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Abstract

Conjugated linoleic acids (CLA) are a group of positional and geometric isomers of 

linoleic acid produced by ruminant animals. Despite animal studies showing that CLA is 

an effective agent in preventing mammary and colon tumour development there is a need 

to determine isomeric-specific effects o f CLA and identify molecular targets in tumour 

tissues. Mammary (MCF-7) and colon (SW480) tumour cell lines were used in this study 

as in vitro models to investigate effects o f CLA on growth and membrane-initiated 

signalling pathways. Both cell lines were sensitive to the growth-inhibitory effects o f a 

CLA mixture o f isomers and to the individual /10, c l2 - and c9, fll-C LA  isomers at 

physiological levels. CLA isomers modulated arachidonic acid distribution among 

cellular lipids and altered the prostaglandin profile o f both cell lines suggesting 

interference in an eicosanoid signaling pathway. Similar effects were observed in cells 

treated with CLA-cnrichcd milk fat obtained from cows fed on rapeseed supplemented 

pasture. This study also provided evidence for cellular bioconversion o f vaccenic acid to 

c9. i\ I CLA isomer. Western blot analysis of a panel o f apoptosis regulatory proteins 

(bcl-2, bax, Apaf-1 and caspase 3) in the SW480 cell line indicated that induction of 

apoptosis by CLA isomers contributed to growth inhibition in this cell line.
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CHAPTER 1 

Literature Review



1.0 Overview

The role o f diet in the development and prevention o f  cancer has been the focus o f  much 

scientific research during the past decade. The field o f  cancer chemopre vent ion has 

experienced a rapid growth in the identification and characterisation o f a vast number o f 

ant ¡carcinogenic substances that are present naturally in many food sources. Among the 

more potent naturally occurring anticarcinogens to be identified is conjugated linoleic 

acid (CLA). Dairy products and other foods derived from ruminant animals are the main 

dietary sources o f CLA. In vitro and experimental animal studies document a growing 

number o f potential health benefits for CLA. Not only is CLA a powerful anticarcinogen 

but it also has been reported to have anti-atherogenic, immunomodulating, growth 

promoting, anti-diabetic and anti-obesity properties. The challenge now is to determine 

the effects o f  CLA in human subjects and to identify the specific physiological 

mechanism(s) by which different CLA isomers exert their unique biological effects. 

Such information will open the door for CLA-enriched dairy foods.

The aim o f this chapter is to review the available literature on the role o f dietary fats, in 

particular CLA, on cancer development and to provide a comprehensive background to 

the research work contained in this thesis.

1.1 Cancer

At the beginning o f the third millennium, cancer remains the second leading cause of 

death in the developed world (Zhang, 2002). There are over one hundred different types 

o f  cancer, o f  which lung, colon, breast and prostate together account for over 50 %  o f

2



total cancer incidence. Cancer is a collection o f  different diseases with common features: 

excessive division o f cells leading to uncontrolled cell growth, invasion o f  surrounding 

tissues, extravasation into circulation, migration, formation o f tumor masses at distant 

sites and interference with the function o f normal tissues and organs. Thus cancer is a 

disease involving dynamic changes in the genome. The molecular biology era has 

provided enormous insight into the accumulation o f changes in critical genes that are the 

fundamental basis for the altered biological behaviour o f cancer cells (Hursting el al., 

1999).

1.1.1 Development of Cancer

Normal cellular growth is tightly controlled by genes involved in the regulation o f  cell 

proliferation and cell death. Many o f  these genes encode proteins such as growth factors, 

receptors for growth factors, protein kinases and the proteins that activate them, proteins 

that regulate the cell cycle, proteins that either activate or inhibit apoptosis and DNA 

binding proteins. Deregulation o f any o f these proteins results in alterations to the finite 

balance controlling cell numbers and consequently results in altered cell growth 

(Holmgren et al., 1995). Genetic mutations can cause stimulatory pathways to issue too 

many “go” signals or inhibitory pathways to issue too many “stop" signals (Figure 1.1). 

The birth o f a tumor cell requires at least two successive events. Firstly, an initiator must 

strike the DNA o f  a cell and introduce a mutation into a gene that is involved in the 

regulation o f normal cell growth. Unless the genetic change is corrected by specific DNA 

repair enzymes it will be passed to daughter cells during cell division leading to a 

localised collection o f  cells expressing the mutant gene (Eng and Ponder. 1993). The

3



second stage, termed promotion, is characterised by successive rounds o f  clonal 

expansion whereby tumor cells develop more aggressive biological behaviour (Fischer 

and DiGiovanni. 1995). During tumor promotion, further disruption o f  gene expression 

and multiple additional mutations develop due to progressive genomic instability (Pitot,

1989). Therefore, cancer is caused not by one mutation but by multiple mutations, which 

together allow the cell to escape normal control mechanisms. Molecular genetics has 

shown that cancer is a continuous evolving process involving the accumulation o f  a series 

o f genetic alterations in genes controlling cellular proliferation (Ames et a i ,  1995). Many 

genes have been identified, that when cither turned on (oncogenes) or turned o ff  (lumor 

suppressor genes). afTcct cell signalling pathways. Collectively, these two classes account 

for much o f the uncontrolled cell proliferation seen in human cancer.

r r iM u iA T o r c v  m m m t o r v
PAT 11 w a y s  N u n i u r f i H I  PATHW AYS

G r o w t f i  U c t o r  V b r i a i i l u t

EXAM PLE O f
ST IM U LA T O R Y
A A N O R M A1IT Y

EX A M PLE O f 
IN H C JT O R Y  
A B N O R M A L IT Y

Figure 1.1 Signalling pathways in normal cells (Weinberg, 1996).
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Oncogcnes are mutated forms o f normal cellular genes called proto-oncogenes. They 

promote excessive cell growth and thus tumor formation. The unmutated proto

oncogenes play important roles in controlling molecular processes inside the cell 

including growth stimulation by external ligands, transduction within the cell or 

progression through cell cycle (see Figure 1.2). Therefore, oncogcnes have the potential 

to subvert the cell’s elaborate biochemical circuitry and push the cell towards a malignant 

state. Oncogcnes typically exert their action in an autosomal dominant mechanism 

resulting in the expression o f a normally repressed function (Weinberg, 1994). 

Oncogenes may be activated by mutation in such a way that the gene products can no 

longer carry out normal activity. Alternatively, a mutation in a nearby regulatory 

sequence or a chromosomal rearrangement that brings a DNA sequence from a distant 

site in the genome into close proximity may alter expression o f  the proto-oncogene so 

that an excessive quantity o f gene product or an alteration in its structure is produced.

Figure 1.2 The types o f proteins encoded by proto-oncogcncs (Karp. 2001)
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Although the number o f  oncogenes is large, they can be divided into several groups based 

on their molecular function in cells (Weinberg. 1995). Many oncogenes are involved in 

growth factor expression. Tumor cells may inappropriately produce their own growth 

factor (e.g. platelet-derived growth factor (PDGF), which is encoded by the gene sis) or 

growth factor receptors may be overexpressed (e.g. epidermal growth factor (EGF) 

which is encoded by the gene c-erbB-2). Oncogcnes are involved in the phosphorylation 

o f proteins with serine, threonine and tyrosine residues (Hunter, 1987). The proto- 

oncogene, Raf, for example encodes a serinc-threonine protein kinase that activates the 

mitogen-activatcd protein (MAP) kinase cascade, the primary signalling pathway 

controlling growth in the cell. It phosphorylatcs MAP kinase kinase (MEK) which in turn 

phosphorylates cytosolic MAP kinases on threonine and tyrosine residues. Other 

protooncogenes within this family include v-mos Moloney murine sarcoma viral 

oncogene homo log (MOS), Maturation-promoting factor (MPF) and Protein kinase C 

(PKC). Oncogenes are involved in the transmission o f  signals by GTPascs (Bourne el al.,

1990). The best understood example comes from the ras family which encodes a  GTP- 

binding protein that functions as an on-off switch for a cascade o f kinase-driven 

phosphorylation events that culminate in the activation o f  nuclear transcription factors 

controlling cell proliferation. Point mutations in codons 12.13 or 61 o f oncogenic ras 

mutants typically encode a protein whose GTPase activity cannot be stimulated which 

leaves the molecule in an active GTP-bound form sending continuous proliferation 

signals along the pathway. Finally, oncogenes are involved in the control o f transcription 

from DNA (Wasylyk et al., 1990). These proteins, known as transcription factors, either 

bind to specific DNA sequences exerting an immediate effect (eg els, myp) or form
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complexes which in turn bind to DNA (eg fo s , ju n , myc). The activity o f  these 

transcription factors is regulated by phosphorylation. The myc onogcne is one o f the best 

studied oncogenes whose product acts as a transcription factor. The myc protein is one o f 

the first proteins to appear when a cell has been stimulated by growth factors to leave the 

quiescent stage o f the cell cycle and divide. Excess myc protein promotes progression of 

the cell through the cell cycle.

In contrast to the oncogenes discussed above, tumor suppressor genes act as the cell's 

brakes by encoding proteins that repress biochemical function and cell proliferation. 

They generally function in an autosomal recessive manner. When tumor suppressor genes 

are inactivated by mutations the cell is deprived o f  crucial brakes that prevent 

inappropriate growth. Examples include death factors, differentiation factors, receptors, 

signal transduction proteins, transcription factors and negative cell cycle regulators. 

Among the genes implicated in tumor suppression in humans are p53y retinoblastoma 

gene (RB ) and neurofibromatosis gene (NF-1). The former has been described as the 

guardian o f the genome. It encodes a polypeptide p53 having a molecular mass o f 53000 

daltons. It protects DNA by surveying for DNA damage and then co-ordinately blocking 

the cell cycle machinery, stimulating DNA repair and inducing damaged cells to die by a 

form of cell suicide known as apoptosis (Sturzbecher et al., 1990). A mutation in p53 that 

abrogates its guardian function would allow cells to enter the S phase and attempt to 

replicate damaged DNA rather than repairing it first or undergoing apoptosis. NF-I 

encodes a protein that exerts negative control over Ras proteins by activating GTPase o f 

Ras (Buchberg et al., 1990). The protein encoded by the RB gene, pRB serves as a brake
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on the advancement o f  cells from the Go/Gi stages o f the cell cycle into S stage where 

DNA synthesis occurs (Buchkovich el al., 1989).

Human cancers grow inappropriately not only because signalling pathways are perturbed 

but also because the so called cell cycle clock becomes deranged. The cell cycle in 

mammalian cells is divided into 4 distinct phases: i) gap 1 (G |)  where most o f control o f 

cell proliferation occurs, ii) DNA synthesis phase (S), iii) gap2 (G2) where molecular 

preparations for mitosis occur and iv) mitosis (M) (see Figure 1.3). A network o f control 

mechanisms called “checkpoints” is responsible for ensuring that critical events such as 

DNA replication and chromosome segregation are completed correctly. Cells that have 

stopped dividing, whether temporarily or permanently, are present in a stage preceding 

the initiation o f  DNA synthesis. Cells that are arrested in this state are usually said to be 

in the Go state to distinguish them from the typical G| phase cells that must soon enter S 

phase.

THE CELL CYCLE

C d l r e d i u ( a  
ih  DNA

Figure 1.3 The Cell Cycle (Weinberg, 1996).
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Each phase o f  the cell cycle is controlled by sequential activation o f  various cyclin- 

dependent kinases (Cdks). These kinases are known to phosphorylate various substrates 

whose activity is critical for cell cycle progression. In G| for example, cyclin D and later 

cyclin E combine and activate Cdk 4 or 6. The resulting complex phosporylates a 

powerful growth-inhibitory molecule, known as retinoblastoma pRb. This action releases 

the braking effect o f pRB and enables the cell to progress into late Gi and S phase. 

Factors that control the cell cycle can play a pivotal role in the development o f cancer. 

Oncogenic processes exert their greatest effect by targeting particular regulators o f Gi

progression.

1

Cyclin D or fc

Active

Proteins 
needed tor 
CHI'* advance 
through its 
cycle

fcirMise Inactive pNB

Figure 1.4 Regulation o fG | phase by cyclin D and E (Weinberg, 1996).

A growth advantage is obtained by overcoming the inhibitory effect o f pRB on the cell 

cycle. In 40 % o f human cancers, this is accomplished by the direct mutation o f the pRb 

gene (Weinberg. 1995). pRB is also inactivated by the hyperactivation o f Cdks produced 

by overexprcssion o f cyclins and by mutations/ovcrcxpression o f  the catalytic subunit 

(Delsal et al., 1996). Cdk inhibitors (Ckis) mediate cell cycle arrest in response to various 

antiproliferative signals. The family o f inhibitors includes p i5, p i6, p i8. p i9, p20, p21, 

p27 and p53. It has been suggested that some o f  these Ckis may also be potential

9



oncogenes because their function is often altered in transformed cells. For example, p i5 

and p i6 genes have been found mutated, deleted or inactivated in a large number o f 

human malignancies (Sheaflf and Roberts, 1995).

The growth o f any tissue, whether normal or malignant, is determined by the quantitative 

relationship between the rate o f cell proliferation and the rate o f  cell death. Certain 

promoting agents o f carcinogenesis function not to enhance proliferation but rather to 

decrease the death o f neoplastic-initiated cells (Isaacs, 1993). Cell death or apoptosis can 

involve processes that are equal in complexity and regulation to those involved in cell 

proliferation. Mutations and deletions o f  apoptotic genes play important roles in 

carcinogenesis and tumor growth (Saikumar et a l 1999). Programmed cell death (PCD) 

or apoptosis, constitutes a system for the removal o f  unnecessary, aged or damaged cells 

that is regulated by the interplay o f  proapoptotic and antiapoptotic proteins o f  the Bcl-2 

family.

The proapoptotic proteins Bax. Bad, Bid, Bik and Bim contain an alpha-helical BH3 

death domain that fits the hydrophobic BH3 binding pocket on the antiapoptotic proteins 

Bcl-2 and Bcl-XL, forming heterodimers that block the survival-promoting activity o f 

Bcl-2 and Bcl-XL. Thus, the relative abundance o f  proapoptotic and antiapoptotic 

proteins determines the susceptibility o f  the cell to programmed death. The proapoptotic 

proteins act at the surface o f the mitochondrial membrane to decrease the mitochondrial 

trans-membrane potential and promote leakage o f cytochromc c. In the presence o f  ATP, 

cytochrome c complexes with and activates apoptosis protease activation factor-1 (Apaf-
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1). Upon activation, Apaf-1 binds to downstream caspases, such as procaspase-9 and 

processes them into proteolytically active forms. This begins a caspase cascade resulting 

in apoptosis (see figure 1.5).

Several genes that are part o f the process o f apoptosis have been found to be defective in 

tumor cells. The best characterised examples arc the Bcl-2 and caspase-gene families 

which are overexpresscd in about one third o f all cancers tested. The tumor suppressor 

gene p53, which is found mutated in many cancers, does not directly participate in the 

apoptotic pathway but regulates a host o f genes that lead to cell arrest and apoptosis. For 

example, the p53 protein can activate the expression o f  the bax gene, whose encoded 

product bax initiates apoptosis.

Programmed Cell Death

Anti- 

proteins

A p o p t o s i s

Figure 1.5 Schematic representation o f Apoptosis
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Other significant genetic lesions in cancer include germline mutations, many o f  which are 

associated with lost tumor suppressor function. Examples are familial adenomatous 

polyposis coli (Ape) leading to colorectal cancer and breast cancer gene 1 (BRCA1) and 

breast cancer gene 2 (BRCA2) which increase the risk o f breast and ovarian cancers. 

Other cancer-predisposing genes such as mutL homolog 1 (MSH1) and mutS homolog 2 

(MSII2) (both linked to hereditary nonpolyposis colon cancer) cause defective DNA 

repair. In addition, recent cancer epidemiology and pharmacogcnetic studies have 

attributed importance to genetic polymorphisms o f enzymes affecting the 

biotransformation o f  carcinogens e.g., glutathione S-transferase (GSTM1, GSTM2, 

GSTP1), N-acetyltransfcrase (NATI, NAT2), cytochrome P450 (CYP450IAI) and 

steroid 5 alpha-reductase type II (SRD5A2) (Lai and Shields, 1999).

It is estimated that 5 percent o f  large bowel, breast and prostate cancers arc due to genetic 

predisposition, 15 percent occur spontaneously and 80 percent are attributable to nutrition 

and lifestyle factors (Go el al., 2001).
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1.2 Diet and cancer chemoprevention.

Increasing knowledge about the 20 - 40 year proccss involved in the development o f 

human carcinogenesis is providing many new opportunities for early intervention and 

prevention and specifically, for chemoprevention. Cancer chemoprevention may be 

defined as the use o f specific chemical substances, many o f  which occur naturally in 

foods, to prevent cancer initiation and to inhibit or reverse the development o f invasive 

cancer (Singletary, 2000). The goal o f chcmopreventivc research with food constituents 

is to identify safe and effective agents for clinical use. Because food-derived 

chcmopreventivc substances or nutraceuticals are expected to be safe and because they 

are not perceived as “medicine”, they may find widespread long-term use in the general 

population. A food-based chemopreventive strategy could prove particularly useful for 

individuals at high risk o f certain cancers as determined by inherited susceptibilities. 

Chcmopreventivc agents could potentially prevent further damage that might enhance 

carcinogcncsis or suppress the appearance o f the cancer phenotype (Spom, 1996).

Leads for the identification o f putative chcmopreventivc agents have arisen from dietary 

epidemiological data and from laboratory studies. Several distinctive strategics are 

pursued in developing chemopreventive agents: (a) identifying and validating molecular 

biomarkers and early cell and tissue lesions that can be used instead o f cancer incidence 

as an endpoint for measuring chemopreventive activity; (b) identifying and testing 

candidate agents based on considerations o f mechanisms o f  action; (c) evaluating 

combinations o f  agents with potential for maximising efficacy and minimising toxicity; 

and (d) applying a systematic methodology for identifying and ranking candidate agents
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at each stage o f development to ensure discovery o f the best agents and most effective 

use o f available resources (KellofT et al., 1994).

Efficacy and toxicity are initially assessed using in vitro cell screening systems. 

Promising chemoprcventivc agents are then examined in site-specific in vivo assays. 

Agents that have high efficacy and low toxicity arc prioritised for clinical evaluation 

(KellofTet al., 1994). Phase I clinical trials determine dose-related safety and toxicity in a 

limited number o f human subjects. Phase II trials evaluate the agent in a larger group of 

subjects at high risk for specific cancers. Biochemical, genetic, cellular or tissue 

biomarkers which stimulate neoplastic progression arc identified and it is determined if 

the chemopreventive agent can modulate these biomarkers. Examples o f  biomarkers 

include intraepithelial neoplasia, hyperprolifcration. genomic instability, oncogene 

overcxpression. tumor suppressor loss, growth factor and growth factor receptor 

overexpression, differentiation biomarkers (e.g. G-actin, cytokeratins) and biochemical 

changes (Greenwald et al., 1999). Phase III trials involve thousands o f subjects, may take 

years to complete and determine the long-term efficacy o f the intervention.

To date, more than 40 diet-derived agents with significant chemopreventive potential for 

major cancers including breast, colon, prostate and lung have been identified. Examples 

include micronutrients (e.g. vitamins D and E, molybdenum, selenium, calcium) and 

phytochemicals (e.g. P-carotene and lycopene in fruit and vegetables, green and black tea 

polyphenols, soy isoflavones, sulforaphane. phenethyl isothiocyanate and indole-3- 

carbinol in cruciferous vegetables and curcumin, a carotcnoid pigment in turmeric)
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(KelloiT et al., 2000). Table 1.1 lists examples o f  their mechanisms o f action and possible 

molecular targets. Growth factors, tclomerases, cyclooxygcnases and caspases are among 

the many molecular targets for diet-derived chemopreventive agents. New DNA chip 

technology and functional proteomics will permit complex nutricnt-gcne interactions to 

be investigated. Such research will provide not only a greater understanding of 

mechanisms involved in prevention but will also improve the ability to conduct cancer 

surveillance.
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Table 1. I Mechanisms forchemoprevention by diet-derived agents with possible molecular targets 
Mechanism _________________  Possible molecular targets _________ Representative agents

Antimutagenesis
Inhibit carcinogen uptake
inhibit formation/activation of carcinogen

Deactivate'dctoxify carcinogen 
Prevent carcinogen-DN A binding 
Increase level or fidelity of DNA repair

Antiproliferation/antiprogression
Modulate hormone/growth factor 
activity

Inhibit oncogene activity 
Inhibit polyamine metabolism 
Induce terminal differentiation 
Restore immune response

Increase intercellular communication 

Induce apoptosis

Inhibit angiogenesis

Bile acids (bind)
Cytochromes P450 (inhibit)

PG synthase hydroperoxidase, 5-lipoxygenase 
(inhibit)
Bile acids (inhibit)
GSH/GST (enhance)
Cytochromes P450 (inhibit) 
Poly(ADP-ribosyl)transferase (enhance)

Estrogen receptor (antagonize) 
Steroid 5-reductase (inhibit)
IGF-1 (inhibit)
FarnesyI protein transferase (inhibit) 
ODC induction (inhibit)
TGFB (induce)
Cyclooxygenases (inhibit)
T, NK lymphocytes (enhance) 
Langherans cells (enhance) 
Connexin 43 (enhance)

TGFB (induce)
RAS farnesy lation (inhibit) 
Telomerase (inhibit)
Arachidonic acid (enhance)
Caspase (activate)

Calcium
PEITC, tea. indole-3-carbinol. soy
isoflavones
Curcumin

Ursodiol
NAC, garlic/onion disulfides 
Tea
NAC, protease inhibitors (Bowman- 
Birk)

Soy isoflavones 
Tea
Soy isoflavones
Perillyl alcohol, limonene. DHEA
Retinoids, curcumin, tea
Retinoids, vitamin D, soy isoflavones
Tea. curcumin
Selenium, tea
Vitamin E
Carotenoids (lycopene). retinoids

Retinoids, soy isoflavones, 
vitamin D
Perilly l alcohol, limonene. DHEA 
Retinoic acid 
Curcumin. tea Retinoids

Correct DNA méthylation imbalances 
Inhibit basement membrane degradation 
Inhibit DNA synthesis

FGF receptor (inhibit tyrosine kinase) 
Thrombomodulin (inhibit)
CpG island methylation (enhance)
Type IV collagenase (inhibit)
Glucose 6-phosphate dehydrogenase (inhibit)

Soy isoflavones 
Retinoids 
Folic acid 
Protease inhibitors 
DHEA

Abbreviations: PEITC. phenethyl isoihiocyanatc; PCi. prostaglandin: GSH. glutathione; GST. glutathione 5-transferase; NAC, iV-acetyl-L-cystcinc; IGF. insulin-like growth factor; 
DHEA. dehMjroepiamlrosterone: OIX‘. ornithine decarboxylase; TGFB. transforming growlh factor B; NK. natural killer; RAS. ras oncogene protein product; FGF. fibroblast 
growth factor.
(From Kelloff et al., 2000)



1.3 Role of polyunsaturated fatty acids (PUFA) in cancer development

One o f the perplexing questions to answer in nutritional oncology today is the 

inconsistency between animal studies and epidemiological studies on the association 

between dietary fat and cancer. Metaanalysis o f  animal studies involving data extracted 

from 97 reports o f experiments and over 12000 rodents showed that n-6 PUFAs (such as 

linoleic and arachidonic acid) had a strong tumor enhancing effect whereas n-3 PlIFAs 

(such as eicosapentaenoic and docosahexaenoic acid) had a small protective effect (Fay et 

al., 1997). In contrast, pooled analysis o f  seven prospective cohort studies including 

more than 330,000 women and almost 5000 cases found no evidence o f a positive 

association between total dietary fat and breast cancer risk (Hunter et al., 1996). 

Epidemiological evidence in populations that have undergone lifestyle changes towards a 

more western culture during the past two decades clearly link consumption o f fish oil 

with a protective effect against development o f breast cancer. Fish oil contains mostly n-3 

PUFA whereas vegetable oil (the major fatty acid in western diets) contains n-6 PUFA. A 

steady increase in breast cancer mortality rates in Japanese women accompanied a change 

in dietary fat preference away from fish consumption and towards increased use o f 

linoleic acid-rich vegetable oils (Wynder et al., 1991). Similar type changes in dietary 

habits o f the Alaskan Inuit population may also have contributed to their increase in 

breast cancer rates (per 100,000 individuals) from 0.9 to 86.5 during a 20 year period 

(Lanier et al., 1976). It has been suggested that different fatty acid types (n-6 or n-3) and 

particularly individual fatty acids may have different specific effects on breast cancer 

risk; therefore considering their effects together may result in an overall non significant 

effect.
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1.3.1 Linoleicacid

In animal studies, the role o f linoleic acid (LA) in tumour growth and metastasis has been 

extensively studied. A large amount o f  experimental data has shown that it promotes 

carcinogenesis, tumour growth and/or metastasis at numerous sites including mammary 

gland (Rose, 1997), prostate (Karmali et a l, 1987; Rose and Cohen, 1988; Zhou and 

Blackburn. 1997) and colon (Iigo el al., 1997; Klurfcld and Bull, 1997. Reddy el 

al., 1991). Colon tumor incidence and multiplicity were significantly reduccd in rats fed a 

high fish oil diet while high fat com oil had the opposite effect. (Reddy el al., 1991). It 

has also been shown that LA has stimulatory effects on mammary cancer cell line growth 

in vitro (Rose and Connolly, 1989, 1990). However, LA has shown little correlation with 

cancer mortality in humans (Carroll et al., 1986). Apart from the two populations 

mentioned above where cultures were westernised, few epidemiological studies have 

separated the effects o f n-6 PUFAs and n-3 PUFAs from each other. Because linoleic 

acid contributes a large portion o f  total fatty acids in commonly consumed vegetable oils, 

more studies to clarify its role in human tumor growth and/or metastasis arc needed.

1.3.2 Arachidonic acid

Arachidonic acid (AA) is the most biologically active PUFA in mammals, having a role 

in stress recognition, signal transduction, hormone regulation and gene regulation (Zhou 

and Blackburn, 1999). It is the most important PUFA associated with membrane 

phospholipids. It has been suggested that the pro-tumorigcnic effects o f dietary n-6 

PUFA's are mediated via arachidonic acid metabolism. There are, however, limited 

studies investigating the association between dietary AA and tumorigenesis. In vitro
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studies showed that AA was an effective stimulator o f human prostate cancer cell growth 

and its growth stimulatory effect was mediated through its metabolism to 5- 

hydroxyeicosatetraenoic acid (5-HETE) series o f  cicosatetraenoids (Ghosh and Myers, 

1997).

1.3.3 a-Linolenic acid

a-Linolcnic acid (ALA) is a major n-3 PUFA found in vegetable oils. Animal studies 

have shown that ALA enriched diets inhibited growth and/or metastasis o f mammary 

tumors (Fritsche and Johnson, 1990; Ilirose el al., 1990; Kamano el al., 1989; Tinsley el 

al., 1981). Klein el al. (2000) reported that low ALA levels in mammary adipose tissue 

were inversely correlated with increased mammary cancer risk in women. Previous work 

indicated that decreased ALA levels in patients with poor prognosis was likely to be a 

reflection o f  decreased dietary intake (Bougnoux el al.. 1994; Lhuillery el al., 1995). 

These studies provide further support for the suggestion that the ratio o f  n-3:n-6 PUFA in 

vivo may play a protective role against development o f  mammary tumours.

1.3.4 Eicosapentaenoic and docosahexaenoic acid.

Fish oil supplementation has invaryingly been found to reduce tumour growth in virtually 

every animal model examined and at numerous sites including mammary (Kinoshita el 

al., 1996; Kort el al., 1987; Rose and Connolly, 1993; Rose el al.. 1995a), prostate 

(Karmali el al., 1987; Rose and Cohen, 1988) and colon (Iigo el al., 1997; Singh el al., 

1997a. 1998) although ihis cffcct in some studies did not reach significance (Fay el al.,
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1997; Noguchi el a i, 1997). Fish oils have also been shown to be anti metastatic in a 

number o f animal studies. Eicosapentaenoic acid (F.PA) and/or docosahexaenoic acid 

(DHA) treatment significantly decreased lung métastases from primary tumors o f  colon 

(Iigo el al., 1997; Singh et al., 1998) or mammary gland (Kinoshita et al., 1996; Rose and 

Connolly, 1993; Rose et al., 1995a). Fatty acid analysis o f  tumor lipids revealed 

increased levels o f  EPA and DHA and decreased levels o f  arachidonic acid and 

eicosanoid metabolites, prostaglandin E2 (PGE2) and 12- and 15-HETE (Rose et a i, 

1995a). Post-menopausal women with breast cancer had significantly lower dietary 

intake o f  EPA and DHA compared with those having benign breast disease (Zhu el a l, 

1995).

1.4 Mechanisms underlying the effect of PUFAs on tumorigenesis.

1.4.1 Modulation of cell signalling pathways

Recent studies have attributed a mechanism to PUFAs that involves regulation o f  the 

activity o f the EGFR/MAP kinase pathway, which is involved in regulating several 

oncogenes (c-myc, c-fos, neu/c-erb-h2) involved in the progression o f cancer (Cowling 

and Shaker. 2001). The current view o f  the EGFR pathway is depicted in Figure 1.6. 

EGF binds to irans-membrane EGFR-tyrosine kinase, a membrane bound protein 

involved in signal transduction and growth stimulation o f cells. Ligand-bound EGFR 

dimerise and activate a signal transduction cascade, thus inducing the activity o f  a variety 

o f kinases, including a GTP-bound Ras. Raf-1, MEK and MAPK. The latter constitutes a 

family o f  serine/threonine kinases and may be the link that connects signal transduction
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o f EGFR to transcriptional activation in the nucleus. Dietary changes in PUFA 

composition has been shown to alter the EGFR/MAPK signalling cascade (Wang et al., 

1992). Rats fed a high n-6 diet as com oil showed increased MAPK activation and 

mammary tumor incidence compared with rats fed a low n-6 diet.

Figure 1.6 KGFR/MAPK signalling cascade (Cowing and Shaker, 2001).

Lipid modification o f  Ras is necessary for its localisation in membrane and for its 

interaction with the necessary molecules to initiate the MAPK signalling cascade. 

Researchers have demonstrated that feeding rodents n-6 PUFAs increased Ras 

famesylation and expression in membranes during the promotion and progression stages 

o f colon cancer development in rodents (Singh et al.. 1997a, 1998). In addition, 

arachidonic acid has been shown to inhibit GTPase-activating proteins (Tsai et al.. 1989), 

which are involved in the hydrolysis o f  GTP-bound (active) ras protein in the

Cell M e m b r a n e

*
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EGFR/MAPK cascade. By inhibiting the GTPase activating protein, AA can prolong the 

signal transduction o f  EGFR to the nucleus, leading to increased growth stimulus. N-6 

PUFAs and lipoxygenase metabolites have been implicated in the activation o f  several 

isoforms o f protein kinase C (Ixstcr, 1990. Fan et al., 1990), which are effectors o f 

MAPK signaling. N-6 PUFAs and lipoxygenase metabolites have been implicated in the 

activation o f several isoforms o f  protein kinase C (Lester, 1990, Fan et al., 1990), which 

are effectors o f MAPK signaling. In vivo, PKC a  and 6 have been shown to activate Raf- 

1 and PKC (i has been shown to activate MEK and subsequently MAPK (Toker. 1998). 

This provides evidence that n-6 PUFAs may influence MAPK mitogenesis o f  cells 

through a variety o f  mechanisms.

1.4.2 Modulation of eicosanoid production.

It is known that PUFAs exert their biological effects mainly via their regulation of 

eicosanoid metabolite production (Zhou and Blackburn, 1999). Dietary fatty acids 

undergo desaturation and elongation to yield a 20-carbon PUFA which is then 

oxygenated enzymatically by cyclooxygenase (COX) or Lipoxygenase (LOX) enzymes 

to form eicosanoids. Eicosanoids are potent bioregulatory compounds involved in a wide 

variety o f cell signalling processes. These highly active substances are local modulators 

o f a variety o f intercellular and intracellular signals. They regulate many cell functions 

and play crucial roles in a variety o f physiological and pathophysiological processes, one 

o f which is the modulation o f host immune frictions.

Because AA is the most common fatty acid present in tissue lipids, the eicosanoids 

derived from it predominate in human tissue. Before AA is converted to eicosanoids, it
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must be hydrolysed from phospholipids by a family o f  enzymes collectively known as 

phospholipase A2 (Fonteh el a i, 1998). Prostaglandin (PG) synthase then catalyses two 

sequential reactions: first, the COX activity o f the enzyme converts AA to PGG2 and then 

the peroxidase activity reduces PGG2 to PGH2 (Kiefer el a i, 2001). However, in spite o f 

these two distinct reactions, it has become commonplace for the complete entity to be 

referred to as COX. The PGII2 from AA is then converted into the various 2-series 

prostanoids (PGs, thromboxanes and prostacyclins). AA is also a substrate for LOX 

which catalyse the biosynthesis o f the hydroxyeicosatetraenoic acids (HETEs) and 

leukotrienes (LTs). Arachidonic acid can also undergo free radical peroxidation to form 

prostaglandin-like compounds known as isoprostanes. EPA is the precursor o f the 3- 

series PGs and 5-series LTs. It can be metabolised by way o f  the COX and LOX 

pathways, which parallels the metabolism o f  AA. 1-scries PGs and TXs are 

biosynthesised from dihomo-y-linolenic acid (DGLA) (see figure 1.7).
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Figure 1.7 Metabolic pathways for biosynthesis o f  eicosanoids and their regulation by 

dietary fatty acids (Zhou and Blackburn. 1999).



Growing evidence indicates a causal relationship between cancer development and 

unscheduled eicosanoid signalling in many human and animal tumors and, therefore, 

these fatty-acid derived lipid mediators rank among the most attractive targets for cancer 

chemopre vent ion (Marks et a l, 2000). Tumors form more PGs and less A A than the 

normal tissue from which they arise (Lupulescu, 1996). Studies have shown that 

eicosanoids derived from AA increase cell proliferation, depress immune response and 

promote tumor cell invasion and metastascs (Karmali et a l ,  1987, Karmali, 1989). 

Intervention with pharmacological agents that inhibit eicosanoid synthesis, such as non- 

stcrodial anti-inflammatory agents (NSAIDs), results in inhibition o f  tumorigencsis. 

Long-term ingestion o f NSAIDs is associated with a reduced risk o f  colon cancer, a 

reduction in the number and size o f colonic polyps and adenomas in patients with familial 

adenomatous polyposis and protection against chemically induced colon cancer in animal 

models (Reddy and Rao, 2002). There are two forms o f  COX, o f  which COX-1 is 

constitutively expressed in most tissues and is considered to generate PG for normal 

physiological function while COX-2 undergoes rapid induction in response to a variety o f 

stimuli, including mitogens, cytokines and hormones (Herschman, 1994). COX-2 

expression has been shown to be elevated in a number o f cancers including pancreatic 

(Tucker et a l 1999), colorectal (Kutchera et al., 1996), gastric (Ristimaki et al., 1997), 

lung (Hida et al.. 1998) and breast (Soslow et al., 2000). Both COX-1 and COX-2 are 

targets o f NSAIDs and the treatment with NSAIDs is associated with a decrease in COX- 

2 in colon tumors (Kargman et al., 1995).
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PUFAs o f the n-6 class increase levels o f PGs derived from AA (Karmali et al.. 1989) 

while n-3 PUFAs inhibit AA metabolism by competing with AA for cyclooxygcnases 

and thereby inhibit tumor growth (Karmali et al.. 1997, 1998 and Reddy et al., 1991). 

The n-3 PUFAs, EPA and DMA inhibit COX activity and A A metabolism (Lee et al., 

1985, Needleman et al., 1979). Rats fed n-3 PUFAs showed selective incorporation o f n- 

3 PUFAs with a concomitant reduction in n-6 PUFAs into membrane phospholipid pools 

o f cells from various tissues (Hiller et al., 1991). Studies suggest that n-6 PUFAs 

promote colon and mammary tumorigenesis by up-regulating the expression o f  COX-2 

and p21 ray, whereas n-3 PUFAs may exert their antitumor effect by inhibiting COX-2 

expression (Singh et al.. 1997a, Singh et al., 1997b, and Badawi et al., 1998). DHA was 

also shown to suppress polyp development in Ape knockout mice (a model for human 

familial adenomatous polyposis), possibly by inhibiting COX-2 (Oshima et al., 1996).

A number o f studies have demonstrated that AA derived eicosanoids play an important 

role in metastasis o f  tumors. In a rat metastasis model developed by injecting tumor cells 

into the portal vein, the administration o f PGE2 increased the number and size o f 

metastatic tumor nodules in the liver and suppressed liver-associated immunity (Okuno et 

al., 1995). The addition o f  the COX inhibitor indomethacin to the drinking water 

significantly reduced growth o f metastasis o f  a human breast cancer cell line in nude 

mice (Connolly et al., 1996). The relative reduction in metastases to the lungs in mice fed 

a high-fat low-LA diet compared with a high-fat high-LA diet was associated with 

reduced levels o f  tumor COX and LOX products (Connolly et al., 1996).
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1.4.3 Modulation of cell adhesion and proteolytic enzyme activities

Adhesion o f  tumors to endothelial cells is necessary for movement o f tumor cells out o f 

the interstitium to form metastatic deposits (Crissman et al., 1988). Evidence suggests 

that PUFAs may affect tumor metastasis by regulating tumor-endothelial cell adhesion. 

Lipoxygenase products o f AA metabolism may influence interactions between tumor and 

endothelial cells. 12(s)-HETE has been shown to stimulate tumor cell adhesion to 

endothelium and thus may stimulate tumor metastasis (Honn et al., 1992). E-Cadherin is 

a calcium-dependent transmembrane cell to ccll adhesion molecule which requires 

catenins (a , P and y) to function normally. A reduction or complete loss o f  a-catenin has 

been observed in tumor tissues as well as in some tumor cell lines (Bongiomo et al., 

1995, Morton et al., 1993, Shiozaki et al., 1994). A specific n-6 PUFA, gamma linoleic 

acid (GLA) has been shown to increase a-catenin in most cell lines, while LA and AA 

had no effect (Jiang et al., 1995a). GLA also induced E-cadherin expression in a range o f 

human cancer cells (Jiang et al.. 1995b, c).

Another possible mechanism by which PUFAs modulate tumor metastasis is by 

regulating the expression and/or activity o f  matrix metalloprotcolytic (MMP) enzymes 

via eicosanoids. Penetration o f malignant tumor cells through basement membranes is 

facilitated by the action o f  these degrading MMP enzymes. In vitro studies indicate that 

LA increased tumor cell invasion and metastasis, increased production o f eicosanoids and 

induced expression and activities o f MMP-9 (Liu et al., 1996, Liu and Rose, 1994). 

Dietary supplementation o f GLA, which resulted in a higher incidcnce o f  macroscopic 

lung metastases and a larger total metastatic volume from a mammary tumor, was
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associated with higher levels o f AA and AA-derivcd eicosanoids and a higher activity o f 

MMP-9 (Rose el al. 1995b).

1.5 Dairy products and cancer

Results from epidemiological studies on the consumption o f dairy products and the risk 

o f cancer have been controversial. Some o f the studies found a significant inverse 

association, some a significant positive association and some no association (reviewed in 

Jain, 1998, Ursin el al., 1990). The relationship between intake o f dairy products and the 

risk o f breast cancer was studied in 4679 initially cancer-free women in Finland. During a 

25-year follow-up period food consumption data was collected. Results from this study 

found that women who went on to develop breast cancer had consumed less milk than 

cancer-free women (Knekt el al., 1996). The relationship between the consumption of 

milk products and the occurrence o f  colorectal cancers was studied in 9959 men and 

women with no history o f  cancer. During a 24-year follow-up period 72 new cancers o f 

the large bowel were detected and results indicated that individuals showing high 

consumption o f milk had a potentially reduced risk o f  colon cancer (Jarvinen el al., 

2001). Research has shown that milk contains a number o f potential ant ¡carcinogenic 

lipid components including butyric acid, ether lipids, sphingomyelin and CLA (Parodi,

1999, Gill and Cross, 2000). Cl-A has been demonstrated to be a very efficient 

suppressor o f chemically induced carcinogenesis in animal models (reviewed in Scimeca,

1999) and its presence in human serum has been associated with a decreased risk o f 

breast cancer in postmenopausal women (Aro el al., 2000).

28



1.6 Chemical structure of CLA

The acronym CLA refers to a mixture o f positional and geometric isomers o f  the n-6 

essential fatty acid linoleic acid (c9, c 12 , octadecadienoic acid) which contain a 

conjugated double bond system and occur naturally in edible fats derived from ruminant 

animals (Lin el al., 1995). Unlike LA, which is a single unique molecule, several dozen 

different Cl.A isomers are possible depending on which double bonds are relocated and 

the resultant isomeric reconfigurations. The majority o f  research to date has been 

conducted using synthetic mixtures o f  CLA isomers. The c9, /11-CLA and the MO, cl 2- 

CLA isomers predominate in these mixtures (approximately 85-90%). In the last few 

years, research with individual CLA isomers has focused exclusively on these two 

isomers. The reason for this is that highly purified preparations o f these two CLA isomers 

have been successfully produced, while the other isomers have yet to be acquired in 

sufficient quantities. Little has been done to determine the activity and mechanisms o f 

isomers other than these two.

Figure 1.8 Chemical Structure o f  common CLA isomers and linoleic acid
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1.7 The Analysis of CLA isomers.

The recognition o f CLA as a natural fat component with a number o f health-promoting 

properties has prompted increased interest in methods for their analysis. There are 56 

possible positional and geometric isomers o f Cl.A. It is known that many positional and 

geometric isomers o f CLA are present in natural samples and in commercially 

manufactured material and it is emerging that these isomers may have different effects in 

biological systems. Desaturation and chain-elongation products o f these isomers are also 

formed in tissues. In analysing CLA. it is therefore imperative to be able to separate and 

accurately quantify these positional and geometric isomers and identify CLA metabolites. 

Figure l .9 shows different methods for CLA analysis.

Methods for CLA Analysis

✓
NMR

i
GC of FAMEs

I N
Ag* Chromatography

i
TLC

I
G C  or 
G C -M S

1
HPLC

1
GC or 
G C-M S

UV detection 
with
Reverse-phase
HPLC

Figure 1.9 Different methods for CLA analysis.
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The most common means o f analysis has been gas chromatography (GC). Before fatty 

acids arc analysed by GC, they must first be converted to fatty acid methyl esters 

(FAME). It has emerged that the selection o f an appropriate mcthylation method is 

crucial to successfully quantifying acids such as CLA. Acid catalysed methylation is now 

seen as an unsuitable method for the preparation o f methyl esters in biological samples as 

it causes stereomutation o f the cis/trans diene system resulting in an increase in the 

relative proportions o f trans/trans isomers (Kramer el ul., 1997). There is also the 

possibility o f addition o f methanol to a double bond leading to the formation o f methoxy 

derivatives. By contrast, there appears to be no significant drawbacks associated with 

base-catalysed methylation o f lipids. The use o f tctramethylguanidine (TMG) as a base 

catalyst in the methylation appears to be the choice for biological samples (Yurawecz el 

a i, 1999).

GC is used for the separation o f  different FAMEs, which are detected by flame 

ionisation detection (FID). GC with highly polar stationary phases and longer than 

normal columns (100-120 m) are required for the resolution o f CLA isomers with good 

separations reported for CP-Sil 88 and BPX-70 columns in 40-53 minutes. Using these 

columns the four major cis/trans isomers are separated and eluted first (in the order t-9, 

i\ 1-, /8, c-10-, cl 1, /13- and /10. c 12-CLA) followed by the cis/cis isomers and the 8, 10 

through 10. 12 trans/trans isomers which remain unresolved. GC can also be coupled 

with fourier transformed infrared spectroscopic determination (FTIR) for analysis o f 

CLA. GC-FTIR allows analysis o f  double bond configuration, is highly sensitive and 

therefore only a few ng o f  sample is required for quantitative analysis (Fritsche el al.,
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1997). The use o f a mass spectrometer in connection with GC has proved useful for CLA 

analysis in food and biological samples where minor isomers, CLA metabolites and other 

fatty acids may be present. GC-MS can be used to locate double bonds and also to 

identify minor isomers along with any nonconjugated fatty acids that co-chromatograph 

with those o f interest. Different nitrogen containing derivatives have been used but o f 

these, dimethyoxa7x>line (DMOX) derivatives have proved the most useful for conjugated 

dienes. A new derivative has been developed that is also highly specific for conjugated 

double bonds. A Diels-Alder reaction is used to form 2-methyl-1.2 ,4-triazoline-3,5-dione 

(MTAD) adducts which have excellent mass spcctrometric properties and thus enable the 

location o f  conjugated double bonds. Prior to GC or GC-MS analysis, natural CLA 

samples like tissues, which contain CLA at very low levels, may require a 

preconccntration step. This can be achieved using silver ion chromatography or reverse 

phase high performance liquid chromatography (HPLC) (Christie et a i,  2001).

HPLC procedures using a single C is or silica column is inadequate for separation o f  CLA 

isomeric mixtures (Chin et a i, 1992, Banni et a i ,  1996, Sebedio el a i. 1997). In recent 

years a method has been developed which involves the use o f AgT-HPLC. A mobile 

phase o f hexane containing 0.1 %  acetonitrile is used to separate methyl ester derivatives, 

using UV detection at 233 nm for detection and quantification o f  conjugated double 

bonds. This system allows for well-resolved separation o f three groups o f geometric 

isomers o f  CLA. Transhrans-isomers elute first, followed by cis/trans and then cis/cis 

and within each group many positional isomers are clearly resolved. Separation o f the 

positional isomers is facilitated by connecting Ag+-HPLC columns in series (Sehet et a i, 

1999, Ricket et a i, 1999). Figure 1.10 shows a separation using two Ag’-HPLC columns.
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The identity o f CL A isomers can be determined using GC or GC-MS. The isolation o f 

minor isomers in food has been achieved using silver ion HPLC with two to six columns 

in series. Ag'-HPLC may also be adapted to analyse CLA as free fatty acids thus 

avoiding the need to methylatc (Cross et a i,  2000).

18:2+20:2 \0i.\2c-l8.2

Figure 1.10 Ag*-HPLC separation using two columns. (Sehat et a i, 1999).

Conjugated fatty acids have a distinct UV spectra absorbing at around 230-235 nm while 

methylene interrupted double bonds absorb at 200-210 nm. When conjugated bonds are 

the major component o f the lipid sample their absorbance can easily be measured. 

However CLA is present at very low levels in tissue lipids and therefore absorbance of 

CLA may only be displayed as a shoulder on a broad peak at 200 nm due to residual 

absorption from the fatty acids in the 200-210 nm region. Corongiu and Banni (1994) 

developed a mathematical technique to overcome this difficulty. By taking the 

differential o f  the first derivative spectrum, a second derivative was obtained which
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extracted a distinct peak from the shoulder. This second derivative spectroscopy afforded 

a more sensitive and accurate means to quantify conjugated dienes since the Beer- 

Lambert law is unaffected by differentiation. This technique can be used in tandem with 

reverse-phase HPLC to separate and quantify metabolites o f  CLA as well as CLA (Banni 

e ta L  1999).

Recent developments have indicated that useful analytical data can be obtained through 

nuclear magnetic resonance based on signals for the olefinic carbon atoms (Davis et al.. 

1999). Each CLA isomer has signals for its four olefinic carbon atoms and chemical 

shifts have been identified for 20 different CLA isomers. This procedure avoids 

derivatisation and permits the identification and quantification o f all the positional and 

geometric isomers present in commercial CLA preparations. Unfortunately, the 

methodology requires substantial amounts o f  sample and therefore, is not likely to be 

applicable to biological samples containing only low levels o f CLA.
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1.8 Origins of CLA in milk and meat

CL A is formed as an intermediate in biohydrogenation o f  LA by rumen bacteria and until 

recently it was generally accepted that CLA in ruminants originated from the incomplete 

biohydrogenation o f  LA (Fritsche and Steinhart, 1998). Complete biohydrogenation o f 

LA in the rumen is a three step process, leading to the production o f  Ci«;o (Kepler et a i,

1966). CLA is formed as the first intermediate o f  this pathway by the action o f LA 

isomcrase, an enzyme o f the anaerobic rumen bacteria Butyrivibrio fibrisolvens (Kepler 

el a i, 1970). The enzyme has been shown to exhibit maximum activity with the 

substrates LA and linolenic acid (Kepler and Tove, 1967). A portion o f CLA formed 

escapes completes biohydrogenation and is incorporated into milk fat and body fat.

However this simplistic explanation for the presence o f CLA in ruminant lipids does not 

adequately account for CLA levels in milk and body fat. It is proposed that trans- 

vaccenic acid (TVA) accumulates in the rumen and that a portion escapes further 

bio hydrogenation (Griinari and Baumann. 1999). Following absorption from the 

digestive tract, TVA is utilised by different tissues where a portion is desaturated to CLA 

and incorporated into tissue and milk lipids. This ‘desaturasc hypothesis’ has been 

proposed to explain the relatively constant ratio o f TVA and CLA in bovine milk fat 

across a range o f  diets. The presence o f /7, c9 CLA and c9, /13 C |g2 supported the role of 

an active A9 desaturase, an enzyme that introduces a cis double bond between carbons 9 

and 10 (Ulberth and Henninger. 1994. Yurawccz et a i, 1998). Figure 1.11 illustrates the 

two pathways o f  CLA biosynthesis which together may account for the high CLA 

concentrations observed in milk fat even when cows are fed diets that are low in LA e.g.
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pasture feeding or fish oil supplements. Griinari el al. (2000) demonstrated in a series o f 

experiments that TV A is desaturatcd to CLA in lactating cows and estimated 64 % o f c9, 

l\ 1-CLA in milk fat was o f  endogenous origin. Abomasal infusion o f TV A resulted in a 

31 % increase in concentration o f c9, /11-CLA in milk fat. Infusion o f sterculic oil 

(source o f cycolpropene fatty acids which specifically inhibit A9 dcsaturase) decreased 

the concentration o f  CLA by 45 %.

Rumen

Dietary- fat e.g. linolcic Acid 
cis-9%cis-\2  0* 18:2

i
Ci’s-9, truns-\ 1 C|g;2(CLA)

I
Irons- 11 C |8;| (Vaccenic acid) 

1
Cix:o(Stearic acid)

Tissues

CÍS-9 , C tt-12 Ci8:2

cis-9 , trans- \ 1 Ci« 2(CLA)
^  A9-d e s tu ra s e

tran s- l l  C|g:i

C|8;0 ------------► CÍS- 9 ,C |g :|
d e s t u r a s e

Figure 1.11 Role o f rumen biohydrgenation and tissue Av-desaturase in the production o f 

c 9 ,111-CLA in ruminant fat. (Adapted from Bauman el al., 1999)

The second most prevalent CLA isomer found in milk fat is the /7, c9-CLA isomer and is 

produced exclusively from endogenous synthesis by A9 desaturation o f trans 

Other isomers, which are present at very low quantities in rumen fats, originate from 

ruman biohydrgenation (Unpublished data Bauman, 2002). When animals are fed a low- 

fibre diet the pH o f the rumen environment drops and this shift in pH favours the
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formation o f /10-octadecenoic acid and increases the proportion o f /1 0, c 12-CI.A in milk 

fat (Griinari et al.. 1998). Therefore it has been proposed that /10, cl2-CLA is formed as 

a conjugated intermediate in the biohydrogenation o f  linoleic acid to / 10-octadecenoic 

acid. Production o f /10-octadecenoic acid would presumably involve a specific c9. /10 

isomerase in rumen bacteria with the formation o f / 10 , c l2 conjugated bond structure as 

the first reaction (Grinari and Bauman. 1999). Changes in ruminal bio hydrogenation, 

characterised by increased c9, /10 isomerization, were associated with a dramatic 

reduction in the rate o f milk fat synthesis and a role for 1 1 0-octadccenoic acid and/or / 10 . 

cl2-CLA as specific inhibitors o f milk fat synthesis was proposed. Baumgard et al. 

(2001) have demonstrated that /10, cl2-CLA isomer caused milkfat depression whereas 

the c9, / 11-CLA isomer did not.
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1.9 Dietary sources and intakes of CLA

Parodi (1977) first reported the presence o f  CLA in milk fat. Since then, numerous 

investigators have studied and documented the total CLA and c9, /II-CLA  isomer 

concentrations o f many foods ( fable 1.2). CLA is mainly found in milk and meat from 

ruminant animals but is also found in plant oils and partially hydrogenated oils at low 

concentrations. The c9, /11-CLA isomer accounts for 80-95 % o f total CLA isomers in 

dairy products in contrast to less than 50 % in vegetable oils (Chin el al., 1992). The t l y 

c9-CLA isomer is generally prominent among the other minor CLA isomers found in 

dairy products (Yurawccz el al., 1998). CLA is also detectable in non-ruminants but at 

very low levels. Cl.A levels between 3 and 10 mg CLA/g o f fat were measured in meat 

from ruminants, while pork and poultry were shown to have a CLA content less than 

1 mg/g o f  fat (Chin el al.. 1992). The CLA content o f cheeses varies considerably, ranging 

from 3 to 9 mg/g fat (Chin el al., 1992). Seafood also contains low amounts o f CLA with 

the highest value found in shrimp (0.6mg/g fat) (Chin el al., 1992).

The major source o f CLA in human tissues is the diet (McGuire el al., 1999). Various 

methodologies have been used to estimate typical CLA intakes for humans. These 

include the use o f  food disappearance data, dietary recalls, food frequency questionnaires, 

weighed food records and biochemical analysis o f  food duplicates. All these methods 

have their own limitations but the biochemical analysis o f  food duplicates is considered 

the most accuratc. The accuracy o f  the other indirect methods relies on the availability o f 

a database containing the CLA contents o f  commonly consumed foods, which remains 

quite limited.
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Table 1.2 Total Cl.A content and % c9, / l  1 CLA in food products

Food Total CLA  

(m g /g fa t)

c9^11-CLA  

(% o f  total 

CLA)

Reference

Milk fat 2-30 90 Parodi, 1994

Butter 9.4-11.9 91 Shantha e tu i ,  1995

T-bone (cooked) 4.7-9.9 65 Shantha e tu i .  1994a

Yogurt 5.1-9.0 82 Fritschc and Steinhart. 

1998

Processed cheeses 3.2-8.9 17-90 Ha etui., 1989, Chin 

et al.. 1992, Garcia- 

Lopez e tu i ,  1994

Sour cream 7.5 78 Fritschc et ul., 1998

Condensed milk 7 90 Chin e tu i ,  1992

T-bone (raw) 4.4-6.6 59 Shantha et ul., 1994a

Cheddar cheese 5.1-5.4 82-88 Werner et ul., 1992

Ice cream 3.8-4.9 73-76 Fritschc and Steinhart, 

1998

Round beef 2.9 79 Ip et ul., 1991

Chicken 0.9 84 Chin et al., 1992

Pork 0.6 82 Chin et al., 1992

Non fat frozen dairy dessert 0.6 90 Chine/ ul., 1992

Seafood 0.5 ND Chin et al., 1992

Vegetable oils 0.2 45 Chin et al., 1992

ND= not detected
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A summary o f  published data on CLA intake in humans is presented in Table 1.3. Using 

dietary records and a published database. Herbel et a i,  (1998) reported that young men 

and women living in the United States consumed approximately 127 mg CL A/day. 

Somewhat similar values were obtained in another US study using similar methodology. 

This study estimated that the dietary intake o f  CLA in young men and woman was 137 

and 52 mg/day, respectively (Ritzenthaler el a i .  1998). It is interesting to note that 

college-aged women have extremely low CLA intakes. The CLA intake in young 

Canadians (Ens el al., 2001) has been estimated to be 94 mg/day. Eighteen out o f the 

twenty-six subjects used in this study were female and this may account for the relatively 

low intake. Dietary intake o f CLA in Germany was also estimated to be lower in women 

(350 mg CLA/day) than in men (430 mg CLA/day) (Frit sc he and Stcinhart, 1998) on the 

basis o f the West German National Consumption Survey. In a more recent German study, 

daily intake was reported to be 246 and 323 mg CLA/day as measured by a newly 

developed food-frequency questionnaire and a 7-day estimated record, respectively. The 

differences in intake observed in the US and German studies can be accounted for by the 

fact that fat intake is higher in Germany than in the US (Aldolf, 1994) and by differences 

in the underlying CLA databases.

The methods used in the above studies may be somewhat inaccurate because o f  issues 

like under reporting and the use o f inadequate CLA databases. Ritzenthaler et al., (2001) 

compared indirect methods o f CLA intake estimations (3-day recorded records and 

semiquantative food frequency questionnaire) with a more direct method involving the 

biochemical analysis o f  food duplicates. Total CLA intake using food duplicates was
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estimated to he 212 and 151 mg/day for men and women respectively. Most o f  the CLA 

consumed was c9, 111-CLA (91 - 93 %) with the /10, c 12-CLA isomer being the only 

other CLA isomer detectable in the analyses. Results indicated that 3-day dietary records 

and semiquantative food frequency questionnaire were not reliable estimators o f CLA 

intake and may actually underestimate CLA intake. The authors also calculated on a dry 

weight basis that men and women in this study consumed diets containing approximately 

0.03 g c9 , /l  1-CLA /100g. To achieve an intake o f 0.1 g/lOOg diet, the level o f CLA that 

has been shown to significantly rcducc tumors in animals (Ip et a l, 1994), the c9, t 11- 

CLA intake would need to be 620 and 441 mg/day for men and women, respectively.

Dietary modifications can increase CLA concentration in human tissues. Specific 

intervention studies have shown that increasing the CLA content o f the diet increased the 

CLA contcnt in human milk (Park el a l, 1999a), plasma (Huang el al., 1994) and adipose 

tissue (Jiang et a l, 1999). Feeding a high dairy fat diet containing 291 ± 75 mg CLA 

/day led to a 1.6 fold increase (13.5 ± 0.1 ^imol/g fat) in CLA content o f human milk 

(Park et al.. 1999). Plasma CLA increased 19-27 %  to 9.6 ± 1.1 |imol/L when men were 

fed cheddar cheese containing 178.5 mg CLA cach day for 4 weeks (Huang et a l, 1994). 

The amount o f c*9, /11-CLA in human adipose tissue was significantly related to milk fat 

intake (Jiang el a l, 1999).
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Table 1.3 Published estimates ofC LA  Intake in Humans.

Country Subjects CLA intake  
(mg/d)

M ethod used Reference

U.S. Men and women 
n=12

127* 3-day dietary records 
+ published values 
for CLA content in
foods.

Herbei et ai, 
1998

Germany Males

Females

430

350

National food intake 
survey + values for 
CLA in German
foods.

Fritsche and 
Steinhart 1998

U.S. College aged 
subjects:
Males (n=19)

Females (n=18)

137

52

3-day dietary records 
+ published values 
for CLA content in 
foods.

Ritzenthaler et 
al., 1998

U.S. Men (n=46) 

Women (n=47)

2 12 ’
193

151*
140

3-day dietary records 
+ Biochemical 
analysis o f food 
duplicates + 
Semiquantitativc 
Food frequency 
questionnaire

Ritzenthaler et 
ai, 2001

Canada Men and women 
(n=22 )

94 7-day dietary records 
+ published values 
for CLA content in
foods.

Hns et ai, 
2001

Germany Women (n=52) 246

323

Food frequency
questionnaire
7-day dietary records

Fremann et 
a i.  2002

* Values represent intakes o f all CLA isomers while others represent c9. t\ 1- CLA
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1.10 CLA intake in infants and children.

Studies have shown that human milk contains a variety o f  CLA isomers, with the c9, t \ l- 

CLA isomer being the predominant isomer (Fogerty et a l ,  1988, McGuire et a l ,  1997, 

Jensen et a l, 1998 and Park et al., 1999). The amount o f  c9 ,1 11-CLA present in human 

milk is surprisingly similar to that found in bovine milk. Maternal diet can influence the 

amount o f CLA in human milk. A study has demonstrated that women consuming diets 

high in dairy fat produced milk with higher levels o f c9, t\ 1-CLA when compared to 

women with low dairy intakes (Park et al., 1999). Infant formulas, on the other hand, 

contain negligible amounts o f  CLA (McGuire et al., 1997). Therefore breast-fed babies 

potentially intake quite high levels o f  CLA throughout infancy while formula-fed infants 

consume no CLA before introduction o f CLA-containing food into their diet. So what are 

the consequences for mother and child?

There is evidence to suggest that breast-feeding can afford protection to some women 

against breast cancer (Hngcr et al., 1997). It may be a possibility that increased exposure 

to CLA during lactation may explain in part the protective effect o f breast-feeding on 

breast cancer. Feeding CLA enriched buttcrfat to rats has been shown to diminish 

epithelial branching and decrease the population o f terminal end buds, the primary sites 

for chemical induction o f mammary carcinomas (Ip et a l, 1999a). The question remains 

whether CLA exposure could cause alterations in human breast morphology making them 

less susceptible to cancer. There is also an association between exposure to human milk 

in infancy and the risk o f  breast cancer in later life, results suggesting that breast fed 

infants arc offered some protection against breast cancer risk (Titus-Emstoff et a l, 1998).
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Ip el a l  (1995) have shown that feeding CL A to rats from weaning until carcinogen was 

administered offered protection against mammary canccr for life. In contrast, feeding 

CLA after carcinogen administration required continuous CLA feeding to achieve the 

same level o f  protection. McGuirc el al. (1999) has suggested that it may be useful to 

feed rats varying levels o f  CLA during pregnancy and lactation. The different treatments 

could then be evaluated for protection against chemically induccd mammary tumor 

incidence in the offspring.

Lusas (1991) proposed the concept o f ‘biological programming' which can be described 

as a process by which a stimulus (like nutrition) during fetal growth, infancy and 

childhood can potentially have important long term effects on physiological functions 

and might decrease risk for chronic diseases in later life. McGuire el al. (1999) has 

proposed that CLA intake in infants and children might impart beneficial effects on the 

immune system, nutrient partitioning, glyccmic control and growth modulation in later 

life. There is, therefore, a need to document CLA intake in infants, children and 

adolescents. McGuire and co-worker have recently documented CLA intake in school 

children (5-15 yr). CLA intake was highest among the youngest children and girls 

consumed more CLA than did boys (184 versus 158 mg/d) (unpublished data from 

McGuire el al. 2002). CLA has been shown to reduce body fat and increase lean body 

mass in young growing animals (Chin el a l,  1994, Park el a l.  1997). Studies examining 

the effect o f  CLA on body composition in adults have so far proved some what 

disappointing. It may be speculated that CLA may have a more potent effect on body
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composition in children and may provide a potential treatment and protection against 

childhood obesity. Studies in growing and /or obese children should be considered.

1.11 The Biosynthesis of CLA in man and rodent.

CLA has been identified in human blood, milk (Fogerty et al. 1988), adipose tissue 

(Ackman el al. 1981), bile and duodenal juices (Cawood et al. 1983) with c 9 ,111-CLA as 

the most predominant isomer present. The origin o f  CLA in human tissues is thought to 

be dietary as the consumption ofCLA-containing foods such as cheese has been shown to 

increase plasma CLA levels (Britton el al., 1992. Huang et al., 1994). In 1994 Parodi 

proposed that dietary TV A, the predominant trans monounsaturated fatty acid in milk fat 

(Parodi. 1976) could be desaturated to c9, /l 1-CLA in humans. This hypothesis was 

based on the findings o f  Mahfouz et al., (1980) and Pollard et al. (1980), who showed 

that a A9 desat urase enzyme from rat liver microsomes produced CLA from TV A. 

Recently, Corl et al. (2001) demonstrated that endogenous synthesis is the major source 

o f  c9, t \ 1-CLA in the milk fat o f lactating cows. Butyrivibriofibriosolvens, the anaerobic 

rumen bacteria responsible for the biohydrogenation o f linoleic acid in ruminants, has 

also been found in the digestive tract o f human subjects (Brown and Moore, 1960) and so 

it is also possible that CLA could be produced from dietary linoleic acid in humans. 

Thus. CLA in human tissues may reflect both dietary intake and endogenous synthesis.

Ip et al. (1999a) demonstrated that rats consuming CLA-enriched butterfat accumulated 

more total CLA in their tissues compared to those consuming either Matrcya CLA or Nu-
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Chck Prep CLA. The authors hypothesised that the availability o f  TV A in the high CLA 

butterfat may serve as the precursor for the endogenous synthesis o f CLA via the A9 

desaturase reaction. Santora et al. (2000) reported and quantified the desaturation o f TV A 

to CLA in mice. When equal quantities o f  TV A and CLA were fed to micc they reported 

that 12 % o f the TVA consumed during a 2-wk feeding period was recovered in the 

carcass as CLA. O f the proportion o f TVA in the tissues that was available for 

bioconversion, 48.8 % was desaturated. CLA was found in the carcass only when 

vaccenic acid or CLA was fed. CLA was found in both triglyceride and phospholipids 

when CLA was fed, but only in triglyceride when TVA was fed, suggesting that 

bioconversion occurred in the adipose tissue (Santora et al.. 2000).

The A4 desaturase genes have been identified in tissues from human subjects (Zhang et 

al., 1999). Salmincn et al.. (1998) provided evidence that CLA in human serum has been 

derived in part from the diet and in part by conversion o f  dietary irons fatty acids. Serum 

CLA levels were significantly higher in subjects fed a high-dairy fat diet, rich in CLA 

and trans-latty acids than when fed a CLA-poor stearic acid diet. Evidently, CLA was 

formed during consumption o f the diet rich in trans fatty acids and incorporated into 

serum lipids. O’Shea et al., (2000) examined the fatty acid composition o f total cell lipids 

o f MCF-7 human breast cancer cells, incubated in the presence o f  pure t*9, t\  1-CLA (20 

Hg/ml) and with a CLA-cnriched milk fat containing 20 ng/ml CLA. CLA uptake was 

approximately 6 fold more proficient from the milk fat than from the synthetic pure t*9, 

/l 1-CLA source, supporting the study by Ip et al. (1999). This study suggested that CLA 

could be formed from TVA present in the milk fat by a A4 desaturase enzyme present in
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human breast cancer cells. Adlof e/ al., (2000) showed that TVA was converted into CLA 

in humans, at a CLA enrichment o f  approximately 30%.

It has also been proposed that CLA may be synthesised from LA by intestinal flora or by 

free radical induced isomerisation. In normal rats, dietary linoleic acid gave rise to CLA 

in various tissues in proportion to the amount o f linoleic acid fed, but this conversion was 

not evident in germ-free animals (Chin el al., 1994). Salminen el al. (1998) suggested 

that their results did not favour the concept o f production o f  CLA from linoleic acid in 

humans because significantly different levels o f CLA were found in serum lipids from 

subjects fed three different dietary regimes that contained the same levels o f  LA. The 

consumption o f LA in triglyceride form in sunflower oil did not increase plasma levels o f 

esterfied CLA in the total lipids o f  human subjects (Herbel el al., 1998). Adlof el al. 

(2000) found no evidence for the conversion o f LA via bacterial isomerase enzymes to 

CLA in human subjects. The authors suggested that if CLA were to be formed in the 

colon it would be poorly absorbed in the lower intestine. Furthermore, human studies 

have shown ingested LA to be >96 % absorbed, which means that a very small 

percentage o f LA would be available to bacteria in the intestine.
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1.12 Metabolism of CLA

CLA isomers have been shown to undergo elongation, desaturation and p-oxidation 

processes similar to those that occur with linoleie acid while still maintaining the 

conjugated diene structure (Figure 1.12). Elongation and desaturase metabolites o f  CLA 

isomers (eg. conjugated 18:3, conjugated 20.3 and conjugated 20:4) have been detected 

in mammary tissue (Banni et al., 1999) and in the liver o f  rats (Banni et a i ,  1995, Banni 

et a i, 2001), lamb tissue (Banni et a i,  1996) and in human plasma, adipose tissue and red 

blood cells (Luechi et a i, 2000). Both t*9, t \ 1-CLA and 110, cl2-CLA are converted to 

long-ehain metabolites (Sebedio et a i, 1997, Sebedio et al., 2001). In rat liver and 

adipose tissue 110, c 12-CLA is mainly metabolised into conjugated 18:3 while c9, / l l -  

CLA is preferentially metabolised into a conjugated 20:3 isomer. Levels of/10, cl2-CLA 

metabolites were higher suggesting that its turnover is higher than that o f c9, /11-CLA 

(Sebedio et a i, 2001). The conjugated 20:4 metabolite (the expected main metabolite) 

was not detected in rat tissue (Sebedio et a i, 2001) or in human plasma and tissues 

(Lucchi et a i, 2000). The authors suggested that the linoleie acid in the diet shared 

desaturation and elongation enzymes with CLA and thus could compete for conjugated 

20:4 formation (Lucchi et a i, 2000) or that conjugated 20:4 is formed and rapidly 

converted (Sebedio et a i, 2001). Another metabolite with 16 carbon atoms, conjugated 

16:3 has been identified and is probably derived from peroxisomal P-oxidation o f  CLA. 

Interestingly, this metabolite was only found in liver lipids from rats fed /10, cl2-CLA 

(Sebedio et a i,  2001).
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Figure 1.12 Pathway for desaturation and elongation o f LA and CLA.

CLA metabolites display a distinct distribution pattern in rat tissues. Conjugated 18:3 and 

conjugated 20:3 is incorporated primarily in neutral lipids while conjugated 20:4 is 

preferentially enriched into specific phospholipids, mainly phosphatidylinositol and 

phosphatidylserine (Banni et at., 2001a). The presence o f this conjugated 20:4 metabolite 

in tissue phospholipids may influence linoleic acid metabolism and may compete with the 

parent compound in the biosynthesis o f eicosanoids, and exert anti-inflammatory actions 

participating in the ant ¡carcinogenic and possibility other physiological effects o f  CLA.
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Whether or not CLA metabolites exert biological activity remains to be determined. It 

also needs to be elucidated whether the metabolites o f  CLA. rather than the fatty acid 

itself, may be responsible for the beneficial effects. Unfortunately, purified metabolites 

are currently unavailable in large enough quantities for use in vitro and in vivo.
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1.13 Chemopreventive action of CLA

The most studied bioactivity o f  CLA is its anticancer effect. The surge o f anticancer 

research involving CLA began when Ha et al., (l 987) found that CLA inhibited in vivo 

initiation o f mouse epidermal tumors. Since then CLA has been shown to inhibit 

numerous cancer models in experimental animals and to inhibit the growth o f  a large 

variety o f  human cancer cells. The following sections describe the published literature 

that show an effect o f CLA on cancer inhibition, primarily in animal models but also in 

studies utilising human cancer cell lines. Particular studies that have been conducted to 

elucidate mechanism(s) o f chemoprotection by CLA will also be included.

1.13.1 Skin Cancer

The ant ¡carcinogenic property o f  CLA was first identified in a mouse skin carcinogenesis 

model (Ila et al., 1987) over fifteen years ago. Pariza and colleagues identified a fraction 

from grilled beef that could inhibit mutagenesis in bacteria and the initiation o f epidermal 

carcinogenesis in mice by 7, 12-dimcthylbenz[a]anthracene (DMBA) (Pariza and 

Hargraves, 1985). The fraction was purified and was shown to contain four isomeric 

derivatives o f  linoleic acid containing a conjugated double-bond system and so was 

named CLA (Ha et al., 1987). They synthetically prepared a mixture o f  CLA isomers and 

tested it for anti-initiation activity in a two-stage mouse epidermal anticarcinogenesis 

system. The CLA mixture o f  isomers was topically applied to the dorsal area o f  mouse 

skin prior to initiation with DMBA and promotion with 12-O-tetradecanoylphorbal-13- 

acetate (TPA). Sixteen weeks after promotion, CLA treated mice had 50 % fewer 

papillomas and a -15  % lower tumor incidence than control or LA-treated mice.
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Belury el al. (1996) expanded the findings o f  Pariza's group by examining the effect o f 

increasing levels o f  dietary CLA on skin tumor promotion in the same model. Female 

SENCAR mice were fed control diets during initiation and switched to diets 

supplemented with 0, 0.5, 1.0 or 1.5 % CLA during skin tumor promotion. Twenty-four 

weeks after tumor promotion began, diets containing 1.0 and 1.5 % CLA reduced tumor 

yield by 28 and 29 %, respectively. There was a modest reduction in skin tumor 

incidence o f  approximately 15 % for mice fed the 1.5 % diet. The data did not correlate 

with the reduction in tumor incidence observed in a mammary cancer model in which 

CLA at a dietary level o f only 0.25 %  reduced tumor incidence by ~37 %  (Ip el al.,

1991). These results suggest that CLA may have less biopotency against mouse skin 

carcinogenesis and perhaps a less steep dosc-rcsponse curve than for mammary cancer 

inhibition.

1.13.2 Mammary Cancer.

1.13.2.1 In vivo tumor inhibition

The effects o f  CLA on the rat mammary gland arc the most extensively studied o f all its 

effects on cells and tissues to date. In over eleven separate studies Ip and coworkers 

(2001, 1999a, 1999b, 1997a, 1997b, 1997c, 1996, 1995, 1994, 1991, 1985) have shown 

that dietary administration o f CLA was an effective way o f inhibiting chemically induced 

rat mammary tumors under a wide range o f  experimental conditions. CLA was effective 

at various doses, at various stages o f carcinogenesis and for varying durations 

corresponding to particular stages o f gland maturation, regardless o f  the level or type o f 

fat or linoleic acid in the diet. In these studies, CLA inhibited cancer development at
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levels o f  1% CLA in the diet and below with no further beneficial effect at levels above 1 

%. The timing o f  CLA administration has been found to be critical to mammary cancer 

prevention (Ip el al.. 1995). When CLA was administered to animals during active 

morphogenesis o f the mammary gland (from weaning at day 21 until -5 0  d o f age), 

lasting protection against subsequent tumor development occurred. This group showed 

that exposure to CLA during maturation diminished epithelial branching and so reduced 

the formation of terminal end buds (TEB’s) which are the primary sites for the chemical 

induction o f mammary carcinogenesis. In contrast, when CLA was administered at a later 

age (55 d o f  age) and following the carcinogen, a continuous intake o f CLA was 

necessary to inhibit tumors (Thompson el al., 1997).

Ip and co-workers (1999a) demonstrated that milk-fat CLA feeding during the time o f 

pubescent mammary gland development down-regulated morphological maturation o f the 

mammary epithelium and reduced the risk o f  mammary cancer. This was the first study 

to show that CLA delivered in a food matrix had biological activities similar to those o f 

the mixture o f  CLA isomers delivered as free fatty acids. Feeding buttcrfat (4 % CLA) to 

rats during the time o f  pubescent mammary gland development reduced mammary 

epithelial mass by 22 %, decreased the size o f the TLB population by 30 %, suppressed 

the proliferation o f  terminal end bud cclls by 30 % and inhibited mammary tumour yield 

by 53 %  (Ip el al., 1999a). Similar results were observed in rats fed the c9 , 111-CLA 

isomer from Matrcya or the CLA mixture o f  isomers from Nu-Chek, suggesting that the 

c9, 111-CLA isomer is biologically active as an anticarcinogen in the mammary gland. 

Furthermore, rats consuming CLA enriched butter fat consistently accumulated more c9, 

/l 1-CLA in the mammary gland and other tissues (liver, peritoneal fat and plasma)
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compared with those consuming free fatty acid CLA. Despite the difference in CLA 

tissue levels achieved, both preparations were equally effective in modulating mammary 

gland morphogenesis and reduced cancer risk. The authors suggested that either other 

isomers o f  CLA had anticarcinogenic activity or that the c9 , /11-CLA isomer had already 

achieved maximal effect at the tissue level o f c*9, /11-CLA achieved by feeding the Nu- 

Chek preparation.

In their most recent paper, these investigators examined the effect o f CLA intake on the 

proliferation activity o f  the epithelium during mammary gland development. Rats were 

fed either a CLA mixture o f isomers from Nu-Chek, the CLA enriched butter fat used in 

the previous study (Ip et al., 2001) or c9, /11-CLA from Matreya as the micc matured 

from weaning to adult. Both the CLA mixture o f isomers from Nu-Chek and the supply 

o f c9, /11-CLA in food were equally effective at suppressing cell proliferation in the 

developing mammary gland while it underwent extensive morphogenesis during 

pubescence. They also showed that the mammary epithelium appeared to lose its 

sensitivity to CLA control o f proliferation as it completely filled the fat pad and became 

quiescent. This suggests that the responsiveness o f  mammary gland epithelial cells to 

CLA intervention may be dependent on their proliferative status.

Ip's rodent model is a good model for human breast cancer as mammary cancer in 

rodents shows similarities to that in humans. The most striking similarities are in the 

overall pathogenesis and the site o f origin o f  the majority o f  the breast cancers (Medina,

1996). Breast cancer in humans and in chemical carcinogen-treated mice and rats both
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occur primarily in the undifferentiated, rapidly proliferating epithelium at the distal end 

o f TEB and terminal ducts (Medina, 1996).

Administration o f safiflower oil (CFA-S), rich in a mixture o f conjugated linoleic acid 

isomers (c9, / 11//9, c l 1 - 32.7 %, /10, c l2  - 33.5 %), significantly decreased the 

incidence and multiplicity o f  mammary carcinomas in female Sprague-Daw ley rats 

(Kimoto el al., 2001). Rats were sequentially treated with 1,2-dimcthylhydrazine and N- 

butyl-N-(4-hydroxybutyl)nitrosamine during the first three weeks for initiation and then 

fed diets containing I or 0.1 %  CFA-S for 33 weeks. Both the I and 0.1 %  CFA-S 

treatments significantly decreased the incidence and multiplicity o f mammary carcinomas 

but a clear dose response was not observed.

Three studies have investigated the effect o f  CLA on mammary carcinogenesis without 

employing the chemically induced model. Human breast adcnocarcinonoma cells (MDA- 

MB468 cells) were injcctcd subcutaneously into severe combined immunodeficient mice 

(SCID) that were fed a diet containing CLA at a level o f 1% o f the diet for two weeks 

(Visonneau et al., 1997). They continued to consume the CLA-containing diet until the 

end o f the study at either week 8 or 14. Control animals were fed similar diets minus the 

CLA supplementation. CLA supplementation at 1 % o f the diet significantly reduced 

tumor weight and area. CLA intake also inhibited the spread of breast cancer cells to the 

lung, peripheral blood and bone marrow indicating that CLA inhibited tumor metastasis 

via mechanisms independent o f the host immune system.
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In a second study, female Balb/c mice were fed a diet containing 0.1, 0.3 or 0.9 % CLA 

and injected with WAZ-2T metastatic mammary tumor cells (Wong el al., 1997). Mice 

were fed experimental diets for 2 weeks prior to tumor cell injection. CLA failed to 

reduce mammary tumor growth, tumor latency or tumor incidence at any dose. However, 

the lack o f an effect o f  CLA in this study may be explained by the use o f an extremely 

metastatic cell line which was not hormone responsive. CLA had been previously shown 

to have no effect on the growth of estrogen negative MDA-MB-231 human breast cancer 

cell line suggesting some estrogen related interaction (Durgan and Fernandes, 1995).

In the final study female BALB/cAnN mice were fed 0, 0.1, 0.5 or 1.0 % CLA for three 

weeks and then injected subcutaneously with a mouse mammary tumor cell line 4526 and 

continued on the experimental diets for an additional 4 weeks (Hubbard el al., 2000). 

Another group of mice were treated with indomethacin, a positive control and known 

suppresser o f tumor growth and metastasis in this malignant model. CLA feeding 

increased latcncy and decreased the number o f  spontaneously metastatic pulmonary 

nodules as well as their total volume in the lung. As the level o f CLA in the diet 

increased, the metastatic pulmonary tumor burden decreased proportionally, reaching 

levels lower than were achieved with indomethacin.

1.13.2.2 In vitro studies

CLA (4.5 - 36 ng/ml) has also been shown to inhibit cell growth of normal rat mammary 

epithelial cells organoids (MHO) in a time- and dose-dependent manner. CLA treatment 

also inhibited the survival o f  normal rat (MEO) colonies and the functional differentiation
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o f this cell line (Ip et a l, 1999b). CLA was shown to inhibit the growth o f  a rat mammary 

tumor cell line (NMU) after 3 and 4 days when added at a concentration o f 9 |ig/ml (Ip et 

a l, 2000)

Most o f  the other studies examining the in vitro cffect o f CLA on mammary epithelial 

cell growth have used the MCF-7 human breast cancer cell line. Shultz and co-workers 

were the first group to demonstrate the inhibitory response o f MCF-7 cells to CLA in 

culture (Shultz et al., 1992a). They exposed the MCF-7 cells to increasing levels o f  CLA 

(5, 10, 20 ng/ml) for 12 days o f incubation. The CLA treatments exhibited an inhibitory 

effect as early as 2-6 days o f  incubation. CLA was shown to be inhibitory to cancer cell 

growth in a dose- and time-dependent manner. By day 12, CLA had reduced cancer cell 

growth by 54 % at 5 ng/ml and 100 % at the two higher concentrations. In this group’s 

second study they compared the effect o f  LA and CLA on the same cell line (Shultz et 

a l.  1992b). Cells were incubated with either CLA or LA (5, 10, 20 ng/ml) and viability 

was assessed after days 4, 8 and 12. CLA inhibited cell growth at all concentrations and 

time tested while LA initially stimulated cell growth at 10 and 20 ng/ml but went on to 

exert an inhibitory effect at these two concentrations after 8 and 12 days o f incubation. In 

this group’s third study, they compared the antiproliferative effect o f  CLA (0.5 -  10 

jig/ml) on MCF-7 cells with a normal human mammary cell line (HMEC). CLA inhibited 

(11-43 % o f  control) MCF-7 cell growth after 3 days o f incubation as expected. However, 

CLA also inhibited the growth o f normal HMEC (18-37 % o f  control) in a non-dose- 

dependent manner.
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DesBordes and Lea (1995) examined the effect o f CLA (at 28 and 140 ng/ml) on cell 

proliferation o f the MCF-7 and the T47D mammary cancer cell lines after 24 hours 

incubation. At 28 ng/ml CLA failed to exert an inhibitory effect while a reduction (100 

%) was observed at 140 fig/ml. The absence o f an effect o f  CLA at 28 |ig/ml may be due 

in part to the short 24 h incubation time. Durgam and Fernandes (1997) compared the 

effects o f CLA on the MCF-7 estrogen-responsive and the MDA-BA-213 non-estrogen 

responsive cell line on cell viability as measured by viable cell count and thymidine 

incorporation over a 6 day incubation period. CLA (5-20 ng/ml) inhibited MCF-7 cell 

growth but did not inhibit the growth o f the estrogen negative cell line suggesting that 

CLA may influence cell growth by interfering with molecules involved with the hormone 

regulated mitogenic pathway. They also examined whether the growth inhibitory effect 

observed in the MCF-7 cell line could be reversed upon replacement o f  CLA 

supplemented media with normal media. Results showed that after 4 days incubation with 

CLA cells began to proliferate upon return to normal media indicating that growth 

inhibition is only temporary and can be reversed. Park el al., (2000) showed that CLA at 

lower concentrations (1-5 ng/ml) inhibited MCF-7 cell growth (11-20% o f control).

Our own group has also extensively studied the effect o f  CLA on the MCF-7 cell line. O ’ 

Shea el al., (1999) confirmed the dose- and time-dependent growth inhibitory response of 

MCF-7 cell line to CLA. Similar effects were observed in MCF-7 cells treated with the 

individual c9, 111-CLA isomer and with bovine milk fat enriched in CLA from animals 

fed pasture, rapeseed or soya (O’Shea el al., 2000). The growth suppressive effects were
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independent o f  the variable composition o f the milk fat samples suggesting that CLA was 

the active cytotoxic agent in the milk fat.

1.13.3 Intestinal Cancer.

1.13.3.1 In vivo tumor inhibition

Evidence that CLA may have anti cancer activity against intestinal cancer first arose

when CLA was shown to inhibit the formation o f 2-amino-3 -methyl-imida7X)f4,5-f]- 

quinoline (IQ)-DNA adducts in a number o f organs including the large intestine o f CFD| 

mice (7 u and Schut, 1992). The heterocyclic amine IQ reacts with DNA to form 

carcinogen-DNA adducts, leading to mutation and subsequently, to the initiation o f the 

carcinogenic process. Liew el a  I., (1995) showed that CLA treatment reduced a number

o f early preneoplastic markers o f  carcinogenesis in rat colon. F344 rats were

administered CLA (at 0.5 % o f the diet) by gavage for a 4 week period. During week 3 

and 4 rats were exposed to IQ in order to induce colon carcinogenesis. Rats were killed 6 

hours after the final carcinogen dose in order to quantify IQ-DNA adducts or after 16 

weeks to score aberrant crypt foci (ACF). ACF are preneoplastic lesions o f  colorectal 

carcinomas and are the earliest recognisable changes produced in the colon by 

carcinogens. CLA treatment caused a 74 % decrease in the number o f colonic ACF 

compared with control animals given IQ without any dietary treatment. In addition, CLA 

treatment was associated with a significant reduction in the number o f IQ-DNA adducts 

formed in the colon as determined by ?:P-postlabeling analysis.
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In a study by Ealey and co-worker (2001) CLA did not inhibit the development o f  ACF 

in male Sprague-Daw ley rats. In this study rats were given a single dose o f azoxymethane 

(AOM), a carcinogen that induces colon tumors in rodents. A week later animals were 

randomised into two groups and fed a control diet or the control diet supplemented with 

CLA (1 %  w/w). After 12 weeks the animals were sacrificed and ACF in their colons 

were scored. The total number o f ACF per animal did not differ between the control and 

CLA group. Rats fed the 1 %  CLA diet had significantly higher serum insulin levels at 

the time o f  sacrifice than those fed the control diet. The authors suggested that the 

promoting effects o f  elevated scrum insulin on colon carcinogenesis might have 

counteracted an inhibitory effect o f  CLA.

Park et al., (2001) demonstrated that dietary CLA at 1% o f diet inhibited 1,2- 

dimethylhydrazine (DMII)-induced colon carcinogenesis in rats. Colon cancer was 

induced by injecting 6-week old, male, Sprague-Dawley rats with DMH twice for 6 

weeks. During this time and for the following 24 weeks they were fed either 1 % CLA or 

a control diet ad libitum. After 30 weeks the animals were sacrificed and autopsies were 

performed on removed colons. The incidence o f tumors was significantly lower in the 

rats fed the 1 %  CLA diet compared to control rats.

CLA at 0.5% and 1% o f the diet has been shown to significantly reduce the induction o f 

mutations in distal colon o f the Big Blue* rat (a transgenic animal model developed for 

evaluation o f  mutagenicity o f  chemical compounds) (Yang et al., 2002). In a study 

mimicking human dietary supplementation, the effect o f timing o f  CLA feeding on 

mutagenesis was studied. CLA was added to the diet 1 week prior to exposure to 2-
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amino-l-methyl-6-phenylimidazo|4,5-/>|pyridine (PhIP) for 47 days or from weaning to 

age o f 50 days, at which time they were then exposed to PhIP for 47 days. (Fig 1.13) 

Simultaneous administration o f CLA with PhIP suppressed PhlP-induced mutations in 

the distal colon by 23%. Unlike the rat mammary gland model however, feeding CLA 

before carcinogen treatment did not protect the colon against subsequent mutagenesis. 

Consistent with inhibition o f  PhlP-induced mutation frequency, dietary CLA also 

inhibited aberrant crypt foci formation in male F344 rats given PhIP in basal diet (Yang 

el a i, 2002). In view o f the presence o f both PhIP and CLA in the typical western human 

diet, understanding the effects o f CLA on mutagenesis and DNA repair will be necessary 

for development o f strategics which can optimally impact on cancer control.

PhIP 

<--------------
(A)

(B)

PhIP

Control diet

CLA

t 1 1  t
Weaning 4 3  ^

days days

Figure 1.13 Experimental Design. (A) Male and female rats were given CLA starting at 

the age o f 43 days. PhIP was incorporated into the diet and continued for 47 days. (B) 

Female rats were given CLA from weaning to the age o f  50 days and then subjected to 

PhIP treatment for 47 days (From Yang et al., 2002).
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1.13.3.2 In vitro studies

CLA has proved to be effective in inhibiting the growth o f a variety o f colon tumor cell 

lines. Shultz et al. (1992b) showed a 47 %  reduction by 5 |ig/ml CLA on the growth of 

HT-29 human colorectal tumor cells. Increasing the concentration o f CLA did not further 

enhance the growth inhibitory effect o f CLA in this cell line. CLA also decreased cell 

viability o f  the SW480 colon cell in a dose and time dependent manner over a CLA 

concentration range o f  5 -3 0  ¿ig/ml (O’Shea et al., 1999).

Unlike the in vivo experiments, all o f which used a mixture o f CLA isomers, some o f  the 

in vitro studies have provided some insight into the activities o f specific CLA isomers on 

colon cancer cell growth. Kim et al. (2002) compared the individual potencies o f the c9, 

t l l  - and the 110. cl2-CLA isomers on the growth o f the Caco-2 colon cell line. The flO. 

cl2-CLA isomer decreased viable cell numbers in a dose dependent manner after 96 h 

while the c-9,11 l-CLA isomer had no effect. In a recent study the /10, c*l2-CLA isomer 

(at 14 and 28 ng/ml) exhibited the greatest potency against colorectal cancer proliferation 

o f the HT-29 and MIP-101 cell lines (Palombo el al., 2002). These studies all suggest 

that the /10, c!2-CLA isomer may be the more biologically active isomer for inhibition o f 

colon tumor cell proliferation in vitro.
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1.13.4 Forestomach and prostate Cancer

Only one study has demonstrated the protective effect o f CLA against forestomach 

tumors (I la et al., 1990). CLA or LA plus olive oil or olive oil alone was administered to 

mice by gavage twice weekly on Mondays and Wednesdays for 4 weeks. On the Friday 

o f each week animals were given benzo(a)pyrene (BP) in olive oil. Animals were 

sacrificed 22 weeks after the lirst dose o f BP. Mice treated with CLA developed only 

about half as many forestomach tumors/mice as compared with the number developed by 

mice in the control groups in three independent experiments. CLA also reduccd tumor 

incidence in two out o f  three experiments compared with linoleic acid and olive oil 

controls.

Cesano et al. (1998) investigated the effects o f  dietary CLA and LA on the growth and 

progression o f human prostatic carcinoma. Severe combined immunodeficient (SCID) 

mice were subcutaneous implantation with DU-145 human prostate cells. The rats were 

fed a standard diet or diets supplemented with LA or CLA (both at 1 %  o f  the diet) for 2 

weeks prior to subcutaneous implantation and for 12 weeks after. CLA fed mice showed 

significantly smaller local tumors and also an acute reduction in lung nietastases as 

compared to the control and LA-fed groups. Visonneau et al. (1996) reported an 

inhibitory effect o f CLA (at concentrations from (0.28 - 28 ng/ml) on a variety o f cell 

lines including a prostate cell line. More recently, Palombo et al. (2002) showed that c9. 

/1 1 c9, e l l -  and 110, t*12-CLA iosmcrs significantly decreased the proliferation o f

human prostate (PC-3) carcinoma cells at 28 ng/ml but not at 15 ¿ig/ml.
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1.14 Proposed mechanisms underlying the anticarcinogenic effect of 
CLA.

A number o f studies have investigated the mechanistic role o f CLA in modulating the 

three broad stages o f carcinogenesis; initiation, promotion and progression. Given the 

modulating properties o f CLA on this multi-stage process along with the fact that CLA is 

not a single molecule it is thought that multiple parallel mechanistic pathways are 

involved (Scimeca, 1999). Early studies focused on events associated with initiation and 

investigated the role o f CLA as a possible antioxidant and its modulating effect on 

carcinogen activation and detoxification. More recent studies have focused on elucidating 

the mechanisms involved in the inhibitory effect o f CLA on carcinogenesis during 

promotion and have investigated the effect o f CLA isomers on cell proliferation, 

eicosanoid biosynthesis, apoptosis and gene expression. It is imperative to elucidate the 

molecular mechanisms responsible for the cancer preventive effect o f  CLA isomers at the 

level o f nutricnt-genc interactions and to identify specific CLA-responsive biomarkcrs 

which can be applied to biopsicd human tissue samples in CLA intervention trials. In the 

following sections the various biological events will be treated separately as it is as yet 

impossible to present a unified mechanistic theory.

1.14.1 Modulation of free-radical induced oxidation.

Harly studies postulated that CLA might prevent carcinogenesis by its ability to act as an 

antioxidant and scavenge free radicals generated from carcinogen exposure. CLA was 

shown to be more effective than a-tocopherol and as effective as butylated 

hydroxytoluene in reducing iron thiocyanate-induced peroxide and thiobarbituric acid
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rcactive substance (TBARS) formation in vitro (Ha et a l, 1990). TBARS is a biomarker 

used to assess oxidation in biological systems. Ip et al. (1991) reported that feeding CLA 

resulted in lower levels o f malondialdehyde, an end product o f  lipid peroxidation, in the 

mammary gland but not in the liver o f  rats. However, CLA-fecding failed to change the 

levels o f  8-hydroxyguanosinc. a marker o f oxidatively damaged DNA in mammary 

tissue. No differences in plasma TBARS levels were observed in rabbits fed a CLA- 

supplemented diet or control diet (Lee et al.. 1994).

Two test tube studies provided convincing evidence that CLA did not possess antioxidant 

activity. With the use o f synthetic l-palmitoyl-2-linoleoyl phosphatidylcholine (PLPC) 

membrane vesicles and precise analytical methods, CLA (1-50 jiM / 0.28-14.08 ng/ml) 

did not act as a free radical scavenger and was not converted to a metal chelator under a 

variety o f experimental oxidative stress conditions (Van den Berg et al.y 1995). Chen et 

al. (1997) showed that two forms o f CLA, the free fatty acid form and its methyl ester 

form induced oxidation o f heated canola oil in a dose dependent manner. Triglyceride 

bound-CLA had no protective effect against oxidation in the same model. This finding is 

important, as this is the form that CLA would naturally be found in dairy products (Chen 

et al., 1997). Analysis o f conjugated diene hydroperoxy fatty acids using HPLC with a 

diode-array detector showed that conjugated diene fatty acids were more susceptible to 

oxidation than their parent non-conjugated fatty acids (Banni et al.. 1998). Another study 

has demonstrated that CLA may be oxidised by singlet oxygen yielding furan fatty acids 

upon decomposition (Yurawecz et al.. 1995).
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It has been suggested that CLA induces cytotoxicity in cancer cell lines via pro-oxidant 

activity (Belury et al. 1995). Lipid peroxidation and its products regulate growth by 

inducing cytotoxicity and apoptosis in tumor cells (Grune et al., 1994. Ben-Yoseph and 

Ross. 1994). A significant increase in lipid peroxidation as measured by MDA was 

observed after treatment o f three lung adenocarcinoma cell lines (A-427, SK-LU-1, A- 

549) with CLA (Schonberg and Krokan, 1995). LA did not exert the prooxidant effect 

shown by CLA (Schonberg and Krokan, 1995). Hence, oxidation o f  CLA may play an 

important role in influencing cancer cell death. O ’Shea et al., (1999) indicated that 

reduction o f  cell growth by CLA against MCF-7 and SW480 cell lines was related to an 

increase in lipid peroxidation and activation o f antioxidant defense enzymes such as 

superoxidase dismutase and glutathione peroxidase. Igarashi and Miyazawa (2001) 

investigated the growth inhibitory effect o f CLA on human hepatoma HepG2 cells. CLA 

( 1 - 1 1  ng/ml) inhibited the growth o f these cells in a dose- and time-dependent manner. 

In order to evaluate the possible contribution o f lipid perpoxidation exerted by CLA, a - 

tocopherol and butylated hydroxytoluene (BHT) were added to the medium with CLA. 

The addition o f a-tocopherol and BUT to media with CLA did not restore cell growth. 

Furthermore, the CLA-supplementation did not alter TBARS and membrane 

phospholipid hydroperoxides, the parameters measured to assess lipid peroxidation.

Leung and Liu (2000) have shown that different isomers o f  CLA may display antioxidant 

or prooxidant activities, depending on concentration. The /10. H2-CLA isomer acted as 

an antioxidant at all concentrations tested (2-200 / 0.56-56 ng/ml) and was more

effective than c9, /II-CLA  and a-tocopherol at low concentrations (2-20 jiM) as
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measured by a total oxyradical scavenging capacity assay. In contrast, the c9, /11-CLA 

isomer possessed weak antioxidant activity at 2 and 20 jiM and acted as a strong pro- 

oxidant at 200 (¿M. These data suggest that discrepancies in the results o f previous 

studies on the antioxidant properties o f  CLA may be due to the balance o f  the antioxidant 

properties o f /10, cl2-CLA and the pro-oxidant properties o f c9, t\ 1-CLA under different 

oxidation conditions.

Basu and co-workers (2000a) have shown that 3-month CLA-supplementation in healthy 

human subjects caused an increase in urinary 8-iso-PGF2a, a marker o f lipid peroxidation. 

They have also shown that CLA induced lipid peroxidation in men with abdominal 

obesity (Basu et a i, 2000b). The consequences o f  and the mechanisms involved in the 

increase in lipid peroxidation after CLA-supplementation in humans have yet to be 

determined.

1.14.2 Modulation of carcinogen-DNA adduct formation and carcinogen 
metabolism

Several studies have shown that CLA modulated DNA adduct formation at several organ 

sites in both mice and rats (Zu and Schut 1992. Liew et a i, 1995, Schut el a i, 1997, 

Josyula et a!., 1998. Yang et a i, 2002). DNA adducts are covalcnt DNA addition 

products formed when chemical carcinogens or their reactive intermediates bind to and 

react with DNA molecules resulting in mutations and tumor development. CLA treatment 

inhibited IQ-DNA formation in liver, lung, large intestine and kidney in mice (Zu and 

Schut 1992). Differential effects were noted for female and male mice. Using 3: P-post-
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labeling CL A was shown to reduce IQ-DNA adduct labelling in the colon but not in the 

liver o f male rats (I«eiw el a l, 1995). CLA was effective at inhibiting PhlP-DNA adduct 

formation in the liver and mammary gland o f female mice (Schut el a l ,  1997). Recently, 

Yang el a l. (2002) have shown that CLA-supplemcntation lowered PhIP induced 

mutation frequency in the distal colon o f male rats. PhIP, is one o f the most prevalent 

mutagenic heterocyclic amines in the Western diet, produced during the cooking process 

by the reaction o f an amino acid with creatine (El-Bayoumy, 1992). To bind to DNA, 

PhIP must be metabolically N-hydroxylated by cytochrome P-450 1A1,1A2, and IB 

activities in hepatic microsomes (Turteltaub el a l, 1990). N-Hydroxy-PhlP is further 

converted to its ultimate carcinogen via O-sulfation or O-acetylation which can bind 

covalently to DNA, reacting almost exclusively with guanines at the C8 position 

(Turesky el a l, 1991). One may surmise that CLA may act as a blocking agent upon 

several detoxifying enzymes, thereby inhibiting the metabolic activation o f carcinogens 

in target organs.

Detoxifying enzymes catalyze metabolic detoxification o f  xcnobiotics, drugs and 

carcinogens and thus, protect the cells against redox cycling and oxidative stress. Ip el al., 

(1991) examined the effect o f CLA on phase II detoxifying enzymes in female rats. Data 

indicated that CLA had no effect on glutathione-S-transferase and UDP-glucuronyl 

transferase activity in liver or mammary gland. Authors suggested that CLA may 

modulate carcinogen metabolism via phase I detoxifying enzymes i.e. cytochrome P450 

isoenzymes. Inhibition o f  IQ activation was proposed as the mechanism of 

chcmoprcvention by CLA in colon tissue (Liew el a l ,  1995). IQ must be activated to an 

aryl nitrenium ion by various enzymes which include cytochrome P4501A2.
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prostaglandin H synthase, acctyltransferase and sulfotransferase before it reacts with 

guanine residues o f DNA forming an adduct at the C-8 position leading to tumour 

production. Liew ct al. (1995) showed that hepatic microsomcs from CLA-treated rats 

exhibited lower methoxyresorufin O-decthylase (MROD) activity, an enzyme indicative 

o f cytochrome P4501A2. Furthermore, their demonstration that CLA was antimutagenic 

in the presence o f  ram seminal vesicle microsomes. a rich source o f  prostaglandin II 

synthase (enzyme responsible for the production o f  prostaglandin H) is additional 

evidence that CLA might also inhibit prostaglandin-mediated activation o f heterocyclic 

amines in extrahepatic tissues.

1.14.3 Modulation of cell proliferation by CLA

CLA has been shown to inhibit the proliferative activity o f  the mammary gland in the rat 

(see section 1 .1 2 .2 . 1 ) and the proliferation o f a variety o f  tumor cells in vivo (see section 

1.12.2.2). Cell cycle studies have revealed that a higher percentage o f the CLA-treated 

MCF-7 cells remained in the G0/G1 phase (i.e. the resting and prereplication stage) 

compared to control cells or those treated with LA (Durgam and Fernandes, 1997). 

Therefore, it is possible that the decreased proliferation o f  MCF-7 cells in the presence o f 

CLA may be due to delay o f these cells in progressing through GO/G1 phases o f the cells 

cycle. CLA also inhibited the expression o f c-myc in MCF-7 cells (Durgam and 

Fernandes, 1997). C-myc is a transcriptional factor known to play a key role in 

biochemical pathways controlling cellular proliferation and is regulated by hormones. 

These authors concluded that CLA may inhibit MCF-7 cell growth by interfering with 

hormone regulated mitogenic pathway due to decreased expression o f  c-myc.
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Dietary CLA (1 %) reduced proliferation o f  terminal end bud and lobuloalveolar bud 

structures o f mammary epithelium as measured by histochcmical analyses o f 

bromodeoxyuridine staining in rats initiated with methyJnitrosourea. This reduction in 

proliferation was accompanied by a decrease in the density o f  the TEB which are the 

primary target site for carcinogens that induce mammary tumors (Ip et a l,  1997). In a 

more recent study Ip and co-workers have shown that the reduction in proliferation o f 

terminal bud structures by CLA was associated with a decrease in the levels o f  two 

cyclins known to regulate the cell cycle, cyclin A and cyclin 1)1 (Ip et a l. 2001).

Preincubation o f  human gastric adenocarcinoma SGC-7901 cells in media supplemented 

with different c 9 , t 11-CLA concentrations (25-200 (^mol/L) at various times (24 and 48 

h) significantly decreased the expression o f proliferating cell nuclear antigen (PCNA) 

(Liu et a l ,  2002). PCNA plays an essential role in both the replication and repair o f  DNA 

and is an essential component o f  the DNA replication machinery. This decrease in PCNA 

expression was accompanied by a decrease in the expression o f  Cyclins A, B t and D| 

whereas the expression o f p l6"*4" and p2 1 w>n, cyclin-dependent kinase inhibitors 

(CDKJ), was increased (sec tables 1.4 and 1.5). The authors concluded that the c9, 111- 

CLA isomer inhibited proliferation o f SGC-7901 cells via blocking the cell cycle, with 

reduced expression o f cyclin A. Bj and D| and enhanced expression of CDKTs p l6,nk4* 

and p2 1 w,n.
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CLA (%).

T able 1. 4 Expression o f  cyclin A, B |, and D | on SGC-7901 cells treated with c9, t l l -

c 9 ,1 11 -
24h 48h

CLA(nmol/L)

Cyclin A Cyclin Bi Cyclin D| Cyclin A Cyclin Bj Cyclin D (

0 10.7 4.2 9.5 5.9 5.1 6.0

25 1 1 .0 4.8 3.6b 8.5 5.5 3.71

50 7.9 2.5 3.5b 5.0 3.1b 3.7'

100 4.4b 2 .6b 2 . 1b 1.3b 0.7b 0.61

200 2.3b 1 .8b 0.4b 0.5h 0 .6b 0

b P<0.0\ (From Liu el al~ 2002).

Table 1. 5 Expression o f p l6,nUa and p 2 P a" on SGC-7901 cells treated with c9, tl 1

CLA (% ).

c9, t\ 1 -CLA (^moI/L) 24 h 48h

p l6inUl, p21wan p l6ink4a p2 1 w,n

0 1.0 0.2 0.8 0.6

25 0.7 1.4b 0.2 0.8

50 1.4 1 .0b 3.0b 2.5b

100 2 .8b 4.1b 4.6b 3.8b

200 3.6b 5.2b 5.0b 6.3b
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In contrast to the ctTects observed in mammary and gastric carcinogenesis, there was no 

relationship between dietary Cl.A  and markers o f cell proliferation in mouse epidermis 

(hyperplasia, omitine decarboxylase activity or c-myc mRNA expression) (Kavanaugh et 

a l,  1999). These data suggest that inhibition o f skin tumor promotion by CLA may not 

occur through inhibition o f cell proliferation in mouse epidermis and that CLA’s ability 

to reduce cell proliferation may be tissue specific.

1.14.4 CLA induces apoptosis.

Tumor growth is the net result o f  cell proliferation minus cell death. Therefore the 

induction o f  apoptosis or programmed cell death counterbalances the proliferating ability 

o f cancer cells. Given the importance o f apoptosis in cancer development, apoptosis- 

inducing agents could conccivably have an important role in adjunct anticancer therapy. 

Several genes that regulate the process o f apoptosis have been found to be defective in 

tumour cells. The best characterised examples are the bcl-2 family genes which are 

overexpressed 30-50% in colon cancer (/.hang. 2002). Dietary CLA has been shown to 

induce apoptosis in a variety o f  tissues including mammary (Ip et a l, 2000), adipose 

(Tsuboyama-Kasaoka et al., 2000), colon (Park et al., 2001), liver (Lu et al., 2002 in 

press) and also in cultured mammary epithelial cells (Ip et a l, 1999) and 3T3-L1 

preadipocytes (Evans et a l, 2000).

CLA was first shown to induce apoptosis in normal differentiated rat mammary epithelial 

colonies as demonstrated by morphology criteria (the presence o f apoptotic bodies and 

pyknotic nuclei) and the terminal deoxynucleotidyl transferase biotin-dlJTP nick end
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labeling (TUNEL) assay which dctccts double strand breaks in DNA (Ip et al., 1999). In 

another study CL A induced apoptosis in cultured mammary tumor cells and in 

premaligant lesions known as intraductal proliferation (IDP) lesions in the rat mammary 

gland (see table 1.7) (Ip et a l, 2000). In this study, the induction o f apoptosis by CLA 

was accompanied by a down regulation o f anti-apoptotic bcl-2 protein. In contrast, CLA 

did not influence bak and bax. which suggested that these two inducers o f apoptosis are 

not molecular targets in the action o f CLA.

Tabic 1.6 ElTcct o f CLA on bcl-2 expression in different mammary gland structures

Treatment (1 %) Immunohistochemical score for bcl-2

Alveoli TEB IDP

Control 14.7 ± 1.1 15.1 ± 1.0 18.6 ± 1.1

CLA mixture 13.6 ±0 .7  14.4 ± 0 .9  9.5 ±0.7*

c 9 ,1 11 -CLA 13.2 ± 0 .6  13.7 ± 1 .2  9.7 ±0.8*

* Represents values significant different from control (p<0.05). From Ip et a l, 2000.

In a more recent study dietary CLA was shown to stimulate apoptosis in the colon 

mucosa o f  1,2-dimethylhydrazine-treated rats as measured by the TUNEL technique (see 

table 1.7) (Park et al., 2001).
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T abic 1.7 Effect o f  CLA on apoptotic index in the colonic mucosa o f  rats treated with

1 ,2-dimethylhydrazinc.

Dietary Group (% CLA) No. o f  rats Apoptotic index

0.0

0.5

1.0

1.5 5

6

5

5

Mean SD

0.1985 0.0664

0.4682’ 0.1961

0.4577’ 0.1486

0.5159’ 0.0492

* Represents values significant different from control (p<0.05). From Park et al., 2001.

1.14.5 CLA modulates eicosanoid formation.

Given the structural similarities between the CLA isomers and LA, an obvious avenue to 

investigate a possible mechanism for the ant ¡carcinogenic effect o f CLA is the 

determination o f its effect on cicosanoid production. CLA had been shown to be 

incorporated into membrane phospholipids and neutral lipids in a number o f tissues (Ha 

el al.. 1990, Ip el al.. 1996. Belury and Stempa-Steczko, 1997, Lui and Belury. 1998, 

Banni el al.. 1999, O’Shea el al.. 2000). The c 9 ,111-CLA isomer accumulated to a higher 

extent than the flO, c 12-CLA isomer in tissue phospholipids o f  liver (Banni el al., 2001, 

Belury el al.. 1997), skin (Kavanaugh el at., 1999), and bone (Li and Watkins, 1998) o f 

rodents. It is plausible that CLA through its incorporation into membrane phospholipids 

may modulate the fatty acid composition o f  membranes. More specifically, it is possible 

that CLA my exert its effect on carcinogenesis and on many o f its other physiological 

functions (e.g., immunity, bone production and platelet aggregation) in part by
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modulating the accumulation o f  arachidonic acid in phospholipids, resulting in a reduced 

arachidonic acid pool and rcduccd production o f eicosanoids.

Dietary or Endogenous 
M em brane  P h o sp h o lip id s  * - ■ Sources of

A  rach »donate
Phospholipase A ?

Arachidonate v6 DcMtur*sc / Dietary or
(20:4) .   Endogenous Sources

O r Conjugated* v D*Mlur»~  ter Linoleate Or CLA
Arachidonate \

Cyclooxygenases/  (20:4) \U p o x y g e n a se s

Prostaglandins Leukotrienes
f  Thromboxanes

s  ✓
Inflammation. Event* In Immuiw Response

Vascularization end and Inflammation

Tumor Promotion

Figure 1.14 General schematic pathway for cicosanoid synthesis from arachidonic acid 

(Belury. 2002).

Belury and colleagues examined the hypothesis that CLA inhibited skin carcinogenesis 

via an cicosanoid-mediated mechanism. Using cultured murine keratinocytes this group 

showed that pre-trcated o f  cells with CLA reduced the AA content by 50 %  compared 

with cells pre-treatment with I.A (Liu and Belury, 1997). Additionally, CLA decreased 

both uptake o f l4C-AA into cellular phosphatidycholine and the release o f UC-AA 

compared with LA. 12-0-tetradecanoylphorbal-13-aceytate (TPA) -induced l4C-PGE2 

production was also significantly reduced in cultures pre-treated with CLA compared 

with equimolar concentrations o f LA (Liu and Belury, 1997). CLA was incorporated into 

phospholipids and neutral lipids in a dose dependent fashion in an in vivo study in which
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mice were fed increasing amounts o f CLA (0-1.5 %) in the diet (Kavanaugh et al., 1999). 

PGE2 synthesis was 50 % lower in mice fed 1.5 % CLA compared with mice fed a 

control diet (Kavanaugh et al., 1999). These data suggest that the che mo protective effect 

o f CLA in skin carcinogenesis is mediated by a change in the composition o f the lipid 

pool o f  the plasma membrane which alters the availability o f  AA for eicosanoid synthesis 

during tumor promotion.

Research from other laboratories also indicate that CLA eiTccts AA levels and the 

synthesis o f  eicosanoids in a number o f models. A number o f studies have shown that 

dietary CLA displaced the arachidonic acid precursor, linolcic acid, in mouse liver 

(Belury and Kempo-Steczko, 1997a) and in mouse forestomach (Ha et al., 1990) but not 

in mammary tissue (Banni et al., 1999) or colon (Liew et al., 1995). CLA has been 

reported to decrease PGE2 in serum (Sugano et al., 1997, Sugano et al., 1998), bone (Li 

and Watkins, 1998) and in human saphenous vein endothelial cells (HSVEC) (Urquhart 

et al., 2002) but not in small intestine tissue from Min mice (Pctrik et al., 2000) or spleen 

from rats (Sugano et al., 1998). Furthermore, dietary CLA reduced accumulation o f the 

lipoxygenase products LTB4 and LTC4 in spleen and lung (Sugano et al., 1998) but not 

12-hydroxyoctadccadienoic acid (Truitt et al., 1999). These data suggest that the effects 

o f CLA on eicosanoid production may be tissue specific.

Another mechanism for the reduction o f AA-derived eicoanoids by CLA is through 

inhibition o f  the constitutive enzymes COX-1 and/or the inducible form COX-2. 

Bulgarella et al. (2001) demonstrated that specific CLA isomers decreased the rate o f
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oxygenation o f AA by COX-1 in ram seminal vesicle microsomes with the c9. t\ 1-CLA 

isomer having the most potent effect. The CLA mixture o f isomers and individual 

isomers (c9, t\ 1-CLA and /10, cl2-CLA) were not found to alter the expression o f  COX- 

1 in HSVEC (Urquhart el al., 2002). Whether CLA influences the expression o f COX-2 

has yet to be determined.

CLA was shown to be a substrate for liver microsomal A6 desaturase, an enzyme that 

catalyses conversion o f LA to AA in an in vitro study carried out by Belury and Kempa- 

Steczko (1997). Sebcdio el al. (1997) have provided evidence indicating that both c9, 

111-CLA and /10, cl2-CLA are elongated and dcsaturated in a manner analogous to that 

o f LA to form conjugated arachidonic acid and hence, may compete with LA for these 

enzymes and reduce the available AA for eicosanoid synthesis. Because COX requires a 

methylene group interrupted at carbon 13, it is unlikely that conjugated arachidonic acids 

are suitable substrates. However, it may be possible that these conjugated metabolites 

may interfere with COX activity.

1.14.6 CLA activates peroxisome proliferator-activated receptors (PPARs).

PPARs arc ligand-activated transcription factors that increase transcription o f  target 

genes by binding to a specific nucleotide sequence in the gene's promoter and are 

members o f the nuclear receptor superfamily (Issemann and Green, 1990). Three 

different PPAR isotopes can be distinguished: a ,  (i and y as a result o f differential mRNA 

splicing. Each PPAR subtype has evolved to fulfil a different biological niche ranging
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from lipid homeostasis to differentiation. As a result it has been proposed that PPARs 

may play a role in atherosclerosis, autoimmune diseases, diabetes, obesity and cancer and 

are key targets for therapeutic drugs.

PPAR ligands, known as peroxisome proliferators (PP), activate PPARs and the PPAR- 

ligand complex then recruits another hormone receptor, the retinoic acid-X receptor 

(RXR). The resulting complex binds to the PPAR-responsive elements (PPRE) on the 

target gene and drives transcription leading to alterations in gene expression that 

ultimately are responsible for changes in lipid metabolism and growth regulation 

(Vanden Heuvel, 1999). Depending on the cell type being examined, PPAR activation 

and regulation o f growth regulatory and immediate early genes result in proliferation, 

apoptosis or differentiation (Vanden Heuvel, 1999) (Figure 1.15). Ligands for PPARs 

include the hypolipidemic drugs and insulin-sensitising triazolidinedionc drugs (Lehmann 

et al., 1995). Fatty acids and eicosanoids show structural and physiological characteristics 

similar to PPs and have been shown to be ligands for PPARs (Kliewer et a l, 1997). 

Therefore, it is plausible that PPARs may serve as sensors o f dietary fatty acids, 

translating nutritional stimuli into changes in gene expression (Saez et a l, 1998). The 

potential role o f CLA as an activator o f PPARs may explain how CLA mediates its 

diverse biological effects.
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Figure 1.15 Basic mechanism o f action o f PPARs (Vandcn Heuvel, 1999)

Several isomers o f CLA arc high affinity ligands and activators o f PPARa (Moya- 

Camarcna el a/., 1999). With the use o f  a scintillation proximity assay, CLA isomers 

were shown to be ligands for human PPARa (in the order o f c9,111 > /10, c  12 > t9 ,111). 

CLA was also shown to induce PPAR-responsive genes in the livers o f SENCAR mice 

(Belury et al., 1997) and in a cultured rat hepatoma cell line (Moya-Camarena el al.,

1999).
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In a study to evaluate the possible involvement o f  PPARs in the skin tumorigenesis 

model. CL A and Wy-14643 (proven PPARa ligands) were applied topically to mice 

during an initiation-promotion tumor skin model (Thuillier el al., 2000). Animals treated 

with these PPARa activators exhibited a 30% decrease in tumor yield compared to those 

treated with PPAR p and y activators and control animals. The levels o f all three PPAR 

subtypes were increased in tumors in contrast with normal epidermis. The PPARa 

protein was shown to be functional in the cultured keratinocyte cell line 308 and levels 

were found to be elevated during keratinocyte differentiation which was induced by high 

calcium levels. This suggests that induction o f differentiation by PPARa may be a 

possible mechanism for inhibition o f  tumor growth in kcratinocytes by CL A and other 

PPARa ligands.

Recent studies have focused on the interaction o f CLA with PPARy. PPARy is expressed 

in diverse cell types including adipoctyes, hepatocytes, fibroblasts and epithelial cells. 

PPARy activation appears to play a role in stimulation o f  adipocyte differentiation, 

stimulation o f insulin, regulation o f  lipid metabolism, inhibition o f tumor cell 

proliferation and diverse effects on inflammation (Houscknccht et al., 2002) (figure 

1.16). CLA has been shown to activate a dose-dependent transactivation o f PPARy in 

CV-1 cells co-transfected with PPARy and PPRE X 3-Iuciferase reporter construct 

(Houseknecht et al., 1998). Furthermore, dietary CLA (at 1.5 % o f  the diet) exerted an 

anti-diabetic action in Zuckcr diabetic fatty (fa/fa) rats in a similar manner to that o f the 

PPARy agonist troglitazone. Increased expression o f  aP2 mRNA in adipose tissue of
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CLA-fed Zucker rats is consistent with the possibility that feasible dietary intakes o f 

CL A can activate PPARy in vivo.

Fatty Acid 
Metabolism
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Figure 1.16 Activation o f PPARy regulates expression o f  genes involved in a myriad of 

physiological and pathophysiological states. (From Ho use knee ht el al.. 2002)

PPARy regulates the expression o f  many genes relevant to carcinogenesis and now is an 

important target for development o f  new drugs for the prevention and treatment o f cancer 

(Spom and Mangelsdorf, 2001). Studies indicate that cell lines derived from human 

breast, prostate and colon cancers express PPARy. Furthermore, the treatment o f these 

cell lines in vitro with PPARy agonists such as troglita7.one slow clonal expansion and 

induces differentiation and/or apoptosis and slows the growth o f these cell lines 

implanted in immmunodeilcient mice (Mueller el a!., 1998, Elstner el a!., 1998. Kubota 

el al.y 1998. Sarraf el al.. 1998). Therefore it may be possible the anti-promotional and
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cancer-retarding activity o f  CLA may be in part due to the activation o f PPARy. It has 

also been proposed that downstream metabolites o f A6 desaturase metabolism o f c9, /I I- 

or /10, cl2-CLA may activate PPARy but activation by these products has yet to be 

measured. A direct connection between the anticarcinogenicity o f  CLA and PPAR 

activation warrants further study. This possible connection is intriguing and may help 

explain the isomer-, tissue-, and sex-specific inhibition o f tumors that has been observed.

1.14.7 Inhibition of angiogenesis by CLA

Angiogenesis has been recognised as an indispensable feature o f  neoplastic growth and 

the inhibition o f this phenomenon has a profound effect on cancer growth (Folkman,

1997). Angiogenesis provides the tumor cell with access to the vascular circulatory 

system, thus establishing the potential for metastatic disease progression. Vascular 

endothelial cell proliferation, migration and capillary formation are stimulated by 

angiogenic growth factors, which include the proteins vascular endothelial growth factor 

(VEGF). fibroblast growth factor (FGF), transforming growth factor-beta (TGFp) and 

eicosanoids (Rose and Connolly, 2000). Dietary CLA, because o f its suppressive effects 

on eicosanoid biosynthesis, may to be antiangiogenic.

Masso-Welch et al., (2002) have shown that CLA can inhibit angiogenesis. This group 

has shown that CLA modify mammary stroma by inducing differentiation o f  mammary 

stromal cells (MSC) to an adipocyte cell type. Significantly, concurrent with MSC 

differentiation, they found that CLA decreased the ability o f  MSC to form a 

microcapillary network in vitro on an EHS (Engelbreth-Holm-Swarm) tumor-derived
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reconstituted basement membrane (RBM), and /10, cl2-CLA  was more effective than c9, 

/11-CLA (Masso-Welch et al., 2002). The effect o f CLA on angiogcncsis in vivo was 

examined. CD2F1 mice were fed a diet with or without a mixture o f  CLA isomers (1% or 

2 %) for 6 weeks and injected subcutaneously with an angiogenic gel substrate composed 

o f RBM supplemented with (iFGF and heparan sulfate. At one-week post injection, mice 

were sacrificed, serum collected. RBM pellets were harvested and histologically 

examined. Results indicated that functional angiogenesis i.e. formation o f red blood cell 

containing vessels was decreased by -8 0  %. Both serum and mammary gland 

concentrations o f  VEGF and its receptor flk-1 were also significantly decreased in CLA 

fed animals. I he effect o f individual isomers on angiogenesis and the effect o f  CLA on 

angiogensis during tumor development in the mouse o r rat models warrant further 

research.
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1.15 Other health benefits

Obesity is a major health problem and so CLA’s ability to favourably influence body 

composition has received considerable attention. CLA has been shown to reduce body fat 

and increase lean mass in mice (Park et al., 1997, West et a l, 1998). rats (Houseknccht et 

a l, 1998, Sisk et a l, 1998), pigs (Dugan et al., 1997, Ostrowska et al., 1999) and 

hamsters (Gavino et al., 2000). CLA 's effect on body composition appears to be dose 

dependent and independent o f dietary fat content. It is now emerging that this effect on 

body composition may be isomer specific with evidence suggesting that the / 10, c l2- 

CLA isomer could be responsible for the CLA-associated body compositional changes 

(Gavino et al., 2000, Park el al., 1999). A number o f  possible mechanisms have been 

proposed to explain how CLA affects body composition. These include an increase in 

metabolic rate and reduced resting energy expenditure (West et al., 1998), an increase in 

fat oxidation (Park et al.. 1997), induced apoptosis in the adipose tissue (Tsuboyama- 

kasaoka et al., 2000). inhibition o f  faty acid synthesis (Choi et al.. 2000) and inhibition o f 

adipocyte differentiation (Brodie et al., 1999). CLA supplementation (ranging from 3 to 7 

g/day) had no significant affect on body weight in any o f the human studies (review in 

Calder, 2002). In five out o f ten studies, CLA supplementation decreased body fat while 

lean body mass was increased in two studies. There arc several reasons to explain why 

CLA did not consistently affect body weight as was found in the animal studies. The dose 

o f CLA provided was much lower per unit body weight than used in the animals. The 

CLA isomeric mixtures fed to the human subjects may not have provided sufficient 

amounts o f the /10, cl2-CLA isomer which has been shown to possess the anti- 

adipogenic activity. The human subjects were all adults rather than growing animals.
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Also, none o f the animal studies involved obese animals or restricted caloric intake. 

There also is a huge difference in the metabolic rate between mice and humans (Terpstra, 

2001). It also has been suggested that CLA is a more powerful tool to ‘treat the regain’ 

rather than obesity.

Animal studies have provided evidence to suggest that CLA might benefit cardiovascular 

health (reviewed in Whigham el al.. 2000). Using rabbit (Lee el al., 1994), hamster 

(Nicolosi el al., 1997) and mouse (Munday el al., 1999) models it was found that addition 

o f 0.1 to 1 % (w/w) CLA to an atherogenic diet reduced blood levels o f total cholesterol 

and low-density lipoproteins (LDL)-cholesterol and and triglycerides. In rabbits and 

hamsters, but not mice, feeding CLA up to 1 % (w/w) reduced the severity o f  aortic 

atherosclerotic lesions. Feeding CLA induced regression o f pre-established lesions in 

rabbits (Kritchevsky el al., 2000). There is evidence to suggest that tIO, cl2-CLA is more 

effective than c9, tll-C L A  in reducing serum lipid levels (dc Dcckere el al.. 1999, 

Gavino el al., 2000). Studies examining CLA's affect on blood lipid profile in humans 

have yielded varying results. Only in one study were significant reductions in LDL, high- 

density lipoproteins (HDL) and total cholesterol observed (Blankson el al., 2000) but 

differences were not deemed clinically significant. In two other studies no significant 

changes in serum lipids were observed (Benito el al., 2001, Riscrus el al., 2001).

Thiaz-olidinediones are a new class o f drugs that act by improving insulin action, thereby 

lowering blood sugar levels in patients with diabetes (Lehmann el al., 195). lliey are 

thought to trigger adipocyte differentiation and maturation, leading to improved glucose
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uptake and a concomitant reduction in scrum glucose levels via activation o f the steroid 

hormone receptor PPARy. It is now believed that CLA acts in a similar manner to 

thiazolidincdiones and so may represent a new insulin-sensitising agent to aid in the 

management o f type II diabetes. The Zucker diabetic fatty (ZDF) rat spontaneously

develops diabetes at age 7 to 12 weeks and is used as an animal model for type II

diabetes. CLA treatment normalised glucose tolerance, improved hypcrinslinacmia and 

lowered circulating free fatty acids which prevented or delayed the onset o f 

hyperglycemia in this ZDF rat model (Houscknccht el al., 1998). A study by Ryder and 

co-workers (2001) indicate that the /10, cl2-CLA isomer may be responsible for the 

beneficial cfleet on diabetes. Belury and colleagues are currently conducting a study in 

human subjects with type 2 diabetes taking CLA supplements.

CLA may enhance immune function via modulation o f  cicosanoid formation. 

Eicosanoids are produced by numerous types o f  immune cells and are thought to regulate 

cytokine synthesis and inflammation. Initial studies demonstrated that immune-induced 

weight loss (cachexia) in chickens and rats could be prevented by CLA (Cook et al., 

1993). CLA reduced antigen-induced histamine and PGE2 in guinea pig tracheae 

suggesting that CLA may play a role in the regulating o f  type I hypersensitivity

(Whigham et al., 2001). In a mouse model o f  the autoimmune disorder, lupus

erythematosis, dietary CLA exacerbated early stage but delayed late stage symptoms of 

lupus (Yang et al., 2000). CLA has been shown to reduce the levels o f  certain 

macrophage and monocyte cytokines such as tumor necrosis factor-a (Turek et al., 1998) 

and interleukin-1 (Wong el al.. 1997). A short-term study where healthy young women
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were fed 3.9 g/day CLA found no beneficial or adverse effects on immune status (Kelley 

et a l,  2000).

CLA may have a positive eiTect on bone formation (reviewed in Watkins and Seifert,

2000). Watkins el al., (1997) reported that butterfat (a natural source o f CLA) led to a 

higher rate o f bone formation in chickens compared with those given diets containing 

higher amounts o f n-6 fatty acids. The higher bone formation was associated with a 

reduction in ex vivo PGE2 (a bone absorption factor) production and an increase in 

insulin-like growth factor-1 (a bone growth factor). Bone organ cultures o f tibia and 

femur from rats fed CLA (1%) showed a significant reduction in PGE2 production 

compared to animals not fed CLA. Rat pups exposed to CLA (0.5 %), either in utero or 

during the first seven days o f  life, had significantly longer tail lengths (a measure o f 

skeletal growth) compared with pups fed a diet without CLA (Poulos el al., 2001).

To date toxicology studies in rats fed CLA (1.5 % o f diet) have not revealed 

hematological abnormalities nor any evidence o f  histopathological damage to organs 

after 36 weeks o f feeding (Scimeca, 1998). However, hepatomegala has been reported in 

some mice fed CLA (1 % o f diet) (Delany el al., 1999, 2000, Tsuboyama-Kasaoka el al., 

2000).
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1.16 Aims

The aims o f this research were to investigate specific mechanisms o f action that may be

responsible for the anticarcinogenic effect o f synthetic CLA isomers in human cancer cell

lines and to compare these effects with those induced by milk fat triglyceride bound

CLA.

1.17 Specific objectives

• To evaluate the relative growth effects o f  a synthetic mixture o f CLA isomers, pure

c9, t\ l- and /10, c l2- CLA on human breast (MCF-7) and colon (SW480) cancer cell

lines by examination o f viability.

• To investigate if the growth suppressive efTects o f CLA are modulated via alterations

in arachidonic acid (AA) metabolism, i.e. AA uptake, distribution, release and

conversion to eicosanoid classes in breast (MCF-7) and colon (SW480) human cancer 

cell lines.

• To elucidate whether apoptosis is the mode o f death induced by CLA isomers in the 

colon (SW480) tumor cell line by examining the effect o f CLA isomers on ccll 

morphology, DNA laddering and a panel o f apoptosis regulatory proteins.

• To examine the bioconversion capabilities o f human breast (MCF-7) and colon 

(SW480) cancer cells to convcrt trans-\acccn\c acid to c9, /11-CLA.
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•  To compare the relative growth effects o f the synthetic c9, /11-CLA isomer with 

CI.A-enriched milk fat. consisting primarily o f  the c9, t\ 1 isomer present in 

triglyceride bound form, on human breast (MCF-7) and colon (SW480) cancer cells.
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CHAPTER 2

Modulation of arachidonic acid distribution 

by conjugated linoleic acid isomers and 

linoleic acid in MCF-7 and SW480 cancer

cells.1

1 Published in Lipids 36: 1161-1168. 2001.
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2.1 Introduction

Compelling evidence indicates that CLA. a derivative o f linoleic acid, found in milk and 

ruminant fats, is among the more potent naturally occurring anticarcinogens. In vivo 

model studies o f experimental carcinogenesis have revealed that the synthetic mixture o f 

CLA isomers containing 2 1 % cl I, / 13, 29 %  / I 0, c*l2, 29.5 %  c9, /l l and 12.3 % c8, /10 

(Sehat et al., 1998) possess powerful inhibitory effects on mammary, colon, forestomach 

and skin carcinogenesis in rodents (Ip et al., 1991, Ha et al., 1990, Belury et al., 1996, Ip 

et al. 1996, Ip et al., 1997a, Ip. et al., 1997b, Liew et al., 1995). Other physiological 

benefits include a reduction in severity o f atherosclerotic plaques, improvement o f 

glucose tolerance in diabetic animals, body fat reduction, enhanced immune responses 

and positive effects on bone formation all o f  which have been well documented in 

numerous reviews (Pari/a et al., 2000, MacDonald, 2000. Pariza 1990, Cook and Pariza,

1998). The specific CLA isomers which possess biological activity have not yet been 

clearly identified. Most o f  the mechanistic work to explain the potent anticancer effects 

o f  CLA has involved a commercial free fatty acid preparation containing up to sixteen 

different CLA isomers (Sehat et al.. 1998). The availability o f  the pure isomers o f  c9, 

/ l l -  and /10, cl2-CLA has paved the way for determining the magnitude o f biological 

responses o f  these isomers, which arc predominantly present in the synthetic CLA 

mixture and which arc produced by ruminants (Parodi. 1977) and consequently found in 

the human diet. A study by Ip et al. revealed that CLA enriched butterfat, containing 

predominantly the c9, / 11-CLA isomer, had a powerful protective effect against the risk 

o f mammary cancer development in rodents (Ip et al., 1999).
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The mechanisms by which CLA exerts its anticarcinogenic effects have not yet been fully 

elucidated. Induction o f apoptosis by CLA via down-regulation o f  a membrane protein 

bcl-2 has been reported to be the mode o f  cell death in cultured mammary tumor cells and 

in differentiated colonies o f mammary epithelial organoids (Ip et al., 2000). The 

incorporation o f CLA isomers into membrane phospholipids o f breast, skin and liver 

tissue has been reported but with variable levels o f  displacement from membranes o f LA 

and AA (Ip et al., 1997b. Belury and Kcmpasteczko, 1997, Liu and Belury, 1998, Banni 

et al., 1999, O’Shea et al., 2000). This suggests that CLA may influence the fatty acid 

composition o f cell membranes resulting in alterations in eicosanoid production and other 

signal transduction pathways downstream o f  the cell membrane. Eicosanoids, comprising 

prostaglandins and leukotrienes, are a family o f membrane-derived lipid mediators that 

have been an attractive target for cancer chemoprevention (Marks et al.. 2000). Research 

has shown that CLA can affect the synthesis o f  eicosanoids, in particular PGE2 (Belury 

and Kempastcczko, 1997), a prostanoid that has been shown to promote growth and 

metastasis in many experimental tumors (Fulton 1998).

The mammary (MCF-7) and colon (SW480) tumor cell lines have been used as in vitro 

models to investigate the mechanisms by which CLA may affect breast and colon cancer. 

The MCF-7 epithelial ccll line retains several characteristics o f differentiated mammary 

epithelium including the ability to process estradiol via cytoplasmic estrogen receptors 

(Brandes et al.. 1983). The SW480 cell line, which was established from a primary 

adenocarcinoma o f  the colon, is a dedifferentiated cell line which expresses elevated 

levels o f  the p53 protein, mutated ras and small amounts o f carcinoembryonic antigen
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(Leibovitz et al., 1976). The mixture o f CLA isomers induced a dose- and time- 

dependent cytotoxicty against both cell lines and this effect was accompanied by an 

increased lipid peroxidation (O'Shea et al., 1999). That the anticanccr effect o f  Cl.A 

may be due in part to a redistribution o f  AA among cellular lipids which might influence 

oxidative susceptibility o f particular membrane phospholipids and/or alter eicosanoid 

synthesis during tumor growth.

2.2 Objectives

This study was undertaken to examine the modulatory effects o f  CLA isomers on cell 

viability in addition to AA uptake, distribution, release and conversion to eicosanoid 

classes in breast (MCF-7) and colon (SW480) human cancer cell lines. The effcct o f  CLA 

or LA presented as 1) Fatty acids dissolved in ethanol, 2) Sodium salts o f fatty acids or 3) 

Sodium salts o f  fatty acids complexed to BSA (lOmg/ml) on cell growth was also 

evaluated

2.3 Materials and methods

2.3.1 Materials

l4C-AA (specific acitivity, 55mCi/mmoI), Biotrak enzyme immunoassay kit for LTB4 and 

radioreceptor kit for IP3 were purchased from Nycomed Amersham (Little Chalfort. 

Buckinghamshire. UK). The CLA mixture (21 % cl 1, /13, 29 % /10, c l2 , 29.5 % c 9 ,111 

and 12.3 % c8, /10) (Sehat et al.. 1998) was obtained from Nu Chek Prep (Elysian, MN, 

USA). Individual CLA isomers, c 9 ,111 and 110, c l2  (both 95 % pure), were purchased 

from Matreya (Pleasant Gap, PA, USA). LA, authentic PGE2, PGF2a, PGD2, 5-IIPETE,
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phospholipid standards, Supelclean LC-18 SPE columns, trypan blue and bovine serum 

albumin (BSA) solution were all purchased from Sigma Chemical Co. (Poole, Dorset, 

UK). Silica Sep-Pak columns were obtained from Waters Corporation (Milford. MA, 

USA). The BIOXYTECH immunoassay kit for 8-epi-PGF2a was obtained form Bio-Stat 

(Stockport, UK). DC-Alufliien Kiescgcl 60 thin layer chromatography (TLC) plates 

were obtained from Lennox (Dublin, Ireland). The CeHTitre®AQUeo»*Non-Radioactive 

Cell Proliferation Assay kit was purchased from Promega (Southampton, UK). All other 

chemicals and solvents used were HPLC grade.

2.3.2 Cell culture

Human breast (MCF-7) and colon (SW480) cancer cell lines were obtained from the 

American Type Culture Collection, (Manassas, VA). Culture media and supplements 

were purchased from GIBCOBRL (Paisley, Scotland). Both cell lines were maintained in 

Dulbecco's Minimum Essential Medium (DMEM) supplemented with fetal bovine serum 

(5 % v/v), 0.2 mM L-glutamine, 1 mM IIEPES, and 1 unit/ml penicillin and 

streptomycin. The MCF-7 cells required an additional supplement o f 10 mM sodium 

pyruvate. Cells were grown in Falcon T-25 cm2 flasks and maintained as previously 

described (O’Shea et al., 1999).
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2.3.3 Comparison of fatty acid delivery methods

MCF-7 and SW480 cells were seeded in 6 well plates at densities o f  1 x 105/well and 5 x 

104/well respectively. The seeding densities used for both cell lines were selected from 

cell seeding optimisation studies for 4 days incubation. Cells were cultured for 24 h to 

allow the cells attach to the substratum. The medium was then replaced with medium 

supplemented with the CLA mixture o f  isomers (Nu-Chek Prep) or linoleic acid (I.A) at a 

range o f concentrations (5, 10, 16 and 20 ng/ml) presented in three different forms: 1) 

Fatty acids dissolved in ethanol, 2) Sodium salts o f  fatty acids or 3) Sodium salts o f fatty 

acids complexed to BSA (lOmg/ml). The Sodium salts and BSA complexes were 

prepared as outlined by Ip el al., 1999. In brief, 1ml o f  CLA or LA stock (O.lg/ml 

dissolved in ethanol, this being a 0.35M solution) was mixed with 1ml o f  equimolar 

sodium hydroxide. The fatty acid concentration in the resulting solution was 

50,000ng/ml. This solution was then diluted to a fatty acid concentration o f 20,000 ng/ml 

in DMF.M containing lOmg/ml BSA. This mixture was warmed to 37°C, warmed to 50°C 

and then further diluted in DMEM to achieve the CLA or LA concentrations required. 

Control wells for fatty acid treatments dissolved in ethanol were supplemented with an 

equivalent volume o f ethanol (0.1 % v/v). Following 4 days o f  incubation, cells were 

harvested using phosphate buffered saline (PBS) containing 0.25 %  (v/v) trypsin. Cell 

viability was determined using the trypan blue exclusion (0.4 % w/v) method. Trypan 

blue will stain dead or dying cells. Viable cells are able to exclude the dye and do not 

stain.
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The comparative effects o f four different fatty acid preparations on cell viability was 

evaluated: 1. the CLA mixture o f isomers, 2. the pure c9, t 11-CLA isomer, 3. the pure 

/10, c l2-CLA isomer and 4. LA. MCF-7 and SW480 cells were seeded in 96 well plates 

at densities o f  1 x 103/well and 5 x 102/well, respectively. The seeding densities used for 

both cell lines were selected from ccll seeding optimisation studies in 96 well plates. 

Cells were cultured for 24 h to allow the cells attach to the substratum. The medium was 

then replaced with medium supplemented either the CLA mixture o f  isomers, the pure c9, 

/l 1-CLA, the pure /10, cl2-CLA, or LA at two different lipid concentrations: 5 and 16 

Hg/ml corresponding to 17.8 jiM and 57 jiM, respectively. The CLA concentrations used 

have been reported to be within the physiological range o f concentrations o f the c9, t i l  

isomer in human phospholipids (Cawood et al., 1983) plasma, bile, duodenal juice 

(Iversen et al., 1985) and have been previously used in cell culture work (Shultz et al.,

1992). The fatty acids were dissolved in ethanol and so control wells were supplemented 

with equivalent volumes o f  ethanol (0.25 or 0.8 % v/v). After 24 h and 4 days o f  

incubation, viable cell numbers were quantified using the CellTitre^AQucou* Non- 

Radioactive Ccll Proliferation Assay kit. The CellTiter 96* AQu«hi> Assay was composed 

o f solutions o f a novel tetrazolium compound 3-(4,5-dimcthylthiazol-2-yl)-5-(3- 

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt (MTS) and an electron 

coupling reagent phenazinc mcthosulfate (PMS). After the 24 h or 4 day incubation 

period the medium o f each well was replaced with 100 nL o f fresh medium, 200 [iL o f 

MTS solution was added and plates were incubated for 4 hours at 3T*C. During this time 

the MTS was bioreduced by cells into a formazan product that was soluble in tissue

2.3.4 Quantification of cell numbers.
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culture medium. The conversion o f  MTS into the aqueous soluble formazan product was 

accomplished by dehydrogenase enzymes found in metabolically active cells. After the 4 

hours the absorbance o f  the formazan product was measured at 492nm using an Anthos 

2010 plate reader. The quantity o f formazan product as measured absorbance was directly 

proportional to the number o f  living cells in culture.

2.3.5 Lipid extraction and fractionation

Cells were seeded in T-25 cm2 flasks at a density o f  2 x 105/flask and grown to 90 % 

conflucncy. The MCF-7 and SW480 cells reached 90 % confluency after 4 and 3 days, 

respectively. The medium was then replaced with medium containing 1 ‘C-AA at 0.2 jiCi 

along with either the CLA mixture o f isomers, the pure c9, t\ 1-CLA. the pure /10, c l 2- 

CLA or LA, all at a lipid concentration o f 16ng/ml (57 ^M). The CLA mixture o f 

isomers at a lipid concentration o f 16^g/ml yielded a c9, /l  1-CLA and /10, c 12-CLA 

concentration o f  approximately 4.7 ng/ml (17 jiM) each. Control flasks were 

supplemented with an equivalent volume o f ethanol (0.8 % v/v). After 24 h incubation, 

cells were harvested using phosphate buffered saline (PBS) containing trypsin (0.25 % 

v/v). Total lipids were extracted from cell pellet as described (Bligh and Dyer, 1959), 

dried under nitrogen, rcdissolved in chloroform and applied to a silica Sep-Pak column to 

separate the triglyceride (TG), monoglyceride (MG) and phospholipid (PL) fractions as 

described (Cantwell et a l, 1999). An aliquot o f  each fraction was counted in a Beckman 

LS6500 scintillation counter before being dried under nitrogen. The PL fraction was 

separated using normal phase TLC. Samples were co-migrated with authentic standards 

o f phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylserine PS and
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phosphatidylethanolamine (PH). Chlorolorm/mcthanol/acctic acid (65:45:4, v/v) was 

used to separate the phospholipids (Liu and Belury 1997). Iodine vapors were used to 

identify the position o f the phospholipids compared with standards and these bands were 

removed from TLC plates and placed in vials for counting by liquid scintillation.

2.3.6 Phospholipase C activity.

Inositol triphosphate (IP3 ) was used as an index o f phospholipase C activity. Cells were 

treated with the four different fatty acid treatments (all at 16 Hg/ml) or ethanol as 

described above. After 24 h incubation the cells were harvested as described above and 

IP3 was extracted from cells using a perchloric acid (10% v/v) extraction method 

previously described by Palmer (Palmer ei al., 1986). A radioreceptor assay kit (Biotrak 

D-myo-Inositol 1,4,5-triphosphate assay system) was used to quantify IP3 levels in 100 

(¿L of extract according to the manufacturer’s instructions. This assay is based on 

competition between a [3H] IP3 tracer and unlabellcd IP3 in the standards or samples for 

binding to a bovine adrenal cortex protein. The bound IP3 was then separated from the 

free IP3 by centrifugation, which brought the binding protein to the bottom o f the tube. 

The free IP3 in the supernatant was discarded by decantation leaving the bound fraction 

adherent to the tube. The pellet was resuspended in 1 mL o f water which was decanted 

into 10 mL o f  scintillation fluid for counting. Measurement o f the radioactivity enabled 

the amount o f unlabelled IP3 in the sample to be determined by interpolation from a 

standard curve.
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2.3.7 Release of 14C-AA derivatives.

Cells were seeded in T-25 cm ' flasks at a density o f  2 x 105/flask and grown to 80 % 

confluency. Medium was replaced with medium containing l4C-AA (0.2 ^Ci) and 

incubated for 24 h. After removal o f media, cells were washed three times with 

phosphate-buffered saline (PBS), before addition o f medium containing the four different 

fatty acid treatments (all at 16 Mg/ml) or ethanol as described earlier. After 24 h, medium 

containing the released l4C-AA derivatives was removed and an aliquot was counted by 

liquid scintillation.

2.3.8 Primary Prostaglandins and 8 -epi-PGF2u.

Cells were seeded and treated with l4C-AA at 0.2 ^Ci along with the four different fatty 

acid treatments (all at 16 ng/ml) or ethanol as described previously. After 24 h 

incubation the medium were removed from the flasks and eicosanoids were extracted 

twice with ethyl acetate from medium acidified to pH 3.0 with 0.1 N HC1 as described 

(Liu and Belury, 1998). Eicosanoid extracts were dried under nitrogen, redissolved in 

ethyl acetate and applied onto normal phase TLC plates. Ethyl acetate/iso-octane/glacial 

acetic acid/water (55:25:10:50, by vol) was used to separate prostaglandins (PG) (Belury 

and Kempasteczko, 1997). Samples were co-migrated with authentic standards o f  PGE2, 

PGF2u, and PGD2. Iodine vapors were used to identify the position o f  each PG compared 

with the standards. Bands o f PGE2, PGF2a, PGD2 were removed from TLC plates and 

placed in vials for counting by liquid scintillation. For the 8-cpi-PGF2tI assay, culture 

medium was collected after 24 h incubation with the fatty acids treatments described 

earlier and 8-epi-PGF2a was extracted as described (Watkins el al.. 1999). Briefly,
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ethanol was added to the medium to a final concentration o f 15 % (v/v) and acidified to 

pH 3.0 with formic acid (98 % v/v). The sample was applied to Supclclean LC-18 SPE 

columns and washed with water (adjusted to pH 3.0 with formic acid), 15 % (v/v) ethanol 

in water (pH 3.0) and hexane. Ethyl acetate containing 1 % (v/v) methanol was used to 

elute 8-epi-PGF2a. The eluate was dried under nitrogen, resuspended in assay buffer 

(BIOXYTECH) and a competitive horseradish peroxidase enzyme-linked immunoassay 

kit (BIOXYTECH 8-Isoprostane assay system) was used to quantify 8-epi-PGF2a levels 

according to the manufacturer’s instructions. The 8-epi-PGF2a in the sample or standards 

competed for binding (to the antibody coated on the plate) with 8-epi-PGF2« conjugated 

to horseradish peroxidase (HRP). The peroxidase activity resulted in colour development. 

The intensity o f  colour development was proportional to the amount o f 8-epi-PGF2a-HRP 

bound and inversely proportional to the amount o f  8-epi-PGF2Q in the samples or 

standards.

2.3.9 5-Hydroperoxyeicosatetraenoate and Leukotriene B4.

Cells were seeded and treated with the four different fatty acid treatments (all at 16 

Hg/ml) or ethanol as described earlier. For the 5-HPETE assay, cells were lysed using 

Triton-X 100 (0.1 % v/v). The assay was initiated by the addition o f  50 nL o f AA (70 

mM prepared in 50 mM Tris-HCl buffer, pH 4) to 50 j.iL o f cell lysate in an ice-cold 96- 

well plate and incubated at 37°C for 10 min. The reaction was terminated by the addition 

o f  IOOjiL o f  the FOX reagent: sulfuric acid (25 mM), xylenol orange (100 ^M), iron (II) 

sulfate (100 ^M), methanol:water (9:1 v/v) (Waslidge el al.. 1995). Absorbance was
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measured at 620nm using an Anthos 2010 plate reader. For the LTB4 assay, eieosanoids 

were extracted from the medium as described earlier and dried under nitrogen. An 

enzyme immunoassay kit (Biotrak leukotriene B4 enzyme immunoassay system) was 

used to quantify LTB4 levels according to the manufacturer's instructions. This assay is 

based on the competition between unlabelled LTB4 and a fixed quantity o f  peroxidase 

labelled LTB4 for binding sites on a LTB4 specific antibody.

2.3.10 Statistical analysis.

Three independent experiments were performed in triplicate. The Student’s I test was 

used to determine significant differences between treatments.

2.4 Results

2.4.1 Comparison of fatty acid delivery methods

It is important that cell culture conditions mimic the in vivo environment as best they can. 

The presence o f  albumin, important in vivo for binding and transporting PUFA in the 

blood may have a role as free fatty acids may be more able to enter cells than when 

bound as large albumin complexes. In this study, the effect o f presenting CLA to cells as 

a sodium salt complexed with BSA (10 mg/ml) was evaluated and compared with 

presentation o f CLA in free fatty acid form dissolved in ethanol (0.1 % v/v). CLA (5, 10, 

16 and 20 jig/ml) complexed with bovine serum albumin (lOmg/ml) reduced growth of 

SW480 cells by 33-42 % relative to control but was significantly less toxic (p<0.05) than 

free CLA which inhibited growth by 48-55 % (Figure 2.1). Complexing LA (16 and 20 

jig/ml) to BSA reduced growth (p<0.05) in SW480 cells relative to incubation with the
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free LA, though at lower concentrations (5 and 10 fig/ml) no significant differences were 

observed. Interestingly, complexing either CLA or LA with BSA produced effects in 

MCF-7 cells similar to the corresponding free fatty acids (Figure 2.2). The data indicate 

that the physiological form o f presentation o f  CLA is cytotoxic to both cell lines, the 

magnitude o f which (28-45 %) was lower but not significantly different to the free fatty 

acid form (47-54 %) in the MCF-7 cell line.

The effect o f presenting CLA as a sodium salt to cells instead o f free fatty acid was also 

examined. Sodium salts o f CLA (5, 10, 16 and 20 ng/ml) were relatively more toxic 

(p<0.05) to SW480 cells than corresponding free CLA concentrations (Figure 2.1), while 

MCF-7 cclls were equally as sensitive to growth inhibition by the sodium salt and the 

free fatty acid (Figure 2.2). As expected, complexation with BSA reduced the cytotoxic 

effect o f sodium salt.

In summary, the free fatty acid form of CLA produced cytotoxic effects that were 

intermediate between those observed following incubation with the sodium salt 

complexed with BSA and the non-protein bound sodium salt.
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Figure 2.1 The effect of the CLA mixture o f isomers (Nu-Chek Prep) or LA at a range o f  

concentrations (5, 10, 16 and 20 ng/ml) presented in three different forms (1. Fatty acids 

dissolved in ethanol, 2. Sodium salts o f fatty acids or 3. Sodium salts o f fatty acids 

complexed to BSA (lOmg/ml) on SW480 cell growth after 4 days incubation. Data is 

expressed as a mean percentage o f  control for three independent experiments carried out 

in triplicate. Abbreviations: Sodium Salt, SS; BSA, bovine serum albumin.
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Figure 2.2 The effect o f CLA mixture o f isomers (Nu-Chek Prep) or LA at a range o f 

concentrations (5. 10, 16 and 20 ng/ml) presented in three different forms (1. Fatty acids 

dissolved in ethanol, 2. Sodium salts o f  fatty acids or 3. Sodium salts o f  fatty acids 

complexed to BSA (lOmg/ml) on MCF-7 cell growth after 4 days incubation. Data is 

expressed as a mean percentage o f control for three independent experiments carried out 

in triplicate. Abbreviations: Sodium Salt, SS; BSA. bovine serum albumin.
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2.4.2 Effect of CLA isomers on cell viability

MCF-7 and SW480 cells were incubated for 24h and 4 days with the CLA mixture o f 

isomers, c9, t\ 1-CLA, I10, cl2-CLA and LA at two different lipid concentrations (5 and 

16 ng/ml corresponding to 17.8 nM and 57 ^M, respectively). None o f the fatty acids at 

either 5 ng/ml or 16 jig/ml significantly altered ccll viability after 24 h. The CLA 

mixture o f isomers (16 |ig/ml) caused a reduction in ccll viability after 4 days in both cell 

lines with a greater reduction noted in MCF-7 cells (58 %) (Figure 2.3) compared with 

SW480 cells (52 %) (Figure 2.4). The c9, t\ 1-CLA isomer caused a similar reduction 

(-50  %) in cell viability to the CLA mixture o f isomers following 4 days o f incubation at 

both 5 Mg/ml and 16 ¿ig/ml. In both ccll lines, the /I0, c!2-CLA isomer at 5 ng/ml and 

16 ng/ml reduced viability by 38-39 % and 50-60 % respectively following 4 days o f 

incubation. Incubation o f SW480 cells with LA (16 jig/ml) for 4 days increased cell 

viability by 23 % but the lower concentration o f 5 jig/ml had no effect at either time point 

(Figure 2.3). LA (5 and 16 ng/ml) had no effect on the viability o f  MCF-7 cells 

following 4 days o f incubation in this study.
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Figure 2.3 Cell viability for MCF-7 cells incubated with 5 or 16 ^g/ml CLA mixture. c9, 

t\ 1-CLA, i 10, cT2-CLA. LA or ethanol control for 24 h and 4 days. Data represents cell 

viability expressed as a percentage o f the control which was taken to be 100 %  (** 

denotes p<0.001, * denotes p<0.02 and t  denotes p<0.05). Data is expressed as the 

percentage mean ± SD for three separate experiments carried out in triplicate.
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Figure 2.4 Cell viability for SW480 cells incubated with 5 or 16 ng/ml CLA mixture, c9, 

/11-CLA, /10, cl2-CLA, LA or ethanol control for 24 h and 4 days. Data represents cell 

viability expressed as a percentage o f the control which was taken to be 100 % (** 

denotes p<0.001, * denotes p<0.02 and t  denotes p<0.05). Data is expressed as the 

percentage mean ± SD for three separate experiments carried out in triplicate.
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2.4.3 Effect of CLA isomers on incorporation of 14C-AA into cellular lipid fractions.

One o f the mechanisms involved in growth suppression is an alteration in the AA cascade 

o f  events leading to cicosanoid production (Liu and Belury, 1998). In order to examine if 

cellular AA distribution was altered by CLA, we investigated the effect o f CLA isomers 

on incorporation o f “ C-AA into cellular lipid fractions. I4C-AA was preferentially 

incorporated into the PL fraction in untreated and CLA treated MCF-7 cells and SW480 

cells (Table 2.1 and 2.2). Levels o f  uptake into PL, TG, and MG were 60 %, 33 % and 7 

%, respectively, in control MCF-7 cells (Table 2.1). I4C-AA uptake into the MG 

fractions was increased in MCF-7 cells treated with the CLA mixture p<(0.05) (7.2 %) 

and the pure c9, 111-CLA isomer (p<0.02) (16.6 %). None o f  the fatty acid treatments 

had any effect on uptake o f  l4C-AA into the TG and PL fractions o f  the MCF-7 cell line.

Table 2.1 Effect o f  Fatty Acid Treatments on Incorporation o f 14C-AA into Lipid 

Fractions o f MCF-7 cells'.

Fatty acid treatment
MCF-7

MG TG PL
Control 7.0 ± 1.3 33.5 ± 5.2 59.5 ± 6.2

CLA mixture 14.8 ± 1.6b 28.4 ± 1.2 56.8 ± 2.8

c9,/11-CLA 23.6 ± 1.0* 26.4 ±4.1 49.9 ±5.1

/12, cl2-CLA 6.2 ± 0.8 34.4 ± 4.5 59.5 ±5.1

LA 10.3 ±2.0 31.2 ± 3.3 58.4 ± 5.2

'D ata represent the mean percentage o f  total cellu lar lipids ±  S I) for three separate experim ents carried out 
in triplicate. Letters indicate values that are significantly different com pared to  controls ( 'd e n o te s  p<0.02 
and *’ denotes p<0.05). Abbreviations: CLA . conjugated linoleic acid; LA, linoleic acid; MG, 
monoglyceride; TG, triglyceride; PL, phospholipid.

108



Levels o f uptake into PL, TG and MG were 76 %, 21 %, and 3 %, respectively, in control 

SW480 cells (Table 2.2). In contrast with MCF-7 cells, uptake o f l4C-AA into PL was 

significantly lowered (p<0.02) (-25 %) in the SW480 cells treated with the CLA mixture 

and c9, 111-CLA, while both the CLA mixture and c9, /11-CLA increased AA uptake 

into TG (25-30 %) (p<0.05). These data suggest that l4C-AA uptake into TG occurred at 

the expense o f PL in the SW480 cell line. None o f the fatty acid treatments had any 

effect on uptake o f  14C-AA into the MG lipid fraction o f the SW480 cells. The /10, c l2 - 

CLA isomer and LA (both at 16^ig/ml) had no effect on l4C-AA incorporation into any of 

the lipid fractions in either cell line.

Table 2.2 Effect o f Fatty Acid Treatments on Incorporation o f i4C-AA into Lipid 

Fractions o f SW480 cells'.

SW480
Fatty acid treatments

MG TG PL
Control 2.9 ± 0.9 2 1.0  ± 0.6 76.1 ±1.5

CLA mixture 3.8 ± 1.0 47.2 ± 3.2* 48.9 ± 2.2a

c9, t\ 1-CLA 4.7 ± 1.3 45.7 ± 6. l b 49.6 ± 7.2“

M2, cl2-CLA 4.0 ± 1.9 22.1 ±4 .2 73.4 ± 5.7

LA 3.8 ± 2 .0 26.0 ±9.1 70.1 ±7.6

‘Data represent the mean percentage o f  total cellular lipids ±  SD for three separate experim ents carried out 
in triplicate. Letters indicate values that are significantly different com pared to  controls (“ denotes p<0.02 
and h denotes p<0.05). Abbreviations: C LA , conjugated linoleic acid; LA, linoleic acid; MG, 
m onoglyceride; TG, triglyceride; PL. phospholipid.

109



2.4.4 Effect of CLA isomers on 14C-AA distribution among phospholipid fractions.

Having shown that ,4C-AA was preferentially incorporated into the PL fraction o f CLA 

treated cells, we examined the effect o f  CLA isomers on l4C-AA distribution among 

individual PL. PC and PL were the predominant PL classcs in which l4C-AA was taken 

up by control cells. Levels o f  uptake into PC, PI, PS and PE were 45 %, 8 %, 6 % and 41 

%, respectively, in the MCF-7 control cells and 34 %, 3 %, 3 % and 60 %, respectively, 

in the SW480 control cells (Table 2.3 and 2.4).

Tabic 2.3 Effect o f  Fatty Acid Treatments on Incorporation o f l4C-AA into MCF-7 

Phospholipid Fractions'.

Fatty Acids 

treatments

PC PI PS PE

Control 44.4 ± 9.7 8.0 ± 2.8 6.2 ± 4.0 41.4 ±8.2

CLA mixture 33.5 ±3 .9 6.7 ± 3.7 11.4 ±5.6 48.4 ± 3.3

c9. t \ 1-CLA 11.6 ± 2.7a 4.3 ± 0.6 1.8 ±0.5 82.2 ± 3.5b

/10, cl2-CLA 27.5 ± 6.9 5.5 ± 1.7 10.8 ±6.5 56.3 ± 3.0

LA 33.5 ± 1.6 6.8 ± 3.0 3.7 ±3.1 55.9 ±7.7

‘Data represents the m ean percentage incorporation o f  total cellular phoshoplipids ±  SD for three separate 
experim ents carried out in triplicate. Letters indicate values that are significantly different com pared to 
controls (* denotes p<0.05 and b denotes p<0.02). Abbreviations: CLA , conjugated linoleic acid; LA, 
linoleic acid; PC, phosphatidycholine; PI, phosphatidylinositol; PS, phosphatidylserine; PE, 
phosphatidylethanolam ine.
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Tabic 2.4 Effect o f Fatty Acid Treatments on Incorporation o f 1 ‘C-AA into SW480 

Phospholipid Fractions1.

Fatty Acids 

treatments

PC PI PS PE

Control 32.5 ± 8.0 3.5 ± 0.3 2.5 ± 0.7 61.5 ±8.5

CLA mixture 25.9 ± 1.7 6.7 ± 1 .9 14.5 ± 1.2* 52.9 ±0.8

c9,/11-CLA 8.3 ± 0.2b 3.7 ±0.1 5.5 ± 2.2 82.5 ± 2. l b

/ 10, cl2-CLA 25.8 ±  8.2 10.6 ±4.4 9.1 ± 3 .6 b 54.4 ± 7.5

LA 36.7 ±  9.6 3.7 ± 1.1 3.2 ± 0.4 56.4 ± 8.5

'D ata represents the m ean percentage incorporation o f  total cellular phoshoplipids ±  SD for three separate 
experim ents carried out in triplicate. Letters indicate values that are significantly different com pared to 
controls (* denotes p<0.0l and b denotes p<0.05). Abbreviations: CLA , conjugated linoleic acid; LA, 
linoleic acid; PC, phosphatidycholine; PI, phosphatidylinositol; PS, phosphatidylserine; PF, 
phosphatidylethanolam ine.

O f all the treatments, only incubation with the pure c9, /11-CLA isomer altered the 

distribution o f UC-AA among PL classes in the MCF-7 cells (Table 2.3). The c9, / l l -  

CLA treatment at 16 ng/ml significantly (p<0.05) reduced uptake o f  UC-AA into PC (32 

%) and increased uptake into PE (41 %). The CLA mixture at 16 ng/ml (which yielded a 

c9. /11-CLA isomer concentration o f 4.7 ng/ml) had no effect. The /10, cl2-CLA isomer 

at 16 ng/ml had no effect on the incorporation o f l4C-AA into any o f the PL fractions in 

the MCF-7 cells.

Incubation o f the SW480 cell line with the c9, /l 1-CLA isomer (16 ng/ml) decreased 

uptake o f l4C-AA into PC by 24 % (p<0.01) and increased uptake into PE by 

approximately 20 % (p<0.01) (Table 2.4). In contrast with MCF-7 cells, both the CL.A 

mixture at 16 ^ig/ml (which yielded a /10, c l2  -CLA isomer concentration o f 4.7 ng/ml) 

and the /10, c l2  isomer (16 fig/ml) increased uptake into PS by 12-15 % (p<0.05) in the
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SW480 cell line. LA treatment had no efTecl on 1 ’C-AA distribution among PL fractions 

in either cell line. None o f the CLA isomers or LA had any clTect on the uptake o f  l4C- 

AA in PL

2.4.5 Effect of CLA isomers on AA release.

AA can be released by two major pathways, the first through the action o f  PLA2 which 

catalyses the hydrolysis o f  sn-2 fatty acyl bond o f membrane phospholipids to liberate 

free AA (Dennis, 1994) and secondly by sequential cleavage o f PI by PLC and 

diacylgyccride lipase (Ballsinde et al., 1991). IP3 levels were used as an index o f PLC 

activity in this study. The CLA mixture o f  isomers, the pure c9, / l l -  and /12, clO-CLA 

isomers and LA did not affect IP3 in cither cell line (Figure 2.5). Total l4C-AA derivatives 

were increased by 28 % (p<0.05) in SW480 cells treated with LA only, while none o f  the 

CLA isomers had any effect on the total level o f  l4C-AA derivatives released by cells 

(Figure 2.6).

112



1 4

12

10

E 8
0

1  6
n
Q.

i
Control

f

a  i

i

CLA c9, M1

L
/ 1 0 . c12 LA

Figure 2.5 Effect o f Fatty Acid Treatments on Inositol triphosphate (IP?) levels in MCF- 

7 and SW480 cells. Cultures were treated with either the CLA mixture, LA, c9, /11-CLA, 

110, cl2-CLA, (16 fig/ml) or ethanol and then incubated for 24 h. Cells were harvested 

and IP3 was extracted and quantifed using a radioreceptor assay kit. Data is expressed as 

the mean ± SD for three separate experiments carried out in triplicate.

113



g 450

Control CLA c9. M1 MO, c12 LA

Figure 2.6 The effect o f  treatments on total l4C-AA release in MCF-7 and SW480 cells. 

Cultures were treated with l4C-AA at 0.2 fiCi for 24 h after which medium was replaced 

to contain either CLA mixture, LA, c9, /11-CLA, 110, c 12-CLA, (16 ng/ml) or ethanol 

and then incubated for 24 h. Medium containing the released l4C-AA was removed and 

an aliquot was counted by liquid scintillation. Results were expressed as mean l4C-AA 

released (dpm) ± SI) for three separate experiments carried out in triplicate. * Denotes 

values that are significantly different (p<0.05) compared to controls.
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The effects o f various fatty acid treatments on enzymatic conversion o f A A to primary 

eicosanoids (PGD2, PGE2, PGF2a, LTB4 and 5-HPETE) and on its non-cnzymatic, free 

radical-catalyzed conversion to 8-epi-PGF2a. were examined. Following incubation o f 

MCF-7 and SW480 cells in the presence o f the CLA mixture and the pure c9, /11-CLA 

isomer at 16 fig/ml, it was found that MC-AA conversion to l,C-PGE2 was decreased by 

20-30 % (p<0.05) while conversion to l4C-PGF2U was increased by 17-44 % relative to 

control (Figure 2.7a and 2.7b). CLA treatments had a negligible effect on 1 C-PGD2. The 

/10, cl2-CLA isomer had no effect on the three prostaglandins examined in either cell 

line. LA significantly (p<0.05) increased l4C-PGD2 by 13-19 % in both cell lines and 

increased (p<0.05) l4C-PGE2 by 20 % in the SW480 cell line only. Incubation o f cells 

with either the CLA mixture o f isomers or the pure c9, t\ 1- or 110. cl2-CLA isomers did 

not alter LOX activity or LTB4 levels in the cells (Figure 2.8 and 2.9) suggesting that 

CLA may mediate its effect via the cyclooxygcnase component o f the AA cascade. 

Linoleic acid significantly increased LOX activity by 27 % (p<0.05) in the MCF-7 cell 

line (Figure 2.7) but had no effect in the SW480 cells compared with untreated controls. 

The c9, /l 1-CLA isomer significantly increased (p<0.02) 8-epi-PGF2« in MCF-7 and 

SW480 cells by 38 %  and 48 % respectively (Figure 2.7a and 2.7b). The /10, cl2-CLA 

isomer increased (p<0.05) levels o f 8-epi-PGF2« by 30 % in the MCF-7 cell lines but had 

no effect in the SW480 cells (Figure 2.7b). However treatment o f  both cell lines with the 

mixture o f CLA isomers and LA treatments had no relative effect in either cell line.

2.4.6 Effect of CLA isomers on eicosanoid synthesis.
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Figure 2.7 Effect o f treatments on primary prostaglandins and 8-epi-PGF2a synthesis in 

(a) MCF-7 and (b) SW480 cells. Cultures were treated with 0.2 fiCi/ml l4C-AA along

with either the CLA mixture, c9, l\ 1-CLA. /10, c*12-CLA and LA (16 fig/ml) or ethanol
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control for 24 h. Eicosanoids were extracted from medium and prostaglandins were 

separated using TLC and counted by liquid scintillation. Data represents the mean l4C- 

Prostaglandin synthesis expressed as a percentage o f  the control which was taken to be 

100 %  ± SI) for three separate experiments carried out in triplicate. 8-epi-PGF2a levels 

were quantified using an enzyme immunoassay kit from Bioxytech. Asterisks indicate 

values that are significantly different compared to controls (**denotes p<0.02 and 

♦denotes p<0.05).
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Figure 2.8 Effect o f treatments on Lipoxygenase (LOX) activity in MCF-7 and SW480 

cells. Cultures were treated with either the CLA mixture. LA, c9, /11-CLA. /10, c l2 - 

CLA, (16 ug/ml) or ethanol and then incubated for 24 h. Cells were harvested, lysed and 

analysed for LOX activity using a colorimetric assay. ^Denotes values that are 

significantly different (p<0.05) compared to controls. Data is expressed as the mean ± SD 

for three separate experiments carried out in triplicate.
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Figure 2.9 Effect o f  treatments on LTB4 levels in MCF-7 and SW480 cells. Cultures 

were treated with either the CLA mixture, LA, c9, t \ 1 -CLA, 110, cT2-CLA, (16 ng/ml) or 

ethanol and then incubated for 24 h. Cells were harvested and an enzyme immunoassay 

kit was used to quantify LTB4 levels. Data is expressed as the mean ± SD for three 

separate experiments carried out in triplicate.
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This study shows that the MCF-7 and SW480 cell lines were sensitive to growth 

inhibitory effects o f not only the CL A mixture but also to both the /10, c*12-CLA and the 

6*9,111-CLA isomers following 4 days o f incubation with physiological levels o f CL A (5- 

16 ng/ml) (Shultz el al., 1992). The CLA mixture o f isomers at 16 ng/ml (yielding a c9, 

/1 1-CLA and /10, cl2-CLA concentration o f approximately 4.7 Mg/ml each) was equally 

effective in inhibiting growth o f both cell lines as the pure t-9, 111-CLA and /10, c l2 - 

CLA isomer added at 16 ng/ml. This suggests that a plateau effect was reached or that 

one or more of the other isomer present in the mixture may be capable o f altering cell 

viability. It is imperative however that more basic research be undertaken to determine 

the specific biological effects o f other isomers present in the mixture, particularly e l l ,  

l \ 3 which has recently been detected in natural products (Sehat el al., 1999) and in liver 

microsomes (Pariza el al., 1998). The growth stimulatory effect o f LA previously 

reported (Shultz el al., 1992, Cunningham el al., 1997) was also seen in this study in the 

SW480 cell line treated with LA, but no effect was seen in the MCF-7 cells at the 

concentrations used.

This study provides an insight into the early responses o f  breast and colon cancer cell 

lines before growth was altered. Interestingly, the CLA mixture o f isomers containing 

4.8 ng/ml c9, i \ I-CLA was less effective than the pure c9, /11-CLA isomer (16^g/ml) at 

redistributing AA among lipid fractions in the MCF-7 cell line and had no effect in 

altering AA content o f individual PL o f these cells. Our data demonstrate that the c9, t \ 1- 

CLA isomer decreased AA uptake into PC while increasing uptake into PK in both cell

2.5 Discussion
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lines. The decrease in uptake into PC is very significant as this is the PL preferentially 

hydrolysed by PLA2 to provide AA for cicosanoid synthesis [Hand el al., 1993). None 

o f the other treatments had any effect on PS in the MCF-7 cell line but in the SW480 cell 

line the CL A mixture and the /10. cl2-CLA isomer both increased uptake o f A A into PS. 

Although PS is a biosynthetic precursor o f PE, it is in itself an important membrane lipid 

as it is an activator o f  membrane associated protein kinase C, an enzyme that 

phosphorylatcs serine and threonine residues o f an extremely diverse group o f  proteins 

regulating cell proliferation, activating cellular function, differentiation and even 

apoptosis (Musashi et al.. 2000). It has been postulated that CLA may modulate protein 

kinase C (Belury, 1995). However, activation o f this enzyme is also dependent on DAG. 

a product o f PLC activity and Ca released from intracellular stores by IP3 . None o f the 

treatments investigated altered the levels o f  IP3 in the cells or uptake o f A A into PI, 

suggesting that growth modulatory effects o f various treatments in this study were not 

associated with phospholipasc C mediated signal transduction. Other reports also indicate 

that physiological concentrations o f CLA did not mediate changes in either PLC o r PKC 

activity in MCF-7 cells (Park el al., 2000) or in normal rat mammary epithelial cell 

organoids (Ip et al.. 1999).

Interestingly, none o f  the CLA treatments influenced AA release from cells, yet both the 

CLA mixture and the c9, i\ I-CLA isomer decreased l4C-PGE2 synthesis and increased 

l4C-PGI;2a in both cell lines suggesting that a modulation o f cyclooxygenase and/or 

downstream isomerase or reductase gene expression may be responsible. By contrast, 

LA stimulated PC1D2 production in both cell lines while stimulating PGE2 production in
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the SW480 cell line. These changes in prostaglandin synthesis may have been 

responsible for the differential elTccts o f LA and CLA treatments on growth. Levels o f 

LTB4and LOX activity were not altered by any o f  the CLA treatments suggesting that the 

anticancer effect o f Cl.A may be mediated independently o f  the lipoxygenase component 

o f the AA cascade as has been already proposed (Sugano el al., 1998. Truitt el al., 1999).

A differential effect between physiological levels (0.5-5 pg/ml) o f c9. 111 CLA and LA 

on growth o f MCF-7 cells after 4 days has been reported (Park et al., 2000). Growth 

inhibition by the CLA isomer was not mediated through PLC, PKC or PGE2-dependent 

signal transduction pathways suggesting that another inhibitory mechanism may be 

involved. Because our study did show that PGE2 synthesis was reduced by higher but 

near physiological concentrations o f  CLA it is apparent that there may be a threshold 

requirement for CLA and LA to affect cellular PGF.2 synthesis. A similar inhibitory 

effect o f CLA on PGE2 synthesis was observed in keratinocytes (Liu and Belury, 1998) 

and mouse epidermis (Kavanaugh et a l,  1999). More recently CLA has been shown to 

inhibit prostaglandin H synthase activity in ram seminal vesicle microsomes (Bulgarella 

et al., 2001).

Basu and co-worker (Basu el al.. 2000) reported that CLA induced lipid peroxidation in 

humans, using urinary 8-iso-PGF2a excretion as a biomarker o f non-enzymatic lipid 

peroxidation. We showed that incubation o f both cell lines with the c9, / 11-CLA isomer 

led to significantly increased 8-epi-PGF2a in both cell lines while incubation with the / 10 , 

cl2-CLA led to increases in 8-epi-PGF2a levels in the MCF-7 cell line only. These
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isomers may be promoting non-enzymatic oxidation o f  AA at the expense o f the 

formation o f  enzymatically derived eicosanoids. The mixture o f CLA isomers (at 16 

Mg/ml) had no effect on 8-epi-PGF2a levels suggesting that a higher concentration o f c9, 

/11-CLA than 4.7 ng/ml is needed to induce non-enzymatic oxidation o f arachidonic 

acid. A number o f studies have now shown that the production o f reactive oxygen 

species serves to trigger an apoptotic signal transduction pathway (reviewed in Rudolph 

et al., 2001). Further studies to investigate the effects o f  CLA isomers on the expression 

o f cyclooxygenase isoforms and other signal transduction pathways are warranted to 

explain the potential inhibitory role o f CLA on in vitro growth. Intervention studies have 

shown that increasing CLA intake led to increases in the CLA content in human milk 

(Park et al., 1999), plasma (Huang el al., 1994), and adipose tissue (Jiang et al., 1999). 

Although it is attractive to speculate that CLA may be useful in nutritional prevention o f 

cancer in humans, evidence o f  beneficial effects in cancer patients receiving CLA as 

dietary supplements is required. To this end, appropriate molecular and biochemical 

markers o f  both CLA nutritional status and o f tumorigenesis are currently being sought.

2.6 Summary

The relationship between growth and alterations in AA metabolism in human breast 

(MCF-7) and colon (SW480) cancer cells was studied. Four different fatty acid 

preparations were evaluated: a mixture o f CLA isomers (c9, /1 1, t \ 0, c l 2, c l 1, t \ 3 and 

minor amounts o f other isomers), the pure c9, /11-CLA isomer, the pure /10, c 12-CLA 

isomer and LA (all at a lipid concentration o f 16 ng/ml). I4C-AA uptake into the MG
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fraction o f  MCF-7 cells was significantly increased following 24 h incubation with the 

CL A mixture (p<0 05) and c9, /II-C L  A (p<0 02) In contrast to the MCF-7 cells, 14C- 

AA uptake into the TG fraction o f the SW480 cells was increased while uptake into the 

PL was reduced following treatment with the CL A mixture (p<0 02) and c9, ¿11-CL A 

(p<0 05) Distribution o f 14C-AA among PL classes was altered by CL A treatments in 

both cell lines The c9, ¿11-CLA isomer decreased (p<0 05) uptake o f 14C-AA into PC 

while increasing (p<0 05) uptake into PE m both cell lmes Both the CLA mixture and 

the ¿10, cl2-CLA isomer increased (p<0 01) uptake o f 14C-AA mto PS in the SW480 

cells but had no effect on PL m the MCF-7 cells Release o f l4C-AA derivatives was not 

altered by CLA treatments but was increased (p<0 05) by LA m the SW480 cell line 

The CLA mixture o f  isomers and c9, ill-C L A  isomer inhibited l4C-AA conversion to 

I4C-PGE2 by 20-30% (p<0 05) while increasmg 14C-PGF2a by 17-44 % relative to 

controls in both cell lmes LA significantly (p<0 05) mcreased 14C-PGD2 by 13-19 % in 

both cell lmes and mcreased 14C-PGE2 by 20 % in the SW480 cell line only LA 

significantly (p<0 05) mcreased lipoxygenase activity by 27 % m the MCF-7 cell line 

Lipid peroxidation, as determined by mcreased levels o f 8-epi-PGF2a, was observed 

following treatment with c9, t\ 1-CLA isomer m both cell lmes (p<0 02) and with ¿10, 

cl2-CLA isomer m the MCF-7 cell lme only (p<0 05) These data indicate that the 

growth promotmg effects o f LA m the SW480 cell lme may be associated with enhanced 

conversion of AA to PGE2 but that the growth suppressive effects o f CLA isomers m both 

cell lmes may be due to changes in AA distribution among cellular lipids and an altered 

prostaglandin profile
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CHAPTER 3

Cis 9, trans 11- and trans 10, cis 12- 

conjugated linoleic acid isomers induce 

apoptosis in cultured SW480 cells.1

1 Published in A nticancer Research, in press



The majority o f  human cancers are thought to be the result o f various environmental 

factors with diet being a potent modifying factor (Ames et a l , 1995) Epidemiological 

data suggest that diet accounts for approximately one-third o f all cancer deaths in affluent 

populations (Doll, 1992) The human diet contains foods and beverages that may either 

contribute to induction or prevention o f cancer (Wynder, 1997) Although there is a 

strong correlation between diet and cancer, especially between dietary fat and cancer, 

differential effects have arisen with respect to individual fatty acids (Guthrie and Carroll, 

1999) Conjugated linoleic acid (CLA) is a polyunsaturated fatty acid that has been 

highly publicised recently as a result o f its potent anticarcinogenic properties observed at 

low dietary levels ( < 0 1 %  w/w o f diet) m animal models o f carcinogenesis (Ip et a l , 

1991, Ip et a l , 1966, Ip et a l , 1997a, Ip et a l , 1997b, Ha et a l , 1990, Belury et a l , 1996, 

Liew et a l , 1995) CLA refers generically to the class o f positional and geometric 

conjugated isomers o f linoleic acid, several o f which are naturally abundant in food lipids 

derived from ruminant animals and dairy products (Sehat et a l , 1999) Increasmg the 

CLA content o f certain foods and combmmg CLA intake with traditional chemotherapy 

could form a dietary approach to the prevention and treatment o f human cancers in the 

future In addition to its important role in the dietary prevention o f cancer in rodent 

models, CLA exhibits antiatherogenic, antidiabetogenic, antiallergenic, 

immunomodulatmg, body composition modulating and bone growth enhancing properties 

(Panza et a l , 2001)

In order to determine the preventive and therapeutic potential o f CLA against cancer, its 

mode o f action must first be defined Although the precise mechanisms through which

3 1 Introduction
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CLA executes its anticarcmogemcity have yet to be ascertained, several mechanisms 

have been proposed (reviewed in Belury, 2002) including the initiation o f apoptosis 

Induction o f apoptosis in response to CLA was first shown in differentiated rat mammary 

epithelial colonies as detected by the presence o f pyknotic nucleic and double strand 

breaks m DNA (Ip et a l , 1999b) In another study, CLA induced apoptosis in cultured 

mammary tumor cells as determined by DNA fragmentation and also in premahgant 

lesions o f the rat mammary gland via down regulation o f the membrane protein bcl-2 (Ip 

et a l , 2000) More recently, dietary CLA was shown to stimulate apoptosis in the colon 

mucosa o f 1 ,2 -dimethylhydrazine-treated rats as measured by the terminal 

deoxynucleotidyl transferase-mediated dUTP nick end labelling technique (Park et a l , 

2001)

It has been demonstrated that cytotoxic effect o f CLA isomers in the human SW480 

colon tumor cell lme was associated with an increased lipid peroxidation leading to 

activation o f cellular antioxidant defence enzymes (O’Shea et a l , 1999) An increase in 

superoxide dismutase observed m CLA-treated cells suggests an availability o f  reactive 

oxygen species that may initiate cellular death programs leading to apoptosis (O’Shea et 

a l , 1999) CLA isomers altered the distribution o f arachidomc acid m cellular 

phospholipids and altered the pattern o f eicosanoid production in colon and mammary 

tumor cells lines (Chapter 2) Both phenomena are indicative o f a signaling process 

regulating apoptosis being initiated at the membrane level
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3 2 Objective

The aim of this present study was to elucidate whether apoptosis is the mode of death 

induced by CL A isomers m the colon SW480 tumor cell lme by exammmg specific 

markers synonymous with apoptosis The effect o f 3 different CL A preparations (the c9, 

¿11-CLA isomer, the ¿10, cl2-CLA isomer and the CLA mixture o f isomers) on cell 

morphology, annexin V levels, DNA laddermg, the expression o f apoptosis regulatory 

proteins (bc^, bax, Apaf-1, cytochrome c and active caspase 3) and on activities of 

caspases-3 and 9 were evaluated

3 3 Materials and methods

3 3 1 Cell culture and CLA treatments

The SW480 human colon tumor cell lme was cultured exactly as outlined in Chapter 2 

Three different CLA preparations were evaluated the c9, ill-C L A  isomer, the ¿10, c l 2- 

CLA isomer and a mixture o f CLA isomers All were added at a lipid concentration of 16 

jig/ml (57 |iM) except in the viability experiment where a range o f concentrations were 

used The concentrations lie within the physiological range o f concentrations o f the c9, 

ill-C L A  isomer m human phospholipids (Iversen et a l , 1985), plasma, bile, duodenal 

juice (Cawood et a l , 1983) and has been previously used in cell culture work (Chapter 2 

and Shultz et a l , 1992) Control flasks were supplemented with ethanol at a final 

concentration o f 0 8 % (v/v) as in experimental flasks The CLA mixture o f isomers (21 

% cl 1, ¿13, 29 0 % ¿10, c l2 , 29 5 % c9, ¿11 and 12 3 % c8, ¿10) was obtained from Nu 

Chek Prep (Elysian, MN, USA) Individual CLA isomers, c9, 111 (95 % pure) and ¿10, 

c l2 (95 % pure), were kmdly donated by Natural ASA (Hovdebygda, Norway)
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3 3 2 Effect of CLA isomers on cell viability

SW480 cells were plated at 5 x 104 cells/well in six well plates and cells were cultured 

for 24 h to allow the cells to attach to the substratum The medium was then replaced 

with medium supplemented with the CLA mixture o f isomers, the c9, t\ 1-CLA isomer, or 

the /10, cl2-CLA isomer at a range o f concentrations (5, 10, 16 and 20 jig/ml) dissolved 

in ethanol Control wells were supplemented with an equivalent volume of ethanol 

Foliowmg 4 days o f incubation, cells were harvested using phosphate buffered saline 

(PBS) containing 0 25 % (v/v) trypsin Cell viability was determined using the trypan 

blue exclusion (0 4 % w/v) method

3 3 3 Morphological analysis using acridine orange staining

To evaluate the effect o f the CLA isomers on cell morphology, SW480 cells were plated 

at 5 x 104 cells/well in six well plates containing covershps The cells were cultured for 

24 h to allow the cells to attach to the covershps The medium was then removed from 

each well and replaced with fresh medium containing the various treatments or linoleic 

acid (LA) (Sigma-Aldrich Ireland Ltd , Dublin, Ireland) added at a lipid concentration of 

16 |ig/mL LA was included as a negative control After 4 days o f incubation, the 

covershps were removed from the wells and fixed m ice cold acetone for 5 mm and 

rehydrated in PBS for 10 min as described previously (Ip et a l , 2000) Covershps were 

then stained with acridine orange (Sigma-Aldrich Ireland L td , Dublm, Ireland) at a 

concentration o f 10 jig/mL for 5 mm, rinsed with PBS, mounted on slides and viewed 

directly with a flourescent Zeiss Axioskop ultraviolet light microscope (Carl Zeiss 

Microimaging, Thomwood, NY, USA) Images from a minimum o f 6 fields were
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photographed using a 3CCD KY-F50 JVC colour video camera (Vitor Companies o f 

Japan Ltd , Japan) and images were captured usmg Optimus software version 6 5 (Media 

Cybernetics, Silversprings, MD, USA) Cells were scored as healthy or apoptotic using 

the following criteria viable cells remained adherent and had an oval nuclear 

morphology while apoptotic cells were rounded up from the covershp and displayed 

concentrated acridine orange staming o f the condensed chromatin (Figure 3 2, inset) 

Hard copy pictures o f each field were printed out and the % apoptotic cells/field was 

determined

3 3 4 DNA laddering

Cells were seeded in T-75 cm2 flasks at a density o f 1 x 106 cells/flask and were 

mcubated for 24 h The medium was then replaced with fresh media containing the 3 

different CLA treatments (all at 16 ^ig/mL) or ethanol as described above and mcubated 

for 4 days Adherent and floating/loosely-attached cells were collected and processed 

separately Apoptotic DNA was extracted and precipitated usmg the Suicide-Track DNA 

Laddermg Isolation Kit (Oncogene Research Products, Boston, MA, USA) according to 

the manufacturer’s instructions This kit had been optimised to separate apoptotic DNA 

from high molecular weight, mtact, genomic DNA In brief, the cell pellet was 

resuspended m extraction buffer (provided by kit), mcubated on ice for 30 mm and then 

centrifuged at 15, 000 xg for 5 mm at room temperature The supernatant was removed 

(contammg the apoptotic DNA) and was treated with RNase A and Protemase K (both 

provided ny the kit) DNA was precipitated with 3M sodium acetate, pH 5 2 with the aid 

o f pellet pamt co-precipitant (provided by the kit) The DNA pellet was rinsed twice with
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70 % ethanol and resuspeneded in resuspension buffer (provided by kit) prior to 

electrophoresis DNA was analysed by electrophoresis in a 1 5 % agarose gel at 50 V 

(constant volts) for 4 5 h The gel was then stained for 0 5 h with ethidium bromide (0 5 

jag/mL) DNA fragments were visualised and photographed using the ImageMaster VDS 

documentation system from Amersham Biosciences (Little Chadfort, Buckinghamshire, 

UK)

3 3 5 Western analysis of apoptosis regulatory proteins

Cells were seeded in T -150 cm2 flasks at a density o f 2 x 106 cells/flask and allowed to 

culture for 24 h The medium was then replaced with fresh medium containing the three 

different CL A treatments (all at 16 (ag/mL) as described above The c9, t\  1-CLA isomer 

was also added to the cells at four different concentrations (10, 16, 20, 25 jig/mL) to 

determine its effect on the bcl-2 protein After 4 days o f incubation, both floating cells 

and adherent cells were collected and pooled Cells were washed twice in ice-cold PBS 

and resuspended m lysis buffer (10 mM sodium phosphate buffer (pH 7 2), 0 2 mM 

phenylmethysulfonylfluoride (PMSF) and 100 mM NaCl) containing 0 1 mM leupeptin 

and 0 2 fig/mL aprotinin as protease inhibitors (both supplied by Sigma-Aldrich Ireland 

L td , Dublin, Ireland) Lysates were somcated using a Vibra Cell VC502 (Somes, 

Newtown, CT, USA) on ice and concentrated using Microcons® YM-10 which contam 

membranes with a 10,000 molecular weight cut off (Millipore, Cork, Ireland) Protein 

concentrations were determined using the Bio-Rad protein assay (Biorad, Hemel 

Hempstead, Hertforshire, UK) which is based on the principles o f the Bradford assay and 

used bovine serum albumin as the protem standard SDS-PAGE and Western blots were
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carried out essentially by the methods o f Laemmh (1970) and Towbm et al (1979), 

respectively Lysates containing approximately 70 \xg o f protein were solubilized m 

sample buffer (10 % (w/v) SDS, 600 mM Tris-HCl (pH 6 7) and 50 % (w/v) glycerol) 

containmg p - me rcapto ethanol and 50 jig/mL bromophenol blue Samples were boiled 

for 2 mm and resolved by extended electrophoresis Electrophoretically resolved proteins 

were blotted onto Hybond ECL membrane (Amersham, Little Chadfort, 

Buckinghamshire, UK) m a Trans-blot Electrophoretic transfer cell (Biorad, Hemel 

Hempstead, Hertforshire, UK) Blots were stamed with Ponceau S Solution (0 2 % w/v) 

to insure transfer o f proteins was complete and to determine if equivalent amount o f 

protem was loaded m each lane The blots were destamed with PBS containmg 0 1 % 

(v/v) Tween 20 (PBST) and blocked for 1 h with 5 % nonfat dry milk dissolved in PBST 

Blots were then mcubated with monoclonal antibodies overmght anti-bcl-2 diluted to 

1 1000, anti-bax diluted to 1 2000 (both from Sigma-Aldrich Ireland L td , Dublin, 

Ireland), anti-Apaf-1 diluted to 1 250 (Transduction Laboratories, Lexington, KY) or 

anti-caspase 3 diluted to 1 300 (Alexis Biochemicals, San Diego, CA, USA) in PBST 

containing 0 5 % nonfat dry milk Blots were washed extensively in PBST and 

reincubated for 1 h with a horseradish peroxidase-linked secondary antibody (Amersham, 

Little Chadfort, Buckinghamshire, UK) diluted 1 2000 m PBST containing 0 5 % nonfat 

dry milk The blots were then thoroughly washed in excess PBST and probed with the 

Super Signal detection system (Pierce, Rockford, IL, USA) and exposed to 

autoradiography films (Amersham, Little Chadfort, Buckinghamshire, UK) according to 

the manufacturer's instructions Densitometry (using NIH Image software) was 

performed on Ponceau S scans and autoradiographs
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3 3 6 Detection of cytochrome c release into cytosol and annexin V levels in 

membrane preparation

Cells were seeded in T -150 cm2 flasks at a density o f 2 x 106 cells/flask and incubated for 

24 h The medium was then replaced with fresh medium containing the three different 

CL A treatments (all at 16 fig/mL) described above The c9, t\ 1-CLA isomer was also 

added to the cells at four different concentrations (10, 16, 20, 25 fxg/mL) to determine its 

effect on cytochrome c release After 4 days o f incubation floating cells and adherent 

cells were collected and pooled Cytochrome c release was detected as previously 

described with minor modification (Tang et a l , 1998) Briefly, cells were resuspended in 

a PBS/PMSF buffer (containing 10 mM sodium phosphate buffer (pH 7 2), 100 mM 

NaCl, 0 2 mM PMSF, 0 1 mM leupeptin, 0 2 |ig/ml aprotinm), sonicated on ice and 

centrifuged at 100,000 x g for 20 min at 4°C The supernatant (cytosolic fraction) was 

removed and concentrated using Microcons® YM-10 (10,000 molecular weight cut off) 

(Millipore, Cork, Ireland) The pellet was resuspended in lysis buffer (described earlier) 

and incubated on ice for 20 mm followed by centrifugation at 15,000 x g for 15 mm at 

4°C The resulting supernatant (the membrane fraction) was analysed for annexin V 

levels using Annexin V Elisa kit (Alexis Biochemicals, San Diego, CA, USA) accordmg 

to the manufacturers instructions In brief, annexin V present in the samples or standards 

bound to an anti-annexm V monoclonal antibody that was adsorbed to the microwells A 

biotm-conjugated monoclonal anti-annexm V antibody was then added which bound to 

annexin V captured by the first antibody Streptavidin-HRP was then added and it bound 

to the biotin-conjugated anti-annexm V A substrate solution reactive with HRP was 

added to the wells which resulted in the formation o f  a coloured product The reaction
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was terminated by the addition o f  phosphoric acid and the absorbance was measured at 

405 nm The amount o f coloured product formed was proportional to the amount o f 

annexin V m the sample Annexin V sample concentration was determined from an 

annexin V standard curve The cytosolic fractions were analysed by western blot analysis 

usmg an anti-cytochrome c monoclonal antibody diluted to 1 300 (Alexis Biochemicals, 

San Diego, CA)

3 3 7 Measurement of reduced glutathione levels

Cells were seeded in T-75 cm2 flasks at a density o f 1 x 106 cells/flask and incubated for 

24 h The medium was then replaced with fresh medium containing the three different 

CL A treatments (all at 16 \iglvriL) described earlier and mcubated for 4 days after which 

both floating and adherent cells were collected and pooled Cytosol fractions were 

prepared as described above The levels o f reduced glutathione (GSH) m the cytosol 

fractions was measured according to the method o f Hissen and H ilf (1976) The method 

takes advantage o f the reaction o f GSH with o-phthaldaldehyde (OPT) at pH 8 Briefly, 

cytosol fractions (100 jiL) were diluted m 1 8 ml phosphate-EDTA buffer (0 1 M sodium 

phosphate, 0 005 M EDTA, pH 8) and mixed with 100 [iL OPT (10 fig/ml) Samples 

were mcubated at 25 °C for 15 nun and fluoresence detected at 350 nm excitation and 

420 nm emission wavelengths The reduced glutathione concentration o f the samples was 

determined from a standard curve Reduced glutathione levels were expressed relative to 

the protein content, as determined usmg the Bio-Rad protein assay

133



3 3 8 Measurement of caspase 3 and 9 activities

Cells were seeded in T-75 cm2 flasks at a density o f 1 x 106 cells/flask and incubated for 

24 h The medium was then replaced with fresh medium containing the three different 

CLA treatments (all at 16 jig/mL) or ethanol described earlier After 4 days incubation, 

both adherent and floating cells were collected and pooled The levels o f  caspase 3 and 9 

enzyme activities were determined using colorimetric assay kits from R&D Systems Inc , 

(Minneapolis, MN, USA) Cells were lysed by addition o f lysate buffer (provided by the 

kit) and mcubated on ice for 10 mm followed by centrifugation at 10,000 x g for 1 min 

The resultmg supernatant was transferred to a fresh tube and kept on ice The protem 

concentration m the lysate was determined usmg the Bio-Rad protem assay 50 jil o f 

each cell lysate was placed m a 96-well plate 10 jil dithiothreitol (DTT) was added to 1 

mL o f reaction buffer (provided by kit) and 50 jliI o f this combmed solution was added to 

each reaction well 5 jil of the appropriate colorimetric substrate peptide (caspase 3 

DEVD-p-nitroanaline or caspase 9 LEHD-p-mtroanaline) was added to reaction wells 

The cleavage o f the peptide by the caspases present m the samples released the 

chromophore p-mtroanaline which could be quantified spectrophormetrically A control 

that contamed no lysate and another that contamed no substrate were included The plate 

was mcubated at 37°C for 2 h and absorbence was read usmg an Anthos 2010 microplate 

reader at 405 nm The level o f  caspase enzymatic activity m the cell lysate was directly 

proportional to the colour formation
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3 3 9 Statistical Analysis

Data represent three independent experiments carried out in triplicate The Student's t 

test was used to determine significance between treatments

3 4 Results

3 4 1 CLA isomers stimulated apoptosis in SW480 human colon cancer cell line

The SW480 cell line was sensitive to the growth inhibitory effect o f the CLA isomers as 

previously reported (Chapter 2) This study evaluated a more extensive range of the 

different CLA preparations to determine if differences in efficacy occurred The CLA 

mixture o f isomers and the pure c9, ¿11-CLA isomer caused a similar reduction (40-52 

%) in cell viability over the concentrated range examined (Figure 3 1) The ¿10, cl2-CLA 

isomer was the most effective at reducing cell viability, reducing it by 47-61 % The ¿10, 

cl2-CLA isomer was more potent than the pure c9, t\ 1-CLA isomer but was equipotent 

to the CLA mixture o f isomers
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Figure 3 1 Percentage cell viability (relative to control) o f SW480 cells incubated with 

varying levels o f CLA isomers for 4 days Within a concentration, the bars not sharing 

the same letters are significantly different from one another (p<0 05) -  for example if one 

bar has the letters ‘ab’ and another bar has the letter ‘a’, these two bars are not 

significantly different from each other as they have a letter in common Data is expressed 

as the percentage mean ± SD for three separate experiments carried out in triplicate
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In order to determine whether this decrease in cell numbers was due to an induction of 

apoptosis, two markers o f apoptosis were initially evaluated in this present study: 

changes in nuclear morphology and induction o f DNA laddering. Nuclear morphology 

was examined using acridine orange, a fluorescent dye that binds to DNA. Healthy cells 

remained attached, had an oval nuclear morphology and showed moderate fluoresence, 

while apoptotic cells were rounded up from the coverslip and fluoresced very brightly 

due to marked condensation o f chromatin. SW480 cells exposed to the CL A mixture o f 

isomers, the c9, /11-CLA and /10, c 12-CLA isomers but not LA, demonstrated a 

significant (p<0.05) increase (96 %, 107 % and 133 %  respectively) in the percentage o f

apoptotic

5 0
j/>
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o
o 3 0
o
a
o 2 0
a
< 1 0
£

0

Control CLA mix c9, f1 1 M 0, c12 LA 

Treatments (16 jig/m l)

Figure 3.2 Increase in apoptosis o f SW480 tumor cells by CLA isomers for 4 days. Bars 

not sharing the same letters arc significantly different from one another (p<0.05). Data is 

expressed as the percentage mean ± SD for three separate experiments carried out in
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The formation o f distinct DNA fragments o f ohgnucleosomal size (180-200 bp) is a 

biochemical hallmark o f apoptosis in many cells (Bortner et a l , 1995) and is observed as 

a DNA ladder in agarose gels Evidence was sought to determine if the cytotoxic action 

o f CLA isomers induced a specific pattern o f chromatin cleavage into oligonucleosomes 

After cells were treated with the CLA isomers for 4 days, the media and PBS wash o f the 

monolayer (both o f which may contain apoptotic cells which have floated loose from the 

monolayer) were collected separately from the attached cells m the monolayer 

Foliowmg CLA treatments, all three sets o f cells exhibited the characteristic ladder on 

electrophoresis o f DNA extracted from the floating cells (Figure 3 3a) A small amount 

o f DNA laddering was observed m the control cells which would be expected as a small 

percentage o f cells die normally in culture No DNA laddermg was observed in DNA 

extracted from adherent cells (Figure 3 3b)

A critical stage in the initiation o f apoptosis involves surface changes on the cell 

membranes that mclude the exposure o f phosphatidylserme on the external leaflet o f the 

lipid bilayer Annexin V is a protein present in the extracellular space o f  cells which 

bmds to phosphatidylserine-exposing apoptotic cells (Cruikshank et a l , 1987) All CLA 

treatments significantly (p<0 05) increased levels o f  annexin V (29-32%) in the cell

triplicate Apoptotic cells rounded up from the covershp and the inset shows acridme

orange-stained condensed chromatin Health cells had an oval morphology and remained

adherent
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membrane when compared with concentrations found in the membrane preparations o f

control cells (Figure 3 4)
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Figure 3.3 Increase in DNA laddering in SW480 tumor cells by CLA (a) Floating 

SW480 cells collected after 4 days incubation with CLA isomers (all at a lipid 

concentration o f 16 fig/ml) 1 = marker lane containing DNA fragments ranging from 50 

to 2000 base pairs, 2 = Control cells treated with ethanol, 3 = CLA mixture o f isomers, 4 

= the c9, ¿11-CLA isomer, 5 = the ¿10, cl2-CLA isomer (b) Adherent SW480 cells 

collected after 4 days incubation with CLA isomers (all at a lipid concentration o f 16 

jig/ml) Lanes are as described in (a) This figure is representative o f three separate

experiments
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Figure 3 4 CLA isomers increased Annexin V levels in membranes o f SW480 cancer 

cells SW480 cells were cultured for 4 days with either the CLA mixture o f isomers, the 

c9, tl 1-CLA isomer, the tlO, cl2-CLA isomers (all at a lipid concentration o f 16 |ig/ml) 

or ethanol control After 4 days both float mg cells and adherent cells were collected, 

membrane fractions prepared and analysed for annexin V levels usmg an ELISA kit Bars 

not sharing the same letters are significantly different from one another (p<0 05) Data is 

expressed as the mean ± SD for three separate experiments carried out in triplicate
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3 4 2 CLA isomers reduced the expression bcl-2

The expression o f two apoptotic regulatory proteins from the Bcl-2 family were evaluated 

by immunoblot analysis The Bcl-2 family o f protems consists o f anti-apoptotic and pro- 

apoptotic protems that regulate apoptosis at the mitochondrial level by controlling the 

release o f cytochrome c and subsequent activation o f a caspase cascade resulting m 

apoptosis Bcl-2 was the first protein to be identified as anti-apoptotic (Vaux et a l , 1988) 

and subsequently a large number o f bcl-2 related protems (bcl-xL, bcl-w, me 1-1, bfl-1 and 

boo) have been isolated (Tsujimoto and Shimizu, 2000) In contrast, bax is a known 

inducer o f apoptosis along with bak, bad, mtd and diva (Tsujimoto and Shimizu, 2000) 

The three CLA-treatments (all added at a lipid concentration of 16 fig/ml) were 

equipotent in significantly (p<0 05) reducing the level o f  the bcl-2 protem after 4 days o f 

incubation (Figure 3 5a) The c9, tl 1-CLA isomer is the most abundant isomeric form o f 

CLA found m the diet (Chin et a l , 1992) and the most physiologically relevant isomer m 

humans (Iversen et a l , 1985, Cawood et a l , 1983, Jiang et a l , 1999, Park et a l , 1999, 

Huang et a l , 1994) We examined the effect o f varying the dose o f c9, /l 1-CLA on bcl-2 

protein levels to determine if the effect o f this isomer was concentration dependent The 

data demonstrated that the c9, ¿11-CLA isomer significantly (p<0 05) reduced bcl-2 

protem expression in a concentration dependent manner from 16-25 jig/ml (Figure 3 5b) 

In contrast, the pro-apoptotic bax protem was not affected by any o f the CLA treatments 

at the concentration and time pomt examined (Figure 3 5c)
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Figure 3 5 Bcl-2 and Bax protein expressions in CLA-treated SW480 cells (a) Western 

blot and densitometry result for the expression o f Bcl-2 in SW480 cells treated with 

either the CLA mixture, c9, ¿11-CLA or ¿10, cl2-CLA added at a lipid concentration o f 

16 jag/mL for 4 days Bars not sharing the same letters are significantly different from 

one another (p<0 05) (b) Western blot and densitometry result for the expression of Bcl-2 

in SW480 cells treated with 0 - 2 5  |ig/mL c9, ¿11-CLA for 4 days (* denotes values 

significantly (p<0 05) different to control) (c) Western blot and densitometry result for 

the expression o f  Bax in SW480 cells treated with either the CLA mixture, c9, ¿11-CLA 

or ¿10, cl2-CLA added at a lipid concentration of 16 |xg/mL for 4 days All blots 

represent one o f three independent experiments Values are expressed as a percentage o f 

the control (± SD) which was taken to be 100%
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3 4 3 CLA isomers induced cytochrome c release into the cytosol and induced 

caspase 3 and 9 activation

The effect o f the CLA treatments on the levels o f cytosolic glutathione and cytochrome c 

were evaluated Diminished glutathione levels have been observed in apoptotic cells and 

have been associated with cytochrome c release from the mitochondria (Hall, 1999) 

SW480 cells were treated with the three different CLA treatments (all at 16 jug/mL) as 

described earlier and after 4 days all cells were collected and cytosolic proteins were 

extracted The three CLA-treatments (all added at a lipid concentration of 16 jig/ml) 

significantly (p<0 05) reduced cytosolic glutathione levels (21-29%) with the /10, cl 2- 

CLA isomer having the most potent effect (Figure 3 6) We then examined if this 

reduction in cytosolic glutathione levels facilitated cytochrome c release from the 

mitochondria into the cytosol Cytosolic levels o f cytochrome c were quantified by 

densitometnc scanning of western blots As demonstrated by the data presented in Figure 

3 7(b) all CLA-treatments significantly (p<0 05) increased the accumulation o f cytosolic 

cytochrome c when compared with the untreated control The ¿10, cl2-CLA isomer had a 

more potent effect on cytochrome c release, increasmg its accumulation in the cytosol by 

55% The effect o f varying the dose o f c9, tl 1-CLA on accumulation o f cytochrome c m 

the cytosol was examined to determine if the effect o f this isomer was concentration 

dependent It was found that the c9, tl 1-CLA isomer significantly (p<0 05) increased the 

accumulation o f cytosolic cytochrome c in a concentration dependent manner from 16-25 

jag/ml (Figure 3 7c) The c9, tl 1-CLA isomer had no effect on cytochrome c release 

when added at 10 (ig/ml Once released, cytochrome c recruits and activates the adapter 

protein apoptosis protease activating factor-1 (Apaf-1) which binds downstream to the
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initiator caspase 9 and processes it into its proteolytically active form (Zou et a l , 1997) 

Apaf-1 expression was not affected by any of the CL A treatments at the concentration 

and time point examined (Figure 3 7a) Activation o f caspase 9 is followed by sequential 

activation of effector caspases such as caspase 3 (Nunez et a l , 1998) The proteolytic 

activities o f  caspase-3 and 9 were assessed using two commercially available assay 

systems Caspase activity was directly determined in cell lysates using LEHD-pNA, a 

synthetic substrate for caspase 9 and DEVD-pNA, a substrate for caspase 3 Compared 

with control cells, the three CL A treatments exerted increases in both caspase 3 (20-30%) 

and caspase 9 (36-42%) activities (Figure 3 8a) Western blot analysis for detection of 

caspase 3 activation was used to confirm caspase 3 processmg and it was confirmed that 

the CL A treatments induced cleavage o f pro-caspase 3 into two subunits o f 17 and 12 

kDa subunits (Figure 3 8b)

contro l CLA c9, ¿11 ¿10, c 1 2

Treatm ents (16 \iglm\)

Figure 3.6 Effect o f CLA isomers on cytosolic GSH levels in SW480 cancer cells after 4 

days Bars not sharing the same letters are significantly different from one another 

(p<0 05) Data is expressed as the percentage mean ± SD for three separate experiments 

carried out in triplicate
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Figure 3 7 Apaf-1 and cytochrome c protein expressions in CLA-treated SW480 cells 

(a) Western blot and densitometry result for the expression o f Apaf-1 in SW480 cells 

treated with either the CL A mixture, c9, ill-C L  A or ¿10, c 12-CLA added at a lipid 

concentration of 16 jig/mL for 4 days (b) Western blot and densitometry result for the 

release o f cytochrome c mto the cytosol m SW480 cells treated with CLA as described 

above Bars not sharing the same letters are significantly different from one another 

(p<0 05) (c) Western blot and densitometry result for the release o f cytochrome c mto 

the cytosol m SW480 cells treated with 0 - 2 5  jig/mL c9, ¿11 -CLA for 4 days 

Densitometnc quantification was normalized using Ponceau S scans All blots represent 

one o f three mdependent experiments Values are expressed as a percentage o f the control 

(± SD) which was taken to be 100% (* denotes values significantly different to controls

p<0 05)
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Figure 3 8 CLA isomers induce Caspase 3 and 9 activation SW480 cells were cultured 

for 4 days with either the CLA mixture o f isomers, the c9, ¿11-CLA isomer, the ¿10, c\2- 

CLA isomer (all at a lipid concentration o f 16 jug/ml) or ethanol control After 4 days, 

both floating cells and adherent cells were collected, lysates prepared and (a) analysed for 

caspase 3 and 9 activities using colormetric assay kits from R&D systems (* denotes 

values significantly different to controls p<0 05) Data is expressed as the percentage 

mean ± SD for three separate experiments carried out in triplicate (b) The cleavage o f 

caspase 3 to its active form was also analysed by western blot analysis with an anti- 

caspase 3 antibody that recognized both uncleaved and cleaved caspase 3 The blot is 

represents one o f three independent experiments
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3 5 Discussion

While the anticancer activity o f CL A isomers has been well documented, there is limited 

knowledge o f the molecular mechamsm(s) mvolved Over the past decade, cell culture 

studies have provided important clues about specific molecular pathways responsive to 

CLA Studies with a mammary cancer cell Ime implicated CLA as a modulator o f the 

cell cycle, blocking entry o f cells into S phase o f the cell cycle and suppression o f c-myc 

expression (Durgan and Fernandes, 1997) More specifically, CLA has been shown to 

down regulate the expression o f  cyclin D1 and cyclin A, key components o f cell cycle 

machinery in rat mammary epithelium (Ip et a l , 2001) CLA is also a ligand for 

peroxisome proli ferator-activated receptors, a family o f nuclear hormone receptors that 

regulate the expression o f immediate early genes which are mvolved in proliferation, 

differentiation and apoptosis (Vanden Heuvel, 1999) CLA has been shown to induce 

apoptosis m a mammary tumor cell line as well as m premahgnant lesions o f the 

mammary gland where expression o f bcl-2 was reduced (Ip et a l , 2000) More recently, 

dietary CLA has been shown to significantly reduce colon tumor incidence in rodents by 

mechamsms probably involving increased apoptosis (Park et a l , 2001) It was proposed 

that apoptosis in colon mucosa could be related to a series o f fatty acid-responsive 

biomarkers such as PGE2, TXB2 and DAG all o f  which were significantly reduced by a 

CLA mixture o f isomers containing predominantly ¿10, cl2-CLA and c9, ¿11-CLA (Park 

et a l , 2001) While the exact nature o f modulation o f apoptosis by eicosanoids needs to 

be determined, it has been shown that cyclooxygenase-2 derived PGE2 is a significant 

inducer o f bcl-2 expression and can thereby decrease the percentage o f cells undergoing 

programmed cell death (Sheng et a l , 1998) Activation of mitogen-activated protein
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The present study has clearly shown that a commercial mixture o f CLA isomers and the 

pure isomers rlO, c l2- and c9, ill-C L A  all present at physiological level o f 16 jig 

lipid/ml were potent inducers o f apoptosis following 4 days incubation with the SW480 

human colon tumor cell lme Early responses o f this cell lme before growth was 

inhibited by CLA implicated a role for arachidomc acid metabolites (PGE2, 8-epi-PGF2a) 

and phospholipid signalling m apoptosis (Chapter 2) Specifically, the CLA mixture o f 

isomers and the c9, /II-C LA  isomer decreased uptake o f arachidomc acid mto the 

phospholipid fraction o f cells and decreased synthesis o f PGE2 The c9, t\ 1-CLA isomer 

also stimulated production o f 8-epi-PGF2a indicative o f non-enzymatic oxidation o f 

unsaturated fatty acyl chains Other effects mcluded an increase in arachidomc acid 

uptake mto phosphatidylserme by the CLA mixture o f isomers and by /10, cl2-CLA 

isomer The exact nature o f the mechanism by which oxidation o f one or more classes of 

phospholipid can translate mto the recognisable biochemical and morphological stages o f 

apoptosis (chromatin condensation, membrane surface blebbing, ologonucleosomal DNA 

fragmentation and breakdown o f cell mto apoptotic bodies for phagocytosis by adjacent 

cells) remains unclear

There is now strong evidence that oxidative stress, in general and lipid peroxidation in 

particular are mvolved m both initiation and mediation o f  apoptosis (Lopaczynski and

kinase (MAPK), which preceded induction o f  bcl-2, indicates a putative signal

transduction pathway by which bcl-2 expression and other genes could be induced

(Sheng etal ,  1998)
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Zeisel, 2001) The bcl-2 protooncogene is unique among cellular genes for its ability to 

block apoptotic death Expression o f the anti-apoptotic bcl-2 protein has been reported to 

protect membrane lipids from peroxidation during exposure to oxidative stress (Kane et 

a l , 1993) and to regulate antioxidant pathways at sites o f free radical generation 

(Hockenbery et a l , 1993) Hence, this protein appears to have an antioxidant function 

(Cai and Jones, 1998) The three CLA treatments (all added at a lipid concentration o f 16 

jig/ml) were equipotent m significantly reducmg the level o f  the anti-apoptotic protein 

bcl-2 after 4 days o f incubation This was consistent with a previous study by Ip et al 

(2000) where an increase in apoptosis in premalignant lesions o f the rat mammary gland 

was associated with a reduction in the expression o f bcl-2 m these lesions Bax and other 

pro-apoptotic protems show structural similarities with mitochondrial pore-forming 

proteins and so it is suspected that bax can form ion channels across mitochondrial 

membranes which result m loss o f membrane potential and subsequent cytochrome c 

release (Basanez et a l , 1999) Evidence indicates that bcl-2 acts on the mitochondria to 

counteract the action o f the pore-forming pro-apoptotic proteins like bax (Antonsson et 

a l , 1997) The expression o f the pro-apoptotic bax protem was not affected by any o f the 

CLA treatments at the concentration and incubation times examined This suggests a role 

for CLA in the localisation o f bax from the cytosol to the mitochondria and/or the 

redistribution o f  bax on the mitochondrial membrane rather than in its expression

Oxidative stress acts by decreasing intracellular glutathione, the major buffer o f the 

cellular redox status When pumped out o f cells, the cytosol changes to an oxidising 

environment (Vanden Dobbelsteen et a l , 1996) It is thought that this change m redox
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state may play a role in loss o f mitochondrial membrane potential seen in apoptotic cells 

(Hall, 1999) The three CL A treatments significantly reduced cytosolic glutathione levels 

and this was accompamed by an accumulation o f cytosolic cytochrome c Depletion o f 

cellular glutathione, as observed in this study, may be a reflection o f the altered redox 

status o f these cells and may serve to initiate release o f basic proteins from the 

mitochondria such as cytochrome c Palombo et al (2002) reported significantly higher 

total caspase activity in MIP-101 colorectal cells treated with the ¿10, c l 2-CLA isomer 

This study now demonstrates that treatment with not only ¿10, cl2-CLA isomer but also 

with the CL A mixture o f isomers and the c9, t\ 1-CLA isomer resulted in a series of 

events marked by the accumulation o f cytochrome c in the cytosol, activation o f caspase 

9 and subsequent processmg and activation o f caspase 3 A fundamental mechanism by 

which apoptotic cells are recognised and eliminated is mediated by the binding o f 

cytochrome c to acidic phosphatidylserine, which triggers phospholipid translocation 

from the inside to the outside o f the membrane The mcrease m membrane annexin V 

levels in CLA-treated cells suggests an mcreased binding o f annexin V to externalised 

phosphatidylserine and serves to illustrate that extemalisation o f this phospholipid may 

be the mechanism by which apoptotic colon cells are recognised and eliminated

The apoptosis-inducing effect o f the ¿10, cl2-CLA isomer was more potent than the c9, 

¿1 1-CLA isomer and similar to the CL A mixture o f isomers as illustrated by cytochrome 

c release and DNA laddering However no significant differences between any o f the 

CLA treatments were observed with respect to other apoptotic markers examined The 

potency o f the ¿10, cl2-CLA isomer is consistent with growth inhibition seen in this
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study The /10, cl2-CLA isomer was more potent at inhibiting the growth o f  SW480 

cells than the c9, t\ 1 CL A isomer and this may be explained by its ability to mduce 

greater cytochrome c release The ¿10, 6*12-CL A isomer has also been shown to be more 

effective in inhibiting the proliferation o f HT29 and MIP-101 colorectal tumor cell lines 

than c9y t\ 1 -CLA isomer (Palombo et o l , 2002) Together these findings suggest that the 

¿10, cl2-CLA isomer may be the more biologically active isomer for inhibition o f colon 

tumor cell proliferation in vitro

This study has identified specific protein targets regulated by CLA isomers within an 

apoptotic cascade leadmg to cell death The regulation o f apoptosis by means o f dietary 

agents is a novel and promising therapeutic approach for cancer therapy Several genes 

that regulate the process o f apoptosis have been found to be defective in tumor cells The 

best characterised examples are the bcl-2 family genes which are overexpressed 30-50% 

m colon cancer cells (Zhang, 2002) Given the importance o f apoptosis in cancer 

development, apoptosis-inducmg lipids could conceivably have an important role m 

adjunct anticancer therapy The potential clinical usefulness o f a CLA based approach to 

cancer therapy requires further study
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3 6 Summary

Dietary conjugated linoleic acid (CLA) has been shown to reduce colon tumor mcidence 

m rodents by mechamsms probably involving apoptosis The aim o f  this study was to 

evaluate the effects o f three commercial CLA preparations (pure c9, /II-CLA, pure /10, 

cl2-CLA and a CLA mixture, containing 29 5% c9, / I I  and 29% /10, cl2-CLA) on 

caspase-dependent apoptosis in colon SW480 tumor cells After 4 days incubation, all 

CLA-treated cells displayed an mcrease m caspase 3 (27-34 %) and caspase 9 (37-47 %) 

activities, cleavage o f pro-caspase 3 (32 kDa) to 17 and 12 kDa subumts, increased 

membrane annexin V levels and reduced expression o f bcl-2 compared with untreated 

controls Cytosolic cytochrome c was mcreased (p<0 05) by all CLA preparations, with 

the /10, cl2-CLA isomer being the most potent The data indicate that /10, cl2-CLA 

may be the more biologically active isomer for inhibition o f colon tumor cell 

proliferation in vitro
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CHAPTER 4

7ra«s-vaccenic acid is converted to 

conjugated linoleic acid (c9 ,111-CLA) 

MCF-7 and SW480 cancer Cells.1

1 Subm itted for publication to  Lipids August 2002.



Cancer cells derive biologically important fatty acids from either de novo synthesis or the 

host circulation (Spector and Bums, 1987) The end products o f de novo synthesis are 

palmitoleate and oleate which are synthesised from palmitate and stearic acid 

respectively by A9-desaturase (Ntambi, 1995) Analysis o f the fatty acid composition o f 

cellular lipids clearly shows an altered balance o f saturated to monounsaturated fatty 

acids m tumours compared with non neoplastic cells (Fermor et a l , 1992) In particular, 

mcreased proportions o f oleic acid were found in experimental tumours (Cheeseman et 

a l , 1986, Zoeller and Wood, 1985, Ruggien and Fallam, 1979), hepatoma cell lines 

(Hartz et a l , 1982) and in virally transformed cell lines (Yau et a l , 1976, Ruggien et a l , 

1979) reflecting possible mcreased expression or activity o f A9-desaturase

A large amount o f experimental data have shown that tumour cell growth can be 

modulated by individual fatty acids (Guthrie and Carroll, 1999, Zhou and Blackburn, 

1999) Conjugated linoleic acid (CL A) is a group of polyunsaturated fatty acids that have 

been highly publicised recently as a result o f their potent anticarcmogemc properties 

observed at low dietary levels in animals models o f carcinogenesis (reviewed m Scimeca, 

1999) The mechanism by which CL A exerts its anticancer activity is attributed m part to 

a series o f events marked primarily by changes m composition o f cellular lipids, 

inhibition o f  A9-desaturase, modulation o f arachidonic acid distribution and metabolism, 

changes in eicosanoid production, activation o f nuclear transcription factors critical for 

lipid metabolism, induction o f apoptosis and modulation o f  the cell cycle (reviewed m 

Belury, 2002) Naturally occurring CL A m the diet primarily consists o f the c9, t il-C L  A

4 1 Introduction
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isomer with milk fat being the richest natural source of CL A (Chin et a l , 1992, Parodi, 

1977) TV A, the predominant trans monounsaturated fatty acid in milk fat, is formed by 

ruminal biohydrogenation o f LA and occurs in the diet at levels up to five times that o f 

CLA (Wolff, 1995, Parodi, 1976) Endogenous synthesis o f  CLA from TVA represents 

the primary source o f CLA in milk fat o f lactating cows (Gninari et a l , 2000) Santora 

and co-workers (2000) reported that TVA is desaturated to CLA in mice Rats fed CLA- 

enriched butter fat accumulated more total CLA in their tissues than those consuming 

synthetic c9, /11-CLA suggesting that the availability o f  TVA in the butterfat served as a 

precursor for endogenous synthesis o f CLA (Ip et a l , 1999a) This was confirmed m a 

recent study wherem feeding TVA (2 % o f diet w/w) elicited a biological response m a 

rat mammary tumor model, reducing the total number o f premahgnant lesions in the rat 

mammary gland by approximately 50 % in carcinogen-treated rats (Banm et a l , 2001) 

Although CLA is present at relatively low concentrations m human adipose tissue, bile, 

duodenal juice, breast milk and serum lipids (Cawood et a l , 1983, Harrison et a l , 1985, 

Fogerty et a l , 1985), specific dietary intervention tnals markedly increased the CLA 

content m human milk (Park et a l , 1999), plasma [Huang et a l , 1994) and adipose tissue 

(Jiang et a l , 1999) Together, these observations suggest that increasing the amount of 

TVA in the diet may enhance the pool o f CLA m human tissues

4 2 Objectives

CLA uptake mto MCF-7 human mammary cancer cells was reported to be more 

proficient from milk fat than from synthetic c9, t l  1-CLA suggesting possible formation 

o f CLA from TVA present in the milk fat by a A9 desaturase enzyme (O’Shea et a l ,
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1999) The aims o f this present study are twofold to evaluate the possible bioconversion 

o f TVA to CLA in the MCF-7 (breast) and SW480 (colon) human cancer cell lmes and to 

determine if CLA was synthesised from TV A in sufficient amounts as to modulate 

known bio-responsive markers was examined The relative effects o f TVA and c9, tl 1 - 

CLA on cell growth were compared over a range o f concentrations after 4 days 

incubation Tune- and dose-experiments were performed to determine the effects o f TVA 

on fatty acid composition m both cell lines It was reported that the growth suppressive 

effects o f CLA isomers m MCF-7 and SW480 cell lines may be due to alterations in 

arachidomc acid distribution among cellular lipids, an altered prostaglandin profile, lipid 

peroxidation (Chapter 2) and stimulation o f an apoptotic signal transduction pathway 

(Chapter 3) In this chapter, we examined the effects o f TVA on arachidomc acid uptake 

and conversion to eicosanoid classes in MCF-7 and SW480 cell lmes as well as on its 

ability to modulate ras expression and induce apoptosis m the SW480 cell line

4 3 Materials and methods

4 3 1 Cell culture

The human breast (MCF-7) and Colon (SW480) cell lmes were cultured exactly as 

outlmed in Chapter 2

4 3 2 Bioconversion of TVA to CLA

Cells were seeded m T-25 cm2 flasks at a density o f 5 x 105/flask and cultured for 24 h 

allowing the cells to attach to the substratum The medium was then replaced with 

medium containing /raws-vaccemc acid (Sigma-Aldrich Ireland Ltd , Dublin, Ireland) at
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5, 10 or 20 |ig/ml Control flasks were supplemented with an equivalent volume of 

ethanol (<1 % v/v) After 24 h and 4 d o f incubation, cells were harvested and total 

cellular lipids were extracted from cell pellets usmg the method o f Bligh and Dyer 

(1959), resuspended m 1 ml o f  chloroform and stored at -20  °C prior to GLC analysis

4 3 3 Fatty acid analysis

Fatty acid methyl esters (FAME) o f cellular lipids were prepared usmg base-catalysed 

methanolysis, by incubating extracts with tetramethylguamdme as described by Shanta et 

al (1993) FAME were analysed by GLC, usmg a Varian 3500 GLC (Varian, Harbor 

City, CA, USA) fitted with a flame ionisation detector (FID) and a Supelcowax-10 

capillary GLC column (Supelco Inc, Bellefonte, PA) (60 m x 0 32 mm i d , 0 25jam film 

thickness) GLC conditions were exactly as previously described (Stanton et a l , 1997)

4 3 4 Viability experiments

Cells were seeded in 6 well plates and the MCF-7 and SW480 cells were seeded at 

densities o f 1 x 105/well and 5 x 104/well, respectively Cells were cultured for 24 h to 

allow the cells attach to the substratum The medium was then replaced with medium 

containing TVA (99 % pure from Sigma-Aldrich Ireland L td , Dublm, Ireland) or the 

pure c9, ¿11-CLA isomer (95 % pure from Natural ASA, Hovdebygda, Norway) at 

varying concentrations from 5 to 25 jig/ml dissolved in ethanol Control wells were 

supplemented with equivalent volumes o f ethanol After 4 days o f incubation, cells were 

harvested m the presence o f phosphate buffered saline (PBS) containing 0 25 % (v/v)
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trypsin Viable cell numbers were quantified using the trypan blue exclusion (0 4 % w/v)

assay

4 3 5 Uptake up14C-AA and conversion to eicosanoids

Cells were seeded in T-25 cm2 flasks at a density o f 2 x 105/flask and grown to 90% 

coniluency The medium was then replaced with medium containing 14C-AA at 0 2 jiCi 

along with TV A (20 fig/ml) or an equivalent volume o f ethanol After 24 h mcubation, 

cells were harvested to determine uptake o f 14C-AA and the media removed Total 

cellular lipids were extracted from cell pellets and then separated mto tnacylglyceride 

(TG), monoacylglyceride (MG) and phopholipid (PL) fractions as described m (Chapter 

2) An aliquot o f each fraction was counted m a Beckman LS6500 scintillation counter 

Eicosanoids were extracted twice with ethyl acetate from medium acidified to pH 3 0 

with 0 1 N HC1 as described (Chapter 2) Eicosanoid extracts were dried under nitrogen, 

redissolved m ethyl acetate separated usmg normal-phase TLC as described previously 

(Chapter 2) Bands o f PGE2, PGF2ct, PGD2 were removed from TLC plates and placed in 

vials for counting by liquid scintillation The isoprostane, 8-epi-PGF2a was extracted 

from media as described (Watkins et a l , 1999) and a competitive horseradish peroxidese 

(IIRP) enzyme-linked immunoassay kit (BIOXYTECH 8-Isoprostane assay system) was 

used to quantify 8-epi-PGF2a levels according to the manufacturer’s instructions
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4 3 6 DNA laddering

Cells were seeded m T-75 cm2 flasks at a density o f 1 x 106 cells/flask and incubated for 

24 h The medium was then replaced with fresh medium containing TV A (20 (ig/mL) or 

ethanol control as described above and incubated for 4 days Adherent and 

floatmg/loosely-attached cells were collected and processed separately Apoptotic DNA 

was extracted and precipitated using the Suicide-Track DNA Laddermg Isolation Kit 

(Oncogene Research Products, Boston, MA) according to the manufacturer’s mstructions 

Details o f kit described m Chapter 3 DNA was analysed by electrophoresis m a 1 5 % 

agarose gel at 50 V (constant voltage) for 4 5 h The gel was then stamed for 0 5 h with 

ethidium bromide (0 5 jig/mL) DNA fragments were visualised and photographed using 

the ImageMaster VDA documentation system from Amersham Biosciences (Little 

Chadfort, Buckinghamshire, UK)

4 3 7 Measurement of reduced glutathione

Cells were seeded m T-75 cm2 flasks at a density o f 1 x 106 cells/flask and incubated for 

24 h The medium was then replaced with fresh medium containing TV A (20 |ig/mL) 

and incubated for 4 days after which both floating and adherent cells were collected and 

pooled Cells were resuspended in a PBS/PMSF buffer containing 10 mM sodium 

phosphate buffer (pH 7 2), 100 mM NaCl, 0 2 mM phenylmethylsulfonylfluoride 

(PMSF), 0 1 mM leupeptin, 0 2 jag/ml aprotinm (Sigma-Aldrich Ireland L td , Dublin, 

Ireland), sonicated on ice and centrifuged at 100,000 x g for 1 hour at 4°C Activity o f 

GSH in the cytosolic fraction was measured accordmg to the method of Hissen and Hilf 

as described in Chapter 3 The glutathione concentration o f the samples was determined
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from a standard curve and expressed relative to the protem content, as determined using 

the Bio-Rad protein assay (Biorad, Hemel Hempstead, Hertfordshire, UK)

4 3 8 Total ras expression

SW480 cells were seeded at 5 x 106 cells /150cm2 flask and were cultured for 24 h to 

allow the cells to attach to the substratum The medium was then replaced with medium 

containing either c9, t\ 1-CLA or TV A (20 jug/ml) An equivalent volume of ethanol was 

added to the control flasks Quercetin was used as a positive control After 24 h 

mcubation the cells were harvested using phosphate buffered saline (PBS) containing

0 25% (w/v) trypsin The pellets were washed twice m ice-cold PBS To assess total ras, 

a lysis buffer (containing lOmM sodium phosphate buffer (pH 7 2), lOOmM NaCl, lOmM 

sodium deoxycholate, ImM PMSF, 1% (v/v) Tnton-X 100, 0 ImM leupeptm, 0 2 fig/ml 

aprotmm) was added to the cell pellets which were then sonicated on ice for 10 min The 

lysates were concentrated using Microcon filters The protem content o f the lysates was 

determined using the Biorad protein assay The resulting supernatants were concentrated 

as described above and electrophoresed using 12% (w/v) polyacrylamide gel (70 jig o f 

protem per well) The separated protems were transferred onto Hybond ECL membrane 

(Amersham, Little Chad fort, Buckinghamshire, UK) m a Trans-blot Electrophoretic 

transfer cell (Biorad, Hemel Hempstead, Hertforshire, UK) Blots were stained with 

Ponceau S Solution (0 2 % v/v) to ensure transfer o f protems was complete and to 

determine if an equivalent amount o f protein was loaded in each lane The blots were 

destamed with PBS containing 0 1 % (v/v) Tween 20 (PBST) The blots were blocked for

1 h with 5 % (w/v) nonfat dry milk dissolved m PBST Blots were then incubated

162



overnight with anti-ras monoclonal antibody diluted 1 40 (Oncogene Science, Manhasset, 

NY) in PBST containing 0 5 % nonfat dry milk Blots were washed extensively m PBST 

and remcubated for 1 h with a HRP-linked secondary antibody (Amersham, Little 

Chadfort, Buckinghamshire, UK) diluted 1 2000 in PBST containing 0 5 % (w/v) nonfat 

dry milk The blots were then thoroughly washed in excess PBST and probed with the 

Super Signal detection system (Pierce, Rockford, IL) and exposed to autoradiography 

films (Amersham, Little Chadfort, Buckinghamshire, UK) accordmg to the 

manufacturer’s instructions Densitometry (usmg NIH Image software) was performed 

on Ponceau S scans and autoradiographed

4 3 9 Statistical Analysis

Data represent three mdependent experiments performed in triplicate The Student’s t 

test was used to determine significance between treatments

4 4 Results

4 4 1 Effect of TVA uptake on cellular lipids

To determine if TVA was bioconverted to c9, t \ 1 -CLA, MCF-7 and SW480 cells were 

incubated with mcreasmg concentrations o f TVA (5, 10 and 20 jag/ml) and subsequently 

total cellular lipids were analysed usmg gas liquid chromatography (GLC) Neither CLA 

nor TVA were detectable m control untreated SW480 or MCF-7 cells Incubation of the 

SW480 colon cell line with mcreasmg concentrations o f TVA resulted m accumulation of 

TVA and c9, t\ 1-CLA m a dose-dependent manner to a maximum o f  25 11 and 7 10 g /
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100 g FAME respectively following treatment with 20 jig/ml for 24 h (Table 4 1 ) The 

percentage bioconversion of TV A to c9, t\  1-CLA (g CLA 100 lg FAME / (g CLA 100 *g 

FAME + g TV A 100 lg FAME) x 100) at 5, 10 and 20 jig/ml was 33 8 %, 28 % and 22 

%, respectively As shown m Table 2, there was no further accumulation o f TV A after 4 

days SW480 cells treated with 20 jig/ml TVA accumulated 20 58 g/lOOg FAME TVA 

after 4 days which was lower than the level observed after 24 h Bioconversion to c9, t\ 1- 

CLA was mcreased at this concentration to 29 4 % (Table 4 2) The accumulation of 

TVA caused perturbations in other fatty acids Treatment with 20 jug/ml TVA for 24 h 

and 4 days resulted m respective reductions o f 32 % and 38 % for palmitic (16 0), 47 % 

and 41 % for palmitoleic (16 1), 43 % and 44 % for stearic (18 0), 44 % and 40 % for 

oleic (18 1), 35 % and 29 % for hnoleic (18 2), respectively Arachidonic acid (20 4) was 

reduced by 32 % after 24 h but no effect was observed after 4 days foliowmg treatment 

with 20 jig/ml TVA

In general, the MCF-7 mammary cell data were similar to the SW480 colon cell data As 

shown in Tables 4 3 and 4 4, the concentrations o f TVA and c9, ¿11-CLA m cellular 

lipids mcreased proportionately with TVA treatment MCF-7 cells treated with 20 |ig/ml 

TVA for 24 h accumulated TVA and c9, ¿1 1-CLA to 18 98 and 12 09 g/lOOg FAME, 

respectively The percentage bioconversion of TVA at 5, 10 and 20 fig/ml to c9, ¿11-CLA 

was 38 %, 39 2 % and 38 9 % after 24 h, respectively After 4 days, the levels o f TVA 

had fallen to 15 53 g/lOOg FAME and this was accompanied by a 44 % level o f 

bioconversion to c9, tl  1-CLA Even though byconversion had mcreased after 4 days, 

levels o f  c9, tl 1-CLA did not, suggesting further metabolism by desaturation and
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elongase enzymes occured Levels o f bioconversion were higher m MCF-7 cells 

compared with SW480 cells Treatment o f MCF-7 cells with 20 jig/ml TVA for 24 h and 

4 days resulted m respective reductions o f 47 % and 26 % for myristic (14 0), 39 % and 

35 % for palmitic (16 0), 33 % and 48 % for palmitoleic (16 1), 39 % and 24 % for 

stearic (18 0), 14 % and 35 % for oleic (18 1) and 18 % and 27 % for arachidomc acid 

(20 4), respectively Lmoleic acid was decreased by 22 % after 24 but no changes were 

observed after 4 days



Table 4 1 Fatty acid composition o f  total cellular lipids from SW480 cells mcubated m

the presence o f  trans-vaccenic acid (5-20 jug/ml) for 24 h

SW480 Fatty Acids ( g /100 g FAME)

Fatty Acid Untreated

controls

VA 

5 jig/ml

VA 

10 ng/ml

VA 

20 jig/ml

C l 4 0 1 81 ± 0  09 1 74 ± 0 40 2 28 ± 0 24 1 49 ± 0  16

Cl60 19 9 0 1  1 15 17 79 ± 2  02 17 03 ± 1 86 13 26 ± 0  89*

Ci6 1 3 23 ± 0  16 4 04 ± 2 14 2 57 + 041 1 71 ± 0 0 6 *

C] 8 0 13 67 ± 0  34 10 96 + 0 41* 10 04 ± 0  82* 7 77 ±0 29*

Cj8 1 28 04 ± 0 90 21 76 ±1 86 18 92 ± 0  99* 15 72 ± 0  79*

Ci8 1 vaccemc 0 7 25 ± 1 24* 12 43 ± 0 71* 25 11 ± 2 86*

Ci8 2 5 76 ± 0 22 4 46 ± 0  30* 4 50 ± 0  23* 3 74 ± 0 22 *

Ci82CLA 0 3 71 ±0* 4 89 ± 0  23* 7 10 ± 0  86*

C204 8 544867 ± 0 07 7 03 ± 0 64 6 51 ± 0  37* 5 80 ± 0  11*

Others 19 03 ± 2 5 21 26 ± 5  04 20 83 ± 4 0 3 18 28 ± 5  40

* Denotes results which are significantly different to  untreated cells (p < 0 05) D ata is expressed as the 
mean ±  SD for three separate experim ents carried out in triplicate
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the presence o f trans-vaccemc acid (5-20 |ig/ml) for 4 d

T able 4 2 Fatty acid composition o f  total cellular lipids from SW480 cells mcubated m

SW480 Fatty Acids ( g /100 g FAME)

Fatty Acid Untreated

controls

VA

5^g/ml

VA 

10 jag/ml

VA 

20 |ig/ml

Ci4 0 2 50 ± 0 44 2 25 1 0  20 1 9 0 1 0  02 1 48 1 0 26

Ci60 23 90 ± 1 13 23 68 1 0  42 19 5 0 1  0 50* 14 7 8 1 0  36*

Cj6 1 2 32 ± 0 26 201 1 0 1 5 1 7 0 1  0 01* 1 3 8 1 0  14*

C]80 18 19 ± 0 30 14 6 0 1 1  20* 12 2 6 1 0  33* 10 1 7 1 0  43*

C]8 1 21 26 ± 1 11 17 3 4 1 0  29* 15 4 0 1 0  39* 12 7 3 1 0  42*

Ci 8 1 vaccemc 0 6 7 5 1 0  17* 12 6 9 1  0 44* 20 58 1 0  44*

Ci82 5 95 1 0 1 6 5 1 0 1 0  32* 4 68 1 0  28* 4 20 1 0 09*

C i82CLA 0 3 86 1 0  20* 5 96 1 0 37 * 8 5 7 1 0  48*

C204 7 1 8 1 0  50 621 1 0 2 1 * 6 42 1 0  29* 7 1 3 1 0  29

Others 18 6 7 1 2  90 18 4 3 1 0  26 19 4 9 1  1 09* 18 9 5 1 0  46

* Denotes results which are significantly different to  untreated cells (p <  0 05) D ata is expressed as the 
m ean ± SD for three separate experim ents carried out in triplicate
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the presence o f ¿ra/zs-vaccemc acid (5-20 }ig/ml) for 24 h

Table 4 3 Fatty acid composition o f  total cellular lipids from MCF-7 cells incubated m

MCF-7 Fatty Acids (g/ 100 g FAME)

Fatty Acid Untreated

controls

VA 

5 jag/ml

VA 

10 |ag/ml

VA 

20 fig/ml

Ci4 0 4 43 ± 0  15 3 96 ± 0 30 3 51 ± 0  18* 2 33 ± 0  08*

Ci60 25 78 ± 0 46 25 29 ± 0 49 22 89 ± 0 69* 15 69 ± 0  25*

Ci6 1 6 85 ± 0 28 6 21 ± 0  24 5 72 ± 0 25* 4 60 ± 0 11

Cl8 0 1871 ± 2 8 7 16 23 ±1 98 13 28 ± 0  65* 11 49 ± 0  49*

Ci8 1 20 19 ± 0  74 19 10 ± 0 49 18 76 ± 1 0 4 17 33 ± 0  44*

Ci8 1 vaccemc 0 5 87 ± 0  52* 10 77 ± 0  80* 18 98 + 0 90*

Ci82 3 34 ± 0 27 2 85 ± 0 24* 2 73 ± 0 09* 2 59 ± 0 07*

Ci82CLA 0 3 63 ± 0 45* 6 95 ± 0 21* 12 09 ± 0  30*

C204 4 73 ± 0 28 4 23 ± 0 10 4 1 3 ± 0  13* 3 89 ± 0 29*

Others 15 98 ± 2  30 12 64 ± 0  17 11 25 ± 0  75 10 99 ± 0  85

* Denotes results which are significantly different to  untreated cells (p < 0 05) D ata is expressed as the 
mean ±  SD for three separate experim ents carried out in triplicate
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T able 4 4 Fatty acid composition o f  total cellular lipids from M CF-7 cells mcubated m

the presence o f  trans-vaccemc acid (5-20 fig/ml) for 4 d

MCF-7 Fatty Acids (g/ 100 g FAME)

Fatty Acid Untreated

controls

VA

5ng/ml

VA 

10 ng/ml

VA 

20 ng/ml

C]4 0 3 17 ± 0  20 2 88 ± 0 1 0 2 78 ± 0 44 2 34 ± 0 08*

Cl60 26 82 ± 0 80 24 79 ± 0 57* 21 89 ± 0  58* 17 44 ± 1 09*

Ci6 1 4 37 ± 0 32 2 71 ± 0  13* 2 44 ± 0 14* 2 29 ± 0  33*

C] 8 0 17 87 ± 0  24 15 91 ± 0 29* 14 93 ± 0 26* 13 51 ± 0  45*

Ci8 1 19 95 ± 0  60 17 69 ± 0 9 6 15 25 ± 0  71* 12 92 ± 1 52*

C]81 vaccemc 0 5 31 ± 0  19* 8 34 ± 0 62* 15 53 ± 2  00*

Ci82 4 08 ± 0  41 4 25 ± 0  35 4 21 ± 0  56 4 06 ± 0 39

C 182CLA 0 4 87 ± 0 28* 8 64 ± 2 03* 12 14 ± I 50*

u
7 09 ± 0 80 681 ± 0  18 6 83 ± 0 28 5 18 ± 1 04*

Others 16 63 ± 0 78 14 76 ± 0 82 14 66 ± 1 91 14 58 ± 1 41

* Denotes results which are significantly different to  untreated cells (p < 0 05) D ata is expressed as the 
m ean ±  SD for three separate experim ents carried out in triplicate
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Effects o f incubation with TVA and c9, t\ 1-CLA on growth o f MCF-7 and SW480 cells 

after 4 days incubation were determined Both cell lmes were sensitive to the growth 

inhibitory effect o f the c9, /11-CLA isomer as previously reported (Chapter 2) All c9, 

t\ 1-CLA concentrations significantly lowered (p<0 05) cell number m both cell lines (Fig 

4 1 and 4 2) In the MCF-7 cell line, there were no significant difference between the 

final cell numbers (27 6 - 26 4 x 104) obtamed for the 5, 10 and 16 j^g/ml c9, ¿11-CLA 

treatments (Fig 4 1) The 20 and 25 |Lig/ml treatment significantly lowered (p<0 05) cell 

number by 56 and 61 %, respectively, which were not significantly different from each 

other The two higher c9, /11-CLA concentrations (20 and 25 jag/ml) had a significantly 

greater inhibitory effect on cell growth when compared with concentrations o f 5 - 16 

fig/ml In the MCF-7 cell line, TVA supplementation for 4 days at concentrations less 

than 20 fag/ml had no effect on cell growth while supplementation with 20 and 25 |ig/ml 

TVA significantly reduced (p<0 05) growth by 30 % and 41 % respectively

4 4 2 The effect of TVA and c9, t11-CLA on cell viability
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- * - c 9 ,  t11-CLA -« -tran s-vaccem c acid

Fatty acid conc fig/ml

Figure 4 1 MCF-7 cell numbers foliowmg treatment with varying concentrations o f  c9, 

t\  1-CLA and TVA for 4 days * p<0 05 relative to control Data is expressed as the mean 

± SD for three separate experiments carried out m triplicate

In the SW480 cell lme, mcubation with o f CL A from 5-25 (jg/ml decreased cell growth 

to a similar level (49-52%) (Fig 4 2) Similarly, mcubation with a TVA at concentration 

o f 20 jug/ml significantly decreased cell growth m the SW480 cell lme The MCF-7 

mammary cell lme was more sensitive to the growth inhibitory effects o f TVA and c9, 

/11-CLA

I
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c9, f11-CLA irans-vaccenic acid

Fatty acid conc. |xg/ml

Figure 4 2 SW480 cell numbers following treatment with varying concentrations of 

c9,t\ 1-CLA and TVA for 4 days * p<0 05 relative to control Data is expressed as the 

mean ± SD for three separate experiments carried out m triplicate

4 4 3 Effect of TVA on incorporation of 14C-AA into cellular lipid fractions

In order to examine if cellular AA distribution was altered by TVA, we investigated the 

effect o f TVA (20 fag/ml) on incorporation o f 14 C-AA mto cellular lipid fractions 

Levels o f I4C-AA uptake into PL, TG and MG were 64, 27, and 9 %, respectively, in 

control MCF-7 cells (Figure 4 3 (a)) which are similar to levels o f incorporation 

previously reported (Chapter 2) ,4C-AA uptake mto the MG fraction was significantly 

(p<0 05) mcreased by 10% m MCF-7 cells treated with TVA Levels o f  uptake mto PL, 

TG and MG were 77, 20, and 3 %, respectively, m control SW480 cells (Figure 4 3(b))
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which are similar to levels previously reported (Chapter 2) 14C-AA uptake into the MG 

fraction was significantly (p<0 05) mcreased by 8 % m SW480 cells treated with TVA 

while uptake mto the PL fraction was significantly (p<0 05) decreased by 17 %

co 1

OCO

2oo.t_ 60 -
oOc 4 0 -

* 20O■Ain
0

Control TVA

Figure 4 3 (a)

co 100 -|+>*2
r% 80 -wQ.
O 60
oc 40 -<<1 20o
nP 0

control TVA

Figure 4 3 (b)

Figure 4 3 Percentage 14C-AA incorporation mto phospholipids (PL), triacylglycerol 

(TG) and monoacylglycerol (MG) foliowmg 24h treatment o f MCF-7 cells (a) and 

SW480 cells (b) with TVA (20 |ig/ml) * p<0 05 relative to control Data is expressed as 

the percentage mean ± SD for three separate experiments carried out m triplicate
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The effects o f TVA on enzymatic conversion o f AA to prostaglandins (PGD2, PGE2, and 

PGF2a) and on oxidation to 8-epi- PGF2a were examined Following incubation o f  both 

cell lines with TVA (20jwg/ml), negligible effects on UC-AA conversion to 14C-PGD2, 

PGE2, and PGF2a were observed (Figure 4 4) We have previously reported that the c9, 

ill-C L  A isomer at 16 fig/ml significantly decreased I4C-AA conversion to l4C-PGE2 

while mcreasmg conversion to 14C-PGF2a (Chapter 2) We have also exammed the effect 

o f a range o f c9, t\ 1-CLA concentrations (5, 10, 16 and 20 jig/ml) on conversion to 14C- 

PGE2 and found that only 16 and 20 |wg/ml c9, t \  1-CLA significantly decreased l4C- 

PGE2 levels (Figure 4 5) Therefore, it is plausible that bioconversion o f TVA did not 

achieve a c9, /11-CLA concentration high enough to alter prostaglandin synthesis TVA 

did significantly mcrease (p<0 05) the levels o f the isoprostane 8-epi-PGF2a, a biomarker 

o f lipid peroxidation The c9, /11-CLA isomer has also been shown to mcrease the levels 

o f 8-epi-PGF2a in both cell lmes (Chapter 2)

4 4 4 Effect of TVA on prostaglandin and 8-epi-PGF2a synthesis
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MCF-7 □  SW480

Figure 4 4 Prostaglandin production in MCF-7 cells and SW480 cells following 

treatment with TVA (20 ng/ml) for 24 hours * p<0 05 relative to control Data is 

expressed as the percentage mean ± SD for three separate experiments carried out m 

triplicate
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Figure 4 5 Percentage l4C PGE2 synthesis m SW480 cells following treatment with c9, 

t\ 1-CI.A (5-25 (ig/ml) for 24 h * p<0 05 relative to control Data is expressed as the 

percentage mean ± SD for three separate experiments carried out in triplicate
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The formation of distinct DNA fragments o f olignucleosomal size (180-200 bp) is a 

biochemical hallmark o f apoptosis in many cells (Bortner et a l , 1995) and is observed as 

a DNA ladder in agarose gels Evidence was sought to determine if the cytotoxic action 

o f TVA mduced a specific pattern o f chromatin cleavage mto ohgonucleosomes After 

cells were treated with TVA for 4 days, the media and PBS wash o f the monolayer (both 

o f which may contam apoptotic cells which have floated loose from the monolayer) were 

collected separately from the attached cells m the monolayer TVA treatment exhibited 

the characteristic ladder on electrophoresis o f DNA extracted from the floating cells 

(Figure 4 6a) A small amount o f  DNA laddermg was observed in the control cells which 

would be expected as a small percentage o f cells die normally in culture No DNA 

laddermg was observed in DNA extracted from adherent cells (Figure 4 6b) The effect of 

TVA treatment on levels o f  cytosolic glutathione was evaluated Diminished glutathione 

levels have been observed in apoptotic cells and have been associated with cytochrome c 

release from the mitochondria (Hall, 1999) SW480 cells were treated with TVA (20 

jig/mL) as described earlier and after 4 days all cells were collected and cytosolic fraction 

prepared TVA significantly (p<0 05) reduced glutathione levels by 15 % (Figure 4 5c)

4 4 5 Effect of TVA on apoptosis in SW 480 cells
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(a) (b) (c)

bP L C TV A L C TVA

Figure 4 6 Effect o f TVA (20 (ig/ml) on apoptosis m SW480 cells after 4 days

(a) Floating cells collected after 4 days incubation L= marker lane containing DNA 

fragments ranging from 50 to 2000 base pairs O  Control cells treated with ethanol

(b) Adherent cells collected after 4 days mcubation Lanes are as described for (a) and 

figures represent one o f three separate experiments

(c) Effect o f TVA on glutathione levels m SW480 cells after 4 days * p<0 05 relative to 

control Data is expressed as the mean ± SD for three separate experiments carried 

out m triplicate
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4 4 6 Effect of TVA and c9, f11-CLA on ras expression

Molecules that inhibit ras localisation to cell membranes are potential cancer therapeutic 

agents (Gibbs et a l , 1994) The ras oncogene encodes a protem whose GTPase activity 

cannot be stimulated and which leaves ras in an active GTP-bound form on the 

membrane switching on nuclear transcription factors controlling cell proliferation via a 

cascade o f kmase-driven phosphorylation events (Champell et a l , 1998) Figure 4 7 

shows representative examples o f Western blot analysis o f total ras expression m cells 

treated with c9, t\ 1-CLA, TVA and quercetm for 24 h and 4 days, respectively Quercetin 

was used as a positive control Querectm has been shown to inhibit ras expression m 

human colon cancer cell lmes and m primary colorectal tumors (Ranelletti et a l , 2000) 

The doublet present was identified as non-farnesylated ras at 21 kDa and famesylated ras 

at 23 kDa The upper and lower bands were measured usmg densitometry Quercetm 

decreased total ras after 24h and 4 days by 39 and 58% respectively Neither TVA nor 

c9, /l 1-CLA isomer reduced total ras expression after 24 h After 4 days mcubation, the 

c9, t\ 1-CLA and TVA significantly (p<0 05) reduced total ras expression by 23 and 45%, 

respectively
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Total 24 h Total 4 day

Farsynslated ras 
ras 21 kDa

Control c9^11-CLA T VA Ouercetin

24 h

Farsynslated ras 

ras 21 kDa

4 day

Figure 4 7 Western blot and densitometry result for total ras expression m SW480 cells 

following treatment with TVA (20 ng/ml) for 24h and 4 days Densitometric 

quantification was normalised using Ponceau S scans All blots represent one o f three 

mdependent experiments Values are expressed as percentage o f control (± SD) which 

was taken to be 100% * p<0 05 relative to control
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It was first proposed by Parodi (1994) that TV A could be converted to CL A in humans 

based on the observation that a A9 desaturase enzyme from rat liver microsomes has been 

shown to produce CLA from TVA (Mahfouz et a l , 1980, Pollard et a l , 1981) Santora 

et al (2000) reported and quantified the desaturation o f TVA to the c9, t \ 1-CLA isomer 

m mice fed purified diets Based on concentrations o f TVA and c 9 , t 11-CLA m the total 

carcass, 11 4 % of dietary TVA and 50 8 % o f stored TVA was desaturated The CLA 

produced from TVA desaturation was found only in tnacylglycerols suggesting that 

bioconversion occurred m the adipose tissue Salminen et al (1989) provided evidence to 

suggest that CLA in human serum was m part derived from the bioconversion o f dietary 

¿raw-fatty acids but provided no quantitative estimate o f desaturation Emken et al 

(1986) originally found no evidence for desaturation of TVA m the plasma lipids o f men 

given deuterium-labelled TVA with the limit o f detection used in the study However, 

when one sample from this study was reanalysed, it was demonstrated that TVA was 

converted to c9, tl  1-CLA, at a CLA enrichment o f 30 % presumably via the A9 desaturase 

reaction (Adlof et a l , 2000) Consistent with this assumption is the recent study showmg 

that the concentrations o f CLA and CLA metabolites mcreased proportionately m the 

liver and mammary gland o f rats fed increasing levels o f TVA m the diet (Banni et a l ,

2001)

This study clearly demonstrates that TVA is incorporated mto the cellular lipids o f MCF- 

7 and SW480 cancer cells m a dose and time dependent manner and that these cells have 

the capability to convert a portion o f this TVA to c9, ill-C L A  Both cell lines

4 5 Discussion
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preferentially synthesised c9, t\ 1-CLA as indicated by the marked decrease in oleic acid 

and palmitoleic acid The percentage o f TV A (20 fig/ml) bioconverted to c9, t\ 1 -CLA 

was greater (44 %) m the MCF-7 cell lme as compared with the levels observed m the 

SW480 cell lme (29 4 %) after 4 days mcubation m the presence o f TVA (20 |ig/ml) 

This suggests differences m level o f  expression and/or activity o f  A9 desaturase m the two 

cell lmes The MCF-7 cell lme has been recently reported to express relatively high levels 

o f A9 desaturase (Choi et a l , 2002) Unlike the MCF-7 cell lme m which the percentage 

bioconversion to c9, t\ 1-CLA remained somewhat similar throughout 24 h and 4 days, 

the dose-dependent decrease m percentage bioconversion m the SW480 cell lme suggests 

product inhibition may have occurred A9 desaturase is regulated by polyunsaturated fatty 

acids at the level o f  transcription and mRNA stability (Ntambi, 1995) CLA has been 

shown to reduce hepatic A9 desaturase mRNA levels m mice, (Lee et a l , 1998), A9 

desaturase mRNA expression and its activity m 3T3-L1 adipocytes (Choi et a l , 2000) 

and SCD activity but not expression m the HepG2 human hepatoblastoma cell lme (Choi 

ei a l , 2000) These effects were due to the /10, c 12-CLA isomer However, Choi et al 

(2002) have recently reported that both the ¿10, cl 2 - and c9, /11-CLA isomers have a 

direct inhibitory effect on SCD enzyme activity m the MCF-7 cell lme

TVA has been shown to elicit a biological response in vivo, reducing mammary gland 

premaligant lesions in carcinogen-treated rats (Banni et a l , 2001) This present study 

demonstrates that mcubation with TVA at a concentration o f 25 jug/ml inhibits the growth 

o f human MCF-7 and SW480 cancer cells by up to 41 and 36 %, respectively, after 4 

days Another study has also shown that vaccemc acid (8 4 fig/ml), m the form o f  either
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a s  or transy significantly reduced growth of HT-29 human colon cancer cells by 17 % 

when compared with control cells which were supplemented with an equimolar 

concentration o f stearic acid after 9 days (Awad et a l , 1995) In this present study, TV A 

treatment induced apoptosis m SW480 cells as mdicated by DNA fragmentation Studies 

suggest that oxidative stress, m general and lipid peroxidation in particular are mvolved 

m both initiation and mediation o f apoptosis (Lopaczynski and Zeisel, 2001) The 

isoprostane 8-epi-PGF2a, a bio marker o f lipid peroxidation was increased while 

glutathione was reduced following TVA treatment Diminished glutathione levels have 

been observed m apoptotic cells and are associated with cytochrome c release from the 

mitochondria (Hall, 1999) We have previously reported that a CLA mixture o f isomers, 

the /10, ci2-CLA and c9, /II-C LA  lowered the expression of the anti-apoptotic bcl-2 

protem, decreased cytosolic GSH levels, increased accumulation o f  cytochrome c m the 

cytosol, activated caspase 9 and 3 and caused DNA fragmentation (Chapter 3) This study 

now suggests that growth inhibition by TVA and c9, t\ 1-CLA m SW480 cells may also 

be mediated m part by reduced expression o f ras oncoprotem The decrease in total ras 

expression foliowmg 4 days treatment o f SW480 cells with TVA and c9, d  1-CLA 

suggests that they may inhibit a ras signaling pathway

The growth inhibitory effects o f TVA observed in this study were also associated with 

alterations m AA uptake into cellular lipid fractions In MCF-7 cells, 14C-AA uptake was 

mcreased mto the MG fraction following treatment with TVA The pattern of 

incorporation was similar to that previously observed m MCF-7 cells treated with c*9, / l l -  

CLA (Chapter 2) However, a different pattern was observed in SW480 cells, where
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TV A treatment, unlike c9, t\ 1-CLA increased I4C-AA uptake mto the MG fraction at the 

expense o f uptake mto the PL fraction (Chapter 2) This suggests that TVA alone may 

specifically influence AA uptake mto lipid fractions If  only bio synthesised c9, 111-CLA 

was influencing AA uptake, it would be expected thatJ4C-AA uptake would have 

mcreased mto TG These changes m AA uptake foliowmg TVA treatment did not alter 

prostaglandin profile as was previously observed with c9, tl  1-CLA This suggests that 

substrate availability o f AA cannot solely account for reduced prostaglandm production 

CLA isomers have been shown to inhibit the oxygenation o f  AA by prostaglandm H 

synthase (Bulgarella et a l , 2001) CLA and TVA may have different modulatory effects 

on this enzyme

The human A9 desaturase gene has been isolated, sequenced and shown to be expressed m 

human skm, adipose, liver and bram tissue (Zhang et a l , 1999) Expression o f the human 

A9 desaturase gene and enzyme activity was demonstrated recently in MCF-7 cells (Choi 

et a l , 2002) While little is known about the expression o f desaturase mRNA m normal 

colon, it is o f mterest that A9 desaturase mRNA was found to be overexpressed m human 

colomc tumors (Li et a l , 1994) Based on the findings m this study, we hypothesis that 

conversion of TVA to CLA has the potential to mcrease the levels o f CLA m tissues, 

thereby potentiatmg the anticancer effect o f  CLA

4 6 Summary

The aims o f  this study were to determine if TVA is converted to c9, ill-C L A  m human 

mammary (MCF-7) and colon (SW480) cancer cell lines and to determine whether TVA
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influences cell viability and other CLA-bioresponsive markers When cells were 

incubated in the presence o f TV A from 5 to 20 jug/ml, both TVA and c9, /11-CLA m 

cellular lipids increased m a dose-dependent manner After 4 days incubation of SW480 

and MCF-7 cells with TVA (20 fig/ml), c9, /l 1-CLA mcreased from undetectable levels 

to 8 57 and 12 14 g / 100 g FAME in cellular lipids, respectively TVA supplementation 

for 4 days at concentrations less than 20 jig/ml had no effect on cell growth, while 20 

jig/ml significantly (p<0 05) reduced cell growth in both cell lmes TVA (20 jig/ml) 

treatment mduced DNA fragmentation and significantly (p<0 05) depleted cytosolic 

glutathione levels in the SW480 cell line after 4 days mcubation suggesting that apoptosis 

was the mode o f cell death mduced by TVA Both TVA and c9, t\ 1-CLA reduced 

(p<0 05) total ras expression m SW480 cells 14C-Arachidomc acid (AA) uptake mto the 

monoacylglycerol fraction was significantly mcreased (p<0 05) m both cell lmes while 

uptake mto the phosholipid fraction decreased TVA treatment significantly (p<0 05) 

mcreased 8-epi-PGF2a m both cell lmes The data mdicate that growth suppression and 

cellular responses o f both cells lmes are likely to be mediated by TVA desaturation to c9, 

t\ 1-CLA via A9-desaturase
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CHAPTER 5

Conjugated linoleic acid (CLA)-enriched 

milk fat inhibits growth and modulates CLA- 

responsive biomarkers in MCF-7 and SW480 

human cancer cell lines.1

1 Subm itted for publication to International Dairy Journal A ugust 2002
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A growing number o f dietary components with putative health promotmg properties are 

being identified and a new class o f foods, so called functional foods, has emerged 

(Milner, 1999) Research is unveiling milk fat as a source o f bioactive components which 

mclude minerals, peptides derived from milk proteins and hpid components (Boland et 

a l , 2001) O f particular mterest is the fatty acid conjugated lmoleic acid (CL A) which 

has consistently been shown to inhibit chemically mduced tumor development in animal 

models at a number o f  sites including skin (Belury et a l , 1996), mammary gland (Ip et 

a l , 1994), forestomach (Ha et a l , 1990) and colon (Liew et a l , 1995) In addition, cell 

culture studies have shown CLA to inhibit growth o f human cancer cell lmes mcludmg 

those o f the colon (Chapter 2, Palombo et a l , 2002), breast (Chapter 2, Park et a l , 2000) 

and prostate (Palombo et a l , 2002) at micromolar concentrations CLA is produced m 

ruminant animals and as a result milk fat is among the richest natural source o f CLA, 

with the c9, t\ 1-CLA isomer bemg the predominant form, accounting for up to 90 % o f 

total milk fat CLA (Chin et a l , 1992) While CLA is formed m ruminant animals as a 

first mtermediate m the microbial biohydrogenation of lmoleic acid (LA) by the action o f 

a bacterial lmoleic acid isomerase (Kepler and Tove, 1967), endogenous synthesis from 

¿ra«5-vaccemc acid (TVA) represents a more significant source of 6*9, ill-C L A  m milk 

fat (Gninari et a l , 2002)

Because o f the health promotmg properties associated with CLA, attempts have been 

made to enrich its content m milk fat Animal diet has a major impact on the CLA content 

o f milk fat and several studies have shown that it can be elevated by modifying the 

dietary regime o f the dairy cow (Lawless et a l , 1998, Chilhard et a l , 2000), thus offering

5 1 Introduction

186



the possibility o f  producing CLA-enriched dairy products Ip and co-workers reported 

that feeding CL A enriched butterfat (41 mg/g fat) altered mammary gland morphogenesis 

and reduced mammary cancer risk m rats by the same magmtude as a synthetic mixture 

o f CLA isomers and a synthetic c9, t\ 1-CLA preparation (Ip et a l , 1999a) The group 

consuming the butterfat consistently accumulated more total CLA in their tissues 

compared with the group consuming the synthetic CLA preparations and authors 

suggested that TV A in the butterfat may have been a precursor for endogenous synthesis 

o f CLA In a more recent study, this CLA enriched butterfat effectively suppressed the 

proliferative activity and the expression o f cell cycle regulatmg protems (cyclm D1 and 

A) m the developing rat mammary epithelium (Ip et a l , 2001)

It was reported m Chapter 2 that the mammary MCF-7 and colon SW480 cancer cell 

lmes were sensitive to the cytotoxic effect o f a CLA mixture o f isomers and the c9, 111- 

CLA isomer The CLA-mduced cytotoxicity was related to an increase m lipid 

peroxidation (Chapter 2,), alterations m the mobilisation and metabolism o f arachidomc 

acid (Chapter 2), a reduction m the level o f  the anti-apoptotic bcl-2 protem which 

triggered a cascade o f events leadmg to apoptosis (Chapter 3) and modulation o f ras 

expression (Chapter 4) CLA enriched milk fat was previously reported to be more 

effective than synthetic CLA at decreasing MCF-7 cell numbers and mcreasmg lipid 

peroxidation after an 8 day mcubation period (O’Shea et a l , 2000) These effects were 

independent o f the variable composition o f the milk fat samples, suggesting that CLA 

may be the active ingredient responsible for the cytotoxic effect m MCF-7 cells
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The present study investigated whether fatty acids (linoleic, trans-vaccenic acid and oleic 

acid) present in CLA-enriched milk fats could influence growth o f  MCF-7 and SW480 

cells The potency of CLA-enriched milk fats to modulate CLA-responsive biochemical 

and molecular biomarkers previously observed m the MCF-7 and SW480 cell lmes 

(Chapter 2, 3, 4) were assessed Specifically, the effects o f CLA-enriched milk fats on 

(1) arachidomc acid uptake, distribution and conversion to eicosanoid classes m MCF-7 

and SW480 cell lmes, (2) lipid peroxidation, (3) apoptotic markers m the SW480 cells 

line (reduced glutathione levels, membrane annexm V levels and bcl-2 expression) and 

(4) levels o f ras expression in SW480 cells were assessed

5 3 Materials and methods

5 3 1 Cell culture conditions

The MCF-7 and SW480 human colon cancer cell lmes were cultured exactly as outlmed 

m Chapter 2

5 3 2 Milk fat samples

The milk fats used m this study were obtained following supplementation of lactating 

dairy cows on pasture (control) or on pasture supplemented with full fat rapeseeds (FFR) 

and full fat soybeans (FFS) for 33 and 34 days, respectively (Lawless et a l , 1998) Table 

1 5 summarises the concentrations o f CLA, oleic acid, TVA and LA m the milk fat 

samples The fall fatty acid composition is as described (O’Shea et a l , 2000)

5 2 Objective
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T able 1 5 Fatty acid composition o f  milk fat samples (g/lOOg FAME)

Fatty acid Control milk fat FFS milk fat FFR milk fat

CLA 1 69 1 83 2 26

Trans-vaccemc acid 3 14 4 41 4 46

Oleic Acid 20 28 23 37 26 92

Lmoleic acid 1 25 4 28 1 69

5 3 3 Quantification of cell numbers

Cells were seeded m 6 well plates and the MCF-7 and SW480 cells were seeded at 

densities o f 1 x 105/well and 5 x 104/well respectively Cells were cultured for 24 h to 

allow the cells attach to the substratum The medium was then replaced with medium 

contammg either FFR milk fat, FFS milk fat or control milk fat at a concentration of 

1 mg/ml to yield CL A concentrations o f 22 6, 18 3 and 16 9 |ig/ml, respectively Control 

wells were supplemented with equivalent volumes o f ethanol In a separate experiment, 

the milk fat content o f the medium was varied between 0 8 and 1 2 mg/ml to yield a CLA 

concentration o f 20 |ig/ml m all milk fat samples Cells were also mcubated in the 

presence o f  c9, / I I  -CLA (95 % pure from Natural ASA, Hovdebygda, Norway), lmoleic 

acid, trans-vaccemc acid or oleic acid (all 99 % and obtamed from Sigma-Aldrich Ireland 

Ltd , Dublin, Ireland) at concentrations similar to those found m the milk fat samples For 

all viability experiments, cells were harvested m the presence o f  phosphate buffered 

salme (PBS) contammg 0 25 % (v/v) trypsin Viable cell numbers were quantified using 

the trypan blue exclusion (0 4 % w/v) assay
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5 3 4 Uptake up14C-AA conversion and to eicosanoids

Cells were seeded in T-25 cm2 flasks at a density o f 2 x 105/flask and grown to 90% 

confluency The medium was then replaced with medium containing l4C-AA at 0 2 jaCi 

along with the milk fat samples control, FFS or FFR (all added at milk fat concentration 

o f 1 mg/ml yielding CLA concentrations o f 16 9, 18 3 and 22 6 |ig/ml, respectively) or an 

equivalent volume of ethanol After 24 h incubation, cells were harvested to determine 

uptake o f 14C-AA and the media was collected Total cellular lipids were extracted from 

cell pellet and then separated mto triglyceride (TG), monoglyceride (MG) and 

phospholipid (PL) fractions as described (Chapter 2) An aliquot o f each fraction was 

counted m a Beckman LS6500 scintillation counter Eicosanoids were extracted as 

described (Chapter 2) Eicosanoid extracts were dned under nitrogen, redissolved in 

ethyl acetate separated usmg normal-phase TLC as described previously (Chapter 2) 

Bands o f PGE2, PGF2a, PGD2 were removed from TLC plates and placed m vials for 

counting by liquid scintillation The isoprostane, 8-epi-PGF2a was extracted from media 

as described (Watkins et a l , 1999) and a competitive horseradish peroxidase (HRP) 

enzyme-linked immunoassay kit (BIOXYTECH 8-Isoprostane assay system) was used to 

quantify 8-epi-PGF2a levels according to the manufacturer’s instructions 5- 

Hydroperoxyeicosatetraenoate (5-HPETE) was measured usmg a colorimetric method 

developed by Waslidge and Haynes (1995)

5 3 5 Measurement of reduced glutathione (GSH) and annexin V levels

Cells were seeded m T-75 cm2 flasks at a density o f 1 x 106 cells/flask and mcubated for 

24 h The medium was then replaced with fresh medium containing the milk fat samples,
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control, FFS or FFR (1 mg/ml) as described earlier and incubated for 4 days after which 

both floating and adherent cells were collected and pooled Cells were then resuspended 

in a PBS/PMSF buffer (10 mM sodium phosphate buffer (pH 7 2), 100 mM NaCl, 0 2 

mM phenylmethylsulfonylfluoride (PMSF)) containing 0 1 mM leupeptm, 0 2 ng/ml 

aprotinm (both from Sigma-Aldrich Ireland Ltd , Dublin, Ireland) as protease inhibitors, 

sonicated on ice and centrifuged at 100,000 x g for 1 hour at 4°C The supernatant 

(cytosolic fraction) was analysed for GSH levels accordmg to the method o f Hissen and 

Hilf (1976) The pellet was resuspended m lysis buffer (10 mM sodium phosphate buffer 

(pH 7 2), 0 2 mM PMSF and 100 mM NaCl) containing 0 1 mM leupeptm and 0 2 jig/mL 

aprotinm and mcubated on ice for 20 mm followed by centrifugation at 15,000 x g for 15 

mm at 4°C The resultmg supernatant (membrane fraction) was analysed for annexin V 

content usmg Annexin V Elisa kit (Alexis Biochemicals, San Diego, CA, USA) 

accordmg to the manufacturer’s instructions Details o f  kit are descnbed m Chapter 3 

The GSH and annexin V concentrations o f the samples were determined from standard 

curves and expressed relative to the protem content, as determined usmg the Bio-Rad 

protem assay (Biorad, Hemel Hempstead, Hertfordshire, UK)

5 3 6 Measurement of bcl-2 and ras expression

SW480 cells were seeded at 5 x 106 cells /150cm2 flask and were cultured for 24 h to 

allow the cells to attach to the substratum The medium was then replaced with fresh 

media containing the milk fat samples, control, FFS or FFR (1 mg/ml) After 4 days o f 

mcubation, both floating cells and adherent cells were collected and pooled Cells were 

washed twice m ice-cold PBS and resuspended m lysis buffer (descnbed above) Lysates 

were sonicated usmg a Vibra Cell VC502 (Somes, Newtown, CT, USA) on ice and
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concentrated using Microcons® (Millipore, Cork, Ireland) Protein concentrations were 

determined usmg the Bio-Rad protem assay (Biorad, Hemel Hempstead, Hertfordshire, 

UK) SDS-PAGE and Western blots were performed essentially by the methods o f 

Laemmli (1970) and Towbm et al (1979), respectively Lysates contammg 

approximately 70 jxg o f  protem were solubilized m sample buffer (10 % (w/v) SDS, 600 

mM Tris-HCl (pH 6 7), and 50 % (w/v) glycerol) contammg p-mercaptoethano 1 and 50 

Hg/mL bromophenol blue Samples were boiled for 2 mm and protems resolved by 

electrophoresis and blotted onto Hybond ECL membrane (Amersham, Little Chad fort, 

