / \mathrm{C}$ component.

Molecules A and B are identical and with practically no differences in molecular geometric data. The only difference between the two molecules is the disorder (A/C) at the molecule A location. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ interactions (intermolecular $\mathrm{N} \cdots \mathrm{N}$ distances of $2.952(5) \AA, 2.950 \AA$ ) dominates the hydrogen bonding with additional C-H...O contacts. The $\mathrm{N} \cdots \mathrm{N}$ interactions aggregate as $\mathrm{A} / \mathrm{C} \rightarrow \mathrm{A} / \mathrm{C}$ and $\mathrm{B} \rightarrow \mathrm{B}$ molecules in $C(6)$ zig-zag chains and parallel to the ( $\overline{1} 02$ ) plane. The $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ planes are almost orthogonal and due to the steric hindrance from the ortho-methyl groups and are at angles of $81.79(15)^{\circ}$ and $81.58(14)^{\circ}$. Differences between the major orientation (A) and molecule (B) for $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 21-\mathrm{C} 22$ are $-155.2(4)^{\circ}$ and $-27.4(6)^{\circ}$.

### 1.1.5.2. Mxm isomer series

## Mpm molecular and crystal structure

Mpm crystallizes with 4 molecules in P1. The crystallization of four molecules in P1 is unusual (Fig. 8) but all four molecules differ in their molecular conformations and can be distinguished as two distinct sets with molecules A, B and C, D, whereby the $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ interplanar ring angles are oriented at angles of $c a .65^{\circ}$ for molecules $\mathrm{A}, \mathrm{B}$ at $\left[65.13(11)^{\circ}, 64.04(10)^{\circ}\right]$ (with differences $>3 \sigma$ ) and close to co-planarity at $0^{\circ}$ in C, D at $\left[1.5(2)^{\circ}, 1.9(2)^{\circ}\right]$. The bond lengths and angles are normal and are all similar and $<3 \sigma$ level for the related geometric data. However, there are subtle differences in the torsion angles and intermolecular hydrogen bonds. For example with respect to distances across the molecules [intramolecular distances], the N23 $\cdots \mathrm{C} 17$ molecular distances vary and differ from 10.134(6) $\AA$ (in A), 10.118(6) (in B), 9.985(6) $\AA$ (in C) to 9.940(6) $\AA$ (in D), a difference of $0.2 \AA$.

The molecules aggregate as $\mathrm{A} \cdots \mathrm{A} \cdots, \mathrm{B} \cdots \mathrm{B} \cdots$ etc. 1-D chains via four separate and distinct $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interactions and along the $b$-axis (010) direction with $\mathrm{N} \cdots \mathrm{O}$ distances of $3.029(6), 3.016(5), 3.085(6)$ and $3.085(5) \AA$ for molecules A to D, respectively. Apart from weak $\mathrm{C}-\mathrm{H} \cdots \pi($ arene $)$ contacts - these are the primary interaction in the crystal structure. Two weak $\mathrm{CH}_{3} \cdots \mathrm{~N}_{\text {pyridine }}$ interactions with $\mathrm{H} \cdots \mathrm{N} 2.60$ $\AA$ and angles of $159^{\circ} / 156^{\circ}$ are also present involving C to D and D to C linking the independent $\mathrm{C}, \mathrm{D}$ chains in two-dimensions. Mpm is unusual in that it is the only Mxx molecule which crystallizes with $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ as the primary interaction and not N $\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ and given its unusual $Z^{\prime}=4$ in $P 1$ should at some stage be the subject of a thorough variable temperature study.


Fig. 8: The four molecules (A) to (D) in the asymmetric unit of $\mathbf{M p m}$.

The crystallization of four molecules in the asymmetric/unit cell is interesting in the absence of disorder and with clear and subtle distinctions between the four molecules (there are NO matrix correlation coefficients above 0.5). A solution can be obtained in space group $P \bar{l}$ (No. 2), but one of the molecules is disordered and the $R$ factor remains stubbornly high and at $R=0.2$.

## Mmm molecular and crystal structure

The Mmm structure crystallizes in $P \overline{1}$ with $Z^{\prime}=2$ with the two molecules differing by $10^{\circ}$ in their corresponding dihedral angles. For example the $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ interplanar angles are $55.57(10)^{\circ}$ and $65.70(10)^{\circ}$ in molecules A and B while the O1-C1-C11-C16 angles are $156.8(3)^{\circ}$ and $146.1(3)^{\circ}$, for A and B, respectively. It is a nonmerohedral twinned crystal and there is no discernible disorder in the molecular components. Molecules aggregate via ${ }_{\mathrm{A} / \mathrm{B}} \mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\mathrm{B} / \mathrm{A}}$ hydrogen bonding as $C(5)$ chains along the $b$-axis or (010) direction [at distances of 2.998(4) $\AA$ and 3.006(4) $\AA$ ]. Two C$\mathrm{H} \cdots \pi$ (arene) interactions are present involving C22A and C22B. Of the carbonyl O atoms, only O1B is involved in a weak $\mathrm{CH}_{3} \cdots \mathrm{O}=\mathrm{C}$ interaction. Both A and B molecules have their $\mathbf{P}$-ring in the $\mathbf{P}$-anti conformation, while both $\mathbf{M}$-rings are $\mathbf{M}$-syn.

## Mom molecular and crystal structure

The Mom structure crystallizes in $P \mathrm{ca} 2_{1}$ with $Z^{\prime}=1$. The primary interaction is the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ intermolecular interaction forming 1-D $C(5)$ chains along the $a$-axis direction with a $\mathrm{N} \cdots \mathrm{N}$ distance of 2.946(2) $\AA$ and two $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions complete the interactions. There is also a weak $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) interaction. The $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ rings are mutually oriented at $71.20(5)^{\circ}$. This is one of the most regular of the Mxx structures without disorder, twinning or potential pseudosymmetry problems. As in Mmm the $\mathbf{P}$ ring is in the P -anti conformation.

### 1.1.5.3. Mxo isomer series

The primary hydrogen bonding in all three Mxo derivatives is cyclic, symmetrical ${ }_{\text {(amide) }} \mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {(pyridine) }}$ with graph set $R_{2}^{2}(8)$ that is remarkably similar for all three Mxo structures. In tandem with this hydrogen bonded ring there are also intra- and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ contacts present. The principal difference between all three
structures is the presence of an intra-dimer $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) interaction which is shortest in Moo. Mpo, Mmo, Moo are isostructural but they are not isomorphous.

## Mpo molecular and crystal structure

The cyclic hydrogen bonded dimer (Fig. 9) forms about inversion centres with an $\mathrm{N} \cdots \mathrm{N}$ distance of $3.1081(15) \AA$. The dimers are further linked into a 1-D zig-zag chain via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions about inversion centres and parallel to the $(11 \overline{2})$ plane. Chains stack and are linked via weak contacts. The shortest C-H $\cdots \pi$ (arene) contacts have $\mathrm{C} \cdots \mathrm{Cg}$ distances of $3.5556(14)$ and $3.7056(14) \AA$ with $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cg}$ angles of $123^{\circ}$, $134^{\circ}$ and too long to be a meaningful interaction. The room temperature study of Mpo (XIFNIK ${ }^{8}$ ) has been reported and archived. Mpo is similar to XIFNIK ${ }^{8}$ and only differs in interaction data due to the difference in the experimental data collection temperature. The interplanar angle between the $\mathrm{C}_{6}$ and $\mathrm{C}_{5} \mathrm{~N}$ rings is $45.34(4)^{\circ}$.


Fig. 9: The primary hydrogen bonding in Mpo with the cyclic $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ dimers.

## Mmo molecular and crystal structure

The cyclic hydrogen bonded dimer forms about inversion centres with an $\mathrm{N} \cdots \mathrm{N}$ distance of $3.106(3) \AA$. Dimers are arranged and linked via weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and C $\mathrm{H} \cdots \pi$ (arene) contacts. The interplanar angle between the $\mathrm{C}_{6}$ and $\mathrm{C}_{5} \mathrm{~N}$ rings is $70.55(7)^{\circ}$. The major difference between Mpo and Mmo is the angle of the intradimer C$\mathrm{H} \cdots \pi$ (arene) contact.

## Moo molecular and crystal structure

The cyclic hydrogen bonded dimer forms about inversion centres with $\mathrm{N} \cdots \mathrm{N}=$ $3.076(2) \AA$. In tandem is the formation of a C-H $\cdots \pi$ (arene) interaction, as C23$\mathrm{H} 23 \cdots[\mathrm{C} 11, \ldots, \mathrm{C} 16]$ about inversion centres, such that all six $\mathrm{C} 23 \cdots \mathrm{C}_{11-16}$ interaction distances are in the range $3.472(2)$ to 3.836 (3) $\AA$ (and with six $\mathrm{H} 23 \cdots \mathrm{C}_{11-16}$ from 2.71 to $2.92 \AA$ ): this highlights the symmetrical nature of this interaction (Figs. 10, 11). The short interaction $\mathrm{C}-\mathrm{H} \ldots \pi$ (arene) details are $\mathrm{H} 23 \cdots \mathrm{Cg} 1=2.46 \AA, \mathrm{C} 23 \ldots \mathrm{Cg} 1=$ $3.3875(18) \AA$ and $\mathrm{C} 23-\mathrm{H} 23 \cdots \mathrm{Cg} 1=167^{\circ}$. Dimers are further linked via weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) contacts. There are very few examples ${ }^{8,173-175}$ available in the literature that contain shorter $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) geometric data apart from analogous interactions in ionic structures, whereby the interaction is charge-based or assisted. ${ }^{8,173-}$ ${ }^{175}$ For overall comparisons, the interplanar angle between the $\mathrm{C}_{6}$ and $\mathrm{C}_{5} \mathrm{~N}$ rings is $84.79(5)^{\circ}$ showing an increasing trend towards aromatic rings that are perpendicular along the Mxo series.


Fig. 10: An ORTEP diagram of the hydrogen bonded dimer in Moo (graph-set $R^{2}{ }_{2}(8)$ ).

### 1.1.5.4. A CSD search for interactions related to Moo

A 'restricted' search was performed on normalised aromatic $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) interactions $(\mathrm{C}-\mathrm{H}=1.083 \AA$ ) with the following limits of $\mathrm{H} \cdots \mathrm{Cg}(2 \rightarrow 2.5 \AA), \mathrm{C} \cdots \mathrm{Cg}$ $(3 \rightarrow 3.4 \AA)$ and $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{Cg}\left(160 \rightarrow 180^{\circ}\right)(\mathrm{Cg}$ is the aromatic ring centroid $)$.


Fig. 11: The Moo 'dimeric' unit with $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and C-H $\cdots \pi$ (arene) intermolecular interactions.

For version $2.30+4$ updates a total of 41 'hits' were obtained (of which 38 contain a metal): a total of 51 'hits' are obtained when 'normal' bond lengths of $\mathrm{C}-\mathrm{H}=$ $0.95 \AA$ are used. The majority of these 'hits' are organometallic/metal-organic and are intramolecular in nature and principally due to the orientation of the aromatic ring towards another aromatic ring within the same molecule and typically separated by 5-7 bonds. The search was conducted to find short, symmetrical C-H $\cdots \pi$ (arene) interactions. In Moo with C23-H23 normalised to 1.083 , the short interaction details are $\mathrm{H} 23 \cdots \mathrm{Cg} 1=$ $2.33 \AA$ with $\mathrm{C} 23-\mathrm{H} 23 \cdots \mathrm{Cg} 1=166^{\circ}$. The range of $\mathrm{H} 23 \cdots[\mathrm{C} 11, \ldots, \mathrm{C} 16]$ distances span from 2.61 to $2.80 \AA$.

The CSD codes for structures with short intermolecular $\mathrm{C}_{6}-\mathrm{H}^{\cdots} \pi\left(\mathrm{C}_{6}\right)$ interactions include ICEXUJ (a Zr complex) and LEXJOO (Au derivative): whereas in LETYUE the solvent is disordered with large displacement ellipsoids. In ICEXUJ, the geometric data are $2.32 \AA, 3.373 \AA, 163$, involving indenyl group $\mathrm{C}_{6}$ rings, whereas, in LEXJOO or triphenylphosphine-(3H-5-phenyl-1,2,3-triazol-4-yl)-gold(I) the geometric data are even shorter with data of $2.26 \AA, 3.303 \AA, 161^{\circ}$ and this interaction forms in tandem with the 'tight' $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interaction between the triazole moieties. The Moo data are comparable to the geometric data in these structures.

Examples with intramolecular interactions include both QEZRAO (2.25 A., $3.32 \AA$, $171^{\circ}$ ) and TEGJOF $\left(2.23 \AA, 3.31 \AA, 178^{\circ}\right)$, which with WIXHIV $\left(2.20 \AA, 3.26 \AA, 168^{\circ}\right)$ are where the H atom direction is constrained by ligand geometry and steric bulk. In VAGFIS10 the interaction is constrained by the geometrical demands within the molecule. In Moo the interaction is intermolecular in nature and comparable in geometric terms with the shortest analogous $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) intramolecular interactions present in metal complexes (Figs. 10, 11). ${ }^{8,173-175}$

### 1.1.5.5. Overall trends in Mxx

Within each of the Mxp, Mxm and Mxo series, the primary $\mathrm{N} \cdots \mathrm{N} / \mathrm{O}^{*}$ interaction contracts along each $\mathbf{x}=p->m->o$ - and notably by $0.15 \AA$ for the Mxp triad. This presumably is facilitated by increasing $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ interplanar angles that allow molecules to pack more closely: the influence of repulsive $\mathrm{H} \cdots \mathrm{H}$ contacts and steric clashes (from $\mathrm{CH}_{3}$ ) decreases on $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ rotation from $0^{\circ}$, and as evidenced in $\mathbf{M p m}$. The Mop and Mom structures have the shortest $\mathrm{N} \cdots \mathrm{N}$ intermolecular distances (Table 7) and the Mxm series the shortest average $\mathrm{N} \cdots \mathrm{N} / \mathrm{O}^{*}$ distances. The variation is small within Mxo as the primary interaction is responsible for the cyclic hydrogen bonded dimer formation and not chain formation.

A trend in molecular volume (unit cell $V / Z$ ) is noted (Table 8) whereby the more symmetrical Mpx isomers have the smallest volume $\left(\AA^{3}\right)$, smaller than Mmx and especially the Mox triad (i.e. increasing in $V / Z$ with $\mathbf{M p p}<\mathbf{M m p}<\mathbf{M o p}$ ). The effect is greatest when the $\mathrm{CH}_{3}$ group position changes from para-, meta- to ortho- with Mpp, Mpo having the smallest and Mop, Mom the greatest molecular volumes. The trend in pyridine N atom location is not as dramatic and the $V / Z$ is greatest for the Mxm triad. Of interest is the decreasing $\mathrm{N} \cdots \mathrm{N} / \mathrm{O}^{*}$ distance ( $\boldsymbol{o}-<\boldsymbol{m}-<\boldsymbol{p}$-) within each Mxp, Mxm, Mxo triad correlating inversely with increasing molecular volume (Tables 7, 8). Distortion from co-planarity of the $\mathrm{C}_{6}$ and $\mathrm{C}_{5} \mathrm{~N}$ rings allows closer molecular interaction along the primary interaction axis though with less efficient overall packing in 3-D. The trend is smallest in Mxo where dimer formation occurs.

Melting point analysis shows distinct patterns such as the meta- $<$ ortho- $<$ parasubstitution m.p. trend in di-substituted benzenes. ${ }^{10,11}$ The Mmp, Mmo isomers with the lowest melting points are $100^{\circ} \mathrm{C}$ less than the symmetrical Mpp isomer $\left(50^{\circ} \mathrm{C}\right.$ higher than any of the other eight $\mathbf{M x x})$. The pattern is distinct within $\mathbf{M x p}\left(106^{\circ} \mathrm{C}\right.$ variation), smaller in Mxm and reversed as meta- < para- < ortho- in the Mxo triad (a variation of $37^{\circ} \mathrm{C}$ ). This m.p. reversal in Mxo is influenced by the tighter dimer formation in Moo due to the additional C-H $\cdots \pi$ (arene) interaction that is not present in Mpo or Mmo. In addition, the behaviour of Mmp should be noted where a partial melting occurs at $74^{\circ} \mathrm{C}$ and complete melting at $107^{\circ} \mathrm{C}$.

### 1.1.6. $A b$ initio calculations

### 1.1.6.1. Structure optimisation

The three torsion angles that define the most important conformation angles of the $\mathbf{M x x}$ isomers (optimised in gas phase and solvated as $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{O}$ ) are detailed in the Table 9. The torsion angles are ${ }_{\text {aromatic }} \mathrm{C}-\mathrm{C}-\mathrm{C}=\mathrm{O}(\alpha)$ between the toluoyl ring and amide group (equivalent to the $\mathrm{C} 16-\mathrm{C} 11-\mathrm{C} 1=\mathrm{O} 1$ solid-state angle), $\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{C}_{\text {aromatic }}(\beta)$ between the pyridine ring and amide group (equivalent to the C26(N22)-C21-N1-C1 angle) and the $\mathrm{O}=\mathrm{C}-\mathrm{N}-\mathrm{C}$ amide linkage angle ( $\delta$ ).

In general, all calculated Mxx structures are partially planar with the $\alpha$ torsion angles deviating from co-planarity. Moreover, the $\alpha$ angle in Mox is smaller than in the $\mathbf{M p x}, \operatorname{Mmx}$ series due to the sterically repulsive interaction between the $\mathrm{CH}_{3}$ group and $\mathrm{C}=\mathrm{O}$ group (M-anti conformation) as seen in the Mxo crystal structures.

Table 9: Torsion angles $\left({ }^{\circ}\right)$ of the optimised Mxx structures ${ }^{a}$

|  | optimised in gas phase |  |  | optimised in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ |  |  | optimised in $\mathrm{H}_{2} \mathrm{O}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\alpha$ | $\beta$ | $\delta$ | $\alpha$ | $\beta$ | $\delta$ | $\alpha$ | $\beta$ | $\delta$ |
| Mpp | 153.29 | -3.22 | -4.76 | 152.24 | -5.23 | -4.12 | 152.34 | -8.89 | -4.88 |
| Mmp | 152.58 | -2.95 | -4.73 | 151.88 | -3.73 | -4.35 | 152.86 | -5.76 | -3.92 |
| Mop | 135.27 | -2.19 | -4.24 | 131.33 | -2.50 | -4.19 | 128.73 | -2.13 | -3.46 |
| Mpm | 153.50 | -3.00 | -4.39 | 152.26 | -5.77 | -3.82 | 152.50 | -12.15 | -4.36 |
| $\mathbf{M m m}$ | 152.81 | -2.94 | -4.33 | 151.94 | -4.08 | -3.92 | 152.80 | -8.01 | -2.88 |
| Mom | 134.94 | -1.96 | -3.94 | 130.89 | -2.54 | -3.79 | 127.80 | -4.97 | -2.92 |
| Мро | 156.74 | -1.88 | -3.94 | 153.07 | -4.66 | -3.34 | 153.61 | -5.11 | -4.06 |
| Mmo | 155.95 | -1.71 | -4.04 | 153.73 | -1.86 | -3.26 | 152.17 | -5.58 | -3.99 |
| Moo | 137.12 | -1.19 | -3.98 | 132.61 | 0.37 | -4.45 | 128.63 | -1.28 | -2.91 |

${ }^{a}$ The angle $\mathrm{C} 16-\mathrm{C} 11-\mathrm{C} 1=\mathrm{O} 1$ is referred as $\alpha$, the angle $\mathrm{C} 26(\mathrm{~N} 22)-\mathrm{C} 21-\mathrm{N} 1-\mathrm{C} 1$ as $\beta$ and $\mathrm{O} 1=\mathrm{C} 1-$
$\mathrm{N} 1-\mathrm{H} 1$ angle (amide link) as $\delta$. All geometries are based on B3LYP/6-311++G optimizations with or without the PCM-SMD solvation model.

In the gas phase, average $\alpha$ angles in Mpx, Mmx are $154.15 \pm 1.75^{\circ}$ and $135.78 \pm 1.18^{\circ}$ for the Mox triad. For solvation in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$ the $\alpha$ angles are similar for Mpx, Mmx with $\alpha=152.52 \pm 0.73^{\circ}\left(152.71 \pm 0.51^{\circ}\right)$ and $131.61 \pm 0.89^{\circ}\left(\alpha=128.38 \pm 0.51^{\circ}\right)$ for Mox. The more polar solvent has little impact on the $\alpha$ angle in the Mpx, Mmx isomers, while in Mox there is additional rotation.

The $\beta$ and $\delta$ torsion angles are essentially planar with $\beta$ (gas phase) having an average of $-2.34 \pm 0.71^{\circ}$, from $\operatorname{Mpp}\left(-3.22^{\circ}\right)$ to $\operatorname{Moo}\left(-1.19^{\circ}\right)$. The $\beta$ angle decreases towards $0^{\circ}$ and mainly due to the favourable, though weak intramolecular aromatic C -
H...O interaction, with the Mxo series closest to $0^{\circ}$. The Mxx solvent optimisations are similar with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$ averages of $-3.33 \pm 1.99^{\circ}\left(-5.54 \pm 3.17^{\circ}\right)$ and a decrease towards $0^{\circ}$ for Moo, though with high deviation for the $\mathbf{M x m}(\mathbf{M p m})$ triad in $\mathrm{H}_{2} \mathrm{O}$. The $\delta$ angle (gas phase) deviates slightly from planarity by $-4.40 \pm 0.31^{\circ}$ and similar to the solvent averages of $-4.03 \pm 0.22^{\circ}\left(-4.40 \pm 2.27^{\circ}\right)$. The optimisation results can be compared directly with the solid-state torsion angles plotted for direct comparison in Fig. 12.

### 1.1.6.2. Conformational analysis

Fig. 12 depicts the nine Mxx PES gas phase optimisations with both toluoyl ring (M-ring, blue dashed line) and pyridine rings (red, full line). A high degree of modularity of all nine Mxx isomers is present. Each $\mathbf{M x}$ or $\mathbf{x}$ group displays a typical PES form, and for each molecule an Mx-x combination representative of both PES scans. Analysis of the amide linkage connecting the two groups shows a minor neighbouring ring influence.


Fig. 12: The PES conformational analysis diagrams for the nine Mxx isomers optimised in gas phase: the equivalent solid state angle is depicted as a ( $\bullet$ ).

All optimised structures whether in the gas phase or in solvent have M-anti/Psyn conformations (if applicable) as the most stable. However, in the Mmx triad, the difference between the $\mathbf{M}$-anti/P-syn and M-syn/P-syn conformations is as small as $0.84 \pm 0.05{\mathrm{~kJ} . \mathrm{mol}^{-1}}^{1}$ and implying a practical conformatial equivalence. The $a b$ initio results are summarized as follows:

Conformational analysis of the para-toluoyl (Mp) ring gives a PES profile with two global maxima located $c a .-60^{\circ}$ and $120^{\circ}\left(\mathrm{TS}_{\mathbf{M p}}{ }^{\text {II }}[\mathbf{M p m}]=15.48 \mathrm{~kJ} . \mathrm{mol}^{-1}\right.$ to $\left.\mathrm{TS}_{\mathbf{M p}}{ }^{\mathrm{II}}[\mathbf{M p o}]=17.22 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$, two local maxima $c a .25^{\circ}$ and $-155^{\circ}\left(\mathrm{TS}_{\mathbf{M p}}{ }^{\mathrm{I}}[\mathbf{M p o}]=\right.$ $0.94 \mathrm{~kJ} . \mathrm{mol}^{-1}$ to $\mathrm{TS}_{\mathbf{M p}}{ }^{\mathrm{I}}[\mathbf{M p p} / \mathbf{m}]=1.73 \mathrm{~kJ} . \mathrm{mol}^{-1}$ ). The four global minima are near $0^{\circ}$, $55^{\circ}, \pm 180^{\circ}$ and $-130^{\circ}$.

Rotation of the meta-toluoyl (Mm) ring gives a PES profile with two global minima $c a .55^{\circ}$ and $0^{\circ}$, two global maxima at $c a .-65^{\circ}$ and $120^{\circ}\left(\mathrm{TS}_{\mathbf{M m}}{ }^{\text {III }}[\mathbf{M m m}]=\right.$ $14.07 \mathrm{~kJ} . \mathrm{mol}^{-1}$ to $\mathrm{TS}_{\mathbf{M m}}{ }^{\text {III }}[\mathbf{M m o}]=16.20 \mathrm{kJ.mol}^{-1}$ ), two local minima $c a .-125^{\circ}$ and $\pm 180^{\circ}$ with increases of $\left(\mathrm{LM}_{\mathbf{M m}}{ }^{\mathrm{I}}[\mathbf{M m o}]=0.79 \mathrm{kJ.mol}^{-1}\right.$ to $\mathrm{LM}_{\mathrm{Mm}^{\mathrm{I}}}[\mathbf{M m m}]=0.89$ $\left.\mathrm{kJ} . \mathrm{mol}^{-1}\right)$. The two local maxima are at $-155^{\circ}$ and $25^{\circ}\left(\mathrm{TS}_{\mathbf{M m}}{ }^{\mathrm{I}}[\mathbf{M m o}]=1.18 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right.$ to $\mathrm{TS}_{\mathbf{M m}}{ }^{\mathrm{I}}[\mathbf{M m p}]=3.20{\mathrm{~kJ} . \mathrm{mol}^{-1}}^{1}$.

Rotation of the ortho-toluoyl (Mo) ring gives a PES profile with one global maximum at $-135^{\circ}\left(\mathrm{TS}_{\mathbf{M o}}{ }^{\mathrm{II}}[\mathbf{M o o}]=12.63 \mathrm{~kJ} . \mathrm{mol}^{-1}\right.$ to $\mathrm{TS}_{\mathbf{M o}}{ }^{\mathrm{II}}[\mathbf{M o p}]=14.99{\mathrm{~kJ} . \mathrm{mol}^{-1}}$ ),
 $\left.\mathrm{kJ} . \mathrm{mol}^{-1}\right)$, two local maxima ca. $-55^{\circ}$ and $145^{\circ}\left(\mathrm{TS}_{\mathrm{Mo}}{ }^{\mathrm{II}}=8.55 \pm 0.19{\mathrm{~kJ} . \mathrm{mol}^{-1}}\right.$ ), two local minima at $\pm 180^{\circ}$ and $-90^{\circ}\left(\mathrm{LM}_{\mathbf{M o}^{\prime}}{ }^{\mathrm{I}}[\mathbf{M o o}]=5.38 \mathrm{kJ.mol}^{-1}\right.$ to $\mathrm{LM}_{\mathbf{M o}_{\mathbf{o}}}{ }^{\mathrm{I}}[\mathbf{M o p}]=6.06$ $\mathrm{kJ} . \mathrm{mol}^{-1}$ ) and two global minima at $0^{\circ}$ and $c a .90^{\circ}$.

Rotation of the para-pyridyl (p) ring gives a PES profile with two global maxima at $\pm 90^{\circ}\left(\mathrm{TS}_{\mathbf{p}}{ }^{\mathrm{I}}=22.75 \pm 0.08 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ and two global minima at $0^{\circ}$ and $\pm 180^{\circ}$ whereas the meta-pyridine (m) ring has a PES profile with two global maxima ca. $\pm 95^{\circ}$ $\left(\mathrm{TS}_{\mathrm{m}}{ }^{\mathrm{I}}=18.81 \pm 0.21 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$, two local minima at $\pm 180^{\circ}\left(\mathrm{LM}_{\mathrm{m}}{ }^{\mathrm{I}}=6.48 \pm 0.23 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$, and one global minimum. Rotation of the ortho-pyridine (o) ring gives an asymmetrical PES profile. One global maximum is located at $-165^{\circ}\left(\mathrm{TS}_{\mathbf{0}}{ }^{\mathrm{II}}[\mathbf{M o o}]=45.26 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right.$ to $\left.\mathrm{TS}_{\mathbf{0}}{ }^{\mathrm{I}}[\mathbf{M m o}]=47.39 \mathrm{kJ.mol}^{-1}\right)$, one local maxima at around $110^{\circ}\left(\mathrm{TS}_{\mathbf{0}}{ }^{\mathrm{I}}[\mathbf{M o o}]=40.69\right.$ $\mathrm{kJ} . \mathrm{mol}^{-1}$ to $\left.\mathrm{TS}_{\mathbf{0}}{ }^{\mathrm{I}}[\mathbf{M p o}]=42.32 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$, one local minimum at $135^{\circ}\left(\mathrm{LM}_{\mathrm{o}}{ }^{\mathrm{I}}[\mathbf{M o o}]=\right.$ $39.62 \mathrm{~kJ} . \mathrm{mol}^{-1}$ up to $\mathrm{LM}_{0}{ }^{\mathrm{I}}[\mathbf{M m o}]=40.77 \mathrm{~kJ} . \mathrm{mol}^{-1}$ ) and of note, a plateau at $-125^{\circ}$ $\left(\mathrm{P}_{\mathbf{o}}{ }^{\mathrm{I}}[\mathbf{M o o}]=43.27 \mathrm{~kJ} . \mathrm{mol}^{-1}\right.$ up to $\left.\mathrm{P}_{\mathbf{0}}{ }^{\mathrm{I}}[\mathbf{M p o}]=45.34 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$.

The conformational analyses in the solvents $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ (PCM-SMD model) ${ }^{170}$ with comparisons between gas phase and solvents are depicted as PES scans in Fig. 13.


Fig. 13: The PES conformational analysis diagrams for the nine Mxx isomers optimised in gas phase (full line), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (dashed line) and in $\mathrm{H}_{2} \mathrm{O}$ (dotted line) using the PCM-SMD solvation method.

Comparisons between the gas-phase and solvated conformational analyses show small differences: all Mxx isomers have the $\mathbf{M}$-anti/P-syn conformations at the stationary point regardless of the medium. Furthermore, the PES curve patterns are similar, but there are differences in the rotational barrier heights where the solvent dielectric constants influence significant changes (usually decreases, sometimes increases) in the rotational energies necessary for aromatic ring flipping. Large decreases in the rotational barriers in high dielectric solvents (methanol, DMSO) can facilitate ring rotation and conformational changes. This can influence the ability to (a) isolate more than one molecular conformation, (b) promote molecular disorder in the solid state and (c) obtain more than one polymorph depending on solvent choice and range.

Decreases of the rotational barriers for the $p-/ m-/ o$ - rings are distinct and consistent with the gas-phase. For p- the decrease is greater in $\mathrm{H}_{2} \mathrm{O}(\sim 35 \%)$ than in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\sim 12 \%)$. A related decrease is noted in $\mathbf{m}-\left(\sim 32 \%\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \sim 65 \%$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ and in the $\mathbf{o}$-rings ( $\sim 33 \%$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \sim 60 \%$ in $\mathrm{H}_{2} \mathrm{O}$ ).

The rotational barrier data for the $\mathbf{M x}$ rings display different patterns than for the $p / m / o$ - rings and the nine Mxx isomers can be assigned to three groups. The $1^{\text {st }}$ group with $\mathbf{M p p}, \mathbf{M m p}, \mathbf{M p m}$ and $\mathbf{M m m}$ have small energy differences between the gas phase and solvated forms suggesting minor or negligible influence of the solvents on Mx ring rotation. The rotational barrier decreases in $\mathbf{M p}$ are $\sim 2 \%$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$, but $\sim 10 \%$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\sim 8 \%$ in $\mathrm{H}_{2} \mathrm{O}$ for $\mathbf{M m}$. The $2^{\text {nd }}$ group comprising Mpo and Mmo show negligible energy decreases over most of the curve but with a greater decrease approaching $\mathrm{TS}_{\mathbf{M p}}{ }^{\text {II }}$ and $\mathrm{TS}_{\mathbf{M m}}{ }^{\text {III }}$. This decline of $\sim 26 \%$ is similar in both $\mathbf{M p}$ and $\mathbf{M m}$ rings regardless of the solvent. The $3^{\text {rd }}$ group comprises the Moring (Mox) triad having an unusual increase and shift of the rotational barrier $\mathrm{TS}_{\mathbf{M o}_{0}}{ }^{\mathrm{II}}$ and $\mathrm{TS}_{\mathbf{M o}_{0}}{ }^{\text {III }}$. At $\mathrm{TS}_{\mathrm{Mo}}{ }^{\text {II }}$ the molecules are planar and the $\mathrm{CH}_{3}$ group is near the $\mathrm{C}=\mathrm{O}$ group. On Mo ring rotation from $0^{\circ}$ the solvated state electronic energy remains high in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ from $\sim 9 \%$ (Mop) to $\sim 23 \%$ (Moo); in $\mathrm{H}_{2} \mathrm{O}$ from $\sim 20 \%$ (Mop) to $\sim 46 \%$ (Moo) when compared with the gas phase baseline curve, and to a minimum energy conformation. The higher dielectric solvent destabilizes the planar molecular conformation. The remainder of the curve shows a decrease by $\sim 44 \%\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and $\sim 49 \%\left(\mathrm{H}_{2} \mathrm{O}\right)$. A similar rotation energy increase when the Mx ring is planar or rotating from $0^{\circ}$ is seen in $\mathbf{M p}$ and $\sim 25 \%$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\sim 19 \%\left(\mathrm{H}_{2} \mathrm{O}\right)$, and in Mm, just for Mmo ( $\sim 37 \%$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\sim 32 \%$ in $\mathrm{H}_{2} \mathrm{O}$ ). Overall, conformations are similar in all three media though with smaller rotational energy barriers for the solvated forms and the more polar solvent $\mathrm{H}_{2} \mathrm{O}$.

### 1.1.6.3. Energy results

The energy calculation results (CBS-QB3) (Table 10) comprise the electronic energies ( $\delta \mathrm{E}_{\text {SCF }}$ ) and Gibbs free energies ( $\delta \mathrm{G}$ ) in all three media, including $\Delta \mathrm{G}_{\text {solv }}$ (for $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\left.\mathrm{H}_{2} \mathrm{O}\right)$ and $\Delta \Delta \mathrm{G}_{\text {solv }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ vs. $\left.\mathrm{H}_{2} \mathrm{O}\right)$. The differences among each molecule are presented as $\delta \mathrm{E}_{\text {SCF }}(\delta \mathrm{G})$ and the differences between media as $\Delta \mathrm{E}_{\text {SCF }}(\Delta \mathrm{G})$. The Mom energies were used as reference points for the gas phase and solvents. Detailed results including absolute values for $\mathrm{E}_{\text {SCF }}$ and G ; zero point energies and thermal energies are provided in the ESI I (Section 3.1.1).

The electronic energy results (gas phase) show that the Mxo series is the most stable, with Mxm the least stable triad: Mmo is the most stable and Mom the least stable of the Mxx isomers. The results demonstrate that an ortho-N atom has a stabilising effect with an ortho-methyl having a slight destabilising effect.
$\underline{\text { Table 10: The energy calculation results for Mxx in kJ.mol }{ }^{-1}}$

|  | gas phase | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | $\mathrm{H}_{2} \mathrm{O}$ | gas phase $\rightarrow$ $\mathbf{C H}_{2} \mathrm{Cl}_{2}$ | $\begin{gathered} \hline \text { gas phase } \rightarrow \\ \mathrm{H}_{2} \mathrm{O} \end{gathered}$ | $\begin{aligned} & \mathrm{H}_{2} \mathrm{O} \rightarrow \\ & \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ & \hline \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\delta \mathrm{E}_{\text {SCF }} \quad \delta \mathrm{G}$ | $\delta \mathrm{E}_{\text {SCF }} \quad \delta \mathrm{G}$ | $\delta \mathrm{E}_{\text {SCF }} \quad \delta \mathrm{G}$ | $\Delta \mathrm{E}_{\text {SCF }} \Delta \mathrm{G}_{\text {solv }}$ | $\Delta \mathrm{E}_{\text {SCF }} \Delta \mathrm{G}_{\text {solv }}$ | $\Delta \Delta \mathrm{E}_{\text {SCF }}$ | $\Delta \Delta \mathrm{G}_{\text {solv }}$ |
| Mр | -22.31-11.35 | -27.34-11.96 | -26.62-12.64 | -74.73-63.36 | -58.06-45.15 | -16.67 | -18.21 |
| Mmp | -20.70-11.34 | -24.62-13.26 | -24.53-10.24 | -73.62-64.67 | -57.59-42.76 | -16.03 | -21.91 |
| Mop | -11.48 -3.89 | -14.34 -6.46 | -14.16 -6.82 | -72.55-65.31 | -56.43-46.79 | -16.12 | -18.53 |
| Mpm | -10.85 -7.46 | -12.88-5.81 | -12.18 -6.94 | -71.73-61.09 | $-55.09-43.33$ | -16.64 | -17.76 |
| Mmm | -9.29 -7.45 | -10.29 -7.40 | -10.35 -4.12 | -70.70-62.69 | -54.82-40.52 | -15.88 | -22.17 |
| Mom | $0.00 \quad 0.00$ | $0.00 \quad 0.00$ | $0.00 \quad 0.00$ | -69.70-62.75 | $-53.75-43.86$ | -15.94 | -18.89 |
| Mpo | -45.89-33.60 | -44.15-29.52 | -35.82-22.87 | -67.96-58.67 | -43.69-33.12 | -24.27 | -25.55 |
| Mmo | -44.16-33.38 | -41.73-29.61 | -33.39-21.61 | -67.26-58.98 | -42.98-32.09 | -24.28 | -26.89 |
| Moo | -34.32-24.74 | -30.75-23.03 | -22.99-14.73 | -66.13-61.03 | -42.42-33.84 | -23.70 | -27.19 |

${ }^{a}$ Only the differences between each molecule ( $\delta$ ) and media $(\Delta, \Delta \Delta)$ are shown, Mom is the reference molecule for the gas phase ( $\mathrm{E}_{\mathrm{SCF}}=-683.2650 E_{\mathrm{h}}, \mathrm{G}=-686.2042 E_{\mathrm{h}}$ ) and for solvents $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{E}_{\mathrm{SCF}}=-683.2915 E_{\mathrm{h}}, \mathrm{G}=-686.2281 E_{\mathrm{h}} ; \mathrm{H}_{2} \mathrm{O}: \mathrm{E}_{\mathrm{SCF}}=-683.2855 E_{\mathrm{h}}, \mathrm{G}=-686.2209\right.$ $E_{\mathrm{h}}$ ). Full data including zero-point energies $\left(\mathrm{E}_{0}\right)$ and thermal energies $(\mathrm{E})$ are provided in the Appendix III.

Calculations using the CBS-QB3 compound method with PCM-SMD solvation model provided theoretical values of $\Delta \mathrm{G}_{\text {solv }}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (and $\mathrm{H}_{2} \mathrm{O}$ ), including theoretical $\log K_{D / W}$ (in the ESI I, section 3.1.1.4). These results are consistent with our experimental observations and with no unexpected values. All compounds should be $10^{3}-10^{4}$ times more soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as compared to $\mathrm{H}_{2} \mathrm{O}$, while the Mxo series are expected to be the least soluble in water.

### 1.1.7. Comparisons of the solid state and modelling data

The molecular conformations of the Mxx series from X-ray diffraction data and $a b$ initio calculations (gas phase and solvated) share similarities but exhibit distinct differences especially in a subset of cases. In each PES diagram, the corresponding torsion angles from the crystal structures data are incorporated as $(\boldsymbol{O})$ and for Mmp, Mop, Mpm and Mmm two or more ( $\boldsymbol{(})$ are depicted where more than one independent molecule is present in the asymmetric unit $\left(Z^{\prime}>1\right)$.

For five of the nine Mxx isomers the torsion angle data derived from ab initio calculations are reasonably consistent with the crystallographic geometric data and the global minima (GM) similar and within $10-15^{\circ}$ (Fig. 12). However, for Mmp, Mmm, Mom and Moo, the crystallographic torsion angles differ from their respective ab initio results and are not located in an energetically favourable conformation and based on our $a b$ initio results. Three solid-state conformations Mmp, Mmm and Mom adopt meta-
stable conformations (relative to calculations using the gas-phase energy baseline) whereas Moo adopts an unstable conformation. However, in the solid-state the conformations adopted by the Mxx isomers are more than compensated for by strong intermolecular hydrogen bonds and packing forces driving the molecular packing and structure aggregation in the crystal. The PES scans $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{O}\right)$ (Fig. 13) indicate that more polar solvents can facilitate aromatic ring rotations and may predispose Mxx isomers crystallising from such solvents to adopt unexpected conformations. The ability of a more polar solvent (usually through hydrogen bonding) to interact with the solute may provide an indication of a possible tendency towards polymorphism (or at least to steer towards this possibility).

The optimised Mmx triad shows a trend with their tolyl rings in an M-anti conformation (in close proximity to the $\mathrm{C}=\mathrm{O}$ group), whereas the Mmp crystal structure is M-syn with the tolyl ring rotated by $-170^{\circ}$ from the optimized Mmp conformation (A/B in Fig. 12). Patterns also emerge in the optimised Mxm triad with the pyridyl rings in the P-syn conformation (on the amide N-H side), whereas in the Mmm and Mom ( $\mathrm{LM}_{\mathrm{m}}$ in Fig. 12) crystal structures the $\mathbf{P}$-anti conformation is observed and presumably due to aggregation events. Crystals of Mom (M-anti/P-anti) proved elusive and only obtained after many attempts and from ethyl acetate. The CBS-QB3 calculations indicate Mom as the least stable isomer and PES scans show several possible conformations and geometries, four for the Mo and two for the $\mathbf{m}$ (meta-pyridyl) ring within $10-15{\mathrm{~kJ} . \mathrm{mol}^{-1}}$ which can easily be achieved in solution and may influence the crystallisation event and our inability to easily crystallize Mom.

In Moo the tolyl ring dihedral angle is suggestive of an energetically unfavourable conformation as M-syn/P-syn (Fig. 12, $\mathrm{TS}_{\mathbf{M o}}{ }^{\mathrm{I}}$ ). The stability of Moo as a dimer in the solid-state $\{$ via $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and two short $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) interactions $\}$ highlights the dimerisation driven by cyclic $R^{2}{ }_{2}(8)$ ring formation and this more than compensates for twisting of the tolyl torsion angle in the crystal structure of Moo. The observation of the Mxo isomers as the most stable triad may be due to delocalised system $\mathrm{N} 22-\mathrm{C} 21-\mathrm{N} 1-\mathrm{C} 1=\mathrm{O} 1$; the ortho-pyridine ring conformation with one deep energy minimum at $\mathrm{GM}_{0}$ illustrates this stability.

### 1.2. Fxx isomer grid

### 1.2.1. General description of synthesis

All nine Fxx compounds were synthesised using standard nucleophilic acyl substitution reaction (Schotten-Baumann reaction, Scheme 24) between 4-/3-/2aminopyridines and 4-/3-/2-fluorobenzoyl chlorides. In general, the procedure was as described for Fxp compounds in our previous publication. ${ }^{162}$ However, a different procedure was applied to the Fxo compounds. The Fxm compounds were prepared by the condensation reaction of 3-aminopyridine (3-AP) with 4-/3-/2-fluorobenzoyl chlorides in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the presence of one equivalent of $\mathrm{Et}_{3} \mathrm{~N}$.

In 100 ml round bottom flask 3 -aminopyridine $(0.6219 \mathrm{~g}, 6.6 \mathrm{mmol})$ was dissolved with stirring in 50 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{3} \mathrm{~N}(1.394 \mathrm{ml}, 10 \mathrm{mmol})$ was added. The flask with reaction mixture was placed on an ice bath and allowed to cool. Under an inert atmosphere of $\mathrm{N}_{2}, 4-/ 3-/ 2$-fluorobenzoyl chlorides ( 6.6 mmol ) were added and the reaction mixture stirred overnight. The reaction mixture was washed three times with an aqueous $\mathrm{KHCO}_{3}$ solution and the organic layer was dried with anhydrous $\mathrm{MgSO}_{4}$. The solvent was evaporated and the product left for crystallization. A crystalline product was purified with column chromatography with silica as stationary phase and a mixture of $\mathrm{CHCl}_{3}$, ethyl acetate and acetone (2:2:1).

Table 11: Product quantities, yields and melting points of $\mathbf{F x x}$ compounds

| Fxx | $\mathbf{m} / \mathbf{g}$ | yield/\% | $\mathbf{m . p .} /^{\mathbf{}} \mathbf{C}$ |
| :---: | :---: | :---: | :---: |
| Fpp | 1.160 | 81.3 | $186.1-187.8$ |
| Fmp | 1.133 | 79.4 | $185.0-186.6$ |
| Fop | 3.711 | 86.7 | $134.7-135.6$ |
| Fpm | 1.097 | 76.9 | $148.8-149.1$ |
| Fmm | 1.046 | 73.3 | $149.7-152.2$ |
| Fom | 1.926 | 67.5 | $89.2-89.6$ |
| Fpo | 0.771 | 54.0 | $117.2-123.1$ |
| Fmo | 1.275 | 59.0 | $76.7-77.4$ |
| Foo | 1.567 | 36.2 | $84.0-86.1$ |

Since 2-aminopyridine has increased reactivity due to the ortho nitrogen and readily undergoes dibenzoylation reaction giving imides ${ }^{160-162}$ syntheses of Fxo was based on nucleophilic acyl substitution reaction between 2-AP and fluorobenzoyl chlorides, employing pyridine as reaction medium and without catalytic base, at $-10^{\circ} \mathrm{C}$. The detailed procedure was as follows.

The 2-aminopyridine ( $0.9412 \mathrm{~g}, 10 \mathrm{mmol}$ ) were added to a 100 ml two-neck round bottom flask placed on an ice bath (ice/water $/ \mathrm{NaCl} / \mathrm{NH}_{4} \mathrm{Cl}$ ) with stirring. Then,

30 ml of solvent (pyridine) was added. The flask was placed on ice bath and reaction mixture was allowed to cool to $-10^{\circ} \mathrm{C}$. Finally, the $4-/ 3-/ 2$-fluorobenzoyl chloride ( 5 mmol ) were added slowly into the solution mixture. The reaction mixture was allowed to warm to room temperature and stirred overnight. Into the reaction mixture 100 ml of purified water was poured and conc. HCl was gradually added until $\mathrm{pH}=5-6$. A white precipitate formed, and filtered on a Buchner's funnel. The precipitate was washed with copious amounts of water and allowed to dry. The pale yellow products were purified with column chromatography ( $\mathbf{F p o}$ and $\mathbf{F m o}$ : silica// $\mathrm{CHCl}_{3} /$ ethyl acetate/n-hexane $=$ 4:2:1, $\mathbf{F o o}: \mathrm{CHCl}_{3} /$ ethyl acetate $/ n$-hexane $=4: 5: 1$ ).




3-Aminopyridine (3-AP)



Scheme 24: Schematic diagram of the Fxx reactions

### 1.2.2. X-ray crystallography methods

Single crystals of the Fxx isomers including the three $\operatorname{Fxp}$ compounds ${ }^{162}$ were obtained by slow evaporation at $4^{\circ} \mathrm{C}$ or $21^{\circ} \mathrm{C}$ and typically from ethyl acetate, while Fmo was grown from $\mathrm{CDCl}_{3}$. The only $\mathbf{F x x}$ isomer that proved difficult to crystallise as diffraction quality crystals was Fom: decent quality crystals were obtained only after a series of crystal growth experiments from mixtures of methanol and diethyl ether. The

X-ray data were collected on a Gemini S Ultra diffractometer at 294(1) K, with a $\theta$ range from $2-25^{\circ}$ minimum and $100 \%$ data coverage to $25^{\circ}$ (on $\theta$ ). ${ }^{176}$

Data reduction procedures and absorption corrections are standard and comprehensive details have been published elsewhere. ${ }^{176}$ All structures were solved using the SHELXS97 direct methods program ${ }^{3}$ and refined by full matrix least squares calculations on $F^{2}$ with all non-hydrogen atoms having anisotropic displacement parameters. Hydrogen atoms were treated as riding atoms using the SHELXL97 defaults ${ }^{3}$ (at 294 K ) except for the amide N-H (isotropic refinement) using the OSCAIL software ${ }^{168}$ with selected crystallographic and structural information in the ESI I, Section 2.2. Molecular and hydrogen bonding diagrams (Figs. 15-22) were generated using PLATON. ${ }^{169}$ All searches on the Cambridge Structural Database (CSD) were performed with the November 2010 release (version $5.32+4$ updates). ${ }^{8}$

### 1.2.3. Computational methods

The computational methods and procedures reported herein are similar to previous isomer grid (Mxx) using Gaussian03/09. ${ }^{25}$ The ab initio DFT (B3LYP) geometry optimisations in gas phase were performed with and without polarisation functions (as $6-311++\mathrm{G}, 6-311 \mathrm{G}^{* *}, 6-311++\mathrm{G}^{* *}$ ) in order to probe the influence of polarisation functions on the overall structure and conformation. The B3LYP/6$311++\mathrm{G}^{* *}$ basis set is close to optimal for the Fxx isomer series in terms of both accuracy of geometry and computational costs. As polarisation functions are important in molecular geometry optimisation and especially when hydrogen bonds are involved, we rigorously examined the influence of both diffuse and polarisation functions on key structural parameters by gas phase optimisation of the Fxx isomers using three distinct basis sets (as above). Solvated geometry optimisations and conformational analyses were performed in two solvents, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ (PCM-SMD solvation model) ${ }^{170}$ specifically using the B3LYP/6-311++G** basis set. Additionally, high accuracy energy calculations including $\Delta \mathrm{G}_{\text {solv }}$ were obtained using the CBS-QB3 compound method. ${ }^{171}$

The conformational analysis of each Fxx structure was undertaken using PES scans of the two key dihedral angles over $\pm 180^{\circ}$ both in gas phase and solvents: the angles used are $\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 1=\mathrm{O} 1$ ( $\alpha, \mathbf{F}$-ring), and $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 21-\mathrm{C} 26$ ( $\beta$, P-ring). Each asymmetric (meta or ortho) ring, can adopt, relative to the amide linker, two conformations (syn or anti) (Scheme 25). Therefore, the fluorophenyl (F-ring) or pyridine ( P -ring) rings can be either in the syn (F-syn, P-syn) or anti ( F -anti, P -anti)
conformation. Rings with para-pyridine N or para-phenyl F atoms are not subject to this convention. The results provide PES diagrams highlighting conformation preferences (syn/anti) and rotational barriers in $\mathrm{kJ} . \mathrm{mol}^{-1}$.

The computational analyses were performed to $(i)$ investigate the effect of the polarisation functions (** or d,p) with the B3LYP/6-311++G basis set on molecular geometry and conformation, (ii) facilitate comparisons of the optimised structures and conformations with the solid state structural results and (iii) examine the influence of the solvation model $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{O}\right.$; PCM-SMD method) on the $\mathbf{F x x}$ molecular geometry and conformations.


Scheme 25: The four possible Fxx conformations

### 1.2.4. Comment on synthesis and general characteristics

The Fxx compounds (as expected for benzamides) are crystalline, colourless, odourless solids, readily soluble in most organic solvents, less soluble in cyclohexane and diethylether but insoluble in water. The yields (Table 11) were excellent for the $\mathbf{F x p} / \mathbf{F x m}$ isomers, but lower for $\mathbf{F x o}$ due to the competing reaction (and strategies were employed to prevent a significant formation of (2:1) imide products). The compound purities, following standard purification and chromatography, were excellent as analysed by TLC. In related benzamides we have noted similar trends with the melting point ranges and median values dropping from the symmetrical Fpp to the less symmetrical isomers, with Fmo having the lowest melting point. The melting points of Fop and Fom are $\sim 50^{\circ} \mathrm{C}$ lower than the related isomers in the Mxx series (Section 1.1).

### 1.2.5. Comment on spectroscopic data

All spectroscopic data, including ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR, as well as IR spectra are listed in the Appendix I (Section 1.2), while the spectra are presented in the ESI I,

Section 1.2. There is a high degree of modularity within the $\mathbf{P}$ - and $\mathbf{F}$-rings as noted previously in Mxx.

The amide proton $\left(\delta_{\mathrm{N}-\mathrm{H}}\right)$ resonance at $c a .8 .37 \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right)$ shifts to 10.62 ppm (DMSO- $d_{6}$ ) in the six $\mathbf{F x p} / \mathbf{F x m}$ isomers. However, the average $\delta_{\mathrm{N}-\mathrm{H}}$ for $\mathbf{F x o}$ is $c a .8 .94$ ppm $\left(\mathrm{CDCl}_{3}\right)$ and shifted to $\sim 10.85 \mathrm{ppm}$ in DMSO- $d_{6}$. The smaller difference for the $\delta_{\mathrm{N}}$ ${ }_{\mathrm{H}}$ in $\mathbf{F x o}\left(\mathrm{CDCl}_{3}\right)$ as compared to $\mathbf{F x p} / \mathbf{F x m}$ results from the higher acidity of the amide proton and influenced by the ortho-pyridine N atom. The most distinct feature in the Fxx NMR spectra is the splitting of the N-H peak into a broad doublet in the Fox triad (Fop, Fom, Foo) when using aprotic solvents such as $\mathrm{CDCl}_{3}$ (ESI I, Section 1.2). ${ }^{162}$ This splitting results from the strong through-space nuclear spin-spin couplings $\left({ }^{1 h} J_{\mathrm{N}}\right.$ ${ }_{\text {н... }}=13-15.5 \mathrm{~Hz}$ ), caused by the formation of a strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ interaction between the ortho-F atom and amide proton. ${ }^{177}$ The N-H peak is present as a broad singlet in polar solvents (DMSO- $d_{6}$, ESI I, Section 1.2) suggesting that the intramolecular N-H $\cdots \mathrm{F}$ hydrogen bonding is disrupted with resulting conformational change. Our detailed studies of conformational analyses using both gas phase and solvated models for the Mxx analogues suggests that the use of highly polar solvents (high dielectric constants) decreases the rotational barriers so as to facilitate ring rotation and conformational changes. This is what is observed when the $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}_{\text {ortho }}$ interaction is disrupted in the Fox triad in polar solvents such as DMSO. The IR spectra for Fxo triad are similar with typical strong and diffused stretching bands between 3333 and $2700 \mathrm{~cm}^{-1}$ with prominent peaks distinctly present at 3078,3175 and $3112 \mathrm{~cm}^{-1}$.

### 1.2.6. Crystallographic data and analysis

### 1.2.6.1. General comments

The salient features of the Fxx structures are provided in Tables 12 and 13; all other important crystallographic details are included in the ESI II (Section 2.2). The $3 \times$ 3 isomer grid of nine Fxx compounds is augmented by two pairs of polymorphs for Fpm and Fom. For Fpm, one polymorph as Fpm_O exhibits $\mathrm{N}-\mathrm{H} \cdots \mathrm{C}=\mathrm{O}$ intermolecular interactions as amide $\cdots$ amide $C$ (4) chains, while $\mathbf{F p m}$ _N aggregates by the ${ }_{\text {amide }} \mathrm{N}-\mathrm{H}^{\cdots} \mathrm{N}_{\text {pyridine }}$ interactions (both in space group $P 2_{1} / \mathrm{n}, Z^{\prime}=1$ ). In Fom, both polymorphs Fom_O and Fom_F exhibit $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ intermolecular hydrogen bonding but in different space groups, with different conformations and disorder (Fom_O). For the remaining isomers, Fmm aggregates via $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions while all Fxo isomers
crystallise as twisted dimers $\left[R^{2}{ }_{2}(8)\right.$ rings $]$ via amide $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ interactions. Fxx has one strong $\mathrm{N}-\mathrm{H}$ donor and two $\mathrm{O}=\mathrm{C} / \mathrm{N}$ acceptors and both types of interactions are possible.

Table 12: Selected crystallographic data for the $\mathbf{F x x}$ isomers ${ }^{a}$

| Structure ${ }^{\text {a }}$ | Space group | $\boldsymbol{Z} / \bar{Z}$ | Volume/ $\mathbf{A}^{3}$ | $\boldsymbol{R}$-factors |
| :---: | :---: | :---: | :---: | :---: |
| Fpp ${ }^{\text {b }}$ | $P 2{ }_{1} / \mathrm{C}$ | 4/1 | 1006.40(3) | 0.034, 0.090 |
| Fmp ${ }^{\text {b }}$ | $P 2 / / \mathrm{c}$ | 4/1 | 995.76(3) | 0.034, 0.092 |
| Fop ${ }^{\text {b }}$ | $P 2 / / \mathrm{c}$ | 4/1 | 1009.72(3) | 0.037, 0.103 |
| Fpm_O | $P 2{ }_{1} / n$ | 4/1 | 992.74(3) | 0.042, 0.114 |
| Fpm_N | $P 2{ }_{l} / n$ | 4/1 | 1009.69(9) | 0.053, 0.120 |
| Fmm | $\mathrm{Pcal}_{1}$ | 4/1 | 1019.67(5) | 0.033, 0.084 |
| Fom_O | P2 ${ }_{1}$ | 12/6 | 2999.41(12) | 0.059, 0.176 |
| Fom_F | $P 2{ }_{l} / n$ | 4/1 | 987.35(7) | 0.044, 0.122 |
| Fpo | Pbon | 8/1 | 2100.58(6) | $0.042,0.113$ |
| Fmo | $P \overline{1}$ | 4/2 | 1034.48(6) | 0.046, 0.124 |
| Foo | $P \bar{l}$ | 4/2 | 1048.88(7) | 0.044, 0.114 |

${ }^{\bar{a}} \mathbf{F x x}=\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{OF}, M=216.21, \mathrm{~T}=294(1) \mathrm{K}$.
${ }^{\mathrm{b}} \mathbf{F x p}=$ LOCREB, LOCLEV, LOCRAX at $150(1) \mathrm{K}^{8,162}$

### 1.2.6.2. Fxp isomer series

The crystal structures of the three $\operatorname{Fxp}$ (Fig. 14) compounds are published (data collected at $150(1) \mathrm{K}^{162}$ ). Nonetheless, new crystal samples were grown from ethyl acetate with data collected at $294(1) \mathrm{K}$ in order to examine the possibility of polymorphism and confirm previous results (Tables 12, 13). All three Fxx isomers have similar crystal structures and are isomorphous in space group $P 2_{1} / \mathrm{c}$.

Table 13. Salient structural features of the $\mathbf{F x x}$ isomers $\left(\AA,{ }^{\circ}\right)$

| Structure ${ }^{1}$ | $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ | $\mathrm{C}_{6} / \mathrm{amide}^{2}$ | $\mathrm{C}_{5} \mathrm{~N} /$ amide $^{2}$ | N $\cdots$ N/O | Packing ${ }^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Fpp | 52.14(4) | 33.51(5) | 18.93(6) | 3.0581(15) | $C(6)$ chains |
| Fmp | 48.86(4) | 32.37(5) | 17.56(6) | $3.0786(14)$ | $C(6)$ chains |
| Fop | 46.14(4) | 31.65(5) | 15.20(7) | $3.0587(16)$ | $C(6)$ chains |
| Fpm_O | 1.02(9) | 31.25(6) | 30.32(6) | 3.0575(13) | $C(4)$ chains |
| Fpm_N | 28.95(8) | 20.73(9) | 8.40(9) | 3.151(3) | $C(6)$ chains |
| Fmm | 43.97(6) | 35.95(7) | 8.02(9) | 3.077(3) | $C(5)$ chains |
| Fom_F ${ }^{1}$ | 2.35(10) | 18.36(8) | 16.14(8) | $3.3321(17)$ | $C(4)$ chains |
| Fpo | 44.41(5) | 39.56(5) | 6.19(5) | $3.0608(18)$ | $R_{2}^{2}(8)$ rings |
| Fmo | $\begin{aligned} & 65.30(6) \\ & 47.92(6) \end{aligned}$ | $\begin{aligned} & 49.48(7) \\ & 43.00(8) \end{aligned}$ | $\begin{aligned} & 3.0721(17) \\ & 3.0502(18) \end{aligned}$ | $\begin{aligned} & 3.0721(17) \\ & 3.0502(18) \end{aligned}$ | $R_{2}^{2}(8)$ rings |
| Foo | $\begin{aligned} & 66.31(5) \\ & 52.02(5) \\ & \hline \end{aligned}$ | $\begin{aligned} & 69.18(6) \\ & 38.12(6) \end{aligned}$ | $\begin{aligned} & 3.0460(14) \\ & 3.0408(15) \end{aligned}$ | $\begin{aligned} & 3.0460(14) \\ & 3.0408(15) \end{aligned}$ | $R_{2}^{2}(8)$ rings |

[^1]Bond lengths and angles are normal and the difference in C-F bond lengths noted previously is evident with $1.3591(14) \AA(\mathbf{F p p}), 1.3517(16) \AA(\mathbf{F m p})$ and $1.3420(15) \AA$ (Fop), presumably arising from the influence of the secondary interactions/contacts and intramolecular N1-H1 $\cdots$ F12 in (Fop).

Of note is the expanding list of structures isomorphous with the $\mathbf{F x p} \operatorname{triad}$ (Table 5) ${ }^{172}$ including the parent $N$-(4-pyridyl)benzamide [MOHQOP] ${ }^{178}$ and 2,5-difluoro-(4pyridyl)benzamide [HOFVUU]. ${ }^{172}$ This series of five compounds is unusual in that the compounds are isomorphous (with similar unit cell parameters, packing and alignment) but differ in their F/H peripheral atom-site position and interactions/contacts at the secondary level. This arises principally due to the $c a .0 .4 \AA$ difference between typical organic C-F/C-H bond lengths and the resulting directional influence on weaker interactions and contacts. The Fxp details are not discussed further except for comparisons (Tables 12, 13).

### 1.2.6.3. Fxm isomer series

## Fpm polymorphs molecular and crystal structures

The $\mathbf{F p m}$ isomer was isolated as two polymorphs $\mathbf{F p m} \mathbf{O}$ and $\mathbf{F p m} \mathbf{N}$ (suffix $\mathbf{O} / \mathbf{N}$ based on the primary hydrogen bonding interactions), both of which crystallise in space group $P 2_{1} / \mathrm{n}$ with $Z^{\prime}=1 .{ }^{179,180}$ The IR spectra of both polymorphs show prominent differences in the $\mathrm{N}-\mathrm{H}$ stretching region (2800-3400 $\mathrm{cm}^{-1}$ ) with $\mathbf{F p m} \mathbf{O}$ O showing a sharp peak at $3325 \mathrm{~cm}^{-1}$ and characteristic for all amide $\cdots$ amide ( $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ ) hydrogen bonded benzamides/pyridinecarboxamides, while $\mathbf{F p m} \mathbf{N}$ has a diffuse pattern of N-H stretching bands indicative of $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ bonded benzamides/pyridinecarboxamides.


Fig. 14: An overlay of the Fxp isomorphous series with $\mathbf{2 5}_{\mathbf{2}} \mathbf{F}_{\mathbf{2}}$

The IR spectrum of the bulk $\mathbf{F p m}$ powder shows a diffuse peak pattern suggesting a prevalence of the $\mathbf{F p m} \mathbf{N}$ polymorph. This polymorph seems to be preferred as the $\mathbf{F p m} \mathbf{O}$ polymorph was isolated by chance. Crystals of the $\mathbf{F p m} \mathbf{O}$ polymorph grow from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ have $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ primary hydrogen bonding as $C(4)$ chains, while $\mathbf{F p m} \mathbf{N}$ (from ethyl acetate) has intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions. It is rather unusual (though not unknown) that both polymorphs crystallise in the same space group and differing primarily in their main hydrogen bonding interactions. ${ }^{181}$



Figs. 15, 16: Views of Fpm_O and Fpm_N

The Fxx series with a strong $\mathrm{N}-\mathrm{H}$ donor and two $\mathrm{O}=\mathrm{C} /$ pyridine N acceptors offers the possibility of obtaining at least two different structures with either or both N $\mathrm{H} \cdots \mathrm{N} / \mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interactions though in practice one type is clearly favoured for a particular $\mathbf{F x x}$ isomer. In $\mathbf{F p m} \mathbf{O}$ the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interaction ( $\mathrm{N} 1 \cdots \mathrm{Ol}^{i}=3.0575(13) \AA$; $\boldsymbol{i}=\mathrm{x}, \mathrm{y}+1, \mathrm{z}$ ) links $\mathbf{F p m}$ molecules into 1-D chains along the $b$-axis direction and parallel to the (101) plane. The remaining interactions are weak with 1-D chains (running antiparallel) linked by C15-H15 $\cdots \mathrm{N} 23\left(\mathrm{C} 15 \cdots \mathrm{~N} 23^{i i}=3.5891(17) \AA, \boldsymbol{i i}=1-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}\right)$ contacts into columns, with additional C14-F14 $\cdots$ F14-C14 $4^{i i i}=2.8982(18) ~ \AA$, iui $\left.=2-\mathrm{x},-\mathrm{y},-\mathrm{z}\right)$ contacts. The pyridine $\mathbf{P}$-ring conformation in $\mathbf{F p m} \mathbf{C O}$ is $\mathbf{P}-\mathbf{s y n}$ and the two aromatic rings are almost parallel though with the amide group twisted away from both rings (Table 13). The Fmp_O molecular geometry (torsion angles) differs considerably from Fmp_N (Table 13). However, the most significant bond length/angle difference is for C1-N1-C21 = 125.76(10) ${ }^{\circ}$ in Fpm_O and 127.7(2) ${ }^{\circ}$ in Fpm_N.

Aggregation in $\mathbf{F p m} \mathbf{N}$ N is principally by N1-H1 $\cdots \mathrm{N} 23$ interactions ( $\mathrm{N} 1 \cdots \mathrm{~N} 23^{i}=$ $3.151(3) \AA, \boldsymbol{i}=-1 / 2+\mathrm{x}, 1 / 2-\mathrm{y}, 1 / 2+\mathrm{z}$ ) forming $1-\mathrm{D}$ zig-zag chains along the $c$-axis direction and parallel to the (-101) plane. This primary $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interaction is augmented by flanking $\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{~N} 23^{i}$ and $\mathrm{C} 26-\mathrm{H} 26 \cdots \mathrm{~N} 23^{i}$ interactions \{with $\left.\mathrm{C} 16 / \mathrm{C} 26 \cdots \mathrm{~N} 23^{i}=3.403(3) / 3.390(3) \AA\right\}$ and similar to the $\mathbf{N m p F}$ and $\mathbf{N m p M}$ structures (Sections 2.1 and 2.2). The 1-D chains are linked into 2-D sheets by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$
interactions $\left(\mathrm{H} 24 \cdots \mathrm{~F} 14^{i i}=2.57 \AA, \mathrm{C} 24 \cdots \mathrm{~F} 14^{i i}=3.107(3) \AA, \boldsymbol{i}=3 / 2-\mathrm{x},-1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}\right)$ along the [010] direction. There are no other direction specific interactions in $\mathbf{F p m} \mathbf{N}$.

The most striking difference between $\mathbf{F m p} \mathbf{N}$ and $\mathbf{F m p} \mathbf{O}$ is the P-anti conformation which is opposite to the P-syn in Fmp_O. This conformation change in the pyridine ring orientation is essential for intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding in $\mathbf{F m p}$ _N. The $\mathbf{F p m}$ _O structure resembles the related methyl isomer derivative $\mathbf{M p m}$ (Section 1.1). However, and in contrast to $\mathbf{F p m} \mathbf{O}$, the $\mathbf{M p m}$ isomer crystallises in space group P1 with $Z^{\prime}=4$ and contains four distinct hydrogen bonded chains aggregating via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interactions.


Fig. 17: Aggregation in Fpm_N

## Fmm molecular and crystal structure

The $\mathbf{F m m}$ isomer shows some similarities with $\mathbf{F p m} \mathbf{N}$ in terms of aggregation and conformation. As in Fmp_N, the conformation of $\mathbf{F m m}$ is $\mathbf{F}$-anti/P-anti and as noted above the P-anti conformation is crucial for formation of the amide $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ hydrogen bond. The principal interaction in Fmm is $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 23^{i}\left(\mathrm{~N} 1 \cdots \mathrm{~N} 23^{i}=\right.$ $3.077(3) \AA, \boldsymbol{i}=\mathrm{x}+1 / 2,1-\mathrm{y}, \mathrm{z})$ and augmented by a flanking C26-H26 $\cdots \mathrm{N} 23^{i}(\mathrm{C} 26 \cdots \mathrm{~N} 23=$ $3.444(3) \AA$ ) interaction linking Fmm molecules into 1-D chains along the $a$-axis (100) direction. A secondary interaction involves $\pi \cdots \pi$ stacking (C26 $\cdots \mathrm{C} 22^{i i}=3.366(3) \AA, \boldsymbol{i i}$ $=-1 / 2+\mathrm{x}, 1-\mathrm{y}, \mathrm{z})$ along the $c$-axis direction weakly connecting the $1-\mathrm{D}$ chains into $2-\mathrm{D}$ sheets parallel to (010) plane. There are no other interactions in Fmm.

## Fom polymorphs molecular and crystal structure

The Fom isomer was isolated as two polymorphs with $\mathbf{F o m} \mathbf{O}$ grown as poor quality single crystals from ethyl acetate (amongst other solvents and mixtures) after many attempts. A second polymorph, Fom_F crystallised subsequently as fine diffraction quality single crystals by very slow evaporation from MeOH in long tubes. The Fom_O polymorph crystallises in space group $P 2_{1}\left(Z^{\prime}=6\right)$. The structure solves easily in $P 2_{1}$ using default settings in common structure solution programs and even at this juncture it is obvious that there is considerable disorder in Fom_O. On refinement the Fom_O structure is revealed to be completely disordered with the six individual molecules having varying levels of disorder, from four molecules with a minor component ( $\sim 10 \%$ ) and two having complete $50 \%$ molecular disorder.



Figs. 18, 19: Views of Fmm and Fom_F

All six Fom_O molecules are F-syn as this facilitates the favourable intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}_{\text {ortho }}$ interaction as noted in the ${ }^{1} \mathrm{H}$ NMR of related benzamides. ${ }^{177}$ The $\mathrm{N} \cdots \mathrm{F}$ distances for (A) to (D) range from 2.722(5) to $2.753(6) \AA$. The metapyridine ring is mostly $\mathbf{P}$-syn with evidence for the $\mathbf{P}$-anti conformation in at least one of the $50: 50$ disordered molecules $(\mathrm{F} / \mathrm{H})$. The possibility of a second conformation of the pyridine ring in the crystal structure may be needed to effect a repeat unit on crystallisation but at the cost of a crystal structure with $Z^{\prime}=6$.

The primary interaction consists of six distinct $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C} C(4)$ chains of all six molecules in the $b$-axis direction. The intermolecular $\mathrm{N} \cdots \mathrm{O}$ distances range from $3.066(8) \AA$ to $3.111(9) \AA$ and $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ interplanar angles range from $4.5(4)^{\circ}$ to $9.1(4)^{\circ}$ for (A) to (D). The four largely ordered molecules (A) to (D) stack in a column along the $a$-axis direction with the remaining two molecules as 50:50 disordered components (E/G) and (F/H) stacking as a column in the (100) direction adjacent to (A) to (D).

Alternating columns of (A) to (D) and (E/G), (F/H) are linked by weak interactions/contacts. The assembly of the structure is perplexing and our analysis suggests that the ortho-F atom plays a major role in the molecular conformation. The Fom_O crystal structure as a completely disordered system can be viewed as the kinetic product of imperfect crystallisation. Fom_O is worthy of a more detailed study over a range of temperatures.

A review of the $\mathrm{CSD}^{8}$ for structures with $Z^{\prime}=6$ in space group $P 2_{1}$ reveals 42 compounds of which bis[4-(dimethylamino)phenyl]diazene oxide [XIYZOV] ${ }^{182}$ is a representative planar molecule. It is described as a commensurate modulation of a $P 2_{1} / \mathrm{c}$ parent with $1 / 3$ of the $b$-axis, and comprising two disordered molecules with an indication of disordered components in two of the remaining azoxybenzene molecules

The Fom_F polymorph crystallises in $P 2_{1} / \mathrm{n}$ and is isostructural with $\mathbf{F p m}$ _O and has similar geometry features, but the conformation as ( $\mathbf{F}-\mathbf{s y n} / \mathbf{P}$-anti) is similar to $\mathbf{F p m}$ _N. The primary Fom_F interaction is the long $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bond $\left(\mathrm{N} 1 \cdots \mathrm{O}^{i}=3.3322(17) \AA, \boldsymbol{i}=\mathrm{x}+1, \mathrm{y}, \mathrm{z}\right)$ as $C(4)$ chains linking molecules into 1-D chains along $a$-axis. Apart from the intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}_{\text {ortho }}$ interaction, the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ is the only intermolecular interaction of consequence in $\mathbf{F o m}_{-} \mathbf{F}$ apart from the repulsive $\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{H} 16-\mathrm{C} 16^{i i}$ interaction $\left(\mathrm{H} 16 \cdots \mathrm{H} 16^{i i}=2.33 \AA\right)$ and a weak C14-H14 $\cdots \mathrm{N} 23^{i i i}$ interaction linking chains ( $\boldsymbol{i i}=-1-x, 1-y,-z ; \boldsymbol{i u}=1 / 2+x, 1 / 2-y, 1 / 2+z$ ). Examination of both structures allows us to understand the difficulty Fom has in forming quality crystals.

### 1.2.6.4. Fxo isomer series

The Fxo triad form twisted dimers as $R_{2}^{2}(8)$ rings via cyclic amide $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ interactions denoted by $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N})_{2}$. Formation of dimers with the pyridine N atom located ortho (a mandatory P-syn conformation) has already been discussed in the related Mxo isomers (Section 1.1). In these Mxo isomers the central hydrogen bonded $R^{2}{ }_{2}(8)$ ring is essentially planar while the $\mathbf{F x o}$ dimers as twisted dimers have interplanar $\mathrm{C}_{5} \mathrm{~N} / \mathrm{C}_{5} \mathrm{~N}$ or $[\mathrm{NCNH} / \mathrm{NCNH}]$ angles of $39.12(4)^{0}$, $\left[34.63(15)^{\circ}\right]$ in Fpo, 43.66(7) ${ }^{\text {o }}$, $\left[30.9(16)^{\circ}\right]$ in Fmo, and 22.18(5) ${ }^{\circ}$, [21.6(6) ${ }^{\circ}$ ] in Foo. In the Fxo triad (on dimer formation) the $\mathrm{N}-\mathrm{H}$ and pyridine N are excluded from further intermolecular interactions and the three crystal structures rely on weaker $\mathrm{C}-\mathrm{H} \cdots \mathrm{O} / \mathrm{F} / \pi$ or $\pi \cdots \pi$ secondary interactions.

## Fpo molecular and crystal structure

Fpo (Fig. 20) crystallises as a hydrogen bonded $\mathrm{R}^{2}{ }_{2}(8)$ dimer via $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 22$ interactions ( $\left.\mathrm{N} 1 \cdots \mathrm{~N} 22^{i}=3.0608(18) \AA, \boldsymbol{i}=-\mathrm{x}, \mathrm{y}, 1 / 2-\mathrm{z}\right)$ but in tandem with a $\mathrm{C} 16 \cdots \mathrm{C} 23^{i}$ $=3.285(2) \AA$ contact. Pairs of dimers are connected into tetramers by C16-H16 $\cdots \mathrm{O} 1$ interactions $\left(\mathrm{C} 16 \cdots \mathrm{O}^{i i}=3.266(2) \AA, \boldsymbol{i}=\mathrm{x}, 1-\mathrm{y}, 1 / 2+\mathrm{z}\right)$ and enhanced by a $\mathrm{C} 15-$ $\mathrm{H} 15 \cdots \mathrm{C} 12$ contact. Tetramers are linked into a 1-D column by C25-H25 $\cdots \mathrm{O} 1{ }^{\text {iii }}$ (iiii $=-$ $\mathrm{x}, \mathrm{y}, 3 / 2-\mathrm{z}$ ) interactions along the $c$-axis direction. The weak $\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{~F} 14^{i v}$ (iv $=$ $1 / 2+\mathrm{x},-1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}$ ) interaction alternatively interconnects $1-\mathrm{D}$ columns into a 3-D structure.


Fig. 20: A view of the Fpo hydrogen bonded dimer

## Fmo molecular and crystal structure

Fmo (Fig. 21) forms a twisted dimer through two distinct $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 22$ interactions $[\mathrm{N} 1 \mathrm{~A} \cdots \mathrm{~N} 22 \mathrm{~B}=3.0721(17) \AA$ and $\mathrm{N} 1 \mathrm{~B} \cdots \mathrm{~N} 22 \mathrm{~A}=3.0502(18) \AA$ ] as the two Fmo molecules ( $\mathrm{A} / \mathrm{B}$ ) are not identical $\left(Z^{\prime}=2\right)$. Therefore all three major torsion angles differ as well as the $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ interplanar angles (Table 13).

Dimer formation also occurs with additional $\mathrm{C} 16_{\mathrm{A} / \mathrm{B}} \cdots \mathrm{C} 23_{\mathrm{B} / \mathrm{A}}$ contacts [both contacts $=3.237(2) \AA]$. Dimers are linked into tetramers by two weak C-H $\cdots \mathrm{O}$ contacts (C16A-H16A $\cdots \mathrm{O}^{\mathrm{O}}{ }^{i i}$, C15B-H15B $\cdots \mathrm{O}_{1} \mathrm{~A}^{i i i} ; \quad \boldsymbol{i i}=1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$, iiii$\left.=1-\mathrm{x}, 2-\mathrm{y}, 1-\mathrm{z}\right)$. Tetramers are interconnected into a 1-D column by stronger C25A-H25AㅇO1B $\left[\mathrm{C} 25 \mathrm{~A} \cdots \mathrm{O}^{i}{ }^{i}=3.235(2) \AA, \boldsymbol{i}=\mathrm{x}, 1+\mathrm{y}, \mathrm{z}\right]$ interactions in the $b$-axis direction. Columns are further linked into a 2-D sheet parallel to the [10-1] plane by double $\pi \cdots \pi$ stacking
$\left(\mathrm{C} 13 \mathrm{~A} \cdots \mathrm{C} 15 \mathrm{~A}^{i v}, \boldsymbol{i} \boldsymbol{v}=-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}\right)$ and $\mathrm{C} 14 \mathrm{~B} \cdots \mathrm{C} 14 \mathrm{~B}^{v}(\boldsymbol{v}=2-\mathrm{x}, 2-\mathrm{y}, 2-\mathrm{z})$ contacts. It is unusual that the fluorine atoms $\mathrm{F} 13 \mathrm{~A} / \mathrm{B}$ ( F -anti) do not play a significant role in the Fmo crystal structure apart from influencing $\pi \cdots \pi$ stacking interactions.


Fig. 21: A view of the Fmo hydrogen bonded dimer

## Foo molecular and crystal structure

The Foo crystal structure (Fig. 22) assembles in a similar fashion to Fmo at the primary level (with $Z^{\prime}=2$ ). The interplanar angle between the two pyridinyl rings $\mathrm{C}_{5} \mathrm{~N}_{\mathrm{A}} / \mathrm{C}_{5} \mathrm{~N}_{\mathrm{B}}$ ) is 22.18(5) ${ }^{\circ}$; the smallest among the Fxo dimers.

The $\mathbf{F o}$ rings are oriented as $\mathbf{F}$-syn allowing the formation of three contacts as N1-H1B $\cdots$ F12B [N1B $\cdots$ F12B $=2.7981(15) \AA$ ] and C23-H23 $\cdots \pi(\mathrm{C} 11, \ldots, \mathrm{C} 16)$ with $\mathrm{H} 23 \mathrm{~A} \cdots \mathrm{Cg} 1_{\mathrm{B}}=2.82 \AA, \mathrm{C} 23 \mathrm{~A}-\mathrm{H} 23 \mathrm{~A} \cdots \mathrm{Cg} 1_{\mathrm{B}}=138^{\circ}$, while $\mathrm{H} 23 \mathrm{~B} \cdots \mathrm{Cg} 1_{\mathrm{A}}=2.70 \AA$, $\mathrm{C} 23 \mathrm{~B}-\mathrm{H} 23 \mathrm{~B} \cdots \mathrm{Cg} 1_{\mathrm{A}}=149^{\circ}$ and stabilising the dimeric unit. In Foo these C23$\mathrm{H} 23_{\mathrm{A} / \mathrm{B}} \cdots \pi(\text { arene })_{\mathrm{B} / \mathrm{A}}$ interactions are similar though not as significant as the analogous $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) interactions described in Moo (Section 1.1). Dimers aggregate into tetramers by two $\pi \cdots \pi$ contacts with $\mathrm{C} 21 \mathrm{~A} \cdots \mathrm{C} 24 \mathrm{~B}^{i}=3.257(2) \AA,(\boldsymbol{i}=-\mathrm{x},-\mathrm{y}, 2-\mathrm{z})$ and C24B-H24B $\cdots \pi(\mathrm{C} 21 \mathrm{~A}, \ldots, \mathrm{C} 26 \mathrm{~A})^{i}$. These are interconnected along the $b$-axis into a 1-D column by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts $\left(\mathrm{H} 25 \mathrm{~B} \cdots \mathrm{O}_{\mathrm{A}}{ }^{i i}=2.62 \AA, \boldsymbol{i}=\mathrm{x},-1+\mathrm{y}, \mathrm{z}\right)$ and $\left(\mathrm{C} 26 \mathrm{~A} \cdots \mathrm{O} 1 \mathrm{~A}^{\mathrm{iii}}=3.225(2) \AA, \boldsymbol{i u i}=-\mathrm{x}, 1-\mathrm{y}, 2-\mathrm{z}\right)$. Further aggregation is accomplished via weak contacts. In Foo the Fo rings have interplanar angles of $69.56(5)^{\circ}$ and as both are F-syn the F12A‥F12B atoms are separated by a distance of $4.7995(15) \AA$.


Fig. 22: A view of the Foo hydrogen bonded dimers.

### 1.2.7. Ab initio calculations

### 1.2.7.1. Structure optimisation results

The main geometric parameters of the $\mathbf{F x x}$ isomers (optimised in the gas phase with different basis sets), for torsion angles $\mathrm{C} 12-\mathrm{C} 11-\mathrm{Cl}=\mathrm{O} 1(\alpha), \mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 21-\mathrm{C} 26(\beta)$ and O1-C1-N1-C21 ( $\delta$ ) are presented in the Table 14. Torsion angles ( $\alpha, \beta$ and $\delta$ ) of the gas phase and solvated forms $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{O}\right)$ obtained with implicit solvation model PCM-SMD and B3LYP/6-311++G** basis set are listed in Table 15.

In general when examining geometry, the relative and absolute benzamide geometry should be differentiated depending on whether the (syn-/anti-) conformation is neglected or endorsed. If the conformation is taken into account then the given geometrical parameter values (torsion angles) are regarded as absolute geometry. In the reverse case, if conformation is neglected then the relative values of the geometry are provided, in order to give emphasise the relative molecular shape and for comparisons with other isomers having different conformations.

For $\mathbf{F x x}$, the additional polarisation function $\left(6-311++\mathrm{G}^{* *}\right)$ does not yield a significant change in the relative geometric parameters in gas phase as compared to the standard ( $6-311++G)$ basis set (ESI I, Section 3.2.). The most significant change is for the $\beta$ and $\delta$ angles (Table 14). However, the polarisation function changes the preferred conformation of the $\mathbf{F m}$ ring making the F-anti slightly preferable to F-syn. Alternatively the exclusion of diffuse functions (from the standard set but with added polarisation functions as $6-311 \mathrm{G}^{* *}$ ) slightly changes the $\alpha$ dihedral angle (F-ring). Analysis of the $\mathbf{F x x}$ isomers reveals the $6-311++$ G $^{* *}$ basis set to be optimal in terms of
time and computational expense and does not significantly influence relative geometry (apart from the $\mathbf{F m}$ ring).

The most prominent feature of the modelled Fxx isomers is the planarity of the Fox triad. Optimisation of the Fox isomers suggests the existence of intramolecular hydrogen bonding between ortho-fluorine and amide group (as $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ ) regardless of the basis set. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ interaction (according to models) is responsible for the Fox triad planarity. Optimisation (using the solvation model) shows that the Fox triad are less planar in low polar solvents $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CDCl}_{3}\right)$, while in highly polar solvents $\left(\mathrm{H}_{2} \mathrm{O}\right.$, DMSO) the $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ interaction may distort from planarity (Fom/Foo: $\alpha=-7.14 \pm 0.73^{\circ}$; $\left.\beta=-4.22 \pm 0.36^{\circ} ; \delta=-0.26 \pm 0.60^{\circ}\right)$.

Table 14: Torsion angles ( ${ }^{\circ}$ ) of $\mathbf{F x x}$ isomers ${ }^{a}$ optimised with different basis sets

|  | 6-311++G** |  |  | 6-311++G |  |  | 6-311G** |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\alpha$ | $\beta$ | $\delta$ | $\alpha$ | $\beta$ | $\delta$ | $\alpha$ | $\beta$ | $\delta$ |
| Fpp | -24.45 | -5.33 | -3.10 | -25.75 | -3.74 | -4.69 | -22.27 | -4.24 | -2.87 |
| Fmp | -24.95 | -4.70 | -2.85 | 151.63 | -3.69 | -4.24 | -23.52 | -4.24 | -2.37 |
| Fop | -0.03 | 0.01 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Fpm | -24.27 | -5.67 | -2.51 | -25.54 | -3.45 | -4.30 | -22.07 | -4.14 | -2.34 |
| Fmm | -24.62 | -4.79 | -2.29 | 151.90 | -3.68 | -3.84 | -23.20 | -4.15 | -1.84 |
| Fom | 0.01 | 0.00 | -0.02 | -0.05 | 0.02 | -0.02 | 0.02 | 0.01 | -0.03 |
| Fpo | -21.73 | -3.44 | -2.66 | -22.36 | -2.06 | -3.86 | -19.05 | -3.68 | -2.10 |
| Fmo | -22.08 | -2.96 | -2.55 | -21.95 | -1.75 | -3.68 | -19.69 | -3.34 | -2.09 |
| Foo | -0.01 | 0.00 | 0.00 | -0.02 | -0.02 | 0.04 | -0.01 | 0.00 | 0.00 |

${ }^{a}$ The angle $\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 1=\mathrm{O} 1$ ( $\mathbf{F}$-ring) is $\alpha$, angle C1-N1-C21-C26 angle ( $\mathbf{P}$-ring) is $\beta$ and O1-
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 21$ angle (amide linkage) is $\delta$.

Table 15. Torsion angles ( ${ }^{\circ}$ ) of optimised $\mathbf{F x x}$ isomers ${ }^{a}$

|  | optimised in gas phase |  |  | optimised in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ |  |  | optimised in $\mathrm{H}_{2} \mathrm{O}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\alpha$ | $\beta$ | $\delta$ | $\alpha$ | $\beta$ | $\delta$ | $\alpha$ | $\beta$ | $\delta$ |
| Fpp | -24.45 | -5.33 | -3.10 | -25.49 | -6.72 | -3.14 | -26.21 | -12.01 | -3.10 |
| Fmp | -24.95 | -4.70 | -2.85 | -24.78 | -4.47 | -2.93 | -24.43 | -6.72 | -3.40 |
| Fop | -0.03 | 0.01 | 0.03 | 0.01 | 0.00 | 0.00 | -0.01 | 0.00 | 0.00 |
| Fpm | -24.27 | -5.67 | -2.51 | -25.36 | -7.76 | -2.71 | -25.52 | -16.41 | -2.10 |
| Fmm | -24.62 | -4.79 | -2.29 | -24.62 | -5.38 | -2.43 | -23.91 | -12.62 | -1.6 |
| Fom | 0.01 | 0.00 | -0.02 | -0.05 | 0.00 | 0.00 | -6.62 | -4.48 | -0.68 |
| Fpo | -21.73 | -3.44 | -2.66 | -25.54 | -7.43 | -2.10 | -25.08 | -6.11 | -3.06 |
| Fmo | -22.08 | -2.96 | -2.55 | -24.27 | -3.76 | -2.17 | -24.16 | -5.63 | -3.66 |
| Foo | -0.01 | 0.00 | 0.00 | -7.51 | 0.79 | 0.48 | -7.65 | -3.96 | 0.16 |

${ }^{a}$ The angle $\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 1=\mathrm{O} 1$ (F-ring) is $\alpha$, angle C1-N1-C21-C26 angle ( $\mathbf{P}$-ring) is $\beta$ and O1$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 21$ angle (amide linkage) is $\delta$. All geometries are based on B3LYP/6-311++G** optimisation with PCM-SMD solvation model.

The hypotheses (from calculations) are shown by ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$; DMSO) that the $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ interaction and Fox triad planarity exists in low polarity solvents but can be disrupted in highly polar solvents.

The remaining $\mathbf{F p x} / \mathbf{F m x}$ isomers optimised in gas phase have relatively uniform geometries with the $\mathbf{F}$-ring rotated ( $\alpha=-23.68 \pm 1.40^{\circ}$ ), $\mathbf{P}$-ring slightly rotated ( $\beta=-4.48 \pm 1.06^{\circ}$ ) and planar amide dihedral angle ( $\delta=-2.66 \pm 0.28^{\circ}$ ). The $\mathbf{F p x} / \mathbf{F m x}$ isomers optimised in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ agree $\left(\alpha=-25.01 \pm 0.52^{\circ} ; \beta=-5.92 \pm 1.64^{\circ} ; \delta=-\right.$ $2.58 \pm 0.42^{\circ}$ ) but in $\mathrm{H}_{2} \mathrm{O}$ the $\mathbf{F}$-ring and amide dihedral angle are similar for gas phase and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\alpha=-24.88 \pm 0.88^{\circ}, \delta=-2.83 \pm 0.79^{\circ}\right)$, however the $\mathbf{P}$-ring differs. In $\mathbf{F p p}$, $\mathbf{F p m}$ and $\mathbf{F m m}$ the $\mathbf{P}$-ring exhibits increased rotation ( $\beta=-13.68 \pm 2.38^{\circ}$ ) while for $\mathbf{F m p}$, Fpo and Fmo it is similar in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\beta=-6.15 \pm 0.55^{\circ}\right)$. A similar increased rotation under the influence of a high dielectric field was noted for $\mathbf{M x x}$ (Section 1.1).

### 1.2.7.2. Conformational analysis

Fig. 23 shows nine PES diagrams for conformational analyses of the Fxx isomers (in gas phase with $6-311++\mathrm{G}^{* *}$ basis set). High resolution PES diagrams are provided in the ESI I (Section 3.2.2). The F-ring ( $\alpha$ dihedral angle) is depicted as a blue dashed line, whereas the $\mathbf{P}$-ring ( $\beta$ dihedral angle) is a full red line. At $\theta=0$ and $\pm 180^{\circ}$, the conformation of the asymmetric $\mathbf{F}$ - or $\mathbf{P}$-ring is noted as syn or anti.

The Fxx and Mxx isomer girds are congeneric derivatives of the same $N$ pyridinylbenzamide template (Scheme 5). Comparisons of the Fxx and Mxx PES diagrams (Section 1.1) reveal a high degree of similarity and especially for $\mathbf{F p x}$ and Fmx triads. As expected and due to the modelled Fox triad planarity, the Fo rings in Fox isomers have symmetrical PES profiles and very different to the Mo ring (Mxx), but similar to the PES profile of the oF ring in the NxoF isomers (Section 2.1). As in all related isomer grids the modularity of the $\mathbf{F x x}$ isomers allows a modular approach in the analysis and classification of the PES profiles depending on substituent position (para-/meta-/ortho-), and for direct comparison with $\mathbf{M x x}$ (Section 1.1).

The asymmetric Fxx isomers (having at least one non-para ring) show a preference for the F-syn/P-syn conformation, except for Fmx where the F-anti conformation is found to be slightly more stable. The para-fluorophenyl (Fp) ring gives a PES profile with two global maxima located $c a .-65^{\circ}$ and $120^{\circ}\left(\mathrm{TS}_{\mathrm{Fp}}{ }^{\mathrm{II}}[\mathbf{F p p} / \mathbf{m}]=\right.$ $13.61 \pm 0.03 \mathrm{~kJ} . \mathrm{mol}^{-1}, \mathrm{TS}_{\mathrm{Fp}}{ }^{\mathrm{II}}[\mathbf{F p o}]=15.01 \mathrm{~kJ} . \mathrm{mol}^{-1}$ ), two local maxima $c a .25^{\circ}$ and $-155^{\circ}$
 minima are near $0^{\circ}, 55^{\circ}, \pm 180^{\circ}$ and $-130^{\circ}$.


Fig. 23: The PES conformational analysis for the nine Fxx isomers optimised in gas phase: the equivalent solid state angle is depicted as a $(\bullet)$, with, if applicable, assigned identification letter and/or polymorph designation.

The meta-fluorophenyl ( $\mathbf{F m}$ ) ring has two global minima ( $\mathbf{F}$-anti conformation) ca. $55^{\circ}$ and $0^{\circ}$, two global maxima at ca. $-65^{\circ}$ and $120^{\circ}\left(\mathrm{TS}_{\mathrm{Fm}}{ }^{\mathrm{III}}=13.00 \pm 0.66 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$, two local minima ( $\mathbf{F}$-syn conformation) $c a .-130^{\circ}$ and $\pm 180^{\circ}$ with increases of $\left(\mathrm{LM}_{\mathrm{Fm}}[\mathbf{F m p}]=0.37 \mathrm{~kJ} . \mathrm{mol}^{-1}\right.$ to $\left.\mathrm{LM}_{\mathrm{Fm}}[\mathbf{F m o}]=0.83 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$. The two local maxima are at $-155^{\circ}\left(\mathrm{TS}_{\mathrm{Fm}}{ }^{\mathrm{II}}=2.46 \pm 0.17 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ and $25^{\circ}\left(\mathrm{TS}_{\mathrm{Fm}}{ }^{\mathrm{I}}[\mathbf{F m p} / \mathbf{m}]=1.83 \mathrm{~kJ} . \mathrm{mol}^{-1}\right.$, $\left.\mathrm{TS}_{\mathrm{Fm}}^{\mathrm{I}}[\mathbf{F m o}]=1.14 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$. As expected, the difference between the two
 ambient temperatures, ca. $57 \%$ of molecules have the thermodynamically preferred $\mathbf{F}$ syn conformation. In reality, a kinetic equilibrium between the F-syn/F-anti conformations exists. Although the Fmp and Fmm isomers optimised with the 6311++G basis set have Fm rings as F-syn, their PES scans overwhelmingly correspond with those obtained with the polarisation function (ESI I, Section 3.2.2). Conformational analyses with the 6-311++G basis set reveal that the $\mathbf{F m}$ ring difference between the F-syn and $\mathbf{F}$-anti conformation is even smaller ( $\sim 0.1 \mathrm{~kJ} . \mathrm{mol}^{-1}$ ), suggesting, in this specific case, the dependence of the optimised model and conformation on a
particular basis set and function choice, together with the existence of $\mathbf{F - s y n} / \mathrm{F}$-anti equivalence. Alternatively, optimisation and conformational analyses with the 6311G** basis set shows a preference for $\mathbf{F}$-anti in the Fm ring for all $\mathbf{F m x}$ isomers.

The ortho-fluorophenyl (Fo) ring has a symmetric PES profile with one global maximum at $\pm 180^{\circ}\left(\mathrm{TS}_{\mathrm{Fo}}{ }^{\mathrm{II}}[\mathbf{F o p} / \mathbf{F o m}]=30.65 \pm 0.23 \mathrm{~kJ} . \mathrm{mol}^{-1}, \mathrm{TS}_{\mathrm{Fo}}{ }^{\mathrm{II}}[\mathbf{F o o}]=25.82\right.$ $\mathrm{kJ} . \mathrm{mol}^{-1}$ ), two local maxima at $\pm 95^{\circ}\left(\mathrm{TS}_{\mathrm{Fo}^{1}}{ }^{\mathrm{L}}[\mathbf{F o m} / \mathbf{F o m}]=19.73 \pm 0.17 \mathrm{~kJ} . \mathrm{mol}^{-1}\right.$, $\left.\mathrm{TS}_{\mathrm{Fo}}{ }^{\mathrm{I}}[\mathbf{F o o}]=17.16 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$, two local minima at $\pm 130^{\circ}\left(\mathrm{LM}_{\mathrm{Fo}}{ }^{\mathrm{I}}[\mathbf{F o p} / \mathbf{F o m}]=\right.$ $\left.18.07 \pm 0.19{\mathrm{~kJ} . \mathrm{mol}^{-1}}^{-1} \mathrm{LM}_{\mathrm{Fo}}{ }^{\mathrm{I}}[\mathbf{F o o}]=14.83 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ and one global minimum at $0^{\circ}$.


Fig. 24: The PES conformational analysis diagrams for the nine Fxx isomers optimised in gas phase (full line), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (dashed line) and in $\mathrm{H}_{2} \mathrm{O}$ (dotted line) using the PCM-SMD solvation method.

The Fox triad optimisation gives planar models regardless of the basis set and provides evidence for a 6-membered ring formed via $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ interactions. In NooF, a similar 5-membered ring and with a symmetrical oF ring PES profile has been noted (Section 2.1). In comparison to NooF, it was expected that the 6-membered ring in Fox with a better oriented donor/acceptor would provide stronger hydrogen bonding. However, a comparison of the Fo and oF PES diagrams (using the 6-311++G basis set)
shows that $\mathrm{TS}_{\mathrm{oF}}{ }^{\mathrm{I}}$ in NooF and $\mathrm{TS}_{\mathrm{Fo}_{\mathrm{o}}}{ }^{\mathrm{I}}$ in Fox are equal ( $\sim 25.25 \mathrm{~kJ} . \mathrm{mol}^{-1}$ ) suggesting similar $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonding strength.

Conformational analyses of the pyridinyl rings show similar results to the Mxx series. The para-pyridinyl ring (p) has two global maxima at ca. $\pm 90^{\circ}\left(\mathrm{TS}_{\mathrm{p}}{ }^{\mathrm{I}}=\right.$ $22.23 \pm 0.04 \mathrm{kJ.mol}^{-1}$ ) and two global minima at $0^{\circ}$ and $\pm 180^{\circ}$. The meta-pyridinyl ring (m) has two global maxima $c a . \pm 95^{\circ}\left(\mathrm{TS}_{\mathrm{m}}{ }^{\mathrm{I}}=17.21 \pm 0.22{\mathrm{~kJ} . \mathrm{mol}^{-1}}\right.$ ), one global minimum at $0^{\circ}$ ( $\mathbf{P}-$ syn conformation) and one local minimum at $\pm 180^{\circ}$ ( $\mathbf{P}-$ anti conformation) with a difference of $\sim 6{\mathrm{~kJ} . \mathrm{mol}^{-1}}^{\text {b }}$ between the two conformers. The conformer preference is not altered by excluding the polarisation or diffuse functions from the basis set (6$311++\mathrm{G}^{* *}$ ) (ESI I, Section 3.2). Rotation of the ortho-pyridyl (o) rings in Fpo and Fmo give asymmetrical PES profiles, while in Foo isomer the PES profile of the Fo ring is symmetrical. In Fpo and Fmo one global maximum ( $\mathbf{P}$-syn conformation) is located at ca. $-125^{\circ}\left(\mathrm{TS}_{\mathrm{o}}{ }^{\text {III }}=39.86 \mathrm{kJ.mol}^{-1}\right)$, two local maxima at $c a .100^{\circ}\left(\mathrm{TS}_{\mathrm{o}}{ }^{\mathrm{I}}=37.73 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$ and $c a .-160^{\circ}\left(\mathrm{TS}_{0}{ }^{\mathrm{II}}=39.58 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$, two local minimum at $c a .135^{\circ}\left(\mathrm{LM}_{\mathrm{o}}{ }^{\mathrm{I}}=34.26\right.$ $\left.\mathrm{kJ} . \mathrm{mol}^{-1}\right)$ and $c a .-145^{\circ}\left(\mathrm{LM}_{0}{ }^{\mathrm{II}}=39.44 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ and global minimum at $0^{\circ}$. However, in the symmetrical Foo there is two global maxima at $\pm 110^{\circ}\left(\mathrm{TS}_{\mathrm{o}}{ }^{\mathrm{I}}[\mathbf{F o o}]=34.95 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$, one local maximum at $\pm 180^{\circ}\left(\mathrm{TS}_{\mathrm{o}}{ }^{1}[\mathbf{F o o}]=34.39 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$, two local minima at $\pm 140^{\circ}$ $\left(\mathrm{LM}_{\mathrm{o}}=32.89 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ and one global minimum ( $\mathbf{P}$-syn conformation) at $0^{\circ}$.

Conformational analyses without the polarisation (**/d,p) or diffuse (++) functions (ESI I, Section 3.2) generally give analogous PES diagrams with an increase of the main rotational barriers and energies at conformational states that are far from stable. The PES scan without polarisation function (as 6-311++G) gives, in general, higher rotational barriers, except for the $\mathbf{p}$ ring where a decrease arises. These changes are insignificant in $\mathbf{F p}(\sim 6 \%), \mathbf{F m}(\sim 11 \%), \mathbf{p}(\sim-4 \%)$ and $\mathbf{m}$ rings ( $\sim 2 \%$ ), while in the $\mathbf{F o}(\sim 37 \%)$ and $\mathbf{o}(\sim 16 \%)$ rings the rotational barrier increase is more pronounced with a slight change in the PES curve shape. This reflects the polarisation influence on the interactions of electronegative atoms ( F ) and protons in molecules, as well as on intramolecular interactions ( $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ ). In contrast, conformational analyses without the diffuse function (as $6-311 \mathrm{G}^{* *}$ ) substantially increases the main rotational barriers but the pattern is opposite to the $6-311++\mathrm{G}$ basis set. This increase is relatively high in the Fp ( $\sim 20 \%$ ), $\mathbf{F m}(\sim 20 \%), \mathbf{p}(\sim 16 \%)$ and $\mathbf{m}(\sim 20 \%)$ rings but weaker in the $\mathbf{F o}(\sim 16 \%)$ and $\mathbf{o}(\sim 8 \%)$ rings suggesting the importance of the diffuse function in energy estimation in transition states of these molecular systems. As there is no conformational change (syn/anti) in any ring with the $6-311 \mathrm{G}^{* *}$ basis set it may be concluded that
polarisation functions represent an important auxiliary addition for model stability if flexibility and conformational change are important.

The main feature of the $\mathbf{F x}$ ring PES in different solvents (Fig. 24) compared with gas phase is the uneven difference in the decrease/increase of the rotational barriers and local minima throughout the Fxx series as noted in the Mxx isomers In the PES of solvated $\mathbf{F x}$ rings, the isomers can be divided in three main groups: $\mathbf{F p p} / \mathbf{m}$, $\mathbf{F m p} / \mathbf{m}$, Fox, while in Fpo and Fmo the influence of solvation is more pronounced. However, it is obvious that the influence of solvents is minor in the $\mathbf{F p}$ and $\mathbf{F m}$ rings (especially in $\mathbf{F p p} / \mathbf{m}$ and $\mathbf{F m p} / \mathbf{m}$ ) while in $\mathbf{F o}$ a strong decrease is present.

In Fpp/m, where the influence of the solvation model is minor (Fig. 24), the main rotational barrier $\mathrm{TS}_{\mathrm{Fp}}{ }^{\text {II }}$ decreases by $\sim 9 \%$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\sim 7 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$. In contrast the $\mathrm{TS}_{\mathrm{Fp}}{ }^{\mathrm{I}}$ increases by $\sim 14 \%$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (decrease by $\sim 7 \%$ in $\mathrm{H}_{2} \mathrm{O}$ ). This phenomenon noted in Mxx can be explained partially by the fact that the $\mathrm{TS}_{\mathrm{Fp}}{ }^{\mathrm{I}}$ has molecules in a planar conformation and a higher dielectric field can destabilise this conformation.

The PES behaviour of the $\mathbf{F m}$ ring in the $\mathbf{F m p} / \mathbf{m}$ isomers is slightly different to Fp with a similar small drop in the main rotational barrier $\mathrm{TS}_{\mathrm{Fm}}{ }^{\text {III }}$. Regardless, there is a significant decrease of $\mathrm{LM}_{\mathrm{Fm}}$ and $\mathrm{TS}_{\mathrm{Fm}}{ }^{\text {II }}$ that effectively equalises the $\mathbf{F}$-syn and $\mathbf{F}$-anti conformations and especially in a high dielectric solvent: the $\mathbf{F}$-syn/F-anti difference for all $\mathbf{F m x}$ isomers solvated in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is $0.38 \mathrm{kJ.mol}^{-1}\left(0.16{\mathrm{~kJ} . \mathrm{mol}^{-1}}^{1}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$. In Fpo and Fmo a decrease at $\mathrm{TS}_{\mathrm{Fm}}{ }^{\text {III }}$ is more pronounced ( $\sim 16 \%$ ) as well as the increase at $\mathrm{TS}_{\mathrm{Fm}}{ }^{\text {I/II }}\left(\sim 36 \%\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \sim 65 \%$ in $\mathrm{H}_{2} \mathrm{O}$ ).

For the Fo ring, the behaviour in solvents (Fig. 24) is even for all three Fox isomers with a strong decrease of the rotational barriers. These results reflect the influence of the dielectric field in impeding the internal interactions ( $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ ) whereas spectroscopic data support the existence of hydrogen bond obstruction in polar solvents ( ${ }^{1} \mathrm{H}-\mathrm{NMR}$ in DMSO- $d_{6}$ vs. $\mathrm{CDCl}_{3}$, Appendix I, Section 1.2).

Conformational analyses of the pyridinyl rings with the solvation model (Fig. 24) show significant decreases of rotational barriers and local minima in both solvents. In the para-pyridinyl ring (p) the rotational barrier $\mathrm{TS}_{\mathrm{p}}$ decreases by $8 \%$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( $18 \%$ in $\mathrm{H}_{2} \mathrm{O}$ ), while the meta-pyridinyl ring decrease of the $\mathrm{TS}_{\mathrm{m}}$ rotational barrier is $25 \%(45 \%)$. The significant result is that the $\mathrm{LM}_{\mathrm{m}}$ decreases by $60 \%$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \%$ in $\mathrm{H}_{2} \mathrm{O}$ ). According to the Boltzmann distribution it signifies (at ambient temperature in polar solvents such as water, DMSO or methanol) that $\sim 38 \%$ of all $\mathbf{F x m}$ molecules are predicted to have their $\mathbf{m}$ rings as $\mathbf{P}$-anti, while in less polar solvents $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{EtOAc}\right)$
some $\sim 25 \%$ of all Fxm molecules are P-anti. Finally, the rotational barriers of the ortho-pyridine rings (o) evenly decrease by $\sim 40 \%$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\sim 63 \%$ in $\mathrm{H}_{2} \mathrm{O}$.

### 1.2.7.3. Energy results

The energy calculation results (CBS-QB3) (Table 16) comprise the electronic energies ( $\delta \mathrm{E}_{\text {SCF }}$ ) and Gibbs free energies ( $\delta \mathrm{G}$ ) in all three media, including $\Delta \mathrm{G}_{\text {solv }}$ (for $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\left.\mathrm{H}_{2} \mathrm{O}\right)$ and $\Delta \Delta \mathrm{G}_{\text {solv }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ vs. $\left.\mathrm{H}_{2} \mathrm{O}\right)$. The differences among each molecule are presented as $\delta \mathrm{E}_{\text {SCF }}(\delta \mathrm{G})$ and the differences between media as $\Delta \mathrm{E}_{\text {SCF }}(\Delta \mathrm{G})$. The Fmm (Fpm) absolute energies values were used as reference points for the gas phase and Fom values for solvents. Detailed results including absolute values for $\mathrm{E}_{\text {SCF }}$ and G , zero point energies and thermal energies are provided in the ESI I (Section 3.2.1). The energy results show that generally the most stable compounds are Fxo, similarly to the Mxx isomer grid where Mxo compounds were the most stable. The Fxo compounds have at least $20 \mathrm{kJ.mol}^{-1}$ lower energies in gas phase that the remaining isomers. The strong stabilisation comes from N atom moving into ortho position. This causes delocalisation across both the ortho-pyridine ring and the amide linkage group, and, as seen in the modelled as well as solid state structures of the Fxo and Mxo compounds, consequent co-planarity of the ortho-pyridine ring and the amide linkage group.

Table 16: The energy calculation results ${ }^{a}$ for $\mathbf{F x x}$ in $\mathrm{kJ.mol}^{-1}$

|  | gas phase |  | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ |  | $\mathrm{H}_{2}$ |  | gas phase $\rightarrow$ |  | $\begin{gathered} \text { gas phase } \rightarrow \\ \mathrm{H}_{2} \mathrm{O} \\ \hline \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\delta \mathrm{E}_{\text {SCF }}$ | סG | $\delta \mathrm{E}_{\text {SCF }}$ | ¢G | $\mathrm{E}_{\text {SCF }}$ | ठG | $\Delta \mathrm{E}_{\text {SCF }}$ | $\Delta \mathrm{G}_{\text {solv }}$ | $\Delta \mathrm{E}_{\text {SCF }}$ | $\Delta \mathrm{G}_{\text {sol }}$ | $\Delta \Delta \mathrm{E}_{\text {SC }}$ |
|  | -14.18 | -3.70 | -26.35 | -11.14 | -28.81 | 17.02 | -72.9 | 63.81 | -59.2 | 47.6 | -13.72-16.15 |
| Fmp | -10.84 | -3.77 | -22.38 | -12.92 | -25.3 | -16.35 | -72.34 | 5.52 | -59.0 | 46.9 | -13.33-18.60 |
| Fop | -11.36 | -5.37 | -13.56 | -0.92 | -13.58 | -3.10 | -63.00 | -51.92 | -46. | 2.0 | -16.24-1 |
| Fpm | -3.12 | 0.00 | -12.17 | -5.22 | -14.67 | -11.06 | -69.85 | 61.59 | -56.09 | 45.40 | -13.76-16.19 |
| Fmm | 0.00 | -0.22 | -8.51 | -7.48 | -11.57 | -9.45 | -69.31 | -63.63 | -56. | -43.58 | -13.21-20.05 |
| Fom | -0.35 | -1.74 | 0.00 | 0.00 | 0.00 | 0.00 | -60.45 | -54.63 | -44.1 | 32.60 | -16.26 |
|  | -38.8 | -26.44 | -43.50 | -29.50 | -38.19 | -27.11 | -65.48 | -59.43 | -43.91 | -35.01 | -21.57-24.42 |
| Fmo | -35 | -26.49 | -39 | -31.3 | -34. | -26.80 | -64 | -61.22 | -43.47 | -34.65 | -21.45-26.57 |
| 00 | -32.36 | -24.26 | -30.25 | -20.24 | -22.98 | -15.18 | -58.69 | -52.35 | -35.16 | -25.26 | -23.53-27.1 |

${ }^{a}$ Only the differences between each molecule ( $\delta$ ) and media ( $\Delta, \Delta \Delta$ ) are shown, $\mathbf{F m m}(\mathbf{F p m})$ is the reference molecule for the gas phase $\left[\mathrm{E}_{\text {SCF }}(\mathbf{F m m})=-743.1048 E_{\mathrm{h}}, \mathrm{G}(\mathbf{F p m})=-746.1007 E_{\mathrm{h}}\right]$ and for solvents Fom was taken $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{E}_{\text {SCF }}=-743.1279 E_{\mathrm{h}}, \mathrm{G}=-746.1632 E_{\mathrm{h}} ; \mathrm{H}_{2} \mathrm{O}: \mathrm{E}_{\text {SCF }}=-\right.$ $743.1218 E_{\mathrm{h}}, \mathrm{G}=-746.1548 E_{\mathrm{h}}$ ). Full data including zero-point energies $\left(\mathrm{E}_{0}\right)$ and thermal energies $(E)$ are provided in the ESI, Section 3.2.

The least stable triad is Fxm. In the Mxx isomer grid the most unstable isomer was Mom. However, due to the additional stabilisation from the intermolecular N-H $\cdots \mathrm{F}$ hydrogen bond the most unstable isomer in gas phase is not Fom but Fmm. The hydrogen bonding is hampered in the solvated form and therefore, Fom is the most unstable isomer in solvent. The theoretical values of $\Delta \mathrm{G}_{\text {solv }}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$, including theoretical $\log \mathrm{K}_{\mathrm{D} / \mathrm{W}}$ (ESI I, Section 3.2.1) are consistent with experimental observations and with no unexpected values. The Fxo series are expected to be the least soluble in water.

### 1.2.8. Comparisons of the solid state and modelling data

Comparison of the Fxx isomer structures from crystal structure data and calculations is shown by difference marks ( $\bullet$ ), marking the torsion angle differences $(\Delta \theta)$ between the experimental and theoretical structures on the corresponding gas phase PES diagram curves (Fig. 23). For structures with $Z^{\prime}>1$ (Fom_O, Fmo, Foo) the data from each molecule is labelled with corresponding capitals. The data for particular polymorphs are labelled as O, N (Fpm) and Fom_F. For the Fom_O polymorph only the angles of the main components are assigned labels.

In general, most of the crystal structure conformations and dihedral angles correlate well with their modelled equivalents and especially Fxp and Fxo where the average deviation from the nearest global minimum (GM) is 11 to $24^{\circ}$ for both rings.

The Fxp isomers are isomorphous and their solid-state geometries are almost identical with minor differences. However, while the Fpp and Fmp have difference spots ( $\cdot$ ) on similar positions close to the global minima, in Fop the dots are shifted as the modelled Fop structure is supposed to be planar, and different from Fpp and Fmp. Fop in the solid state adopts a similar geometry to Fpp and Fmp, and partially retaining the N1-H1 $\cdots \mathrm{F} 12$ hydrogen bond. The $\mathbf{F}$-ring rotation from planarity is necessary in order to facilitate N1-H1 $\cdots$ N24 hydrogen bonding. In contrast, Fpp and Fmp at their global minima are in an almost ideal position for crystal structure formation. Crystal growth of the $\mathbf{F x p}$ triad was easy in most organic solvents and their high melting point ranges reflect the stability and strength of the Fxp crystal structures. Their physical behaviour might be influenced by similarities between the geometry of the optimised models and solid state structures.

The Fxm triad (comprising all polymorphs) reveals some interesting features. One key feature is the frequent occurrence of the meta-stable P-anti conformation (in
$\mathbf{F p m} \_\mathbf{N}, \mathbf{F m m}$ and $\mathbf{F o m}$ ). This result is in accordance with similar structures (Mom, $\mathbf{M m m}$ ) that have their meta-pyridine rings in a $\mathbf{P}$-anti conformation. It is clear that the P -anti conformation is favourable for the formation of the primary intermolecular N $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds as it positions the pyridine N atom and the amide $\mathrm{N}-\mathrm{H}$ into opposite orientations suitable for molecular aggregation into 1-D $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ zig-zag chains.
$\mathbf{F p m} \mathbf{O}$ has the same conformation $\mathbf{P}$-syn as the optimised structure with the $\mathbf{P}$ ring slightly rotated towards co-planarity with the Fp ring. The stable P-syn conformation arranges molecules in the correct conformation for $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bond formation. Co-planar rings can form additional contacts between the 1-D chains. The more common $\mathbf{F p m} \mathbf{N}$ polymorph has the $\mathbf{P}$-ring as $\mathbf{P}$-anti which is suitable for N $\mathrm{H} \cdots \mathrm{N}$ interactions. Of note is that the energy levels of the $\mathbf{P}$-rings are similar for both polymorphs while their $\mathbf{F}$-rings are located at the global minimum (GM).

As expected, Fmm is $\mathbf{F}$-anti/P-anti and almost strictly lying in global/local minima without significant deviations from the stationary points. The same conformation is present in the $\mathbf{M m m}$ isomer, both of the meta-pyridinyl and metasubstituted phenyl rings (regardless of the nature of substituents) prefer the anti conformation in combination with $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ primary interactions.

The Fom isomer is isolated as two polymorphs, the disordered Fom_O and ordered $\mathbf{F o m}$ _F. The Fom_F conformation is $\mathbf{F}$-syn/P-anti, while for $\mathbf{F o m}$ _O, only one molecule ( $\mathrm{F} / \mathrm{H}$ ) among six $\left(Z^{\prime}=6\right)$ has the $\mathbf{F}$-syn/P-anti with all other Fom_O molecules having the F-syn/P-syn conformation. In the solid state all molecules from both Fom polymorphs are relatively planar with rings rotated by $\pm 15-35^{\circ}$ which partially complies with modelling results as Fom is predicted to be planar both in gas phase and solvents (Section 1.2.5.1, Table 15). Fom_F has essentially the same shape as $\mathbf{F p m} \mathbf{N}$, but with conformation and space group as for $\mathbf{F p m} \mathbf{O}$. However, since F is located ortho, an additional intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ interaction forms. It is clear that the ortho-fluorine prevents any conformation other than F-syn, and influences disorder in Fom_O (with mostly $\mathbf{P}$-syn) preventing the same supposed structural organisation as in Fpm_O (P-syn). If only the $\mathbf{P}$-ring is allowed to assume the $\mathbf{P}$-anti conformation. The main factors influencing different polymorph formation experimentally are solvent and crystallisation rate. The Fom_F polymorph crystallises from MeOH by very slow evaporation. In the modelling analysis, solvents with higher polarity can facilitate the necessary conformational changes (from $\mathbf{P}$-syn $\rightarrow \mathbf{P}$-anti) while slower evaporation is often known to produce better quality crystal growth. The Fom_O polymorph
crystallises from a less polar solvent (ethyl acetate) at a faster evaporation rate. Therefore, it seems that under these conditions the Fom molecules cannot fully adopt the favourable P-anti conformation, but rather aggregate (where possible) with a high level of disorder. Nevertheless, a comparison of both polymorphs gives the impression that the Fom_O polymorph is, in fact, an imperfect variant of $\mathbf{F o m}$ _F.

In the Fxo triad, all crystal structure conformations correspond closely with the calculated models with similar dihedral angles and small but moderate distortions from the global minima $\left(25-5^{\circ}\right)$. The only major difference is in Foo where the Fo rings are rotated by $65^{\circ}$ (molecule A) and $35^{\circ}$ (molecule B). This rotation is primarily due to steric reasons as formation of the hydrogen bonded $R^{2}{ }_{2}(8)$ rings does not allow the $\mathbf{F o}$ ring to adopt a planar geometry. The intramolecular N1-H1B $\cdots$ F12B interaction decreases the dihedral angle in molecule B , while in molecule A increased rotation allows the formation of favourable C-H... $\pi$ interactions. This is a trade-off between N $\mathrm{H} \cdots \mathrm{F} / \mathrm{C}-\mathrm{H} \cdots \pi$ (arene) that does not arise in Moo as dimer formation by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions is exclusively augmented by very short C-H $\cdots \pi($ arene $)$ interactions.

## 2. Pyridinecarboxamides

### 2.1. NxxF isomer grid

### 2.1.1. General description of synthesis

Nucleophilic acyl substitution reactions between the fluoroanilines and pyridinoyl chlorides produced the nine N -(fluorophenyl)pyridinecarboxamides ( $\mathbf{N x x F}$, Table 17) in modest to high yields (20-70\%).

Condensation reactions were performed with the 4 -, 3- or 2-fluoroanilines ( 1 ml , 10.41 mmol ) added to a 250 ml flask placed on an ice bath and with subsequent stirring. Then, 30 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to the flask followed by addition of $\mathrm{Et}_{3} \mathrm{~N}(1.5 \mathrm{ml}$, 10.76 mmol ). Finally, the 4-, 3- or 2-pyridinoyl chlorides ( $2 \mathrm{~g}, 11.23 \mathrm{mmol}$ ) were added in portions directly into this solution mixture. Another 30 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 1.5 ml of $\mathrm{Et}_{3} \mathrm{~N}$ was added to accelerate the dissolution of any solids and the reaction mixture was allowed to warm to room temperature and stirred overnight.

As acyl chlorides are very reactive, the reactions were performed in anhydrous conditions in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (under $\mathrm{N}_{2}$ ), initially at $5^{\circ} \mathrm{C}$ and then at room temperature. A byproduct is HCl , and $\mathrm{Et}_{3} \mathrm{~N}$ was employed to drive the reaction equilibrium towards the NxxF product. The pyridinoyl chlorides technically were used in the form of
hydrochlorides so an additional mole of $\mathrm{Et}_{3} \mathrm{~N}$ was used to enhance their solubility in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ so that in total, two molar equivalents were added.

Organic washing and work-up was as standard: the organic reaction phase was washed with 20 ml of $\mathrm{KHCO}_{3}(0.1 \mathrm{M})$ solution ca. 3-7 times and during purification, glassware was warmed to $c a .35^{\circ} \mathrm{C}$. Then, 1.5 g of anhydrous $\mathrm{MgSO}_{4}$ was added to the organic solutions for 20 minutes. The flask contents were filtered through a Büchner funnel (under vacuum) to remove $\mathrm{MgSO}_{4}$. The filtrate was evaporated under vacuum and the product dissolved in minimal volumes of warm $\mathrm{CHCl}_{3}$. A saturated solution was placed on ice and re-crystallization induced. The resulting product was removed by filtration under vacuum, washed with cold $\mathrm{CHCl}_{3}$ and dried overnight: the dry product was weighed and total yield calculated.

Yields were modest to good ( $30-70 \%$ ) in most cases with the exception of the NoxF isomers with lower yields of $20-30 \%$. The product purity was mostly high ( $\sim 99 \%$ ), therefore crystallization and separation of the respective products from impurities was successful for most cases.

Table 17: Amounts, yields and melting points of the NxxF compounds

| $\mathbf{N x x F}$ | $\mathbf{m} / \mathbf{g}$ | $\mathbf{y i e l d} / \mathbf{\%}$ | $\mathbf{m} . \mathbf{p} /^{\circ} \mathbf{C}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{N p p F}$ | 1.059 | 47 | $135.0-136.5$ |
| $\mathbf{N m p F}$ | 1.556 | 69 | $131.2-133.6$ |
| $\mathbf{N p o F}$ | 1.000 | 44 | $139.0-140.0$ |
| $\mathbf{N m p F}$ | 0.750 | 33 | $131.5-133.8$ |
| $\mathbf{N m m F}$ | 1.352 | 60 | $121.2-122.6$ |
| $\mathbf{N m o F}$ | 1.261 | 56 | $116.7-118.2$ |
| NopF | 0.823 | 18 | $92.0-96.0$ |
| NomF | 0.451 | 20 | $77.2-78.0$ |
| NooF | 0.653 | 29 | $105.0-108.0$ |



Scheme 26: Schematic diagram of the NxxF reaction
However, for the NoxF isomers, the accessible starting material (2pyridinoyl chloride) was of technical grade purity containing 5-chloro-2-pyridinoyl
chloride (a by-product of the 2-pyridinoyl chloride synthesis with $\mathrm{SOCl}_{2}$ ) and solubility of the products in $\mathrm{CHCl}_{3}$ was greater: re-crystallization was accomplished using isopropanol to give reasonably pure NoxF products.

The physical appearance and properties (solubility and melting points) are broadly similar for all nine NxxF isomers and especially for the six $\mathbf{N p x F}$ and $\mathbf{N m x F}$ isomers. All NxxF are white, odourless, crystalline solids, soluble in $\mathrm{CHCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathrm{CH}_{3} \mathrm{CN}$, DMSO, acetone and ethyl acetate, insoluble in water, though sparingly soluble in cold MeOH and iso-propanol but, with increased solubility when warmed. A substantial difference in solubility in $\mathrm{CHCl}_{3}$ is evident with the NoxF isomers more soluble in $\mathrm{CHCl}_{3}$ than the remaining six $\mathbf{N p x F}$ and $\mathbf{N m x F}$ isomers.

### 2.1.2. Comment on spectroscopic data

All spectroscopic data, including NMR and IR spectra, are listed in the Appendix I (Section 2.1), while the spectra are provided in the ESI I section 1.3.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data reveal a considerable degree of similarity (as expected) and a high level of modularity (in the pyridine and fluorophenyl rings) for all nine $\mathbf{N x x F}$ isomers. Distinct trends and salient features in the series will be discussed further. The ${ }^{19}$ F NMR spectra in DMSO reveal distinct differences ( $\delta$ values) with the $\mathbf{N x p F}$ series at -118 ppm and the $\mathbf{N x m F}$ triad at -112 ppm . The NxoF triad has both NpoF and NmoF at -121 ppm with NooF at -127.4 ppm highlighting the additional intramolecular hydrogen bonding in the NxoF series, but especially for NooF (Fig. 32).

The ${ }^{1} \mathrm{H}$ NMR $\delta$ values of the amide $\mathrm{N}-\mathrm{H}$ proton lie in the range $7.91-8.15 \mathrm{ppm}$ $(\mathbf{N p x F})$ and 8.23-8.75 ppm ( $\mathbf{N m x F}$ ) in $\mathrm{CDCl}_{3}$ and from $10.38-10.68 \mathrm{ppm}$ for the six $\mathbf{N p x F} / \mathbf{N m x F}$ isomers in DMSO- $d_{6}$ showing the increased effect of the hydrogen bonding influence (and deshielding effect) of the $\mathrm{S}=\mathrm{O}$ group on the $\mathrm{N}-\mathrm{H}$ proton in DMSO. The distinct location of the amide proton $\delta$ values for the three NoxF isomers at lower-field values [10.04-10.36 ppm $\left(\mathrm{CDCl}_{3}\right)$ and $10.37-10.86 \mathrm{ppm}\left(\right.$ DMSO- $\left.d_{6}\right)$ ] and shifting from $8 \rightarrow 10 \mathrm{ppm}$ in $\mathrm{CDCl}_{3}$ (from $\mathbf{N p x F} / \mathbf{N m x F} \rightarrow \mathbf{N o x F}$ ) is due to the position and effect of the ortho-substituted N atom in forming intramolecular amide $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyr }}$ interactions and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{S}$ hydrogen bonding. However, for NooF the intramolecular hydrogen bonding is at a maximum with the $\mathrm{N}-\mathrm{H}$ proton at $10.36 \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right)$ and $10.37 \mathrm{ppm}\left(\mathrm{DMSO}-d_{6}\right)$ and the $\mathrm{N}-\mathrm{H}$ proton is little influenced by DMSO. Overall, the spectroscopic data for the NoxF triad show distinct differences with the nine NxxF isomers and highlighting the $\mathbf{N o x F}_{\text {amide }} \mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ intramolecular interaction.

### 2.1.3. X-ray crystallography methods

Single crystals of the $\mathbf{N x x F}$ compounds were grown from ethyl acetate or $\mathrm{CHCl}_{3}$ by slow evaporation of the $\mathbf{N x x F}$ solutions at room temperature ( 294 K ). Single crystal X-ray data for all nine $\mathbf{N x x F}$ isomers were collected as described for the Mxx isomer grid (Section 1.1.2), except for $\mathbf{N p p F}$ a non-merohedral twinned crystal [89:11 components] at 200 (1) K), $\theta$ range $2-27.5^{\circ}$ with $100 \%$ data coverage to $25^{\circ}$ (on $\theta$ ). Data reduction procedures are standard and SORTAV was used for the absorption corrections. ${ }^{166,167}$ Structure solution methods, diagrams generation and CSD searches were as described for Mxx (Section 1.1.2). Selected crystallographic and structural information are in Tables 18, 19 and the ESI I, Section 2.3.

### 2.1.4. Computational methods

The nine NxxF isomers were analysed using the same methods and techniques as described in the Mxx isomer grid section. The NxxF isomer optimisation and conformational analysis was performed using ab initio calculations (B3LYP/6-311++G) on isolated (gas-phase) and solvated molecules (PCM-SMD ${ }^{170}$ solvation model with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{H}_{2} \mathrm{O}$ as solvents) using Gaussian03/09. ${ }^{25}$ As additionality high accuracy energy calculations (CBS-QB3) ${ }^{171}$ are performed obtaining $\Delta \mathrm{G}$ of solvation.

Conformational analysis of the optimised NxxF isomers was achieved by rotation of (a) the C26-C21-C1=O1 dihedral angle ( $\alpha$ dihedral, $\mathbf{N}$-ring), and (b) the C1-N1-C11- C12 dihedral angle ( $\beta$ dihedral, F-ring) both in the gas phase and solvated forms in order to analyse and predict the energetically favourable conformations in the gas phase (or as the solvated forms).

As the NxxF isomers have two aromatic rings connected via an amide linkage a total of four conformations are possible for the aromatic pyridine $\mathbf{N}$ and $\mathbf{F}$ site positions relative to the amide linkage. The rings can have the syn- ( $\mathbf{N}-\mathbf{s y n}$ or $\mathbf{F}-\mathbf{s y n}$ ) or the anti( $\mathbf{N}$-anti, F-anti) conformations (Scheme 27). This is relevant only for NxxF having an aromatic $\mathbf{N}$ or $\mathbf{F}$ in the meta- or ortho- position $(\mathbf{x}=\mathbf{m}$ or $\mathbf{0})$.


Scheme 27: Possible conformations of the NxxF isomers

### 2.1.5. Molecular and crystal structure data

The distinct intermolecular feature for eight of the NxxF crystal structures (Table 18) (where $\mathbf{x}=$ para-/meta-/ortho) is that they aggregate in the solid-state via amide $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ hydrogen bonds, but in different crystal systems and space groups. The NppF isomer is the only NxxF structure where the primary hydrogen bonding is via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interactions. Of the nine $\mathbf{N x x F}$ structures there are only three, $\mathbf{N p m F}$, NmmF and NmoF that crystallize with $Z^{\prime}=1$ and with no disorder: the remaining six NxxF crystallize with one or more of the following: (i) more than one molecule in the asymmetric unit, (ii) disorder in the orientation of the $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}$ ring and/or (iii) have a minor Cl component of impurity (derived from the original NoxF synthesis). The NmpF structure is of further interest as it forms a $\mathrm{amide} \mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ hydrogen bonded tetrameric assembly and further linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interactions.

Table 18: Selected crystallographic data for the nine NxxF isomers ${ }^{\text {a }}$

| NxxF | Space group | $\boldsymbol{Z}^{\prime}$ | Volume $\left(\AA^{\mathbf{3}}\right)$ | $\boldsymbol{R}$-factors |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{N p p F}$ | $P \overline{1}$ | 2 | $963.94(6)$ | $0.051,0.142$ |
| $\mathbf{N p m F}$ | $C c$ | 1 | $1032.22(10)$ | $0.042,0.113$ |
| $\mathbf{N p o F}$ | $C c$ | 1 | $1027.33(8)$ | $0.051,0.135$ |
| $\mathbf{N m p F}$ | $P \bar{l}$ | 4 | $1995.47(9)$ | $0.050,0.124$ |
| $\mathbf{N m m F}$ | $P 2_{l} / n$ | 1 | $999.42(12)$ | $0.044,0.118$ |
| $\mathbf{N m o F}$ | $P 2_{1} 2_{l} 2_{l}$ | 1 | $989.44(9)$ | $0.049,0.125$ |
| $\mathbf{N o p F}$ | $P 2_{l} / c$ | 1 | $993.10(16)$ | $0.063,0.166$ |
| NomF | $P 2_{l} / n$ | 2 | $1999.17(18)$ | $0.074,0.223$ |
| NooF | $P 2_{l} / n$ | 1 | $986.32(14)$ | $0.057,0.154$ |

${ }^{\text {a }}$ Complete crystallographic, refinement and structural details for all nine NxxF isomers $\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{OF}\right)$ are listed in the ESI I (Section 3.1).

### 2.1.5.1. NpxF isomer series

The three NpxF compounds aggregate via two different primary hydrogen bonding intermolecular interactions (i.e. the typical amide $\cdots$ amide as $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ for $\mathbf{N p p F}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ for $\left.\mathbf{N p m F}, \mathbf{N p o F}\right)$.

## NppF molecular and crystal structure

The NppF crystal structure crystallizes in $P \bar{l}$ and with $Z^{\prime}=2$ at 200(1) K. The crystal and molecular structure solution of $\mathbf{N p p F}$ is interesting in that crystals analysed at 150 (1) K would not yield a solution: therefore by increasing the temperature to $200(1) \mathrm{K}$ a meaningful result was obtained whereby the unit cell was halved. It is a nonmerohedral twinned crystal with two components of 0.89:0.11. Metrically, it suggests a unit cell change to the monoclinic system but this does not seem appropriate for the results at $200(1) \mathrm{K}$. There are several distinct differences between the two independent (A) and (B) molecules in the asymmetric unit; an example is the $\mathrm{F} 14_{\mathrm{A} / \mathrm{B}} \cdots \mathrm{N} 24_{\mathrm{A} / \mathrm{B}}$ intramolecular of 9.800(3) in (A) and 9.769(3) $\AA$ in (B).

The molecules aggregate along the $a$-axis [100] direction as amide $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ chains [ $C(4)$ chains] with rather long intermolecular distances of 3.203(2) and 3.216(2) $\AA$ for molecules (A) and (B), respectively, and in tandem with this is a rather weak C16$\mathrm{H} 16_{A / B} \cdots \mathrm{O} 1_{A / B}$ contact forming $\mathrm{R}^{1}{ }_{2}(6)$ rings, together with an intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contact (Fig. 25). The molecules aggregate as weakly interacting $\mathrm{A} \cdots \mathrm{A} \cdots$, and $\mathrm{B} \cdots \mathrm{B} \cdots$ chains with similar $\mathrm{N} \cdots \mathrm{O}$ distances (the aggregation is principally 1-D). Interestingly, the pyridine $\mathrm{N} 24(\mathrm{~A} / \mathrm{B})$ atoms do not participate in hydrogen bonding or even in weak contacts which is rather unusual.

The two para-fluorine atoms [ $\mathrm{F} 14_{\mathrm{A} / \mathrm{B}}$ ] form contacts and interact with symmetry related fluoro atoms with F $\cdots \mathrm{F}$ distances of $2.86 \AA$, some $0.10 \AA<$ van der Waals contact radii distance: this enables the formation of zig-zag chains of F atoms along the $a$-axis direction. The larger two molecule wide columns stack via $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) interactions and manifesting as a chain of weakly interacting F atoms along [100].

The aromatic $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ interplanar angles in molecules A and B are $56.74(5)^{\circ}$ and $57.93(5)^{\circ}$, respectively, and differing by only $1^{\circ}$. However, the biggest angle difference is for the $\mathrm{C}_{6} /$ five-atom amide group and two linker C atoms $[\mathrm{C} 11 / \mathrm{C} 1 / \mathrm{O} 1 / \mathrm{N} 1 / \mathrm{C} 21]$ and differing by $4^{\circ}$ with $29.24(7)^{\circ}$ for (A) and $33.16(6)^{\circ}(B)$. Using a structural overlay, it can be observed that the differences are small and in an opposite sense to the amide
group. Torsion angle differences of $2-3^{\circ}$ are noted in NppF for C1-N1-C11-C16 as $150.9(2)^{\circ}$ in (A) and -148.1(2) ${ }^{\circ}$ in (B).

Table 19: Relevant structural features $\left(\AA,{ }^{\circ}\right)$ in the nine $\mathbf{N x x F}$ isomers ${ }^{\text {a }}$

| NxxF | $\mathrm{C}_{6} / \mathrm{C}_{5} \mathbf{N}\left({ }^{\circ}\right)$ | $\mathrm{C}_{6} /$ amide | $\mathrm{C}_{5}$ N/amide | $\mathbf{N} \cdots \mathbf{N} / \mathbf{O}^{\text {b }}$ | Packing ${ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NppF ${ }^{*}$ | 56.74(5) | 29.24(7) | 27.63(7) | 3.203(2) | 1-D chains* |
|  | 57.93(5) | 33.16(6) | 24.93(7) | $3.216(2)$ |  |
| NpmF | 65.93(10) | 39.16(10) | 27.39(13) | $2.991(4)$ | 1-D chains |
| NpoF | 76.99(12) | 51.39(12) | 27.06(15) | 2.930(4) | 1-D chains |
| NmpF | 5.42(9) | 3.38(9) | 2.04(9) | 3.193(2) | Tetrameric assembly |
|  | 0.77(10) | 1.99(9) | 2.13(9) | 3.224(2) |  |
|  | 5.39(9) | 3.21(9) | 2.18(9) | 3.171(2) |  |
|  | 0.74(9) | 1.56(9) | 1.82(9) | 3.254(2) |  |
| NmmF | 50.16(5) | 27.47(5) | 24.00(7) | $3.1146(18)$ | 1-D chains |
| NmoF | 22.67(14) | 33.09(12) | 10.75(13) | $3.182(4)$ | 1-D chains |
| NopF | 30.34(10) | 27.74(11) | 4.75 (15) | $2.679(3)$ | Intramolecular |
| NomF | 4.4(2) | 5.5(2) | 2.0(2) | $2.675(4)$ | Intramolecular |
|  | 4.6(2) | 6.4(2) | 4.2(2) | $2.655(4)$ |  |
| NooF | 9.69(14) | 8.67(14) | 2.53(14) | 2.630 (3) | Intramolecular |
|  |  |  |  | $2.654(2)^{\text {c }}$ |  |

${ }^{a}$ Full structural details are provided in the ESI I (Section 3.1). ${ }^{b}$ The ${ }_{\text {amide }} \mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ or N $\mathrm{H} \cdots \mathrm{O}=\mathrm{C}^{*}$ interaction distances. ${ }^{\mathrm{c}}$ The $\mathrm{N} \cdots \mathrm{F}$ intramolecular distance.


Fig. 25: An ORTEP diagram of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interactions in NppF. The symmetry codes \# and * refer to $1+\mathrm{x}, \mathrm{y}, \mathrm{z}$ and $\mathrm{x}-1, \mathrm{y}, \mathrm{z}$, respectively.

## NpmF molecular and crystal structure

The $\mathbf{N p m F}$ crystal structure (Fig. 26) is a regular structure with intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ interactions and without molecular disorder: the $\mathrm{N} 1 \cdots \mathrm{~N} 24$ intermolecular
distance is typical at 2.991 (4) $\AA$ and the aggregation is via 1-D C(7) zig-zag chains. The conformation of the $\mathbf{m F}$ ring in $\mathbf{N p m F}$ is $\mathbf{F}$-syn. The only other interactions of note are an intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interaction, a weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and a short C $\mathrm{H} \cdots \pi$ (arene) interaction. The arene interaction has a $\mathrm{H} 25 \cdots \mathrm{Cg}$ distance of $2.65 \AA$ and with $\mathrm{C} 25 \ldots \mathrm{Cg}=3.484(3) \AA$ and a $\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{Cg}$ angle of $147^{\circ}[\mathrm{Cg}=$ centroid $] . \mathrm{This}$ is not as short as the $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) interaction in Moo. The fluorine atoms in NpmF do not participate in interactions apart from some weak contacts. The angle between the $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ planes is $65.93(10)^{\circ}$, whereas the $\mathrm{C}_{5} \mathrm{~N} /$ amide and $\mathrm{C}_{6} /$ amide are intermediate at $27.39(13)^{\circ}$ and $39.16(10)^{\circ}$.

## NpoF molecular and crystal structure

The NpoF structure (Fig. 27) has $\mathrm{C}_{6}$ and $\mathrm{C}_{5} \mathrm{~N}$ aromatic rings that are almost mutually orthogonal at $76.99(12)^{\circ}$. There is a minor component of disorder present in the fluorobenzene at $8.3(9) \%$ and involves a $180^{\circ}$ rotation about the $\mathrm{N} 1-\mathrm{C} 11$ axis with $\mathrm{H} / \mathrm{F}$ atoms interchanging ( F -anti/F-syn): this type of $\mathrm{H} / \mathrm{F}$ interchange and disorder is not uncommon. A key reason in performing the conformational analyses is to attempt to ascertain factors (energy) which may predispose why one isomorph $\mathbf{N p m F}$ is ordered and why $\mathbf{N p o F}$ is disordered (see Section 2.1.8).


Fig. 26: The primary intermolecular interactions in $\mathbf{N p m F}(a=1 / 2+\mathrm{x},-1 / 2-\mathrm{y}, 1 / 2+\mathrm{z} ;, b=-$ $1 / 2+\mathrm{x},-1 / 2-\mathrm{y},-1 / 2+\mathrm{z}$ and $c=\mathrm{x}, \mathrm{y}-1)$.

Isomorphous relationships are seen in the related Fxx benzamides (Section 1.2) while disorder is a common phenomenon in fluorobenzamides given the isosteric relationships between H and F atoms and small energy differences between the F -syn/Fanti conformations of the $\mathrm{C}_{6}$ aromatic rings both in solution and the crystalline state. ${ }^{13,162}$

The $\mathrm{N} \cdots \mathrm{N}$ hydrogen bonding is short and forms a 1-D zig-zag $C(7)$ chain parallel to the ( $10 \overline{1}$ ) plane: this $\mathrm{N} . . \mathrm{N}$ distance is short compared to related systems with similar $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions e.g. as in NpmF. The C-H $\cdots \mathrm{N}$ contact is rather long and does not augment the interactions. There are two weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and a $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) interaction per molecule and have little overall effect on the packing apart from weakly linking columns into sheets and a 3-D structure. The NpmF and NpoF structures are isomorphous and are isostructural (Fig. 28). The $\mathrm{C}_{5} \mathrm{~N} /$ amide and $\mathrm{C}_{6} /$ amide angles are $27.06(15)^{\circ}$ and $51.39(12)^{\circ}$.


Fig. 27: The NpoF molecular structure with group disorder for F12


Fig. 28: A molecular overlay of the isomorphous molecules of NpmF (in red) and NpoF (in blue) in space group Cc. The F-atom positional disorder in NpoF is depicted where the major component has the $\mathbf{F}$-anti conformation.

### 2.1.5.2. NmxF isomer series

The three $\mathbf{N m x F}$ compounds all aggregate via intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ interactions. The $\mathbf{N m p F}$ crystal structure assembles as unusual hydrogen bonded tetramers linked by rather long $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds in addition to flanking but
weaker intramolecular C-H $\cdots \mathrm{N}$ interactions, while aggregation in form of $C(6)$ chains is found both $\mathbf{N m m F}$ and $\mathbf{N m o F}$ isomers.

## NmpF molecular and crystal structure

The $\mathbf{N m p F}$ isomer crystallizes as a cyclic hydrogen bonded tetrameric assembly in the space group $P \bar{l}$ with $Z$ ' $=4$, and in the overall shape of a 'St. Brigid's' cross (Fig. 29) which is quite unusual and rather unexpected. The four molecules (A) to (D) form a tetrameric assembly with four independent molecules within the asymmetric unit and via long $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ hydrogen bonds. There are distinct differences between the ${ }_{\text {amide }} \mathrm{N}-\mathrm{H} . . . \mathrm{N}_{\text {pyridine }}$ intermolecular distances of 3.171(2), 3.193(2), 3.224(2), 3.254(2) $\AA$ (a difference of $0.08 \AA$ ) with all of the $\mathrm{N} \cdots \mathrm{N}$ distances significantly different. In all four molecules the $\mathbf{N m}$ ring is in the $\mathbf{N}$-syn conformation.

In tandem with each of the four $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ interactions are two slightly longer and weaker flanking C-H $\cdots \mathrm{N}_{\mathrm{pyr}}$ interactions forming $R^{1}{ }_{2}(6)$ and $R^{1}{ }_{2}(7)$ rings with an overall size of $R^{1}{ }_{3}(9)$. The molecules aggregate as four-membered molecular rings as $[\mathrm{A} \rightarrow \mathrm{D} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{A}]$ (Fig. 29) to give a compact four molecule assembly as a hydrogen bonded $R^{4}{ }_{4}(24)$ ring. The four $\mathrm{C} 22_{\mathrm{A}-\mathrm{D}} \cdots \mathrm{N} 23_{\mathrm{A}-\mathrm{D}}$ distances are from 3.366(2) to 3.403(2) $\AA$ [and similar to $\mathrm{C}_{1} 6_{\mathrm{A}-\mathrm{D}} \cdots \mathrm{N} 23_{\mathrm{A}-\mathrm{D}}$ ]. These are the only $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions of significance in the $\mathbf{N m p F}$ tetramer and subtle differences between the various interactions allow us to easily distinguish and note the differences between the four independent molecules. The closest overlap of aromatic groups and $\pi \cdots \pi$ stacking is $3.40 \AA$. Of interest is that the tetramers are further linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{F} / \mathrm{O}=\mathrm{C}$ interactions. The four rather short C-H $\cdots$ F interactions are in the range of 3.266(2) to 3.281(2) $\AA$ and there are also some $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interactions present in the crystal structure linking the tetramer moieties.

The four molecules (A) to (D) can be grouped into the $A / C$ and $B / D$ molecular pairs within which are close similarities. The $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ interplanar angles are $5.42(9)^{\circ} / 5.39(9)^{\circ}$ for the $(\mathrm{A}) /(\mathrm{C})$ and $0.77(10)^{\circ} / 0.74(9)^{\circ}$ for the $(\mathrm{B}) /(\mathrm{D})$ pairs. There are however significant differences within each pair and molecules (A) and (C) have the closest fit. It is possible that a phase transition can occur at a different temperature although the NmpF RT (294 K) structure is similar. The unusual NmpF geometry (though unexpected) and assembly can be attributed to the N -syn conformation and directional arrangement of both the $\mathrm{N}-\mathrm{H}$ donor and pyridine N acceptor groups. Cyclic hydrogen bonded dimers/catemers almost certainly exist in solution but the presence of
cyclic tetramers probably drives the crystallization process in a pseudo-macrocyclic chelation process and with the assembly held together by four $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and eight C $\mathrm{H} \cdots \mathrm{N}$ interactions.

Crystallization with $Z^{\prime}=4$ is rather unusual but there are many cases available on the CSD, [495 examples with 3-D coordinates and $R<0.1$ in space group $P \overline{1}$ or 1705 'hits' for the entire CSD (version $4.29+3$ updates)]. Molecules (A) to (D) differ slightly within the tetrameric assembly and without molecular disorder.


Fig. 29: a) The $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and flanking $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ intermolecular interactions in the tetrameric assembly of NmpF; b) CPK view of the NmpF tetramer.

The $\mathrm{N}-\mathrm{H}$ and pyridine N are oriented in the same direction and this facilitates either dimer or chain formation at least. The transformation could be metrically monoclinic but the unit cell data would be transformed from $9.759 \AA, 9.764 \AA, 21.170$ $\AA, 96.14^{\circ}, 95.74^{\circ}, 90^{\circ}$ to $13.805 \AA, 13.804 \AA, 21.170 \AA, 89.71^{\circ}, 98.41^{\circ}, 90.03^{\circ}$ which is NOT close to being monoclinic. This $\mathbf{N m p F}$ structure should be the subject of further investigation and especially to see if there is a temperature dependence on the crystal structure and a phase transition below 150(1) K or between 150 and 300 K .

Comparable examples of hydrogen bonded tetrameric units occur in both $\mathrm{Ph}_{3} \mathrm{COH}$ and $\mathrm{Ph}_{3} \mathrm{GeOH}$ where tetramers are linked by a relay of $[\mathrm{O}-\mathrm{H} \cdots \mathrm{O}-\mathrm{H} \cdots]_{2}$ interactions. ${ }^{183,184}$ The crystal structure of $3-\left(\mathrm{CF}_{3}\right), 5-(\mathrm{Ph}) \mathrm{PzH}$ [ESUJOR: $\mathrm{CSD}^{8}$ ] forms tub-shaped tetramers via $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions as hydrogen bonded $R^{4}{ }_{4}(12)$ rings comparable to $\mathbf{N m p F}$ in space group $P \bar{l}$ with $Z^{\prime}=4$; tetramers though are the least common structural motifs found amongst the N -unsubstituted pyrazoles. ${ }^{185}$ The four
$\mathrm{N} \cdots \mathrm{N}$ distances in ESUJOR are in the range from 2.844 to $2.866 \AA$ and the tetramer is smaller than in NmpF. ${ }^{185}$ Another series of tetrameric structures are the $[\mathrm{AgXL}]_{4}$ complexes $\left\{\right.$ with $\mathrm{X}=$ halide, $\mathrm{L}=$ tertiary phosphine e.g. $\left.\mathrm{P}\left(4-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)_{3}\right\}$ though the structures of $[\mathrm{AgXL}]_{4}$ are very different to $\mathbf{N m p F}$, with the cubic vs. stella quadrangula $[\mathrm{MX}]_{4}$ cores recently discussed. ${ }^{186}$

## NmmF molecular and crystal structure

The NmmF crystal structure is regular with intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ interactions as $C(6)$ zig-zag helical chains and without disorder: the $\mathrm{N} 1 \cdots \mathrm{~N} 23$ distance is longer than for NpmF at $3.1146(18) \AA$ (the flanking C-H $\cdots \mathrm{N}$ with $\mathrm{H} \cdots \mathrm{N} 23=2.67 \AA$ is not significant). In NmmF the pyridyl 23 and fluoro F13 atoms are cisoid with respect to one another and transoid to the $\mathrm{N}-\mathrm{H}$ group giving a N -anti/F-anti conformation. A similar conformation in already seen in both Mmm (pyridine ring only, Section 1.1.2.2) and Fmm (Section 1.2.6). The combination of the primary $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interaction, C $\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ and two weaker interactions gives rise to a rumpled 2-D sheet parallel to the (101) plane. The $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ interplanar angle is $50.16(5)^{\circ}$ with $\mathrm{C}_{5} \mathrm{~N}$ /amide and $\mathrm{C}_{6} /$ amide intermediate at $24.00(7)^{\circ}$ and $27.47(5)^{\circ}$ (Table 19).

## NmoF molecular and crystal structure

The $\mathbf{N m o F}$ structure crystallizing in $P 2_{1} 2_{1} 2_{1}$ is regular. In $\mathbf{N m o F}$ the orientation of the pyridinyl $\mathbf{N} 23$ and fluoro F12 atoms are cisoid with respect to one another ( $\mathbf{N}$ -syn/F-syn conformation) and transoid to the carbonyl oxygen atom O1. In NmoF the $\mathrm{C}_{5} \mathrm{~N}$ and $\mathrm{C}_{6}$ aromatic rings are mutually oriented at an angle of $22.67(14)^{\circ}$, whereas the $\mathrm{C}_{5} \mathrm{~N} /$ amide and $\mathrm{C}_{6} /$ amide angles are $10.75(13)^{\circ}$ and $33.09(12)^{\circ}$. Of further significance is that, in addition to the expected twisting, there is also some slight bending of the amide group with respect to the two terminal aromatic rings, with atom C 11 by $0.139(11) \AA$ and atom C 21 by $0.009(13) \AA$ from the three atom amide group $(\mathrm{O} / \mathrm{C} / \mathrm{N})$ and positioned on the same side (to emphasize the overall bending), though the bending especially manifests at C11 and is presumably due to crystal packing forces. The $\{\mathrm{C} 11, \ldots, \mathrm{C} 16\}$ rings overlap slightly on stacking along the [100] direction with a close contact between $\mathrm{C} 12 \cdots \mathrm{C} 15^{i}$ of $3.307(5) \AA$, and this is $0.10 \AA$ less than the C atom radii sum $\{$ symmetry code $i=1+\mathrm{x}, \mathrm{y}, \mathrm{z}\}$. In NmoF, the $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 23$ primary interaction (with intramolecular $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~F} 12$ ortho contact: another contact C16-H16 $\cdots \mathrm{O} 1$ is also
present) is assisted by an intermolecular C22-H22 $\cdots \mathrm{N} 23$ interaction forming $R_{2}{ }_{2}(7)$ rings with C22 $\cdots \mathrm{N} 23=3.348(4) \AA$ (Fig. 30).


Fig. 30: The $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding in $\mathbf{N m o F}$ : molecules with labels $\#$ and * are positioned at the symmetry equivalent positions $1 / 2+\mathrm{x},-1 / 2-\mathrm{y},-\mathrm{z}$ and $-1 / 2+\mathrm{x},-1 / 2-\mathrm{y},-\mathrm{z}$.

The $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interaction [being the shortest $\mathrm{N} 1 \cdots \mathrm{~N} 23^{*}$ distance among NxxF structures of 3.182(4) $\AA$ ] generates a zig-zag 1-D helical chain in the [100] direction as a stacked herringbone column (along a $2_{1}$ axis); longer $\mathrm{C}-\mathrm{H} \cdots \mathrm{N} / \mathrm{O} / \mathrm{F}$ intermolecular interactions generate a 3-D network. Aromatic $\pi \cdots \pi$ stacking occurs with overlap of symmetry related [C11, .., C16] rings along the [100] direction $\left[\mathrm{C} 12 \cdots \mathrm{C} 15{ }^{\mathrm{i}}=3.307(5)\right.$ $\AA(\mathrm{i}=1+\mathrm{x}, \mathrm{y}, \mathrm{z})]$. For comparison the NmoF conformation when 'docked' in Leishmania sirtuin (Fig. 5A) ${ }^{37}$ is similar to our $\mathbf{N m o F}$ but with the amide plane twisted by $\sim 30^{\circ}$.

### 2.1.5.3. NoxF isomer series

The primary hydrogen bonding in all three NoxF derivatives is aggregation via $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ interactions but these are intramolecular interactions. There is a clear lack of strong hydrogen bonding in these three NoxF systems apart from the intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyr }}$. Disorder is observed in NomF and a minor Cl atom component is present as an impurity with site occupancies of 4.2(3)\% and 3.2(3)\% at the meta-C25-H25 site in NopF and NooF, respectively, and is a contaminant in the original synthesis from the acyl chloride.

The minor Cl atom site component is not seen in the NomF structure, but there is rotational disorder in one of the $\mathrm{C}_{6}$ rings with a minor F atom site at C 15 A having $6.1(5) \%$ site occupancy $\left(Z^{\prime}=2\right)$ : this group disorder is similar to that described in NpoF. In the Mxx and Fxx isomer grids the Mxo and Fxo triads (with an orthopyridine N atom) all aggregate using intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions forming hydrogen bonded dimers by centrosymmetric $R^{2}{ }_{2}(8)$ rings. However, for the NoxF triad the additional C atom between the pyridyl- N and amide $\mathrm{N}-\mathrm{H}$ (amide group is reversed) facilitates the additional intramolecular $\mathrm{N}-\mathrm{H}^{\cdots} \mathrm{N}_{\mathrm{pyr}}$ interaction as $S(5)$ rings but mitigates against cyclic dimer formation (Figs. 31, 32). This intramolecular interaction drives No ring in all NoxF compounds to be in the $\mathbf{N}$-syn conformation.

## NopF molecular and crystal structure

The $\mathbf{N o p F}^{39}$ structure crystallizes in $P 2_{1} / \mathrm{c}$ and refines to an R -factor of $7 \%$. In the latter stages of refinement it was detected that a minor peak was present in close proximity to H 25 with a peak height of $0.55 \mathrm{e} . \AA^{-3}$ : the next highest peak is at $0.20 \mathrm{e} . \AA^{-3}$. This atom site is situated at a distance of only $1.20 \AA$ from the C25 atom. Refinement initially with a minor F atom site was finalised with a Cl atom to give site occupancy of $4.2(4) \%$. This is the optimum site value although the apparent bond length is very short for a C-F or C-Cl and this can be attributed to many factors not least the fact that librational motion could be important. The minor C atom sites were not modelled accordingly as it is such low occupancy that it is essentially background 'noise'. The chloro atom site is treated as if it were part of the principal molecule given that it is not practical to refine $4 \%$ of the $\mathrm{C} / \mathrm{N} / \mathrm{O}$ molecular backbone as a minor component. In NopF the angle between the $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ planes is $30.34(10)^{\circ}$ whereas the $\mathrm{C}_{5} \mathrm{~N} /$ amide are co-planar at $4.75(15)^{\circ}$. The structure is remarkable for the lack of strong hydrogen bonds and the only hydrogen bond of consequence is the intramolecular $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 22$ hydrogen bond $[\mathrm{N} \cdots \mathrm{N} 2.679(3) \AA$ ] that enforces quasi-parallel alignment of the aromatic rings in tandem with an intramolecular C-H $\cdots \mathrm{O}$ interaction. A $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction further links the NopF molecules into 1-D chains along the $b$-axis direction and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ interactions link chains into sheets and complete the structure with molecules forming weak interactions along the $b$-axis direction and parallel to the ( $10 \overline{2}$ ) plane. On the $\mathrm{CSD}^{8}$, GEPQIC ${ }^{187}$ is the parent chloro derivative [as NopCl] instead of containing an F atom as for NopF. WUVYIV $(\mathrm{Br})^{188}$ is isomorphous with the Cl
derivative GEPQIC although this is not stated on the CSD. The molecular overlay between the $\mathrm{Cl} / \mathrm{Br}$ analogues is within $0.005 \AA$.

## NomF molecular and crystal structure

The NomF structure contains two molecules $\left(Z^{\prime}=2\right)$ which are similar. One of the molecules is disordered with a major meta-F atom site of $0.939(5)$ at F13A (N-syn/F-anti conformation) and the minor site at F15A (N-syn/F-syn conformation, Scheme 27) with $0.061(5)$ unit site occupancy. The disorder is simple in that it only involves $180^{\circ}$ rotation about the N1-C11 bond and there are no other unusual artefacts of disorder in the structure [no minor chloro site component was detected in the metaposition as for NopF]. The other differences between the two molecules are in the bond lengths and angles e.g. the C1-N1-C11-C16 torsion angle is $177.6(3)^{\circ}$ in molecule (A) and $172.0(3)^{\circ}$ in (B).


Fig. 31: An ORTEP diagram of molecules (A) and (B) in. The minor component of disorder in molecule (A) is shown at C15-H15 (as in Fig. 27).

As for NopF, the NomF structure is remarkable for the lack of strong hydrogen bonds in that the strongest hydrogen bond is the intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ at $2.675(4) \AA$ in (A) and 2.655(4) $\AA$ in (B). Two intramolecular C-H $\cdots \mathrm{O}$ interactions are also present involving C12A/B at 2.845(4) $\AA$ and 2.895(4) $\AA$. Otherwise, there are no other direction specific interactions (Fig. 31) apart from a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interaction that links (A) and (B) molecules within the asymmetric unit. The angles between the $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$
planes is $4.4(2) / 4.6(2)^{\circ}$ for molecules (A) and (B), whereas the $\mathrm{C}_{5} \mathrm{~N} /$ amide and $\mathrm{C}_{6} /$ amide are $2.0(2) / 4.2(2)^{\circ}$ and 5.5(2)/6.4(2) ${ }^{\circ}$.

## NooF molecular and crystal structure

In NooF the molecular structure (Fig. 32) is essentially planar with only a small twist $\left(<10^{\circ}\right)$ of the three principal groups from co-planarity (Table 19). A minor impurity of a chloro atom is present in a meta position on the pyridinyl ring. As in NmoF, there is molecular bending in the amide group with respect to the two terminal aromatic rings in NooF, with C 11 at $0.087(9) \AA$ and C 21 at $0.033(11) \AA$ from the $\mathrm{O} 1 / \mathrm{C} 1 / \mathrm{N} 1$ amide group plane and with C11, C21 positioned on the same side. In NooF there are two distinct intramolecular interactions from the amido group as (a) N1$\mathrm{H} 1 \cdots \mathrm{~F} 12$ with the ortho-F atom ( $\left.\mathrm{N} 1 \cdots \mathrm{~F} 12=2.655(3) \AA, \mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~F} 12=103^{\circ}\right)$ and $(b)$ $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 22$ with the ortho-N atom $[\mathrm{N} 1 \cdots \mathrm{~N} 22=2.630(3) \AA$ and $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 22=$ 115(2) ${ }^{\circ}$ : $\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{O} 1$ is an additional intramolecular contact. These intramolecular interactions give the NooF molecule a $\mathbf{N}$-syn/F-syn conformation.


Fig. 32: A view of NooF with intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N} / \mathrm{F}$ interactions

Surprisingly, there are no intermolecular N1-H1 $\cdots \mathrm{X}$ interactions (where $\mathbf{X}=$ $\mathbf{C} / \mathbf{N} / \mathbf{O} / \mathbf{F}$ ) in NooF with the two closest $\mathrm{N} 1 \cdots \mathrm{C}$ atoms at 3.539 (3) $\AA$ (C16 positioned at the symmetry equivalent position $1+\mathrm{x}, \mathrm{y}, \mathrm{z}$ ) and at $3.577(3) \AA$ for C 23 (at $\mathrm{x}-1, \mathrm{y}, \mathrm{z}$ ). The closest $\mathrm{H} \cdots \mathrm{N} 1$ atom contact is H 23 at $3.30 \AA$ (at $-\mathrm{x},-\mathrm{y},-\mathrm{z}$ ). The lack of H bonding involving the amide $\mathrm{N} 1-\mathrm{H} 1$ is interesting as it is the strongest donor group in NooF. The dominance of the two intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions with intermolecular steric packing effects prevents the close approach of suitable of acceptor atoms/groups. This effect is also observed in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ in DMSO- $d_{6}$. A minor
stacking contact is present with C1 $\cdots \mathrm{C} 23$ (at $\mathrm{x}-1, \mathrm{y}, \mathrm{z})=3.335(4) \AA$ which manifests along the $a$-axis direction. Furthermore NooF is of interest as it has potential as a ligand for exploitation in coordination chemistry using a $\mathrm{N}_{2} \mathrm{~F}$ donor set. ${ }^{40}$

### 2.1.6. Comments on molecular volumes and melting points

The symmetrical $\mathbf{N p p F}$ isomer has the smallest volume per molecule $\left[241 \AA^{3}\right.$ ] at 150(1) K (Mpp has the smallest with Mop the largest $V / Z$ in the Mxx series), whereas NpmF [258 $\AA^{3}$ ] and NpoF [257 $\AA^{3}$ ] have the largest molecular volumes in space group $C c$. The range of volumes for the remaining six NxxF molecules is narrow from $247 \AA^{3}$ for NooF to $250 \AA^{3}$ for NmmF/NomF. The average molecular volume is $250 \AA^{3}$ for all nine $\mathbf{N x x F}$ isomers as compared to $268 \AA^{3}$ for $\mathbf{M x x}$, the difference being replacement of F with $\mathrm{CH}_{3}$ in the latter.

Melting points continue to be largely ignored in solid-state chemistry ${ }^{10,11}$ apart from documenting data values and ranges. Within an isomer series with identical molecular weights and numbers of each elemental component, some general trends can be discerned and compared with literature data. ${ }^{10,11}$ This will be of additional use in comparing isomers and by $\sim 30-40^{\circ} \mathrm{C}$ : these six $\mathbf{N p x F}, \mathbf{N m x F}$ isomers have melting points within a $23^{\circ} \mathrm{C}$ range. The highest melting point is for $\mathbf{N p o F}\left(139-140^{\circ} \mathrm{C}\right)$, expanding studies of related isomer series ${ }^{10,11}$ Melting point trends show the three NoxF compounds have the lowest melting points compared to the other six $\mathbf{N p x F}, \mathbf{N m x F}$ the lowest is NomF $\left(77.2-78^{\circ} \mathrm{C}\right)$. The trends show as (a) the NpxF triad $\left(136^{\circ} \mathrm{C}\right.$ average) $>$ $\operatorname{NmxF}\left(124^{\circ} \mathrm{C}\right)>\operatorname{NoxF}\left(93^{\circ} \mathrm{C}\right)$ and $(b)$ within each of the $\operatorname{NxxF}$ triads there is a tendency for the $\mathbf{N x m F}$ to have the lowest melting points. These differences are not as dramatic as noted in the related Mxx series where a range of $100^{\circ} \mathrm{C}$ is observed for the nine Mxx isomers: therein, Mmo has the lowest melting point (78.8-80.0 ${ }^{\circ} \mathrm{C}$ ) and similar to NomF (77.2-78.0 ${ }^{\circ} \mathrm{C}$ ). The Mxx and $\mathbf{N x x F}$ series differ by a reversed amide bridge and substitution of a $\mathrm{CH}_{3}$ group for an F atom on the $\mathrm{C}_{6}$ ring with Mxx following the meta- <ortho- < para-substitution melting point trend in disubstituted benzenes. ${ }^{10,11,189}$ A rationalisation as why the melting point range is much greater in the Mxx grid in comparison to the $\mathbf{N x x F}$ series may be due to the weaker interactions. The methyl group in the Mxx series forms weak but favourable and cumulative secondary C$\mathrm{H} . . \mathrm{O} / \pi$ (arene) interactions and reinforced especially in the high melting point of Mpp (180.2-180.8 ${ }^{\circ} \mathrm{C}$ ). In $\mathbf{N x x F}$ the effect of the F atom is smaller and weaker in supramolecular aggregation (as weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ interactions and contacts) and does not
justifiably preserve aggregation especially at the melting point event. Only in NmpF and NmoF are the $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ interaction distances considerably shorter ( 0.2 to $0.3 \AA$ ) than the contact radii. For comparisons of the Mxo and NoxF series, the ortho-pyridine N atom facilitates dimer formation as $R^{2}{ }_{2}(8)$ rings in Mxo, but only as intramolecular amide $\mathrm{N}-\mathrm{H}^{\cdots} \mathrm{N}_{\text {pyridine }}$ interactions in NoxF and in both series only weak additional aggregation interactions are observed. These factors may explain why the NoxF triad has the lowest melting point data in the NxxF series, but the Mxo triad as hydrogen bonded 'dimers' exhibit relatively higher average melting points.

### 2.1.7. $A b$ initio calculations

### 2.1.7.1. Structure optimisation results

The main structural aspects of the optimised $\mathbf{N x x F}$ structures are presented in Table 20. The three most important torsion angles are the $\mathrm{C} 26-\mathrm{C} 21-\mathrm{C} 1=\mathrm{O} 1$ angle $(\alpha)$ between the pyridine ring and amide group, the C1-N1-C11-C12 angle ( $\beta$ ) between the fluorophenyl ring and amide group and the $\mathrm{O} 1=\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 11$ amide linkage angle $(\delta)$.

Table 20: Torsion angles $\left({ }^{\circ}\right)$ of optimised $\mathbf{N x x F}$ isomers

|  | optimised in gas phase |  |  | optimised in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ |  |  | optimised in $\mathrm{H}_{2} \mathrm{O}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\alpha$ | $\beta$ | $\delta$ | $\alpha$ | $\beta$ | $\delta$ | $\alpha$ | $\beta$ | $\delta$ |
| NppF | 26.67 | 3.72 | 3.20 | 30.35 | 4.04 | 3.27 | 29.47 | 12.09 | 2.43 |
| NpmF | 26.34 | 3.13 | 3.31 | 27.69 | 2.94 | 2.49 | 27.53 | 4.39 | 2.78 |
| NpoF | 23.84 | 1.54 | 3.46 | 30.18 | 3.28 | 3.90 | 27.58 | 3.31 | 2.35 |
| NmpF | 24.36 | 3.64 | 3.55 | 29.56 | 4.34 | 3.81 | 29.76 | 11.89 | 3.22 |
| NmmF | 23.81 | 2.68 | 3.74 | 27.28 | 2.57 | 3.23 | 27.29 | 3.15 | 3.79 |
| NmoF | 22.27 | 2.11 | 3.82 | 30.04 | 4.32 | 4.64 | 27.94 | 4.00 | 3.77 |
| NopF | -0.02 | 0.01 | -0.01 | 0.02 | 0.00 | -0.02 | 0.01 | 0.01 | 0.00 |
| NomF | 0.00 | 0.00 | 0.01 | 0.06 | 0.02 | -0.03 | 0.00 | 0.00 | 0.00 |
| NooF | 0.00 | -0.01 | 0.01 | 0.01 | -0.01 | 0.00 | -0.02 | -0.04 | -0.01 |

${ }^{a}$ The angle C26-C21-C1 $=\mathrm{O} 1$ ( $\mathbf{N}$-ring) is referred to as $\alpha$, angle C1-N1-C11-C12 angle (F-ring) as $\beta$ and $\mathrm{O} 1=\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 11$ angle (amide linkage) as $\delta$. All geometries are based on B3LYP/6$311++$ G optimisation with PCM-SMD solvation model.

In general, all of the $\mathbf{N x x F}$ structures can be regarded as nearly planar. The NoxF triad are essentially planar with no discernible differences regarding the medium (gas phase or solvation). The remaining six ( $\mathbf{N p x F}, \mathbf{N m x F}$ ) isomers have torsion angles deviating from planarity. In the gas phase the $\alpha$ torsion angles of $\mathbf{N p x F}$ and $\mathbf{N m x F}$ are
rotated from planarity by $24.55 \pm 1.67^{\circ}$, the $\delta$ angle by an average of $3.51 \pm 0.24^{\circ}$ and a small deviation from planarity for $\beta$ by $2.80 \pm 0.86^{\circ}$.

