ATWARM
Advanced Technologies for Water Resource Management

Next Generation Autonomous Analytical Platforms for Remote Environmental Monitoring

Generation of Fully Functioning Biomimetic Analytical Platforms for Water Quality

M. Czugala, F. Benito-Lopez and D. Diamond

CLARITY: Centre for Sensor Web Technologies, National Centre for Sensor Research, Dublin City University, Dublin 9, IRELAND

Project Objectives:

- Integration of actuators into a microfluidic platform:
 - biomimetic structures with detectors
 - fluidic manifolds
 - integral reagent addition and calibration standards
 - integral electronics
 - communications and power generation/storage
- Demonstration of fully functioning analytical platform.

Wireless Paired Emitter Diode Device as Optical Sensor for Lab-on-a-Disc Water Analysis - Introduction

Fig 1. The schematic of circuit used in the system.

Fig 2.
- a) Prototype of the PEDD centrifugal micro-fluidic system,
- b) channel consisting of three chambers. [1]

Fig 3. Calibration curve of the sensing area of the microfluidic device using pH buffer solutions. (n=70, error represents the average of light intensity values during data collection).

Results

Fig 4. Images of a channel of the CD-chip during centrifugation at 1500 rpm.
- A) the upper chamber is filled with sample, then the disc is spun and all the liquid is transferred to the sensing area (B-D). Solid contents are accumulated in the first chamber (>85µm diameter) (B-D) and at the bottom of the channel (<85µm diameter).

Fig 5. Water pH analysis using a commercially available pH-meter and the PEDD lab-on-a-disc device.

Fig 6.
- a) Turbidity measurements using a UV-VIS spectrometer (transmittance) and
- b) two channels with river samples; one contents solids in the upper chamber (left) while the other is clean (right).

Conferences

ANTICIPATED CONFERENCES: