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Abstract

Computer applications are increasingly being written 1n object-oriented languages like
Java and C++ Object-oriented programming encourages the use of small methods and
classes However, this style of programming introduces much overhead as each method
call results 1n a dynamic dispatch and each field access becomes a pointer dereference
to the heap allocated object Many of the classes i these programs are included to
provide structure rather than to act as reusable code, and can therefore be regarded as
intermediate  We have therefore developed an optimisation technique, called
declassification, which will transform Java programs into equivalent programs from

which these imtermediate classes have been removed

The optimisation technique developed 1nvolves two phases, analysis and
transformation The analysis involves the identification of intermediate classes for
removal A suitable class 1s defined to be a class which 1s used exactly once within a
program Such classes are 1dentified by this analysis The subsequent transformation
involves eliminating these intermediate classes from the program This 1nvolves
mlining the fields and methods of each intermediate class within the enclosing class

which uses 1t

In theory, declassification reduces the number of classes which are instantiated and
used 1n a program during 1ts execution This should reduce the overhead of object
creation and maintenance as child objects are no longer created, and 1t should also
reduce the number of field accesses and dynamic dispatches required by a program to
execute An important feature of the declassification technique, as opposed to other
similar techniques, 1s that 1t guarantees there will be no increase in code size An
empirical study was conducted on a number of reasonable-sized Java programs and 1t
was found that very few suitable classes were identified for mlining The results
showed that the declassification technique had a small influence on the memory
consumption and a neghgible influence on the run-time performance of these programs
It 1s therefore concluded that the declassification technique was not successful in
optimizing the test programs but further extensions to this technique combined with an

intrinsically object-oriented set of test programs could greatly improve 1ts success



Chapter 1 Introduction

Computer programming has undergone phenomenal growth in recent years Software
apphcations are increasingly being wrntten in object-oriented languages like Java
[Gosling & Joy & Steele, 1996] and C++ [Ellis & Stroustrup, 1990], because they offer
simple, umform, abstract programming models This programming model provides the
benefits of increased flexibility, maintainability, extendibility and reusability Object-
oriented programs have the sigmficant disadvantage of being difficult to analyse and
reason about This makes the task of optimuizing the software much more difficult A
number of features associated with object-oriented languages contribute to this

problem

1.1 Features of object-oriented languages

One of the principle features of object-oriented languages 1s the use of inheritance
There are two types of inheritance, single and multiple-inheritance Single inheritance
means each class can inhent from only a single class, multiple-inhenitance means each
class can inhent from one or more classes Programmers are encouraged to design and
write software which 1s built from a hierarchy of classes Class libranes, for example,
are created which contain a collection of base classes These classes can be extended
by chent applications for use 1n their applications [Johnson, 1992] Another example
where a hierarchy of classes 1s required 1s building unspecialized data structures to be
generic and reusable rather than building custom optimized structures A drawback of
designing and wrniting software 1n this way 1s 1t increases the chances that it 1s built with
a deeply layered inhentance structure This 1n turn increases the difficulty of analyzing

the software

Another powerful feature of object-oriented software 1s polymorphism Polymorphism
1s the ability of an entity to become attached to objects of various possible types The
key benefits of polymorphism are that 1t makes objects more independent of each other
and 1t allows new objects to be added with mimimal changes to existing objects A
significant disadvantage of this 1s that dynamic dispatching 1s required to locate the

relevant methods at run-time Dynamic dispatching 1s required because the type of a



recerver 1s not known until run-time This makes the control flow of the program more
difficult to follow and substantially increases the complexity of analyzing the program
Data polymorphism 1s also facilitated and this too adds to the complexity Dynamic

class loading 1s another feature which increases the difficulty of analysis

These features of object-oriented languages not only make 1t difficult to carry out
precise and detailed analysis of the code but they also result in expensive overheads,
which slow down the execution of the program  Object-orniented programming
encourages the use of many objects and methods when designing software [Calder &
Grunwald & Zorn, 1994] In many programs, sophisticated structures are assembled
using a large number of composite objects Creating a large number of objects results
1n many objects being created on the heap This has two significant disadvantages, time
1s required to create and maintain the heap objects, and time 1s necessary to access the
fields and methods of each object Each access to an object’s field becomes a pointer
dereference to the heap allocated object This puts pressure on the memory subsystem

which adversely affects the run-time performance of the program

The widespread use of polymorphism and the fact that many methods are encouraged
when designing software results 1n a substantial decrease 1n the performance of object
oriented software This 1s because 1t 1s necessary to bind these methods to their calling
objects by dynamic dispatch at run-ime This 1s a major source of overhead for two
reasons, one 1s as a result of the direct cost of method lookup, and the second 1s the
indirect cost incurred as a result of the loss of the opportunity to inline methods and
carry out other optimization techniques The widespread use of objects and methods
are not the only 1ssues negatively affecting the run-time performance of object-oriented
software Other features of object-onented languages such as thread synchronization

and exception handling also contribute to this problem

Consequently, the run-time performance of object-oriented languages hike Java are
behind the most popular non object-oniented languages today, even with just-in-time
compilation technology There 1s an obvious need for more aggressive optimizing
techmques  The effectiveness of optimization 1s decreased by the difficulty 1n
obtaining adequate and precise analysis information A wide range of optimization
techniques have been researched and developed for both functional and object-oniented

languages



1.2 The Java Language

Java 1s an object-ortented language and has become very popular for software
development It has the following charactenisucs, statically typed, single inhertance,
dynamic class loading and late-binding  Statically typed means that every object in
Java has a well-defined type that 1s known at compile-time Java, however, 1s fully run-
time typed as well which means the run-time system keeps track of all objects and
makes 1t possible to determine their types and relationships during execution It 1s
therefore possible to use completely new kinds of dynamically loaded objects with a
level of type safety Dynamic class loading means that new classes can be dynamically
loaded at run-ime Late-binding means that a message 1s dynamcally bound to the
recerving object at run-ime These powerful properties of the language come with
significant overheads to the memory subsystem and run-time performance as discussed

earher

The Java language 1s a portable language The source code 1s firstly compiled into
bytecodes This byte code can then be executed on any computer architecture running
a Java virtual machine This ability to compile a program once and run it on many
different types of machine 1s very important Some optimization techniques analyse the
Java source code and obtain sufficient information to carry out different types of
optimizations Other techniques focus on analyzing and optimizing the Java bytecodes

In section 1 1, we described some of the characteristics of object-oriented languages
that increase the difficulty of optimizing programs The Java language has other

features that add to this complexity

They are as follows

1 The exception mechanism 1n Java presents obstacles to compiler optimization
When an exception occurs within a Java program, all instructions prior to the
exception should have executed and all instructions after should not
Optimization techniques often involve moving code within a program The
exception mechanism will severely restrict the freedom of code movement The
problem 1s exacerbated by the fact that most Java instructions can cause an
exceptton A number of approaches have been put forward to mitigate this
problem, but 1t 1s still an area of on-going research,

2 The Java source code 1s compiled 1nto Java bytecode, which 1s subsequently run

on a Java Virtual Machine (JVM) [Lindholm & Yellin 1996] There 1s a high



level of abstraction associated with JVM bytecode This 1s a salient problem for
compilers as 1t hides many machine dependent optimization opportunities,

3 The Java language 1s designed to be safe This 1s ensured by the secunty
features that are built into the language For example, each class 1s created with
a certain set of access rights associated with 1its fields and methods These
access rights give the programmer the ability to declare the visibility of the
fields and methods as being one of the following, private, public, protected and
default A class can be declared as being public, default, abstract and final The
use of access nghts and the other secunity features provided by the language
ensures 1ts safety This safety hinders optimization opportunities because any
changes made to the program by the optimization technique should not change

or weaken the security of the program

1.3 Garbage Collection Systems

It 1s estimated that CPU speeds have increased by 60% per year for the past two
decades [Chilimb1 & Hill & Larus, 1999A] The time required to access the main
memory of the computer has only decreased by 10% per year The unfortunate
consequence of this has been an ever-increasing gap between the performance of the
CPU and memory subsystems It 1s therefore vital that the computer’s heap and other
memory resources are used efficiently to improve the run-time performance of a
program Object-oniented programs create objects which are allocated within the heap,
during the execution of a program The more objects that are created, the more heap
space which must be designated to store them These programs have been criticized for
the amount of heap space they require when executing and consequently, the 1ssue of
heap space 1s becoming a serious problem In these situations it 1s paramount that the
objects in the heap space which are no longer needed are detected and removed
‘Garbage collector’ 1s the term used to describe a system which will automatically
search for, find and reclaim any heap allocated objects which are no longer required for

the execution of a program These objects are referred to as ‘garbage’

Some object-onented languages, such as Java and Smalltalk, do not have explicit
memory management operations The programmer 1s prevented from including explicit
memory deallocation statements within a program The programmer 1s therefore

dependent on the garbage collection system to find and release any unused storage



cells Object-onented languages which have explicit memory management operations
are dependent on the programmer to deallocate the garbage objects, when they are no
longer needed Failure to do so could put unnecessary pressure on the memory
subsystem These languages can also benefit from an automatic garbage collection
system, which can be used to remove garbage objects from the heap space that the
programmer has not explicitly deallocated This reclaimed heap space can then be used

to accommodate any new objects which are created

The main aim of the run-time garbage collection system 1s to automatically search for,
find and deallocate any garbage 1n the program’s heap space during execution When
an object 1s allocated on the heap, used, and then the reference to the object 1s no longer
needed, the garbage collection system should detect this and deallocate the memory for
the object This space will be used 1n the future when allocating new objects This
process 1s performed not by the compiler, but by the runtime system Much research
has and 1s taking place into developing and improving run-time garbage collection
techmques Three of the most popular types of run-time garbage collection schemes
are mark and sweep, reference counting and, copying These schemes increase the
amount of heap space that 1s available to the runming program Performing garbage
collection on a program may introduce both performance overheads and extra
implementation complexity There has been much research as a result into garbage
collection algonthms spanning a wide range of precision, and 1t should be noted that

determining when objects are no longer needed 1s a very difficult task

A second 1mportant benefit of a run-time garbage collection system 1s that 1t frees the
programmer from the responsibility of explicitly releasing objects in his/her program
when he/she no longer needs them Programmers do not have to waste their time even
thinking about the 1ssue when an automated tool has the full responsibility for finding
and releasing garbage 1n a program He/she 1s free to concentrate on other important
1ssues which need to be addressed when designing and wniting application software
Thirdly, 1t can sometimes be very difficult for a programmer to know when to write the
statement to release the object(s) at the critical moment necessary Incorrectly placed
assignment statements could result in unintended and invalid results during program

execution

The ability of a garbage collection system to achieve absolute precision in the detection

of garbage cells m a program 1s impossible and 1s equivalent to the halting problem



There are a number of techniques used by each of the garbage collection systems Each
techmque has varying degrees of sophistication and complexity, but the benefit of the
technique must be judged on 1ts ability to detect and reclaim garbage cells, increase

heap memory and improve the speed performance of the program

It would be detrimental to the runming of a program 1if an object which was being used,
was 1dentified as garbage by a garbage collector and destroyed This would result 1n
the garbage collector arbitranily affecting the correct execution of programs Therefore
garbage collectors should use safe approximations as to what cells are no longer
required by a program This 1s considered a conservative garbage collector If a
conservative garbage collector 1s overly conservative then this could result in the

retention of large amounts of garbage

1.4 Uniform verses Non-Uniform techniques

The mechanisms associated with software development using some object-oriented
languages like Java promote a uniform approach, while the mechanisms associated with
other object-oriented languages like C++ promote a non-uniform approach Automatic
garbage collection 1s one of these mechanisms which promote a uniform approach to
software development in Java Automatic garbage collection mechamisms can have a
negative effect on the run-time performance of a program Other object-oriented
languages hike C++ have explicit memory management operations This means that
they do not suffer from the overhead of implementing an automatic garbage collector
There are, however, significant benefits associated with automatic garbage collection
mechanisms as highlighted earlier and these are thought to out-weigh the disadvantage

of the run-time overhead

Object-oniented languages such as C++ have a number of language features that
improve the performance of the language One of these 1s the ability to declare an
object or method to be ‘inlined’ Object inlming means a programmer can declare the
fields of an object to be either objects or pointers to objects This feature gives the
programmer the ability to explicitly inline objects within other objects In doing so you
group related objects which can be allocated and deallocated together A consequence
of this 1s a reduction 1n the number of memory dereferences necessary during program

execution C++ also permuts a programmer to explicitly declare that a method 1s to be



inlined The method specified as inlinable can then be expanded inline by the compiler
at each pomnt in the program 1n which 1t 1s invoked In doing so, the run-time
performance of the program should be mmproved because you have eliminated the
number of dynamic dispatches Explicit inlming requires changes to be made to the
code structure, which modifies the shanng semantics of a program This burdens the
programmer with the responsibility of deciding which objects and methods should be
mlined Automatic inlining frees the programmer from the responsibility of having to

explicitly inline objects and allows him/her to program 1n a uniform object model

Another language feature that improves run-time performance 1s allowing the
programmer to explicitly declare 1f a method 1s virtual or not A method that has been
declared as being virtual, can be overridden by methods created in subclasses A non-
virtual method cannot be overridden 1n this way The compiler can use this information
to implement direct procedure calls There are disadvantages associated with this
technique These include the fact that in some situations 1t may be difficult to decide if
a method should be wvirtual or non-virtual  Another reason 1s 1t restricts the
extendibihity and reusability of the classes when they are declared as non-virtual It

also forces the programmer to write software 1n a non-uniform way

1.5 Optimizing Memory Usage

The functicnality and complexity of software has increased over the past number of
years and 1s continumng to grow This often results 1n a greater requirement for heap
space by software programs Object-oriented programming encourages the building of
programs which resemble the structure of the oniginal problem to be solved The
purported benefit of this type of programming 1s software which 1s easier to read and
understand, which 1n turn should lead to software which 1s easier to debug and
maintain  However, this leads to greater inefficiency in memory usage and decreases

the run-time performance of object-oriented software

Compile-time garbage collection and compile-time garbage avoidance techniques are
optumization techmiques which can reduce the run-time memory requirements of
programs The compile-ime garbage collection techmque does not actually collect
garbage cells duning the compilation of a program The goal of compile-time garbage

collection 1s to analyse a program during compilation to determine any cells that are no



longer required after a particular point for the evaluation of the program This program
15 then annotated to 1dentify the detected cells as garbage The garbage cells are
subsequently collected automatically at run-ume These cells will be available for
further use during the execution of the program once they have been collected
Therefore, compile-time garbage collection should be regarded as compile-time
optimization of memory usage Because the garbage collection itself does not actually
take place at compile-time, the term compile-time garbage collection 1s misleading
However this term has been used for this kind of optimization 1n the past, so 1t 1s used
again here This technique reduces the amount of heap space required by a program

during execution

The compile-time garbage avoidance technique has a different approach to that of the
compile-time garbage collection system Its aim 1s to analyse a program’s source code
and to detect and carry out changes to the source code These changes should
transform the source code and reduce the amount of heap space 1t allocates and uses
during 1ts execution These optimization techmques have been successful in improving
the run-time performance of programs Object inlining 1s an important compile-time
garbage avoidance technique and 1t 1s used to optimize object-oriented programs It 1s
estimated, for example, in [Dolby & Chien, 2000] that the object mlining techmque
improves the run-time performance of programs by approximately 14% Less research
has taken place into compile-time garbage collection techniques for object-onented
languages A number of them are presented in section 22 and some have had
encouraging results  For example the technique in [Gay & Steensgaard, 1998]

estabhished that speed improvements of up to 11% were achievable

1.6 Other optimization techniques

There are many other optimization techniques developed besides the techniques which

one would class as optimizing memory usage The following are a list of popular and

widely used optimization techmiques, which can be applied to different types of

languages

1 Dead code elimination — This 1s the deletion of code within a program, which will
never be executed An example of dead code elimination 1s finding a method 1n a
class that 1s never called 1n the program This can be safely eliminated from the

program,



2 Local common subexpression elimination — This 1s a prevalent and successful
technique which 1s used to eltminate redundant re-compilations within a program
Value numbening 1s the algorithm [Simpson, 1996] and [Briggs et al , 1996] used to
achieve this optimization This algorithm involves numbering all vanables in the
program Two vanables are given the same number only if they have the same
value Two expressions williget the same number 1if they have 1dentical structure
and the vanables used n each expression have the same value Once the
numbering has been completed 1t 1s easy to identify common sub-expressions,

3 Register & stack allocation — Carefully allocating vanables to storage locations
within a program during program execution can enhance the performance of the
program Local vanables which can be stored on the stack, for example, eliminate
the need for a store and subsequent load from memory and thereby improves the
performance,

4 PeepHole optimizations — The performance of a program can be enhanced by
replacing complex computations with simpler ones, that compute the same result,

5 Constant/copy propagation - Constant propagation involves analyzing a program to
identify where constants are used It 1s then possible to substitute each constant
with 1ts value This aids the analysis of the program because more information 1s
available on the vaniables which use these constants Copy propagation 1s similar to
constant propagation It involves substituting a vanable with a value instead of a

constant

There are many optimization techniques which are specifically designed for object-
onented languages Their success at improving the run-time performance and/or heap
usage has resulted n their use becoming prevalent Three of the more popular are
presented 1n this thesis, improved memory usage, partially redundancy elimination
(PRE) and elimination of dynamic dispatches These techniques are presented to
illustrate some of the other methods which can be used to optimize object-oriented

software



1.7 The Declassification Technique

In this thesis we present the declassification technique, a novel optimization technique
designed for the Java language The inception of the declassification technique was
motivated by the success of the higher-order deforestation algorithm proposed in
[Hamilton, 1996] This optimization algonthm 1s a compile-time garbage avoidance
technique It has the ability to eliminate intermediate data structures from higher-order
functional programs By removing the intermediate data structures, the performance of
the program should be 1mproved and the heap space required by the program reduced
It was also influenced by the fact that in the C++ language, a programmer can declare
an object or method as being inlined There are a number of salient advantages
associated with mmhning This motivated our research 1n finding a way in which to

automatically inhine classes

The central aim of the declassification technique 1s to reduce the number of top-level
classes that are instantiated and used in a program at run-time A top-level class 1s a
Java class which 1s not an 1nner class Inner classes were introduced tn Java 1 1 1 and
there are four types, static member classes, member classes, local classes and
anonymous classes Other references to 1nner classes may differ, for example in some
books the term inner class refers to member classes, local classes and anonymous
classes but not static member classes Throughout this thesis top-level classes will be
referred to as classes and a distinction will only be made between top-level and inner
classes when extensions to the declassification technique are discussed 1in chapters 6

and 7

The declassification technique analyses a program to identify suitable classes for
inlining A suitable class 1s a class which 1s used exactly once within the program A
usage count 1s associated with each mlinable class and the number of its uses are
calculated by analyzing how the class 1s instantiated and manipulated within the
program A field which 1s declared in the program of the inlinable class type 1s
considered a use of the class A field of the inlinable classes superclass type 1s also
counted 1f 1t 1s used to store an 1nstance of the mlinable class Local vanables, method
parameters and method return types of the mhnable class type are counted Simularly,
if a local variable, method parameter or method return type 1s declared in such a way
that 1t enabled an 1nstance of the inlinable class to be stored there, the usage count of

the inlinable class 1s incremented Any anonymous object of the inlinable class type 1s

10



counted Each superclass of the inlinable class 1s also counted as a use of the mlinable
class The process of identifying a suitable nlinable class 1s explained 1n detail 1n
section 4 31 Declassification means mlining each nlinable class which has a usage
count of one within the class which uses 1t, which 1s referred to as the ‘enclosing’ class
Any references to the instance of the mlined class are changed to reference 1ts inlined
fields and methods within the enclosing class object The declassification technique

can then eliminate the mlined classes declaration from the program source code

Inlining as an optimization technique 1s a known algorithm The optimization
technique presented in [Dolby, 1997], for example, inlines the fields and methods of an
object within a container object This 1s discussed 1n detail in section3 21 The
important contributions made by the declassification technique are the presentation of a
new analysis algorithm for deciding when mnlming should take place and the fact that 1t
inlines classes within container classes not objects within container objects The
declassification technique involves a source code to source code transformation The
optimized program code can then be compiled and run as normal Although the
declassification techmque has been designed and implemented to transform program
source code, it 1s possible in theory to apply the analysis and transformation algorithms
to bytecode directly We investigate the potential of the declassification technique by

evaluating 1ts effect on a number of reasonable sized programs

A number of benefits are associated with the declassification optimization technique

These include

1 Eliminating the need to create ‘intermediate’ classes from a program This
should reduce the pressure on the memory subsystem as fewer objects need to
be created and maintained,

2 The fields of the mlinable class become local to the enclosing class  This
reduces the number of memory dereferences as these fields can now be accessed
directly,

3 The methods of the inlinable class also become local to the enclosing class
This ehminates the necessity of a subroutine call to access the classes methods
This will in turn reduce the number of dynamically dispatched messages
required by the program, which should improve the run-time performance of the

program,

11



4 The mhinable classes methods are inlmed within their enclosing class  This
exposes the body of each method to further optimization opportunities in the
context of the original invocation,

5 An 1mportant benefit associated with this technique 1s that 1t guarantees that
there will not be any increase in the code size of a program following its
opttmization This 1s an important 1ssue for Java because one of the main
reasons 1t became so popular was as a result of i1ts switability for writing
software for the internet  Any enlargement 1n code si1ze would increase the time
required to download Java programs from the Internet and increase the disk
space required to store them Other optimization techniques such as [Dolby,

1997] cannot give such a guarantee

1.8 Summary

A lot of research 1s taking place nto the optimization of object-oriented languages
because of the populanty of object-onented software development and the considerable
overheads associated with the execution of object-oriented software The features
which make object-onented languages, specifically the Java language, difficult to
analyse were discussed 1n section 11 The Java language 1s a popular language, 1t
allows you to program in a uniform abstract way Its charactenistics were explored
section 1 2 The Java language has inbuilt run-time garbage collection faciliies The

benefits and drawbacks of such a system were discussed 1n section 1 3

A number of different optimization techniques were introduced 1n section 1 5 including
compile-time garbage collection and compile-time garbage avoidance techniques An
overview of the declassification technique was presented 1n section 1 7 Its central aim
1s to 1dentify and inline suitable classes It 1s a fully automatic optimization technique
for the Java language It does not burden the programmer with the responsibility of

explicitly stating which classes should be 1nlined

In chapter 2, we introduce compile-time garbage collection, explaining the three main
techniques used, compile-time garbage marking, explicit deallocation and destructive
allocation Chapter 3 presents a wide range of compile-time garbage avoidance
techniques for both functional and object-oriented languages The benefits and

problems associated with the garbage avoidance techniques are discussed The analysis

12



and transformation algonthms used to carry out the declassification technique are
presented 1n chapters 4 and 5 The declassification technique was used to optimize a
number of reasonably sized programs and the results of this empinical study are
presented 1n chapter 6 Finally, chapter 7 analyses the results from the empirical study

Further possible extensions to the declassification technique are also discussed
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Chapter 2 Compile — Time Garbage Collection

In this chapter we give an overview of some compile-time garbage collection
techniques The goal of compile-time garbage collection 1s the detection of garbage
cells during the compilation of a program and annotating the program to allow these
cells to be collected at run-time The program 1s searched and the relevant cells are
identified This program 1s then annotated to highlight the detected cells as garbage
and they can be subsequently reclaimed for use 1n allocating new objects This chapter
1s divided 1nto three sections, section 2 1 discusses the compile-time garbage collection
techniques which have been researched and developed for functional languages, section
2 2 discusses the techniques for object-oriented languages The benefits of compile-
time garbage collection are discussed 1n section 23  We look at the techmques which
are used to optimize functional languages because this research 1s more mature and
lessons can be learned from these techniques which can and are applied to object-

oriented languages

2.1 Functional languages

Three of the main techmques used to perform compile-ume garbage collection on

functional languages are

1 Compile-time garbage marking,
2 Explicit deallocation,
3 Destructive allocation

Programs are annotated for each of the three methods of compile-time garbage
collection using information obtained by static analysis Static analysis 1s the analysis
of programs to determine properties of programs without actually executing them
Static analysis can involve collecting information about the definition and uses of cells
in a program Relationships between cells can be traced to determine how they affect
each other The control flow of the program can be analysed to try to determine the

sequence of events that could take place during the execution of the program
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The results of the static analysis are used by each techmque to add the necessary
annotations to a program Type nference 1s an example of a static analysis technique
which 1s used to obtain information about the object types which are used 1n a program
This information 1s obtained by the analysis of the program structure and physical data
layouts, to distinguish between different data types which occur in a program
Examples of type inference schemes which can be used are described 1n [Baker-Finch,
1992], [Wrnight & Baker-Finch, 1993] and [Smetsers ef al, 1993] Other static analysis
techniques, which can be used are described in [Mycroft, 1981], [Hudak, 1987], [Jones
& Le Metayer, 1989], [Hamilton & Jones, 1990], [Hamilton, 1992] and [Hamlton,
1998]

2.1.1  Compile-Time Garbage Marking

This technique 1nvolves marking those cells 1n a program which will become garbage
after their first use These cells will subsequently be freed and made available for
further allocations Static analysis 1s used to obtain information about cell usage n a
program and the program 1s then annotated for compile-time garbage marking A usage
counter could be associated with each cell to determine the number of times that cell
has been used A cell, which has a usage count of no more than 1, will be tagged to
indicate that 1t will become garbage after 1t has been used During the execution of the
program, the run-time garbage collector will automatically collect these tagged/marked
cells after their first use These cells will be added to a run-time free list and their

memory space will be available for further allocations

[Hughes, 1991] describes how a strict higher-order functional language can be
optimized by a compile-time garbage marking technique Static analysis 1s used to
determine properties about a program Dunng the compilation of a program 1t 1s
annotated to indicate that at certain points during 1ts execution the store-cells can be
collected as garbage [Hughes, 1991] introduces two static analysis techniques to
obtain information which will allow the programs to be optimized for compile-time
garbage marking, generation analysis and mhentance analysis The generation
analysis technique 1dentifies the sharing information among values within expressions
It can tell which values within a particular list are unshared when evaluation of the

expression finishes Inheritance analysis 1s the second technique and 1t 1dentifies
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which values of a list used within a function are required for the evaluation of the result

of the function

The sharing information obtained by the two technmiques 1s very important It 1s used to
identify values which are no longer needed after a particular point 1n a program These
values can therefore be marked and considered as garbage A reference semantics 1s
provided to show that the store related optimizations of compile-time garbage marking
are correct By ‘correct’” we mean that an unoptimized and an optimized program
should compute exactly the same result, that 1s, they are equivalent The denotational
semantics of the language 1s therefore augmented with denotational store semantics

This serves as a reference for the correctness of the analysis and optimizations

In [Hamulton, 1995] 1t 1s shown how a program written 1n a first-order lazy functional
language could be annotated for compile-time garbage marking The static analysis
technique used to obtain properties about a program 1s called usage counting analysis
and 1s responsible for detecting and counting the number of times each value 1s used 1n
a program Usage counting values are then abstracted to usage patterns to allow usage
counts to be determined at compile-time The aim of this analysis 1s to be able to
determine at particular points 1n a program the maximum number of times a value will
be used 1n the future evaluation of the program This information 1s invaluable 1n
identifying cells within a program, which should be tagged to indicate that they will
become garbage after their first use It 1s shown how a program optimized 1n this way
can be proven correct A reference semantics 1s provided in order to show that the
usage counting store related optimizations for compile-time garbage marking are

correct
This technique 1s similar to that of [Hughes, 1991], as they both use static analysis

information to tag cells in a program, to indicate that they can be collected as garbage

at certain points during program execution

16



2.1.2  Exphat Deallocation

Using this technique, cells 1n a program are analysed to determune 1f they will always
become garbage at a particular point in that program The program 1s then annotated to
indicate that the cell can always be deallocated at this particular point This method
ensures that cells are exphcitly deallocated immediately after becoming garbage
Explicit deallocation does not involve marking cells 1n a program and then checking
each cell during 1ts execution to see 1f 1t 1s marked, as 1s done for compile-time garbage
marking However, 1t does require that cells which are explicitly deallocated are added
to a free list Static analysis 1s again used to obtain information about cell usage 1n a

program and 1t 1s used to annotate programs for explicit deallocation

In [Hamilton, 1995], 1t 1s shown how a program written 1n a first-order lazy functional
language could be annotated for compile-time explicit deallocation Usage counting
analysis 18 again used to 1dentify the particular points 1n a program where cells are no
longer needed and can be explicity deallocted This usage counting analysis is stmilar
to the analysis used for compile-time garbage collection This techmque 1s also similar
in the way the standard semantics of the language are augmented with store semantics
These are used as a reference against which the usage counting store related

optimizations can be proved correct

An explicit deallocation technique 1s considered in [Mohnen, 1995], which analyses the
data structures found 1n functions wntten 1 a first-order functional language Each
function 1s analysed to detect data structures 1n the function which will become garbage
after a particular point in the program This data structure can then be subsequently
deallocated and made available for further allocations This optimization techmque
focuses entirely on the data structures of the arguments to a function and 1t has the
ability to handle arbitrary data structures Its aim 1s to obtain enough information to be
able to determine 1f the data structure becomes obsolete during the execution of the

function

An abstract interpretation, which exploits the special structure of the underlying
functional language was developed in [Mohnen, 1995] This interpretation will make it
possible to determine 1f the heap cells of the arguments are inherited 1n the function
result An argument 1s inherited 1f 1t 1s needed for the further evaluation of the program

and 1s therefore not considered garbage The inhentance information gathered by the
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abstract interpretation associates an abstract domain with the heap cells of the function
arguments The abstract domain can be inferred directly from the types of the
arguments This abstract domain 1s a finite partially ordered set, and the efficiency of
the techmque 1s improved because 1t does not contain all possible argument
combinations It should be noted that 1f one cell of a data structure 1s inherited, all cells
of that data structure are considered inhenited The cells associated with the arguments
of the function which are considered garbage on termination of that function, can be
safely deallocated The correctness of the abstract interpretation 1s considered in this
paper and 1t proves that a program, which has been modified by this technique 1s
correct Using information gathered as a result of the abstract interpretation, commands

can be 1nserted 1nto the program to explicity deallocate the approprate cells

The [Hughes, 1991] approach to static analysis has close simianittes with [Mohnen,
1995] The [Mohnen, 1995] technique however, has the ability to handle arbitrary data
structures or structures containing functional parameters Garbage 1s detected 1n
[Hughes, 1991] 1if heap cells are not ihented, [Mohnen, 1995] does not have this

restriction

There are two ways m which the deallocation of the cells can take place within a

program

I The cell could be deallocated immediately after 1t becomes garbage This will have
the disadvantage of frequent interruptions to the actual computation,

2 The second approach delays collection of garbage cells until the end of the
corresponding function call It has the advantage of efficiency as more deallocation
can be performed at the same time However, 1t has the disadvantage of delaying

the collection of garbage cells

2.1.3  Destructive Allocation

This technique 1nvolves reusing garbage cells directly within a program A
deallocation function 1s not required since garbage cells are reused directly within a
program rather than being added to a free list Static analysis 1s again used to obtain
information about cell usage 1n a program and 1t 1s used to annotate programs for
destructive allocation The analysis must determine that a cell will no longer be needed

for the evaluation of a program and could be explicitly deallocated This cell can then
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be destructively allocated at some later point 1n the program These cells are not
deallocated by the run-time garbage collector and added to a free list for further

allocation The cells are reallocated directly within the program

[Hughes, 1991] descnibes how a strict higher-order functional language can be
optimized by a compile-time destructive allocation technique Static analysis 1s again
used to obtain properties about a program without actually executing 1t It 1s shown
how programs are annotated to allow a deallocation followed by an allocation to be
coalesced to give a destructive allocation instead Generation analysis which has been
described earlier 1n compile-time garbage marking, and a destruction function analysis

are the two techniques used to obtain the necessary information

The destruction function analysis techmique in [Hughes, 1991] investigates the
arguments to a function, to identify any of these arguments or part of the arguments,
which could be reused within the function body A free cell does not have to be
allocated 1f we can reuse an existing argument value This 1s essential information for
the destructive allocation techmque Simularly, as 1n the case of compile-time garbage
marking, [Hughes, 1991] provides a reference semantics to show that the store related

optimization of compile-time destructive allocation are correct

In [Hamilton, 1995], 1t 1s shown how a program written 1n a first-order lazy functional
language could be annotated for compile-time destructive allocation Usage counting
analysis 1s again used to obtain information about cell usage 1n a program and 1t 1s used
to annotate programs for destructive allocation It 1s shown how a program optimized
n this way can be proven correct Simularly, as 1n the cases of compile-time garbage
marking and explicit allocation, the standard semantics of the language 1s augmented
with store semantics  This 1s used as a reference against which the usage counting store

related optimizations can be proved correct

[Mohnen, 1995] considers using the technique previously presented for explicit
allocation to implement a destructive allocation compile-time garbage collection
technique Consider the scenario where a deallocation 1s followed immediately by an
allocation In this situation a deallocation 1s not required since the garbage cells can be
reused directly within the program, rather than being added to a free list However,
[Mohnen, 1995] does not implement a destructive allocation technique because of a

major disadvantage associated with it The complexity of the optimization technique
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would have to be increased 1n order to handle destructive updates It 1s estimated that
the gams associated with destructive allocation are far out-weighed by the increased

complexity

2.1.4  Companson of the different functional techniques

214.1 Compile-time garbage marking

Compile-time garbage marking requires extra storage per cell to indicate whether or not
the cell 1s marked The extra storage required may be more than the storage which 1s
saved by using this technique A second problem associated with this technique 1s that
extra time 1s required during the execution of the program to check each cell to see 1f 1t
1s marked This overhead 1n execution speed could potentially swamp out the benefits
Another disadvantage 18 the necessity of maintaining a run-time free list, to which the
marked cells are added This restricts the run-time garbage collector to a scheme which
uses a free list Because of the overall disadvantages associated with compile-time

garbage marking, 1t 1s unlikely to be suitable for practical use

2142 Explict Deallocation

This technique does not require storage space to be allocated to associate a usage
counter with each cell in a program Additional memory space 1s therefore not required
by this techmque Expensive time 1s not wasted during the execution of the program
checking each cell to see 1f 1t 1s marked, which must be done to implement the compile-

time garbage marking techmque

Explict deallocation requires that cells, which are explicitly deallocated, are added to a
free list The run-time garbage collection system used must therefore use a free list
when 1t 1s allocating storage This restricts the type of run-time garbage collection
system which can be chosen, to a scheme like mark and sweep Run-time garbage
collectors which do not use a free list are considered to be more efficient garbage
collectors As a result, the majonity of garbage collectors which are currently used for
functional languages are of the copying type The techniques of compile-time garbage

marking and exphict deallocation are therefore of limited use
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There 1s also a problem of conflicts between this technique and the run-time garbage
collector A cell, which has been explicitly deallocated might still be considered to be
live by the run-time garbage collection system There are instances where compile-time
garbage marking can be used to collect a garbage cell within a program and explicit
deallocation 1s unable to The reverse of this situation 1s also true, there are situations

where explicit deallocation can be used and compile-ttme garbage marking cannot

2143 Destructive Allocation

This technique has the benefit of not requining a free list since garbage cells are reused
directly within a program We are therefore not restricted n the type of run-time

garbage collection scheme used

Destructive allocation does not have the same overheads associated with compile-time
garbage marking These overheads are the extra memory space necessary to store the
usage counter and the overhead on execution time caused by checking each cell to see
if 1t 1s marked However, there are instances where compile-time garbage marking can
be used to collect a garbage cell or the cell can be explicitly deallocated within a
program, but the destructive allocation technique cannot be performed This technique
1s therefore less applicable than the other techniques The complexity of the algorithm
to implement a destructive allocation techmque has been 1dentified as a sigmficant
disadvantage It 1s estimated that the gains associated with this technique are over-

shadowed by the increased complexity
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2.2 Object-Oriented Languages

Not a lot of research has been done in the area of compile-ime garbage collection
techniques for object-oriented languages, research has instead concentrated on compile-
time garbage avoidance and a mynad of other optimization techniques However, a
number of algorithms have been devised for compile-time garbage marking and explicit
deallocation techniques and are presented 1n this section Some of the techniques have

1dentified methods for compacting memory or allocating objects on the stack

2.2.1  Compile-Time Garbage Marking

[Diwan et al, 1992] explores how information gathered duning the compilation of a
statically typed language can be used to support the compaction of memory by a run-
time garbage collector [Diwan et al, 1992] describes a technique which 1s used to
build stack maps for the Modula-3 language Modula-3 1s an object-oriented statically
typed language and a salient feature of this language 1s the fact that a stack map 1s not
generated for every instruction, but s restricted to the garbage collection points A
garbage collection point 1s a place in the program where a collection might occur The
stack map data structure which 1s used in this techmique, 1s an example of a tagless

system and 1t has been used by other compile-time garbage collection techniques

It 1s mmperative that the garbage collector obtains the necessary information on the
different data types contained within a program It 1s stated that tracking the location of
pornters 1n global vanables 1s trivial Locating vanables on the stack and 1n regsters 1s
more difficult and 1t 1s emphasized that there 1s particular difficulty associated with
denived pointers A derived pointer’s value 1s created as a result of pointer arthmetic
and there are difficulties associated with accurately 1dentifying the base values for each
derived value, at particular points in the program There are three different tables
constructed to store the necessary information on stack, register and derived pointers
A study was conducted 1n [Diwan er al , 1992] and 1t was estimated that the table sizes
when compressed reduced to 16% of the optimized code size It 1s possible to store and
extract information from the tables quickly, which 1s important It was also established
as a result of this study that the technmique had no effect on the optimized code

produced
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[Agesen et al , 1998] considers two techniques which are used to increase the accuracy
of the root set, type precision and liveness analysis A root set 1s the set of local and
global variables in a program Some of these variables could be used to reference
objects that are local or global The aim of these techniques 1s to reduce the root set,
that 1s to establish what cells 1n memory are no longer being referenced and can be
released To achieve absolute precision of the root set 1s not possible because there
could be pointers to cells within memory, where 1t 1s unable to determine whether the
cell 1s garbage or not This 1s because 1t does not have enough definite information

about the cell and 1n this situation 1t should consider the cell to be live

The first algorithm 1n [Agesen et al , 1998] considers the type of all local area vanables
in a program This information 1s gathered and stored during the compilation of the
program 1n order to increase the precision of the part of the root set resulting from local
vaniables This technique was developed using the Java programming language where
local variables are stored 1n slots 1n stack frames It could be adapted for use with other
object-oriented languages This technique generates a stack map data structure to store
the relevant information The generation of the stack map would be relatively trivial if
1t was not for the fact that the JVM allows one exception to the Gosling property
[Lindholm & Yellin 1996] The Gosling property states that the stack and registers
must always look the same whenever a JVM 1nstruction 1s executed For example, the
type of each stack element and local vanable at any point 1n a program should not
depend on the path taken to reach that static program point The exception to the
Gosling property 1s the JSR subroutine It makes 1t very difficult to carry out type
analysis on a program, as 1t may be unable to determine the exact type of a particular
vanable 1n a JSR subroutine A solution was found by adding additional information to

the stack map and splitting conflicting vanables

The second technique 1n [Agesen et al, 1998] uses intra-procedural live varable
analysis to 1dentify the local variables within the stack, which are reachable from the
root set We consider a variable to be live 1f 1t holds a value that may be needed 1n the
future execution of the program Liveness analysis 1s not a new research area and has
been used 1n the past to reduce the root set by identifying dead references, which are
garbage cells Live variable analysis information 1s added to the stack map and 1t 1s
estimated that the cost of generating a live-precise stack map 1s approximately 50%

greater than the cost of generating a type-precise stack map
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2.2.2  Exphat Deallocation

[Gay & Steensgaard, 1998] describes a technique which allocates objects on the stack
rather than the heap The algorithm will try to calculate the lifetimes of each object
created in a program, and any object with a known limited lifetime can be created on
the stack The memory associated with these objects 1s automatically reclaimed when
the stack frames are reclaimed as functions return There are two important benefits
associated with allocating objects on the stack instead of the heap, an increase in the
amount of heap memory available during the execution of the program and a reduction
in the memory management activities, which should subsequently lead to an increase in

the execution speed of the program

Two analysis techniques are introduced which are used to obtain the necessary
information to allow 1t to identify the stackable objects, escape analysis and loop
analysis The escape analysis technique conservatively estimates the references to the
objects 1n a program An object cannot be stack allocated 1n a method’s stack frame if
a reference to the object escapes from that stack frame The analysis considers a
reference to an object to have escaped 1f the object 1s returned from the method or if
another object stores a reference to this object Loop analysis 1s the second technique
and 1t 1s pnimarnily concerned with the control flow of a program This 1s necessary to

evaluate whether assignments are made to vanables 1n a loop dependent manner

Information 1s gathered on fresh methods and vanables A fresh method 1s a method
which will return an unaliased object of a certain type An object 1s considered
unahased when there are no other references to this object A fresh variable 1s one
which 1s assigned a new object or an object from a fresh method The stackable
vanables are computed using this information and the results of the escape analysis and
the loop analysts An empirical study in [Gay & Steensgaard, 1998] estimated that
approximately 10-20% of objects created 1n a program could be allocated on the stack

instead of 1n heap memory
[McDowell, 1998] presents a hypothesis that a compiler can 1dentify a significant

number of object allocations that can be changed from being allocated on the heap to

being allocated on the stack This study was carried out on the Java language
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A Java virtual machine was instrumented to count the number of potentially stackable
objects at runtime, 1n a small collection of Java programs JDKI1 0 2 from JavaSoft was
the virtual machine used This version of the Java virtual machine does not have a Java
Native Interface (JNI) specification and therefore cannot accurately track references
which are passed 1nto native methods A native method 1s a method which 1s callable
from a Java program and 1s wrnitten 1n a different language The results of the analysis
can be interpreted 1n two ways The first 1s a conservative analysis and it assumes that
all references passed to native methods cannot be considered as a stackable object The
second 1s the non-conservative analysis and it assumes that all references passed to

native methods are stackable

The conservative analysis estimated that approximately 10% of the heap allocated
objects could be allocated on the stack during the execution of the program The results
of the non-conservative analysis was significantly better, one of the programs tested
resulted 1n 56% of 1ts objects being surtable for allocation on the stack It 1s proposed
that further research is necessary to implement a Java virtual machine which will

support the stack allocation of objects

No object-onented destructive allocation techniques were found in the literature
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2.2.3  Comparison of the different object-oriented techmques

2.2.3.1 Compile-time garbage marking

The techniques presented in [Diwan ef al, 1992] and [Agesen et al , 1998] are both
tagless systems An alternative to this approach would be to use tags, this would
involve tagging all objects allocated in the stack The overhead of this technique is
expensive because stack frames are created and destroyed regularly dunng the
compilation of a program Diwan’s technique [Diwan et al , 1992] 1s used to obtain
information on a wider range of cell storage than Agesen’s technique [Agesen et al ],
which only concentrates on obtaining information about vanables stored in the stack
frame [Diwan et al, 1992] and [Agesen et al , 1998] do not generate stack maps for
every nstruction in the program They are instead generated at particular points within

the program

An empirical study was carried out 1n [Agesen ef al , 1998] and 1t was found that there
was on average an 11% reduction 1n the amount of memory space required by the local
variable root set as a result of the liveness analysis technique This technique therefore
appears to offer minimal benefits over type-precise analysis However, 1t should be
noted that 1t 1s important 1n reducing the possibility of surpnisingly large volumes of
garbage being retained [Diwan et al, 1992] did not carry out an empirical study,
however, they state that because the overhead of implementing the stack map 1s small,

the application of this technique should be of practical use

The complexity of the technique in {Diwan et al , 1992] 1s increased as a result of the
problem 1n clearly 1dentifying type information about derived pointers Two solutions
are explored, path variable scheme and path spliting Both solutions have overhead
associated with them Path splitting increases the code size of the program and the path
vanable scheme increases the size of the denived tables and there 1s also the problem
with indirect references 1n machines with complicated addressing modes The path
variable scheme 1s the method used by [Diwan et al , 1992] because 1t 1s considered to
be simpler and more straightforward It 1s stated that the problem with indirect

references should not occur for a load/store architecture

A problem could arise 1n the type precision technique [Agesen er al , 1998] as a result

of rewnting 1nstructions because an instruction’s position and length could change
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This could result 1n a method exceeding the maximum method size To resolve
conflicts occurring 1n the type precision technique, variables are split  This will result
n an increase n the number of variables created within a program This could exceed
the hmut on the number of local variables allowed within a method which 1s imposed by
the byte code instruction set The above two problems are 1n practice extremely

unlikely to occur

[Diwan et al, 1992] and [Agesen et al, 1998] are compile-time garbage marking
techniques and they suffer from similar drawbacks to the ones highlighted in reference

to functional compile-time garbage marking techniques

2232 Exphcit Deallocation

The empinical study [Gay & Steensgaard, 1998] established that speed improvements of
up to 11% for medium sized programs were achievable However, there are a number
of sahent speed vanations where a negative performance results This cannot be
attributed to stack allocation, as some of the programs where there 1s a considerable
negative performance carried out very little stack allocation It 1s therefore unclear as

to why these speed vanations occur between the benchmark programs

The analysis algorithm 1n [Gay & Steensgaard, 1998] can be accomplished in linear
time and 1s considered to be simple and fast However, the escape analysis has been
cnticized for bemng too conservative  The performance of the stack allocating
technique could be enhanced if the quality of the escape analysis was improved For
example, the analysis does not track objects which are thrown by exceptions, 1t

considers them to be live and necessary for the execution of the program

The work 1n [McDowell, 1998] does not implement a compile-time explicit
deallocation technique, but carries out a theoretical study to quantify the benefits of
allocating objects on the stack [McDowell, 1998]’s conservative analysis estimates that
approximately 10% of objects could be allocated on the stack instead of the heap It 1s
noted, however, that as the overhead of garbage collection increases, this technique
could become more attractive It 1s impractical to make a comparison between the
results of stack allocating objects 1n [Gay & Steensgaard, 1998] because McDowell’s
study did not consider the possibility of stack allocating objects returned by ‘fresh

methods’
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The explicit deallocation techmique presented 1n [Gay & Steensgaard, 1998] suffers
from similar disadvantages, as described 1n section 2142 For example, the type of
run-time garbage collector 1s restricted because the reclaimed objects must be added to

a run-time free list

2.3 Benefits of Compile-Time Garbage Collection

techniques

The main benefit of these techniques 1s the increase 1n the amount of available memory
dunng the execution of a program as a result of the garbage cells that have been
detected and deallocated An emprrical study was carried out on a number of programs
in [Mohnen, 1995] which shows clearly that compile-time explicit deallocation 1s worth

the effort

One of the important benefits 1s that programs can be written which may be far from
optimal 1n their use of memory, but are much easier to read and understand These
programs can then be analysed to search for and detect any garbage cells by one of the

compile-time garbage collection techniques

In some object-onented languages, 1t 1s the responsibility of the programmer to know
when to write the assignment statements to release the object(s) Incorrectly placed
deallocation statements could result in unexpected and invalid results A compile-time

garbage collection system will automatically find and deallocate garbage cells

There should be a reduction 1n the amount of garbage which will be found by the run-
time garbage collection system This should result in speed improvements as time 18
not wasted searching for and detecting the unshared memory cells during the execution
of a program However, this 1s not always the case as the overhead involved 1n
carrying out one of the compile-time garbage collection techniques may outweigh any
increase 1n speed due to reducing the overhead of run-time garbage collections This 1s
particularly pertinent in the case of compile-time garbage marking as 1t 1s shown to

slow down the execution speed of a program
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Some program bugs can be highlighted as a result of different program optimization
techniques The liveness analysis in [Agesen et al, 1998] 1s therefore not umique 1n
having the ability to expose or hide bugs within a program These bugs are exposed
when 1t 1dentifies and omuts dead variable references within a program It 1s therefore
imperative that an optimization technique does not interfere with the results of a
program execution, because the outcome of a program must not be dependent on the

optimization techniques used

Improving the locality of objects stored 1n the heap and making the allocation of new
objects faster are important benefits The stack allocation of objects presented in [Gay
& Steensgaard, 1998] 1s an example of this This 1s because objects that have short
Iifetimes are allocated on the stack and are destroyed automatically when the stack
frames are reclaimed Objects that have longer lifetimes can be allocated in heap
memory and this avoids the fragmentation of heap memory by short lived objects
[Diwan et al, 1992] and [Agesen et al, 1998] also present techniques that lead to

improved memory locality

2.4 Summary

In this chapter, we have introduced the area of compile-ime garbage collection,
explaining the three most popular types of garbage collection schemes, compile-time
garbage marking, explicit deallocation and destructive allocation We have presented a
number of different algorithms 1n each of the garbage collection schemes for the
functional and object-oriented languages In chapter 3, we introduce compile-time
garbage avoidance techniques for both functional and object-oriented languages We

discuss how this approach differs from those which we have seen 1n this chapter
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Chapter 3 Compile-Time Garbage Avoidance

In this chapter we consider compile-time garbage avoidance techniques Compile-time
garbagé avordance has a different approach to the resolution of the ‘garbage problem’
in programs Its mam aim 1s to reduce the amount of garbage created during the
execution of the program In order to achieve this, the source code of the program ts
transformed 1n some way and a number of different techmiques are used to accomplish
this The transformed program should be more efficient in terms of memory space used
because the amount of heap space required by the program to execute has been
reduced The amount of time spent allocating and deallocating these intermediate data
structures has also been reduced The reduction 1n the amount of heap space used by a
program after 1t has been transformed depends on the particular program and the type

of compile-time garbage avoidance techmque used

It should also be noted that research has revealed that compile-time garbage collection
and compile-time garbage avoidance can be complementary [Hamilton, 1995] A
program which has been transformed using a compile-ime garbage avoidance
technique, could be further optimized to reduce the heap space requirements, by
applying a compile-time garbage collection technique Much research has taken place
into developing and improving compile-time garbage avoidance techmques This
chapter 1s divided into three main sections, section 3 1 discusses the compile-time
garbage avoidance techmques which have been researched and developed for
functional languages, section 32 discusses the compile-time garbage avoidance
techniques for object-oriented languages Section 3 3 presents other techniques that are

used to optimize object oriented languages

3.1 Functional Languages

Much research has taken place into developing compile-ime garbage avoidance
techmques for functional languages and a number of algorithms have been developed
One of the reasons for the mterest 1n functional languages 1s because of their suitability
for transformation  [Burstall & Darlington, 1977] researched and developed an

unfold/fold transformation system which 1s the basis for a substantial number of
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optimizing techniques It consists of a number of rules which are applied to a set of

equations and can be used to transform almost any first-order or higher-order program

3.1.1  First-order Languages

3111 Listlessness Algorithms

The technique 1n [Wadler, 1984] removes intermediate lists from programs that have
been written 1n a functional language and use lazy evaluation A program compiled
with lazy evaluation will not evaluate any expression unless its value 1s required by
some other part of the computation Intermediate lists were 1dentified as being a cause
of mefficiency during program execution A program that produces intermediate lists
will require more memory space to store these lists There could also be an increase 1n
execution time as these lists must be allocated, traversed and finally deallocated when

no longer required

The technique presented 1n [Wadler, 1984] can automatically transform a program to
mmprove 1ts efficiency by removing all intermediate lists It can only be applied to
programs which can be lazily evaluated in a bounded space, excluding the space
occupied by the input and output of the program The domain of programs to which
this technique can be applied, 1s therefore very limited It cannot be used, for example,
to transform a program which processes tree structures using a stack of pomnters as this
requires unbounded 1nternal storage The technique presented in [Wadler, 1984] uses a
listless transformer which 1s partly responsible for calculating the storage requirements
of the program and thereby esttmating its suitability for transformation This 1s
important because applying this technique to a program which cannot be evaluated 1n a

constant bounded space could result in an infinite loop

Further research was carried out 1n [Wadler, 1985], 1n the area of listless programming
It was evident that more research was required to enhance the transformation
developed, to widen the domain of programs to which the techmque could be applied
There are many programs which cannot be transformed by the techmque described in
[Wadler, 1984] An example of a program which cannot be made listless 1s a program
which requires two traversals of the input data Other programs which cannot be

transformed 1nclude programs with tree data structures
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In general there are few complete programs which are listless, that 1s the whole
program can be automatically transformed to eliminate all intermediate lists There
may be sections of the program which can be made listless, but other sections which
cannot The technique presented 1n [Wadler, 1985] has the capability to transform parts
of a program The complexity of the overall task may be reduced as a result of breaking
the complex problem into a number of smaller manageable programs which are easier
to construct and reuse All the sub-programs which make up the overall program may
not be sutable to the techmique described 1n [Wadler, 1984], therefore the program as a
whole cannot be transformed The technique described in [Wadler, 1985] supports
modulanty, as it allows you to transform a sub-program to remove intermediate lists
and combine this program with the other parts of the program which are not listless
The types of program which can be optimized by [Wadler, 1985]’s algonithm 1s

therefore widened

31.12 Deforestation Techmques

[Wadler, 1990] describes a transformation technique that 1s used to eliminate the
intermediate trees produced 1n a program that has been wntten 1n a first-order lazy
functional language This algorithm 1s referred to as deforestation because 1t detects
and eliminates any intermediate tree structures which are produced in the program The
program 1s transformed by this deforestation technique and 1s based on the unfold/fold

strategy of [Burstall & Darlington, 1977]

The deforestation algorithm 1n [Wadler, 1990] can only be applied to a term which has
a function defimtion 1n a given syntactic form This algorithm 1s presented 1n three
steps The first 1s the ‘pure’ treeless form A term 1s treeless with respect to the
function definition 1f 1t 1s linear and every argument of a function and every selector of
a case term 1s a vanable A term 1s considered linear if a vaniable does not appear 1n the
term more than once The restriction that every term 1s linear guarantees that certain

program transformations do not result 1n a more inefficient program

The nput to the deforestation algorithm 1s therefore a linear term 1in which the function
defimtions are treeless The output will be a treeless term, which has elimmated all
intermedhate tree data structures This ‘pure’ treeless form 1s very restrictive for most
practical uses and as a result 1t was extended The first extension allows the use of

‘blazing’ which 1s the marking of data structures of a certain type to indicate where
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intermediate values can remain  The terms are blazed either with a @ or © mark,
which are assigned solely on the basis of type The terms which are blazed with a @
will be transformed by the deforestation algorithm to eliminate intermediate data
structures while the terms which are blazed with a © can be extracted and transformed
independently  The programs which we can input to this blazed deforestation
algonithm are therefore less restricive The second extension to the deforestation
algonithm 1s to allow some higher-order functions, by treating them as macros The
deforestation algorithm and 1its two extensions are proven to terminate in [Wadler,

1990]

[Chin, 1990] and [Chin, 1991] present a generalised deforestation algorithm which can
be used to elimimate intermediate data structures from all programs which have been
written 1 a first-order functional language Blazing 1s used n this techmque and 1s
similar to the blazed deforestation algorithm [Wadler, 1990] A function’s arguments
must satisfy an extended treeless form (e-treeless form) Any part of the function

arguments which are not 1n this form, are blazed © and extracted

An enhancement 1n [Chin, 1990] to the deforestation algorithm was researched and
developed This enhancement will allow programs from the complete higher-order
language to be transformed, the technique 1s called ‘higher-order removal’ This
algonthm can be proved to termunate 1f a well-typed higher-order program 1s input for
transformation It has the ability to eliminate most higher-order expressions from the
program, which facilities the removal of intermediate data structures A proof of the
termination of this deforestation algorithm 1s presented in [Chin, 1990], which proves
that the algonthm will terminate 1f only e-treeless functions are used in the expressions

to be transformed

[Hamilton & Jones, 1991A] & [Hamlton & Jones, 1991B] also extend the
deforestation technique presented in [Wadler, 1990] This extended deforestation
algorithm can be applied to all programs which have been wntten 1in a first-order
functional language This algonithm will detect and remove intermediate structures
from a program and 1t 1s achieved by performing static analysis to determine which data

structures can be eliminated

Two static analysis techniques, inhenitance analysis and creation analysis are performed

to obtain properties about the program without actually executing 1t  Inheritance
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analysis 1s a backward analysis method It 1s used to determine if values of a structure
which are used by a term, are defimitely needed by the result of the overall term of
which 1t 1s a part  This structure 1s considered inhented if 1t 1s needed by the result and
1s therefore not an intermediate structure The second static analysis method 1s creation
analysis  This 1s a forward analysis techmque, that 1s used to determune 1f a term
constructs a structure Inheritance analysis 1s then used to establish whether this
structure 1s 1nherited to the result, and 1f not 1t 1s called a constructed intermediate

structure

The extended deforestation algorithm performs these static analysis techniques on all
terms to be transformed Any constructed intermediate structures which are dentified
are blazed @ and can be ehminated by the algorithm Any nhented intermediate
structures are blazed © and are extracted in a similar manner to the blazed
deforestation algonthm described by [Wadler, 1990] The algorithm shows that there 1s
a finite number of terms encountered during transformation This bound 1s pertinent in

proving that the algorithm will terminate

Further research was carmed out by Chin in [Chin, 1992], where he extends the
deforestation algonthm presented 1in [Chin, 1990] and [Chin, 1991} [Chin, 1992]
presents a ‘safe’ deforestation algorithm which has the ability to transform a complete
program and 1t outlines the necessary criteria to conservatively determine when this 1s
possible The most salient feature of this algonthm 1s 1ts ability to prevent the
transformation of a program entering an infinite loop This was a serious problem with
the previous generalised algorithm which could under certain circumstances enter an
infinite loop during transformation The transformed program will be at least as
efficient as the original program and should be more efficient when its intermediate

data structures are removed

This algonthm ehminates intermediate data structures from all first-order functional
languages and from most higher-order programs These transformations are carried out
safely by annotating any unsafe expressions and extracting them before transformation
takes place The result of the algorithm are expressions which have a form which 1s
known as extended-treeless or e-treeless This generalised deforestation algorithm can

therefore be proven to terminate
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3.1.2  Higher-Order Languages

The higher-order deforestation algorithm can be used to transform both higher-order

languages and first-order languages which are a subset of 1t

3.1.2.1 Deforestation algorithms

A higher-order deforestation algorithm 1s presented 1n [Marlow & Wadler, 1992] This
algorithm will remove intermediate data structures from programs which are written 1n
a higher-order language An integral part of this algorithm 1s a set of transformation
rules which convert a given expression into a higher-order treeless expression The
transformation consists of three mutually recursive functions There are short-comings
associated with this technique however, a higher-order treeless form 1s not defined for

the algorithm and a proof of termination 1s not given

The deforestation algorithm provides the use of let-expressions, which can be used to
indicate 1n the source language where intermediate structures should be allowed to
appear It 1s expounded that there 15 increased flexibility and convenience associated
with using let-expressions 1nstead of the use of blazing Any intermediate structures as
a result, which cannot be removed by deforestation can be present in the input program
by the explicit use of a let-expression It 1s therefore relatively easy to generate treeless
expressions from a non-treeless expression by adding appropnate let-expressions For
example a let-expression can be used to protect any non-linear arguments 1n a program
However, there 1s no mechamism which will accurately determimate where let-
expressions should be placed within a program, to guarantee that a more efficient

program will result after transformation

[Hamulton, 1995B] and [Hamulton, 1996] also present a higher-order deforestation
algorithm A higher-order treeless form of expression 1s defined, similar to the blazed
treeless form defined 1n [Wadler, 1990] There are two conditions in which an
expression can be blazed Firstly, function arguments and case selectors which are not
variables are blazed © Secondly, all non-linear variables within higher-order treeless
expressions must be blazed © at their binding occurrence This means that these

intermediate structures will not be removed by the deforestation algorithm and must be
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transformed separately All other intermediate structures within the program will be

removed

A set of transformation rules are used to convert a given expression into a higher-order
treeless expression  This higher-order treeless form of expression 1s an easily
recognized form of expression and any function definition can easily be generalised so
that 1t 1s 1n this form The two major contributions made in [Hamulton, 1995B] and
[Hamilton, 1996] are, a higher-order treeless form 1s defined for the algorithm and a

proof of termnatton 1s given

Marlow presents a deforestation algorithm in {Marlow, 1996] which is fundamentally
based on previous research done 1in [Marlow & Wadler, 1992] He was encouraged to
revert his attention to his previous work following the publication of Hamilton’s
deforestation algonthm [Hamilton, 1995B] Marlow’s algonthm like other
deforestation algorithms 1s based on the [Burstall & Darlington, 1977] unfold/fold
transformation system This thesis shows how deforestation can be performed for
arbitrary higher-order functional programs and 1t specifies the conditions that must be

satisfied

A higher-order treeless form 1s defined in [Marlow, 1996] for the deforestation
algorithm and he also provides a proof of termination The cut-elimination principles
of logic have been merged with the simple first-order deforestation algorithm to obtain
a new higher-order deforestation algorithm Any sub-terms which are considered
dangerous within a program, are transformed into let-expressions This algonthm 1s

similar to the deforestation algorithm in [Hamulton, 1995B] and [Hamuiton, 1996]

A higher-order deforestation technique 1s presented in [Seidl & Sgrensen, 1997] The
major contnibution of this paper 1s 1t ensures the termination of the higher-order
deforestation algorithm for a wider class of programs A control-flow analysis 1s
performed on the program, and a set of integer constraints are collected This analysis
1s necessary n order to gather the vital information needed to detect dangerous sub-
terms within the program A sub-term 1s considered dangerous if there 1s a risk that the
program will enter an nfinite loop and as a result not terminate, when carrying out the

deforestation technique
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The principles behind this techmque are well-known and a detailed description of the
termination analysis technique used 1n the deforestation algorithm 1s given in [Seidl,
1996] The unfolding of function calls 1s carried out, except 1n the case where 1t will
affect the termination of the deforestation algorithm In this situation, folding 1s
introduced to avoid the repeated unfolding of the same expression The analysis 1s

powerful enough to be able to determine where unfolding 1s not safe within a program

[Sewdl, 1996] was unable to resolve a problem with constructor functions and, as a
result, there was a necessity to restrict higher-order programs A program which has a
constructor function with a functional argument could result in the transformation of
the program looping indefinitely A solution was 1dentified but requires that
constructor functions cannot have functional arguments A mitigating argument 1s
provided which states that using constructor functions with functional arguments may
not be popular when wrnting programs It also states that 1t 1s only in some
circumstances that the deforestation algorithm will enter an infinite loop when

processing a program with such constructor functions

3.1.3  Comparison of functional language techniques

The definition of treeless form 1s stmpler and more straightforward in the technique
presented 1n [Wadler, 1990] than the definition of listless form presented in [Wadler,
1984] and [Wadler, 1985] The range of programs to which [Wadler, 1990] can be
applied are more general, as 1t will transform programs that use intermediate trees and
they do not have to evaluate 1n a constant bounded space but may use the space

bounded by the depth of the tree

There are two extensions to the origmal deforestation algonthm 1n [Wadler, 1990], the
blazed treeless form and higher-order macro techmque The blazed treeless form
extends the type of program which can be optimized The higher-order macro
technique can only be applied to higher-order functions which have first-order
recurston This will restrict the usability of these higher-order functions It 1s also
more difficult for a programmer to see where 1ntermediate structures will be eliminated,
due to the loss of transparency when macros are used The deforestation technique 1n

[Wadler, 1990] 1s considered to be restrictive and limited as a result
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The algonthms presented 1in [Chin, 1990], [Chin, 1991] and [Hamulton & Jones,
1991A] are not as restrictive as the algorithm presented 1n [Wadler, 1990] as they can
eliminate intermediate data structures from all programs which are written 1n a first-
order functional language Programs which can be transformed by [Hamilton & Jones,
1991A] and [Hamulton & Jones, 1991B] algonthm must be linear Any non-linear
function arguments must be blazed © and extracted before the program transformation
takes place The linear property 1s essential to ensure that there 1s no loss of efficiency
in program execution after deforestation This 1s more restrictive than other non-linear
algorithms such as [Chin, 1990], [Chin, 1991] and [Marlow & Wadler, 1992] These
algonithms, however, are unable to guarantee the improved efficiency of a program
after transformation This 1s a significant drawback and could result 1n a slower

program following transformation as duplication of expresstons could occur

The technique in [Hamilton & Jones, 1991A] could be considered to be more intuitive
and straightforward than the generalised deforestation algonithm presented in [Chin,
1990] and [Chin, 1991] This 1s because 1t 1s not necessary to transform function
definmitions 1nto a treeless form before carrying out the transformation and special
consideration does not have to be given to recursive functions [Chin, 1992] presents a
deforestation algorithm which 1s proven to be safe This was not done previously An
important benefit of this algorithm is 1ts ability to eliminate more intermediate

structures than [Chin, 1990] and [Chin, 1991]

The ‘higher-order removal’ extension in [Chin, 1990] and [Chin, 1991] requires a
separate process to remove the higher-order features from a program before
deforestation can begin The techniques in [Hamuilton, 1996] and [Marlow, 1996] do
not This ‘higher-order removal’ extension could result 1n redundant intermediate data
structures remaining 1n the program and increases the complexity of the deforestation
algorithm Chin’s algorithm also has the major drawback that 1t cannot be applied to all
higher-order expressions The techniques 1n [Hamilton, 1996] and [Marlow, 1996], in
comparnison, can be applied to all programs and are considered a more efficient
algonthm for higher-order program deforestation Chin’s algorithm may result in the

transformed program having a considerable increase 1n code size

[Marlow, 1996}’s contributions on higher-order deforestation are very similar to the
notion of higher-order treelessness and the termination proof made by [Hamuilton,
1995B] and [Hamilton, 1996] The algorithm in [Hamilton, 1995B] and [Hamuilton,
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1996] 1s considered to be a less complicated and a more ntuitive process than the other
techniques used to eliminate intermediate structures such as [Marlow & Wadler, 1992],

[Marlow, 1996} and [Seidl & Sgrensen, 1997]

[Hamulton, 1996] and [Seidl & Sgrensen, 1997] present proofs which will guarantee the
termination of the deforestation techniques Transparency 1s a property associated with
the algonthms presented in [Hamilton, 1996] and [Marlow, 1996] This 1s vital m
achieving predictable optimization results and facilitating the changing of a source
program for further enhancements The importance of transparency 1s that 1t 1s easy for
a programmer to see where in the source program intermediate data structures will be

eliminated

The deforestatron algorithm 1n [Seidl & Sgrensen, 1997] 1s considered to be very
complex and 1t may be difficult for a programmer to 1dentify where intermediate data
structures will be ehminated The analysis which must be accomplished to implement
this technique 1s expensive on resources The transformation of a program by the
[Hamilton, 1996] techmique can guarantee that a transformed program will be as
efficient as the onginal, because 1t has a linearity requirement This lineanty
requirement 1s also important 1n reducing the risk of a program’s code size increasing
dramatically [Seid]l & Sgrensen, 1997] and [Marlow, 1996] do not have a lineanty
requirement and, as a result, duplication of code could occur during transformation

This could result 1in an explosion 1n code size

[Seidl & Sgrensen, 1997] presents a deforestation technique which allows useful
transformation steps that were not previously possible [Seidl & Sgrensen, 1997]’s
algorithm, however, has a requirement that constructors cannot have functional
arguments, this 1s not required of the other deforestation techniques such as [Hamulton,
1996] The two deforestation techniques [Seidl & Sgrensen, 1997] and [Hamulton,
1996] perform differently depending on the type of programs which are being
transformed Therefore, the [Hamilton, 1996] algorithm may perform better for some

programs
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3.2 Object-Oriented Languages

Much research has taken place into developing compile-time garbage avoidance
techniques for object-onented languages This 1s because a reduction in the size of the
heap space required by a program will have the eminent benefit of decreasing the
pressure on the heap management system This should reduce the execution time of a
program as a substantial amount of time 1s spent on memory management activities
The compile-time garbage avoidance techniques presented here could be referred to as

object inlining techniques

3.2.1 Object Inhining

The aim of object inliming 1s to inhine objects into a container object The contamner
object 1s usually the object which declared an instance of the inlinable object Inlining
involves replacing the reference from the container object to the inlinable object with

the actual contents of the inlinable object

In practice, this would involve transforming the program 1n the following way

1 Adding the fields of the inlinable object to the container object This includes
all fields and methods The attributes which are added to the container, are
referred to as the ilined state,

2 Rewnite all uses of the inlined attributes to use the containers new inlined state,

3 Assignments to the inhned attributes must be changed to update the container’s

new mhned state
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Figure31  An example of object mhning

For example, an object Shape has two attribute fields, which are Pownr objects These
two Point objects could be inlined within the container object This 1s shown 1n part (b)
of Figure 31 To achieve this the two Poins objects (inlined fields) are removed from
the contamner and, the fields and methods of the Point objects are inlined within the

container object

It should be noted that the container object 1s referred to using different names 1n the
literature  Some of the names which are used are enclosing and parent object The
inlined object 18 also referred to as the child object Before object inlining can take
place two pieces of information must be obtained accurately The algorithm must
precisely 1dentify all accesses to the child object and 1t must also ensure that sharing
relationships are correctly preserved This 1s because an mlined object has by-value
semantics, this means they cannot be shared by muluple parents, through a reference to

an 1nlined field 1n the container object

There are a number of benefits associated with object inlming

1 It eliminates the requirement of creating the mlined object, which removes the
necessity of dynamucally allocating space for the object and maintaining the
object during 1ts lifettme There should be a reduction in the amount of heap
space because there 1s less overhead when fewer objects are created Space 1s

also saved because there are fewer pointer fields,
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2 It eliminates the necessity of a subroutine call to access the object’s methods, as
they can now be inlined,

3 The fields of the object become local to the calling object or procedure This
enables direct access to 1its fields, which involves a single load with offset
mstruction This 1s faster than indirect access,

4 Object inlming provides the ability to group related objects together Handling
related objects together may increase the cache performance of the machine,

5 Inlinmg an object’s methods exposes the body of the method to further
optimization in the context of the original invocation,

6 Allocating and reclaiming the storage for the objects contained within another
object requires multiple memory operations In contrast after object inlming the
operation of allocating and reclaiming can be carried out 1n a single operation

This should improve the run-time performance of the program

There are a number of disadvantages associated with object inlinmg

1 Object mmlining has the potential negative effect of increasing code size, this
could result 1n an explosion 1n code size 1f not controlled properly,

2 Increasing code size could increase the compilation time of the program It also
increases the time required to download the program This 1s a particularly
serious disadvantage for the Java language whose populanty has grown because

of 1ts surtability for wniting applets for the internet

32141 The Origins of Object Inhning

The Emerald system was one of the first systems to implement automatic object
imnhning The goal of this system 1s not to identify the maximum number of inlinable
objects, but to provide an object-based language for the programming and
implementation of distributed applications [Black et al, 1986], [Hutchinson, 1987]
Emerald has a uniform object model which 1s an important feature of object-orniented
languages The Emerald compiler supports three different implementations of objects,
global objects, local objects and direct objects The compiler will choose the particular
style to implement each object, taking into account the efficiency and overheads
assactated with that implementation Global objects are specifically created with the
ability to be moved within the network Local objects are local to other objects, that 1s,
they reside on the same physical machine The direct object implementation is the one

we are particularly interested 1n because 1t 1s object inlining This implementation
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allows the compuler to inline a ‘direct object’ within a container object The compiler

deduces by type inference what objects are suitable candidates for inlming

32.1.2 Inlining Objects within Methods

[Budimlic & Kennedy, 1997] presents two optimization techniques, method and object
inliming Method mlining causes the body of the method to be expanded at its point of
call during compilation, otherwise, the method 1s invoked at run-time This eliminates
the need for subroutine call overheads and also makes 1t possible to carry out further
optimizations on the method body  Three different compilation strategies are
introduced in [Budimlic & Kennedy, 1997], the standard, relaxed and high performance
model The suitability of each compilation model for the application of these and other
optimizing techniques are discussed The bytecode of a Java program 1s analysed to
obtain the relevant information necessary to carry out the different optimization
techniques The bytecode 15 converted into a Static Single Assignment (SSA) based
representation, which 1s considered a more efficient intermediate representation for
optimization A SSA representation essentially means that each variable in the

program has only one definition in the program text

A number of problems are mghhighted which make the optimization of Java programs
difficult ~ These problems include, an incomplete program, Java’s exception
mechanism and high level of abstraction associated with Java Virtual Machine (JVM)
bytecode An incomplete program 1s a program where the entire source code is not
available at compilation time The three compilation strategies provide an environment
for the optimization of Java programs, each with differing degrees of optimization

success

The Standard Model 1s confined to the boundaries of the Java compilation model
defined by Sun Microsystems This model ensures that the bytecode produced has the
necessary charactenstics of portability, security and functionality  The High
Performance Model 1s used 1n environments where 1t 1s possible to compile programs to
run directly on a target machine without going through the JVM This results in the

loss of some of its security and portability capabilities
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