In $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the six ( $\mathbf{N p x F}, \mathbf{N m x F}$ ) isomers have $\alpha$ torsion angles rotated by $29.18 \pm 1.34^{\circ}$ and the $\beta$ angles by an average of $3.58 \pm 0.76^{\circ}$ : the $\delta$ angle twists by $3.56 \pm 0.73^{\circ}$. In $\mathrm{H}_{2} \mathrm{O}$, the $\mathbf{N p x F}$ and $\mathbf{N m x F}$ structures have $\alpha$ torsion angles twisted by $28.26 \pm 1.07^{\circ}$ and $\delta$ angles by $3.06 \pm 0.64^{\circ}$. However, the $\beta$ torsion angle is $11.99 \pm 0.14^{\circ}$ for NppF and NmpF but in NpmF, NpoF, NmmF and NmoF is smaller at $3.71 \pm 0.58^{\circ}$. Overall, optimisation of the NxxF isomers predicts that the three NoxF isomers are stabilised by the intramolecular amide $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 22$ interaction (as demonstrated by the crystallographic and spectroscopic evidence for the relatively planar NoxF series (see Table 19 and Figs. 31, 32). The other six NpxF and NmxF isomers distort from coplanarity mainly through pyridine ring rotation from unfavourable intramolecular $\mathrm{H} \cdots \mathrm{H}$ contacts. For the $\mathbf{N p x F}$ and $\mathbf{N m x F}$ series the only notable differences between the structures optimised in different media are the $\alpha$ angles (at $-4.64 \pm 2.28^{\circ}$ if optimised in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and at $-3.71 \pm 1.67^{\circ}$ in $\mathrm{H}_{2} \mathrm{O}$ ); larger deviations occur for the $\beta$ angle for NppF and $\mathbf{N m p F}$ optimised in water.

### 2.1.7.2. Conformational analysis

Conformational analyses in the gas phase establish those conformations that are favourable and Fig. 33 (high resolution diagrams are provided in the ESI I, Section 3.3.2) highlights the nine $\mathbf{N x x F}$ PES optimized in the gas phase including both the $\mathbf{N}$ ring (full line) and F-ring (dashed line). The high modularity of all nine NxxF isomers is obvious, (as observed in the NMR data). Each pyridine (N) or fluorophenyl (F) group has a typical PES shape, and as each NxxF molecule is a combination of $\mathbf{N x}$ and $\mathbf{x F}$ moiety, the expected arrangement is easy to visualise with the amide link as a linker group separating both aromatic rings.

The para-pyridine ( $\mathbf{N} \mathbf{p}$ ) ring gives a PES profile with two global maxima located at $c a .60^{\circ},-120^{\circ}\left(\mathrm{TS}_{\mathrm{Np}}{ }^{\mathrm{II}}=12.01-13.43 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$, two local maxima near $-25^{\circ}$, $155^{\circ}\left(\mathrm{TS}_{\mathrm{Np}}{ }^{\mathrm{I}}=1.08-2.05 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$. The four global minima are located at or near $0^{\circ}$, $125^{\circ}, \pm 180^{\circ}$ and $-55^{\circ}$. The meta-pyridine (Nm) ring gives a PES profile with two global minima ca. $-50^{\circ}, 0^{\circ}$, two global maxima near $65^{\circ},-120^{\circ}\left(\mathrm{TS}_{\mathrm{Nm}}{ }^{\text {III }}=15.04 \pm 0.15 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ and two local minima ca. $125^{\circ}, \pm 180^{\circ}\left(\mathrm{LM}_{\mathrm{Nm}}{ }^{\mathrm{I}}=3.33-5.00 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$. The two local maxima are located at $-25^{\circ}\left(\mathrm{TS}_{\mathrm{Np}}{ }^{\mathrm{I}}=0.83-1.55 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ and $155^{\circ}\left(\mathrm{TS}_{\mathrm{Np}}{ }^{\mathrm{II}}=5.15-7.90\right.$ $\mathrm{kJ} . \mathrm{mol}^{-1}$ ). The ortho-pyridine (No) ring has a symmetrical PES profile with one global
maximum at $\pm 180^{\circ}\left(\mathrm{TS}_{\mathrm{No}}{ }^{\mathrm{II}}=52.70-60.24 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$, two local maxima at $\pm 105^{\circ}\left(\mathrm{TS}_{\mathrm{No}}{ }^{\text {II }}\right.$ $\left.=47.55-51.84 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$, two local minima at $\pm 135^{\circ}\left(\mathrm{LM}_{\mathrm{No}}{ }^{\mathrm{II}}=45.57-50.91 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$ and one global minimum.

The para-fluorophenyl $(\mathbf{p F})$ ring gives a PES profile with two global maxima at $\pm 90^{\circ}\left(\mathrm{TS}_{\mathrm{pF}}{ }^{\mathrm{I}}=13.46-17.94 \mathrm{~J} . \mathrm{mol}^{-1}\right)$ and two global minima at $0^{\circ}, \pm 180^{\circ}$. The metafluorophenyl ( $\mathbf{m F}$ ) ring shows a PES profile with two global maxima near $\pm 90^{\circ}\left(\mathrm{TS}_{\mathrm{mF}}{ }^{\mathrm{I}}\right.$ $\left.=16.12-20.58 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$, one local minimum at $\pm 180^{\circ}\left(\mathrm{LM}_{\mathrm{mF}}{ }^{\mathrm{I}}=0.23-0.58 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$ and one global minimum. The ortho-fluorophenyl ( $\mathbf{0 F}$ ) ring gives an asymmetrical PES profile in NpoF and NmoF, but symmetrical for NooF. There is a global maximum at $\pm 180^{\circ}\left(\mathrm{TS}_{\text {oF }}{ }^{\text {II }}=46.69-52.17 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$. NpoF and NmoF have one local maximum at $95^{\circ}\left(\mathrm{TS}_{\mathrm{oF}}{ }^{\mathrm{I}}=24.22 \pm 0.53 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$, one local minimum at $-120^{\circ}\left(\mathrm{LM}_{\mathrm{oF}}{ }^{\mathrm{II}}=23.17 \pm 0.48\right.$ $\left.\mathrm{kJ} . \mathrm{mol}^{-1}\right)$ and of note, a point of inflexion at $110^{\circ}\left(\mathrm{TS}_{\mathrm{oF}}{ }^{\mathrm{II}}=25.68 \pm 0.15 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$. However, the symmetrical NooF has two local minima near $\pm 120^{\circ}\left(\mathrm{LM}_{\mathrm{oF}}{ }^{\mathrm{I}}=24.09\right.$ $\left.\mathrm{kJ} . \mathrm{mol}^{-1}\right)$ and two local maxima at $\pm 100^{\circ}\left(\mathrm{TS}_{\mathrm{oF}}{ }^{\mathrm{I}}=25.23 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$.


Fig. 33: The PES conformational analysis for the nine NxxF isomers optimised in the gas phase: the equivalent solid state angle is depicted as a $(\bullet)$, with, if applicable, assigned identification letter and/or partial occurrence (\%).

For the $\mathbf{N p}$ and $\mathbf{p F}$ rings all conformations at their minima are energetically identical; for the $\mathbf{N m}$ ring the $\mathbf{N}$-syn conformation is the most stable, although the $\mathbf{N}$ -
anti conformation is possible, but less likely. The No ring exists only in the N -syn conformation, while for $\mathbf{0 F}$ the $\mathbf{F - s y n}$ conformation is preferred. This supports the NoxF intramolecular N1-H1 $\cdots \mathrm{N} 22$ interaction supported by the weaker N1-H1 $\cdots \mathrm{F} 12$ hydrogen bond in NooF (the local maxima positions of both No and $\mathbf{0 F}$ curves show that the N $\mathrm{H} \cdots \mathrm{N}$ interaction energy is $c a$. twice the strength of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ interaction). In comparison, the conformational diagrams of the $\mathbf{m F}$ ring show that the difference between the preferred $\mathbf{F}$-syn and $\mathbf{F}$-anti conformations is small ( $0.58 \mathrm{~kJ} . \mathrm{mol}^{-1}$ ), and both conformations are possible. This possibility is demonstrated in two cases. Firstly, the NpmF crystal structure ( $Z^{\prime}=1$ ) (Fig. 26) is in the F-syn conformation. Secondly, the NomF structure (Fig. 31) has a minor component of disorder at F15A with an occupancy of $6.1(5) \%$ and averaged over both molecules the $\mathbf{m F}$ rings have $c a .3 \%$ in the F-syn and $97 \%$ occupancy in the F-anti conformation.


Fig. 34: The PES conformational analysis diagrams for the nine $\mathbf{N x x F}$ isomers optimised in gas phase (full line), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (dashed line) and in $\mathrm{H}_{2} \mathrm{O}$ (dotted line) using the PCM -SMD solvation method.

In summary, the optimised structures (gas phase) typically have $\mathbf{N}-\mathbf{s y n} / \mathbf{F}-$ syn conformations but the exceptions are $\mathbf{N x m F}$ where the $\mathbf{N}$-syn/F-anti conformation is the most stable. Differences between the $\mathbf{N}-\mathbf{s y n} / \mathbf{F}-\mathbf{s y n}$ and $\mathrm{N}-\mathbf{s y n} / \mathbf{F}$-anti conformations are small with both conformations being plausible.

The conformational analysis results in the solvents $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ using the implicit PCM-SMD model are shown as PES scans in Fig. 34, while in the ESI I high resolution diagrams are provided (Section 3.3.2). Comparisons between the gas phase and solvents reveals no conformation changes with all NxpF and NxoF molecules (at the stationary point) having the $\mathbf{N}$-syn/F-syn conformation, while $\mathbf{N x m F}$ have the $\mathbf{N}$ -syn/F-anti conformations regardless of medium. Furthermore, the patterns of maxima and minima are similar, but there are significant decreases in the rotational energy necessary for aromatic ring flipping from one conformation to another.

Rotational barriers (for conformational analysis under PCM-SMD solation model) decrease almost linear for the $\mathbf{p F}\left(\sim 23 \%\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \sim 59 \%$ in $\left.\mathrm{H}_{2} \mathrm{O}\right), \mathbf{m F}(\sim 19 \%$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \sim 43 \%$ in $\mathrm{H}_{2} \mathrm{O}$ ) and $\mathbf{0}$ F rings (by $\sim 46 \%$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \sim 70 \%$ in $\mathrm{H}_{2} \mathrm{O}$ ) when compared with gas phase rotational barriers. There is a dramatic decrease for the $\mathbf{0 F}$ ring with a change in the overall curve shape. For $\mathbf{N p}(\sim 27 \%)$ and $\mathbf{N m}(\sim 28 \%)$ the decrease is similar for both solvents and for the No ring the rotational barrier drops by $\sim 36 \%$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\sim 52 \%$ in $\mathrm{H}_{2} \mathrm{O}$. Another effect is the additional linear drops of $\mathrm{LM}_{\mathrm{Nm}}{ }^{\mathrm{I}}$ and $\mathrm{TS}_{\mathrm{Nm}}{ }^{\text {II }}$ (by $\sim 28 \%$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \sim 45 \%$ in $\mathrm{H}_{2} \mathrm{O}$ ) and elevation of $\mathrm{LM}_{\mathrm{mF}}{ }^{\mathrm{I}}$ (by an average of $1.24 \pm 0.27 \mathrm{~kJ} . \mathrm{mol}^{-1}$ in both solvents) and a shift of some of the minima in the $\mathbf{N p}$ and $\mathbf{N m}$ rings by $\pm 10^{\circ}$.

The implicit dielectric field incorporated in the PCM-SMD model of solvation will predict decrease of the rotational barriers and conformational change would be more likely. This model can be applicable only for solvents in which the NxxF isomers are fairly soluble. The high dielectric constant of water ( $\varepsilon_{r}=80$ ) is supposed to significantly reduce the rotational barriers and disrupt the NoxF intramolecular interactions. However as is evident from their insolubility in water and the calculated $\Delta \mathrm{G}_{\text {solv }}$ (given in the ESI I section 3.3.1) this solvation in water is not favoured thermodynamically. Spectroscopic data (ESI I, Section 1.3) shows that a solvent with a high dielectric constant such as DMSO disrupts the intramolecular hydrogen bonds in NoxF and supports the $a b$ initio predictions and results.

### 2.1.7.3. Energy results

The energy calculation results (CBS-QB3) (Table 21, comprehensive information is given in the ESI I, Section 3.3.1) comprise the electronic energies ( $\delta \mathrm{E}_{\text {SCF }}$ ) and Gibbs free energies $(\delta \mathrm{G})$ in all three media, including $\Delta \mathrm{G}_{\text {solv }}$ for $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$, as well as $\Delta \Delta \mathrm{G}_{\text {solv }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ vs. $\left.\mathrm{H}_{2} \mathrm{O}\right)$. Differences between each molecule are given as
$\delta \mathrm{E}_{\text {SCF }}(\delta \mathrm{G})$ and differences between media as $\Delta \mathrm{E}_{\text {SCF }}(\Delta \mathrm{G})$. The NppF energies are the gas phase reference points (least stable isomer) and $\mathbf{N p o F}$ energies for the solvents (as least stable). The large energy decrease for the NoxF triad is due to the intramolecular $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 22$ interaction thus stabilising the NoxF molecular series. In addition, a weak stabilisation effect of the meta-F atom is discernible and these two effects make NmoF the most stable of the $\mathbf{N x x F}$ isomer grid.

The solvation of the $\mathbf{N x x F}$ isomers in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is stabilizing and favourable, much more than solvation in $\mathrm{H}_{2} \mathrm{O}$. Differences in stabilisation among the nine isomers are considerable (Table 21). From NppF to NooF the stability gain (on solvation) decreases consistently. This solvation effect is greatest in the six $\mathbf{N p x F}, \mathbf{N m x F}$ isomers compared to the NoxF triad which gain less stabilisation (in terms of energy decrease).

Table 21: The energy calculation results for the $\mathbf{N x x F}$ isomers in $\mathrm{kJ} . \mathrm{mol}^{-1}$

|  | gas phase |  | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ |  | $\mathrm{H}_{2} \mathrm{O}$ |  | $\begin{gathered} \text { gas phase } \rightarrow \\ \frac{\mathrm{CH}_{2} \mathrm{Cl}_{2}}{\Delta \mathrm{E}_{\mathrm{SCF}} \Delta \mathrm{G}_{\text {solv }}} \end{gathered}$ | $\begin{aligned} & \text { gas phase } \rightarrow \\ & \mathrm{H}_{2} \mathrm{O} \\ & \hline \Delta \mathrm{E}_{\mathrm{SCF}} \Delta \mathrm{G}_{\mathrm{solv}} \end{aligned}$ | $\begin{gathered} \mathrm{CH}_{2} \mathrm{Cl}_{2} \rightarrow \\ \mathrm{H}_{2} \mathrm{O} \\ \hline \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\delta \mathrm{E}_{\text {SCF }}$ | סG | $\delta \mathrm{E}_{\text {SCF }}$ | $\delta \mathrm{G}$ | $\delta \mathrm{E}_{\text {SCF }}$ | סG |  |  | $\mathrm{E}_{\text {SCF }}$ | $\Delta \Delta \mathrm{G}_{\text {solv }}$ |
| NppF | 0.00 | 0.00 | -4.62 | -3.17 | -7.25 | -3.73 | -70.81-62.30 | -57.08-42.27 | 13.73 | 20.03 |
| NpmF | -5.43 | -1.68 | -9.80 | -5.12 | 11.79 | -7.78 | -70.56-62.57 | -56.19-44.64 | 14.37 | 17.93 |
| NpoF | -3.50 | -3.13 | 0.00 | 0.00 | 0.00 | 0.00 | -62.69-56.00 | -46.33-35.40 | 16.35 | 20.59 |
| NmpF | -6.08 | -2.30 | -10.40 | -4.02 | -13.46 | -5.39 | -70.50-60.86 | -57.21-41.63 | 13.29 | 19.23 |
| NmmF | -11.79 | -3.86 | -15.81 | -6.31 | -18.61 | -8.08 | -70.21-61.59 | -56.66-42.76 | 13.55 | 18.83 |
| NmoF | -9.36 | -4.91 | -5.98 | -1.02 | -6.88 | -1.97 | -62.80-55.24 | -47.35-35.60 | 15.45 | 19.64 |
| NopF | -30.99 | -28.26 | -24.36 | -22.73 | 20.22 | 16. | -59.56-53.61 | -39.06-26.39 | 20.50 | 27.22 |
| NomF | -36.84 | 29.83 | -29.68 | -25.82 | -25.20 | -19.49 | -59.03-55.13 | -38.19-28.20 | 20.84 | 26.93 |
| NooF | -31.66 | 28.11 | -19.69 | -17.57 | -14.22 | 5.57 | -54.22-48.59 | -32.39-26.00 | 21.83 | 22.60 |

${ }^{\mathrm{a}}$ Only the differences between each molecule ( $\delta$ ) and media $(\Delta, \Delta \Delta)$ are shown, the reference molecule for the gas phase is $\operatorname{NppF}\left(\mathrm{E}_{\text {SCF }}=-743.1027 \mathrm{E}_{\mathrm{h}}, \mathrm{G}=-746.1394 \mathrm{E}_{\mathrm{h}}\right.$ ) and for solvents is NpoF $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{E}_{\text {SCF }}=-743.1279 \mathrm{E}_{\mathrm{h}}, \mathrm{G}=-746.1620 \mathrm{E}_{\mathrm{h}} ; \mathrm{H}_{2} \mathrm{O}: \mathrm{E}_{\text {SCF }}=-743.1217 \mathrm{E}_{\mathrm{h}}, \mathrm{G}=-\right.$ $746.1541 \mathrm{E}_{\mathrm{h}}$ ).

The calculated $\Delta \Delta \mathrm{G}_{\text {solv }}$ for $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(\mathrm{D} / \mathrm{W})$ system are strongly positive, illustrating insolublity in $\mathrm{H}_{2} \mathrm{O}$ (provisional $\log \mathrm{K}_{\mathrm{D} / \mathrm{W}}$ values based on $\Delta \Delta \mathrm{G}_{\text {solv }}$ are 3-5: ESI I, Section 3.3.1). The NoxF triad should be the least soluble in $\mathrm{H}_{2} \mathrm{O}\left(\sim \log \mathrm{K}_{\mathrm{D} / \mathrm{W}}=4-5\right)$; empirical observations confirm these calculated predictions.

### 2.1.8. Comparisons of the solid state and modelling data

The nine NxxF isomers derived from calculations and crystal structures were compared by showing the differences in the corresponding torsion angles $(\Delta \theta)$ as for each crystal structure in each PES diagram (Fig. 33). For NppF, NmpF and NomF
with $Z^{\prime}>1$, the molecules are labelled as A, B etc. and for disordered systems (NomF, $\mathbf{N p o F})$ the symbol $(\bullet)$ has the assigned identification letter and partial occupancy (\%).

In general, most solid state NxxF conformations correspond with their gas phase or solvated structures without significant deviations of the torsion angles from the gas phase optimised minima $(\Delta \theta)$. Thermodynamically, formation of intermolecular bonds and contacts in the crystallisation process brings stabilisation that is more than sufficient to overcome destabilisation caused by torsion angle deviations.

Conformational differences amongst the NxxF isomers include NpmF having the $\mathbf{F}$-syn conformation in crystal structure, NmmF with an $\mathbf{N}$-anti/F-anti conformation, as well as the disordered molecule $A$ in NomF where a minor $F$ component is present in the N-syn/F-syn conformation and surprisingly NpoF where the main molecular conformation at 91.7(9)\% occupancy has the F-ring in a meta-stable form with the F -anti conformation.

In almost all cases the data values for the solid-state torsion angles of the $\mathbf{N}$ rings are on or near their calculated global minima (Fig. 33), and often with only small deviations. The only exceptions include the $\mathbf{N m}$ rings in $\mathbf{N m p F}$ and $\mathbf{N m m F}$. For $\mathbf{N m p F}$ with $Z^{\prime}=4$ (Fig. 29) all four independent molecules are planar in this unusual hydrogen bonded tetrameric assembly and the $\mathbf{N m}$ ring torsion angles are similar and located near $\mathrm{TS}_{\mathrm{Nm}}{ }^{\mathrm{I}}$ which represents a relatively unstable position (gas phase). However, the solidstate conformation allows the meta-pyridine N atom to engage in intermolecular N $\mathrm{H} \cdots \mathrm{N}_{\mathrm{pyr}}$ hydrogen bonding with one relatively long $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\mathrm{pyr}}$ and augmented by two flanking $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ intermolecular interactions. Ultimately the NmpF supramolecular structure represents a hydrogen bonded tetramer that aggregates from a series of weak but cumulatively important $\mathrm{N} / \mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions (Fig. 29).

For the $\mathbf{N m m F}$ structure the $\mathbf{N m}$ ring torsion angle is in the $\mathbf{N}$-anti conformation in a meta-stable $\mathrm{LM}_{\mathrm{Nm}}{ }^{\text {I' }}$ potential well. Despite this unusual conformation, examination of the crystal packing shows that the $\mathbf{N}$-anti conformation facilitates the 1-D chain of N1-H1...N23 hydrogen bonding that is essential as the crystal structure backbone.

In contrast to the $\mathbf{N}$-ring, the solid state $\mathbf{F}$-ring torsion angles usually do not overlap with the corresponding gas phase model pendant angle: the deviation $\Delta \theta$ is around $\pm 30-50^{\circ}$, excluding the structures that are planar or close to planarity ( $\mathbf{N m p F}$, NomF, NooF) and the NpoF structure. The NomF and NooF are the only structures where the solid state structures correspond closely with only a slight $\Delta \theta$ deviation from the model structures.

The minor presence of the $\mathbf{N}-\boldsymbol{s y n} / \mathbf{F}-\mathbf{s y n}$ conformation in NomF (at 3\%) is interesting where conformational analysis of the $\mathbf{m F}$ ring demonstrates that the F-syn conformation is similar to F -anti, and allowing the F -syn conformation to appear statistically probable. An overview of the NomF crystal structure shows that the fluorine atoms at their thermodynamically favoured, major occupation site (F13, F-anti) are in a position to interact with neighbouring molecules, a making network comprised of weak C-F $\cdots \mathrm{H}-\mathrm{C}$ and C-F $\cdots \mathrm{F}-\mathrm{C}$ bonds, like F13A $\cdots \mathrm{H} 24 \mathrm{~A}-\mathrm{C} 24 \mathrm{~A}$ [3.339(4), $-1 / 2+\mathrm{x}$, 1/2-y, 1/2+z] and F13A‥F13A [2.896(3), -x,-y,2-z]. The F-syn conformation gives fewer possibilities for $\mathrm{F} \cdots \mathrm{H} / \mathrm{F} / \mathrm{C}$ interactions, but even those interactions contribute to the overall crystal structures. Taking the fact that the difference between $\mathbf{F}$-syn and $\mathbf{F}$ anti is $0.58 \mathrm{kJ.mol}^{-1}$, the minor $\mathbf{F}$-syn conformation is presumably statistical disorder, driven by kinetic factors.

Another phenomenon is observed in $\mathbf{N p m F}$ where the solid state conformation of the F-ring is F-syn, although the F-anti conformation is slightly thermodynamically favoured from calculations. The main backbone of the $\mathbf{N p m F}$ crystal structure is the short $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 24$ hydrogen bond that drives the formation of C(7) zig-zag chains. As the F-ring adopts the $\mathbf{F}$-syn conformation, H15 atom forms a very important contact [C15-H15...O1, 3.202(5) Å] with O1 (at $-1 / 2+x, 1 / 2-y,-1 / 2+z$ ) that links up the $1-\mathrm{D}$ zigzag chains into 2-D sheet. The fluorine atom (F13) forms weak contacts (C22/23$\mathrm{H} 22 \cdots \mathrm{~F} 13,3.212(4) / 3.222(4) \AA$ ) with neighbouring molecule (at $-1+\mathrm{x}, \mathrm{y},-1+\mathrm{z}$ ), supporting the main zig-zag backbone, as well as weak contacts [C22/23 $\cdots \mathrm{F} 13$, $3.166(4) / 3.222(4) \AA$ ] with $\mathrm{C} 22 / \mathrm{C} 23$ (at $-1+\mathrm{x},-\mathrm{y},-1 / 2+\mathrm{z}$ ) which participates, along with $\mathrm{H} 25 \cdots \mathrm{Cg}$ interaction, in joining the 2-D sheets into the 3-D network. All these contacts (Fig. 26) would not be possible if the F-ring was in the F-anti conformation. Therefore, the F-syn conformation, despite its meta-stability in gas phase, is essential for $\mathbf{N p m F}$ crystal structure assembly.

The NpoF structure is atypical with 91.7(9)\% of the NpoF molecules in a thermodynamically unfavourable meta-stable local minimum $\mathrm{LM}_{\mathrm{oF}}{ }^{\mathrm{I}}$ with the ortho- F atom at F12. The NpoF isomer is isomorphous with $\mathbf{N p m F}$ in space group Cc. A study of the crystal packing of NpoF shows that with the minor F16 atom site [8.3(9)\%] located as F-syn it is directed near the $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 24$ primary intermolecular interaction [with F16 $\cdots \mathrm{N} 24=2.84(4) \AA$ ] and effects a measure of steric hindrance. It is possible that the F-anti (F12 site) conformation even though it is relatively thermodynamically unstable allows for stabilisation of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interaction in the crystal structure.

NpoF can obviously cope with a measure of steric strain in the minor conformation incorporating the F16 atom site.

Overall, there are a few differences between the NxxF solid state molecular structures and the $a b$ initio models and for those cases (as discussed above) this arises where conformational change is essential in the promotion of favourable formation of stable intermolecular hydrogen bonds in the solid state.

## 2. 2. NxxM isomer grid

### 2.2.1. General description of synthesis

As acyl chlorides are very reactive, the reactions were performed in anhydrous conditions in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (under $\mathrm{N}_{2}$ ), initially at $5^{\circ} \mathrm{C}$ and then at room temperature. A byproduct was HCl , and $\mathrm{Et}_{3} \mathrm{~N}$ was employed to drive the reaction equilibrium towards the NxxM product. The pyridinoyl chlorides technically were used in the form of hydrochlorides so an additional mole of $\mathrm{Et}_{3} \mathrm{~N}$ was used to enhance their solubility in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ so that in total, two molar equivalents of $\mathrm{Et}_{3} \mathrm{~N}$ were added.

Table 22: Amounts, yields and melting points of the NxxM compounds

| NxxM | $\mathbf{m} / \mathbf{g}$ | yield $/ \%$ | m.p. $/{ }^{\circ} \mathbf{C}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{N p p M}$ | 1.578 | 78.9 | $161.0-162.5$ |
| NmpM | 1.847 | 92.3 | $140.2-142.9$ |
| NpoM | 1.747 | 87.3 | $123.9-125.9$ |
| NmpM | 1.863 | 93.1 | $147.6-148.3$ |
| NmmM | 1.530 | 76.5 | $113.0-114.7$ |
| NmoM | 1.390 | 69.5 | $106.1-107.0$ |
| NopM | 1.340 | 67.0 | $104.7-105.2$ |
| NomM | 0.876 | 43.8 | $49.2-50.5$ |
| NooM | 1.134 | 56.7 | $64.1-64.9$ |
| 5-Cl-NopM | 0.250 | 12.5 | $125.5-129.5$ |
| 5-Cl-NomM | 0.224 | 11.2 | $70.2-73.9$ |
| 5-Cl-NooM | 0.332 | 16.6 | $128.3-128.6$ |

Condensation reactions were performed with the $4-$, 3 - or 2 -toluidines ( 1 ml , 10.41 mmol ) added to a 250 ml flask placed on an ice bath and with subsequent stirring. Then, 30 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to the flask followed by addition of $\mathrm{Et}_{3} \mathrm{~N}(1.5 \mathrm{ml}$, 10.76 mmol ). Finally, the 4-, 3- or 2-pyridinoyl chlorides ( $2 \mathrm{~g}, 11.23 \mathrm{mmol}$ ) were added in portions directly into this solution mixture. Another 30 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 1.5 ml of $\mathrm{Et}_{3} \mathrm{~N}$ was added to accelerate the dissolution of any solids and the reaction mixture was allowed to warm to room temperature and stirred overnight.


Scheme 28: Schematic diagram of the NxxM reactions
Organic washing and work-up was as standard: the organic reaction phase was washed with 20 ml of $\mathrm{KHCO}_{3}(0.1 \mathrm{M})$ solution $c a$. 3-7 times and during purification, glassware was warmed to $c a .35^{\circ} \mathrm{C}$. Then, 1.5 g of anhydrous $\mathrm{MgSO}_{4}$ was added to the organic solutions for 20 minutes. The flask contents were filtered through a Büchner funnel (under vacuum) to remove $\mathrm{MgSO}_{4}$. The filtrate was evaporated under vacuum and the crystallization induced giving the desired product.

Generally, the yields (30-70\%) and purity were modest to excellent with the exception of the NoxM triad where 5-Cl-NoxM compounds were by-products (Table 22), as the picolinoyl chloride starting material contains a small quantity of 5 -chloropicolinoyl chloride. This impurity is an inevitable by-product of the original 2 pyridinoyl chloride synthesis using $\mathrm{SOCl}_{2}$. The same impurities are present in the NoxF compounds, however only simple re-crystallisation purification was employed in the NoxF triad, without intention of isolation, characterisation or structural survey of the 5-Cl-NoxF compounds.

| para-tolyl |
| :--- |
| 5-Cl-NopM |
| 5-Cl-NomM (5-chloro-2-pyridinoyl) |

Scheme 29: Structures and nomenclature of the three 5-Cl-NxxM isomers

The NoxM compounds were successfully separated from of the $\mathbf{5 - C l}-\mathbf{N o x M}$ compounds by column chromatography using silica gel as stationary phase and a mixture of $\mathrm{CHCl}_{3}$, ethyl acetate and cyclohexane (4:2:1) The three 5-Cl-NoxM compounds were isolated in low yield and characterised by both spectroscopic methods
and single crystal X-ray diffraction. In addition, the structure of NmpFM (isolated from a $50: 50$ mixture of $\mathbf{N m p F}$ and $\mathbf{N m p M}$ ) is compared with both $\mathbf{N m p F}$ and $\mathbf{N m p M}$.

All NxxM compounds are white, odourless solids, soluble in various organic solvents ( MeOH , ethyl acetate, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, 2-propanol, DMSO ), poorly soluble in cyclohexane, hexane, toluene and insoluble in water. The overall yields were moderate to good and the $\mathbf{N x x M}$ and $\mathbf{5 - C l}-\mathbf{N x x M}$ compound purity was excellent after column chromatography. The $\mathbf{N p x M}, \mathbf{N m x M}$ and $\mathbf{N o p M}$ isomers crystallize easily from a range of solvents. However, after purification by column chromatography NomM proved reluctant to crystallise from several solvents using different crystallization conditions. Crystals were finally obtained using stress cooling with liquid $\mathrm{N}_{2}$ followed by recrystallisation from cyclohexane. Solid NomM differs from the other NxxM isomers and looks ceraceous rather than crystalline. NooM crystals were obtained after several trials from $\mathrm{CH}_{3} \mathrm{OH}$. In general, melting points decrease (Table 22) consecutively from the symmetrical NppM to the unsymmetrical NomM. The lowest melting point for NomM $\left(\sim 50^{\circ} \mathrm{C}\right)$ is unusual, suggesting, together with other macroscopic characteristics, weak and unusual intermolecular interactions in the NomM crystal structure. The 5-ClNoxM derivatives have higher melting points as compared to their NoxM relatives and by $>20^{\circ} \mathrm{C}$; this effect is due to replacement of H by Cl .

### 2.2.2. X-ray crystallography methods

All nine NxxM crystal samples and three 5-Cl-NoxM single crystals were obtained by slow evaporation at $4^{\circ} \mathrm{C}$, typically from either $\mathrm{CHCl}_{3}$ or ethyl acetate. However, for NomM, suitable single crystals were grown from cyclohexane and for NooM, crystals were eventually grown from methanol after many crystallization attempts from several solvents under a wide range of crystallization conditions.

Single crystal X-ray data for all nine NxxM isomers, the three 5-Cl-NoxM and NmpFM collection and data reduction, ${ }^{176}$ structure solution and refinement ${ }^{3,168}$ was as described for the Fxx isomer grid (Section 1.2.2). Selected crystallographic and structural information are detailed in Tables 23, 24 and the ESI I (Section 2.4). Molecular and hydrogen bonding diagrams (Figs. 35-44) were generated as for the other isomer grids. ${ }^{169}$

### 2.2.3. Computational methods

The computational methods and procedures used are identical to the previous isomer grids. Each asymmetric (meta- or ortho-) ring can adopt (relative to the amide linker) two conformations (either syn or anti) (Scheme 30). The pyridine ( $\mathbf{N}$ ) or tolyl (M) rings can be either syn ( $\mathbf{N}-\mathbf{s y n}, \mathbf{M}-\boldsymbol{s y n}$ ) or anti ( $\mathbf{N}$-anti, M-anti) and this does not apply for para-substitution. Conformational analysis was undertaken using PES scans of the two key dihedral angles over a range $\pm 180^{\circ}$ both in gas phase and solvents, as the C26-C21-C1=O1 dihedral ( $\alpha, \mathbf{N}$-ring), and C1-N1-C11-C12 dihedral ( $\beta$, M-ring). The results provide PES diagrams showing the conformational preferences either as (syn/anti) and the rotational barriers in $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$.


Scheme 30: Possible conformations of the NxxM isomers

### 2.2.4. Comment on spectroscopic data

All spectroscopic data, including NMR and IR spectra, are listed in the Appendix I (Section 2.2), while the spectra are given in the ESI I (Section 1.4). The NMR data $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$ show a high level of modularity within the pyridine and tolyl rings across the NxxM isomer grid as expected. As for the NxxF series the spectroscopic data reveal the presence of the intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyr }}$ interactions in the NoxM and 5-ClNoxM triads. The shifts for the amide hydrogen ( $\mathrm{N}-\mathrm{H}$ ) in the six $\mathbf{N p x M} / \mathbf{N m x M}$ isomers in $\mathrm{CDCl}_{3}$ are $c a .8 .0 \mathrm{ppm}$, while in DMSO- $d_{6}$ are shifted to $c a .10 .3 \mathrm{ppm}$ from interacting with the $\mathrm{S}=\mathrm{O}$ group. In the NoxM triad the shifts are $\sim 10.0 \mathrm{ppm}\left(\right.$ in $\left.\mathrm{CDCl}_{3}\right)$ and 10.5 ppm (in DMSO- $d_{6}$ ) indicating the presence of additional internal de-shielding of the amide hydrogen as a result of interacting with the neighbouring $\mathrm{N}_{\mathrm{pyr}}$ atom. The intramolecular $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 22$ interaction in the NoxM triad is also noted in the ATR-IR with one sharp N-H stretching band at 3336 (NopM), 3286 (NomM), $3343 \mathrm{~cm}^{-1}$ (NooM) and contrasting with weaker, more diffuse $\mathrm{N}-\mathrm{H}$ vibrations in the NpxM/NmxM series.

### 2.2.5. Crystallographic data and analysis

### 2.2.5.1. General comments

The nine NxxM and three 5-Cl-NoxM crystal structures crystallise in seven common space groups with only $\mathrm{CH}_{3}$ methyl group rotational disorder of the H atom sites in six of the twelve structures (treated with AFIX 127). Seven NxxM and three 5-Cl-NoxM isomers crystallise with $Z^{\prime}=1$ and $\mathbf{N m m M}$, NomM with $Z^{\prime}=2$ (Table 23). The twelve compounds can be classified into two distinct ( $\mathbf{N p x M}, \mathbf{N m x M}$ ) and (NoxM, 5-Cl-NoxM) groups.

The distinct intermolecular feature of the $\mathbf{N x x M}$ crystal structures is aggregation in the solid state either via amide $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ or $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bonds, and usually in different space groups. The primary hydrogen bond in $\mathbf{N p m M}, \mathbf{N m p M}$ and NmmM is amide $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ usually in tandem with a much weaker $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interaction (ca. $0.2 \AA$ longer). In $\mathbf{N p p M}$, $\mathbf{N p o M}$ and $\mathbf{N m o M}$, the primary interaction is amide $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}_{\text {amide }}$ with additional weak contacts ( $c a .2 .70 \AA$ for $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ ) involving the pyridine- N atom and pyridine ring. In the related NxxF series, only NppF has amide $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}_{\text {amide }}$ interactions as the primary interaction [as typical $C(4)$ chains] and with no additional longer $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions.

Table 23: Selected crystallographic data for NxxM, NmpFM, 5-Cl-NoxM

| Structure | Space group | $\boldsymbol{Z}^{\prime}$ | Volume $\left(\AA^{3} \mathbf{)}\right.$ | $\boldsymbol{R}$-factors |
| :--- | :--- | :--- | :--- | :--- |
| NppM | $P 2 / c$ | 1 | $1089.98(9)$ | $0.051,0.141$ |
| NpmM | $P 2_{l} / n$ | 1 | $1133.67(6)$ | $0.034,0.083$ |
| NpoM | $C c$ | 1 | $1123.84(11)$ | $0.030,0.081$ |
| NmpM | $P 2_{1} / c$ | 1 | $1074.47(8)$ | $0.036,0.073$ |
| NmmM | $P \bar{l}$ | 2 | $1085.36(7)$ | $0.057,0.179$ |
| NmoM | $P b c a$ | 1 | $2239.48(10)$ | $0.040,0.107$ |
| NopM | $P 2_{l} / c$ | 1 | $1100.40(7)$ | $0.035,0.083$ |
| NomM | $P 2_{l}$ | 2 | $1178.92(8)$ | $0.029,0.045$ |
| NooM | $P 2_{l} / c$ | 1 | $1099.41(5)$ | $0.037,0.093$ |
| NmpFM | $P n a 2_{l}$ | $0.5: 0.5$ | $1062.66(18)$ | $0.035,0.093$ |
| 5-Cl-NopM | $P c a 2_{l}$ | 1 | $1189.24(3)$ | $0.026,0.065$ |
| 5-Cl-NomM | $P 2_{l} / c$ | 1 | $1204.0(5)$ | $0.066,0.233$ |
| 5-Cl-NooM | $P 2_{l} / n$ | 1 | $1171.93(15)$ | $0.038,0.103$ |

In the three NoxM crystal structures, the intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interaction dominates with additional longer C-H $\cdots \mathrm{O}$ interactions in NopM (+2) and NooM (+1), but in NomM an additional $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interaction $(\mathrm{H} \cdots \mathrm{O}=2.32(3), 2.41(2) \AA$ ) with $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ forms a hydrogen bonded $R^{1}{ }_{2}(6)$ ring (Fig. 42). The NomM crystals provide the poorest quality structure with a high $\mathrm{R}_{\text {int }}(0.096)$ and unexpected aggregation;

NomM has the lowest melting point range of just $49-50^{\circ} \mathrm{C}$. Three $\mathbf{5 - C l}-\mathrm{NoxM}$ structures also display the intramolecular $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 22$ interaction and are similar to NoxM except for 5-Cl-NomM with $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C} / \pi \cdots \pi$ stacking interactions being atypical of either the NoxM or NoxF structures. In addition, the mixed fluoro $/ \mathrm{CH}_{3}$ system as $\mathbf{N m p F M}$ is isolated from a $50: 50$ mixture of $\mathbf{N m p F} / \mathbf{N m p M}$ and is compared with the tetrameric assembly in $\mathbf{N m p F}$ and catemeric $\mathbf{N m p M}$ structure.

Table 24: Salient structural features ( ${ }^{\circ}, \AA$ ) of NxxM, NmpFM and 5-Cl-NoxM

| Structure | $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ | C6/amide ${ }^{\text {a }}$ | $\mathrm{C}_{5} \mathrm{~N} / \mathrm{amide}^{\text {a }}$ | N $\cdots$ N/O | Packing ${ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NppM | 66.45(3) | 34.96 (5) | 31.54(5) | $3.0529(14)$ | 1-D chains |
| NpmM | 4.50(10) | 14.73(7) | 19.19(7) | 3.1265(18) | 2-D sheets |
| NpoM | 83.90(6) | 68.04(7) | 28.26(9) | 2.825(2) | 1-D chains |
| NmpM | 4.11(9) | 4.11(9) | 1.06(9) | 3.223(2) | 1-D catemers |
| NmmM | 57.23(6) | 24.69(6) | 33.93(8) | 3.090(2) | 1-D chains |
|  | 64.31(6) | 36.68(6) | 28.23(8) | 3.078(2) |  |
| NmoM | 89.99(5) | 60.63(5) | 29.55(6) | 2.8978(15) | 1-D chains |
| NopM | 33.63(4) | 29.45(5) | 4.33(4) | 2.6548(18) | 1-D chain |
| NomM ${ }^{\text {c }}$ | 14.61(14) | 15.39(14) | 4.63(15) | $3.241(3){ }^{\text {c }}$ | 2-D sheets |
|  | 9.71(17) | 6.54(15) | 16.03(16) | 3.132(3) |  |
|  |  |  |  | 2.683(4) |  |
|  |  |  |  | 2.703(4) |  |
| NooM | 1.91(5) | 1.47(5) | 1.70(5) | 2.6209(15) | Dimers |
| NmpFM | 5.00(14) | 3.21(13) | 1.93(13) | 3.207(2) | 2-D Cat sheets |
| 5-Cl-NopM | 26.42(2) | 22.25(2) | 4.20(3) | 2.6514(9) | 2-D sheet |
| 5-Cl-NomM ${ }^{\text {c }}$ | 4.35(13) | 8.98(12) | 12.79(12) | $3.035(4){ }^{\text {c }}$ | 1-D chains |
|  |  |  |  | 2.683(4) |  |
| 5-Cl-NooM | 2.30(5) | 4.38(6) | 2.80(5) | 2.6690 (15) | 1-D tape |

${ }^{a}$ Amide plane calculated as a five atom plane i.e. ${ }_{\mathrm{Ar}} \mathrm{C}-\mathrm{C}(=\mathrm{O}) \mathrm{N}-\mathrm{C}_{\mathrm{Ar}}$
${ }^{\boldsymbol{b}}$ Packing is noted as primary packing unless for competing strengths and for NoxM and 5-Cl-
NoxM, additional interactions are considered where the primary interaction is intramolecular
$\mathbf{N}-\mathbf{H} \cdots \mathbf{N}_{\text {pyridine }}$.
${ }^{c}$ For NomM and 5-Cl-NomM both intramolecular $\mathbf{N}-\mathbf{H} \cdots \mathrm{N}$ and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interactions are quoted.

As noted above, the primary hydrogen bonding in the NxxM isomers can be classed into three groups, each with distinctive IR spectra in the $\mathrm{N}-\mathrm{H}$ stretch region between $3600 \mathrm{~cm}^{-1}$ and $2800 \mathrm{~cm}^{-1}$. The $\mathbf{N p m M}, \mathbf{N m p M}$ and $\mathbf{N m m M}$ isomers with amide $\mathrm{N}-\mathrm{H}^{\cdots} \mathrm{N}_{\text {pyridine }}$ as the main intermolecular interaction exhibit two principal $\mathrm{N}-\mathrm{H}$ stretch vibrations at $3274 \mathrm{~cm}^{-1}$ and $3066 \mathrm{~cm}^{-1}$ with several smaller peaks. The second group comprising NppM, NpoM and $\mathbf{N m o M}$ with ${ }_{\text {amide }} \mathrm{N}-\mathrm{H}^{\cdots} \mathrm{O}=\mathrm{C}_{\text {amide }}$ interactions has a smaller band at $3073 \mathrm{~cm}^{-1}$ and one close to $3322 \mathrm{~cm}^{-1}$ ( $3237 \mathrm{~cm}^{-1}$ for NpoM and NmoM as the proximity of the ortho $-\mathrm{CH}_{3}$ moiety clearly changes the frequency of the $\mathrm{N}-\mathrm{H}$ stretching vibration). The third group consisting of $\mathbf{N o x M}$ and $\mathbf{5 - C l}-\mathbf{N o x M}$ display
the intramolecular $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 22$ interaction as the main hydrogen bond and exhibit a typical sharp peak at around $3335 \mathrm{~cm}^{-1}\left(3286 \mathrm{~cm}^{-1}\right.$ for NomM due to the additional interaction of the amide $\mathrm{N}-\mathrm{H}$ with a neighbouring carbonyl oxygen). Therefore, IR spectroscopy provides a useful indicator of the type of N-H hydrogen bonding in these and related crystal structures and has been especially useful in identifying polymorphs.

### 2.2.5.2. The NpxM isomer series

The three $\mathbf{N p x M}$ isomers aggregate via amide $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C} C(4)$ chains for both NppM and $\mathbf{N p o M}$ isomers and through amide $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }} C(7)$ chains for $\mathbf{N p m M}$.

## NppM molecular and crystal structure

The NppM isomer crystallizes in $P 2 / \mathrm{c}$ and refined initially to an $R$-factor of 0.15. Application of the twin law [100, 0-10, 00-1] results in an $R$-factor of $5 \%$ without any non-hydrogen atom disorder apart from the $\mathrm{CH}_{3}$ rotational disorder. The hydrogen bonding as amide $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}_{\text {amide }} 1$-D $C(4)$ chains forms along the $b$-axis [010] direction (Fig. 35) (Table 24). There are no other strong interactions of note in an otherwise regular structure (with similarities to $\mathbf{N p p F}$ ). The pyridine N 24 atom does not participate in hydrogen bonding, with the closest intermolecular $\mathrm{H} \cdots \mathrm{N} 24$ contact distance $>2.90 \AA$ (similar to the lack of interactions for the pyridinyl N24 in NppF).

## NpmM molecular and crystal structure

NpmM (with a M-anti tolyl ring conformation) aggregates via intermolecular $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 24$ hydrogen bonds and assisted by a flanking C22-H22 $\cdots \mathrm{N} 24$ interaction forming a ring with graph set $R^{1}{ }_{2}(7)$ (Fig. 35). This tandem effect links as a 1-D column in the [010] direction; columns are linked reciprocally by longer C23-H23 $\cdots \mathrm{O} 1$ interactions parallel to the ( $\overline{101}$ ) plane into 2-D rumpled sheets. All interplanar angles are $<20^{\circ}$ highlighting the near co-planarity of all atoms in $\mathbf{N p m M}$ in contrast to both of the $\mathbf{N p p M}$ and $\mathbf{N p o M}$ crystal structures (Table 24).



Fig. 35: (a) An ORTEP diagram of NppM as a chain of three molecules with the primary N$\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interaction aggregating along the $b$-axis direction and (b) two chains with atoms as van der Waals spheres and parallel to the (001) plane.

## NpoM molecular and crystal structure

NpoM with the tolyl ring in the M-syn conformation although almost orthogonal to amide linker (Table 24) crystallizes in space group $C c$ with $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ as the primary hydrogen bond linking along the $c$-axis or [001] direction (Fig. 36). The short $\mathrm{N} 1 \cdots \mathrm{O} 1^{\mathrm{i}}=2.825(2) \AA$ is augmented by an ortho $-\mathrm{CH}_{3} \cdots(\mathrm{O}=\mathrm{C})^{\mathrm{i}}$ interaction involving the methyl group interacting with the neighbouring $\mathrm{C}=\mathrm{O}$ group (symmetry code $\mathrm{i}=\mathrm{x},-\mathrm{y}, \mathrm{z}-1 / 2$ ) (Fig. 36). The closest intermolecular contact involving pyridyl N 24 is with the aromatic H 22 atom $[\mathrm{H} 22 \cdots \mathrm{~N} 24=2.72 \AA]$. The isomorphous NpmF and NpoF systems also crystallise in space group Cc but differ from NpoM by having N$\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ as the primary interaction.


Fig. 35: An ORTEP diagram of NpmM as two chains with zig-zag primary $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interaction/contacts and linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$. The suffix labels \# and \$ are for symmetry related sites $1 / 2-\mathrm{x}, 1 / 2+\mathrm{y}, 3 / 2-\mathrm{z}$ and $-1 / 2+\mathrm{x}, 1 / 2-\mathrm{y},-1 / 2+\mathrm{z}$.


Fig. 36: An ORTEP diagram of NpoM with three molecules in three chains showing the primary $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interaction propagated along the $c$-axis with weaker contacts at $\mathrm{O} 1^{\mathrm{i}}$.



Fig. 37: An ORTEP diagram of NmpM as (a) three molecules with N/C-H $\cdots \mathrm{N}_{\text {pyridine }}$ interactions (at sites $a=-\mathrm{x}, 1 / 2+\mathrm{y}, 1 / 2-\mathrm{z} ; b=-\mathrm{x},-1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}$ ), (b) a catemeric linked column and with pyridyl H atoms omitted for clarity.

### 2.2.5.3. The NmxM isomer series

The three $\mathbf{N m x M}$ isomers aggregate by amide $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ interactions for $\mathbf{N m p M}(\mathbf{N m p F M}), \mathbf{N m m M}$ and through amide $\mathrm{N}-\mathrm{H}^{\cdots} \mathrm{O}=\mathrm{C}$ interactions in $\mathbf{N m o M}$.

## NmpM and the NmpFM mixed molecular and crystal structure

$\mathbf{N m p M}$ crystallises as fine needles that splinter easily. The $\mathbf{N m p M}$ crystal structure (Fig. 37) contrasts with NmpF (a hydrogen bonded tetramer). In NmpM the
primary interaction that drives aggregation is also amide $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ but is catemeric (Fig. 37) and in the form of a stepped column with an intermolecular $\mathrm{N} \cdots \mathrm{N}$ distance of 3.223(2) $\AA$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ angle of $164.7(12)^{\circ}$; the pyridinyl ( $\mathbf{N m}$ ) ring has the $\mathrm{N}-\mathbf{s y n}$ conformation. In $\mathbf{N m p M}$ the assembly process as an $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ relay generates an alternating two molecule column along the $b$-axis [010] direction, linked by weaker C$\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interactions along the [001] direction (2-D) and the $\mathrm{C}-\mathrm{H} \cdots \mathrm{C} / \pi$ (arene) contacts along the [100] direction forming a 3-D structure. The key difference is that the $\mathrm{CH}_{3}$ groups in $\mathbf{N m p M}$ form $\mathrm{C}-\mathrm{H} \cdots \pi($ arene $)$ interactions and link the stacked columns [with six $\mathrm{C} \cdots \mathrm{C}$ (arene) distances from 3.68 to $4.03 \AA$ ], whereas this does not arise as donor C F $\cdots$ (arene) interactions in NmpF. The intermolecular data indicate that (at the primary interaction level) the $\mathbf{N m p M}$ and $\mathbf{N m p F}$ molecules are similar and differences between the remotely positioned $\mathrm{CH}_{3} / \mathrm{F}$ groups influence the overall aggregation and packing. Catemeric/tetrameric aggregation interchange is known in pyrazole chemistry. ${ }^{185}$ As both $\mathbf{N m p M}$ and $\mathbf{N m p F}$ contrast in their aggregation modes, their solution mixtures and resulting solid-state structure $\mathbf{N m p F M}$ were analysed.

A 50:50 solution of $\mathbf{N m p F}, \mathbf{N m p M}$ (recrystallized from ethyl acetate) yields the crystal structure of $\mathbf{N m p F M}$ which differs from either $\mathbf{N m p F}$ or $\mathbf{N m p M}$. The molecules occupy the same site in the asymmetric unit of space group Pna $2_{1}$ differing only by the $50: 50 \%$ occupancy of the F14 atom and $\mathrm{CH}_{3}$ group (Fig. 38).


Fig. 38: An ORTEP view of two NmpFM molecules: a) the primary C/N-H $\cdots \mathrm{N}_{\text {pridine }}\left[R^{1}{ }_{2}(6)\right.$, $R^{1}{ }_{2}(7)$ rings $]$ and $b$ ) $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interactions [ $R^{1}{ }_{2}(5)$ rings $]$ in $\mathbf{N m p F M}$.
$\mathbf{N m p F M}$ is comparable to both $\mathbf{N m p F}$ and $\mathbf{N m p M}$ structures in basic geometry. However, $\mathbf{N m p F M}$ is similar to $\mathbf{N m p M}$ in the primary intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N} / \mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding mode but aggregation differs via weaker $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ by linking the
columns into 2-D sheets which interlock via weaker C-H/F $\cdots$ C contacts (Fig. 38). For comparison, the $\mathrm{N} \cdots \mathrm{N}$ intermolecular distances change from 3.2205(19) to 3.285(2) $\AA$ in NmpF, 3.223(3) $\AA$ in NmpM and 3.207(3) $\AA$ in NmpFM. The interchangeability of $\mathrm{F} / \mathrm{CH}_{3}$ moieties in crystal structures has been reported in the 5-fluorouracil:thymine crystalline solid solution. ${ }^{190,191}$

## NmmM molecular and crystal structure

The $\mathbf{N m m M}$ structure $\left(Z^{\prime}=2\right)$ is essentially isomorphous and isostructural with $\mathbf{M m m}$, the amide reversed or 'bridge-flipped' related isomer (Fig. 39). The $\mathbf{N m m M}$ unit cell parameters of $9.38,9.92,12.34 \AA, 86.96^{\circ}, 86.98^{\circ}, 71.41^{\circ}[\mathrm{RT}]$ are similar to the unit cell data of Mmm (a non- merohedral twin) of 9.59, $9.99,12.51 \AA, 85.83^{\circ}, 85.77^{\circ}$, $68.56^{\circ}$ [at 294(1) K]. The ring conformations in NmmM are N-anti/M-anti (Figs. 12 and 46) and for Mmm are M-anti/P-anti. Comparisons between molecules A and B reveal $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ interplanar angles of $57.23(6)^{\circ}, 54.76(6)^{\circ}$ in $\mathbf{N m m M}$, and $55.57(10)^{\circ}$, $65.70(10)^{\circ}$ in $\mathbf{M m m}$. For $\mathbf{N m m M}$ the primary $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding distances are 3.090 (2), 3.078 (2) $\AA$ and longer than 2.998(4) $\AA, 3.006(4) \AA$ in Mmm. In NmmM, 1-D chains are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions into 2-D sheets parallel to (110). Analysis of structural isomers differing by a 'bridge flip' (with $\mathbf{N m m M}$ and $\mathbf{M m m}$ as reversed amides) provides a perspective beyond analysis of the individual molecules. Comparisons of two $n \times m$ isomer grids can potentially yield invaluable structural information especially when isomorphous pairs are found.

Ojala and co-workers ${ }^{192}$ have reported that isostructural relationships exist with halogen replacement $(\mathbf{X}=\mathbf{F}, \mathbf{C l}, \mathbf{B r}, \mathbf{I})$ in a benzylideneaniline series, but not with the bridge flipped isomers (as $-\mathrm{CH}=\mathrm{N}-$ vs. $-\mathrm{N}=\mathrm{CH}-$ ). They stated that 'in general isostructuralism between bridge flipped isomers is rare. Differences between the isomers with respect to their molecular conformations and solid-state intermolecular interactions tend to differentiate their solid-state molecular packing arrangements.' Herein, $\mathbf{N m m M}$ and $\mathbf{M m m}$ provide a rare example of isostructuralism in bridge-flipped isomers (Fig. 39). The melting point range is $113.0-114.7^{\circ} \mathrm{C}$ in $\mathbf{N m m M}$ and $90.0-$ $91.0^{\circ} \mathrm{C}$ in $\mathbf{M m m}$, a difference of $c a .23^{\circ} \mathrm{C}$.

However, Mmm is twinned (0.844:0.156) and despite the isostructural nature of these isomers, Mmm has fewer interactions and contacts due the absolute and specific nature of the packing. This may account for the disparity in mp ranges. Comparisons of
bridge flipped isomers can provide information that polymorphs often cannot, as polymorphic forms usually differ substantially in packing and often with different $Z^{\prime}$. 822


Fig. 39: (a) NmmM and Mmm molecules as their van der Waals spheres and highlighting the similarity of the asymmetric unit. (b) $\mathbf{N m m M}$ overlaid with $\mathbf{M m m}$ in blue.

The $\mathbf{3 , 4 - \mathbf { F } _ { 2 }}$ and $\mathbf{3 , 5}-\mathbf{F}_{\mathbf{2}}$ difluorobenzamide isomers ${ }^{193}$ are essentially isomorphous structures (similar unit cells and gross packing) but with distinctly different primary hydrogen bonding distances due to the packing at the atom/group/ring level arising from differences in the peripheral ring substitution patterns of the $\mathbf{3 , 4}-\mathbf{F}_{2}$ and $\mathbf{3}, \mathbf{5}-\mathbf{F}_{2}$ systems. Increasing numbers of related structures will provide more examples for future analysis and correlation.

## NmoM molecular and crystal structure

NmoM forms amide $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}_{\text {amide }}$ interactions along [010] as the primary hydrogen bond augmented by weaker C-H $\cdots \pi$ (arene) interactions from C24 and C26. The ring conformations in the crystal structure are $\mathbf{N}$-anti/M-anti. In NmoM the metapyridinyl N 23 atom does not form hydrogen bonds (positioned where no donor atom can interact) with closest contact from $\mathrm{N} 23 \cdots \mathrm{H} 25=2.95 \AA$ [H25 at symmetry position $1 / 2-\mathrm{x}, 1 / 2+\mathrm{y}, \mathrm{z}] .{ }^{169}$ NmoM is isostructural with related benzamides ${ }^{41}$ [defined as $\left.\mathrm{C}_{6} \mathrm{CONHC}_{6}\right]$ that do not possess a pyridine acceptor group. This may explain the isostructurality of NmoM with benzamides [such as PIFLAS, QOVDOV, POPWUN] ${ }^{8}$ that all crystallise in space group Pbca (No. 61) with similar unit cell parameters.

Analysis of isomeric series of mono- and dichloro-/methyl benzamides ${ }^{8,194}$ reveals a preponderence of $\mathrm{C}_{6} \mathrm{CONHC}_{6}$ structures in $P b c a$ with similar unit cell parameters i.e. a, $b=6 \rightarrow 10 \AA, c=20 \rightarrow 30 \AA$. The NmoM structure (with pyridyl N23 atom) is expected to form intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N} / \mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions on crystallisation. The lack of $\mathrm{N} . . \mathrm{N}$ hydrogen bonding means that NmoM mimics the more common $\mathrm{N}-\mathrm{H} . . \mathrm{O}=\mathrm{C}$ hydrogen bonding motif in benzamides. Of further note is that NmoM with unit cell data of $8.07,9.40,29.53 \AA$ and mp range of $106.1-107.0^{\circ} \mathrm{C}$ is isomorphous with the bromo derivative TICDOZ ${ }^{195}$ [unit cell parameters of $8.15,9.35,29.59 \AA$; mp $=92^{\circ} \mathrm{C}$ ]. Overlap of NmoM and TICDOZ ${ }^{195}$ shows the main differences are due to the $\mathrm{C}-\mathrm{Me}$ and $\mathrm{C}-\mathrm{Br}$ moieties (Fig. 40). Both structures have almost orthogonal $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ rings and the TICDOZ torsion angles are all within $3^{\circ}$ of the related angles in NmoM.


Fig. 40: A unit cell packing view along the $b$-axis direction of NmoM (ellipsoids) with TICDOZ ${ }^{195}$ (related bromo derivative in red) as a ball and stick

### 2.2.5.4. The NoxM isomer series

A variation of $0.08 \AA$ is noted in the intramolecular $\mathrm{N} 1 \cdots \mathrm{~N} 22$ interaction distance from 2.6548(18) $\AA$ [torsion angle N1-C1-C21-N22 $=3.87(18)^{\circ}$, NopM], 2.683(4), 2.704(4) $\AA$ [angles $(A)=2.2(3)^{\circ},(B)=17.5(4)^{\circ}$ ] in NomM and 2.6209(15) $\AA$ $\left[0.45(14)^{\circ}\right]$ in NooM. Aggregation typically occurs via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ intermolecular interactions; however, the interaction mode in NomM is rather unexpected.

## NopM molecular and crystal structure

NopM is a regular structure (having the No ring conformation as $\mathbf{N}-\mathbf{s y n}$ ) with $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 22$ and a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ intermolecular interaction (from C16) linking molecules into alternating 1-D columns along the $a$-axis parallel to the (001) plane (Fig. 41), but stacked (in an alternating fashion) along [001]. Weaker $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ (from C23) link columns into 2-D sheets with para-substituted methyl groups interlocking with neighbouring sheets by van der Waals and $\pi \cdots \pi$ stacking contacts.


Fig. 41: Three molecules of NopM showing the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intramolecular and primary C $\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interactions along the $a$-axis direction involving C16

## NomM molecular and crystal structure

Two molecules in the asymmetric unit $\left(Z^{\prime}=2\right)$ differ in NomM (Fig. 42) (Table 23). The unexpected $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ intermolecular interactions with $\mathrm{N} 1_{\mathrm{A} / \mathrm{B}} \cdots \mathrm{O} 1_{\mathrm{B} / \mathrm{A}}=$ 3.241(3), 3.132(3) $\AA$ ] are longer than the $\mathrm{N} \cdots \mathrm{O}$ distances in NppM, NpoM and NmoM. In NomM the amide $\cdots$ amide interaction $(H \cdots \mathrm{O}=2.32,2.42 \AA)$ in tandem with a C $\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ contact forms a hydrogen bonded $R^{1}{ }_{2}(6)$ ring per molecule and overall as 2-D sheets. Molecules A and B differ significantly with torsion angles for O1-C1-C21-N22 $=-176.0(3)^{\circ},-162.6(3)^{\circ}$ (Table 24); however, both molecules exhibit the $\mathbf{N}$-syn/M-anti conformation. The aggregation in NomM is unusual compared to the other eight $\mathbf{N x x M}$ isomers and this is evident with NomM forming the poorest quality crystals of an isomer that proved reluctant to crystallise; the interactions are weak and often repulsive. Of the NxxM isomers it has the lowest mp range of $49-50^{\circ} \mathrm{C}$ and an explanation for the low mp is that molecules are positioned with only a modest amount of energy needed to
force them to 'slip' or break the intermolecular $\mathrm{N}-\mathrm{H} . . \mathrm{O}=\mathrm{C}$ interactions near/at the melt event.


Fig. 42: (a) An ORTEP view of three NomM molecules highlighting the unusual packing and contacts with symmetry code \# $=-\mathrm{x}, 1 / 2+\mathrm{y},-\mathrm{z}$ and (b) the intimate packing with $\ll$ showing the orthogonal nature of the $\mathrm{C} 16 \mathrm{~B}-\mathrm{H} 16 \mathrm{~B} / \mathrm{N} 1 \mathrm{~B}-\mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O} 1 \mathrm{~A}=\mathrm{C} 1 \mathrm{~A}$ interactions and with $*$ for the C14B-H14B $\cdots \pi$ (arene) interaction.

## NooM molecular and crystal structure

NooM crystals proved to be the most elusive of the nine NxxM isomers and were subject to many crystallisation attempts yielding gel-like, plastic spirals. Suitable crystals were eventually grown after several trials using methanol. NooM with the intramolecular $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 22$ interaction forms a hydrogen bonded dimer via the C15H15 $\cdots$ O1a interaction about inversion centres $[\mathrm{C} 15 \cdots \mathrm{O} 1 \mathrm{a}=3.4720(16)$ Å] (Fig. 43). Dimers do not pack efficiently and the effective dimer is only slightly stepped in appearance and there are no other interactions of note (the molecular volume is average for $\mathbf{N x x M}$ ). The lack of interactions directly impacts on packing and obviously leads to the lack of initial success with obtaining quality crystals of NooM. The structure of NooM is planar with conformation $\mathbf{N}$-syn/M-syn and $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ interplanar angles of $1.91(5)^{\circ}$ and all interplanar angles involving the aromatic rings and the amide linkage are $<2^{\circ}$. The amide $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 11$ angle of $131.02(11)^{\circ}$ is larger than the equivalent $\mathrm{C} 1-$ N1-C11 angles in the $\mathbf{N x x F}$ and $\mathbf{N x x M}$ isomers with C-N-C angles from $123^{\circ}$ to $129^{\circ}$ noted. The N1-C1-C21 angle in NooM is $112.71(11)^{\circ}$ and acute compared with the 113 to $119^{\circ}$ range in related $\mathbf{N x x M}$ isomers. These two angles are similar to the $\mathbf{5 - C l} \mathbf{- N o p M}$ and 5-Cl-NooM molecules and primarily due to steric effects on adopting planarity.


Fig. 43: An ORTEP view of the dimeric unit in NooM along the $a$-axis direction with centrosymmetric $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interactions as dashed lines and suffix $a=1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$

### 2.2.5.5. Three 5-Cl-NoxM isomers

The 5-Cl-NoxM compounds were isolated as minor components from their respective NoxM reactions and yielded crystalline solids. 5-Cl-NopM crystallises as an inverted twin in space group $\mathrm{Pca} 2_{1}$ with twin component ratios of 0.87:0.13. The 5-ClNopM molecule is not planar (Table 24) and participates in weak interactions with the intramolecular $\mathrm{N} 1 \cdots \mathrm{~N} 22=2.6514(9) \AA$. Two additional weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O} 1=\mathrm{C} 1$ interactions are present with $\mathrm{C} 12 \cdots \mathrm{O}=2.9543(11) \AA$ (intramolecular) and 3.4223(11) $\AA$ (C23, intermolecular and C16). A $\pi \cdots \pi$ stacking interaction is observed with $\mathrm{C} 1 \cdots \mathrm{C} 24 \mathrm{a}=3.3312(13) \AA$, and C 17 forms a weak $\mathrm{C}-\mathrm{H} \cdots \pi($ arene $)$ interaction with the [C11,...,C16] aromatic group (Fig. 44). The 5-Cl-NomM crystal is also twinned with twin components of 0.972:0.028 and refinement drops the $R$-factor from $7.5 \%$ to $6.6 \%$. The principal interaction is $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ at $3.035(4) \AA$ and shortest stacking interaction is $\mathrm{C} 21 \cdots \mathrm{C} 12^{a}$ at $3.338(4) \AA[a=\mathrm{x}, 3 / 2-\mathrm{y}, 1 / 2+\mathrm{z}] .{ }^{169}$


Fig. 44: The intermolecular interactions in 5-Cl-NopM with label suffix $a=1 / 2+\mathrm{x},-\mathrm{y}, \mathrm{z}$

The $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bond is unorthodox and the effect of the combination of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C} / \pi \cdots \pi$ stacking interactions is to generate a stacked complex as a 1-D column propagating along the $c$-glide plane (Fig. 45). Finally, the 5-Cl-NooM structure contains the intramolecular N1 $\cdots \mathrm{N} 22=2.6690(15) \AA$ interaction with an intramolecular contact $\mathrm{C} 16 \cdots \mathrm{O} 1=2.9128(19) \AA$. The other relevant interaction is $\mathrm{C} 26-\mathrm{H} 26 \cdots \mathrm{Cl1}{ }^{\mathrm{i}}$ where $\mathrm{C} 26 \cdots \mathrm{Cl} 1^{i}=3.7371(14) \AA(i=1 / 2-\mathrm{x}, 1 / 2+\mathrm{y}, 1 / 2-\mathrm{z})$. Molecules are linked along [100] as a 1-D molecular tape (Fig. 45).



Fig. 45: (a) A view of the primary $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ intermolecular interactions in 5-Cl-NomM with $\pi \cdots \pi$ stacking depicted for $\mathrm{C} 21 \cdots \mathrm{C} 12 \mathrm{a}$; suffixes $a, b, c$ refer to the symmetry related sites: $\mathrm{x}, 3 / 2-\mathrm{y},-1 / 2+\mathrm{z} ; \mathrm{x}, 3 / 2-\mathrm{y}, 1 / 2+\mathrm{z}$ and $\mathrm{x}, \mathrm{y}, 1+\mathrm{z}$.; (b) A view of the $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions along the $b-$ axis in the 1-D molecular tape of 5-CI-NooM.

### 2.2.6. Ab initio calculations

### 2.2.6.1. Structure optimisation results

The key structural features of the $\mathbf{N x x M}$ isomers optimised in the gas phase and solvents are presented in Table 25, including the $\alpha, \beta$ and amide linkage dihedral angles $\delta[\mathrm{O} 1=\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 11]$. The most salient feature of the geometry analysis is the planarity of the NoxM triad in contrast to the $\mathbf{N p x M}, \mathbf{N m x M}$ isomers, For NoxM, all dihedral angles are equal to or close to $0^{\circ}$, with or without the solvation model and therefore only the $\mathbf{N p x M}$ and $\mathbf{N m x M}$ triads are discussed. For the $\mathbf{N p x M}, \mathbf{N m x M}$ isomers (gas phase) the dihedral angles exhibit a regular pattern. The $\alpha$ angle is $26.76 \pm 0.09^{\circ}$ in $\mathbf{N p x M}$ and $24.56 \pm 0.09^{\circ}$ in $\mathbf{N m x M}$. The $\beta$ angle is $5.69 \pm 0.07^{\circ}$ in $\mathbf{N p o M}$
and $\mathbf{N m o M}$ while the remaining four structures have $\beta=3.65 \pm 0.43^{\circ}$. However, the $\delta$ dihedral angle increases slightly from $3.17^{\circ}(\mathbf{N p p M})$ to $3.77^{\circ}(\mathbf{N m o M})$.

Table 25: Torsion angles $\left({ }^{\circ}\right)$ of the optimised $\mathbf{N x x M}$ isomers ${ }^{a}$

|  | optimised in gas phase |  |  | optimised in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ |  |  | optimised in $\mathrm{H}_{2} \mathrm{O}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\alpha$ | $\beta$ | $\delta$ | $\alpha$ | $\beta$ | $\delta$ | $\alpha$ | $\beta$ | $\delta$ |
| NppM | 26.65 | 3.70 | 3.17 | 26.62 | 5.89 | 2.13 | 28.81 | 11.07 | 2.15 |
| NpmM | 26.80 | 3.58 | 3.18 | 27.57 | 3.14 | 2.06 | 28.39 | 8.34 | 2.32 |
| NpoM | 26.83 | 5.64 | 3.32 | 31.95 | 9.91 | 4.54 | 30.40 | 40.40 | 2.67 |
| NmpM | 24.60 | 4.19 | 3.39 | 29.63 | 5.15 | 3.54 | 29.90 | 12.59 | 3.11 |
| NmmM | 24.45 | 3.14 | 3.67 | 27.29 | 2.67 | 2.77 | 30.09 | 12.91 | 3.28 |
| NmoM | 24.62 | 5.75 | 3.77 | 31.37 | 10.10 | 5.24 | 30.38 | 40.42 | 3.44 |
| NopM | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| NomM | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| NooM | -0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.01 | 0.00 | -0.02 |

${ }^{\text {a }}$ The angle $\mathrm{C} 26-\mathrm{C} 21-\mathrm{Cl}=\mathrm{O} 1$ ( $\mathbf{N}$-ring) is designated as $\alpha$; the $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 12$ angle ( $\mathbf{M}$-ring) as $\beta$ and the $\mathrm{O} 1=\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 11$ angle (amide linkage) as $\delta$. All geometries are based on B3LYP/6$311++$ G optimisation with PCM-SMD solvation model.

The dihedral angles optimised in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ display a different though somewhat less regular pattern. The $\alpha$ angle in $\mathbf{N p o M}$, NmoM is $31.66 \pm 0.41^{\circ}$ while the remaining four are $27.78 \pm 1.3^{\circ}$. The $\beta$ angle in $\mathbf{N p p M}$, $\mathbf{N m p M}$ is $5.52 \pm 0.52^{\circ}$, for $\mathbf{N p m M}$, $\mathbf{N m m M}$ $=2.91 \pm 0.33^{\circ}$, whereas in $\mathbf{N p o M}, \mathbf{N m o M} \beta=10.01 \pm 0.13^{\circ}$. The $\delta$ angle shows a small regular increase from $2.13^{\circ}(\mathbf{N p p M})$ to $5.24^{\circ}(\mathbf{N m o M})$.

The $\alpha$ dihedral angle optimised in $\mathrm{H}_{2} \mathrm{O}$ for all $\mathbf{N p x M} / \mathbf{N m x M}$ isomers is $29.66 \pm 0.85^{\circ}$, while $\delta$ increases from $2.15^{\circ}$ to $3.44^{\circ}$. For $\beta$, both NpoM and NmoM exhibit a deviation of $40.41 \pm 0.01^{\circ}$ compared to the remaining four at $11.23 \pm 2.08^{\circ}$. For the NxxM isomers optimised in the gas phase this deviation is small, while slight deviations exist for the optimised structures in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. In general, the NoxM triad is planar (due to the intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ ) and the molecular distortion of the remaining NxxM structures occurs through rotation of the pyridine ring (gas phase) and both pyridine ( $\mathbf{N}$ ) and tolyl (M) rings (in solvents). Crystallographic and spectroscopic results support this interaction.

### 2.2.6.2. Conformational analysis

Fig. 46 depicts the nine PES conformational analysis diagrams of the NxxM modelled structures in the gas phase. The $\mathbf{N}$-ring (pyridinoyl ring, $\alpha$ dihedral angle) is drawn as a full red line, with the M-ring (tolyl ring, $\beta$ dihedral angle) as a blue dashed
line. At $\theta=0$ and $\pm 180^{\circ}$, the conformation of the asymmetric $\mathbf{N}$ - or $\mathbf{M}$-ring is noted as syn or anti. Higher resolution PES diagrams are provided in the ESI I (Section 3.4.2). The modularity of the $\mathbf{N x x M}$ isomer series is highly expressed, with each $\mathbf{N}$ or $\mathbf{M}$ ring ( $p-, m$ - or $o-$ ) having a distinctive PES curve as in previous analyses.

The para-pyridine ( $\mathbf{N} \mathbf{p}$ ) ring is symmetrical, with all stable conformations energetically equal. The PES curve has two global maxima at $c a .65^{\circ}$ and $-120^{\circ}\left(\mathrm{TS}_{\mathrm{Np}}{ }^{\text {II }}\right.$ $\left.=11.94 \pm 0.18 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$, two local maxima at around $-30^{\circ}$ and $150^{\circ}\left(\mathrm{TS}_{\mathrm{Np}}{ }^{\mathrm{I}}=1.98 \pm 0.05\right.$ $\mathrm{kJ} . \mathrm{mol}^{-1}$ ) and four global minima at ca. $0,-55,125$ and $\pm 180^{\circ}$.

The meta-pyridine ( $\mathbf{N m}$ ) ring has two global maxima at $c a .-120^{\circ}$ and $65^{\circ}$, $\left(\mathrm{TS}_{\mathrm{Nm}}{ }^{\text {III }}=14.57 \pm 0.12 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$, two local maxima at $c a .-25^{\circ}\left(\mathrm{TS}_{\mathrm{Nm}}{ }^{\mathrm{I}}=1.48 \pm 0.05\right.$ $\left.\mathrm{kJ} . \mathrm{mol}^{-1}\right)$ and $150^{\circ}\left(\mathrm{TS}_{\mathrm{Nm}}{ }^{\mathrm{II}}=7.57 \pm 0.17 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$, two local minima at $c a .125^{\circ}$ and $\pm 180^{\circ}\left(\mathrm{LM}_{\mathrm{Nm}}{ }^{\mathrm{I}}=4.70 \pm 0.17 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ and two global minima at $0^{\circ}$ and $-55^{\circ}$. The preferred conformation is $\mathbf{N}$-syn while the difference on changing to $\mathbf{N}$-anti is $4.70 \pm 0.17 \mathrm{~kJ}^{2} \mathrm{~mol}^{-1}$; Boltzmann distribution of the different conformers indicates that $\sim 86 \%$ of all molecules at 294 K have the $\mathbf{N m}$ ring in the $\mathbf{N}$-syn conformation with the remainder in the $\mathbf{N}$-anti conformation.

The ortho-pyridine (No) ring shows a symmetric PES curve with one global maximum at $\pm 180^{\circ}\left(\mathrm{TS}_{\mathrm{No}}{ }^{\mathrm{II}}=59.07 \pm 0.53 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$, two local maxima at $\pm 105^{\circ}\left(\mathrm{TS}_{\mathrm{No}}{ }^{\mathrm{I}}=\right.$ $\left.50.28 \pm 0.34 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$, two local minima at $c a . \pm 130^{\circ}\left(\mathrm{LM}_{\mathrm{No}}{ }^{\mathrm{I}}=49.44 \pm 0.41 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$ and one global minimum at $0^{\circ}$. Strongly favoured is the $\mathbf{N}$-syn conformation where the intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond forms. The para-tolyl $(\mathbf{p M})$ gives a symmetric PES curve with two global maxima at $c a . \pm 90^{\circ}\left(\mathrm{TS}_{\mathrm{pM}}{ }^{\mathrm{I}}=13.15 \pm 0.09 \mathrm{~kJ} . \mathrm{mol}^{-1}\right.$, while $\mathrm{TS}_{\mathrm{pM}}{ }^{\mathrm{I}}[\mathbf{N o p M}]=17.33 \mathrm{~kJ} . \mathrm{mol}^{-1}$ ), and two global minima at $0^{\circ}$ and $\pm 180^{\circ}$. The meta-tolyl $(\mathbf{m M})$ has a symmetric PES curve with two global maxima at $c a . \pm 90^{\circ}\left(\mathrm{TS}_{\mathrm{mM}}{ }^{\mathrm{I}}=\right.$ $14.54 \pm 0.06 \mathrm{kJ.mol}^{-1}$, while $\mathrm{TS}_{\mathrm{mM}}{ }^{\mathrm{I}}[\mathbf{N o m M}]=8.79 \pm 0.11 \mathrm{~kJ} . \mathrm{mol}^{-1}$ ), one local minima at $c a . \pm 180^{\circ}\left(\mathrm{LM}_{\mathrm{mM}}{ }^{\mathrm{I}}=0.37 \pm 0.02 \mathrm{~kJ} . \mathrm{mol}^{-1}\right.$, while $\left.\mathrm{LM}_{\mathrm{mM}}{ }^{\mathrm{I}}[\mathbf{N o m M}]=0.46 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ and one global minima at $0^{\circ}$.

Although the $\mathbf{M}$-anti conformation in the $\mathbf{m M}$ ring is the slightly preferred conformation, the $0.37-0.46{\mathrm{~kJ} . \mathrm{mol}^{-1}}^{-1}$ energy difference when compared to the $\mathbf{M}-\boldsymbol{s y n}$ conformation ensures both conformations are plausible. The ortho-tolyl (oM) shows a strong preference for the M-syn conformation. However, both NpoM and NmoM have asymmetric PES curves, whereas the planar NooM has a symmetrical curve. Although the M-syn conformation is preferred, deep potential wells at the local minima ( $\mathrm{LM}_{0 \mathrm{M}, 5}$ 5-
 extent.


Fig. 46: The PES conformational analysis for the nine NxxM isomers optimised in the gas phase: the equivalent solid state angle is depicted by ( ) with, if applicable, an assigned identification letter.

The PES in NpoM has one global maximum at $170^{\circ}$, while in NmoM it is at $\pm 180^{\circ}\left(\mathrm{TS}_{\mathrm{oM}}{ }^{\text {III }}=37.13 \pm 0.53 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$. The PES curve has two local maxima at $\mathrm{ca} .85^{\circ}$ $\left(\mathrm{TS}_{\mathrm{oM}}{ }^{\mathrm{I}}=10.39 \pm 0.01 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ and $-85^{\circ}\left(\mathrm{TS}_{\mathrm{oM}}{ }^{\mathrm{II}}=11.21 \pm 0.19 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$, two local minima at $c a .-125^{\circ}\left(\mathrm{LM}_{\mathrm{oM}}{ }^{\mathrm{I}}=4.97 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ and $110^{\circ}\left(\mathrm{LM}_{\mathrm{oM}}{ }^{\mathrm{II}}=7.47 \pm 0.03 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$, and one global minimum $\left(0^{\circ}\right)$. The symmetric PES curve of the oM ring in NooM has one global maximum at $\pm 180^{\circ}\left(\mathrm{TS}_{\mathrm{oM}}{ }^{\mathrm{II}}[\mathbf{N o o M}]=35.73 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$, two local maxima at $\pm 85^{\circ}\left(\mathrm{TS}_{\mathrm{oM}}{ }^{\mathrm{I}}[\mathbf{N o o M}]=15.31 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$, two local minima at $\pm 120^{\circ}\left(\mathrm{LM}_{\mathrm{oM}}{ }^{\mathrm{I}}[\mathbf{N o o M}]=\right.$ $9.73 \mathrm{kJ.mol}^{-1}$ ) and the global minimum at $0^{\circ}$.

Overall, the gas phase conformational analysis shows that the favoured NxxM conformation is $\mathbf{N}-\mathbf{s y n} / \mathbf{M}-\mathbf{s y n}$ for the majority of asymmetric rings (structures), but excluding the $\mathbf{N x m M}$ triad, where the preferred conformation is $\mathbf{N}$-syn/M-anti, albeit the difference with $\mathbf{N}-\mathbf{s y n} / \mathbf{M}-\mathbf{s y n}$ is small with both conformations possible.

The conformational analysis results using the PCM-SMD solvation model $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ and $\mathrm{H}_{2} \mathrm{O}$ as solvents) are given in Fig. 47. Introduction of the solvent model does not cause a major conformational change in the modelled NxxM structures (synanti model) in the gas phase; asymmetric NxxM isomers have the $\mathbf{N}-\mathbf{s y n} / \mathbf{M}-\mathbf{s y n}$
conformation with the NxmM triad being N-syn/M-anti. As seen in previous cases (Mxx, Fxx, and NxxF) the general feature of the solvated conformational analysis is a decrease in rotational barriers. However, when specific rings are coplanar with the amide linker an increase is noticed. This is due to an increase in repulsion factors due to the higher dielectric field.


Fig. 47: The PES conformational analysis diagrams for the nine NxxM isomers optimised in gas phase (full line), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (dashed line) and in $\mathrm{H}_{2} \mathrm{O}$ (dotted line) using the PCM-SMD solvation method.

When the para-pyridine ( $\mathbf{N p}$ ) ring rotates towards orthogonality (around $\mathrm{TS}_{\mathrm{Np}}{ }^{\mathrm{II}}$ ) the rotational barriers decrease by $\sim 16.5 \%$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\sim 17.2 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$, whereas, in the areas of planarity (around $\mathrm{TS}_{\mathrm{Np}}{ }^{\mathrm{I}}$ ) the rotational barriers increase in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by $\sim 15 \%$ $\left(\sim 50 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$. The decrease when orthogonal is almost the same in both solvents, while when planar the more polar solvent has the higher impact on the barrier increase. This is due to an increase in repulsion associated with the higher dielectric field.

The meta-pyridine ( $\mathbf{N m}$ ) ring has a specific rotational barrier change pattern. In the $\mathbf{N}-\mathbf{s y n}$ conformation (from $\theta=-120^{\circ} \rightarrow 60^{\circ}$ ) the $\mathbf{N m}$ ring is similar to the $\mathbf{N p}$ ring with the decrease with orthogonal rings of $\sim 22.4 \%$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\sim 25 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ and an increase when the rings are co-planar is $\sim 54.1 \%$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\sim 133.6 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$. In the N anti conformation a linear decrease by $\sim 3.35 \mathrm{kJ.mol}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\sim 3.87 \mathrm{~kJ} . \mathrm{mol}^{-1}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$
is observed. This results in a small energy gap between the $\mathbf{N}$-syn and $\mathbf{N}$-anti conformations of the $\mathbf{N m}$ ring, $1.45 \mathrm{~kJ} . \mathrm{mol}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.38 \mathrm{~kJ} . \mathrm{mol}^{-1}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$. From the Boltzmann distribution, at 294 K approximately $35 \%$ of the molecules in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and approximately $47 \%$ of the molecules in $\mathrm{H}_{2} \mathrm{O}$ have the $\mathbf{N m}$ ring in the $\mathbf{N}$-anti conformation. Therefore, conformational analysis with the PCM-SMD solvation model predicts the plausibility of the $\mathbf{N}$-anti conformation of the $\mathbf{N m}$ ring. The noticeable shift of barriers ( $\Delta \theta \sim 5-10^{\circ}$ ) occurs due to the deviation of dihedral angles in solvents.

The rotational barrier for the ortho-pyridine (No) ring symmetrically decreases by $\sim 41.7 \%\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and $\sim 63.2 \%\left(\mathrm{H}_{2} \mathrm{O}\right)$. Therefore, the solvent effect on the rotational barrier of the No ring is the most distinct, albeit as expected: the PCM-SMD model predicts the interaction of a strong solvent electric field with the intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond in the three NoxM isomers and weakening the interaction.

The para-tolyl ( $\mathbf{p M}$ ) ring shows a regular decrease by $\sim 27 \%$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\sim 49 \%$ in $\mathrm{H}_{2} \mathrm{O}$ ). In NopM all of the barrier peaks are symmetrical, but in NppM and NmpM the peaks are shifted by $\sim 5^{\circ}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\sim 10^{\circ}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$.

In the meta-tolyl $(\mathbf{m M})$ ring the pattern is similar to the $\mathbf{p M}$ ring with decreases of $\sim 28.5 \%$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\sim 49 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$, similar barrier shifts are noted as for the $\mathbf{p M}$ ring. The energy difference between M-anti and M-syn in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ decreases by $\sim 43 \%$ ( 0.21 $\mathrm{kJ} . \mathrm{mol}^{-1}$ ), while in $\mathrm{H}_{2} \mathrm{O}$ the difference is almost cancelled ( $93 \%$, negligible $0.03{\mathrm{~kJ} . \mathrm{mol}^{-}}^{-}$ ${ }^{1}$ ), making both conformations energetically equal. Theoretically, this observation implies that the $\mathbf{m M}$ ring in polar solvents can adopt both M-anti and M-syn conformations equivalently.

The ortho-tolyl ( $\mathbf{o M}$ ) ring behaviour is more complex with the NpoM/NmoM isomers showing differences with NooM. The rotational barriers in the M-syn conformation decrease by $\sim 37 \%\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and in the $\mathbf{M}$-anti conformation increase by $\sim 8 \%$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\left(\sim 13 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$. However, due to a strong additional rotation of the $\mathbf{o M}$ rings optimised in $\mathrm{H}_{2} \mathrm{O}$ the PES curve shape exhibits significant deviations. An extra local maximum is positioned at $-45^{\circ}$ only and $\mathrm{TS}_{\mathrm{oM}}{ }^{\text {III }}$ is displaced (by $\Delta \theta=40^{\circ}$ ). For the symmetrical NooM the pattern is much simpler: as M-syn the conformation barrier decrease is $\sim 31 \%$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\sim 54 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ and in $\mathbf{M}$-anti the increase is $6.7 \%$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5.6 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ because solvent induced high dielectric field can amplify repulsion of the methyl group and carbonyl oxygen.

Although the NxxM isomers are insoluble in $\mathrm{H}_{2} \mathrm{O}$, it was used as an example of a strong polar solvent $\left(\varepsilon_{r}=80\right)$ to illustrate and amplify solvation effects with implicit polar solvent in the PCM-SMD model; extrapolations can be made for polar solvents
where the NxxM isomers are soluble. Spectroscopic data demonstrate that solvents like DMSO can disrupt intramolecular hydrogen bonding in the NoxM series.

### 2.2.6.3. Energy results

The energy calculation results (CBS-QB3) (Table 26, full data is given in the ESI I, Section 3.4.1) comprise the electronic energies ( $\delta \mathrm{E}_{\text {SCF }}$ ) and Gibbs free energies ( $\delta \mathrm{G}$ ) in all three media, including $\Delta \mathrm{G}_{\text {solv }}$ for $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$, as well as $\Delta \Delta \mathrm{G}_{\text {solv }}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ vs. $\left.\mathrm{H}_{2} \mathrm{O}\right)$. Differences between each molecule are given as $\delta \mathrm{E}_{\text {SCF }}(\delta \mathrm{G})$ and differences between media as $\Delta \mathrm{E}_{\text {SCF }}(\Delta \mathrm{G})$. The least stable molecules are $\mathbf{N p p M}$ and NpoM, while the most stable, regardless of media is NomM. The NoxM molecules due to their inherent stabilisation through intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\mathrm{pyr}}$ hydrogen bonding are the most stable, with significant differences as compared to the other six $\mathbf{N p x M} / \mathbf{N m x M}$ isomers.
Another stabilisation factor is the methyl group located in a meta position, although this effect is less pronounced. In total, the effects of the pyridine $\mathbf{N}$ atom and $\mathrm{CH}_{3}$ group positions on stability is summarised as: $\mathbf{N o}>\mathbf{N m}>\mathbf{N} \mathbf{p}$ with $\mathbf{m M}>\mathbf{p} \mathbf{M}>\mathbf{o M}$. The estimated $\Delta \mathrm{G}_{\text {solv }}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$, along with theoretical $\log \mathrm{K}_{\mathrm{D} / \mathrm{w}}$ (given in the ESI I, Section 3.4.1) are consistent with our experimental observations and with no unexpected results.

Table 26: The energy calculation results for the $\mathbf{N x x M}$ isomers ${ }^{\mathrm{a}}$ in $\mathrm{kJ} . \mathrm{mol}^{-1}$

| gas phase |  |  | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ |  | $\mathrm{H}_{2} \mathrm{O}$ |  | $\begin{aligned} & \text { gas } \\ & \text { phase } \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{aligned}$ |  | gas phase $\rightarrow \mathrm{H}_{2} \mathrm{O}$ |  | $\mathrm{CH}_{2} \mathrm{Cl}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\delta \mathrm{E}_{\text {SCF }}$ | ¢G | $\delta \mathrm{E}_{\text {SCF }}$ | ¢G | $\delta \mathrm{E}_{\text {SCF }}$ | ¢G | $\Delta \mathrm{E}_{\text {SCF }}$ | $\Delta \mathrm{G}_{\text {solv }}$ | $\Delta \mathrm{E}_{\text {SCF }}$ | $\Delta \mathrm{G}_{\text {solv }}$ | $\Delta \Delta \mathrm{E}_{\text {s }}$ | $\Delta \mathrm{G}_{\text {solv }}$ |
| NppM | -4.38 | 0.00 | -5.63 | -0.69 | -1.54 | -1.83 | -72.09 | -67.33 | -55.38 | -47.53 | 16.71 | 19.80 |
| NpmM | -6.63 | -8.38 | -7.63 | -0.94 | -3.33 | -1.85 | -71.84 | -59.21 | -54.93 | -39.17 | 16.92 | 20.04 |
| NpoM | 0.00 | -2.09 | 0.00 | 0.00 | 0.00 | 0.00 | -70.84 | -64.55 | -58.22 | -43.61 | 12.62 | 20.94 |
| NmpM | -10.03 | -6.64 | -10.99 | -1.57 | -7.84 | -2.81 | -71.81 | -61.58 | -56.03 | -41.87 | 15.77 | 19.70 |
| NmmM | -12.36 | -7.78 | -13.16 | -2.11 | -9.69 | -1.74 | -71.64 | -60.98 | -55.55 | -39.66 | 16.09 | 21.32 |
| NmoM | -5.78 | -4.23 | -5.71 | -1.69 | -6.60 | -1.16 | -70.78 | -64.10 | -59.04 | -42.64 | 11.73 | 21.47 |
| NopM | -33.97 | -27.00 | -24.99 | -16.98 | -14.44 | -8.28 | -61.86 | -56.62 | -38.69 | -26.98 | 23.17 | 29.64 |
| NomM | -36.31 | -27.31 | -26.99 | -20.21 | -16.64 | -15.08 | -61.52 | -59.54 | -38.55 | -33.48 | 22.97 | 26.06 |
| NooM | -30.37 | -29.93 | -20.73 | -17.29 | -9.81 | -8.31 | -61.21 | -54.00 | -37.67 | -24.08 | 23.54 | 29.92 |

${ }^{\text {a }}$ Only the differences between each molecule ( $\delta$ ) and media ( $\Delta, \Delta \Delta$ ) are shown. NppM and $\mathbf{N p o M}$ isomers are taken as basis point.

### 2.2.7. Comparisons of the solid state and modelling data

Comparison of the NxxM isomer structures from crystal structure data and calculations is made by marking (as $\bullet$ ) torsion angle differences $(\Delta \theta)$ between the
experimental and theoretical structures on the corresponding gas phase PES diagrams (Fig. 46). For NmmM and NomM with $Z>1$ the corresponding angles are labelled as A or B. Most crystallographic dihedral angles correlate with their computational results by having similar conformations with an average offset of torsion angles of $\pm 20-40^{\circ}$. This holds for the NoxM triad with NooM having both a planar crystal and calculated molecular structure. Generally, no significant differences $(\Delta \theta)$ are seen in the NoxM isomers. The 5-Cl-NoxM side products were not subjected to conformational analysis; their crystal structure conformations generally correspond with the optimised models of the related NoxM isomers.

In the $\mathbf{N p x M}$ crystal structures, the $\mathbf{N p}$-ring conformation corresponds with its optimised gas phase model; however, it can found in either the $\mathrm{GM}_{0}$ or $\mathrm{GM}_{\mathrm{Np}}$ equivalent positions. In the case of the $\mathbf{N m x M}$ isomers the $\mathbf{N m}$-ring adopts the unstable $\mathrm{TS}_{\mathrm{Nm}}{ }^{\mathrm{I}}$ position in $\mathbf{N m p M}$ or $\mathrm{LM}_{\mathrm{Nm}}{ }^{\mathrm{I}}$ in both $\mathbf{N m m M}$ and $\mathbf{N m o M}$. The unstable planar conformation of the Nm-ring in both NmpM and NmpFM crystal structures is due to the catemeric chain formation driven by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N} / \mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding. The Noring conformations in the NoxM crystal structures correspond with their modelled equivalents.

In almost all molecules with the exception of $\mathbf{N p o M}$ and $\mathbf{N m o M}$, the M-ring conformation is the same in both the solid state and optimised gas phase models with a maximum deviation of $\pm 40^{\circ}$. In fact all NxmM crystal structures have the mM-ring as M-anti as predicted by conformational analyses despite the small differences with the M-syn structure ( $0.37-0.46 \mathrm{~kJ} . \mathrm{mol}^{-1}$ ). This is the reverse of the $\mathbf{N x m F}$ isomers where opposite conformations and/or disorders are noted.

Generally, for the $\mathbf{N m}$-ring the main conformational differences are seen in the NmmM and NmoM isomers. The calculated NmmM conformation is $\mathbf{N}$-syn/M-anti, whereas the solid state $\left(Z^{\prime}=2\right)$ has a meta-stable $\mathbf{N}$-anti/M-anti conformation for both molecules (Fig. 39), with $\mathbf{A}$ and $\mathbf{B}$ residing in the $\mathrm{LM}_{\mathrm{Nm}}{ }^{\mathrm{I}}$ potential well (Fig. 46) There is a high probability of the $\mathbf{N}$-anti conformation especially in polar solvents, allowing isolation of this conformation in the solid state. The reverse arrangement of the $\mathbf{N}$-ring solid state conformation as N -syn would not facilitate the ${ }_{\text {amide }} \mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ hydrogen bond and would introduce short $\mathrm{H} \cdots \mathrm{H}$ sterically hindered contacts in the crystal structure (if allowed); the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions are crucial for the formation of the crystal structure backbone. The same phenomenon exists for the structurally similar Mmm and NmmF.

For NmoM the crystallographic conformation is $\mathbf{N}$-anti/M-anti and opposite to the $\mathbf{N}-\mathbf{s y n} / \mathbf{M}-\mathbf{s y n}$ in the modelled structure (Fig. 46, meta-stable potential wells at $\mathrm{LM}_{\mathrm{oM}}{ }^{\text {II }}$ and $\mathrm{LM}_{\mathrm{Nm}}{ }^{\text {I' }}$ ). As for $\mathbf{N m m M}$, conformational analysis shows the N -anti conformation is likely, especially in polar solvents, while the M-anti conformation can be expected as well. The primary interaction of NmoM is $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ which generates a 1-D chain along the $b$-axis. In this arrangement the ortho $-\mathrm{CH}_{3}$ group is positioned as $\mathbf{M}$ anti because the alternate $\mathbf{M}$-syn conformation brings the $\mathrm{CH}_{3}$ group closer to the N $\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interaction and effects a steric clash. Therefore, the $\mathrm{LM}_{\mathrm{oM}}{ }^{\text {II }}$ potential well represents the only niche available for the relatively sterically bulky ortho- $\mathrm{CH}_{3}$ group (compared to H ). Similarly, the $\mathbf{N}_{\mathrm{pyr}}$ is located as $\mathbf{N}$-anti, as the opposite $\mathbf{N}$-syn conformation negates some weak but favourable C-H $\cdots \pi$ interactions and places it too close to the carbonyl C atom of a neighbouring molecule.

For comparison NpoM has $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ as the primary interaction (as in $\mathbf{N m o M}$ ). In NpoM the ortho- $\mathrm{CH}_{3}$ is positioned as M-syn but in a highly distorted and relatively unstable conformation, being almost orthogonal to the amide linker. However, conformational analysis with the PCM-SMD solvation model suggests that this conformation in polar solvents may be plausible. For NpoM the ortho-methyl group also participates in crystal structure formation making additional weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ contacts with the $\mathrm{C}=\mathrm{O}$ of an adjacent $\mathbf{N p o M}$ molecule (C17 in Fig. 36).

An overview of the benzamide and pyridinecarboxamide results is presented in the "Discussion and Conclusions".

## Chapter II: Carbamates

## 1. General description of carbamate syntheses

The simplest synthetic method for the formation of phenyl- $N$-pyridinyl-carbamates ( $\mathbf{C x x R}$ ) (Scheme 32) is the condensation reaction of aminopyridines with commercially available phenyl chloroformates in the presence of base $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$ and solvent $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{196-}$ ${ }^{198}$ This method is analogous to the Schotten-Baumann reaction as applied to the previous isomer grids. The condensation reaction gives relatively pure products in high yields. Unfortunately only a limited number of phenyl chloroformates are commercially available, i.e. para-substituted and only two ortho-substituted phenyl chloroformates. Therefore, 14 compounds were synthesised using the condensation approach starting from the 3-/4-aminopyridines (Method 1, Section 1.1). Alternatively, if 2aminopyridine is used, double carbamates are obtained where both hydrogen atoms in the amine moiety are substituted with chloroformates. The result is similar to the formation of the (2:1) Mxod and Fxod by-products (Chapter I, Section 1). As with the benzamides, this is due to the pyridine nitrogen in the ortho position. In order to minimise the formation of double carbamates, the reaction is carried out without solvent and base, applying only the mechanical mixing of two compounds at lower temperature (Method 2, Section 1.3). The resulting mixture was then purified by re-crystallisation.

There were several options available for the synthesis of the remaining CxxR compounds. One of these approaches is the use of an agent that transforms phenols into the desired chloroformates, phosgene or a substitute, diphosgene or triphosgene. Due to health and safety reasons these methods were not used. A simple and straightforward method for carbamates synthesis is the Curtius rearrangement reaction (or Curtius reaction or degradation), ${ }^{199}$ a chemical reaction that involves the rearrangement of an acyl azide to an isocyanate (Scheme 31). ${ }^{200}$ The acyl azide (pyridinyl azide) can be formed from the carboxylic acid by a suitable agent like diphenylphosphoryl azide (DPPA). ${ }^{201}$


Scheme 31: Rearrangement of benzyl azide into a reactive benzylisocyanate molecule

Pyridinecarboxylic acids can be easily converted into pyridinyl azides using diphenylphosphoryl azide, at higher temperature $\left(70^{\circ} \mathrm{C}\right)$ in the presence of a base. The pyridinyl azides spontaneously rearrange into reactive pyridinyl isocyanates. Reaction of pyridinyl isocyanate with phenol gives the phenyl- $N$-pyridinyl-carbamate (CxxR, Section 1.3).

Usually the Curtius rearrangement reaction (Curtius reaction, variant A, see section 1.3) is performed as a two step (one pot) reaction, with isonicotinic or nicotinic acids as starting materials, diphenylphosphoryl azide as converting agent, and $\mathrm{Et}_{3} \mathrm{~N}$ as base in anhydrous acetonitrile at $70^{\circ} \mathrm{C}$. Immediately after the pyridinyl isocyanate is formed, the addition of a phenol starts the final condensation into a phenyl- $N$-pyridinylcarbamate. Similar syntheses have been described in the literature. ${ }^{202-204}$

This method was convenient when isonicotinic or nicotinic acids (3-/4pyridinecarboxylic acids) were used as starting materials, giving acceptable yields. However, if picolinic acid (2-pyridinecarboxylic acids) was used in order to synthesise phenyl- $N$-pyridin-2-yl-carbamates (CoxR) the yield was low ( $\sim 2 \%$ ). This was overcome by a longer reaction time, using toluene instead of acetonitrile as solvent and performing the reaction at $110^{\circ} \mathrm{C}$ (variant A, Section 1.3)..$^{205}$

### 1.1. Method 1. Condensation of AP's with phenyl chloroformates

1. To a stirring solution of 3-/4-aminopyridine ( $490 \mathrm{mg}, 5.2 \mathrm{mmol}$ ) in 150 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, triethylamine was added $(0.740 \mathrm{ml}, 5.2 \mathrm{mmol})$ and then $\boldsymbol{R}$-phenyl chloroformate $\left[\boldsymbol{R}=4-\mathbf{F}, 4-\mathbf{C l}, 4-\mathrm{Br}, 4-\mathbf{O C H}_{\mathbf{3}}, 4-\mathbf{C H}_{\mathbf{3}}, 2-\mathbf{C l}\right.$ or $\left.2-\mathbf{O C H}_{3}\right](5.2 \mathrm{mmol})$ was added dropwise under an atmosphere of $\mathrm{N}_{2}$. The resulting mixture was stirred for 3 hours.

2a. If a white product formed it was filtered and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (in most cases it was the pure product).

2b. The organic reaction mixture was washed three times with 250 ml of $3 \%$ $\mathrm{KHCO}_{3}$, and dried with anhydrous $\mathrm{MgSO}_{4}$. After removal of the solvent, the product was recovered.

If necessary, purification was accomplished by column chromatography using silica as stationary phase and a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeOH (8:1) as mobile phase. This method (Scheme 32) was used for the synthesis and purification of the following 14 compounds: CppF, CppCl, $\mathbf{C p p B r}, \mathbf{C p p O M e}, \mathbf{C p p M}, \mathbf{C m p F}, \mathbf{C m p C l}, \mathbf{C m p B r}$, CmpOMe, $\mathbf{C m p M}, \mathbf{C p o C l}, \mathbf{C m o C l}, \mathrm{CpoOMe}$ and CmoOMe .


Scheme 32: Condensation of 3-/4-AP with phenyl chloroformates forming CxxR

### 1.2. Method 2. Condensation of 2-AP with phenyl chloroformates in solventless conditions

$\mathbf{R}$-phenyl chloroformate $\left[\mathbf{R}=4-\mathbf{F}, 4-\mathbf{C l}, 4-\mathrm{Br}, 4-\mathbf{O C H}_{\mathbf{3}}, 4-\mathbf{C H}_{3}\right](5.23 \mathrm{mmol})$ was added using a pipette to a cooled 2-aminopyridine solid ( 10.46 mmol ) in a test tube (on an ice bath) and the mixture was vigorously agitated. The resulting solid was dissolved in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{ml})$ and aqueous $\mathrm{KHCO}_{3}(1 \%, 250 \mathrm{ml})$. The emulsion was allowed to separate in a funnel, and the organic layer was washed three times with an aqueous solution of $\mathrm{KHCO}_{3}$ and twice with brine. The organic layer was dried with $\mathrm{MgSO}_{4}$ and the crude product obtained after evaporation of the solvent.

The crude product was washed with a cooled mixture of hexane, acetone and ethyl acetate (3:1:1). If necessary the precipitate was dissolved in warm $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and recrystallisation induced. Crystals of pure product were collected on a Hirsch funnel. This method (Scheme 33) was used for the synthesis and purification of the following five compounds: CopF, CopCl, CopBr, CopOMe and CopM (CopR).



Scheme 33: Condensation of 2-aminopyridine with phenyl chloroformates

### 1.3. Method 3. Curtius rearrangement reaction, variant $A$

1. A mixture of isonicotinic or nicotinic acid $(1.2877 \mathrm{~g}, 10.46 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(1.46$ ml 10.46 mmol ) and diphenylphosphoryl azide ( $2.258 \mathrm{ml}, 10.46 \mathrm{mmol}$ ) was stirred for 1 hour in 30 ml of dry acetonitrile at room temperature (Scheme 34). The reaction mixture was carefully heated (water bath) to reflux for 1 hour and $\mathbf{R}$-phenol $(\mathrm{R}=3-\mathbf{F}, 2-$ F, 3-Cl, 3-Br, $2-\mathrm{Br}, 3-\mathrm{OCH}_{3}, 2-\mathrm{CH}_{3}$ and $\left.3-\mathrm{CH}_{3}\right)(10.46 \mathrm{mmol})$ was added. The solution was refluxed for 7 hours and gradually cooled down and allowed to stir overnight.

2a. If a white precipitate formed it was filtered, washed with acetonitrile and dried (usually found to be the pure product).

2b. The solvent was removed from the reaction mixture under reduced pressure, the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed thrice with a solution of $\mathrm{KHCO}_{3}$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ $(\mathrm{pH}=9)$ and twice with brine/ammonium chloride $(\mathrm{pH}=5)$. The organic fraction was evaporated and the compound re-crystallised from diethyl ether and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. If necessary, the purification was accomplished by column chromatography using silica and a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and methanol (8:1) as mobile phase. There were 16 compounds obtained using this method: CpmF, CmmF, CpoF, CmoF, $\mathbf{C p m C l}$, CmmCl, CpmOMe, CmmOMe , CpmBr , $\mathrm{CpoBr}, \mathrm{CmmBr}, \mathrm{CmoBr}, \mathrm{CpmM}, \mathrm{CpoM}$, CmmM, CmoM.


$\mathrm{R}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{CH}_{3}, \mathrm{OCH}_{3}$,

phenyl pyridinylcarbamate
Scheme 34: Curtius rearrangement reaction, variant $A$, synthesis of the $\mathbf{C x x R}$ compounds.

### 1.4. Method 4. Curtius rearrangement reaction, variant $B$

A mixture of picolinic acid ( $2.5754 \mathrm{~g}, 20.92 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(2.92 \mathrm{ml} 20.92 \mathrm{mmol})$, and diphenylphosphoryl azide ( $4.516 \mathrm{ml}, 20.92 \mathrm{mmol}$ ) was refluxed in 40 ml of dry toluene at $100^{\circ} \mathrm{C}$ for 4 hours. The $\mathbf{R}$-phenol $\left(\mathrm{R}=3-\mathbf{C l}, 2-\mathrm{Cl}, 3-\mathrm{Br}, 3-\mathrm{OCH}_{3}, 2-\mathrm{OCH}_{3}, 3-\right.$ $\mathrm{CH}_{3}$ and $2-\mathrm{CH}_{3}$ ) ( 20.92 mmol ) was added and the reaction mixture was refluxed (Scheme 35) for an additional 4 hours and left to cool overnight.

If a precipitate formed then it was filtered using a Hirsch funnel. The precipitate was found to contain the product. The filtrate was subjected to further purification. Into the filtrate 100 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the organic mixture was washed thrice with a solution of $\mathrm{KHCO}_{3}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{pH}=9)$ and twice with brine. The organic fraction was dried with $\mathrm{MgSO}_{4}$, filtered and solvent removed.

The black product was washed (re-crystallised) with diethyl ether and dark crystals were obtained. The presence of the product was confirmed by TLC and the combined products were purified by column chromatography (silica/ $\mathrm{CHCl}_{3}$ ). Seven compounds (CoxR) were obtained using this method: ComM, CooM, ComOMe, $\mathrm{CooOMe}, \mathrm{ComBr}, \mathbf{C o o C l}$ and $\mathbf{C o m C l}$.


Scheme 35: Curtius rearrangement reaction, variant B, synthesis of some phenyl-pyridin-2-ylcarbamates (CoxR)

## 2. Comment on synthesis and general characteristics

Table 27 summarises the amounts, yields and melting points of the CxxR compounds.

Table 27: Yields and melting points of the CxxR compounds

|  | $\mathbf{m} / \mathbf{g}$ | \% | m.p. $/^{\boldsymbol{}} \mathbf{C}$ |  | $\mathbf{m} / \mathbf{g}$ | \% | m.p..$^{\boldsymbol{}} \mathbf{C}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{C p p F}$ | 0.923 | 76 | $183.0-185.3$ | $\mathbf{C p o F}$ | 0.404 | 16 | $166.3-169.0$ |
| $\mathbf{C p p C l}$ | 1.019 | 78 | $196.9-199.6$ | $\mathbf{C m o F}$ | 0.806 | 33 | $134.1-136.5$ |
| $\mathbf{C p p B r}$ | 1.106 | 72 | $204.5-206.4$ | $\mathbf{C m m C l}$ | 1.106 | 42 | $168.9-171.2$ |
| $\mathbf{C p p O M e}$ | 1.074 | 84 | $155.1-156.7$ | $\mathbf{C p m C l}$ | 0.600 | 23 | $193.0-197.5$ |
| $\mathbf{C p p M}$ | 1.118 | 94 | $163.5-165.7$ | $\mathbf{C m m M}$ | 1.700 | 71 | $112.5-113.0$ |
| $\mathbf{C m p F}$ | 0.546 | 45 | $165.3-167.4$ | $\mathbf{C p m M}$ | 0.474 | 20 | $131.3-134.6$ |
| $\mathbf{C m p C l}$ | 0.971 | 37 | $173.2-175.4$ | $\mathbf{C m o M}$ | 1.098 | 46 | $79.0-84.0$ |
| $\mathbf{C m p B r}$ | 0.660 | 43 | $167.5-170.4$ | $\mathbf{C p o M}$ | 0.863 | 36 | $128.0-131.0$ |
| $\mathbf{C m p O M e}$ | 0.820 | 32 | $159.5-162.5$ | $\mathbf{C m m O M e}$ | 1.164 | 45 | $139.5-142.5$ |
| $\mathbf{C m p M}$ | 0.610 | 51 | $167.7-170.6$ | $\mathbf{C p m O M e}$ | 0.870 | 34 | $130.1-134.7$ |
| $\mathbf{C o p F}$ | 0.450 | 29 | $178.9-179.9$ | $\mathbf{C m m B r}$ | 1.208 | 39 | $152.2-154.7$ |
| $\mathbf{C o p C l}$ | 0.290 | 22 | $197.2-199.8$ | $\mathbf{C m o B r}$ | 0.642 | 21 | $86.2-86.9$ |
| $\mathbf{C o p B r}$ | 0.200 | 13 | $194.3-196.6$ | $\mathbf{C p o B r}$ | 0.700 | 23 | $167.6-168.5$ |
| $\mathbf{C o p O M e}$ | 0.350 | 27 | $182.3-184.7$ | $\mathbf{C p m B r}$ | 1.212 | 39 | $191.6-193.4$ |
| $\mathbf{C o p M}$ | 0.362 | 30 | $190.0-191.8$ | $\mathbf{C o m C l}$ | 0.345 | 23 | $173.4-175.4$ |
| $\mathbf{C p o C l}$ | 0.870 | 67 | $168.2-170.3$ | $\mathbf{C o o C l}$ | 0.243 | 20 | $144.4-146.1$ |
| $\mathbf{C p o O M e}$ | 1.073 | 84 | $187.3-191.8$ | $\mathbf{C o m M}$ | 1.487 | 31 | $139.7-143.8$ |
| $\mathbf{C m o C l}$ | 0.365 | 28 | $123.4-125.6$ | $\mathbf{C o m O M e}$ | 1.2269 | 24 | $144.2-145.4$ |
| $\mathbf{C m o O M e}$ | 0.283 | 22 | $107.5-109.6$ | $\mathbf{C o o M}$ | 1.664 | 33 | $160.1-162.3$ |
| $\mathbf{C p m F}$ | 0.300 | 25 | $160.5-162.9$ | $\mathbf{C o o O M e}$ | 0.697 | 14 | $157.3-159.8$ |
| $\mathbf{C m m F}$ | 1.200 | 49 | $151.3-152.3$ | $\mathbf{C o m B r}$ | 0.32 | 5 | $175.1-175.5$ |

The CpxR compounds synthesised with Method 1 usually had a good to excellent yield, especially the methyl and methoxy derivatives ( $\sim 73 \%, \mathbf{C p p M}=94 \%$ ). However, the $\mathbf{C m x R}$ compounds synthesised with the same method had a lower yield ( $\sim 37 \%$ ). Finally, compounds synthesised by Method 2 (CopR) had, due to the losses during the re-crystallisation, lower yields ( $\sim 24 \%$ ). The compounds obtained by the Curtius rearrangement reaction (Method 3) had moderate yields ( $\sim 35$ ), while the CoxR compounds (Method 4) had lower yields ( $\sim 21 \%$ ). Attempts to synthesise $\mathbf{C o o F}, \mathbf{C o o B r}$ and ComF were not successful, resulting in very small and unsatisfactory yields.

The CxxR compounds are usually white powders, less crystalline than the benzamides and pyridinecarboxamides (with the exception of some methyl and methoxy derivatives) and with a specific phenolic odour. Despite the rigorous purifications, the phenolic odour originates from a small amount of decomposition giving traces of phenols.

Two major characteristics of the CxxR derivatives that differentiate them from the previous groups of compounds are the relatively poor solubility of most of the compounds and their instability (spontaneous decomposition).

The CxxR carbamates are insoluble in water and cyclohexane, while their solubility is poor in solvents such as diethyl ether, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (with the exception of most CmxR compounds), toluene, but slightly better in ethyl acetate. Solubility in $\mathrm{CH}_{3} \mathrm{CN}$, $\mathrm{CHCl}_{3}$ and $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ can be regarded as moderate, while solubility is good in MeOH (for most compounds) and excellent in DMSO.

Unfortunately, stability was approximately the reverse. The carbamates were found to be very unstable in polar solvents such as alcohols and DMSO with decomposition in DMSO found to be very fast (within hours). Hence, NMR data were not collected in DMSO- $d_{6}$, as was the case with the benzamides (Chapter I), but in acetone- $d_{6}$ affording a better solubility/stability ratio. Since stability in non-polar solvents was satisfactory while solubility was modest, crystal growth was tried from limited choices of solvents, such as $\mathrm{CH}_{3} \mathrm{COCH}_{3}, \mathrm{CHCl}_{3}, \mathrm{CH}_{3} \mathrm{CN}$, or mixtures of these solvents.

## 3. Comment on spectroscopic data

All spectroscopic data including ${ }^{1} \mathrm{H}$-, ${ }^{13} \mathrm{C}$-, ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ and IR are listed in Appendix I, Section 3 and the spectra are given in the ESI II, Section 1. Due to the insolubility/instability of the $\mathbf{C x x R}$ compounds, the NMR data were recorded in $\mathrm{CDCl}_{3}$ ( ${ }^{1} \mathrm{H}$-NMR) and acetone- $d_{6}\left({ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}\right.$ - and $\left.{ }^{19} \mathrm{~F}-\mathrm{NMR}\right)$.

As for the benzamide and pyridinecarboxamides (Chapter I), the chemical shift of the carbamate hydrogen changes position depending on the solvent. In the less polar $\mathrm{CDCl}_{3}$ the carbamate proton of the $\mathbf{C p x R}$ and $\mathbf{C m x R}$ isomers ranges from 7.3-8.0 ppm, while in more polar solvents such as acetone, it is usually at 9.5-10 ppm. However, in CoxR the carbamate proton shifts are usually found around 10 ppm regardless of solvent. These findings are in agreement with hitherto observations in benzamides and pyridinecarboxamides where almost the same pattern was observed in all isomers where the pyridine nitrogen was located ortho. The cause of this effect is delocalisation of electrons between the carbamate and pyridine nitrogens.

With regard to the IR spectra, all compounds show a strong band $c a .1745 \mathrm{~cm}^{-1}$ that corresponds with the stretch of the carbonyl $(\mathrm{C}=\mathrm{O})$ bond. The $\mathrm{N}-\mathrm{H}$ vibrations in the region between $3300 \mathrm{~cm}^{-1}$ and $2700 \mathrm{~cm}^{-1}$ are usually strongly linked to hydrogen bonding in the crystal structure. The relationship between this " $\mathrm{N}-\mathrm{H}$ " region and primary intermolecular interactions in solid state will be discussed later.

## 4. X-ray crystallographic methods

All CxxR crystal samples were obtained by slow evaporation at room temperature or $4^{\circ} \mathrm{C}$, typically from $\mathrm{CHCl}_{3}$, acetone, ethyl acetate, methanol, THF or solvents blends including $n$-hexane and toluene. The single crystal growths were successful for most of CxxM (except for CmmM and ComM) and CxxOMe (except CmoOMe) isomers. For the halogen derivatives (CxxX) success was limited, with only 10 out of 25 halogen-carbamates giving suitable single crystals, after many crystallization attempts from several solvents, under a wide range of crystallization conditions. These compounds are $\mathbf{C m p F}, \mathbf{C m m F}, \mathbf{C o p F}, \mathbf{C p m C l}, \mathbf{C m p C l}, \mathbf{C m m C l}$, $\mathrm{CopCl}, \mathrm{CmoBr}, \mathrm{CmpBr}$ and CopBr .

Single crystal X-ray data collection and data reduction, ${ }^{176}$ structure solution and refinement ${ }^{3,168}$ for all CxxR compounds was as described for the $\mathbf{F x x}$ and $\mathbf{N x x M}$ isomer grids (Chapter I). Selected crystallographic and structural information is detailed in the ESI II (Section 2). Molecular and hydrogen bonding diagrams (Figs. 48-54, 56-64 and 66-75) were generated as described for other isomer grids (with displacement ellipsoids drawn at the $30 \%$ probability level). ${ }^{169}$

## 5. Computational methods

A computational study similar to that carried out for the benzamides (Mxx and $\mathbf{F x x}$ ) and pyridinecarboxamides ( $\mathbf{N x x F}$ and $\mathbf{N x x M}$ ) was performed for all five phenyl-$N$-pyridinyl-carbamate (CxxR) isomer grids. The aim, as in Chapter I, was to investigate the optimised molecular geometry of the isomers, perform conformational analysis and elucidate conformational preference in gas phase and to investigate the flexibility of the main torsion angles and energies of rotational barriers. Finally the modelling information, presented in the form of PES diagrams, was directly compared with the solid-state molecular geometries in order to rationalise both similarities and differences of the modelled and solid state molecular structures, as well as problems with the crystallinity of carbamates.

Unlike the computational methods used in Chapter I, phenyl- $N$-pyridinylcarbamate ( $\mathbf{C x x R}$ ) isomer grids were not subjected to optimisations using implicit solvent models (PCM-SMD, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ ); the modelling was limited to gas phase calculations since gas phase modelling affords the most significant information
regarding optimised geometries and conformational behaviour. Furthermore, high accuracy energy calculations were not performed,

The optimisations and conformational analyses in gas phase are performed as described in Chapter I (Section 1) using the DFT method [B3LYP/6-311++G(d,p)]. All calculations were performed using Gaussian $09^{25}$ for Linux/Unix operating on a SGI Altix ICE 8200EX high performance computing system at the ICHEC.

The carbamates contain pyridinyl and phenyl rings joined by a carbamate linker moiety. In total there are four main torsion angles involved in the geometry: the angle C26-C21-C1=O1 (pyridinyl ring, $\mathbf{C}$-ring, $\alpha$ torsion angle, red bond in Scheme 35), the C1-O2-C11-C16 angle (R-phenyl ring, F-/Cl-/Br-/O-/M-ring, $\beta$ torsion angle, blue bond), the $\mathrm{O} 1=\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 21$ torsion angle ( $\delta, \mathrm{OCNC}$, green bond) and the $\mathrm{O} 1=\mathrm{C} 1-\mathrm{O} 2-$ C11 torsion angle ( $\gamma, \mathrm{COCO}$, brown bond). For the methoxyphenyl- $N$-pyridinylcarbamate ( $\mathbf{C x x O M e}$ ) isomer grid an additional, methoxy torsion angle ( $\omega, \mathbf{M e}$ ) exists. As for the compounds described in Chapter I, meta- or ortho-pyridinyl (C) and phenyl $(\mathbf{R})$ rings can theoretically be present in the $\mathbf{C - s y n}$ or $\mathbf{C}$-anti conformations depending on the position of the carbonyl moiety (Scheme 36). However, optimisations and conformational analyses showed that in the CxoR isomers the oR-ring is found to be orthogonal to the pyridinyl (C) ring. Therefore, two conformations are equivalent and the syn/anti convention, cannot be applied to the ortho-phenyl isomers.


Scheme 35: Possible conformations in the CxxR compounds

The benzamide and pyridinecarboxamide (Chapter I) amide link torsion angle was not subject to conformational analysis, since it was considered to be rigid. However, for the $\mathbf{C x x R}$ isomer grids the decision was made to investigate the conformational behaviour of the carbamate linker torsion angles, namely the $\mathrm{O} 1=\mathrm{C} 1-$ $\mathrm{N} 1-\mathrm{C} 21$ torsion angle (OCNC, $\delta$ ) and the $\mathrm{O} 1=\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 11$ torsion angle (COCO, $\gamma$ ). Although considering their general rigidity, the aim was mainly to inspect the flexibility and energies of the rotational barriers. All PES diagrams are provided in the ESI II (Section 3).

## 6. CxxM isomer grid

### 6.1. Molecular and crystal structure data

Seven of the nine CxxM isomers gave single crystals suitable for single crystal X-ray diffraction. The $\mathbf{C m m M}$ and $\mathbf{C o m M}$ isomers did not produce any suitable single crystals, even after numerous attempts with a range of organic solvents. Unexpectedly, the CpoM and CmoM were isolated as solvates, CpoM with a disordered molecule of chloroform and $\mathbf{C m o M}$ as a monohydrate.

All structures crystallise in the monoclinic system, with exception of CmpM (orthorhombic). Apart from the disordered solvent in the CopM crystal structure, no disorder was found in the solid state CxxM structures. Tables $\mathbf{2 8}$ and $\mathbf{2 9}$ summarise the basic crystallographic data and structural features.

Table 28: Selected crystallographic data for the seven CxxM isomers ${ }^{\dagger}$

| CxxM | Space group | $Z^{\prime}$ | Volume ( $\AA^{3}$ ) | $\boldsymbol{R}\left[\mathrm{F}^{2}>2 \sigma\left(F^{2}\right)\right], \boldsymbol{w R}\left(F^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| СррМ | $P 2_{1 / c}$ | 1 | 1149.0(7) | 0.065, 0.132 |
| CpmM | $P 2 / / n$ | 1 | 1150.42(8) | $0.064,0.095$ |
| CpoM | $P 2_{1 /} / n$ | 2 | 2649.4(12) | 0.075, 0.237 |
| CmpM | $P 2_{1} 2_{l} 2_{1}$ | 1 | 1182.66(3) | 0.025, $0.068^{\text {a }}$ |
| CmoM | P2 $/$ /c | 1 | 1268.09(4) | 0.048, 0.134 |
| CopM | P2 $/$ /c | 1 | 1164.39(11) | 0.091, 0.338 |
| CooM | $P 2 / / n$ | 1 | 1176.92(3) | $0.044,0.127$ |

$\dagger$ Complete crystallographic, refinement and structural details for the seven $\mathbf{C x x M}$ isomers $\left(\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$ are listed in the ESI II (Section 2.1.1). ${ }^{a}$ Obtained with $\mathrm{Cu} \mathrm{K} \alpha$ radiation

Table 29. Relevant structural features $\left(\AA^{\circ},{ }^{\circ}\right)$ in the eight $\mathbf{C x x M}$ isomers ${ }^{a}$

| $\mathbf{C x x M}$ | $\mathbf{C}_{6} / \mathbf{C}_{5} \mathbf{N}$ | $\mathbf{C}_{6} /$ carbamate $\mathbf{C}_{5} \mathbf{N} /$ carbamate |  | $\mathbf{N} \ldots \mathbf{N} / \mathbf{O}^{\boldsymbol{b}}$ | Packing |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{C p p M}$ | $73.94(8)$ | $62.89(10)$ | $20.85(13)$ | $2.955(3)$ | $C(6)$ chains |
| CpmM | $53.44(8)$ | $55.24(7)$ | $4.53(15)$ | $2.972(3)$ | $C(6)$ chains |
| CpoM | $84.97(12)$ | $87.68(14)$ | $8.10(24)$ | $2.900(4)$ | 2-D sheets |
|  | $82.38(10)$ | $69.46(11)$ | $13.14(19)$ | $2.908(4)$ |  |
| CmpM | $52.33(5)$ | $63.16(5)$ | $11.38(11)$ | $2.9138(17)$ | 2-D sheets |
| CmoM | $66.25(4)$ | $86.55(4)$ | $26.12(5)$ | $2.8279(15)^{c}$ | $R^{4}{ }_{4}(14)$ dimers |
|  |  |  |  | $2.8269(16)^{d}$ | /2-D Sheets |
| CopM | $62.53(12)$ | $67.60(11)$ | $8.58(27)$ | $3.003(4)$ | dimers |
| CooM | $76.45(4)$ | $81.68(4)$ | $5.42(11)$ | $2.9770(16)$ | dimers |

${ }^{\frac{a}{a}}$ Full structural details are provided in the ESI II (Section 2.1.2).
${ }^{b}$ The ${ }_{\text {carbamate }} \mathrm{N} \ldots \mathrm{N}_{\text {pyridine }}$ interaction distances.
${ }^{c}$ The ${ }_{\text {carbamate }} \mathrm{N} \cdots \mathrm{O}_{\text {water }}$ interaction distances.
${ }^{d}$ The ${ }_{\text {water }} \mathrm{O} \cdots \mathrm{N}_{\text {pyridine }}$ interaction distances.

### 6.1.1. CpxM isomer series

The main interaction in the $\mathbf{C p x M}$ isomers is the carbamate $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 24_{\text {pyridine }}$ hydrogen bond, with (CppM) or without (CpmM) significant C-H $\cdots$ O2 auxiliary interactions while in $\mathbf{C p o M}\left(Z^{\prime}=2\right)$ both types of bonding are present, alternately linking molecules as $(\cdots \mathrm{ABAB} \cdots)$. The CpoM isomer crystallises with a solvate with one disordered $\mathrm{CHCl}_{3}$ molecule.

## CppM molecular and crystal structure

Single crystals were grown from acetone. The primary aggregation is accomplished via $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 24$ hydrogen bonding $\left[\mathrm{N} 1 \cdots \mathrm{~N} 24^{a}=2.955(3) \AA, a=-\right.$ $1+\mathrm{x}, 1 / 2-\mathrm{y},-1 / 2+\mathrm{z}]$, enhanced by an auxiliary $\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{O} 2^{a}\left[\mathrm{C} 25 \cdots \mathrm{O} 2^{a}=3.213(3) \AA\right]$ interaction (Fig. 48). The $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 24$ hydrogen bond links molecules in a zig-zag manner into a $C(6)$ chain, parallel with the (010) plane and perpendicular to the $b$-axis direction. A secondary interaction involves $\pi-\pi$ stacking (C21 $\cdots \mathrm{C} 25^{b}=3.161(3) \AA, b=$ $\mathrm{x}, 1 / 2-\mathrm{y},-1 / 2+\mathrm{z}$ ), as well as the $\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{O}^{c}\left[\mathrm{C}_{1} \cdots \cdots \mathrm{Ol}^{c}=3.582(4) \AA, c=1+\mathrm{x}, \mathrm{y}, \mathrm{z}\right]$ interaction. Of less importance are the weak $\mathrm{C} 23-\mathrm{H} 23 \cdots \mathrm{C} 12^{d}(d=-1+\mathrm{x}, \mathrm{y},-1+\mathrm{z})$ and $\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{H} 15-\mathrm{C} 15^{e}(e=-2-\mathrm{x},-\mathrm{y},-\mathrm{z})$ contacts. It is interesting that the disordered methyl group (around the bond axis) does not engage in any intermolecular interaction.

The carbamate linker atoms form a four atom carbamate plane ( $\mathrm{N} 1 / \mathrm{C} 1 / \mathrm{O} 1 / \mathrm{O} 2$ ). The angle between the carbamate plane and the $\mathbf{M}$-ring (tolyl ring) is $62.89(10)^{\circ}$, while against the pyridinyl ring it is $20.85(13)^{\circ}$. The angle between the $\mathbf{M}$-ring and the pyridinyl ring is $73.94(8)^{\circ}$ (Table 29). Compared with Mpp [46.03(9) ${ }^{\circ}$ ] and NxxM $\left[66.45(3)^{\circ}\right]$ the $\mathbf{M}$-ring appears to be more rotated than in the benzamides.


Fig. 48: An ORTEP diagram of CppM with $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 24^{a}$ hydrogen bonding ( $a=-1+\mathrm{x}, 1 / 2-\mathrm{y}$,$1 / 2+\mathrm{z}$ ) and an auxiliary $\mathrm{C} 25^{a}-\mathrm{H} 25^{a} \cdots \mathrm{O} 2$ interaction.

## CpmM molecular and crystal structure

Suitable single crystals were grown from $\mathrm{CDCl}_{3}$. As for $\mathbf{C p p M}$, the primary interaction is $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 24$ hydrogen bonding ( $\mathrm{N} 1 \cdots \mathrm{~N} 24^{c}=2.972(3) \AA, c=-\mathrm{x}+1 / 2, \mathrm{y}-$ $1 / 2,-\mathrm{z}+1 / 2$ ), and contrary to $\mathbf{C p p M}$, no auxiliary bonding to O 2 is present (Fig. 49). However, a weak N1-H1 ...C23 contact is present.


Fig. 49: An ORTEP diagram of CpmM showing aggregation via $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 24$ hydrogen bonds ( $b=1 / 2-\mathrm{x}, 1 / 2+\mathrm{y}, 1 / 2-\mathrm{z} ; c=1 / 2-\mathrm{x},-1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}$ )

The $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 24$ hydrogen bonds form a zig-zag $C(6)$ chain, along the $b$-axis direction and parallel to the (301) plane. A contact C14-H14 $\cdots \mathrm{H} 17-\mathrm{C} 17\left(\mathrm{H} 14 \cdots \mathrm{H}^{2} 7^{a}=\right.$ $2.27 \AA, a=-x, 1-y, 2-z)$ exists along the (301) plane. Finally, weak but double C16$\mathrm{H} 16 \cdots \mathrm{C} 1$ contacts $\left(\mathrm{C} 16 \cdots \mathrm{C} 1^{d}=3.485(3) \AA, d=-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}\right)$ connect chains into a 3-D structure. The methyl group is disordered around the $\mathrm{C} 14-\mathrm{C} 17$ axis.

The angle between the carbamate plane and the pyridinyl ring (C-ring) is $4.53(15)^{\circ}$, therefore, most of the molecule is planar apart from the M-ring at an angle of $55.24(7)^{\circ}$ to the carbamate plane. The interplanar angle between the $\mathbf{M}$-ring and the $\mathbf{C}$ ring is $53.44(8)^{\circ}$. The conformation of the $\mathbf{M}$-ring is M-anti.

## CpoM molecular and crystal structure

The CpoM isomer is the only isomer isolated as a solvate as $\left[(\mathbf{C p o M})_{4}: \mathrm{CHCl}_{3}\right]$. The molecule of $\mathrm{CHCl}_{3}$ is disordered with total occupancy of $50 \%$; the ratio between $\mathbf{C p o M}$ and $\mathrm{CHCl}_{3}$ is 4:1 (Fig. 50).

Two CpoM molecules (A and B) are connected into a pair with similar N1$\mathrm{H} 1 \cdots \mathrm{~N}_{\text {pyr }}$ hydrogen bonding N1A-H1A $\cdots \mathrm{N} 24 \mathrm{~B}[\mathrm{~N} 1 \mathrm{~A} \cdots \mathrm{~N} 24 \mathrm{~B}=2.900(4) \AA$ ] as in the CpmM molecule, with an additional weak N1A-H1A $\cdots$ C25B contact. The interplanar angle between the two pyridinyl rings (A and B) is $28.67(16)^{\circ}$. Two pairs of molecules $(\mathrm{AB})$ are linked into an undulating $C(6)$ chain $(\cdots \mathrm{ABAB} \cdots)$ through N1B-H1B $\cdots \mathrm{N} 24^{b}$ $\left[\mathrm{N} 1 \mathrm{~B} \cdots \mathrm{~N} 24^{b}=2.908(4) \AA, b=-3 / 2+\mathrm{x}, 1 / 2-\mathrm{y},-1 / 2+\mathrm{z}\right]$ hydrogen bonding, augumented with flanking C23A-H23A $\cdots \mathrm{O}_{2} \mathrm{~B}^{b}\left[\mathrm{C} 23 \mathrm{~A} \cdots \mathrm{O}_{2} \mathrm{~B}^{b}=3.222(4) \AA\right.$ interactions (Fig. 50) as described for the $\mathbf{C p p M}$ isomer. The waving 1-D chain is perpendicular to the $b$-axis and parallel to the ( $\overline{103)}$ plane. The secondary interaction is the $\mathrm{C} 16 \mathrm{~B}-\mathrm{H} 16 \mathrm{~B} \cdots \mathrm{O} 1 \mathrm{~B}^{v}$ $\left(\mathrm{C} 16 \mathrm{~B} \cdots \mathrm{OBB}^{c}=3.325(5) \AA, c=-1+\mathrm{x}, \mathrm{y}, \mathrm{z}\right)$ contact aggregating chains along the $a$-axis direction into a 2-D sheet parallel to the (010) plane.


Fig. 50: An ORTEP diagram of CpoM showing the $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 24$ hydrogen bonds and disordered molecule of $\mathrm{CHCl}_{3}(a=1-\mathrm{x},-\mathrm{y},-\mathrm{z} ; b=-3 / 2+\mathrm{x}, 1 / 2-\mathrm{y},-1 / 2+\mathrm{z})$

The disordered $\mathrm{CHCl}_{3}$ molecules engage in a final aggregation through weak but double C13A $\cdots$ Cl1S [3.426(9) $\AA$ ] and C17B-H17B...Cl(1S) interactions (Fig. 50).

The ortho-tolyl ring ( $\mathbf{M}$-ring, $\mathrm{C}_{6}$ ) in molecule A is almost orthogonal to the carbamate plane $\left[87.68(14)^{\circ}\right.$ ], while in the molecule B the $\mathbf{M}$-ring/carbamate ring is $69.46(11)^{\circ}$. The pyridinyl rings ( $\mathbf{C}$-ring, $\mathrm{C}_{5} \mathrm{~N}$ ) are generally planar with the carbamate plane (Table 29). Both interplanar angles $\left(\mathrm{C}_{5} \mathrm{~N} / \mathrm{C}_{5}\right)$ (Table 29) are close to $90^{\circ}$, the rings are nearly orthogonal. The interplanar angle between the $\mathbf{M}$-rings is $56.15(14)^{\circ}$.

Since crystal growth of CmmM was not successful, only the CmpM and CmoM results are presented. CmoM is unique in the CxxM isomer grid since it was isolated as a monohydrate with a remarkable hydrogen bonding system. With the exception of $\mathbf{C m o M}$, only $\mathbf{C m o B r}$ was isolated as monohydrate among all the carbamate grids.

## CmpM molecular and crystal structure

The $\mathbf{C m p M}$ crystal structure data was collected with $\mathrm{Cu} \mathrm{K} \alpha$ radiation, affording a structure solution with an $R$-factor of 0.025 .


Fig. 51: An ORTEP diagram of $\mathbf{C m p M}\left(a=1-\mathrm{x}, \mathrm{-}^{1 / 2}+\mathrm{y}, 1 / 2-\mathrm{z} ; b=-1+\mathrm{x}, \mathrm{y}, \mathrm{z}\right)$
The single crystals were grown from acetone. The primary interaction is N1$\mathrm{H} 1 \cdots \mathrm{~N} 23^{a}\left[\mathrm{~N} 1 \cdots \mathrm{~N} 23^{a}=2.9138(17) \AA, a=1-\mathrm{x},-1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}\right]$ hydrogen bond, aggregating molecules into a spiral $C(5)$ chain, along the $b$-axis direction, parallel with the (001) plane (Fig. 51). The N1-H1 $\cdots$ N23 hydrogen bond is supported by the weak $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{C} 22^{a}$ side interaction $\left[\mathrm{N} 1 \cdots \mathrm{C} 22^{a}=3.3604(18) \AA\right.$ ], as seen in $\mathbf{C p m M}$.

The secondary interaction is $\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{O} 1^{b}[\mathrm{C} 16 \cdots \mathrm{O} 1=3.440(2) \AA, b=-$ $1+\mathrm{x}, \mathrm{y}, \mathrm{z}]$ connecting the chains along the $a$-axis direction into a 2-D sheet, parallel with the (001) plane (Fig. 51). Weak C-H $\cdots \pi$ (arene) contacts C24-H24 $\cdots \mathrm{Cg} 1^{c}\left[\mathrm{C} 24 \cdots \mathrm{Cg} 1^{c}=\right.$ $3.7300(16) \AA, \quad \mathrm{Cg} 1=(\mathrm{C} 21, \ldots, \mathrm{C} 26), c=2-\mathrm{x}, 1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}]$ and $\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{Cg}^{c}$ $\left[\mathrm{C} 25 \ldots \mathrm{Cg} 1^{c}=3.4083(16) \AA, \mathrm{Cg} 2=(\mathrm{C} 11, \ldots, \mathrm{C} 16)\right]$ support sheet formation. The conformation of the $\mathbf{C}$-ring is $\mathbf{C}$-syn.

## CmoM molecular and crystal structure

The CmoM isomer is the only compound in the $\mathbf{C x x M}$ isomer grid isolated as a hydrate ( $\mathbf{C m o M}: \mathrm{H}_{2} \mathrm{O}$ ). The single crystals were grown from a $\mathrm{CHCl}_{3} /$ acetone solvent mixture. Molecules of water play a crucial role in the aggregation of the $\mathbf{C m o M}: \mathrm{H}_{2} \mathrm{O}$ crystal structure. Two molecules of water and two molecules of $\mathbf{C m o M}$ form a complex structure through double $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2 \mathrm{~W}[\mathrm{~N} 1 \cdots \mathrm{O} 1 \mathrm{~W}=2.8279(15) \AA]$ and $\mathrm{O} 1 \mathrm{~W}-$ $\mathrm{H} 2 \mathrm{~W} \cdots \mathrm{~N} 23\left[\mathrm{O} 1 \mathrm{~W} \cdots \mathrm{~N} 23^{a}=2.8269(16) \AA, a=2-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}\right]$ hydrogen bonds giving rise to a $R^{4}{ }_{4}(14)$ ring (Fig. 52).


Fig. 52: An ORTEP diagram of the CmoM monohydrate ( $a, b=2-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}, c=\mathrm{x}, 1 / 2-\mathrm{y},-1 / 2+\mathrm{z}$ ).

Two pyridinyl rings in the complex are coplanar with a minor offset; molecules of water are on either side of and below the pyridinyl ring planes. An auxiliary interaction O1W-H2W $\cdots$ C22 ${ }^{a}$ [O1W $\left.\cdots{ }^{\circ} 22^{a}=3.5219(16) ~ \AA ̊\right]$ supports the O1W$\mathrm{H} 2 \mathrm{~W} \cdots \mathrm{~N} 23$ hydrogen bonding.

The secondary interaction is the O1W-H2W $\cdots \mathrm{O}^{d}\left[\mathrm{O} 1 \mathrm{~W} \cdots \mathrm{O}^{d}=2.9126(15) \AA\right.$, $d=\mathrm{x}, 1 / 2-\mathrm{y}, 1 / 2+\mathrm{z}]$ hydrogen bond (Fig. 52). It is critical and even more important for aggregation, supported by weak but double C26-H26 $\cdots \mathrm{Ol}^{d}\left[\mathrm{C} 26 \cdots \mathrm{O}^{d}=3.3532(15) \AA\right]$ interaction it links complexes directly into a 2-D sheet, parallel with the (100) plane. The 2-D sheets are connected into a 3-D crystal structure by weak C17-H17D...C14 ${ }^{e}$ [H17D...C14 $\left.{ }^{e}=2.82 \AA, e=1-\mathrm{x},-\mathrm{y},-\mathrm{z}\right]$ contacts.

Within the molecule, a weak intramolecular C17-H17A...O2 (H17A...O2 $=$ $2.65 \AA$ ) interaction is observed. The $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ interplanar angle is $66.25(4)^{\circ}$, while the
$\mathrm{C}_{6} /$ carbamate angle is $86.55(4)^{\circ}$. The $\mathrm{C}_{5} \mathrm{~N} /$ carbamate angle is unusually large with a value of $26.12(5)^{\circ}$. The conformation of the $\mathbf{C}$-ring is $\mathbf{C}$-syn.

### 6.1.3 CoxM isomer series

The main feature of both CoxM isomers is dimer formation through double N1H1...N22 hydrogen bonding as a primary intermolecular interaction, forming cyclic $R^{2}{ }_{2}(8)$ rings. This interaction is essentially the same as in the $\mathbf{F x o} / \mathbf{M x o}$ (Chapter I) benzamide isomers. However, in the CoxM isomers multiple additional interactions are involved in dimerisation, making the CoxM dimer linkage possibly stronger than in the benzamides. Since the strongest hydrogen bond forming moieties are engaged in dimerisation, the crystal structure relies mostly on weaker $\mathrm{C}-\mathrm{H} \cdots \pi / \mathrm{O}$ interactions and contacts. All pyridinyl rings of the $\mathbf{C o x M}$ compounds are found to be in the $\mathbf{C - s y n}$ conformation, as it is essential for dimer formation.

## CopM molecular and crystal structure

The $R$-factor is high, due to the twinning; single crystals were grown from acetone. The main interaction in $\mathbf{C o p M}$ is dimerisation (Fig. 53) about inversion centres, forming cyclic $R^{2}{ }_{2}(8)$ rings via double $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 22^{a}\left[\mathrm{~N} 1 \cdots \mathrm{~N} 22^{a}=3.003(4) \AA\right.$, $a=1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}]$ hydrogen bonds. Dimer linkage is enhanced by two auxiliary C23$\mathrm{H} 23 \cdots \mathrm{O} 2^{a}\left[\mathrm{C} 23 \cdots \mathrm{O} 2^{a}=3.232(5) \AA\right]$ interactions. In total, four interactions engage in this molecular recognition, giving a strongly bounded dimeric unit.


Fig. 53: Hydrogen bonding and auxiliary interaction in CopM isomer ( $a=-1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$ ).

The crystal structure formation depends on weak C-H $\cdots \pi($ arene ) contacts such as $\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{C} 15^{b}\left(\mathrm{C} 25 \cdots \mathrm{C} 15^{b}=2.84 \AA, b=-\mathrm{x},-1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}\right)$ and $\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{C} 26^{c}$ $\left(\mathrm{C} 15 \cdots \mathrm{C} 26^{c}=2.83 \AA, c=1-\mathrm{x}, 1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}\right)$. These contacts aggregate dimers directly into a 3-D crystal structure. It is interesting to note that both methyl and carbonyl moieties do not engage in any significant intermolecular interactions or contacts.

According to Table 29, the pyridinyl ring is nearly planar with the carbamate linker plane $\left[8.58(27)^{\circ}\right]$, while the $\mathbf{M}$-ring $\left(\mathrm{C}_{6}\right)$ is moderately rotated by $67.60(11)^{\circ}$. The interplanar $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ angle is $62.53(12)^{\circ}$.

## CooM molecular and crystal structure

A single crystal suitable for X-ray diffraction was grown from $\mathrm{CHCl}_{3}$. As for the CopM isomer, the $\mathbf{C o o M}$ molecules form dimers about inversion centres via two N1$\mathrm{H} 1 \cdots \mathrm{~N} 22^{a}\left[\mathrm{~N} 1 \cdots \mathrm{~N} 22^{a}=2.9770(16), a=2-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}\right]$ hydrogen bonds giving cyclic $R^{2}{ }_{2}(8)$ rings. These two hydrogen bonds are aided and augmented by two strong C23$\mathrm{H} 22 \ldots \mathrm{O} 2^{a}\left[\mathrm{C} 23 \cdots \mathrm{O} 2^{a}=3.2560(19) \AA\right.$ ] interactions as well as two weak $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{C} 23^{a}$ $\left[\mathrm{H} 1 \cdots \mathrm{C} 23^{a}=2.897(17) \AA\right.$ ] contacts. In total, six interactions per dimeric unit, two being hydrogen bonds, are engaged in this remarkable dimer (Fig. 54).


Fig. 54: Dimer formation in $\operatorname{CooM}(a=2-\mathrm{x}, 1-\mathrm{y},-\mathrm{z} ; b=1+\mathrm{x}, \mathrm{y}, \mathrm{z} ; c=3-\mathrm{x}, 1-\mathrm{y}, \mathrm{z})$.

The secondary hydrogen bond $\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{Ol}^{b}\left[\mathrm{C} 16 \cdots \mathrm{O} 1^{b}=3.370(2) \AA, b=-\right.$ $1+\mathrm{x}, \mathrm{y}, \mathrm{z}$, aided with a long C-H $\cdots \pi$ (arene) interaction C17-H17A $\cdots \mathrm{C} 16^{c}\left[\mathrm{H} 17 \mathrm{~A} \cdots \mathrm{C} 16^{c}\right.$ $=3.593(2) \AA, c=1+\mathrm{x}, \mathrm{y}, \mathrm{z}]$ links dimers along the $a$-axis direction or (100) direction to
form a column parallel to the (024) plane (Fig. 54). There are no other interactions in the structure. Intramolecular geometry of the $\mathbf{C o o M}$ isomer is as seen in the $\mathbf{C p o M}$ and CmoM isomers. The pyridinyl ring ( $\mathbf{C}-$ ring, $\mathrm{C}_{6}$ ) is nearly co-planar with the carbamate linker plane $\left[5.42(11)^{\circ}\right]$ while the ortho-methylphenyl ring (M-ring, $\mathrm{C}_{6}$ ) is almost orthogonal to the carbamate linker $\left[81.68(4)^{\circ}\right]$. The interplanar angle $\left(\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}\right)$ is $76.45(4)^{\circ}$.

### 6.2. Ab initio calculations and modelling data

### 6.2.1. Structure optimisation

The main structural features of the $\mathbf{C x x M}$ isomers optimised in the gas phase are shown in Table 30.

The most evident characteristic of the modelled CxxM structures is the planarity of all dihedral angles except the $\beta$ angle, related to the tolyl ring (M-ring). On average, molecules are mainly planar; the pyridinyl ring is tilted by $-0.04 \pm 0.9^{\circ}$, the $\delta$ torsion angle (OCNC) is rotated by $0.06 \pm 1.26^{\circ}$ and the $\gamma$ torsion angle (COCO) is rotated by $0.6 \pm 2.8^{\circ}$. The planar OCNC and COCO torsion angles form the carbamate plane and the pyridine ring is coplanar with it. The only significant exception from planarity is the tolyl ring torsion angle. In Table 30, absolute values of the $\beta$ (M-ring) torsion angles are given, taking into account conformations.

Table 30: Torsion angles ( ${ }^{\circ}$ ) of the optimised CxxM isomers ${ }^{\mathrm{a}}$

|  | $\alpha$ | $\beta$ | $\beta^{*}$ | $\gamma$ | $\delta$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| CppM | -0.32 | 62.00 | 62.00 | -0.85 | 0.27 |
| CpmM | -0.01 | 62.94 | 62.94 | -0.68 | -0.45 |
| CpoM | -0.14 | 83.14 | 83.14 | -0.91 | -0.14 |
| CmpM | -0.43 | 61.93 | 61.93 | -0.91 | -0.04 |
| CmmM | 0.49 | 63.02 | 63.02 | 0.93 | 0.64 |
| CmoM | 0.17 | 107.69 | 75.96 | -2.02 | -0.18 |
| CopM | -0.03 | 61.51 | 61.51 | -0.93 | -0.15 |
| ComM | -0.32 | 62.48 | 62.98 | 0.82 | 0.79 |
| CooM | 0.25 | 82.47 | 82.47 | -0.73 | -0.22 |

${ }^{2}$ The angle C26-C21-C1=O1 (C-ring) is designated as $\alpha$; the C1-O2-C11-C16 angle (M-ring) as $\beta$, the $\mathrm{O} 1=\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 21$ angle as $\delta$, and $\mathrm{O} 1=\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 11$ as $\gamma$. All geometries are based on B3LYP/6-311++G(d,p) optimisations.

However, if only the corresponding deviation from planarity is given ( $\beta^{*}$ in Table 30), a specific pattern can be noted. In all compounds except for the CxoM triad, the $\mathbf{M}$-ring is rotated by an average of $62.4 \pm 2.0^{\circ}$, whereas the $\mathbf{o M}$-ring, due to the steric repulsion between methyl group and carbonyl moiety, is nearly orthogonal to the carbamate plane and pyridinyl ring with an average torsion angle of $80.5^{\circ}$.

The mM-rings in the CxmM triad are all found to be in an M-anti conformation. Due to the orthogonality of the oM-ring, the syn/anti conformational convention cannot be applied since both supposed conformations are equivalent. However, in $\mathbf{C m o M}$, the $\mathbf{o M}$ ring is slightly rotated towards the M-syn conformation, and in $\mathbf{C p o M}$ and $\mathbf{C o o M}$ there is a slight preference for the M-anti conformation.

### 6.2.2. Conformational analysis

Fig. 55 depicts the nine PES conformational analysis diagrams of the CxxM modelled structures in gas phase. The C-ring (pyridinyl ring, $\alpha$ dihedral angle) is drawn as a full red line, with the M-ring (tolyl ring, $\beta$ dihedral angle) as a blue dashed line. At $\theta=0$ and $\pm 180^{\circ}$, the conformation of the asymmetric $\mathbf{C}$ - or M-ring is noted as syn or anti.

As expected, modularity is present in the PES diagrams of the CxxM isomers and similar to the benzamides and pyridinecarboxamides (Chapter I). The preferred $\mathbf{C}$ ring conformation in the $\mathbf{C m x M}$ and CoxM isomers is $\mathbf{C - s y n}$, whereas for the $\mathbf{C x m M}$ isomer triad, the meta-tolyl ring is expected to prefer the M-anti conformation. As noted in Section 5 of the current Chapter, an ortho-tolyl ring cannot be subjected to syn/anti formalism, since its orthogonality makes any of the two conformations equivalent in steric and electronic terms. The same $\mathbf{C}$-syn preference in pyridinyl rings is noted in the benzamide and pyridinecarboxamide (Chapter I) isomer grids.

The $a b$ initio results are summarized as follows: Rotation of the para-pyridyl $(\mathbf{C p})$ rings give a PES profile with two global maxima at $c a . \pm 90^{\circ}\left(\mathrm{TS}_{\mathrm{Cp}}{ }^{\mathrm{I}}=24.56 \pm 0.15\right.$ $\mathrm{kJ} . \mathrm{mol}^{-1}$ ) and two global minima at $0^{\circ}$ and $c a . \pm 180^{\circ}$. As expected, the shape of the curve resembles a pyridinyl (p) ring with a PES profile of the $\mathbf{M x x} / \mathbf{F x x}$ benzamides although the rotational barrier is slightly higher $\left(\mathrm{TS}_{\mathbf{p}}{ }^{\mathrm{L}}=22.75 \pm 0.08 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$.

The meta-pyridine ring ( $\mathbf{C m}$ ) PES scan profile is slightly asymmetric with one global maximum at $c a .-90^{\circ}\left(\mathrm{TS}_{\mathrm{Cm}}{ }^{\text {II }}=18.02 \pm 0.09 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$, one local maximum at $c a$. $90^{\circ}\left(17.84 \pm 0.17{\mathrm{~kJ} . \mathrm{mol}^{-1}}\right)$, local minimum at $c a . \pm 180^{\circ}\left(5.63 \pm 0.03{\left.\mathrm{~kJ} . \mathrm{mol}^{-1}\right)}\right.$ ) and global minimum at $0^{\circ}$.

As mentioned previously, the $\mathbf{C m}$ ring has the $\mathbf{C - s y n}$ conformation and the difference in energy when compared to $\mathbf{C}$-anti is $5.63 \pm 0.03 \mathrm{~kJ} . \mathrm{mol}^{-1}$. According to the Boltzmann distribution, around $91 \%$ of molecules are in the $\mathbf{C - s y n}$ conformation. A similar PES profile was found in the meta-pyridinyl ring (m) of the benzamide isomer rings.

Conformational analysis of the ortho-pyridinyl ring (Co) gives an asymmetric PES profile that has one global maximum ( $36.93 \pm 0.28 \mathrm{kJ.mol}^{-1}$ ) at ca. $-115^{\circ}$, one local maximum $\left(\mathrm{TS}_{\mathrm{Co}}{ }^{\mathrm{I}}=36.13 \pm 0.39 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ at $c a .110^{\circ}$, one local minimum ( $30.96 \pm 0.12$ $\mathrm{kJ} . \mathrm{mol}^{-1}$ ) at $c a .150^{\circ}$ and one global minimum $\left(0^{\circ}\right)$. Therefore, the mandatory conformation is C-syn. The PES profile is similar to the ortho-pyridinyl ring (0) in $\mathbf{M x x} / \mathbf{F x x}$ benzamides, but with lower energy rotational barriers.

The $\mathbf{p M}$ ring PES profile has two global maxima at $c a .-120^{\circ}$ and $c a .60^{\circ}$ $\left(4.06 \pm 0.07 \mathrm{kJ.mol}^{-1}\right)$, two local minima at $c a .-30^{\circ}$ and $155^{\circ}\left(0.43 \pm 0.05 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ and four global minima at $-60^{\circ}, 120^{\circ}, \pm 180^{\circ}$ and $0^{\circ}$.


Fig. 55: The PES conformational analysis for the nine CxxM isomers (gas phase): the equivalent solid state angle is depicted by ( ) with, if applicable, an assigned identification letter.

The $\mathbf{m M}$ ring has a similar PES profile with two global maxima at $c a .-60^{\circ}$ and $120^{\circ}$ $\left(\mathrm{TS}_{\mathrm{mM}}{ }^{\mathrm{II}}=4.10 \pm 0.11 \mathrm{~kJ} . \mathrm{mol}^{-1}\right.$, at $c a .-120^{\circ}$ and $60^{\circ}$ in $\mathbf{C p m M}$ ), two local maxima at $150^{\circ}$ and $35^{\circ}\left(\mathrm{TS}_{\mathrm{mM}}{ }^{\mathrm{I}}=0.62 \pm 0.02 \mathrm{~kJ} . \mathrm{mol}^{-1}\right.$, at $c a .-35^{\circ}$ and $150^{\circ}$ in $\mathbf{C p m M}$ ), two local minima at ca. $60^{\circ}$ and $\pm 180^{\circ}\left(\mathrm{LM}_{\mathrm{mM}}{ }^{\mathrm{I}}=0.33 \pm 0.03 \mathrm{~kJ} . \mathrm{mol}^{-1}\right.$, at $c a .-60^{\circ}$ in $\left.\mathbf{C p m M}\right)$ and one global minimum at $0^{\circ}$.

The PES profiles of the $\mathbf{p M}$ and $\mathbf{m M}$ rings are similar to the equivalent PES profiles of the benzamide isomer grids, but the rotational barriers are significantly lower than in the benzamides ( $14-16{\mathrm{~kJ} . \mathrm{mol}^{-1} \text { ) where partial delocalisation between the amide }}_{\text {the }}$ linker and the phenyl ring exists. In the carbamate backbone, however, due to the additional oxygen atom ( O 2 ), partial delocalisation does not exist and the phenyl ring can freely rotate. Therefore, the flexibility of the $\mathbf{p M}$ and $\mathbf{m M}$ rings in carbamates is significantly higher than in the benzamides and free rotation is possible. The preferred conformation of the $\mathbf{m M}$-ring was found to be M-anti. However, due to the low rotational barriers and very low energy difference ( $0.33 \pm 0.03 \mathrm{~kJ} . \mathrm{mol}^{-1}$ ) the M-syn conformation is very plausible ( $47 \%$ in gas phase).

A normal PES scan procedure of the ortho-methyl ring gave a simple result for the CpoM isomer, however in CmoM and CooM, a PES scan procedure ended with the COCO dihedral angle at its local minimum. When the $\mathbf{o M}$ ring is at $c a$. $-120^{\circ}$, a collision between the carbonyl ring and methyl group occurs producing a very high
 cannot be crossed without the COCO dihedral angle being moved. Therefore, a normal PES scan procedure forces rotation of the $\mathbf{0 M}$ ring, but this results in movement of both the $\mathbf{0 M}$ ring and COCO dihedral in the area between $c a .-120^{\circ}$ and $0^{\circ}$. The resulting PES scan is shown in the ComM and $\mathbf{C o o M}$ diagrams as pale blue dashed lines ending as a conformer with unusually deviated COCO ring and a very high relative energy of $18.20 \pm 0.30 \mathrm{~kJ} . \mathrm{mol}^{-1}\left(\mathrm{LM}_{\mathrm{om}-\text { coco }}\right.$, Fig. 55). This conformer is not probable under normal conditions.

In order to overcome the steric clash and accomplish the conformational analysis, the COCO dihedral angle was kept constrained while the PES scan of the $\mathbf{o M}$ ring is performed. The result is a continuous PES diagram (oM ring, blue dashed curve), performed in all three CxoM isomers and presented in Fig. 55. This constrained PES profile is a non-realistic approximation of the $\mathbf{0 M}$ rotation, but explains the inflexibility and behaviour of the $\mathbf{0 M}$ ring during the hypothetical rotation. Despite that, the constrained PES profiles of the $\mathbf{0 M}$ rings can be considered true PES scans. They have one global maximum at $-80^{\circ}\left(\mathrm{TS}_{\mathrm{oM}}{ }^{\mathrm{II}}=42.32 \pm 0.04{\mathrm{~kJ} . \mathrm{mol}^{-1}}\right.$ ), one local maximum
at $100^{\circ}\left(\mathrm{TS}_{\mathrm{oM}}{ }^{\mathrm{I}}=5.94 \pm 0.23 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ and two global minima at $-155^{\circ}\left( \pm 180^{\circ}\right.$ in $\left.\mathbf{C m o M}\right)$ and $0^{\circ}$.

In general, conformational analyses of the $\mathbf{o M}$ rings clearly show that collision of methyl and carbonyl groups limits rotation and flexibility of the $\mathbf{0 M}$ rings - it can rotate by $180^{\circ}$ only in one direction.

The PES profile of the COCO dihedral angle in CxmM and $\mathbf{C x p M}$ is symmetrical and has two global maxima at $c a . \pm 100^{\circ}\left(\mathrm{TS}_{\mathrm{COCO}}{ }^{\mathrm{I}}=27.19 \pm 0.69 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$, one local minima at $\pm 180^{\circ}\left(\mathrm{LM}_{\text {COCO }}{ }^{\mathrm{I}}=18.40 \pm 0.39 \mathrm{kJ.mol}^{-1}\right)$ and one global minima at $0^{\circ}$. However, in CxoM, due to the steric interaction with the methyl ring, equivalent PES profiles are asymmetric and have one global maximum at ca. $-95^{\circ}\left(\mathrm{TS}_{\mathrm{COCO}}{ }^{\text {II }}\right.$ $\left.=36.84 \pm 0.62 \mathrm{kJ.mol}^{-1}\right)$, one local maximum at $c a .105^{\circ}\left(\mathrm{TS}_{\mathrm{COCO}}{ }^{\mathrm{I}}=26.73 \pm 0.17 \mathrm{kJ.mol}^{-}\right.$ ${ }^{1}$ ), one local minimum at $\pm 180^{\circ}\left(\mathrm{LM}_{\mathrm{COCO}}{ }^{\mathrm{I}}=17.72 \pm 0.54 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ and one global minimum at $0^{\circ}$. High rotational barriers prevent flexibility of the COCO dihedral angle, although some limited oscillations out of the global minimum are possible. The opposite conformation with COCO dihedral angles at its local minimum is very unlikely.

Finally, the PES profiles of the OCNC ( $\delta$ ) dihedral angles are the same in all CxxM isomers and are therefore independent of isomeric variations. It has two global maxima at $c a .-65^{\circ}$ and $115^{\circ}\left(\mathrm{TS}_{\text {OCNC }}=69.63 \pm 2.14 \mathrm{kJ.mol}^{-1}\right)$, one local minimum at $\pm 180^{\circ}\left(\mathrm{LM}_{\mathrm{OCNC}}=11.37 \pm 0.88 \mathrm{kJ.mol}^{-1}\right)$ and one global minimum at $0^{\circ}$. Very high rotational barriers prevent rotation of the OCNC dihedral angle and limit the flexibility although, as for the COCO dihedral angle, some very limited flexibility is possible. The existence of the opposite conformation is very unlikely too. Therefore the carbamate moiety in the CxxM isomers can be considered as rigid.

### 6.3. Comparisons of the solid state and modelling data

Comparison of the CxxM isomer structures from the seven available crystal structures and calculations is made by marking (as - ) torsion angle differences $(\Delta \theta)$ between the available experimental and theoretical structures on the corresponding gas phase PES diagrams (Fig. 55). For the CpoM isomer with $Z^{\prime}=2$ the corresponding angles are labelled as A or B . For the $\mathbf{C m m M}$ and $\mathbf{C o m M}$ isomers whose crystal structure determination failed due to the poor quality of their single crystals, no $\Delta \theta$ was marked.

According to this comparison, experimentally derived solid state dihedral angles of all seven CxxM isomers positively corresponds with the global minima of the
equivalent modelled CxxM isomers. This holds true for all four studied torsion angles $(\alpha, \beta, \delta, \gamma)$. Eventual deviations from stationary points (global minima) are no larger than $25^{\circ}$, which is within the acceptable range. Therefore, it can be said that for the CxxM isomers, apart from the $\mathbf{C m m M}$ and $\mathbf{C o m M}$ isomers, the solid state matches the modelled molecular structures.

These findings are substantially different from those made for the benzamides and pyridinecarboxamides where more than one third of solid state molecular structures do not match the optimised molecular structures. It is especially true for the $\mathbf{C m x M}$ compounds where a conformational change was expected as the $\mathbf{C}$-anti conformation allows the formation of carbamate $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 23_{\text {pyridine }}$ hydrogen bonds linking the molecules into a $C(5)$ chain. However, aggregation of $\mathbf{C m p M}$ in the orthorhombic $P 2_{1} 2_{1} 2_{1}$ space group allows formation of carbamate $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 23_{\text {pyridine }}$ hydrogen bonds while the $\mathbf{C m}$ rings are in the thermodynamically more stable $\mathbf{C - s y n}$ conformation. Furthermore, the $\mathbf{C m o M}$ isomer was unexpectedly grown as a monohydrate, where the C-syn conformation allows complexation with a molecule of water. However, the IR spectrum of the CmoM isomer (ESI II, Section 1.1) does not show any band typical for a molecule of water, suggesting that the determined CmoM structure might not be representative of the bulk $\mathbf{C m o M}$ material.

## 7. CxxOMe isomer grid

### 7.1. Molecular and crystal structure data

Eight out of the nine synthesised CxxOMe isomers gave suitable single crystals. In most attempts the CmoOMe isomer decomposed and only in rare cases gave very fragile, poor, needle-like crystals. Nevertheless, despite the difficulties with the CmoOMe isomer, the CxxOMe isomer grid compounds proved to be the most crystalline among all of the studied carbamate grids.

All eight CxxOMe crystal structures crystallise with $Z^{\prime}=1$ and have carbamate N $\mathrm{H} \cdots \mathrm{N}_{\mathrm{pyr}}$ hydrogen bonds as the primary interaction, usually supported by C23-H23 $\cdots \mathrm{O} 2$ interactions, as seen in the CxxM isomer grid. However, the methoxy moiety often engages in aggregation via various interactions. There were no solvates found however, the most remarkable structure among all CxxR carbamates is CmmOMe (trigonal R3c, $Z=18)$ where three molecules form a unique hydrogen bonded trimer.

### 7.1.1 CpxOMe isomer series

The isomers of the $\mathbf{C p x O M e}$ triad share many similar crystallographic features: crystallising in the same crystal system and centrosymmetric space group with $Z^{\prime}=1$ and have the same primary interaction (N1-H1 $\cdots \mathrm{N} 24$ ).

Table 31: Selected crystallographic data for the eight $\mathbf{C x x O M e}$ isomers ${ }^{\dagger}$

| CxxOMe | Space group | Z ${ }^{\prime}$ | Volume ( $\AA^{3}$ ) | $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| CppOMe | $P 2_{1} / n$ | 1 | 1218.60(5) | 0.042, 0.114 |
| CpmOMe | $P 2 / / c$ | 1 | 1208.45(4) | 0.046, 0.129 |
| CpoOMe | $P 2_{l} / \mathrm{c}$ | 1 | 1144.29(7) | 0.048, 0.103 |
| CmpOMe ${ }^{a}$ | $P 2_{12} 2_{1} 2_{1}$ | 1 | 1201.86(4) | 0.028, 0.074 |
| CmmOMe | R3c | 1 | 5511.2(2) | 0.031, 0.082 |
| CopOMe | $P 2 / \mathrm{c}$ | 1 | 1166.44(16) | 0.043, 0.117 |
| ComOMe | $P \overline{1}$ | 1 | 603.40(10) | 0.058, 0.114 |
| CooOMe | $P \bar{l}$ | 1 | 577.02(13) | 0.031, 0.088 |

$\dagger$ Complete crystallographic, refinement and structural details for the eight CxxOMe isomers $\left(\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$ are listed in the ESI II (Section 2.2). ${ }^{a}$ Obtained with $\mathrm{Cu} \mathrm{K} \mathrm{\alpha}$ radiation

Table 32: Relevant structural features $\left(\AA,{ }^{\circ}\right)$ in the eight $\mathbf{C x x O M e}$ isomers ${ }^{a}$

| CxxOMe | $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ | $\mathrm{C}_{6} /$ carbamate | $\mathrm{C}_{5} \mathrm{~N} /$ carbamate | N $\cdots{ }^{\text {d }}$ | Packing |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CppOMe | 56.93(4) | 57.31(3) | 0.78(8) | 2.9183(16) | C(6) chains |
| CpmOMe | 73.89(5) | 71.49(5) | 7.60(8) | 2.9361(15) | $C(6)$ chains |
| CpoOMe | 86.15(6) | 88.90(6) | 6.09 (8) | 2.998 (2) | $C$ (6) chains |
| CmpOMe | 52.53(5) | 62.02(5) | 10.28 (10) | 2.9130(19) | 2-D sheets |
| CmmOMe | 50.61(42) | 60.29(11) | 10.03(13) | 2.970 (7) |  |
|  | 61.68(38) | 58.56(11) | 3.14(13) | 2.963(7) |  |
| CopOMe | 53.28(3) | 57.08(4) | 4.43(8) | 2.9886(16) | $R^{2}{ }_{2}(8)$ dimers |
| ComOMe | 82.94(7) | 84.74(7) | 2.03(17) | 2.983(3) | $R^{2}{ }_{2}(8)$ dimers |
| CooOMe | 89.05(4) | 84.84(5) | 4.67(8) | 3.0298(18) | $R^{2}{ }_{2}(8)$ dimers |

${ }^{a}$ Full structural details are provided in the ESI II (Section 2.2).
${ }^{\mathrm{b}}$ The ${ }_{\text {carbamate }} \mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ interaction distances.

CppOMe molecular and crystal structure

The CppOMe isomer (Fig. 56) was grown from acetonitrile. The principal interaction is $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 24^{a}\left[\mathrm{~N} 1 \cdots \mathrm{~N} 24^{a}=2.9183(16) ~ \AA, a=-1 / 2+\mathrm{x}, 1 / 2-\mathrm{y}, 1 / 2+\mathrm{z}\right]$ hydrogen bonding in an orthogonal manner, forming zig-zag $C(6)$ chains along the [101] direction, parallel with the (101) plane. The principal hydrogen bond is aided by a weak $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{C} 25^{a}\left(\mathrm{H} 1 \cdots \mathrm{C} 25^{a}=2.87 \AA\right)$ contact and augmented with a $\mathrm{C} 25-$ $\mathrm{H} 25 \cdots \mathrm{O} 2^{b}\left[\mathrm{C} 25 \cdots \mathrm{O} 2^{b}=3.2745(17) \AA, b=1 / 2+\mathrm{x}, 1 / 2-\mathrm{y},-1 / 2+\mathrm{z}\right]$ interaction.


Fig. 56: CppOMe ( $a=-1 / 2+\mathrm{x}, 1 / 2-\mathrm{y}, 1 / 2+\mathrm{z} ; b=1 / 2+\mathrm{x}, 1 / 2-\mathrm{y},-1 / 2+\mathrm{z} ; \quad c=1-\mathrm{x},-\mathrm{y}, 2-\mathrm{z})$.

