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Abstract—The world’s oceans represent a vital resource to
global economies and there exists huge economic opportunity
that remains unexploited. However along with this huge potential
there rests a responsibility into understanding the effects various
developments may have on our natural ecosystem. This along
with a variety of other issues necessitates a need for continuous
and reliable monitoring of the marine and freshwater environ-
ment. The potential for innovative technology development for
marine and freshwater monitoring and knowledge generation is
huge and recent years have seen huge leaps forward in relation to
the development of sensor technology for such purposes. However
despite the advancements there are still a number of issues.
In our research we advocate a multi-modal approach to create
smarter more efficient monitoring networks, while enhancing the
use of in-situ wireless sensor networks (WSNs). In particular
we focus on the use of visual sensors, modelled outputs and
context information to support a conventional in-situ wireless
sensor network creating a multi-modal environmental monitoring
network. Here we provide an overview of a selection of our
work in relation to the use of visual sensing through networked
cameras or satellite imagers in three very diverse test sites - a
river catchment, a busy port and a coastal environment.

I. INTRODUCTION

Marine and freshwater systems represent vital assets on
many levels and need to be monitored and protected. In
particular the oceans represent a vital resource to global
economies and there exists huge economic opportunity that
remains unexploited. However along with this huge potential
there rests a responsibility into understanding the effects
various developments may have on our natural ecosystem. For
example there is much potential for the development of new
technologies for exploiting our marine resources in relation to
harnessing ocean energy. However alongside this, innovative
techniques need to be developed to ensure the protection of
these resources and the associated ecology and environmental
processes.

These naturally occurring processes can affect issues such
as weather, climate and water quality and thus need to be
modelled and understood. Modelling and understanding of
these processes also leads to invaluable knowledge for future
exploitation of marine resources in various sectors and to the
development of proactive mitigation strategies for preventing
or dealing with environmental events. This requires continuous
and reliable monitoring of our marine environment and the

potential for innovative technology development for marine
monitoring and knowledge generation is huge. Subsequently
there lies huge scope for both research institutes and industry
to exploit this opportunity.

Ireland has a marine area approximately ten times its land
mass, yet the marine economy only represents a very small
proportion of GDP [1]. The government hopes to double
this to 2.4% per annum by 2030. The ocean represents an
enormous national resource that has been to a large extent
unexploited up to now. There is huge potential for Ireland to
establish itself as a global leader in the marine sector and
in the development of marine ICT. This potential has been
recognised at a government level through the development of
the National Sea Change Strategy 2007-2013 [2][3] and with
that an Advanced Marine Technology Program. In 2010, the
SmartOcean1 cluster was established which aims to harness
Ireland’s marine resources and existing expertise in marine
science and ICT to establish the country as a global leader
in the development of products and services for the marine
sector.

These initiatives at a government level have lead to the de-
velopment of various SmartOcean Research and Development
Infrastructure with the flagship initiative being SmartBay2 - a
national test and demonstration platform situated in Galway
Bay, Ireland. This infrastructure enables the development and
testing of marine products and services for marine related sec-
tors providing a platform for innovation and collaboration both
nationally and internationally among research institutes and
industry specialists. The development of SmartBay led from
the recognised need for a real and challenging environment for
technology development and the Irish coast provides a very
suitable test bed for meeting these requirements.

Various initiatives have been supported by national agencies
such as the Irish Environmental Protection Agency and the
Irish Marine Institute for developing sensor technology for
continuous monitoring of coastal and freshwater environ-
ments. Some of these initiatives have involved MESTECH
and CLARITY researchers at Dublin City University (DCU),
Ireland, who have been involved in various technology demon-

1http://www.smartocean.org
2http://www.smartbay.ie



stration projects e.g. DEPLOY3 - a technology demonstration
project showing the implementation of state of the art technol-
ogy for continuous real-time monitoring of a river catchment
- and the testing of low cost water quality sensors developed
in-house on the SmartBay environmental monitoring buoys.

Despite the numerous benefits associated with the use of
such sensor technology for environmental monitoring applica-
tions, there are a number of challenges such as sensor fouling,
data reliability, power, sensor failure, maintenance of sensors
in remote locations, cost, communication, lack of redundancy,
etc. In our research we seek to develop innovative solutions to
increase the effectiveness of such sensors and to create smart
environmental monitoring networks. Using national test and
demonstration platforms such as SmartBay and other projects
such as DEPLOY we seek to develop innovative methods
into improving the efficiency of such networks and increasing
knowledge generation. In particular we focus on the use
of visual sensors, modelled outputs and context information
to support a conventional in-situ wireless sensor network
subsequently creating a multi-modal monitoring network. Here
we provide an overview of a selection of our work in relation
to the use of visual sensing through networked cameras or
satellite imagers in three very diverse test sites - a river
catchment, a busy port and a coastal environment. Off the shelf
webcam-type devices are used where the goal is to determine
what can be achieved from simply deploying a low cost camera
without additional functionalities or modifications to the site.
In the following sections firstly the issues with continuous
monitoring of aquatic environments and the subsequent objec-
tives of a multi-modal approach are discussed. This is followed
by an overview of the work being carried out at the three test
sites outlined.

II. ISSUES WITH CONTINUOUS MONITORING OF MARINE
AND FRESHWATER ENVIRONMENTS

Coastal and freshwater zones are generally dynamic en-
vironments affected by a range of anthropogenic factors as
well as naturally occurring processes. Accurately monitoring
the quality of these waters can prove very difficult since the
associated environmental processes often demonstrate high
frequency spatial and temporal variation and are extremely
heterogeneous. Observing these processes with high fidelity al-
lows us to create models, make predictions and better manage
our environments [4]. Undersampling on a temporal scale can
result in masking the variability caused by processes occurring
at higher frequencies than the sampling rate [5]. Sampling at
a limited number of points spatially in the environment can
mask the dynamics or trajectory of a phenomenon. From an
operational perspective, high spatial and temporal monitor-
ing allows the development of rapid detection and response
systems to deal with environmental threats such as flooding,
harmful algal blooms (HABs), pollution or oil spills [6].

New technologies are emerging in order to enable remote
autonomous sensing of our water systems and subsequently

3http://www.deploy.ie

meet the demands for high temporal and spatial monitoring. In
particular, advances in communication and sensor technology
has provided a catalyst for progress in remote monitoring of
our water systems [7]. This has developed into the concept
of wireless sensor networks (WSNs) and involves a diverse
range of sensing technologies which autonomously sense
their environment and gather and transmit sensed data. En-
vironmental monitoring applications essentially require large-
scale low-cost sensor networks that can operate reliably and
autonomously over extended periods of time. However, despite
much progress, there is still a significant gap between the
current state of the art in both in-situ WSNs and the analytical
instruments used for sensing, and what is needed to realise this
overall vision [7] [8]. Sophisticated analytical instruments may
not be suitable for scaled-up deployments over many months
or years in terms of their sustainability, reliability or cost
[7]. Also in times of extreme events such as flooding, such
instrumentation is prone to failure.

In our work we extend our conventional understanding of
a sensor network or a community of sensor nodes to include
diverse data sources and multiple sensing modalities in order
to create a smarter water monitoring network. In particular we
focus on the use of visual sensors to complement and enhance
the use of an in-situ WSN. Webcam-type CCTV devices can
provide continuous daylight data for periods extending to
decades at a very low cost, effectively quantifying coastal
and river parameters with high resolution in space and time.
They can also provide surrogate measurements for parameters
otherwise obtainable with sophisticated in-situ instrumentation
e.g. a change in depth may indicate run-off which may indicate
nutrient loading etc. On a larger scale satellite information can
be used to characterise a wide spatial area proving invaluable
information regarding a number of different parameters and
details regarding the trajectory of an event. The following
describes in more detail the benefits of such an approach and
a selection of the studies carried out in the various test sites.

III. OBJECTIVES OF A MULTI-MODAL APPROACH

The two main issues with conventional in-situ sensor net-
works can be summarised in terms of scalability and reliabil-
ity:

• Scalability - In-situ wireless sensor networks or ana-
lytical instruments are generally not suitable for scaled
up deployments suitable to meet the demands of certain
marine environmental monitoring applications.

• Reliability - Sensor nodes are subject to failure or dam-
age, especially when not maintained regularly. Failure of
in-situ sensor networks may result in faulty data or gaps
in coverage.

Here it is discussed how environmental monitoring applica-
tions at three very different test sites benefit from the use of a
network incorporating diverse sensing modalities such as vi-
sual sensors, modelled outputs and context information along-
side the more conventional in-situ wireless sensor networks.
The intelligent coordination of a diverse range of additional
low-cost data sources creates a smarter network with increased



Fig. 1. DEPLOY sites on the river Lee. The site in Cork city circled on the
map is the site chosen for this study. Source: Google Maps and www.deploy.ie.

awareness while optimising the nodes already in place and
creating greater efficiency in the network. For example the
adjustment of the sampling rate when contextual information
suggests something of interest is taking place may render
such devices more efficient and thus more scalable. Contextual
information may also help with the optimum placement of the
more costly sophisticated nodes.

A multi-modal approach may also allow missing data values
to be inferred from the use of models and additional con-
textual information to compensate for the failure of a node
where there is no redundant identical node in the network to
replace its operation. This is often the case due to budgetary
constraints, hence the ability to optimise the network to
replicate its behaviour is extremely desirable and could create
huge efficiencies. Characterisation of a site through multiple
dimensions with invisible ’software’ sensors is an example of
what is to be achieved. In the following this notion is discussed
in relation to the three different test sites - the River Lee,
Poolbeg Marina and Galway Bay.

IV. RIVER LEE

The River Lee represents one of the largest rivers in
the southwest of Ireland. It and its main tributaries drain a
catchment area of approximately 1,100km2 upstream of Cork
City [9]. The site chosen for our study is the point of the river
where it flows into the sea commonly referred to as the Lee
Maltings (See Figure 1). It represents a very interesting but
challenging site to monitor, near the upper end of the estuary
on a left hand bend of approximately 70 degrees. Water levels
at the site are influenced by spillage from the Iniscarra dam
and the site is also tidal with a tidal range of approximately
4 metres.

The River Lee was used as a demonstration site for the
DEPLOY4 project [10]. DEPLOY began collecting data from
five sites on the River Lee at 10-15 minute intervals from
April 2009 until May 2010. One of the DEPLOY stations was
located at the Lee Maltings site with others located at different
points of the catchment representative of varying conditions
along the river. The range of sensors deployed at the Lee
Maltings site included sensors for monitoring conductivity,
dissolved oxygen, temperature and water depth.

4http://www.deploy.ie

Fig. 2. Data from the Lee Maltings site of DEPLOY during a period of
flooding. Source: DEPLOY

A. Issues

Despite the numerous benefits provided by the in-situ sen-
sors, there are issues which have been highlighted throughout
the deployment. These include gaps in the sensing and irregu-
larities with the sensor data itself. This may be due to the fact
that the sensors needed to be maintained more regularly or
may have suffered from the harsh conditions that are often
associated with deploying sensors in such an environment.
Biofouling is often a major problem especially during the
warmer summer months. Power failures or technical issues
with the sensors were also an issue. However intermittently
erroneous data is a fact of life for real world sensing.

In November 2009, there was a flooding event at the Lee
Maltings where the River Lee burst its banks. This resulted
in the depth sensor along with other in-situ sensors going
offline demonstrating that in-situ nodes often cannot withstand
extreme events. Figure 2 shows data from the temperature,
conductivity and depth sensors during this time period. The
depth can be seen to continually rise during this period of
increasing depth. It subsequently goes offline. By the time
the sensor is back online again water levels have subsided.
Furthermore these sensors are only monitoring one specific
point of the site when an overall characterisation of events at
multiple points may be desirable.

These issues reinforce the benefits outlined in Section III of
adopting a multi-modal approach to monitoring. For example
during periods of extreme events such as flooding, a camera
overlooking the water will continually collect data. Thus it
provides a back-up sensing modality in the network. It can
also be used dispute or validate in-situ readings from a sensor
network when it is unclear whether events are ‘real’ or due
to errors with the in-situ sensor node. Modelling approaches
which optimise the use of all available information in order to
infer missing values would also be extremely beneficial where
a sensor goes offline. As previously outlined contextual data
may also be useful for controlling the operation of a sensor
node in order to elongate its use in such an environment. For
example a sophisticated chemical sensor such as the device



Fig. 3. The angle of the images captured by the camera.

described in [11] would benefit from an adaptive sampling rate
based on surrounding events. In the following a selection of
studies carried out into a multi-modal context based approach
for optimising the monitoring ability of the network are
described.

B. Adoption of a Multi-Modal Context Based Approach

In May 2008 an AXIS PTZ Network camera was deployed
overlooking the banks of the River Lee at the Tyndall Research
institute, Cork, Ireland. It pans to four different positions
every minute in order to capture the site from four different
angles (See Figure 3) . Rainfall radar imagery is also captured
from the Met Éireann - the Irish meteorological service -
web site 5. These images show the precipitation distribution
and dynamic development over Ireland and are useful sources
of information for estimating overall precipitation in a river
catchment area (See Figure 4).

Using these additional data sources along with currently
available in-situ information from the network, a number of
studies were carried out. These were as follows:

1) Visual Sensing: In order to analyse the relationship
between the sensor readings and features in the images, a
tool was developed to enable visualisation of the sensor
readings and the closest corresponding images. This enabled
visual identification of the possible relationship between the
two sensing modalities and how they could be used in a
complementary manner (See Figure 5). Using a low cost non-
specialised visual sensor limits the parameters to be directly
detected from the camera and the conditions at the site also
result in challenging image data e.g reflections on the water,
changes in weather conditions and poor visibility etc. (e.g. See
Figure 6).

However there are a number of events which can be
directly detected and additional features which may provide
surrogate measurements for non directly detectable parameters
e.g. changes in freshwater levels may indicate nutrient loadings
etc. As described in [12] a number of features were identified

5http://www.met.ie

Fig. 4. Rainfall radar image and the catchment range for the River Lee.

Fig. 5. Visual sensor analysis tool - enables the analysis of visual data
alongside in-situ sensor readings in order to examine features and relationships
between features and in-situ sensor data.

for detection e.g. boats, objects floating on the water, water
turbulence, water depth etc. Subsequently a detailed outline of
the estimation of depth from the camera images was provided
due to its importance as an indicator of conditions at the site
and the ability to link it to the in-situ sensor readings. A
number of features appeared to correlate with different levels
of depth and algorithms were developed for the detection of
each of these features (See Figure 7). These features are rocks
at the trees, rocks at the far wall. rocks at the near wall and
the appearance of an island feature in the middle of a the
water. As outlined in [12] the results indicated that each of
the depth features could be detected to a very high accuracy
and the classifier had a high ability to distinguish between the
classes. Each of the models were evaluated using the standard
machine learning technique of ten-fold cross validation.

In a further study models were similarly developed for each
of the four depth features based on data sampled across a
different 12 day period in May 2009 and the models were
tested on data from both similar and alternative times of the
year. Additionally a 2-class model (feature present, feature
not present) and a 3 class model (feature present, feature not



Fig. 6. Examples of the challenging image data we are using, demonstrating
disparate appearance due to varying river conditions.

Fig. 7. The features highlighted in the image become visible in order with
changing depth.

present, feature intermediately present) were examined. It was
found that the 2-class model is the best option as it produces
the highest accuracies in relation to the detection of each of
the depth features and it is really only positive and negative
detections that are of main concern.

The resulting four depth feature models were evaluated
on two unseen datasets - one containing data from May
and the other combining data from November, January and
February (novjanfeb). Accuracies of 89.2%, 85.38%, 98.63%
and 79.25% were achieved on the May test data on a test
set of 800 instances (400 positive, 400 negative) for each
feature. The results were poorer for the novjanfeb test data
with accuracies of 67.08%, 79.6%, 94.58% 53.75%. However
due to the weather conditions a smaller number of instances
of these lower depth features were available for testing (250
positive and 250 negative instances for depth features 1 and 2,

120 positive and 120 negative instances for depth features 3
and 4). From visual inspection of the data, the time period of
the second test set displayed very different visual signatures
to that of the May test set. An evaluation carried out on data
from this time period suggests that better accuracies may be
achieved by training models with data specific for this time
period. This is subsequently the approach adopted when using
these models at a later stage in our study. As outlined in [12],
further improvements could be achieved by referencing images
from the three alternative camera angles which effectively
represent additional data streams in the network. Also the
addition of another camera to the network would still render
the deployment very cost effective while increasing knowledge
about events at the site.

There are also additional features that could also be investi-
gated. These four features were originally chosen as a proof of
concept. For example it may be worthwhile investigating into
the use of another feature to give an indication of when higher
waters levels are changing. A sample feature is a varying
appearance of the wall depending on the height of the water.
Three different levels can generally be depicted through the
appearance of three different lines of colour. Figure 8 shows
three images - the first image demonstrates when three lines
of colours are visible due to a lower water level, the second
image demonstrates when two lines of colour are visible due
to a higher water level and the third image demonstrates a
really high water level when only the top colour of the wall
is visible.

A model was developed in a similar fashion to those
developed for the four depth features outlined in [12] using
800 samples of each of the three classes from the novjanfeb
dataset. It contained images with a larger number of sample
instances of the higher water levels. Ten-fold cross validation
was used in evaluating whether the model had the ability to
differentiate between these different appearances of the wall
depending on the water level. The model achieved an accuracy
of 82.29% and was especially accurate in classifying the higher
water levels which is most important considering this could
indicate a flood alert.

Subsequently ways in which to relate these features back
to the in-situ depth data were evaluated. Using the initial four
depth features a variety of methods were examined resulting in
a number of visual sensor streams. Figure 9 shows the range
of water depth values corresponding to the various features
where rocks-trees indicates rocks at trees only, rocks-trees-
wall indicates rocks at trees and the far wall but no rocks
at the other two features etc. From this graph it can be seen
that there is a distinction between the range of depth values
associated with different depth features, except for the features
rocks-trees-wall and rocks-trees-wall-near-wall which occur in
similar ranges. This distinction was used in order to align the
two data streams. This approach can benefit from the fact that
often it is not a precise measurement that is relevant but a
general estimation of conditions.

An in-situ depth reading is taken every 10 minutes, where as
an image is produced from the camera sensor approximately



Fig. 8. Features on the wall showing changes in higher water levels.

Fig. 9. Normalised histogram of water levels for depth features for a selection
of images from May 15-27 2009

every minute. Hence for each in-situ depth reading the images
(i.e. the classifications for each of the depth features) that
are within 10 minutes of this reading are aligned with the
time of the depth value. Two approaches are then used in
order to decipher the appropriate classification for each of
the depth features for this particular time-stamp. In the first
scenario a maximum approach is used whereby if there are
any positive instances at all within the classifications, then
the classification for this time is considered to be positive.
In the second scenario, a majority approach is used whereby
the classification for this time for a particular feature is the
majority classification of all the classifications aligned with
this time. The majority approach was the most appropriate

considering that one poor classification in the other approach
may result in an error. The output of either approach is an
array consisting of the timestamp, the depth sensor value, and
the classification for each of the depth features (i.e. present,
not present) using the approach in question.

Next it needs to be determined how a cooperative relation-
ship can be established between the two outputs for determin-
ing whether they are in agreement. Ideally after the appearance
of one feature the subsequent appearance or disappearance of
the next appropriate feature should be seen relevant to whether
depth is moving down or up. From examining the training
data, it is apparent that if the water is below or between
certain levels certain features should be appearing and others
not appearing, hence a thresholding approach is used. If there
is water between a certain level and the appropriate relevant
features are detected and there is no detection of the non-
relevant features, then a positive cooperation value of ’1’ is
assigned, or else a negative cooperation value of ’0’ is assigned
to this input. Further studies have also been carried out which
use this type of output in a trust and reputation framework to
determine the most reliable visual sensor stream at a particular
point in time where different approaches are being evaluated
and the influence of various depth features on the output of
the algorithm. However this is outside the scope of this paper.

At the Poolbeg test site we further this work by examining
methods to obtain more precise depth readings from the visual
sensor stream in the network. However it must be reinforced
that the goal is to determine what can be achieved from simply
deploying a low-cost camera without additional functionalities
or modifications to the site.

2) Adaptive Sensing Using Contextual Information: As
previously outlined, an ideal scenario is whereby contextual
information can be used in order to improve the efficiency of
the sophisticated in-situ sensor nodes. In the work outlined in
[13] we describe a study whereby rainfall radar images and
information from a water depth sensor are used as input to an
Artificial Neural Network to dictate the sampling frequency of
a phosphate analyser at the Lee Maltings site. Specifically we
investigate a methodology for incorporation of pixel informa-
tion from rainfall radar images and in-situ depth data into an
ANN and the subsequent use of this network to predict average
freshwater levels at a dynamic point of the river. The site is
tidal and affected by the dam which makes this non-trivial.
However a prediction of change in freshwater levels may
indicate runoff from further upstream and subsequent nutrient
loading. At this point the sensor should be sampling more
regularly. However when no events of interest are occurring
the sensor should limit the use of its resources and operate
more intelligently.

This involved the examination of a number of different
issues such as the most effective way to present rainfall
radar information extracted from a simplified digital image
representation to the network, the effects of rainfall from
different points of the catchment on the model and the effect
of differing lag times on the model. However the study
demonstrated that with limited training data, a system for



controlling the sampling rate of the nutrient sensor can be
established quickly and cost effectively at a deployment and
can improve the efficiency of the more sophisticated nodes of
the sensor network.

3) Redundancy in the Network: In other work we are
examining the ability of heterogeneous sensor nodes to provide
redundancy within the network for an alternative sensor node
in the case of node failure. We are investigating a variety
of models incorporating data from different combinations of
nodes and examining their ability to predict values from an
alternative node in the network. We are examining essentially
what can be achieved with limited data sources into replicating
the activity of a sensor whilst there may be a possible gap
in the data or fault in the network, and whether we can
estimate the missing data values in a very low cost manner.
The initial results from this work are extremely promising
using regression trees with input models consisting of one or
more alternative parameters and a limited number of preceding
values.

V. POOLBEG MARINA

Poolbeg Marina is located on the lower part of the estuary
of the River Liffey, in Dublin, Ireland. It is a busy port subject
to large amounts of recreational and commercial activity and
the port is heavily used with a high amount of ship traffic.
It has quite a diverse ecosystem. Due to the large amount
of activity at the site and its importance from an environ-
mental and ecological perspective, a multi-paramter in-situ
sensor equipped with turbidity, dissolved oxygen, temperature,
conductivity and depth probes was deployed at the site. A
visual sensing sensing system was also deployed at the site
similar to the deployment at the Lee Maltings test site. The
visual sensor continuously sends images back to a cloud server
at a frame rate of approximately 1 frame every 10 seconds.

At this site our investigation into visual sensing is moved
forward from studies and experiences to date at the Lee
Maltings test site. However it represents a very different site
with very different characteristics, dynamics and issues that
require monitoring. In turn this requires new approaches to
analysing images from the site in order to extract the relevant
events of interest that can complement and enhance the use of
the in-situ sensors deployed at the location. In the following
a brief overview of a small selection of these studies are
described in order to provide an indication of the potential
of such a system.

A. Visual Sensing

From an environmental monitoring perspective ship traffic
at the port greatly affects the aquatic ecosystem. Propeller con-
tact, noise, movement and turbulence from from the propulsion
systems can have multiple effects on the ecosystem including
increased turbidity. There are many negative impacts of in-
creased turbidity on the ecosystem which are well documented
in the literature [14]. As outlined in [15] analysis of the sensor
data demonstrates that ships entering the port often coincide
with spikes in data from the turbidity sensor. The same effects

Fig. 10. Images from Poolbeg Marina displaying an empty scene along with
images displaying boats and ships at the site.

are not seen with the activity of small boats in the area. Hence
a study was carried out to detect ship traffic from a visual
sensor.

Aside from the obvious benefits of being able to monitor
traffic in and out of the port from a visual sensor e.g. security,
logistical monitoring etc., automatically extracting information
on ship traffic from a database of images can provide a
more precise indication of its effect on turbidity. It also
may be able to provide surrogate measurements if the in-situ
sensor were to fail or indicate when the sensor is producing
inaccurate readings and may require maintenance. Similar to
the case with the Lee Maltings site the image dataset is
challenging which renders the accurate detection of ships in all
scenes difficult. However using a selection of computer vision
techniques ships can be detected in the seen with an extremely
high accuracy, details of which are outlined in [15]. Figure
10 shows examples of an empty scene, along with images
displaying boats and ships at the site.

In other work at the Poolbeg Marina site, initial work from
the Lee Maltings site is also being furthered at this site in
relation to depth estimation. As opposed to using a number of
individual localised features at the site we are investigating the
use of more global features in the images for depth estimation
in order to render the system more transferable between sites.
Features which may give us a more precise estimation of water
depth are also being evaluated. With no water depth sensor at
the site online tidal information is being relied upon to provide
a ground truth. Even though this work is in the early stages
the initial results have been extremely promising. Figure 11
displays images from the site at different tides - low, mid and
high tide and Figure 12 shows a graph displaying the predicted
versus actual water levels from a model developed using global
image features.

VI. GALWAY BAY

Galway Bay is located on the west coast of Ireland (See
Figure 13) bordered by Co. Clare to the south and Co.
Galway to the north. It is approximately 62 km long from



Fig. 11. Images from Poolbeg Marina displaying from top to bottom - low
tide, mid tide and high tide.

Fig. 12. A graph displaying real versus predicted values of depth at Poolbeg
marina using a model developed from image features.

the Brannock Islands (situated just north west of the Aran
islands) in the west to Oranmore in the east. The main rivers
entering the bay are the River Corrib at Galway and the
Owenboliskey River at an Spidéal. It is quite an important
resource supporting a range of maritime activities with many
research institutes and organisations using Galway Bay as
the basis for research programmes and projects, most notably
the Irish Marine Institute located in Oranmore, Co. Galway.
Galway Bay is the location of the SmartBay national test and

Fig. 13. Galway Bay. Source: Bing Maps

Fig. 14. SmartBay Pilot Project in 2008. Source: Marine Institute

demonstration facility. In 2008 a number of environmental
monitoring buoys were launched as part of the the SmartBay
pilot project. It is data from these buoys that were used in our
initial analysis described below (See Figure 14).

A. Visual Sensing

The multi-modal aspect of our research in Galway Bay has
mainly focused on the use of visual sensing from satellite
imagers to complement the data from the SmartBay environ-
mental monitoring buoys. This is due to the vast location
area. However we have also begun investigating the use of
web cam data currently available around Galway port. In [16]
we describe a study demonstrating the need for both satellite
and in-situ sensors for monitoring Sea Surface Temperature
(SST). We also investigated the use of satellite ocean colour
data. However throughout our analysis we found difficulties in
searching for available satellite imagery due to issues such as
cloud cover. Subsequently as part of our research we developed
a system for the efficient browsing of MODIS chlorophyll
data described in [17]. Three different interfaces for the search
system were created with one of these shown in Figure 15.

Following the difficulties with the reliance on data from
a singular satellite sensor, an investigation into the use of
satellite data products that produce an analysis based on
the combination of many satellite and in some cases in-
situ data streams and/or model output was carried out. In
[18] the ability of these data sources to provide contextual
awareness, redundancy and increased efficiency to an in-situ
sensor network is investigated. More specifically, the potential



Fig. 15. Satellite image analysis and search system.

use of a variety of chlorophyll and SST data products as
additional data sources in the SmartBay monitoring network
in Galway Bay, Ireland is analysed. Overall it was found that
while care needs to be taken in choosing these products, there
is extremely promising performance from a number of these
products that would be suitable in the context of a number of
applications especially in relation to SST. It was more difficult
to come to conclusive results for the chlorophyll analysis.
Further work is investigating this with new deployments as
part of the SmartBay test and development platform and the
integration of other satellite sensor data aside from ocean
colour and SST e.g. sea surface roughness, along with model
data and other sensor data available from the Irish Marine
Institute.

VII. CONCLUSION

Here we have provided an overview of the importance of
continuous remote monitoring of our marine and freshwater
environments along with the issues with the singular reliance
on in-situ sensor networks. While they provide an enormous
step forward for continuous and real-time monitoring of the
aquatic environment, there are still a number of issues with the
current state of the art. Complementing these networks with
additional data sources such as visual sensors and contextual
information can greatly improve their efficiency and perfor-
mance most importantly in terms of scalability and reliability.

We provided an overview of a selection of our work in rela-
tion to three diverse test sites - a river catchment, a busy port
and a coastal zone - to provide an indication of ways in which
these additional data sources have been incorporated into the
network. The general focus was on the use of visual sensing
as a complementary sensing modality and the optimisation of
nodes in the network so that they can operate more efficiently
and compensate when a particular node intermittently fails.
Each of the test sites are representative of very different
issues and have a variety of different available data sources.
Therefore our studies have strived to reflect the needs of
the site whilst also attempting to drive the research forward.
Our results demonstrate that these additional data sources and
models may prove as extremely effective tools for optimising
future environmental monitoring networks.
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