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A Finite Element and Experimental Analysis of Energy Absorbing Systems under 
Static and Dynamic Loading Conditions.

Edmund Morris B.Eng (Hons).

Abstract.

Knowledge of the behaviour of kinetic energy absorbers or impact attenuating devices is of 

paramount importance to design and research engineers involved in the automobile, 

aircraft, spacecraft, and nuclear industries. The main function of these devices is to 

minimise injury to personnel, to protect cargo that contain hazardous materials or to protect 

delicate structures from possible impact damage. Such industries require these devices to 

dissipate kinetic energy into an irreversible form and more importantly, in a controlled and 

desired manner. The performance of kinetic energy absorbers is significantly affected by 

various physical parameters such as material properties, mode of deformation and the 

nature of loading, with strain rate and inertial effects playing an important role due to high 

velocity impact.

This work details the experimental and computational analysis of circular and oblong 

shaped kinetic energy absorbers subjected to quasi-static and dynamic lateral loading. The 

objective of this research was twofold; firstly, to design optimised kinetic energy absorbers 

which exhibit a desirable force-deflection response and secondly, to increase the specific 

energy absorbing capacity of such systems. The energy absorbers were in the form of a 

nested system consisting of a number of mild steel tubes of varying diameters assembled 

internally. The longitudinal axis of each tube was in parallel and an eccentric tube 

configuration was used. These systems were compressed laterally using three different 

devices: a flat platen, a cylindrical rod and a longitudinal line load indenter.

It was found that the optimised designs for both the circular and oblong shaped devices 

exhibited very desirable features in terms of its force-deflection response. This was 

achieved by using a simple design modification which was incorporated into the optimised 

designs. Also, it was concluded that the specific energy absorption capacity of these nested 

systems can be increased notably by introducing external constraints which subject them to 

extra volumetric deformation. Both objectives were achieved using the finite element 

method, the results of which were validated using experimental techniques. It can be 

concluded that a new family of kinetic energy absorbers in the form of nested metallic 

systems have been designed which meet the objectives outlined and can thereby contribute 

to the literature in the field of kinetic energy absorbers.
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Roman Symbol
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D

E ,kin
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E ,
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Slotted Circular In Plane Standard System
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Circular In Plane Damped System
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Area under the curve 
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Nm

Nm
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Roman Symbol Definition Units

E Elasticity Matrix -

Energy Efficiency -

Crush Efficiency -

F e Body Forces N

K Stiffness Matrix -

K e Element Stiffness Matrix -

k Stiffness Matrix -

4 Original Length of Tube m

N Interpolation Shape Function Matrix -

Ps Peak Load N

Q ne Equivalent Element Load Vector -

Q Yield function -

q Material Constant -

q Nodal Displacement Vector -

R Load vector -

R° External Load Vector -

r Displacement Vector -

K Specific Energy Absorbing Capacity Nm/Kg

t Time s
rjie Work Done by External Forces Nm

u Nodal Displacement Vector -

u Displacement m

u Velocity m/s

u Acceleration m/s2

r Element Volume m3

* 0 Weight Effectiveness Nm/Kg

8 Virtual Displacement m

e° Element Initial Strains Vector -

d s pi Plastic Strain -

V
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<t" Element Initial Stress Vector

{cr} Stress Vector N/m2
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O v erv iew .

1 Overview.

1.1 Introduction.

Owing to the advances in transport technology and increased spending money pertaining to 

this, there has been a noticeable increase in the number of transportation vehicles in 

society. This has resulted in a greater number of fatalities, casualties due to impact 

collisions of one form or another, not to mention the increase in the financial burden placed 

on society. Due to these associated increases, society has become more aware and 

concerned for the safety aspects of transportation. This has fuelled people, particularly in 

the last few decades, to research and develop energy absorbers to increase the safety 

aspects by reducing the effect of impact on people and structures. Energy absorbers are not 

only applicable to the transportation sector but also to other fields of engineering such as 

the safety of nuclear reactors, safety of oil-rigs and oil-tankers, crash barriers for roadsides, 

air-drop cargo etc.

1.2 Review of the Literature Available for the Study Energy Absorbers.

To acquire a sound understanding of impact phenomena in relation to transport vehicles 

and structures, one is required to have sound combined knowledge of related topics such as 

mechanics of materials, structural mechanics, impact dynamics and plasticity. Various 

sources of related literature can be found in the following areas which allow interested 

readers to gain a detailed insight in the area of energy absorbers: The International Journal 

of Mechanical Science which commenced publication in 1960 has many research papers 

related in the field of structural mechanics (buckling and deformation of metallic and 

composite structures under impact). The International Journal of Impact Engineering 

founded in 1983 is also a strong reference point to study the response of structures and 

bodies subjected to dynamic loads arising from exposure to blast, collision or other impact 

events. A more recent journal, namely the International Journal of Crashworthiness was 

launched in 1996 which is devoted to the crash behaviour of vehicles, structures, materials 

and impact biomechanics. Relevant literature can also be found in the International Journal 

of Solids and Structures, International Journal of Pressure Vessels and Piping and the 

Journal of Thin-Walled Structures. Hardback manuscripts such as Crashworthiness of 

Vehicles edited by Johnson and Mamalis [1], Structural Impact and Crashworthiness edited 

by Morton [2], Structural crashworthiness and failure edited by Wierzbicki [3] provide 

worthwhile reading. Finally, Lu an Yu [4] published a manuscript which combined
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fundamental topics pertaining to energy absorbers in order to gain a sound understanding 

of these devices subjected to impact loading.

Over the last decade due to availability of increased computing power, the finite element 

method as a form of numerical analysis is being used as a powerful tool to understand the 

underlying deformation mechanisms and responses of energy absorbers under impact 

loading. The finite element method can also be used to optimise products in order to 

achieve a desired output. This can help to eradicate the need to for expensive physical 

prototyping of such devices. Zukas [5] provided two useful tables to describe the 

characteristics of the finite element computer code used to simulate high and low velocity 

impact of structures which are inherent in vehicle crashworthiness, transportation safety

Table 1: Description of Finite Element Code for High Velocity Impact.
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The Characteristics of the Computer Code - High Velocity.

• Mesh Description Eulerian and Lagrangian.
• Spatial Discretization Finite Difference / Finite Element.
• Temporal Integration Explicit.
• Artificial Viscosity Explicit Formulation.
• Material Model Incremental elastic-plastic.
• Failure Criteria Principle stress, strain, plastic work,

damage mechanics
• Methods of Material Characterisation
• Wave propagation methods.
• Split Hopkinson Bar.
• Plate Impact.
• Bar-Bar impact.
• Exploding cylinder.
• Boundary Conditions Reflective and transmittable.
* Initial Conditions Velocity.

Phenomena associated with High Velocity Impact.

• Extent of Deformation Local.
• Modal response High frequency.
• Loading/response time Sub milliseconds.
• Strains >60%.
• Strain rates >105/s.
• Failure Physical separation of material.
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Table 2: Description of Finite Element Code for Low Velocity Impact.
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The Characteristics of the Computer Code - Low Velocity.

• Mesh Description Predominantly Lagrangian.
• Spatial Discretization Predominantly Finite Element; high 

order elements
• Temporal Integration Predominantly implicit.
• Artificial Viscosity None, or implicit through 

discretization scheme.
• Material Model No definitive model.
• Failure Criteria Plastic flow.
• Methods of Material Characterisation Conventional hydraulic testing 

machine.
• Boundary Conditions Wide selection of internal and 

boundary constraints.
• Initial Conditions Force, displacement, velocity.

Phenomena associated with Low Velocity Impact.

• Extent of Deformation Global.
• Modal response Low frequency.
• Loading/response time Milliseconds-seconds.
• Strains 0.5-10%.
• Strain rates 10'2-  101 / s.
• Failure Large plastic flow.

Ezra [6] detailed a useful overview on the assessment of energy absorbing devices for 

prospective use in the Aircraft industry. It was outlined that energy absorption can fall into 

three categories: 1) material deformation, 2) friction and 3) extrusion, hence, the energy 

absorbers analysed in this work is based on material deformation. The performance of 

energy absorbers depends on their specific application and suitability in terms of specific 

energy, crush efficiency, reliability and cost.

1.3 The Multi Collisional Situation for Multi-Transport Bodies.

A transporting body which can be exposed to vehicular impact may be classified into five 

main classes of vehicle such as motor cars, aircraft/spacecraft, ships, locomotives and 

escalators/elevators. Such transporting bodies may be considered as a bounding envelope 

of a well defined outer shape and the contents which are to be transported. To minimise
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damage to this bounding envelope and/or to the contents, ideally the relative velocity 

should be kept to a minimum. In a collision, it is this envelope which experiences the first 

collision, undergoing inadvertent plastic deformation along with some component fracture. 

The contents continue to move, due to Newton’s first law of motion, while the bounding 

envelope is arrested and a short time after the impact collision, the contents will collide 

with the inner surface of the bounding envelope. This is termed a secondary collision. 

However the driver may be considered as an ‘envelope and contents’ in respect to 

protection of the human brain. Damage to the skull may be regarded as damage to the 

envelope and due to the semi-liquid nature of the brain and its ability to transmit stress 

waves, the brain contents may also undergo damage, this would be a third collision. This 

set of phenomena may be referred to as a three-collision situation. In conclusion, the outer 

surface of any moving body undergoes the primary collision and consecutively the contents 

within sustain the secondary collision and subsequent collisions [1].

1.4 Impact Crushing of Vehicles: Retardation Rate and Vehicle Length.

Assuming a long moving uniform tubular structure colliding end-on with a flat rigid body 

experiences a resisting force F = er A , where a  is the mean crushing stress of the structure 

and A is the cross sectional area . The mass of the structure is pAL where p  is the density 

and L is the length. Thus according to Newton’s second law, the uniform retardation a

is . Therefore with this idealized approach and if structures differ only in length, the 
pL

retardation would be inversely proportional to its length. This implies that if injury is to 

arise from a deceleration that is too great, it can be said stated that ships are relatively safe, 

locomotives and aircraft are some what less safe and finally, cars are dangerous [1].

1.5 The Momentum Equation.

Usually in an impact event, a collision of rapidly moving vehicles happens in a very short

YYIVspace of time. By examining the momentum equation F  = —  we can see that the force F

is inversely proportional to time t and hence the shorter time t, the greater will be the 

impacting force F. Also from this equation, we can see that the mass m of the body in 

question is directly proportional to the impacting force F and therefore any relatively large 

masses involved in an accident will generate large impact forces upon collision. As a 

consequence, this large impact force will cause a significant acceleration (or deceleration) 

and hence serious damage to the occupants of the vehicle or the structure in question. It is
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usual to analyse energy absoiption of structures and materials in terms of kinetic energy 

dissipation. Ideally, to dissipate the kinetic energy upon impact in a controlled fashion, the 

longer time t in which the impacting force prevails, the gentler will be the reactive force 

required to absorb this kinetic energy upon impact [4].

1.6 Principles in the Design of Energy Absorbing Systems.

Metallic tubes are one of the most commonly used structural elements due to their common 

occurrence and availability. Circular tubes for example can dissipate elastic energy and 

plastic work through different modes of deformation resulting in different energy 

absorption responses. Such methods of deformation comprise of lateral compression, 

lateral indentation, axial crushing and tube splitting. In the design of such energy absorbing 

devices involving any of the above deformation modes, the designer must be aware of the 

following six principles in order to achieve the best possible design [4], Such a design will 

ultimately serve to play a role in mitigating the effect of kinetic energy arising from the 

moving mass impinging on the structure or personnel in question.

A) Irreversible Energy Conversion:

Upon impact structures/materials should be able to convert kinetic energy into non- 

recoverable energy (inelastic) such as plastic deformation, viscous energy dissipation, and 

friction or fracture energy.

B) Restricted and Constant Reactive Force:

Upon deformation of a structure from impact, the resisting force (and hence the 

corresponding decelerating force) should remain constant during the stroke length of 

deformation. In doing so, injury to personnel or damage to structures subjected to these 

decelerating forces can be minimised.

C) Low Cost and Easy Installation:

Energy absorbing devices are usually one-shot items, i.e. once they are deformed due to 

plastic displacement, they are discarded and replaced, and hence the ability to manufacture, 

install and maintain these devices economically is of paramount importance since the 

design of energy absorbers is always constrained by the available budget.

D) Long Stroke Characteristic:

From the simple expression W = F * D  where W is the energy absorbed, F is the applied 

force and D is the line of action in which the force acts, we can see that in order to

A Finite E lem ent and E xperim ental A n alysis  o f  E nergy A b so rb in g  S ystem s under S tatic  and D ynam ic L oading C onditions.

E dm und  Morris B .E ng  (Hons) 5



O v erv iew .

maximise the energy absorbing capacity along the acting line of the force, the displacement 

stroke of the deforming structure should be as long as possible.

In the study of rings/tubes as a form of energy absorbing devices, it is useful to describe the 

behaviour using performance characteristics. For example, the crush efficiency can be 

defined as the stroke length divided by its characteristic length. Therefore in this work, the 

mean diameter of a ring/tube can be taken as the characteristic length.

E) Stable and Repeatable Deformation Mode.

To ensure the reliability of the device in its service, the deformation mode and specific 

energy absorbing capacity should be stable and repeatable. It should be noted that energy 

absorbers usually absorb dynamic loads but these loads introduce uncertainties such as load 

magnitude, pulse shape, direction and distribution, hence these energy absorbers should be 

designed such that they are insensitive to these characteristics mentioned.

F) Light Weight and High Specific Energy Absorption Capacity:

In the area of vehicle design, which may consist of energy absorbers, high specific energy 

absorption is of vital importance since any increase in weight reduces the specific energy 

absorption capacity while also increasing fuel consumption and air pollution, which is not 

desirable due to environmental reasons.

1.7 The Consequences of Vehicular Accidents/Crashworthiness.

In the study of energy absorbers as a means of absorbing kinetic energy, the term 

crashworthiness needs to be explained. This term refers to the quality of response the 

structures undergoes when involved in an impact collision situation. The less damage the 

structure and/or its occupants experience after the collision, the higher the crashworthiness 

value of that structure.

The consequence of an impact collision can be categorised in the following way:

1) Injury to people or damage to other living organisms: This relates to the physical and/or 

psychological injury imposed on the vehicles occupants and/or people external to the 

vehicle.

2) Damage to vehicle structure: This relates to the dissipation of kinetic energy in the form 

of plastic deformation which is irreversible. Fire can also cause a large degree of 

destruction to the vehicle in question.

3) Damage to cargo: This can relate to oil spills due to a tanker grounding or damage of 

cargo due to inadequate tie-down strength during transportation.
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4) Damage to other objects that exist in the environment: Examples such as buildings, 

trees, guardrails etc [7].

1.8 Injury to the Human Body: Human Head.

The human head is one of the more serious injuries personnel can acquire as a result of 

vehicular crashes. The types of head injury that occur are usually in the form of scalp 

damage, skull fracture, extra cerebral bleeding and most severely, brain damage. It is 

exceedingly difficult to protect the head, one of the most complicated portions of the 

human body. Other life threatening injuries such as neck, chest spine damage may also 

occur. Therefore it is desirable to minimise these injuries by designing appropriate energy 

absorbers, whether it be in the automobile, aircraft or nuclear industries. [1].

1.9 Vehicle Accidents Statistics.

One of the worlds major health problems are motor vehicle related and this is a huge 

economic loss to society. For example in the US vehicular crashes cause more death 

between the ages of 1 and 34 than any other type of injury of disease. Motorway related 

accidents account for 95% of all transportation death in comparison to 2% for rail and 2% 

for air-accidents. In 2003, there were an estimated 6,328,000 police reported traffic crashes 

in which 42,643 people were killed and 2,889,000 were injured. This works out at 117 

people dying each day or one every twelve minutes in vehicular road crashes. [8]

According to the ATSB (Australian Transport Safety Bureau ) the annual cost of road 

crashes by type of crash are as follows: 7.15 Billion AUD for serious injury crashes, 2.92 

Billion AUD for fatal crashes, 2.44 Billon AUD for property damage and 2.47 Billion 

AUD for minor injury crashes. Altogether, the annual cost of road crashes in Australia was 

approximately 15 Billion AUD. [9]

In the UK, the Metropolitan police services have reported 3,431 road fatalities, 35,975 

serious injuries and 263,198 slight injuries in the year of 2002. The most common 

vehicular crash been the rear-end collision resulting in a high number of whiplash injuries 

which can cause debilitating back, neck and nerve injuries. [10]

Figure 1-1 illustrates the number of people killed on Irish roads due to impact collisions 

obtained from the Garda National Traffic Bureau. As expected drivers are the largest 

category to suffer fatalities followed by passengers, pedestrians motor cyclists and pedal 

cyclists respectively [11].
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Figure 1-1: A graph illustrating the number of people killed on Irish roads per year.

1.10 Objective of the Present Research.

The objective of this research was to focus on two of the six design principles outlined in

section 1.6:

• The first and most important objective is based on the design of nested metallic 

energy absorbers which exhibits a constant reactive force. This may be in the form 

of a monotonically increasing response or a monotonic / rectangular shaped 

response, the latter of which is the more desirable feature that the design engineer 

should strive to achieve.

• To accomplish this, various designs of nested systems were modelled and simulated 

using finite element techniques and analysed to determine the shape of the force- 

deflection response. These standard designs were verified using experimental 

techniques in order to ensure the validity of the numerical models. Consequently, 

numerous modified designs based on the standard models were simulated and 

analysed until the desired rectangular force-deflection response was achieved.

• The new optimised designs were then verified using both quasi-static and dynamic 

experimental techniques. In addition to this, an attempt was made to increase the 

crushing displacement of an energy absorber as outlined in section 0, by modifying 

the standard designs such that the displacement stroke is increased. This was 

attained by elongating the circular tubes plastically to form oblong tubes. In doing 

so, the energy absorption response can be maximised.

• The second and final objective was to maximize the specific energy absorbing 

capacity of nested metallic systems by means of exposing more volume within the 

energy absorbers to plastic deformation. In doing so; the resulting energy
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absorption can be increased. These numerical models were also verified using 

experimental techniques in order to endure their validity.

• It should be noted that increasing the stroke length can also maximise the energy 

response as outlined in the preceding paragraph, however this is treated as a 

separate entity.

• Finally, Table 3 in Appendix Two. illustrates an overview of the various energy 

absorbers conducted experimentally under both quasi -  static and dynamic loading 

conditions. Various schematics of the different systems are also provided in Figure 

10-1 in Appendix One.

1.11 Summary of Chapter One.

• A number of areas which are important and relevant in the study of energy 

absorbers have been identified and various important sources of literature were 

outlined.

• The mechanics of the momentum equation have been explored in relation to 

impacting bodies and suitable approaches to minimise injury to personnel or to 

fragile structures were outlined.

• Six principles in the design of energy absorbers were briefly outlined which provide 

simple but crucial guidelines that should be adhered to.

• The consequences of vehicular accidents were outlined and a description was given 

on the various forms of head injury that may occur due to impact collisions.

• For the automobile industry, it is useful to have some knowledge of vehicular 

accident statistics in various countries, how these accidents contribute to worldwide 

health problems and its knock-on effect in terms of economic loss.

• The objectives of the study in relation to the six principles have been detailed.
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2 Literature Review.

2.1 Introduction.

The objective of this chapter is to examine and highlight previous research, similar or 

related to this work conducted by various researchers and also, to develop a basic 

understanding of metallic tube type energy absorbers subjected to various modes of 

deformation. The chapter is divided into six sections with the first section providing a brief 

overview of energy absorbers which can be categorised into Type one and Type two 

structures. The remaining five sections detail the various modes of deformation that can be 

applied in order to create functional energy absorbers. The various researchers analysed 

these devices using theoretical, experimental and computational techniques.

2.2 Type I and Type I I  Structures.

Calladine and English [12] studied the strain rate and inertial effects on the collapse of two 

types of structures. Typically the lateral or axial compression of rings/tubes can represent a 

Type I structure while axial loading of two steel plates clamped at either end represent a 

Type II structure. The authors revealed the latter are sensitive to both strain rate and inertial 

effects; hence in the scale modelling of these structures, special care of these parameters 

must be taken into account. It was confirmed that inertial effects are sensitive only to the 

initial ‘straightness’ of the specimen i.e. the two plates clamped together, hence from an 

inertial point of view, the lateral compression of ring/tubes were not considered.

Zhang and Yu [13] provided a detailed discussion on the velocity sensitivity of a Type II 

structure using theoretical techniques. An attempt was made by the authors to provide a 

quantitative account of the effects of both strain-rate and inertia on such a structure and to 

provide a comparison with the results obtained by Calladine [12].

Tam and Callidine [14] presented a thorough analysis on the response of Type II structures 

with respect to inertia and strain-rate effects. The work details the study by means of 

analytical and experimental methods. The aim of the authors was to remove the various 

limitations imposed on the work by Calladine [12] since their work was not entirely 

definitive. As a means of improving the phenomena behind the response of Type II 

structures, the authors endeavoured to introduce more variables such as changing the 

material and size of the specimens and consequently a more comprehensive theoretical 

analysis is provided using the concept of dimensional analysis.

Su et al [15] analysed theoretically the effects of inertia and elasticity on a Type II structure 

when subjected to impact loading. An elastic-perfectly plastic constitutive relation for the
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material was employed to predict the peak load which is important in the design of energy 

absorbers. The mathematical model consists of four compressible elastic-plastic rods 

connected by four elastic-plastic hinges as shown in Figure 2-1. Also, Figure 2-2 depicts 

Type I and Type II structures. It was identified that the dynamic behaviour of a type II 

structure is significantly different from its quasi-static counterpart even when the effect of 

strain-rate is neglected; thereby suggesting that inertia played an important role in this 

problem. In a companion paper [16], the effect of strain-rate was analysed with the aid of 

the Cowper-Symonds relation. It was found that strain-rate effects play an equally 

important role as inertial effects on the dynamic behaviour of Type II structures. The 

combined effects of inertia and strain-rate cause the peak load to be much higher than its 

quasi-static counterpart and the resulting displacement is much smaller. The authors 

observed the strain energy stored in the structure (strain-rate dependant) due to increase in 

the yield stress which expands the range of elastic deformation, is notably larger than that 

of a structure which is made of a rate-independent material. Therefore when strain-rate 

effects are involved, elasticity plays a very important part in the structures response to 

impact loading.
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Figure 2-1: A structural model for analysing a typical type II structure |16].
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2.3 Axial Loading / Buckling.
Reid [17] provided an insight into the various modes of deformation that can be achieved 

from the axial compression of ductile material such as mild steel. Discussion was made on 

the axial splitting, inversion and buckling modes of deformation in which attention was 

given to the gross plastic deformation of the various specimens. Also, some reference was 

made to thin-walled tubes filled with polyurethane foam which can increase the specific 

energy absorption capacity of such a devise without compromising it weight.

Reid and Reddy [18] researched the quasi - static and dynamic crushing of tapered sheet 

metal tubes of rectangular cross-section using mainly experimental techniques with the 

assistance of theoretical methods to obtain the mean crushing loads of such devices. It 

appears that tapered tubes offer the distinct advantage of absorbing off-axis/oblique loads 

which are commonly encountered in vehicular collisions. Good estimates of the mean 

crushing forces were estimated in both the quasi - static and dynamic cases. The authors 

concluded that tapered tubes as opposed to straight tubes are the preferred energy absorber 

since they are more efficient in absorbing energy from oblique impacts and are less likely 

to fail by global buckling.

A detailed experimental analysis was carried out on the quasi-static axial compression of 

thin-walled circular aluminium tubes by Guillow et al [19]. A classification chart was 

developed to characterise the various modes of deformation for D/t= 10 -  450. Empirical 

formulae were developed using the average force which was non-dimensionalised. The 

effect of filling aluminium tubes with polyurethane foam was also briefly examined.

Wang and Lu [20] subjected a cylindrical shell to axial impact velocities in the region of 

300 m/s and discovered a particular deformation mechanism termed the ‘Mushrooming’

L i te r a tu r e  R eview .

Figure 2-2: Type I and Type II structures: Initial and final stages respectively [161.
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effect which caused the walls of the shell to thicken. It appears that the high end impact 

deformation mechanism generates a complex problem and the only feasible means of 

analysing such problems is by means of experiment and finite element analysis. Figure 2-3 

shows a typical cylindrical specimen subjected to high impact velocity. In general, three 

modes of deformation can occur; dynamic progressive folding for thin tubes under low 

impact, end mushrooming with folds formed away from the striking end at medium 

velocity and finally mushrooming and wrinkling for thick tubes at high velocity. The 

authors stated that direct correlation between actual and numerical results were difficult 

because no well-verified material model existed with the ability to capture the dynamic 

failure of these structures at high impact velocities. However the current simulations which 

predicted the deformation mechanism at lower impact velocities offer valuable information 

to the designer since this information can be difficult to achieve through experimental 

testing alone.
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Figure 2-3: Mild steel samples: Deformation states at velocities of 385 m/s, 277 m/s, 227 m/s, 173
m/s and 0 /ms respectively [20].

Hsu and Jones [21] investigated the response of thin-walled circular stainless steel, mild 

steel and aluminium alloy tubes subjected to quasi-static and dynamic axial loading. 

Stainless steel was chosen to examine the effects of strain rate properties and strain 

hardening. Aluminium alloy 6063 T6 was chosen in order to assess the influence of inertia 

while the materials strain-rate sensitivity are negligible and the choice of mild steel in order 

to assess the outcome of strain-rate effects with negligible strain hardening. Comparisons 

were made on the performance of these three material types in terms energy absorbing 

efficiency and capacity. It was found that stainless steel tubes absorb the most energy per 

unit volume however; its dimensionless energy absorbing efficiency was the lowest of the
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three materials. The aluminium alloy was found to be the most efficient but absorbing the 

least energy per unit volume.

An experimental study on axially preloaded steel tubes subjected to lateral impacts was 

examined by Zeinoddini et al [22]. A common occurrence which employs steel tubes is the 

collision of supply ships with bracing members of offshore oil rigs. It was commented by 

the author that tubular structural members will be carrying their usual service loads before 

impact accidents occur. Therefore, it is very important to understand the effect of preload 

on a tubular member if the effect of impact damage is to be accurately measured. The work 

describes an experimental program in which axially preloaded tubes were subjected to 

lateral impact at their mid-span using a drop weight test rig as shown in Figure 2-4. It was 

concluded that pre-loading has a substantial effect on the level of damage when combined 

with lateral impacts. It should be noted that only one influential parameter, the magnitude 

of axial preload, was adjusted during the testing. However, other parameters such as 

indenter shape, impact location, orientation of indenter and the residual stress level 

inherent within the tube can also have a marked effect on the response of such devices 

when subjected to lateral impact. Therefore more work would be needed in this area in 

order to obtain a greater understanding of how the various parameters interact with each 

other and their effect on the output response.
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Figure 2-4: Schematic view of the impact rig for testing of axially pre-loaded tubes subject to
lateral impact [22].
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Langseth et al [23] presented finite element simulations validated by experimental findings 

of quasi - statically and dynamically axially loaded square aluminium extrusions. Excellent 

correlations were achieved based on using isotropic elasticity, the Von Mises yield 

criterion, the associated flow rule and non-linear isotropic strain hardening. The uniaxial 

tensile test was used to obtain the yield stress and strain hardening characteristic of the 

aluminium tubing. In order to generate a symmetric folding mechanism, the authors 

incorporated a ‘trigger’ mechanism into the numerical model as shown in Figure 2-5. Once 

the simulations were validated, a parametric study was used to study the effect of the 

impact velocity of the projectile on the response parameter, the mean load. It was shown 

that the response parameter was an increasing function with respect to an increase in 

impact velocity and the mass ratio of the specimen to the projectile had no effect on this 

parameter.

Rigid body

Clamped support
Figure 2-5: One quarter finite element model including trigger position [23].
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The axial collapse of aluminium alloy extruded polygon sections was analysed by Rossi et 

al [24] in order to develop an understanding of the post buckling behaviour of such systems 

subjected to impact loads. Their goal was to achieve this using the finite element software 

package LS-DYNA. The work was divided into two sections; firstly to validate the 

numerical results related to thin walled aluminium square tubes with existing published 

experimental data and secondly, to analyse the post-buckling deformation features such as 

symmetric and asymmetric behaviour. It was found that the numerical study can accurately 

predict both these modes of deformation, as with the prediction of the mean dynamic 

crushing force and permanent displacement which were within +/- 5% of actual values. 

Figure 2-6 illustrates the final post buckling deformation state of a hexagonal sectioned 

model.

A Finite E lem ent and E xperim ental A nalysis  o f  E nergy A b so rb in g  S ystem s u n der S ta tic  and D ynam ic L oading  C onditions.

Front View Side View Too View
Figure 2-6: Final post-buckling deformation of an LS-DYNA hexagonal section model [24|.

