Photo-actuated Ionogel Microvalves for Real-time Water Quality Analysis in a Micro-fluidic Device

Monika Czugała¹, Cormac Fay¹, Pedro Ortíz², Andreu Llobera², Dermot Diamond¹ and Fernando Benito-Lopez¹

¹ CLARITY: Centre for Sensor Web Technologies, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
² Centro Nacional de Microelectronics. Campus UAB, 08193 Bellaterra, Spain

Introduction

In the recent years, advances in micro-fluidic techniques for environmental applications have brought wide opportunities for improving water quality monitoring. However, the development of fully integrated micro-fluidic devices capable of performing complex functions requires the integration of micro-valves with an appropriate performance, since they are essential tools for the control and manipulation of flows in micro-channels.[1] Here we present an attractive approach for water quality analysis, nitrite determination, based on photo-switchable ionogel actuators within the micro-valve opening/closing mechanism is controlled by simply applying localised white light irradiation using light emitting diodes (LEDs). The nitrite concentration of standard solutions is detected by a highly sensitive, low cost wireless paired emitter detector diode device (PEDD).

Microfluidic chip with photoswitchable ionogel microvalves

- The incorporation of ionic liquids within responsive gel matrices (ionogels) produces hybrid materials with many advantages over conventional materials such as tunable hydrophobic and hydrophilic nature, chemical and thermal stability.
- Depending on the ionic liquid, ionogels give the possibility of tuning several micro-valve actuation times and so independently control liquid flows within the channels under a common illumination source.[2]
- Non invasive, non-contact stimuli such as light, offers improvements in versatility during manifold fabrication, and precise control of the actuation mechanism.

![Scheme of the photoswitchable polymer matrix and schematic of the valve actuation.](image)

Fig. 1.

![Ionogel microstructure after photospolymerisation (left), immersion in HCl for 2 hrs. (middle) and white light irradiation (right).](image)

Fig. 2.

![A schematic representation of the micro-fluidic device fabrication procedure.](image)

Fig. 3. a)

![A picture of the micro-fluidic device fabricated in PMMA : PSA polymer by CO2 laser ablation.](image)

![Prototype configuration of the PEDD device with schematic of the in house designed valve system.](image)

Fig. 4.

![Mechanism of nitrite detection employing the Griess reaction method.](image)

Fig. 5.

![Kinetic study of the colour formation monitored at a wavelength λmax 540 nm between NO2 and Griess reagent (n = 3) (left side) and absorbance versus nitrite Griess reagent complex concentration (right side) using a UV-Vis spectrometer (a) and the PEDD device (b).](image)

Fig. 6.

![Nitrite detection with PEDD device](image)

Results

A series of microvalves were photopolymerised in-situ within micro-fluidic channel. Their response due to hydrochloric acid (HCl) (swelling, closing the channel) and white light irradiation (shrinking; opening the channel) were tested (Fig. 6). The development of the nitrite Griess reagent complex colour intensity was monitored for the detection of NO2 using the UV/Vis spectrophotometer (off-chip) and PEDD device (on-chip), by taking an absorbance measurement at a λmax of 540 nm for 30 minutes.

Conclusions

A novel and attractive approach for the in situ detection of nitrite, employing the Griess reaction, method was presented. Photo-control of the micro-valve actuation facilitates non-contact and non invasive operation. It is clear that such photo-responsive ionogel micro-valves have the potential to greatly enhance the fabrication and subsequent operation of multifunctional micro-fluidic devices. Moreover, the microfluidic chip combined with a low-cost optical sensor, PEDD, allows for monitoring the nitrite of water samples in real time. Apart from the low-power detection and the communication system, the integration of a wireless communication device allows the acquisition of parameters to be controlled remotely and to be adjusted according to individual needs.

Acknowledgements

Marie Curie Initial Training Network funded by the EC FP7 People Programme. Science Foundation Ireland under grant 07/CE11447.
European Research Council under the European Community’s FP7 (FP7/2007-2013) ERC grant agreement no. 209243.

References