Buckinghamshire, UK) m a Trans-blot Electrophoretic transfer cell (Biorad, Hemel 

Hempstead, Hertfordshire, UK) Blots were stamed with Ponceau S Solution (0 2 % w/v) 

to ensure transfer o f protems was complete and to determine if equivalent amount o f 

protem were loaded m each lane The blots were destamed with PBS contammg 0 1 % 

(v/v) Tween 20 (PBST) and blocked for 1 h with 5 % (w/v) nonfat dry milk dissolved m 

PBST Blots were then mcubated with monoclonal antibodies overnight anti-bcl-2 

diluted to 1 1000 (Sigma-Aldrich Ireland Ltd , Dublin, Ireland) or anti-ras diluted to 1 40 

(Oncogene Science, Manhasset, NY) in PBST contammg 0 5 % (w/v) nonfat dry milk 

Blots were washed extensively in PBST and reincubated for 1 h with a HRP-linked 

secondary antibody (Amersham, Little Chadfort, Buckinghamshire, UK) diluted 1 2000 

m PBST contammg 0 5 % (w/v) nonfat dry milk The blots were then thoroughly washed 

m excess PBST and probed with the Super Signal detection system (Pierce, Rockford, IL, 

USA) and exposed to autoradiography films (Amersham, Little Chadfort, 

Buckinghamshire, UK) accordmg to the manufacturer's instructions Densitometry 

(usmg NIH Image software) was performed on Ponceau S scans and autoradiographs
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5 3 7 Statistical analysis

Three independent experiments were performed m triplicate The Student’s i test was 

used to determine significance between treatments

5 4 Results

5 4 1 The effects of CLA-enriched milk fat on cell viability

MCF-7 and SW480 cells were mcubated for 4 days m the presence o f milk fat (1 mg/ml) 

to yield CL A concentrations in the range from 16 9 - 22 6 |xg/ml This allowed 

exammation of the effect o f mcreasmg milk fat CLA concentration while the milk fat 

content was kept constant Cell numbers following 4 days o f mcubation with all three 

milk fats were significantly (p<0 05) lower than untreated control cells (Figure 5 1a and 

5 lb) A dose-dependent decrease m cell number was observed with mcreasmg CLA 

content m the milk fats Maximal growth inhibition o f  61 % and 58 % occurred in the 

MCF-7 and SW480 cells, respectively, following treatment with the highest milk fat CLA 

concentration A significant (p<0 05) inhibitory effect on cell number was obtamed 

foliowmg mcubation of both cell lmes with c9, ill-C L A  at 16 9, 18 3 and 22 6 (ig/ml, 

representing the concentrations present m Control, FFS and FFR milk fats, respectively 

(Figure 5 la  and 5 lb) The respective percentages by which cell viability was reduced 

folio wmg addition o f c9, ill-C L A  to the medium were 43, 46 and 49 % m the MCF-7 

cell lme and 41, 44 and 50 % m the SW480 cell lme In the MCF-7 cell lme, milk fat 

CLA (16 9 and 18 3 jutg/ml) was significantly (p<0 05) more effective at decreasing cell 

numbers when compared to the synthetic c9, il 1-CLA at the same concentrations In the
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SW480 cell line no significant difference was observed between the milk fat CLA and 

synthetic c9, tl 1-CLA treatments

The milk fat content o f the medium was then varied between 0 8 and 1 2 mg/ml to yield a 

final CLA milk fat concentration o f  20 jig/ml All milk fat samples significantly (p<0 05) 

lowered cell numbers compared with untreated control cells after 4 days mcubation by 

approximately 58 % and 53 % m MCF-7 and SW480 cells respectively (Figure 5 2a and 

5 2b) No significant differences m final cell numbers was obtamed for all milk fat 

treatments in either cell lme
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Figure 5 1 Growth o f (a) MCF-7 and (b) SW480 cells incubated with milk fat samples 

and synthetic c9, tll-C L A  contammg varying levels o f CLA for 4 days Within a 

concentration, the bars not sharing the same letter are significantly different from one 

another (p<0 05) All CLA treatments are significantly different to ethanol controls Data 

is expressed as the mean ± SD for three separate experiments carried out m triplicate

195



Control CF (20 FFS (20 FFR (20
(ethanol) ¡ag/ml C L A ) ng/mlCLA) ng/ml CLA)

Figure 5 2 (a)

o

f  50
o
O

Control FFR (20 FFS (20 CF (20
(ethanol) \iglm\ CLA) ng/mlCLA) ¿ig/ml C L A )

Figure 5 2 (b)

Figure 5 2 Growth o f (a) MCF-7 and (b) SW480 cells incubated with milk fat samples 

contammg 20 jag/ml CLA for 4 days Data is expressed as the mean ± SD for three 

separate experiments carried out m triplicate CF, control milk fat, FFR, full fat rapeseed 

milk fat, FFS, full fat soyabean milk fat
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To elucidate the effects o f individual fatty acids present in the milk fat on cell viability, 

cells were mcubated m the presence o f  either pure lmoleic acid (LA), trans- vaccemc acid 

(TVA) or oleic acid at concentrations similar to those found m the milk fat samples and 

viability was assessed after 4 days mcubation TVA significantly decreased (p<0 05) cell 

viability by approximately 22-37 % m both cell lmes when added at the concentrations 

present in the three milk fat samples (31 4, 44 4 and 46 4 |ig/ml m the control, FFS and 

FFR, respectively) The MCF-7 cells were more sensitive to the growth inhibitory effects 

o f TVA When cells were mcubated m the presence o f LA at the concentrations present 

m the three milk fat samples (12 5, 42 1 and 16 9 fig/ml in the control, FFS and FFR, 

respectively) differential effects on growth were observed In the MCF-7 cell line, LA at 

a concentration o f  12 5 fig/ml significantly (p<0 05) stimulated cell growth by 26 % but 

at a concentration o f 42 1 jug/ml LA was cytotoxic to the cells inhibiting cell growth by 

43 % LA at 16 9 fig/ml had no significant effect on final cell numbers In the SW480 

cell line, LA at 12 5 and 16 9 jug/ml stimulated cell growth but the mcrease was only 

significant at the higher LA concentration When LA was added at a concentration o f 

42 1 jig/ml SW480 cell growth was significantly (p<0 05) inhibited by 40 % The latter 

cell lme was more sensitive to the growth modulatory effects o f oleic acid than the MCF- 

7 cell line Incubation with oleic acid significantly decreased cell numbers in the MCF-7 

only at the highest concentration o f 269 2 jag/ml which was representative o f the 

concentration found m the FFR milk fat sample In contrast, mcubation o f SW480 cells 

with oleic acid at 202 8, 233 7, 269 2 jig/ml, representmg the concentrations present m 

control, FFS and FFR milk fats respectively, significantly (p<0 05) decreased cell 

viability by 13, 26 and 39 %, respectively
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* denotes values significantly different to control cells (p<0 05) Data is expressed as the 

mean + SD for three separate experiments carried out m triplicate CF, control milk fat, 

FFR, full fat rapeseed milk fat, FFS, full fat soyabean milk fat

5 4 2 Effect of CLA enriched milk fat on incorporation of 14C-AA into cellular lipid 

fractions

In order to examme if growth inhibition by milk fat could be attributed to an altered 

pattern o f AA distribution and eicosanoid formation, we mvestigated the effects o f three 

milk fat samples on incorporation o f 14 C-AA mto cellular lipid fractions o f MCF-7 and 

SW480 cells The control fat, FFS and FFR milk fats were added at lmg/ml milk fat to 

yield CLA milk fat concentrations o f 16 9, 18 3 and 22 6 jig/ml, respectively Levels o f 

14C-AA uptake mto PL, TG and MG were 64, 27, and 9 %, respectively, m control MCF- 

7 cells and 74, 22, and 4 %, respectively, m control SW480 cells (Figure 5 4a and 5 4b) 

These patterns o f AA incorporation are similar to those previously reported m these cell 

lines (Chapter 2) In both cells lmes, only incubation with the FFR milk fat, containing 

the highest CLA levels (22 6 jug/ml), caused perturbations in ,4C-AA uptake (Figure 5 4a 

and 5 4b) In the MCF-7 cell lme, treatment with FFR milk fat significantly (p<0 05) 

mcreased 14C-AA uptake mto the MG fraction by 10 % In SW480 cells, FFR milk fat 

treatment also resulted m a significant (p<0 05) mcrease in 14C-AA uptake mto the MG 

fraction (by 8 %) and this was accompanied by a significant (p<0 05) decrease in uptake 

mto the PL fraction (by 12 %)
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Figure 5 4 Percentage ,4C-AA incorporation into phosphlipids (PL), triglyceride (TG) 

and monoglycende (MG) following 24 h treatment o f MCF-7 (a) and SW480 (b) cells 

with milk fat samples (1 mg/ml) * denotes values significantly different to control cells 

(p<0 05) Data is expressed as the percentage mean ± SD for three separate experiments 

carried out m triplicate CF, control milk fat, FFR, full fat rapeseed milk fat, FFS, full fat 

soyabean milk fat, MG, monoglycende, TG, tnglycende, PL, phospholipid
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5 4 3 Effect of CLA-enriched milk fat on eicosanoid and 8-epi- PGF2a synthesis 

The effects o f the control, FFS and FFR milk fat treatments (all added at 1 mg/ml milk 

fat) on enzymatic conversion o f AA to selected eicosanoids (PGD2, PGE2, and PGF2a and

5-HPETE) and on oxidation to 8-epi-PGF2a were examined In both cells lines, only the 

FFR milk fat treatment altered the eicosanoid profile (Figure 5 5a and 5 5b) Following 

incubation o f both cell lines with FFR milk fat, l4C-AA conversion to PGE2 was 

significantly (p<0 05) decreased (by approximately 21 - 25 %) while conversion to 

PGF2(I was significantly (p<0 05) mcreased (by 23 - 27%) A CLA dose-dependent 

mcrease m the isoprostane 8-epi-PGF2a, a biomarker o f lipid peroxidation, was observed 

m both cell lmes following mcubation with the three milk fats Maximal stimulation o f 

8-epi-PGF2a production by 73 and 92 % was observed m MCF-7 and SW480 cells 

respectively, following treatment with the FFR milk fat which contamed the highest CLA 

concentration None o f the milk fat treatments significantly altered the production o f 5- 

HPETE
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Figure 5 5 Percentage eicosanoid synthesis following 24 h treatment o f MCF-7 (a) and 

SW480 (b) cells with milk fat samples (1 mg/ml) * denotes values significantly different 

to control cells (p<0 05) Data is expressed as the percentage mean ± SD for three 

separate experiments carried out m triplicate
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5 4 4 Effect of CLA-enriched milk fat on apoptotic markers in SW480 cells

To determine if the cytotoxic effect o f the milk fat samples was executed via an mduction 

o f an apoptotic signalling pathway their effects on cytosolic GSH comtent, membrane 

annexrn V levels and bcl-2 expression were examined The data demonstrate that 

treatment o f SW480 cells with the milk fat samples significantly (p<0 05) reduced bcl-2 

protem expression by 23 -  36 % m a milk fat CL A concentration-dependent manner 

(Figure 5 7) All milk fat samples depleted cytosolic GSH by approximately 21-39% m 

SW480 cells, with the FFR milk fat exerting the most potent effect (Figure 5 7) All milk 

fat treatments significantly (p<0 05) increased levels o f  annexrn V (29-32%) m the cell 

membrane when compared with concentrations found m the membrane preparations of 

untreated SW480 cells (Figure 5 6)

Figure 5 6 Levels o f cytosolic GSH and membrane annexrn V following 4 day treatment 

o f SW480 cells with milk fat samples (1 mg/ml) * denotes values significantly different 

to control cells (p<0 05) Data is expressed as the mean ± SD for three separate 

experiments carried out m triplicate
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Figure 5.7 Kxpression o f bcl-2 in SW480 cells following 4 day treatment with milk fat 

samples (1 mg/ml). * denotes values significantly different to control cells (p<0.05). Blot 

represent one o f three independent experiments. Values are expressed as a percentage o f 

the control (± SD) which was taken to be 100%

5.4.5 Effect o f C IA  enriched milk fa t on ras expression.

The effect o f the milk fat samples on total ras expression in the SW480 cell line which 

overexpresses k ras (Geiser el al., 1989) was examined. Figure 5.8 shows a representative 

example o f Western blot analysis o f ras in cells treated with control fat, FFS or FFR milk 

fat for 4 days. Ras appeared as a doublet with the upper band representing farnesylated 

membrane-bound ras and the lower band representing non lipid-modified ras p21.
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Incubation o f SW480 cells with control, FFS and FFR milk fat samples (at 1 mg/ml) 

decreased amounts o f total ras by 35, 45 and 52%, respectively, relative to untreated 

cells
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Figure 5 8 Expression o f ras m SW480 cells following 4 day treatment with milk fat 

samples (1 mg/ml) Blot represents one o f three mdependent experiments * denotes 

values significantly different to control cells (p<0 05) Values are expressed as a 

percentage o f the control (± SD) which was taken to be 100%

205



A prospective cohort study in Finland, revealed that women who developed breast cancer 

had consumed less milk than cancer-free women and suggested that CL A may be the 

component m milk providmg the protective effect (Knekt et a l , 1996) Another study 

revealed an mverse association between dietary intake and serum CL A and risk o f  breast 

cancer m postmenopausal women (Aro et a l , 2000) Using food duplicate methodology, 

the c9, /II-CLA  intake in the U S was estimated to be approximately 193 and 140 mg/d 

for men and women, respectively (Ritzenthaler et a l , 2001) The authors o f this study 

suggest that the c9, t\  1-CLA intake must be mcreased by approximately 3-fold to achieve 

consumption levels that can exhibit a cancer protective effect ( l e , 0 lg/lOOg diet) A 

natural approach to enhancing CLA in dairy products is to mcrease the CLA content o f 

milk fat by modify mg the dietary regime o f the dairy cow The FFR milk fat used in this 

study, contained 1 3 fold higher c9, /l 1-CLA concentration than control fat

This study confirmed the cytotoxic effect o f milk fat CLA m MCF-7 cells previously 

reported after 8 days mcubation (O’Shea et a l , 2000) and also showed that the SW480 

cell line is sensitive to the growth inhibitory effects o f milk fat CLA Tnglyeride-bound 

milk fat CLA was as effective an anticancer agent as the free fatty acid form o f the c9, 

t\ 1 -CLA m the SW480 cells and even better m the MCF-7 cells When the milk fats were 

added to yield a final concentration o f 20 |J-g/ml, similar growth inhibitory effects were 

observed for all treatments in both cells lines This suggests that CLA may be the active 

mgredient responsible for the cytotoxic effect in MCF-7 and SW480 cells as already 

proposed in (O’Shea et a l , 2000) It is apparent that even at 4 days, (wherem 

approximately 50% inhibition was observed following all treatments as opposed to 90%

5 5 Discussion
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inhibition after 8 days (O'Shea et al., 2000) that the effect o f CLA is independent o f other 

components present in milk fat.

Evidence is emerging to suggest that individual fatty acids, even within the same fatty 

acid type (for example c9, /II-CLA  and LA) may have different cffects on 

carcinogenesis, tumor growth and metastasis (Zhou and Blackburn. 1999) and therefore 

individual fatty acid-specific effects may be in part responsible for the conflicting results 

obtained in epidemiological studies o f  dairy products and tumorigcncsis. This study 

evaluated the individual effect o f four fatty acids, at concentrations similar to those found 

in the three milk fat samples, on the cell growth o f SW480 and MCF-7 human cancer cell 

lines. An inhibitory elTcct on cell growth was obtained following incubation o f both cell 

lines with the pure c9, /11-CLA isomer (at concentrations similar to those present in the 

three milk fat samples), confirming the well established cytotoxic effect o f  CLA in these 

two cells lines. Milk fat CLA (FFR and FFS) was more effective at inhibiting the growth 

o f  MCF-7 cells while no difference in potency was observed in the SW480 cell line. 

When media was supplemented with synthetic TV A, at concentrations similar to those 

present in the three milk fat samples, ccll viability significantly decreased in both ccll 

lines. We have previously reported that TV A decreased cell growth and provided 

evidence to suggest that the growth suppression responses o f both cells lines to TVA are 

likely to be mediated by its desaturation to c9, /l  1-CLA (Chapter 4). LA was either 

stimulatory or had no effect on ccll growth when incubated with the cells at the lower 

concentrations found in the control (12.5ng/ml) and FFR (16.9 ng/ml) milk fats. 

However, 46.4 ng/ml o f  LA, the concentration present in the FFS milk fat. had a potent 

cytotoxic effect and was o f similar magnitude to CLA on the growth o f both ccll lines.
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Previous studies have found that incubation o f MCF-7 cells with LA at concentration up 

to 20 |ag/ml stimulated growth (O’Shea et a l , 1999, Shultz et a l , 1992, Park et a l , 2000) 

However, one study showed that LA was more inhibitory to MCF-7 cells than CLA when 

added at 28 and 140 fig/ml (DesBordes and Lea, 1995) Oleic acid decreased viability o f 

SW480 cells when added at concentrations similar to those present m the three milk fat 

samples but only decreased cell numbers m MCF-7 cells at the highest concentration o f 

269 2 jig/ml Oleic acid has been previously shown to be toxic to a range o f malignant 

cells in vitro, including the HT29 colon cell lme (Fermor et a l , 1992) If  the cytotoxic 

effects o f these fatty acids in milk fat are additive, it would be expected that the 

accumulative growth suppression effect by milk fats would be much greater than that 

observed and would vary as milk fat content o f the medium varied The observation that 

final cell numbers were similar when the milk fat content o f  the medium was varied to 

yield a final CLA milk fat concentration o f 20 jig/ml suggests that the effects o f these 

fatty acids when in tnglycende-bound form in milk fat are lessened Yet, when cells 

were treated with milk fats containing increasmg amounts o f CLA they exhibited a dose 

dependent decrease m cell number These data support the earlier conclusion of Ip et al 

(1996) that CLA is a unique fatty acid with anticancer properties acting mdependently of 

other fatty acids

We have previously reported that the growth suppressive effect o f the c9, /11-CLA 

isomer was associated with changes in AA distribution among cellular lipids and an 

altered prostaglandin profile (Chapter 2) In this study, we have demonstrated similar 

effects to AA uptake and conversion to AA usmg the FFR CLA-enriched milk fat (which 

contained 22 6 fig/ml CLA) In the MCF-7 cell lme, FFR milk fat mcreased 14C-AA
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uptake into the MG fraction The pattern o f incorporation was similar to that previously 

observed m MCF-7 cells treated with pure c*9, /11-CLA isomer (Chapter 2) The FFR 

milk fat decreased I4C-AA uptake mto the PL fraction but m contrast to the pure c*9, / l l -  

CLA isomer which mcreased uptake m the TG fraction, the FFR milk fat mcreased its 

uptake mto the MG fraction We have previously reported that TV A (20 jag/ml) had a 

similar effect on 14C-AA uptake (Chapter 2) The elevated level (518 fig/ml) o f  TV A in 

the FFR milk may have an influence on AA uptake mto lipid fractions The FFR milk fat 

decreased I4C-AA conversion to PGE2 while increasing conversion to PGF2a This 

altered pattern o f eicosanoid production is similar to that previously observed following

6-9, t\ 1-CLA treatment (Chapter 2) Treatment with the control and FFS milk fats failed 

to alter 14C-AA uptake mto lipid fractions and eicosanoid production even though they 

contamed higher CL A concentrations (16 9 and 18 3 j^g/ml, respectively) than that (1 e 

16 ng/ml as free fatty acid) previously shown to cause perturbations m uptake (Chapter 

2) This suggests that other fatty acid present m the milk fats may have different effects to 

CL A on AA uptake and eicosanoid biosynthesis and therefore their effects together may 

explam the overall non significant results

We have previously reported that a CL A mixture o f isomers (29 5 % c9, / l l ,  29 % /10, 

c 12), the pure /10, cl2-CLA and pure 6*9, /l 1-CLA lowered the expression of the anti- 

apoptotic bcl-2 protein, decreased cytosolic GSH levels, mcreased accumulation o f 

cytochrome c m the cytosol, activated caspase 9 and 3 and caused DNA fragmentation 

(Chapter 3) Treatment o f the two cell lmes with all three milk fats mcreased the levels o f 

8-epi-PGF2a, a biomarker o f lipid peroxidation The pure c9, /11-CLA isomer has also
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been shown to increase the levels o f 8-epi-PGF2a in these cell lines (Chapter 2) Studies 

suggest that oxidative stress, in general and lipid peroxidation in particular are involved 

in both initiation and mediation o f  apoptosis (Lopaczynski and Zeisel, 2001) Depletion 

o f GSH furthers enhances oxidative stress within cells and has been associated with 

cytochrome c release (Tang et a l , 1998) Treatment o f cells with all milk fat samples 

depleted cytosolic GSH The milk fat modulated bcl-2 protem levels, reducing its 

expression m a CL A concentration-dependent manner and mcreased levels o f  annexin V 

m cell membranes m a similar manner to the pure c9, ill-C L A  previously reported 

(Chapter 3) It can be concluded from these data that mcubation o f SW480 cells with 

milk fats resulted m a cellular condition compatible with mduction o f apoptosis 

Treatment o f SW480 cells with TVA and c9, t\ 1-CLA was shown to have decreased total 

ras expression following 4 days o f mcubation (Chapter 4) Ras is a central player in 

membrane-to-nucleus signal transduction and has several downstream targets, mcludmg 

the MAP kmase pathway which is mvolved m cellular proliferation (Campbell et a l , 

1998) Mutations m the dominant oncogene ras represent the most commonly found gene 

mutations m human cancer cells (Gibbs et a l , 1994) This study now shows that CLA- 

enriched milk fats may also influence ras signalling by reducmg its expression

While preliminary data from human studies have shown CLA to have a number o f health 

effects (Calder, 2002), there is a need for more information on safety, efficacy o f  isomers 

and doses required to exert potential benefits m humans To test the efficacy and utility o f 

CLA m cancer prevention, it is necessary to identify CLA bio-responsive markers for use 

m clinical trials This study has identified two possible protem biomarkers m SW480
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cells, bcl-2 and ras expression Further comparative studies with other fatty acids are 

required before their use as specific biomarkers o f CL A exposure can be validated

5 7 Summary

Milk enriched m CLA was obtamed from cows on pasture supplemented with full fat 

rapeseeds (FFR - 2 26 g c9, t\ 1-CLA /100  g FAME) and full fat soyabeans (FFS - 1 83 g 

c9, tl 1-CLA /100  g FAME) (1) A control milk fat (1 69 g c9, t\ 1-CLA /1 0 0  g FAME ) 

was obtamed from cows fed on pasture only This study assessed the potency of the 

CLA-enriched milk fats to modulate biomarkers that had previously been observed to 

respond to c9, t\ 1-CLA m the MCF-7 and SW480 cell lmes Cell numbers decreased 

(p<0 05) up to 61 % and 58 % following incubation o f MCF-7 and SW480 cells, 

respectively, for 4 days with milk fats (yielding CLA concentrations between 16 9 and 

22 6 fig/ml) A comparative study o f the effects o f synthetic Imoleic acid, /ram-vaccenic 

acid and oleic acid at concentrations found m the milk fats revealed that individually, 

they also have modulatory effects on growth, but that the growth-inhibitory effects o f 

milk fats were mdependent o f their variable composition The FFR milk fat, contammg 

the highest CLA content, mcreased (p<0 05) I4C-AA uptake into the monoglyceride 

fraction o f  MCF-7 and SW480 cells while it decreased (p<0 05) uptake into the 

phospholipid fraction o f the latter This milk fat also decreased (p<0 05) 14C-AA 

conversion to PGE2 while mcreasmg conversion to PGF2a m both cell lmes All milk fat 

samples mcreased (p<0 05) lipid peroxidation as measured by 8-epi-PGF2a m both cell 

lmes In SW480 cells the milk fat samples decreased (p<0 05) bcl-2 and cytosolic 

glutathione levels while increasing (p<0 05) membrane-associated annexm V levels All
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milk fat samples decreased (p<0 05) expression o f ras m SW480 cells These data suggest 

that milk fat CLA was effective at modulating synthetic CLA-responsive biomarkers
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CHAPTER 6 

Final Discussion and Conclusions
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It is now known that the process o f cancer progression and metastasis may be modified 

through nutritional intervention. Many food substances traditionally characterised as 

nutrients affect specific molecular pathways related to cancer and this is the focal point o f 

a new generation o f  nutritional science known as nutritional oncology. Nutritional 

oncology recognises that cancer is a chronic disease o f  the genome that may be 

influenced at many stages o f its natural history by nutritional factors that could impact on 

both the prevention and treatment o f cancer (Hebcr el al.. 1999). Increased knowledge in 

the nutritional sciences and an improved understanding o f the cellular and molecular 

basis o f cancer now make it possible to approach research on nutrient-gcne interactions 

relevant to cancer prevention and treatment. Dietary intervention represents an attractive, 

non-invasive means o f providing anticancer preventative and therapeutic benefits to at- 

risk individuals.

Among the macronutrients, lipids have a unique property not shared with other nutrients; 

the type o f lipid ingested modulates the chemical composition o f cells to a very 

significant degree. Novel functions for fatty acids and lipid-derived mediators, other than 

those encompassing membrane structure or provision o f  energy, have been elucidated. 

Dietary fat has been shown to have profound effects on gene expression, leading to 

changes in cell metabolism, growth and cell differentiation (Jump and Clark, 1999. 

Grimaldi, 2001). As described in Chapter 1, the fatty acid CLA has been shown to be 

effective at inhibiting carcinogenesis in multiple systems and at several stages including 

initiation, promotion, progression and metastasis (reviewed in Scimcca 1999 and Belury 

2002). By way o f  comparison, llsh oil has been shown to exhibit anticancer properties but
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efficacious levels usually exceed 10 % o f  diet. The ability o f  CLA to inhibit multiple 

models o f  carcinogenesis at much lower dietary levels (0.1 %  w/w) appears to be specific 

for this group o f fatty acids and has led to extensive studies being carried out to probe 

mechanisms and functions that are likely to be unique among PUFAs.

Insight into the relationship between CLA and cancer has come in the main from in vivo 

studies. Experiments which permit the study, in isolation, o f the interactions between 

specific cell types and dietary components are a powerful tool when conducted in 

conjunction with animal or human studies. The ability to culture epithelial tumor cells in 

vitro has proved very useful in acquiring information on potential mechanisms for the 

effects o f CLA on cancer. Immortalised cell lines have genetic alterations that stabilise 

them for growth in culture but the ability to culture these cells in the presence o f  fatty 

acids and to then measure cell behaviour over a relatively short period o f time allows for 

comprehensive studies with reproducible results that permit insight into the effects o f 

these compounds. Numerous down stream events can be assessed including changes in 

cellular signalling molecules and gene expression. Considerations in the design o f  cell 

culture studies include cell line selection, cell culture condition, the vehicle used to 

deliver the fatty acid, cell seeding densities, timing o f  measurements, laboratory 

procedures and selection o f biological endpoints relevant to human cancer.

Most animal and cell culture models used in CLA research to date have employed ill- 

defined isomer mixtures, thus making mechanistic interpretation difficult. The increasing 

availability o f  isomers o f CLA with high purity should provide clarity in the future.
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Results from this study revealed that the MCF-7 and SW480 cell lines were sensitive to 

growth inhibitory effects o f not only the CL A mixture but also to both the 110, cl2-CLA 

and the c9, t\ l-CLA isomers following 4 days o f  incubation with physiological levels o f 

CLA. The CLA-induced cytotoxicity was related to an increase in lipid peroxidation, 

alterations in the distribution o f  AA among cellular lipids, an altered prostaglandin 

profile and a reduction in the level o f  the anti-apoptotic bcl-2 protein which triggered a 

cascade o f  events leading to apoptosis. This study identified two possible protein 

biomarkers, bcl-2 and ras. Further comparative studies with other fatty acids arc required 

however before their use as specific biomarkers o f  CLA exposure can be validated.

Future cell culture studies involving both tumour and non tumour cell lines should be 

conducted with CLA isomers that are saponified and complexcd with BSA so that 

physiologically relevant information about ccll type specificity o f  CLA can be obtained. 

In addition, future studies should be designed so as to show the minimal dose below 

which no response is observed as well as a clear maximal response. Multi array analysis, 

a new tool o f functional genomics, can be used to identify cell signalling pathways and 

molecular targets that are relevant to the action o f CLA in cancer prevention. While 

providing a biochemical basis for elucidating the mechanism o f  action o f  CLA in cancer 

prevention, research on CLA-responsive biomarkers also has a practical side because 

these assays can be applied to human biopsy tissue samples in future CLA intervention 

trials. A variety o f  methodologies tissue (e.g. immunohistochemistry. flow cytometry and 

PCR amplification o f  cDNA) are available to evaluate multiple biomarkers in a small 

amount o f biopsied tissue.
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Metabolism o f CLA by desaturases and elongation enzymes has been well documented 

now. Conjugated metabolites have been identified in numerous tissues. This knowledge 

opens up a new avenue o f  research which is related to the question o f  whether the 

metabolism o f CLA is essential for its anticancer activity. If purified metabolites become 

available for cell culture studies, it would be important to conduct studies to delineate 

whether CLA or one o f its metabolites is the proximate effector molecule. In the long 

term, elucidation o f  the mechanisms by which individual CLA isomers elicit their 

putative beneficial effects would permit studies to investigate evidence o f such effects in 

cancer patients receiving them as dietary supplements.

Studies with an optimal design and dosing regime will be required to demonstrate 

whether CLA has real benefits for human patients. The current CLA dietary intake in 

humans does not seem to be suftlcicnt to exert beneficial effects. Extrapolation o f dietary 

CLA that is effective in animal models indicated that equivalent CLA concentrations in a 

70 kg human would be in the order o f 3.5 g o f  CLA per day. Dietary supplements are 

now widely available commercially as an alternative source. However given that 

supplements would have to be taken regularly, a more expeditious way could be an 

enhanced delivery o f  CLA through the food system. Foods are a relatively inexpensive 

and effective way to deliver substances with cancer protective properties. The 

introduction into the food system o f CLA-enriched dairy fats and products may afford a 

che mo preventive effect without the additional cost o f oral supplements or the need for 

dietary changes. In this study we have reported that CLA enriched milk fat was more 

effective than synthetic t-9, /11-CLA at decreasing the growth of the MCF-7 cell line and
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also demonstrated milk fat CLA was effective at modulating synthetic CLA-responsive 

biomarkers in both cell lines.

Data from this study demonstrate that MCF-7 and SW480 cancer cells have the enzymic 

capability to convert TV A to c9, l\ 1-CLA. Furthermore, TV A influenced a number o f 

CLA bio-responsive markers in these cell lines and we postulate that the growth 

suppression and cellular responses o f both cells lines are likely to be mediated via TV A 

desaturation to c9, /11-CLA via A'-desaturase. However, it is impossible to rule out the 

possibility that TVA may have an independent efTcct itself. Corresponding experiments 

in which cells arc simultaneously treated with cyclopropene fatty acid (an inhibitor o f  A*'- 

dcsaturase) may determine whether the anticancer effect o f TVA can be negated. The 

/10, cl2-CLA isomer has been shown to inhibit the activity o f  A9-desaturase in human 

cultured hepatoblastoma cells (Choi el al., 2001). It may be useful to treat MCF-7 and 

SW480 cells with TVA along with a sub-lethal dose o f  /10, cl2-CLA capable o f 

inhibiting the activity o f  Av-dcsaturasc (concentration yet to be determined) and to 

subsequently examine the effect on cell viability and CLA-responsive markers. To 

establish the importance o f TVA as a precursor o f endogenous CLA. it is imperative to 

conduct studies in humans. Both descriptive data (i.e. the activity o f A9-desaturase at 

various tissue sites) and quantitative studies should be undertaken. It may also be useful 

to determine the levels o f A'-desaturase in normal and tumor cell lines and in tumor 

biopsies using RT-PCR.
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Becausc CLA isomers have been identified as having effects on cellular processes such 

as proliferation, apoptosis and differentiation, it may be opportune to examine if CLA 

isomers may be possible chemotherapeutic agents, or potential adjuvants to radio-or 

chemotherapy. Resistance to chemotherapy drugs is a significant problem in the 

treatment o f  cancer. Recent research has indicated that changes in the fluidity o f the 

membranes due to ccrtain lipids can reduce or completely prevent the efflux o f cancer 

drugs out o f cells (Schuldes el al., 2000). Plasma membrane fatty acid composition 

influences how lipophilic drugs diffuse through the membrane. The more soluble the 

drug is in the membrane the more it can diffuse through. Increased unsaturation 

decreases lipid molecular packing. Preclinical trials have shown that certain PUFAs may 

enhance the cytotoxicity o f  several antineoplastic agents (Conklin, 2002). 

Polyunsaturated fatty acids such as DHA, eicosapentaenoic (EPA), gamma linolenic acid 

(GLA) and parinaric acid, have been shown to be cytotoxic to drug-resistant tumour cells 

by inducing oxidative stress and altering the activity o f  cell membrane bound enzymes 

such as sodium-potassium-ATPase and 5’-nucleotidase and the concent ratio o f protein 

kinase C, central to reduction o f intracellular drug levels (Burns and Spector, 1994, Das 

el al., 1997, Pallares-Trujillo el a l ,  2000). Because o f enhanced cellular growth rates, 

certain membrane domains o f  tumour cells should respond rapidly to circulating fatty 

acids. Altering the physical and functional properties o f tumor cell membranes, by 

enrichment with CLA alone or in combination with other PUFAs (EPA. DHA and 

GLA), may increase the response to chemotherapy and may, to some degree reverse the 

resistance o f cancer cells to certain chemotherapeutic agents. Possible synergism in the 

action o f anticancer drugs and CLA to enhance the intracellular concentration o f these
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drugs warrant investigation A positive outcome from these types o f studies could 

provide a sound scientific basis for combmmg a lipid based approach with traditional 

chemotherapy m the treatment o f cancer Patients with cancer could mgest defined diets 

contammg CLA and other PUFAs This could be done with formula diets m a clinical 

research unit or by supplementmg their usual diets with CLA enriched dairy products 

prior to administration o f systemic or oral anticancer agents Alternatively, isolated 

portions o f the body could be perfused with triglyceride emulsions or liposomes 

contammg the optimum proportions o f these fatty acids followed by systemic or perfused 

chemotherapy

Abnormal differentiation is thought to be a fundamental defect m the cancer cell (Com 

and Et-Deiry, 2002) CLA has been shown to mduce markers o f differentiation m 

adipocytes m noncancer models (Houseknecht et a l , 1998, Satory and Smith, 1998) 

Whether CLA inhibits carcinogenesis via mduction o f differentiation has yet to be 

determined Feedmg CLA to rats during the time o f mammary gland development and 

maturation has long-lasting protective effects on mammary carcinogenesis (Ip et a l , 

1995, Thompson et a l , 1997) More recent data have shown that CLA may inhibit the 

differentiation o f mammary stromal cells to an endothelial cell type (Masso-Welch et a l , 

2002) These data suggest that the role o f CLA m protecting agamst mammary 

carcinogenesis may be mediated, m part, by modulatmg tissue differentiation (Belury,

2002) Therefore, it would be prudent to examine the effect o f CLA isomers on the rate o f 

cellular differentiation in vitro usmg appropriate measures o f differentiation (eg  

lactalbumm m mammary tumour cell Imes, alkaline phosphatase m colon tumour cell
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lines) Positive effects o f CLA on differentiation may provide a plausible explanation for 

why diets rich m these fatty acids might slow tumor growth and retard carcinogenesis 

The most lethal aspect o f cancer is the ability o f tumor cells to metastasise and form 

secondary tumors CLA has been shown to be effective at inhibiting carcinogenesis at 

several levels, mcludmg metastasis (Visonneau et a l , 1997, Cesano et a l , 1998, Hubbard 

et a l , 2000) Neovascularisation, or angiogenesis, is essential for solid tumour growth 

(Folkman, 1990) and also provides the tumour cells with access to the vascular 

circulatory system, thus establishing the potential for metastatic disease progression 

Masso-Welch et al (2002) have recently reported that CLA inhibited the formation of 

functional blood vessels m mice and this was accompanied by decreased serum levels o f 

VEGF and whole mammary gland levels o f VEGF and it receptor flk-1 The question 

remains whether CLA can alter angiogenesis during tumor development The matrix 

metalloproteinases (MMPs), a multi-gene family o f enzymes, degrade components o f the 

extracellular matrix and are implicated as major players m tumor mvasion and metastasis 

(Me Donnell et a l , 1999) Feedmg CLA to pregnant rats suppressed serum MMP-9 and 

active MMP-2 (Harris et a l , 2001) However, no study has yet related the antimetastatic 

effect o f dietary CLA with these enzymes Hence studies to examine the influence o f 

CLA isomers on metalloprotease secretion may be a fruitful area for future research 

Preliminary data from O ’Connor et al (2002) has shown that CLA isomers reduced the 

invasive activity o f the highly metastatic 4T1 mammary tumor cell lme and this was 

associated with a reduction m expression o f MMP-9 In vivo work usmg CLA and this 

cell lme, for the induction o f lung nodules, will be the next step m elucidatmg the 

importance o f CLA m anti-cancer treatment
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Additional epidemiological studies o f CLA exposure and cancer risk are imperative An 

inverse association was observed between dietary and serum CLA and risk o f breast 

cancer in postmenopausal Finnish women (Aro et a l , 2000) In contrast a French group 

have found no significant association between CLA levels m breast adipose tissue and 

breast cancer nsk (Chajes et a l , 2002) Biomarkers o f  CLA intake need to be identified 

and validated The physiological consequences o f CLA intake throughout the lifespan are 

currently not understood Evidence suggests that early programming during foetal 

growth, infancy and childhood might decrease risk for chronic diseases m later life 

(Lusas, 1991) Thus, a better and more accurate understanding o f CLA mtakes and 

factors influencing CLA consumption throughout the lifespan might lend msight mto 

what might be considered appropriate dietary recommendations for this potential nutrient

The goals o f iuture research must therefore be to examine the selectivity o f  the anti 

proliferative effect o f CLA on a wide variety o f cell types mcludmg appropriate normal 

control cells, to examine the selectivity o f  organ site carcinogenesis intervention by CLA, 

to carry out epidemiological studies o f  c9, t\ 1 CLA exposure and cancer risk and to make 

use o f genomic technology to identify signallmg pathways and molecular targets that are 

relevant to the action o f CLA m cancer prevention Cancer-associated surrogate markers 

may then be mvestigated m controlled clinical trials to evaluate responsiveness to CLA It 

is vital that the efficacy o f the individual CLA isomers in vivo be evaluated and the 

optimal levels o f  these isomers required for beneficial effects determined Identification 

o f modulated mechanisms and tangible anti-cancer benefits will give impetus to food
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manufacturers to incorporate CLA as a nutraceutical m functional foods which would 

enhance the health o f the general population
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