The secondary interaction involves two adjacent methoxy moieties interacting via two remarkable $\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O}^{c}{ }^{c}\left[\mathrm{C} 13 \cdots \mathrm{O} 14^{c}=3.4777(17) \AA, c=1-\mathrm{x},-\mathrm{y}, 2-\mathrm{z}\right]$ hydrogen bonds that form a $R^{2}{ }_{2}(8)$ cyclic ring. These hydrogen bonds link the $C(6) z i g$ zag chains along the $b$-axis direction into an undulating 2-D sheet, parallel with the (101) plane. The 3-D crystal structure formation is achieved by weak C17-H17A $\cdots \mathrm{O} 14^{d}$ $\left[\mathrm{H} 17 \mathrm{~A} \cdots \mathrm{O} 14^{d}=2.64 \AA, d=-1+\mathrm{x}, \mathrm{y}, \mathrm{z}\right]$ interactions, stacking the undulating 2-D sheets along the $a$-axis. The 4-pyridinyl ring $\left(\mathbf{C}\right.$-ring, $\left.\mathrm{C}_{5} \mathrm{~N}\right)$ and the carbamate plane are nearly perfectly planar. The methoxy group and the para-phenyl ring (O-ring, $\mathrm{C}_{6}$ ) are coplanar and tilted to the carbamate plane by $57.31(3)^{\circ}$. The interplanar angle $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ is not significantly different $\left[56.93(4)^{\circ}\right]$ from the $\mathrm{C}_{6} /$ carbamate angle. The conformation of the methoxy group is Me-anti.

CpmOMe molecular and crystal structure

A single crystal was grown from a blend of $\mathrm{CHCl}_{3}, \mathrm{CH}_{3} \mathrm{CN}$ and toluene. As expected, the main backbone is $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 24^{c}\left[\mathrm{~N} 1 \cdots \mathrm{~N} 24^{c}=2.9360(15) \AA, c=1-\mathrm{x}\right.$, $1 / 2+y,-1 / 2-z]$ hydrogen bonding (Fig. 57), aided with flanking $\mathrm{C} 23-\mathrm{H} 23 \cdots \mathrm{O}^{d}$ $\left[\mathrm{C} 23 \cdots \mathrm{O} 2^{d}=3.2826(16) \AA, d=1-\mathrm{x},-1 / 2+\mathrm{y},-1 / 2-\mathrm{z}\right]$ interactions.

The hydrogen bonding, as seen in the CppOMe isomer, forms zig-zag C(6) chains along the $b$-axis direction, parallel with the ( $\overline{1} 01$ ) plane. It is interesting to note
that the pyridinyl rings ( $\mathbf{C}$-rings, $\mathrm{C}_{5} \mathrm{~N}$ ) are parallel with the ( $\overline{101}$ ) plane; the angle between the $\mathrm{C}_{5} \mathrm{~N}$ ring and the carbamate plane is just $7.60(8)^{\circ}$ (Table 32). Therefore, the whole chain is planar and parallel with the ( $\overline{1} 01$ ) plane apart from the rotated [71.49(5) ${ }^{\circ}$ ] meta-methoxyphenyl ring ( $\mathbf{O}$-ring, $\mathrm{C}_{6}$ ). The zig-zag chains are connected along the [011] direction into a 2-D sheet parallel with the ( $\overline{101)}$ plane via bifurcated $\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O} 1^{a}\left[\mathrm{C} 14 \cdots \mathrm{O} 1^{a}=3.2956(17) \AA, a=2-\mathrm{x}, 1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}\right]$ and $\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{O} 1^{a}$ $\left[\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{O}^{a}=3.3014(18) \AA\right.$ ] interactions.


Fig. 57: Hydrogen bonding in the CpmOMe isomer ( $a=2-\mathrm{x},{ }^{1 / 2}+\mathrm{y}, 1 / 2-\mathrm{z} ; b=1-\mathrm{x},-1 / 2+\mathrm{y},-1 / 2-\mathrm{z}$ )

The sheets are interconnected along the $c$-axis direction into the crystal structure by weak $\mathrm{C}-\mathrm{H} \cdots \pi($ arene $)$ contacts: $\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{C} 21^{e}\left[\mathrm{C} 16 \cdots \mathrm{C} 21^{e}=2.83 \AA, e=\mathrm{x}, 1 / 2-\right.$ $\mathrm{y}, 1 / 2+\mathrm{z}]$ and $\mathrm{C} 17-\mathrm{H} 17 \mathrm{~A} \cdots \mathrm{C} 14^{f}\left[\mathrm{C} 17 \cdots \mathrm{C} 14^{f}=3.501(3) \AA, f=\mathrm{x}, 1 / 2-\mathrm{y},-1 / 2+\mathrm{z}\right]$.

The interplanar angle $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ is $73.89(5)^{\circ}$. The conformation of the metamethoxyphenyl ring ( $\mathbf{O}$-ring) is $\mathbf{O}$-anti while the conformation of the $\mathrm{CH}_{3} \mathrm{O}$ group is Me-syn.

CpoOMe molecular and crystal structure

Single crystals of the CpoOMe isomer (Fig. 58) were grown from a mixture of $\mathrm{CHCl}_{3}$ and acetone at $4^{\circ} \mathrm{C}$. As expected, the primary interaction is the $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 24^{b}$ $\left[\mathrm{N} 1 \cdots \mathrm{~N} 24^{b}=2.998(2) \AA, b=1-\mathrm{x}, 1 / 2+\mathrm{y}, 5 / 2-\mathrm{z}\right]$ hydrogen bonding linking the molecules along the $b$-axis direction into a 1-D chain parallel with the ( $\overline{1} 01$ ) plane. Contrary to the aggregation seen with the other isomers having a similar hydrogen bonding scheme, no augmenting $\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{O} 2$ interaction is present. The secondary interaction is $\mathrm{C} 23-$ $\mathrm{H} 23 \cdots \mathrm{O}^{c}\left[\mathrm{C} 23 \cdots \mathrm{O} 3^{c}=3.499(2) \AA, c=\mathrm{x}, 1 / 2-\mathrm{y}, 1 / 2+\mathrm{z}\right]$ that connects $1-\mathrm{D}$ chains along the $c$-axis direction into 2-D sheets parallel with the (100) plane.


Fig. 58: Hydrogen bonding in the CpoOMe isomer ( $a=1-\mathrm{x},-1 / 2+\mathrm{y},{ }^{5} / 2-\mathrm{z}$ )

Formation of the 2-D sheets is supported by the neighbouring alternating C26$\mathrm{H} 26 \cdots \mathrm{O} 3^{d}\left[\mathrm{C} 26 \cdots \mathrm{O} 3^{d}=3.329(2) \AA, d=1-\mathrm{x}, 1-\mathrm{y}, 2-\mathrm{z}\right]$ interaction. These 2-D sheets are interconnected via double C-H $\cdots \pi$ (arene) interactions C17-H17B $\cdots \mathrm{C}^{2} 5^{e}\left[\mathrm{H} 17 \mathrm{~B} \cdots \mathrm{C} 15^{e}\right.$ $=2.84 \AA, e=-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}]$, as well as by the vicinal $\pi \cdots \pi$ stacking $\mathrm{C} 13 \cdots \mathrm{C} 13^{e}[3.387(3)$ $\AA]$. The geometry of the CpoOMe isomer (Table 32) is as expected for an orthosubstituted phenyl- $N$-pyridinyl-carbamate; the $\mathrm{C}_{6} /$ carbamate angle is near the orthogonal $\left[88.90(6)^{\circ}\right]$ and the $\mathrm{C}_{5} \mathrm{~N} /$ carbamate angle is close to planarity $\left[6.09(8)^{\circ}\right]$; the interplanar angle $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ is $86.15(6)^{\circ}$.

### 7.1.2 CmxOMe isomer series

The CmxOMe triad contains the most remarkable structure of all the CxxR series: the disordered trimeric CmmOMe isomer. It crystallises in the trigonal R3c space group with $\mathrm{Z}=18$ and forms unique trimers via $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 23$ hydrogen bonds. The CmpOMe is isostructural with CmpM. CmoOMe was the only isomer in the CxxOMe series that was reluctant to produce single crystals, suitable for SXRD, even after many attempts using a range of solvents and solvent blends; instead of crystal growth, decomposition of the compound occurs.

CmpOMe molecular and crystal structure

Single crystals were grown from $\mathrm{CHCl}_{3}$. The $\mathbf{C m p O M e}$ isomer is similar to the CmpM isomer (Section 6.1.2), in the $P 2_{l} 2_{l} 2_{l}$ space group (No. 19). The presence of the
methoxy group at the para position instead of the methyl results in a larger $c$-axis and volume [1201.86(4) $\AA^{3}$ in CmpOMe compared to 1182.66(3) $\AA^{3}$ in CmpM], and different to $\mathbf{C m p M}$, the substituent is engaged in a weak $\mathrm{C}-\mathrm{H} \cdots \pi($ arene $)$ interaction.


Fig. 59: An ORTEP diagram of CmpOMe ( $a=1+\mathrm{x}, \mathrm{y}, \mathrm{z} ; b=1-\mathrm{x},-1 / 2+\mathrm{y},{ }^{1} / 2-\mathrm{z}$ )

The aggregation in CmoOMe is similar as in CmpM. The hydrogen bond N1$\mathrm{H} 1 \cdots \mathrm{~N} 23^{c}\left[\mathrm{~N} 1 \cdots \mathrm{~N} 23^{c}=2.9130(19) \AA, c=1-\mathrm{x}, 1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}\right]$ links molecules along the $b$-axis direction into a spiral $C$ (5) chain parallel with the (001) plane (Fig. 59). The hydrogen bond is less linear [160.6(16) ${ }^{\circ}$ ] than in $\mathbf{C m p M}$ and is supported by the N1$\mathrm{H} 1 \cdots \mathrm{C} 22^{c}$ side interaction $\left[\mathrm{N} 1 \cdots \mathrm{C} 22^{c}=3.353(2) \AA\right]$.

The secondary interaction is $\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{O}^{a}\left[\mathrm{C}_{1} 6 \cdots \mathrm{Ol}^{a}=3.463(2) \AA, a=-\right.$ $1+\mathrm{x}, \mathrm{y}, \mathrm{z}]$ connecting the chains along the $a$-axis direction into a 2-D sheet, parallel with the (001) plane (Fig. 59). Weak C-H $\cdots \pi$ (arene) contacts C24-H24 $\cdots \mathrm{Cg} 1^{d}\left[\mathrm{C} 24 \ldots \mathrm{Cg} 1^{d}=\right.$ $3.695(2) \AA, \mathrm{Cg} 1=(\mathrm{C} 21, \ldots, \mathrm{C} 26), d=2-\mathrm{x}, 1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}]$ and $\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{Cg} 2^{e}\left[\mathrm{C} 25 \cdots \mathrm{Cg}{ }^{e}\right.$ $=3.4291(19) \AA, \mathrm{Cg} 2=(\mathrm{C} 11, \ldots, \mathrm{C} 16), e=2-\mathrm{x}, 1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}]$ support the sheet formation. As distinct from the $\mathbf{C m p M}$ isomer, the $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) $\mathrm{C} 17-\mathrm{H} 17 \mathrm{C} \cdots \mathrm{Cg}_{2}{ }^{f}\left[\mathrm{C} 17 \cdots \mathrm{Cg}_{2}{ }^{f}\right.$ $=3.708(2) \AA, f=1 / 2+\mathrm{x}, 3 / 2-\mathrm{y},-\mathrm{z}]$ contact in CmpOMe isomer represents the only contact between 2-D sheets.

As expected the geometrical features of the $\mathbf{C m p O M e}$ isomer are very similar to those in $\mathbf{C m p M}$ (see Table 32 and 29). The conformation of the $\mathbf{C}$-ring is $\mathbf{C}$-syn.

CmmOMe molecular and crystal structure

The most remarkable structure of all of the CxxR compounds is the CmmOMe crystal structure. Molecules form unique trimers via $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 23$ interactions in an unexpected trigonal R3c space group (No. 161). Interestingly, no other carbamate, benzamide or pyridinecarboxamide in any series forms a trimeric structure. However, formation of trimers via $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds or by other hydrogen bonds is already observed in many structures, ${ }^{206-210}$ as in methyl-4-trifluoromethylpyrazole-3-carboxylate that crystallises as a solvate in $C 2 / c .^{206} \mathbf{C m m O M e}$ was grown with difficulty from MeOH and data were collected with $\mathrm{Cu} K \alpha$ radiation.

The CmmOMe molecules in the crystal structure are conformationally disordered about the C1-O2-C11-C16 torsion angle ( $\beta$ angle). $50 \%$ of molecules ( $\mathrm{A}, \beta=$ $-56.06^{\circ}$ ) are $\mathbf{O}-\boldsymbol{s y n}$, the remainder $\left(\mathrm{B}, \beta=120.86^{\circ}\right)$ are in an $\mathbf{O}$-anti conformation (Fig. 60). The meta-methoxyphenyl ring is not disordered. Both the A and B parts of the molecule are involved in the formation of the hydrogen bonded trimer ring via $\mathrm{N} 1 \mathrm{~A}-$ $\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{~N}_{2} 3 \mathrm{~A}^{a}\left[\mathrm{~N} 1 \mathrm{~A} \cdots \mathrm{~N} 23 \mathrm{~A}^{a}=2.970(7) \AA, a=2-\mathrm{y}, \mathrm{x}-\mathrm{y}+1, \mathrm{z}\right]$ and $\mathrm{N} 1 \mathrm{~B}-\mathrm{H} 1 \mathrm{~B} \cdots \mathrm{~N} 23 \mathrm{~B}^{c}$ $\left[\mathrm{N} 1 \mathrm{~B} \cdots \mathrm{~N} 23 \mathrm{~B}^{c}=2.963(7) \AA, c=-\mathrm{x}+\mathrm{y}+1,2-\mathrm{x}, \mathrm{z}\right]$ hydrogen bonds (Fig. 61). If viewed when the methoxy moieties are pointed upward (Fig. 61) it can be noted that the A part forms a trimer ring in a clockwise direction, while the B part does likewise in an anticlockwise direction.


Fig. 60: An ORTEP diagram of the CmmOMe disorder showing the A part (O-syn conformation, $50 \%$ occupancy) and B part (O-anti conformation, $50 \%$ occupancy)


Fig. 61: The CmmOMe trimer (only A is shown; $a=2-\mathrm{y}, 1+\mathrm{x}-\mathrm{y}, \mathrm{z} ; b=1-\mathrm{x}+\mathrm{y}, 2-\mathrm{x}, \mathrm{z}$ ).

Trimer rings are interconnected into a 1-D column by stacking along the $c$-axis direction through $\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O}_{1}{ }^{d}\left[\mathrm{C} 12 \cdots \mathrm{O}_{1}{ }^{d}=3.184(5) \AA, d=1-\mathrm{x}+\mathrm{y}, \mathrm{y}, \mathrm{z}-1 / 2\right]$ hydrogen bonding, and is additionally stabilised by $\pi-\pi$ stacking (C1A $\cdots \mathrm{C}_{2} 5 \mathrm{~A}^{d}$ and $\mathrm{C} 1 \mathrm{~A} \cdots \mathrm{C} 26 \mathrm{~B}^{d}$ ). The columns are linked in the crystal structure by $\mathrm{C} 17-\mathrm{H} 17 \mathrm{C} \cdots \mathrm{O}^{2} \mathrm{~A}^{e}$ $\left[\mathrm{C} 17 \cdots \mathrm{O} 1 \mathrm{~A}^{e}=3.260(5) ~ \AA, \quad e=2 / 3-\mathrm{x}+\mathrm{y}, 4 / 3-\mathrm{x},-2 / 3+\mathrm{z}\right]$ and $\mathrm{C} 25 \mathrm{~B}-\mathrm{H} 25 \mathrm{~B} \cdots \mathrm{O}^{f}$ $\left[\mathrm{C} 25 \mathrm{~B} \cdots \mathrm{O} 3^{f}=3.351(19) \AA, f=1 / 3+\mathrm{x}, 2 / 3+\mathrm{x}-\mathrm{y}, 1 / 6+\mathrm{z}\right]$ interactions. The conformation of the methoxy group is Me-syn.

### 7.1.3 CoxOMe isomer series

As for the CoxM compounds, the main interaction in all CoxOMe compounds is dimer formation via double $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 22$ hydrogen bonds forming cyclic $R^{2}{ }_{2}(8)$ hydrogen bonded rings about inversion centres, augumented by flanking C23-H23 $\cdots \mathrm{O} 2$ interactions. The ComOMe and CooOMe isomers crystallise in $P \overline{1}$, while the CopOMe isomer is in $P 2_{l} / c$. The pyridinyl rings are $\mathbf{C}-\mathbf{s y n}$.

CopOMe molecular and crystal structure

The CopOMe isomer (Fig. 62) is the most crystalline material among all CxxR carbamates, regardless of solvent. Crystals were grown from methanol.


Fig. 62: Hydrogen bonding in CopOMe ( $a=1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z} ; \quad b=\mathrm{x},-1+\mathrm{y}, \mathrm{z} ; c=1-\mathrm{x},-\mathrm{y}, 1-\mathrm{z}$ )

The CopOMe isomer crystallises in $P 2_{l} / c$ and is isomorphous with CopM. Another similarity with $\mathbf{C o p M}$ is formation of $R^{2}{ }_{2}(8)$ hydrogen bonded dimers. Due to the proton accepting abilities of the O 2 atom, the methoxy group is involved in crystal structure formation, as distinct from the methyl group in CopM.

The primary bonding in the CopOMe isomer is dimer formation about inversion centres giving $R^{2}{ }_{2}(8)$ rings via double $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 22^{a}\left[\mathrm{~N} 1 \cdots \mathrm{~N} 22^{a}=2.9885(15) \AA, a=1-\right.$ $\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}]$ hydrogen bonds (Fig. 62). Dimer formation is fortified by $\mathrm{C} 23-\mathrm{H} 23 \cdots \mathrm{O} 2^{a}$ $\left[\mathrm{C} 23 \cdots \mathrm{O} 2^{a}=3.2372(18) \AA\right.$ ] interactions.

Compared with the isomorphous CopM, the CopOMe isomer has different secondary interactions. The methoxy moieties connect dimers along the $b$-axis direction into a 1-D column parallel with the (100) plane through double C24-H24ㅇㅇ ${ }^{d}$ $\left[\mathrm{C} 24 \cdots \mathrm{O} 14^{d}=3.3750(18) \AA, d=\mathrm{x}, 1+\mathrm{y}, \mathrm{z}\right]$ interactions (Fig. 62). The columns are interconnected along the $c$-axis direction into a 2-D sheet parallel with the (100) plane via $\mathrm{C} 17 \cdots \mathrm{Ol}^{e}$ [3.1433(18), $\left.e=1-\mathrm{x},-1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}\right]$ contacts. There are no other interactions in the crystal structure. The geometry of CopOMe is similar to that of CopM. The $\mathrm{C}_{6} /$ carbamate angle is $57.08(4)^{\circ}$, while the $\mathrm{C}_{5} \mathrm{~N} /$ carbamate is nearly planar at $4.43(8)^{\circ}$. The interplanar angle $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ is $53.28(3)^{\circ}$.

ComOMe molecular and crystal structure

As in all CoxOMe compounds, dimerisation is achieved by $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 22^{a}$ $\left[\mathrm{N} 1 \cdots \mathrm{~N} 22^{a}=2.983(3) \AA, a=2-\mathrm{x},-\mathrm{y}, 1-\mathrm{z}\right]$ hydrogen bonding about inversion centres and
is augmented by flanking $\mathrm{C} 23-\mathrm{H} 23 \cdots \mathrm{O} 2^{a}\left[\mathrm{C} 23 \cdots \mathrm{O} 2^{a}=3.236(3) \AA\right.$ interactions (Fig. 63). Single crystals were grown from a $\mathrm{CHCl}_{3} /$ acetone solvent mixture. Dimers are linked along the $a$-axis direction into a column parallel with the (011) plane, via double $\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 1^{e}\left[\mathrm{C} 12 \cdots \mathrm{O} 1^{e}=3.411(3) \AA, e=1+\mathrm{x}, \mathrm{y}, \mathrm{z}\right]$ interactions and supported by weak $\mathrm{C} 17-\mathrm{H} 17 \mathrm{~A} \cdots \mathrm{Cg}_{2}{ }^{e}\left[\mathrm{C} 17 \cdots \mathrm{Cg} 2^{e}=3.550(3) \AA, \mathrm{Cg} 2=(\mathrm{C} 11 \ldots \mathrm{C} 16)\right]$ contacts. Furthermore, the columns are linked by $\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O} 3^{c}\left(\mathrm{C} 14 \cdots \mathrm{O} 3^{c}=2.66 \AA, c=2-\mathrm{x}, 1-\right.$ $y,-z$ ) interactions into a sheet parallel with the (011) plane (Fig. 63). There are no additional interactions in the crystal structure.


Fig. 63: Hydrogen bonding in ComOMe ( $a=2-\mathrm{x},-\mathrm{y}, 1-\mathrm{z} ; \quad b=-1+\mathrm{x}, \mathrm{y}, \mathrm{z} ; c=2-\mathrm{x}, 1-\mathrm{y},-\mathrm{z} ; \quad d=$ x,1+y,-1+z)

The ComOMe molecule has an unusual geometry for a meta-substituted phenyl-$N$-pyridinyl-carbamate. The meta-methoxyphenyl ring is nearly orthogonal to both the carbamate plane and pyridinyl ring (Table 32) and therefore is barely applicable to syn/anti conformational systematics. However, the meta-methoxyphenyl ring is slightly in an O-syn conformation. The methoxy moiety is Me-syn, whereas the pyridinyl ring is co-planar with the carbamate plane.

CooOMe molecular and crystal structure

The CooOMe plate crystals were grown from $\mathrm{CDCl}_{3}$, and the data collection was accomplished using $\mathrm{Cu} \mathrm{K} \alpha$ radiation. The CooOMe isomer (Fig. 64) crystallises in the $P \bar{l}$ space group and is isostructural with ComOMe.

As with the previous two isomers, the CooOMe isomer forms dimers as a primary intramolecular interaction. The dimers are formed about inversion centres via $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 22^{a}\left[\mathrm{~N} 1 \cdots \mathrm{~N} 22^{a}=3.0298(18) \AA, a=1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}\right]$ hydrogen bonds, giving $R^{2}{ }_{2}(8)$ hydrogen bonded rings and aided by flanking C23-H23 $\cdots \mathrm{O} 2^{a}\left[\mathrm{C} 23 \cdots \mathrm{O} 2^{a}=\right.$
$3.3572(18) \AA$ ] interactions. The longer $\mathrm{N} 1 \cdots \mathrm{~N} 22$ and $\mathrm{C} 23 \cdots \mathrm{O} 2$ interactions suggest a weaker dimer. The crystal aggregation relies on $\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O} 1^{b}\left[\mathrm{C} 14 \cdots \mathrm{O} 1^{b}=\right.$ $3.3296(18) \AA, b=1-\mathrm{x}, 2-\mathrm{y},-\mathrm{z}]$ interactions, supported by weak C17-H17A $\cdots \mathrm{C} 15^{b}$ $\left[\mathrm{C} 17 \cdots \mathrm{C} 15^{b}=3.677(2) \AA\right]$ contacts that align dimers into a column along the (011) plane.


Fig. 64: Hydrogen bonding in CooOMe ( $a=1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z} ; \quad b=1-\mathrm{x}, 2-\mathrm{y},-\mathrm{z} ; c=\mathrm{x}, 1+\mathrm{y},-1+\mathrm{z}$ )

The geometry of the CooOMe isomer is as expected for an ortho-substituted phenyl- $N$-pyridinyl-carbamate. The interplanar angle $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ is almost orthogonal [89.05(4) ${ }^{\circ}$ ], while the $\mathrm{C}_{5} \mathrm{~N} /$ carbamate angle (C-ring) is close to planarity $\left[4.67(8)^{\circ}\right]$.

### 7.2. Ab initio calculations and modelling data

### 7.2.1. Structure optimisation

The five dihedral angles of the optimised CxxOMe isomer models are shown in Table 33. According to the structural characteristics, all CxxOMe isomers can be divided into two groups. The first group comprises six CxpOMe and CxmOMe isomers that share very similar geometries, while another group is the CxoOMe triad. In general, all CxxOMe isomers show a certain level of planarity, excluding the O-ring rotated from planarity. In CxpOMe and CxmOMe the planarity is more pronounced.

The pyridinyl dihedral angle ( $\mathbf{C}$-ring, $\alpha$-angle) is planar $\left(0.10 \pm 0.30^{\circ}\right)$ regardless of the isomer, as well as the $\delta(\mathrm{OCNC})$ torsion angle $\left(-0.19 \pm 0.27^{\circ}\right.$ in CxpOMe and the CxmOMe isomers and $1.11 \pm 0.05^{\circ}$ in the CxoOMe isomers). The $\gamma$ dihedral angle (COCO) is generally planar ( $-0.93 \pm 0.68^{\circ}$ in $\mathbf{C x p O M e}$ and the CxmOMe isomers), but in the $\mathbf{C x o O M e}$ isomers it is tilted by $9.42 \pm 0.39^{\circ}$.

Table 33: Torsion angles $\left({ }^{\circ}\right)$ of the optimised $\mathbf{C x x O M e}$ isomers ${ }^{\mathrm{a}}$

|  | $\alpha$ | $\beta$ | $\beta^{*}$ | $\gamma$ | $\delta$ | $\omega$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| CppOMe | 0.45 | 67.44 | 67.44 | -0.49 | -0.15 | -0.97 |
| CpmOMe | -0.29 | 119.48 | 64.35 | -1.48 | -0.26 | 0.75 |
| CpoOMe | 0.32 | 73.75 | 73.75 | 9.49 | 1.07 | 5.99 |
| CmpOMe | 0.50 | 66.12 | 66.12 | -0.06 | -0.07 | -0.89 |
| CmmOMe | -0.30 | 121.05 | 62.86 | -1.51 | -0.34 | 0.64 |
| CmoOMe | 0.03 | 73.65 | 73.65 | 9.77 | 1.09 | 5.79 |
| CopOMe | 0.07 | 66.52 | 66.52 | -0.45 | 0.24 | -0.82 |
| ComOMe | 0.24 | 121.09 | 62.87 | -1.61 | -0.55 | 0.60 |
| CooOMe | -0.10 | 73.92 | 73.92 | 9.00 | 1.16 | 5.50 |

${ }^{\text {a }}$ The angle $\mathrm{C} 26-\mathrm{C} 21-\mathrm{C} 1=\mathrm{O} 1$ (C-ring) is designated as $\alpha$, the C1-O2-C11-C16 angle ( $\mathbf{O}$-ring) as $\beta$, the $\mathrm{O} 1=\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 21$ angle as $\delta$, the $\mathrm{O} 1=\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 11$ as $\gamma$ and the $\mathrm{C}-\mathrm{C}-\mathrm{O} 3-\mathrm{C} 17$ (methoxy group, Me) as $\omega$. The $\beta^{*}$ angle presents the relative deviation from planarity compared to the neighbouring COCO $(\gamma)$ torsion angle. All geometries are based on B3LYP/6-311++G(d,p) optimisations.

For the methoxyphenyl ring ( $\mathbf{O}$-ring, $\beta$ torsion angle) the situation is specific. In the $\mathbf{C x p O M e}$ isomer triad, the $\mathbf{O}$-ring (pOMe) is rotated by $66.69 \pm 0.68^{\circ}$, while the meta-methoxyphenyl ring (mOMe) in the CxmOMe isomer triad is rotated in the opposite direction by an absolute value of $120.54 \pm 0.92^{\circ}$. The corresponding deviation from planarity (relative value) amounts to $63.36 \pm 0.86^{\circ}$ ( $\beta^{*}$ in Table 30), that is very close to the rotation of the pOMe ring (O-ring) in CxpOMe. Therefore, the geometry of both CxpOMe and CxmOMe triads is very similar but with one important difference: rotation of the $\mathbf{O}$-ring is in an opposite direction. The conformation of the metamethoxyphenyl ring (mOMe) is O-syn, contrary to the $\mathbf{M}$-anti in the $\mathbf{C x m M}$ isomers (Section 6.2.1).

Due to the steric clash between the methoxy and carbonyl moiety in the CxoOMe triad, the $\mathbf{O}$-ring ( $\mathbf{0 O M e}$ ) is $73.77 \pm 0.14^{\circ}$, close to orthogonality with a minor tilt towards eventual $\mathbf{O}$-anti conformation. However, as was the case in the analogous CxoM isomer triad, the orthogonality of the O-ring equalises possible steric or electronic influences of the neighbouring moieties and the syn/anti conformational convention is not applicable.

The $\mathbf{C x x O M e}$ isomer grid is unique among the $\mathbf{C x x} \mathbf{R}$ carbamates due to the presence of an additional methoxy group that has an additional torsion angle ${ }_{\text {phen }} \mathrm{C}-\mathrm{C}-\mathrm{O}-$ $\mathrm{CH}_{3}$ (Me dihedral angle, $\omega$ ). The methoxy group is expected to be planar with its parent phenyl ring; however, it can adopt two conformations (Scheme 36), proximal (Me-syn)
or distal (Me-anti) to the carbonyl oxygen or carbamate hydrogen, depending on the conformation of the $\mathbf{O}$-ring.


Scheme 36: Possible conformations in the CxxOMe compounds

The Me ( $\omega$ ) dihedral angle in the CxpOMe and CxmOMe isomers is planar ($0.12 \pm 0.86^{\circ}$ ) while in the CxoOMe triad there is a minor bend of $5.76 \pm 0.25^{\circ}$ towards the carbonyl group. The conformation in the CxmOMe and CxoOMe isomers is Me-anti. In CxpOMe however, two possible conformations (Me-syn/Me-anti) are practically equivalent, despite the $\sim 67^{\circ}$ rotation of the $\mathbf{O}$-ring.

### 7.2.2. Conformational analysis

Fig. 65 depicts the nine PES conformational analysis diagrams of the CxxOMe gas phase modelled molecular structures. The C-ring (pyridinyl ring, $\alpha$ dihedral angle) is drawn as a full red line, the $\mathbf{O}$-ring (methoxyphenyl ring, $\beta$ dihedral angle) as a blue dashed line and the Me dihedral angle ( $\omega$ ) as a green dashed line. At $\theta=0$ and $\pm 180^{\circ}$, the conformation of the asymmetric $\mathbf{C}$ - or $\mathbf{O}$-ring is $\boldsymbol{s y n}$ or anti.

The preferred conformation of the pyridinyl rings (C-ring, $\alpha$ dihedral angle) in the CmxOMe and CoxOMe isomers is, as expected, C-syn. The meta-methoxyphenyl ring or mOMe-ring ( $\mathbf{O}$-ring, $\beta$ dihedral angle) prefers $\mathbf{O}$-syn conformation, opposite to M-anti, as seen in the CxxM isomer grid (Section 6.2.2). As explained in Section 7.2.1 the ortho-methoxyphenyl ring or $\mathbf{0} \mathbf{O M e}$-ring, due to its near orthogonality, cannot be subject of the syn/anti convention.

The PES profile of the pyridinyl rings are generally the same as in the CxxM isomers (Section 6.2.2.) with negligible differences in rotational barrier energies. The para-pyridinyl ring $(\mathbf{C p})$ shows a PES profile with two global maxima at $c a .90^{\circ}$ and $90^{\circ}\left(\mathrm{TS}_{\mathrm{C}_{\mathrm{p}}}{ }^{\mathrm{I}}=24.82 \pm 0.34 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ and two global minima at $0^{\circ}$ and $\pm 180^{\circ}$. The PES profile of the meta-pyridinyl ring $(\mathbf{C m})$ is slightly asymmetric with one global
maximum at ca. $-90^{\circ}\left(\mathrm{TS}_{\mathrm{Cm}}{ }^{\mathrm{II}}=18.35 \pm 0.49 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$, one local maximum at $c a .90^{\circ}$ $\left(\mathrm{TS}_{\mathrm{Cm}}{ }^{\mathrm{I}}=17.96 \pm 0.29 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$, one local minimum at $\pm 180^{\circ}\left(\mathrm{LM}_{\mathrm{Cm}}=5.63 \pm 0.04 \mathrm{~kJ} . \mathrm{mol}^{-}\right.$ ${ }^{1}$ ) and global minimum at $0^{\circ}$. As with the $\mathbf{C m x M}$ compounds, the opposite C-anti conformation in gas phase is statistically less likely but possible (9\%).


Fig. 65: The PES conformational analysis for the nine CxxOMe isomers optimised in the gas phase: the equivalent solid state angle is depicted by $(\bullet)$ with, if applicable, an assigned identification letter.

Finally, for the ortho-pyridinyl ring ( $\mathbf{C o}$ ) the PES profile has one global maximum at $c a .-110^{\circ}\left(\mathrm{TS}_{\mathrm{Co}}{ }^{\mathrm{II}}=37.70 \pm 1.19 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$, one local maximum at $c a .115^{\circ}$ $\left(\mathrm{TS}_{\mathrm{Co}}{ }^{\mathrm{I}}=36.73 \pm 1.10 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$, one local minimum at $c a .-160^{\circ}\left(c a .160^{\circ}\right.$ in CopOMe) $\left(\mathrm{LM}_{\mathrm{Co}}=31.21 \pm 0.20 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ and one global minimum at $0^{\circ}$.

As for the methoxyphenyl ring, a similar pattern of PES profiles exists, as in the CxxM series. The pOMe and mOMe rings give regular PES profiles, while the oOMe ring does not. The para-methoxyphenyl ring (pOMe), contrary to expectations, has an asymmetric PES profile with one global maximum at $c a .115^{\circ}\left(\mathrm{TS}_{\text {pOMe }}{ }^{\text {II }}=5.18 \pm 0.14\right.$ $\left.\mathrm{kJ} . \mathrm{mol}^{-1}\right)$, one local maximum at $c a .-65^{\circ}\left(\mathrm{TS}_{\text {pome }}{ }^{\mathrm{I}}=4.31 \pm 0.07 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$, two plateaus from $0^{\circ}$ to $60^{\circ}$ and from $180^{\circ}$ to $120^{\circ}\left(\mathrm{P}_{\mathrm{pOMe}}=0.14 \pm 0.05 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$ and four global minima at $0^{\circ}, 60^{\circ}, 120^{\circ}$ and $\pm 180^{\circ}$.

A similar PES profile is found in the meta-methoxyphenyl ring (mOMe): a global maximum at $c a .60^{\circ}\left(\mathrm{TS}_{\text {mOMe }}{ }^{\text {II }}=4.05 \pm 0.17 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$, local maximum at $120^{\circ}$ $\left(\mathrm{TS}_{\text {mOMe }}{ }^{\mathrm{I}}=3.87 \pm 0.07 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$, two plateaus from $-60^{\circ}$ to $-20^{\circ}$ and from $140^{\circ}$ to $180^{\circ}$ $\left(\mathrm{P}_{\mathrm{mOMe}}{ }^{\mathrm{I}}=0.45 \pm 0.04 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ and two local minima at $0^{\circ}$ and $120^{\circ}$.

The plateaus are very low, flat barriers that allow free rotation of the pOMe and mOMe rings in these regions. Furthermore, low rotational barriers allow full rotation of the pOMe and mOMe rings and therefore exceptional flexibility. Mild asymmetry of the pOMe profile reflects the asymmetric position of the methoxy group. The global minimum of the mOMe ring is in an $\mathbf{O}$-syn conformation, but high flexibility and a very low energy difference $\left(0.45 \pm 0.04 \mathrm{kJ.mol}^{-1}\right)$ into the opposite $\mathbf{O}$-anti conformation makes both conformations nearly equivalent (55:45).

Conformational analysis of the $\mathbf{0 O M}$ ring resembles the $\mathbf{o M}$ ring in the CxxM isomer grid. If the COCO ring is not constrained the conformational analysis scan ends up in a meta-stable form due to the collision of carbonyl and methoxy moieties and consequent deviation of the COCO dihedral angle. The relaxed PES profile of the oOMe ring with COCO angle deviation is shown as a dashed light blue curve (oOMeCOCO ring). It has one global maximum at $c a .-70^{\circ}\left(\mathrm{TS}_{\mathrm{oF}}{ }^{\mathrm{II}}=36.75 \pm 0.34 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$, one local maximum at $c a .105^{\circ}\left(\mathrm{TS}_{\mathrm{oF}}{ }^{\mathrm{I}}=9.89 \pm 0.11 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ and two global minima at 0 and $-145^{\circ}$. Due to the displacement of the COCO dihedral angle into its unlikely local minimum, the PES curve does not end at the starting global minimum, but at an implausible local minimum at $0^{\circ}\left(\mathrm{LM}_{\text {of-COCO }}=19.48 \pm 0.67 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$.

However, if the COCO ring is kept constrained ("frozen"), only the oOMe ring rotates (even forcible), the resulting PES profile is a deep blue dashed curve (oOMe ring). Similar to the relaxed case, it has one global maximum at $c a .-80^{\circ}\left(\mathrm{TS}_{\mathrm{oF}}{ }^{\mathrm{II}}=\right.$ $\left.50.58 \pm 0.08 \mathrm{kJ.mol}^{-1}\right)$, one local maximum at $c a .100^{\circ}\left(\mathrm{TS}_{\mathrm{oF}}{ }^{\mathrm{I}}=10.56 \pm 0.19 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$, one local minimum at $c a .-160^{\circ}\left(\mathrm{LM}_{\mathrm{oF}}{ }^{\mathrm{II}}=3.38 \pm 0.73{\mathrm{~kJ} . \mathrm{mol}^{-1}}^{-1}\right)$ and one global minimum at $0^{\circ}$. In contrast to the PES profile, it successfully managed to loop to the starting global minimum. The high rotational barrier upon steric clash of the carbonyl and methoxy groups suggests that in reality (at room temperature) this rotation is not probable; rotation of the COCO dihedral angle into an unlikely local minimum is not probable either. However, in most of the dihedral angle regions two PES profiles overlap, except in the region from $180^{\circ}$ to $120^{\circ}$ where the constrained PES profile has a local minimum $\left(\mathrm{LM}_{\mathrm{oF}}{ }^{\mathrm{II}}=3.38 \pm 0.73 \mathrm{kJ.mol}^{-1}\right)$, while the relaxed PES profile has a global minimum. Both curves are approximations since the forcible rotation as seen in the mechanism of conformational analysis is not probable under real conditions.

Instead, a real PES curve would be a combination of both; from $0^{\circ}$ to $180^{\circ}$ and from $180^{\circ}$ to $-145^{\circ}$ the relaxed would dominate and from $-145^{\circ}$ to $0^{\circ}$ the constrained case would dominate.

The additional dihedral angle in CxxOMe compounds is the rotation of the methoxy group about the ${ }_{\text {phen }} \mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{CH}_{3}$ angle, or $\mathbf{M e}(\omega)$ dihedral angle. As expected, the PES profile depends on the methoxy group position. If para-substituted (pOMe) it is nearly symmetric with one global maximum at $c a .90^{\circ}\left(\mathrm{TS}_{\mathrm{Me}}{ }^{\mathrm{II}}=12.29 \pm 0.23 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$ and one local maximum at $c a .-90^{\circ}\left(\mathrm{TS}_{\mathrm{Me}}{ }^{\mathrm{I}}=11.62 \pm 0.13 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$. The global minimum is at $0^{\circ}$, but the expected second global minimum at $\pm 180^{\circ}$ is due to the deviation of the O-ring from planarity $\left(66.69 \pm 0.68^{\circ}\right)$, a local minimum $\left(\mathrm{LM}_{\mathrm{Me}}=0.03 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$. Nevertheless, the energy difference value ( $0.03 \mathrm{~kJ} . \mathrm{mol}^{-1}$ ) is negligible and in reality both conformations are equivalent. The rotational barriers are relatively high and wide, while the potential well is narrow. This form of PES profile suggests low flexibility and lower interchange rate, but both conformations are equivalent. In meta-substituted isomers (CxmOMe), the PES profile is very similar as in the pOMe rings, but more asymmetric with higher barriers; the global maximum is at $c a . ~-90^{\circ}\left(\mathrm{TS}_{\mathrm{Me}}{ }^{1}=12.81 \pm 0.11\right.$ $\left.\mathrm{kJ} . \mathrm{mol}^{-1}\right)$, the local maximum is at $c a .90^{\circ}\left(\mathrm{TS}_{\mathrm{Me}}{ }^{\mathrm{II}}=13.47 \pm 0.28{\mathrm{~kJ} . \mathrm{mol}^{-1}}^{-1}\right)$ and a global minimum is at $0^{\circ}$. The local minimum is at $c a . \pm 180^{\circ}\left(\mathrm{LM}_{\mathrm{Me}}=0.27 \pm 0.03 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ and both the Me-anti and the Me-syn conformations are plausible (53:47). Due to the steric repulsion, the ortho-substituted ( $\mathbf{0 O M e}$ ) rings have differently shaped PES profiles, with only one maximum at $c a . \pm 180^{\circ}\left(\mathrm{TS}_{\mathrm{Me}}{ }^{\mathrm{I}}=18.84 \pm 0.96 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ and one global minimum at $0^{\circ}$. The rotational barrier is lower, but the slope is uneven. Therefore, the oOMe ring can exist only in the Me-anti conformation.

The COCO dihedral angle PES profile is symmetric and similar in the CxpOMe and CxmOMe isomers with two global maxima at $c a . \pm 105^{\circ}\left(\mathrm{TS}_{\text {COCO }}{ }^{\mathrm{I}}=27.32 \pm 1.54\right.$ $\left.\mathrm{kJ} . \mathrm{mol}^{-1}\right)$, one local minimum at $\pm 180^{\circ}\left(\mathrm{LM}_{\text {COCO }}{ }^{\mathrm{I}}=18.13 \pm 0.42 \mathrm{kJ.mol}^{-1}\right)$ and a global minimum at $0^{\circ}$.

In the CxoOMe isomers the conformational analysis scan ends with neighbouring oOMe dihedral angles deviating from their global minima (deep yellow dashed curves). However, if the oOMe dihedral angle is kept constrained the result is a different PES profile (brown dashed curves) with global maximum at ca. $-100^{\circ}$ $\left(\mathrm{TS}_{\mathrm{COCO}}{ }^{\mathrm{II}}=45.64 \pm 0.73 \mathrm{kJ.mol}^{-1}\right)$, local maximum at $c a .90^{\circ}\left(\mathrm{TS}_{\mathrm{COCO}}{ }^{\mathrm{I}}=31.70 \pm 1.00\right.$ $\left.\mathrm{kJ} . \mathrm{mol}^{-1}\right)$, local minimum at $c a . \pm 180^{\circ}\left(\mathrm{LM}_{\mathrm{COCO}}{ }^{\mathrm{I}}=19.38 \pm 0.63 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ and a plateau at ca. $145^{\circ}\left(\mathrm{P}_{\mathrm{COCO}}=26.88 \pm 0.76 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$. Regardless of the actual shape, the high
rotational barriers and local minimum do not allow the opposite conformation to be plausible, while the wide potential well suggests a certain level of molecular flexibility.

Finally, the OCNC dihedral angles are approximately the same in all CxxOMe compounds with two global maxima at ca. $-70^{\circ}$ and $110^{\circ}\left(\mathrm{TS}_{\mathrm{OCNC}}=68.96 \pm 2.09{\mathrm{~kJ} . \mathrm{mol}^{-}}^{-}\right.$ ${ }^{1}$ ), one local minimum at $\pm 180^{\circ}\left(\mathrm{LM}_{\mathrm{OCNC}}=11.62 \pm 0.64{\left.\mathrm{~kJ} . \mathrm{mol}^{-1}\right) \text { and a global minimum }}\right.$ at $0^{\circ}$. A very high PES profile suggests the improbability of a conformational change although, as with the COCO ring, a certain level of flexibility is envisaged.

### 7.3 Comparisons of the solid state and modelling data

Comparison of the CxxOMe isomer structures between the eight available crystal structures and calculations is made by marking (as $\bullet$ ) torsion angle differences $(\Delta \theta)$ between the available experimental and theoretical structures on the corresponding gas phase PES diagrams (Fig. 65). For the CmmOMe isomer the disordered parts of the molecule are labelled as A or B .

In general, the $\mathbf{C}$-ring conformations ( $\mathbf{C}-\mathbf{s y n}$ ) and pyridinyl dihedral angles of the solid state molecular structures match those of modelled structures with deviations of no more than $\pm 10^{\circ}$. Usually, the $\mathbf{C}$-syn conformation in the $\mathbf{C m}$ rings is not favorable for the formation of $C(5)$ hydrogen bonded chains, opposite to the $\mathbf{C}$-anti conformation that exposes pyridinyl N 23 atoms to the $\mathrm{N} 1-\mathrm{H} 1$ moieties and allow formation of hydrogen bonded chains. However, aggregation of the CmpOMe isomer (and the isomorphous $\mathbf{C m p M}$ ) in the $\mathrm{P} 2_{1} 2_{l} 2_{l}$ space group allows formation of $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 23$ even if the $\mathbf{C m}$ rings are in the $\mathbf{C}$-syn conformation. On the other hand, formation of the CmmOMe trimer is another unique example of how aggregation can be accomplished without a conformational change. A similar case is seen in the NmpF tetramers and NmpM catemers (Chaper I, Section 2.2.5.3) where pyridinyl rings are in the C-syn conformation too. However, it is quite surprising that trimer formation was not found in any of the benzamide/pyridinecarboxamide isomer grids, where formation of $C(5)$ chains with C-anti conformers are preferred, except for the $\mathbf{N m p F}$ tetramers and NmpM catemers (Chapter I, Section 2.2.5.3).

The mOMe dihedral angle has flexibility, allowing free rotation. However, the methoxyphenyl rings in the solid state molecular structures generally correspond with the modelled versions in six out of eight cases with little or no deviations from the global minima. The exception is the CpmOMe isomer, where the solid state dihedral angle lies on the $\mathrm{P}_{\text {mome }}{ }^{\mathrm{I}}$ plateau, a position that allows formation of five secondary
interactions (Section 7.1.1). In the solid state structure of ComOMe, the mOMe ring is orthogonal to the pyridinyl ring, on the cusp of $\mathbf{C}$-syn conformation. This position is essential for the formation of secondary $\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O}{ }^{e}(e=1+\mathrm{x}, \mathrm{y}, \mathrm{z})$, C17$\mathrm{H} 17 \mathrm{~A} \cdots \mathrm{Cg} 2^{i}[\mathrm{Cg} 2=(\mathrm{C} 11 \ldots \mathrm{C} 16)]$ and $\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O}^{c}(c=2-\mathrm{x}, 1-\mathrm{y},-\mathrm{z})$ interactions between dimers, that are crucial for aggregation in the solid state (Fig. 63).

Finally, for the CmmOMe trimer $50 \%$ of molecules are in an O-syn conformation (A part) while the remaining 50\% are O-anti (B part). The B part is on the $\mathrm{P}_{\text {mome }}{ }^{\text {I }}$ plateau, however, due to the flexibility of the $\mathbf{O}$-ring and very low energy difference $\left(0.45 \pm 0.04 \mathrm{~kJ}^{2} \mathrm{~mol}^{-1}\right)$, the B part ( O -anti) is effectively equivalent to A ( $\mathbf{O}$ syn). The occurrence of both conformations is justified by the importance of the secondary interactions that are possible only if both conformations are available: the $\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O}^{d}{ }^{d}[d=1-\mathrm{x}+\mathrm{y}, \mathrm{y}, \mathrm{z}-1 / 2]$ hydrogen bonding as well as the C17$\mathrm{H} 17 \mathrm{C} \cdots \mathrm{O}_{1}{ }^{e}[e=2 / 3-\mathrm{x}+\mathrm{y}, 4 / 3-\mathrm{x},-2 / 3+\mathrm{z}]$ and C25B-H25B $\cdots \mathrm{O} 3^{f}[f=1 / 3+\mathrm{x}, 2 / 3+\mathrm{x}-$ $y, 1 / 6+z]$ interactions are essential for the aggregation of trimers into the observed crystal structure.

In five out of eight solid state structures the conformations of the methoxy group (Me) do not overlap with the preferred conformation in the optimised structures. However, for the mOMe ring, the low energy differences ( $0.03-0.27 \mathrm{~kJ} . \mathrm{mol}^{-1}$ ) in both CxpOMe and CxmOMe isomers effectively equalise the plausibility of both conformations. On the other hand, deviations from the minima are rarely higher than $5^{\circ}$ ( $10^{\circ}$ in the $\mathbf{C m p O M e}$ isomer). In each isomer a particular interaction drives the $\omega$ dihedral angle conformation into the Me-syn or Me-anti conformation.

The COCO and OCNC dihedral angles in the solid state match with the equivalent in optimised structures without or with an offset that does not exceed $15^{\circ}$. The high rotational barriers, especially for the OCNC dihedral angles, as well as high local minima, prevent conformational change.

## 8. CxxX compounds

### 8.1. Molecular and crystal structure data

The main challenge with the halo-carbamate compounds was their inability to produce quality single crystals. Even after numerous attempts, using various solvents and blends of solvents, only 10 out of 24 synthesised halophenyl- $N$-pyridinylcarbamates ( $\mathbf{C x x F}, \mathbf{C x x C l}$ and $\mathbf{C x x B r}$ isomer grids) gave single crystals suitable for

SXRD. Therefore, structural features of all 10 determined halo-carbamate crystals structures will be described together as $\mathbf{C x x X}(\mathbf{X}=\mathbf{F}, \mathbf{C l}, \mathbf{B r})$ compounds.

The main structural characteristic of the $\mathbf{C x x X}$ compounds is the isomorphology of analogous isomers. The $\mathbf{C m p} \mathbf{X}$ compounds are found in the $P c$ space group, $\mathbf{C m m X}$ in $C c$ and $\mathbf{C o p X}$ (except the CopBr isomer) in the $P \overline{1}$ space group. Tables 34 and 35 summarise the basic crystallographic data and structural features.

### 8.1.1 CxxF isomer grid

Three compounds ( $\mathbf{C m p F}, \mathbf{C m m F}$ and $\mathbf{C o p F}$ ) among a total of seven isomers gave single crystals.
$\mathbf{C m p F}$ molecular and crystal structure

The $\mathbf{C m p F}$ crystals were grown from $\mathrm{CHCl}_{3}$. The principal aggregation in the CmpF crystal structure is accomplished by two alternating $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 23$ hydrogen bonds (Fig. 66). The two molecules in the asymmetric unit (A and B) are connected into a pair $(\mathrm{A} \rightarrow \mathrm{B})$ via $\mathrm{N} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{~N} 23 \mathrm{~B}[\mathrm{~N} 1 \mathrm{~A} \cdots \mathrm{~N} 23 \mathrm{~B}=2.996(3) \AA]$ hydrogen bonds, augmented with flanking C22B-H22B $\cdots \mathrm{O} 2 \mathrm{~A}[\mathrm{C} 22 \mathrm{~B} \cdots \mathrm{O} 2 \mathrm{~A}=3.333(3) \AA]$ interactions. The AB pairs are connected along the $c$-axis direction into an undulating $C(5)$ chain $(\cdots \mathrm{AB} \rightarrow \mathrm{AB} \cdots)$ parallel with the (010) plane by N1B-H1B $\cdots \mathrm{N}_{2} \mathrm{~A}^{a}\left[\mathrm{~N} 1 \mathrm{~B} \cdots \mathrm{~N} 23 \mathrm{~A}^{a}=\right.$ 2.938(3) $\AA, a=x,-y+1, z-1 / 2$ ] hydrogen bonds (Fig. 66). In order to allow formation of the $C(5)$ chains the pyridinyl rings are in a $\mathbf{C}$-anti conformation. This conformation is already observed in similar $C(5)$ chains in the benzamides (NmmF, Fmm, Chapter I).

Table 34: Selected crystallographic data for the ten $\mathbf{C x x X}$ compounds ${ }^{\dagger}$

| $\mathbf{C x x X}$ | Space group | $\boldsymbol{Z}$ | Volume $\left(\boldsymbol{\AA}^{\mathbf{3}}\right)$ | $\boldsymbol{R}\left[\boldsymbol{F}^{2}>\mathbf{2 \sigma}\left(\boldsymbol{F}^{2}\right)\right], \boldsymbol{w R}\left(\boldsymbol{F}^{2}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{C m p F}$ | $P c$ | 2 | $1060.50(5)$ | $0.039,0.097$ |
| $\mathbf{C m m F}$ | $C c$ | 1 | $1052.85(15)$ | $0.052,0.122$ |
| $\mathbf{C o p F}$ | $P \bar{l}$ | 1 | $526.52(14)$ | $0.046,0.114$ |
| $\mathbf{C p m C l}$ | $P 2_{l}$ | 1 | $548.85(5)$ | $0.041,0.076$ |
| $\mathbf{C m p C l}$ | $P c$ | 2 | $1141.25(18)$ | $0.041,0.103$ |
| $\mathbf{C m m C l}$ | $C c$ | 1 | $1108.7(3)$ | $0.094,0.248$ |
| $\mathbf{C o p C l}$ | $P \bar{l}$ | 1 | $559.6(3)$ | $0.092,0.241$ |
| $\mathbf{C m p B r}$ | $P c$ | 2 | $1172.65(6)$ | $0.050,0.091$ |
| $\mathbf{C m o B r}$ | $P 2_{l} / c$ | 1 | $1269.90(7)$ | $0.046,0.106$ |
| $\mathbf{C o p B r}{ }^{a}$ | $P 2_{l} / n$ | 1 | $1147.2(9)$ | $0.095,0.260$ |

$\dagger$ Complete crystallographic, refinement and structural details for the ten CxxX isomers are listed in the ESI II (Section 2.3). ${ }^{a}$ Obtained with $\mathrm{Cu} \mathrm{K} \alpha$ radiation.

Table 35: Relevant structural features $\left(\AA,{ }^{\circ}\right)$ in ten $\mathbf{C x x X}$ isomers ${ }^{\text {a }}$

| CxxX | $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ | $\mathrm{C}_{6} /$ carbamate | $\mathrm{C}_{5} \mathrm{~N} /$ carbamate | N...N/O ${ }^{\text {b }}$ | Packing |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CmpF | 49.88(7) | 60.01(7) | 12.89(14) | 2.996(3) | $C(5)$ chains |
|  | 31.61(9) | 53.26(8) | 45.23(8) | 2.938(3) |  |
| CmmF | 29.77(12) | 51.44(12) | 37.18(13) | 2.951(4) | $C(5)$ chains |
| CopF | 53.34(6) | 57.93(6) | 4.60(13) | 2.997(3) | $R_{2}^{2}$ (8) dimers |
| CpmCl | 40.71(9) | 54.04(9) | 13.68(16) | 2.949(4) | $C$ (6) chains |
| CmpCl | $31.29(10)$ | 52.94(10) | 44.15(11) | 2.929(4) | $C(5)$ chains |
|  | 49.77(7) | 60.37(9) | 13.09(19) | 2.985(4) |  |
| CmmCl | 28.26(28) | 49.79(26) | 37.11(3) | 2.937(11) | $C(5)$ chains |
| CopCl | 54.32(15) | 58.36(14) | 4.38(32) | 2.994(7) | $R^{2}{ }_{2}(8)$ dimers |
| CmpBr | 50.83(14) | 58.39(15) | 12.43 (26) | 2.986(7) | $C$ (5) chains |
|  | 31.86(19) | 53.20(18) | 43.64(17) | 2.925(7) |  |
| CmoBr | 65.76(10) | 87.10(9) | 26.99(15) | $\begin{aligned} & 2.832(4)^{\mathrm{c}} \\ & 2.837(4)^{\mathrm{d}} \end{aligned}$ | $R_{4}^{4}(14)$ dimers |
| CopBr | 55.34(23) | 59.73(26) | 6.35(55) | 2.979(11) | $R_{2}^{2}(8)$ dimers |

${ }^{a}$ Full structural details are provided in the ESI II (Section 2.3).
${ }^{\mathrm{b}}$ The ${ }_{\text {carbamate }} \mathrm{N} \cdots \mathrm{N}_{\text {pyridine }}$ interaction distances,
${ }^{\mathrm{c}}$ The carbamate $\mathrm{N} \cdots \mathrm{O}_{\text {water }}$ interaction distances,
${ }^{\mathrm{d}}$ The ${ }_{\text {water }} \mathrm{O} \cdots \mathrm{N}_{\text {pyridine }}$ interaction distances.

The undulating 1-D chains are linked into a 2-D sheet parallel with the (100) plane via several bonds and interactions. The strongest among them is the C16A$\mathrm{H} 16 \mathrm{~A} \cdots \mathrm{O}^{c}{ }^{c}\left[\mathrm{C} 16 \cdots \mathrm{O}^{c}=3.203(3) \AA, c=\mathrm{x},-1+\mathrm{y}, \mathrm{z}\right]$ hydrogen bond, linking A and B molecules from adjacent chains. Other notable interactions that stabilise the 2-D sheet, are $\mathrm{C} 16 \mathrm{~B}-\mathrm{H} 16 \mathrm{~B} \cdots \mathrm{O}^{d}{ }^{d}\left[\mathrm{C} 16 \mathrm{~B} \cdots \mathrm{O}^{d}=3.314(4) \AA, d=\mathrm{x},-\mathrm{y}+2, \mathrm{z}-1 / 2\right]$ and $\mathrm{C} 12 \mathrm{~A}-\mathrm{H} 12 \mathrm{~A} \cdots \mathrm{O}_{1}{ }^{e}\left[\mathrm{C} 12 \mathrm{~A} \cdots \mathrm{O}_{1}{ }^{e}=3.360(3) \AA, e=\mathrm{x}, 1+\mathrm{y}, \mathrm{z}\right]$. Finally, there are three
 $\mathrm{C} 13 \mathrm{~A} \cdots \mathrm{C} 15 \mathrm{~A}^{e}[3.398(4) \AA]$ and $\mathrm{C} 14 \mathrm{~B} \cdots{ }^{\mathrm{C}} 13 \mathrm{~B}^{e}[3.391(5) \AA]$. The sheets are connected by weak $\mathrm{C} 26 \mathrm{~B}-\mathrm{H} 26 \mathrm{~B} \cdots \mathrm{~F} 14 \mathrm{~B}{ }^{f}\left[\mathrm{C} 26 \mathrm{~B} \cdots \mathrm{~F} 14 \mathrm{~B}^{f}=3.323(3) \AA, f=-1+\mathrm{x}, \mathrm{y}, \mathrm{z}\right]$ contacts linking the 2-D sheets into a 3-D crystal structure.


Fig. 66: Hydrogen bonding and aggregation in the $\mathbf{C m p F}$ isomer, forming $A B$ pairs and $A B A B$ chains ( $a, b=\mathrm{x}, 1-\mathrm{y},-1 / 2+\mathrm{z}$ )

As already mentioned, the pyridinyl rings ( $\mathbf{C}$-ring, $\mathrm{C}_{5} \mathrm{~N}$ ) of both molecules are in a C-anti conformation. Geometry differences among the A and B molecules are not significant; the most notable is the difference between the interplanar angles $\left(18.27^{\circ}\right)$ and the $\mathrm{C}_{5} \mathrm{~N} /$ carbamate plane $\left(32.34^{\circ}\right)$.

CmmF molecular and crystal structure

The $\mathbf{C m m F}$ isomer aggregates in the $C c$ space group (No. 9) with $Z^{\prime}=1$. Single crystals were grown from $\mathrm{CHCl}_{3}$.


Fig. 67: Hydrogen bonding in the CmmF isomer ( $a=\mathrm{x},-\mathrm{y}, \mathrm{r}^{1 / 2}+\mathrm{z} ; b=\mathrm{x}, 1-\mathrm{y}, 1 / 2+\mathrm{z}$ )

Despite being in a different space group and having a different $Z^{\prime}$, there are substantial similarities between $\mathbf{C m p F}$ and $\mathbf{C m m F}$ and their intermolecular interactions. The primary interaction in CmmF is the N1-H1 $\cdots \mathrm{N} 23^{c}\left[\mathrm{~N} 1 \cdots \mathrm{~N} 23^{c}=\right.$ $2.951(4) \AA, c=x,-y, 1 / 2+z]$ hydrogen bond, linking molecules along the $c$-axis direction into a $C(5)$ chain parallel with the (010) plane (Fig. 67). The N1-H1 $\cdots \mathrm{N} 23$ hydrogen bond is aided with flanking $\mathrm{C} 22-\mathrm{H} 22 \cdots \mathrm{O}^{a}\left[\mathrm{C} 22-\mathrm{H} 22 \cdots \mathrm{O} 2^{a}=3.371(4) \AA, a=\mathrm{x},-\mathrm{y},-\right.$ $1 / 2+\mathrm{z}$ ] interactions. The $C(5)$ chains are interconnected into a 2-D sheet parallel with the (100) plane by $\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{Ol}^{b}\left[\mathrm{C} 16 \cdots \mathrm{Ol}^{b}=3.253(5) \AA, b=\mathrm{x}, 1-\mathrm{y}, 1 / 2+\mathrm{z}\right]$ hydrogen bonds. These bonds are aided by weak $\pi-\pi$ contacts $\mathrm{C} 14 \cdots \mathrm{C} 13^{d}[3.395(7) \AA, d=\mathrm{x}, 1+\mathrm{y}$, z]. Finally, the sheets are interconnected through weak $\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{~F} 13^{e}\left[\mathrm{C} 25 \cdots \mathrm{~F} 13^{e}=\right.$ $3.301(5) \AA, e=1 / 2+\mathrm{x}, 1 / 2-\mathrm{y}, 1 / 2+\mathrm{z}]$ contacts.

The geometry of the $\mathbf{C m m F}$ molecule resembles the geometry of the B molecule of the $\mathbf{C m p F}$ isomer. The interplanar angle of $\mathrm{C}_{6} / \mathrm{C}_{5} \mathrm{~N}$ is $29.77(12)^{\circ}$, while the $\mathrm{C}_{6} /$ carbamate angle is $51.44(12)^{\circ}$ and $\mathrm{C}_{5} \mathrm{~N} /$ carbamate angle is $37.18(13)^{\circ}$. As expected, the pyridinyl ring ( $\mathrm{C}_{5} \mathrm{~N}, \mathbf{C}$-ring) is in the $\mathbf{C}$-anti conformation, mandatory for the
formation of $C(5)$ hydrogen bonded chains, and the meta-fluorophenyl ring is in the $\mathbf{F}$ anti conformation.

CopF molecular and crystal structure

CopF forms dimers similar to the CoxM and CoxOMe isomers, about inversion centres via $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 22^{a}\left[\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 22^{a}=2.997(3) \AA, a=-\mathrm{x}, 1-\mathrm{y}, 2-\mathrm{z}\right]$ hydrogen bonds producing $R^{2}{ }_{2}(8)$ hydrogen bonded rings. The dimer formation is augmented by flanking $\mathrm{C} 23-\mathrm{H} 23 \cdots \mathrm{O}^{a}{ }^{a}\left[\mathrm{C} 23 \cdots \mathrm{O} 2^{a}=3.271(3) \AA\right]$ interactions (Fig. 68).


Fig. 68: Hydrogen bonding in $\operatorname{CopF}$ ( $a=-\mathrm{x}, 1-\mathrm{y}, 2-\mathrm{z} ; \quad b=-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z} ; c=\mathrm{x}, \mathrm{y},-1+\mathrm{z}$ )

Apart from the interactions involved in dimerisation, there is only one additional intermolecular interaction. A weak $\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O}^{b}\left(\mathrm{C} 13 \cdots \mathrm{Ol}^{b}=3.444 \AA, b=-\mathrm{x}, 1-\mathrm{y}\right.$, $1-z$ ) interaction interconnects dimers along the $c$-axis direction into a 1-D chain (Fig. 68). As a result, CopF crystallises as very fine needles (single crystals were grown from $\mathrm{CHCl}_{3} /$ acetone mixtures). As a comparison, the CopOMe (Section 7.1.3) isomer forms similar dimers, but has additional interactions between a carbonyl moiety, methoxy group and H24 forming a 2-D sheet.

The geometry parameters of the CopF molecule are typical for a CopR isomer (Table 35): a pyridinyl ring nearly co-planar with the carbamate plane [4.60(13) ${ }^{\circ}$, and a rotated para-fluorophenyl ring [57.93(6) ${ }^{\circ}$ ].

### 8.1.2 CxxCl isomer grid

$\mathbf{C p m C l}$ molecular and crystal structure
$\mathbf{C p m C l}$ is the only $\mathbf{C p x X}$ compound that gave quality single crystals; the crystallisation solvent was $\mathrm{CHCl}_{3}$. It crystallises in the $P 2_{1}$ space group $Z^{\prime}=1$.


Fig. 69: Hydrogen bonding in the $\mathbf{C p m C l}$ isomer ( $a=1-\mathrm{x},-1 / 2+\mathrm{y},-\mathrm{z} ; \quad b=1+\mathrm{x}, \mathrm{y},-1+\mathrm{z} ; c=1-$ $\mathrm{x}, 1 / 2+\mathrm{y},-\mathrm{z} ; d=-\mathrm{x}, 1 / 2+\mathrm{y}, 1-\mathrm{z} ; e=-1+\mathrm{x}, \mathrm{y}, 1+\mathrm{z} ; f=-\mathrm{x},-1 / 2+\mathrm{y}, 1-\mathrm{z})$

The structure of the $\mathbf{C p m C l}$ isomer is a 2-D sheet (Fig. 69) and relies on two interactions only. The main interaction is $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 24^{d}\left[\mathrm{~N} 1 \cdots \mathrm{~N} 24^{d}=2.949(4) \AA, d=-\right.$ $\mathrm{x}, 1 / 2+\mathrm{y}, 1-\mathrm{z}]$ hydrogen bonding, connecting the molecules along the $b$-axis direction into a "fish bone" $C(6)$ chain parallel with the (101) plane. Parallel oriented $C(6)$ chains are interconnected via $\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O}^{a}{ }^{\left[\mathrm{C} 14 \cdots \mathrm{O}^{a}=3.318(4) \AA, a=1-\mathrm{x}, 1 / 2+\mathrm{y},-\mathrm{z}\right]}$ interactions into a 2-D sheet parallel with the (101) plane. The 2-D sheets stack in the (010) direction. It is interesting to note that chlorine atoms, surrounded by hydrogen atoms and lined up along the (010) direction, do not engage in any interaction.

The conformation of the meta-chlorophenyl ring (Cl-ring) is Cl-anti. The $\mathbf{C p m C l}$ molecule has a typical phenyl- $N$-pyridinyl-carbamate geometry (Table 35); the pyridinyl ring and the carbamate planes are nearly planar $\left[13.68(16)^{\circ}\right]$ while the metachlorophenyl ring deviates from planarity by $\left[54.04(9)^{\circ}\right]$.
$\mathbf{C m p C l}$ molecular and crystal structure

The $\mathbf{C m p C l}$ isomer (Fig. 70) is isomorphous with its fluorine analogue $\mathbf{C m p F}$. It was grown from $\mathrm{CHCl}_{3}$ /toluene solvent mixtures. However, due to the chlorine atom, slight differences in volume and intermolecular interactions exist. The $\mathbf{C m p C l}$ volume is $1141.25(18) \AA^{3}$ and significantly larger than $\mathbf{C m p F}\left[1060.50(5) \AA^{3}\right]$.

The two principal interactions in the $\mathbf{C m p C l}$ isomer are the $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 23$ and C16-H16ㅇO1 hydrogen bonds. Two molecules in the asymmetric unit, A and B, are linked into a pair $(\mathrm{B} \rightarrow \mathrm{A})$ via $\mathrm{N} 1 \mathrm{~B}-\mathrm{H} 1 \mathrm{~B} \cdots \mathrm{~N} 23 \mathrm{~A}[\mathrm{~N} 1 \mathrm{~B} \cdots \mathrm{~N} 23 \mathrm{~A}=2.985(4) \AA$ ] hydrogen bonds. The interaction is stabilised with flanking C22B-H22B $\cdots \mathrm{O} 2 \mathrm{~A}[\mathrm{C} 22 \mathrm{~B} \cdots \mathrm{O} 2 \mathrm{~A}=$ 3.333(4) $\AA$ ] interactions.


Fig. 70: Hydrogen bonding in $\mathbf{C m p C l}$, as BA pairs and BABA chains $(a, b=\mathrm{x},-1-\mathrm{y}, 1 / 2+\mathrm{z})$

As similar to the $\mathbf{C m p F}$ isomer, the BA pairs are linked along the $c$-axis direction into a wavy $C(5)$ column $(\cdots \mathrm{BA} \rightarrow \mathrm{BA} \cdots)$ parallel with the ( 010 ) plane via $\mathrm{N} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{~N} 23 \mathrm{~B}^{a}\left[\mathrm{~N} 1 \mathrm{~A} \cdots \mathrm{~N} 23 \mathrm{~B}^{a}=2.929(4) \AA, a=\mathrm{x},-1-\mathrm{y}, 1 / 2+\mathrm{z}\right]$ hydrogen bonding. The $(\cdots$ BABA $\cdots)$ columns are interconnected along the $b$-axis direction into a 2-D sheet parallel with the (100) plane via secondary C16A-H16A $\cdots$ O1B $^{c}{ }^{\left[C 16 A \cdots A_{B}\right.}{ }^{c}=$ $3.306(4) \AA, c=\mathrm{x},-\mathrm{y}, 1 / 2+\mathrm{z}]$ and $\mathrm{C} 16 \mathrm{~B}-\mathrm{H} 16 \mathrm{~B} \cdots \mathrm{O}^{2} \mathrm{~A}^{d}\left[\mathrm{C} 16 \mathrm{~B} \cdots \mathrm{O}_{1} \mathrm{~A}^{d}=3.198(4) \AA, d=\mathrm{x}\right.$, $-1+y$, z] hydrogen bonds, aided by an additional C12B-H12B $\cdots \mathrm{O}^{2} \mathrm{~B}^{e}\left[\mathrm{C} 12 \mathrm{~B} \cdots \mathrm{O}^{2} \mathrm{~B}^{e}=\right.$ 3.385(4) $\AA, e=\mathrm{x}, 1+\mathrm{y}, \mathrm{z}]$ interaction. As opposite to the $\mathbf{C m p F}$ isomer, no significant $\pi \cdots \pi$ stacking was found in the $\mathbf{C m p C l}$ crystal structure; the chlorine atom does not engage in any interaction.

As in all $\mathbf{C m x R}$ carbamates, the pyridinyl rings ( $\mathbf{C}$-ring, $\mathrm{C}_{5} \mathrm{~N}$ ) have to be in a $\mathbf{C}$ anti conformation as it is the condition for aggregation via $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 23$ hydrogen
bonds into $C(5)$ chains. Geometries of the A and B molecules in the $\mathbf{C m p C l}$ isomer are almost identical to those in B and A molecules of the fluorine analogue $\mathbf{C m p F}$.
$\mathbf{C m m C l}$ molecular and crystal structure

The $\mathbf{C m m C l}$ isomer in the $C c$ space group with $Z^{\prime}=1$ is isomorphous with its fluorine analogue $\mathbf{C m m F}$. As for $\mathbf{C m p C l} / \mathbf{C m p F}$, there are some minor differences between the $\mathbf{C m m C l}$ and $\mathbf{C m m F}$ crystal structures. Single crystals were grown from a mixture of $\mathrm{CHCl}_{3}$, acetone and toluene.

The main backbone of the $\mathbf{C m m C l}$ crystal structure is the $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 23^{a}$ $\left[\mathrm{N} 1 \cdots \mathrm{~N} 23^{a}=2.937(10) \AA, a=\mathrm{x},-\mathrm{y},-1 / 2+\mathrm{z}\right]$ hydrogen bonding that connects molecules along the $c$-axis direction into a $C(5)$ column parallel with the (100) plane (Fig. 71). The hydrogen bonds are augmented by $\mathrm{C} 22-\mathrm{H} 22 \cdots \mathrm{O}^{b}\left[\mathrm{C} 22 \cdots \mathrm{O} 2^{b}=3.360(11) \AA, b=\mathrm{x},-\mathrm{y}\right.$, $1 / 2+\mathrm{z}]$ interactions. Next, the $C(5)$ columns are interconnected along the $b$-axis direction via $\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{O} 1^{b}\left[\mathrm{C} 16 \cdots \mathrm{O} 1^{b}=3.216(12) \AA, b=\mathrm{x}, 1-\mathrm{y},-1 / 2+\mathrm{z}\right]$ interactions into 2-D sheets parallel with the (100) plane (Fig. 71). The sheets are further linked along the ( $10 \overline{1}$ ) direction via $\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{C} 113^{c}\left[\mathrm{C} 25 \cdots \mathrm{C} 113^{c}=3.620(11) \AA, c=-1 / 2+\mathrm{x}\right.$, $1 / 2-y,-1 / 2+z]$ interactions. No additional $\pi \cdots \pi$ stacking was noted in the crystal structure. The geometrical parameters of the $\mathbf{C m m C l}$ isomer match with those of the analogous CmmF isomer (Table 35). As expected, the pyridinyl ring ( $\mathrm{C}_{5} \mathrm{~N}, \mathbf{C}$-ring) is in the $\mathbf{C}$-anti conformation and the meta-chlorophenyl ring $(\mathbf{m C l})$ is $\mathbf{C l}$-anti.


Fig.71: Hydrogen bonding in $\mathbf{C m m C l}(a=\mathrm{x},-\mathrm{y},-1 / 2+\mathrm{z} ; b=\mathrm{x}, 1-\mathrm{y},-1 / 2+\mathrm{z})$
$\mathbf{C o p C l}$ molecular and crystal structure

The $\mathbf{C o p C l}$ crystal structure is isomorphous with CopF. As in other cases, both similarities and differences regarding the intermolecular interactions exist. Needle-like single crystals were grown from a mixture of $\mathrm{CHCl}_{3}$ and acetone.

The main structural feature of all $\mathbf{C o x R}$ compounds is the formation of dimers through strong $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 22$ hydrogen bonds and $\mathbf{C o p C l}$ is not an exception. The $R^{2}{ }_{2}(8)$ hydrogen bonded rings are formed about inversion centres via double N1$\mathrm{H} 1 \cdots \mathrm{~N} 22^{c}\left[\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 22^{c}=2.994(7) \AA, c=1-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}\right]$ hydrogen bonds and augmented by C23-H23 $\cdots \mathrm{O} 2^{c}\left[\mathrm{C} 23 \cdots \mathrm{O} 2^{c}=3.273(8) \AA\right.$ ] interactions (Fig. 72). Furthermore, dimers are linked along the $c$-axis direction into a column parallel with the (010) plane through strong C13-H13 $\cdots \mathrm{O} 1^{b}\left[\mathrm{C} 13 \cdots \mathrm{O} 1^{b}=3.425(8) \AA, b=1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}\right]$ interactions (Fig. 72). As opposite to the minimalistic aggregation in CopF, there are two additional but weak contacts. The first one is a relatively weak $\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 1^{d}\left[\mathrm{C} 12 \cdots \mathrm{O} 1^{d}=3.382(7) \AA, d=\right.$ $1+\mathrm{x}, \mathrm{y}, \mathrm{z}]$ contact that connects columns along the $a$-axis direction into a 2-D sheet parallel with the (010) plane. The second contact is a weak $\mathrm{C} 15 \cdots \mathrm{C} 15^{e}\left[\mathrm{C} 15 \cdots \mathrm{C} 15^{e}=\right.$ $3.459(10) \AA, e=1-\mathrm{x}, 2-\mathrm{y}, 1-\mathrm{z}]$ interaction, and it loosely links 2-D sheets along the $(01 \overline{1})$ plane into a 3-D crystal structure. The geometric parameters of the $\mathbf{C o p C l}$ isomer match those of the isomorphous CopF.


Fig. 72: Hydrogen bonding in the $\mathbf{C o p C l}$ isomer ( $a=\mathrm{x}, \mathrm{y}, 1+\mathrm{z}, b=1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z} ; c=1-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}$ )

### 8.1.3 $\mathbf{C x x B r}$ isomer grid

Similar to the $\mathbf{C x x F}$ isomer grid, only three compounds, $\mathbf{C m p B r}, \mathbf{C m o B r}$ and $\mathbf{C o p B r}$ out of the eight $\mathbf{C x x B r}$ isomers gave suitable single crystals. The rest of the $\mathbf{C x x B r}$ compounds are less crystalline products; the crystal growth in various solvents gave poor results or decomposition.
$\mathbf{C m p B r}$ molecular and crystal structure

The $\mathbf{C m p B r}$ isomer (Fig. 73) is isomorphous with $\mathbf{C m p F}$ and $\mathbf{C m p C l}$. The principal interaction in the $\mathbf{C m p B r}$ crystal structure is, similar to its chloro and fluoro analogues, the $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 23$ interaction. Two molecules of $\mathbf{C m p B r}$ ( A and B ) are joined into a pair $(\mathrm{A} \rightarrow \mathrm{B})$ via $\mathrm{N} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{~N} 23 \mathrm{~B}[\mathrm{~N} 1 \mathrm{~A} \cdots \mathrm{~N} 23 \mathrm{~B}=2.986(7) \AA$ ) hydrogen bonding. The pairing is augmented by the C22B-H22B $\cdots \mathrm{O} 2 \mathrm{~A}[\mathrm{C} 22 \mathrm{~B} \cdots \mathrm{O} 2 \mathrm{~A}=3.312(7)$ $\AA$ ] interaction. The pairs ( AB ) are connected $(\cdots \mathrm{AB} \rightarrow \mathrm{AB} \cdots)$ along the $c$-axis direction into an undulating $C(5)$ chain $(\cdots \mathrm{ABAB} \cdots)$ through N1B-H1B $\cdots \mathrm{N} 23 \mathrm{~A}^{a}\left[\mathrm{~N} 1 \mathrm{~B} \cdots \mathrm{~N}_{2} 3 \mathrm{~A}^{a}\right.$ $=2.925(7) \AA, a=\mathrm{x}, 1-\mathrm{y},-1 / 2+\mathrm{z}]$ hydrogen bonds.


Fig. 73: Hydrogen bonding in $\mathbf{C m p C l}$, as AB pairs and ABAB chains ( $a, b=\mathrm{x}, 1-\mathrm{y}, \mathrm{r}^{1 / 2}+\mathrm{z}$ )

As for the chloro- and fluoro- analogues, the chains are interconnected along the $b$-axis direction into 2-D sheets parallel with the (100) plane through C16A$\mathrm{H} 16 \mathrm{~A} \cdots \mathrm{O}^{c}{ }^{c}\left[\mathrm{C} 16 \mathrm{~A} \cdots \mathrm{O}^{c}=3.199(8) \AA, c=\mathrm{x}, 1+\mathrm{y}, \mathrm{z}\right]$ and $\mathrm{C} 16 \mathrm{~B}-\mathrm{H} 16 \mathrm{~B} \cdots \mathrm{O}^{c} \mathrm{~A}^{d}$ $\left[\mathrm{C} 16 \mathrm{~B} \cdots \mathrm{O}^{2} \mathrm{~A}^{d}=3.297(8) \AA, d=\mathrm{x},-\mathrm{y},-1 / 2+\mathrm{z}\right]$ hydrogen bonds. The sheet is stabilised by $\mathrm{C} 12 \mathrm{~A}-\mathrm{H} 12 \mathrm{~A} \cdots \mathrm{O}_{1} \mathrm{~A}^{e}\left[\mathrm{C} 12 \mathrm{~A} \cdots \mathrm{O}_{1}{ }^{e}=3.395(7) \AA, e=\mathrm{x},-1+\mathrm{y}, \mathrm{z}\right]$ contacts. No interaction involving the bromine atom was found. The geometries of the A and B molecules of the $\mathbf{C m p B r}$ isomer correspond with those of the analogous $\mathbf{C m p F}$ isomer.
$\mathbf{C m o B r}$ molecular and crystal structure

Along with the $\mathbf{C m o M}$ isomer, the $\mathbf{C m o B r}$ compound is an isomer isolated as a monohydrate $\left(\mathbf{C m o B r}: \mathrm{H}_{2} \mathrm{O}\right)$ and the crystal structure is isomorphous with the CmoM: $\mathrm{H}_{2} \mathrm{O}$ crystal structure.

As with the CmoM: $\mathrm{H}_{2} \mathrm{O}$ complex, two molecules of both water and $\mathbf{C m o B r}$ aggregate into a hydrogen bonded complex that forms $\mathrm{R}^{4}(14)$ hydrogen bonded rings. The molecules of water act as linkers between two $\mathbf{C m o B r}$ molecules. The key interactions in the formation of the complex are $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1 \mathrm{~W}[\mathrm{~N} 1 \cdots \mathrm{O} 1 \mathrm{~W}=2.832(4)$ $\AA]$ and $\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 2 \mathrm{~W} \cdots \mathrm{~N} 23^{c}\left[\mathrm{O} 1 \mathrm{~W} \cdots \mathrm{~N} 23^{c}=2.837(4) \AA, c=1-\mathrm{x}, 2-\mathrm{y},-\mathrm{z}\right]$ hydrogen bonds bridging two molecules of $\mathbf{C m o B r}$ via two $\mathrm{H}_{2} \mathrm{O}$ molecules (Fig. 74).


Fig. 74: The hydrogen bonding in the $\mathbf{C m o B r}$ monohydrate ( $a=\mathrm{x}, 3 / 2-\mathrm{y},-1 / 2+\mathrm{z}, b, c=1-\mathrm{x}, 2-\mathrm{y},-\mathrm{z}$ ).

Furthermore, the $R^{4}{ }_{4}(14)$ hydrogen bonded complexes are directly connected into a 2-D sheet parallel with the (100) plane via $\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 1 \mathrm{~W} \cdots \mathrm{O}^{d}\left[\mathrm{O} 1 \mathrm{~W} \cdots \mathrm{O}^{d}=\right.$ $2.925(4) \AA, d=x, 3 / 2-y, 1 / 2+z]$ hydrogen bonds. In total, there are three hydrogen bonds interconnecting molecules of $\mathbf{C m o B r}$ and $\mathrm{H}_{2} \mathrm{O}$ into a 2-D sheet. The sheet is stabilised by two interactions. The first is the $\mathrm{C} 26-\mathrm{H} 26 \cdots \mathrm{O} 1^{e}\left[\mathrm{C} 26 \cdots \mathrm{O} 1^{e}=3.384(3) \AA, e=1-\mathrm{x}, 1-\right.$ $\mathrm{y},-\mathrm{z}]$ interaction and second is the $\mathrm{C}-\mathrm{Br} \cdots \pi$ (arene) interaction, $\mathrm{C} 12-\mathrm{Br} 1 \cdots \mathrm{C} 11^{a}$ $\left[\operatorname{Br} 1 \cdots \mathrm{C} 11^{a}=3.533(3) \AA, a=\mathrm{x}, 3 / 2-\mathrm{y},-1 / 2+\mathrm{z}\right]$. The geometry of the $\mathbf{C m o B r}$ molecules agrees with the $\mathbf{C m o M}$ geometry. The conformation of the $\mathbf{C}$-ring is $\mathbf{C}$-syn.

CopBr molecular and crystal structure

Contrary to what would be expected, the CopBr crystal structure (Fig. 75) is not isomorphous with the related fluorine $(\mathbf{C o p F})$ and chlorine $(\mathbf{C o p C l})$ isomers. It crystallises in $P 2_{l} / n$ with $Z^{\prime}=1$ and is therefore more similar to CopM and CopOMe. Crystals were grown from tetrahydrofuran (THF).

However, as with all CoxR compounds, the $\mathbf{C o p B r}$ molecules form dimers about inversion centres via double N1-H1 $\cdots \mathrm{N} 22^{a}\left[\mathrm{~N} 1 \cdots \mathrm{~N} 22^{a}=2.979(11) \AA, a=1-\mathrm{x},-\right.$ $\mathrm{y}, 1-\mathrm{z}]$ hydrogen bonds forming $R^{2}{ }_{2}(8)$ hydrogen bonded rings. The dimer is stabilised by auxiliary $\mathrm{C} 23-\mathrm{H} 23 \cdots \mathrm{O}^{a}\left[\mathrm{C} 23 \cdots \mathrm{O}^{a}=3.307(13) \AA\right.$ ] interactions. Without forming one-dimensional chains, the dimers are directly interconnected into a 2-D sheet parallel with the $(\overline{1} 01)$ plane by $\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{O}^{c}\left[\mathrm{C} 15 \ldots \mathrm{O} 1^{c}=3.301(13) \AA, c=1 / 2-\mathrm{x},-1 / 2+\mathrm{y}, 1 / 2-\right.$ z] hydrogen bonds. The sheets are interconnected into a crystal structure through weak $\mathrm{C}-\mathrm{H} \cdots \pi($ arene $)$ interaction $\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{C} 13^{d}\left(\mathrm{H} 13 \cdots \mathrm{C} 1^{d}=2.80 \AA, d=3 / 2-\mathrm{x}, 1 / 2+\mathrm{y}, 1 / 2-\right.$ z). Bromine atoms do not engage in intermolecular interactions.

With nearly co-planar pyridinyl ring and carbamate planes [6.35(55) ${ }^{\circ}$ ] and twisted para-bromophenyl ring [59.73(26) ${ }^{\circ}$, the CopBr has the typical "carbamate" molecular geometry.


Fig. 75: Hydrogen bonding in $\operatorname{CopBr}(a=1-\mathrm{x},-\mathrm{y}, 1-\mathrm{z}, b=-1 / 2+\mathrm{x},-1 / 2-\mathrm{y},-1 / 2+\mathrm{z}, c=1 / 2-\mathrm{x},-1 / 2+\mathrm{y}, 1 / 2-\mathrm{z})$

### 8.2. Ab initio calculations and modelling data

### 8.2.1. Structure optimisation

Tables 36a-c summarise the geometry parameters for the 27 optimised CxxX isomers ( $\mathbf{C x x F}, \mathbf{C x x C l}$ and $\mathbf{C x x B r}$ isomer grids), including $\alpha$ ( $\mathbf{C}$-ring), $\beta$ ( $\mathbf{F}-/ \mathbf{C l}-/ \mathbf{B r}$ ring), $\gamma(\mathrm{COCO})$ and $\delta(\mathrm{OCNC})$ dihedral angles, as well as the relative deviation of the F-/Cl-/Br-ring from planarity $\left(\beta^{*}\right)$.

Analysis of the molecular structures uncovers similarities and subtle differences. However, there is no significant difference between the analogous isomers, apart from minor changes in the $\beta$ and $\gamma$ dihedral angles. Therefore, aspects of the optimised geometries will be discussed for all of the $\mathbf{C x x X}$ isomers together. With regards to the geometric parameters, the halo-carbamate isomers can be divided into 3 groups; $\mathbf{C x p} \mathbf{X}$
and $\mathbf{C x m X}$ isomers and $\mathbf{C x o X}$ isomers, as for the carbamate isomer grids ( $\mathbf{C x x M}$ and CxxOMe). The first group has its para-/meta-halophenyl rings rotated by $\sim 60^{\circ}$, and in the $\mathbf{C x o X}$ isomers the ortho-halophenyl rings are close to orthogonal relative to the pyridinyl rings and the carbamate planes. Nevertheless, all isomers have planar C-rings $(\alpha)$ and OCNC ( $\delta$ ) dihedral angles, $-0.42 \pm 0.52^{\circ}$ and $0.17 \pm 0.49^{\circ}$, respectively. Conformations of the $\mathbf{C m}$ and $\mathbf{C o}$ rings are always $\mathbf{C - s y n}$.

The COCO ring is planar in all of the $\mathbf{C x p} \mathbf{X}$ and $\mathbf{C x m X}$ isomers ( $-0.40 \pm 0.73^{\circ}$ ), while in the $\mathbf{C x o X}$ compounds minor deviations from planarity exist and decrease from $\mathbf{C x o F}\left(6.05 \pm 0.42^{\circ}\right)$ to the $\mathbf{C x o C l}\left(4.78 \pm 0.40^{\circ}\right)$ and $\mathbf{C x o B r}\left(2.37 \pm 0.48^{\circ}\right)$ triads. The opposite trend exists for the $\beta$ dihedral angle ( $\mathbf{X}$ - or $\mathbf{F}-/ \mathbf{C l}-/ \mathbf{B r}$-rings) where it increases significantly from $\mathbf{F}$ to $\mathbf{B r}$ : in the $\mathbf{C x o F}$ triad the oX-ring is $74.70 \pm 0.60^{\circ}$, in $\mathbf{C x o C l}$ is $90.57 \pm 0.15^{\circ}$ and in $\mathbf{C x o B r}$ is $110.88 \pm 0.60^{\circ}$.

Therefore, the $\mathbf{o F}$-ring is in a slightly $\mathbf{F}$-anti conformation, the $\mathbf{o b r}$-ring is slightly $\mathbf{B r}$-syn, while the oCl-ring is almost perfectly orthogonal and the syn/anti convention is not applicable. The obvious reason for the decrease of the COCO angle and the increase of $\beta$ dihedral angle is the change of substituent: dihedral angles change to accommodate a larger substituent.

Table 36a: Torsion angles $\left({ }^{\circ}\right)$ of the optimised $\mathbf{C x x F}$ isomers ${ }^{\mathrm{a}}$

|  | $\alpha$ | $\beta$ | $\beta *$ | $\gamma$ | $\delta$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| CppF | -0.67 | 62.78 | 62.78 | -0.24 | 0.21 |
| CpmF | 0.10 | -58.18 | 58.18 | -0.80 | -0.62 |
| CpoF | -0.03 | 75.37 | 75.37 | 6.28 | 1.00 |
| CmpF | -0.87 | 62.61 | 62.61 | -0.25 | -0.05 |
| CmmF | -0.29 | 56.8 | 56.8 | 0.89 | 0.72 |
| CmoF | -1.39 | 74.54 | 74.54 | 6.30 | 1.06 |
| CopF | -0.32 | 62.24 | 62.24 | -0.29 | -0.16 |
| ComF | -0.65 | 56.02 | 56.02 | 0.82 | 0.75 |
| CooF | -0.98 | 74.20 | 74.20 | 5.56 | 0.82 |

Table 36b: Torsion angles ( ${ }^{\circ}$ ) of the optimised $\mathbf{C x x C l}$ isomers ${ }^{\text {a }}$

|  | $\alpha$ | $\beta$ | $\beta^{*}$ | $\gamma$ | $\delta$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{C p p C l}$ | -0.76 | -58.17 | 58.17 | -0.85 | 0.13 |
| $\mathbf{C p m C l}$ | -0.38 | 126.03 | 57.87 | -0.82 | -0.28 |
| $\mathbf{C p o C l}$ | -0.16 | 90.71 | 90.71 | 4.96 | 0.67 |
| $\mathbf{C m p C l}$ | -1.09 | -57.99 | 57.99 | -0.88 | -0.13 |
| $\mathbf{C m m C l}$ | -0.52 | 126.82 | 57.10 | -0.90 | -0.32 |
| $\mathbf{C m o C l}$ | -0.97 | 90.59 | 90.59 | 5.06 | 0.69 |
| $\mathbf{C o p C l}$ | -0.35 | -57.43 | 57.43 | -0.88 | -0.29 |
| ComCl | 0.18 | 127.09 | 56.88 | -0.94 | -0.58 |
| $\mathbf{C o o C l}$ | -0.48 | 90.41 | 90.41 | 4.32 | 0.50 |

Table 36c: Torsion angles ( ${ }^{\circ}$ ) of the optimised $\mathbf{C x x B r}$ isomers ${ }^{2}$

|  | $\alpha$ | $\beta$ | $\beta^{*}$ | $\gamma$ | $\delta$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{C p p B r}$ | -0.75 | -56.89 | 56.89 | -0.92 | 0.23 |
| $\mathbf{C p m B r}$ | -0.43 | 125.30 | 58.48 | -0.75 | -0.35 |
| $\mathbf{C p o B r}$ | 0.38 | 111.04 | 72.71 | 2.70 | 0.15 |
| $\mathbf{C m p B r}$ | -1.15 | -56.63 | 56.63 | -1.03 | 0.00 |
| $\mathbf{C m m B r}$ | 0.99 | 57.98 | 57.98 | 0.89 | 0.47 |
| $\mathbf{C m o B r}$ | -0.29 | 111.38 | 72.41 | 2.58 | -0.06 |
| $\mathbf{C o p B r}$ | -0.38 | -56.13 | 56.13 | -0.99 | -0.20 |
| $\mathbf{C o m B r}$ | -0.15 | 57.06 | 57.06 | 0.80 | 0.63 |
| $\mathbf{C o o B r}$ | 0.12 | 110.21 | 73.64 | 1.82 | -0.30 |

${ }^{\text {a }}$ The angle $\mathrm{C} 26-\mathrm{C} 21-\mathrm{C} 1=\mathrm{O} 1(\mathbf{C}$-ring) is designated as $\alpha$, the $\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 11-\mathrm{C} 16$ angle ( $\mathbf{X}, \mathrm{F}-/ \mathbf{C l}-$ $/ \mathbf{B r}$-ring) as $\beta$, relative deviation of halo-phenyl ring from planarity as $\beta^{*}$, the $\mathrm{O} 1=\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 21$ angle as $\delta$ and the $\mathrm{O} 1=\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 11$ as $\gamma$. All geometries are based on B3LYP $/ 6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})$ optimisations.

The remaining isomers, $\mathbf{C p m X}$ and $\mathbf{C p m X}$ have their dihedral angles rotated by $58.18 \pm 2.13^{\circ}$ in one or other equivalent direction. However, the conformations of the $\mathbf{m F}$-rings are $\mathbf{F}$-anti, while the conformations of the $\mathbf{m C l}$-rings and $\mathbf{m B r}$-rings are $\mathbf{C l}$ syn and Br-syn, respectively.

### 8.2.2. Conformational analysis

The PES conformational analysis diagrams of the three isomer grids, $\mathbf{C x x F}$ (Fig. 76), $\mathbf{C x x C l}$ (Fig. 77) and CxxBr (Fig. 78) are derived from the gas phase modelled molecular structures. The C-ring (pyridinyl ring, $\alpha$ dihedral angle) is drawn as a full red line, and the $\mathbf{X}$ or $\mathbf{F}-/ \mathbf{C l}-/ \mathbf{B r}$-rings (halo-phenyl ring, $\beta$ dihedral angle) as a blue dashed line. At $\theta=0$ and $\pm 180^{\circ}$, the conformation of the asymmetric $\mathbf{C}$ - or $\mathbf{X}$-rings ( $\mathbf{X}$ $=\mathbf{F}, \mathbf{C l}$ or $\mathbf{B r})$ is noted as $\boldsymbol{s y n}$ or anti.

Generally, the PES profiles of the $\mathbf{C x x X}$ isomers $(\mathbf{X}=\mathbf{F}, \mathbf{C l}$ or $\mathbf{B r})$ are similar in shape to the CxxM isomers but with certain differences, mainly the height of the rotational barriers. Therefore, the characteristics of their PES profiles are presented together. The PES profile of the $\mathbf{C p}$ ring has two global maxima at around $\pm 90^{\circ}$ and two global minima at $0^{\circ}$ and $\pm 180^{\circ}$. In the fluoro and chloro isomers the rotational barrier is $23.51 \pm 0.19 \mathrm{kJ.mol}^{-1}$, while in bromo isomers the barrier is $32.40 \pm 0.14 \mathrm{~kJ} . \mathrm{mol}^{-1}$. The $\mathbf{C m}$ ring PES profile is similar in all $\mathbf{C m x X}$ isomers, slightly asymmetric and has one global maximum at $-90^{\circ}\left(\mathrm{TS}_{\mathrm{Cm}}{ }^{\text {II }}=17.11 \pm 0.10 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$, one local maximum at $90^{\circ}$ $\left(\mathrm{TS}_{\mathrm{Cm}}{ }^{\mathrm{I}}=16.85 \pm 0.20{\mathrm{~kJ} . \mathrm{mol}^{-1}}\right)$, one local minimum at $\pm 180^{\circ}\left(\mathrm{LM}_{\mathrm{Cm}}=5.49 \pm 0.07 \mathrm{~kJ} . \mathrm{mol}^{-}\right.$ ${ }^{1}$ ) and a global minimum at $0^{\circ}$.


Fig. 76: The PES conformational analysis for the nine CxxF isomers optimised in the gas phase: the equivalent solid state angle (if available) is depicted by $(\bullet)$ with, if applicable, an assigned identification letter.

The values of the rotational barriers and local minima slightly decrease from fluoro to bromo (0.1-0.2 kJ.mol ${ }^{-1}$ ). All $\mathbf{C m}$ rings prefer the $\mathbf{C}$-syn conformation however, as in the previous cases, the difference with the opposite conformation is $\sim 5.5 \mathrm{~kJ} . \mathrm{mol}^{-1}$ and hence, it is plausible ( $9.5 \%$ according to Boltzmann distribution).

Similarly, the Co ring PES profile is approximately the same in all CoxX isomers with minor differences. It has one global maximum $\left(\mathrm{TS}_{\mathrm{Co}_{\mathrm{o}}}{ }^{\mathrm{II}}=35.91 \pm 0.62\right.$ $\mathrm{kJ} . \mathrm{mol}^{-1}$ ) at $c a .115^{\circ}$, one local maximum $\left(\mathrm{TS}_{\mathrm{Co}}{ }^{\mathrm{I}}=34.90 \pm 0.44 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ at $c a .-110^{\circ}$, one local minimum $\left(\mathrm{LM}_{\mathrm{Co}}=30.00 \pm 0.54 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ at $c a .-150^{\circ}\left(155^{\circ}\right.$ in $\mathbf{C o p B r}$ and $\mathbf{C o m B r}$ ) and a global minima at $0^{\circ}$. As was the case with the $\mathbf{C m}$ ring, rotational barriers in the Co ring slightly decrease from fluorine to bromine. The C-syn conformation is the only one possible. The $\mathbf{p X}$ and the $\mathbf{m X}$ rings $(\mathbf{X}=\mathbf{F}, \mathbf{C l}$ or $\mathbf{B r})$ have low rotational barriers (as in CxxM and CxxOMe) and not exceeding $5 \mathrm{~kJ} . \mathrm{mol}^{-1}$ suggesting high flexibility and mobility. Therefore, a quick and undemanding interconversion between the syn and anti conformers exists, causing a thermodynamic and kinetic balance that allows the possibility of both conformations being isolated. This may cause the formation of highly disordered crystal structures that yield a poor morphology of small, fragile crystals.


Fig. 77: The PES conformational analysis for the nine $\mathbf{C x x C l}$ isomers optimised in the gas phase: the equivalent solid state angle (if available) is depicted by $(\bullet)$ with, if applicable, an assigned identification letter.

The $\mathbf{p X}$ ring $(\mathbf{X}=\mathbf{F}, \mathbf{C l}$ or $\mathbf{B r})$ PES profile has two global maxima at $c a .-120^{\circ}$ and $60^{\circ}\left(\mathrm{TS}_{\mathrm{pF}}{ }^{\mathrm{II}}=4.12 \pm 0.08 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}, \mathrm{TS}_{\mathrm{pCl}}{ }^{\mathrm{II}}=3.33 \pm 0.07 \mathrm{~kJ} . \mathrm{mol}^{-1}, \mathrm{TS}_{\mathrm{pBr}}{ }^{\mathrm{II}}=3.25 \pm 0.07\right.$ $\mathrm{kJ} . \mathrm{mol}^{-1}$ ), two local maxima at ca. $-30^{\circ}$ and $150^{\circ}\left(\mathrm{TS}_{\mathrm{pF}}{ }^{\mathrm{I}}=0.45 \pm 0.04 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}, \mathrm{TS}_{\mathrm{pCl}}{ }^{\mathrm{I}}=\right.$ $0.77 \pm 0.07 \mathrm{~kJ} . \mathrm{mol}^{-1}, \mathrm{TS}_{\mathrm{pBr}}{ }^{\mathrm{I}}=0.88 \pm 0.08 \mathrm{~kJ} . \mathrm{mol}^{-1}$ ) and four global minima at $-60^{\circ}, 120^{\circ}$, $\pm 180^{\circ}$ and $0^{\circ}$. The $\mathbf{m X}$ ring ( $\mathbf{X}=\mathbf{F}, \mathbf{C l}$ or $\mathbf{B r}$ ) PES profile is similar in all $\mathbf{C x m X}$ with minor difference of the rotational barriers. It has one global maximum $\left(\mathrm{TS}_{\mathrm{m}}{ }^{\text {III }}=\right.$ $\left.3.53 \pm 0.35 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ at $c a .-125^{\circ}$ or $125^{\circ}$, one major local maximum $\left(\mathrm{TS}_{\mathrm{mx}}{ }^{\mathrm{II}}=3.09 \pm 0.26\right.$ $\mathrm{kJ} . \mathrm{mol}^{-1}$ ) at $c a .55^{\circ}$ or $c a .-55^{\circ}$, two minor local maxima $\left(\mathrm{TS}_{\mathrm{mX}}{ }^{\mathrm{I}}=0.81 \pm 0.10 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ at ca. $-35^{\circ}$ (or $-145^{\circ}$ ) and 145 (or $35^{\circ}$ ), two local minima $\left(\mathrm{LM}_{\mathrm{mX}}{ }^{\mathrm{I}}=0.28 \pm 0.13 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ at $c a .-70^{\circ}$ (or $70^{\circ}$ ) and $c a . \pm 180^{\circ}$ and two global minima at $c a .-105^{\circ}$ (or $105^{\circ}$ ) and $0^{\circ}$. The height of the rotational barriers insignificantly increases from the fluorine to bromine analogues, while the local minima in fluoro compounds are just $0.14 \pm 0.07$ $\mathrm{kJ} . \mathrm{mol}^{-1}$. The preferred conformation of the $\mathbf{m F}$ ring is $\mathbf{F}$-anti, whereas in the chloro and bromo analogues it is Cl-syn (Br-syn). However, the low rotational barriers and very low local minima for the opposite conformation equalise the likelihood of each conformation being populated.
$\mathbf{C p p B r}$

$\mathbf{C m p B r}$


CopBr

$\mathbf{C p m B r}$


CmmBr


ComBr


CpoBr


CmoBr


CooBr


Fig. 78: The PES conformational analysis for the nine $\mathbf{C x x B r}$ isomers optimised in the gas phase: the equivalent solid state angle (if available) is depicted by $(\bullet)$ with, if applicable, an assigned identification letter.

The $\mathbf{0} \mathbf{X}$ rings ( $\mathbf{X}=\mathbf{F}, \mathbf{C l}$ or $\mathbf{B r}$ ) show an effect similar to the $\mathbf{C x x M}$ and CxxOMe isomer grids. The standard procedure of a conformational scan causes a steric collision of the halogen substituent and carbonyl moiety and forces rotation of the COCO dihedral angle upon which the conformational scan finishes with the COCO ring being in its opposite, improbable conformation (high local minimum). Two conformational scanning procedures yielding PES profiles were undertaken; with a constrained COCO dihedral angle (deep blue dashed line) and without it (light blue dashed line). Both PES profiles are models, but the real behaviour of the $\mathbf{0 X}$ ring may be extrapolated as a combination of both PES profiles. Due to the different size of the halogen substituents, both constrained and relaxed profiles are different for each of the $\mathbf{o F}, \mathbf{o C l}$, and $\mathbf{o B r}$ rings.

The constrained PES profile has one global maximum $\left(\mathrm{TS}_{\mathrm{oF}}{ }^{\mathrm{II}}=38.26 \pm 0.28\right.$ $\mathrm{kJ} . \mathrm{mol}^{-1}, \mathrm{TS}_{\mathrm{oCl}}{ }^{\mathrm{II}}=55.85 \pm 0.39 \mathrm{kJ.mol}^{-1}$ and $\mathrm{TS}_{\mathrm{oBr}}{ }^{\mathrm{II}}=60.81 \pm 0.47{\left.\mathrm{~kJ} . \mathrm{mol}^{-1}\right) \text { at } c a . ~}^{-75}{ }^{\circ}$ $(\mathbf{o F}),-90^{\circ}(\mathbf{0 C l})$ and $-110^{\circ}(\mathbf{o B r})$, one local maximum $\left(\mathrm{TS}_{\mathrm{oF}}{ }^{\mathrm{I}}=5.99 \pm 0.26 \mathrm{~kJ} . \mathrm{mol}^{-1}\right.$, $\mathrm{TS}_{\mathrm{oCl}}{ }^{\mathrm{I}}=5.02 \pm 0.18{\left.\mathrm{~kJ} . \mathrm{mol}^{-1} \text { and } \mathrm{TS}_{\mathrm{oBr}}{ }^{\mathrm{I}}=4.68 \pm 0.17 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right) \text { at } c a .110^{\circ}(\mathbf{o F}), 90^{\circ}(\mathbf{0 C l}), ~(0)}^{\circ}$
and $-70^{\circ}(\mathbf{o B r})$, a local minimum $\left(\mathrm{LM}_{\mathrm{oF}}{ }^{\mathrm{II}}=0.96 \pm 0.20 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}, \mathrm{LM}_{\mathrm{oCl}}{ }^{\mathrm{I}}=0.45 \pm 0.09\right.$ $\left.\mathrm{kJ} . \mathrm{mol}^{-1}, \mathrm{LM}_{\mathrm{oBr}}{ }^{\mathrm{I}}=0.14 \pm 0.04 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$ at $c a .-145^{\circ}(\mathbf{0 F}), 160^{\circ}(\mathbf{o C l})$ and $145^{\circ}(\mathbf{o B r})$ and a global minimum at $0^{\circ}$.

The unconstrained PES profile, however, has one global maximum $\left(\mathrm{TS}_{\mathrm{oF}}{ }^{\mathrm{II}}=\right.$ $35.62 \pm 0.81 \mathrm{~kJ} . \mathrm{mol}^{-1}, \mathrm{TS}_{\mathrm{oCl}}{ }^{\mathrm{II}}=43.71 \pm 0.66{\mathrm{~kJ} . \mathrm{mol}^{-1}}$ and $\left.\mathrm{TS}_{\mathrm{oBr}}{ }^{\mathrm{II}}=47.43 \pm 0.60 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ at ca. $-65^{\circ}(\mathbf{o F}),-80^{\circ}(\mathbf{0 C l})$ and $-100^{\circ}(\mathbf{o B r})$, one local maximum $\left(\mathrm{TS}_{\mathrm{oF}}{ }^{\mathrm{I}}=5.85 \pm 0.29\right.$ $\mathrm{kJ} \cdot \mathrm{mol}^{-1}, \mathrm{TS}_{\mathrm{oCl}}{ }^{\mathrm{I}}=4.93 \pm 0.19 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ and $\left.\mathrm{TS}_{\mathrm{oBr}}{ }^{\mathrm{I}}=4.66 \pm 0.18 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$ at $c a .110^{\circ}(\mathbf{0} \mathbf{F})$, $90^{\circ}(\mathbf{0 C l})$ and $-70^{\circ}(\mathbf{o B r})$, one ending local minimum $\left(\mathrm{LM}_{\mathrm{oF}-\mathrm{COCO}}=22.64 \pm 0.83{\mathrm{~kJ} . \mathrm{mol}^{-}}^{-}\right.$ ${ }^{1}$ ) at $0^{\circ}$ and global minima at $-140^{\circ}(\mathbf{0 F}),-175^{\circ}(\mathbf{0 C l}), 145^{\circ}(\mathbf{o B r})$ and $0^{\circ}$.

It is clear that the change from fluorine to bromine dramatically increases the main rotational barrier in the ortho-substituted carbamates and effectively blocks full rotation. Furthermore, the rotational barrier becomes wider in the bromo isomers limiting the available rotational space. However, substituent change causes a decrease of the rotational barriers in the syn conformational area and a flattening of the potential wells. This observation suggests a significant increase of flexibility in the syn conformational area and a corresponding limited flexibility in the anti area upon substituent change.

The shape of the PES profiles for the COCO dihedral angles depend on the position or nature of the halogen substituent. If a substutuent is in the para position, all PES profiles are similar and symmetrical with two global minima $\left(\mathrm{TS}_{\mathrm{COCO}}{ }^{1}=\right.$ $\left.28.55 \pm 0.11 \mathrm{kJ.mol}^{-1}\right)$ at $c a . \pm 105^{\circ}$, one local minimum $\left(\mathrm{LM}_{\text {COCO }}{ }^{\mathrm{I}}=21.23 \pm 0.64 \mathrm{kJ.mol}^{-1}\right)$ at $c a . \pm 180^{\circ}$ and one global minimum at $0^{\circ}$. If substituents are meta, the PES profile is asymmetric and has one global minimum $\left(\mathrm{TS}_{\mathrm{COCO}}{ }^{\mathrm{II}}=27.37 \pm 0.54 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$ at $c a .-105^{\circ}$, one local minimum $\left(\mathrm{TS}_{\mathrm{COCO}}{ }^{\mathrm{I}}=26.79 \pm 0.43 \mathrm{kJ.mol}^{-1}\right)$ at $c a .105^{\circ}$, one local minimum $\left(\mathrm{LM}_{\text {COCO }}{ }^{\mathrm{I}}=21.20 \pm 0.48 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ at $c a . \pm 180^{\circ}$ and one global minimum at $0^{\circ}$.

For the ortho-substituted isomers, a difference exists depending on the nature of the substituent, the rotational heights are diffferent. The PES profiles have one global maximum ( $\mathrm{TS}_{\mathrm{COCO}}{ }^{\text {II }}[\mathbf{F}]=35.20 \pm 0.35 \mathrm{kJ.mol}^{-1}, \mathrm{TS}_{\text {COCO }}{ }^{\mathrm{II}}[\mathbf{C l}]=45.97 \pm 1.51 \mathrm{~kJ} . \mathrm{mol}^{-1}$ and $\mathrm{TS}_{\mathrm{COCO}}{ }^{\mathrm{II}}[\mathbf{B r}]=45.79 \pm 0.98 \mathrm{~kJ} . \mathrm{mol}^{-1}$ ) at $c a .-110^{\circ}$, one local maximum $\left(\mathrm{TS}_{\mathrm{COCO}}{ }^{\mathrm{I}}[\mathbf{F}]=\right.$ $31.65 \pm 0.93 \mathrm{~kJ} . \mathrm{mol}^{-1}, \mathrm{TS}_{\text {COCO }}{ }^{\mathrm{I}}[\mathbf{C l}]=34.73 \pm 1.31 \mathrm{kJ.mol}^{-1}$ and $\mathrm{TS}_{\text {COCO }}{ }^{\mathrm{I}}[\mathbf{B r}]=28.34 \pm 0.44$ $\mathrm{kJ} . \mathrm{mol}^{-1}$ ) at $c a .105^{\circ}$, one local minimum $\left(\mathrm{LM}_{\mathrm{COCO}}{ }^{\mathrm{I}}=22.09 \pm 0.31 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ at $c a . \pm 180^{\circ}$ and one global minimum at $0^{\circ}$.

The OCNC ( $\delta$ ) dihedral angle is similar for all halo-carbamate isomer grids and has two global maxima $\left(\mathrm{TS}_{\mathrm{OCNC}}=70.04 \pm 2.06 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$ at $c a .-65^{\circ}$ and $120^{\circ}$, one local minima $\left(\mathrm{LM}_{\mathrm{OCNC}}=12.16 \pm 0.79 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$ at $c a . \pm 180^{\circ}$ and one global minima at $0^{\circ}$.

As seen in the previous carbamate isomer grids, the COCO and OCNC dihedral angles do not have the ability to flip into opposite conformations, and consequently rotational barriers are extremely high. The local minima are far beyond the thermodynamically acceptable values. Nevertheless, relatively wide potential wells suggest the possibility of a certain flexibility.

### 8.3 Comparisons of the solid state and modelling data

A comparison of the CxxX molecular structure parameters derived from experimental and calculated data are present in the corresponding gas phase PES diagrams (Figs. 76-78).

In four ( $\mathbf{C o p} \mathbf{X}$ and $\mathbf{C m o B r}$ ) out of ten available solid state structures, the $\alpha$ and $\beta$ dihedral angles roughly comply with their equivalent modelled versions, having maximal deviation (in $\mathbf{C m o B r}$ ) of $25^{\circ}$ from the closest global minimum. In the other six $\mathbf{C x x X}$ crystal structures $(\mathbf{C m p X}, \mathbf{C m m X}$ and $\mathbf{C p m C l})$ the $\alpha$ ( $\mathbf{C}$-ring) or $\beta$ (X-ring) dihedral angles are in opposite conformations as compared to the conformations in the equivalent modelled structures. In contrast, all $\gamma$ and $\delta$ dihedral angles of the solid state structures positively correspond with the modelled equivalents with deviation by no more that $10^{\circ}$ from the global minimum (ESI II, Sections 3.3-3.5).

The conformations in the $\mathbf{C o p X}$ analogues and the $\mathbf{C m o B r}$ monohydrate crystal structures match those in the modelled molecular structures. As seen in the previous isomer grids, primary aggregation in the crystal structures of the $\mathbf{C o p} \mathbf{X}$ analogues is dimerisation, and it strictly requires the $\mathbf{C o}$ rings to be at their global minima. In the CmoBr monohydrate, the $R_{4}^{4}(14)$ hydrogen bonded ring formation via $\mathrm{H}_{2} \mathrm{O}$ molecules as well as the O1W-H2W $\cdots \mathrm{N} 23^{d}(d=1-\mathrm{x}, 2-\mathrm{y},-\mathrm{z})$ hydrogen bond directs a minor distorted ( $-25^{\circ}$ ) of the $\mathbf{C m}$ ring ( $\beta$ dihedral angle) from the global minima. The flexible $\mathbf{o B r}$ ring is in its second global minimum, however, that position is suitable not only because of internal stability, but rather because of the formation of $\mathrm{C}-\mathrm{Br} \cdots \pi$ (arene) interactions.

In the $\mathbf{C p m C l}$ crystal structure, the $\mathbf{m C l}$ ring is $\mathbf{C l}$-anti although the conformational analysis (Fig. 77) suggests that the Cl-syn conformation is slightly more favourable. The $\mathbf{C p m C l}$ molecule in the solid state forms a 2-D sheet where the H14 atom engages in a $\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O}^{a}(a=1-\mathrm{x}, 1 / 2+\mathrm{y},-\mathrm{z})$ interaction. This interaction is important for aggregation into a 2-D sheet. In contrast, the chlorine atom in the $\mathbf{C p m C l}$ crystal structure moves away from the carbonyl oxygen ( $5.426 \AA, 1-x, 1 / 2+y,-z$ ). If the
$\mathbf{m C l}$ ring was in a Cl-syn conformation, the chlorine atom would be too close to the carbonyl oxygen, causing a steric clash and eventual disruption of the $\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O} 1$ interaction and crystal structure. The $\mathbf{m C l}$ ring seems to be rotationally flexible and a conformational change to the opposite conformation is very likely ( $0.55 \mathrm{~kJ} . \mathrm{mol}^{-1}$ ). Hence, the $\mathbf{m C l}$ ring in the $\mathbf{C p m C l}$ isomer is in a Cl-anti conformation, placing the chlorine atom away from the sheet plate and ensuring aggregation.

Finally, in three isomorphous $\mathbf{C m p X}$ analogues (both A and B molecules) and two isomorphous $\mathbf{C m m X}$ analogues, the $\mathbf{C m}$ ring is in the $\mathbf{C}$-anti conformation although the C-syn is more favourable in gas phase. This is identical to some benzamides and pyridinecarboxamide isomers with meta-pyridine rings. As previously described, the reason for the conformational change is the demand for the formation of carb $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyr }}$ primary hydrogen bonding that gives $C(5)$ chains, therefore, the $\mathbf{C m}$ ring has to be in a C-anti conformation. Furthermore, in accordance with the crystal packing requirements, the $\mathbf{C}$-ring dihedral angles deviate by $50^{\circ}$ from their $\mathrm{LM}_{\mathrm{Cm}}$ local minima. In the $\mathbf{C m p F}$ and $\mathbf{C m p C l}$ isomers the $\beta$ dihedral angles of both A and B molecules perfectly match, but not in the $\mathbf{C m p B r}$ isomer. It is important to stress that aggregation in the CmpOMe and CmpM isomers is also accomplished by carb $\mathrm{N}-\mathrm{H}^{\cdots} \mathrm{N}_{\text {pyr }}$ hydrogen bonding, but packing in the $P 2_{1} 2_{l} 2_{l}$ space group, instead of $P c$ or $C c$ excludes the need for the conformational change of the meta-pyridinyl rings. Similarly, formation of trimers (CmmOMe), tetramers (NmpF) or catemers (NmpM and NmpFM) does not require conformational change.

The $\mathbf{m C l}$ ring in the $\mathbf{C m m C l}$ isomer is found to be in a $\mathbf{C l}$-anti conformation although in gas phase the Cl-syn is more stable. However, the Cl-anti conformation allows formation of secondary $\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{O} 1$ and $\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{Cl} 13$ interactions, crucial for aggregation. Similar interactions are also found in the $\mathbf{C m m F}$ isomer, but in gas phase the F -anti conformation is more stable.

An overview of the carbamate results is presented in the "Discussion and Conclusions".

## CHAPTER III: TENNIMIDES AND TREZIMIDES

## 1. Introduction

### 1.1. Idea

Natural and synthetic macrocycles continue to attract extensive scientific interest, with research developments proceeding in many directions including anion receptors, molecular recognition, drug discovery, therapeutics and nanoscience. ${ }^{211-215}$ Macrocyclic systems have evolved from the original crown ethers, spherands, cryptands and porphyrins, through calixarenes, resorcinarenes, rotaxanes, catenanes and beyond, as well as into interdisciplinary fields and biological applications. ${ }^{211-218}$ The quest to develop the perfect macrocyclic host template or platform with the ability to regulate specific physicochemical properties by simple functionalisation remains the 'holy grail' of macrocyclic scientists. This on-going pursuit has yielded a diverse range of macrocyclic scaffolds over the past five decades, ${ }^{211-214}$ but has often been impeded by modest yields from multi-stage syntheses, using high-dilution techniques with complex separations and bearing necessary, but often redundant backbone/side-chain groups. ${ }^{211-}$ ${ }^{214}$ The amide (-CONH-) group representing the most important organic functional group in organic chemistry is ubiquitous in biology and chemistry, both in natural and synthetic compounds. Benzamide chemistry (representing a subset) flourishes with a wide range of applications and research interests as scaffolds in a wide range of drugs to key components in both helical assemblies (acycles) and macrocycles. The imide functional group [CO] $]_{2} \mathrm{~N} R$ ( $R=\mathrm{H}$, alkyl/aryl) has featured extensively in 'locked' macrocycles and in polymer chemistry. ${ }^{219,220}$ However, macrocycles derived from open chain imides as $(-[\mathrm{O}] \mathrm{C}-\mathrm{N} R-\mathrm{C}[\mathrm{O}]-)_{n}(\boldsymbol{n} \geq 2)$ are rare with accessible and developed routes practically non-existent.

Our research into benzamide structural systematics (Chapter I, Sections 1.1 and 1.2 ) yields benzoyl- $N$-(2-pyridyl)benzamides as an additional product when reacting benzoyl chlorides with 2 -aminopyridines $(\mathbf{O}) .{ }^{163,164}$ These 2:1 systems tend to adopt a distinct open and twisted geometry about the central imide ' $(\mathrm{O}=\mathrm{C})_{2} \mathrm{~N} R$ ' core as shown by their solid-state structures ( $R=2$-pyridyl). Structural analysis demonstrates that the 2-(dibenzoylamino)pyridines ${ }^{163,164}$ constitute $3 / 8$ of the $4+4$ ' macrocyclic scaffold reported by Evans and Gale, ${ }^{218}$ (Scheme 37) as derived from isophthaloyl dichloride (I) and both tetrafluoro $\mathbf{F}_{4}$ and pentafluoroanilines $\mathbf{F}_{5}$ (with a reasonable geometric fit of the non-hydrogen atoms).





$\mathbf{X}=\mathbf{H}, \mathbf{F}, \mathbf{C l}, \mathrm{Br}, \mathrm{CH}_{3}, \mathrm{COOCH}_{3}$
Scheme 37: Scheme of the $\mathbf{I F}_{4 / 5}$ macrocycles (R1, R2) and analogous macrocycles ( $\mathbf{R} 3, \mathbf{R 4}$ )

Herein the described synthetic strategies to synthesise the analogous 2-pyridylderived '4+4' macrocycles directly in one-step using 2-aminopyridines or 2 aminopyrimidines (O) and isophthaloyl dichloride (I) generates modest-yielding, though, somewhat intractable product mixtures under a range of reaction conditions and reagents, but from which both the previously unreported class of imide-based macrocyclic trimers (xIO3, trezimides) and tetramers (xIO4, tennimides) can be isolated and characterised.

The advantages of the reaction derive from (a) the ability to vary and fine-tune the isophthaloyl aromatic backbone, (b) the wide range of functionalised 2aminopyridines/pyrimidines that can be employed in the side chain for further derivation and (c) the practicality of using just one-step to achieve at least two distinct macrocyclic trimeric and tetrameric systems.

### 1.2. Historical background and development timeline

The idea of designing imide based macrocycles came as a result of an effort aimed at utilising the dibenzoylation of 2-aminopyridine (2-AP), an unwanted sidereaction in the synthesis of the Mxo and Fxo triads, for development of new scaffolds, desirably but not necessary with $C_{4}$ molecular symmetry that might find a potential use as future external blockers of neural $\mathrm{K}_{\mathrm{v}}$ channels.

The 2-aminopyridine reacts with benzoyl chlorides in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ gives almost exclusively $N$-benzoyl- $N$-pyridin-2-yl-benzamides
instead of the expected simple benzamide (Scheme 38). This reaction has been well known for many years and the first record of dibenzoylation of 2-AP originates in 1894 with a report by Marckwald ${ }^{221}$ with occasional appearance during the $20^{\text {th }}$ century, ${ }^{160,161,163,164,222-225}$ including the proposed mechanism of the reaction ${ }^{161}$ and kinetics. ${ }^{225}$


Scheme 38: Dibenzoylation of 2-aminopyridine

However the products have not found any place in any particular synthetic routes nor any specific application. Nevertheless, the Pubchem database ${ }^{226}$ reveals 140 substructures based on $N$-benzoyl- $N$-pyridin-2-yl-benzamides, many of them synthesised as members of drug design libraries.

Deady and Stillman proposed a solvent dependant mechanism (Scheme 1), ${ }^{161}$ claiming that dibenzoylation of 2-AP in pyridine occurs as a two step reaction where a first step yields a simple benzamide, followed by additional benzoylation of benzamide into a $N$-benzoyl- $N$-pyridin-2-yl-benzamide. Benzoylation in acetone occurs firstly on the pyridine ortho-nitrogen, after which the amine moiety, now turned into imine is attacked by benzoyl chloride and finally a rearrangement occurs giving the $N$-benzoyl-$N$-pyridin-2-yl-benzamide. Since the amine moiety in 2-AP is relatively acidic $\left(\mathrm{pK}_{\mathrm{a}}=\right.$ 6.26), and prone to very fast nucleophilic attack this mechanism should be considered as unlikely. The authors do not give any suggestion why mechanisms are different in different solvents (pyridine and acetone). However, studies ${ }^{225}$ of dibenzoylation kinetics show a complete, immediate and fast dibenzoylation of 2-AP in $\mathrm{CHCl}_{3}$ at RT.


Scheme 39: Tautomeric structures of 2-aminopyridine

The pyridine nitrogen in the ortho position causes a delocalisation of electrons. It was found that 2-aminopyridine exists as a mixture of tautomeric amino and imino
forms with the predominance of the amino form over the imino form (1000:1) (Scheme 39). ${ }^{227}$

The presence of a strong base, $\mathrm{Et}_{3} \mathrm{~N}$, might cause deprotonation of the imine form of 2-AP. A nucleophilic attack from benzoyl chloride forms a simple benzamide, while the second dibenzoylation immediately follows giving rise to an $N$-benzoyl $-N$ -pyridin-2-yl-benzamide (Scheme 40).

Our experience with the $\mathbf{F x o} / \mathbf{M x o}$ synthesis in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed that exclusion of $\mathrm{Et}_{3} \mathrm{~N}$ gives a ratio of 1:7 in favour of N -benzoyl- N -pyridin-2-yl-benzamide, while a solventless reaction gives a ratio of 1:1. A possible reason for a decrease of dibenzoylation in pyridine is formation of a hydrogen bonded $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyr }}$ complex that sterically prevents additional dibenzoylation, while during the solventless synthesis a dimer (as in the Mxo/Fxo crystal structures) is formed protecting the amide hydrogen atoms from further reaction.




Scheme 40: Possible reaction mechanism of dibenzoylation of 2-aminopyridine

Generally, imides are well known. The important polyimides, based on naphthalene-tetracarboxylic diimides and developed during 1950's, play important roles in technology and various appliances. ${ }^{228,229}$ The Pubchem database ${ }^{226}$ reveals 309 chemical entities based on basic $N, N$-dibenzoylanilines including many 6 - $p$-phenyl-dibenzo[c,e]azepine-5,7-diones. ${ }^{230}$ Some macrocyclic analogues of polyimides were developed based on pyromellitic diimides ${ }^{219,220}$ and perylene bisimides. ${ }^{231}$ However,
apart from IYURAV and IYUQUO ${ }^{218}$ no imide macrocycles of the type $[-(\mathrm{O}) \mathrm{C}-\mathrm{N} R$ -$\mathrm{C}(\mathrm{O})-]_{n}(n \geq 2)$ have been reported to date.

In the research group of J. F. Gallagher, from 2004 onwards, when condensing acyl chlorides and acids with the ortho-aminopyridines, the imide products were always regarded as interesting side-products to a variety of benzamide reactions that were being studied. The first researcher to work on these was Dr. Steven Alley who was working with ferrocene derivatives during 2002-2004. This was later exploited by Katie Donnelly, a final year undergraduate student in early 2007. ${ }^{162-164}$ Attempts to synthesise $N$-(4-pyridin-2-yl)- $N$-(pyridinecarbonyl)pyridinecarboxamides (August 2009) ended without success since products proved to be unstable and in contact with silica gel decompose into $N$-(pyridin-2-yl)pyridinecarboxamides.

On December $8^{\text {th }} 2009$ during a routine, general $\mathrm{CSD}^{8}$ search through analogues of our simple imides (Mxod, Fxod) the structures of the tetrameric imide macrocycles IYURAV and IYUQUO ${ }^{218}$ were found and analysed. In these macrocycles, formation of the tetrameric imide macrocycle was facilitated by the presence of 4 or 5 fluorine atoms on a fluoroaniline moiety. A large number of fluorine atoms cause withdrawal of electrons and as a consequence the pKa of the amine is lowered. A similar effect was seen in 2-aminopyridine, however it is caused by electron delocalisation with the orthonitrogen. An overlay of our imides ${ }^{163,164}$ with the IYURAV/IYUQUO ${ }^{218}$ scaffolds showed a reasonable (yet remarkable) fit of the non-hydrogen atoms. This spurred the idea to develop similar " $4+4$ " tetrameric imide macrocycles, analogues of IYURAV/IYUQUO using 2-aminopyridine instead of tetra- or pentafluoroaniline. ${ }^{218}$

This merging of IYURAV/IYUQUO ${ }^{218}$ type scaffolds with dibenzoylation of 2aminopyridine was planned to be accomplished by reacting 2-aminopyridine with the isophthaloyl dichloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a reaction medium, in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ as base and DMAP as catalyst. It was expected to obtain the main tetrameric macrocycle, high molecular weight oligomers and polymeric materials.

The first attempt to undertake the " $4+4$ " reaction was performed by Mark Farrell in April 2010 with no apparent success. A second attempt, undertaken by Pavle Mocilac (December 2010) gave a mixture of polymeric resin with dozens of low-molecular compounds that proved to be very difficult to separate.

In order to simplify the mechanism and increase the statistical probability of macrocycle formation we decided to try an alternative synthetic route, the " $2+2$ " reaction of equimolar amounts of $N^{1}, N^{3}$-di(pyridin-2-yl)isophthalamide (H-DIP) (Scheme 41) with isophthaloyl dichloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as solvent and in the presence of
$\mathrm{Et}_{3} \mathrm{~N}$ and DBU as bases using high dilution techniques. In order to avoid dibenzoylation, $N^{1}, N^{3}$-di(pyridin-2-yl)isophthalamide (H-DIP) was synthesised by refluxing (at $110^{\circ} \mathrm{C}$ ) isophthalic acid with double equivalents of 2-AP in presence of triphenyl phosphite (TTP) as a coupling agent and pyridine as solvent. A detailed procedure for the H-DIP synthesis is given in the Section 2.1. Reaction of H-DIP with isophthaloyl dichloride using the high dilution technique (Scheme 42) ought to have given a high yield of the desired macrocyclic product with a minimum amount of byproducts and polymers. As isophthalic dichloride reacts with water, the solvent used in large quantities as reaction medium, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, was supposed to be strictly anhydrous, since even a smallest amount of moisture can deactivate isophthalic dichloride.


Scheme 41: Synthesis of $N^{1}, N^{3}$-di(pyridin-2-yl)isophthalamide (H-DIP)

The first " $2+2$ " reactions were undertaken by Pavle Mocilac on $24^{\text {th }}$ January 2011 yielding a mixture of H-DIP, polymer and additional side-products. A detailed procedure of the " $2+2$ " reaction is given in the Section 2.2. The products were separated by column chromatography and subsequently re-crystallised from methanol. Three fractions of small amounts of unknown material were recovered and the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ in DMSO at RT was recorded.


Scheme 42: General scheme for the " $2+2$ " reactions

The first and the third fractions proved to be open chain compounds. However, the second fraction showed a similar pattern of wide and overlapping peaks as in the Gale \& Evans publication. ${ }^{218}$ This indicated a macrocycle. A potential product was assigned as IO4 (Isophthalic - Ortho-aminopyridine tetramer). The possible existence of the "IO2" dimeric macrocycle was discounted since it is sterically unlikely.

The first real breakthrough came on the February $26^{\text {th }}$ 2011, when a variable temperature ${ }^{1} \mathrm{H}$-NMR experiment was undertaken raising the temperature from $20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ in increments of $10^{\circ} \mathrm{C}$. The results including a number of peaks, with shifts and integration were as expected for an imide macrocycle.

An attempt to undertake a mass spectroscopy experiment in order to determine the molecular weight, and consequently decide on the product's final identity failed due to insolubility in water and inability to ionise using electron spray ionisation or MALDI-TOF methods. Nevertheless, in the absence of an appropriate MS result the alternative was to grow a single crystal and solve the molecular and crystal structure.

The first crystal structure determination attempt was on IO4 grown from $\mathrm{CDCl}_{3} / \mathrm{CH}_{3} \mathrm{CN}$ on March $7^{\text {th }}$ and using Mo $\mathrm{K} \alpha$ radiation, ( $20 \mathrm{~s} / 30$ s to $0.85 \AA$ ) on a thin colourless plate (that looked twinned). In fact all of the samples looked twinned and had a soapy surface appearance to the untrained eye. The first structural breakthrough was with a $\mathrm{CDCl}_{3}$ derived sample from an NMR tube and in a glass vial as [11-032]. The crystal diffracted very well and to $0.95 \AA$ for Cu and $\mathrm{Mo} \mathrm{K} \alpha$ radiations. This was the major breakthrough since the molecular and crystal structure proved that the product was indeed the tetrameric imide macrocycle IO4.

Subsequently, DMSO crystals looked very poor and were eventually examined as [11-041]. These crystals look twinned, but when viewed from the side though they extinguish plane-polarised light. Crystal samples were then grown from alcoholic solvents and crystals were examined in the following samples: from methanol [11-040] data collected with $\mathrm{Cu} \mathrm{K} \alpha$ radiation, but was found to be monoacetone solvate, from ethanol as [11-038] ( $\mathrm{Mo} \mathrm{K} \alpha$ ) and [11-039] $(\mathrm{Cu} \mathrm{K} \alpha)$ and from IPA [11-042] ( $\mathrm{Cu} \mathrm{K} \alpha$ ). Crystals grown from IPA did not provide good quality data, but yielded a unit cell.

Table 37: List of IO4 crystals (at RT)

| Label | Emp. form. | K $\alpha$ | R1 | Date | $\boldsymbol{S G}$ | $\boldsymbol{\Theta}_{\text {max }}$, Res. | Remark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [11-032] | $\mathrm{C}_{53} \mathrm{H}_{33} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{Cl}_{3}$ | Mo | 5.59 | 07/03/2011 | $P \overline{1}$ | [25]; 0.85 | IO4: $\mathrm{CHCl}_{3}$ |
| [11-033] | $\mathrm{C}_{53} \mathrm{H}_{33} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{Cl}_{3}$ | Cu | 4.50 | 08/03/2011 | $P \overline{1}$ | [ $60^{\circ}$ ]; 0.88 | IO4: $\mathrm{CHCl}_{3}$ |
| [11-038] | $\mathrm{C}_{53} \mathrm{H}_{35} \mathrm{~N}_{8} \mathrm{O}_{8.5}$ | Mo | 6.11 | 23/03/2011 | C2/c | [ $25^{\circ}$ ]; 0.85 | IO4:0.5(EtOH) |
| [11-039] | $\mathrm{C}_{53} \mathrm{H}_{35} \mathrm{~N}_{8} \mathrm{O}_{8.5}$ | Cu | 3.38 | 24/03/2011 | C2/c | [ $60^{\circ}$ ]; 0.88 | IO4:0.5(EtOH) |
| [11-040] | $\mathrm{C}_{53} \mathrm{H}_{35} \mathrm{~N}_{8} \mathrm{O}_{8.5}$ | Cu | 4.69 | 25/03/2011 | C2/c | [ $60^{\circ}$ ]; 0.88 | IO4:0.5(Acet) |
| [11-041] | $\mathrm{C}_{56} \mathrm{H}_{46} \mathrm{~N}_{8} \mathrm{O}_{10} \mathrm{~S}_{2}$ | Cu | 18.0 | 28/03/2011 | C2 | [ $60^{\circ}$ ]; 0.88 | IO4:2(DMSO) |
| [11-042] | $\mathrm{C}_{58} \mathrm{H}_{46} \mathrm{~N}_{8} \mathrm{O}_{10}$ | Cu | N/A | 29/03/2011 | C2/c | [ $50^{\circ}$ ]; 1.00 | IO4:2(IPA) |

On March $22^{\text {nd }}$ an ethanol crystalline derivative was mounted which was very small, but later a huge block was mounted which had many faces. This crystal gave a
structure with an $R$-factor of $6.1 \%$ [11-038]. Later, it was tried with $\mathrm{Cu} \mathrm{K} \alpha$ radiation (in $C 2 / c$ ). These crystals form very well and diffract strongly.

However, new attempts to repeat our synthetic procedure and consequently synthesise more IO4 failed, yielding only polymer and/or starting H-DIP. Adjustments of the reaction conditions were applied, such as additional rigorous drying of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, change of solvent, volume of reaction media, etc. All subsequent changes proved futile, ending without the $\mathbf{I O 4}$ product. Attempts to perform the " $2+2$ " reaction using preliminary "in situ" synthesis of isophthaloyl dichloride in reaction media by converting isophthalic acid into isophthaloyl dichloride using dichlorotriphenylphosphorane ${ }^{232}$ and subsequent, direct addition of H-DIP and $E t_{3} \mathrm{~N}$ also ended without the formation of the desired product (IO4).

Although the high dilution technique presents a standard procedure in macrocyclic chemistry and is widely recommended, the procedure described in Gale \& Evans publication ${ }^{218}$ was not a high dilution technique. The relatively inflexible ligands as for IO4 may actually be suited to higher concentrations of reactants. In addition, $\mathbf{H -}$ DIP has a very low solubility in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, whereas attempts to perform the " $2+2$ " reaction is other solvents, like THF, did not give the desired product. A situation without a positive synthetic outcome lasted from early March to mid-May 2011.

Therefore in June 2011 a decision was made to design a new synthetic procedure (Scheme 43) and based on Gale \& Evans original " $4+4$ " procedure. ${ }^{218}$



Scheme 43: General synthetic scheme for the " $4+4$ " reactions

As a small sample of IO4 was available to us, an idea was proposed to check if a modified original procedure could, beside other side-products, yield sufficient amounts of IO4. The eventual product ought to be identified by TLC. A hypothesis that slowing down the reaction is useful to suppress formation of polymeric materials lead to the decision to pre-cool the reaction medium (before addition of 2-AP) down to $-15^{\circ} \mathrm{C}$ and
leave the reaction to slowly warm to RT over a period of 1-2 hours. This attempt resulted in newly synthesised IO4, along with polymeric resin and some other sideproducts.

However, the induced solidification of the product mixture using $\mathrm{Et}_{2} \mathrm{O}$ before chromatographic purification and separation resulted in a very insoluble white powder that was reluctant to be re-dissolved in virtually any organic solvent, even when heated, and effectively preventing chromatographic separation. This was probably the result of the fact that once the polymeric/oligomeric resin chains are solid they form a "molecular ball", tightly wrapped by intermolecular interactions. This molecular "ball" presumably intertwines attached IO4 molecules.

Hence, a new reaction was undertaken and the crude reaction mixture containing both oligomeric resin and macromolecules was transferred to a chromatographic column and purified immediately after the solvent was removed under reduced pressure. The result was not fully satisfactory since the first separated fraction was a pure unknown fraction and second was a mixture of the first fraction and IO4. The unknown fraction was analysed by variable temperature ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and the resulting spectrum was similar but not matching with the IO4 spectrum, except for integration that matched IO4. It seemed that the unknown product was a 2-AP imide macrocycle, but not the tetrameric IO4. The IR spectra matched almost perfectly suggesting the same moieties.

$X=$

$\boldsymbol{R}=\mathbf{H}$
Scheme 44: Structure of the IO3 trimer

Single crystals of the unknown fraction were grown from DMSO- $d_{6}$ and XRD showed that it was a trimer (Scheme 44). The trimer was named as IO3. A standardised, " $4+4$ " synthesis and procedure is described in detail in the Section 2.3.

Shortly afterwards, another reaction, based on a successful " $4+4$ " procedure was performed, but with 2 -aminopyridine replaced by 2 -aminopyrimidine (2-APM). The
result gave a mixture of two imide macrocycles, namely the tetrameric 26104 and trimeric 26IO3. The difference between the $\mathbf{I O 4 / I O 3}$ and 26IO4/26IO3 chromatographic $\mathrm{R}_{f}$ values was too small and classical column chromatography was unable to separate both macrocycles efficiently. Gel permeation chromatography, as described in Gale's work, ${ }^{218}$ was not successful either. Therefore, after many attempts, preparative TLC technique was tried and proved to be successful yielding $\sim 5-10 \mathrm{mg}$ of each compound per plate. Using this method, sufficient amounts of 26104 and $26 I O 3$ were isolated for spectroscopic analysis, crystal growth and XRD. Later in 2011 optimal mobile phases for the efficient separation of the two different macrocycles were found and preparative TLC was no longer required.

By the end of 2011 several pairs of imide macrocycles based on 2-AP or 26APM derivatives bearing different substituents were successfully synthesised, purified, characterised and their structures determined by SXRD: FIO4/FIO3, CIIO4/CIIO3, BrIO4/BrIO3, 26BrIO4/26BrIO3 and finally EsIO4/EsIO3. Methyl macrocycle development ended with only the isolated tetramer (MIO4). However, repeated attempts to synthesise the CNIO and $\mathbf{2 5 I O}$ macrocycles, based on 6-amino-3pyridinecarbonitrile and 2-aminopyrazine, failed and yielded no macrocycles. Nevertheless the synthetic route is quite general and standard, allowing access to a range of macrocycles (trimer/tetramer) based on 2-aminopyridines and 2aminopyrimidines.

### 1.3. Polymer formation

A competitive reaction that occurs in parallel with the cyclisation is the formation of an imide polymer (polyimide, Scheme 45). The polymer probably has medium and longer sized spiral chains with free terminal carboxylic groups that emerge through partial deactivation of isophthaloyl dichloride with moisture from the environment.

The standard strategy in preventing formation of the polymer is the high dilution technique, but in this reaction this approach is not a choice. Instead, cooling of the reaction mixture $\left(-15^{\circ} \mathrm{C}\right)$ and reaction slowdown probably helps macrocycle formation. The formation of polymer becomes visible usually after half an hour from the reaction onset, as a clouding of the reaction mixture. When a reaction mixture gradually warms to ambient temperature, the polymer becomes more visible and deposits in the form of a gel on the flask wall.


Scheme 45: Possible structure of the imide polymer $\left(\mathbf{X}=\mathrm{C}-\mathrm{H} / \mathrm{N}, \mathbf{R}=\mathbf{H}, \mathbf{F}, \mathbf{C l}, \mathbf{B r}, \mathbf{C O O C H}_{3}\right)$

During filtration on a sintered funnel the polymer as a gel, shrinks and thickens into a paste as it loses solvent $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Finally, after drying it hardens and solidifies into a hard, brittle solid, insoluble in water and most organic solvents. Once dry and hard it is reluctant to re-absorb solvents; solidification seems to be irreversible. Since it is brittle, it can be easily obtained in a powdered form with a mortar and pestle. When in contact with concentrated and warm acids (e.g. $\mathrm{H}_{2} \mathrm{SO}_{4}$ ) the polymer undergoes fast degradation.

### 1.4. The labelling system and nomenclature

Since both the tetramers and trimers consist of the same fragment, 2aminopyridine or 2-aminopyrimidine and isophthalic acid connected by the imide moiety, the main label "IO" is taken from the term "Isophthalic" and "Orthoaminopyridine". The prefix "26" is assigned to macrocycles based on 2aminopyrimidine (26-APM). The suffixes " 3 " or " 4 " mark if the macrocycle is tetramer or trimer. Finally, additional prefix before the $\mathbf{I O}$ label $\left(\mathbf{F}, \mathbf{C l}, \mathbf{B r}, \mathbf{M}\left[\right.\right.$ for $\left.\mathrm{CH}_{3}\right]$, and $\mathbf{E s}$ [for $\mathrm{COOCH}_{3}$ ]) denotes substituent at the 2-AP or 26-APM in para-position.

All developed imide tetramer or trimer macrocycles share a similar backbone. In the case of the tetramers, it is an irregularly shaped globular molecule with $C_{4}$ pseudosymmetry. If the 2-AP moieties, hydrogen atoms and CX4/5/6 atoms are removed the remaining backbone roughly follows a tennis ball seam. Therefore, for all tetrameric imide macrocycles of similar geometry a common name "tennimides" is proposed. Similarly, for the trimeric imide macrocycles a common name "trezimides" is proposed that originated from the Latin word "tres" meaninig "three". In order to have a unique name the letter "s" is changed into "z".

### 1.5. Materials, equipment and spectroscopic methods

All vendors, materials, solvents and reagents and equipment for the synthesis, purification and spectroscopic characterisation were as described in Chapter I, Section 1.1.2. Preparative TLC plates were purchase from Analtech Inc., USA. The NMR spectra experiments have been performed in DMSO- $d_{6}$, except for EsIO4 and EsIO3 $\left(\mathrm{CDCl}_{3}\right)$, at 600 MHz using a Bruker Avance Ultrashield 600 NMR Spectrometer. For most of the compounds variable temperature ${ }^{1} \mathrm{H}-\mathrm{NMR}$, as well as ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$, DEPT, DEPT-Q, HSQC, HMBC, COSY and NOESY experiments were undertaken at higher temperature. For FIO3 and FIO4 the ${ }^{19}$ F-NMR experiments have been performed at 400 MHz on an equivalent Bruker NMR spectrometer. The FTIR experiments were performed as described in Chapter II.

### 1.6. X-ray crystallographic methods

Single crystal X-ray data collection and data reduction, ${ }^{176}$ structure solution and refinement ${ }^{3,168}$ was as described for compounds in Chapter I. For some macrocycles, the SQUEEZE program ${ }^{169}$ in PLATON was used in order to eliminate the regions of diffuse electron density in solvent accessible voids. Selected crystallographic and structural information are detailed in the ESI III, Section 2. Molecular and hydrogen bonding diagrams (Figs. 79-101) were generated as described in other isomer grids (with displacement ellipsoids drawn at the $10 \%$ probability level). ${ }^{169}$

### 1.7. Computational methods

The structural geometries of the IO3 and 26 IO trezimides and IO4 and 26IO4 tennimides were investigated by $a b$ initio modelling and conformational analysis methods similar to that previously described (Chapter I and II) in order to test structural differences between the experimentally obtained solid state structures (from X-ray diffraction) and the modelled, optimised structures in gas phase. The experimental XRD derived conformations were used as a starting point, and all calculations were performed using the DFT method (B3LYP) and $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set. Calculations were performed with Gaussian 09 software at the Irish Centre for High End Computing (ICHEC).

## 2. Detailed descriptions of the synthetic procedures

### 2.1. Synthesis of $N^{1}, N^{3}-\mathrm{di}($ pyridin-2-yl)isophthalamide (H-DIP)

Into a solution of isophthalic acid ( $2.08 \mathrm{~g}, 12.5 \mathrm{mmol}$ ) in $40-50 \mathrm{ml}$ pyridine, 2aminopyridine ( $3.54 \mathrm{~g}, 37.5 \mathrm{mmol}$ ) was added and warmed with stirring for 15 minutes, followed by addition of triphenyl phosphite $(9.9 \mathrm{ml}, 37.5 \mathrm{mmol})$. The reaction mixture was refluxed with stirring at $110^{\circ} \mathrm{C}$ for 5 hours. Next, the pyridine was removed from the reaction mixture by evaporation under reduced pressure on a rotary evaporator. The resulting light brown oil was taken in 150 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solution was washed with brine. The product was extracted in $150 \mathrm{ml} 1: 1(\mathrm{v} / \mathrm{v})$ aqueous HCl . The acidic aqueous extract was neutralised by NaOH and $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The resulting white solid was filtered, washed thoroughly with distilled water, air dried and dissolved in $150-200 \mathrm{ml}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was washed twice with aqueous solution of $\mathrm{KHCO}_{3} / \mathrm{Na}_{2} \mathrm{CO}_{3}$ ( $\mathrm{pH} \sim 9$ ). The organic layer was dried with $\mathrm{MgSO}_{4}$, decolourised with charcoal and double filtered. The product ( $\mathrm{m}=1.4 \mathrm{~g} ; 35 \%$ ) was recovered after the solvent evaporation under reduced pressure on a rotary evaporator.

### 2.2 Method 1: The " $2+2$ " synthesis of the IO4 tennimide

The $N^{1}, N^{3}$-di(pyridin-2-yl)isophthalamide (H-DIP, $0.1783 \mathrm{~g}, 0.56 \mathrm{mmol}$ ) and $\mathrm{Et}_{3} \mathrm{~N}(0.24 \mathrm{ml}, 1.68 \mathrm{mmol})$ were dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mathrm{ml})$ under $\mathrm{N}_{2}$ and DBU (two drops, $35.2 \mu \mathrm{l}, 0.2360 \mathrm{mmol}$ ) was added. Isophthaloyl dichloride ( 0.1137 g , 0.56 mmol ) was added to the vigorously stirred reaction mixture. The reaction mixture was allowed to vigorously stir overnight. The reaction mixture was washed with an aqueous solution of $\mathrm{KHCO}_{3} / \mathrm{Na}_{2} \mathrm{CO}_{3}(400 \mathrm{ml}, \mathrm{pH} \sim 9)$ three times, with brine containing $\mathrm{NH}_{4} \mathrm{Cl}(400 \mathrm{ml}, \mathrm{pH} \sim 6)$ three times, dried over $\mathrm{MgSO}_{4}$ and the solvent reduced on a rotary evaporator affording a yellow resin. The yellow resin was purified by column chromatography using silica as stationary phase and $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (10:1) as a mobile phase. The resulting second fraction was collected, the product was recovered and recrystallised from MeOH affording 26.6 mg ( $10.6 \%$ ) of a white product (IO4).

### 2.3. Method 2: Standardised, "4+4" synthesis of tennimides and trezimides

The reaction medium was prepared by dissolving DMAP ( $10 \mathrm{mg}, 0.08 \mathrm{mmol}$ ) and $\mathrm{Et}_{3} \mathrm{~N}(4 \mathrm{ml}, 29.8 \mathrm{mmol})$ in 100 ml of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The 2-aminopyridine, 2aminopyrimidine or its derivative ( 9.8 mmol ) was dissolved or suspended in $5-20 \mathrm{ml}$ of reaction media. Isophthaloyl dichloride ( $1.98 \mathrm{~g}, 9.8 \mathrm{mmol}$ ) was dissolved with stirring in $80-95 \mathrm{ml}$ of reaction media in a 250 ml round bottom flask, under an inert atmosphere of $\mathrm{N}_{2}$ and cooled on an ice bath (ice $/ \mathrm{NaCl} / \mathrm{NH}_{4} \mathrm{Cl} / \mathrm{EtOH}$ ) to $-15^{\circ} \mathrm{C}$. The solution/suspension of 2-aminopyridine, 2-aminopyrimidine or derivative was quickly and quantitatively added to the cooled flask containing isophthaloyl dichloride. The reaction mixture was stirred overnight.

The reaction mixture was diluted with technical grade $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to 200 ml , if necesary filtered over a funnel with a sintered glass frit, to remove the polymeric byproduct and washed three times with aqueous solutions of $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{pH} \sim 5)(3 \times 200 \mathrm{ml})$, dried over $\mathrm{MgSO}_{4}$ and filtered. The clear, filtered product solution was left for the next step. Subsequently, the solvent was removed on a rotary-evaporator to afford a resin. This resin was immediately purified by column chromatography on silica gel (Davisil, $70 \mu \mathrm{~m}, 82 \mathrm{~g}$, column dimension: $l=25 \mathrm{~cm}, d=3 \mathrm{~cm}$ ) eluting with a suitable mobile phase to separate and obtain pure macrocyclic products. Isolated yields were from 3 to $13 \%$ for both tennimide and trezimide macrocycles.

## 3. General comments on spectroscopic data

Spectroscopically, the tennimides and trezimides show $C_{4} / C_{3}$ pseudosymmetry, having four/three equivalent segments that consist of 2-aminopyridines (or 2aminopyridimidines) and the isophthalic moiety. Therefore, all tennimides and trezimides can be considered as tetramers and trimers of a general segment shown in Scheme 46. Due to conformational rigidity in solution at room temperature, the ${ }^{1} \mathrm{H}$ NMR experiment at $20^{\circ} \mathrm{C}$ usually shows very poorly resolved peaks, giving inappropriate integration. However, raising the temperature improves flexibility and peaks were gradually resolved at $80^{\circ} \mathrm{C}$.

The variable temperature ${ }^{1} \mathrm{H}$-NMR was recorded for all compounds (except for EsIO3) showing significant improvements of peak resolution as well as displacement of particular peaks at higher temperatures. This effect is less pronounced in the trezimides than in the tennimides. For 26 IO 4 and 26 BrIO 4 a higher temperature $\left(120^{\circ} \mathrm{C}\right.$ and
$140^{\circ} \mathrm{C}$ ) was required due to the low solubility in DMSO- $d_{6}$. Elevation of temperature improved the ${ }^{13} \mathrm{C}$-NMR spectra too. The NOESY experiments did not show any specific proximity of protons in solution.


Scheme 46: Tennimides and trezimides ( $\mathbf{X}=\mathrm{C}-\mathrm{H} / \mathrm{N}, \mathbf{R}=\mathbf{H}, \mathbf{F}, \mathbf{C l}, \mathbf{B r}, \mathbf{C H}_{3}, \mathbf{C O O C H}_{3}$ )

## 4. IO3 and IO4 macrocycles

### 4.1. Synthesis and purification

The synthesis and purification of the $\mathbf{I O 3}$ trezimide and IO4 tennimide was as described in previous sections ( 1 and 2, Scheme 41-43). The yield were good to modest: the yield of IO4 obtained with Method 1 (Section 2.1) was 26.6 mg (10.6\%) while with Method 2 (Section 2.2) it was 127 mg (6\%), for IO4 and 149 mg (7\%) for IO3. The chromatographic $\mathrm{R} f$ values for the $\mathrm{CHCl}_{3}$ /ethyl acetate/acetone (4:12:1) mobile phase were 0.57 (IO4) and 0.63 (IO3).

### 4.2. General and spectroscopic data

The IO3 trezimide and IO4 tennimide are white, odourless powders. Their crystallinity is comparable with those of the benzamides and pyridinecarboxamides, however, better than that of carbamates and H-DIP. The IO3 seems to be more soluble in organic solvents than IO4; the solubility difference is especially pronounced in alcohols, IO3 is readily soluble, while IO4 is poorly soluble in cold methanol, ethanol or iso-propanol. However, both compounds are soluble in chlorinated hydrocarbons, such as $\mathrm{CHCl}_{3}$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as well as in ethyl acetate, acetone and DMSO. Solubility in $n$-hexane was modest, poor in diethyl ether. Both IO4 and IO3 are insoluble in water.

The basic spectroscopic information for H-DIP, IO4 and IO3 is given in Appendix I, Sections 4.1-4.3, while the comprehensive NMR data and spectra are
given in the ESI III, Section 1-3. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{I O 4}$ resolves relatively well at $80^{\circ} \mathrm{C}$ without coupling (Fig. 78a), whereas for IO3, peaks resolve much better and decoupling shows. This suggests that $\mathbf{I O 3}$ is much more flexible than $\mathbf{I O 4}$ where more than one conformation exists. The IR data (Fig. 78b) are almost identical and show a similar distribution of bands with very strong bands around $1720-1690 \mathrm{~cm}^{-1}$ corresponding with carbonyl $(\mathrm{C}=\mathrm{O})$ stretches The peaks in $1600-1400 \mathrm{~cm}^{-1}$ region are associated with $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ vibrations in the isophthaloyl and pyridinyl rings, while the strong peaks in the $1400-1200 \mathrm{~cm}^{-1}$ region belong to $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{C}$ vibrations and


Fig. 78a: Variable temperature ${ }^{1} \mathrm{H}-\mathrm{NMR}$ experiment for IO4 and IO3


Fig. 78b: IR spectrum of IO4
stretches in the imide backbone. Absence of significant peaks $c a .3000 \mathrm{~cm}^{-1}$ indicates that the bulk IO3 and IO4 powders are not in the form of solvate. The stability of IO4 seems to be very good and better than the stability of IO3. Prolonged heating in DMSO$d_{6}$ did not cause disintegration. However, separation using preparative TLC caused partial disintegration of $\mathbf{I O} \mathbf{3}$ suggesting potential stability issues.

### 4.3. Crystallographic data and discussion

For all crystal structures an initial data collection using Mo radiation provided adequate results with $R$ factors from 0.06 to 0.12 , however Cu datasets were also obtained providing more data, much lower $R$-factors $(R<0.06)$ and smaller estimated standard deviations on the geometric parameters: the Cu -derived data are discussed herein. Since several single crystals of IO4 were grown and data was collected, affording various R -factors, the results of the [11-033] dataset (IO4:CHCl3) will be presented. Table 38 summarises the basic crystallographic data.

Table 38: Selected crystallographic data ${ }^{a}$ for the IO3 and IO4 macrocycles $\dagger$

|  | $\mathbf{I O 3}$ | $\mathbf{I O 4}$ |
| :--- | :--- | :--- |
| Chemical formula | $\mathrm{C}_{39} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{6} \cdot\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{2}$ | $\mathrm{C}_{52} \mathrm{H}_{32} \mathrm{~N}_{8} \mathrm{O}_{8} \cdot \mathrm{CHCl}_{3}$ |
| Crystal system, space group | Monoclinic, | Triclinic |
|  | $P 2_{1} / n,(\mathrm{No} .14)$ | $P \bar{l},(\mathrm{No.2)}$ |
| $a, b, c(\AA)$ | $12.5381(1), 11.7299(1)$, | $11.9279(9), 12.0291(9)$, |
|  | $28.1349(3)$ | $16.8723(13)$ |
| $\alpha, \beta, \gamma\left({ }^{\circ}\right)$ | $90,92.935(1), 90$ | $84.618(6), 86.984(6)$, |
| $Z^{\prime}$ |  | $76.201(7)$ |
| $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$ | 1 | 1 |

$\dagger$ Complete crystallographic, refinement and structural details are listed in the ESI III (Section 2.1). ${ }^{a}$ Obtained with $\mathrm{Cu} K \alpha$ radiation.

The IO3 trezimide (Fig. 79) crystallises as a solvate with two molecules of DMSO- $d_{6}$. The solvent molecules are disordered as $\mathrm{A} / \mathrm{B}(0.5: 0.5)$ and $\mathrm{C} / \mathrm{D}(0.5: 0: 5)$. The solvent molecules play an important role in aggregation. If viewed along the $c$-axis direction while the $a$-axis is down, the $\mathbf{I O 3}$ molecule roughly resembles to letter "A" with two pyridinyl rings (" 1 " and " 3 ") being vertical, pointed down and nearly coparallel (interplanar angle $\mathrm{P} 1 / \mathrm{P} 3=34.67^{\circ}$ ). The pyridinyl ring " 2 " is located at the top and is directed backward. The isophthaloyl ring " 1 " is nearly perpendicular to the two pyridinyl rings " 1 " and " 3 " (interplanar angles $\mathrm{I} 1 / \mathrm{P} 1=81.22^{\circ}$ and $\mathrm{I} 1 / \mathrm{P} 3=87.41^{\circ}$ ).

The internal imide dihedral angles, or so called "CO $\cdots \mathbf{C O}$ " twist angles are $87.03^{\circ}$ (O1-C1 $\cdots \mathrm{C} 2-\mathrm{O} 2$ ), $95.45^{\circ}$ (O3-C3 $\cdots \mathrm{C} 4-\mathrm{O} 4$ ) and $94.85^{\circ}$ (O5-C5 $\left.\cdots \mathrm{C} 6-\mathrm{O} 6\right)$. The wide pocket between the carbonyl moieties ( $\mathrm{O} 2, \mathrm{O} 3$, and O 5 ) and isophthaloyl hydrogen atoms (H12, H22 and H32) is a macromolecular niche and its dimensions are defined by $\mathrm{O} \cdots \mathrm{O}$ and $\mathrm{H} \cdots \mathrm{H}$ distances.


Fig. 79: An ORTEP diagram of IO3; a) with solvent molecules $b$ ) with macrocyclic niche

For IO3 the $\mathrm{O} \cdots \mathrm{O}$ distances range from 6.05 to $7.96 \AA$, while the $\mathrm{H} \cdots \mathrm{H}$ distances range from 2.67 to $2.87 \AA$. The disordered A/B molecule of DMSO- $d_{6}$ is anchored to the macromolecular niche via strong C16A-H16A $\cdots$ O1D [C16A $\cdots$ O1D $=$ $3.246(12) \AA$ ] and C36A-H36A $\cdots \mathrm{O} 1 \mathrm{C}[\mathrm{C} 36 \mathrm{~A} \cdots \mathrm{O} 1 \mathrm{C}=3.195(12) \AA$ ] hydrogen bonds. The two disordered DMSO- $d_{6}$ molecules, $\mathrm{A} / \mathrm{B}$ and $\mathrm{C} / \mathrm{D}$ are interconnected via $\mathrm{C} 1 \mathrm{C} / \mathrm{D}-$ $\mathrm{H} 15 \mathrm{C} / \mathrm{D} \cdots \mathrm{O} 1 \mathrm{~A} / \mathrm{B}^{a}[a=3 / 2-\mathrm{x}, 1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}]$ interactions.

The aggregation in IO3 is mainly accomplished through C-H $\cdots \mathrm{O} / \mathrm{N}$ contacts with the aid of interactions between the solvent and IO3 molecules. The main interaction is a C35A-H35A $\cdots \mathrm{O} 2^{b}\left[\mathrm{C} 35 \mathrm{~A} \cdots \mathrm{O} 2^{b}=3.148(4) \AA, b=-\mathrm{x}+1 / 2, \mathrm{y}+1 / 2,-\mathrm{z}+1 / 2\right]$ hydrogen bond that alternately links IO3 molecules into a zig-zag 1-D column along the $b$-axis direction. The column is stabilised by weaker C15A-H15A $\cdots \mathrm{O} 5^{c}\left[\mathrm{C} 15 \mathrm{~A} \cdots \mathrm{O}^{c}=\right.$ $3.400(3) \AA, c=1 / 2-x,-1 / 2+y, 1 / 2-z]$ interactions. Secondary interactions are C34A$\mathrm{H} 34 \mathrm{~A} \cdots \mathrm{O}^{d}\left[\mathrm{C} 34 \mathrm{~A} \cdots \mathrm{O} 3^{d}=3.306(4) \AA, d=\mathrm{x}-1, \mathrm{y}, \mathrm{z}\right]$ and $\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{O} 3^{e}\left[\mathrm{C} 25 \cdots \mathrm{O} 3^{e}=\right.$ $3.096(3) \AA, e=-\mathrm{x}+3 / 2, \mathrm{y}-1 / 2,-\mathrm{z}+1 / 2]$ that interconnect the zig-zag columns, aided by the C24A-H24A $\cdots \mathrm{N} 12 \mathrm{~A}^{f}\left[\mathrm{C} 24 \mathrm{~A} \cdots \mathrm{~N} 12 \mathrm{~A}^{f}=3.385(3) \AA, f=\mathrm{i}-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}\right]$ interaction. The
solvents are supporting the aggregation via $\mathrm{C} 36-\mathrm{H} 36 \cdots \mathrm{O}^{g}\left[\mathrm{C} 36 \cdots \mathrm{O}^{g}{ }^{g}=3.383(5)\right.$ $\AA, g=\mathrm{x}, \mathrm{y}+1, \mathrm{z}]$ interactions.

The IO4 crystal structure (Figs. $\mathbf{8 0}$ and $\mathbf{8 1}$ ) was found to be in form of a solvate containing one disordered molecule of $\mathrm{CHCl}_{3}$ as $\mathrm{A}(0.86)$ and $\mathrm{B}(0.14)$. The molecule of $\mathrm{CHCl}_{3}$ is anchored to the $\mathbf{I O 4}$ molecules via a strong C1A-H1A $\cdots \mathrm{N} 12 \mathrm{~A}[\mathrm{C} 1 \mathrm{~A} \cdots \mathrm{~N} 12 \mathrm{~A}=$ $3.306(4) \AA$ ] hydrogen bond.


Fig. 80: A view of the $\mathbf{I O 4}$ molecule with disordered $\mathrm{CHCl}_{3}$

The geometry of $\mathbf{I O 4}$ is essentially similar to $\mathbf{I F}_{4 / 5}{ }^{218}$ with four 2-AP/isophthalic segments twisted in a circle around the central cavity. The molecule has $C_{4}$ pseudosymmetry. The internal imide dihedral angles, "CO $\cdots$ CO" twists are $106.02^{\circ}$ (O1-C1 $\cdots \mathrm{C} 2-\mathrm{O} 2$ ), $-92.50^{\circ}$ (O3-C3 $\cdots \mathrm{C} 4-\mathrm{O} 4$ ), $106.69^{\circ}$ (O5-C5 $\left.\cdots \mathrm{C} 6-\mathrm{O} 6\right)$ and $-98.86^{\circ}$ (O5-C5 $\cdots \mathrm{C} 6-\mathrm{O} 6)$. The $\mathrm{H} \cdots \mathrm{H}$ distances of the intraannular cavity are $4.13 \AA(\mathrm{H} 12 \cdots \mathrm{H} 32)$ and $4.33 \AA(\mathrm{H} 22 \cdots \mathrm{H} 42)$. Similarly as in benzamides, pyridinecarboxamides (Chapter I) and carbamates (Chapter II), in tennimides derived from 2-amnopyridines the 2pyridine rings can adopt a conformation close ( $\mathbf{P}$-anti) or distant ( $\mathbf{P}-\mathbf{s y n}$ ) to the carbonyl oxygen, e.g. having their nitrogen atoms pointed toward medial line of the central pore (medially, $\mathbf{P}$-anti) or opposite (laterally, $\mathbf{P}$-syn). If the both pyridine rings are $\mathbf{P}$-anti the pore of the central cavity is in an open state, while if $\mathbf{P}$-syn the pore is closed. If one ring is $\mathbf{P}$-anti and another is $\mathbf{P}$-syn than the pyridine nitrogen and pyridine hydrogen are pointed towards one another and the pore might be in either state (opened or closed) depending on other geometrical factors. In total, since a tennimide molecule has two pores; they can be in closed-closed ("cc"), open-open ("oo") or open-closed ("oc") state.

For the IO4 molecular structure from [11-033], the pyridinyl rings are in both $\mathbf{P}$ anti (medial, rings " 2 " and " 3 ") and P-syn (lateral, rings " 1 " and " 4 ") conformations. Therefore, both sides are similar, with pyridine hydrogen being pointed towards the neighbouring pyridine nitrogen. However, the $\mathrm{N} \cdots \mathrm{H}$ distances are $3.90 \AA(\mathrm{~N} 32 \cdots \mathrm{H} 16 \mathrm{~A})$ and $2.85 \AA(\mathrm{~N} 22 \cdots \mathrm{H} 46 \mathrm{~A})$ which means that the pores are in the "oc" state.


Fig. 81: A view of the $\mathbf{I O 4}$ molecule with disordered $\mathrm{CHCl}_{3}$

The aggregation (Figs. 80 and 81), as in IO3, relies on $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions while the $\mathrm{CHCl}_{3}$ molecule supports the aggregation. The main interaction is the $\mathrm{C} 25-$ $\mathrm{H} 25 \cdots \mathrm{O} 8^{a}\left[\mathrm{C} 25 \cdots \mathrm{O} 8^{a}=3.238(3) \AA, a=\mathrm{x}+1, \mathrm{y}, \mathrm{z}\right]$ hydrogen bond that aggregates the IO4 molecules into a column along the $a$-axis direction. The secondary interaction is $\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{O} 2^{b}\left[\mathrm{C} 15 \cdots \mathrm{O} 2^{b}=3.297(3) \AA, b=-\mathrm{x},-\mathrm{y}+1,-\mathrm{z}+1\right]$ that links two columns into a pair, aided by $\pi \cdots \pi[\mathrm{C} 15 \cdots \mathrm{C} 15=3.390(3) \AA]$ contacts. Next, the column pairs are further linked into a 2-D sheet parallel with the ( $\overline{01} 1$ ) plane via $\mathrm{C} 46-\mathrm{H} 46 \cdots \mathrm{O}^{\mathrm{c}}$ $\left[\mathrm{C} 46 \cdots \mathrm{O}^{c}=3.358(3) \AA, \mathrm{c}=-\mathrm{x},-\mathrm{y},-\mathrm{z}\right]$. Two sheets are combined into a pair by C15A$\mathrm{H} 15 \mathrm{~A} \cdots 5^{d}\left[\mathrm{C} 15 \mathrm{~A} \cdots 5^{d}=3.087(3) \AA, d=-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}\right]$ interactions. Final aggregation is accomplished through weak C-H...O interactions as well as by solvent molecules and $\mathrm{C}-\mathrm{Cl} \cdots \mathrm{O}$ supporting contacts.

## 5. 26 IO 3 and 26 IO 4 macrocycles

### 5.1. Synthesis and purification

The synthesis and purification of the 26IO3 tennimide and 26 IO 4 tennimide was undertaken as described in the standardised " $4+4$ " procedure (Section 2.3) using 2 aminopyrimidine ( $26-\mathrm{APM}, 0.932 \mathrm{~g}, 9.8 \mathrm{mmol}$ ) instead of 2-aminopyridine (2-AP). The chromatographic separation was accomplished with a $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ blend (10:1) as a mobile phase, yielding the $\mathbf{2 6 I O} 3$ trezimide ( $89 \mathrm{mg}, 4 \%, \mathrm{R} f=0.579$ ) and the $\mathbf{2 6 I O 4}$ tennimide ( $134 \mathrm{mg}, 6 \%, \mathrm{R} f=0.699$ ). However, a further purification in order to obtain highly pure samples for characterisation and crystal growth was undertaken using recrystallisation from $\mathrm{CHCl}_{3}$ and preparative TLC.


Scheme 47: General diagram of the 26IO3/4 synthesis

### 5.2. General and spectroscopic data

In general, the 26103 and 26104 macrocycles show similar physical properties as their 2-AP analogues, however, they are less soluble and more crystalline. Compared to IO4, the 26104 tennimide is less soluble in most organic solvents even in DMSO. Therefore, the NMR data for $\mathbf{2 6 I O 4}$ was obtained in DMSO- $d_{6}$ at $120^{\circ} \mathrm{C}$. The $\mathbf{2 6 I O 4}$ is significantly less soluble in $\mathrm{CHCl}_{3}$ than $\mathbf{2 6 I O} 3$ and therefore can be separated from $\mathbf{2 6 I O} 3$ using a standard re-crystallisation procedure. Paradoxically, the 26IO4 shows higher solubility in cold $\mathrm{CHCl}_{3}$ than in warm: if a cold solution with a few crystals is heated new 26104 crystals are formed, but re-dissolve upon cooling. This unexpected paradox occurs presumably due to easier aggregation of $\mathbf{2 6 I O 4}$ and $\mathrm{CHCl}_{3}$ into a solvate after the structure of $\mathbf{2 6 I O 4}$ is conformationaly equalised in warmer conditions. The 26 IO 4 tennimide shows higher crystallinity compared to IO4.

The NMR and IR data are listed in Appendix I, Sections 4.3 and 4.4, while the spectra are given in the ESI III, Sections 1.3 and 1.4. The variable temperature ${ }^{1} \mathrm{H}-\mathrm{NMR}$
was undertaken from $120^{\circ} \mathrm{C}$ down to $20^{\circ} \mathrm{C}$. Peaks resolve at $80^{\circ} \mathrm{C}$, while the coupling fully emerges at $120^{\circ}$. The 26IO4/3 macrocycles show two protons less than the IO3/4 macrocycles. In 26103 peaks are fully resolved even at $20^{\circ} \mathrm{C}$ suggesting a high rate of conformational interchange and flexibility.

### 5.3. Crystallographic data and discussion

Single crystals of $26 \mathrm{IO} 3\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CHCl}_{3}\right.$ with MeOH$)$ and $26 \mathrm{IO}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CHCl}_{3}\right)$ were obtained using standard crystallization conditions in a range of common solvents. Table 39 summarises the key crystallographic data for the 26 IO 3 trezimide and for two datasets of the 26IO4 tennimide.

For 26IO4 a second crystal [11-104] was grown and the lattice voids contained partial occupancy and disordered solvent molecules of $\mathrm{CHCl}_{3}$, acetone, methanol and water (crystallisation arose after several successive attempts using more polar solvents). In this case only, the SQUEEZE program was used to improve the overall results with the $R$-factor dropping from 13.2 to $4.2 \%$.

The 26 IO 3 trezimide (Fig. 82) crystallises as a solvate with a disordered molecule of $\mathrm{CHCl}_{3}$ (partial occupancy of 0.25 ), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (partial occupancy of 0.3) and $\mathrm{CH}_{3} \mathrm{OH}$ (partial occupancy of 0.25 ). As seen previously, the disordered solvents are creating additional networks of interactions supporting aggregation. The 26103 crystal structure aggregates with $Z^{\prime}=2$, although molecules seem to be very similar.

Table 39: Selected crystallographic data ${ }^{a}$ for the 26103 and 26104 macrocycles $\dagger$

|  | 26103 | 26IO4-[11-103] | 26IO4-[11-104] |
| :---: | :---: | :---: | :---: |
| Chemical formula Crystal system, space group | $\begin{aligned} & \mathrm{C}_{36.88} \mathrm{H}_{22.85} \mathrm{Cl}_{1.35} \mathrm{~N}_{9} \mathrm{O}_{6.25} \\ & \text { Triclinic, } \\ & P \overline{1} \end{aligned}$ | $\left(\mathrm{C}_{48} \mathrm{H}_{28} \mathrm{~N}_{12} \mathrm{O}_{8}\right)_{2} \cdot \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}_{7}$ <br> Tetragonal, <br> $\mathrm{P} \overline{4} 2_{1} \mathrm{C}$ | $\mathrm{C}_{48} \mathrm{H}_{28} \mathrm{~N}_{12} \mathrm{O}_{8}$ <br> Tetragonal, $\mathrm{P} \overline{4} 2_{1} c$ |
| $a, b, c(\AA)$ | $\begin{aligned} & 13.3884(4), 13.5458(4), \\ & 20.0062(7) \end{aligned}$ | $\begin{aligned} & 22.7814(1), 22.7814(1), \\ & 19.0308(1) \end{aligned}$ | $\begin{aligned} & 15.9127(3), 15.9127 \\ & (3), 19.3896(5) \end{aligned}$ |
| $\alpha, \beta, \gamma\left({ }^{\circ}\right)$ | $\begin{aligned} & 76.205(3), 89.176(2), \\ & 89.633(2) \end{aligned}$ | 90, 90, 90 | 90, 90, 90 |
| $Z^{\prime}$ | 2 | 3 | 1 |
| $\begin{aligned} & R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], \\ & w R\left(F^{2}\right), S \end{aligned}$ | 0.060, 0.176, 1.03 | 0.046, 0.136, 1.03 | 0.042, 0.116, 1.02 |
| $\dagger$ Complete crystallographic, refinement and structural details are listed in the ESI III (Section <br> 2.2). ${ }^{a}$ Obtained with $\mathrm{Cu} K \alpha$ radiation. |  |  |  |
|  |  |  |  |

The most striking characteristic of both $\mathbf{2 6 I O 3}$ molecular structures (Fig. 82) is that they have very different conformations as compared to IO3. The two molecules (A and B) are different and almost mirror images of each other. The molecular niches (Fig. 82) are located between the carbonyl oxygen atoms O1A, O3A and O6A (molecule A) and O1B, O4B and O5B (molecule B); the $\mathrm{O} \cdots \mathrm{O}$ distances range from 6.71 to $6.92 \AA$ (molecule A) and from 6.61 to $7.25 \AA$ (molecule B). The isophthalic $\mathrm{H} \cdots \mathrm{H}(\mathrm{H} 12, \mathrm{H} 22$ and H32) distances range from 2.76 to $3.59 \AA$ (molecule A) and from 2.71 to $3.67 \AA$ (molecule B). However, the internal imide "CO $\cdots$ CO" twist dihedral angles are $97.6^{\circ}$ (O1-C1 $\cdots \mathrm{C} 2-\mathrm{O} 2), 66.1^{\circ}$ (O3-C3 $\left.\cdots \mathrm{C} 4-\mathrm{O} 4\right)$ and $-113.6^{\circ}$ (O5-C5 $\left.\cdots \mathrm{C} 6-\mathrm{O} 6\right)$ in molecule A, while in the molecule B are $116.3^{\circ}$ (O1-C1 $\cdots \mathrm{C} 2-\mathrm{O} 2$ ), $-70.44^{\circ}$ (O3-C3 $\left.\cdots \mathrm{C} 4-\mathrm{O} 4\right)$ and $79.5^{\circ}$ (O5-C5 $\cdots \mathrm{C} 6-\mathrm{O} 6$ ). The interplanar angles between the isophthalic angles are close to orthogonality; the $1 \mathrm{~A} / 3 \mathrm{~A}$ interplanar angle is $80.8^{\circ}$ and the $1 \mathrm{~B} / 3 \mathrm{~B}$ is $85.1^{\circ}$. This conformation was assigned as the $\mathbf{R}$ conformation, opposite to typical $\mathbf{P}$ conformation of IO3.


Fig. 82: An ORTEP diagram of 26 IO 3 with macrocyclic niches shown: a) molecule A, b) molecule B

The aggregation in 26103 is enhanced by solvent molecules that form a myriad of intermolecular interactions. The main backbone of the crystal structure is a double 1D chain formed along the $a$-axis direction by molecules B via $\mathrm{C} 16 \mathrm{~B}-\mathrm{H} 16 \mathrm{~B} \cdots \mathrm{O}_{3}{ }^{a}$ [C16B-H16B $\left.\cdots \mathrm{O}_{3}{ }^{a}=3.333(3) \AA, a=-1+\mathrm{x}, \mathrm{y}, \mathrm{z}\right]$ and C15B-H15B $\cdots$ N42B ${ }^{b}$ [C15BH15B $\left.\cdots \mathrm{N} 42 \mathrm{~B}^{b}=3.415(4) \AA, b=-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}\right]$ interactions. Molecules A do not engage in strong interconnections internally itself, but rather serve as a joints between the chains of molecule B via several interactions such as C24A-H24A $\cdots$ O6B [C24A $\cdots$ O6B $=$
3.194(4) $\AA$ ], C53B-H53B $\cdots \mathrm{N} 62 \mathrm{~A}^{c}\left[\mathrm{C} 53 \mathrm{~B} \cdots \mathrm{~N} 62 \mathrm{~A}^{c}=3.418(5) \AA, c=1+\mathrm{x}, 1+\mathrm{y}, \mathrm{z}\right], \mathrm{C} 43 \mathrm{~A}-$ $\mathrm{H} 43 \mathrm{~A} \cdots \mathrm{O}^{d}{ }^{d}\left[\mathrm{C} 43 \mathrm{~A} \cdots \mathrm{O}^{d}{ }^{d}=3.286(6) \AA, d=-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}\right]$ and $\mathrm{C} 35 \mathrm{~B}-\mathrm{H} 35 \mathrm{~B} \cdots \mathrm{O} 2 \mathrm{~A}^{e}$ $\left[\mathrm{C} 35 \mathrm{~B} \cdots \mathrm{O} 2 \mathrm{~A}^{e}=3.212(5) \AA, e=1+\mathrm{x}, \mathrm{y}, \mathrm{z}\right]$.

The 26IO4 structures are shown to be the most symmetric among the tennimides. Both datasets crystallise in the $\mathrm{P} \overline{4} 2_{1} c$ space group with similar aggregation patterns, but differ in $Z^{\prime}$ and geometry. In the [11-103] crystal 26104 crystallises with a disordered molecule of $\mathrm{CHCl}_{3}$ with $Z^{\prime}=3$ : molecule A consists of two equivalent halves ( $C_{2}$ symmetry) that stand in relation via symmetry code $-\mathrm{x}, 1-\mathrm{y}, \mathrm{z}$ while the molecules C and O have $C_{4}$ symmetry with four identical segments (26APM/isophthalic) standing in relation by symmetry codes $1-y, x,-z, 1-x, 1-y, z$ and $y, 1-x,-$ z (Molecule C) and 1-x,1-y,z, 1-y,x,1-z and y,1-x,1-z (Molecule O). The molecules differ by their geometry. In molecule A internal imide "CO $\cdots \mathbf{C O}$ " twist angles are $88.6^{\circ}(\mathrm{O} 1-\mathrm{C} 1 \cdots \mathrm{C} 2-\mathrm{O} 2)$ and $96.5^{\circ}$ (O3-C3 $\cdots \mathrm{C} 4-\mathrm{O} 4$ ), while in the molecule C and O only one value exists due to the $C_{4}$ symmetry, $\pm 87.2^{\circ}$ (molecule C) and $\pm 91.9^{\circ}$ (molecule O). The $\mathrm{H} \cdots \mathrm{H}$ distances of the intraannular cavity in molecule A are $4.224 \AA\left(\mathrm{H} 12 \cdots \mathrm{H}_{12} \mathrm{~A}^{a}\right.$, $a=-\mathrm{x}, 1-\mathrm{y}, \mathrm{z})$ and $5.282 \AA\left(\mathrm{H} 22 \cdots \mathrm{H} 22 \mathrm{~A}^{a}\right)$, in the molecule C are $4.539 \AA$ $\left(\mathrm{H} 12 \mathrm{C} \cdots \mathrm{H} 12 \mathrm{C}{ }^{b}, b=1-\mathrm{x}, 1-\mathrm{y}, \mathrm{z}\right)$ and in the molecule O are $3.943 \AA\left(\mathrm{H} 12 \mathrm{O} \cdots \mathrm{H}_{12 \mathrm{O}}{ }^{b}\right)$.


Fig. 83: An ORTEP and CPK view of 26IO4 ([11-103] dataset, molecule O)

The N22...N22 distances are $3.259 \AA\left(\mathrm{~N}_{12} \cdots \mathrm{~N}_{12} \mathrm{~A}^{a}\right)$, and $4.098 \AA$ $\left(\mathrm{N} 22 \cdots \mathrm{~N} 22 \mathrm{~A}^{a}\right)$ in the molecule $\mathrm{A}, 3.520 \AA\left(\mathrm{~N} 22 \mathrm{C} \cdots \mathrm{N} 22 \mathrm{C}^{b}\right)$ in the molecule C and $4.679 \AA\left(\mathrm{~N} 22 \mathrm{O} \cdots \mathrm{N}_{2} 2 \mathrm{O}^{b}\right)$ in the molecule O . Therefore, it seems that the cavity pores in the molecule A are in the open-closed state ("oc"), while the closed-closed ("cc") in the molecule C and the open-open ("00") in molecule O. In the same time intraannular
cavity in molecule A is distorted, in molecule C is expanded, while in molecule O is constricted.

The aggregation in the $\mathbf{1 1 - 1 0 3}$ crystal structure relies on $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{O}$ interactions. The molecules are connected into columns along the $c$-axis direction via C13A$\mathrm{H} 13 \mathrm{~A} \cdots \mathrm{O}^{c}\left[\mathrm{C} 13 \mathrm{~A} \cdots \mathrm{O} 4^{c}=3.121(4) \AA, c=-1 / 2+\mathrm{y}, 1 / 2+\mathrm{x}, 1 / 2+\mathrm{z}\right], \mathrm{C} 23 \mathrm{C}-\mathrm{H} 23 \mathrm{C} \cdots \mathrm{O}^{d}{ }^{d}$ $\left[\mathrm{C} 23 \mathrm{C} \cdots \mathrm{O}^{2}{ }^{d}=3.310(6) \AA, d=1-\mathrm{x}, 1-\mathrm{y}, \mathrm{z}-1\right], \mathrm{C} 16 \mathrm{O}-\mathrm{C} 16 \mathrm{H} \cdots \mathrm{O}^{e} \mathrm{C}^{e}\left[\mathrm{C} 16 \mathrm{O} \cdots \mathrm{O}^{2} \mathrm{C}^{e}=\right.$ $3.264(4) \AA, e=\mathrm{y}, 1-\mathrm{x},-\mathrm{z}]$ and C23A-H23A $\cdots \mathrm{O}_{2}{ }^{f}\left[\mathrm{C} 23 \mathrm{~A}-\mathrm{H} 23 \mathrm{~A} \cdots \mathrm{O} 2^{f}=3.448 \AA, f=-\right.$ $1 / 2+y, 1 / 2+x,-1 / 2+z]$ interactions.


Fig. 84: A side-view of $\mathbf{2 6 I O 4}$ ([11-103] dataset, molecule O)

The columns are linked along the $a$ - and $b$-axes by C25O-H25O $\cdots \mathrm{O}^{g}$ $\left[\mathrm{C} 25 \mathrm{O} \cdots \mathrm{O}^{g}=3.258(4) \AA, g=1 / 2-\mathrm{x},-1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}\right], \mathrm{C} 15 \mathrm{C}-\mathrm{H} 15 \mathrm{C} \cdots \mathrm{O} 1^{h}\left[\mathrm{C} 15 \mathrm{C} \cdots \mathrm{O} 1^{h}=\right.$ $3.159(3) \AA, h=1-\mathrm{y}, 1+\mathrm{x},-\mathrm{z}]$ and $\mathrm{C} 15 \mathrm{~A}-\mathrm{H} 15 \mathrm{~A} \cdots \mathrm{O}^{f}{ }^{f}\left[\mathrm{C} 15 \mathrm{~A} \cdots \mathrm{O}^{\prime} \mathrm{O}^{f}=3.124(4) \AA\right]$ interactions.

The 11-104 crystal structure of the $\mathbf{2 6 I O} \mathbf{O}$ tennimide is very similar, but with $Z^{\prime}$ $=1$. The geometry of the 26104 molecule resembles molecule A from the 11-104 dataset, having $C_{2}$ symmetry with symmetry code $a=1-\mathrm{x},-\mathrm{y}, \mathrm{z}$. The internal imide "CO $\cdots$ CO" dihedral twists are $-81.05^{\circ}$ (O1-C1 $\cdots \mathrm{C} 2-\mathrm{O} 2$ ) and $95.94^{\circ}$ (O1-C1 $\cdots \mathrm{C} 2-\mathrm{O} 2$ ). The $\mathrm{H} \cdots \mathrm{H}$ distances of the intraannular cavity are $4.355 \AA\left(\mathrm{H} 12 \cdots \mathrm{H} 12^{a}\right)$ and $4.181 \AA$ $\left(\mathrm{H} 22 \cdots \mathrm{H} 22^{a}\right)$, while the pyrimidine $\mathrm{N} \cdots \mathrm{N}$ distances are $3.253 \AA\left(\mathrm{~N} 12 \cdots \mathrm{~N} 12^{a}\right)$ and 4.077 $\AA\left(\mathrm{N} 22 \cdots \mathrm{~N} 22^{a}\right)$. Therefore, cavity pores are in the open-closed "oc" state. Aggregation in the 11-104 crystal structure is similar to [11-103]. The principal interaction is a strong C13A-H13A $\cdots \mathrm{O} 3^{b}\left[\mathrm{C} 13 \mathrm{~A} \cdots \mathrm{O} 3^{b}=3.166(3) \AA, b=1 / 2-\mathrm{y}, 1 / 2-\mathrm{x},-1 / 2+\mathrm{z}\right]$ hydrogen
bond that aggregates molecules along the $c$-axis direction into a 1-D column. The columns are interconnected into the 3-D structure along the $a$ - and $b$-axes via C25$\mathrm{H} 25 \cdots \mathrm{O} 4^{d}\left[\mathrm{C} 25 \cdots \mathrm{O} 4^{d}=3.361(3) \AA, d=1-\mathrm{y},-1+\mathrm{x},-\mathrm{z}\right], \mathrm{C} 26-\mathrm{H} 26 \cdots \mathrm{O} 3^{e}\left[\mathrm{C} 26 \cdots \mathrm{O} 3^{e}=\right.$ $3.489 \AA, \mathrm{e}=1-\mathrm{y},-1+\mathrm{x},-\mathrm{z}]$ and $\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{~N} 16 \mathrm{~A}^{f}\left[\mathrm{C} 15 \cdots \mathrm{~N} 16 \mathrm{~A}^{f}=3.476 \AA, f=3 / 2-\right.$ $\mathrm{x}, 1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}]$ contacts.

## 5.4. $A b$ initio geometry optimisation, energies and conformational analysis

The geometry of the tennimides and trezimides structures was optimised by $a b$ initio modelling methods in order to investigate structural differences between the experimentally obtained solid state structures and modelled optimised structure in gas phase. The experimental XRD derived structures were taken as a starting point and all calculations were performed using the DFT method (B3LYP) and 6-31G(d,p) basis set. All optimisations were successful and did not produce vibrations with negative values.

To examine flexibility of the imide backbone, a structural fragment containing two isophthalic and one 2-pyridinyl (2-pyrimidinyl) moieties was isolated from the nonoptimised IO4 and $26 \mathrm{IO4}$ structures based on experimental solid state structures. The main torsion angles of the fragments, 2-AP-ring angle, 26-APM-ring angle, two imide torsion angles (O-C8-N-C, O-C9-N-C), two isophthalic angles (O-C8-C-C, O-C9-C-C), (ESI III, Section 3, Fig. 1) were subjected to conformational analysis by performing PES scans of each torsion angle while the rest of the torsion angles were kept static. By this model, the rigidity of the tennimides was nullified and the PES scans were enabled. However, as this model presents only an approximate model, the resulting PES diagrams can be taken only as providing a generalised, approximate insight into the flexibility of the imide backbone moiety. Furthermore, the structural fragments of both IO4 and 26104 were optimised to inspect the extent of structural change after rigidity was removed and relaxation achieved.

Since the IO3 and $\mathbf{2 6 I O} \mathbf{I}$ trezimides were found in two distinct conformations, IO3-P and 23IO3-R, the hypothetical counter-conformations IO3-R and 26IO3-P were built, based on the existing IO3-P and 23IO3-R conformations, by simple swapping of the aromatic $\mathrm{C}-\mathrm{H}$ atoms with aromatic N atom and the reverse. Both experimental and hypothetical conformer geometries were optimised and the resulting geometries were compared by simple structure overlays.

Optimisation of both IO4 and 26 IO ( significantly equalises structural parameters across the macrocycle making the structures more symmetrical (Fig. 85).

Most of the $\mathbf{I O 4}$ torsion angles in the main backbone rotate no more than $12^{\circ}$ except for the C31A-N3-C5-C33 ( $+16^{\circ}$ ) and O4-C4-C31-C32 ( $+13^{\circ}$ ) torsion angles (ESI III, Section 3.1).


Fig. 85: left) overlay of solid state (in red) and optimised (in light green) IO4 structure; right) overlay of solid state (in red) and optimised (in light green) 26 IO 4 structure

Since a solvent molecule of $\mathrm{CHCl}_{3}$ was excluded from the modelling, pyridinyl rings 2 and 3 significantly rotate closing the pore. Generally, the $\mathbf{I O 4}$ tennimide closes the pores upon optimisation $(\mathrm{H} 12 \cdots \mathrm{H} 32)$, height ( $\mathrm{O} 7 \cdots \mathrm{O} 6$ ) increases, while diameter ( $\mathrm{N} 2 \cdots \mathrm{~N} 2^{a}, a=1-\mathrm{x},-\mathrm{y}, \mathrm{z}$ ) slightly contracts (ESI III, Section 3.1).

For 26104 tennimide, the 2 -aminopyrimidine rings significantly move apart upon optimisation ( $\sim 1-2 \AA$ ), opening the central cavity (Fig. 85). At the same time, the isophthalic rings move slightly medially ( $\sim 0.2-0.3 \AA$ ). In summation, the 26104 diameter ( $\mathrm{C} 3 \cdots \mathrm{C} 3^{a}$ ) slightly expands, its height ( $\mathrm{O} 3 \cdots \mathrm{O} 1$ ) increases, while the central pore $\left(\mathrm{H} 12 \cdots \mathrm{H} 12^{a}, \mathrm{~N} 22 \mathrm{~A} \cdots \mathrm{~N} 22 \mathrm{~A}^{a}\right)$ was found to open. This is mainly due to the changes in isophthalic torsion angles, less in imide torsion angles and 2-aminopyrimidine (26APM) ring, since the isolated molecule without intermolecular interactions adopts a more stable and symmetric geometry.

The PES diagrams (ESI III, Section 3.2) show that the torsion angles of both 26104 and IO4 are approximately in their global minimum, except the 2-AP ring and imide 8 torsion angles whose global minimum is in the negative value area. Apart from slight tensions of the imide torsion angles caused by movement restriction in the macrocycle, the result indicates no significant tensions in the IO4/26IO4 macrocycles. Furthermore, optimisations of the IO4 and 26104 fragments (ESI, Section 3.3) show
larger changes of imide 8 torsion angles compared to other torsion angles, supporting the indications drawn from PES diagrams. High rotational barriers of the imide and 26-APM/2-AP torsion angles suggest relative inflexibility and opposite to the more flexible isophthalic angles. In agreement with this, optimisation of 26 IO 4 causes more significant changes in the isophthalic angles compensating for tension in imide torsion angle.

All $a b$ initio modelling information of the tennimides suggests that the solid state structures of $\mathbf{I O 4}$ and 26104 are rigid and not particularly different from their optimised model structures. Crystallisation with or without a solvent will not significantly change the overall structural parameters, while the solid state geometries are not expected to dramatically change upon dissolving in a solvent. Furthermore, modelling information suggests that steric stability of the tennimides contributes to the probability of tennimide formation.

Comparisons of the IO3-P and 26IO3-R solid state structures as well as their hypothetical solid state counter-conformations (ESI III, Section 3.4) with their optimised structures show no significant change in geometries apart from slight rotations of the $2-\mathrm{AP}$ and 26-APM rings. There were no negative values of the calculated vibrations observed, which suggests that the optimised structures reached their minima. The optimisation results suggest that the existence of both conformations is likely and that conformational polymorphism is plausible.

## 6. FIO 3 and FIO 4 macrocycles

### 6.1. Synthesis and purification

The synthesis was as described for Method 2 (standard " $4+4$ " reaction, Section 2.3) using 2 -amino-5-fluoropyridine ( $1.0986 \mathrm{~g}, 9.8 \mathrm{mmol}$ ) as a functionalised 2 aminopyridine (Scheme 48). The polymer was not precipitated - the reaction mixture stayed clear overnight, suggesting better solubility of the polymer. Chromatographic purification and separation was undertaken using a mobile phase containing $\mathrm{CHCl}_{3}$ and ethyl acetate (4:1), yielding FIO4 (140 mg, 5.9\%, $\mathrm{R} f=0.302$ ) and FIO3 ( 150 mg , $6.3 \%, \mathrm{R} f=0.202$ ). The isolated FIO3 contained minor amounts of FIO4; therefore a final re-purification was accomplished using preparative TLC.

### 6.2. General and spectroscopic data

The general characteristics of FIO3 and FIO4 macrocycles, such as colour and crystallinity are broadly similar to the basic IO4 and IO3 macrocycles, however, its solubility in organic solvents, especially in chlorinated hydrocarbons is better.




Scheme 48: General diagram of the FIO3/4 synthesis

Results of the NMR experiments at RT and $80^{\circ} \mathrm{C}\left({ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}\right.$ - and ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ data are listed in Appendix I, Sections 4.5 and 4.6 , spectra are provided in the ESI III, Sections 1.6 and 1.7) are comparable with those of the IO4 and IO3 macrocycles. Since fluorine atoms were present, ${ }^{19} \mathrm{~F}$-NMR experiments were undertaken including variable temperature studies. In FIO3 two weak signals were noticed at RT at -129.8 and -128.7 ppm . At $40^{\circ} \mathrm{C}$ the signals merge into a one signal that intensifies and sharpens at -129.2 ppm as the temperature increases. In FIO4 at RT two broad and weak signals are located at -127.5 and -128.5 ppm , while they merge at $40^{\circ} \mathrm{C}$ and the peak intensifies at $128.1 \mathrm{ppm}\left(80^{\circ} \mathrm{C}\right)$. These results suggest the existence of two major conformers at room temperature in both of the FIO3 and FIO4 macrocycles, with relatively low energy difference. The IR of FIO3 reveals additional peaks in the region between 2800 and $3100 \mathrm{~cm}^{-1}$ suggesting that bulk FIO3 crystalline material is in form of solvate.

### 6.3. Crystallographic data and discussion

Table 40 summarises the basic crystallographic data for the FIO3 and FIO4 macrocycles. The FIO3 trezimide (Fig. 86) crystallises as a solvate with one molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (single crystals were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeOH ). The molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is located near pyridinyl rings 1 and 3 , and is not critical for aggregation in the FIO3 crystal structure.

The FIO3 macrocycle molecular structure resembles the IO3 analogue; the conformation is P .

Table 40: Selected crystallographic data for the FIO4 and FIO3 macrocycles $\dagger$

|  | $\mathbf{F I O 3}^{a}$ | FIO4 $^{a}$ |
| :--- | :--- | :--- |
| Chemical formula | $\mathrm{C}_{39} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{6} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ | $\mathrm{C}_{52} \mathrm{H}_{28} \mathrm{~F}_{4} \mathrm{~N}_{8} \mathrm{O}_{8} \cdot \mathrm{CHCl}_{3}$ |
| Crystal system, | Monoclinic | Triclinic |
| space group | $P 2_{l} / c$, (No. 14) | $P \overline{1}$, (No. 2) |
| $a, b, c(\AA)$ | $11.6181(1), 12.7879(1)$ | $12.007(1) 12.0935(9), 17.6041(14)$ |
| $\alpha, \beta, \gamma\left({ }^{\circ}\right)$ | $24.7200(2)$ |  |
| $Z^{\prime}$ | $90,91.4752(6)$, | $100.016(7), 103.607(7)$, |
| $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$ | $0.036,0.098,1.03$ | $90.467(7)$ |

$\dagger$ Complete crystallographic, refinement and structural details are listed in the ESI III (Section 2.3). ${ }^{a}$ Obtained with $\mathrm{Cu} K \alpha$ radiation.

The macromolecular niche is also similar: the three isophthalic H atoms H 12 , H22, H32 are oriented towards the base, with $\mathrm{H} \cdots \mathrm{H}$ distances from 2.55 to $2.98 \AA$, while the carbonyl atoms O2A, O3A and O5A are separated by distances of 6.34 to 8.28 $\AA$ (Fig. 86). The pyridinyl rings 1 and 3 are not parallel, but the interplanar angle is $51.69(8)^{\circ}$. The imide "CO $\cdots$ CO" twist dihedral angles are $-97.63^{\circ}$ (O1-C1 $\cdots \mathrm{C} 2-\mathrm{O} 2$ ), $88.91^{\circ}(\mathrm{O} 3-\mathrm{C} 3 \cdots \mathrm{C} 4-\mathrm{O} 4)$ and $100.06^{\circ}(\mathrm{O} 5-\mathrm{C} 5 \cdots \mathrm{C} 6-\mathrm{O} 6)$.


Fig. 86: An ORTEP diagram of FIO3 with macrocyclic niche shown.

Aggregation in the crystal structure relies on several interactions. The strongest is $\mathrm{C} 35-\mathrm{H} 35 \cdots \mathrm{O} 1^{a}\left[\mathrm{C} 35 \cdots \mathrm{O}^{a}=3.136(2) \AA, a=-1+x, y, \mathrm{z}\right]$ that connects FIO3
macrocycles into a 1-D chain along the $a$-axis direction. This aggregation is aided by weaker C13A-H13A $\cdots \mathrm{O}^{b}\left[\mathrm{C} 13 \mathrm{~A} \cdots \mathrm{O}^{b}=3.388(3) \AA, b=1+\mathrm{x}, \mathrm{y}, \mathrm{z}\right]$ contacts. The second important interaction is $\mathrm{C} 34-\mathrm{H} 34 \cdots \mathrm{O}^{c}\left[\mathrm{C} 34 \cdots \mathrm{O} 2^{c}=2.976(2) \AA, c=-\right.$ $\mathrm{x}, 1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}]$ contact that links $1-\mathrm{D}$ chains along the $b$-axis direction into a 2 -D sheet parallel with the (001) plane. The remainder are weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts. It is interesting to note the existence of $\mathrm{F} 24 \mathrm{~A} \cdots \mathrm{~F} 14 \mathrm{~A}^{d}[2.821(3) \AA, d=1-\mathrm{x}, 1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}]$ and $\mathrm{F} 24 \mathrm{~A} \cdots \mathrm{C} 14 \mathrm{~A}^{d}[3.079(3) \AA]$ contact.


Fig. 87: A view of the FIO4 molecule

The FIO4 crystal (Figs. 87 and 88) was grown from $\mathrm{CHCl}_{3}$ and aggregates in $P \bar{l}$ with one disordered molecule of $\mathrm{CHCl}_{3}$ as seen in $\mathbf{I O 4}$. The symmetry of the molecule is similar to IO4, less symmetric than 26IO4. The internal imide 'CO $\cdots$ CO' twist dihedral angles are different for all four segments: $-107.51^{\circ}$ (O1-C1 $\left.\cdots \mathrm{C} 2-\mathrm{O} 2\right), 107.15^{\circ}$ (O3-C3 $\cdots \mathrm{C} 4-\mathrm{O} 4$ ), $-98.35^{\circ}$ (O5-C5 $\cdots \mathrm{C} 6-\mathrm{O} 6$ ) and $87.54^{\circ}$ (O7-C7 $\cdots \mathrm{C} 8-\mathrm{O} 8$ ). The $\mathrm{H} \cdots \mathrm{H}$ distances of the intraannular cavity are $4.110 \AA(\mathrm{H} 12 \cdots \mathrm{H} 32)$ and $4.306 \AA(\mathrm{H} 22 \cdots \mathrm{H} 42)$.

The pyridinyl rings 1 and 4 have their nitrogen atoms oriented medially ( P -anti), towards the intraannular cavity entrance, while the pyridine nitrogen atoms of the 2 and 3 rings are oriented opposite (laterally, P-syn), as seen in IO4. The $\mathrm{H} \cdots \mathrm{N}$ distances are $3.300 \AA(\mathrm{H} 36 \mathrm{~A} \cdots \mathrm{~N} 12 \mathrm{~A})$ and $2.809 \AA(\mathrm{H} 26 \mathrm{~A} \cdots \mathrm{~N} 42 \mathrm{~A})$ with no established interaction. Therefore, the FIO4 tennimide is in open-closed ("oc") state.

The aggregation in FIO4 is aided by a disordered molecule of $\mathrm{CHCl}_{3}$ having occupancy of $50 \%$. It is interesting to note the existence of a weak C44A-F44A $\cdots \mathrm{Cl1} \mathrm{~A}^{a}$ $\left[\mathrm{F} 44 \mathrm{~A} \cdots \mathrm{Cl1A}{ }^{a}=3.173(4) \AA, \quad 1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}\right]$ and a strong $\mathrm{C} 34 \mathrm{~A}-\mathrm{F} 34 \mathrm{~A} \cdots \mathrm{Cl1B}{ }^{b}$
$\left[\mathrm{F} 34 \mathrm{~A} \cdots \mathrm{Cl1B}^{b}=2.84(2) \AA, b=\mathrm{x},-1+\mathrm{y}, \mathrm{z}\right]$ contacts. The crystal structure of FIO4 relies mostly on C-H $\cdots \mathrm{F}$ interactions such as C1A-H1A $\cdots \mathrm{F}_{3} 4 \mathrm{~A}^{c}\left[\mathrm{C} 1 \mathrm{~A} \cdots \mathrm{~F}_{3} \mathrm{AA}^{c}=3.193(8) \AA\right.$, $c=\mathrm{x}, 1+\mathrm{y}, \mathrm{z}]$, and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, the most prominent being $\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{O}^{d}$ $\left[\mathrm{C} 15 \cdots \mathrm{O} 6^{d}=3.456(4) \AA, d=\mathrm{x}, \mathrm{y}-1, \mathrm{z}\right], \mathrm{C} 45-\mathrm{H} 45 \cdots \mathrm{O} 4^{e}\left[\mathrm{C} 45 \cdots \mathrm{O} 4^{e}=3.273(4) \AA, e=\mathrm{x}-\right.$ $1, \mathrm{y}, \mathrm{z}]$ and $\mathrm{C} 45 \mathrm{~A}-\mathrm{H} 45 \mathrm{~A} \cdots \mathrm{O} 7^{f}\left[\mathrm{C} 45 \mathrm{~A} \cdots \mathrm{O} 7^{f}=3.270(5) \AA, f=1-\mathrm{x},-\mathrm{y}, 1-\mathrm{z}\right]$ interactions. Another interaction is $\mathrm{O} 1 \cdots \mathrm{Cl}^{2} \mathrm{~A}^{\mathrm{g}}[3.058(5) \AA, g=1+\mathrm{x},-1+\mathrm{y}, \mathrm{z}]$. The rest of interactions are weaker $\mathrm{C}-\mathrm{H} / \mathrm{F} / \mathrm{O} \cdots \pi$ contacts.


Fig. 88: A view of the FIO4 molecule

## 7. CLIO 3 and CLIO 4 macrocycles

### 7.1. Synthesis and purification

Synthesis of the CIIO3/4 was as described for FIO3/4 (Section 6) using 2-amino-5-chloropyridine ( $1.2599 \mathrm{~g}, 9.8 \mathrm{mmol}$ ) as a functionalised 2-aminopyridine. The only difference is that a polymer precipitated and was removed by filtration, as in the IO3/4 and 26IO3/4 macrocycles. The column chromatography was as for the FIO3/4 purification (Section 6) yielding the $\mathbf{C I I O 4}$ tennimide ( $197 \mathrm{mg}, 7.7 \%, \mathrm{R} f=0.595$ ) and the CIIO3 trezimide ( $120 \mathrm{mg}, 4.73 \%, \mathrm{R} f=0.393$ ).

### 7.2. General and spectroscopic data

The CIIO3 and CIIO4 macrocycles have similar properties as the analogous fluoro macrocycles (Section 6); white, odourless crystalline solids with a shade of
yellow colour. As compared to the fluoro analogues, the $\mathbf{C I I O} 3$ and $\mathbf{C I I O} 4$ macrocycles appear to be slightly less soluble in organic solvents.




Scheme 49: Diagram of the CIIO3/4 synthesis

The NMR and IR data $\left({ }^{1} \mathrm{H}-\right.$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data at $80^{\circ} \mathrm{C}$ are listed in Appendix I, Sections 4.7 and 4.8, whereas the spectra are provided in the ESI III, Sections 1.8 and 1.9) confirm the identity of the compounds and are very similar to the $\mathbf{F I O} / \mathbf{3}$ results .

As seen in FIO3 the IR spectrum of CIIO3 has weak to moderate bands between 2800 and $3100 \mathrm{~cm}^{-1}$ suggesting that the bulk CIIO3 is a solvate.

### 7.3. Crystallographic data and discussion

Table 41 shows the basic crystallographic information for $\mathbf{C I I O} 3$ and $\mathrm{CIIO4}$. The ClIO3 trezimide crystallises in orthorhombic crystal system, Fdd2. Since the crystal growth was not successful in common organic solvents, single crystals were grown from DMSO- $d_{6}$. Hence, the CIIO3 was found to be a solvate with 1.9 equivalents of highly disordered DMSO- $d_{6}$ molecules and 1.2 equivalents of disordered waters (Fig. 89).

Table 41: Selected crystallographic data ${ }^{a}$ for the $\mathbf{C I I O} 3$ and $\mathbf{C I I O}$ macrocycles $\dagger$

|  | $\mathbf{C l I O 3}$ | $\mathbf{C l I O 4}$ |
| :--- | :--- | :--- |
| Chemical formula | $\mathrm{C}_{42.8} \mathrm{H}_{32.4} \mathrm{Cl}_{3} \mathrm{~N}_{6} \mathrm{O}_{9.3} \mathrm{~S}_{1.9}$ | $\mathrm{C}_{53} \mathrm{H}_{32} \mathrm{C}_{14} \mathrm{~N}_{8} \mathrm{O}_{9}$ |
| Crystal system, space group | Orthorhombic, Fdd2,(No. 43) | Orthorhombic, Pccn, (No. 56) |
| $a, b, c(\AA)$ | $55.0537(10) 36.3597(5)$ | $13.8337(1) 19.0181(1)$ |
|  | $10.6018(2)$ | $19.0737(1)$ |
| $\alpha, \beta, \gamma\left({ }^{\circ}\right)$ | $90,90,90$ | $90,90,90$ |
| $Z^{\prime}$ | 1 | 1 |
| $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$ | $0.050,0.143,1.05$ | $0.053,0.186,1.63$ |

$\dagger$ Complete crystallographic, refinement and structural details are listed in the ESI III (Section 2.3). ${ }^{a}$ Obtained with $\mathrm{Cu} \mathrm{K} \alpha$ radiation

In order to model the solvents the SQUEEZE software (part of PLATON) was successfully employed giving a solution with $R$-factor of $5 \%$. The molecules of DMSO$d_{6}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}$ and D$)$ and water are found around the $\mathbf{C I I O}$ molecule in three distinctive positions. One disordered molecule is in the macrocyclic niche, (partial occupancies of 0.75 [A] and $0.25[B])$. Another disordered molecule (C) is in proximity of the C11 atom with partial occupancy of 0.4 , having an additional oxygen atom (O1C) with partial occupancy of 0.2 . The third molecule of $\mathrm{DMSO}_{6}(\mathrm{D})$ is in the proximity of the Cl 3 atom (molecule D, partial occupancy of 0.5) together with two disordered molecules of water (partial occupancies of 0.8 [W1] and 0.4 [W2]).

The CIIO3 molecule (Fig. 90) has the P conformation with similar geometric parameters as seen in IO3 and FIO3. The macromolecular niche hosts a disordered molecule of DMSO- $d_{6}$ : the three isophthalic $\mathrm{H} \cdots \mathrm{H}$ distances (H12, H22, and H32) range from 2.56 to $2.81 \AA$. The carbonyl atoms $\mathrm{O} 2, \mathrm{O} 3$ and O 4 form a triangle with $\mathrm{O} \cdots \mathrm{O}$ distances of 6.11 to $7.64 \AA$ (Fig. 89). The oxygen (O1A) of DMSO- $d_{6}$ (molecule A) forms a C12-H12 $\cdots \mathrm{O} 1 \mathrm{~A}[3.417(11) \AA$ ] hydrogen bond, anchoring the molecule of DMSO- $d_{6}$ in the macromolecular niche. The interplanar angle between the pyridine rings 1 and $3(\mathrm{P} 1 / \mathrm{P} 3)$ is $42.04^{\circ}$. The imide "CO $\cdots \mathbf{C O}$ " twist dihedral angles are $100.34^{\circ}(\mathrm{O} 1-\mathrm{C} 1 \cdots \mathrm{C} 2-\mathrm{O} 2),-95.92^{\circ}(\mathrm{O} 3-\mathrm{C} 3 \cdots \mathrm{C} 4-\mathrm{O} 4)$ and $99.21^{\circ}$ (O5-C5 $\left.\cdots \mathrm{C} 6-\mathrm{O} 6\right)$.

The molecules of DMSO- $d_{6}$ are important for the aggregation, forming a myriad of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O} / \mathrm{S}$ interactions. However, the primary bonding is a very strong $\mathrm{Cl} 2 \cdots \mathrm{O} 4^{b}$ [3.018(3) $\AA, b=\mathrm{x}, \mathrm{y}, 1+\mathrm{z}]$ halogen bond that connects CIIO3 molecules into a 1-D column along the $c$-axis direction.


Fig. 89: A view of CIIO3 with molecules of DMSO- $d_{6}$

The column is aided by the C2A-H2A3 $\cdots \mathrm{O}^{c}\left[\mathrm{C} 2 \mathrm{~A} \cdots \mathrm{O}^{c}=3.419(11) \AA, c=-\right.$ $\mathrm{x}, \mathrm{y},-1+\mathrm{z}]$ interaction by which the disordered molecule of DMSO- $d_{6}$, placed in the macromolecular niche, links adjacent CIIO3 molecules. Four 1-D columns are interconnected via $\mathrm{Cl} 3 \cdots \mathrm{Cl3}^{a}[3.165(3) \AA, a=-\mathrm{x},-\mathrm{y}, \mathrm{z}], \mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{~N}_{3} \mathrm{~A}^{d}$ [C25$\left.\mathrm{H} 25 \cdots \mathrm{~N} 32 \mathrm{~A}^{d}=3.334(7) \AA, d=1 / 4-\mathrm{x}, 1 / 4+\mathrm{y},-3 / 4+\mathrm{z}\right], \mathrm{Cl} 1 \cdots \mathrm{~N} 22 \mathrm{~A}^{e}[3.277(4) \AA, e=-$ $1 / 4+\mathrm{x}, 1 / 4-\mathrm{y},-1 / 4+\mathrm{z}]$ interactions and by disordered DMSO- $d_{6}(\mathrm{C}$ and D$)$ molecules via C33A-H33A $\cdots \mathrm{O}^{2} \mathrm{C}^{b}\left[\mathrm{H} 33 \mathrm{~A} \cdots \mathrm{O}^{b}=2.56 \AA\right.$ ] and C15A-H15A $\cdots \mathrm{O} 1 \mathrm{C}[\mathrm{H} 15 \mathrm{~A} \cdots \mathrm{O} 1 \mathrm{C}=$ $2.68 \AA$ ] contacts as well as by many other less important contacts.


Fig. 90: ORTEP and CPK diagram of CIIO3 the showing macromolecular niche

The CIIO4 tennimide (Fig. 91) was grown from a mixture of $\mathrm{CHCl}_{3}, \mathrm{MeOH}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Hence, the $\mathbf{C I I O} \mathbf{4}$ aggregates with a disordered molecule of either $\mathrm{CHCl}_{3}$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathbf{C l I O}$ molecular structure is more symmetrical than the $\mathrm{FIO4}$, similar to the $26 I O 4$ structure (Section 5); it consists of two symmetrical halves related by symmetry code $3 / 2-x, 1 / 2-y, z$. The internal "CO $\cdots$ CO" twist dihedral angles are $102.22^{\circ}$ ( $\mathrm{O} 1-\mathrm{C} 1 \cdots \mathrm{C} 2-\mathrm{O} 2$ ) and $-92.48^{\circ}(\mathrm{O} 3-\mathrm{C} 3 \cdots \mathrm{C} 4-\mathrm{O} 4)$. The $\mathrm{H} \cdots \mathrm{H}$ distances of the intraannular cavity are $4.365 \AA\left(\mathrm{H} 12 \cdots \mathrm{H} 12^{a}, a=3 / 2-\mathrm{x}, 1 / 2-\mathrm{y}, \mathrm{z}\right)$ and $4.091 \AA\left(\mathrm{H} 22 \cdots \mathrm{H} 22^{a}\right)$. The pyridinyl nitrogen atoms on both sides are in the anti (medial) conformation with a distance of $3.85 \AA\left(\mathrm{~N} 12 \mathrm{~A} \cdots \mathrm{~N} 12 \mathrm{~A}^{a}\right)$ and $4.3 \AA\left(\mathrm{~N} 12 \mathrm{~A} \cdots \mathrm{~N} 12 \mathrm{~A}^{a}\right)$. Therefore, both sides ("1" and "2") of the CIIO4 molecules are in the opened ("00") state exposing the intraannular cavity.

The primary aggregation in CIIO4 crystal structure is formation of "pore-topore" columns along the $c$-axis direction via C13A-H13A $\cdots \mathrm{O}^{b}\left[\mathrm{C} 13 \mathrm{~A}-\mathrm{H} 13 \mathrm{~A} \cdots \mathrm{O}^{b}=\right.$
$3.375(4) \AA$, $b=3 / 2-\mathrm{x}, \mathrm{y},-1 / 2+\mathrm{z}]$ hydrogen bonds, aided by weaker C23A-H23A $\cdots \mathrm{Ol}^{c}$ $\left[\mathrm{C} 23 \mathrm{~A} \cdots \mathrm{Ol}^{c}=3.487(4) \AA, c=3 / 2-x, y, 1 / 2+z.\right]$ interactions.


Fig. 91: A top-view ( $a$ ) and a side-view (b) of CIIO4

Each column is surrounded by six other columns, interconnected via C15A$\mathrm{H} 15 \mathrm{~A} \cdots \mathrm{O} 4^{d}\left[\mathrm{C} 15 \mathrm{~A} \cdots \mathrm{O} 4^{d}=3.209(3) \AA, d=2-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}\right]$ and $\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{O} 2^{e}\left[\mathrm{C} 15 \cdots \mathrm{O} 2^{e}=\right.$ $3.461(3) \AA, e=2-x, 1-y,-z]$ hydrogen bonds. The disordered molecule of solvent is placed between the columns and additionally interconnects them through several interactions such as $\mathrm{O} 2 \cdots \mathrm{Cl}^{2} \mathrm{~S}^{f}[2.981(5) \AA, f=1+\mathrm{x}, 1 / 2-\mathrm{y},-1 / 2+\mathrm{z}]$ and $\mathrm{O} 1 \cdots \mathrm{Cl}^{2} \mathrm{~S}^{f}$ [2.992(6) $\AA$ ] as well as C16A-H16A $\cdots \mathrm{Cl}^{\mathrm{C}} \mathrm{S}^{\mathrm{b}}\left[\mathrm{C} 16 \mathrm{~A} \cdots \mathrm{Cl} 2 \mathrm{~S}^{\mathrm{b}}=3.541(5) \AA\right]$ interactions.

## 8. BrIO 3 and BrIO 4 macrocycles

### 8.1. Synthesis and purification

The synthesis and purification of $\mathbf{B r I O 3} / 4$ was as described for the $\mathbf{C I I O} / 4$ macrocycles (Section 7) with 2-amino-5-bromopyridine (1.6964 g). Chromatographic separation was accomplished as for the previous halo-substituted macrocycles, yielding BrIO4 ( $177.37 \mathrm{mg}, 6.0 \%, \mathrm{R} f=0.668$ ) and $\operatorname{BrIO3}(212.12 \mathrm{mg}, 7.14 \%, \mathrm{R} f=0.455)$. The resulting material was reasonably pure and no additional preparative TLC was required.

### 8.2. General and spectroscopic data

Compared with the analogous fluoro and chloro derivatives, the solubility of the BrIO3 and BrIO4 analogues is generally similar (soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, alcohols, acetone, THF, ethyl acetate, poorly soluble in diethyl ether and $n$-hexane, insoluble in
water) but lower; especially the BrIO4 tennimide appeared to be significantly less soluble.




Scheme 50: General diagram of the $\mathbf{B r I O} / 4$ synthesis

However, this is as expected, since the starting material (2-amino-5bromopyridine) was much less soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ than the chloro and fluoro analogues. The NMR and IR results $\left({ }^{1} \mathrm{H}-\right.$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data at $80^{\circ} \mathrm{C}$ are listed in Appendix I, Sections 4.9 and 4.10, spectra are provided in the ESI III, Sections 1.10 and 1.11) have confirmed the identity of the compounds and are similar with those of CIIO4 and CIIO3. The IR data show additional peaks around $3000 \mathrm{~cm}^{-1}$ suggesting that the bulk BrIO4 is a solvate, but not BrIO3.

### 8.3. Crystallographic data and discussion

Table 42 presents the basic crystallographic data for the BrIO and BrIO 4 macrocycles. The BrIO3 trezimide (Fig. 92) crystallises as a solvate in $P 2_{l} / n$, with two BrIO3 molecules in the asymmetric unit and one molecule of ethyl acetate. The ethyl acetate molecule is not disordered and engages in aggregation.

Table 42: Selected crystallographic data ${ }^{a}$ for $\mathbf{B r I O} 3$ and $\mathbf{B r I O} 4 \dagger$

|  | $\mathrm{BrIO3}$ | $\mathrm{BrIO4}$ |
| :--- | :--- | :--- |
| Chemical formula | $\left(\mathrm{C}_{39} \mathrm{H}_{21} \mathrm{Br}_{3} \mathrm{~N}_{6} \mathrm{O}_{6}\right)_{2} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ | $\mathrm{C}_{52} \mathrm{H}_{28} \mathrm{Br}_{4} \mathrm{~N}_{8} \mathrm{O}_{8} \cdot\left(\mathrm{CHCl}_{3}\right)_{0.41}$ |
| Crystal system, | Monoclinic | Orthorhombic |
| space group | $P 2_{I} / n$, (No. 14) | Pccn, (No. 56) |
| $a, b, c(\AA)$ | $10.9531(2)$ | $65.7107(9)$ |
| $\alpha, \beta, \gamma\left({ }^{\circ}\right)$ | $11.2388(2)$ | $14.0441(4) 19.1432(3)$ |
| $Z^{\prime}$ | $90,110.454(2), 90$ | $19.1482(4)$ |
| $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$ | 2 | $90,90,90$ |

$\dagger$ Complete crystallographic, refinement and structural details are listed in the ESI III (Section 2.4). ${ }^{a}$ Obtained with $\mathrm{Cu} \mathrm{K} \alpha$ radiation.

However, the most interesting feature of $\mathbf{B r I O} 3$ is presence of $\mathrm{C}-\mathrm{Br} \cdots \mathrm{O}=\mathrm{C}$ halogen bonds that contribute to crystal structure formation. The two $\mathbf{B r I O}$ molecules (A and B) (Fig. 92) are found to be in the $\mathbf{P}$ conformation as in most trezimides (except 26IO3) and are geometrically similar. Since the Br 2 atoms in both molecules are disordered, in the molecule A it was assigned as $\mathrm{Br} 2 \mathrm{~A}(0.5)$ and $\mathrm{Br} 2 \mathrm{C}(0.5)$, while in the molecule B the Br 2 atom exists as Br 2 B [0.61(2)] and Br 2 D [0.39(2)].

Similarly as with the molecules of DMSO- $d_{6}$ in the CIIO3 structure, the molecule of ethyl acetate is located within the macromolecular niche of the BrIO molecule A, anchored via C1S-H1S2 $\cdots \mathrm{O} 4 \mathrm{~A}[\mathrm{C} 1 \mathrm{~S} \cdots \mathrm{O} 4 \mathrm{~A}=3.302(10) \AA$ ] and C16A$\mathrm{H} 16 \mathrm{~A} \cdots \mathrm{O} 1 \mathrm{~S}[\mathrm{C} 16 \mathrm{~A} \cdots \mathrm{O} 1 \mathrm{~S}=3.332(10) \AA$ ] hydrogen bonds. The macromolecular niches of the $A$ and $B$ molecules are similar, but slightly different. The three $H \cdots H$ distances (H12, H22 and H32) in molecule A range from 2.58 to $2.93 \AA$, and from 2.53 to $2.96 \AA$ in molecule B . The carbonyl atom ( $\mathrm{O} 2, \mathrm{O} 3$ and O 4 ) distances are 6.43 to $7.91 \AA$ in molecule A and 6.26 to $8.10 \AA$ in molecule B . The interplanar angles between the pyridine rings ( 1 and 3 , molecule A) are $56.47(18)^{\circ}$ and $43.31(22)^{\circ}$ (4 and 6 , molecule B). The imide "CO $\cdots$ CO" twist dihedral angles in molecule A are $110.00^{\circ}, 87.69^{\circ}$ and $99.83^{\circ}$, while in molecule B are $-98.39^{\circ},-99.31^{\circ}$ and $101.81^{\circ}$.


Fig. 92: ORTEP diagrams of BrIO3 (view [a], and side-view [b], only molecule A is shown)

The aggregation in the BrIO3 crystal structure mostly relies on strong C$\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interactions, however the most interesting are $\mathrm{C}-\mathrm{Br} \cdots \mathrm{O}=\mathrm{C}$ halogen bonds such
as $\mathrm{C} 64 \mathrm{~A}-\mathrm{Br} 3 \mathrm{~B} \cdots \mathrm{O}^{2} \mathrm{~B}^{a}\left[\mathrm{Br} 3 \mathrm{~B} \cdots \mathrm{O}^{2} \mathrm{~B}^{a}=3.169(4) \AA \AA, a=1 / 2+\mathrm{x}, 1 / 2-\mathrm{y},-1 / 2+\mathrm{z}\right]$ and $\mathrm{C} 56 \mathrm{~A}-$ $\mathrm{Br} 2 \mathrm{~B} \cdots \mathrm{O}^{b}\left[\mathrm{Br} 2 \mathrm{~B} \cdots \mathrm{O}^{b} \mathrm{~B}^{b}=3.312(6) \AA, b=-1+\mathrm{x}, \mathrm{y}, \mathrm{z}\right]$. The first is especially strong since it is directional [C64A-Br3B $\cdots \mathrm{O}^{a}{ }^{a}$ angle is $160.20(18)^{\circ}$ ]. The $\mathrm{C}-\mathrm{Br} \cdots \mathrm{O}=\mathrm{C}$ halogen bonds have been explained in both experimental and theoretical studies. ${ }^{233-236}$

The strength of this bond comes from contact of a bromine $\sigma$-hole ${ }^{233}$ having positive electrostatic potential with the electronegative carbonyl oxygen. However, the main interactions in the BrIO3 crystal structure are numerous $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interaction, such as $\mathrm{C} 54-\mathrm{H} 54 \cdots \mathrm{O}_{1}{ }^{c}\left[\mathrm{C} 54 \cdots \mathrm{O}^{c}=3.144(7) \AA, c=\mathrm{x}, \mathrm{y}, 1+\mathrm{z}\right], \mathrm{C} 35 \mathrm{~A}-\mathrm{H} 35 \mathrm{~A} \cdots \mathrm{O}^{c} \mathrm{~A}^{d}$ $\left[\mathrm{C} 35 \mathrm{~A} \cdots \mathrm{O}^{2}{ }^{d}=3.219(8) \AA, d=1-\mathrm{x},-\mathrm{y}, 2-\mathrm{z}\right], \mathrm{C} 15 \mathrm{~A}-\mathrm{H} 15 \mathrm{~A} \cdots \mathrm{O}^{2} \mathrm{~A}^{d}\left[\mathrm{C} 15 \mathrm{~A} \cdots \mathrm{O}^{2} \mathrm{~A}^{d}=\right.$ $3.423(8) \AA$ ] and $\mathrm{C} 65 \mathrm{~A}-\mathrm{H} 65 \mathrm{~A} \cdots \mathrm{O}^{2} \mathrm{~B}^{e}\left[\mathrm{C} 65 \mathrm{~A}-\mathrm{H} 65 \mathrm{~A} \cdots \mathrm{O}_{3}{ }^{e}=3.202(7) \AA, e=\mathrm{x}, \mathrm{y},-1+\mathrm{z}\right]$ interactions. The solvent, ethyl acetate, does not engage significantly in the aggregation, in contrast to DMSO- $d_{6}$ or chlorinated solvent molecules in other macrocycles, apart from a C4S-H4S3 $\cdots \operatorname{Br} 1 \mathrm{~A}^{f}\left[\mathrm{C} 4 \mathrm{~S} \cdots \mathrm{Br}^{\prime} 1 \mathrm{~A}^{f}=3.654(10) \AA, f=1-x,-y, 1-z\right]$ interaction. Other interactions are $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts such as C24-H24 $\cdots$ C5B [C24 $\cdots \mathrm{C} 5 \mathrm{~B}=3.577(7)$ $\AA], \mathrm{C}=\mathrm{O} \ldots \pi$ contacts such as C2B-O2B $\cdots \mathrm{C} 23 \mathrm{~A}[\mathrm{O} 2 \mathrm{~B} \cdots \mathrm{C} 23 \mathrm{~A}=3.118(7) \AA$ ] and a myriad of $\mathrm{C}-\mathrm{Br} \ldots \pi$ contacts, the strongest being the C54A-Br2D $\cdots \mathrm{C}^{2} \mathrm{CA}^{g}$ $\left[\mathrm{Br} 2 \mathrm{D} \cdots \mathrm{C} 63 \mathrm{~A}^{g}=3.195(18) \AA, g=-1 / 2+\mathrm{x}, 1 / 2-\mathrm{y}, 1 / 2+\mathrm{z}\right]$ interaction.

The BrIO4 tennimide (Fig. 93) is essentially isomorphous with CIIO4, although the cell dimensions are slightly longer. It crystallises with a molecule of $\mathrm{CHCl}_{3}$ that has a partial occupancy of 0.82 and is disordered about a rotation axis $(1 / 2-x, 1 / 2-y, z)$. As seen in CIIO4 and 26 IO 4 the molecular structure of BrIO 4 is symmetric and consists of two equivalent halves about the rotation axis (1/2-x,1/2-y,z). However, and differently to CIIO4, the molecule of BrIO4 has the "2" bromo-pyridinyl rings disordered about the Br24N2 axis, with $63 \%$ of the ring being in $\boldsymbol{s y n}$ (lateral, part A) and $37 \%$ being in anti (medial, part B) conformation. The cause of disorder is a partial hydrogen bond between the N22A atom and the solvent hydrogen atom, C1S$\mathrm{H} 1 \mathrm{~S} \cdots \mathrm{~N} 22 \mathrm{~A}^{a}\left[\mathrm{C} 1 \mathrm{~S}-\mathrm{H} 1 \mathrm{~S} \cdots \mathrm{~N} 22 \mathrm{~A}^{a}=3.43(2) \AA, a=1 / 2-\mathrm{x}, 1 / 2-\mathrm{y}, \mathrm{z}\right]$. If this hydrogen bond is fully established, a very repulsive and unfavourable H26A $\cdots \mathrm{H}_{2} \mathrm{~A}^{a}$ ( $1.90 \AA$ ) contact emerges. Therefore, the disorder of the " 2 " bromo-pyridinyl rings is caused by a balance between the stabilising, favourable C1S-H1S $\cdots \mathrm{N}_{2} 2 \mathrm{~A}^{a}$ hydrogen bond and destabilising steric clash H26A $\cdots \mathrm{H}_{2} 6 \mathrm{~A}^{a}$.

In general, the BrIO4 molecule is symmetrical; the intraannular cavity distances $(\mathrm{H} \cdots \mathrm{H})$ are $4.128 \AA\left(\mathrm{H} 12 \cdots \mathrm{H} 12^{a}\right)$ and $4.352 \AA\left(\mathrm{H} 22 \cdots \mathrm{H} 22^{a}\right)$. The internal "CO $\cdots$ CO" twist dihedral angles are $94.33^{\circ}$ (O1-C1 $\left.\cdots \mathrm{C} 2-\mathrm{O} 2\right)$ and $-103.78^{\circ}$ (O3-C3 $\left.\cdots \mathrm{C} 4-\mathrm{O} 4\right)$. The bromo-pyridinyl ring " 1 " is in the syn conformation (lateral) with a $\mathrm{H} 16 \cdots \mathrm{H} 16^{a}$ distance
of $2.65 \AA$; hence the pore is closed. In total, the pores are $63 \%$ in "cc" state and $37 \%$ in the "oc" state.


Fig. 93: ORTEP and CPK diagrams of the BrIO4 tennimide

The aggregation in $\mathbf{B r I O 4}$ is similar to the aggregation in CIIO4. The molecules are "pore-to-pore" lined up along the $c$-axis direction into a 1-D column via strong $\mathrm{C} 25 \mathrm{~A}-\mathrm{H} 25 \mathrm{~A} \cdots \mathrm{O}^{b}\left[\mathrm{C} 25 \mathrm{~A} \cdots \mathrm{O}^{b}=3.329(9) \AA, b=1 / 2-\mathrm{x}, \mathrm{y}, 1 / 2+\mathrm{z}\right]$ hydrogen bonds. The columns are interconnected by a C25B-H25B $\cdots \mathrm{O}^{c}\left[\mathrm{C} 25 \mathrm{~B} \cdots \mathrm{O} 2^{c}=3.09(2) \AA, c=-\mathrm{x}, 1-\right.$ $\mathrm{y},-\mathrm{z}]$ hydrogen bond and weaker $\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{O} 4^{d}\left[\mathrm{C} 25 \cdots \mathrm{O} 4^{d}=3.514(5) \AA, d=-\mathrm{x},-\mathrm{y},-\mathrm{z}\right]$ and C23A-H23A $\cdots \mathrm{O}^{c}\left[\mathrm{C} 23 \mathrm{~A} \cdots \mathrm{O} 2^{c}=3.373(16) \AA\right.$ ] interactions. The aggregation is aided by the disordered $\mathrm{CHCl}_{3}$ molecule through the partial C1S-H1S $\cdots \mathrm{N}_{2} 2 \mathrm{~A}^{a}$ hydrogen bond, as well as by $\mathrm{Cl} 3 \mathrm{~S} \cdots 4^{e}[3.077(5) \AA, e=1+\mathrm{x}, \mathrm{y}, \mathrm{z}]$ and $\mathrm{Cl} 2 \mathrm{~S} \cdots \mathrm{O}^{a}$ $[3.126(8) \AA]$ halogen bonds. In contrast with the BrIO3 crystal structure, no C$\mathrm{Br} \cdots \mathrm{O}=\mathrm{C}$ halogen bond is present, although a weak $\mathrm{C} 14 \mathrm{~A}-\mathrm{Br} 14 \cdots \mathrm{Cl} 2 \mathrm{~S}^{f}[\mathrm{Br} 14 \cdots \mathrm{Cl} 2 \mathrm{~S}=$ $3.516(6) \AA, f=3 / 2-\mathrm{x}, \mathrm{y},-1 / 2+\mathrm{z}]$ halogen contact exists.

## 9. 26 BrIO 3 and 26 BrIO 4 macrocycles

### 9.1. Synthesis and purification

The 26BrIO3/4 macrocycles were synthesised (Scheme 51) and purified using identical procedures as described for the BrIO3/4 macrocycles (Section 8) with 2-amino-5-bromopyrimidine ( $1.7053 \mathrm{~g}, 9.8 \mathrm{mmol}$ ) instead of 2-amino-5-bromopyridine. The 2-amino-5-bromopyrimidine was quite insoluble in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, even upon heating,
and was added into the reaction mixture in the form of a suspension. The result was 26BrIO3 ( $164.4 \mathrm{mg}, 5.5 \%, \mathrm{R} f=0.472$ ) and 26BrIO4 ( $110.0 \mathrm{mg}, 3.67 \%, \mathrm{Rf}=0.607$ ).




Scheme 51: General diagram of the 26BrIO3/4 synthesis

### 9.2. General and spectroscopic data

The 26BrIO3/4 macrocycles proved to be the most insoluble. However, 26BrIO3 was significantly more soluble than 26BrIO4 that proved to be very insoluble in most organic solvents, even in warm DMSO. Hence, the NMR characterisation of 26BrIO4 was accomplished in DMSO- $d_{6}$ at $140^{\circ} \mathrm{C}$. Unfortunately, such a high temperature caused partial disintegration of the compound. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ with variable temperature procedure was undertaken from the highest towards the lowest temperature. All the spectroscopic information including NMR and IR is listed in Appendix I (Sections 1.12 and 1.13) and the spectra are given in the ESI III (Sections 1.12 and 1.13).

### 9.3. Crystallographic data and discussion

Table 43 summarises the basic crystallographic data of the 26BrIO3/4 macrocycles. The 26 BrIO 3 trezimide (Fig. 94) crystallises as a solvate with two molecules of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, one (molecule " 1 ") and another disordered as molecule " 2 " ( 0.75 ) and " 3 " ( 0.25 ). The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecule plays important an role in the aggregation of the 26BrIO3 trezimide, in contrast with the disordered molecule.

The 26BrIO3 molecule (Fig. 94) is in the typical P conformation, in contrast with the parent 26 IO 3 trezimide that was found in the R conformation (Section 5). The geometric parameters are as expected: the three $\mathrm{H} \cdots \mathrm{H}$ distances (H12, H22 and H32) range from 2.48 to $3.02 \AA$, the carbonyl atoms $\mathrm{O} \cdots \mathrm{O}$ distances ( $\mathrm{O} 2, \mathrm{O} 4$ and O 4 ) range from 6.44 to $8.12 \AA$, while the interplanar angle between the pyridine rings 1 and 3
(P1/P3) is $41.88(15)^{\circ}$. The imide "CO $\cdots \mathbf{C O} "$ twists are $-94.73^{\circ}$ (O1-C1 $\left.\cdots \mathrm{C} 2-\mathrm{O} 2\right)$, $86.58^{\circ}$ (O3-C3 $\left.\cdots \mathrm{C} 4-\mathrm{O} 4\right)$ and $95.55^{\circ}$ (O5-C5 $\left.\cdots \mathrm{C} 6-\mathrm{O} 6\right)$.

Table 43: Selected crystallographic data for the 26 BrIO 3 and 26 BrIO 4 macrocycles $\dagger$

|  | $\mathbf{2 6 B r I O 3}$ | $\mathbf{2 6 B r I O 4}$ |
| :--- | :--- | :--- |
| Chemical formula | $\mathrm{C}_{36} \mathrm{H}_{18} \mathrm{Br}_{3} \mathrm{~N}_{9} \mathrm{O}_{6} \cdot\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)_{2}$ | $\left(\mathrm{C}_{48} \mathrm{H}_{24} \mathrm{Br}_{4} \mathrm{~N}_{12} \mathrm{O}_{8}\right)_{2} \cdot\left(\mathrm{CHCl}_{3}\right)_{3.8} \cdot$ |
|  |  | $\mathrm{H}_{2} \mathrm{O}$ |
| Crystal system, | Triclinic, $P \bar{I}$, | Monoclinic |
| space group | (No. 2) | $P 2_{I} / n,(\mathrm{No.14)}$ |
| $a, b, c(\AA)$ | $12.2390(5), 13.6149(5)$, | $10.5779(3), 13.2805(3)$, |
| $\alpha, \beta, \gamma\left({ }^{\circ}\right)$ | $13.6447(5)$ | $40.7855(13)$ |
| $Z^{\prime}$ | $100.749(3), 99.990(3)$, | $90,95.936(2), 90$ |
| $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$ | $05.463(3)$ |  |

$\dagger$ Complete crystallographic, refinement and structural details are listed in the ESI III (Section 2.4).

The most important and strongest interaction in the 26 BrIO 3 structure is a strong C14A-Br14 $\cdots \mathrm{O} 4^{a}\left[\mathrm{Br} 14 \cdots \mathrm{O} 4^{a}=2.982(3) \AA, a=\mathrm{x}, \mathrm{y}, \mathrm{z}-1\right]$ halogen bond. ${ }^{237} \mathrm{As}$ mentioned in the previous section, the strength comes from a direct contact [168.2(2) ${ }^{\circ}$ ] of a positive $\sigma$-hole with the electronegative carbonyl oxygen. This halogen bond links the 26BrIO3 molecules along the $c$-axis direction into a 1-D column.


Fig. 94: An ORTEP diagram of $\mathbf{2 6 B r I O} 3$ and solvent molecules

Two columns are interconnected via the non-disordered $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecule ("1") by C1S-H1S1 $\cdots \mathrm{N}_{16} \mathrm{~A}^{b}\left[\mathrm{C} 1 \mathrm{~S} \cdots \mathrm{~N} 16 \mathrm{~A}^{b}=3.262(9) \AA, b=-\mathrm{x},-\mathrm{y}, 1-\mathrm{z}\right]$ and C1S-H1S2 $\cdots \mathrm{O} 5$ $[\mathrm{C} 1 \mathrm{~S} \cdots \mathrm{O} 5=3.435(10) \AA]$ interactions, aided by the $\mathrm{C} 35-\mathrm{H} 35 \cdots \mathrm{O}^{c}\left[\mathrm{C} 35 \cdots \mathrm{O} 4^{c}=\right.$ $3.427(5) \AA, c=-\mathrm{x},-\mathrm{y}, 2-\mathrm{z}]$ interaction. The $\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{O} 3^{d}\left[\mathrm{C} 15 \cdots \mathrm{O} 3^{d}=3.235(7) \AA, d=\right.$ $1-\mathrm{x}, 1-\mathrm{y}, 2-\mathrm{z}]$ and $\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O}^{d}\left[\mathrm{C} 15 \cdots \mathrm{O} 3^{d}=3.248(6) \AA\right.$ interactions connect the column pairs into a 2-D sheet. Finally, a strong C25-H25 $\cdots \mathrm{O} 4^{e}\left[\mathrm{C} 35 \cdots \mathrm{O} 4^{e}=3.271(6)\right.$ $\AA, e=1-\mathrm{x},-\mathrm{y}, 2-\mathrm{z}]$ interaction, with support of the $\mathrm{C}-\mathrm{Br} \cdots \pi$ interactions such as C24A$\mathrm{Br} 24 \cdots \mathrm{C} 34^{f}\left[\mathrm{Br} 24 \cdots \mathrm{C} 34^{f}=3.395(5) \AA, f=-\mathrm{x}, 1-\mathrm{y}, 2-\mathrm{z}\right]$ and $\mathrm{C} 24 \mathrm{~A}-\mathrm{Br} 24 \cdots \mathrm{C} 35^{f}$ $\left[\mathrm{Br} 24 \cdots \mathrm{C} 35^{f}=3.362(5) \AA\right.$ ] contacts aggregates 2-D sheets into a crystal structure.

The 26BrIO4 molecule (Fig. 95) was grown from $\mathrm{CHCl}_{3}$ and crystallised with two molecules of $\mathrm{CHCl}_{3}$ and a molecule of $\mathrm{H}_{2} \mathrm{O}$. The first $\mathrm{CHCl}_{3}$ molecule (" S ") is located in proximity of the O 1 atom, shows no disorder but has partial occupancy of 0.9 , while the second $\mathrm{CHCl}_{3}$ molecule ("T") is in proximity of the O 6 carbonyl atom, shows disorder $(1 \mathrm{~T}=0.7,2 \mathrm{~T}=0.3)$, but has total occupancy of 1 . $\mathrm{The}^{\mathrm{H}_{2} \mathrm{O} \text { molecule is located }}$ beside the pore entrance close to the " B " bromo-pyrimidine ring and has partial occupancy of 0.5 . The solvent molecules form many strong interactions with the 26BrIO4 molecules that largely contribute to crystal aggregation and stability, but are not crucial. However, the high quality of $\mathbf{2 6 B r I O 4}$ single crystals is due to the presence of solvent molecules in its crystal structure.

The $26 \mathrm{BrIO4}$ molecule is less symmetrical, as in the IO4 and FIO4 crystal structures and the structural parameters are different for each segment. The imide 'CO $\cdots \mathbf{C O}^{\prime}$ twist torsion angles are $86.66^{\circ}$ (O1-C1 $\left.\cdots \mathrm{C} 2-\mathrm{O} 2\right),-101.25^{\circ}(\mathrm{O} 3-\mathrm{C} 3 \cdots \mathrm{C} 4-\mathrm{O} 4)$, $101.95^{\circ}$ (O5-C5 $\cdots \mathrm{C} 6-\mathrm{O} 6$ ) and $-97.22^{\circ}$ (O7-C7‥C8-O8). The intraannular cavity $(\mathrm{H} \cdots \mathrm{H})$ distances are $4.061 \AA(\mathrm{H} 12 \cdots \mathrm{H} 32)$ and $4.199 \AA\left(\mathrm{H} 22 \ldots \mathrm{H} 42^{a}\right)$. The distances between the medial pyrimidine nitrogen atoms are $4.467 \AA(\mathrm{~N} 12 \mathrm{~B} \cdots \mathrm{H} 12 \mathrm{D})$ and $4.564 \AA$ (H12A‥H12C). Therefore, the pores are in the "oo" state.

Intermolecular interactions in the 26BrIO4 crystal structure, due to the presence of both $\mathrm{CHCl}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$ molecules are numerous and include a myriad of $\mathrm{C}-\mathrm{H} . . . \mathrm{O}$ interactions, hydrogen and halogen bonds. The interactions formed by the solvent molecules are stabilising, but are not crucial for the aggregation, since the 26BrIO4 crystal structure mainly relies on interactions formed by the 26 BrIO 4 molecules themselves.

The major interactions are C13D-H13D $\cdots \mathrm{O}^{a}\left[\mathrm{C} 13 \mathrm{D} \cdots \mathrm{O}^{a}=3.197(8) \AA\right.$, $a=-$ $1+\mathrm{x}, \mathrm{y}, \mathrm{z}]$ and $\mathrm{C} 34-\mathrm{H} 34 \cdots \mathrm{O}^{b}\left[\mathrm{C} 34 \cdots \mathrm{O} 3^{b}=3.288(7) \AA, b=1+\mathrm{x}, \mathrm{y}, \mathrm{z}\right]$ hydrogen bonds that aggregate the 26BrIO4 molecules along the $a$-axis direction in a "pore-to-pore" manner
into a 1-D column. The columns are interconnected along the $b$-axis direction into a 2-D sheet parallel with (001) plane via a strong C14B-Br1B $\cdots \mathrm{N}_{1} 6 \mathrm{~A}^{c}\left[\mathrm{Br} 1 \mathrm{~B} \cdots \mathrm{~N} 16 \mathrm{~A}^{c}=\right.$ $3.028(4) \AA, c=\mathrm{x}, 1+\mathrm{y}, \mathrm{z}]$ halogen bond.


Fig. 95: A view of the 26BrIO4 tennimide

This halogen bond is similar to the $\mathrm{C}-\mathrm{Br} \cdots \mathrm{O}=\mathrm{C}$ bond found in the $\mathbf{B r I O} 3$ and 26BrIO3 crystal structures. Two adjacent sheets are interconnected by C15A$\mathrm{H} 15 \mathrm{~A} \cdots \mathrm{O} 4^{d}\left[\mathrm{C} 15 \mathrm{~A} \cdots \mathrm{O} 4^{d}=3.356(7) \AA, d=-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}\right]$ hydrogen bonds, supported by weak $\mathrm{C}-\mathrm{Br} \cdots \pi$ contacts $\mathrm{C} 14 \mathrm{~A}-\mathrm{Br} 1 \mathrm{~A} \cdots \mathrm{C} 24^{d}\left[\mathrm{Br} 1 \mathrm{~A} \cdots \mathrm{C} 24^{d}=3.482(6) \AA\right]$. Finally, the pairs of sheets aggregate into a 3-D crystal structure via lateral multiple interactions of the O8 carbonyl oxygen with the isophthalic ring " 1 " such as $\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O} 8^{e}\left[\mathrm{C} 14 \cdots \mathrm{O} 8^{e}\right.$ $=3.114(6) \AA, e=1 / 2-\mathrm{x},-1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}]$ and $\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{O}^{e}\left[\mathrm{C} 15 \cdots \mathrm{O} 8^{e}=3.174(7) \AA\right]$ interactions. The $\mathrm{CHCl}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$ solvent molecules form an additional supporting network of interactions.

## 10. MIO4 macrocycle

### 10.1. Synthesis and purification

The MIO4 tennimide (Figs. 97 and 97) was synthesised using the standardised " $4+4$ " method (Section 2.3), with 2-amino-5-methylpyridine (6-amino-3-picolinate, $1.0600 \mathrm{~g}, 9.8 \mathrm{mmol}$ ), (Scheme 52). The crude product was purified by column
chromatography eluting with a solvent blend of $\mathrm{CHCl}_{3}$ and ethyl acetate (2:1). Although an additional compound was detected by TLC (possible trezimide, MIO3) only separation of the first fraction was successful (MIO4, $110 \mathrm{mg}, 5 \%, \mathrm{R} f=0.270$ ).




Scheme 52: General diagram of the MIO4 synthesis

### 10.2. General and spectroscopic data

The MIO4 tennimide is a white, moderately crystalline solid, readily soluble in chlorinated hydrocarbons $\left(\mathrm{CHCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, ethyl acetate and MeOH , less soluble in diethyl ether and insoluble in water and $n$-hexane.

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ experiments in DMSO- $d_{6}$ at $80^{\circ} \mathrm{C}$ (Appendix I, Section 4.13 and the ESI III, section 1.14) shows good resolving of the core tennimide proton peaks. The methyl peak is at 2 ppm , while the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (same conditions) shows the methyl carbon at 17.25 ppm . No evidence of instability was detected by the NMR experiments, suggesting overall stability of the MIO4 tennimide being comparable with the parent IO4 tennimide.

### 10.3. Crystallographic data and discussion

The MIO4 tennimide (Table 44, Figs. 97 and 97) crystallises as a solvate with one disordered molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Table 44: Selected crystallographic data for the $\mathrm{MIO}^{a}$ macrocycle $\dagger$

| Chemical formula | $\mathrm{C}_{56} \mathrm{H}_{40} \mathrm{~N}_{8} \mathrm{O}_{8} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ |
| :--- | :--- |
| Crystal system, space group | Orthorhombic, PPccn, (No. 56) |
| $a, b, c(\AA)$ | $13.9556(3) 19.0850(4) 19.1230(3)$ |
| $\alpha, \beta, \gamma\left({ }^{\circ}\right)$ | $90,90,90$ |
| $Z^{\prime}$ | 1 |
| $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$ | $0.0666,0.1628,1.0$ |
| $\dagger$ Complete crystallographic, refinement and structural details are listed in the ESI III (Section |  |
| 2.5). ${ }^{a}$ Obtained with $\mathrm{Cu} K \alpha$ radiation. |  |



Fig. 96: An ORTEP diagram of the MIO4 structure

Similar to the 26IO4, CIIO4 and BrIO4 tennimides, the MIO4 tennimide molecule is symmetrical and consists of two halves related by symmetry code $1 / 2-x, 1 / 2-$ $\mathrm{y}, \mathrm{z}$. Dihedral angles of the internal imide ' $\mathbf{C O} \cdots \mathbf{C O}^{\prime}$ twist are $101.12^{\circ}(\mathrm{O} 1-\mathrm{C} 1 \cdots \mathrm{C} 2-\mathrm{O} 2)$ and $-92.15^{\circ}$ (O3-C3 $\left.\cdots \mathrm{C} 4-\mathrm{O} 4\right)$. The intraannular cavity $\mathrm{H} \cdots \mathrm{H}$ distances are $4.361 \AA$ (H12 $\left.\cdots \mathrm{H} 12^{a}, a=1 / 2-\mathrm{x}, 1 / 2-\mathrm{y}, \mathrm{z}\right)$ and $4.152 \AA\left(\mathrm{H} 22 \cdots \mathrm{H} 22^{a}\right)$. Two pyridinyl rings (N12A, $\mathrm{N} 12 \mathrm{~A}^{a}$ ) are in the medial conformation (P-anti) with distance of $3.84 \AA$, while the two pyridinyl nitrogen on the opposite side ( N 22 A ) are in ( $\mathbf{P}-\mathbf{s y n}$ ) lateral conformation, exposing the two H26A hydrogen atoms medially ( $\mathrm{H} 26 \mathrm{~A} \cdots \mathrm{H}_{2} 6 \mathrm{~A}^{a}=2.564 \AA$ ). Therefore, it seems that side 2 has wider pore than side 1 ("oc" state). The methyl moieties are disordered about the C-C axis by $60^{\circ}$.


Fig. 97: An ORTEP diagram of MIO4 viewed down $b$-axis

Aggregation in MIO4 involves a disordered molecule of solvent $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The MIO4 and solvent molecule are connected by multiple contacts such as Cl2S $\cdots \mathrm{O} 2$ $[3.038(7) \AA$ ] and C16A-H16A $\cdots \mathrm{C} 1 \mathrm{~S}[\mathrm{C} 16 \mathrm{~A} \cdots \mathrm{C} 1 \mathrm{~S}=3.51(2) \AA$ ], and arranged into a $1-$ D column along the $a$-axis via $\mathrm{Cl1S} \cdots \mathrm{O}^{b}[3.135(6) \AA, b=3 / 2-\mathrm{x}, 1 / 2-\mathrm{y}, \mathrm{z}]$ and C16A$\mathrm{H} 16 \mathrm{~A} \cdots \mathrm{Cl}^{2} \mathrm{~S}^{b}\left[\mathrm{C} 16 \mathrm{~A} \cdots \mathrm{Cl} 2 \mathrm{~S}^{b}=\AA\right.$ ] interactions. Another interaction is C15A$\mathrm{H} 15 \mathrm{~A} \cdots \mathrm{O}^{d}\left[\mathrm{C} 15 \mathrm{~A} \cdots \mathrm{O} 4^{d}=3.249(5) \AA, d=1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}\right]$ hydrogen bond that links the $1-$ D columns along the ( $\overline{1} 10$ ) plane direction into a wavy 2-D sheet, parallel with the (101) plane.

## 11. EsIO3 and EsIO4 macrocycles

### 11.1. Synthesis and purification

The EsIO3 and EsIO4 molecules were synthesised using the standard "4+4" synthetic procedure described in Section 2.3 (Scheme 53). The methyl-6-aminopyridine-3-carboxylate ( $1 \mathrm{~g}, 6.57 \mathrm{mmol}$ ), having a $\mathrm{COOCH}_{3}$ moiety in the para position of the 2-AP ring, was used. Chromatographic purification and separation of the macrocycles was accomplished using $\mathrm{CHCl}_{3} /$ ethyl acetate (1:1) as an appropriate mobile phase system. The result was pure EsIO3 ( $300 \mathrm{mg}, 16 \%, \mathrm{R} f=0.60$ ) and EsIO4 ( $156.5 \mathrm{mg}, 9 \%, \mathrm{R} f=0.33$ ) macrocycles.



Scheme 53: Synthesis of the EsIO3 and EsIO4 macrocycles

### 11.2. General and spectroscopic data

The EsIO3 and EsIO4 macrocycles are white odourless substances, insoluble in water and readily soluble in most organic solvents apart from $n$-hexane and diethyl ether.

The NMR and IR spectral data are listed in Appendix I, sections 4.14 and 4.15, while the spectra are provided in the ESI III, Sections 1.15 and 1.16. Due to conformational rigidity in solution at the room temperature, the ${ }^{1} \mathrm{H}$-NMR experiment of EsIO4 at $20^{\circ} \mathrm{C}$ in $\mathrm{CDCl}_{3}$ failed to show sufficiently resolved peaks and appropriate integration. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ and HSQC experiments failed to show the C14 peak clearly as well as C 1 in DEPT and DEPT-Q. The variable temperature ${ }^{1} \mathrm{H}-\mathrm{NMR}$ in DMSO- $d_{6}$ raising the temperature from $20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ improved the conformational interconversion rate and peaks were gradually resolved. Problems seen in $\mathrm{CDCl}_{3}$ at $20^{\circ} \mathrm{C}$ were overcome with the corresponding experiments in DMSO- $d_{6}$ at $80^{\circ} \mathrm{C}$. However, heating of EsIO3 in DMSO- $d_{6}$ caused disintegration suggesting its relative instability. Therefore, variable temperature ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and the corresponding experiments in DMSO- $d_{6}$ at $80^{\circ} \mathrm{C}$ didn't prove useful. However, NMR experiments in $\mathrm{CDCl}_{3}$ at $20^{\circ} \mathrm{C}$ gave good peak separation as well as coupling, suggesting conformational mobility in solvent.

The IR spectra show very strong bands around $1720-1690 \mathrm{~cm}^{-1}$ corresponding with both imide and ester carbonyl $(\mathrm{C}=\mathrm{O})$ stretches. The peaks at $1600-1400 \mathrm{~cm}^{-1}$ are associated with $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ vibrations in isophthalic and pyridinyl rings while the strong peaks in 1400-1200 $\mathrm{cm}^{-1}$ region belong to $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{C}$ vibrations and stretches in imide backbone.

### 11.3. Crystallographic data and discussion

Table 45 summarises the key crystallographic data for EsIO3 and EsIO4. Crystals of EsIO3 were obtained as poor-quality lathes from diethyl ether/ $n$-hexane mixtures (though suitable for study by single crystal X-ray diffraction) whereas crystals of EsIO4 were grown as long needles from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ solutions.

Table 45: Selected crystallographic data for EsIO3 and EsIO4 $\dagger$

|  | EsIO3 $^{\mathrm{a}}$ | EsIO4 |
| :--- | :--- | :--- |
| Chemical formula | $\mathrm{C}_{45} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{12}$ | $\mathrm{C}_{60} \mathrm{H}_{40} \mathrm{~N}_{8} \mathrm{O}_{16}$ |
| Crystal system, | Triclinic, | Monoclinic, |
| space group | $P \bar{I}($ No. 2) | $P 2_{1} / n($ No.14 $)$ |
| $a, b, c(\AA)$ | $16.3411(13), 16.5747(4)$, | $10.6870(1), 22.4852(2)$, |
|  | $17.4806(16)$ | $22.6756(2)$ |
| $\alpha, \beta, \gamma\left({ }^{\circ}\right)$ | $87.273(5), 83.350(7), 89.825(4)$ | $90,101.721(1), 90$ |
| $Z^{\prime}$ | 2 | 1 |
| $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$ | $0.121,0.352,0.91$ | $0.041,0.120,1.02$ |

$\dagger$ Complete crystallographic, refinement and structural details are listed in the ESI III (Section 2.5). ${ }^{a}$ Obtained with $\mathrm{Cu} \mathrm{K} \mathrm{\alpha}$ radiation.

The crystal structures of EsIO3 (Fig. 98) and EsIO4 (Fig. 99) show several unique features. The EsIO3 structure $\left(Z^{\prime}=2\right)$ crystallises in the triclinic system $(P \overline{1})$ with small but significant differences between the two molecules (molecule A is depicted) both in the $P$ conformation. The three isophthalic $\mathrm{H}^{\cdots} \mathrm{H}$ distances (H12, H22 and H32) range from 2.64 to $2.80 \AA$, whereas the carbonyl O...O distances (O2A, O3A and O 5 A ) are from 5.76 to $7.92 \AA$ (in molecule A, Fig. 98).

Two pyridine groups at N 1 and N 3 adopt parallel orientations with their ortho- N ring atoms $\mathrm{N} 12 \mathrm{~A}, \mathrm{~N} 32 \mathrm{~A}$ positioned $\operatorname{syn}$ at a distance of $4.89 \AA$, and with their methyl carboxylates at contact distances. The imide "CO $\cdots \mathbf{C O}$ " twists in molecule A are $95.45^{\circ}(\mathrm{O} 1-\mathrm{C} 1 \cdots \mathrm{C} 2-\mathrm{O} 2),-111.30^{\circ}(\mathrm{O} 3-\mathrm{C} 3 \cdots \mathrm{C} 4-\mathrm{O} 4)$ and $-91.92^{\circ}(\mathrm{O} 5-\mathrm{C} 5 \cdots \mathrm{C} 6-\mathrm{O} 6)$.

The EsIO3 trezimide, as an acceptor rich system comprising nine $9 \mathrm{C}=\mathrm{O}$, three pyridine and methoxy acceptor groups (neglecting the three tertiary N1-N3 atoms that are oriented towards the macrocycle niche); molecular aggregation is dominated by the cumulative effect of several weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions such as $\mathrm{C} 35 \mathrm{~A}-\mathrm{H} 35 \mathrm{~A} \cdots \mathrm{O} 31 \mathrm{~A}^{a}$ $\left[\mathrm{C} 35 \mathrm{~A} \cdots \mathrm{O}^{2} 1 \mathrm{~A}^{a}=3.204(13) \AA, \quad a=1-\mathrm{x}, 1-\mathrm{y}, 2-\mathrm{z}\right]$ and C65A-H65A $\cdots \mathrm{O}^{2} 1 \mathrm{~A}^{b}$ $\left[\mathrm{C} 65 \mathrm{~A} \cdots \mathrm{O} 61 \mathrm{~A}^{b}=3.227(14) \AA, b=2-\mathrm{x},-\mathrm{y},-\mathrm{z}\right]$ and $\mathrm{C} 55-\mathrm{H} 55 \cdots \mathrm{O} 3 \mathrm{~A}[\mathrm{C} 55 \cdots \mathrm{O} 3 \mathrm{~A}=$ $3.377(14) \AA$ ].


Fig. 98: $a$ ) space-filling and $b$ ) ORTEP diagrams of EsIO3 (molecule A)

Crystals of EsIO3 grow as very fragile thin lathes that diffracted very weakly.

The first attempt (Mo radiation) gave a unit cell and diffraction data only to $2.5 \AA$ resolution, whereas a second data collection gave reflection data to a $1.5 \AA$ resolution limit [data were collected to $0.94 \AA$ with $\mathrm{Cu} \mathrm{K} \alpha$ radiation, $1^{\circ} \omega$-scans, the detector at 60 mm and with three shells collected for $16 \mathrm{~s} / 48 \mathrm{~s} / 48 \mathrm{~s}$ per frame]. This dataset was not sufficient to produce a structural solution (data redundancy were $1.7, F^{2}=2.1$ and $R_{\text {int }}=$ 0.16). Finally, on a third attempt, using Cu radiation at $40 \mathrm{kV} / 40 \mathrm{~mA}$ over 72 hours, reflection data were collected to a diffraction limit of $1.35 \AA$, with frames to $1.00 \AA$ with $0.5^{\circ}$ scans, shells collected for $24 \mathrm{~s} / 48 \mathrm{~s}$ per frame and the detector at 60 mm (data redundancy $=1.8, F^{2}=4.3$ and $R_{\mathrm{int}}=0.083$ ). This enabled a structural solution from a moderate direct methods attempt. It was apparent at an intermediate stage of refinement that there were considerable voids in the lattice amounting to $21 \%$ of the unit cell and containing solvent molecules of unknown composition and occupancy. The program SQUEEZE ${ }^{169}$ was used and the $R$-factor dropped from $18 \%$ to $12 \%$ after using this program. The refinement proceeded without any problems or use of restraints to give a satisfactory EsIO3 structure (with $Z^{\prime}=2$ ). There are small but significant differences between the two molecules A and B in the asymmetric unit. Crystals of EsIO3 can be grown from acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ solutions to produce colourless plates; however these decompose rapidly when handled (using several inert handling conditions) and we were able to observe diffraction and obtain a unit cell of one of these crystals: $a=11.89(2) \AA$, $b=12.24(2) \AA, c=18.77(2) \AA, \alpha=86.38(13)^{\circ}, \beta=78.71(14)^{\circ}, \gamma=65.49(16)^{\circ}$, Volume $=2439(7) \AA^{3}$ which is consistent with triclinic $\left(Z^{\prime}=2\right)$ and an indeterminate solvent composition in the lattice voids.


Fig. 99: $a$ ) ORTEP and $b$ ) space-filling diagrams of EsIO4

The EsIO4 structure (Fig. 99), contrary to most of the tennimides and trezimides was not isolated as solvate. The EsIO4 macrocyclic cavity is compact with $\mathrm{H} \cdots \mathrm{H}$ intraannular distances across the cavity of 4.13 and $4.18 \AA$. The internal amide "CO $\cdots$ CO" twist angles are $113.01^{\circ}(\mathrm{O} 1-\mathrm{C} 1 \cdots \mathrm{C} 2-\mathrm{O} 2),-112.52^{\circ}$ (O3-C3 $\left.\cdots \mathrm{C} 4-\mathrm{O} 4\right), 94.33^{\circ}$ (O5$\mathrm{C} 5 \cdots \mathrm{C} 6-\mathrm{O} 6$ ) and $-88.90^{\circ}$ (O7-C7‥C8-O8). The pyridine rings are in the $\mathbf{P}-\mathbf{s y n}$ (lateral, rings " 1 " and " 4 ") and P-anti (medial, rings " 2 " and " 3 ") conformations as in IO4, with distances between the medial pyridine nitrogen and hydrogen atoms of $3.191 \AA$ (N12A $\cdots \mathrm{H} 16 \mathrm{~A})$ and $3.308 \AA(\mathrm{~N} 22 \mathrm{~A} \cdots \mathrm{H} 46 \mathrm{~A})$, Hence, the pores are in "cc" state. The methyl ester $\mathrm{COOCH}_{3}$ moieties are co-planar with the pyridine rings. Due to the presence of many carbonyl and methyl moieties the aggregation in the EsIO4 crystal structure relies on a myriad of C-H $\cdots \mathrm{O}$ interactions.

An overview of the tennimides and trezimides results is presented in the "Discussion and Conclusions".

## DISCUSSION AND CONCLUSIONS

## 1. Benzamides and pyridinecarboxamides

The design of new materials continues unabated with a preoccupancy to maximise distinct physicochemical properties e.g. fluorescence, with thermal stability and melting point behaviour regarded as a relatively unimportant physical characteristic. Even though an enormous quantity of melting point data is available in the chemical literature and from databases, the prediction of melting points of organic compounds remains difficult though correlations of classes of organic compound have provided some distinct trends. ${ }^{238}$

The melting point results (Table 46) for $4 \times[3 \times 3]$ series of Mxx, NxxM, NxxF and $\mathbf{F x x}$ isomers demonstrate that trends previously noted in di-substituted benzenes ${ }^{11,}$ ${ }^{239}$ for meta- < ortho- < para-substitution show similar patterns, but with distinct combinations producing both the highest and lowest melting point ranges. Melting point differences between 62 and $112^{\circ} \mathrm{C}$ are observed between the highest and lowest mp 's in the four benzamide and pyridinecarboxamide isomer grids (depicted with * and *). The results suggest that proper consideration has to be given to the thermal stability and behaviour of closely related aromatic isomers and especially if they are combinations of di-substituted aromatics (as found in many materials). While melting point behaviour depends on many factors the following trends are clear.

There is a decrease in average melting point from the symmetrical pp (parapara) compounds to the $\mathbf{F} / \mathbf{M m o}$ compounds of the $\mathbf{F} / \mathbf{M x x}$ series and two NomF/M derivatives in the $\mathbf{N x x M} / \mathbf{F}$ series.

Table 46: Melting points ${ }^{\text {a }}$ for $\mathbf{M x x}, \mathbf{N x x M}, \mathbf{N x x F}$ and $\mathbf{F x x}$ isomer grids. ${ }^{\text {c }}$

| Mxx | Mp | Mm | Mo | No | Nm | Np | NxxM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| p | 181* | 106 | 129 | 105 | 148 | 162* | pM |
| m | 128 | 91 | 108 | 50* | 115 | 142 | mM |
| 0 | 105 | 79* | 116 | 65 | 107 | 125 | OM |
| 0 | 120 | 77* | 85 | 107 | $\underline{117}$ | $140{ }^{\text { }}$ | oF |
| m | 150, 148 | 151 | 89 | 78* | 122 | $\underline{132}$ | mF |
| p | $187^{*}$ | 186 | 135 | 94 | 133 | 135 | pF |
| $\mathrm{Fxx}^{\text {b }}$ | Fp | Fm | Fo | No | Nm | Np | NxxF |

${ }^{\text {a }}$ Average melting point range for all 36 compounds with highest denoted by and lowest by *.

These four $\mathbf{F} / \mathbf{M m o}$ and $\mathbf{N o m F} / \mathbf{M}$ compounds possess an ortho-pyridine $\mathrm{C}_{5} \mathrm{~N}$ ring N atom in combination with a $\mathrm{C}_{6}$ aromatic ring meta $-\mathrm{F} / \mathrm{CH}_{3}$ substituent. The trend follows Carnelly's rule. ${ }^{239}$ Of note is that the four compounds with $\mathbf{0 0}$ substituents have
higher melting points by $c a .20^{\circ} \mathrm{C}$ with a range of 65 to $116^{\circ} \mathrm{C}$, (average of $93^{\circ} \mathrm{C}$ ) as compared to the four $\mathbf{m o} / \mathbf{o m}$ derivatives 60 to $79^{\circ} \mathrm{C}$ (average of $71^{\circ} \mathrm{C}$ ).

Comparisons between the Fxx ( $131^{\circ} \mathrm{C}$ mp average) and Mxx ( $116^{\circ} \mathrm{C}$ ) series with $\operatorname{NxxF}\left(117^{\circ} \mathrm{C}\right)$ and $\mathbf{N x x M}\left(113^{\circ} \mathrm{C}\right)$ series demonstrates that the average melting points are remarkably similar (except for $\mathbf{F x x}$ ) although the ranges and order of melting point trends are unique within each of the four series.

The average para-isomer has a melting point of $137^{\circ} \mathrm{C}$, the average meta-isomer $115^{\circ} \mathrm{C}$ and the average ortho-isomer $102^{\circ} \mathrm{C}$ and averaged over the 20 of 36 isomers which contain each $p$-/m-/o-substituent. This helps explain why the overall melting point trend is $p>m>o$ but not the observed substitution pattern whereby the mom combination have the lowest melting points.

Table 47 summarises the salient features of all thirty six Mxx, Fxx, NxxM and NxxF benzamide/pyridinecarboxamide isomer grids and the two additional polymorphs. The table contains crystallographic and solid state results (space group, $Z / Z^{\prime}$, primary interaction, solid-state conformation), modelling data (gas phase conformation) and ${ }^{1} \mathrm{H}$ NMR (amide N-H shift, $\mathrm{CDCl}_{3}$ ).

Although benzamides and pyridinecarboxamides are not, strictly speaking, congeners, they have, sharing similar moieties, a high level of similarity (apart from the reversed amide bridge) that facilitates comparisons. The most common crystal system is monoclinic with 23 (61\%) of all crystal structures (38) with most frequent space group $P 2_{1} / \mathrm{c}$ or $P 2_{1} / \mathrm{n}$ (10). The space group $C c$ is represented by (NpoM, NpmF, NpoF), $P 2_{1}$ (Fom_O and NomM), P2/c (NppM) and Pc (Mop). The triclinic system is also prevalent (10), with $P \overline{1}$ as the most frequent (9) and $\mathbf{M p m}$ in $P 1$. The triclinic system is more prevalent in $\mathbf{F} / \mathbf{M x x}$ benzamides than the $\mathbf{N x x F} / \mathbf{M}$ pyridinecarboxamides and especially for Mxx. The orthorhombic crystal system is less abundant, with five structures in four space groups, $\mathrm{Pca}_{1}$ (Mom, Fmm) $P 2_{1} 2_{1} 2_{1}$ (NmoF), Pbca (NmoM) and Pbcn (Fpo).

The primary hydrogen bonding in the crystal structures of all 38 isomers can be analysed in four groups. The most common interaction is the amide $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ as $z i g$ zag chains in 18 structures. This usually arises in molecules where the pyridine N atom is positioned as para- or meta- and while having N as para- makes the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ convenient, isomers with meta-N usually have to have their $\mathbf{P}$ or $\mathbf{N}$ rings in a metastable anti conformation.

Table 47: Summary list of four isomer grids with selected structural features

| Isomer | Space group | $\boldsymbol{Z} / Z^{\prime}$ | Hydrogen bonding in solid state | Conformation (solid state) | Conformation (gas phase) | Match | Amide H shift $\left(\mathrm{CDCl}_{3}\right)$ /ppm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mpp | $P 2{ }_{1} / n$ | 4/1 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ | - | - | - | 8.30 |
| Mmp | $P \overline{1}$ | 4/2 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ | M-syn | M-anti | $x$ | 8.25 |
| Mop | Pc | 4/2 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ | M-syn\|M-anti | M-anti | $x / V^{2}$ | 8.23 |
| Mpm | P1 | 4/4 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ | P-syn | P-syn | $\checkmark$ | 8.11 |
| Mmm | $P \overline{1}$ | 4/2 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ | M-anti/P-anti | M-anti/P-syn | $\times$ | 8.16 |
| Mom | Pca2 ${ }_{1}$ | 4/1 | N-H.]N | M-anti/P-anti | M-anti/P-syn | $\times$ | 7.98 |
| Мро | $P \overline{1}$ | 2/1 | $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N})_{2}$ | P-syn | P-syn | $\checkmark$ | 8.70 |
| Mmo | $P 2_{1} / \mathrm{c}$ | 4/1 | $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N})_{2}$ | M-anti/P-syn | M-anti/P-syn | $\checkmark$ | 8.78 |
| Moo | $P \bar{l}$ | $2 / 1$ | $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N})_{2}$ | M-syn/P-syn | M-anti/P-syn | $\times$ | 8.99 |
| Fpp | $P 2_{1} / \mathrm{c}$ | 4/1 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ | - | - | $-^{1}$ | 8.01 |
| Fmp | $P 2{ }_{1} / \mathrm{c}$ | 4/1 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ | F-anti | F-anti | $\checkmark$ | 8.01 |
| Fop | $P 2{ }_{1} / \mathrm{c}$ | 4/1 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ | F-syn | F-syn | $\checkmark$ | 8.68 |
| Fpm_O | $P 2_{1} / n$ | 4/1 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ | P-syn | P-syn | $\checkmark$ | 8.56 |
| Fpm_N | $P 2{ }_{1} / n$ | 4/1 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ | P-anti | P-syn | $\times$ | 8.56 |
| Fmm | Pca ${ }_{1}$ | 4/1 | N-H.]N | F-anti/P-anti | F-anti/P-syn | $x$ | 8.45 |
| Fom_O | $P 2_{1}$ | 12/6 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ | F-syn/P-syn\|anti | F-syn/P-syn | $x / \sqrt{3}^{3}$ | 8.53 |
| Fom_F | $P 2{ }_{1} / n$ | 4/1 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ | F-syn/P-anti | F-syn/P-syn | $\times$ | 8.53 |
| Fpo | Pbon | 8/1 | $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N})_{2}$ | P-syn | P-syn | $\checkmark$ | 9.04 |
| Fmo | $P \overline{1}$ | 4/2 | $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N})_{2}$ | F-anti/P-syn | F-anti/P-syn | $\checkmark$ | 8.75 |
| Foo | $P \overline{1}$ | 4/2 | $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N})_{2}$ | F-syn/P-syn | F-syn/P-syn | $\checkmark$ | 9.03 |
| NppM | P2/c | 4/1 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ | - | - | $-^{1}$ | 8.00 |
| NpmM | $P 2{ }_{1} / n$ | 4/1 | N-H. ${ }^{\text {N }}$ | M-anti | M-anti | $\checkmark$ | 7.96 |
| NpoM | $C c$ | 4/1 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ | M-syn | M-syn | $\checkmark$ | 7.90 |
| NmpM | $P 2_{1} / \mathrm{c}$ | 4/1 | $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N}) \mathrm{cat}^{4}$ | N -syn | N-syn | $\checkmark$ | 8.22 |
| NmmM | $P \overline{1}$ | 4/2 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ | N-anti/M-anti | N-syn/M-anti | $\times$ | 8.26 |
| NmoM | Pbca | 8/1 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ | N-anti/M-anti | N-syn/M-syn | $\times$ | 7.81 |
| NopM | $P 2_{1} / \mathrm{c}$ | 4/1 | $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N})_{i}$ | N-syn | N-syn | $\checkmark$ | 9.90 |
| NomM | $P 2_{1}$ | 4/2 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ | N-syn/M-anti | N-syn/M-anti | $\checkmark$ | 9.94 |
| NooM | $P 2_{1} / \mathrm{c}$ | 4/1 | $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N})_{i}$ | N-syn/M-syn | N-syn/M-syn | $\checkmark$ | 10.03 |
| NppF | $P \overline{1}$ | 4/2 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ | - | - | $-^{1}$ | 7.91 |
| NpmF | Cc | 4/1 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ | F-syn | F-anti | $x$ | 8.03 |
| NpoF | Cc | 4/1 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ | F-anti ${ }^{5}$ | F-syn | $\times$ | 8.15 |
| NmpF | $P \overline{1}$ | 8/4 | $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N})_{4}{ }^{6}$ | N-syn | N -syn | $\checkmark$ | 8.44 |
| NmmF | $P 2_{1} / n$ | 4/1 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ | N-antil F-anti | N-syn/F-anti | $\times$ | 8.75 |
| NmoF | $P 2_{1} 2_{1} 2_{1}$ | 4/1 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ | N-syn/F-syn | N-syn/F-syn | $\checkmark$ | 8.23 |
| NopF | P2 ${ }_{1} / \mathrm{c}$ | 4/1 | $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N})_{i}$ | N -syn | N -syn | $\checkmark$ | 10.04 |
| NomF | $P 2_{1} / n$ | 8/2 | $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N})_{i}$ | N-syn/F-anti ${ }^{7}$ | N-syn/F-anti | $\checkmark$ | 10.13 |
| NooF | $P 2_{1} / n$ | 4/1 | $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N})_{i}$ | N-syn/F-syn | N-syn/F-syn | $\checkmark$ | 10.36 |

Notes: ${ }^{1}$ - non-applicable (N/A); ${ }^{2}$ Mop crystallises with two molecules in asymmetric unit, each with different M-ring conformation; ${ }^{\mathbf{3}}$ Fom_O polymorph has one of six molecules in the F-syn/P-anti conformation; ${ }^{4}$ NmpM forms catemers; ${ }^{5}$ minor component only in F-syn conformation; ${ }^{6} \mathbf{N m p F}$ forms tetramers; ${ }^{7}$ with only $\mathbf{3 \%}$ as $\mathbf{F}$-syn.

This is the case with all ' $\mathbf{X m m X}$ ' compounds as well as the $\mathbf{F p m} \mathbf{N}$ polymorph. Exceptions include the tetrameric $\mathbf{N m p F}$, catemeric $\mathbf{N m p M}$, mixed methyl/fluoro system NmpFM) and NmoF. A second group comprising 9 structures has the less
common $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bonding with $C$ (4) chains and is present in some $\mathbf{N x x F} / \mathbf{M}$ isomers such as $\mathbf{N p p F}$, $\mathbf{N p p M}$, NpoM, and $\mathbf{N m o M}$. The Mpm isomer and Fpm_O aggregate by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interactions having similar structures, as well as Fom_O (P-syn) and Fom_F (P-anti). The NomM structure forms $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bonds unexpectedly, however, the presence of an intramolecular $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N})_{i}$ interaction hampers the stability of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bond. NomM has a low melting point $\left(50^{\circ} \mathrm{C}\right)$ with difficulty in getting diffraction quality crystals. The third group comprises the six Mxo and Fxo isomers where the pyridine N atom is located ortho so that it has a unique role in dimer formation. Two $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions form a $R^{2}{ }_{2}(8)$ ring by the perfect match of Mxo molecular pairs, less so for Fxo. This is labelled in Table 29 as $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N})_{2}$ and is similar to the hydrogen bonded $(\mathrm{RCOOH})_{2}$ carboxylic acid dimers observed in centrosymmetric carboxylic acids. The Mxo and Fxo solid state and modelled conformations almost always match except for Moo where the Mo ring rotates in order to accomplish the important and short $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) interaction. The ortho nitrogen also causes an additional acidity of the amide hydrogen as can be observed in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ as a small additional deshielding effect (higher values of chemical shifts). The fourth group comprises the NoxM and NoxF isomers. Here the pyridine nitrogen is positioned ortho-, however, due to the amide linkage reversal, the amide hydrogen is now directed towards the pyridine N atom, facilitating the formation of intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding designated by $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N})_{i}$. The weakening of the amide hydrogen is noted in additional deshielding in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right)$. In NooF the additional $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ interaction additionally deshields the amide hydrogen ensuring its chemical shift is the lowest for all isomers (at 10.36 ppm ).

The type of hydrogen bonding can also be detected using IR spectroscopy. The presence of $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions gives a diffuse pattern of weak peaks ranging from 3400 to $2800 \mathrm{~cm}^{-1}$ whereas $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bonding is noted by a sharp peak $c a$. $3300 \mathrm{~cm}^{-1}$. The cyclic $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N})_{2}$ hydrogen bonding has a typical complex of elevated and merged medium peaks ranging from 3100 to $2900 \mathrm{~cm}^{-1}$. Finally, isomers with (N$\left.\mathrm{H}^{\cdots} \mathrm{N}\right)_{i}$ hydrogen bonding have a very strong and sharp peak ca. $3330 \mathrm{~cm}^{-1}$. It is interesting that in the unusual NomM isomer where both $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ and $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N})_{i}$ hydrogen bonding occurs the relevant $\mathrm{N}-\mathrm{H}$ (at $3286 \mathrm{~cm}^{-1}$ ) and $\mathrm{C}=\mathrm{O}$ (at $1700 \mathrm{~cm}^{-1}$ ) stretching vibrations are positioned at lower wavenumbers.

## 2. Carbamates

The melting point results for the five carbamate isomer grids are presented in Table 48. The most striking difference when comparing melting points of the benzamides and pyridinecarboxamides is the general increase of the carbamate melting points and the decrease of variability range. On average, the carbamate melting points are $\sim 40^{\circ}$ higher than the previous grids. The variability span is narrower and m.p. values are distributed more evenly. Nevertheless all CmoR compounds are found to have the lowest melting point in each isomer grid, especially $\mathbf{C m o M}$ and $\mathbf{C m o B r}$, as found as monohydrates.

In the benzamides and pyridinecarboxamides, the melting point distribution approximately follows Carnelly's rule ${ }^{239}$ while in the carbamate isomers the pattern seems to be less regular. The trends in melting points are different and the grids can be divided into the $\mathbf{C x x M} / \mathbf{O M e}$ and $\mathbf{C x x X}$ grids.

Table 48: Melting points ${ }^{a}$ for the CxxR isomer grids

| CxxF | pF | mF | oF | CxxM | pM | mM | oM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cp | 185.3* | 162.9 | 169.0 | Cp | 165.7 | 134.6 | 131.0 |
| Cm | 167.4 | 152.3 | 136.5* | Cm | 170.6 | 113.0 | 84.0* |
| Co | 179.9 | - | - | Co | 191.8* | 143.8 | 162.3 |
| CxxCl | pCl | mCl | oCl | CxxOMe | pOMe | mOMe | oOMe |
| Cp | 199.6 | 197.5 | 170.3 | Cp | 156.7 | 134.7 | 191.8* |
| Cm | 175.4 | 171.2 | 125.6* | Cm | 162.5 | 142.5 | 109.6* |
| Co | 199.8* | 175.4 | 146.1 | Co | 184.7 | 145.4 | 159.8 |
| CxxBr | pBr | mBr | OBr |  |  |  |  |
| Cp | 206.4* | 193.4 | 168.5 |  |  |  |  |
| Cm | 170.4 | 154.7 | 86.9* |  |  |  |  |
| Co | 196.6 | 175.5 | - |  |  |  |  |

${ }^{\text {a }}$ Average melting point range for all 42 carbamates with highest in a grid denoted by $\bullet$ and lowest by *.

In the $\mathbf{C x x X}$ isomer grids the $\mathbf{C m}$ compounds undoubtedly have lower melting points, while a decrease of melting points can be roughly estimated along the $\mathbf{p X}>\mathbf{m X}$ $>\mathbf{0 X}$ triad. The influence of the substituent can be roughly estimated as $\mathbf{C l}>\mathbf{B r}>\mathbf{F}$. It is interesting to note that the $\mathbf{C p p X}$ and $\mathbf{C o p X}$ isomers, both in the forms of microneedles have very high melting points. Nevertheless, it seems that the $\mathbf{C x x X}$ isomers irregularly follow the Carnelly's rule, ${ }^{239}$ while the $\mathbf{C m o X}$ compounds have the lowest melting points.

The melting points in the CxxM/OMe grids are lower that in the halocarbamates, with CxxM being lowest among all carbamates, but there is a certain lack
of regularity as seen in the benzamides or the halo-carbamates. It seems that in the $\mathbf{C x x M} / \mathbf{O M e}$ grids (especially in $\mathbf{C x x O M e}$ ) other factors different from symmetry are important. In CmmOMe it is clear that intramolecular forces involving methoxy moieties strongly influence the melting points, for the CpoOMe and CooOMe isomers melting points are unusually high.

Table 49 summarises the salient features of the CxxR isomer grids. The table, as in the previous section, contains crystallographic and solid state results (space group, $Z / Z^{\prime}$, primary interaction, solid-state conformation), modelling data (gas phase conformation) and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (amide $\mathrm{N}-\mathrm{H}$ shift, $\mathrm{CDCl}_{3}$ ). The $\mathbf{C o m F}, \mathbf{C o o F}$ and $\mathbf{C o o B r}$ data are excluded form the list.

Considering the fact that there are no $N$-(pyridyl)phenyl carbamates and only 29 basic phenylcarbamates structures available in $\mathrm{CSD}^{8}$, the 25 carbamate structures from this study presents an important contribution to structural science.

The majority of the determined structures (18) were found to be in the monoclinic crystal system, while two structures ( $\mathbf{C m p M}$ and $\mathbf{C m p O M e}$ ) are orthorhombic $\left(P 2_{1} 2_{1} 2_{1}\right)$, one $(\mathbf{C m m O M e})$ trigonal $(R 3 c)$ and four are triclinic $(P \bar{l})$. The most prevalent space group is $P 2_{I} / c$.

All crystal structures, except for the $\mathbf{C m o B r}$ and $\mathbf{C m o M}$ isomers, have some form of ${ }_{\text {carbamate }} \mathrm{N}-\mathrm{H} \cdots \mathrm{N}_{\text {pyr }}$ hydrogen bonding as their strongest and primary aggregation interaction. In contrast to the benzamides and pyridinecarboxamides no primary interactions involving the carbamate N -H with carbonyl or O 2 moiety were found. Most of these structures have chains forming $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions (14) while the CoxR compounds (8) form cyclic $\left(\mathrm{N}-\mathrm{H}^{\cdots} \mathrm{N}\right)_{2}$ hydrogen bonding dimers as seen in the Fxo and Mxo benzamides. Finally, the most remarkable carbamate structure is certainly the CmmOMe isomer with the disordered mOMe dihedral angle being in both plausible conformations. Apart from the $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N})_{2}$ dimerisation that is mandatory in orthopyridinyls, formation of trimers, tetramers and catemers rather than chains and columns is relatively rare but a peculiar phenomenon in the isomer grids.

Apart from the CmmOMe trimer, no disordered structures were found among the 25 carbamate structures. If the fact that conformational analysis showed $\mathbf{x R}$ (Rphenyl) moieties to be very flexible and the conformations readily interchangeable is taken into account, the absence of disorder, relatively widespread in benzamides and pyridinecarboxamides is indeed remarkable.

Table 49: Summary of the five carbamate isomer grids with selected structural features

| Isomer | Space group | $Z / Z^{\prime}$ | Hydrogen bonding in solid state | Conformation (solid state) | Conformation (gas phase) |  | Amide $\mathbf{H}$ shift $/ \mathbf{p p m}^{a}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\text { CppM }}$ | $P 2{ }_{1} / \mathrm{c}$ | 1 | $\mathrm{N}-\mathrm{H}^{\cdots} \mathrm{N}$ | - |  | - | 8.12 |
| CpmM | $P 2_{1} / n$ | 1 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ | M-anti | M-anti | $\checkmark$ | 8.17 |
| CpoM | $P 2_{1} / n$ | 2 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ | - |  | - | 8.02 |
| CmpM | $P 2_{1} 2_{1} 2_{1}$ | 1 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ | C-syn | C-syn | $\checkmark$ | 8.07 |
| CmmM | - | - | - | - | C-syn/ M-anti | - | 8.27 |
| CmoM | $P 2 / / c$ | 1 | ( $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}-\mathrm{H})_{2}{ }^{*}$ | C-syn | C-syn | $\checkmark$ | 8.19 |
| CopM | $P 2 / / \mathrm{c}$ | 1 | $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N})_{2}$ | C-syn | C-syn | $\checkmark$ | 10.47 |
| ComM | - | - | - | - | C-syn | - | 10.52 |
| CooM | $P 2_{1 / n}$ | 1 | $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N})_{2}$ | C-syn | C-syn | $\checkmark$ | 10.42 |
| CppOMe | $P 2_{1} / n$ | 1 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ | - | - | - | 7.87 |
| CpmOMe | $P 2 / / c$ | 1 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ | O-anti | O-syn | $\times$ | 8.20 |
| CpoOMe | $P 2 / / c$ | 1 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ | - | - | - | 8.14 |
| CmpOMe | $P 2_{1} 2_{1} 2_{1}$ | 1 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ | C-syn | C-syn | $\checkmark$ | 7.88 |
| CmmOMe | R3c | 1 | $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N})_{3}$ | C-syn/O-syn\|anti | C-syn/O-syn | $\checkmark / x$ | 8.09 |
| CmoOMe | - | - | - | - | C-syn | - | 7.81 |
| CopOMe | $P 2 / / c$ | 1 | $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N})_{2}$ | C-syn | C-syn | $\checkmark$ | 9.57 |
| ComOMe | $P \bar{l}$ | 1 | $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N})_{2}$ | C-syn/ O-syn | C-syn/O-syn | $\checkmark$ | 10.40 |
| CooOMe | $P \overline{1}$ | 1 | $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N})_{2}$ | C-syn | C-syn | $\checkmark$ | 10.40 |
| CppF | - | - | - | - | - | - | 7.30 |
| CpmF | - | - | - | - | F-anti | - | 8.10 |
| CpoF | - | - | - | - |  | - | 7.71 |
| CmpF | Pc | 2 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ | C-anti | C-syn | $x$ | 7.82 |
| CmmF | Cc | 1 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ | C-anti/ F-anti | C-syn/F-anti | $\times$ | 8.10 |
| CmoF | - | - | - | - | C-syn | - | 8.26 |
| CopF | $P \overline{1}$ | 1 | $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N})_{2}{ }^{*}$ | C-syn | C-syn | $\checkmark$ | 9.47 |
| CppCl | - | - | - | - | - | - | 7.98 |
| CpmCl | $P 2_{1}$ | 1 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ | Cl-anti | Cl-syn | $\times$ | 7.14 |
| CpoCl | - | - | - | - | - | - | 8.04 |
| CmpCl | Pc |  | $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ | C-anti | C-syn | $x$ | 7.49 |
| CmmCl | Cc | 1 | $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ | C-anti/ Cl-anti | C-syn/Cl-syn | $\times$ | 7.70 |
| CmoCl | - | - | - | - | C-syn | - | 8.40 |
| CopCl | $P \overline{1}$ | 1 | $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N})_{2}$ | C-syn | C-syn | $\checkmark$ | 9.43 |
| ComCl | - | - | - | - | C-syn/Cl-syn | - | 9.58 |
| CooCl | - | - | - | - | C-syn | - | 10.5 |
| CppBr | - | - | - | - | - | - | 7.09 |
| CpmBr | - | - | - | - | Br-syn | - | 7.27 |
| CpoBr | - | - | - | - | - | - | 8.22 |
| CmpBr | Pc | 2 | $\mathrm{N}-\mathrm{H}^{\cdots} \mathrm{N}$ | C-anti | C-syn | $\times$ | 7.83 |
| CmmBr | - | - | - | - | C-syn/Br-syn | - | 8.08 |
| CmoBr | $P 2 / / c$ | 1 | $(\mathrm{N}-\mathrm{H} \cdots \mathrm{O}-\mathrm{H})_{2}$ | C-syn | C-syn | $\checkmark$ | 8.06 |
| CopBr | $P 2 / / n$ | 1 | $(\mathrm{N}-\mathrm{H} \cdots \mathrm{N})_{2}$ | C-syn | C-syn | $\checkmark$ | 9.36 |
| Combr | - | - | - | - | C-syn/Br-syn | - | 10.00 |

${ }^{a}$ in $\mathrm{CDCl}_{3},{ }^{*}$ monohydrates

Alternatively, the flexibility of the R-phenyl rings along with steric blockage in the ortho isomers and relative instability may be the cause of low crystallinity and poor morphology for most of the $N$-(pyridyl)phenyl carbamates that prevented better growth
of single crystals and completion of crystal structure determination. Secondly, most of the CxxOMe and CxxM isomer crystal structures have been solved, in contrast to the CxxX crystal structures. Therefore, there is a relative negative influence of halogen substituents on carbamate crystal growth; while the methyl and methoxy moieties readily engage into secondary interactions; the halogen substituents do not have that desirable feature especially if in the ortho and meta positions. Instead, the main $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions are formed, contributing to one dimensional crystal growth, typically resulting in microscopic fragile needles.

The conformational analysis shows that conformations in 13 solid state molecular structures (52\%) comply with corresponding calculated structures. The conformational match is perfect in the CxxM isomer grid, frequent in the CxxOMe isomer grid, but significantly less frequent in the $\mathbf{C x x X}$ isomer grids, mostly due to the syn/anti swops in the CmxX isomers. The occurrence of mismatch is approximately equally frequent in carbamates as for the benzamides and pyridinecarboxamides.

The relationship between the crystal structure of the carbamates and their IR spectra is well represented in so-called "N-H" region. This region spans from $3300 \mathrm{~cm}^{-1}$ to $2700 \mathrm{~cm}^{-1}$ where the $\mathrm{N}-\mathrm{H}$ vibration bands usually appear. Generally, as shown for the benzamides and pyridinecarboxamides, isomers with similar bonding schemes usually have similar band patterns in the $\mathrm{N}-\mathrm{H}$ region, and it might be considered as a useful predictor of primary bonding similarity. Moreover, if band patterns of two or more analogous isomers are almost identical, it might indicate the presence of isomorphism. It is best seen in the analogous isomers, such as the $\mathbf{C m p X}$ and $\mathbf{C o p X}$ (except CopBr) isomers as well as between the $\mathbf{C m p M}$ and $\mathbf{C m p O M e}$ isomers where the band patterns in $\mathrm{N}-\mathrm{H}$ region are almost identical, and structure determination by SXRD reveals isomorphism.

Next, the $\mathrm{N}-\mathrm{H}$ regions of the analogous $\mathbf{C m m F}$ and $\mathbf{C m m C l}$ isomers are shown to be identical, while XRD revealed isostructurality. However, crystal structure determination of the bromine analogue $\mathbf{C m m B r}$ failed due to the poor single crystal quality. Nevertheless, the $\mathbf{C m m B r}$ isomer has a band pattern in $\mathrm{N}-\mathrm{H}$ region identical to $\mathbf{C m m C l}$, which clearly indicates that the $\mathbf{C m m B r}$ isomer is probably isostructural with the analogous $\mathbf{C m m C l}$ and $\mathbf{C m m F}$ isomers.

For the CppR compounds, the N-H region of $\mathbf{C p p M}$ is similar to the $\mathbf{C p p C l}$ and CppBr but different to CxxOMe, which is similar to CppF. Next, the similarity of the N -H region can be noticed between other analogous isomers, like the $\mathbf{C p o X}$ isomers as
well as the $\mathbf{C p m X}$ isomers, suggesting the same or similar intermolecular bonding schemes.

The N-H regions of the trimeric CmmOMe (R3c) isomer and its methyl analogue $\mathbf{C m m M}$ are very similar, indicating possible trimeric hydrogen bonding in CmmM. Unfortunately, low quality of the CmmM single crystals hampered its structural determination. A similar situation is in the case of the analogous ComOMe and ComM isomers. Correlation of band patterns in the N-H region may result in predictions opposite to the expected ones, and/or lead to a surprising conclusion.

The $\mathrm{N}-\mathrm{H}$ region band pattern of the $\mathbf{C m o O M e}$ isomer is similar to the $\mathbf{C m o C l}$ and $\mathbf{C m o F}$ isomers, but different from the $\mathbf{C m o M}$ isomer suggesting that hydrogen bonding in CmoOMe is, perhaps, not as seen in $\mathbf{C m o M}$ (hydrate complex in $P 2_{l} / c$ ), but is more similar to the hydrogen bonding in the $\mathbf{C o m X}$ isomers. However, in $\mathbf{C m o B r}$ a strong band is present at $3524 \mathrm{~cm}^{-1}$, corresponding with presence of a water molecule as solvate. Surprisingly, this band is absent in $\mathbf{C m o M}$, the only other carbamate that was found in the monohydrate form. This clearly suggests that bulk $\mathbf{C o m B r}$ is monohydrate, while the CmoM is probably not, although the melting point assessment suggests the opposite. The CmoM monohydrate single crystal was perhaps formed only during the crystal growth process, possibly due to the moisture in solvent or environment. Hence, the crystal structure of the dry, bulk $\mathbf{C m o M}$ should be considered as it is still unknown.

All these cases, together with similar trends in benzamides and pyridinecarboxamides emphasise the importance of IR spectroscopy and its ability to predict primary hydrogen bonding in analogous isomers with acceptable confidence.

## 3. Tennimides and trezimide

The development of tennimides and trezimides presents an important entry point into a new class of compounds. Despite preliminary difficulties and the low yields, the " $4+4$ " synthesis of tennimides and trezimides as described in standardized procedure 2 (Chapter III, section 2.3) proved to be reliable and reproducible, yielding satisfactory amounts of both tennimides and trezimides. However, it is evident that the synthesis of tennimides and trezimides bearing the $\mathbf{C N}$ functional group at the paraposition (using 6-amino-3-pyridinecarbonitrile) or $\mathbf{2 5 I O}$ macrocycles (using aminopyrazine) failed, even after several attempts. Possible explanations might be found in the relationship between electron-withdrawing/donating properties of a substituent or heteroatom and stability of the imide backbone. It was noticed (Chapter

III, Section 11.2) that the EsIO3 trezimide is labile in a strong polar solvent such as DMSO, while most other macrocycles are stable, including the EsIO4 tennimide. Table 50 shows common organic functional groups and their electron-withdrawing/donating properties relative to hydrogen as a reference. All the functional groups that were substituents in the attempted 2-aminopyridines are shown in red. It is indicative that stability of tennimides and trezimides e.g. imide backbone declines with a substituent having stronger electron-withdrawing property; MIO4, IO3/4, 26IO3/4, FIO3/4, CIIO3/4, and BrIO3/4 were stable, EsIO3/4 less stable, while the synthesis of the supposed CNIO3/4 macrocycles failed. One possible explanation is that a strong withdrawal of electrons as expected with $\mathbf{C N}, \mathbf{N O}_{2}$ and $\mathbf{C O O H} / \mathbf{C H}_{3}$ moieties destabilises the imide " $(\mathrm{O}=\mathrm{C})_{2} \mathrm{~N} R$ " linker. Nevertheless, additional synthesis with other functional groups such as hydroxy, amino, methoxy, ethyl, nitro and trifluoromethyl are required in order to examine this hypothesis and establish a rule.

In general, both tennimides and trezimides are white, odourless crystalline compounds. The stability of tennimides seems to be better than the stability of trezimides as shown by the ${ }^{1} \mathrm{H}$-NMR of EsIO3/4 and by the experience with preparative TLC. Moreover, the variable temperature ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (ESI III, Section 1) indicates differences in stability and rigidity/flexibility between tennimides and trezimides, suggesting much better flexibility for trezimides since the trezimide peaks resolve at lower temperatures.

The stability of tennimides arises from the fact that a natural conformation of the imide linker $\left[(\mathrm{O}=\mathrm{C})_{2} \mathrm{~N} R\right]$ is almost perfectly appropriate for the cyclisation into a tetramer, without need for significant conformational change. The imide linker naturally has a conformational twist of $\approx 90 \pm 15^{\circ}$ that can be observed in all tennimides as successive 'CO $\cdots$ CO' dihedral angle twist along the condensed macrocycles as $+/-/+/-90 \pm 15^{\circ}$. Fig. $\mathbf{1 0 2}$ shows successful overlap of the $\mathbf{I O 4}$ molecular structure with DOXKOR ${ }^{163}$ with no significant deviation.

Table 50: Common organic functional groups (carbonyl oxygen as [O])

| Electron donating groups (EDG) |  |  |  | Refe- | Electron withdrawing groups (EDG) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Strong | Moderate | Weak | rence | Weak | Moderate | Strong |  |  |
| $-\mathrm{O}^{-},-\mathrm{NR}_{2}$, | $-\mathrm{HN}-\mathrm{C}[\mathrm{O}]-\mathrm{R}$ | $-\mathrm{R},-\mathrm{Ph}$, | H- | $-\mathrm{F},-\mathrm{Cl}$, | $-\mathrm{C}[\mathrm{O}] \mathrm{H},-\mathrm{C}[\mathrm{O}] \mathrm{R},-$ | $-\mathrm{CF}_{3},-\mathrm{CN}$, |  |  |
| $-\mathrm{NH}_{2},-\mathrm{OH},-$ | $-\mathrm{O}-\mathrm{C}[\mathrm{O}]-\mathrm{R}$ | $-\mathrm{CH}=\mathrm{CR}_{2}$ |  | $-\mathrm{Br},-\mathrm{I}$ | $\mathrm{COOR},-\mathrm{COOH}$ | $-\mathrm{SO}_{3} \mathrm{H},-\mathrm{NH}_{3}^{+}$ |  |  |
| OR |  |  |  |  |  | $-\mathrm{NO}_{2,}-\mathrm{NR}_{3}^{+}$ |  |  |

Tennimide and trezimide stability


Fig. 100: Overlap of (IO4: $\left.\mathrm{CDCl}_{3}\right)$ with $\mathbf{D O X K O R}{ }^{163}$ frame (red) highlights their close fit of $0.24 \AA$ per non-H atom.

Finally, the ab initio modelling (Chapter III, Section 5.4) suggests that the imide linker geometry found in tennimides is almost equal to its expected gas phase global minimum. Therefore, tennimides can be formed and be stable since a natural conformation of the imide linker moiety matches a conformation required for the tetrameric cyclisation.

The same ' $\mathbf{C O} \cdots \mathbf{C O}$ ' twists dihedral angle of $\approx 90^{\circ}$ can be observed in the P conformation of most of the trezimides, usually accompanied by considerable distortion about the isophthaloyl residue to accommodate cyclisation (in a wider range of 'CO $\cdots \mathrm{CO}$ ' torsion angles). As a result, trezimides are more flexible, although less stable. In general, trezimides tend to adopt the P conformation, as seen in all trezimides apart from 26103 where another, the R conformation was discovered. In the $\mathbf{R}$ conformation two 'CO $\cdots$ CO' twist dihedral angles are $\approx 90^{\circ}$, while the third is $\approx 60^{\circ}$. However, conformational change involves deviations of more than one torsion angle. Even though the rigorous high accuracy energy calculations (CBS-QB3) ${ }^{171}$ for the P and R conformations were not undertaken (due to exceptional computational costs and limitations), the $a b$ initio molecular modelling and overlays of experimental and hypothetical conformers (Chapter III, Section 5.4) suggest the plausibility of both conformations and possible existence of conformational polymorphs.

It is interesting to note that Evans and Gale ${ }^{218}$ managed to isolate the $\mathbf{I F}_{4 / 5}$ tetramer, but not a hypothetical $\mathbf{I F}_{4 / 5}$ trimer that would be analogous to the $\mathbf{x I O} 3$ trezimides. Apart from possible technical reasons, the inability of tetra- and pentafluoroaniline to form a trimer might be explained by possible unfavourable steric conditions due to the presence of fluorine atoms in positions 2 and 6 (ortho). Compared
with the $\mathbf{x I O 3}$ trezimides, such an $\mathbf{I F}_{4 / 5}$ trimer might not be sufficiently stable to be isolated using standard methods.

There is no significant difference between molecular structures of the tennimides, since they all have similar geometries. The observed differences of the solid state structure parameters, such as the imide "CO $\cdots$ CO" twist angles, intraannular $\mathrm{H} \cdots \mathrm{H}$ distances, open or closed cavity pores, $\mathbf{P}-\mathbf{s y n} / \mathbf{P}$-anti conformational isomerism depend mostly on crystallisation conditions and solvent. Since both tennimides and trezimides are abundant in acceptors incorporation of a solvent during crystal growth is almost a rule, especially in the trezimides. However, IR data reveals that even some macrocycles (BrIO3) were found to be solvates, their bulk material is not in the form of a solvate. This indicates that incorporation of solvent is a result of a slow crystal growth, significantly improving quality of single crystals.

Tennimides derived from 2-AP show existence of P-syn/P-anti conformational isomerism, while those derived from 26-APM don't. This fact can also be observed in variable temperature ${ }^{1} \mathrm{H}$-NMR experiments (ESI III) where peaks of the 26IO4/3 macrocycles resolve at lower temperature compared to the $\mathbf{I O 4} / 3$ macrocycles. In general, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ experiments show that $\mathbf{P}-\mathbf{s y n} / \mathbf{P}$-anti conformational isomerism contributes to their conformational variability. The solid state molecular and crystal structures reveal that different tennimides are found to have different $\mathbf{P}$-syn/P-anti conformational states; particular conformations are often the result of intermolecular interactions and influence of crystal solvent. However, no definitive conclusion can be drawn and additional conformational studies, both theoretical and experimental should be undertaken in order to examine which conformation (under which conditions) is more plausible. The main limitation for theoretical studies is the actual size of the tennimide molecules, since rigorous conformational study on a whole molecule would be computationally very costly. Therefore, experimental conformational studies might be more appropriate for these systems in order to answer the questions on both $\mathbf{P}-\mathbf{s y n} / \mathbf{P}-$ anti conformational isomerism and "open-closed" dynamics of the tennimide pore.

## 4. Conclusions

The study of isomer grids has facilitated an in-depth analysis of the solid-state and computational models for 61 compounds in nine isomer grids as well as being able to broaden the correlations when examining physicochemical trends e.g. melting points.

Of particular note is that $c a .35 \%$ of the molecules studied in benzamide/pyridinecarboxamide and $c a .50 \%$ in carbamate isomer grids have different conformations in the solid state and ab initio calculations in a three/four torsion angle system that can be reduced to two with the linker torsion angles ( $\delta$ and $\gamma$ ) considered invariant due to multiple bonding character. This is of relevance especially in the modelling of more complex molecules in guest:host systems where the models and diffraction derived data may differ due to local minima (LM)/saddle points being mistaken for global minima (GM). This disparity varies little with basis set and incorporation of additional diffuse/polarisation functions. Analysis using solvation models typically drops the rotational barriers with increasing polarity which can facilitate interconversion between different conformations/rotamers. While solid state computational calculations will enable more comparisons and provide more answers in the future, the important message is that the use of solid state results for ab initio calculations and optimisations (from experiments) may only provide (optimise to) a local minimum (LM) and not the global minimum (GM) for the molecule in question. The calculation of theoretical data at local minima would only be valid for that particular local minimum and not a true representation of the molecule. It is critically important to analyse (scan) all relevant torsion angles ( $\pm 180^{\circ}$ ) where possible and rank in order of importance so as to get a 'true' picture of the conformational preferences of the molecule under study. In the present isomer grids the "XmmX" compounds are examples where the solid-state and calculated results do not match. The combined analysis has proven extremely useful in rationalising the structural results and difficulty in obtaining quality crystals for particular isomers. Furthermore, the current study shows the potential of ab initio conformational analysis in gas phase in understanding polymorphism and disorder in the solid state. The most remarkable structures of the benzamides and pyridinecarboxamide, Moo, NmpF, NmpM, present a valuable addition to the area of crystallography and structural science.

Next, despite the difficulties, the study has faced the challenge of structurally unexplored and demanding carbamates i.e. phenyl- $N$-pyridinyl-carbamates crystal structures, adding 25 new structures to CSD, and upgrading structural knowledge on carbamates. The most remarkable structure, CmmOMe presents an important and rare example of small drug-like molecule aggregation as a hydrogen bonded trimer. ${ }^{206-210}$ Correlation of physical-chemical properties showed the importance of position of a substituent, rather than its nature. IR spectroscopy proved useful due to its ability to
predict primary hydrogen bonding in analogous isomers with acceptable confidence, and to challenge the generalisation of structural data.

The development of tennimides and trezimides as new macrocycles based on an imide backbone, presents an important entry point into a potentially fruitful area of rich chemistry. A series of new macrocycles including IO3/4 and 26IO3/4 and their derivatives ( $\mathbf{F}, \mathbf{C l}, \mathbf{B r}, \mathbf{C H}_{3}$, and $\mathbf{C O O C H} 3$ ) has been synthesised, thoroughly characterised by IR and NMR spectroscopy and their molecular and crystal structures have been fully determined and analysed. Although based on a previously reported prototype, ${ }^{218}$ development of tennimides as stable and rigid molecules presents an important breakthrough. Furthermore, discovery of trezimides is especially important since no analogous trimeric imide macrocycle has been reported.

Synthesis of tennimides and trezimides has been accomplished using a one-step synthetic strategy, while the purification relies on simple organic and chromatographic methods. The described standardised " $4+4$ " synthetic and purification procedure proved to be reproducible over a range of derivatives and presents a firm basis for synthesis of analogous macrocycles using a range of 2-AP/26-APM derivatives or other acyl dichlorides such as pyridine-2,6-dicarbonyl dichloride. Future studies on stability over a range of conditions, as well as synthesis of additional derivatives $\left(-\mathrm{NH}_{2},-\mathrm{OH},-\mathrm{OR},-\right.$ $\mathrm{COOH},-\mathrm{CH}=\mathrm{CR}_{2}$ ), theoretical and spectroscopic studies have yet to answer opened questions.

Tennimides and trezimides proved to be rigid and stable compounds with similar macrocyclic geometry. Their stability, especially stability of bromo derivatives, will allow further derivatisation and utilisation via simple substitution reactions expanding the area. Addition of hydrophilic moieties such as amino or carboxyl will increase solubility in water and open possibilities for future biological and pharmacological studies, especially targeting $\mathrm{K}_{\mathrm{v}}$ channels or other biological targets with new molecules based on tennimide or trezimide scaffolds. In particular, geometry and symmetry of these macrocycles, as well as stability and rigidity of tennimides suggest possible roles in medicinal chemistry. Another direction of investigations might be organometallic derivatisation and utilisation in the area of supramolecular chemistry and molecular machines.

REFERENCES

10 R. Boese, M. T. Kirchner, J. D. Dunitz, G. Filippini and A. Gavezzotti, Helv. Chim. Acta, 2001, 84, 1561-1577.

11 Y. L. Slovokhotov, I. S. Neretin and J. A. K. Howard, New J. Chem., 2004, 28, 967-979.

12 T. Gelbrich and M. B. Hursthouse, CrystEngComm, 2006, 8, 448-460.

16 G. Tuchalski, F. Emmerling, K. Groeger, A. Haensicke, T. Nagel and G. Reck, J. Mol. Struct., 2006, 800, 28-44.

17 C. M. Coleman, J. M. D. MacElroy, J. F. Gallagher and D. F. O'Shea, J. Comb. Chem., 2002, 4, 87-93.

18 E. A. Collier, R. J. Davey, S. N. Black and R. J. Roberts, Acta Crystallogr. Sect. B-Struct. Sci., 2006, B62, 498-505.

19 K. Kato, M. Sugahara, N. Tohnai, K. Sada and M. Miyata, Cryst. Growth Des., 2004, 4, 263-272.
A. G. Orpen, Chem. Soc. Rev., 1993, 22, 191-197.
F. H. Allen and W. D. S. Motherwell, Acta Crystallogr. Sect. B-Struct. Sci., 2002, B58, 407-422.
G. M. Sheldrick, Acta Crystallogr. Sect. A, 2008, A64, 112-122.
G. G. Hall, Chem. Soc. Rev., 1973, 2, 21-28.
J. Gerratt, D. L. Cooper, P. B. Karadakov and M. Raimondi, Chem. Soc. Rev., 1997, 26, 87-100.
W. Thiel, Adv. Chem. Phys., 1996, 93, 703-757.
M. Zimmer, Chem. Rev., 1995, 95, 2629-2649.
F. H. Allen, Acta Crystallogr. Sect. B-Struct. Sci., 2002, B58, 380-388.
T. Gelbrich, M. B. Hursthouse and T. L. Threlfall, Acta Crystallogr. Sect. BStruct. Sci., 2007, B63, 621-632.
D. Chopra and T. N. G. Row, CrystEngComm, 2008, 10, 54-67.
C. Capacci-Daniel, S. Dehghan, V. M. Wurster, J. A. Basile, R. Hiremath, A. A. Sarjeant and J. A. Swift, CrystEngComm, 2008, 10, 1875-1880.
A. Abad, C. Agullo, A. C. Cunat, C. Vilanova and M. C. R. de Arellano, Cryst. Growth Des., 2006, 6, 46-57.

0 V. R. Thalladi, M. Nusse and R. Boese, J. Am. Chem. Soc., 2000, 122, 9227- 9236.
S. M. S. V. Wardell, M. V. N. de Souza, J. L. Wardell, J. N. Low and C. Glidewell, Acta Crystallogr. Sect. B-Struct. Sci., 2007, B63, 879-895.
F. H. Allen, S. E. Harris and R. Taylor, J. Comput. Aided Mol. Des., 1996, 10, 247-254.
A. D. McNaught and A. Wilkinson, IUPAC. Compendium of Chemical Terminology, Blackwell Scientific Publications, Oxford, 1997.
K. A. Brameld, B. Kuhn, D. C. Reuter and M. Stahl, J. Chem. Inf. Model., 2008, 48, 1-24.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision B. 01, Gaussian, Inc., Wallingford CT, 2010.
W. H. Moos, C. R. Hurt and G. A. Morales, Mol. Divers., 2009, 13, 241-245.
J. Elemans, E. J. A. Bijsterveld, A. E. Rowan and R. J. M. Nolte, Eur. J. Org. Chem., 2007, 5, 751-757.
R. B. Moffett, A. Robert and L. L. Skaletzky, J. Med. Chem., 1971, 14, 963-968.
S. W. Miao, J. M. Bao, M. L. Garcia, J. L. Goulet, X. F. Hong, G. J. Kaczorowski, F. Kayser, G. C. Koo, A. Kotliar, W. A. Schmalhofer, K. Shah, P. J. Sinclair, R. S. Slaughter, M. S. Springer, M. J. Staruch, N. N. Tsou, F. Wong, W. H. Parsons and K. M. Rupprecht, Bioorg. Med. Chem. Lett., 2003, 13, 11611164.
J. M. McBride, D. T. Smith, S. R. Byrn, R. B. Borgens and R. Shi, Neuroscience, 2007, 148, 44-52.
M. C. Jetter, J. J. McNally, M. A. Youngman, M. E. McDonnell, A. E. Dubin, N. Nasser, S. P. Zhang, E. E. Codd, R. W. Colburn, D. R. Stone, M. R. Brandt, C. M. Flores and S. L. Dax, Bioorg. Med. Chem. Lett., 2008, 18, 2730-2734.
Z. Gao, T. Zhang, M. Wu, Q. Xiong, H. Sun, Y. Zhang, L. Zu, W. Wang and M. Li, J. Biol. Chem., 2010, 285, 28322-28332.
R. Berger, G. Resnati, P. Metrangolo, E. Weber and J. Hulliger, Chem. Soc. Rev., 2011, 40, 3496-3508.

Dalfampridine, US Food and Drug Administration, 2011.
M. Yoshikawa, K. Motoshima, K. Fujimoto, A. Tai, H. Kakuta and K. Sasaki, Bioorg. Med. Chem., 2008, 16, 6027-6033.
P. M. Harrington, Heterocycles, 1993, 35, 683-687.
R. U. Kadam, J. Tavares, V. M. Kiran, A. Cordeiro, A. Ouaissi and N. Roy, Chem. Biol. Drug Des., 2008, 71, 501-506.
J. Y. Qi, Q. Y. Yang, S. S. Chan, Z. Y. Zhou and A. S. C. Chan, Acta Crystallogr. Sect C-Cryst. Struct. Commun., 2004, C60, M210-M211.
C. R. Wilson and O. Q. Munro, Acta Crystallogr. Sect. C-Cryst. Struct. Comтип., 2010, C66, 513-516.
S. H. van Rijt, A. J. Hebden, T. Amaresekera, R. J. Deeth, G. J. Clarkson, S. Parsons, P. C. McGowan and P. J. Sadler, J. Med. Chem., 2009, 52, 7753-7764.
C. Ge, X. Zhang, W. Guan and Q. Liu, J. Chem. Crystallogr., 2006, 36, 459464.
C. Ge, H. Kou, Z. Ni, Y. Jiang and A. Cui, Inorg. Chim. Acta, 2006, 359, 541547.
W. Jacob and R. Mukherjee, Inorg. Chim. Acta, 2006, 359, 4565-4573.
J. Y. Qi, H. X. Ma, X. J. Li, Z. Y. Zhou, M. C. K. Choi, A. S. C. Chan and Q. Y. Yang, Chem. Commun., 2003, 11, 1294-1295.
A. Das, S. M. Peng, G. H. Lee and S. Bhattacharya, New J. Chem., 2004, 28, 712-717.
S. Nag, R. J. Butcher and S. Bhattacharya, Eur. J. Inorg. Chem., 2007, 9, 12511260.
M. Dasgupta, H. Tadesse, A. J. Blake and S. Bhattacharya, J. Organomet. Chem., 2008, 693, 3281-3288.
T. Yang, J. Y. Zhang, C. Tu, J. Lin, Q. Liu and Z. J. Guo, Chin. J. Inorg. Chem., 2003, 19, 45-48.
J. Y. Qi, Y. M. Li, Z. Y. Zhou, C. M. Che, C. H. Yeung and A. S. C. Chan, $A d v$. Synth. Catal., 2005, 347, 45-49.
W. Jacob and R. Mukherjee, J. Chem. Sci., 2008, 120, 447-453.
J. Y. Zhang, Q. Liu, C. Y. Duan, Y. Shao, J. Ding, Z. H. Miao, X. Z. You and Z. J. Guo, J. Chem. Soc., Dalton Trans., 2002, 4, 591-597.
T. W. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, John Wiley \& Sons Inc., New York, 1999.

53 D. T. Smith, R. Shi, R. B. Borgens, J. M. McBride, K. Jackson and S. R. Byrn, Eur. J. Med. Chem., 2005, 40, 908-917.

54 J. M. McBride, D. T. Smith, S. R. Byrn, R. B. Borgens and R. Y. Shi, Eur. J. Pharm. Sci., 2006, 27, 237-242.

55 F. Norberto, S. Santos, D. Silva, P. Herves, A. S. Miguel and F. Vilela, J. Chem. Soc. -Perkin Trans. 2, 2002, 6, 1162-1165.

56 I. Lalezari, H. Golgolab, A. Shafiee and M. Wossoughi, J. Pharm. Sci., 1973, 62, 332-333.

57 H. Matondo, N. Benevides, M. Tissut, M. Bergon, A. Desavignac, J. P. Calmon and A. Lattes, J. Agric. Food Chem., 1989, 37, 169-172.
D. Kopecny, P. Briozzo, H. Popelkova, M. Sebela, R. Koncitikova, L. Spichal, J. Nisler, C. Madzak, I. Frebort, M. Laloue and N. Houba-Herin, Biochimie, 2010, 92, 1052-1062.

59 V. Kapchina-Toteva and D. Stoyanova, Biol. Plant., 2003, 46, 337-341.
60 M. Somleva, V. Kapchina-Toteva, V. Alexieva, I. Sergiev and E. Karanov, J. Plant Physiol., 2000, 156, 623-627.

61 M. M. Somleva, V. Kapchina, V. Alexieva and E. Golovinsky, Plant Growth Regul., 1995, 16, 109-112.

62 R. Shimizu, H. Iwamura and T. Fujita, Z. Naturforsch. (C), 1990, 45, 89-95.
63 A. D. Wickenden, J. L. Krajewski, B. London, P. K. Wagoner, W. A. Wilson, S. Clark, R. Roeloffs, G. McNaughton-Smith and G. C. Rigdon, Mol. Pharmacol., 2008, 73, 977-986.
J. Aqvist and V. Luzhkov, Nature, 2000, 404, 881-884.

69 S. Garofoli, G. Miloshevsky, V. L. Dorman and P. C. Jordan, in Ion Channels: from Atomic Resolution Physiology to Functional Genomics, Novartis Foundation Symposium, 2002, pp. 109-126.

70 C. Biervert, B. C. Schroeder, C. Kubisch, S. F. Berkovic, P. Propping, T. J. Jentsch and O. K. Steinlein, Science, 1998, 279, 403-406.
J. Vohra, Heart Lung Circ., 2007, 16, S5-S12.
S. Y. Chiu and J. M. Ritchie, Nature, 1980, 284, 170-171.
S. I. V. Judge and C. T. Bever, Pharmacol. Therapeut., 2006, 111, 224-259.
R. MacKinnon, Nature, 1991, 350, 232-235.
E. V. Orlova, M. Papakosta, F. P. Booy, M. van Heel and J. O. Dolly, J. Mol. Biol., 2003, 326, 1005-1012.
M. S. P. Sansom, I. H. Shrivastava, J. N. Bright, J. Tate, C. E. Capener and P. C. Biggin, Biochim. Biophys. Acta, 2002, 1565, 294-307.
C. D. Sansom and S. P. Mark, Biophys. J., 2003, 85, 2787-2800.
D. A. Doyle, J. M. Cabral, R. A. Pfuetzner, A. Kuo, J. M. Gulbis, S. L. Cohen, B. T. Chait and R. MacKinnon, Science, 1998, 280, 69-77.
Y. Zhou, J. H. Morais-Cabral, A. Kaufman and R. MacKinnon, Nature, 2001, 414, 43-48.
A. Kuo, J. M. Gulbis, J. F. Antcliff, T. Rahman, E. D. Lowe, J. Zimmer, J. Cuthbertson, F. M. Ashcroft, T. Ezaki and D. A. Doyle, Science, 2003, 300, 1922-1926.
Y. Jiang, A. Lee, J. Chen, V. Ruta, M. Cadene, B. T. Chait and R. MacKinnon, Nature, 2003, 423, 42-48.
S. B. Long, E. B. Campbell and R. MacKinnon, Science, 2005, 309, 897-903.
C. E. Capener, H. J. Kim, Y. Arinaminpathy and M. S. Sansom, Hum. Mol. Genet., 2002, 11, 2425-2433.
V. B. Luzhkov, J. Nilsson, P. Arhem and J. Aqvist, Biochim. Biophys. Acta, 2003, 652, 35-51.
S. Mondal, R. M. Babu, R. Bhavna and S. Ramakumar, In Silico Biol., 2007, 7, 175-186.
M. Recanatini, A. Cavalli and M. Masetti, in The hERG Cardiac Potassium Channel: Structure, Function and Long QT Syndrome: Novartis Foundation Symposium 266, ed. D. J. Chadwick and J. Goode, John Wiley \& Sons, Ltd, Chichester, UK, 2008, pp. 171-185.
E. Y. Isacoff, Y. N. Jan and L. Y. Jan, in Comparative Molecular Neurobiology, ed. Y. Pinchon, Birchauser Verlag, Basel, Switzerland, 1993, pp. 338-351.
S. Grissmer and M. Cahalan, Biophys. J., 1989, 55, 203-206.
K. L. Choi, R. W. Aldrich and G. Yellen, Proc. Natl. Acad. Sci. USA, 1991, 88, 5092-5095.

104 A. R. Blight, J. P. Toombs, M. S. Bauer and W. R. Widmer, J. Neurotraum., 1991, 8, 103-119.

106 R. R. Hansebout, A. R. Blight, S. Fawcett and K. Reddy, J. Neurotraum., 1993, 10, 1-18.

107 K. C. Hayes, P. J. Potter, D. L. Wolfe, J. T. C. Hsieh, G. A. Delaney and A. R. Blight, J. Neurotraum., 1994, 11, 433-446.
R. E. Jones, J. R. Heron, D. H. Foster, R. S. Snelgar and R. J. Mason, J. Neurol. Sci., 1983, 60, 353-362.

109 C. H. Polman, F. W. Bertelsmann, A. C. Vanloenen and J. C. Koetsier, Arch. Neurol-Chicago, 1994, 51, 292-296.

110 D. Stefoski, F. A. Davis, M. Faut and C. L. Schauf, Ann. Neurol., 1987, 21, 7177.

111 H. A. M. Vandiemen, C. H. Polman, M. Vandongen, J. J. P. Nauta, R. L. M. Strijers, A. C. Vanloenen, F. W. Bertelsmann and J. C. Koetsier, J. Neurol. Sci., 1993, 116, 220-226. Giller, I. Ohmert, M. F. Martin-Eauclaire, D. Trauner, S. Becker, O. Pongs and M. Baldus, Nat. Struct. Mol. Biol., 2008, 15, 605-612.
V. Martos, S. C. Bell, E. Santos, E. Y. Isacoff, D. Trauner and J. de Mendoza, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 10482-10486.
J. B. Baell, R. W. Gable, A. J. Harvey, N. Toovey, T. Herzog, W. Hansel and H. Wulff, J. Med. Chem., 2004, 47, 2326-2336.
S. Peukert, J. Brendel, B. Pirard, A. Bruggemann, P. Below, H. W. Kleemann, H. Hemmerle and W. Schmidt, J. Med. Chem., 2003, 46, 486-498.
S. Peukert, J. Brendel, B. Pirard, C. Strubing, H. W. Kleemann, T. Bohme and H. Hemmerle, Bioorg. Med. Chem. Lett., 2004, 14, 2823-2827.
M. A. Goetz, O. D. Hensens, D. L. Zink, R. P. Borris, F. Morales, G. TamayoCastillo, R. S. Slaughter, J. Felix and R. G. Ball, Tetrahedron Lett., 1998, 39, 2895-2898.
J. P. Felix, R. M. Bugianesi, W. A. Schmalhofer, R. Borris, M. A. Goetz, O. D. Hensens, J. M. Bao, F. Kayser, W. H. Parsons, K. Rupprecht, M. L. Garcia, G. J. Kaczorowski and R. S. Slaughter, Biochemistry-US, 1999, 38, 4922-4930.
R. Vianna-Jorge, C. F. Oliveira, M. L. Garcia, G. J. Kaczorowski and G. SuarezKurtz, Br. J. Pharmacol., 2000, 131, 772-778.

Potiga, US Food and Drug Administration, 2011.
C. A. Seaman, P. H. Sheridan, J. Engel, M. Molliere, P. K. Narang and F. J. Nice, in New anticonvulsant drugs: Current Problems in Epilepsy 4, ed. B. S. Meldrum and R. J. Porter, Libbey, London, 1986, pp.135-146.
C. Rundfeldt, Epilepsy Res., 1999, 35, 99-107.
C. Rundfeldt, Eur. J. Pharmol., 1997, 336, 243-249.
C. Rundfeldt and R. Netzer, Neurosci. Lett., 2000, 282, 73-76.
A. D. Wickenden, W. F. Yu, A. Zou, T. Jegla and P. K. Wagoner, Mol. Pharmacol., 2000, 58, 591-600.
L. Tatulian, P. Delmas, F. C. Abogadie and D. A. Brown, J. Neurosci., 2001, 21, 5535-5545.
A. D. Wickenden, A. R. Zou, P. K. Wagoner and T. Jegla, Br. J. Pharmacol., 2001, 132, 381-384.
T. V. Wuttke, G. Seebohm, S. Bail, S. Maljević and H. Lerche, Mol. Pharmacol., 2005, 67, 1009-1017.

46 G. Biagi, I. Giorgi, O. Livi, A. Nardi, V. Calderone, A. Martelli, E. Martinotti and O. L. Salerni, Eur. J. Med. Chem., 2004, 39, 491-498.
V. Calderone, A. Coi, F. L. Fiamingo, I. Giorgi, M. Leonardi, O. Livi, A. Martelli and E. Martinotti, Eur. J. Med. Chem., 2006, 41, 1421-1429.

148 V. Calderone, F. L. Fiamingo, I. Giorgi, M. Leonardi, O. Livi, A. Martelli and E. Martinotti, Eur. J. Med. Chem., 2006, 41, 761-767.

149 Y. J. Wu, C. G. Boissard, C. Greco, V. K. Gribkoff, D. G. Harden, H. He, A. L'Heureux, S. H. Kang, G. G. Kinney, R. J. Knox, J. Natale, A. E. Newton, S. Lehtinen-Oboma, M. W. Sinz, D. V. Sivarao, J. E. Starrett, L. Q. Sun, S. Tertyshnikova, M. W. Thompson, D. Weaver, H. S. Wong, L. Zhang and S. L. Dworetzky, J. Med. Chem., 2003, 46, 3197-3200.
B. H. Bentzen, N. Schmitt, K. Calloe, W. D. Brown, M. Grunnet and S. P. Olesen, Neuropharmacology, 2006, 51, 1068-1077.
Y. J. Wu, L. Q. Sun, H. He, J. Chen, J. E. Starrett, P. Dextraze, J. P. Daris, C. G. Boissard, R. L. Pieschl, V. K. Gribkoff, J. Natale, R. J. Knox, D. G. Harden, M. W. Thompson, W. Fitzpatrick, D. Weaver, D. D. Wu, Q. Gao and S. I. Dworetzky, Bioorg. Med. Chem. Lett., 2004, 14, 4533-4537.
R. S. Hansen, T. G. Diness, T. Christ, J. Demnitz, U. Ravens, S. P. Olesen and M. Grunnet, Mol. Pharmacol., 2006, 69, 266-277.

153 R. S. Hansen, T. G. Diness, T. Christ, E. Wettwer, U. Ravens, S. P. Olesen and M. Grunnet, Mol. Pharmacol., 2006, 70, 1319-1329.
O. Casis, S. P. Olesen and M. C. Sanguinetti, Mol. Pharmacol., 2006, 69, 658665.
P. Elmedyb, S. P. Olesen and M. Grunnet, Neuropharmacology, 2007, 53, 283294.

157 J. Zhou, C. E. Augelli-Szafran, J. A. Bradley, X. Chen, B. J. Koci, W. A. Volberg, Z. Q. Sun and J. S. Cordes, Mol. Pharmacol., 2005, 68, 876-884.
E. Gordon, I. M. Lozinskaya, Z. Lin, S. F. Semus, F. E. Blaney, R. N. Willette and X. Xu, Mol. Pharmacol., 2008, 73, 639-651.
Q. Lu, J. Peevey, F. Jow, M. M. Monaghan, G. Mendoza, H. Zhang, J. Wu, C. Y. Kim, J. Bicksler, L. Greenblatt, S. S. Lin, W. Childers and M. R. Bowlby, Bioorg. Med. Chem., 2008, 16, 3067-3075.
P. A. Lyon and C. B. Reese, J. Chem. Soc. Perk. Trans. 1, 1974, 23, 2645-2649.
L. W. Deady and D. C. Stillman, Aust. J. Chem., 1979, 32, 381-386.

162 K. Donnelly, J. F. Gallagher and A. J. Lough, Acta Crystallogr. Sect C-Cryst. Struct. Commun., 2008, C64, O335-O340.
J. F. Gallagher, K. Donnelly and A. J. Lough, Acta Crystallogr. Sect. E-Struct Rep. Online, 2009, E65, O102-O103.
J. F. Gallagher, K. Donnelly and A. J. Lough, Acta Crystallogr. Sect. E-Struct Rep. Online, 2009, E65, O486-O487.

Enraf Nonius BV, 1997, Windows 3.11 Version.
Bruker APEXII, (Version 2. 0-1), 2005, Bruker AXS Inc., Madison, Wisconsin, USA.
Z. Otwinowski and W. Minor, in Macromolecular Crystallography, Part A, ed. J. N. Abelson, M. I. Simon, C. W. Carter and R. M. Sweet, Academic Press Inc., New York, 1997, pp. 307-326.
P. McArdle, J. Appl. Cryst., 1995, 28, 65-65.
A. L. Spek, J. Appl. Cryst., 2003, 36, 7-13.
A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378-6396.
J. A. Montgomery, J. W. Ochterski and G. A. Petersson, J. Chem. Phys., 1994, 101, 5900-5909.
J. McMahon, F. P. Anderson, J. F. Gallagher and A. J. Lough, Acta Crystallogr. Sect. C-Cryst. Struct. Commun., 2008, C64, O493-O497.
G. R. Desiraju and T. Steiner, The Weak hydrogen Bond in Structural Chemistry and Biology, Oxford University Press, Oxford, UK, 1999.
E. A. Meyer, R. K. Castellano and F. Diederich, Angew. Chem. Int. Edit., 2003, 42, 1210-1250.
M. Nishio, M. Hirota and Y. Umezawa, The $C H / \pi$ interaction, Wiley, New York, 1998.

Crysalis, Oxford Diffraction, 2010, Version 1.171.33.55.
R. G. N. Manjunatha, K. Vasantha M.V., T. N. G. Row and N. Suryaprakash, Phys. Chem. Chem. Phys., 2010, 12, 13232-13237.
J. C. Noveron, M. S. Lah, R. E. Del Sesto, A. M. Arif, J. S. Miller and P. J. Stang, J. Am. Chem. Soc., 2002, 124, 6613-6625.
H. G. Brittain, J. Pharm. Sci., 2011, 100, 1260-1279.
J. Bernstein, Cryst. Growth Des., 2011, 11, 632-650.
H. G. Gebreslasie, Ø. Jacobsen and C. H. Görbitz, Acta Crystallogr. Sect. CCryst. Struct. Commun., 2011, C67, O283-O287.
G. J. Gainsford, M. D. H. Bhuiyan and A. J. Kay, Acta Crystallogr. Sect. E. Struct Rep. Online, 2008, E64, O874-O875.

196 G. V. De Lucca, U. T. Kim, B. J. Vargo, J. V. Duncia, J. B. Santella, D. S. Gardner, C. S. Zheng, A. Liauw, Z. Wang, G. Emmett, D. A. Wacker, P. K. Welch, M. Covington, N. C. Stowell, E. A. Wadman, A. M. Das, P. Davies, S. Yeleswaram, D. M. Graden, K. A. Solomon, R. C. Newton, G. L. Trainor, C. P. Decicco and S. S. Ko, J. Med. Chem., 2005, 48, 2194-2211.

197 C. H. Mack, H. H. McGregor and S. R. Hobart, J. Chem. Eng. Data, 1969, 14, 258-261.

198 D. M. Swanson, A. E. Dubin, C. Shah, N. Nasser, L. Chang, S. L. Dax, M. Jetter, J. G. Breitenbucher, C. L. Liu, C. Mazur, B. Lord, L. Gonzales, K. Hoey, M. Rizzolio, M. Bogenstaetter, E. E. Codd, D. H. Lee, S. P. Zhang, S. R. Chaplan and N. I. Carruthers, J. Med. Chem., 2005, 48, 1857-1872.
E. F. V. Scriven and K. Turnbull, Chem. Rev., 1988, 88, 297-368.
T. Curtius, J. Praktische Chem., 1894, 50, 275-294.
T. Shioiri, K. Ninomiya and S. Yamada, J. Am. Chem. Soc., 1972, 94, 62036205.
A. Sasse, X. Ligneau, A. Rouleau, S. Elz, C. R. Ganellin, J. M. Arrang, J. C. Schwartz, W. Schunack and H. Stark, J. Med. Chem., 2002, 45, 4000-4010.
A. Sasse, H. Stark, X. Ligneau, S. Elz, S. Reidemeister, C. R. Ganellin, J. C. Schwartz and W. Schunack, Bioorg. Med. Chem., 2000, 8, 1139-1149.
A. Rutar, U. Zbontar, D. Kikelj and I. Leban, Chirality, 1998, 10, 791-799.
M. Takadoi, T. Katoh, A. Ishiwata and S. Terashima, Tetrahedron, 2002, 58, 9903-9923.
B. Beagley, K. J. Farnworth, E. T. Moss, R. G. Pritchard, S. Tajammal and A. E. Tipping, Acta Crystallogr. Sect. C-Cryst. Struct. Commun., 1994, C50, 11301132.
C. N. Foces-Foces, I. Alkorta and J. Elguero, Acta Crystallogr. Sect. B-Struct. Sci., 2000, B56, 1018-1028.
E. F. Maverick, P. L. Wash and D. A. Lightner, Acta Crystallogr. Sect. C-Cryst. Struct. Commun., 2001, C57, 284-285.
R. E. Gerkin, Acta Crystallogr. Sect. C-Cryst. Struct. Commun., 1998, C54, 1887-1889.
I. Alkorta, J. Elguero, C. Foces-Foces and L. Infantes, Arkivoc, 2006, 15-30.
S. Higson and F. Davis, Macrocycles: Construction, Chemistry and Nanotechnology applications, John Wiley \& Sons Ltd, U.K., 2011.
J. W. Steed and J. L. Atwood, Supramolecular Chemistry, John Wiley \& Sons, West Sussex, U.K., 2009.
J. Vicens and J. Harrowfield, Calixarenes in the Nanoworld, Springer, Dordrecht, The Netherlands, 2007.
K. Gloe, Macrocyclic Chemistry, Current trends and Future Perspectives, Springer, Dordrecht, The Netherlands, 2005.
E. M. Driggers, S. P. Hale, J. Lee and N. K. Terrett, Nat. Rev. Drug Discov., 2008, 7, 608-624.
D. Parker and J. A. G. Williams, J. Chem. Soc.-Perkin Trans. 2, 1995, 7, 13051314.
D. Parker, I. Helps and R. Morphy, Br. J. Cancer, 1986, 54, 531-531.
L. S. Evans and P. A. Gale, Chem. Commun., 2004, 1286-1287.

219 H. M. Colquhoun, Z. Zhu, D. J. Williams, C. J. Cardin, Y. Gan, A. G. Crawford and T. B. Marder, Chem. Eur. J., 2010, 16, 907-918.
J. Gawroński, M. Brzostowska, K. Gawrońska, J. Koput, U. Rychlewska, P. Skowronek and B. Nordén, Chem.-Eur. J., 2002, 8, 2484-2494.
W. Marckwald, Chem. Ber., 1894, 27, 1317-1339.
A. E. Tschitschibabin and J. G. Bylinkin, Chem. Ber., 1922, 55, 1000-1002.
J. P. Wibaut and E. Dingemanse, Recl. Trav. Chim. Pay-B., 1923, 42, 240-250.
E. H. Huntress and H. C. Walter, J. Org. Chem., 1948, 13, 735-737.
T. Suzuki, N. Kenbou and K. Mitsuhashi, J. Heterocycl. Chem., 1979, 16, 645648.
E. E. Bolton, J. Chen, S. Kim, L. Han, S. He, W. Shi, V. Simonyan, Y. Sun, P. A. Thiessen, J. Wang, B. Yu, J. Zhang and S. H. Bryant, J. Cheminf., 2011, 3, 32.
S. Shimizu, N. Watanabe, T. Kataoka, T. Shoji, N. Abe, S. Morishita and H. Ichimura, in Ullmann's Encyclopedia of Industrial Chemistry, 5th ed., Vol. A22., ed. B. Elvers, S. Hawkins, M. Ravenscroft and G. Schulz, VCH Publishers, Würzburg, Germany, 1993, pp. 399-418.
R. B. Seymour and G. S. Kirshenbaum, High Performance Polymers: Their Origin and Development, Elsevier, New York, 1986.
D. Wilson, H. D. Stenzenberger and P. M. Hergenrother, Polyimides, Blackie \& Son Ltd., Glasgow and London, 1990.
A. R. Murthy, S. D. Wyrick, P. J. Voorstad and I. H. Hall, Eur. J. Med. Chem., 1985, 20, 547-550.
F. Wurthner, Z. J. Chen, F. J. M. Hoeben, P. Osswald, C. C. You, P. Jonkheijm, J. von Herrikhuyzen, A. P. H. J. Schenning, P. P. A. M. van der Schoot, E. W. Meijer, E. H. A. Beckers, S. C. J. Meskers and R. A. J. Janssen, J. Am. Chem. Soc., 2004, 126, 10611-10618.
M. Tominaga, T. Hatano, M. Uchiyama, H. Masu, H. Kagechikac and I. Azumaya, Tetrahedron Lett., 2006, 47, 9369-9371.
K. E. Riley, J. S. Murray, J. Fanfrlik, J. Rezac, R. J. Sola, M. C. Concha, F. M. Ramos and P. Politzer, J. Mol. Model., 2011, 17, 3309-3318.
J. V. Coelho and M. P. Freitas, J. Mol. Struc. -TheoChem, 2010, 941, 53-55.
K. E. Riley, J. S. Murray, P. Politzer, M. C. Concha and P. Hobza, J. Chem. Theory. Comput., 2009, 5, 155-163.

236 P. Auffinger, F. A. Hays, E. Westhof and P. S. Ho, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 16789-16794.

237 A. De Santis, A. Forni, R. Liantonio, P. Metrangolo, T. Pilati and G. Resnati, Chem. -Eur. J., 2003, 9, 3974-3983.

238 A. R. Katritzky, M. Kuanar, S. Slavov, C. D. Hall, M. Karelson, I. Kahn and D. A. Dobchev, Chem. Rev., 2010, 110, 5714-5789.

239
R. J. C. Brown and R. F. C. Brown, J. Chem. Educ., 2000, 77, 724-731.


[^0]:    ${ }^{\dagger}$ lit. $178.5-181{ }^{\circ} \mathrm{C}^{28} ;{ }^{\ddagger}$ partial melting, total melting occurs at $106.7^{\circ} \mathrm{C}$; ${ }^{*}$ lit. $126.5^{\circ} \mathrm{C}^{2}$

[^1]:    ${ }^{1}$ Fom_O $(Z=6)$ is discussed in the section 1.2.4.3.3.
    ${ }^{2}$ Amide plane calculated as a 5 atom plane as [C-(C=O)N-C].
    ${ }^{3}$ Primary packing descriptors; chains are 1-D (zig-zag); $R^{2}{ }_{2}(8)$ rings, cyclic (as $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ )

