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Abstract

The emergence of high-speed networks such as those with ATM integrates large 
numbers of services with a wide range of characteristics. Admission control is a 
prime instrument for controlling congestion in the network. As part of connection 
services to an ATM system, the Connection Admission Control (CAC) algorithm 
decides if another call or connection can be admitted to the Broadband Network. 
The main task of the CAC is to ensure that the broadband resources will not 
saturate or overflow within a very small probability. It limits the connections and 
guarantees Quality of Service for the new connection. The algorithm for 
connection admission is crucial in determining bandwidth utilisation efficiency. 
With statistical multiplexing more calls can be allocated on a network link, while 
still maintaining the Quality of Service specified by the connection with traffic 
parameters and type of service.

A number o f algorithms for admission control for Broadband Services with ATM 
Networks are described and compared for performance under different traffic 
loads. There is a general description of the ATM Network as an introduction. 
Issues to do with source distributions and traffic models are explored in Chapter 2. 
Chapter 3 provides an extensive presentation of the CAC algorithms for ATM 
Broadband Networks. The ideas about the Effective Bandwidth are reviewed in 
Chapter 4, and a different approach to admission control using online 
measurement is presented in Chapter 5. Chapter 6 has the numerical evaluation of 
four of the key algorithms, with simulations. Finally Chapter 7 has conclusions of 
the findings and explores some possibilities for further work.
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Chapter 1

Introduction



1.1 In tro d u ctio n

This is a report on the research work undertaken to study Connection Admission 

Control (CAC) algorithms for Broadband Asynchronous Transfer Mode (ATM) 

networks [1] -[9J. There is numerical evaluation performed with experimental 

trial simulations of four important algorithms. The simulations were designed and 

developed to highlight key aspects of the algorithms. The results provide some 

interesting conclusions about the algorithms and their features. There is a 

description of other research work concerning a wide range of the algorithms.

The thesis is organized as follows. This Chapter outlines some of the standards 

and recommendations for ATM technology. Techniques are described in Chapter

2 for the modeling of ATM networks. There is a report on the algorithms as 

described in the current literature in Chapters 3, 4 and 5. The experimental work 

performed by the author is found in Chapter 6. The purpose of these numerical 

evaluations and simulations is to look at the properties of the key algorithms, in 

greater detail. The conclusions are discussed in Chapter 7, with indications for the 

possibilities of further work. There is extra detailed information about the 

Effective Bandwidth concepts in the Appendix.

1.2 R esource A llocation  in A T M  N etw orks

The exploration of algorithms for connection admission reveals many interesting 

implications for resource allocation in ATM networks [1J-[8J. The purpose of the 

CAC Algorithm is to ensure that connections will be admitted provided that the 

probability is very small that network resources will saturate or overflow. The 

CAC algorithm plays a vital role in the management of these resources. The most 

effective solutions are achieved with the efficient use of bandwidth allocation. 

The algorithm for connection admission control is crucial in determining 

bandwidth utilization efficiency.
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The network consists of shared resources such as bandwidth and internal buffering 

capacities. The resources are reserved along the path between the source and 

destination nodes o f each call. As part o f the congestion control strategy, the 

network uses the CAC algorithm.

Traffic control is the set o f  actions taken by the network to avoid congestion.

The primary role of traffic control is to achieve the pre-defined network 

performance objectives while meeting the requirements of Quality of Service 

(QoS). Traffic control is based on a combination of the Usage Parameter Control 

(UPC) procedure [1] [7][8] and the CAC algorithm, to monitor the network for 

congestion. The UPC monitors the user-network interface to ensure the accepted 

rate is not exceeded, while the CAC algorithm ensures that resources are available 

for a new connection.

The UPC uses the Generic Cell Rate Algorithm (GCRA) or Teaky bucket’ [7][8] 

mechanism to check ATM cell flow levels. The policing and monitoring 

mechanism also uses explicit feedback to sources to assure that capacity is fairly 

allocated. The connection is compliant as long as the proportion of non- 

conforming cells does not exceed thresholds established on the connection by the 

traffic contract. The CAC and UPC procedures take the Connection Traffic 

Descriptor and requested Quality of Service to set up a compliant connection, 

described in the coming sections.

1.3 Different Approaches for Connection Admission Control

There are two main approaches to admission control. The parameter-based 

approach computes the amount of network resources required to support a set of 

calls with pre-defined traffic characteristics. The second approach is the 

Measurement-Based approach, which relies on the measurement o f actual traffic 

in making admission decisions. The evaluation of an algorithm for CAC depends 

on how well it fulfils its primary role of ensuring that service commitments are not
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violated. Other evaluation criteria are network utilization and implementation and 

operational costs.

Measurement-Based algorithms [10]-[13] have no prior knowledge of the traffic 

statistics and make the admission decision based on the current state of the 

network only. In contrast to the other algorithms which look at the characteristics 

of source traffic and represent them as parameters, Measurement-Based algorithms 

make decisions on a monitored amount of traffic on the network. It is found that it 

can achieve the same performance as that of an optimal scheme based on the 

knowledge of traffic statistics.

1.4 Broadband ISDN and ATM

The adjective ‘broadband’ refers to the high capacity of networks available to 

support digitised communications. It enables them to transport large amounts of 

information such as real-time video. Asynchronous Transfer Mode (ATM) [1] - 

[4][8][9][15] is a protocol used in broadband networks. This technology has as 

its basis the ATM cell, a small packet of data of 53 bytes in length. The short 

length facilitates transport of real-time services. This universal network follows 

the standards and recommendations devised by the international network 

governing bodies, the International Telecommunications Union (ITU, formerly 

CCITT) and the industry established group, the ATM Forum [7][8].

1.5 ATM Protocol Architecture

ATM is a streamlined packet-switching protocol [l]-[4], with reduced overhead 

in processing of ATM cells. ATM operates at high data rates, ranging from 

155.52Mbps to lOGbps. The support of multiple line rates is a key advantage of 

ATM and allows for seamless inter-working of LANs and WANs. The protocol 

can be implemented in a variety of ways to allow the integration of legacy
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systems, while improving overall network performance. The basic protocol stack 

for ATM is illustrated in Figure 1.1.

The physical layer standards give the specification of the transmission medium 

and the signal-encoding scheme. The ATM layer is common to all services and 

packet transfer capabilities. The ATM Adaptation Layer (AAL) is service 

dependent and facilitates the support of transport layer protocols such as TCP. 

The protocol reference model also indicates three separate planes, a user plane to 

transport user information with flow control and error control, a control plane for 

call establishment and connection control, and a management plane for co­

ordination between planes and overall management functions.

Figure 1.1 The B-ISDN ATM  Protocol Reference Model
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1.6 ATM Connections

The ATM connections are viewed abstractly as logical connections. These 

‘logical’ connections are referred to as ‘virtual’, as Virtual Channel Connections 

(VCCs) or Virtual Channels (VCs). They allow different allocations of bandwidth 

depending on the service. A VCC is set up between two end users through the 

network. A variable-rate, full-duplex flow of fixed size cells can be exchanged 

over the connection and regulated in different ways depending on the exact service 

provided.

The concept of a virtual path (VP) and virtual path connections (VPCs) is used for 

grouping and planning VC connections. A number of VCCs grouped together 

form a VPC. The advantages of using virtual paths mean that network 

architectures are simplified with reduced processing and connection set-up time. 

The VPCs may be established by prior agreement for a semi-permanent 

connection, or it may be customer controlled instead of network controlled. B- 

ISDN Recommendation 1.150 specifies methods for providing the establishment 

/release facility for VCCs.

1.7 The Requested Quality of Service Class

The requested Quality of Service (QoS) class is negotiated during connection 

establishment. The ATM network is designed to transfer many different types of 

traffic simultaneously, including real-time flows such as voice, video and bursty 

TCP flows. The way each stream of cells is handled is defined by its Quality of 

Service category and depends on the requirements of the application and the 

characteristics of the traffic flow. For example, real-time video traffic must be 

delivered within a minimum variation in delay.
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The following service categories have been defined by ATM Forum:

Real-time service:

- Constant Bit Rate (CBR)

- Real-time Variable Bit Rate (rt-VBR)

Non-reai-time service:

- Non-real-time Variable Bit Rate (nrt-VBR)

- Available Bit Rate (ABR)

- Unspecified Bit Rate (UBR)

- Guaranteed Frame Rate (GFR)

QoS is evaluated in terms of Cell Loss Ratio (CLR), Cell Transfer Delay (CTD), 

Cell Delay Variation (CDV), and Minimum Cell Rate (MCR) when applicable. 

The Peak Cell Rate (PCR), Sustained Cell Rate (SCR) and Burst Tolerance (BT) 

are known as Source Traffic Descriptors. In order to simplify network 

management, a given number of parameter combinations have been identified and 

grouped into classes, called service classes.

The ATM Adaptation Layer (AAL) defines four classes of service in the ITU-T 

recommendation 1.362 as follows:

• Class A has a time relation between source and destination. The bit rate is 

constant and the service is connection-oriented. An example is voice or 

fixed bit rate video.

• Class B also has a time relation between source and destination. The bit 

rate is variable and the service is connection-oriented. An example is 

variable bit rate video and audio.
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• Class C does not have a time relation between source and destination. The 

bit rate is variable and the service is connection-oriented. An example is 

connection-oriented data transfer and signaling.

•  Class D is connectionless. An example is Switched Multimegabit Data 

Service (SMDS).

1.8 Guaranteed Frame Rate

Guaranteed Frame Rate (GFR) has recently been approved by the ATM Forum 

[16]. It is an important service category that supports TCP/IP traffic for ATM. It 

provides bandwidth guarantees while being as easy to use as the Unspecified Bit 

Rate (UBR) service category. Like UBR, it allows the end system to transmit cells 

at the line rate of their ATM adapter. The GFR is different to UBR, as it requires 

the network elements to discard AAL frames when congestion occurs. Another 

difference is that GFR allows the user to reserve bandwidth. This means the user 

is guaranteed that transmitting at a minimum rate will be without losses.

1.8.1 The GFR Traffic Contract

The GFR traffic contract is composed of four main parameters:

- Peak Cell Rate (PCR)

Minimum Cell Rate (MCR)

- Maximum Burst Size (MBS)

- Maximum Frame Size (MFS)

PCR is the maximum rate and is often set at the line rate of the ATM adapter of 

the end system. The MFS is the largest size of AAL5 frame that the end systems 

can send. The MBS defines the maximum burstiness allowed for the traffic with 

minimum guaranteed bandwidth.
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1.9 The Quality of Service Parameters

The ATM Forum defines the following QoS parameters:

- Peak-to-peak Cell Delay Variation (CDV)

- Maximum Cell Transfer Delay (maxCTD)

- Cell Loss Ratio (CLR)

1.10 The Traffic Contract and the CAC Algorithm

At the connection setup stage a contract is established between the user and the 

network. The user specifies the source traffic descriptors and the desired Quality 

of Service. Based on these parameters, the CAC decides whether to accept or 

reject a connection. A connection request is accepted only when sufficient 

resources are available to satisfy the QoS requirements of both existing and new 

connections. If the request is accepted, the network contracts to meet these QoS 

objectives as long as the user complies with the traffic parameters declared.

When a new connection is requested, the user must specify the service required for 

the connection. A connection request must include of the following information 

about the connection:

- Service category (CBR, rt-VBR, nrt-VBR, ABR, UBR, GFR)

- Connection Traffic Descriptor

- Requested and accepted value of each QoS parameter (peak-to-peak CDV, 
maxCTD, CLR)

By accepting the connection request (i.e. providing the user with the connection 

requested) the network forms the traffic contract with the user for that connection.

1.11 Traffic Parameters

The CAC represents a set of actions taken by the network at call setup phase in 

order to accept or reject the connection. Their values established at connection
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set-up are called traffic parameters. The parameters are held in what is known as 

the Traffic Descriptor, which also has parameters for Quality o f Service. A traffic 

contract between the source and the network is negotiated. The parameters for 

traffic and Quality of Service are allocated at connection setup. The values of 

these parameters depend on the type of service and link capacity required for that 

connection.

1.11.1 Traffic Parameter Specification

The traffic characteristics of connections are described by a set of standardized 

traffic parameters. Traffic parameters are a specification of a particular traffic 

aspect, e.g.

- Peak Cell Rate (PCR)

- Minimum Cell Rate (MCR)

- Average Burst Duration

Different services specify different values for the Peak Cell Rate (PCR) and a 

Minimum Cell Rate (MCR) required for that connection a connection. The 

network resources are allocated so that all connections receive at least their MCR 

capacity. The remaining unused capacity may then shared in a fair and controlled 

fashion among all the sources [l]-[4][7][8].

1.11.2 The Traffic Contract Specification

The traffic contract negotiated during connection establishment has the following 

key components:

- The Connection Traffic Descriptor

- The requested QoS class

- Definition of a compliant connection

18



1.11.3 The Connection Traffic Descriptor

The Connection Traffic Descriptor is made up of the Source Traffic Descriptor 

and Cell Delay Variation tolerance. The Source Traffic Descriptor consists of a 

set of parameters, which indicate the agreed traffic settings for the User Network 

Interface (UNI) agreed with the network when setting up the connection. The 

Source Traffic Descriptor parameters are:

- Peak Cell Rate (PCR)

- Sustainable Cell Rate (SCR)

- Burst Tolerance (t) or Maximum Burst Size (MBS)

- Minimum Cell Rate (MCR)

1.12 Summary

The CAC algorithm works with other congestion control procedures and routing 

algorithms to ensure that traffic congestion is minimised and that sufficient 

network resources are available to support the connection. The criteria for 

admission are that the Quality of Service standards required by the particular type 

of connection can be met with the network resources available, without 

compromising existing connections. The outcome of the CAC process is the 

traffic contract at the UNI, which includes the definition of a compliant 

connection to ensure that the requested Quality of Service is achieved.

Bandwidth is a fundamental network resource, and its efficient allocation to new 

connections is part of the admission control process. CAC algorithms present a 

range of possibilities to increase bandwidth utilisation with statistical 

multiplexing. This means that more connections can be allocated than the 

available bandwidth for their combined peak rates, because the likelihood that the 

peak rate occurs for traffic from all connections at the same time is small. This 

likelihood or probability is evaluated, and must be within Quality of Service 

definitions so that the connection still complies with the traffic contract. There are
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a number of issues concerned with how to meet conflicting goals of the CAC 

algorithm. These are to maximize bandwidth utilization through efficient 

statistical multiplexing while still ensuring that each connection has the QoS 

agreed by the traffic contract at connection setup time.
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Chapter 2

ATM Network Modeling
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2.1 Introduction

There are a variety of methods and approaches used in the modeling of ATM 

networks [l]-[9][14][15][17]-[19]. This Chapter describes theory relevant to 

the analysis and modeling of CAC algorithms. First there is an overview of 

stochastic processes to represent the streams of traffic in the network. Different 

forms of traffic modeling are then described. The concepts of queuing models and 

fluid flow approximation are presented. Finally there is a discussion of timescale 

analysis of traffic [6][20][21] from high level to cell level detail. The stochastic 

traffic models included in the next sections are ‘ON-OFF’ bursty sources, Markov 

modulated sources, and Self-similar traffic models.

2.1.1 Stochastic Processes

The traffic on the connections to be multiplexed together at the ATM switch is 

represented by stochastic processes [5][6][14][15][17][18]. A stochastic

process is a parameterised family of random variables, {X (t), t e  T}, where the 

parameter t is usually time, T is the index set. If T  is a countable set it means the 

process is a discrete parameter process. Otherwise it is a continuous parameter 

process. The set of random variables X(t) have a state space, which may be 

discrete or continuous. The state space of a process is the set of all possible values 

of the random variables. Each of these values is called the ‘state’ of the process. 

The state space or phase space of the process [10] is the set S  of X0,Xii X2 ... X„ a 

sequence of n random variables whose ranges are contained in S.

The properties of a stochastic process can be used to represent a cell arrival 

process by characterising the inter-arrival time distribution. The inter-arrival time 

distribution is the probability of an arrival in a given time interval. The mean and 

variance of this distribution, and its multivariate probability mass functions (pmfs) 

can be found for this stochastic process [18].
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2.1.2 Markov Processes

A Markov process [8][9][12]-[14] is one where the present state of the process 

determines the future of the process, and full knowledge of its past is not required. 

A Markov process is called a Markov chain if its state space is discrete.

• A Discrete Time Markov Chain (DTMC) is a process which makes 

transitions from one state to another at well defined instants tn. The 

DTMC is fully determined when the one-step transition probabilities are 

known. These are the set of numbers Py, representing the probability of 

transition from state i to state j .  These can be arranged into a one-step 

transition probability matrix P = (Py) where;

£  p .  = i v i.j=  0

P is called a stochastic matrix and each row elements sum to 1.

• A Continuous-Time Markov Chain (CTMC) is a Markovian chain where 

transitions from state / to state j  occur in continuous time, and this requires 

some extra equations. In addition to the transition probability matrix P, there 

is a transition density matrix Q, also called the infinitesimal generator of the 

Markov chain [9],

Q ( t )  = limA t —► 0 A t

This means that the elements qtJ of matrix Q have a probability of At qt] of moving 

from state i to state j  in interval At.
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2.3 Traffic Models

Traffic models [l]-[9][14][15][17][18] provide a means of evaluation for the 

appraisal of flows in telecommunications networks. ATM networks need to 

provide performance guarantees to their connections. To estimate if a new 

connection is to be admitted, the flows in the network can be represented by 

various traffic models. Traffic models are divided into two classes, short-range 

and long-range dependent. Examples o f short-range dependent models are 

Markov processes and Regression models. They have a correlation structure that 

is significant for small time lags. Long-range dependent models such as Fractal 

Autoregressive Integrated Moving Average (F-ARIMA) and Fractal Brownian 

motion have significant correlations for longer time lags.

2.3.1 Markov and Embedded Markov Models

The activities of a source can often be modeled by a finite number of states, where 

a set of random variables {X n } forms a discrete Markov chain [14][17][18], and

where the probability of the next value {X n+l} depends only on the current state.

In a simple Markov model, each state transition represents a new arrival. 

Therefore their inter-arrival times are exponentially distributed (for CTMC) or 

have arbitrary distributions for semi-Markov processes, with an embedded discrete 

time Markov chain.

2.3.1.1 ‘ON-OFF’ Source Models

The ‘ON-OFF’ source is widely used to represent bursty traffic sources in source 

characterisation for traffic modeling [1][3][5][6][19]. The information is sent as 

a series of ‘ON’ and ‘OFF’ periods, see Figure 2.1. The information is 

transmitted at peak rate for the ‘ON’ period, and none is transmitted in the ‘OFF’ 

period. The geometric distribution is used if the network is modelled as a 

discrete-time system.
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The source may switch from the ‘ON’ to the ‘OFF’ state according to a CTMC 

with two states. The information emission process is a two-state Markov 

modulated Poisson Process (MMPP), with zero rates in one state. Because the 

sojourn time in the state of a continuous Markov chain is exponentially 

distributed, the burst (‘ON’) and silence (‘OFF’) times or sojourns of the source 

are exponentially distributed. The discrete analogue of this source type is a 

Discrete-Time Markov Chain (DTMC) with two states and has transitions 

occurring at periodic instances tn = nA t. In modeling ATM networks At is 

chosen as the duration of a timeslot.

Transmission

MAX

AVG

>  Time

A ctive‘ON’ Idle ‘OFF’ Active

Figure 2.1 B ursty‘ON-OFF’Sources

2.3.2 Markov Modulated Poisson Process (MMPP) Models

The Markov modulated process [5][9][14][17][18] is a generalisation of the 

‘ON-OFF’ process, which has two states, to allow m>2 states. When in state i the 

source emit at a rate r;- and then switches to another state j  at rate r j . The

embedded process consisting of the changes of state is assumed to be a Markov
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chain, so the arrival process is called a Markov modulated Rate Process (MMRP). 

MMPP can be used to model traffic integration from different source types. The 

arrival of cells from one type of source in state k is assumed to be Poisson with 

rate /Lj, while another type can also be Poisson with rate Ak . The resulting state

sk will be Ad + Ak . The performance measures such as queuing distribution and 

the moments of the delay distribution are obtained using MMPP/G/1 queue 

analysis [15].

2.3.3 Self-Similar and Long-Range-Dependent Processes

The term self-similar or ‘fractal’ can be applied to traffic that looks “the same” on 

all time-scales, with the important characteristic that it has long-range dependence, 

or the existence of correlation over a broad range of time scales 

[12][13][20][22][23]. For a stationary process only a “lag” j- i = k is relevant. 

The definition for a stochastic process Xk is a process with mean E{Xk} = X  and 

autocorrelation function r(/') = C(/)/var{Xjt}, where C(i) is the autocovariance.

The processes x i m̂  {m = 1,2,...) are constructed out of Xk as:

have a mean x  and autocorrelation function rm(i) [5]. The process is called 

second-order self-similar if rm (i)=r(i) fo r  m,i —> oo.

An important parameter of a long-range-dependent process is the Hurst 

parameter, H  = X- j B/ l  where 0</3<l. Given a set of experimental data ak 

(k=l,2,...,n) with sample mean:

i.e. by averaging over non-overlapping blocks of size m. The processes X j ^
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and sample variance:

S 2 (” ) = £  "k=i\-a k ~ « « ] / ( «  -  1)

define the rescaled adjusted range (R/S), where R is the autocorrelation and S  is 

autocovariance:

= 7 ^ r [ max( ° 5 Wx> ^ 2  ) -  min(0, W, , W2 ,...Wn)]
S(n)  S(n)

whereby Wk = (a ,, a2 ak) -  &Z?[fl(w)].

The quantities FF* measure the deviation of the process from the ‘expected value’. 

R(ri) measures the values of this deviation. A value for H  = 0.5 and greater 

implies that the process is self-similar.

2.4 Queuing Models and Analytical Solution Methods

In the various models described in the previous sections, sources are represented 

by the arrival processes and the network by buffered systems that queue the traffic 

at various nodes and switches [5][6][14][15][17][18], The queuing systems are 

represented using Kendell notation [15] to summarise the type of arrival process, 

service time distribution and system capacity in a letter and number notation. The 

impact of burstiness or congestion is seen in terms of buffer overflow probability 

or Cell Loss Probability, and this is an important Quality of Service criterion for 

admission control algorithms.

The analytical solution methods used to find the equilibrium distributions of 

buffer occupancy and waiting times are an important aspect of modeling [6], The 

three main methods of solution are matrix analytical method, probability 

generating functions and the fluid flow approximation method. The fluid flow 

approximation method is described next.
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2.4.1 Fluid Flow Approximation

The simple ‘First-In-First-Out’ (FIFO) queue with exponentially distributed ‘ON- 

OFF’ sources can be used to analyse a statistical multiplexer fed by bursty sources 

[6][15][19']. The differential equations describe the contents of the buffer. They 

can be modeled by assuming the filling process to be a Markov process and the 

service time to be constant. A knowledge of the probability of exceeding the 

buffer capacity is important for admission control algorithms, as the Cell Loss 

Probability (CLP) can be represented by this. It is the admission criterion for 

many of the algorithms.

L et{ r(0 ,i ^  0}be a CTMC that takes the values {0,1,...,jV} and let the 

infinitesimal generator be the matrix Q with elements qtj . When the Markov 

chain is in state j  the fluid arrives with a rate aj . The buffer drains at a constant 

rate c, and so the net rate of change of the buffer contents is r; :

rj = aJ - °

Let X( t ) denote the buffer contents at time t. X(t )  is a continuous random 

variable satisfying 0 < X(t )  < K , where K  is the buffer size. The equilibrium 

overflow probability of the buffer beyond level x is:

G ( x )  = lim Pr[ X  ( t ) > x]
/ —> eO

The contents o f the buffer is a queue represented by the bivariate stochastic 

process [X(i),T(/)] with a joint pdf-pmf F} (x,t):

F j  ( x , t ) = Pr[ X  ( 0  < x , Y  ( t )  = j ]

for ( j  = 0 ... N).
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Fj (x,t) is the probability that at time t, the buffer is filled to at most level x and the 

modulator is in phase j .  When the system has reached equilibrium:

F  j (x )  = lim F  i ( x , t ) = Pr[ X  < x , Y  = j ]
J a)

the (N+l) -dimensional row vector F(x) is:

F O )  = [F  o ( * ) .  F  \ (* )> - , F  n  0 ) 1

which allows the equilibrium overflow probability to be expressed as:

G O )  = Pr[ X  > x]  = 1 -  F ( x ) .  1

'T Twhere 1 = (1,1.... 1) , where is for transpose and V for scalar product.

The time evolution of F, ( x , t ) is governed by the following equation:

Fj(x,[ + At) -  ^  q¡j AíF¿ (x -  r¡j At,t) + 
i M i

Fj  (x -  f jAt,  t) + o(At)

The probability that at time t + At the buffer is filled to at most x and that the 

modulator is in state j  consists of two terms. The net rate of change is r[f. Firstly, 

in order to progress to be in state j  from state i at t +At ,  it undergoes the transition 

from i to j ,  which happens with probability qy At, and the buffer contents changes 

by x - r y  in the interval At. The second term is similar without the phase

transition of the modulator.

Fj (x , t ) is subtracted from both sides, and it is divided by At while letting At^O. 

The properties of the infinitesimal generator means the following is obtained:
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for the equilibrium solution, S  F  ,!& -  0, resulting in a set of equations:

d  F  i ^
r j — ~ < x ) = £  F , ( x )

0X / = 0

for (j = 0, This equation has the rate matrix /?, and Q is the transition

density matrix or infinitesimal generator of the Markov chain [5][14], and it may 

be written as:

d x

This is a linear first-order differential equation, with a solution that is a linear 

combination of exponentials. The solution is:

F(x) = <S>eQR

where 0  is a constant row vector. The exponentials are of the form:

e z ix

where zif i = 0...N  are the eigenvalues of:

Q R 1

To solve fluid-fiow models, the eigenvalues and vectors are found. It is possible 

to find closed-form expressions of the eigenvalues and eigenvectors for 

homogeneous ‘ON-OFF’ sources.
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2.5 Timescale Analysis

The issue of timescale analysis is an important one as the estimation of 

requirements differs according to the timescale [6][19] or the time duration under 

consideration. The timescales usually considered are:

- Cell or Packet level, i.e. the inter-arrival time between cells, in microseconds.

- Burst Level, i.e. the cell arrival groups that occur as a ‘burst’ of traffic, in 
milliseconds.

- Call or connection level, i.e. average time for the VC connection setup, in 
minutes.

The ATM network is a network of queues, and the consideration of delay is 

closely correlated with the buffer sizing along the links. Size of buffers can be 

categorised according to timescales, cell scale buffers deal with congestion at the 

cell level, i.e. simultaneous arrival from different sources. Larger buffers at burst 

scale can accommodate burst traffic, such as a data file transfer, thus increasing 

delays but decreasing Cell Loss Probability. The review o f resource allocation in 

[3][4][19][20] uses timescale analysis to evaluate congestion at different levels 

with respect to integrated traffic of different services. Congestion is measured in 

terms of the blocking probabilities at each level, i.e. cell blocking, burst blocking 

and call blocking.

2.6 Statistical Multiplexing

This section presents some essential ideas of statistical multiplexing [14] [18] [45]. 

Statistical multiplexing results in the allocation of a bandwidth less than that 

required for PCR of a connection source. It is based on the idea that there is a 

probability that all sources are not transmitting all together all the time. The 

following sections give an explanatory example of statistical multiplexing as a 

background to the algorithms that have been presented.
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2.6.1 The ATM Multiplexer

The ATM multiplexer [9][20][51][66] is described as a buffer and a high-speed 

link. Figure 2.2 illustrates the buffer receiving the cells generated by establishing 

a new connection, with excess cells lost or delayed. The cell loss and delay are 

found from the QoS requirements and the admission policy or CAC ensures that 

these requirements are met.

VC

VC,

VC'

high-speed link

Figure 2.2 An A TM Multiplexer Model

The ideas of virtual connections ‘VC’ are presented in Section 1.6. The peak rate 
o f the VC is defined as follows. If the VC generates cells with the minimum 
spacing of 1/T cells per second, then its 1/Tx 53 x 8 bits per second. The units of 
C the capacity of a high-speed link can be in bits per second. A buffer is required 
at the interface between the incoming cell streams and the high-speed link in order 
to limit the effect of cell scale congestion or burst scale congestion.

2.6.2 Statistical Multiplexing of Connections

Statistical multiplexing allows for the allocation of a bandwidth less than that 

required for PCR of a connection source. The allocated amount of the shared link 

is less than that of the peak rate, and so the overall capacity is used more 

efficiently. The statistical gain is therefore the ratio of the number of accepted 

connections using multiplexing to those accepted using peak bit rate allocation.
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The peak demand of all multiplexed connections may exceed link capacity, but 

this will only occur with only a small probability. This probability must be less 

than the maximum value specified by the Quality of Service requirements. The 

network must be able to determine in real-time how much bandwidth to allocate 

for statistical multiplexing.

2.6.3 An Example of Multiplexing

If there are a number of ‘ON-OFF’ connections multiplexed together at a 

bufferless switch, if each stream is seen as a continuous flow of cells (fluid-flow 

model) the aggregate bit rate distribution can be computed. This is done by a 

convolution of the bit rate distribution of each connection, assuming all 

connections are independent. Under the previous assumptions, the Cell Loss 

Probability (CLP) is accurate, but does not meet real-time requirements, but as an 

example highlights the features of multiplexing.

Consider two types of classes of traffic:

Type 1: Peak Cell Rate 10Mbps, Mean Cell Rate 2Mbps

Type 2: Peak Cell Rate 2Mbps, Mean Cell Rate 1Mbps

The total link capacity is 150Mbps, the diagram in Figure 2.3 show the solid line 

that represents the maximum numbers of sources from each type that can be 

accepted by the network to comply with the requested QoS.

If there are 35 Type 1 sources, each source has a Bandwidth o f 4.28Mbps (or 

150/35), in the same way 120 Type 2 sources have a Bandwidth equal to 

1.25Mbps. If 50 Type 2 sources are multiplexed together, a maximum of 19 Type 

1 sources can be multiplexed at the same time on the common link.
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Type 2 Sources

10 20 30 40

Figure 2 3  Multiplexing o f Two Sources

2.7 Summary

The review of Traffic Modeling and the characterisation o f sources should provide 

a background of understanding for the following Chapters in which the CAC 

algorithms are examined. The probability of cell loss must be within a certain 

value to achieve the required Quality of Service. The sources can be represented 

by a few parameters, and the loss probabilities can be calculated easily for each 

algorithm. Markov models with ‘ON-OFF’ sources represent bursty traffic such as 

video. A new area of interest is that of Self-similarity found in traffic traces. 

Issues o f different timescales can be considered, ranging from cell level to 

connection level. The numerical modeling of a number of key algorithms uses the 

fluid flow approximation model with FIFO queuing in Chapter 6. These 

algorithms are described in the next Chapters.
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Chapter 3

Connection Admission Control 

Algorithms
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3.1 Introduction

This Chapter gives descriptions of the various CAC algorithms presented in the 

literature [9]-[13][19]-[66], The descriptions provide a basis for the numerical 

evaluations of the algorithms in Chapter 6. The algorithms are presented in detail 

in this Chapter. The following algorithms were chosen:

• The Convolution Algorithm

• The Chernoff Bound Algorithm

• The Gaussian Approximation Algorithm

• Algorithms for Timescale Analysis

• A Decision-Theoretic Approach Algorithm

• A Dynamic CAC Based on the Arrivals Distribution

• Algorithms using Neural Networks, Fuzzy Logic and Artificial Intelligence 
Techniques

• Algorithms with Prioritised Traffic Types

• Algorithms Based on Simulation and Reinforcement Learning

The algorithms depend on a wide range of fundamental principles. The 

Convolution, Chernoff Bound and the Gaussian Approximation Algorithm are 

based on mathematical approximations. The Convolution Algorithm uses the 

bufferless fluid flow model to find the aggregate source rate. There is an 

estimation of Cell Loss Probability as the encapsulating Quality of Service 

requirement. The Chernoff Bound Algorithm uses a similar approach. The 

Chernoff Bound Algorithm can be used together with large deviations theory. 

This is explored in the next Chapter for Effective Bandwidth Algorithms. The 

Normal distribution is one of the most important distributions in probability 

theory. It is found from the strong law of large numbers and the Central Limit 

Theorem [14][17][18], The Gaussian Approximation Algorithm uses this 

estimate to find the blocking probability for network traffic. It can be combined
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with the Chernoff Bound Algorithm for sharper estimates. The numerical 

evaluations in Chapter 6 examine these algorithms with the Effective Bandwidth 

Algorithm.

Next are algorithms concerned with Timescale Analysis with computations at cell, 

burst, and call level. Then there are algorithms using Baysian decision theory with 

the ‘ON-OFF’ model. There are algorithms focusing on the dynamics of the 

network traffic flow. They are quite a different approach as they use the arrivals 

distributions to estimate the CAC. They require large storage for implementation, 

but have many advantages such as flexibility and error estimation.

The areas of Artificial Intelligence, fuzzy logic and neural networks are 

represented, and finally there are Priority Algorithms and those based on 

simulations and Reinforced Learning (RL) techniques. The algorithms based on 

Effective Bandwidth are presented in the next Chapter, and then there are 

Measurement-Based algorithms in Chapter 5.

3.2 The Convolution Algorithm

The convolution algorithm [9][23]-[29] is a very accurate scheme for bufferless 

models. The connection admission control decision is based on the measure of 

Cell Loss Probability (CLP). The algorithm gives very accurate estimation, but 

there is a high cost in terms of accumulated calculations and storage for real-time 

implementation.

3.2.1 The Bufferless Fluid Flow Model

In the fluid flow model [5][6][29] the traffic sources are multiplexed together in 

a ‘fluid flow’. The aggregate source rate is used to find an estimation of the CLP. 

The convolution algorithm uses the peak cell rate max and the average cell rate 

avg and burst duration as parameters. The bufferless fluid flow traffic model is 

suitable for estimations of bursty traffic, such as video sources. The sources have
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active and idle periods, known as ‘ON-OFF’ sources, see Figure 2.1. The sources 

have active periods when cells are generated at a constant rate max, the peak rate, 

with no cells generated in the idle period. The average rate avg is found from 

calculations.

For ‘ON-OFF’ sources (Section 2.3.1.1), under the bufferless fluid flow model, the 
probability that a connection is in an active or burst state is avg/max, the 

probability that it is idle is 1 - avg/max. For N  existing calls, let f ( x )  represent the 

probability density function (pdf) of the traffic generated by call i:

The density function o f the aggregate traffic [17][18] generated by N  existing 
calls, denoted by q(x), is equal to the convolution of

The computation cost becomes considerable as indicated by the above formula, so 

the algorithm does not fulfill the real-time requirement of the CAC function. 

Approximations that may be used to overcome this difficulty are described in the 

coming sections. In the bufferless fluid flow model, if  the aggregate peak rate R is 

smaller than the link capacity, i.e. R < C  then the cell loss is assumed never to 

occur. There is a buffer with the M/D/1 queuing model [28][29] that 

accommodates the short-term fluctuations caused by simultaneous cell arrivals 

from different connections. The buffer has a length of 100-200 cells so that it is 

small enough to prevent excess delay.

3.2.2 Cell Loss Probability Estimation

The bufferless fluid flow model means cells are discarded when the instantaneous 

total traffic load R exceeds the link capacity C. R is defined by a load with n

q(x) = (/I * / 2 * -* /w X * )
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active sources i.e. n*max. Cell Loss Probability found from the M/D/1 queuing 

model should be less than the quality estimate ‘Virtual Cell Loss Probability’. It 

is found with the fluid flow model that has a small buffer used to accommodate 

the minor fluctuations, [9][24]-[29].

Virtual Cell Loss Probability is the ratio of excess traffic and traffic load p  [24], 

The Virtual Cell Loss Probability (pv) is defined where N  denotes the number of 

sources multiplexed in the link:

pv  = OF
P

n =  N

OF = ^  p ( / i ) ( « . m a x -  C )
( n  m ax - C = 0 )

p  — N. avg

where:

p(n) 'N
n

i  \ n ravg
max maxy

N - n

with p(n) as the probability that n out of N  sources are active

3.2.3 Enhancements to the Convolution Algorithm

A virtual bandwidth technique is described to replace the convolution in [26], and 

a fast implementation for it with a ‘real-time’ computation algorithm. The 

computational algorithm is extended to obtain a close upper bound on cell loss 

probabilities. To reduce the calculations accumulated, a Multi-nominal 

Distribution Function (MDF) is described by a study in [27]. The performance of 

the convolution approach is improved by application of the MDF to store groups 

of the same source types. It evaluates the complexity in terms of processor
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capacity and the memory required to do the calculations. The statistical 

multiplexing gain is found from the probability distribution density function of the 

individual sources.

The general state probabilities are evaluated by convolution of partial results 

obtained from groups of sources. The transmission rates already established at a 

given moment are found, with the probability that the sources will continue at 

those rates. These can be represented as vectors - a system status vector SV, and a 

source status vector S V ,, both having the same two fields representing the rate

and probability.

To calculate the bandwidth requirements of the superposition of several sources, 

this approach is based on the convolution expression:

b
P (Y  + New = b ) = 2 > (  r  - b -  k)P(New = k)

k=0

where Y is the bandwidth requirement of the already established connections. 

New is the bandwidth requirement of a new connection, and b denotes the 

instantaneous required bandwidth. The convolution approach obtains a 

probability density function for the offered system load, expressed as the 

probability that all traffic sources together are emitting at a given rate. When the 

connection terminates, the state of the system must be updated.

With implementation, the bandwidth now occupied may be obtained by 

deconvolution. Other implementation approaches are the Fast Fourier Transform 

and the binary tree implementation [29].

3.3 The Chernoff Bound Algorithm

The Chernoff Bound [9][20]-[30] is used as a measure of the limit of probability 

that is tolerated for the bandwidth to exceed link capacity. The notion of capacity
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of the network is measured for a given Quality of Service (QoS) guarantee. This 

is to allow for very small loss probability and to extract multiplexing gains from 

the statistical independence of the traffic processes.

Defining the Chemoff Bound, [9][17][18] let X, be the bandwidth required by 

connection i, C is the link capacity and exp(-y) is the given probability of 

overflow, the following inequality must hold:

Prob { Y j X  i £ C } < exp( - y )  
i

By definition, the moment generating function of a random variable X, [17][18]

<f>i(s) = E [ exp( s j ,  ) ]

If the connections are independent, the Chemoff Bound allows us to write:

Prob{ ^  X  i > C } <  ex p {inf [ £  ln{ ¿¡ ( s ) }  -  sC ]} 
i /

A connection is excepted if the right side of the inequality is less than exp(-y).

The algorithm seeks to find a minimum value for the expression in the square 

brackets in the above inequality. The moment generating functions of random 

variables that represent different users or sources need to be found. The 

calculations for the expression in square brackets are determined numerically as 

the number of traffic classes increases.

3.3.1 Statistical Multiplexing and the Chernoff Bound Algorithm

In [21], let the ith virtual circuit of class j  be represented by «:,• (/) denoting the 

utilised bandwidth. The k « (0  is an ‘ON-OFF’ process, with values for the
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utilised bandwidth e0 . and 0 for ‘ON’ and ‘OFF’ respectively. Since we assume 

statistical independence of the traffic sources, the processes My, (/) (i=l,2, ...K) of 

the same source class have identical templates, and differ only in their phase, i.e.

u ji  (0  — u j ( t  + 0 ji)

where u/t) is a deterministic, periodic ‘ON-OFF’ function with period of Tp where 

eoj = ?r(uji = eaj) and 1 -  <Vj = Pr(w/7 = 0), while the phases 6^  are

independent random variables uniformly distributed in the interval 7}.

The performance measure is the loss probability P\oss\

Ptoss= Pr(U>C)

where K j is the number of virtual calls of class /, the total instantaneous load is:

V - ± £ , u ,
M

Pioss is the fraction of time that the aggregate demand for bandwidth from all the 

sources exceeds the total bandwidth, the Quality of Service requirement is:

Ploss -  L

where L is a small number, such as 10- 6 .

3.3.2 The Chernoff Bound and Admissible Set

The estimation of Pioss is by the Chernoff Bound for this algorithm. The sources 

have been characterised by stationary random processes Uy(t). This denotes the 

utilised bandwidth of the virtual circuit for each source. It provides a simple
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single resource loss model from which calculations for adding additional sources 

to the overall capacity C may be estimated.

The instantaneous loads w/t) are independent, non-negative random variables 

(denoting the utilised bandwidth o f the i,fl virtual circuit of class /) with moment 

generating functions:

M j  (s) = £[exp( i  uy )] = esxd  W j  (x)

where:

W j (x ) = Pr( Ujj < x).

Chernoffs Bound [17][18] gives:

log Ploss — ~ F k  <>'*)

where:

J

FK (J ) = sC ~ Z  K j  ^ g  M  j W
j=  1

and:

F r  (s*) = sup Fk (s ) for s > 0.

If C oo and K/C=0(1) then from the probabilities o f large deviations for sums 

of independent random variables [31]:

log Ploss = - F K (s*)[\  + 0 (\o g  C / C ) ]
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hence the asymptotic large deviations approximation is:

Ploss ~ exP( ~ F K (**)) 

To avoid trivialities, the stability condition is assumed:

X  K  j E X u j i )  < c  
j= i

and:

Urn t  K C
i -* 00 j  _ I M j  ( s )

where the prime denotes a derivative. 

The function F'k ( s ) :

^  A / ' O )

j = 1

The function FK (i) is a strictly concave function with a unique maximum at s 

5 *, which is the positive root of the above equation ¿K (*) =0-

In the case of binomially distributed Ujjt where coj = Pr(w/7 = eUi) and 

I -  coj = Pr(ujj = 0) then:

j
Fk (i') = s C - ^  Kj  log{l - C0j  + C0j exp(.se#, )}

7=1

and s* is obtained by solving the equation:
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y  K j ^ j e 0 j exp( s e 0 .) 
^ 1  - ( O j  + coj exp( s e 0J)

= C

In the single-class case, i.e. J  = 1 the resulting expressions give simple guides to 

the numerical evaluation simulations of the algorithm (see Chapter 6).

With a = (C/eo) / K :

a 1 -  eo 
1 -  a eo

F k (**) = KK a log + (1
KlCO)

1 -  a
1 -  ¿0

This expression is used to obtain K max (or maximum number of sources) which is 

the value of K  for:

F A s *) = log( 1/L )

where L is the Quality of Service requirement representing Cell Loss Probability.

3.3.3 The Chernoff Bound and The Burstiness Parameter

In [30] there is a similar expression as that in the previous section found usingp, a 

‘burstiness parameter’. The value for \ /p  is the peak to mean ratio of the load 

produced by a source or call. The instantaneous load on the resource at time t is: 

S n (t) = X i (t) + X 2 (t) +... + X n{t  ̂ and is assumed to have a binomial distribution

with the random variables P{ Xt (() = 1} = p  and P{ X i (t) = 0} = 1 -  p .

The Chernoff Bound for a binomial random variable is:

P{S„>C} = P{S„ > na}< exp(~nK(a,p))
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where: K( a , p )  = a log — + (1 -  a ) lo g - |— -  
P 1 -  P

and a - C j n .

The use of large deviation approximation based on the Chemoff Bound to 

estimate loss probability in [21] is combined with Effective Bandwidth estimation 

for admission control. This method uses Chemoff Bound for bufferless networks 

to analyse resources in buffered networks. The VBR traffic is modeled with ‘ON- 

OFF’ sources and a fluid model. The traffic is divided into two classes, one for 

which statistical multiplexing is effective and the other where it is not. For 

statistically multiplexed sources, Effective Bandwidth is found where there is an 

admissible set as defined by [30] (see Section 2.6 for explanations of statistical 

multiplexing). The main disadvantages are that the moment generating functions 

of the different sources are required. It can be difficult to determine the optimal 

values s* to minimise the expression.

3.4 The Gaussian Approximation Algorithm

The aggregate traffic rate for a number of traffic sources is assumed to have a 

Gaussian distribution. The algorithm [5][6][11][17]-[20][31][33] relies on the 

Central Limit Theorem. This states that the aggregate traffic converges to a 

Gaussian distribution as the number of connections approaches infinity. It is not a 

conservative approach and may be too optimistic. Hence it may not be as accurate 

for bursty traffic. First in this section there is background theory to explain the 

algorithm. Then its behavior is described with the M/D/1 model for the output 

buffer with Poisson sources and a mixture of source types for connections.

3.4.1 The M/D/1 Tail Distributions and Blocking Probability

The algorithm in [20] uses the Gaussian Approximation in its estimation of 

blocking probability at burst level for heterogeneous traffic. For the offered traffic
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W(l) and carried traffic W'(t),  the difference between offered and carried traffic is 

the blocked traffic. This indicates the possible losses and need to be within 

acceptable limits. By looking at the output queue length distribution given by the 

M/D/1 formula, we can use the Central Limit Theorem [14][18] and large 

deviations theory to approximate the tail probability P ( W(t) > C), where C is the 

link capacity.

First, the tail distribution of offered traffic for Poisson traffic is found. The 

distribution for offered traffic W  is related to the carried traffic W '. Using the 

moment generating function for W, large deviation theory is applied to obtain good 

approximations for the tail distribution of W. Then there is the computation of W 

with mixed Poisson traffic and continuous varying traffic such as compressed 

video. It is computed using numerical methods for fast evaluation of congestion 

for mixed traffic types.

The log moment generating function of the tail distribution: q(x) = p (  W(t) = co) 

gives the mean and variance of W(t). It can then be substituted into the Gaussian 

Approximation formula to find the distribution density p(W  = co):

^ w - - a ^ ^ m e - { a - E { w ))2 i2 V a r{ w )

This approximation is used to find the estimation of blocking probability at burst 

level for heterogeneous traffic. The blocked traffic needs to be within the Quality 

of Service requirements for loss probability [7][8], The output queue length 

distribution is given by the M/D/1 formula. The blocking probabilities are found 

by relating the degree o f queue saturation with service and arrival rates, and using 

the steady-state equations.

Let K  be a set o f calls (or sources) assigned to the link with total bandwidth C. 

The offered load is:
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n  o = Z Jtx t(t)

where the arrival process for call k is Rjf(t) and the offered load is the sum of the 

instantaneous bit rates.

The following will find the mean and variance of W(t), the offered traffic or load. 

The offered traffic has the following recursive relation for computing the tail 

distribution, taking the expectation of x  over interval [0,y]:

Q(y) = P ( W(t) < y ) fo r  offered traffic W(t)

For Poisson traffic Wit) is modeled by jumps of different amplitudes a ;- > 0 , 

which arrive at Poisson rate and last for duration bt . This random duration can 

be represented with an associated X.

j0y O) = Z  y ¡a ibiQ (y - a i) 
i

Differentiating with respect toy  gives the marginal distribution q(y):

y q ( y )  = Y jY P ibi(i ( y  ~ 
i

This is called a Poisson shot noise process [14][18J. To improve the efficiency of 

computing P(W(t) < x), which is too large to be practical, large deviations theory 

is used to find the tail distribution of the Poisson shot noise process W  in the next 

section. The blocking probability for the lossy system is obtained by the following 

relationship between W and W '. For x<C, the total bandwidth is:

P { w' { t )  < x) = -----------------------P( W (t) < x)
1 -  P( W( t )  > C)
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The blocking probability from the relationship between W and W' is:

P(W'(0 > C - a :) = — —1-------- P(fV(0 >C-a.)~  P(W(t) > C)
V v } "  1 - P ( W ( t ) > C )  1

To find the characteristic functions o f W, the log moment generating function of 

q(co) -  p (  W(t) = o) ) for the Poisson shot noise process, is defined as:

GO
( i )  = log E w (a) = log e \q(a>) esa>dd)

0

Using the marginal distribution q(y):

yq(.y) = J) yp f i My  - «,)
/

then: / / w (s )  = £ / , •  6,  ( e sa‘ -  1)
I

The mean and variance o f W(t) are obtained by differentiating vFa,(.s) •'

E { W  ( / ) )  =  v  >w ( 0 )  = X  y i a , b t
1

Var (W (/)) = 4 / ^ ( 0 ) - ^ F ^ ( 0 )  = X  r t a}b i
t

3.4.2 Applying Large Deviations Approximations

! laving found the mean and variance o f W. p(W(t)) can be computed by the 

Gaussian Approximation [20][31]:
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This approximation is not very accurate at a> more than the standard deviation 

from the mean. To develop sharper estimates, the Chemoff Bound [18][31] can 

be applied:

P ( W  {t) > y )  < e - ( s*y-Vwis*))

where s* satisfies the equation for the first derivative of

y  = jUlw ( s ) = ' E  T i a i b i e sai 
i

The above bound can be sharpened by the theory o f large deviations 

[11][19][30][31], which is concerned with the sum of a large number of random

variables. The new result is improved by a factor of 1f  s * -^2/r//¡¡.(i*) such that:

P{a> < Y )  a  F  ( s *  y j l n j u w  ( s * ) )  e ~ ( s * y ~

3.4.3 A Mixture of Heterogeneous Traffic Sources

To evaluate a mixture of Poisson and non-Poisson traffic, there are the estimates 

for P ( W >  y )  derived in the last section such as:

P { W  < Y )  *  F ( s  * y j l x M w  { s * ) ) e ~ ^ s *y ~ MW ( ‘v*})

these remain true for other Rk(l) such as VBR or compressed video sources. 

Suppose there is the steady-state probability p, for Rk(t)=at,. Thus //k(s) for call k 

is given by:

Mk(s) = Iog eZ  Pie*“'
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the log moment generating function is given by:

M sî = H kv k(s)

With a mixture of Poisson and variable rate traffic, there is a mix of log moment 

generating functions for pk(s). To compute in real-time the following 

approximation is used:

P (w  < Y )  « F ( s  * / / "  0 * )

$
where: Mw'is ) = y-

Expanding the individual juw(s) by Taylor’s series can be computed for each call 

type. The series expansion of /.ik(s) =Xk(s) /uk(s) is given by first expanding

£,• Pi& ‘ as a series, then expanding the log of the resulting series:

juk 0 )  = logg (1 + d xs + d 2s 2 +...)

2 , 3 .= C}S + C2S + c3 +...

1 *'-1
in which: a  = d  ¡~  j  d  -  c j

* j =1

With these pre-computed coefficients, it is easy to obtain the series expansion of 

fdw(s) as well as its first two derivatives in real-time.

3.4.4 Algorithm Implementation

The log moment generating function of the tail distribution: q(x) = p (  W(t) = co) 

gives the mean and variance of W(t). They can then be substituted into the 

Gaussian approximation formula to find the distribution density p(W  = co):
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3.5 Algorithms with Timescale Analysis

Mitre, Reiman, and Wang [32] combine cell and call level for dynamic admission 

control to obtain efficient resource sharing. The model is a single bufferless link 

with multiple call classes, each source behaves as an ‘ON-OFF’ fluid source while 

in the system. The optimisation problem is that given a maximum cell loss, a 

CAC is designed to maximise the revenue due to carried traffic. This problem is 

too computationally intensive, so timescale decomposition is used to simplify it. 

The reduced state optimisation problem is then numerically feasible.

An admission control algorithm for the combination of different types of traffic 

was presented by Hui [20], It is called the multilayer bandwidth allocation 

algorithm. This is one of the earliest and most important papers to establish the 

ideas of timescale. A CAC algorithm for heterogeneous source types providing 

different services is designed by analysis of traffic with different characteristics. 

The evaluation of congestion occurs at different timescale levels (See Chapter 2), 

packet or cell level, burst level and call level. The acceptable bounds are chosen 

based on the blocking probabilities at each level.

The multilayer bandwidth allocation scheme allows a call to join a group forming 

a trunk. The admissible region is calculated as the probability of call blocking, 

depending on the call arrival and holding times. The multilayer refers to the 

computations o f probabilities at packet or cell level, burst level and call level. For 

call k, the packet arrivals process at the switch input is Rik(t)=u, the channel rate 

at time t.

Each level / chooses a subset of the level above to allocate resources, if it does not 

cause blocking of the level below. Thus the burst level allocation of a call checks
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within the call bandwidths to see if more resources can be allocated within the 

trunk of calls. Allocation also depends on if the packets in the level below will 

not congest. The algorithm in [20] defines a request packet which checks to see if 

the bandwidth request can be met for a call or burst. The summation of allocated 

resources is computed so that the connection admission will cause the over­

allocation of resources.

The offered traffic at level I to the output of resource T/ at time t is the sum of all

the traffic of all sources k, which is W[ (t) = Rik  ( t ) . The carried traffic is 

t
Wl (t) as the loading of output resources, so the difference between offered and

carried traffic is the blocked traffic. This needs to be within acceptable limits. 

The blocking probabilities at cell, burst and call levels can be found from relating 

the degree of queue saturation with service and arrival rates and then using the 

steady-state equations.

The traffic model is a two state fluid flow model, with the data source behavior is 

described by: idle state-> tx at 0 bit rate->burst state->tx at peak rate. Hence 

the peak rate and distributions of burst and idle periods completely describe the 

traffic statistics of the connection, represented by Rpeak , cr the utilisation factor

(the fraction of time the source is active), and b, the mean of the burst period. The 

source metric vector is (R k , a , b ). The model can be extended to non­

exponential burst/idle periods by the standard moment matching approximations 

in Section V-A of [20]. The admissible call region for a class of traffic defined as 

an n dimensional space of f  where the burst blocking probability is acceptably 

small. It was found to be a concave region with the boundary becoming more 

linear as the trunk capacity increases.
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3.6 A Decision-Theoretic Approach Algorithm

This CAC algorithm is based on Bayesian decision theory where the acceptance of 

a connection is if the current load is less than a pre-calculated threshold [30]. 

This methodology allows for explicit treatment of the trade-off between cell loss 

and call rejection. It also allows for the consequences of estimation error. The 

use of timescale analysis as described by Hui [20] in the previous section is used 

as a basis, to look at the call level, burst level and cell level congestion problems. 

A separation of timescales provides the framework for analysis, buffering is 

assumed to allow for cell delay variation. A bufferless model is used at burst 

level.

An offered call is accepted based on a simple threshold value. The threshold 

implements a robust estimation procedure, where the decision-theoretic 

framework facilitates the trade-off between the benefits of accepting the call 

(earned revenue, customer satisfaction) and the drawbacks (inability to reach QoS 

targets). The use o f Bayesian theory at burst level allows the Quality of Service 

requirements of a source to be met. The model used is the basic ‘ON-OFF’ model 

with an unbuffered capacity C. The call loss probabilities are estimated first. 

Assuming a prior distribution for burstiness parameter is available, different 

choices of this distribution give different amounts of uncertainty. This uncertainty 

is combined with additional information from measurements of load. They are 

integrated by Bayesian formulations to trade off between utilisation and cell loss.

The scheme in [30] is also extended for multiple call types, and a call need only 

specify its peak rate and Cell Delay Variation (CDV) tolerance. It is found [30] 

that Bayesian decision theory “provides a coherent and general framework within 

which the several trade-offs involved may be effected”.
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3.7 A Dynamic CAC Based on the Arrivals Distribution

When the number of classes of calls is large it can mean a variety of QoS 

requirements need to be met. To help this process the algorithm in [25] for a 

dynamic CAC uses the distribution of the number of cells arriving during a fixed 

interval. The call acceptance is based on the online evaluation of the upper bound 

of cell loss probability. The call acceptance is derived from this distribution and 

from the traffic parameters provided by the source at connection setup.

Other CAC algorithms for a wide range of classes of call require a large storage 

table for traffic parameter values and analysis of QoS performance. The table of 

values may be based on simulation or analysis. A particular arrival process is 

assumed, such as an interrupted Poisson process, with or without output buffers. 

The advantage of the dynamic CAC approach in [25] is that it is independent of 

the classification of calls and arrival process modeling. It also tolerates policing 

errors using the cell flow measurement. It concentrates on the Cell Loss 

Probability as buffer-sizing dimensioning is used to satisfy the delay requirement. 

So a new connection is admitted if it is less than the upper bound on Cell Loss 

Probability from the distribution of the arriving cells, as estimated using a formula 

in Section II of [25], The implementation of the algorithm uses an estimated load 

state vector to represent the probability distributions. Numerical examples are 

given to demonstrate the use of different types of traffic such as voice and video. 

This algorithm presents an interesting idea of measurement, a completely different 

approach to admission control that is developed further in Chapter 5.

3.8 Algorithms using Neural Networks, Fuzzy Logic and Artificial 

Intelligence Techniques

Neural networks and fuzzy logic have been proposed [46]-[56] as a basis for 

connection admission control. They attempt to predict the statistical behavior of 

the multiplexed sources. From this prediction they are able to forecast the cell loss
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rate. The decision to accept or reject the incoming connection can be made based 

on the accumulated intelligence by the neural network. The disadvantage is that 

the techniques may not be not fast enough to deal with traffic in real-time. 

Schemes to integrate various traffic controlling functionalities such as link 

capacity allocation, flow routing and network management can be achieved by a 

distributed system of neural networks and intelligence in the network.

3.8.1 Introduction to Artificial Neural Networks

Artificial neural network systems, or neural networks [46][47], are physical 

cellular systems that can acquire, store and utilise experimental knowledge. The 

knowledge is in the form of stable states or mappings embedded in networks that 

can be recalled in response to the presentation of cues. The basic processing 

elements of neural networks are called artificial neurons or nodes. Neurons 

perform as summing or non-linear mapping functions. They can also be perceived 

as threshold units that fire when their total input exceeds a certain bias level. 

Neurons usually operate in parallel and are configured in regular architectures. 

They are often organised in layers, and feedback connections may exist within the 

layer and towards adjacent layers. Each connection strength is expressed by a 

numerical value called a weight, which can be modified.

Neural networks can be distinguished by their architecture [46] and their learning 

modes. They have the unique ability to be taught or trained, and learn new 

associations, patterns and functional dependencies. Learning corresponds to 

parameter changes, and in this neural networks seem to differ from the 

programming of a more traditional machine. Instead they select the best 

architecture, specify characteristics of the neurons and initial weights and chose 

the training mode of the network. Appropriate inputs are then applied to the 

network so that it can acquire knowledge for the environment. The knowledge is 

assimilated and can be recalled later by the user.
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Fundamental concepts and models o f artificial neural networks are based on their 

biological counterpart the human neuron consisting of a linking mechanism via 

synapses. Neurons are linked together in a variety of groupings, depending on 

functionality and may have layered architecture and feedback mechanisms. 

Models of neural networks are defined in terms of their inter-connections. 

Neurons are connected through weights allowing a variety of sequences of delay 

or lag factors. The elementary feedback network has input and output neurons 

represented by vectors and connected by weights, which denote the source and 

destination nodes respectively. The processing done by the network is a non­

linear mapping of input to output influenced by the values of the weight, this type 

of network has no feedback connections. A feedback network is achieved by 

connecting neuron outputs to their inputs to enable control of the output with a 

suitable time lag.

Another important concept is that of neural processing. The process of 

computation of a given output performed by the network for a given input is 

known as recall. Recall is to retrieve information stored as a content of the node. 

We can assume the network stores a set o f patterns, and the input associated with 

the pattern is a process called auto-association. Classification is another form of 

neural computation, where a set of input patterns is divided into classes or 

categories. The classifier responds to an input pattern, and recalls information 

regarding the categorisation.

3.8.2 Integrated ATM Traffic Control using Neural Networks

In [49] the integration of link capacity control and call admission control is 

achieved via a distribution of neural networks. This system is particularly 

effective for multimedia call services with unknown traffic characteristics. An 

adaptive control method using neural networks is proposed that learns the relation 

between offered traffic and service quality. Non-linear functions for link capacity

57



and their assignment are optimised with the integration of adaptable neural 

networks for connection admission control.

A three-layered neural network is able to approximate the shape of an arbitrary 

non-linear function by precisely adjusting connection strengths, called weights, 

between neurons [46][47], An algorithm, with back-propagation according to a 

set of correct input and output data, does the adjustment of the weights from the 

target function. The three layers of the neural network are an input layer, a hidden 

layer and an output layer. Each layer consists of a group of neurons, and the 

output of a neuron in one layer is the input in the next layer. In the operating 

phase, the user sets the values of the input neurons, and the network produces 

output values. In the training phase, the user simultaneously sets desired input and 

output values, and then the weight values are modified according to the following 

learning equation:

wt (t + \) = wt (0  -  c[yt -  f ( x t )]
any­

where (t) is one of the weights in the cycle t, f  (xt ) is the neural network for the 

output for input xt and y t is the corresponding desired output, with c a positive 

constant called the learning constant. In online training a pattern table is used in 

combination with back-propagation. The pattern table contains a number of 

observed values from running systems. These are then randomly selected from the 

pattern table to be used as input and output value pairs during the training phase. 

The diagrammatic representation of this neural network is in Figure 3.1, the call 

input is a, the corresponding weighting factor is w and the output is q.

Another example is found in [51] which uses a back-propagation feedforward 

neural network. It partitions the bandwidth among a set of users and approximates 

the admission control for each user. The output link bandwidth is dynamically 

assigned between isochronous (guaranteed bandwidth) and asynchronous traffic
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types. Investigation o f the use o f neural networks and stochastic approximation 

algorithms for admission control and bandwidth allocation is done for a hybrid 

multiplexer serving multiple users with different traffic types. The neural network 

controller is for a two-level hierarchical system where bandwidth is allocated 

among a number of user sites that independently perform admission control.

Back-Propagation Neural Network

Figure 3.1 Neural Network for Call Loss Rate Estimation

3.8.3 Training Strategy

In a distributed system consisting of a number of neural networks [49], each 

neural network is trained independently. The networks are then trained 

simultaneously to shorten the length of time this requires if they were to be trained 

separately. The initial weights are important as they determine when the training 

period is likely to converge. The best weight values can’t be known prior to 

installation, so first random weights are used for the initial period of off-line
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training [49], The converged weights from off-line training are used as the initial 

weights for the online training. The network is then trained to control the real 

target system, and the weights are gradually improved to achieve more efficient 

control.

The neural networks in [48] uses the ability to model parameters at the synaptic 

level rather than threshold level. The ‘pRAM’ neural network learns to 

approximate a real-valued function from a given set of training patterns and their 

corresponding desired outputs. The output is accumulated and a memory update 

rule uses a reinforcement technique to generate rewards and penalties. To 

improve on the real-time application requirement, the training rate for the neural 

network is adjusted not by dependency on output error, but on the values of the 

input variables.

3.8.4 Integrated Call Admission Control Using Neural Networks

Call admission control and link capacity assignment are integrated in [49] to 

provide an efficient control system, with greater potential for optimisation. Neural 

networks decide to accept or reject a call setup request for each output link. The 

neural network for link capacity control learns the results of call admission and 

decides the optimum link capacity assignment. The neural networks co-operate to 

learn and so improve overall network performance.

Call admission control decides whether to accept or reject a setup request 

according to declared traffic characteristics and the required Quality of Service. 

When a node receives a call setup request, it categorises the call into bit-rate class 

according to cell emission characteristic parameters, to satisfy the following 

condition:

Q (n l ,...n i t ...n K \v )  < Q req
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where n, represents the connected call of bit-rate call i (i=l,...K), K  is the number 

of bit-rate classes, and v denotes the capacity of the output link. Q is the service 

quality estimation function, and Qreq indicates the required service quality. The 

initial network design determined the call admission according to maximum bit 

rate. Then online training of neural networks improves the call admission 

boundary. The neural network call loss estimation adapts to the changes in this 

boundary. With ‘adaptive’ control the call loss rate is much smaller and near 

constant for all traffic conditions. This is in contrast to non-adaptive control using 

a fixed neural network, with a larger call loss rate and changes in offered traffic.

3.8.5 Call Admission Boundaries

The call admission boundaries derived by a neural network [49] are the 

boundaries between acceptance and rejection. The neural network finds this 

boundary from the data observed from the operating network. The example given 

is for two classes, each representing a different bit rate, with maximum bit rates v„, 

° f  v m\ ~10>vm2 = 20 and average bit rates vflof va\ = 2 ,va2 =1 respectively. 

These are given by the source traffic characteristics, and the service quality 

parameter is the cell loss rate. These sources are called class 1 and class 2, with 

the weights initially set to random values then the neural network is trained for 10, 

000 seconds. The value o f v is varied from 500 to 1000 according to the cosine 

function to simulate burstiness in the traffic. Figure 3.2 gives an illustration of the 

cell admission boundary as the link capacity is trained by the network, and 

demonstrates the effectiveness of the integration with connection admission 

control.

3.8.6 A Decision Hyperplane Using Neural Networks

Neural networks have a self-learning capability, which can be utilised to 

characterise the relationship between input traffic and the system performance. 

The neural network in [12] uses a power-spectral-density [5] to contain the
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correlation behavior of the input process and uses it to evaluate system 

performance. Under the Quality of Service constraint, a decision hyperplane is 

constructed for connection admission control, according to the parameters of the 

power spectrum. The learning capabilities of the neural network adjust the 

optimum location of the boundary between these two decision spaces.

—
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Class 1 Calls

Figure 3.2 Call Admission Boundary derived by a Neural Network
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The study in [12] looks at the performance for the frequency domain of the input 

traffic in comparison to many approaches with time-domain analysis. The power- 

spectral-density in the frequency domain is the Fourier Transform of the auto­

correlation function [5] of the input process, capturing the correlation and 

burstiness features of the input process in the time-domain. The decision 

hyperplane uses the constraint of Quality of Service for its construction according 

to the parameters o f the power spectrum. The sample space is split into two, one 

for ‘accept’ and one for ‘reject’. When a new call is connected it is admitted to 

the ‘accept’ sample space.

3.8.7 Fuzzy Logic and Connection Admission Control

In [56] a fuzzy inference method is proposed in order to effectively estimate the 

probability distribution of CLR from its observed data. The method used is based 

on a weighted average of fuzzy sets. Fuzzy rules for the fuzzy inference are tuned 

automatically by a learning algorithm, energy functions are considered for this 

algorithm. A dynamic energy function is proposed, and the upper bound of the 

allowed Cell Loss Ratio (CLR) can be estimated. The fuzzy inference method 

based on a weighted average of fuzzy sets is proposed rather than conventional 

fuzzy inference, which is found to estimate an excessively high CLR. The 

estimation scheme is provided with a learning mechanism, the fuzzy rules are 

adjusted automatically by a learning algorithm with the observed data. The 

possibility distribution of the CLR is inferred from these fuzzy rules.

The relationship between CLR and the CAC algorithm is often non-linear, and the 

average learning provides an average of dispersion of maximum values. The 

estimation of the probability distribution of the CLR is needed to guarantee the 

allowed CLR for the CAC algorithm. The fuzzy inference approach has the ‘then- 

part’ of each fuzzy rule that gives the probability distribution of CLR. This is the 

distribution for the number of connections covered by the ‘if-part’ of the fuzzy 

rule. The transmission rate is classified into a number of classes, which also
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means that other parameters such as burstiness are taken into account. The fuzzy 

sets in each fuzzy rule are automatically extracted and tuned by a learning 

algorithm. Finally there is also a real-time compensation for CLR estimation 

errors to improve accuracy.

Fuzzy logic can be used in combination with other approaches. The CAC 

algorithm in [58] computes the Equivalent Bandwidth required to support each 

class of connections dynamically. It is based on online traffic statistics, declared 

traffic parameters and a fuzzy logic controller. Gaussian and diffusion 

approximations are used to characterise the aggregate traffic stream. Fuzzy logic 

control combines the model and measurement results to estimate the Equivalent 

Bandwidth in real time. It is shown that system utilisation is improved by the 

tuning of the fuzzy logic controller to combine the traffic characteristics deduced 

from the parameters and traffic measurements.

3.8.8 Multiple Quality of Service Requirements and Connection 

Admission Control with a Neurocomputing Controller

The papers [55][56] use neural fuzzy logic, proposing a neurocomputing call 

admission control algorithm to calculate the bandwidth requirements of 

multimedia traffic with multiple Quality of Service requirements. The algorithm 

uses a neural network and the online measurements of traffic rather than traffic 

parameters for estimations. The controller is a hierarchical structure of small size 

parallel neural network units. Each unit is a feedforward back-propagation neural 

network that has been trained to learn the complex non-linear function relating the 

different traffic patterns and Quality of Service. The controller allows for 

different classes of traffic with different Quality of Service requirements. The 

units can then be trained for different traffic classes for a specific traffic pattern, 

hence simplifying the design. The use of online traffic data allows for a swifter 

response to traffic congestion. Results show an improvement in accuracy of
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estimation over conventional methods based on mathematical or simulation 

analysis.

3.9 Algorithms with Prioritised Traffic Types

By classifying service types according to different priorities, it is possible to 

integrate a variety of services with different Quality of Service requirements for 

cell loss and delay. There have been a number of interesting studies addressing 

this topic [56][59]-[61]. More recent work in [10] combines this approach with 

Measurement-Based algorithms, allowing for a more sophisticated resource 

allocation scheme.

3.9.1 A Congestion Control Framework for Priority Traffic

A congestion control framework proposed in [56] describes an ‘express’ service 

for real-time traffic with bandwidth allocation at peak rate, and another class 

called ‘first class’ which has a guaranteed rate less than peak rate for allocation 

when congestion occurs. Thus statistical multiplexing is only used in the non- 

real-time traffic allocation. The integration of services in this way means that QoS 

performance requirements of Cell Loss Probability and end-to-end cell delay for 

both types of services can be met.

The CAC reserves bandwidth for an incoming call according to either peak rate 

for express services or a congestion parameter /(betw een 0 and 1) for guaranteed 

bit rate < peak rate. The call is accepted if:

M  = total bandwidth reserved fo r  the local access network 

p  = the allowed utilisation level fo r  Cell Loss Probability
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W = transmission capacity o f  the link

A connection can send hW /f cells/sec, where h is the cells in a logical frame length 

f. Congestion control occurs by a buffering mechanism in the router, which has a 

buffer for non-real-time first class service traffic. If it reaches a threshold a 

congestion indicator cell is sent back to the source to throttle the transmission 

back to guaranteed rates.

The disadvantage of this framework and CAC algorithm is that it requires extra 

hardware implementation at the sources and multiplexers to respond to the 

congestion indicator cells. It does not use statistical multiplexing fully and hence 

does not attempt to achieve maximum network utilisation. It uses the discrete­

time Markov chain traffic model to derive Cell Loss Probability and cell delays, 

which may not be the most suitable model for bursty traffic. It does provide an 

overall framework for all types of traffic, and a system for calculation of buffer 

sizing and link utilisation, with a CAC algorithm that is simple and practical.

3.9.2 New Models for Admission Control of Priority Traffic

A study of M/D/1 queuing models in [59] produces approximations for Cell Loss 

Probability, the admissible load and buffer length. It can be used for expressions 

in traffic for both time and space priority cells. The analysis focuses on ‘express 

rate’ or priority cells and provides partial buffer sharing for both types of traffic. 

Time priorities are assigned to the cells, and approximate the effect of high 

priority cells by the use of random interrupts on the queue to give a new formula 

for CLP.

The use of separate buffers for priority traffic is proposed in [60] and can be 

contrasted with a shared buffer scheme in [61], Both providing highly effective 

solutions to Multi-class QoS services with different levels of priority. The study 

in [60] provided separate CAC algorithms for each queue type, with 

Measurement-Based admission control for the lower priority traffic or best-effort
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service. The study in [61] points out that a cell scheduler is required to allocate 

separate queues, and proposes a shared queue system instead. The queue space is 

divided into multiple subspaces and is allocated to different classes depending on 

traffic levels with a class acceptance function. Their work refers to the Effective 

Bandwidth vectors found by Elwalid and Mitre [34] described in the next 

Chapter.

3.10 Algorithms Based on Simulation and Reinforcement 

Learning

Simulation and Reinforcement Learning algorithm have their bandwidth 

assignment for each class of service based on simulation results [62]-[64]. The 

sources with different services are grouped according to traffic descriptors, and the 

bandwidth assigned is derived from the mean of each. The second step is to 

consider the traffic with a mix of several classes. The assigned bandwidth is then 

found using previous simulations. So the performance measures for 

heterogeneous traffic are evaluated using the results obtained for homogenous 

traffic. The CAC algorithm uses the simulation results to have a set of values in 

order to decide if it can accept a call, in each individual class.

The evaluation of QoS performance (e.g. burst-level blocking probability) can be 

found from simulation results. It is confirmed with analyses, using traffic 

parameters such as peak rate (PCR) and average rate (ACR), burstiness 

(PCR/ACR) and average durations of bursts. Assumptions made such as a 

particular arrival process (for example an interrupted Poisson process, with or 

without buffers) need to be considered regarding suitability when representing the 

type of traffic controlled by the CAC algorithm.

In [63][64] the CAC policies are derived from solutions to Neuro-Dynamic 

programming. This is a simulation-based approximate dynamic programming 

methodology for producing near optimal solutions for large-scale dynamic
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programming problems. Neuro-Dynamic programming is also called 

Reinforcement Learning (RL). In [63] the CAC problem is naturally formulated 

as an average reward dynamic programming problem with a very large state space. 

So the CAC policy is essentially a problem of revenue maximisation. The 

computational requirements may be too slow for online use however, unless a 

smaller set of tunable parameters is used.

In [64] Reinforcement Learning (RL) is used to solve an adaptive admission 

control problem. The network revenue is to be maximised while meeting the 

Quality of Service constraints. This is formulated as a semi-Markov decision 

process with RL providing the solution. RL is better than model-based algorithms 

as it does not require explicit state transition models. These have such a large 

number of states that the algorithms become infeasible. The network accepts or 

rejects the call depending on a description given in terms of bandwidth as a 

function of time. The network measures QoS metrics. An example is the fraction 

of time that the total bandwidth exceeds the network bandwidth, called the 

capacity constraint. Another QoS metric is the call-level blocking probability. 

When offered traffic needs to be reduced to meet the capacity constraint, it is done 

according to a fairness constraint. The revenue is maximised subject to these QoS 

constraints.

The RL methodology in [64] means learning the optimal policy using a ‘Q- 

learning’ algorithm. This means that when a call arrives the Q-value of accepting 

the call and the Q-value of rejecting the call is determined. If rejection has the 

higher value, the call is rejected, otherwise if acceptance has the higher value, the 

call is accepted. The Q-value is learned from a value function that is updated 

when there is a transition from one state to another, due to an action in a particular 

length of time for a stepwise learning rate. Q-learning does not require explicit 

state transition models and the initial values can be arbitrary. The capacity and
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fairness QoS constraints are incorporated into the RL solution to maximise 

revenue.

3.11 Summary

The Chapter has presented a wide range of algorithms based on a variety of ideas. 

The algorithms can be catagorised as those based on a mathematical 

approximation such as the Convolution Algorithm, the Chernoff Bound Algorithm 

and the Gaussian Approximation Algorithm. They use Fluid Flow Analysis, 

Probability theory and the Central Limit Theorem to formulate the basis for an 

admission algorithm. They can be used in combination with large deviations 

theory and with other algorithms to provide sharper estimates.

As a different approach, there are algorithms with admission control using 

timescale decomposition. This means the optimisation problem of admission 

control is simplified and so the algorithm becomes easier to implement. Baysian 

decision theory is another basis for algorithms. It provides a pre-calculated 

threshold as shown by the Baysian formulations, these formulations trade off 

between utilisation and cell loss. A dynamic CAC based on the arrivals 

distribution acts as an introduction to the ideas of Measurement-Based algorithms. 

Then there are the Priority algorithms, those with Artificial Intelligence, and 

finally algorithms based on Reinforcement Learning. These represent areas of 

further research as they prove to be highly adaptable forms of admission control.
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Chapter 4

Effective Bandwidth Algorithms
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4.1 Introduction

The theory of large deviations [31] provides a unified basis for statistical 

mechanics, information theory and queuing theory. The theory of Effective 

Bandwidth is developed from this. The Effective Bandwidth of a source is the 

minimum amount of bandwidth required to satisfy its QoS constraint. Chang and 

Thomas [35] develop the theory from the laws of thermodynamics and the entropy 

function. The source is compared to a constant rate fluid, with a tail distribution 

of the queue length in the network. The theory of large deviations finds that the 

probability density function may be used to derive the ‘energy’ and ‘entropy’ 

functions of the source. By solving for the dominant exponent in its integral, an 

approximation of queue length distribution can be made. This corresponds to 

finding the minimum action path in classical mechanics.

The theory of Effective Bandwidth is extended to yield approximations for a 

network of local nodes and sources. This is achieved by close examination of how 

buffers build up. The approach by Gibbs [31][35] in statistical mechanics 

provides a solution. By specifying when the average energy the distribution of the 

coordinates from a uniform distribution to the Boltzmann distribution may be 

found. Similarly we look for the most likely distribution of a source given that the 

buffer builds up. Section VI in [35] establishes a connection between the entropy 

function and the relative entropy rate (the Kullback-Leibler distance) defined in 

Information Theory.

This Chapter explains the important concepts of Effective Bandwidth and 

equivalent capacity [11][21][33]-[44]. They are used as a basis for several 

admission control algorithms. The various traffic models and source 

characterisations are examined. The algorithms have been found to be very 

efficient in comparison to other types in terms of network resource allocation.
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4.2 Defining Effective Bandwidth

The ‘Effective Bandwidth ’ allocation needs to meet Quality of Service 

requirements for connections while targeting good link utilisation. It is less than 

the bandwidth required for the peak rate of the source. This is possible since the 

likelihood that all sources will transmit simultaneously at peak rate is very low. 

Effective Bandwidth theory allows for the derivation of bandwidth allocation 

techniques for connection admission control from the behavior of individual and 

aggregate sources.

The concept of Effective Bandwidth is used to describe the utilisation of network 

resources in terms of the statistical characteristics of the sources, and their Quality 

of Service requirements. It provides a measure associated with the source for 

performance guarantees expressed in terms of cell loss or delay, and so the CAC 

algorithm is reduced to a consideration of whether the sum of Effective 

Bandwidths is less than a threshold value.

Kelly and Gibbens [36][37] state the definition of Effective Bandwidth of a 

source as depending on two parameters, the space and time scaling. The choice of 

these time scales depends on the characteristics of the resource, capacity, buffer 

size, traffic model, etc. The Effective Bandwidth is given by the statistical 

descriptor:

a { s , t )  = —  l o g E [ e sX[r’T+t]] 
st

where s is the space scale (in bytes or cells) and t is the time scale (in seconds). 

X [ t, r+t] is the workload arriving at a resource in time period [ r, r+t] and the 

expectation is taken over the distribution of random periods. This means that 

a(s,t) lies between the mean and peak arrival rates o f the source measured over an
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interval t. Hence improved link utilization results if the Effective Bandwidth can 

be allocated instead of the peak rate bandwidth requirement.

The definition of Effective Bandwidth for X[0,t] is the amount of work that 

arrives from a source in the interval [0,t], Assuming that X[0,t] has stationary 

increments, the Effective Bandwidth of the source is defined as:

a { s , t )  = —  log £ [ e ^ [0’/]] forO<s,t<oo
st

with properties as described in the Appendix. The scales of time and space are 

determined by the source and Quality of Service required, and by the capacity of 

buffer lengths. Kelly [36] derives the a  (s,t) Effective Bandwidth descriptors for 

different source traffic models - Bernoulli bufferless models, periodic models, 

fluid models and fractal Brownian motion input models. They lead to admissible 

regions that give the time and space scales, s and t, for these sources.

4.3 Effective Bandwidth and General ‘ON-OFF’ Sources

Let the source alternate between long periods in an ‘ON’ state with an Effective

Bandwidth ar(s,t) and long periods in an ‘OFF’ state where it produces no

workload. If p  is the proportion of time spent in the ‘ON’ state, for small values 

of t compared with the periods spent in the ‘ON’ or ‘OFF’ states, then:

~E[e^T,T+t̂ ] — E[e^^T’T+t̂  |Source is ‘ON’] p + E [ e ^ r,r+^|Source is ‘OFF’] (1-p)

= E [er f '[f’r+,]]p + E [ei0 ](l-p)

w hereX j[r,r + i] is the work generator for [x,x+t] by the ‘ON’ source. By

definition of a\ is, i) : E[ eX^ T,T+t̂  ] = a x (s , /)
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hence: E[esX'[T’r+th  = VCcx{s,t) + 1-p

and so: a ( s , t )  = -Llog [l + p ( e ( * « l  (».»)) _  J
St

The ‘ON’ periods may at a finer time scale appear as a periodic source, with bursts 

having a structure, so the definition of Effective Bandwidth depends on the range 

of s and t.

4.4 Multiplexing Models

The arrivals process is assumed in [36] to be the aggregation of the sources:

X [ 0 , t ]  = f j f d X J,[0, t]
j = 1 ,'=1

The (Xji[0,t])ji are independent processes with stationary increments whose 

distributions may depend on j  but not on i, and the resource such as the switch has 

to cope with the aggregate arriving stream of work. The number of sources of type 

j  is rij, and the Effective Bandwidth Oj(s,t) for a source of type j  is thus:

nj
a  ( s , t )  = Y j n j  a  j ( s , t )

7 =  1

The point of looking at multiplexing models is to figure out the constraints that 

exist, and to see if the sum of Effective Bandwidths for rij number o f sources is 

within the acceptance region for resource and Quality of Service requirements. 

The acceptance region is defined by a set of vectors (h],ri2,...nj), for which a given 

performance in terms of queuing delay or buffer overflow is guaranteed.

The constraints are ( s*, t*, C*) with the relationship:
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The choices of values for the constraints ( s*, (*, C*) and the acceptance region 

vectors are described for different types of multiplexing models in the Appendix.

4.5 Connection Acceptance Control for ‘ON-OFF’ Sources and 

Charging Mechanisms

Kelly [36] proposes using a charging mechanism and CAC algorithm based on a 

combination of prior declarations and empirical averages, let:

Z = E [e sX[T’T+t]\

and so the Effective Bandwidth of the source is:

a ( z )  =  —  log E [Z ]
St

Before admission of a call, the network requires the user to specify a value z, and 

then charges an amount f(z:Z) per unit time, where Z is estimated by an 

empirical averaging. The user is assumed to select the value z' for minimising the 

expected cost per unit time. The tarifff(z;Z) should be chosen so as to allow the 

network to estimate the number of users from the estimate of z  from z  so that 

f(z ' ;Z) is proportional to a(z). Kelly shows that the appropriate function is:

f(z;Z) = a(z) + b(z)Z

defined as a tangent to the curve a(Z) at the point Z = z.

An ‘ON-OFF’ source produces a workload of constant rate h when in an ‘ON’ 

state, and none in an ‘OFF’ state. Let M and h represent the mean and peak rates

75



in the equation for Effective Bandwidth so that ai{s,t) = h , and p  = MJh. If h is 

fixed then:

Z  = 1 + —  [e sth -  1] 
h

When z  is evaluated using the above formula and M  is replaced by m the tariff 

f(z;Z) becomes : f(z;Z) = a(z) + b(z)Z = a[m,h] + b[m,h] M

It is the tangent to the function:

a [ M  , h ] =  — log 
st

1 + ^ - [ e sth -  1] h

at the point M  = in. The interpretation is that for a tariff, the user is free to choose 

a value m, and then incur a charge of afm.hj per unit time, and a charge of h[m,h] 

per unit volume carried.

The admission control algorithm associated with the above tariffs is as follows. 

Suppose that a resource has accepted connection times 1,2, ... i and that (aitbi) are 

the coefficients (af z j ^ f z j )  chosen at connection time. The resource measures the 

load Xj[t, t+1] produced by connection i over a time t, let Y, = exp(s X,[r, rv l ]  ). 

The effective load on the resource is then defined to be:

i
X  + b , Y ,)
i=i

The new connection is accepted if the calculated effective load is below or above a 

threshold value.
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4.5.1 ‘ON-OFF’ Sources

For hi the fixed peak rate of connection i then (a,, 6,) for the coefficients 

(,a[nij, hj| b[mj, ht ]) chosen by the user, and the measured load from the connection

i is Mj  = X¡[t, t + t ] l t . Then the effective load on the resource becomes:

/
X  ( a i + biM i) 
i = 1

This is compare with the threshold value to determine connection acceptance.

4.6 Effective Bandwidth and Equivalent Capacity

The nature of Effective Bandwidth for statistically multiplexed sources is 

examined in order to assess the allocation of bandwidth for a connection to meet 

Quality of Service requirements. A unified metric is proposed for the 

representation of Effective Bandwidth of individual connections and also the 

aggregate multiplexed connections [33][35]. A computationally simple 

approximate expression of the ‘equivalent capacity’ is made from this metric. The 

model used to characterise the connection is significant. The approach in [33] is 

to combine two approximations, one that represents the sources with a fluid flow 

model, and a second approximation that focuses on the distribution of stationary 

bit rate of the link. The first approximation is to estimate where the impact of 

individual connections is critical, the second to represent bandwidth requirements 

when the effects of statistical multiplexing is significant. So the two 

approximations complement each other and are also computationally simple. This 

allows for real-time implementation.

The bit rate generated by a number of multiplexed connections is represented by a 

continuous flow of bits. It varies with intensity according to the state of the
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underlying continuous-time Markov chain. This Markov chain is obtained from 

the superposition of the sources associated with each connection. The aggregate 

bit rate offered to a buffer is emptied at a constant rate of c. Guerin et al [33] 

determines the smallest value C (equivalent capacity) of c such that the overflow 

probability (representing QoS) is smaller than e. The determination of the 

equivalent capacity C requires that first an expression is found giving the 

distribution of the buffer contents as a function of the connection characteristics 

and the service rate. This expression is then inverted to determine the value of the 

service rate, which ensures an overflow probability o f e  or smaller for the 

available buffer size. The value of the overflow probability is the equivalent 

capacity.

4.7 Effective Bandwidth of General Markovian Traffic Sources

Elwalid and Mitra [21][34] show that the Effective Bandwidth of a Markovian 

source is the maximal real eigenvalue of a matrix. It is derived from the source 

parameters, network resources and service requirements, with dimension equal to 

the number of source states. Two sets of results are obtained, one for Markov 

modulated fluid sources with a fluid model, and also results for queues and point 

processes, where the sources are Markov modulated Poisson or phase renewal 

processes. They add to the results for ‘ON-OFF’ fluid sources, as described in the 

last sections. Effective Bandwidth is based on source characteristics and call 

acceptance criteria, and so can be used as a basis for call admission. Its value is 

bounded between the peak and mean rates.

The model o f statistical multiplexing is made up of fluid sources, each source 

being characterised by (M,A) where M  is the infinitesimal generator of the 

controlling Markov chain. The source generates fluid at a constant rate As, when 

in state s. The mean source rate is A,,, and the peak source rate is Ap. The 

multiplexing buffer is serviced by a channel of constant capacity, c.
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Let G(B) denote the stationary distribution Pr[X > 5] where X  represents the 

random buffer content and G(B) is the overflow probability for buffer size B. For 

a given B and p, let the service requirement be {G(B) < p),  which is also the

admission criterion. The value ofp  is small, e.g. 10-6 .

First consider a multiplexing system with only one source, (M,A). The asymptotic 

regime is where p —>0 and B —>oo so that log p/B e  [  -°o, 0 ], and the

admission criterion is satisfied if e<c and violated if e>c, where e is the Effective 

Bandwidth.

The Effective Bandwidth is the maximal real eigenvalue of the matrix [A - - ^ M ] ,

where A  = diag(A), The Effective Bandwidth e depends on (M, A), and on the 

buffer and overflow probability only through £  Next, the single source 

considered is in fact an aggregate of K  arbitrary sources, (Mk,Ak) {\ < k < K). The 

result obtained is very simple, the Effective Bandwidth becomes e = , where

ek is the Effective Bandwidth of a single source in the system.

The results carry over to the framework of queues and point processes. The 

source characterisation differs only in that As is the rate of the Poisson stream that 

is generated by the source in state a1. The Effective Bandwidth of a single source 

(M,A) in the multiplexing stream is now the maximal real eigenvalue:

For the fluid model the Effective Bandwidth decreases monotonically with 

increasing Ç from Ap at Ç= - oo to Am at Ç= 0.
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4.7.1 Call Admission with Heterogeneous Classes of Sources

The following observation on Effective Bandwidth [34] is useful in its estimation 

from measurements. A source is supplied by a buffer serviced by a channel of 

variable capacity c. The Effective Bandwidth e is the value for c for which the 

asymptotic slope of log G(x) = £

For call admission with heterogeneous classes of sources, the condition is:

A(B,p)  = {K = K \,...K j :GK ( B ) < p  } = ^ e j K j < c

the asymptotic result is that A (B ,p ) is essentially the constraint X ej K j  < c , 

where ej  is the Effective Bandwidth of a single source of class j .  The 

approximation from the asymptotic result, £ ej K j  <c ,  is the acceptance set in 

real, non-asymptotic cases.

4.7.2 Mathematical Development of the Inverse Eigenvalue 

Problem

The mathematical development [21][34] is in two stages:

1. Analysis of a single source: This is an inverse eigenvalue problem. The growth 

of properties of a maximal real eigenvalue occurs with respect to a parameter in 

the problem. This is due to the convex behavior of the maximal real eigenvalue of 

essentially non-negative matrices with respect to all diagonal elements.

2. The algebraic decompositions which give the additive form of the Effective 

Bandwidth of several sources; decompositions based on Kronecker 

representations.
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This section covers basic background facts about the statistical multiplexing 

system in three parts. First there is a description of a standard eigenvalue problem 

to compute the spectral expansion of the systems stationary distribution. The 

second part broadens the scope of the eigenvalue problem by introducing the 

parameter, channel capacity. The eigenvalues are viewed as functions of this 

channel capacity. Then the inverse problem is described which is also an 

eigenvalue problem. Finally there are some facts about essentially non-negative 

matrices, and the maximal real eigenvalues are presented. These are critical for 

the analytical development of this algorithm.

4.7.3 The Statistical Multiplexing System

The model of statistical multiplexing [21][34] consists of a buffer supplied by 

independent Markov modulated fluid sources. It is serviced by a channel of 

constant capacity, i.e. of rate c. The sources are described by lumping them into a 

single Markov modulated fluid source with state space S  and irreducible generator 

M. The source generates fluid at a constant rate As, when in state s (seS). Let 

A = {A.S | s e S}. So the aggregate source is characterised by (M,A). Let the rate

matrix A = diag (A).

Let Z  denote the stationary aggregate-source state and X  the buffer content. Let 

the stationary source distribution of the multiplexing system be denoted by n  (x)

where {a s | s e S'} and:

x s (x) = Pr(X= s , X  < x) (5 e S,0 < x  < 00)

The governing system of differential equations is:

^ * 1 ] )  = „(X)M  (0 < x < 00)
ck
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where D=A - c l  and I  are the identity matrixes and the diagonal element Dss = (As 

- c) is the drift, or rate of change in the buffer content when the source is in state s. 

Hence we call D  the drift matrix.

The stationary probability vector for the aggregate source is denoted by w; hence 

wM = 0 and <w,l> = 1 where 1 is the vector in which all elements are unity. The 

ergodicity condition is Am <c, the mean source rate isAm = (A,w).  The peak 

source rate is Ap = max As . It is assumed that c< peak rate.
S

Since the spectral state distribution is a bounded solution, it has the spectral 

representation:

n C * )=  X  a i ^ i eZiX +  w
/.'Re z,<0

where (z,,® ,) is the eigenvalue/eigenvector pair. Such pairs are solutions to the 

eigenvalue problem:

z OD =  0 M

The eigenvalues with real negative parts are indexed as:

0 > Re z\ > Re z2 ^  Re z3 > ...

If Zj is real and zj > Re z;- for all i> l, then zj is called the dominant eigenvalue.

In the spectral expansion, the coefficients {a j are obtained by solving a system of 

linear equations that are obtained from the following boundary conditions:

Dss > 0 => x(s,0) = 0
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The number of such conditions exactly equals the number of eigenvalues for 

negative real parts.

The stationary buffer overflow distribution is given by G(x), i.e.

G(x) = Pr(X < x)

= 1 - < Jt(,v),l >

= { ¿ > e zix
/>!

if z\ is the dominant eigenvalue, then:

G(x)  «  f l ] ^ )  ,\)e z'x as x —>°o

log G (x)
note that: Z \ ~ x—>co X

Plots o f log G(x) versus x approach linearity as jc increases and the slope 

approaches z ,.

4.7.4 The Inverse Eigenvalue Problem

Consider the eigenvalue problem [21][34] as before:

Z 0  (A  - cl) = 0 M

The scope of the problem is extended by considering c to be a variable parameter 

and the eigenvalues to be functions of c, z(c). The inverse problem requires c to 

be found for a given z. This is done with an inverse eigenvalue problem, with c =

g(z):
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g(z) 0  = 0A (z)

where A(z) = A  - 1/z M. This means g(z) is an eigenvalue of the matrix A(z) in 

which z is a parameter. The inverse eigenvalue problem, its maximal real 

eigenvalue and behavior of this eigenvalue as a function of z is central to the 

mathematical development for the algorithm.

4.7.5 Essentially Non-Negative Matrices

A real matrix with non-negative elements off the main diagonal is called 

essentially non-negative. The matrix A(z) is essentially nonnegative [21][34], for 

real and negative z. Since M  is irreducible, so is A(z). By adding oi to A(z)

where: a  > max f \
—M a - A i
z

a nonnegative matrix is obtained whose eigenvalues are those of A(z) shifted by a

4.8 A Single Source: Monotonicity of Eigenvalues and Effective 

Bandwidth

The single source studied next is an aggregate of many lower-order sources. The 

properties of the eigenvalues, monotonicity and convexity are established in [34] 

and the asymptotic view of the admission control problem is introduced, as well as 

proving that the Effective Bandwidth of the source as the maximal real eigenvalue.

The Effective Bandwidth is monotonically increasing and convex function of all 

state-dependent rates of the source. A corollary in [34] shows that the coupling of 

state transitions of two sources with identical generators for their controlling 

Markov chains and proportional rate vectors, the effect is to increase the Effective 

Bandwidth.

4.9 Multiple Markov Modulated Sources and Admission Control
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The results for single sources are extended to multiple multiplexed systems with 

several sources as follows. The asymptotic regime of buffer overflow probability

of 1CT6 is specified by scaling, to arrive at the following natural asymptotic 

regime, by letting B andp —> 0 so that:

logp = £B + 0(1)

Let the admission criterion be G(B)< p  hence log p/B —> where [  -°o, 0 ]. 

The following characterises K  sources that satisfy the admission criterion in this 

asymptotic regime. If there are K  sources:

(M W , l (i)) for (l < k < K )

Let the admission criterion be G(B) <p . Suppose B and p —> 0 as letting log 

B / p  = [ -°o, 0].

If X  k S \ k \ C )  < c 5 dien the admission criterion is satisfied. Hereg, (¿,~) is the 

maximal real eigenvalue of:

A (k)( 0  = [A (k)- ^ M (k)l

4.10 Summary

The algorithms of Effective Bandwidth are of great importance and have been the 

focus of much of the research in the area of connection admission control and 

resource allocation. They demonstrate the application of large deviations theory 

[26] and its approximations for bandwidth allocation. Kelly [36] derives the 

Effective Bandwidth descriptors for different source models and the CAC 

algorithm for the ‘ON-OFF’ source model, while Elwalid and Mitra [21][34] 

show how the Effective Bandwidth for Markovian source models in general is the 

maximal real eigenvalue o f a matrix derived from source parameters. Admission
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control policies can be found from these approaches, note lhat extra background 

theory is found in the Appendix. The numerical evaluation in Chapter 6 will 

provide a basis for comparison of the Effective Bandwidth algorithms with others, 

and will clarify the advantages of this method.
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Chapter 5

The Measurement Approach
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5.1 Introduction

The estimation of bandwidth requirements may be approached in two ways. One 

approach is to assume a parametric model of the traffic and the parameters for the 

connection to be added, as in Chapters Three and Four. These parameters are 

found from information declared by the connection when it requests admission, or 

measurements made on the traffic generated by the connection, or a combination 

of both. Once the detailed model is completed, the estimate can be calculated. 

The problems with this approach are that unless online measurement is employed, 

the application is required to deliver a detailed self-characterisation before it has 

transmitted any traffic. Then the network still has to fit suitable parameters to a 

model that adequately describe the traffic source, given such a characterisation. 

This may be difficult and the solution may contain redundant information. Also a 

new traffic type may mean a complex modeling process in advance of 

transmission.

An alternative approach used by Measurement-Based algorithms [10]-[13] [67]- 

[74] is to measure the bandwidth requirement directly. This avoids the problem 

of requiring new traffic types to specify a parameterised model in advance and 

removes the estimation of redundant information. The important advantage of this 

approach is that it requires very little declared information on the part of the 

application. Measurement-Based Admission Control (MBAC) algorithms study 

the performance of a scheme that has no prior knowledge of the traffic statistics 

and makes the admission decision on the current state of the network only. In 

contrast to the other algorithms, which look at the characteristics of source traffic 

and represent them as parameters, Measurement-Based algorithms make decisions 

on a monitored amount of traffic on the network. This means that the information 

about the behavior of the cells at a given moment is measured and this information 

is used to make a decision. The following sections present a range of 

Measurement-Based algorithms and examine their behavior by simulations with
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different traffic sources. The advantages of the measurement approach can be 

seen in contrast to other types of algorithms, particularly those with long-range 

dependent (LRD) traffic. They provide an exciting new approach to admission 

control and opportunities for further research.

5.2 Measurement-Based Algorithms

There are several different algorithms with measurement as described in 

[12][13][68]-[74]. Through the use of analysis and simulations the performance 

of Measurement-Based algorithms is explored, and the dynamics of the system 

analysed.

5.2.1 The ‘Certainty Equivalent’ Controller Algorithm

The first algorithm is called ‘certainty equivalent’ controller [12]. This is an 

admission controller that assumes that the measured statistics are the true statistics 

of the calls, and uses this information to make decisions. The two performance 

measures that are of interest are the steady-state probability of the event that the 

system overloads, and the expected fraction of the bandwidth utilised. The 

success of the admission control scheme is evaluated by how well it meets the 

Quality of Service requirement.

A Measurement-Based algorithm accepts or rejects a call based on the observed 

past history of calls that are currently in the system and have possibly terminated. 

There may be no prior knowledge of the sources but measurements of traffic flow 

are taken and measurement errors are also to be considered. The analysis in [12] 

estimates the statistics of the calls from observing their past empirical behavior. 

The scheme has a number of calls nk(t) that are currently generating data at rate ck,

for each k (k=l,...,K). This gives the empirical distribution { n *  } of bandwidth

requirements for a typical call, and a distribution:
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where x(t) is the number o f calls currently in the system at time t. The idea is to

use { r U  to estimate the distribution of { 1 1 *} which is the bandwidth

requirements for the duration of the call. The admission control scheme is of a 

‘certainty equivalent’ type, the controller assumes that the measured values are the 

true parameters. The performance is studied with fluid approximation and large 

deviations analysis. An acceptance region and rejection region is used to clarify 

the boundary of call acceptance. The main theoretical result is that a memoryless 

‘certainty equivalent’ control can achieve the performance of the optimal scheme 

with knowledge of traffic statistics. The conclusion from the simulation studies is 

that the scheme works well only with large link capacities. For small link 

capacities it makes too many admission mistakes due to measurement errors.

5.2.2 The Aggregate Traffic Envelope Algorithm

To continue the idea of ‘certainty equivalence’ from the last section, the paper 

[72] describes a framework with an adaptive Measurement-Based aggregate 

traffic envelope. It is found from aggregate traffic flow and provides a traffic 

characterization with its temporal correlation and available statistical multiplexing 

gain. A ‘maximal rate envelope’ is measured to characterize the behavior of 

aggregate flow. The rate envelope describes the traffic flow rate associated with 

the corresponding interval length. This provides the framework for the 

development of a new envelope-based MBAC.

The framework for the algorithm has what is called a schedulability confidence 

level. This reflects the variation and temporal correlation of past envelope 

measurements, and the uncertainty of the prediction of the future workload. It 

allows control o f the QoS parameters that applications are ultimately concerned 

with, such as loss probability and delay-bound violation probability so they do not



exceed the measured envelope. An extensive set of simulation experiments uses 

traces of compressed video as well as model-generated long-range dependent 

traffic. The scheme has been implemented on a test-bed of prototype routers.

The new Measurement-Based admission control approach utilizes the measured 

values of aggregate traffic envelopes. It consists of a measurement algorithm and 

an admission control algorithm. The measurement algorithm continually updates 

the recent empirical aggregate envelope and measures the envelope’s temporal 

variation. The admission control algorithm has a check for aggregate 

schedulability with an associated predicted confidence level, and also an 

estimation of the loss probability. The new call is admitted if the predicted 

performance parameters satisfy the QoS requirements of the new flow as well as 

all existing flows.

First the aggregate rate envelope is found. An interval length associated with the 

flow rate is specified. By measuring the maximal rate envelope (defined next) of 

the aggregate flow, the short time-scale burstiness of the traffic is estimated. This 

allows for analysis of the dynamics of a buffered multiplexer with a new 

admission. Then the variation of the aggregate flow’s rate envelope is measured, 

to characterize longer time-scale fluctuations in the traffic characteristics. The 

confidence values of the schedulability condition can be determined with the 

variation in the measured envelope. The expected fraction of bits dropped can be 

estimated should the schedulability condition fail to hold.

When a new flow arrives the aggregate schedulability test is performed. This test 

ensures that for a given confidence level the cell loss rate is within an acceptable 

level. This confidence level is necessary as there is no a priori assurance that the 

past envelope will prove adequate for the aggregate flow. Consider a new flow 

bounded by rk ,k = 1 that requests admission for traffic and having a service 

rate C, with minimum delay d, the minimum interval for the measured rate 

envelope t, and buffer capacity of at least C.d. The aggregate flow is characterized
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— • 2 by peak rate Rk and mean Rk and variance crk , k = With a new

admission no loss will occur with confidence level <D(<ar) if:

max {kr(Rk + rk + acrk -  C)} < Cd 
k=l,2,...T

The rate envelope of the aggregate process is significantly less than the sum of 

individual worst-case envelopes.

Having completed the schedulability test, the loss probability test is important. 

This is because if the traffic exceeds the aggregate envelope it will result in loss 

and delay. To satisfy loss requirements the MB AC has the following test. The 

aggregate flow has satisfied the schedulability test and has mean bounding rate Rk

and variance a k over intervals of length kr. For link capacity C, buffer size B 

and schedulability confidence level &(a), the cell loss probability is:

P ~ max
lOSS~ k S !Z ,T  RT

5.3 Comparison of Measurement-Based Algorithms with other 

Approaches

In the study [13] the two basic approaches to admission control are compared. 

The first is the parameter-based approach computing the amount of network 

resources from the current traffic flow levels. Then there is the Measurement- 

Based approach, which relies on the measurement o f actual traffic load in making 

admission decisions. Three Measurement-Based algorithms are described based 

on ideas of measured bandwidth, acceptance region and equivalent bandwidth 

respectively. The simulation studies for several network scenarios evaluate the
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link utilisation and the adherence to service commitment achieved by these four 

algorithms. These three algorithms are investigated and provide an interesting 

spectrum of ideas.

The authors in [13] claim that service commitments made by Measurement-Based 

algorithms can never be absolute. Their Measurement-Based approaches are used 

in the context of service models that do not make guaranteed commitments and to 

provide this they have a controlled-load service model. The controlled-load 

service is designed for adaptive real-time applications that can tolerate variance in 

packet delays. The controlled-load service is suited to the decentralized and 

heterogeneous Internet. The same principles can be applied to an admission 

control service for the ATM protocol. The network switches and routers perform 

admission control at the call level to ensure that sufficient resources are available 

to serve the flows.

5.3.1 The Measured Sum Algorithm

The admission control algorithms [13] are compared with the Simple Sum 

algorithm, which simply calculates the sum of requested resources and checks that 

it does not exceed link capacity. Let v be the sum of reserved rates, / /  the link

bandwidth, a  the name of a flow requesting admission, and r a the rate requested

by flow //, so: v + r a < / /

The Measured Sum algorithm uses measurement to estimate the load of existing 

traffic. This algorithm admits the new flow if the following succeeds:

v + r a <\/u

where v is a utilization target, and v the measured load of existing traffic. The 

point is made that with a simple M/M/1 queue, variance in queue length diverges 

as the system approaches full utilization. This is an issue at very high utilization
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when a Measurement-Based approach may fail due to the large delay variations. It 

is thus necessary to keep link utilization below this level and so is set at v = 0.9.

5.3.2 The Acceptance Region Algorithm

This is the second Measurement-Based algorithm from [13] and it computes an 

acceptance region that maximizes the reward of utilization against the cell loss. 

The algorithm ensures that the measured instantaneous load plus the peak rate of a 

new flow is below the acceptance region. The link bandwidth, switch buffer 

space, a flow’s token bucket filter parameters, the flow’s burstiness and desired 

probability of actual load exceeding bound, are all used to compute an acceptance 

region for a set of flow types. It assumes Poisson call arrival process and indepen­

dent, exponentially distributed call holding times.

5.3.3 Equivalent Bandwidth MBAC

The third Measurement-Based algorithm described [13] finds the equivalent 

bandwidth for a set of flows. The equivalent bandwidth of a set of flows is 

defined as the bandwidth C(e) such that the stationary bandwidth requirement of 

the set of flows exceeds this value with probability s . The measured average 

arrival rate is approximated by measured average load and the peak rate is p. The 

admission control check when a new flow a requests admission is found to be:

Ch + P a -  M

The measurement mechanisms used in the study [13] are simplistic. However, 

they do provide an insight into how Measurement-Based algorithms can be 

examined. The first is a simple time-window measurement mechanism to measure 

network load with the “Measured Sum” algorithm. The average load every S 

sampling period is computed. At the end of a measurement window T, the highest 

average from the just ended T is used as the load estimate for the next T window.
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When a new flow is admitted to the network, the estimate is increased by the 

parameters of the new request. If  a newly computed average is above the estimate, 

the estimate is immediately raised to the new average. At the end of every T, the 

estimate is adjusted to the actual load measured in the previous T. Other 

measurement mechanisms used are point samples and exponential averaging. 

Point samples is a measurement mechanism used with the acceptance region 

algorithm, it takes an average load sample for a given period. Exponential 

averaging uses an estimate of the average arrival rate, instead of instantaneous 

bandwidth, to compute admission decisions with the equivalent bandwidth 

approach.

5.4 The Performance of Measurement-Based Algorithms

The previous section describes work in [13] which provides a basis for further 

consideration by the same authors in [70]. Their work is extended to provide a 

more comprehensive comparative study. Six Measurement-Based algorithms are 

compared and the performance of the algorithms is examined. In an effort to 

better support applications with real-time constraints, several new per-flow cell 

delivery services have been proposed, instead of those providing worst-case 

guarantees, and better than ‘best-effort’ services. That is they provide an 

enhanced Quality of Service without making hard guarantees. Specifications for 

these services might provide a delay target, rather than a bound. Parameter-based 

admission control algorithms that are based on worst case bounds are derived from 

parameters describing the flow, and so will result in low network utilization in the 

face of bursty network traffic. Measurement-Based admission control algorithms 

(MBACs) are more appropriate because they base admission control decisions on 

measurements of existing traffic rather than on worst-case bounds about traffic 

behavior. MBACs can achieve much higher network utilization than parameter- 

based algorithms while still providing acceptable service. Since traffic 

measurements are not always good predictors of future behavior, the 

Measurement-Based approach to admission control can lead to occasional cell
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losses or delays that exceed desired levels. These are acceptable with the relaxed 

nature of the service commitment provided.

The algorithms are evaluated according to two perspectives to satisfy the goals set 

by CLR and QoS constraints. First, the performance frontier or loss-load curve 

achieved by each algorithm is compared, where the loss-load curve depicts the rate 

o f losses that occur at a given level of utilization. Second, the question is how 

close is the resulting performance is to the target. Next are descriptions of the six 

admission control algorithms. Each algorithm has two key components, a 

measurement process that produces an estimate of network load, and a decision 

algorithm that uses this load estimate to make admission control decisions.

5.4.1 The Hoeffding Bounds Algorithm

The admission control algorithm described in [73] computes the equivalent 

bandwidth for a set of flows using the Hoeffding bounds. A new flow is admitted 

if the sum of the peak rate of the new flow and the measured equivalent bandwidth 

is less than the link utilization.

5.4.2 Tangent at Peak and at Origin Algorithms

The first of four algorithms presented in [13] is based on the tangent at the peak 

of an equivalent bandwidth curve computed from the Chemoff Bound, and uses a 

point sample measurement process. A second algorithm uses a tangent to the 

equivalent bandwidth curve at the origin. This admission control algorithm also 

uses the point sample measurement process.

5.4.3 The Measure CAC

The Measure admission control algorithm [69], which is based on large deviation 

theory, admits a new flow if the sum of the peak rate of the flow and the estimated 

bandwidth of existing flows is less than the link bandwidth. The estimated
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bandwidth takes as input a target loss rate using the scaled cumulative generating 

function of the arrival process. An extension of this work is presented in the next 

section [68].

5.5 The Shape-Function

This final algorithm is a new direction beyond the Effective Bandwidth and 

Measurement-Based approaches. In [68] a CAC algorithm is described using 

measurements made on existing connections and the declared parameters of the 

new connections. This is done using what is known as the Shape-Function. It was 

developed by Botvich and Duffield [67], by the application of Large Deviation 

theory to queuing systems. The Shape-Function of the connections is estimated 

and so predictions can be made about their effect on the network. Using real 

traffic collected from a network, the performance of this CAC scheme is compared 

with that of the Mosquito [69] algorithm. In contrast, the Mosquito algorithm is 

found from an estimation of Effective Bandwidths [11][21][33]-[44] . The 

Mosquito algorithm’s approach is based on the theory of Large Deviations, a 

probabilistic theory of rare events, which when applied to queuing systems, can be 

used to estimate bandwidth requirements (see Chapter 4 and the Appendix). The 

additive nature of the effective bandwidth approach fails to take the economies of 

scale into account. These arise from statistical multiplexing because it is based on 

large buffer asymptotics. An alternative approach involves estimation of the 

Shape-Function [67] from the multiplexed traffic. For the online estimation of 

bandwidth requirement there are comparisons for two estimators, the Shape- 

Function estimator [68] and the Mosquito estimator [69],

The main issue to address is the loss of cells due to overflow at a buffer. A 

multiplex of N  ATM streams is considered arriving at a buffer which has finite 

storage capacity B. Cells are then removed from the buffer at fixed rate S called 

the line-rate. The cell loss ratio for a multiplex of N  lines with a buffer size B and 

a line-rate is denoted by CLR(N, B, S). The logarithm of CLR(N, bN, aN) is
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asymptotically linear in the number of sources N  if the line-rate per source a and 

buffer size per source b are fixed. The multiplexing gain available in shared 

resource systems due to the statistical properties of the individual traffic streams is 

shown in [68].

The arrival streams are modeled as stationary stochastic processes and are the total 

number of cells which have arrived up to time t from source a. For N  sources 

feeding a buffer of size Nb which is being served at rate Na, the proportion of cells 

lost will satisfy the logarithmic asymptotic for Shape-Function 1(b):

log CLR(N,Nb,Na) — Nl(b), as N  —> °o

This holds for a wider class of traffic and should be valid for long-range 

dependent traffic [76]-[78], The limit of the cumulative generating function for 

each source is found and the Shape-Function is derived from their Legendre 

transforms [71].

The estimators measure the bandwidth requirements of the current traffic [68]. 

The effectiveness of the estimators is compared. The Shape-Function estimator is:

BWR{nB, C) := min{s7V: e~NI(b's) < c} 

where c is the target CLR.

The Mosquito Estimator [69] is based on large buffer asymptotics. In contrast, 

the Shape-Function estimator is found by assuming asymptotics for a large number 

of sources. For the Mosquito Estimator arrivals processes the loss ratio decays 

exponentially with buffer size. The decay rate is determined by the line-rate and 

by the CGF of the multiplexing of sources. The bandwidth requirement is found 

from simulations of a bufferless system and the observing cell loss.
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5.6 Experiments and Conclusions

The algorithms presented are further examined with experiments and simulations. 

The sources are varied, from ‘ON-OFF’ to video and long-range dependent types. 

The findings provide insight into the strengths and weaknesses of the 

measurement approach, with particularly interesting results for LRD traffic.

The ‘certainty equivalent’ controller [12] is the first algorithm presented in this 

Chapter. It uses the star wars video trace as a traffic source, with calls arriving 

according to a Poisson process. The conclusions are that the scheme works well 

for large link capacities, with too many measurement errors for small link 

capacities. The simulation experiments in [72] continue the ideas of the ‘certainty 

equivalent’ by evaluating the aggregate traffic envelope algorithm’s performance 

and comparing it with [73][74]. The algorithm uses the maximal rate envelope to 

capture multiplexing properties of the aggregate traffic flows. The autocorrelation 

structure [5][75] is also shown from the traffic envelope. The maximal envelope 

characterizes the extreme values of traffic flow and the variation of the maximum 

rate tends to be less than the variance of flow itself. The sources are MPEG 

compressed video and heavy-tailed ‘ON-OFF’ sources that form long-range 

dependent traffic in aggregate. The aggregate envelope MBAC achieves higher 

utilizations than both those in [73][74] while still satisfying the QoS 

requirements. The experiments indicate that aggregate flow rather than user- 

specified per-flow peak rates allow more control for exploiting statistical 

multiplexing gain. At higher link capacities higher utilization is again achieved 

with buffering gain. The aggregate envelope MBAC performs well over a wide 

range of link capacities and buffer sizes.

With long-range dependence [5][75]-[78] a new area of interest is highlighted. 

The ‘ON-OFF’ sources in experiments with the traffic envelopes [72] have heavy­

tailed distributions exhibiting self-similarity when aggregated. These are Pareto 

‘ON-OFF’ sources described [13][74], as follows. The Pareto distribution is a
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heavy-tailed distribution that is described by two parameters, the location and 

shape. A Pareto shape parameter that is less than one gives data with infinite 

mean, a shape parameter less than two results in infinite variance. Each Pareto 

‘ON/OFF’ source by itself does not generate a LRD series but its aggregation 

does. The aggregate envelope approach out-performs the other techniques as there 

is a utilization gain due to buffering. The temporal correlation of successive 

traffic envelopes is exploited to incorporate the effects of flow arrivals and 

departures. The traffic dynamics are captured at time-scales larger than that of the 

envelope and measurement window. This means an effective and versatile 

algorithm for a wide range of traffic types, buffer sizes and link capacities.

The Measured Sum, Acceptance Region and Equivalent Bandwidth MBACs are 

explored in [13]. There is a Simple-Sum algorithm (which simply adds PCR) and 

it has no cell loss, while the Measure-Sum achieves this if the utilization target is 

decreased to 80% with LRD. The Acceptance Region algorithm is thought to be 

overly optimistic for sources with heavy-tailed ‘ON’ and ‘OFF’ distributions. The 

Equivalent Bandwidth algorithm performs better with lower peak rates, but still 

lags behind the other Measurement-Based algorithms. Using a conservative 

approach the algorithm displays no cell loss. The simulations also explore a long- 

range dependence with two kinds of source model. Studies [74][76]-[78] have 

found that network traffic can exhibit long-range dependence, which implies that 

congested periods can be long and a slight increase in the number of active 

connections can result in large increase in cell loss rate. This may mean that long- 

range dependent traffic might have a damaging effect on Measurement-Based 

admission control algorithms. It is investigated with a simulation study with LRD 

source models. The model is again an ‘ON/OFF’ process with Pareto distributed 

‘ON’ and ‘OFF’ times, as discussed earlier. The findings have very significant 

and grave implications for MBAC algorithms. Fortunately they are found to be 

refuted by the further LRD studies described next.
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5.6.1 Experiments with the Performance of MBACs

The algorithms in [70] are presented to comment on the performance of MBACs 

and are evaluated in terms of the two goals of achieving high network utilization 

and low cell loss. They are the Heoffding Bounds, the Tangent at Peak and at 

Origin and the Measure Algorithms, the Measured Sum and Aggregate Traffic 

Envelopes are also examined. The simulations focus on three specific issues, that 

is the impact of heterogeneous traffic, the comparison between MBACs and an 

ideal parameter-based algorithm, and the implications of long-range dependent 

traffic on Measurement-Based admission control. Two kinds of source models are 

used in the experiments. The first is an ‘ON/OFF’ source and the second kind of 

source model uses a trace of video traffic to drive the simulation. The average 

utilization and packet loss rate are measured for each.

The results show that the cell loss rate as a function of link utilization show a 

‘performance frontier’ in the display for the algorithms [70], There is little 

difference between the performance frontiers. This indicates that all of the 

algorithms have a very similar performance in the tradeoff between loss rate and 

utilization. This result was found to hold across several different traffic models 

such as those with burstier traffic and long-range dependent traffic.

The experiments were elaborated with the examination of a heterogeneous traffic 

mix, and the MBACs displayed different performance frontiers. Then a 

comparison with an Ideal Algorithm was performed. There is a question that is 

concerned with the differences in the performance of the algorithms being so 

small. Also, how do they perform at optimum? A simple algorithm that accepts 

or rejects calls according to a quota is used as the ‘ideal’. In contrast to the 

Measurement-Based approach, the quota algorithm admits a call based on an 

average behavior. However, the MBACs must assume worst case with the new 

flow. They respond to fluctuations in flow and so their performance is degraded 

relative to this ideal, but unrealistic algorithm.
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The issue of long-range dependence is addressed with experiments in [70] using 

the video sources, with some interesting findings. The contrast with the quota 

algorithm shows that LRD has significant implications for the Measurement- 

Based algorithms. The Measurement-Based approach shows a better performance 

than that of the quota algorithm. This is explained by the fact that LRD traffic 

displays variations over long time frames, and the Measurement-Based algorithms 

can adjust the flow to respond. The quota algorithm has a fixed number of flows 

instead. The adaptation to these long-term fluctuations is a distinct advantage of 

the Measurement-Based algorithm. The quota algorithm is shown not to be the 

optimal after all. The results show that the measurement estimation and admission 

decision can be separated. The other interesting result is that the MBACs have a 

better performance with long-range dependent traffic than parameter-based 

algorithms. The second criterion for tunability proved to be disappointing. The 

authors suggest further research on this issue.

5.6.2 Experiments with the Shape-Function Algorithm

The CAC algorithms discussed in [68] are the simple Effective Bandwidth 

algorithm, the Shape-Function algorithm, and the Mosquito algorithm. The 

advantage gained by exploiting statistical multiplexing is shown, the CAC 

algorithm using any of the three estimating techniques, admits significantly more 

calls than the peak rate allocation scheme. As was found in [69], the Mosquito 

estimator is less conservative than the simple Effective Bandwidth estimator. The 

performance of the Shape-Function estimator lies between the other two 

estimators.

The pessimistic CAC algorithm allocates resources using the declared peak rate of 

each source, is optimal in the sense that the CAC algorithm is assumed to have- 

complete knowledge of the statistical properties of every connection requesting 

admission. To find the optimum admission scheme the number of calls was found 

empirically that could be multiplexed for a given BWR (the link-rate) and CLR.
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The three algorithms, particularly the Mosquito algorithm, perform very close to 

the optimum. Loss occurred when using the Simple Effective Bandwidth or the 

Shape-Function algorithms, indicating that the Simple Effective Bandwidth 

algorithm is too conservative. Greater utilisation is achieved by using the Shape- 

Function algorithm. Since the Mosquito algorithm admits more connections than 

either the Simple Effective Bandwidth or the Shape-Function algorithms it may be 

expected that this algorithm exhibits a higher CLR, this was found to be true. It 

was noted that most connections experience no cell loss while others lose many 

cells. The Shape-Function estimator has been found to perform better than the 

simple effective bandwidth estimator but less well than the Mosquito estimator in 

terms of the number of connections admitted. However, the Shape-Function did 

not cause any violation of QoS requirements for CLR, unlike the Mosquito 

algorithm.

5.7 Summary

The allocation of bandwidth can be achieved in two ways. First, with a parametric 

model of the traffic as was discussed in previous chapters. This model is based on 

information declared by the connection at call setup time, and then a model that 

estimates the requirements. The second approach is to measure the bandwidth 

requirement directly. Measurement-Based admission control (MBAC) algorithms 

are shown in this chapter to provide better performance. This is despite the fact 

that the admission decision is made on the current state of the network only, that is 

without prior knowledge of the traffic statistics. The studies in [13][70] provide a 

comprehensive range of Measurement-Based algorithms, as well as useful 

analytical techniques. The simulations with LRD traffic prove to be very 

interesting, especially with new evidence from studies [74]-[78] which suggest 

the importance of self-similarity when modeling network traffic. The 

Measurement-Based approach is found to be particularly suitable for these 

sources.
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Chapter 6

Numerical Evaluation
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6.1 Introduction

This Chapter reports the results of studies that demonstrate four important CAC 

algorithms. They are the Convolution algorithm, the Chernoff Bound algorithm, 

the Gaussian Approximation algorithm and the Effective Bandwidth algorithm. 

There is also a simulation of cell-scale levels with which to compare and verify 

the algorithms. The numerical evaluation is a series of experiments designed and 

programmed by the author. The simulations were performed by computer 

programs written in ‘C’ language. The results of the simulation experiments are 

presented in a set of graphs. The experiments were repeated for mixtures of traffic 

to examine the effects of combinations of different traffic types.

6.2 The Traffic Scenario for Simulations

ATM networks provide performance guarantees to their connections, using traffic 

models to estimate resource requirements. Chapter 2 describes traffic models in 

greater detail. The traffic model is implemented as a simulation with 'C' programs. 

Bursty traffic sources such as video are characterized by the ‘ON-OFF’ sources in 

traffic modeling, as described in Section 2.3.1.1, [1][3][5][6][19]. The 

information ‘burst’ is transmitted at peak rate for the ‘ON’ period, and none is 

transmitted in the ‘OFF’ period. The ‘ON-OFF’ source is assumed to have 

exponentially distributed ‘ON’ and ‘OFF’ periods.

The admission control algorithms have a set of input parameters. Their arrivals 

process is simulated by aggregation of the traffic sources. The summation of 

bandwidth allocation for the sources is estimated for each algorithm as shown in 

Figure 5.1. There are three different traffic types. In the first group the Type I 

connection has characteristics PCR = 20Mbps and SCR = 10Mbps. The second 

connection is Type II with characteristics PCR = 10Mbps and SCR=5Mbps. Type
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Ill is the third connection with a lower-speed with characteristics PCR = 5Mbps 

and SCR=3Mbps.

Type I: 20 Mbps PCR 10 Mbps SCR

Type II: 10 Mbps PCR 5 Mbps SCR

Type III: 5 Mbps PCR 3 Mbps SCR

Table 6.1 Traffic Source Types

The following experiments focused on the single buffer/trunk system. It was 

important to examine the effect of buffering and multiplexing on the combinations 

of different traffic sources in the network. The total traffic multiplexed into a 

node got smoothed out due to buffering, it is interesting to see how the various 

source types were affected. Some experienced an increase in admission while 

others lost admission to the network. Each algorithm was examined and the 

results were illustrated in what is known as an ‘admission region’. This is a 

graphical display of the admissions made for a combination of sources. The 

interactions with mixtures of sources can be observed and the impact of 

combining traffic can be seen.

The bufferless fluid flow model [5][6][14] was described in Section 2.4.1. It was 

used as a basis for the numerical evaluation, with a fluid flow representation of the 

aggregate traffic rate from all the sources. There was a M/D/1 queuing structure 

for the ‘flow’ at the output of the switch or multiplexer. There was a buffer large 

enough to accommodate bursts of traffic [14]-[18], but not so large as to violate 

cell delay criteria. The assessment of Quality of Service of the connections was 

evaluated in terms of Cell Loss Probabilities (CLP), and the simulations could 

verify whether the amount of cell loss predicted by the CAC algorithms actually 

occurred.
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Traffic Sources

Combined Traffic

Figure 6.1 Traffic Scenario fo r Experiments

In the examples studied in this Chapter, we assumed link capacity C to be 

155Mbps, and to have N  homogenous ‘ON-OFF’ type j  sources with exponentially 

distributed transmission times. The connections were described by traffic 

descriptors comprising of the Sustainable Cell Rate (SCR) and Peak Cell Rate 

(PCR). The Quality of Service criterion is that the CLP, or Cell Loss Probability

was restricted to 1 0 -6  .

The experiments that were performed in the numerical evaluation (to be described 

in this Chapter) were based on a number of approximations with the use of the 

fluid flow model. The fluid flow model has been shown in [21J  to admit 22%- 

27% more than analytical results for the Chernoff Bound Algorithm, for example. 

Work done and displayed in this Chapter studied the algorithms for multiple 

source classes. The need to buffer cells during the cell inter-arrival time was 

estimated, and was important when considering this model. If the number of cells 

involved was large and the buffering made correspondingly substantial then the 

fluid model predictions were close to those produced by a discrete model. It was 

found [21] to be optimistic if there was a large cell inter-arrival time for a small 

number of sources. The comments in [33] reflect on these findings, and also point 

out that the asymptotic approximation itself was likely to be inaccurate for large 

burst periods. When long burst periods are multiplexed however, a reasonably 

accurate estimation can be obtained from the stationary bit rate distribution.
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6.3 The CAC Algorithms Investigated

There are four CAC algorithms explored by the numerical evaluation results and 

comparisons. They are the Convolution algorithm, the Chernoff Bound algorithm, 

the Gaussian Approximation algorithm and the Effective Bandwidth algorithm. A 

description of each that was used as a basis for the numerical experimentation is 

found in Chapters Three and Four. The algorithms were chosen to demonstrate a 

variety of algorithms with differing approaches. They were based on the measure 

of Cell Loss Probability (CLP). The bufferless fluid flow model calculated the 

numbers o f cells that were discarded when the instantaneous total traffic load 

exceeds the link capacity C. The CLP for ‘ON-OFF’ sources under the bufferless 

fluid flow model was estimated and compared with that of a Quality of Service

requirement o f 10- 6 . The Effective Bandwidth algorithm (in contrast to the other 

three) calculated the Equivalent Bandwidth or ‘equivalent capacity’ (see Chapter 

4). The bandwidth was required to be within the network’s capacity. The 

algorithm estimated this to be less than 155Mbps, in these experiments. The 

formulae formed the basis for the computations performed by computer programs 

in the coming sections, to examine the algorithms with the numerical evaluation 

experiments.

6.4 The Cell-Scale Simulation

The effectiveness of the CAC algorithms above is determined by their ability, 

without excessive computations, to estimate the Cell Loss Probability. The ideal 

algorithm will overstate the CLP compared to what happens in practice by a small 

margin, i.e., it will provide a tight upper bound for the CLP. The actual CLP will 

be determined by simulating the operation of the ATM multiplexer exactly, using 

cell-scale simulation. A simulation program was written to achieve this. It 

multiplexed N  sources and records the cell loss observed in the buffer. It assumed 

a link rate for the outgoing link and all inputs of 155Mbps, giving a timeslot
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duration of approx. 2.7 fj.s. Each was bursty, with geometrically distributed on and 

off times.

During the 'ON' period, the source generated bits at a constant rate, and thus 

generated cells periodically (although the cell generation time occasionally slips 

by one time slot, if the source has not accumulated enough bits). This bit rate 

corresponded to the 'MAX' rate processed by the CAC algorithms.

The other parameter used by the CAC algorithms, the average bit rate, was related 

to the source model as follows:

AVG  r01 
MAX rm+rw

where roi (no) was the probability that the source state will change from ‘OFF’ to 

‘ON’ (‘ON’ to ‘OFF’) between time slots, as shown in Figure 6.2. The value of 

r\o was chosen to give the required burst length in timeslots (equal to 1/rio), and 

the second transition probability was chosen to give the required average bit rate. 

The remaining parameter in the simulation model was the buffer capacity, which 

was chosen to be commensurate with the mean number of cells in a burst.

The simulation program was run for a sufficient number of time slots for at least 

ten lost cells to be recorded, giving a reasonable measure of confidence in the 

measured cell loss probability. However, in simulating a low-loss mode of 

operation, no cell loss was to be recorded in a simulation run time of practical

duration. The maximum number of cells generated was limited to 10 and if no 

cell loss was observed, it may have been reasonably concluded that the CLP was

below 10- 6 , although formal calculation of the significance level of this outcome 

would have required a decorrelation technique such as batching to be applied.

Since the cell-scale simulation model had two additional parameters (the mean 

burst length, and the multiplexer buffer capacity) compared to the CAC
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algorithms, it allowed their robustness to be determined. It may have been 

expected that the CAC algorithms would produce conservative results for most 

choices of these parameters, since, in the worst case where the buffer capacity was 

low, and the mean burst length was long, high cell loss rates may have been 

expected even when the link utilisation is relatively low.

Transmission

Figure 6.2 Transition Probabilities for ‘ON’ to ‘OFF’ and ‘OFF’ to ‘ON’

6.5 Experimental Work

The performance of the algorithms for connection admission control was 

evaluated by comparing their predictions concerning CLP with the CLP measured 

by the cell-scale simulation. An effective algorithm should have admitted fewer 

connections than the cell-scale simulation and more than that of a peak rate 

algorithm. In this section the results are found from the numerical experiments 

which were performed with the four algorithms. First to be examined is the QoS 

criterion, which is the CLP, for the algorithm. The CLP was found for an 

increasing number of sources, and the experimental results plotted. These 

indicated the behavior of the algorithms with a single traffic source type. Next
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there were experiments with mixtures of heterogeneous sources. Three types of 

source characteristics were considered in these experiments, which are labeled 

Type I, Type II, and Type III. The properties of these three traffic types are shown 

in Table 6.1. The results are plotted in three-dimensions to display the admission 

regions for different mixtures of types o f sources.

6.5.1 Homogeneous Sources

The Cell Loss Probability versus number o f sources admitted by the algorithms 

was calculated for a single source type (Type II) and is shown in Figure 6.3a, 

Figure 6.3b and Figure 6.3c, for a link with capacity of 155Mbps. The target CLP

can be less chosen to be 10-6 or better to meet Quality o f Service requirements.

For the Convolution Algorithm displayed in Figure 6.3a, a sharp linear increase in 

readings indicated a reliability that was extended over a period. The graph then 

evened out. There is a mild increase around the subsequent almost horizontally 

linear reading. The Cell Loss Probability had a small rate of increment beyond 

that o f the threshold value that can to be disregarded. The cell-scale simulation 

was also drawn, it clearly admitted almost twice as many sources as this 

algorithm, indicating how conservative it is. The cell-scale simulation was found 

from an experiment run over an extended period of time with bursty sources. The 

sources did not all run at the same time and so the admission could have been 

higher. The algorithm provided a quick estimate that was required to be within the 

available capacity. The results were compared with those of the other algorithms 

in Figure 6.5, where the Convolution Algorithm is shown to be a conservative 

approach compared with the other algorithms.

The Cell Loss Probability for the Chernoff Bound algorithm varied at the CLP 

limit in Figure 6.3b. The algorithm displays a fairly reliable gradual increase and 

the cut off point for CLP is clear. Experiments with smaller sources (1 Mbps 

PCR) in [21] found a slight fluctuation in CLP levels that may highlight a small
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margin of error. The cell-scale simulation again clearly admitted almost twice as 

many sources, so the algorithm is shown to have a conservative estimate. A 

comparison of CLP for the algorithms in Figure 6.5 indicates that this is the most 

moderate approximation of the four algorithms. Chernoff Bound is used in 

conjunction with other less stringent approaches to provide a lower bound to their 

assessments [20][21].

For the Gaussian Approximation Algorithm, the CLP is found from the graph in 

Figure 6.3c of the estimates for an incremental number of sources. There was a 

sharp decline corresponding to the aggregate PCR becoming equivalent to the link 

rate of 155Mbps. The graph then extends beyond this point, gradually increasing 

as shown in the diagram. The estimates are similar to that of previous algorithms 

but are more generous, allowing extra sources to be admitted. The results are 

compared to those of the cell-scale simulation and again found to be well within 

these findings. The Gaussian Approximation was used to develop the idea of 

‘equivalent capacity’, [33]. The distribution of the stationary bit rate was 

approximated by a Gaussian distribution. The assumption was that the Gaussian 

distribution allowed the use of standard approximations to estimate the tail of the 

bit rate distribution. In particular it meant that the cumulative tail probability of 

exceeding a QoS value could be determined. These ideas lead us to those next of 

Effective Bandwidth.

The Effective Bandwidth approach calculated the equivalent capacity for sources 

rather than estimating cell loss. Figure 6.3d shows a steady, almost linear increase 

in required capacity as the number of Type II sources was incremented. The 

admission occurs with up to twenty six sources. The experiment calculated the 

equivalent capacity [33] for a given link rate and source type. The study in [33] 

checked the accuracy and investigates the limitations of this approach. They 

expressed concern with an over-estimation by the fluid flow approximation with
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Figure 6.3a Cell Loss Probability in the Convolution Algorithm
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Figure 6.3b Cell Loss Probability fo r  the Chem off Bound Algorithm
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Figure 6.3c Cell Loss Probability fo r  the Gaussian Approximation
Algorithm
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Figure 6.3d Capacity fo r  Type I I  Sources with the Effective Bandwidth 
Algorithm with Link Capacity ISSMpbs



burstier traffic. The comparison with the cell-scale simulation results can be made 

to provide reassurance that the allocation of bandwidth is within limits. Also, 

these Effective Bandwidth results were very generous when compared to previous 

algorithms, showing how well the algorithm performed. The results are compared 

in Figure 6.6 showing the admission regions, the Effective Bandwidth algorithm 

was far superior to the others.

6.5.2 Heterogeneous Traffic

The next set of examples investigated the case of non-identical sources. The 

experimental results with mixtures of traffic types revealed some variations in the 

responsiveness of the algorithm. This was a study of some of the aspects of the 

interactions between connections inside the network. There was an investigation 

into the potential impact of high-speed bursty connections on the bandwidth 

requirements of lower-speed ones. In the following scenario there were three 

groups with an incrementing number of connections in each. The experimental 

results were then used to create the admission regions displayed in Figure 6.4a to 

Figure 6.4h. We wished to study the potential changes in the bandwidth 

requirements of the connections of each type of traffic as a result of their 

interactions. In particular to investigate the significance of the ‘gating’ effect of 

high-speed bursts, which could modify the effective peak rate of a low-speed 

connection and therefore its bandwidth requirements. This ‘gating’ effect was 

caused by high-speed bursts, which when present forced the decrease in admission 

from the low-speed connection and requires a higher bandwidth allocation. There 

are significant dips in the graphs, the valleys and peaks reflect the ‘gating’ 

phenomenon.

6.5.2.1 The Convolution Algorithm

The first experiment involved a gradual increase of Type I and Type II with small 

increments of the two types of sources. The lower-speed source was Type III and
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was incremented for a corresponding fixed level of larger sources until the CLP 

constraint was reached. We see the effect on lower-speed traffic when the higher- 

speed traffic was incremented. The admission region in Figure 6.4a is a 

representation of the amount of sources that were admitted for the combinations of 

traffic types with the Convolution Algorithm. This is a very useful display when 

examining the algorithm for effectiveness with different traffic. Figure 6.4a 

shows admission regions for mixtures of three types of traffic sources for the 

described scenario. The efficiency of the Convolution algorithm was less with a 

larger input of Type I traffic, due to the ‘gating’ effect. The smaller traffic sources 

then plummeted significantly when mixed with the traffic types which required 

greater bandwidth. The graph shows the fluctuations when this occurred. It 

indicated that the algorithm was most efficient for an even amount of the three 

source types.

Next there was a similar trial that charted the admission of larger sources to the 

heterogeneous mix in Figure 6.4b. The Type II and III smaller sources were 

incremented for fixed amounts and then the admissible amounts of Type I sources 

were found. In Figure 6.4b the fluctuations were found to be far less predominant 

than that of the previous example. A series of minor dips and peaks followed the 

descent of the graph towards a more even mixture of types. The algorithm was 

most efficient with larger amounts of Type II sources, with a marked decline as the 

smaller sources were decreased. More of the larger sources (Type I) were 

admitted but the overall admission region was at a minimum. The findings 

suggest that a more even balance of source amounts proved to be the most 

effective approach for heterogeneous traffic.
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Figure 6.4a Admission Regions fo r  Heterogeneous Traffic fo r the 
Convolution Algorithm Varying Type III Traffic

Note - The ‘Admission Region' refers to the volume enclosed by the surface 
displayed above and is the number o f  sources admitted fo r  the amounts o f  each 
traffic type. A vertical slice parallel to the z-axis will show the amounts o f  each 
traffic type admitted fo r  the surface, as indicated by the x  axis with the three 
different amounts shown. A fa ll in the surface means less sources are admitted, 
a peak in the graph Indicates more sources are admitted fo r  the criteria 
imposed, in this case the CLP.
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Figure 6.4b Admission Regions fo r  Heterogeneous Traffic fo r  the 
Convolution Algorithm Varying Type I  Traffic

6.S.2.2 The Chernoff Bound Algorithm

The admission region for the Chernoff Bound Algorithm in Figure 6.4c shows the 

amount of sources that were admitted for a combination of three traffic types. The 

Type 1 and II (larger speed) sources were incremented and the number of Type III 

sources was found. The admission region was gradually increased with the 

number of sources of the traffic types. There was a steady increase with the bigger 

source types and the third traffic type falls off. The far peak in Figure 6.4c to the
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left shows that the admission of the smaller sources fell dramatically when the 

larger sources were predominant. This is again due to the ‘gating’ effect caused 

by high-speed bursts, which means a higher bandwidth allocation was required 

and the graph dips. These low points on the graph in Figure 6.4c indicate that the 

larger sources don’t ‘squeeze in’ well with a predomination of smaller sources. 

There are two small peaks in the graph indicating that the more even amounts of 

the sources provide the most effective combination of admission. The CPL graph 

Figure 6.3b shows a fluctuation that is mirrored in the traffic mix in Figure 6.4c. 

The algorithm is slightly less efficient when a more refined estimation was 

required, such as almost all larger sources with a few of Type III. For more even 

mix of sources the admission region peaks. There was a similar result for a 

heavier mixture of Type I and Type II. The admission regions were compared 

with that of other algorithms in Figure 6.6.

The experiment was repeated (as shown in Figure 6.4d), this time for the 

admission of larger Type I sources. Type II and III (with PCR of 10Mbps and 

5Mbps respectively) were incremented slowly. Readings for the corresponding 

number of Type I (PCR 20Mbps) sources were recorded. The admission region is 

a more even presentation than that of the previous experiment varying smaller 

sources, but with a marked decrease in size. The ‘gating’ effect is less obvious, 

with the graph sloping down to admit a greater number of larger sources. The 

algorithm is conservative and this is manifested in the display’s mild peaks and 

troughs. The algorithm improves in admission when the source types were more 

evenly mixed. This reached a maximum with the increase in Type II, the middle 

range source. Overall, the results mirrored those demonstrated by the CLP 

displays, with a marginal degree of improvement overall shown with the 

heterogeneous traffic with increasing Type III sources. The algorithm was seen to 

be the most conservative estimate as suggested by the studies in [9].
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Figure 6.4d Admission Regions fo r  Heterogeneous Traffic fo r  the
ChernoffBound Algorithm Varying Type I  Traffic

6.5.23  The Gaussian Approximation Algorithm

For the Gaussian Approximation algorithm, the outline of the inter-relationship 

between the admission regions of traffic types displayed variation in the amounts 

of different sources in Figure 6.4e. Type III source admission was found for 

increments of Type I and Type II. The gradual descent of the graph shows the
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admission for an increasing mix of source types. The top peak in Figure 6.4e is 

almost all Type III smaller sources. The admission region is very similar to that of 

the Convolution algorithm. This indicates the trend in the bandwidth

requirements of the low-speed connections as a result of their interactions with 

high-speed. The ‘gating effect’ caused by Type I bursts resulted in a higher 

bandwidth allocation, as seen in previous experiments with other algorithms. This 

effect is seen in the steady decline of admission region as the higher-speed Type I 

and II sources gain predominance. In contrast to the previous algorithms however, 

the Gaussian Approximation algorithm shows a marked degree of efficiency with 

a greater number of larger sources. The ‘gating’ effect is less pronounced and 

there is a larger admission region. The algorithm is still somewhat less effective 

with a mixture of sources than with only one source type.

Then the admission of Type I traffic for increments of Type II and III was found. 

For the Gaussian Approximation Algorithm the admission region was overall 

higher than previous experiments with smaller traffic sources, with a myriad of 

peaks and troughs, Figure 6.4f The higher points correspond to the more even 

allocations of source types. A larger admission of smaller sources seemed to 

cause a blockade of sorts and results in a trough. The Gaussian Approximation 

algorithm relies on the Central Limit Theorem that states that the distribution of 

aggregate traffic converges to a Gaussian distribution as the number of 

connections approaches infinity. What we see is more likely to be a cruder version 

of the ‘gating’ effect as mentioned earlier. The algorithm is shown to be more 

generous than previous algorithms in the allocation of bandwidth, particularly 

when the heterogeneous traffic mix contains larger sources.
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6.5.2.4 The Effective Bandwidth Algorithm

The behavior of the Effective Bandwidth algorithm with a mixture of traffic 

source types is displayed, with the gradual increment of Type I and Type II and 

finding the corresponding Type III admissions. The experimental results were 

then used to create the admission regions in Figure 6.4g. We can see how the 

bandwidth requirements changed for the low-speed connections as a result of their 

interactions with high-speed traffic. The slope of the graph is gradual. The 

‘gating’ efFect is no longer apparent. This is because the Effective Bandwidth is
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independent of traffic submitted from other sources, hence there are no significant 

troughs as with previous algorithms. Notice how the admission region admitted 

more than the other algorithms, these are directly compared in Figure 6.6. The 

predominance of smaller Type III sources shows that the admission regions may 

be bigger at the start of the graph. The flexibility of sources with a lesser bit rate

■40-50
□ 30-40
□ 20-30 
■ 10-20 
■ 0-10

Effective Bandwidth Algorithm

Sources

Traffic Mix of Type I,II and III

W
Traffic

Figure 6.4g Admission Regions fo r Heterogeneous Traffic fo r the
Effective Bandwidth Algorithm Varying Type III Traffic

is striking. The admission region fluctuates slightly as the mixture of sources 

evens out. The combination of heavier Type I and II sources is displayed on the
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right hand side of the graph. The volume enclosed is similar to that of mostly 

Type III sources on the extreme left. The best admission occurs when the 

mixtures were even. A majority of Type I traffic sources are shown with each 

smaller peak, with an even regularity. This indicates a consistency of admission 

with different levels of traffic mixes, which is an indication of superiority to the 

other algorithms presented.

For the Effective Bandwidth Algorithm, Type I was admitted for set amounts of 

smaller sources, as explained and is shown in Figure 6.4h. The results were quite 

different to those found with variations in the numbers of smaller sources 

admitted. The gradual increase in the smaller Type II and III traffic reduced the 

admission region. That is the performance dips for a more even mix of traffic. 

The peaks occur when the larger sources predominated the amounts. With a small 

amount of the slower sources there is a peak, then the admission region declines. 

It expands again as the Type II traffic increases. The admission policy is based on 

the estimation of required bandwidth capacity rather than cell loss. This has an 

impact on the efficiency of allocation for large sources. The graph is different to 

those of the previous examples. The direct comparison of admission regions is 

made in Figure 6.6, where the Effective Bandwidth algorithm displays a marked 

degree of superiority.

6.6 A Comparison of Algorithms

These studies describe experiments with simulations to demonstrate four of the 

CAC algorithms. The algorithms admission regions are assessed and the results 

demonstrate representations to indicate the significant findings of the trials. The 

cell-scale connection admission control simulations were run and produce 

idealised results. They were run without time constraints or consideration of 

implementation issues. The results are displayed in Figure 6.5 to compare the Cell 

Loss Probability of the algorithms. The ideal admission control simulation 

experiments can be compared with those of the CAC algorithms, this is discussed 

in the coming section. Then the admission regions o f the four algorithms are
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mapped. They may be directly compared with the graphical representation in 

Figure 6.6.

Effective Bandwidth Algorithm

Sources

Traffic
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Figure 6.S4H Admission Regions fo r Heterogeneous Traffic fo r the 
Effective Bandwidth Algorithm Varying Type I  Traffic

6.6.1 A Comparison with Quality of Service Constraints

The results of numerical evaluation produced the graphs of CLP for the first three 

algorithms and also the network simulation admission control. The algorithms 

were compared and assessed relative to the ideal cell-scale simulation of CLP over 

time in Figure 6.5. As expected, the algorithms were found to be far more
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conservative than the simulation results. At a QoS level of CLP of 10 6 the 

algorithms admitted almost half that of the cell-scale approach. The algorithms 

must be conservative to stay with in allocation limits. Studies in [33] indicated 

that the bursty nature of traffic and the effects of statistical multiplexing provided 

the explanations. A word of caution was voiced in [9] that the assumptions 

concerning the nature of traffic itself may be flawed, and it may have been more 

self-similar in nature.

Comparison of CLP for Algorithms
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Figure 6.5 A Comparison o f CLP for the Algorithms
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The Chernoff Bound is the most conservative. The Convolution algorithm 

displays a similar graph with more lenient admission. The Gaussian 

Approximation algorithm is shown to be the most generous in Figure 6.5. 

Compared to the cell-scale experiment however, all the algorithms are very 

stringent. In the next section we shall see how the Effective Bandwidth algorithm 

out-performed the others and was closest to the cell-scale simulation readings.

6.6.2 A Comparison of Admission Regions

The admission regions were plotted in Figure 6.6 and comparisons were made 

from this graph. The Effective Bandwidth Algorithm was clearly the most 

effective algorithm. The graph peaked for Type II sources and the admission 

region for all traffic types was much larger than the three other algorithms. This 

validated recent work [30]-[40] which contained similar numerical evaluation and 

showed how the Effective Bandwidth algorithm was a better approach for resource 

allocation. The Chernoff Bound algorithm was the most conservative estimation 

with the smallest admission region for traffic. The Convolution and Gaussian 

Approximation Algorithms had similar admission regions. These results were 

consistent across a range of traffic types, as shown in Figure 6.6. They also 

validated the Cell Loss Probability study as shown in Figure 6.5. Similar studies 

in [20] combined the use of the Chernoff Bound and Gaussian Approximations. 

The admissible call region was found to be concave but becoming more linear 

with increasing values. These were contrasted with numerical results for 

equivalent capacity in [33], where the observation was made that the stationary 

approximation results in a substantial overestimation for a small number of 

sources.

6.7 Conclusions

The basic objective of bandwidth management and traffic control strategy was to 

allow for a high utilisation of network resources, while sustaining an acceptable 

Quality of Service for all connections.
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Figure 6.6 A  Comparison ofAdm ission Regions fo r the Four Algorithms

In this Chapter experiments with simulations were described, and the results were 

presented to demonstrate four of the CAC algorithms. There was also an 

experiment for cell-scale readings for admission to the network without time 

constraints or implementation issues. This provided a useful comparator to assess 

the admission for the CLP Quality of Service constraint. It was displayed with the 

algorithms for the parameter CLP and contrasted. There was also a display of the 

admission regions for a mixture of three different traffic source types for each 

algorithm. The algorithms admission regions were assessed and the results were 

demonstrated with graphical representations indicating the significant findings of 

the trials. Finally, the admission regions of the four algorithms were directly 

compared in Figure 6.6 to see which algorithm is the best.
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The first experiments were to examine each algorithm’s behavior with respect to

the QoS constraint. This was a CLP chosen as 10-6 . The Convolution Algorithm 

showed a sharp drop in Cell Loss Probability for a smaller number of sources, 

with a leveling off around the admission region boundary. For the Chemoff 

Bound algorithm the CLP fluctuated a little at the boundary level. The Gaussian 

Approximation Algorithm had a broader base of potential readings of CLP. In 

contrast, the Effective Bandwidth algorithm provided a computationally simple 

approximation for the equivalent capacity or bandwidth requirement of a 

connection based on its statistical characteristics.

The next set of experiments investigated the case of a heterogeneous mixture of 

sources. It attempted to study aspects of the variations in the responsiveness of 

the algorithm and the interactions of different traffic types. It looks at the impact 

of high-speed bursty traffic on the bandwidth requirements of lower-speed traffic 

types. The experimental results were then used to create the admission region 

displayed in Figures 6.4a to Figures 6.4g. With the first three algorithms we 

investigated the significance of the ‘gating’ effect of high-speed bursts that forces 

a backlog. This higher ‘effective’ peak rate within the network can in turn require 

a higher bandwidth allocation, shown as the graphical representation forms a 

trough.

Interesting comparisons were then drawn between the studies of admission regions 

for each algorithm. The admission regions for each algorithm were presented in 

Figure 6.6. The effectiveness o f each algorithm was mapped, it showed the 

admission regions for each. The Effective Bandwidth algorithm showed much 

wider admission region. The efficiency of the algorithm was striking. The graph 

dipped down to the Chernoff Bound algorithms readings. There was a steady 

similarity between the Convolution and the other algorithms. Numerical 

evaluations in [30]-[45] showed how the Effective Bandwidth algorithm was 

more effective for resource allocation.
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The cell-scale comparator produced a set of results for the simulation of ‘ON- 

OFF’ sources for an extended length of time. Unhampered by time constraints or 

implementation considerations, an assessment of CLP was made for traffic and 

compared directly with the algorithms. The results showed that it admitted almost 

twice that of the algorithms, and so the four algorithms were very conservative. 

There are several explanations, the most important one was that the algorithms 

were designed to be within safe limitations, regardless of traffic load or type.

6.8 Summary

The Chapter presented four algorithms and the numerical evaluation of each. 

There was also a cell-scale simulation with a fluid flow model with exponentially 

distributed ‘ON-OFF’ sources. This acted as a comparator as the admission levels 

were found for an ‘ideal’ system without the time constraints or implementation 

issues of the algorithms. It admitted almost twice as many sources as the first 

three algorithms, indicating how conservative these algorithms are. It also 

validates the Effective Bandwidth approach that allowed for significantly more 

sources than the other algorithms. The experiments were extended to look at 

heterogeneous traffic. The ‘gating’ effect and the corresponding fluctuations are 

noted, and each algorithm displayed its own variations.
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Chapter 7

Conclusions



7.1 A Review of CAC Algorithms

Asynchronous Transfer Mode (ATM) is a recommended transfer mode for the 

introduction of broadband services, and it is capable of integrating services as 

diverse as broadcast television and video. Integrating these services with a 

common platform brings a number of benefits, the most important being increased 

efficiency. One aspect of efficiency is statistical multiplexing, which offers 

potential gains yet prediction of future traffic may be difficult. The critical value 

of the Connection Admission Control is that it can allow for increased efficiency 

of link utilization and resource allocation, while still providing the required 

Quality of Service. Other evaluation priorities are network utilization and 

implementation and operational costs.

The exploration of algorithms for connection admission highlights interesting 

implications for resource allocation in ATM networks. The CAC plays a vital role 

in the management of these resources, allowing the most efficient use of 

bandwidth together with the most effective solutions. The review of algorithms in 

Chapters 3 demonstrates the wide range of approaches. Chapter 4 is devoted 

entirely to the Effective Bandwidth approach. The Measurement-Based approach 

is presented in Chapter 5. The series o f numerical evaluations display the 

algorithms in Chapter 6, showing how different algorithms perform relative to 

each other. The overall question throughout is how the allocation of bandwidth 

for connections can be minimized while still meeting their QoS requirements.

7.2 Different Approaches for Connection Admission Control

There are two main approaches to admission control. First is the parameter-based 

approach that computes the amount of network resources required to support a set 

o f calls from pre-defined traffic characteristics. The second is the Measurement- 

Based approach, which relies on the measurement of actual traffic in making 

admission decisions. A discussion by Duffield et al [42] contrasts these two
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processes, and presents an alternative to the modeling of the arrivals process with 

parameters. The large deviation rate-function of the arrivals process is used to 

estimate the QoS requirements directly, from the ‘entropy’ of the traffic streams. 

Measurement-Based algorithms [10]-[13] study the performance of a scheme that 

has no prior knowledge of the traffic statistics and makes the admission decision 

on the current network state only. In contrast to the other algorithms which look 

at the characteristics of source traffic and represent them as parameters, 

Measurement-Based algorithms make decisions on a monitored amount of traffic 

on the network. The main theoretical result is that for large-link capacities with 

separation of call and burst timescales, Measurement-Based algorithms can 

achieve the performance of an optimal scheme with knowledge of traffic statistics.

7.3 The Numerical Evaluation of the CAC Algorithms

The various CAC techniques all have objectives of achieving maximum link 

utilisation with QoS guarantees. These are balanced with estimations of 

computational complexity and real-time implementation issues. The numerical 

evaluation in Chapter 6 describe experiments with simulations to display and 

compare the CAC algorithms [9][24]-[30][33]-[38][42]-[45], Exploration of 

the algorithms by simulation focuses on the Quality of Service parameter CLP and 

admission regions for different types of traffic.

A set of input parameters represents the arrivals process for the aggregate sum of 

sources, to demonstrate four of the admission control algorithms in different ways. 

These algorithms are displayed with the graphical representations that indicate the 

significant findings of the trials. The findings of the simulations studies for a 

number of algorithms give an interesting summary of some of the approaches to 

connection admission control. They give a graphical representation of the 

admission region for each algorithm to give an indication of the level to which call 

acceptance extends. The admission regions for each can be compared. The 

Effective Bandwidth algorithm was shown to be the most efficient. The
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comparisons drawn from each study validate recent work [30]-[43] which claims 

that the Effective Bandwidth algorithm is a better approach for resource 

allocation.

7.4 Directions and Further Work

A variety of algorithms used for connection admission control have been 

presented, along with a number of possible general approaches to the problem of 

bandwidth allocation in ATM networks. Early, groundbreaking work by Hui [20] 

and Guerin et al [33] presented the ideas of time-scaling and equivalent capacity. 

The use of large deviations theory was introduced, and the derivation of Effective 

Bandwidth was developed by Chang, Thomas [35], Mitre et al [32][34], Kelly, 

Gibbens [36][37] and other authors. It provides an interesting basis for the 

calculation of resource allocation, and the study in Chapter 4 and the Appendix 

provides some details of the application of this technique for Connection 

Admission Control.

The directions of further work are first the refinement of techniques from the large 

deviations theory for the Effective Bandwidth approach, and secondly the use of 

Measurement-Based algorithms. The use of Artificial Intelligence and neural 

networks is constantly developing, and finally there is the prioritisation of network 

traffic. Measurement-Based algorithms [12][13] study the performance of a 

scheme that has no prior knowledge of the traffic statistics in contrast to the other 

algorithms that look at the characteristics of source traffic and represent them as 

parameters. The third area of recent work looks at the potential of Artificial 

Intelligence and neural networks fuzzy logic approaches [46]-[58] to be applied to 

solve the many demands required of the CAC, particularly for multimedia services 

with bursty traffic. It is possible to integrate a variety of services with different 

Quality of Service requirements by classifying service types according to different 

priorities. This approach can be combined with others to develop a new 

sophisticated connection admission control.
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Many of the techniques described for the CACs are also applicable to other 

networks such as Multiprotocol Label Switching (MPLS) and those supporting the 

Internet Resource Reservation Protocol IntServ/RSVP. The traffic behavior in 

such networks will differ from that in ATM networks because of differing packet 

formats and flow techniques, but the underlying principles of the admission 

control will be the same. The design and development of networks and new 

protocols continues and improves, to provide for an expanding array of broadband 

services.

Future work in the study of connection admission control has many important 

issues to consider, such as the nature of resource allocation and statistical 

multiplexing, and the integration of different types of services and the 

prioritization of calls. The ability to guarantee multiclass QoS for different types 

of services involves the mapping of user requirements to traffic parameters, and 

setting up the subsequent compliant connection. This is an area of intense interest 

and is leading to useful studies with a variety of queuing models. The input from 

other related areas of research such as traffic modeling should provide fruitful 

benefits. An example is the study of the self-similar nature of bursty traffic. So 

the continuation of improvements and new ideas in this area o f research has wide- 

ranging implications for the critical issues of resource management and service 

provisioning in high-speed ATM networks.
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Appendix

Effective Bandwidth
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The following sections present the theory of Effective Bandwidth and equivalent 

capacity for statistical multiplexing [11 '] [28]-[45].

A .l Defining Effective Bandwidth

The allocation of bandwidth for statistically multiplexed sources needs to meet 

Quality of Service requirements while targeting good link utilization. This leads 

to the idea of ‘Effective Bandwidth’. Since the likelihood that all sources will 

transmit at peak rate all the time is small, the allocation is less than the bandwidth 

required for the peak rate of the sources. Effective Bandwidth theory allows for 

the derivation of bandwidth allocation techniques from the behavior of individual 

and aggregate sources.

The concept of Effective Bandwidth is used to describe the utilisation of network 

resources in terms of the statistical characteristics o f the sources and their Quality 

of Service requirements. It provides a measure associated with the source for 

performance guarantees expressed in terms of loss or delay. The CAC is simply a 

consideration o f the sum of Effective Bandwidths to be less than a threshold.

Kelly and Gibbens [36][37] state the definition of Effective Bandwidth of a 

source as depending on two parameters, the space and time scaling. The choice of 

these time scales depends on the characteristics of the resource, capacity, buffer 

size, traffic model etc.

The Effective Bandwidth is given by the statistical descriptor:

o f(M ) = —  \o g E [esXiT’r*,]] ( A . l )
St

where s is the space scale (in bytes or cells) and t is the time scale (in seconds). 

X [ t, r+t] is the workload arriving at a resource in time period [r, 7+t] and the
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expectation is taken over the distribution of random periods. This means that 

a(s,t) lies between the mean and peak arrival rates of the source measured over an 

interval t, hence the improvement for link utilisation if the Effective Bandwidth 

can be allocated instead of the peak rate bandwidth requirement. The definition of 

Effective Bandwidth for X[0,t] is the amount of work that arrives from a source in 

the interval [0,1], Assume that X[0,t] has stationary increments, the Effective 

Bandwidth of the source is defined as:

with the following properties:

(i) If X[0,t] has independent increments, then the Effective Bandwidth a(s,t) 

does not depend on t.

(ii) If the random variable X  exists such that X[0,t] = X t for t > 0 then a(s,t) 

= a(st,l) and so a(s,t) depends on s,t only through the product si. 

Otherwise a(s/t,t) is strictly decreasing in t.

(iii) If X[0,t] = 2 X - [0,i]2JXi where (Z i[0,/])j are independent, then

(iv) The Effective Bandwidth a(s,t) is increasing in s for any fixed value of t, 

and lies between the mean and peak arrival rate measured over the interval 

of length t, that is:

¿ * 0 , 0  =  — l o g  E [ e s X [ 0 ’t]] f o r  0 < s , t < o o  ( A .2 )  
s t

(A3)

(A . 4)

whereX [0,t] is sup/x: P { x[0,t] > x } >0} the essential supremium.



The form of the Effective Bandwidth a(s,t) near s = 0 is determined by the mean, 

variance and higher moments of X[0,t], while its form a(s,t) near s = oo is 

primarily influenced by the distribution of X[0,t] near the maximum. If the 

Effective Bandwidth a(s,t) is finite for some s > 0, then for a given t:

a ( s , t )  < ^ E X [0 ,t]  + ^ V a r X [ 0 , t ]  + o(s) as s - ^ 0  (A .5)

If the Effective Bandwidth a(s,t) is bounded above as s —>oo then for a given 

a ( s , t )=  X— J]  + — log P {x  [0, t ] = X[0, t]\+ of -1  (A. 6)
t St \ s )

as s co.

A.2 Examples of Effective Bandwidth for Different Source 

Models

The scales of time and space are determined by the source and Quality of Service 

required, and by the capacity of buffer lengths. Kelly [36] derives the a  (s,t) 

Effective Bandwidth descriptors for different source traffic models - Bernoulli 

bufferless models, periodic models, fluid models and fractal Brownian motion 

input models. They lead to admissible regions that give the time and space scales, 

s and t, for these sources.

A.2.1 Periodic Sources

The model is used to describe packets streams from constant rate information 

sources, for a source which produces b units of workload at times {Ud +nd, n= 

0,1,...} where U \s uniformly distributed on the interval [0,1]:
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a(s, t )  = — "  (  ’
+  —  l o g I  +  f - y -

t

V - i )_ d  _ St _ d
)

(A.7)

and so:

(ebs ~ l) lim a( s , t )  = 1
t —> co ds

(A.8)

For b=d=l shows that for t decreasing, the Effective Bandwidth increases, with a 

dramatic leap from one to zero. The model has been used for packet streams from 

constant rale information sources.

A.2.2 Fluid Sources

A two-state Markov chain describes the stationary fluid source. The transition rate 

from state 2 to state 1 is A, from /  to 2 is //, and with the workload produced only 

when the Markov chain is in state 1 at constant rate h.

\
exp

f-jl+hs |.t

I x -V
(A. 9)

and:

\\ma(s,t) = -^~iihs-jU-A + [(hs-jU+A)2 +4Ajlî)' " )) (A.10)2s

A stationary source described by a finite Markov chain with stationary distribution 

^■and (/-matrix 0 ,  the workload is produced at rate h, while the chain is in state /. 

From the backward equations for the Markov chain:

144



a (s , t) - — log[>^exp [£}+h5)i]l} 
s i

where/; = ciiag(hl ), and:

lim  a ( s , t )  = —  cp(s)i->« st (A. 12)

where 0  (s) is the largest real eigenvalue of the matrix O + hs as shown by 

Elwalid and Mitra [34].

If /?! > hj, i # 1 , then (A.6) becomes:

1 ( 1.  > i nh  — £ofl01 1 + 0 -s *
(A. 13)

as s —>oo, w h e r e i s  the transition rate out of the stale with peak rate. For t = <x>

for a fluid source with relevant limits for s and / is discussed in Chang, Thomas

[35].

A.2.3 Gaussian Sources

For a Gaussian sources

X[0,t] -  At + Z(t) (A. 14)

where Z(t) is normally distributed with zero mean, then the Effective Bandwidth is 

found from the first two terms of (A.5) then:

a ( s , t )  = A + — VarZ (/) 
2t

(A. 15)
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When the process is for heavy traffic models, Var Z  (t) = a 2t [6][14], When 

the process Z is fractional Brownian motion with Hurst parameter H  e  (0,1):

VarZ (t) = a 2 t2H (A. 16)

a ( s , t ) = A + S t 2H 1 (A. 17)

The behavior of a  (s,t) as t -^¿»depends on if H<l/2, H=l/2 or H>l/2, not on s. 

When H<l/2, lim t —>oo a  (s,t) is finite, and does not depend on s, H=l/2 then the 

limit depends on s, or a  (s,t) grows as a fractional power of I. H>l/2  means there 

is long-range order exhibited, and has been proposed as a model for Ethernet 

traffic.

A.2.4 General ‘On-Off Sources

The source alternates between long periods in an ‘ON’ state with an Effective 

Bandwidth a\(s,t) and long periods in an ‘OFF’ state where it produces no 

workload. If p  is the proportion of time spent in the ‘ON’ state, the values of t are 

small compared with the periods spent in the ‘ON’ or ‘OFF’ states.

The ‘ON’ periods may at a finer time scales appear as a periodic source, with 

bursts having a structure on a finer timescale, so the definition of Effective 

Bandwidth depends on the range of s and t.

A.3 Multiplexing Models

The arrivals process is assumed to be the aggregation of the sources, with 

examples described in the previous sections.

a(s,t) = — logfl + ^ e x p ^ f a r j ^ O ) - ! ) ]  (A. 18)
st
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J  «, 

j =1 i- 1

The ( Xji[Q>t])ji are independent processes with stationary increments whose

distributions may depend on j  but not on i, and the resource such as the switch has 

to cope with the aggregate arriving stream of work. The number of sources of type 

j  is Hj, and for source of type j  the Effective Bandwidth is a  / (s , t ) :

a ( s , t )  =  ' Y i n J a j ( s , i )  ( A .  2 0 )

j-'

The point of looking at multiplexing models is to figure out the constraints that 

exist, and to see if the sum of Effective Bandwidths for n . number of sources is

within the acceptance region for resource and Quality of Service requirements. 

The acceptance region is defined by a set of vectors (nv n2, ... n t), for which a

given performance in terms of queuing delay or buffer overflow is guaranteed.

The constraints are ( s*, t*, C*) with the relationship:

j ^ n j a j ( s * , t * )  < C *  ( A . 2 1 )

J=i

In the following sections, the choices of values for ( s*. (*, C*) constraints and the 

acceptance region vectors are described for different types of multiplexing models. 

For bufferless models, the above equation is established based on the results of 

Hui [20], which establishes a conservative bound for a non-linear acceptance 

region for bufferless models. Then in Section A.3.2, a linear limiting form for the 

acceptance region is found for a buffered model with Levy input (M/G/l models). 

This includes fluid sources that are studied and a linear limiting form of the 

acceptance region found.
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A.3.1 Bufferless Models

A simple model made up of the aggregation of sources X n o f type/:

(A. 22)

X yt represents independent random variables with scaled logarithmic moment 

generating functions:

If X )t the instantaneous arrival rate of work from a source type j  at a bufferless

source of capacity C, and let X Jt [0,1] = X J:l so that a j ( s l  t,l) = a j ( s )  for all

values of t - from property (ii) of the definition of Effective Bandwidth, defined 

in the first section of this Appendix.

The constraint to be satisfied found from Chernoff s bound,

so the constraint log P { X  > C } < - y  will be satisfied by vector

n = (n]tn2>...n ) if  it lies within the set A, where:

a j 0 )  = j lo g i i^ X » ] (A. 23)

log P{X  >C }<  l o g ^ ^ ] = -  Q  (A. 24)

A = n : inf a- £  n ja  j(s) ~ C < - y  ■
* L w - i  J.

(A.25)

The region o f set A is used to find the global bound on the acceptance region. 

Since A has a convex complement in R+ and this complement is defined at the



intersection of R+ with a family of half spaces. By replacing n by n* we get s* 

for the infmium of A.25 above, and so the half-space touching at point n* on the

boundary of region A is:

(A. 26)

This condition is a conservative global bound, of the form as defined in A.21 by 

the constraints are ( s*, /*, C*) with the relationship as follows:

YJnJa J(s\ t*)<C-
7=1

(A.21)

This defines the bound on the acceptance region, so if n satisfies the condition 

A.21 then the performance guarantees of log P { X  >C }< - / a r e  met, 

representing the queuing delay or buffer overflow.

Let A(y,C) be the subset of R J+, such that n e A(y,C) implies log P { X> C } < - 

y, from Chernoff s theorem [17] :

lim —N-**o

J  n j N

Z  S  x j i
. 7=1 '=1

( J \

= in/ s Y . n j a j { s ) - C
V 7=1 )

(A. 27)

The infinium of the above equation is strictly increasing in each component of n, 

and so:

lim * # m  = A
N-̂ yxi (A. 28)

This convergence statement means the approximation leading to region A becomes 

more accurate as the number of sources increases, and the tail probability 

decreases. This indicates the probability of resource overload, which we can
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convert to the proportion o f work lost from an arriving stream by the next two 

steps: relating the expected size o f overloads to tail probabilities, and then

dividing by stream rates o f the arriving streams. From C hernoffs bound, the 

expected rate o f load loss is:

CO

E ( X  — C )  = \ P { X  > C  + x}dx
0

00

= Jcxp -  (C  + jc))]ciEr
o

= — e x p [ s ( a  (s )  -  C )1 
s

so the following is deduced:

e (^X c ) + — — exp [s * ( « ( j1*) -  C )]  (A .29)

where s* in the infinium of A.27.

If  the global bound condition A.26 is satisfied:

¿ » , «,(»*) SC-Z- (A.26)
%  S

then P{ X  > C } < exp (- $  and also e ( x ~ C )  -  e~r^  are assured. The 

proportion o f load lost is E{X  -  C)+/  E ( X) .  If n e  A st ( y, C )  the subset o f R { , 

this means the proportion o f  work lost is not greater than e~r .
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A.3.1.1 Improved Approximations

The inequalities A.24 below and A.29 (which is the constraint to be satisfied) are 

found from Chem off s bound:

log P{X >C}<  log js[e5̂ - c )] = s(a(s) -  C) (A.24)

This provides bounds on the probability of resource overload or proportion of 

work lost. Estimates to get closely related ‘tilted approximations’ may be found

[31] and are discussed by Hui [20]:

n X > C } ~  —  1 ( ¿ 3 0 )
S * ( 2 7 T ( T  ( 5 * ) )

and:

ztt y  _  C 1+ _______________1____________  s*(a(s*)-C)

s *  ( 2 x o - 2 ( s * j ) U2 (A31)

where a '  (5) = — —(sa(s)).

A.3.1.2 Approximate Linearity

To look at how well approximated is the region A.25 o f the set A region defined 

by A.26:

r
'

( 1 >
“

m : inf s Z  n ja  j(s) - C <

I * K 1-' >_
< -y

The linearly constrained region used to approximate set A is:

(A.25)
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¿ « / « / U ' J S C - X -  (A. 26)
y=i 5

A Gaussian source with a normally distributed load is used to find this 

approximation between the above two equations, as it is the easiest to calculate.

Let the normal distributed load be:

s a 2:
a  j  ( s * )  <  x  i +J 2

with load mean X, and variance a ,  •

The region o f A.24 o f set A becomes:

(  V'2
<C (A. 32)Y j ni ^ j + °~2i

\  j j

The tangent plane at point n* on the boundary o f the region in the above equation 

A.33 is o f the form A.26 with:

c  - 1  » ;  a j 
S* = ■ ' -  (A.33)

H  " j °  ji

and so the Effective Bandwidth o f s* (for the global bound o f set 4 ) is:

where â ’ = '^Jin l X i / C , the traffic intensity. The coefficients are relatively 

insensitive to the traffic mix «*, provided l/(l — <5**) does not vary too greatly with
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n , to put this another way, provided that the traffic intensity is not too close to I 

011 the boundary of the acceptance region.

Let C* = C - y  /  s *, the effective capacity appearing to the right hand side of 

equation A.26, then:

If the model has O distributed as a stationary workload in a queue with server of 

capacity C and an infinite buffer, we will look at the proportion of time the buffer 

occupancy exceeds a level b. The arrival stream X[0,t] is made up o f processes 

* „ [0 ,/]  with independent increments, so a ^ s )  = a {(s,t) as before. To define

the queue size at time r :

g(r)  = (X [0 , r ] -C r ) -  inf {x[0,t]-Ct } (Ai7)

(A. 3 5)

C - y  variance o f load 
mean free capacity

(A. 36)

A.3.2 M /G/l Models

letting t  °o.

The Pollaczek-Khinchin formula [14][15] is:

(A. 38)
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Cramer’s estimate [31] describes the tail behavior of the distribution for Q (the 

workload in the queue). There is a finite constant k such that the interior of the 

interval on which a(s) is finite, so that a\fc)  is finite. Then Cramer’s estimate is:

P{Q  > b} C -  a  (0 )  -xb 
kcx ' ( s) ®

(A. 39)

as b->co.

Let A(yb) be the subset of R'l, such that n eA (yb) implies logP { Q> b } < - y .  

Then as a result of Cramer’s estimate:

with A czA ( y, b )  so the linearly constrained region A is a conservative global 

bound as well as an asymptotic limit.

A.3.2.1 Finite Buffers

If there is a finite buffer size b, the proportion of time the buffer occupancy 

exceeds this level indicates the excess workload lost. So we can use the M/G/J

lim A ( y N , b N )  = A (A. 40)

where:

(A .41)

A is a region defined by a constraint of the form A.21, which is:

j
(A.21)
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queue equations by removing the time intervals when the workload is above b, 

from Cramer estimate, A.39 the proportion of workload lost with a buffer size b, 

L(b) is:

w , ) ~ c <c r a mKa  O )or(O )
(A. 42)

as b —>oo.

If A prop( / ,  b ) is a subset of R J+ , such that n e  A p w p ( y, b ) implies logL(b) < 

- y  then:

liin A prop (y N  ,b N  ) = A (A.43)

A.3.2.2 Brownian Input

Let Z(l) be standard Brownian motion, then Xji[0,t] = Ajt  + <TjZ(t) and Z 1 is a 

Brownian motion for the superpositions:

f
f  1

\/2 N

*10,/] = Z nJjij)i + Z z'(/)
{ ' V J /

(A. 44)

From the basic formulae o f Brownian Motion the constraint is:

P{Q >b} = exp
- 2  H C - ' Z s X

Z (A. 4 5)
O’ i

thus the constraint log P { Q>b } < - y  becomes the following formula:

(A. 46)
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which is the same as ^  .rijaj(s*,t*)  ^  C with s* = / /2 b .

The Pollaczek-Khinchin formula A.38 it follows that EQ = a'(0)/(C  -  a(0)), and 

so the constraint EQ < L provides a linear acceptance region is satisfied if:

A.3.3 Buffer Asymptotic Models

Tail probabilities decay exponentially for models more general than the M/G/l 

queue. Next we will see how the formulae A.39 and A.40, which were found in 

the previous section, will still hold. To get these to hold for asymptotic models, 

the increments for the queue are assumed to be ergodic rather than stationary, for 

Q the workload as before in the queue of server capacity C with an infinite buffer, 

with arrival stream X[0,t]. For asymptotic behavior, the limit of convergence and 

the rate of convergence of the Effective Bandwidth is of interest. If there is a limit 

for convergence:

(A.47)

lim a(s,t) = a(s) (A. 48)t—»00

and there is a constant a:such that a(/c) =  C, and a ‘(k) is finite:

¿->0O ¿J (A. 49)
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The usefulness of the limit depends on whether the rate o f convergence occurred 

within the timescale of interest, the convergence a(/c,t) to a (ic) should occur in 

this timescale so that the Cramer’s estimate can be used. An example for an 

M/G/l model should occur in the time frame of the time taken to fill the buffer /,, 

and the time taken to empty it t2, as b increases and t{ = b/(C-a(0)),

The ideas of buffer asymptotics can be extended to examples where the limit A.48 

does not exist, but a large deviations principle can be applied. An example is 

Fractional Brownian input, with a(s,t)  given by A. 17:

It is possible to deduce from this equation that the condition that P{Q> b} < exp 

(-y) becomes the next equation, as % b —>oo:

t2 = b/(/ca'(/c)).

a(s,t) = A+^Y~t2HA (A. 17)

and so for the:

2

(A. 50)

so to find the Effective Bandwidth, we use equation A.20 to show that:

-2 (1  H ) (A. 51)

\  //

with y  /  b held constant.
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For H = 1/2, the above equation becomes A.46:

Y j i n J * J + a '^2b) ~ C (A.46)

For H  —>1 it becomes A.32:

,1/2

2 r Y j n)0-2, <c (A.32)
\  i /

The long range order is mostly effected by the scaling relationship between y< b 

and C, as opposed to the form of the acceptance region A.
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