A numerical study was reported by Nagel and Thambiratnam [25] on the impact response 

and energy absorption of tapered thin-walled tubes. An advantage of such devices is that 

they are proficient at absorbing oblique as well as axial loads which is desirable in the 

design of energy absorbing devices. The main aim of the paper was to compare the energy 

absorption response of both the tapered and straight specimens subjected to quasi-static and 

dynamic loading conditions. Also, a detailed account was reported on the effect of inertia 

of both specimens. It was found that tapered tubes are less influenced by lateral effects than 

straight tubes. A factorial study was used to determine the influence of the input parameters 

such as thickness, angle of taper, impact velocity on the output response. It was concluded 

that the most important parameters that control the energy absorbing response are the taper 

angle and wall thickness. Figure 2-7 and Figure 2-8 illustrates a finite element model of a 

straight and taper energy absorber in its initial and final deformed conditions respectively.
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Figure 2-8: Deformation profdes for the straight and tapered tubes at high and low impact
velocities [25].

In a companion paper by the same authors [26], attention was given to the behaviour of 

tapered tubes consisting of either a straight, double taper, triple taper and finally frusta 

(four tapered sides). The aim of the work was to study the dynamic energy absorption 

response of these devices under impact loading conditions. The simulations showed that 

triple tapered tubes have the highest energy absorption capacity followed by straight tubes 

and frusta’s. However, it was realised that increasing the number of tapers decreases the 

specific energy absorption per unit mass. Therefore it appears that straight tubes are the
Edmund Morris B.Eng (Hons) 17
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most efficient for absorbing energy when mass or weight is an important consideration. In 

general, this work was seen as outlining the advantages of using tapered tube devices that 

may be used in the transportation industry. Additional study was conducted by the same

authors [27] on the energy absorption response of tapered thin-walled tubes. The primary

outcome of the work was to gather important research information that will facilitate the 

design engineer in creating efficient tapered tube type energy absorbers.

In another work Nagel and Thambiratnam [28] applied the concept of the tapered wall tube 

to enhance the energy absorption of an existing VFPS (Vehicle Frontal Protection 

Systems). Such a device acts to minimise the damage that may be caused due to animal 

strike. Since there is a gap between the chassis rail of the vehicle and the VFPS, it was 

decided that this space could be utilised to improve the energy absorption feature of the 

VFPS by introducing one of three possible energy absorption mechanisms. These three 

mechanisms consisted of the axial crushing of honeycomb, recoverable semi-rigid foams 

and tapered tubes. The outcome of using each mechanism and their suitability in the

enhancement of the VFPS is to be published in a future paper.

The axial collapse of mild steel and aluminium tubes with cut-outs and in both their ‘as- 

received’ and ‘annealed’ conditions was analysed by Gupta and Gupta [29]. Tubes of 

various L/D and D/t ratios were compressed quasi - statically in an Instron machine. The 

cut-outs were in the form of holes. It was found that without the presence of holes, the 

mode of deformation is dependant on the initial state of work hardening and the ensuing 

annealing process. With the presence of holes, it was discovered that the peak load of such 

devices is reduced. It was concluded that employing such devices offers the advantage of 

much longer crush displacements before the onset of Euler buckling that may occur which 

is usually associated with the crushing of tubes with large L/D ratios.

2.4 Axial Inversion.

Colokoglu and Reddy [30] analysed the strain-rate and inertial effects in the free inversion 

of mild steel circular tubes using experimental and theoretical techniques. As expected, the 

strain-rate sensitivity of mild steel was found to increase the resistance to inversion. Inertial 

effects were found to play a part in both resisting and assisting the force required for the 

inversion process. Just prior to impact between the striker mass and the tube mass, it was 

realised that the acceleration of both masses acted in the same direction as the compression 

force thereby assisting the inversion process. After impact to initiate plastic deformation, a 

net acceleration between both masses occurred giving rise to a resisting force and hence the
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final force required to invert the tube was greater. The Cowper-Symonds relation was used 

to predict the dynamic flow stress of the material. It was found that the predicted values 

over-estimated the actual values, reason being that the values of the empirical constants D 

and q appeared to be too low for the strains that occur in the inversion process.

Webb et al [31] reported the simulation of quasi - static and dynamic axial inversion of 

tubes consisting of square or circular cross sections. A comparison of results between 

experimental and numerical was made. It was emphasised how the finite element method 

plays important role in the design of such energy absorbers and to assist in the planning of 

experimental programmes and therefore optimising the outcome of such procedures. 

Kinkead [32] endeavoured to provide an improved correlation between the theory and 

experimental results for the external inversion of metallic circular tubes. An attempt was 

made to incorporate ‘engineering strain’ as opposed to ‘natural strain’ previously practiced 

in the current theory (Limit Analysis) of predicting the collapse load of inverted tubes. In 

doing so, a simpler technique was developed which was seen as acceptable since it 

introduces no large errors when correlated with experimental results. It was suggested by 

the author that the modified theory would help to engineers to design energy absorbing 

devices based on the inversion process with more precision and assurance.

The plastic deformation mechanism of circular metallic tubes during quasi-static internal 

inversion was analysed by Reid and Harrigan [33]. Attention was given by the authors to a 

particular mode of deformation called tube nosing which appears not to have received 

much attention in the area of energy absorbers. Tube nosing is analogous to force internal 

inversion with the exception that a larger die radius is employed to encourage increasing 

hoop compression in the leading edge of the tube. Figure 2-9 shows the deformed shapes 

produced by ABAQUS and that of experiment. Excellent agreement was found between 

the numerical code and experiment for the quasi-static internal inversion of mild steel 

tubes. Figure 2-10 shows the force-deflection response of such a tube.

A  F inite E lem ent and E xperim ental A n alysis  o f  E n ergy  A b sorb in g  System s under Static  and D ynam ic L oading C onditions.

Figure 2-9: Comparison between ABAQUS and experimental deformed shape [33|.
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In similar work by Harrigan et al [34], the inertial effects due to dynamic loading was 

analysed in the internal inversion of tapered circular metal tubes and also on aluminium 

honeycomb material. It was found that for both cases, lateral inertial effects cause early 

load peaks to occur due to impact loading, the magnitude of which is governed by the 

material of the tube and the honeycomb wall. The aim of analysing two different structures 

was to shed light on the role of inertia on the magnitude of force generated in these 

particular energy absorbing devices.

An experimental and theoretical analysis of an external inversion process was investigated 

by Miscow and Al-Qureshi [35]. The aim of the paper was to define a method to predict 

the dynamic inversion load based on quasi-static experimental data. Experiments were 

carried out on copper and brass tubes. Figure 2-11 shows a typical schematic of a tube 

subjected to an external inversion process.
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Figure 2-11: Schematic cross-section of test arrangement for tube inversion process and stress on
an infinitesimal element |35|.
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It was noted by the authors that the predicted theoretical results such as collapse and 

dynamic mean load, impact velocity should not be taken as absolute values since other 

variables stemming from the dynamic testing have an influence on the estimated values. 

However despite this, it was found that a reasonable agreement existed between the theory 

and experiments.

2.5 Axial Splitting / Tearing.
The axial splitting of circular metallic tubes was conducted by Reddy and Reid [36] 

experimentally to examine the mode of deformation and it corresponding force-deflection 

response. The splitting of tubes can be seen as the intermediate between axial compression 

and axial inversion. The mean crushing force is somewhat lower, however high crush 

efficiencies in the order of 95% can be achieved. This type of device was analysed both 

quasi - statically and dynamically using experimental techniques. The splitting of tubes is a 

function of die radius and frictional effects, therefore these parameters can be modified in 

order to achieve a desired rectangular shaped force-deflection which is ideal in the design 

of energy absorbers. It was noted by the authors that a combination of a rectangular force- 

deflection response plus the successful operation over a wide range of tube properties and 

geometries cannot be coexistent with inversion or buckling modes associated with axial 

inversion and axial compression respectively.

Lu et al [37] sought to obtain experimentally the tearing energy required in a typical square 

tube splitting process. This provided a challenge for the authors since the tube splitting 

process involves a number energy dissipating mechanism such as frictional, bending and 

tearing. It was discovered that, by ‘pre-cutting’ some comers to different lengths, the 

tearing energy could be determined. This was possible because the tearing energy per unit 

tom area can be related to the ultimate tensile stress of the material and the strain to 

fracture.

Jiang et al [38] scrutinised the size effects in the axial tearing of circular tubes during 

quasi-static and impact loading conditions. This was achieved by using the Buckingham Pi 

theorem and consequently 11 input and 8 output parameters were identified. The effect of 

strain hardening on the mild steel tube specimens under dynamic loading conditions was 

analysed. It was found that the material strain hardening effects do not comply with the 

geometrically scaling laws. Divergences of approximately 11% to 57% were observed 

between the measured and predicted values as a result of this incompliance. The author 

therefore endeavoured to develop a new scaling law which included the effects of strain
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hardening by means of a correction factor relating the dynamic yield stress of the prototype

significant level. Consequently, this new scaling law can be seen as valuable for the design 

and safety assessment of larger scale energy absorbing devices.

Stronge et al [39] subjected a square tube to an axial force using a die causing the corners 

to split and curl outwards as deformation proceeds. For this mode of deformation, the 

energy absorbing mechanisms are fracture energy due to splitting, plastic deformation as 

large deformations ensue and frictional energy as the tube is passed over the mandrel. The 

advantage of using a square tube over any other cross section such as circular tubes stems 

from the fact that the specific energy dissipation processes can be separated analytically. 

This helps to accurately analyse the contribution and influence of each mechanism when a 

square is subjected to an axial splitting process.

Huang et al [40] detailed the study of energy absorption in splitting square metal tubes both 

theoretically and experimentally. The scope of the work was to analyse the role played by 

the different energy absorbing mechanisms in the splitting of these devices. Such 

mechanisms are bending, tearing and frictional energy and equations were presented for 

each mechanism. Good agreement was found between the actual observed values and those 

of theory. It was concluded that tubes which exhibit both splitting and curling behaviour 

may be used as efficient energy absorbing devices. Figure 2-12 depicts a typical theoretical 

model of subjecting a square tube against a pyramidal die.

In a companion paper by Huang et al [41], a detailed discussion using both experimental 

and theoretical techniques in the axial splitting and curling of circular metal tubes was 

presented. Mild steel and aluminium tubes were pressed axially on a series of dies, each

L ite r a tu r e  R eview .

and the model. As a result of this solution, the corresponding deviations were reduced to a
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Figure 2-12: Sketch of the experimental set-up [40].
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with different semi-angles. An approximate analysis based on simplifying assumptions was 

successfully used to predict the number of propagated cracks, the curling radius and the 

applied force. Figure 2-13 illustrates photographs of typical mild steel specimens after 

testing. As in the previous work, the three energy dissipating mechanisms such as bending, 

tearing and frictional were involved in the splitting process. Each mechanism was 

separated in order to clarify the role of each in such a splitting process which may be of 

benefit to the designer.
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Figure 2-13: Typical mild steel specimens in their final deformed stages [41J.

2.6 Lateral Indentation.

Sowerby et al [42] was one of the early authors to analyse the diametric compression of 

circular rings by point loads. An etching technique was used to reveal the specific shapes 

of the plastic hinges on the loaded ring. The collapse load was estimated using the slip-line 

field theory. This theory assumes rigid-perfectly plastic material, quasi-static loading and 

plain strain deformation. This theory can provide analytical solutions to problem involving 

large deformations and velocities discontinuities; however, it is limited only to simple 

structures. The author discovered that the collapse load predicted on the basis of this theory 

correlated well with experimentally measured values.

The response of ‘square’ cross-sectioned tubes under both quasi-static and dynamic lateral 

loading was conducted by Jing and Barton [43], Experimental tests consist of tubes of two 

different thicknesses loaded in either a fully clamped or simply supported condition. The 

authors conducted research into the collapse mechanism of the tubes and the relationship 

between energy absorption and tube deflection. In the dynamic cases, velocities of up to 

6m/s were loaded upon the specimens. DYNA3D, the finite element code, was used to 

simulate the dynamic events. It was found that the mode of deformation for the thin-walled 

tube is more complex since a ‘wrinkle’ occurs which indicates local buckling. This occurs 

in both the quasi-static and dynamic cases. There was a tendency for the numerical code to
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under-predict the deformations of the fully clamped tube because complete constraint of 

the tube ends did not actually occur; instead, slippage occurred at the constrained ends. 

However, correlation between the numerical code and actual test proved to be satisfactory, 

considering that the impact loading conditions and interaction between the impinging mass 

and specimen tend to be complex. Most importantly, the author briefed that little difference 

was found between the mode of deformation of tubes tested statically and dynamically and 

hence the energy absorption capacities could be predicted using quasi-static methods. 

However, the issue of strain rate sensitivity of the material in question to accurately capture 

the force-deflection response must be considered.

Thomas et al [44] identified three modes of deformation for a tube subjected to quasi-static 

lateral load at its mid-span. The first mode was a pure crumpling phase in which the load 

increased sharply until a point was reached in which deflection of the base of the tube 

occurred. This load was defined as the maximum pure crumpling load. A bending and 

crumpling phase was identified as the second mode in which further crumpling of the tube 

combined with bending between the supports was observed. During this period of 

deformation, the force decreased slightly before increasing to its maximum. The final mode 

of deformation was structural collapse in which the maximum load was reached causing 

the tube to collapse followed by a drop in load. The drop in load was characterized by a 

large rotation of the tube ends about their supports.

In a companion paper [45], the authors experimentally observed the crushing of circular 

tubes by centrally opposed wedge shaped indenters. According to the authors, the purpose 

of this investigation was to facilitate the assessment of the energy absorbing capacity of 

tubes in an impact situation where the speed of deformation is not large enough to generate 

significant inertial forces. Upon experimentation, the author identified three modes of 

deformation. 1) Ring mode for short lengths (L < 1.5D), it was found that deformation was 

similar to that of a compressed ring and consist of hoop bending about the generators. 2) 

Transitional mode for medium lengths. In this case, the deformation starts as a quasi-static 

ring mode then proceeds into a mode involving ‘increasing ovality’ as the deformation 

continues. 3) Reversing Ovality for moderate to long length of tubes. In this mode, 

membrane stretching in the axial direction was observed and this behaviour predominates 

close to the indenters accompanied by axial bending of the generators.

Finally, in a concluding paper, [46] obtained further experimental results concerning the 

transverse loading of simply supported tubes. In this work, the authors examined the 

surface stresses generated by means of the brittle lacquer technique using strain gauges. By
Edmund Morris B.Eng (Hons) 24
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using this technique, the authors revealed that the use of simple plastic beam theory to 

predict bending failure cannot be justified. They discovered that unlike normal beam 

problems, the section of the tube over hanging the supports play an active part in the force- 

deflection response.

Zhao et al [47] examined the quasi-static compression of metallic thin walled rings with arc 

shaped supports. The author conducted an approximate analysis based on the ‘Equivalent 

Structure Technique’ (EST) which provides an upper bound solution and is used to 

determine the collapse load of tubes under point loading. From experiments, they 

discovered that the structure deforms elastically followed by a soften stage. It was found 

from the theoretical analysis that the collapse load of the structure was accurately 

predicted, in addition to locating the positions of the plastic hinges.

Zhao and Fang [48] subjected metallic thin walled rings with arc shaped supports to a 

symmetrically concentrated impact load. Two supports of arc angle sixty and ninety 

degrees were used in which it was discovered that the deformation was a five-hinge model. 

The arc angle played an important role in the final deformation of the ring, such that the 

smaller the arc angle at the support, the bottom of the rings would become slightly 

straightened. Upon analysis of the high-speed photos from the Cranz-Schardin camera 

system, the authors found that the final deformation always occurred during the first impact 

of the drop hammer and that any rebounds of the hammer did not affect the final shape of 

the rings. An approximate linear relationship was found between the drop height and the 

residual displacement between the impact face and the base of the rings. Finally they noted 

that similar deformation mechanisms were found between the quasi-static and dynamic 

cases concluding that the impact velocity was low and hence strain rate could be neglected. 

Reid and Bell [49] identified that the role of strain hardening is significant in the post 

collapse response of rings loaded by opposing point loads. The use of the ‘Plastica’ theory 

by the authors to analyse the plastic regions gives an insight into the effects of strain 

hardening and that the particular solution observed indicates certain limitations on the 

earlier rigid perfectly theory [56] derived for the compression of rings between flat plates. 

Lu [50] conducted a study of the crushing of mild steel tubes by two indenters, the tubes 

having four different diameters and lengths. The aim of this paper was to conduct 

experiments using various combinations of diameter D and length L of the tubes, to obtain 

the corresponding force-deflection curves and thereby develop some empirical relations. It 

should be noted however that the empirical relations derived are only valid within the 

range of tube parameters and loading conditions specified in the work.
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Liu et al [51] analysed both experimentally and numerically the dynamic behaviour of ring 

systems subjected to pulse loading. The objective of the work was to understand the 

mechanism of elastic stress wave propagation and how the elastic energy is distributed 

throughout the ring system owing to the physical nature of the ring systems. The explicit 

version of the numerical code via LS-DYNA was used to simulate the pulse loaded ring 

systems. The experimental procedure was carried using a modified split Hopkinson 

pressure bar test system (SHPB). Figure 2-14 illustrates such an apparatus with a finite 

element model of the system depicted in Figure 2-15. It was found that the numerical 

results were in good agreement with those of experiment. The main conclusion of the work 

showed that energy redistribution is primarily affected by the thickness of the rings and not 

by the loading duration or the number of rings in the system.
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Figure 2-14: Modified split Hopkinson pressure bar test apparatus and recording system [51J.

Figure 2-15: Sketch of the Finite element model [51 [.

Shim and Stronge [52] examined the post-collapse response of ductile, thin walled tubes 

compressed between cylindrical indenters. It was discovered that, depending on the radius 

of curvature of the indenters along with the degree of side constraints, the post collapse 

behaviour of laterally compressed tubes can either be stable (monotonically- increasing) or 

unstable (monotonically- decreasing). Post collapse stability increases as the curvature of 

the indenter becomes larger. It was found that side constrained tubes compressed between
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cylindrical indenters are sensitive to load imperfections. Small shear forces are generated 

which in addition to the normal applied forces, initiate an asymmetric mode of 

deformation, therefore exhibiting a post collapse response that is initially unstable.

Kardaras and Lu [53] used the finite element method for the investigation of large 

deformations of thin cylindrical tubes subjected to point loads about its mid-span. The 

objective of the paper was to produce a detailed report on the effect of large deflections, 

stationary and travelling plastic hinges, rigid body rotations of the generators, change in 

curvature and finally the dominant strains that occur such as membrane and bending. It was 

concluded that the finite element method can be a powerful tool in providing detailed 

results on the aforementioned parameters that would have been more difficult using 

experimental or analytical techniques.

A theoretical insight into the indentation of tubes under combined loading was provided by 

Wierzbicki and Suh [54]. The combined loading was in the form of lateral indentation, 

bending moments and axially applied forces. The most significant conclusion was that the 

resistance of the tube to local indentation depends strongly on the type of boundary 

conditions such as axially and rotationally restrained and unrestrained tubes. The 

theoretical solutions provided an accuracy of 10%-20% in comparison with experimentally 

measured values.

Ghosh et al [55] analysed both theoretically and experimentally the deformation response 

of mild steel rings and short tubes of various thickness and lengths loaded centrally by 

opposed conically-headed cylindrical punchers. The mild steel specimens were tested in 

their ‘as-received’ and ‘annealed’ conditions. The aim of the work was to predict the 

collapse load of these short tubes as a function of yield stress, ultimate tensile strength and 

strain to failure. It was found that short rings of L/D ratio of up to 1.5 exhibited ‘knee- 

shaped’ response in the plastic stages of deformation. It is clear that the initial structural 

collapse load occurs somewhere along this ‘knee-shaped’ region. Interrupted annealed 

testing provided a very useful way of removing the strain-hardening of the short tubes and 

hence the initial collapse can be calculated for moderately deformed tubes. Finally they 

concluded that the prediction of the increase in the horizontal diameter as loading proceeds 

becomes more accurate for tubes with decreasing L/D ratios. This was achieved by using 

the rigid-perfectly plastic assumption and concept of plastic hinges.
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2.7 Lateral Compression / Flattening.

Several researchers have analysed analytically the compression of a tube between rigid 

platens and proposed a deformation mechanism to describe the lateral compression 

process. DeRuntz and Hodge [56] analysed the compression of a mild steel tube subjected 

to quasi-static lateral loading. A rigid perfectly plastic material model was used to predict 

the load deformation response. The geometrical component of stiffening was accounted for 

in the theoretical model. However the rate of increase was under-estimated, this was due to 

omission of the material strain hardening phenomena. The deformed contour of the tube 

consists of four circular arcs which maintain their original radius and plastic deformation 

occurring at the hinges only.

Redwood [57] endeavoured to include the effects of material strain hardening which was 

excluded by DeRuntz. A rigid linear strain hardening material model as opposed to a rigid 

perfectly plastic model was used to predict the force and energy absorption response.

The effect of strain hardening was further examined by Reid and Reddy [58]. The 

theoretical model produced by the authors is based on a rigid linearly strain hardening 

material model and is the most accurate one to date. The authors improved the strain 

hardening prediction by replacing the localised hinges with an arc in which its length 

changes with deflection. Hence this theoretical model accounted for both the geometric and 

material strain hardening effect. An important dimensionless parameter which was 

developed governs the shape of the force-deflection curve. This parameter is defined as 

‘mR’ and is a function of the yield stress in tension, the mean radius R of the tube, the 

strain hardening modulus Ep and the thickness t. According to Reid and Reddy it may be 

possible to maximise the energy absorbing capacity by choosing appropriate tube 

dimensions such that the ‘mR ’ value is minimised since this is a function of tube geometry. 

Reddy [59] studied the phenomenon associated with the crushing of metal tubes between 

rigid plates. Aluminium and mild steel tubes were compressed laterally in an Instron 

machine. It was found that intermittently annealed tubes corresponded closely to the 

perfectly plastic theory. This was due to the fact that strain-hardening effects were 

gradually removed due to this annealing process. For the ‘as-received’ tubes and the ‘once’ 

annealed tube, a large discrepancy was found between those of experiment and the 

perfectly plastic theory. This was due to existence of strain hardening in both materials 

which is not accounted for in the theory.

Gupta et al [60] conducted a comprehensive experimental and computational investigation 

of circular metallic tubes subjected to quasi-static lateral loading. Specimens analysed
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consisted of both mild steel and aluminium tubes with different diameter to thickness 

ratios. Their corresponding force-deflection responses were obtained and examined in 

detail. An in depth description was provided on the deformation mechanism of a tube 

compressed between flat rigid platens. A quarter cross section of a typical tube was divided 

into zones to help describe the deformation mechanism as shown in Figure 2-16.
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interest |60|.

Avallel [61] examined the strain field generated during the lateral compression of 

aluminium tubes and proceeded to verify the various theoretical models such as [56, 57 and 

58], it was found that the latter accounted for all the main features observed 

experimentally, hence this model seems the most realistic in describing the actual 

behaviour of the tube both qualitatively and quantitatively.

Reddy and Reid [62] examined both theoretically and experimentally the quasi-static 

lateral compression of a tube constrained so that its horizontal diameter is prevented from 

increasing. This is a way of increasing the specific energy absorption capacity of the tube 

by introducing more plastic hinges into the structure. Also the relationship between a single 

tube and a system of tubes with different configurations was investigated. It was found that 

the energy absorbed by a closed system (side constraints) is three times more than that of 

an open system (no constraints); however the maximum deflection of the former is less that 

that of an open system. Overall it can be concluded that the introduction of side constraints 

and creating a closed system is a feasible method of increasing its energy absorbing 

efficiency.

The compression of copper tubes with R/t ratios from 1.5 to 7.5 between flat plates were 

studied experimentally by Reid and Reddy [63]. It was found that the ‘Plastica’ theory 

developed by the authors could be used to predict the ring compression behaviour for a ring 

having an R/t value greater than 3.5. It was found that rings with R/t ratio less than 3.5 did
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not correlate very well with the experiments, this was due to the fact that shear effects as 

opposed to bending effects was the dominant mode of deformation, and this is not 

accounted for in the aforementioned theory.

Reddy and Reid [64] proposed a method to calculate a more realistic force-deflection curve 

using a rigid linearly work hardening material model. These tubes were also compressed 

laterally between rigid platens. It was suggested that an average value of strain hardening 

modulus could be used to calculate the parameter mR [58], therefore these two parameters 

would considered constant throughout the deflection range. However, it has been further 

proposed that if the variation of strain hardening modulus with strain is known, this could 

be used to update mR at each load step or load increment and thus obtaining a more 

realistic load-deflection characteristic. It was suggested that the method described above 

could be used as a basis for obtaining some of the material properties from a ring 

compression test.

A nested system analysed by Shrive et al [65] consisted of two concentric rings with a 

layer of smaller tubes between them, the axis of all tubes been parallel. Tack welding was 

used to attach the rings to the concentric tubes. It was found that increases in system 

stiffness, maximum load and energy absorption was apparent as the level of tack welding 

increased. From the impact loading experiment, it was found that full deformation did not 

occur but maximum opposing forces similar to the quasi-static case were achieved.

A nested system in the form of orthogonal layers of aluminium and mild steel tubes under 

static lateral compression was investigated by Johnson et al [66]. Such an orthogonal layer 

consists of a row of tubes stacked upon each other with every second row rotated 90 

degrees. The authors concluded that nested ductile tube systems play an important part in 

producing a monotonic load-deflection response and that the systems which exhibit cracks 

after loading only induce oscillations into the response and do not produce catastrophic 

failure in the system as a whole.

Reid et al [67] investigated the role of system inertia of nested energy absorbers in the form 

of a line of rings upon impact. Dynamic test were earned out on a simple one-dimensional 

apparatus. This apparatus consisted of a horizontal base plate with two guide rails in which 

the sledge is attached and impinges the line of rings. The sledge is propelled by means of a 

cartridge gun which can achieve velocities in the range 30-120 m/s. Various systems of 

rings were experimentally tested, with changing parameters such as different materials, 

diameter to thickness ratios and the number of rings. They concluded that system inertia 

has the effect of controlling the time over which particular elements of the system deforms.
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Also, they concluded that the insertion of discrete masses in the form of small plates 

between the rings further increases the time in which the system deforms. This is seen as a 

more efficient use of the basic energy absorbing element.

The effect of strain rate on the dynamic lateral compression of tubes was examined by Reid 

and Reddy [68].They endeavoured to find a relationship between the dynamic and quasi

static load-deformation characteristic of thin walled tubes compressed laterally between 

rigid platens. This was achieved by using an existing quasi-static large deflection theory 

developed by Reid and Reddy [58], The theory was modified to include the effects of strain 

rate due to the loading rates applied. They found that the modified theory can give a good 

estimate of the dynamic load-deflection response and subsequently the energy absorbing 

capacity of mild steel and aluminium tubes.

Nested systems in the form of a line of rings subjected to end impact loading were 

examined by Reid and Reddy [69], The authors were principally concerned with 

identifying the main mechanism which controls the deformation of such systems. Upon 

experimentation, the main parameters were identified and varied, thereby leading to a 

suggestion for the construction of a mathematical model of the system. It was found that in 

low speed impact testing on tube systems, the effect of inertia was secondary; therefore the 

design of energy absorbing systems could be achieved provided that the material strain rate 

was taken into account. Reddy et al [70] described experiments in which a variety of one 

dimensional systems with free distal ends, as opposed to fixed ends, were subjected to 

lateral impact by a rigid projectile. An elastic-plastic structural shock wave theory, which 

employs a bilinear material model to describe the collapse behaviour of the rings, was used 

to analyse the deformation of typical ring chain systems.

Reid et al [71] experimentally analysed the energy absorbing capacity and collapse 

mechanism of braced metal tubes compressed under rigid platens. Their aim was to design 

an energy absorber to cope with both the ‘redirectional’ and ‘trapping’ of vehicles involved 

in side impacts. ‘Redirectional’ is a term used to describe where the vehicle moved back 

onto its original line of travel after the collision has occurred. ‘Trapping’ involves catching 

the vehicle so as to prevent the probability of secondary conflicts occurring with oncoming 

traffic. They conducted initial investigations on small scale components to explore the 

possibility of achieving the desired response by introducing tension members across the 

diameters of the mild steel tubes in question. Both single and double braced tubes of 

various angles were analysed. They stated that the response of a braced tube, whether 

singly or doubly, is sensitive to the direction of loading, however; significant enhancement
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in the energy absorbing capacity of such systems can be achieved. Full scale testing was 

also carried out on the double braced tubes used as a cluster in a modular crash cushion.

The finite element simulation of the lateral compression of aluminium tubes was conducted 

and analysed by Leu [72]. An elastic-plastic model based on the updated Lagrangian 

algorithm was employed to predict the buckling, punch load and deformed geometries of 

aluminium tubes. The static explicit approach was used as opposed to the implicit method 

so as to avoid convergence problems. A power law relationship was used to represent the 

stress-strain curve of the aluminium tubes. The effect of the strain hardening exponent, 

friction coefficient values, elastic modulus, thickness of tube are examined in relation to 

deformation process and how these parameters affect the occurrence of buckling and punch 

load. It was concluded that such analysis of these parameters may help to understand the 

buckling mechanism of aluminium and clad tubes.

Gupta and Ray [73] studied the collapse of thin walled empty and filled square tubes under 

lateral loading compressed between rigid plates. Various sizes of tubes were analysed both 

in their ‘as-received’ and annealed conditions. The filler material was in the form of 

polyurethane foam and Kail wood. A theoretical analysis was presented to compute the 

peak load and load-deflection responses. Excellent agreement was found between the 

predicted and actual measured values. As expected, the inclusion of a filler material 

increases the specific energy absorbing capacity. Moreover, the major advantage of using 

foam like filler material is that the post collapse load-deflection response increases without 

increasing the collapse load. The other advantage as reported by the author was that the 

stroke length increases which was due to the filler material delaying the onset of locking 

until a later displacement was reached.

In view of how the effect of strain hardening becomes more important in impact situations 

due to high strain rates and large deformations, Sherbourne [74] analysed theoretically the 

compression of tubes under rigid platens using the ‘Moving Hinge Method’. Although this 

theory is mainly applied to a rigid-perfectly plastic material, the author attempted to 

include the effects of strain hardening into the model. It was found that the load-deflection 

results were in good agreement with experimental data. Also in comparison to other 

theories such as ‘Limit Analysis’ by DeRuntz [56] and the ‘Plastica Theory’ by Reid [58] 

in predicting the collapse load, it was found that the ‘Moving Hinge Method’ permit for 

more manoeuvrability without compromising the accuracy of solution. Finally it was noted 

that the moving hinge method can also be applied to other deformation modes such as axial
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compression of tubes. This appears to be an advantage of the theory since the other 

methods used are only applicable to tubes compressed laterally.

Wu and Carney [75] analytically analysed the initial collapse of braced elliptical tubes 

under later compression. Elliptical tubes provide a distinct advantage over their original 

circular tube counterparts in that their crush efficiency is greater. This automatically 

implies that the specific energy absorbing capacity of such devices increases, which is 

desirable in the design of impact attenuation devices. Another method of increasing the 

specific energy absorbing capacity of these cylindrical or elliptical devices is through the 

inclusion of metallic braces or wire. These can be attached to the devices either 

horizontally or at an angle. This generates a larger collapse load and hence the specific 

energy absorbing capacity is increased. Three possible collapse mechanisms for braced 

circular tubes as established by Reid [71] have also been found to exist for braced elliptical 

tubes. These three cases are tubes with small bracing angles, tubes with horizontal bracing 

and tubes with large bracing angles. It was found that the initial collapse load of braced 

elliptical tubes was dependant on both the ratio of the ellipse axes b/a, and the bracing 

angle. ABAQUS, a finite element software was used to capture the deformation 

mechanisms and initial collapse load of the devices. Figure 2-17 show the symmetric and 

asymmetric deformations for a 0° braced tube.

In a companion paper Wu and Carney [76], the same authors presented the experimental 

results of braced elliptical tubes compressed under rigid platens. This was to authenticate 

the numerical and theoretical results presented in their initial paper. It was found that for a 

ratio of b/a = 1 (Circular tubes), the initial collapse loads predicted from the EST method 

(Equivalent Structure Technique), ABAQUS and experiments were comparable 

particularly for small-angle braced tubes. However, for large brace angles, the 

experimental results are below theoretical predictions and according to the author are due 

to the tubes being highly sensitive to geometrical imperfections. Finally, it was noted that 

the ABAQUS results were much lower than the results predicted by the EST method and 

this appears to be due to the omission of membrane stresses in the latter case. Figure 2-18 

shows the finite element model at two stages of displacement.
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Figure 2-17: Symmetric and asymmetric deformations for 0° bracing [76|.

Figure 2-18: Finite element mesh and two deformation stages for a 20° braced elliptical
tube |76|.

2.8 Summary of Chapter Two.

• A brief description was given on how energy absorbers can be categorised into two 

forms based on the shape of its force-deflection response. Therefore, the analysis of 

the absorbers in this work are categorised as a Type I structure.

• Chapter two highlighted the work by several researchers involving the analysis of 

metallic energy absorbers using theoretical, experimental and computational 

techniques. Five specific modes of deformation pertinent to energy absorbers were 

identified.

• Various materials such as mild steel, aluminium, stainless steel, and copper were

used as energy absorbers due to the fact that they are commonly available on the

material supply market.

• Various cross sectional tubes were analysed both quasi - statically and dynamically,

such as circular and square tubes, single, double and treble tapered tubes and finally

frusta’s which is equivalent to a four sided tapered tube.
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• Experimental techniques usually involve mechanical apparatus with the ability to 

load the various energy absorbers at a low velocity so that dynamic effects are not 

present. For the analysis of impact phenomena, a drop test rig is usually employed in 

which the drop hammer mass can be varied in order to change both the velocity and 

inertial effects.

• The implicit version of the finite element code is usually employed to simulate and 

analyse the quasi-static loading of energy absorbers. Although kinetic energy 

absorbers are usually exposed to impact, it is normal to analyse their quasi-static 

response first since the same geometrical effects will occur in the impact cases. This 

helps the Design or Research Engineer to understand what should be expected to 

occur geometrically in the dynamic loading case. The explicit method is used to 

model the dynamic effect of energy absorbers subjected to impact loading. It is 

possible to simulate devices subjected to quasi-static loading using the explicit 

method however dynamic effects within the numerical model must be minimised to 

ensure the validity of the result.

• Limit analysis is the main theoretical method used in the field of plasticity to 

determine the critical load in which these energy absorbing device collapses, 

alternatively known as the collapse load. The method offers both the upper and lower 

bound version of the solution. Normally, the material model is assumed to elastic or 

rigid and perfectly plastic.

• According to the literature, there appears to be no research conducted on the lateral 

compression of nested systems in which a series of tubes are assembled internally. 

The advantage of such a system lies in the fact that an internally arranged system can 

be suited in situations where space or volume restrictions are important without 

compromising its energy absorbing requirements.

• Finally it should be noted that in the lateral compression of metallic tubes, the mode 

of deformation is bending dominated and hence the resulting force-deflection 

response is smooth, whereby the axial crushing or axial inversion of tubes generates 

a large fluctuation of force about a mean load which is less than the peak load. This 

is due to the buckling and fracture modes that are inherent with the axial 

compression and axial inversion of tube systems respectively.
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3 Theoretical Background. 

3.1 Introduction.

The objective of this chapter is to outline the theory used to assist in the analysis and 

solution of the various objectives as outlined in chapter one. The chapter is divided into 

two sections with the first section detailing a brief description of the Finite Element 

Method. This section is not intended to be exhaustive, but rather a brief description of 

important topics involving the theory behind this work. The interested reader can refer to 

the various quoted references throughout the chapter for a further in depth understanding of 

the underlying theory. Section two provides a description of miscellaneous topics used to 

assist in the analysis of the various energy absorbers examined.

3.2 The Finite Element Method.

Finite element analysis is a computer simulation technique used in engineering design and 

analysis across all branches of engineering and is based on the Finite Element Method. 

This method and its cousins such as the Finite Difference Method and the Boundary 

Element Method are numerical techniques for the solution of partial differential equations. 

The Finite Element Method is accredited to a number of engineers and mathematicians 

who proposed the concept of discretization methods. It is generally accepted that the work 

of Turner et al [77], Argyris and Kelsey [78] are regarded as important contributions. 

Clough [79] is reported to have been the first to use finite elements.

The physical object or system to be analysed is mapped onto a discrete domain which 

consists discrete regions called finite elements. For each finite element within the discrete 

domain, the unknown variables such as displacement or velocity or some other quantity are 

approximated using known functions which may be linear or non-linear depending on the 

complexity of the problem. Hence, the governing partial differential equation representing 

each element is integrated over that element and the solution equation to be solved is 

summed over the entire discretized domain. In doing so, a set of approximate linear or non

linear equations are created and converted into matrix form. The solution of these matrices 

is then achieved using numerical techniques. While being an approximate method, the 

accuracy of the FEA method can be improved by refining the mesh in the model by using 

more elements and nodes. The following literature [80,81,82,83] provides for a deeper 

understanding of the underlying theory behind the Finite Element Method.
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3.2.1 The Principle of Virtual Work.
The development of the finite element method is based on the principle of virtual work or 

more specifically, the principle of virtual displacement which states that the internal work 

in the body is equal to the external work imposed on the body due to external loads. [84]

The principle of virtual displacement for a given body states the mathematical identity of 

external and internal virtual work as:

External Virtual Work = j5 s radV  (1)
v

The Virtual internal work may be obtained by summing the virtual work of all the 

individual elements representing the body. As shown in subsequent sections, equation 1 

leads to the following governing equilibrium equation for the body:

R = Kr + Rn (2)

where R = the vector of nodal forces representing the external forces applied to the systems 

nodes.

r =  vector of the system’s nodal displacement which yields the displacement at any point 

within the finite element mesh using interpolation functions.

R° = the vector of equivalent nodal forces representing all external loads such as surface 

loads, body forces such as inertia , initial stress and strains.

K  = the systems stiffness matrix which is established by assembling the individual stiffness 

matrices

Once the systems displacement constraints are accounted for, the solution of the nodal 

displacements r can be obtained through the inversion of the global stiffness matrix and is 

given by:

r = K ~ \R ~ R ° )  (3)

Subsequently, the strains and stresses arising from the nodal force R in the individual

elements may be established as follows:

£ — Bq (4)

<j = E (s  -  s°) + <7° (5)
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therefore,

a  = E (B q -e ° )  + a° (6)

where q = vector of the individual element’s nodal displacement represented as a subset of 

the global system’s displacement vector,

B = the strain displacement matrix that transforms the nodal displacements q to strains at 

any point in the element.

E  = the elasticity matrix that converts the effective strains to stresses at any point in the 

element.

s°=  vector of initial strains in the element.

<yn = vector of initial stresses in the element.

3.2.1.1 Interpolation or Shape Functions.
Let q be the vector of nodal displacements of a typical element. The displacements at any

point of the element may be found by interpolation functions and is given by:

u = Nq (7)

where u = the vector of nodal displacements at any point of individual element.

N  = Matrix of shape function used as interpolation functions to determine the displacement 

at any point in the element.

Equation (7) gives rise to other important quantities such as the virtual displacements 

which are consistent with the virtual nodal displacements:

Su = SNq (8)

The strains in the element:

s  = Du =  DNq (9)

where D is the matrix of differential operators that convert the displacements into strains.

From equation (4), it can be seen that:
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B = DN (10)
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The virtual strains which is consistent with the element’s virtual nodal displacements:

Ss = BSq (11)

3.2.1.2 Internal Virtual W ork in a Typical Element.

For a typical element of volume Vc, the internal virtual work due to virtual displacements 

is obtained by substitution of (6) and (11) into (1):

Internal virtual work= jS eTadVe = 5qr J/?7 {e(bcj -  s ° )+ <j °  )dVc (12)
r  r

The following matrices pertaining to a typical element may now be defined:

K e = \B ‘ EBdVe (13)
r

Equivalent element load vector

Q"e = J- B‘ {Ee° -  <j °  } lV e (14)
r

Substitution of equation (13) and (14) into equation (12) and evaluating using numerical 

integration yields:

Internal virtual work =SqT(K eq + 0 oc) (15)

The element virtual work in terms of system nodal displacement can be found by

replacing q with r by expanding the size of the element matrices with new columns and

rows of zeros since the nodal displacement vector q is a subset of the system nodal 

displacements r , therefore:

Internal virtual work = Sr l (K er + Qou) (16)

where, for simplicity, we use the same symbols for the element matrices, which now have 

expanded size as well as suitably rearranged rows and columns.

3.2.1.3 Global System Virtual Work.
Hence, summing equation (16) for all elements gives the right-hand-side of equation (1):
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System internal virtual work ='^j Sr‘ [Kcr + Qoc)= S r T̂  K cr + Srl ^ Q " e (17)
e c c

Considering now the lefit-hand-side of equation (1), the system external virtual work 

consists of:

The work done by the nodal forces:

R = 8r l R (18)
The work done by external forces T e on the part S e of the element’s edges or surfaces:

£  ¡SurT edSe (19)
e se

The work done by the body forces F e :

^  \SuTf edV e (20)
e y ‘

Substitution of (8) gives:

A Finite Element and Experimental Analysis o f Energy Absorbing System s under Static and Dynamic Loading Conditions.

System external virtual work =Sql ^  ^NrTedSc +8q r^  JiV7 f edVe (21)
e s '  a v*

or alternatively

System external virtual work = -S q l ^  [Qte + Q ,e) (22)
e

where we have introduced additional element's matrices as defined below:

Q'a = -  pNTT edSe (23)
s'

QJe= -  ¡N rf edV e (24)
v *

Similarly, the replacement of q in (22) with r gives, after rearranging and expanding the 

vectors Qle and Q fc:

System external virtual work = -S r 7 ^  [q ,c + Qje) (25)
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3.2.1.4 Assem bly o f System M atrices.
Adding (18), (25) and equating the sum to (17) gives:

System external virtual work =  Sr1R - Sr7 ^  (q" + Q k ) = Sr7 ^  K e r + Sr1 ^  (Q"': (26)
V * y

Since the virtual displacements Sr are arbitrary, the former equality reduces to:

i = i z ^ " ) ' ' + E ( e “' + e “'+ a " )  (27)

It can be shown from equation (2) that

• The system stiffness matrix is obtained by summing the elements' stiffness 

matrices:

K  =  (28)
c

• The vector of equivalent nodal forces is obtained by summing the elements' load 

vectors:

R° = ̂ {QIC+Qfe+Qoe) (29>
e

3.2.2 ANSYS: The Newton-Raphson Procedure.
The Newton-Raphson method is an algorithm within the field of numerical analysis which

is used by ANSYS for the iterative solution of a set of non-linear simultaneous equations

given by [85]:

m m = m  (3°)

where [iC]=coefficient matrix.

{u} = vector of unknown DOF values.

\f ‘: }= Vector of applied loads.

If the coefficient matrix [/C] is itself a function of the unknown DOF values then equation 

(30) becomes a nonlinear equation.

(3 |>
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{«,+ ,}={«,}+{a «,} (32)

where \k ] ]=Jacobian matrix (Tangent matrix)

i = subscript representing the current equilibrium iteration.

I f '1' }= vector o f restoring loads corresponding to the elem ent loads. Both \f'" jand \kJ  J
are evaluated based on the values given by {ui} . The right-hand side o f  equation 31 is the

residual out-of balance vector or alternatively, how much the system is out of balance. 

Figure 3-1 illustrates a single solution iteration for a one DOF model.

A Finite Clement and Experimental Analysis o f  Energy Absorbing Systems under Static and Dynamic Loading Conditions.

Figure 3-1: The Newton-Raphson Solution- F irst Iteration . [851

It can be seen from the following figure that more than one N ew ton-Raphson iteration is 

needed to obtain a converged solution. The algorithm procedure is conducted as follows:

( 1 ) On the first time step, {u0} = {o}.
(2) The updated tangent matrix and restoring load is com puted from configuration \uj }.

(3) {A«,} is calculated from equation 31.

(4) {Aw,} is added to {«, }in order to obtain the next approxim ation uM .

(5) Steps two to four are repeated until convergence is obtained.

The solution obtained at the end o f  the iteration process would correspond to load a 

level \f u j . The restoring load vector {F "r }would be equal to the applied load vector | f "  j, 

and hence, the final converged solution would be in equilibrium.

However, i f  equation (31) included path dependant nonlinearities such as plasticity, then

the iterative process requires that some intermediate steps are in equilibrium in order to

follow  the path correctly. This is achieved by applying the load in increments and 

perform ing the Newton-Raphson iteration at each step so that the final load vector } is 

reached. Therefore equation (31) becomes:
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(33)

where [£ „ , J=tangent matrix for time step n, iteration i.

\f " }= total applied force vector at time step n.

|F"" }= the resorting force vector for time step n, iteration i.

Figure 3-2 shows the incremental N ew ton-Raphson procedure. It should be noted that, 

even without a path dependant nonlinearity, this incremental approach is sometimes 

required in order to obtain a solution corresponding to the final load level.

Figure 3-2: The N ew ton-R aphson Solution: Next iteration. [85|

3.2.3 LS-DYNA. Explicit Time Integration.
For physical problems involving an extreme am ount o f deformation or where stress wave 

propagation effects are significant, the explicit method is used to calculate the equation o f 

motion [8 6 ], Figure 3-3 illustrates a schem atic o f a single degree o f  freedom system 

subjected to damping, elastic and inertial forces which is equivalent to a time varying force 

P (t) .

fT inertial force* i

Figure 3-3: Schematic of the equation of motion. [86]
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Equating these forces acting on mass m to the tim e varying force P (t) yields the following 

equation o f  motion:

mu+cu+ku = p(t) (34)

where u = , u = —  u = displacement, m is the m ass o f the body, c is the damping
dt dt

and K  is the stiffness o f  the system.

u
//«-jo

//,,

t»-¡ /«-/.■ tu Ai - j

2 A t

A t

Figure 3-4: The C en tra l difference m ethod. [86]

As shown in  Figure 3-4, the central difference scheme is utilised such that the velocity and 

acceleration are given respectively as:

1 '
Un - --

At
U U n—-

At
Un+1"«» Un ~ Un-\

\ At At

Un = J ^ f ( U"+' ~ 2Un+Un-^

M u+Cu„+ Kun -  PnEquilibrium at time tn 
Substitution o f equation (35) and (38) into (39) yields

(35)

(36)

(37)

(38)

(39)

M  +—AtC 
2 ln+\ = (At fP„ -((A t f K - 2 u ) , .  - { m ~ C 'm-1 (40)
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3.2.4 Elastic-Plastic Material Behaviour.
Plasticity theory provides a m athem atical relationship to characterise the elastic-plastic 

response o f materials subjected to loading and is based on three important concepts such as 

the yield criterion, the flow rule and the hardening rule [85].

The yield criterion establishes the stress level at which yielding commences. For multi- 

component stresses, this is represented as a function o f the individual components, 

/({cr}) which can be interpreted as an equivalent stress a v:

erc,=({o-}) (41)

where ({cr})is the stress vector.

Figure 3-5 presents the stress strain-behaviour o f  the material model used to describe the 

behaviour o f  M ild steel used in  the various energy absorbers. This stress-strain is classified 

as a  Bilinear material model.

<y
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Figure 3-5: The bilinear stress-strain behaviour of the material model. [85|

The yield stress criterion is based on the Octahedral Shear Stress Yield criterion or the Von 

Mises criterion which states that yielding occurs when

<Ty = 1 2 ^ '  “  ) 2 + f a  + f a  -  ̂  )2 (42)

where crv is the yield stress

(T,,cr2 and cr, are the stresses defined in a three-dimensional principle stress space as shown 

in Figure 3-6.
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Figure 3-6: Yield surface in principle stress space. [85|

The hardening rule determines the changing o f the yield surface with progressive yielding, 

so that the conditions (i.e. stress states) for successive yielding can be identified. Two 

hardening rules are available: isotropic hardening and kinem atic hardening. In work 

hardening, the yield surface remains centred about its initial centreline and dilates 

(isotropic expansion) in size as the plastic strains develop. For materials with isotropic 

plastic behaviour this is termed isotropic hardening and is shown in Figure 3-7

<j2

Figure 3-7: The Isotropic Hardening Rule. |85]

The flow  rule determines the direction o f  plastic straining and is given as:

<43)

W here d e pl is the change in plastic strain.

k  is the plastic multiplier which determines the amount o f  straining.

Q is the yield function.

3.2.5 Contact Algorithms.
ANSYS offers a num ber o f contact algorithms to simulate the non-linear contact 

phenom ena, three o f the more important methods are outlined below [87]. In contact 

problem s, two important concepts m ust be taken into account and are as follows: (a) The 

contacting force which is transferred between the relevant bodies and (b) the
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impenetrability condition which states one body cannot penetrate another. These two 

concepts are preserved by incorporating either one o f three different contact algorithms: the 

penalty method, Lagrange multiplier method or the augmented Lagrange method.

For the solution o f non-linear problem s, the governing set o f  simultaneous equation is 

given by:

M M = { F }  (44)

For the penalty method we assume that the contact force is written in the form:

K Ax = A F  MS')^  contact penetration contact.

where Kconlacl is the ‘Contact Stiffness’, Ax is the distance between two existing

nodes w ith each node connected to a separate contacting body. Due to the fact that 

A*penetration describes that distance between existing nodes, Kcnnlacl can then be added to the 

existing stiffness matrix as defined in equation (44).

For the Lagrange multiplier m ethod AFcnnlacl is treated as a separate DOF, therefore 

equation (45) is modified and is given in the from:

M * } = M + k , « J  (46)

This equation has the benefit o f  satisfying the impenetrability condition without being 

concerned with the ‘contact stiffness’ or ‘penetration’. This method offers an advantage 

over the pure penalty method due to the fact that the contact force is treated as a separate 

DOF and therefore the issue o f  achieving zero penetration (Infinite Contact Stiffness) as 

w ith the penalty method can be bypassed.

The augmented Lagrange method is an iterative series o f the penalty method. The contact 

force is augmented during equilibrium  iterations so that the final penetration is smaller than 

some specified tolerance within the algorithm. Lower stiffness values can lead to excessive 

penetration and hence produce an inaccurate solution. Ideally, a high enough contact 

stiffness is required such that the penetration is acceptably small, but a low enough 

stiffness so that the problem will converge without much difficulty. This method offers an 

advantage over the previous two algorithm s in that less ill-conditioning o f the global

stiffness matrix is achieve due to the fact that the contact stiffness is updated at each

A Finite Element and Experimental Analysis o f  Energy A bsorbing Systems under Static and Dynamic Loading Conditions.
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iteration o f the solution process. The contact algorithm used by ANSYS/LS-DYNA to 

capture the contact phenom ena is based on the penalty method. A detailed explanation of 

the theory o f  the penalty method based on the explicit method can be found from reference 

[88]

3.2.6 Contact Capabilities within ANSYS and ANSYS/LS-DYNA.
ANSYS offers a number o f contact models such as node to node, node to surface and

surface to surface models. The latter option was used to capture the deform ation process of 

the various energy absorbers in this work. Figure 3-8 illustrates a surface to surface contact 

pair used to capture the interaction between the two solid bodies. As shown from the 

figure, the contact surface usually consists o f  the deformable body whilst the target surface 

may consist o f  either a deformable or rigid surface. Contact detection points are located at 

the integration points o f  the contact elements which are interior to the element surface. The 

contact elem ent is constrained against penetration into the target surface at its integration 

points. However, the target surface can, in principle, penetrate through into the contact 

surface.

A Finite Element and Experimental Analysis o f Energy Absorbing Systems under Static and Dynamic Loading Conditions.

D efo rm ab le  solid

Figure 3-8: Illustration of a contact pair. [85|

In LS-DYNA, contact is defined by identifying (via parts, part sets, segment sets, and/or 

node sets) what locations are to be checked for potential penetration o f a slave node 

through a master segment. LS-DYNA also uses the penalty method approach in which 

when a penetration is found, a force proportional to the penetration depth is applied to 

resist, and ultimately eliminate the penetration. An AUTOM ATIC SURFACE to 

SURFACE contact format which is a two way contact, is used to simulate the contact 

interaction o f  the various energy absorbers subjected to dynamic impact as shown in Figure

3-9. This contact is typically used in impact analysis due to the fact that predetermination
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o f where contact will occur is almost impossible. In a two-way contact, nodes on the slave 

side are first checked for penetration thru the master surface and then master nodes are 

checked for penetration thru the slave surface.

#■
Slave surface

A Finite Clement and Experimental Analysis o f  Cncrgy Absorbing Systems under Static and Dynamic Loading Conditions.

• Master Surface

Figure 3-9: Illustration of the surface to surface contact algorithm  in ANSYS/LS-DYNA. [86 |

3.3 Miscellaneous Theoretical Topics.

3.3.1 Energy Absorption Characteristics.
It is usual to describe the behaviour o f  energy absorbing systems in term s o f performance 

indicators. Thornton [89] suggested various indicators such as the crush efficiency, energy 

efficiency, specific energy absorption capacity and weight effectiveness that may be useful 

in describing the performance o f such systems. The crush efficiency is defined as the stroke 

length divided by a characteristic length o f the structure such as the outer diameter o f the 

tube. The specific energy absorption capacity is defined as the energy absorbed per unit 

kilogram. The energy efficiency as illustrated by Thornton is given as

[47]
'■ P *  Tr s n̂

P Lwhere A is the area under the force deflection curve, s is the peak load observed and "

is the original length. Upon exam ination o f  this equation, it can be seen that to achieve

1 0 0 % energy efficiency requires a rectangular force-deflection curve such as a structural

rigid perfectly plastic response. From a practical point o f  view, to achieve maximum

energy efficiency, the force-deflection response needs to be adjusted so the peak force will

occur in the early stages o f  deflection and preferably remaining at this magnitude for the

remainder o f  the stroke. This is an ideal requirement in the design o f  energy absorbing

systems. In achieving this, the occupant ride down deceleration as a result o f this constant

force, m ay be adjusted to be within acceptable limits so as to avoid injuries.
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A final performance indicator that may be used to describe the behaviour o f such systems 

is the weight effectiveness, which is given as

v r * = e g * s :  [48]

e S cwhere K is the crush efficiency and ' is the specific energy absorption capacity. It is a

useful indicator since the relative energy absorption capacity o f the system is used in

conjunction with an important variable in the response o f energy absorbers, the stroke

length, to describe the behaviour o f  the system.

3.3.2 Optimisation of Tube Geometry for a COPSS.
Due to the nature o f the tubes being rotate ninety degrees, there exists a gap between the 

respective tubes for the COPSS subjected to lateral crushing under the three different 

indenters. The following approach can be taken to eliminate these gaps, and in doing so, 

the best possible monotonic force-deflection response can be achieved.

1) The elimination o f the gaps between each tube can be accomplished by choosing a set o f 

tubes such that, once assembled and loaded using any form o f indenter, all tubes will 

deform synchronously. This will give rise to the smoothest response possible for any given 

set o f tubes. To achieve this, the simple use o f  Pythagoras’s theorem can be applied to 

obtain the radius o f the tube in question such that it is ju st touching its neighbouring 

component. Figure 3-10 shows a cross sectional view o f a typical COPSS. The design 

topography can consist o f two methods; one in which the smallest or inner-most tube is 

selected and the resulting external tube dim ensions are evaluated. The second method is 

selection o f the largest or outer-m ost tube and the resulting internal tube dimensions are 

evaluated. In this example the latter m ethod is used. Therefore to find the outer radius o f 

central tube, the following equation is utilised:

A Finite Element and Experimental Analysis or Energy A bsorbing Systems under Static and Dynamic Loading Conditions.

where R3 is the outer radius o f  the central tube, R2 is the inner radius o f the outer tube and 

L is the axial length o f the central tube. This obtains us the value o f  R3 such that the outer 

and central tubes are ju st touching.

2) The thickness o f each tube should be equal; this will instigate the collapse load for each 

to be approximately the same, resulting in minimal fluctuation in force throughout the 

deflection stroke.
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F igure 3-10: A one q u a rte r  cross sectional view of a COPSS.

3.3.3 Material Characterisation.
For material characterisation o f the tubes subjected to dynamic loading, a bilinear stress- 

strain curve was incorporated into the finite element model using the ‘PLASTIC 

KINEM ATIC H A RD EN IN G ’ material model option. Values o f  0.3 and 200 GPa were 

given for Poisson’s ratio and Y oung’s modulus respectively. The material is assumed to 

possess only isotropic strain hardening and strain rate effects due to dynam ic loading are 

defined using the Cowper-Symonds constitutive equation given by

= ° \

f \ \
( ■ ^

—
fl

1 +
s

~D
V

/

(50)

where ° d is the dynam ic flow stress at a uniaxial plastic strain rate s , °"v is the associated 

static flow  stress, the material constants given for D and q were given as 6844 s' 1 and 3.91 

respectively. These values were used in previous studies for the axial crushing o f  m ild steel 

tubes and dynam ic loading [25, 30].The values for the yield stress and plastic modulus as 

outlined in section 4.5 were incorporated into this material model.

3.3.4 Energy Balance.
To ensure that there were no numerical errors w ithin the developed models to simulate the 

various energy absorbers, the energy equation was checked to ensure that it was in a 

balanced state. The following energy equation must hold true at all times during an analysis 

and is given by [90] -
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Ekin + Eint + EXI + Em + Etlamp + Ehg -  E°kin + E°t + Eex, ^  j ^

where on the left hand side Ekin is the kinetic energy, Em{ the internal energy, ESI the

sliding energy (friction energy), Ent, rigid wall energy, Edamp is energy due to damping and

E, hourglass energy, on the right hand side E°m,E°nt,E cxl are energies due to initial

kinetic, initial internal and external work done respectively. Since the models in question 

only contain kinetic, internal and sliding energy and external work done on the system, the 

energy balance reduces to

k̂in + + EXI = Eexl (5 2 )

The terms on the left hand side is equivalent to the total energy. Hence, graphical plots 

depicting the energy balance o f each model analysed dynam ically are illustrated throughout 

section 7.8.

3.3.5 Strain-Rate Effects.
W hen analysing the response o f structures under dynamic impact, it is usual to study the 

response in terms o f strain rate which can be characterised as a function o f the impact 

velocity and the change in length o f the structure. Strain rate is one o f the very important 

parameters alongside inertial effects that m ust be considered when dealing with structures 

under dynamic loading. The strain rate o f  a uniform  homogenous bar o f  metal as shown in

can be derived as follow by defining the engineering tensile strain as [91]

e = ( L - L o ) / L o  (53)

and the increment o f  engineer tensile strain is

de = dL/Lo  (54)

in place o f Lo in equation (53), we can write L

ds = dL /L  (55)

where ds  is defined as the incremental in the natural or logarithmic strain.

Tensile engineering strain rate e is the rate o f increase in tensile strain, so that from

equation (54),

de dLldt  ve -  —  = ----------= —  (56)
dt Lo Lo
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where t denotes the time and v is the speed o f separation o f  the points A and B as shown in 

Figure 3-11. The tensile natural or logarithmic strain from equation (55) is given as

A Finite Element and Experimental Analysis o f Energy Absorbing Systems under Static and Dynamic Loading Conditions.

s  -
ds _ dL / dt _  v 
~dt~ L ~~L

(57)

F. V

Figure 3-11: Schem atic of a uniform  homogenous b a r of m etal o f length Lo and  subjected to a
tensile force F with velocity V.

Reid and Reddy [6 8 ] studied the effects o f strain rate on the dynamic lateral compression 

o f  tubes. They discovered that the strain rate o f  a single tube o f  dim ension 50mm diameter 

was 22.5s ' 1 when compressed dynamically at 5m/s. Hence, it can be seen that the CIPSS 

and the CIPDS subjected to dynamic loading o f  5m/s in this work experience a strain rate 

o f  a sim ilar magnitude. In the discussion o f strain rates, it is usually the order o f magnitude 

which is o f  significance. The systems analysed dynamically in this work are at the lower 

end o f  the ‘Low D ynam ic’ spectrum as illustrated by [4], The upper and lower range o f
• * ■ 1 3  1strain rates pertaining to this spectrum is in the range o f  1 0 s' and 1 0 s ' .

3.4 Summary of Chapter Three.

Chapter three gave a brief introduction into the various theoretical topics used to analyse 

the response o f various energy absorbers:

• Section one provided an account o f some o f the im portant topics within the finite 

element method such as the principle o f  virtual work, solution methods, material 

models and contact methods used in both ANSYS and LS-DYNA.

• Section two outlined the energy absorption characteristics used to describe the 

behaviour o f the various energy absorbers.
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•  A  description was given on a  m ethod that m ay be used to optimise the geometry o f 

a COPSS so as to achieve the m ost efficient response when such a device is 

compressed laterally.

• A  description was given on the energy balance equation used to determine whether 

any artificial energy was introduced into each the numerical m odels simulated with 

LS-DYNA as result o f  any possible numerical instability.

•  A n account was given on the Cowper-Symons relation used to predict the dynamic 

yield stress o f  a  given m aterial under im pact loading conditions.

•  Finally, an explanation was given on the effect o f  strain rate and its relevance to the 

systems analysed dynam ically in  this work.

A  Finite Element and Experimental Analysts o f  Energy A bsorbing Systems under Static and Dynamic Loading Conditions.
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4 Experimental Techniques and Material Characterisation.

A Finite Element and Experim ental Analysis of Energy Absorbing Systems under Static and Dynamic Loading Conditions.

4.1 Introduction.

The chapter is divided into three sections in which the first two sections give an account o f 

the quasi-static and dynamic experimental procedures taken to analyse the various 

specimens. The third section details the material characterisation o f the energy absorbers 

used in the work.

4.2 Quasi - Static Analysis: Experimental Set-Up.

4.2.1 Mechanical Features of the Instron 4204 Series.
The quasi-static testing o f the respective samples were carried out on the Instron Model 

4204 testing instrum ent which is used for measuring the mechanical properties o f  materials 

and structures. The m aximum capacity o f  the loading frame attached to the table mounted 

unit is 50KN. This loading frame consist o f  two vertical lead screws, a moving crosshead 

and an upper and lower bearing plate which bears the load o f the lead screws.

4.2.2 Load Cell Features.
A highly sensitive load cell is mounted in the moving crosshead o f  the loading frame and 

measures the com pressive or tensile loading force o f the specimen. The load cell consists 

o f  m ultiple strain gauges bonded by means o f  an etched foil to an elastic element which 

deforms slightly under an applied load. In doing so, the resistance o f  the foil changes in 

direct proportion to the deformation o f  the element. The gauges are connected as a 

W heatstone bridge and with the use o f appropriate amplification; the small unbalances 

w ithin this bridge are detected as a voltage. This voltage is then used to accurately 

determine the am ount o f  load applied to the specimen.

4.2.3 Data Acquisition System.
The control unit is based on a CPU which provides control o f crosshead, data acquisition 

and data readout from the loading frame. The results are displayed by the associated 

Instron 4204 series software. Various parameters such as loading, displacement, strain and 

energy can be calculated. Typically, all specimens were placed between the m ounting table 

and a custom built platen and loaded in compression. Figure 4-1 shows the Instron model 

4204 and a sample specim en in the machine.

4.2.4 Experimental Procedure.
To stimulate quasi-static conditions and to ensure no dynamic effect were present; a 

velocity between 3-10m m /m in was applied to the moving crosshead o f  the Instron machine 
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[4]. V elocities between 0.5mm/min and 15mm/min have been applied by various 

researchers [59, 60, 61, 66] in the quasi-static lateral com pression o f  tubes between various 

indenters.

A Finite Elem ent and Experimental Analysis o f Energy Absorbing Systems under Static and Dynamic Loading Conditions.

Figure 4-1: Instron  M achine and  a sam ple specim en. 

4.3 Dynamic Analysis: Experimental Set-up.

4.3.1 Mechanical Features of the Zwick Roell 5HV Series.
A K istler 9091 series piezoelectric force transducer was used to capture the load-time 

response o f  the impact events. This transducer has a large dynamic range and good 

frequency responses o f  160,000 samples/sec. M axim um load magnitudes o f up to 250KN 

are possible. The transducer is placed in the moving carriage and connected to the striker 

via a lock-unlock mechanism. The complete moving mass consisting o f  both the carriage 

m ass and striker mass is allowed to drop vertically within two vertical sliding guide rails 

from a m axim um  height o f  1.2 metres. A  photo gate arrangem ent consisting o f a photo 

diode w hich passes through a flagged gate was used to capture the initial velocity. The test 

sample is positioned in very close proxim ity to the gate so that the photo diode captures the 

velocity o f  the striker ju s t prior to impact. Figure 4-2 illustrates the Zwick Roell 5HV 

series used to conduct the impact testing o f  the various samples.

F igure 4-2: P hotographs displaying the Zw ick Roell 5HV series used to conduct the im pact
experim ents.
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4.3.2 High Speed Camera.
A high speed video recording system nam ely the M OTIONSCOPE PCI 8000 S series was 

used to capture the impact event. The cam era head is a 2 i/2 * 2 V2 * 4 inch enclosure which 

contains the CCD (Circuit Charged Device) sensor. Up to 8000 fps (frame per seconds) o f 

the impact event can be recorded. Video playbacks o f 8000 fps in forward and reverse 

directions are also possible with frame by fram e or freeze frame options available. The 

exposure o f each frame is reduced at the higher frame rates, so more light exposure is 

required as the frame rate increases. Therefore a specialised lighting system was employed 

to increase illumination upon the specimen. The video files are in M icrosoft avi (audio 

video interleaved) format by default how ever they can be converted to jpeg with 

resolutions o f up to 480*420 pixels.

4.3.3 Data Acquisition System.
The data acquisition system Rosand IFW  (Intelligent Free W heel) V 1.10 was used to 

capture the signals from the force transducer. The maximum sampling rate is 670,000 

samples/s and a total data point capture o f  4000. The software gathers the force 

measurements with respect to time, the frequency o f  which is dependent on sweep time and 

number o f  data points selected. I f  the signal filter is selected, then the data is shown with a 

filter applied but this can be applied or rem oved retrospectively as raw  data is always 

stored. The type o f  filter used is based on the second order Butterworth filter, implemented 

in the software as an IIR (infinite im pulse response), i.e. a recursive filter. Figure 4-3 and 

Figure 4-4 illustrate a typical display o f  results and the interface used within the Rosand 

IFW software.
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Figure 4-3: A typical display of results from the data acquisition system used in the dynamic testing.
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Figure 4-4: The in terface within the data acquisition system used to input the various param eters.

4.3.4 Experimental Procedure.
For the dynam ic analysis o f  the samples, a custom made fixture was designed and 

m anufactured to hold the samples relative to the impinging striker as shown in Figure 4-5. 

It should be noted that such a fixture will automatically prevent the full displacement 

stroke to be achieved; i.e., approximately 5mm o f a displacement stroke is lost. Table 4 and 

Table 5 in A ppendix Two. illustrates displays their corresponding initial velocity, final 

velocity, impact duration, displacement and energy absorbed for each sample. For the 

testing o f each sample, the impinging mass was kept at a constant value o f  34.7kg. This 

total mass consisted o f  both the striker and the carriage. The machine allows the user to 

select one o f  three param eters to set the striker in motion. These param eters consist of 

velocity, drop height and energy absorption. The latter option was used and hence the 

corresponding velocity and drop height were calculated by the machine software. The 

velocity time response o f  each sample was summed and averaged and is shown in Figure

4-6. The length o f  the energy absorbers varied from 10mm to 15mm, the latter value being 

the upper lim it due to the energy capacity restrictions o f  the machine. Prior to each test 

conducted on each sample, the drop height parameter was set to zero before specifying an 

energy absorption value. This was done by adjusting the striker such that it was just 

touching the tip o f  each sample. Once the energy absorption value was specified, the 

machine autom atically adjusted the striker to its appropriate height. For each sample tested,
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the data from the transducer was collected at a frequency of 1000Hz and a total of 100 data 

points were collected. The video recorder was mounted on a tripod and adjusted until a 

good viewing range was detected. In order to improve the quality of the video image, a 

black neutral material was placed behind the samples. In doing so, a clearer contrast of the 

sample image was achieved.

A Finite Element and Experimental Analysis o f  Energy A bsorbing System s under Static and Dynamic Loading Conditions.

Figure 4-5: The fixture used to hold the sam ples in place upon impact.
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Figure 4-6: The average s trik e r velocity fo r each o f the four various energy absorbers.
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4.4 Oblong Tube Specimen Preparation (OIPSS and OIPDS).

Initially two different methods were used to generate the oblong specimens. These 

consisted o f the com pression method using two rigid flat platens and the tension method 

which incorporated a custom  built fixture. It was decided to employ both methods to 

determine which one w ould provide the greatest plastically elongated oblong shape 

possible. In doing so, w hen the tubes were assembled together and put under actual 

loading, the greatest displacem ent stroke could be obtained and hence, its energy absorbing 

capacity would be maximised.

For the compression method, a displacement o f 40mm was applied to the larger 127mm 

O.D. tube. This was deem ed the maximum displacement that could be applied, since any 

further displacement m ay cause the non-circular tube to buckle inwards due to the 

formation o f four hinges at the quarter points o f each tube as shown in Figure 4-7 The 

possibility o f these tubes buckling inwards when used as an energy absorber is an 

undesirable feature, therefore an alternative method such as the application o f the tensile 

method was considered.

A Finite Element and Experimental Analysis o f Energy Absorbing Systems under Static and Dynamic Loading Conditions.

Figure 4-7: The final stages of displacem ent for each tube using the compression m ethod

For the tension method, a simple fixture as shown in Figure 4-8 was designed to apply a 

tensile force to the selected tube specimens. A tension displacement o f 50mm was applied 

to the larger 127mm O.D. tube and thereby giving a ratio o f  2.54, since the ratio is the O.D 

o f  tube divided by the tensile displacement length. This ratio was used to calculate the 

displacement that should be applied for the remaining 101.6mm O.D. and 76.2mm O.D. 

tubes. Using this tensile method, it was found that a greater displacement could be applied 

to the tubes w ithout the form ation o f  severe hinges at the two horizontal points o f  the tube 

Therefore this method offered a distinct advantage over the compression method in that the 

possibility o f the tubes buckling inwards could be greatly reduced or eliminated. Figure 4-9 

shows the force deflection response for each o f the different sized tubes using the tensile 

method.
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Figure 4-8: The fixture used to elongate the c ircu la r tubes into an oblong shape,

Experimental force-deflection response of the 3 different sized
tubes.
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Figure 4-9: Tensile force-deflection response of the th ree  individual tubes.

4.5 M aterial Properties Characterisation.

The tubes used in this work were made of mild steel which was cold finished, drawn over 

mandrel by the tube manufacturer according to DIN standards (DIN 2393 ST 37.2). The 

chemical composition of the material is illustrated in Table 6 in Appendix Two. Three dog 

bone samples for each of the three different sized tubes were analysed in order to ensure 

repeatable results as shown in Figure 4-10. The dog bone samples were machined from cut

out specimens obtained from the acquired tube stock. A sample specimen before and after 

testing is shown in Figure 4-11. The three tubes used in each energy absorber were of 

127mm O.D., 101.6mm O.D. and 76.2mm O.D. respectively with the thickness of each
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being 3.25mm. The true static stress-strain curve was obtained using a tensile test adhering 

to ASTM  standards and is displayed in Figure 4-12. Each o f the samples exhibited a high 

value o f  elastic modulus o f  325GPa; therefore, it was decided to obtain the yield stress 

based on an elastic modulus o f  200GPa which is more representative o f mild steel. In doing 

so, the yield stress o f  470M Pa was carefully obtained from the experimental stress-strain 

curve as shown in Figure 4-13.Since the tubes were cold worked by the tube manufacturer, 

the true stress - strain curves obtained from the samples exhibited a deformation 

characteristic in which necking occurred immediately after yielding followed by a 

geometrical softening stage. This is to be expected since the cold rolling process, in 

addition to increasing the yield strength, decreases the ductility due to the concentrated 

dislocations in the material. Such behaviour is termed tension instability and hence 

Considère’s criterion can be em ployed to determine the initial plastic stiffness o f  the 

material. This criterion states thatcr = c/cx / d e , implying that the initial plastic modulus 

must be less than or equal to the yield stress. Therefore, it was decided to approximate the 

material property o f the three tubes using a bilinear stress-strain curve. In doing so, the 

yield stress o f  470M Pa was carefully obtained from the experimental true stress-strain 

curve and according to Considère’s criterion; the initial plastic modulus was assigned the 

same value o f  470MPa. The yield stress is validated according to DIN standards which 

state the yield stress o f  this material to be w ithin the range o f 450 M Pa to 525MPa.

Tensile Force-Deflection Response for 9 samples
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Figure 4-10: The tensile stress-stra in  curve for nine dog bone specimens.
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Figure 4-11: A sample tensile specimen before and a fte r tensile loading.
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Figure 4-12: An engineering and tru e  Stress-strain curve for sam ple one.

Stress-Strain fora  Tensile Specim en Sam ple 1.
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Figure 4-13: A detailed stress-strain plot of sample one
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4.6 Summary of Chapter Four.

• A detailed account was given on the experimental procedure undertaken to 

compress the selected samples under quasi-static conditions. Also, a description of 

the load cell and the data acquisition used to capture the force magnitude and 

displacement was outlined.

• A description was given on the procedure used to conduct the physical testing of 

the selected samples under impact loading. An account was also given on the 

features of the high speed camera used to capture the displacement evolution of the 

various energy absorbers.

• A detailed account was given on the shaping process employed to convert the 

circular shaped tubes into oblong shapes.

• Finally, the experimental procedure used to obtain true tensile stress-strain curve 

from the mild steel dog bone specimens in order to characterise the material 

behaviour was detailed.

A Finite Element and Experimental Analysis o f Energy Absorbing Systems under Static and Dynamic Loading Conditions.
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5 Response Optimisation of Nested Systems. 

5.1 Introduction.

This chapter details the experimental analysis of various nested systems subjected to lateral 

quasi-static and dynamic loading. It is divided into three sections with section 5.2 and 5.3 

analysing the quasi-static response of In Plane systems (IPS) and Out of Plane systems 

(OPS). Section 5.4 details the quasi-static response of In Plane Standard Systems (IPSS) 

and In Plane Damped Systems (IPDS). The aim of these sections is to analyse the response 

of each energy absorber and to interpret which design demonstrated the most desirable 

response, i.e., a rectangular shaped force-deflection curve. Finally section 5.5 analyses the 

dynamic response of the energy absorbers detailed in section 5.2.

5.2 Analysis of the Circular In-Plane Standard System (CIPSS).

Figure 5-2 shows the response of a basic nested energy absorber, i.e., CIPSS (Circular In- 

Plane Standard System) compressed under quasi-static conditions. Three specimens were 

tested to represent this type of absorber. As can be seen, results for each sample were 

identical indicating that three samples to capture the response of this system were 

sufficient. For this system there was an initial gap of approximately 17mm and 19mm 

between the tubes before crushing was initiated. These two gaps allowed all three 

components to deform sequentially as loading proceeded, hence the reason for the non

monotonic rise in force throughout the deformation stroke as illustrated by point A in 

Figure 5-2. Also illustrated in this figure are the stages at which each tube began to 

collapse in series (point B) and how the whole system strain hardened after approximately 

41mm deflection. It can be seen that the energy response, which is the area under the force- 

deflection curve, became linear from this stage of deflection for the remainder of the 

displacement stroke. The initial and final stages of deformation for this CIPSS are 

illustrated in Figure 5-1.

A Finite Element and Experimental Analysis o f Energy Absorbing Systems under Static and Dynamic Loading Conditions.
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Figure 5-1: Initial and final stages of compression for a C IPSS.
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Figure 5-2: A  typical force- and energy-deflection response for a C IPSS.
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5.3.1 A COPSS Crushed under a Plate Indenter.
Figure 5-3 show the force- and energy- deflection response o f  a  COPSS (Circular Out of 

Plane Standard System) with the initial and final stages o f  com pression depicted in Figure 

5-4. N ote how the central tube was rotated 90 degrees relative to both the outer and inner 

tube. One important point to note is the difference in the mode o f  deformation between a 

CIPSS and a COPSS. This can be described as follows: For the CIPSS as explained 

previously in section 5.2, there was an initial gap o f  approxim ately 17mm and 19mm 

between the tubes before crushing was initiated. This resulted in a non-monotonic force- 

deflection response due to the rise in force as contact was established between each 

successive tube.

For the COPSS however, since there is a 90-degree orientation between the three tubes, the 

initial gaps have been reduced to approx 3mm and 5mm respectively. Therefore as a 

consequence the three tubes will begin to deform synchronously once initial contact has
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been established giving rise to a  m uch sm oother response, i.e., a monotonically increasing 

response, as illustrated in Figure 5-3. There was a sharp increase in force at approximately 

110m m  deflection; this was due to the energy absorber been overloaded since vertical 

hinge points o f  the inner tube began to obstruct each other. This can be avoided by 

applying a smaller displacement stroke.

A Finite Clement and Experimental Analysis o f  Energy Absorbing Systems under Static and Dynamic Loading Conditions.

Crush Force and Specific Energy versus Displacement
30000 1200

Displacement [mm]

Figure 5-3: Force and specific energy response of a COPSS crushed under a flat platen.

F igure 5-4: Initial and final stages o f deflection for a COPSS crushed under a rigid flat platen.

5.3.2 A COPSS Crushed under a Point Load Indenter.
The result for the com pression o f  a  COPSS crushed with a longitudinal line load indenter is 

shown in Figure 5-5. For convenience purposes, the longitudinal line load indenter will be 

referred to as a point load indenter throughout the work. This shows the corresponding 

force and energy absorption response for this system. It can be seen how compared to 

Figure 5-3, in the final stages o f  deflection, at approximately 100mm, a slight softening
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stage occurred. This type of softening behaviour was discovered and analysed by Reid and 

Bell [49] on a single tube with concentrated point loads. The slight softening was due to the 

moment arm about the hinge point from the point load of application increasing, therefore 

resulting in less force required to maintain the deformation. The initial and final stages of 

compression are depicted in Figure 5-6 for this energy absorber.

25000

A Finite Elem ent and Experimental Analysis o f Energy Absorbing Systems under Static and Dynamic Loading Conditions.
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Figure 5-5: Force and specific energy response of a COPSS crushed u n d er a po in t load

F igure 5-6: In itial and  final stages of deflection for a COPSS crushed under a point load indenter.
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5.3.3 A COPSS Crushed under a Cylindrical Indenter.
Figure 5-7 show the experimental results for the compression of COPSS crushed with a 

cylindrical indenter. This type of load application can be seen as an intermediate between 

the limiting cases o f a flat plate and point load-indenter already illustrated by Shim et al 

[52]. As can be seen from this figure, the mode of deformation is quite similar to the 

system compressed with a point load indenter with the exception that the magnitude of
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force is greater. The initial and final stages of compression for this absorber are shown in 

Figure 5-9. A 4% increase in the specific energy absorbed was observed in contrast to the 

previous system (Figure 5-5). An experimental force-deflection graph of all three systems 

is shown in Figure 5-8. Notice how the magnitude of force increased when progressing 

from a point- load indenter to rigid flat platens.

A Finite Element and Experimental Analysis o f Energy Absorbing System s under Static and Dynamic Loading Conditions.
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Figure 5-7: Force and specific energy response o f  a COPSS crushed under a cylindrical indenter.
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Experimental force-deflection response from the three various 
30000 indenters.

Displacement [mm]

Figure 5-8: G lobal com parison  o f the th ree COPSS crushed under the various indenters.

F igure 5-9: Initial and final stages o f deflection for a COPSS crushed under a cylindrical indenter.

5.3.4 A SCIPSS Crushed under a Plate Indenter.
Figure 5-10 represents the experimental response of a SCIPSS (Slotted Circular In-Plane 

Standard System) subjected to a lateral crushing force. The initial and final displacement 

plots obtained from both methods are depicted in Figure 5-11. Normally, in the lateral 

compression of a single tube, as the load increases beyond the collapse load, the zone over 

which plastic deformation occurs expands rapidly. This causes the moment arm to reduce, 

resulting in rapid increase in force and is termed geometric strain hardening as illustrated 

by Reid and Reddy [58]. It is ideal in the design of energy dissipating devices to remove
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this strain hardening phenomenon which occurs as shown in Figure 5-2. Therefore the aim 

of these slots in this particular energy absorber was to remove this hardening behaviour. 

The slots were 8mm deep of length 20mm with a total of eight slots per tube. Each slot was 

machined and positioned at an angle of 45degrees as shown in Figure 5-11. By examining 

sample one and two obtained from experiments in Figure 5-10, it can be seen that the 

machined slots had the effect of reducing this rate of strain hardening to a certain degree. 

This was due to the fact that the plastic hinges (collapse points) which normally take place 

at the quadrant points of each tube, occurred in the vicinity of each slot present in each tube 

in the early stages of deformation. As a consequence, due to less material available in 

between the slots, only a smaller magnitude of force was required to maintain the 

deformation. However, as deformation proceeded beyond this point, there was an increase 

in force at approximately 82mm; this was due to the plastic hinge moving away from the 

slotted regions and relocating at the horizontal points of each tube as shown in Figure 5-11. 

Sample one exhibited a total energy absorption of 1713Nm and sample two a value of 

1700Nm.

Quasi-static Force and Energy response.
30000 2500

A Finite Element and Experimental Analysis o f Energy Absorbing System s under Static and Dynamic Loading Conditions.
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Figure 5-10: A force- and energy- deflection response fo r a SCIPSS
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Figure 5-11: Initial and  final displacem ent o f a SCIPSS crushed under a rigid platen. [Sample 1]

5.3.5 A SCOPSS Crushed under a Plate Indenter.
Figure 5-12 depicts the experimental response of a Slotted Circular Out of-Plane Standard 

System (SCOPSS) with the initial and final stages of displacement as illustrated in Figure 

5-13. This system is similar to the COPSS analysed in section 5.3.3 but with the addition of 

eight slots machine into each tube. For up to approximately 60mm deflection, the force 

response is very similar to the COPSS as shown in Figure 5-5. However, it appears that 

once the collapse load was reached, i.e., at 57mm deflection for sample 1 and 65mm 

deflection for samples two and three, the response showed an erratic behaviour, exhibiting 

an unstable response in that the samples displayed a drop in force for a period of time 

before increasing again for the remaining displacement stroke. The presence of the slots 

did not produce any positive effect in reducing the strain hardening effect; instead, each 

tube collapsed synchronously resulting in a rapid drop in force from approximately 57mm 

to 65mm deflection. Also, from close examination of Figure 5-13, it can be seen that the 

inner tube did not remain symmetric during the displacement stroke, indicating the 

sensitivity of this system to lateral crushing. This behaviour can be a contributing factor for 

the observed behaviour in this particular system.
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Figure 5-12: A force-and energy-deflection response o f a SCOPSS.
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Figure 5-13: In itial and final stages of deflection for a SCOPSS. [Sample 1]

5.3.6 A SCIPDS rushed under a Plate Indenter.
The experimental response of a Slotted Circular In Plane Damped System (SCIPDS) 

represented by two samples is depicted in Figure 5-14. The photographic evolution 

displacements of both samples are shown in Figure 5-15 and Figure 5-16 respectively. In
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an attempt to obtain a rectangular force-deflection response, two cylindrical spacers were 

inserted in between the successive tube as illustrated by two figures. From this, it can be 

clearly seen that once the flat rigid platen impinges on this absorber, the three tube 

components will begin to deform synchronously and collapse at the same time as shown by 

pointer A in Figure 5-14. In addition to this, the presence of the eight slots in each tube 

caused the plastic hinges to occur in the vicinity of the slots in the early stages of 

deformation. An approximate rectangular force-deflection or a monotonically increasing 

response was achieved for a deflection of up to approximately 45mm for both samples. 

However, from therein, sample one appeared to behave inconsistently in that the force 

increased, which was due to the fact that the plastic hinges travelled from the vicinity of the 

slots to the quadrant points of each tube as shown in the last photograph in Figure 5-15. 

Sample two experienced a drop in force; this was due to the asymmetric deformation 

behaviour as illustrated in Figure 5-16, which resulted in an unstable response. It can be 

seen that this particular energy absorber was sensitive to lateral deformation due to the 

presence of the slots in each tube. Sample one exhibits an energy absorption value of 

1530Nm and sample two a value of 1334Nm.

A Finite Element and Experimental Analysis o f  Energy A bsorbing Systems under Static and Dynamic Loading Conditions.
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3Q000 Quasi-static force and energy response. 30Q0

Figure 5-14: A force- energy- deflection response for a SCIPDS.
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Figure 5-15: Initial and final displacement of a SCIPDS. [Sample 1]
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Figure 5-16: In itial and final stages o f d isplacem ent fo r a SCIPDS. [Sample 2] 

5.4 Quasi-Static Analysis o f the CIPDS, OIPSS and the OIPDS.

5.4.1 Evaluation o f the CIPDS.
The force- and energy-deflection response for a CIPDS (Circular In-Plane Damped 

System) is shown in Figure 5-17 with the initial and final stages of displacement for the 

three samples in Figure 5-18, Figure 5-19 and Figure 5-20 respectively. Upon examination 

of these displacement evolution photographs, two cylindrical spacers were inserted 

between the gaps of the three tubes. These spacers served two purposes; firstly, to 

eliminate the non-monotonic increase in force as contact was establish between tubes as 

deformation proceeded and secondly, to reduce the rate of strain hardening due to the 

radius of curvature of the spacers. Shim et al [52] analysed the lateral crushing of thin 

walled tubes using cylindrical indenters and side constraints. A complete range of indenter 

radii have been used varying from infinite radius of curvature (flat rigid platens) to zero 

radius of curvature (point load indenters) to crush these thin walled tubes and to examine 

their responses. It was discovered that, depending on the radius of curvature of the 

indenters, the post collapse behaviour of laterally compressed tubes can be either stable 

(deformation- hardening/monotonically increasing) or unstable (deformation- 

softening/monotonically decreasing). Therefore in this work, the radius of curvature of the 

spacers inserted between the three tubes can be seen as an intermediate between the 

limiting cases of a flat plate and point load-indenter resulting in a force-deflection response
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that is approximately rectangular in shape as shown in Figure 5-17. Upon observation of 

this figure, there was a slight rise in force at approximately 60mm displacement for the 

three samples; this was due to the ‘bottoming out’ of each sample. This can be avoided by 

simple applying a slightly shorter displacement stroke. As a result of obtaining this 

rectangular shaped response, the corresponding energy absorption was quite linear for the 

entire deflection stroke. Note that for sample 1 (See Figure 5-18), how the deformation 

process was non-symmetric. This was due to the sensitivity of geometric imperfections 

within the structure. Such imperfections may be a function of how accurate the tubes and 

spacers were placed centrally with respect to one another. As deformation proceeds, the 

spacers shifted in the direction of least resistance which resulted in an asymmetric mode of 

deformation.

In an attempt to counteract this problem, a mild steel dowel was placed into the structure 

connecting the upper halves of the tubes and the two spacers. A spot weld was used to fuse 

both ends of the dowel to the structure in order to determine whether this would assist in 

maintaining symmetry; it can be seen that this was achieved as depicted in Figure 5-19 and 

Figure 5-20. Despite the asymmetric behaviour of sample one during lateral deformation, it 

appears that its corresponding force-deflection result still exhibited the desired rectangular 

shaped response.

A Finite Element anil Experimental Analysis o f  Energy Absorbing Systems under Static and Dynamic Loading Conditions.
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Figure 5-17: A typical force-and energy-deflection response for a CIPDS.

Edmund Morris B.Eng (Hons) 77



Response Optimisation of Nested Systems.

A Finite Element and Experimental Analysis o f  Energy Absorbing Systems under Static and Dynamic Loading Conditions.

Figure 5-18: Initial and final stages of compression for a CIPD S. [Sample 11

Figure 5-19: Initial and final stages o f compression for a CIPD S. [Sample 2|

Figure 5-20: Initial and final stages of compression for a CIPD S. [Sample 3]

5.4.2 Evaluation of the OIPSS [Tension method].
The response o f an OIPSS (Oblong In-Plane Standard System) represented by three 

samples using the tension method is depicted in Figure 5-21 followed by the various stages 

o f  deform ation o f a typical sample as shown in Figure 5-22. For this system, the initial 

gaps betw een the three tubes have increased from 17mm and 19mm to 28mm and 56mm 

respectively due to the tension method used to create the oblong tubes as outlined in 

section 4.4. An increase in the displacement stroke was possible since the tubes have been 

elongated in the vertical direction. Therefore, it can be seen that the specific energy 

absorption for this category o f  system will increase due the available increase in 

displacem ent stroke. Point A in Figure 5-21 shows that there w as a slight softening stage 

which occurred in each tube, this was due to the geometrical changes which have occurred 

as a result o f  using the tension method. Since the tubes have been plastically elongated in 

the vertical direction, the radius o f curvature has increased on both the top and bottom 

vertical hinge points o f  each tube. Therefore the contact between the rigid platen and the 

outer tube can be approximated as a ‘point’ load application as demonstrated by Shim and 

Stronge [92]. This creates a greater mom ent arm from the point o f  load application to the
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horizontal hinge points of each tube and as a result less force is required to maintain the 

deformation and hence a geometrical - softening stage occurs. However, this softening is 

counteracted by two other strain - hardening phenomena. Firstly, upon initial contact, only 

one line of contact was established between the inner tube and the central tube, however as 

deformation proceeded, this contact line had split in two and moving away from the 

centreline, causing the moment arm about the horizontal hinge points to reduce. Therefore, 

as a consequence, a greater force was required to maintain the deformation. This is termed 

geometrical - hardening as illustrated by Reddy and Reid [58]. This description can be seen 

in the final stage of deformation as depicted by point B in Figure 5-21. Secondly and more 

importantly, the existence of the material strain hardening characteristic occurring in all 

three tubes will add significantly to the final strain hardening response of the structure.

A Finite Elem ent and Experimental Analysis o f Energy A bsorbing Systems under Static and Dynamic I.oading Conditions.
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Figure 5-21: A typical force, energy-deflection response for an OIPSS. [Tension method]
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Figure 5-22: Initial and final stages of compression for an OIPSS. [Tension method.)
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5.4.3 Evaluation of the OIPSS [Compression method].
The force- and energy-deflection response o f  a similar OIPSS represented by three samples 

using the com pression method is depicted in Figure 5-23. As shown by point A, the rate of 

strain softening was less than that using the tension method since only a total compression 

displacement o f  120mm was possible as opposed to 140mm using the tension method. This 

resulted in the radius o f  curvature been less than that using the tension method and hence 

the corresponding m om ent arm was smaller from the point load o f  application to the 

horizontal hinge points. Therefore a greater magnitude o f force was required to maintain 

the deformation. Point B in the same figure illustrates the material strain hardening that 

occurred in the three tubes which lead to a greater overall force required to compress the 

system. Figure 5-24 demonstrates the various stages o f  compression o f  a typical sample for 

this OIPSS.
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Figure 5-23: A typical force- and energy-deflection response for an OIPSS. [Com pression method]

F igure 5-24: In itial and  final stages of compression for an OIPSS. [Com pression method]
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5.4.4 Evaluation of the OIPDS [Tension Method).
Since the tension method allowed a greater displacem ent stroke possible without the 

possibility o f each tube buckling inward during com pression, it was decided to employ this 

method as a means o f  forming the oblong shaped tubes. Accordingly, the force and energy 

response o f  an OIPDS (Oblong In-Plane Dam ped System) using this tension method is 

shown in Figure 5-26 along with the various stages o f  deformation in Figure 5-27. As 

previously mentioned, a steel dowel was placed into this system connecting the upper 

halves o f the tubes and the two cylindrical spacers. Since this dowel successfully 

maintained reasonable symmetry during the entire deformation stroke for the CIPDS, it 

was anticipated that a similar outcome would be achieved for this OIPDS. However, upon 

observation o f  Figure 5-27, it can be seen that sym m etry was not achieved. Instead, the 

spacers had a tendency to shift in the direction which offered the least resistance. It appears 

that the response is more sensitive to geom etrical imperfections compared to its CIPDS 

counterpart. A possible reason for this increased sensitivity may be due to the fact that 

there was a greater likelihood o f each tube deform ing in an asymmetric manner due to the 

increased displacement stroke that must be undergone by the system. Also, due to the 

oblong shape o f  the tubes and the assemblage o f  the spacers with a steel dowel, it was 

difficult to achieve perfect symmetry during m anufacture before any loading was applied. 

This can be regarded as a contributing factor in the observed behaviour o f  the system. In an 

attempt to rectify the situation, the third sample was spot welded at various locations as 

shown in Figure 5-25 to determine whether this may counteract the asymmetric 

deformation. This approach was unsuccessful and resulted in an undesirable increased 

stiffness during com pression as depicted by sample 3 in Figure 5-26. Note that a softening 

stage has also occurred for this system as described previously for the OIPSS. Finally, this 

geometrical - softening behaviour was counteracted by the materials strain-hardening 

response as large deflections ensue as illustrated by pointer B. Despite the asymmetric 

behaviour o f the three samples, the desired rectangular response as depicted by tests one 

and two is still maintained.

A Finite Clement and Experimental Analysis o f Energy A bsorbing System s under Static and Dynamic Loading Conditions.

Figure 5-25:

Edmund Morris B.Eng

The initial and final stages o f com pression fo r an OIPDS with spot welds, [test 3]
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Figure 5-26: A typical force- and  energy- deflection response for an OIPDS. [Tension m ethod|

Figure 5-27: Initial and  final stages of compression for an OIPDS. [Tension m ethod|

5.4.5 Global Comparison of the In-Plane Standard Systems.
Figure 5-28 illustrates the comparison of the force-deflection response between the circular 

(CIPSS) in conjunction with the oblong tube absorbers (OIPSS) created using both the 

compression and tension methods. It can be seen how the various methods affect the 

hardening response of the absorbers. For example, when a greater plastic preload was 

applied to each tube in the preparation stages, the rate of strain hardening is reduced for 

each absorber compressed under between the rigid flat platens.
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800 Experimental results. Comparison of 3 O IP S S  and a C IPSS.

Displacement [mm]

Figure 5-28: E xperim ental com parison of the C IPSS and  the th ree  OIPSS.

5.4.6 Energy Absorption Characteristics.
Upon exam ination o f the response characteristics in Figure 5-29, it can be seen that both 

the CIPSS and the OIPSS exhibited the highest crush efficiencies followed by the CIPDS 

and the OIPDS. The latter two systems exhibit lower crush efficiency for the reason that 

the spacers inserted between the tubes reduced and com prom ised the overall displacement 

stroke. This is due to the fact that such components were solid cylindrical bodies and 

therefore will serve to act as rigid entities. In terms o f energy efficiency, both the CIPDS 

and the OIPDS demonstrated the highest values o f 46% and 47%  respectively, where as the 

CIPSS and OIPSS showed values o f 36% and 43% respectively (See section 3.3.1 for a 

description o f the various characteristics). Figure 5-29 also illustrates the weight 

effectiveness o f the four energy absorbers, where the OIPSS shows the greatest 

effectiveness followed by the CIPSS, OIPDS and the CIPDS respectively.
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Com parison of the characteristics re sponse s of the various energy

absorbers.
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□ Crush efficiency
□ Energy efficiency
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CIPSS CIPDS OIPSS OIPDS

4 different energy absorbers

Figure 5-29: Column ch art displaying the various perform ance characteristics of each absorber.

5.5 Dynamic Analysis of the IPSS and IPDS Energy Absorbers.

5.5.1 Evaluation of the CIPSS.
Figure 5-30 shows the response o f  a CIPSS (Circular In-Plane Standard System) 

compressed under dynamic loading conditions. Five specimens were tested to represent 

this category o f absorber. As illustrated in this figure, the response from each sample was 

reasonably consistent. For this system there was an initial gap o f approximately 17mm 

between the outer and central tube and 19mm between the central and inner tubes. These 

two gaps allowed all three com ponents to deform sequentially as loading proceeds, hence 

the reason for the non-monotonic increase in force throughout the deformation stroke. 

Figure 5-31 depicts sample five in its filtered and unfiltered state, the former which was 

used for comparison purposes against numerical results at a later stage in this work. Since 

the force-time response was consistent, it can be seen that the input velocity applied to each 

sample (Figure 5-32) was also consistent indicating that the striker was raised to its correct 

height for each test. Upon exam ination o f  Figure 5-33, there was an increase in the rate o f 

energy absorption as each tube was com pressed in succession, reaching a final value o f 

approxim ately 225J. The digital photographs (Figure 5-34) display the evolution o f this 

energy absorber as recorded by the high speed video recorder with each image displaying 

the time o f contact in milliseconds.
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F o rc e -T im e . C IP S S

Time [s]

Figure 5-30: Dynam ic force-tim e response of a CIPSS represented by five sam ples.

Filtered - Unfiltered data. SP  5
6000

Time [s]

Figure 5-31: Sample five of a CIPSS in its filtered and unfiltered state.
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Figure 5-32: D isplacem ent-tim e response of a CIPSS.
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Figure 5-33: Energy-time response of a CIPSS.
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F ram e 1: Oms. Fram e 10: 3ms.

F ram e 14: 7ms. Fram e 34: 19ms.
Figure 5-34: Dynamic displacem ent evolution of a CIPSS.

5.5.2 Evaluation of the CIPDS.
The experimental force-time output response of a CIPDS (Circular In Plane Damped 

System) is shown in Figure 5-35. In an attempt to achieve a smoother force-deflection 

response than that exhibited by a CIPSS (Figure 5-30), two cylindrical spacers were 

inserted in between the tubes as illustrated in Figure 5-39. From this, it can be clearly seen 

that once the moving mass impinges on this absorber, the three tube components will 

proceed to deform synchronously. It should be noted that in order for the spacers to remain 

in position during the displacement stroke and to maintain symmetry, a mild steel dowel 

was placed through the upper portions of the tubes and the two spacers. This approach was 

also employed for the quasi-static testing of a CIPDS. The placement of the cylindrical 

spacers inserted between the gaps of the tubes serves the same two purposes as outlined in 

section 5.4.1. It can be seen that the radius of curvature of the spacers inserted between the 

three tubes played a primary role in obtaining a force-deflection response that was 

approximately rectangular in shape as shown in Figure 5-35 or Figure 5-36. Examining the
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displacement-time response of this system (see Figure 5-37), samples six and sample seven 

show final displacements of approximately 45 mm each, whilst the remaining samples 

exhibited higher values. This was due to the unfamiliarity with the amount of energy that 

could be absorbed for the initial samples number six and seven. Consequently, the energy 

input was increased for the remaining samples in order to achieve full displacement stroke 

before ‘bottoming out’ occurred. The energy time curve (see Figure 5-38) exhibits a more 

linear response than that of a CIPSS but with a slight decrease in energy absorption in the 

later stages of the impact event. Figure 5-39 shows the evolution of sample eight with the 

inclusion of the cylindrical spacers.

A Finite Element and Experimental Analysis o f  Energy A bsorbing System s under Static and Dynamic Loading Conditions.

Force - Time. C IP D S
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Figure 5-35: Dynam ic force-time response o f a CIPD S represented  by six samples.
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Filtered - Unfiltered data. SP  8

7000

Time [s]

Figure 5-36: Sam ple eight of a CIPD S in its filtered and  unfiltered state.

Displacement - Time. C IPDS
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Figure 5-37: Displacement-time response of a CIPDS.
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Figure 5-38: Energy-tim e response of a CIPDS.

Fram e 1: 0ms. Fram e 10: 3ms.

Fram e 14: 7ms. Fram e 29: 19ms.
Figure 5-39: Dynamic displacem ent evolution of an CIPDS.
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5.5.3 Evaluation of the OIPSS.
The experimental force-time response of an OIPSS (Oblong In-Plane Standard System) 

represented by three samples is shown in Figure 5-40. For this system, the initial gaps 

between the three tubes have increased from 17mm and 19mm to 28mm and 56mm 

respectively due to the tension method used to create the oblong tubes. An increase in the 

displacement stroke was possible since the tubes have been elongated in the vertical 

direction. Therefore, it can be seen that the specific energy absorption of this kind of 

system will increase due the available increase in displacement stroke as observed from the 

quasi-static counterparts. Examining sample one from Figure 5-41 it can be seen how the 

force increased abruptly as each successive tube established contact. Once this rise in force 

reached its peak (the collapse load of each tube has been reached), there existed a reduction 

in force or a softening stage. This behaviour was also observed in the quasi-static cases of 

this particular system and an explanation was given in section 5.4.2. Figure 5-42 illustrates 

the energy - time response for such a system. It is clear how the curve can be approximated 

by three separate stages, each one representing the energy absorption of the outer, central 

and inner tubes respectively. Note how only partial displacement was achieved (see Figure

5-44) with this particular system. This was due to the maximum energy capacity that can 

be exerted by the impact tester. Therefore, it can be assumed that an extra displacement of 

40mm would be achieved using a larger capacity machine.

Force - Time. O IPSS
7000

0 0.005 0.01 0.015 0.02

Time [s]
Figure 5-40: Dynamic force-time response of an OIPSS represented by three samples.
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Filtered - Unfiltered data. SP  1

0 0.005 0.01 0.015 0.02
Tim e [s]

F igure 5-41: Sam ple one o f an OIPSS in its filtered and unfiltered state.

Displacement - Time. O IPSS

90

Time [s]

Figure 5-42: Energy-time response of an OIPSS.

Edmund Morris 13. Eng (Hons) 92



En
er

gy
 

[J
]

Response Optimisation o f  Nested Systems.

A Finite Element and Experimental Analysis o f  Energy Absorbing System s under Static and Dynamic Loading Conditions.

Energy - Time. O IP SS
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Figure 5-43: Displacem ent-tim e response o f an OIPSS.

Fram e 19: 12ms. F ram e 29: 19ms
Figure 5-44: Dynamic displacem ent evolution o f an OIPSS.

F ram e 1: 0ms. F ram e 12: 5ms.
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5.5.4 Evaluation of the OIPDS.
The output force-time response o f an OIPDS (Oblong In-Plane Damped System) is shown 

in Figure 5-45. In an attempt to achieve a monotonic or rectangular force-deflection 

response than that exhibited by an OIPSS (Figure 5-40), two cylindrical spacers were used 

and inserted between the tubes as illustrated in Figure 5-49. This approach was also 

employed as in the quasi-static cases for this system. Upon observation o f sample nine in 

Figure 5-46, it can be seen that symmetry was not achieved. Instead the spacers had a 

tendency to shift in the direction which offered the least resistance. It appears that the 

response is more sensitive to geometrical imperfections compared to its circular 

counterpart as noted in section 5.4.1. A  possible reason for this increased sensitivity may 

be due to the fact that there is a greater chance o f each tube deforming in an asymmetric 

manner due to the increased displacem ent stroke that must be undergone by the system. 

Also, due to the oblong shape o f the tubes and the assemblage o f  the spacers with a steel 

dowel, it was difficult to achieve perfect symmetry before any loading was applied. This 

can also be regarded as a contributing factor in the observed behaviour o f the system. The 

geometric softening behaviour o f this system (see Figure 5-46) can also be explained using 

the concept o f mom ent arms as previously described for the OIPSS section 5.4.2. Despite 

this mode o f  deformation behaviour, the rectangular shape force-deflection response was 

still maintained as noted in the quasi-static cases for this system.

Force - Time. O IPDS

9 0 0 0

8 0 0 0  j

7 0 0 0  i

6 0 0 0

E . 5 0 0 0  
a>
§  4 0 0 0  
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3 0 0 0  |
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0
0 0 .0 0 5  0.01 0 .0 1 5  0 .0 2

Time [s]

Figure 5-45: Dynamic force-tim e response of an OIPDS represented by seven samples.
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Figure 5-46: Sam ple nine of an O IPDS in its filtered and unfiltered state. 
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Figure 5-47: Displacement-time response of an OIPDS.
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Figure 5-49: Dynamic displacem ent evolution of an OIPDS.
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5.6 Global Comparison of the Various Systems Analysed.

Figure 5-50 illustrates the global com parison o f the different forms o f the CIPSS 

com pressed quasi-statically. It can be seen how  the COPSS compressed under the three 

different indenters display similar modes o f deformation in that the response is 

monotonically increasing. The SCIPDS represented by sample one and two display amore 

desirable response in that a rectangular mode o f deformation is possible as shown in the 

early stages o f  deformation. Finally the SCIPSS compressed under a plate indenter 

illustrates a non-monotomc increase in force due to the absence o f  the cylindrical spacers. 

However, in the later stages o f deformation the effect hardening is removed due to the 

presence o f  the slots.

Figure 5-51 offers a global comparison o f the CIPSS and the CIPDS which were 

com pressed quasi-statically and dynamically. For the CIPSS, it can be seen that there are 

variations in force m agnitude for the quasi-static and dynamic cases. Also for this system, 

contact establishm ent between each tube occurs at different sages throughout the 

displacem ent stroke. It is not exactly know  why this behaviour occurs but it should be 

noted that it is difficult to provide a direct comparison between the quasi-static and 

dynamic cases for the reason that an oscillation in force occurs from the time the striker 

hits the outer tubes and when this tube contacts the central tube. For the CIPDS, the force 

magnitude remains the same for the both the quasi-static and dynamic cases. Notice how 

the effect o f  introducing the cylindrical spacers for the CIPDS cause the force-deflection 

response to change significantly, resulting in a rectangular mode o f  deformation.

Finally Figure 5-52 illustrates the quasi-static and dynamic response o f both the OIPSS and 

the OIPDS. Again it can be seen how contact establishment for the OIPSS occurs at 

different stages o f  the displacement stroke. For the OIPDS it can be seen the collapse load 

is the same for both the quasi-static and dynamic testing as noted above for the CIPDS. It 

should be noted that for both the dynamic cases o f various systems analysed that the 

displacement stroke is smaller. This is due to the fact that the energy capacity o f the 

ZW ICK ROELL machine was not large enough to compress the systems to its full 

displacem ent stroke.

A Finite Element and Experimental Analysis o f  Energy Absorbing Systems under Static and Dynamic Loading Conditions.
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Figure 5-50: A global com parison of the force-deflection response for the various forms of the CIPSS.
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Figure 5-52: A global com parison of the force-deflection of the OIPSS and the OIPDS [Quasi-
Static and Dynamic cases].
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5.7 Summary of Chapter Five.

• Chapter five detailed an experimental investigation of In-Plane Systems and Out of- 

Plane Systems compressed laterally under quasi-static and dynamic loading 

conditions. An investigation was also made in relation to the slotted tube systems.

• In section 5.2, a detailed description was given on the lateral compression of C1PSS 

which is an energy absorber in its most basic form. This was to allow an 

understanding of the behaviour of subsequent modified systems analysed later in 

the chapter.

• A COPSS compressed under three different types of indenter was analysed in order 

to study the influence of indenter shape on the force-deflection response of the 

aforementioned energy absorbers.

• Three different slotted tube energy absorbers were also analysed with attention 

given to the behaviour of the slots and its effect on achieving a monotonic or 

rectangular force-deflection response.

• Section 5.4 detailed the response of three different absorbers, namely the CIPDS, 

OIPSS and the OIPDS under quasi-static lateral compression.

• Energy absorption characteristics as described in section 3.3.1 were applied to each 

absorber to describe their behaviour and to determine which system exhibited 

favourable responses based on their characteristics.

• Section 5.5 gave an account of the dynamic response of the nested systems 

analysed in section 5.4. Particular attention was given on the response of the 

optimised designs, namely the CIPDS and OIPDS, to examine how they responded 

dynamically and to determine whether they retained their rectangular shaped 

response as exhibited by their quasi-static counterparts.

• Finally, a global comparison of results between the various systems pertaining to 

section 5.3, 5.4 and 5.5 was illustrated in order to assist in the interpretation of 

results.
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6 Specific Energy M aximization o f Nested Systems.

6.1 Introduction.

The chapter is divided into three sections which detail the experimental analysis of a 

CIPSS (Circular In Plane Standard System) compressed under three different devices such 

as the rigid flat platen, cylindrical and point load indenter. The CIPSS was exposed to 

various external constraints during lateral compression in order to subject the system to 

greater volumetric deformation. The function of such constraints is to maximise the 

specific energy absorbing capacity of such energy absorbers. This is a requirement in the 

design of kinetic energy absorbers as outlined in section 1.6F. Hence this chapter examines 

the output response of such devices exposed to various external constraints and indenters.

6.2 Plate Indenter Compression.

6.2.1 CIPSS - Unconstrained.
Figure 6-1 shows the crush force and energy absorption response for a CIPSS with no 

external constraints imposed on it. Figure 6-2 depicts how the three tubes of varying 

diameter and each of length 60mm were placed within each other to form a nested system 

of eccentric configuration. Due to this arrangement, an initial spacing of 17mm and 21mm 

existed between the upper portions of the tubes. These two gaps allowed all three 

components to deform sequentially as loading proceeded, hence the reason for the non

monotonic increase in force throughout the deformation stroke as observed in Figure 6-1. 

As expected upon examination of this figure, an increase in force was observed at 17mm 

and 38mm which indicates contact has been established between each respective tube. 

Finally as the inner tube collapsed at approximately 42mm, the system containing the three 

tubes began to strain-harden to a maximum deflection of 116mm. The energy response was 

achieved by integrating the force over its corresponding deflection. The energy response 

became more linear once all tubes began to deform simultaneously. This energy response 

behaviour is pertinent to all subsequent nested systems analysed. As shown in Figure 6-2, 

the upper and lower halves of the inner tube were in the ‘just touching’ position. It was at 

this stage that the maximum displacement has occurred. It was possible to increase the 

stroke length, however this may be seen as an over loading or ‘bottoming out’ of the 

system and this is normally avoided.
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Figure 6-1: Force and  specific energy response for a CIPSS w ith no constraints.
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Figure 6-2: In itial and final stage o f deflection for a CIPSS with no constraints.

6.2.2 CIPSS - Inclined Constraints.
Figure 6-3 presents the force- and energy-deflection response of a CIPSS subjected to 

inclined constraints. The external constraints as demonstrated by Reddy and Reid [62] 

served to increase the specific energy absorbing capacity of systems compressed under 

horizontal rigid platens. It should be noted that the authors applied the concept of external 

only to a single tube whereas in this work, it is applied to a nested system. Hence, it can be 

seen from Figure 6-3, that these constraints caused more volume of material to deform 

particularly for the outer and central tube. This results in a greater increase in force in 

contrast to an unconstrained CIPSS. However, it appears that, for this type of arrangement 

a maximum displacement of 95mm was reached. Any further crushing causes macroscopic 

fracture at the hinge points which would mark a decrease in force. It is common to design 

energy absorbers that undergo large plastic deformations without any incident of fracture 

or indeed ‘bottoming out’ of the structure. Figure 6-4 illustrates the initial and final stage of 

crushing for this energy absorber with inclined constraints.
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Figure 6-3: Force and specific energy response for a CIPSS with inclined constraints.

Figure 6-4: In itial and final stage of deflection for a CIPSS w ith inclined constraints.

6.2.3 CIPSS - Vertical Constraints.
Figure 6-5 depicts a graphical plot consisting of the crush force and specific energy 

absorption for a CIPSS compressed between rigid plates and vertical side constraints. 

Photographs consisting of the initial and final stages are displayed in Figure 6-6. It can be 

seen from this figure, that the introduction of sidewalls prevented the horizontal diameter 

of the outer tube from displacing outwards during compression. As a result, a greater 

volume of material was exposed to plastic deformation. This caused a greater an increase in 

the reactive force as shown in Figure 6-5. This increase in force was due to the stiffening of 

outer tube since it has conformed to the shape of the vertical side constraint while at the 

same time the central tube prevented it from collapsing inward.
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Figure 6-5: Force and specific energy response for a CIPSS with vertical constraints.

Figure 6-6: Initial and final stage of deflection for a CIPSS with vertical constraints,

6.2.4 CIPSS - Combined Constraints.
A crush force and specific energy response for a CIPSS compressed between rigid plates 

with both vertical and side constraints are shown in Figure 6-7. The resulting crush force 

has again increased as expected due to combined effects of the inclined and vertical 

constraints, A rapid increase in force occurs at approx 48mm and this was also due to the 

horizontal diameter of the outer tube restricted from deflecting laterally. Figure 6-8 depicts 

the various stages of compression for this particular system. It can be seen from the final 

stage of displacement that no further deflection was possible.
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Figure 6-7: Force and  specific energy response for a CIPSS with both constraints.

Figure 6-8 : In itial and  final stage of deflection for a CIPSS with both constraints.

6.3 Point Load Indenter Compression.

6.3.1 CIPSS -  Unconstrained.
The corresponding force and energy response of an unconstrained CIPSS compressed with 

a point load indenter is depicted in Figure 6-9. Illustrations of the various stages of 

deflection are shown in Figure 6-10. From 45mm deflection, it can be seen that the whole 

system began to geometrically soften as opposed to strain hardening as observed with the 

compression of a CIPSS with a plate indenter. This was due to the concept of the moment 

arm increasing from the point of load of application as noted and analysed by Bell and 

Reid [49], At approx 116mm deflection onwards there exist an increase in force; this was 

due to the adjacent faces of the indenter obstructing the outer tube as depicted in the photos 

of Figure 6-12.
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Figure 6-10: In itial and final stage o f deflection for a C IPSS w ith no constraints,

6.3.2 CIPSS -  Inclined Constraints.
Figure 6-11 offers the crush force and specific energy response of a CIPSS with fifteen 

degree inclined constraints. In comparison to the previous system, the resulting force has 

increased slightly due to introduction of such constraints. In the post collapse stages of the 

inner tube (at approximately 48mm) the system exhibited a softening characteristic for the 

remaining deflection. This behaviour was also due to the effect of increase in moment arm 

about the 2 horizontal hinge points. Compression of this system is illustrated in Figure

6-12. Notice how, for the final stage of deformation, the inclined constraints caused a 

greater interference of the adjacent sides of the indenter with the tube which resulted in a 

slight rise in force in the latter stages of deflection as shown in Figure 6-11.
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Figure 6-11: Force and  specific energy response for a CIPSS w ith inclined constraints.

Figure 6-12: In itial and  final stage o f deflection for a CIPSS w ith inclined constraints.

6.3.3 CIPSS -  Vertical Constraints.
Figure 6-13 and Figure 6-14 show the results of a CIPSS compressed with sidewalls 

present. Upon inspection of former figure, it can be seen how the central tube began to 

soften before it established contact with the inner tube. This was due to sufficient time for 

the central tubes to behave in this manner before contact was established with the inner 

tube. Once the collapse load was reached in the inner tube, the system geometrically 

softened for the remainder o f deflection. Again a rise in force was observed due to 

presence of the indenter which obstructed the outer tube.

Edmund Morris B .Eng (Hons) 106



S p ec ific  E n e rg y  M ax im iza tio n  o f  N ested  System s.

A Finite E lem ent and E xperim ental A nalysis  o f  E nergy A b sorb in g  System s u n der S tatic  an d  D ynam ic L oading  C onditions.

Crush Force and Specific Energy versus Displacement
250 1200

E
E

150

100

Crush Force 

 Energy Absorbed

900

600

O)

>. o> 
1__

CL)
c

LU
O
o(D
Q.

CO

0 20 40 60 80 100 120 140
Displacement [mm]

Figure 6-13: Force and specific energy response for a CIPSS with vertical constraints.

Figure 6-14: Initial and  final stage of deflection for a CIPSS with vertical constraints,

6.3.4 CIPSS -  Combined Constraints.
The final system compressed with a point load indenter consists of a CIPSS with both 

vertical and inclined constraints as shown in Figure 6-16. In Figure 6-15, the corresponding 

force and specific energy response for this system is displayed. At approximately 115mm 

deflection a rapid rise in force was observed. This was due to a combination of the inclined 

constraints and the indenter which exposed the outer tube to a greater volume of material 

deformation. However, as loading proceeded, the application of the point load caused the 

outer tube to move away from the sidewalls. Therefore, it can be seen that the effect of 

sidewall constraints in conjunction with a point load indenter is not as effective as in the 

case of a rigid flat platen.
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Figure 6-15: Force and  specific energy response fo r a CIPSS w ith both constraints.
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Figure 6-16: In itial and final stage o f deflection for a CIPSS with both constraints. 

6.4 Cylindrical indenter compression.

6.4.1 CIPSS -  Unconstrained.
Figure 6-17 show the force and energy response for an unconstrained CIPSS compressed 

between a cylindrical indenter and a rigid platen. Figure 6-18 depicts the initial and final 

stages of compression for this particular system. At approximately 40mm deflection it can 

be seen that the system was still absorbing energy for the remainder of the stroke without 

any increase in resisting force. This section of the curve can be categorised as a perfectly 

plastic response since the system is neither strain-hardening nor strain softening. This is a 

very desirable feature in the design of energy absorbers as outlined in section 0.
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Figure 6-17: Force and specific energy response for an unconstrained CIPSS.

6.4.2 CIPSS -  Inclined Constraints.
Figure 6-19 illustrates the force-deflection response of a CIPSS with inclined constraints. 

The initial and final stages of deformation are depicted in Figure 6-20. The response was 

very similar in its mode of deformation and magnitude in comparison to the previous 

system analysed. From approximately 40mm the force remained constant and began to rise 

from approximately 100mm. This increase in force was due the inclined constraints 

causing the bottom segment of the outer tube to deform while at the same time the upper 

segment began to wrap around the cylindrical indenter to a small degree as illustrated in 

Figure 6-20.

Figure 6-18: In itial and  final stage o f deflection for a CIPSS w ith no constraints.
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Figure 6-19: Force and  specific energy response for a CIPSS w ith  inclined constraints.

6.4.3 CIPSS -  Vertical Constraints.
Figure 6-21 show the force and energy response of a CIPSS compressed with vertically 

imposed side constraints. In contrast to the previous system, the mode of deformation has 

also changed, noticeably at approximately 40mm deflection. The system began to linearly 

strain harden for the final stroke of deflection. This strain-hardening was due to a 

combination of the horizontal diameter prevented from increasing and the outer tube which 

‘wrapped around’ the cylindrical indenter as shown in Figure 6-22.
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Figure 6-20: Initial and final stage of deflection for a C IPSS w ith inclined constraints.
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Figure 6-21: Force and specific energy response for a CIPSS with vertical constraints.

F igure 6-22: Initial and  final stage of deflection for a CIPSS w ith vertical constraints,

6.4.4 CIPSS -  Combined Constraints.
The experimental result for the compression of a CIPSS with a cylindrical indenter and 

externally imposed constraints is shown in Figure 6-23. At approximately the same 

deflection of 40mm as in the previous section, the system began to strain-harden. The 

increase in force observed at approximately 100mm deflection was due the existence of the 

inclined constraints. These constraints, having an angle of fifteen degrees, caused the lower 

or bottom regions of the system to deform more and therefore, as a consequence, a greater 

degree of ‘wrap around’ occurred on the indenter. The initial and final stages of 

compression are shown in Figure 6-24.
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Figure 6-23: Force and  specific energy response for a C IPSS w ith both constraints.

F igure 6-24: Initial and  final stage of deflection for a C IPSS w ith both constraints.

6.5 Global Comparison /  Analysis o f the Energy absorption Characteristics.

Figure 6-25 depicts a force - deflection response for the CIPSS crushed with a flat platen 

under the various constraint conditions. Pointer A in this figure indicates the effect of 

adding an external constraint sequentially. As expected, the unconstrained system reached 

its full displacement stroke of 120mm, the system with inclined constraints reached a 

shorter distance of 95mm but absorbs a greater load and likewise for the system exposed to 

vertical constraints. Finally the system subjected to both constraints showed signs of a 

higher load but the shortest displacement stroke of 50mm was observed. This implies that 

the crush efficiency and overall energy absorption response (See section 3.3.1) for such 

systems compressed with a flat rigid platen greatly depend on the type of constraints 

applied, since this will inadvertently affect the magnitude of the displacement stroke.
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Figure 6-25: G lobal com parison o f the  C IPSS crushed under a flat rigid platen with different
constrain ts.

Figure 6-26 displays a bar chart illustrating the various energy absorption characteristics of 

this system crushed under a rigid flat platen. In terms of crush efficiency, it can be seen that 

the efficiency reduced consecutively once an extra constraint was applied to the CIPSS 

under loading. For example, the CIPSS which was unconstrained experienced the highest 

efficiency of approximately 78% whilst the CIPSS subjected to both the inclined and 

sidewall constraint experienced the least efficiency of 40%. The very low efficiency for the 

latter system was due to the effect of ‘locking’. This locking effect was due to nature of the 

inclined and sidewall constraints which prevented any further deformation possible within 

the system and hence the reason for a rapid rise in force as observed in Figure 6-5 and 

Figure 6-7. The energy efficiency of such systems also experienced a reduction in value for 

the obvious reason that the stroke length was very low. Concurrent to this, the peak load 

observed, occurred at the final stage of deflection as oppose to the initial stage, which will 

further reduce the energy efficiency. Since the weight effectiveness is the product of crush 

efficiency and specific energy absorption, it can be expected that this characteristic reduces 

progressively from an unconstrained CIPSS to a CIPSS subjected to both constraints. 

Notice however that the final system exposed to both constraints revealed a larger value 

than its counterpart with only sidewall constraints. This was due to the very large energy 

absorbed by this system.
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Figure 6-26: A b a r c h a rt displaying the various responses of a CIPSS crushed under a flat plate
inden ter w ith different constrain ts.

The force - deflection response of a CIPSS crushed under point load indenter is depicted in 

Figure 6-27. Immediately it can be seen that the full displacement of stroke of 120mm can 

be achieved for all for systems tested with the different constraints. Therefore a crush 

efficiency of 80% is possible for all four systems compressed under a point load indenter 

which is shown in Figure 6-28. Also shown in this figure is the energy efficiency which 

exhibit similar magnitudes ranging from 60% to 70% and which are higher than those 

compressed under a flat platen. The weight effectiveness for this particular system 

displayed an increasing trend in magnitude as the number of constraints was increased 

consecutively. It can be seen that the CIPSS compressed under a point load indenter exhibit 

more desirable energy absorption characteristics than its counterpart compressed under a 

rigid flat platen.
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A b a r  ch a rt displaying the various responses of a CIPSS crushed under a point load 
indenter w ith d ifferent constraints.

For a CIPSS crushed under a cylindrical indenter, a force - deflection response and a bar 

chart are displayed in Figure 6-29 and Figure 6-30 respectively. For this system, it was also 

possible to maintain a high crush efficiency of 80% since no locking occurred as observed 

for the systems subjected to rigid flat platen crushing. Also from this figure, notice the
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collapse load has increased for the two systems subjected to both sidewall and inclined 

constraints respectively. In Figure 6-30, the energy efficiencies are somewhat lower than 

the preceding system, ranging from 55% to 75%. The unconstrained system exhibited the 

highest energy efficiency since its corresponding force was at a constant rate in contrast to 

those systems exposed to lateral constraints. The weight effectiveness exhibits positive 

results in that its magnitude increased as the number of constraints added was increased 

which is a desirable feature in the design of energy absorbers.
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Figure 6-30: A b ar c h a rt displaying the various responses of a CIPSS crushed under a cylindrical
indenter u n d er d ifferen t constraints.
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6.6 Summary of Chapter Six.

• Chapter six analysed the response of nested systems such as the CIPSS subjected to 

lateral compression by various indenters and exposed to various external 

constraints. The effect of the interaction between these indenters and the various 

constraints on each energy absorber was analysed.

• In order to assist in analysing the response of such devices, energy absorption 

characteristic as a performance tool was applied to illustrate which devices 

exhibited the most desirable responses. Characteristics such as the crush efficiency, 

energy efficiency and weight effectiveness were employed to describe the 

behaviour of such devices.

• It was found that for the four systems compressed under a plate indenter, the crush 

efficiency, energy efficiency and weight effectiveness reduced consecutively as the 

number of constraints was added.

• For the systems compressed under both a point load and cylindrical indenter, it was 

found that both the crush efficiency and the weight effectiveness increased 

consecutively as the number of constraints were added. The energy efficiency of the 

systems crushed under these two indenters varied due to the shape of their force- 

deflection response.
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7 Finite E lem ent Analysis and Results. 

7.1 Introduction.

This chapter details a numerical analysis of the various energy absorbers already 

experimentally analysed. More specifically, it is divided into two sections with section 7.6 

concerned with the response optimisation of nested systems. Section 7.9 is concerned with 

the specific energy maximisation of nested systems. Prior to this, a description is given on 

the numerical procedure employed to simulate the various devices under both quasi-static 

and dynamic loading conditions.

7.2 Quasi - Static Analysis: Num erical Procedure.

ANSYS, an implicit finite element code was used to simulate the quasi - static loading of 

the selected energy absorbers. Since the loading rate was in the static range and no 

dynamic effects were present, the implicit version of the code was deemed a suitable 

choice. Elements used were three-dimensional eight node brick elements which have large 

strain, large deflection and plasticity capabilities (See Figure 7-la). The numerical models 

contain three non-linear phenomena and are as follows: Material non-linearity in which a 

bilinear isotropic hardening material model was used to capture the strain hardening effects 

in the plastic stages of deformation. The yield stress and plastic modulus values were taken 

from sample dog bone specimens as outlined in section 4.5. Figure 7-lb illustrates the 

bilinear stress-strain curve used to model elastic and plastic stages of material deformation 

of the mild steel tubes. It should be noted that a bilinear material model was commonly 

used by various researchers, Ruan et al [93], Wu and Camey [75], Jing and Barton [43], 

Kadaras and Lu [53], Reid and Harrigan [33, 34]. Good agreement was found by the 

researchers between the numerical results and those obtained by experiments.

The second non-linearity being the contact interaction between each respective tube. An 

augmented Lagrangian penalty method was used to define the contact algorithm in order to 

capture the models changing contact status throughout the deformation stroke (See section 

3.2.5). This was achieved using surface to surface contact groups with each group defined 

by the relevant adjacent surfaces that establish contact during the compression process. The 

various indenters used to compress the nested systems were defined as rigid bodies and 

constrained to translate vertically over a predefined displacement. This predefined 

displacement was applied by means of a pilot node. This pilot node was also used to 

accumulate the corresponding reactive force from each node of each element created due to 

the applied displacement. The energy absorbers were modelled as one quarter models with

A Finite E lem ent and E xperim ental A n alysis  o f  E n ergy  A b so rb in g  System s under Static  and  D ynam ic L oading C onditions.
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symmetry constraints invoked along the appropriate symmetry planes. Resulting reactive 

forces of each model were scaled by a factor of four for analysis and for comparison 

against experimentally observed values. The third non-linearity being large strain-large 

deformation, this feature must be included due to the large displacements that are applied. 

An arbitrary solution time of 1 was assigned to all models with a typical time step size of 

0.005. This low value was used in order to ensure that nonlinear solution converges due to 

the path dependant plasticity material model involved. A maximum and minimum time 

step of 0.02 and 0.001 was defined respectively for the upper and lower limits of the 

solution time step.

A  F in ite  E lem ent and  E xp erim en ta l A n alysis  o f  E nergy A b so rb in g  System s under Static  and  D ynam ic L oad in g  C onditions.

Figure 7-1: (a) Solid45 brick  elem ent used to discretize the quasi -s ta tic  models |85 |. (b) B ilinear stress- 
s tra in  curve used to rep resen t the m aterial behaviour of mild steel.

7.3 Geometry Creation of the Oblong Tubes.

The geometry contour of each of the oblong tubes was obtained by applying the 

appropriate loading and boundary conditions as observed in experiment during the 

preparation stages. Prescribed vertical displacements of 50mm, 40mm and 30mm were 

applied to the outer, central and inner tubes respectively using three individual pilot nodes 

as shown in Figure 7-2 which illustrates the initial and final stages of tensile displacement 

for each of the tubes. When the full displacement was applied, each individual tube was 

unloaded until the force ramped back to zero as shown in Figure 7-3. This was done in 

order to take into account the final state of deformation due the elastic spring back which 

occurs when the tensile load was removed. The final geometry profile was updated from 

the deformed mesh using update geometry capabilities in ANSYS. The new oblong shaped 

geometry for each tube was discretized with the same mesh density as their circular 

counterparts in order to maintain consistent modelling and meshing practice.
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Figure 7-2: Initial and final stage of displacem ent using the tension method as produced by ANSYS. 

Tensile force-deflection response of the 3 different sized tubes.

Displacement [mm]

Figure 7-3: Force deflection response of the th ree  tubes [Loading and unloading|.

7.4 Dynamic Analysis: Numerical Procedure.

The explicit non linear finite element code LS-DYNA was used to predict the response of 

the selected energy absorbers subjected to a free falling impinging mass. Two element 

formulations was used, namely the brick and shell element, in order to provide a 

comparison of results at a later stage. The complete model consisted principally of the 

striker, the assemblage of tubes and the base. These three components in each system were 

modelled with an explicit structural solid (See Figure 7-4) consisting of eight nodes having 

translations, velocities and accelerations in the x, y and z directions at each node. The 

element continuum is of a Lagrangian formulation, and by default, uses one point 

integration with viscous hourglass control if necessary. The striker was modelled as a rigid 

entity with translational displacement permitted in the vertical y direction, this impact
Edmund Morris B.Eng (Hons) 120
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velocity was defined via the * BOUNDARY PRESCRIBED MOTION RIGID card in 

LS-DYNA. For each of the various absorbers analysed experimentally, an average velocity 

time curve was obtained and applied to the striker through this control card. (See Figure

4-6). All other rotations and translations on this striker were fixed. In the material model 

associated with the striker, the mass density was increased to represent the total mass of 

both the carriage and the striker and was applied using the *MAT_RIGID card. The base 

was modelled as rigid with all rotations and translations defined as fixed entities. The tubes 

contained within the various energy absorbers were discretized by fully integrated solid 

elements. These elements perform better where element distortions are large but are about 

four times more costly. No hourglass control is needed as there are no zero-energy modes 

[86]. This feature was activated via the *SECTION_SOLID control card. Figure 7-5 

depicts the time step size required to solve the OIPDS under the prescribed dynamic 

loading conditions using brick elements. This is shown for the three different element mesh 

densities of three, five and six elements through the thickness of each tube respectively. 

The time step size is automatically determined by the LS-DYNA program once the solution 

time is defined through the *CONTROL_TERMINATION card. The 

*CONTROL_ENERGY card was activated in order to examine the energy balance of the 

brick models as detailed in section 3.3.4.

The OIPDS was also modelled with shell elements (Figure 7-4) in order to make a 

comparison of results against the system represented by brick elements. This shell model 

was represented by the Belytschko-Tsay shell element with five integration points defined 

through the thickness of each tube. The shell thickness and the number of integrations were 

defined through the *SHELL_SECTION card. All shell elements include membrane, 

bending and shear deformation capabilities. Since the shell elements are defined by a mid -  

plane, it is very important that appropriate gaps between the shells are modelled in the 

finite element geometry in order to account for the shell thickness dimensions. If this is not 

adhered to, initial penetrations will occur in the contact surfaces resulting in an incorrect 

solution of the problem. Symmetry conditions were invoked along the appropriate 

symmetry planes via the *BOUNDARY_SPC_SET card in order to reduce CPU time. The 

striker was also modelled as a rigid entity using brick elements as described in the 

preceding paragraph. The shell element formulation is quite suited to model bending 

dominated problems. In addition to this, the solution time using the shell element 

formulation is considerably less than that when using the brick element formulation as 

shown in Figure 7-6 when compared with Figure 7-5. The disadvantage with using brick
Edmund Morris B.Eng (Hons) 121
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elements is that at large deformations, the brick will be become highly distorted 

particularly in the regions of the hinges within the plastic zone and therefore, it may not 

capture the bending stress accurately throughout the model.

The contact algorithm used to simulate contact between the respective components (striker, 

tubes and base) for both the brick and shell element models was based on the ‘Automatic 

Surface to Surface Contact’ in which contact was established when a surface of one body 

penetrates the surface of another body. This contact algorithm was defined using the 

*CONTACT AUTOMATIC_SURFACE_TO_SURFACE card. A static coefficient of 

friction value of 0.2 was assigned to the contact pairs to prevent lateral movement between 

the respective tubes [34].
L

A F in ite  E lem ent and E xperim ental A n alysis  o f  E nergy A b sorb in g  S ystem s under S ta tic  an d  D ynam ic L oading C onditions.

(Note -  x arid y are in frie plane of Die element 

Figure 7-4: The explicit 8 node brick  and 4 node shell elem ent used fo r the dynam ic analysis. [85]
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Figure 7-5: A plot illustrating the time step size for the d ifferen t num ber of brick elements
through the thickness of each tube. [OIPDS|
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Figure 7-6: A plot illustrating  the tim e step size for the d ifferent num ber of shell elements through
the thickness o f each tube. (O IPD S|

7.5 Mesh Convergence.

Figure 7-7 illustrates the convergence plot of three different mesh densities for the CIPDS. 

It can be seen that a convergence solution was achieved when three or five elements were 

used to mesh the thickness of the tubes within the CIPDS. The corresponding force 

convergence plot for this particular system is shown in Figure 7-8. Hence both the CIPSS 

and the CIPDS consisted of a mesh density involving three elements through the thickness 

of each tube as represented by the inlay in the same figure.

Figure 7-9. illustrates the convergence plot of three different mesh densities for the OIPDS. 

It can be seen that a convergence solution was achieved when five or six brick elements 

were used to mesh the thickness of the tubes. Hence, all subsequent models involving brick 

elements consisted of a mesh density involving five bricks through the thickness of each 

tube. Accordingly, a force - time plot of the OIPDS illustrating the response for three, five 

and six elements through the thickness of each tube is shown in Figure 7-10.

For the shell models, a convergence study was also undertaken with Figure 7-11 

illustrating the force - time response of three different mesh densities. Three simulations 

with a shell element length of 4mm, 2mm and 1 mm were conducted.
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Figure 7-7: A force convergence plot of th ree  d ifferent mesh densities for the CIPDS.
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Figure 7-8: A force-tim e convergence plot o f the CIPD S analysed with 1 ,3  and  5 b rick  elements
th ro u g h  the thickness of each tube.
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A convergence plot illustrating  the num ber of b rick  elements for each of the three 
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Figure 7-11: A force - time convergence plot of the O IPD S analysed with five integration points
through the thickness of each tube.
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7.6 Numerical Results: Response Optimisation of Nested Systems.

Section 7.6 details the comparison of results between the finite element method and those 

obtained from experimental techniques as described in chapter 5.

7.6.1 Geometric V ariations o f  the CIPSS.

7.6.2 A COPSS Crushed under a Plate Indenter.
Figure 7-13 show the numerical and experimental results for a COPSS compressed with a 

flat plate indenter. It can be see that there was reasonable agreement between the two 

methods. The numerical method slightly under predicted the force at approximately 6mm 

with an over prediction in the final stages of deformation. In terms of the energy response, 

excellent correlation was found with only a difference of 3% between the two methods. 

Figure 7-14 illustrates the boundary conditions applied to the one quarter symmetry model. 

Also shown are the contact pairs, with the contact normals facing each other, used to 

capture the contact interaction between the adjacent surfaces of each tube. Finally, Figure 

7-15 depicts the Von Mises plastic strain history of three selected nodes, each node been 

located at the uppermost region of each tube and at the intersection of the symmetry planes 

as shown in the first picture in Figure 7-12. It should be noted that the same location of 

nodes is employed for subsequent models analysed in this chapter.

By examining this figure, it can be seen that the outer tube in the region defined by the 

outer node experienced an increase in plastic strain until contact was established with the 

central tube. From this point onwards, the strain became constant whilst concurrently; the 

central node in the central tube began to rise until contact was established with the inner 

tube. Similarly, this node experienced a constant strain, whilst inner node remained 

constant for up to 85mm deflection before beginning to increase again for the remainder of 

the stroke. This increase in strain was due to increased bending and separation of the upper 

hinge of the inner tube from the central tube.

A  F inite E lem ent and E xp erim en ta l A n a ly sis  o f  E nergy A b sorb in g  S ystem s under Static  and D ynam ic L oad in g  C on d ition s.

AN

Figure 7-12: Location o f the  nodes for analyzing the stra in  evolution throughout the displacem ent
stroke.
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Figure 7-13: C om parison o f results between the num erical and  experim ental methods for a COPSS
crushed under a flat plate indenter.
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Von M ises Plastic Strain history.
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Figure 7-15: Plastic stra in  history a t th ree  selected nodes for a COPSS crushed under a flat plate
indenter.

7.6.3 A COPSS Crushed under a Point Load Indenter.
Figure 7-16 shows the numerical and experimental response for a COPSS compressed with 

a point-load indenter. For up to 30mm deflection, the numerically predicted result was in 

good agreement in terms of magnitude followed by a slight over prediction for the 

remaining deflection. In terms of the energy response, a value of 2% was observed between 

the numerical and experimental method. Figure 7-17b illustrates the Von Mises plastic 

strain history at three selected nodes for this particular system. The node presenting the 

region of the outer tube began to increase in strain from approximately 35mm 

displacement; this was due to the point load indenter used to compress the system which 

caused increased bending to develop in the contact region of this point load indenter.

Reponse of an unconstrained COPSS .
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Figure 7-16:
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C om parison o f results between the num erical and experim ental methods for a COPSS 
crushed under a point load indenter.
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7.6.4 A COPSS Crushed under a C ylindrical Indenter.
Figure 7-18 displays the numerical and experimental results for the compression of COPSS 

with a cylindrical indenter. As observed in the previous two systems, there was a slight 

under prediction of the force from approximately 6mm deflection with an over prediction 

occurring in the final stages. Despite this, there is a good correlation between the two 

methods in terms of the deformation mode and for the total energy absorbed, in which a 

difference of 1% was observed. Figure 7 -19a illustrates the boundary and contact 

definitions for this particular model in conjunction with the Von Mises total strain 

evolution at various stages of deflection. Figure 7-19b offer a Von Mises plastic strain 

history plot, it can be seen that the response of each node was similar to that of a COPSS 

compressed under a plate indenter.
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Figure 7-18: C om parison of results betw een the num erical and experim ental methods for a COPSS
crushed under a cylindrical indenter.
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7.6.5 A SCIPSS Crushed under a Plate Indenter.
It can be seen in Figure 7-20 that the numerical response correlated very well with that of 

experiment, with only a slight under-prediction in the collapse load of each tube and an 

over-prediction in the final stages of deformation. The resulting difference in the energy 

absorbed between the numerical code and that of experiment was approximately 3%. 

Figure 7-2la illustrates the symmetry boundary conditions applied to the model along with 

the contacts pairs defined in order to capture the changing contact status. Figure 7-2lb 

depicts a force-time graph illustrating the solution history of the numerical model during 

the compression process. Bisection is a feature used by the ANSYS program to recover 

from convergence failure due to the number of equilibrium iterations being exceeded 

during solution. This bisection function cuts the prescribed time step in half and 

automatically recovers from the last converged substep until convergence is achieved 

before progressing onto the next substep. The graph indicates the number of bisections 

which occurred during the compression stroke. It can be seen that bisection of the allocated 

time step inevitably occurs when contact was established between the tubes at the two 

stages of deflection.
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Figure 7-20: Force- and energy-deflection response for a SCIPSS compressed under a flat plate.
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7.6.6 A SCOPSS Crushed under a Plate Indenter.
Figure 7-22 presents a comparison of the numerical and experimental response of a 

SCOPSS compress under a flat rigid plate. The numerical code predicted the force- 

deflection response very well for up to a displacement stroke of approximately 60mm. 

From therein, no strain softening occurred, instead, the force remained constant for a 

period of time before it began to increase again. During the early stages of compression, 

the maximum strains where located in the vicinity of the slots, however, as loading 

proceeded, the large strains spread over a larger plastic zone with the highest strains 

located at the four quadrant points of each tube. This was due to the increased bending 

which becomes concentrated in this region. This resulted in the observed rise in force for 

the remaining displacement stroke. It can be seen that there are variations in the mode of 

deformation between the three samples. The difference in the total energy absorbed 

between the three samples and that predicted by the numerical code ranges from 4% to 

14%. Figure 7-23b presents the solution history for this system. It can be seen that 

bisection occurred at a number of stages throughout the displacement stroke.

Quasi-static Force and Energy response.

0 20 40 60 80 100 120 140 160
Displacement [mm]

Figure 7-22: Force- and energy-deflection response for a SCOPSS compressed under a flat plate.
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brick elements.
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7.6.7 A SCIPDS Crushed under a Plate Indenter.
As shown in Figure 7-24, it can be seen that there was an excellent correlation between that 

of experiment and the numerical code in predicting a large part of the force-deflection 

response of this particular system. In the later stages of deflection, sample one appeared to 

behave inconsistently in that the force tends to rise whilst sample two tends to drop in 

force. The resulting difference between the two methods for the amount of energy absorbed 

was 7% for sample one and 5% for sample two. Figure 7-25 depicts the boundary 

conditions applied to the one quarter model in addition to the contact pairs used to capture 

the contact status during the deformation process. Also shown in this figure, is the 

equivalent stress represented as a spatial plot for the complete deformation process.

Quasi-static force and energy response.
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Figure 7-24: Force- and energy-deflection response for a SCIPDS compressed under a flat plate.
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Figure 7-25: Illustration of the boundary and  contact definitions with an equivalent 
stress plot for a SCIPDS.

7.6.8 A SCIPDS Crushed under a Cylindrical Indenter.
Figure 7-26 illustrates a global comparison of the numerical results for the various forms of 

energy absorbers analysed. As previously observed in the preceding paragraphs, there was 

reasonably good correlation between the numerical and experimental methods for the 

various systems analysed. Therefore, in view of this, another SCIPDS was developed 

numerically and its force-deflection response was obtained as shown in Figure 7-26. This 

system was crushed under the action of a cylindrical indenter, the displacement plots of 

which are shown in shown in Figure 7-27. This system provided a further desirable force- 

deflection response than its counterpart crushed under a plate indenter, since less strain 

hardening occurred and the force was approximately rectangular which is ideal in the 

design of energy absorbing devices.

MODAL SOLUTIQM
STEP=1 
SUB =18 
TIME». 146563 
NLSEPL {AVG) 
RSYS=0 
DMX »13.540 
3MN =470 
9MX =505.651

470 m j f  521.4ô ! SJ7.10I *72.80f
482.85 508 55 534.25! S5&.S31

STEP=1 
SUB =93 
TIME-.8S4063 
/EXPANDED 
MLSEPL {AVG) 
RSYS=0 
DMX =84.411 
SMN =470 
SMX =772.245

Edmund Morris B.Eng (H ons) 137



Fo
rc

e 
[N

]

F in ite  E lem e n t A n a ly sis  a n d  R esu lts .

A  F inite E lem ent and E xp erim en ta l A n a ly sis  o f  E nergy A b sorb in g  System s u n d er  S tatic  and D ynam ic L oading C on d ition s.

25000
Global Comparison. Numerical Results.

20000 Approximately rectangular 
shaped response.

25

SCIPDS - Cylindrical Indenter. 

SCIPDS - Plate Indenter. 

SCIPSS - Plate Indenter. 

SCOPSS - Plate Indenter.

50 75 100
Displacement [mm]

Figure

MODAL SOLUTION

NLSEPL {AVG)

AN

MODAL SOLUTION 
STEP=1 
SUB =18 
T1ME=.296875 
MLSEPL (AVG) 
RSYS=0 
DMX =27.327 
SMN *470 
SMX =677.171

NODAL SOLUTION 
STEPal 
SUB «*54 
miE=M
NLSEPL {AVG} 
RSYS=0 
DMX -92.276 
SMN =470 
SMX =803-233

AN

' SÏÿ.GM Sfizïffi 5651T4 osTtfz
493.019 539.057 585.095 631.133 S77.171

470 . $35.93 J . U l l i  t â t M 2 731,727
502-965 568.890 054 827 700.757 7W.68I

AN

470 544.032 . ¥ ÌO '0 4  ’ *692.(55 _ “tìs.;207
$07 O li S81 078 655,129 7M».l«t 801232

Figure 7-27: Illustration of the boundary and contact definitions with an equivalent
stress plot for a SCIPDS crushed under a cylindrical indenter.
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7.7 Quasi-Static Analysis of the CIPSS, CIPDS, OIPSS and the OIPDS.

7.7.1 Analysis o f the CIPSS.
The numerical and experimental force- and energy-deflection response of a CIPSS is 

shown in Figure 7-28. A slight under prediction of the collapse load was observed for each 

of the three tubes followed by a slight over estimation from approximately 70mm of 

displacement. In terms of the energy absorption response, a difference of 3% was observed 

between the two methods. Figure 7-29 depicts the solution history for this particular 

system, it can be seen that bisection of the time step occurred twice as each tube 

established contact during the compression process. Also, in the final stages of 

compression, a single bisection occurred frequently due to the rapid rise in force. This may 

be due to the high strain that occurs at the hinges points due to the intense bending of each 

tube in the later stages of deflection.

A F inite E lem en t and E xperim ental A n alysis  o f  E nergy A b sorb in g  S ystem s u n der S ta tic  an d  D ynam ic L oading C onditions.

Numerical and experimental results - CIPSS.
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Figure 7-28: Experimental and numerical comparison of a CIPSS crushed under a flat plate indenter.
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Figure 7-30: Illustration of the boundary and contact definitions with an equivalent plastic
strain spatial plot for a CIPSS crushed under a plate indenter.
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Figure 7-29: Force-tim e g rap h  illustrating  the bisection history fo r a CIPSS.
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7.7.2 Analysis of the CIPDS.
The numerical response of a CIPDS is illustrated in Figure 7-31 with graphical plots 

displayed in Figure 7-33. Again, it can be seen that a slight under prediction occurs at the 

collapse stage of compression for each tube with an over prediction observed during the 

latter stages of compression. A linear strain hardening response by the numerical method 

was observed for the remainder of the displacement stroke. For the energy response, a 

difference of less than 1% was observed between the two methods. Figure 7-32 depicts the 

solution history for this system, only a single bisection occurred at the collapse stage of this 

system during the compression process indicating an easily converged solution. Figure 

7-33 illustrates the symmetry conditions applied to the model along with the contact pairs 

defined to capture the contact behaviour of the system.
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Figure 7-31: E xperim ental and num erical com parison of the CIPDS crushed under a fla t plate
indenter.
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Figure 7-32: Force-tim e graph  illustrating  the bisection history for a CIPDS.
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Figure 7-33: Illustra tion  of the boundary and contact definitions with an equivalent plastic strain
spatial plot fo r a CIPDS crushed u n d er a p late  indenter.

7.7.3 Analysis of the OIPSS.
Figure 7-34 and Figure 7-35 depicts the numerical response for an OIPSS using both the 

compression and tension method respectively. Upon examination of the OIPSS constructed 

using the former method, the collapse load was over predicted by the numerical code for 

the complete displacement stroke. For the OIPSS created using the tension method, an even 

greater over estimation was observed for the collapse load of each tube. For this particular 

absorber, from approximately 65mm displacement, a good correlation was seen between 

the actual and numerical response in predicting the geometrical softening process. For the 

OIPSS created using the tension method, a difference of 8% was found and a difference of 

15% for the OIPSS generated using the compression method. Figure 7-36 depicts the 

bisection history for this particular system. It can be seen that there was some difficulty in 

the numerical code achieving convergence during the collapse stage of each tube. Three 

bisections occurred twice during contact stage between the respective tubes. Figure 7-37 

illustrates the symmetry conditions applied to the model along with the contact pairs 

defined to capture the contact behaviour of the system.
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Figure 7-34: E xperim ental and  num erical com parison of the OIPSS. [Compression methodj
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Figure 7-36: Force-tim e g raph  depicting the bisection history  of the  OIPSS. [Tension M ethod]

D C ÍI D C t J

D C U

0 .07159 .1 4 3 3 8 .215069.280759
.035845 ,107535 .179224 250914 322604

Figure 7-37: Illustration of the boundary and contact definitions with an equivalent plastic
strain spatial plot for a OIPSS crushed under a plate indenter.
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7.7.4 Analysis of the OIPDS.
Figure 7-38 depicts the numerical and experimental comparison of an OIPDS subjected to 

lateral crushing. As in the previous two systems analysed, an over prediction in force in the 

collapse stage of compression was noticed. From therein, a geometrical softening 

characteristic was observed for the remainder of the displacement. In terms of energy 

absoiption response, a difference of 10% was observed between the numerical and 

experimental methods. The bisection history of this system is displayed in Figure 7-39; it 

can be that there was some difficulty in achieving convergence in this model during the 

collapse stage of compression in which a total of four bisections occurred followed by two 

bisections in the latter stages of compression. Figure 7-40 illustrates the symmetry 

conditions applied to the model along with the contact pairs defined to capture the contact 

behaviour of the system.

The reason for the over-prediction observed in the oblong tube energy absorbers appears to 

stem from the difficulty of the numerical code to accurately capture the behaviour of the 

hinge points (collapse points) in order for the tubes to collapse plastically. By examining 

the initial stages of displacement in Figure 7-40, one could visualise each tube within this 

oblong shaped absorber to consist of two arcs at the top and bottom joined together by two 

separate columns. In doing so there is the possibility that the numerical code predicts the 

plastic collapse hinges to occur elsewhere, possibly in the regions of point A , B and C (See 

the illustration in Figure 7-40 ) due to the fact that the central portion of the tube is acting 

like a column.

This ‘column effect’ is known experimentally to strengthen the load capacity of an 

elliptical tube due to its stiffness when compressed between rigid platens [76],Therefore, in 

view of this, when this energy absorber was subjected to a compressive force, a rapid 

increase in force was observed due to this ‘column effect’. There remains the possibly of 

the explicit code’s difficulty in predicting where the plastic hinge zone in each column 

should occur at the appropriate stage of deflection. By examining Figure 7-38, it can be 

seen that once the collapse load was reached, the force dropped rapidly to a more 

reasonable level of force magnitude indicating a more accurate correlation by the 

numerical code with that of experiments.
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Figure 7-40: In itial and final stages of displacem ent of an OIPDS as produced by ANSYS.
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7.8 Dynamic Analysis of the IPSS and IPDS Energy Absorbers.

7.8.1 Evaluation o f the CIPSS.
Figure 7-41 and Figure 7-42 presents the force - and energy - time responses for a CIPSS 

simulated using the explicit numerical method and its comparison to that of experiments. 

Upon examination of Figure 7-41, it appears that contact between each of the respective 

tubes was predicted to occur at slightly different times by both the experimental and 

numerical methods. For example, the time of contact between the outer tube and central 

tubes predicted by the numerical method occurs at approximately 4ms as opposed to a 

shorter time of 3ms observed in experiments. For contact between the central tube and the 

inner tube, values of approximately 6ms and 8ms are depicted by the experimental and 

numerical methods, respectively. The energy time response appears to display good 

agreement between both methods. The evolution displacement plots extracted from the 

numerical method are displayed in Figure 7-45. It appears that one can be confident that 

the deformation mode response is in good agreement with that of experiments (Figure

5-34). The displacement - time curve shows good agreement between the two methods 

which is to be expected since an average velocity time curve pertinent to each absorber was 

applied to the striker. Figure 7-44 illustrates the numerical energy balance for this model, it 

can be seen that the total energy and the external work are equal, indicating the absence of 

any numerical modelling errors as outlined in section 3.3.4.
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Figure 7-41: Force-time curve for a CIPSS.
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Figure 7-44: N um erical energy balance for a CIPSS.
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Figure 7-45: Effective plastic strain evolution of a CIPSS under dynamic lateral loading.
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7.8.2 Evaluation of the CIPDS [Brick Element Model].
Figure 7-46 and Figure 7-47 depicts the force - and energy - time response of a CIPDS. 

There appears to be a significant over prediction in force magnitude displayed by the 

numerical method. A 15% over prediction in energy absorption was observed for this 

energy absorber. In order to assist in this explanation for discrepancy of results, Figure 

7-52 was created. Upon analysis of the CIPDS from this figure, it can be seen from an 

experimental point of view that both the static and dynamic cases exhibit similar force 

deflection response in terms of magnitude. This would indicate that for the given velocity 

applied to the striker, that the strain rate sensitivity is not a significant factor in the 

deformation response of this particular system. Also, with the advantage of using the 

numerical model to demonstrate the effect of strain rate insensitivity by excluding the 

strain rate parameters, it can be seen that numerical results agree favourably with both the 

static and dynamic experimental cases. This would appear to signify that the values of D 

and q used in the Cowper-Symonds relation may not be valid in this particular application 

of energy absorbers since an obvious large increase in the dynamic yield stress is evident 

using the specified strain rate parameters. The usual constants of 40.4s'1 and 5 for D and q 

are normally used by researchers; however, it was found that substitution of these values 

into the Cowper-Symond relation yields an even larger value of yield stress than the 

constants of 6844s'1 and 3.91 used in the current material model. The over prediction in 

dynamic yield stress using the constants of 6844s'1 and 3.91 was also reported by 

Colokoglu and Reddy [30]. It was stated that these constants were not valid for the strain 

levels experienced in the work and that more appropriate values pertaining to strain levels 

of 10% would produce better results.

The constants of 40.4s'1 and 5 have also have been used by Harrigan et al [34] to predict 

the dynamic force magnitude for the internal inversion of mild steel tubes. It was found 

that the dynamic load conditions greatly over-predicted those that were recorded 

experimentally. It appears that the constants only apply to applications involving small 

strains (5%) and not to large strains that are encountered in the internal inversion of mild 

steel tubes. Large strains also exist in the lateral compression of the aforementioned tube 

systems. Hence, it was stated by the authors [94] that more research needs to be conducted 

in this area in terms of obtaining experimental data pertaining to material strain rate 

sensitivity of mild steel. Such experimental data needs to be collected in the form of a 

range of constants which represent the behaviour of mild steel at different strain rates and
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strain levels. Figure 7-51 illustrates the Von Mises temporal variation of the peak response 

within the CIPSS and the CIPDS. A peak stress of 650MPa and 710MPa was observed for 

these two energy absorbers respectively from the numerical model. Figure 7-47, 7-48 and

7-49 illustrates results for the energy -  time, displacement -  time and numerical energy 

balance for this system respectively.

A  F in ite  E lem en t and E xperim ental A n alysis  o f  E n ergy  A b so rb in g  System s under S ta tic  and  D yn am ic L oading  C onditions.
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Figure 7-46: Force-tim e curve for a CIPDS.
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Figure 7-48: N um erical energy balance for a CIPDS.
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7.8.3 Evaluation of the OIPSS and the OIPDS [Brick Elem ent Model].
For the OIPSS and OIPDS, the force and energy responses are over-predicted by the

numerical code. Values of 32% and 40% in the over estimation of energy absorption are 

observed as shown in Figure 7-53 and Figure 7-58 respectively. Figure 7-54, 7 -  55 and 

Figure 7-56 illustrates plots of the energy -  time, displacement -  time and numerical 

energy balance for OIPSS respectively. There appears to be two reasons for the over

prediction in results illustrated by the numerical method. In order to assist in this 

explanation for discrepancy of results, Figure 7-64 was created. Upon analysis of the 

OIPDS in this figure, it can be seen from an experimental point of view that both the static 

and dynamic cases exhibit similar force deflection response in terms of magnitude. This 

would indicate for the given velocity applied to the striker, the strain rate sensitivity is not a 

significant factor in the deformation response of this particular system. This behaviour was 

also noted by Zhao and Fang [48] in which they reported that the same deformation 

response existed between that quasi-static and dynamic cases. They concluded that the 

striker velocity was low enough such that strain rate effects were not significant. Shrive 

and Andrews [65] also noted a similar response characteristic of a tube system subjected to 

lateral impact loading. From a numerical standpoint, in which the effects of strain rate were 

both included and excluded, it can be seen that the force magnitude was over-predicted in 

both cases.

The first reason for the over-prediction in force, with the aid of examining the strain rate 

sensitive numerical response from Figure 7-64, appears to be due to the values of D and q 

used in the Cowper-Symonds relation as outlined in the previous section in relation to the 

CIPDS. These values may not be valid in this particular application since an obvious large
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increase in the dynamic yield stress is evident using the specified strain rate parameters, 

where in fact, both the experimental static and dynamic results show similar forces of 

magnitude.

The second reason for the over-prediction appears to be in the difficulty of the numerical 

code to accurately predict where the horizontal hinge points (collapse points) within the 

plastic zone should occur in order for the tubes to collapse plastically; this reason was 

explained in section 7.7.4. By examining Figure 7-58, it can be seen that once the collapse 

load was reached, the force dropped rapidly to a more reasonable level of force magnitude. 

As already explained in the same section, this behaviour was due to the geometrical 

softening that occurs since the moment arm has increased due the application of the load 

which can be approximated as a point load. Therefore the force required to continue the 

deformation is reduced. Figure 7-63 illustrates the Von Mises stress time response of the 

OIPSS and the OIPDS in which peak stress between 700MPa and 800MPa was observed.

It should be noted that at significantly higher impact velocities, the CIPSS, CIPDS, OIPSS 

and the OIPDS will experience greater inertial effects depending on the magnitude of the 

impact velocity. Hence, the mode of deformation may be different in addition to the force 

magnitude. It is known that at the high velocity impact lateral loading of tubes or rings may 

lead to localised deformation as a result of inertial effects due to the structural shock wave 

propagating through the structure [69].
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Figure 7-54: Energy-tim e response of an OIPSS.

Displacement - Time. OIPSS 
Numerical - Experimental comparison.

0 0.005 0.01 0.015
Time [s]

Figure 7-55: Displacement-time response of an OIPSS.
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Figure 7-56: A num erical energy balance for an OIPSS.
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Figure 7-57: Effective plastic strain evolution of an OIPSS subjected to dynamic lateral loading.
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Figure 7-58: Force-tim e plot o f an OIPDS.
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Figure 7-59: Energy-time response of an OIPDS.
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Figure 7-61: A Numerical energy balance of an OIPDS.
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A Finite Element and Experim ental Analysis o f  Energy Absorbing Systems under Static and Dynamic Loading Conditions.
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Figure 7-62: Effective plastic strain evolution o an OIPDS subjected to dynamic lateral loading.
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A Finite Element and Experimental Analysis o f Energy Absorbing Systems under Static and Dynamic Loading Conditions.
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Figure 7-64: Comparison of results for an OIPDS - Static and dynamic cases.
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7.8 .4  E valuation  o f the O IPD S. (Shell E lem ent M odel)

Figure 7-65 illustrates a comparison of results between the shell element model and the 

actual experimentally observed force-deflection response. The same procedure as described 

in 7.8.3 was employed in which the OIPDS was simulated with and without the strain-rate 

effects. It can be seen that with the inclusion of strain rate effects, the collapse load appears 

to be well over predicted and it should be noted that the magnitude of force is similar to 

that of its brick element counterpart. However, in the post collapse stages, the force reduces 

considerably indicating the ability of the shell element to more accurately predict the force 

due to this bending dominated mode of deformation. For the shell model and excluding the 

effects of strain rates sensitivity, it can be seen that there is quite a good correlation 

between the numerical and experimental result. The collapse load is still over estimated 

although the magnitude is considerably less than its corresponding brick model counterpart 

as shown in Figure 7-64. It appears that the shell element model also has difficulty to 

correctly predict the collapse load for this OIPDS: it may be due to the straight portion of 

the oblong tubes acting as columns as outlined in section 7.7.4. The displacement evolution 

for this shell element model is displayed in Figure 7-66. For an interesting comparison, 

Figure 7-67 is displayed which offers a comparison of results between the shell and brick 

element formulations and that of experiment. It can be seen that the shell element 

formulation is the better one to use since it is quite suited to model bending dominated 

problems. In addition to this, the solution time using the shell element formulation is 

considerably less than that when using the brick element formulation.
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Figure 7-65: A force -  time plot comparing the brick and shell model against the actual observed result 
for an OIPDS.
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Figure 7-66: A numerical plot of the displacement evolution for a shell modelled OIPDS.
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Figure 7-67: A force -  time plot comparing the brick and shell model against the actual observed result 
for an OIPDS.
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7.9 N um erical R esults: Specific Energy M axim ization  o f  N ested System s.

The following numerical models are based on the CIPSS subjected to the various forms of 

external constraints and loaded quasi -  statically as described and analysed in chapter six. 

A comparison of results is made between the numerical and experimental methods by 

examining the force and energy - deflection responses. The various graphical plots such as 

boundary (symmetry) conditions are displayed in addition to the contact normals of the 

associated contact pairs. An illustration of the Von Mises total strain plots at various stages 

of the crushing process is also depicted. Finally, the Von Mises plastic strain history of a 

selected node from each model is illustrated.

7.10 P late In d en ter  C om pression.

7.10.1 C IPSS - In clin ed  Constraints.
Figure 7-68 illustrates two graphical plots depicting the boundary conditions applied to the 

one quarter model and the orientation of the contact normals for each of the contact pairs. 

Two contact pairs were used to model the contact interaction between the three tubes. The 

third contact pair represented the horizontal rigid platen and the outer tube whilst the final 

pair modelled the interaction of the inclined constraint with the outer tube. The same 

contact modelling procedure was also applied to all subsequent systems analysed in this 

section. A comparison of results between the two methods for a CIPSS subjected to 

inclined constraints is depicted in Figure 7-69. It can be seen that the numerical method is 

in very good agreement with the experimental method in predicting the force - deflection 

response with a difference of 4% between the two methods. Only a slight under prediction 

was observed for the collapse load of each tube, at approximately 38mm, the final strain 

hardening response been reasonably well predicted by the numerical code.

DCCJ

Plot of the 4 contact pairs 
with, their contact normals 
facing each other.

A Finite Element and Experim ental Analysis o f  Energy Absorbing Systems under Static and Dynamic Loading Conditions.

Figure 7-68: A graphical plot of the boundary conditions and contact pairs for a CIPSS with
inclined constraints.
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A Finite Clement and Experimental Analysis o f Energy Absorbing System s under Static and Dynamic Loading Conditions.
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Figure 7-70 displays the Von Mises total strain plots at the various evolution stages for this 

system. As expected, when each tube was loaded, the higher levels of strain were located 

within the plastic bending zone of each tube. Under the standard case of a system 

compressed between two rigid flat platens, there will also exist a hinge point at the upper 

and lower most regions of each tube under loading. For this case however, due to the 

presence of inclined constraints, the higher levels of strain existed only at three locations as 

shown in the final displacement of the same figure. Three nodes were used to capture the 

Von Mises plastic strain history throughout the deformation process as shown in Figure 

7-71. Each node was selected from the upper most and central region of each tube, i.e., the 

upper most region at the intersection of the two symmetry planes as shown in Figure 7-12. 

By examining this figure with the aid of arrows A and B, it can be seen that the outer tube 

in the region defined by node 1926 experienced an increased in plastic strain until contact 

was established with the central tube. From this point onwards, the strain becomes constant 

whilst concurrently; node 3474 in the central tube begins to rise until contact is established 

with the inner tube. Similarly, this node experiences a constant strain whilst node 621 

increases for the remainder for the displacement stroke. This continual increase in strain at 

this node was due to increased bending at this region.
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NODAL SOLUTION

A Finite Element and Experim ental Analysis o f  Energy Absorbing System s under Static and Dynamic Loading Conditions.
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Figure 7-70: Von Mises total strain contour plot for a CIPSS with inclined constraints.
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Figure 7-71: Plastic strain history of a CIPSS subjected to inclined constraints.
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7.10.2 CIPSS - Vertical Constraints.
The force-deflection response for a CIPSS subjected to sidewall constraints is depicted in 

Figure 7-72. The numerical method predicts the response extremely well and hence only a 

difference of 3% in specific energy absorption between both methods for this particular 

system. Figure 7-73 presents a graphical plot of the Von Mises total strain experienced by 

this system throughout the displacement stroke. Initially, before the sidewall restricted 

movement of the outer tube, the initial positions of the plastic bending zone locations were 

at both the horizontal and top-bottom sections. However, once contact was established 

between this tube and the sidewalls, the final position of the hinges moved to a location 

close to the sidewalls as shown in the final displacement plot of Figure 7-73. It was at this 

stage the system was in a ‘locked’ condition and hence the resulting force began to rise 

rapidly. Figure 7-74 depicts a Von Mises plastic strain history of three selected nodes from 

each tube. A similar behaviour was observed as in the previous system. The outer tube in 

the region of node 1926 experienced an increase in plastic strain until contact was 

established with the central tube. Accordingly, the region of node 3474 of the central tube 

experienced an increase in strain whilst the plastic strain of outer tube remained constant. 

Finally, the third selected node of the inner tube experienced an increase in plastic strain 

for the remainder of the displacement stroke due to the bending and separation of this 

section of the inner tube away from the central tube.
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Figure 7-72: Comparison of results between the numerical and experimental methods for a CIPSS
subjected to sidewall constraints.
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Figure 7-73: Illustration of the boundary and contact definitions with a total Von Mises total
strain plot for a CIPSS with sidewall constraints.
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Figure 7-74: Plastic strain history at three selected nodes for a CIPSS subjected to sidewall constraints.
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Finite Element Analysis and Results.

7.10.3 CIPSS - Combined Constraints.
Figure 7-75 offers the force- and energy-deflection response of a CIPSS subjected to both 

types of constraints. Again, a very good response was predicted by the numerical method. 

A final value of 2% was reported in terms of over prediction the specific energy response 

by the numerical method. The Von Mises total strain evolution plots for this system are 

displayed in Figure 7-76. Again a similar situation was observed with regard the plastic 

bending zone. Initially located at the horizontal quadrants of the outer tube, the hinges have 

shifted to a position close to the vertical rigid walls.

Figure 7-77 depicts the Von Mises plastic strain history of this system represented by the 

same three nodes. Again, it can be seen from this figure that once contact was established 

between each respective tube, the strain remained constant for the remainder of the stroke. 

At the same time, the region in the vicinity of the selected node for the inner tube 

experienced an increasing value in strain for the final displacement stroke.

A Finite Element and Experimental Analysis o f Energy Absorbing Systems under Static and Dynam ic Loading Conditions.
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Figure 7-75: Comparison of results between the numerical and experimental methods for a CIPSS
subjected to combined constraints.
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Figure 7-76: Illustration of the boundary and contact definitions with a total Von Mises total
strain plot for a CIPSS with both constraints.
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7.10.4 C IPD S - C om bined  C onstraints.

Figure 7-78 depicts a numerical comparison of results between a CIPDS and a CIPSS 

subjected to combined constraints under the action of a plate indenter. It can be seen that 

the CIPDS absorbs more energy in the earlier stages of deflection due to the presence of 

the spacers inserted between the tubes. The CIPDS absorbed 26% more energy than its 

CIPSS counterpart; this was due to the fact that the former system was absorbing more 

energy in the earlier stages of deflection as shown in Figure 7-78. The boundary conditions 

and contact pair definitions are depicted in Figure 7-79 along with the displacement 

evolutions for the complete stroke. A Von Mises plastic strain history of the three selected 

nodes is depicted in Figure 7-80. It can be seen that the node on the outer tube remains 

relatively constant for the entire stroke whilst the nodes on the remaining tubes experience 

an increase in strain. This is due to the fact that the plastic bending zone in the vicinity of 

these two node experiences a greater strain in contrast to the node on the outer tube.

A Finite Element and Experim ental Analysis o f  Energy Absorbing Systems under Static and Dynamic Loading Conditions.
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Figure 7-78: Force-deflection response of a CIPDS subjected to combined constraints.
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Figure 7-79: Illustration of the boundary and contact definitions with a total Von Mises plastic
strain plot for a CIPSS with both constraints.
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Figure 7-80: Plastic strain history at three selected nodes for a CIPDS subjected to both constraints.
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7.11 Point Load Indenter.

A Finite Element and Experimental Analysis o f Energy Absorbing Systems under Static and Dynamic Loading Conditions.

7.11.1 C IPSS - Inclined C onstraints.
Figure 7-81 illustrates a comparison of results for the response of a CIPSS subjected to 

inclined constraints under the crushing of a point load indenter. The numerical method has 

slightly under - predicted the collapse load of each tube followed by a slightly softening in 

force for the remaining deflection. However, in terms of energy absorption, a difference of 

2% exists between the numerical and experimental methods. The displacement plots 

consisting of the Von Mises total strain gradients are depicted in Figure 7-82. As shown in 

the final stages of displacement, it can be seen how the greatest plastic strain occurred in 

the region of the horizontal quadrants and in the upper most section of all three tubes.

The Von Mises total strain history of the identical three selected nodes is displayed in 

Figure 7-83. The behaviour of these three nodes is different from the previous three 

systems compressed under a flat rigid platen. Since the nature of the application load is in 

the form of a point load indenter, the plastic strain in the vicinity of the three selected 

nodes will increase for the full displacement stroke. This is due to the fact that bending in 

this plastic zone region of each tube becomes concentrated resulting in an increase in 

plastic strain within these regions. Figure 7-84 depicts the bisection history of this system, 

it can be seen that three bisections occurred during contact between the central and inner 

tube.

Reponse of a CIPSS with inclined constraints.

250 

200 

|  150

0)

50

700 wO)
600 E z
500

(D
400 £  

y
300 ^

Q .

200 w

100

0

for a7-81:

20 40 60 80 100 120
D isp lacem ent [m m ]

Comparison of results between the numerical and experimental methods
CIPSS subjected to inclined constraints.

X  N um erical Force.

A  E xperim enta l Force. 

□  E xperim enta l Energy. 

X  N um erica l Energy.

Figure

Edmund M orris B.Eng (Hons) 172



Finite Element Analysis and Results.

A Finite Elem ent and Experimental Analysis of Energy Absorbing Systems under Static and Dynamic Loading Conditions.

rigid pairs

3T2P=1 
3UB =J.O 
TMEf=. 15 S 62 5 
/EXPANDED 
BPTOBQV (AVG)

HODAIi SOLUTION

.68 4E-D4 

.029465

DCU

Figure 7-82: Illustration of the boundary and contact deflnitions with a total Von Mises total strain
plot for a CIPSS with inclined constraints.
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Figure 7-83: Plastic strain history at three selected nodes for a CIPSS subjected to inclined constraints.
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Figure 7-84: Force-time graph depicting the bisection history of the CIPSS with inclined constraints.

7.11.2 CIPSS - Vertical Constraints.
Figure 7-85 shows the outcome of results from both the numerical and experimental 

methods for a CIPSS subjected to vertical constraints. Again the force - deflection response 

predicted by the numerical method is in good agreement with that of experiments with only 

a slight under -  prediction in the collapse load of each tube. The force appears to remain 

almost constant in the post collapse stage of crushing. In terms of the total specific energy 

absorbed, the numerical method over predicts the experimental value by 2 %.

The Von Mises plastic strain history for this system is depicted in Figure 7-86. As 

expected, an increase in the plastic strain for the full displacement in the regions of the 

selected nodes is observed. Note for the outer tube at approximately 18mm defection that 

node 1926 began to experience an increase rate of plastic strain. This behaviour was due to 

the outer tube establishing contact with the sidewalls which generated increased bending in 

this region resulting in the observed increase in strain from 18mm. Figure 7-87 offers a 

Von Mises total strain plot at the various stages of displacement for this particular system.
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Figure 7-85: Comparison of results between the numerical and experimental methods for a CIPSS
subjected to sidewall constraints.
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Figure 7-86: Plastic strain history at 3 selected nodes for a CIPSS subjected to sidewall constraints.
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Figure 7-87: Illustration of the boundary and contact definitions with a Von Mises total strain plot
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7.11.3 CIPSS - Combined Constraints.
A similar prediction in the force -  deflection response by the numerical method for this 

system is offered in Figure 7-89. A small under prediction in the collapse load was 

observed whilst in the post collapse stages the force remained constant as opposed to a 

softening stage as observed in experiments.

Figure 7-90 and Figure 7-91 shows the various stages of displacement and the Von Mises 

plastic strain history of the three selected nodes respectively. It can be seen that the nodes 

behaved in a same manner as the previous two systems in that an increase in plastic strain 

occurred throughout the deformation stroke. Again it can be seen that node experienced an 

increase in plastic strain as soon as contact was established between the outer tube and the 

sidewall.

A Finite Element and Experimental Analysis o f Energy Absorbing Systems under Static and Dynamic Loading Conditions.
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Figure 7-89: Comparison of results between the numerical and experimental methods for a CIPSS
subjected to both constraints.
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7.11.4 CIPDS - Combined Constraints.
Figure 7-92 illustrates a comparison of results using the numerical method for both the 

CIPSS and the CIPDS subjected to a point load indenter and combined constraints. It can 

be seen how the CIPDS exhibits a more desirable response in that the response is 

rectangular in shape. At 43mm deflection the CIPDS has absorbed 55% more energy than 

its CIPSS counterpart; this is due to the fact that the system is more efficient in absorbing 

energy since the three tubes are being displaced synchronously. It can be seen however that 

the total displacement stroke for the CIPDS is 100mm as opposed to 120mm for the 

CIPSS; this was expected since the presence of the dampers will compromise the final 

length of the displacement stroke. Despite this, the CIPDS absorbed approximately 5% 

more energy. Figure 7-93 and Figure 7-94 depict the various stages of displacement and the 

plastic strain histoiy of the three selected nodes respectively. A dynamic simulation was 

also prepared for the CIPDS subjected to the combined constraints and a point load 

indenter as shown in Figure 7-95. It can be seen that the mode of response is very similar to 

the static case, however the magnitude of force is a lot higher. As explained in section 7.8.2 

with the aid of Figure 7-52 and Figure 7-64, the numerical code had a tendency to over

predict the magnitude of force for the dynamic response of the CIPDS and the OPIDS. 

Therefore, it can be assumed that the same behaviour was observed for the CIPDS 

compressed dynamically under the action of a point load indenter. Figure 7-96 illustrated 

the various stages of evolution for this particular system.
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Figure 7-93: Illustration of the boundary and contact definitions with a Von Mises total
strain plot for a CIPDS with both constraints.
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Figure 7-94: Plastic strain history at three selected nodes for a CIPDS subjected to combined
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7.12 C ylindrical Indenter.

7.12.1 C IPSS - Inclined  C onstraints.
For a CIPSS compressed under the action of a cylindrical indenter and exposed to inclined 

constraints, the corresponding force -  deflection response is illustrated in Figure 7-97. 

Again, an under prediction in force by the numerical method was observed. However, more 

importantly is the amount of energy absorption as predicted by the numerical method in 

which a small under prediction of 7% was observed. Figure 7-98 illustrates the Von Mises 

total strain displacement plots. The plastic strain history from three selected nodes is 

displayed in Figure 7-99. Since a cylindrical indenter is the intermediate condition between 

the limiting cases of a point load indenter and a flat plate indenter, it can be expected that 

firstly, the rate of increase in plastic strain will be less than of a CIPSS crushed under a 

point load indenter and secondly, the plastic strain in these regions will eventually be 

evenly distributed and become constant as in the case of a flat plate indenter.
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Figure 7-97: Comparison of results between the numerical and experimental methods for a CIPSS
subjected to inclined constraints.
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Figure 7-98: Illustration of the boundary and contact definitions with a total Von Mises plastic
strain plot for a CIPSS with inclined constraints.
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Figure 7-99: Plastic strain history at three selected nodes for a CIPSS subjected to inclined constraints.
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7.12.2 CIPSS - Vertical Constraints.
Figure 7-100 illustrates a CIPSS compressed under the action of a cylindrical indenter and 

with sidewall constraints, it appears that a greater under prediction in force is observed for 

the full displacement stroke, however a reasonable correlation was found in which the post 

collapse response predicted by the numerical method increased at the same rate as that 

detected in experiments. A difference of 12% exists between the numerical and 

experimental methods for the final specific energy absorbed. The displacement evolution 

of this system illustrating the Von Mises total strain is displayed in Figure 7-101. Note in 

the final displacement plot, the location of the plastic hinges near the cylindrical indenter. 

Figure 7-102 displays the Von Mises total strain history for this system subjected to 

sidewall constraints. As mentioned previously, node 1926 underwent a greater increase in 

plastic strain at approximately 18mm due to the outer tube making contact with the 

sidewall and therefore increasing the amount of plastic bending. It appears that the plastic 

strain became constant at an early stage of deflection in the region of this node. This 

behaviour is similar to that observed by a CIPSS compressed under the action of a flat plate 

indenter.
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Figure 7-100: Comparison of results between the numerical and experimental methods for a CIPSS
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Figure 7-101: Illustration of the boundary and contact definitions with a total Von Mises plastic
strain plot for a CIPSS with sidewall constraints.
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Figure 7-102: Plastic strain history at three selected nodes for a CIPSS subjected to sidewall
constraints.
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7.12.3 CIPSS - Combined Constraints.
Figure 7-103 depicts the numerical and experimental response of a CIPSS subjected to a 

cylindrical indenter and combined constraints. An under prediction in force was observed 

for this particular system. However, the mode of deformation is very similar to that 

observed in experiment. A difference of 11% was observed between the numerical and 

experimental methods in predicting the final energy absorption value. The boundary 

conditions and contact definitions in addition to the Von Mises total strain displacement 

evolution of this system is depicted in Figure 7-104. Figure 7-105 depicts a similar plastic 

strain history of the three selected nodes as in the previous system.
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Figure 7-103: Comparison of results between the numerical and experimental methods for a CIPSS
subjected to both constraints.
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7.12.4  CIPD S - C om bined C onstraints.

Figure 7-106 depicts a numerical comparison of a CIPSS and a CIPDS compressed under 

the action of a cylindrical indenter and exposed to combined constraints. It can be seen that 

a more desirable response is exhibited by the CIPDS due to its rectangular shaped 

behaviour. In contrast to the CIPDS compressed with a point load indenter which absorbed 

more energy than its CIPSS counterpart (See Figure 7-92), this system absorbs less energy. 

This was due to the fact that for the CIPSS case (See Figure 7-104), the outer tube wrapped 

around the cylindrical indenter to large extent which therefore caused an increase in energy 

absoiption. The resulting difference in the amount o f energy absorption between the two 

systems was approximately 11%. Figure 7-107 and Figure 7-108 depict the various stages 

of displacement and the plastic strain history of the three selected nodes respectively. A 

dynamic simulation was also prepared for the CIPDS subjected to the combined constraints 

and a cylindrical indenter as shown in Figure 7-109.A similar over prediction in response 

in the force was also observed by the numerical code for this particular system and is also 

due to the strain rate parameters used in the material model. It can be seen however, that 

the deformation mode is similar to its quasi static case. The various stages of evolution for 

this system CIPDS is depicted in Figure 7-110.
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Figure 7-106: Comparison of results for a CIPSS and a CIPDS compressed under a cylindrical
indenter and exposed to combined constraints.
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7.13 Summary of Chapter Seven.

• A description was given on the numerical procedures taken in both ANSYS and

LS-DYNA for the simulation of the various energy absorbers.

• An account was given on the procedure taken within ANSYS for the creation of the

oblong tubes. This was achieved by applying a tensile force to each tube and

updating the newly formed geometry before being discretized with elements.

• A mesh convergence test was analysed for both the brick element and the shell 

element in order to ensure that an appropriate density of elements was applied to 

the model to ensure reliable results.

• A comparison of results between the experimental and numerical methods was 

offered for each of the various energy absorbers analysed. The results were divided 

into two sections with the first section pertaining to chapter five and the second 

chapter related to chapter six.

• The chapter was divided into three sections with the first section concerned with the 

geometric variations of the CIPSS. It was found that very good agreement existed 

between the numerical and experimental methods. However, it was noticed that 

large deviations in results occurred fro the SCOPSS and the SCIPDS crushed under 

a plate indenter in the later stages of displacement. This was due to the fact that the 

slots present in the tubes caused the system to deform asymmetrically as a result of 

geometric imperfections.

• The second section was concerned with the quasi- static and dynamic analysis of 

the IPSS and the IPDS. Again, very good agreement was found between the both 

methods indicating the validity of the numerical models with the exception of the 

OIPSS and the OIPDS. Both the implicit and explicit numerical methods had 

difficulty in accurately predicting the collapse load of each tube.

• The third section was concerned with the specific energy maximisation of nested 

system compressed quasi -  statically. Excellent agreement was found between the 

two methods. This ensured that results obtained from further simulations not 

validated experimentally can be viewed with confidence.
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8 D iscussion  o f Results.

A Finite Element and Experimental Analysis o f Energy Absorbing Systems under Static and Dynamic Loading Conditions.

8.1 R esponse O ptim isation  o f  N ested System s.

As previously mentioned in chapter one, the response optimisation of nested metallic 

systems is based on one of the design principles of kinetic energy absorbers which state 

that the resisting force should ideally remain constant during the complete displacement 

stroke. In an attempt to achieve this particular form of response, three different design 

concepts were simulated using the finite element method and validated using experimental 

techniques and are outlined in the following sections.

8.1.1 O ut o f  P lane Standard  System s. (O PSS)
The first concept was based on a modified form of the CIPSS, namely the COPSS. This 

system exhibited an improved response in that the abrupt increase in force observed by the 

CIPSS was eliminated, thereby producing a monotonically increasing response. This was 

due to the fact that as the tubes were rotated, the resulting spaces between the tubes were 

not eliminated. Therefore upon loading, the tubes began to compress in a synchronous 

manner. It should be noted that the COPSS maintains its energy absorbing capacity despite 

its different mode of deformation which is desirable. The application of the various 

indenters to compress the nested systems resulted in a very similar force-deflection 

response; the only difference being the magnitude of force which varied slightly for each 

indenter. A simple method in optimising the response of a COPSS by applying 

Pythagoras’s theorem was proposed. This optimisation involves eliminating the gaps or 

spaces that exist between each tube, since it is these gaps that cause fluctuations in force as 

the three tubes establish contact with each other. This method can help the design engineer 

to select tubes of a certain diameter and thickness so that all tubes are just touching before 

crushing is initiated. In doing so, minimum fluctuations in force can be achieved. Good 

correlation of results between the both the numerical and experimental methods indicate 

that the various finite element models can successfully simulate the response of such 

energy absorbers.

8.1.2 Slotted T ube System s.
The concept of slotted tube systems such as the SCIPSS, the SCIPDS (crushed under both 

the plate and cylindrical indenter) and the SCOPSS was introduced. It was discovered that 

the compression of a SCIPSS exhibited a non-monotonically increasing force whilst the 

compression of a SCOPSS illustrated a monotonically increasing force.
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It was found that the compression of a SCIPDS under a flat plate indenter did not produce a 

reasonably rectangular shaped response, since there was a continual increase in force for 

the entire displacement stroke. This was due to the interaction of the slots with the plate 

indenter. In the initial stages of deflection as loading proceeded, the tubes collapsed in the 

region of the slots as expected. However as deformation ensued, the hinge points or the 

kinks in tube generated due to the presence of the slots became in contact with the 

surrounding tube resulting in a continual increase in force. This increase in force was due 

the presence of a shorter moment arm as a result of using a plate indenter. It should be 

recalled that the compression of a tube with a plate indenter caused the resulting force to 

increase due to the shortening of the moment arm about the plastic hinge points in the tube. 

Therefore, it appears that the slots are not particularly useful when used in conjunction with 

a plate indenter. In view of this, the compression of a SCIPDS with a cylindrical indenter 

was analysed. This system exhibited an improved response than its previous counterpart. 

This was due to the fact that the cylindrical indenter provided a longer moment arm and 

thereby the resulting force to maintain the deformation was less in magnitude.

It can be seen that the integration of slots into energy absorbers can be a very useful way of 

obtaining a desired deformation characteristic. However, the outcome of such devices 

containing slots depends very much on its interaction with the various forms of loading 

indenters used. Slots can be varied geometrically and placed at different locations around 

each tube to produce varying responses and hence, this provides for another topic of 

interesting research that can contribute to the literature of energy absorbing devices. A 

satisfactory correlation was found between both the numerical and experimental methods 

indicating the success in the applicability of the finite element method to simulate such 

devices.

8.1.3 Damped Systems. (IPDS)
The third and final concept for the response optimisation of nested system was based on the 

IPDS family of energy absorbers. This particular form of energy absorber employs a 

simple mechanism based on the concept of cylindrical rods inserted between the gaps of 

the nested tubes. This technique provided an excellent interaction between the three tubes 

and the indenter to produce the rectangular shaped response. The interaction was such that 

the three tubes deformed synchronously upon loading and in addition to this, the radius of 

curvature of the cylindrical rods optimised the response such that the central and inner tube 

was neither geometrically hardening nor softening. The CIPDS illustrated the most
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desirable response followed by the OIPDS. The latter system exhibited a slight softening 

response in the early stages of deflection; this was due to the fact that the interaction 

between the plate

and the outer tube was acting as a point indenter. This arrangement will increase the 

moment arm about the plastic hinges of the outer tube and hence the resulting force to 

maintain the deformation will be reduced. However, despite this behaviour, the overall 

rectangular shaped response was maintained. Also, the energy efficiencies of both the 

CIPDS and the OIPDS were the highest in comparison to the CIPSS and the OIPSS. This 

was due to the fact that a rigid perfectly force-deflection reaction will produce a 10 0 % 

energy efficiency and therefore, it can be seen that the response exhibited by the CIPDS 

and the OIPDS is an approximation of this idealised response.

A dynamic analysis using both experimental and numerical techniques was performed on 

the CIPSS, CIPDS, OIPSS and the OIPDS respectively. It was discovered that strain rate of 

the material mild steel for the given applied velocity of the striker was not significant in 

increasing the magnitude of force for such systems. Moreover, inertial effects did not 

reduce or enhance the force magnitude of the various energy absorbers analysed. 

Therefore, the design engineer being aware o f these facts can be assured that the energy 

absorption capacities of the systems analysed may be accurately predicted using quasi

static experimental techniques. In terms of the finite element method used to simulate these 

devices, it was found the strain rate parameters used in the material model within LS- 

DYNA largely over predicted the magnitude of force in the four devices analysed. The 

values of the strain rate parameters were taken from samples that experienced 5% strain. 

However, the devices analysed in this work experience significantly larger strain and 

hence, the current parameters used will not accurately predict the dynamic response of such 

systems. It should be noted however, that a strain rate insensitive material model could be 

used to accurately predict the dynamic response of such systems since both the 

experimental quasi-static and dynamic devices exhibited a similar magnitude of response. 

The design engineer should be aware that such an approach can only be taken within the 

parameters specified in this work, such as the impact velocity, mass of the striker, material 

used and the geometric dimensions of the tubes. Jing and Barton [43] also discovered that 

little differences in the mode of deformation between the quasi-statically and dynamically 

compressed tube systems.
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8.2 Specific Energy M axim ization  o f  N ested  System s.

The specific energy maximisation of nested systems was the second objective of the work 

as mentioned in chapter one and was based on the concept of using external constraints to 

subject the devices to a greater volume of deformation.

8.2.1 E xternal Constraints.
The specific energy maximisation of nested systems was based on the CIPSS device which 

was subjected to three various forms of load application such as the plate, cylindrical and a 

point load indenter. The external constraints consisted of rigid walls inclined at fifteen 

degrees and vertical rigid walls. The compression of the CIPSS subjected to each 

individual form of constraint and a combination thereof, was conducted independently in 

order to examine the effect of such constraints on the output response. This approach was 

taken for each of the various indenters. It should be noted that the concept of using the 

different indenters is based on the fact that in real applications, the geometry profile of the 

rigid object impinging on the energy absorber may neither be a flat rigid surface nor a point 

shaped indenter. Indeed it may an intermediate condition between the two limiting cases. 

Performance characteristics as described in chapter three was used to analyse the various 

devices subjected to the various loading conditions. It was discovered that application of 

the external constraints to the CIPSS which was compressed under a plate indenter did not 

produce desirable results. This was due to the ‘locking’ effect in which the indenter was 

unable to compress any further and as a result, a large reactive force was generated 

indicating the rigidness of the system. The application of the combined constraints to the 

CIPSS subjected to compression using the cylindrical indenter was analysed. It was found 

that both the energy efficiencies and the weight effectiveness for this system exhibited 

favourable results. Finally, the CIPSS subjected to a point load indenter offered the best 

outcome with both the energy efficiencies and the weight effectiveness exhibiting the 

highest results. Both the quasi-static and dynamic analysis of a CIPDS subjected to 

combined constraints by means of both the cylindrical and point load indenter was also 

analysed using numerical techniques. For the point load indenter, it was discovered that the 

CIPDS absorbed 4% more energy than its CIPSS counterpart. For the CIPDS compressed 

under a cylindrical, it was found that it absorbed 11% less energy. This was due to the fact 

that the outer tube of the CIPSS was wrapped around the cylindrical indenter resulting in 

more energy being absorbed. Overall, it was found that the application of external 

constraints as a method to increase the energy absorbing capacity of such devices is a
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feasible one, particularly for the CIPSS subjected to a point load indenter. Correlation of 

results between both the experimental and finite element technique also proved very 

satisfactory for these particular devices analysed.

8.3 A d vantages o f  the C IPD S and the O IPD S over other E nergy A bsorbers.

Although the operating loads of laterally compressed tubes is less than tubes compressed 

axially or otherwise, the energy absorbing capacity can be increased by encouraging the 

tube to collapse in an alternative mode which involves plastic hinges. This can be achieved 

as outlined in chapter six.

Axial loaded tubes or tubes involving a splitting or inversion mode of deformation contain 

certain defects. For example, axially loaded tubes result in a force-deflection response 

which consists of a high peak collapse load followed by large fluctuations of force about a 

mean load. This fluctuation about the mean load can be as much as 50% of the collapse 

load [94]. This is an undesirable feature for the reason that the impact loads transmitted to 

the protected structure will not be at its minimum magnitude. It is good practice to design 

the energy absorber such that the peak load is relatively close to its mean operating load. 

Hence, it can be seen from the analysis of the CIPDS and the OIPDS in this work that the 

peak load is at the same magnitude for the complete displacement stroke. This indicates 

that the resulting deceleration force will kept to a minimum. In addition to this, it should 

also be noted that the mode of deformation is one of bending and therefore the resulting 

response will smooth without any incidence of oscillations.

Further to this, in relation to axially compressed systems, successful loading can only occur 

if the angle of load application is less than 15% to the longitudinal axis of the tube itself. In 

terms of transport applications, such behaviour is undesirable since the line of action of the 

kinetic force may be outside of this range of 15% [62]. It is possible to laterally load the 

CIPDS and the OIPDS over an angle greater than 15% since the tubes will still begin to 

deform synchronously for most of the deformation stroke before symmetry is lost.

It was also discovered that square shaped tubes compressed axially were found to be 

unstable due to the fact that they often failed in an Euler type global buckling mode. As a 

result, the energy absorbing capacity of such systems is reduced considerably.

Laterally loaded tubes are easier devices to build in comparison to tubes which are axially 

split or inverted (External or Internally). This is due to the fact that special dies and 

mandrels must be manufactured to a high level of accuracy to ensure successful operation
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and desired output responses. A typical example of a die used for axial inversion of tubes is 

shown in Figure 2-11

Successful inversion of tubes is only possible when the material is of certain ductility and 

its strain hardening is not significant. In addition to this, the global dimensions of the die 

radius and the die radius must be with a compatible range in conjunction with suitable 

material properties in order to achieve the desired energy absorbing behaviour. Therefore it 

can be seen that axial inversion of ductile material is a complex process.

For bending dominated systems, a wide of ductile material can employed in order to 

convert the kinetic energy into plastic work which can be achieved through relatively little 

design parameters involved as seen in this work.
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9 C onclusions and R ecom m endations. 

9.1 C onclusions.

9.1.1 O ut o f P lane S tandard System s.

• The modified version of the CIPSS namely the COPSS can exhibit a monotonically

increasing force-deflection response due to the orientation of the tubes relative to 

one another.

• The energy absorbing capacity of this COPSS remains the same in comparison to 

the CIPSS despite its different mode of deformation.

• Application of Pythagoras’s theorem can be used to eliminate the gaps between the

tubes within the COPSS, in doing so, the fluctuation in force can be minimised.

9.1.2 Slotted T ube System s.

• The modified version of the CIPSS namely the SCOPSS can also exhibit a

monotonically increasing force-deflection response.

• Compression of a SCIPDS with a plate indenter did not produce positive results for

the reason that the slots do not interact with the indenter in a desired manner.

• The SCIPDS compressed with a cylindrical indenter can exhibit a rectangular force- 

deflection response which is the most desirable feature in the design of energy 

absorbers.

• Integration of slots into a tube or a system of tubes can produce some interesting 

results depending on its position on the tube and also on its interaction with the type 

of load indenter used.

9.1.3 D am ped System s.

• Damped systems provided the best design in contrast to the previous two designs

mentioned for achieving a rectangular shaped response.

• The design involved a simple mechanism in which cylindrical rods or spacers were 

inserted between the tubes of the nested systems in order to eliminate the gaps.

• In doing so, the tubes deformed synchronously upon loading whilst the radius of 

curvature of the spacers assisted in the prevention of both a geometrically 

hardening and softening response, particularly for the CIPDS

• The OIPDS exhibited slight strain softening response when the collapse load was 

reached; however, the overall response of this system still produced very desirable 

results.
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• In terms of performance characteristics, the CIPDS and OIPDS produced greater 

energy efficiencies in contrast to the CIPSS and OIPSS.

• A dynamic analysis of the CIPDS and the OIPDS using both the numerical and 

experimental techniques was performed. It was observed from the numerical 

method that an over prediction in the magnitude of force occurred for both the 

OIPSS and the OIPDS.

• It was found experimentally that the magnitude of response from the dynamic cases 

was similar to their quasi-static counterparts indicating the insignificance of strain 

rate and inertial effects for the given applied velocity of the striker.

• From this point above, the design engineer can be confident that quasi-static 

numerical techniques may be sufficient for describing the behaviour of such 

systems but only under the condition that same parameters such as impact velocity 

material type and tube dimensions are applied.

9.1.4 External Constraints.
• The CIPSS subjected to combined constraints under the action of a plate indenter

did not produce positive results due to the stiffness of this device.

• The CIPSS compressed under a cylindrical indenter offered improved results in 

terms of energy efficiency and weight effectiveness.

• Compression of the CIPSS under a point load indenter produced the highest results 

in terms of its energy efficiency and whilst the CIPSS compressed with a 

cylindrical indenter exhibited the highest weight effectiveness.

• Overall, it was found that the application of rigid walls as a form of external 

constraints is a feasible method for increasing the specific energy absorbing 

capacity of metallic energy absorbers.

9.2 Recommendations for Further Work.

• Analysis of the optimised COPSS as a result of using Pythagoras’s theorem and 

compare the output response to that of the standard COPSS analysed in this work.

• Examine the effect of applying the concept of external constraints on the optimised 

COPSS with the aim of increasing its energy absorbing capacity.

• A greater in-depth study on the design of slotted tube systems with the aim of 

achieving a rectangular shaped response. Such an approach can involve slots of 

different dimensions placed at different locations around the tube. Examine how the
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position and size of the slots affect the collapse mechanism when loading is 

applied. It is possible to have each tube collapsing in a desired manner which may 

contribute to achieving a desired output response.

• An analysis can be performed on increasing the specific energy absorbing capacity 

of the oblong tubes by exposing the systems to the external constraints. This may 

be applied in particular to both the OIPSS and the OIPDS.

• The concept of braced tubes which increases the collapse load and therefore 

increasing the specific energy capacity may be applied to the nested systems, 

particularly the CIPDS and OIPDS. However, it would be envisaged that only two 

instead of three tubes should be analysed for the reason that the system becomes too 

complex. An illustration of this concept is depicted in Figure 10-2 in Appendix 

One.

• All of the above recommendations can be analysed using numerical techniques and 

positive results may be validated using quasi-static experimental techniques.

• A mathematical analysis o f the CIPDS using the EST method (Equivalent Structure 

Technique) with the purpose of obtaining an expression with predicts the force- 

deflection response or the collapse load of each tube. For starting purposes, only a 

two tube nested system should be examined using this technique.

9.3 Thesis Contribution.

• A new family of kinetic energy absorbers in the form of nested metallic systems 

have been designed which can dissipate kinetic energy via a lateral mode of 

deformation. In particular the CIPDS and the OIPDS provided a unique way of 

exhibiting a rectangular shaped response using a bending mode of deformation due 

to a simple mechanism incorporated into the design.

• This new family of nested system can enhance their energy absorbing capacities by 

exposing them to external constraints whilst compressed under the action of various 

indenters.

• Finally, these nested systems provide a distinct advantage over energy absorbers for 

the reason that the bending mode of deformation is less complex in comparison to 

axially loaded or inverted tubes in terms of load application, design criteria and 

preparation as outlined in section 8.3.

A Finite Element and Experimental Analysis o f  Energy Absorbing Systems under Static and Dynamic Loading Conditions.
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• Finally it can be concluded that a positive outcome was achieved for both 

objectives, namely the response optimisation and specific energy maximisation of 

nested systems, and can thereby contribute to the literature in the field of energy 

absorbers.

A Finite ICIeiui'iit ami Experimental Analysis o f Energy Absorbing Systems under Static and Dynamic Loading Conditions.
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10 A p pendices.

10.1 A ppendix One.

A Finite Element and Experimental Analysis o f Energy A bsorbing System s under Static and Dynamic Loading Conditions.
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Figure 10-1: A number of schematics illustrating the various types of energy absorbers compressed 
either quasi -  statically/dynamically or both.
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Figure 10-2: A CIPDS (2 tubes) with wire bracing as a means of increasing the collapse load.
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10.2 A p p en d ix  T w o.

A Finite Clement and Experimental Analysis o f Energy Absorbing Systems under Static and Dynamic Loading Conditions.

Table 3. An Overview Table Illustrating the Various Types of Energy Absorbers Analysed.
Energy Absorber 

Category.

P late  Indenter.

* Objective 
1 or 2

External
Constraints.

Dynamic 
Striker 

Velocity [m/s]

Quasi -  Static 
Crosshead 

Speed, [m/s]

CIPSS 2 IC N/A 166E-6

CIPSS 2 SC N/A 166E-6

CIPSS 2 IC+SC N/A 166E-6

COPSS 1 NC N/A 16.6E-6

CIPSS 1 SLTS N/A 50E-6

COPSS 1 SLTS N/A 50E-6

SCOPSS 1 SLTS N/A 83.33E-6

SCIPDS 1 SLTS N/A 83.33E-6

SCIPSS 1 SLTS N/A 83.33E-6

CIPSS N/A NC 5 50E-6

OIPSS 1 NC 5 83.33E-6

OIPDS 1 NC 5 83.33E-6

CIPDS 1 NC 5 83.33E-6

Point Indenter

CIPSS N/A NC N/A 100E-6

CIPSS 2 IC N/A 166E-6

CIPSS 2 SC N/A 50E-6

CIPSS 2 IC+SC N/A 50E-6

COPSS 1 NC N/A 16.6E-6

Cylindrical Indenter

CIPSS N/A NC N/A 16.6E-6

CIPSS 2 SC N/A 16.6E-6

CIPSS 2 IC N/A 16.6E-6

CIPSS 2 IC+SC N/A 16.6E-6

COPSS 1 NC N/A 16.6E-6
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Table 4. Results obtained from experiments for the 11 samples tested.
Tfinal (s) Vinitial (mm/s) Vfinal (mm/s) Stroke (mm) Energy (J)

CIPSS Length (10mm) 
SPI 0.0176 4.78 3.12 74 252
SP2 0.0174 4.61 3.03 70 233
SP3 0.0176 4.60 2.99 71 236
SP4 0.0176 4.61 3.03 71 233
SP5 0.0172 4.60 3.02 70 232

CIPDS Length(15mm) 
SP6 0.0196 3.72 0.75 45 246
SP7 0.0192 3.78 0.82 45 252
SP8 0.0194 4.49 1.48 59 332
SP9 0.0196 4.74 1.48 64 373

SPIO 0.0196 4.60 1.55 62 346
SP11 0.0196 4.58 1.50 61 346

Table 5. Results obtained from experiments for the 10 samples tested.
Tfinal (s) V initial

(mm/s)
V final

(mm/s)
Stroke
(mm)

Energy (J)

OIPSS Length (10mm)
SPI 0.0186 4.75 3.45 81 208
SP2 0.0188 4.76 3.50 82 2 1 0

SP3 0.0192 4.76 3.50 84 209

OIPDS Length(15mm)
SP4 0.0196 4.76 1.62 63 369
SP5 0.0194 4.76 1.63 62 368
SP6 0.0192 4.74 1.90 64 349
SP7 0.0194 4.78 1.77 64 363
SP8 0.0194 4.78 1.82 64 360
SP9 0.0196 4.76 2 .0 0 66 345

SPIO 0.0194 4.75 1.84 64 355

Table 6 . The Chemical Composition of Mild Steel Grade ST 37 -  2.
Grade of Carbon Silicon Manganese Sulphur Phosphorous Aluminium

steel % % % % % %
ST 37-2 0 .05-0 .14 <0.30 0 .4 -0 .65 <0.025 <0.025 0.02 -  0.07
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10.3 Appendix Three.

Peer Reviewed Journals:

• Morris, E., Olabi, A., Haslimi, S., “Analysis of Nested Tube Type Energy 
Absorbers with Different Indenters and Exterior Constraints.” Accepted for 
publication in the Journal of Thin-Walled Structures.

• Morris, E., Olabi, A., Haslimi, S., “The Quasi-Static Analysis of Circular and
Oblong Type Energy Absorbers in a Nested Arrangement.” 2006, Submitted for
review to the International Journal of Mechanical Science.

• Morris, E., Olabi, A., Hashmi, Gilchrist, M.D., S., “Optimised Design of Nested 
Circular Tube Energy Absorbers under Lateral Impact Loading.” 2006, Submitted 
for review to the International Journal of Mechanical Science.

• Morris, E., Olabi, A., Hashmi, Gilchrist, M.D., “Optimised Design of Nested 
Oblong Tube Energy Absorbers under Lateral Impact Loading.” 2006, Accepted for 
publication in the International Journal of Impact Engineering.

• Morris, E., Olabi, A., Hashmi, S., “The Lateral Crushing of Circular and Non-
Circular Tube Systems under Quasi-Static Conditions.” Submitted for review to the
Journal of Materials processing Technology.

Conference Proceedings:

• Morris, E., Olabi, A., Hashmi, S., “FE Simulation and Experimentation of Nested 
Systems under Static and Impact Loading Conditions.” In: Proceedings of the 12th 
International Conference on Experimental Mechanics. Bari, (Italy) 2004. p. 196- 
203.

• Morris, E., Olabi, A., Hashmi, S., "Post Collapse Response of Nested Tube Systems 
with Side Constraints." In: Vickery, J., editor. Proceedings of the 22nd International 
Manufacturing Conference. Tallaght, Dublin (Ireland) 2005. p. 693-700.

• Morris, E., Olabi, A., Hashmi, S., "Experimental and Numerical Analysis of the 
Static Lateral Compression of Tube Type Energy Absorbers with Different 
Indenters." The Engineers Journal, 2005. 59(8) p. 505 - 510.

• Morris, E., Olabi, A., Hashmi, S., "Plastic Response of Nested Systems under Static 
and Dynamic Loading Conditions using FE and Experimental Techniques.” In: 
Dulieu-Barton J., Quinn, S., editors. Proceedings of the 4th International 
Conference on Advances in Experimental Mechanics. Trans Tech Publications, 
2005, Vol 3-4: p 377-382.
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• Morris, E., Olabi, A., Hashmi, S., “The lateral crushing of circular and non-circular 
tube systems under quasi-static conditions.” Accepted for the AMPT conference in 
August Las Vegas 2006.

• Morris, E„ Olabi, A., Hashmi, S.,” Experimental and Numerical Analysis of Slotted 
Tube Systems under quasi-static loading.” Accepted for the International 
Manufacturing Committee 23 in Belfast September 2006.
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