Next Generation Autonomous Chemical Sensors for Environmental Monitoring

QUESTOR C E N T R E

Deirdre Cogan, John Cleary, Thomas Phelan and Dermot Diamond

ENVIRON 2013

Bringing Information to Life

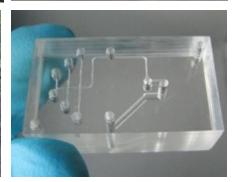

SENSOR WEB TECHNOLOGIES

science foundation ireland fondurenth eolo-cite areann WWW.Clarity-Centre.org

Adaptive Sensors Group

1/

www.dcu.ie/chemistry/asg/



Water sensing

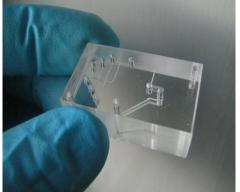
Project Summary

- 1. To produce environmental autonomous chemical sensing platforms with a price capability that creates a significant impact on existing market
- 2. Focusing on a detection platform for nutrients i.e. nitrite, nitrate and ammonia
- 3. Reducing price by integrating material chemistry into system
 - \rightarrow Enable multiple targets to be detected using a single unit.

\rightarrow *Financial Benefit;*

Futuristic biomimetic platform; tipping point in terms of scale of deployments for water quality monitoring

 \rightarrow Significant market demand for low cost nutrient monitoring solutions for water and wastewater applications.


ENVIRON: 31st Jan 2013

Adaptive Sensors Group

Microfluidics and Colorimetric Chemistry

Combination of Technologies

- Colorimetric chemical assays
- Microfluidic systems
- Low cost LED/photodiodebased optical detection systems
- Wireless communications.

Ammonia

Phosphate

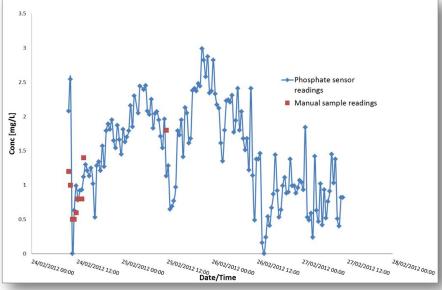
 Developing low cost systems which can be deployed for extended periods providing high-frequency data on key water quality parameters.

Adaptive Sensors Group

Adaptive Sensors Group

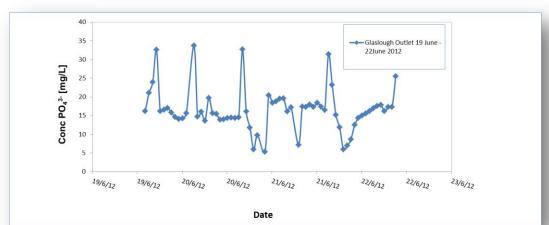
Phosphate Deployments

- Following an initial laboratory based calibration; the system was placed in situ at Broadmeadow Water Estuary, Co. Dublin for the period 22 Feb 2012 – 2 Mar 2012.
- Deployment of two systems in the Integrated Constructed Wetlands in Glaslough, Co. Monaghan from May – June 2012.

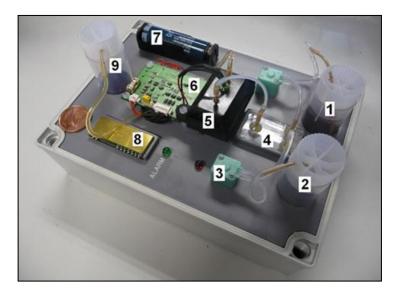

Adaptive Sensors Group

Phosphate Deployment

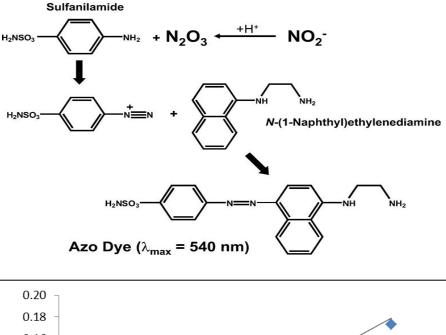
Broadmeadow 22Feb 2012- 2March 2012

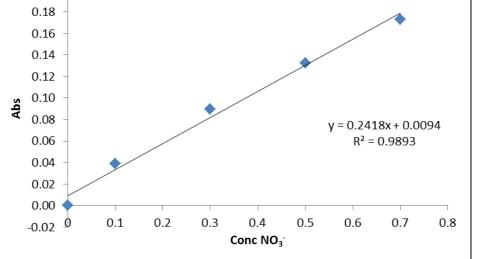

Glaslough 22May-22June2012

 \bigcirc


Adaptive Sensors Group

Determination of Nitrite - Griess Reagent

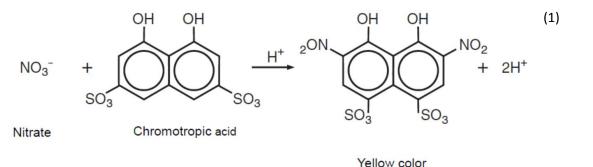




Benchtop nitrite detection system.

 \bigcirc

 \bigcirc



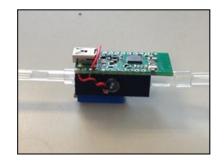
Adaptive Sensors Group

Determination of Nitrate

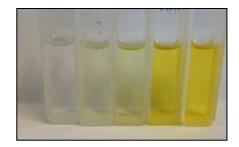
- Current market for nitrate sensors use direct UV spectrophotometric screening, electrodes or cadmium reduction method which in turn can be quite costly.
- Major market for direct, inexpensive and robust sensor.

Determination of nitrate was investigated by a spectrophotometric method based on chromotropic acid. A yellow colour is developed when nitrate is treated with chromotropic acid in the presence of concentrated sulphuric acid and the absorbance measured at a wavelength of 430nm.

ENVIRON: 31st Jan 2013

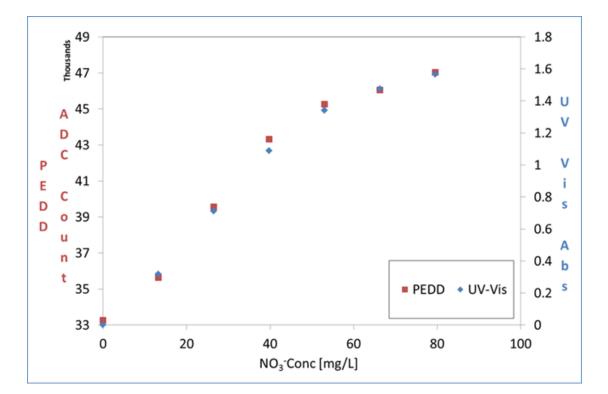

The work represented here on the study for the determination of nitrate has demonstrated that is possible to detect nitrate by a direct colorimetric technique.

(1) Ryan, J., Estefan, G. and Rashid, A. 2001. Soil and Plant Analysis Laboratory Manual. Second Edition. Syria. ICARDA and NARC 2001.


Adaptive Sensors Group

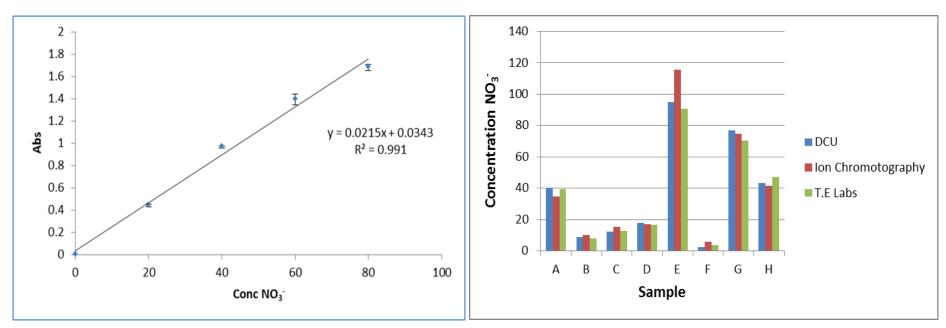
Determination of Nitrate- Chromotropic Method

PEDD set up at 430nm



 \mathbf{O}

 \mathbf{O}


 \mathbf{O}

Adaptive Sensors Group

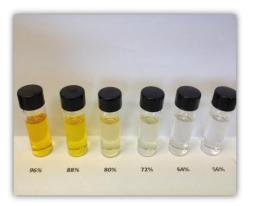
) 🔾 🔾 🔾 🔾 💭 💭 ENVIRC

Chromotropic Method vs. Ion Chromatography

Calibration Curve 0-80mg/L Nitrate

 \mathbf{O}

 \mathbf{O}


Real Sample Blind Test

Adaptive Sensors Group

Further Improvements

Improvements on Method: Decrease Concentration of Sulphuric Acid

Proved possible to achieve satisfactory analytical results

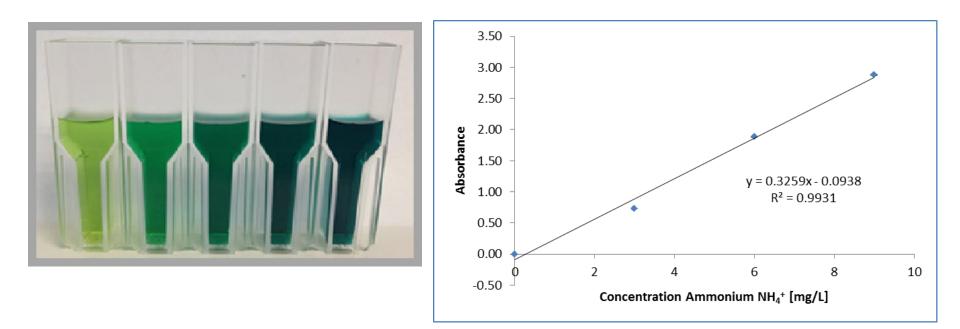
↓HEAT↓

0	-	-	-	-	
2	y	B			
96%	88%	80%	72%	64%	56%

 \bigcirc

 \bigcirc

 \mathbf{O}


H ₂ SO ₄ Concentration	Result
96%	Immediate colour change when
88%	sample added to reagent.
80%	
72%	Resulted in a slight colour change
	when sample was added to
	reagent.
64%	No colour change when sample was
	added to reagent however after
56%	heating at a 130°C for 50mins, colour
	developed.

RESULT: Reducing risk factor while maximising lifetime of system

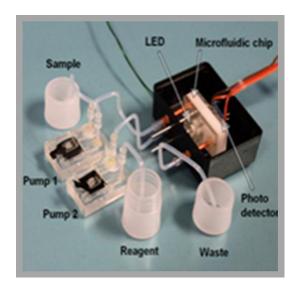
Determination of Ammonia

The reagent cocktail includes a variation on:

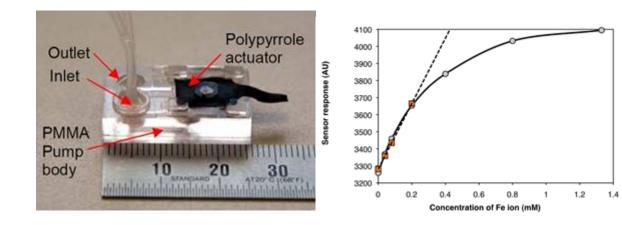
- the Berthelot method which employs
- Salicylic acid instead of phenol which eliminates a toxic and relatively unstable reagent component.
- Intense colour generated is detected at a wavelength of 630nm.

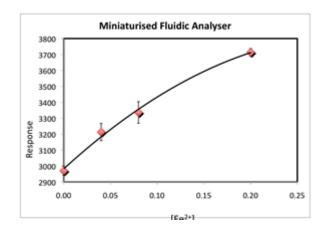
Further Improvements

- Previous method employs a three step reagent process
- Currently employing a mixed 2 step reagent process
- \rightarrow Osberstown Waste Water Treatment Plant Sample = 0.6 mg/L NH₄⁺


→ Using adjusted Berthelot Method:

Sample Type	Conc NH ₄ ⁺ [mg/L]
Sample	0.6335
Sample + spiked with 1ppm	1.7416
Sample + spiked with 3ppm	3.6562
Sample + spiked with 5ppm	5.5696
HACH- Sample	0.75


Future Work:


- Stability of reagents; hypochlorite
- Linear Range
- Integration into microfluidic platform following field deployment after appropriate lab testing

Future Work- Generation 3; Futuristic Matchbox Analyser

- The goal is to integrate polymer actuator valves into the microfluidic chip, which will significantly drive down the overall cost of the platform.
- The main aims are to maximise the lifetime of these actuators through the use of ionic liquid electrolytes and optimisation of the pumping system (actuator stress/strain). This will achieve a fully integrated 'matchbox' analyser ready for field deployment.

'From Ecosystem Function to Human Health'

ISHTIMES.C	nment (Emigratio			# 🚺
Home & treland » Recommend @ Tweek & treshtmes.com - Last Upcase: Tuesoux State 'compliant' OL	Rento	Distance Dis	 Big Phil st the muck 27/09/201 Grants o septic ta 	payment rate lo (24/12/2012 ops stoically thro and madding cro

CIARA KENN

IRISHTIMES.COM Tuesday, .

News Sport | Business | Comment | Life | Societ Ireland | World Today's epaper | Generation Emigration | Vide Home a Ireland a

B Share Recommend 60 Tweet 10 Z +1 0 Irishtimes.com - Last Updated: Monday, August 6, 2012, 19:21

North Dublin water alert issued

OLIVIA KELLY

Residents of up to 1,400 houses in north Dublin have been warned not to c high levels of bacteria in the system.

Dublin City Council has issued a "major alert" to the homes and properties

EIB lending €200m for Irish water projects

Adaptive Sensors Group

\bigcirc \bigcirc \bigcirc

Thank you for your attention

We acknowledge support for this research from The Questor Centre (grant code DCU9/11/14).

