Enhanced Computer Assisted Detection of Polyps in CT Colonography

Robert Sadleir (B.Eng.)

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy (Electronic Engineering)

Supervised by Professor Paul F. Whelan

School of Electronic Engineering
Dublin City University
December 2006
I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of Doctor of Philosophy (Ph.D.) is entirely my own work and has not been taken from the work of others save to the extent that such work has been cited and acknowledged within the text of my work.

Signed: Robert Sadleir (B.Eng.)

ID No.: 98970976

Date: 19/12/2006
I wish to thank my supervisor, Prof Paul F Whelan for his help, encouragement and enthusiasm throughout the course of my research in the Vision Systems Group (VSG). I would also like to thank my family for their continued help and support throughout my studies, with special thanks to my sister Irene for her help with proofreading.

I would like to acknowledge funding support from the Irish Cancer Society (ICS), the Health Research Board of Ireland (HRB) and the School of Electronic Engineering at Dublin City University. I would also like to acknowledge the Science Foundation Ireland (SFI), who funded the acquisition of some of the data sets used in this research.

Finally, I would like to thank my colleagues from the VSG and the Mater Misercordiae Hospital (MMH), particularly Dr Derek Molloy, Dr Ovidiu Ghita, Dr Tanik Chowdhury, Nicolas Sezille, Dr Kevin Robinson, Dr Helen Fenlon, Dr John Bruzzi, Dr Padraic Mac Mathuna and Dr Alan Moss.
Abstract

Enhanced Computer Assisted Detection of Polyps in CT Colonography
Robert Sadleir
Under the supervision of Professor Paul F. Whelan
at Dublin City University
Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy Dublin City University, 2006

This thesis presents a novel technique for automatically detecting colorectal polyps in computed tomography colonography (CTC). The objective of the documented computer assisted diagnosis (CAD) technique is to deal with the issue of false positive detections without adversely affecting polyp detection sensitivity. The thesis begins with an overview of CTC and a review of the associated research areas, with particular attention given to CAD-CTC. This review identifies excessive false positive detections as a common problem associated with current CAD-CTC techniques. Addressing this problem constitutes the major contribution of this thesis. The documented CAD-CTC technique is trained with, and evaluated using, a series of clinical CTC data sets. These data sets contain polyps with a range of different sizes and morphologies. The results presented in this thesis indicate the validity of the developed CAD-CTC technique and demonstrate its effectiveness in accurately detecting colorectal polyps while significantly reducing the number of false positive detections.
Contents

Acknowledgements iii

Abstract iv

Contents v

List of Figures x

List of Tables xx

Glossary of Acronyms xxii

1 Introduction 1
 1.1 Background 1
 1.2 Motivation 5
 1.3 Contributions 5
 1.4 Organisation 7

2 Medical Background 9
 2.1 Introduction 9
 2.2 CT Colonography 9
 2.2.1 Bowel Preparation 11
 2.2.2 Patient Positioning 13
 2.2.3 Radiation Dose 14
 2.2.4 Image Interpretation 2-D versus 3-D 17
 2.2.5 Contrast Enhanced CTC 18
 2.2.6 Incidental Extracolonic Findings 20
 2.2.7 Issues Associated with CTC 20
 2.2.7.1 Risk Factors 21
 2.2.7.2 Image Resolution, Colour and Texture 21
 2.2.7.3 Patient Preference 22
 2.2.7.4 Reader Training 24
 2.2.8 Commercial CTC systems 24
 2.3 Other Alternative Screening Techniques 26
 2.3.1 Faecal Occult Blood Test 26
 2.3.2 Barium Enema 27
 2.3.3 Flexible Sigmoidoscopy 27
 2.3.4 DNA Testing 28
 2.4 Discussion 29
3 Technical Background

3.1 Introduction

3.2 Colon Segmentation

3.2.1 Colon Lumen Segmentation

3.2.2 Colon Wall Segmentation

3.2.3 Digital Subtraction Colonography

3.2.4 Discussion on Segmentation

3.3 Centreline Calculation

3.3.1 Connection of User Defined Path Points

3.3.2 3-D Topological Thinning

3.3.3 Distance from Surface Fields

3.3.4 Distance from Source Fields

3.3.5 Combined Distance Fields

3.3.6 Mesh Analysis

3.3.7 Discussion on Centreline Calculation

3.4 Prone/Supine Registration

3.4.1 Centreline Based Registration

3.4.2 Region-Growing Based Registration

3.4.3 Discussion on Prone/Supine Registration

3.5 CAD-CTC

3.5.1 The Role of CAD at CTC

3.5.2 Task Division: Primary versus Secondary Techniques

3.5.3 Colorectal Polyp Detection Techniques

3.5.3.1 Wall Thickness Analysis

3.5.3.2 Isosurface Vertex Curvature Analysis

3.5.3.3 Voxel Curvature Analysis

3.5.3.4 Surface Normal Analysis

3.5.3.5 Perception Based Methods

3.5.4 A Contrast-Enhanced Approach

3.5.5 Colorectal Mass Detection Techniques

3.5.6 Discussion on CAD-CTC

3.6 Discussion

4 Preprocessing Contributions

4.1 Introduction

4.2 Choice of Coordinate System

4.3 Volumetric Data Interpretation

4.3.1 Resampling

4.4 Colon Lumen Segmentation

4.4.1 Data Set Cropping

4.4.2 Rectum Point Detection

4.5 Centreline Calculation

4.5.1 Caecum Point Detection

4.5.1.1 Revised Caecum Point Positioning

4.5.2 Skeleton Generation

4.5.3 Skeleton Reduction (Centreline Generation)

4.5.4 Optimisation

4.5.5 The Real Case

4.6 Colon Subsegmentation

4.6.1 Overview
Contents

4.6.2 Flexure Detection ... 119
4.7 Discussion ... 123

5 CAD-CTC Contributions .. 126
5.1 Introduction .. 126
5.2 Initial Considerations ... 127
5.3 Isosurface Extraction & Vertex Classification 129
 5.3.1 The Standard Marching Cubes Algorithm 129
 5.3.2 Topology Errors (Holes) ... 135
 5.3.3 Improved Normal Calculation ... 136
 5.3.4 Vertex Curvature Classification ... 137
 5.3.4.1 Discrete Implementation .. 140
 5.3.5 Additional Vertex Properties .. 144
 5.3.5.1 Colon Segment Information ... 144
 5.3.5.2 Vertex Density Information ... 146
 5.3.6 Mesh Representation .. 146
 5.3.7 Neighbour Identification ... 149
 5.3.8 Modified MCA Summary ... 150
5.4 Initial Polyp Candidate Identification ... 150
5.5 False Positive Reduction ... 154
 5.5.1 Alternative Polyp Representation .. 156
 5.5.1.1 Polyp Candidate Projection ... 156
 5.5.1.2 Polyp Candidate Fingerprinting 160
 5.5.1.3 Reformatted Polyp Candidate Visualisation 161
 5.5.2 Polyp Candidate Expansion .. 162
 5.5.3 Global Polyp Candidate Features ... 165
 5.5.3.1 Expansion ... 165
 5.5.3.2 Eccentricity ... 167
 5.5.3.3 Protrusiveness ... 167
 5.5.4 Polyp Candidate Feature Summary 168
 5.5.5 Polyp Candidate Classification ... 168
 5.5.5.1 Minimum Distance Classifier 169
5.6 Discussion .. 170

6 System Implementation .. 172
6.1 Implementation Software .. 172
6.2 Implementation Strategy ... 173
 6.2.1 Staggered Execution .. 173
 6.2.2 Well Defined Structure ... 173
6.3 Data Management ... 175
 6.3.1 Data Set Files ... 176
 6.3.2 Properties File .. 176
 6.3.3 Miscellaneous Data Files ... 177
6.4 User Interfaces .. 177
 6.4.1 The Main System Interface .. 178
 6.4.2 The Slice Viewer .. 178
 6.4.2.1 Polyp Marking .. 179
 6.4.2.2 Seed Point Selection ... 181
 6.4.2.3 Viewpoint Selection .. 181
 6.4.3 The Surface Viewer .. 182
Contents

6.4.3.1 Polyp View ... 182
6.4.3.2 Candidate View .. 182
6.4.3.3 Flythrough ... 184
6.4.4 The Fingerprint Viewer .. 184
6.5 Discussion ... 184

7 Testing and Results ... 187
7.1 Test Data .. 187
7.1.1 BUSM Data ... 188
7.1.2 MMH Data ... 189
7.1.2.1 Patient Preparation .. 189
7.1.2.2 Data Acquisition .. 189
7.1.3 WRAMC Data ... 190
7.2 Test Platform ... 191
7.3 Centreline Evaluation .. 191
7.3.1 Test Data .. 191
7.3.1.1 Clinical Cases .. 191
7.3.1.2 Phantom Data Set .. 192
7.3.2 Accuracy Evaluation ... 194
7.3.2.1 Endpoint Detection Accuracy 194
7.3.2.2 Overall Centreline Accuracy 195
7.3.3 Performance Analysis .. 195
7.3.4 Centreline Correctness ... 196
7.4 Subsegmentation Evaluation .. 200
7.4.1 Flexure Detection Accuracy .. 200
7.4.2 Subsegmentation Correctness ... 201
7.5 CAD-CTC Evaluation .. 201
7.5.1 Test Data .. 203
7.5.2 Primary Search Criteria ... 203
7.5.2.1 Initial Evaluation ... 205
7.5.2.2 Overall Findings ... 206
7.5.3 Automated Scoring .. 206
7.5.4 Original versus Expanded Polyp Candidates 208
7.5.4.1 Initial (Limited) Individual Feature Evaluation 209
7.5.4.2 Extended Individual Feature Evaluation 209
7.5.4.3 Candidate Density as a Discriminating Feature 216
7.5.5 Combined Feature Evaluation .. 216
7.5.6 Classification of Standard Candidates 217
7.5.7 Classification of Expanded Candidates 217
7.5.8 Classifier Performance Characterisation 219
7.5.9 Additional Candidate Features 220
7.5.10 Statistical Analysis of Improvement 221
7.6 Discussion ... 222

8 Conclusions and Future Work ... 227
8.1 Research Contributions ... 229
8.1.1 Major Contributions ... 229
8.1.2 Minor Contributions ... 230
8.2 Future Work ... 231
8.2.1 Improved Colon Lumen Segmentation 231
List of Figures

1.1 Two examples of polyps imaged at conventional colonoscopy. A small 4 mm sessile polyp located in the rectum (a) and an 8 mm pedunculated polyp located in the transverse colon (b). In each case the location of the polyp is indicated using an arrow. Both images are provided courtesy of Dr. Richard Choi, Virtual Colonoscopy Centre, Walter Reed Army Medical Centre (Washington D.C.) ... 2

1.2 A CTC data set consists of a series of slices that represent the density at regularly spaced points in the volumetric region occupied by the abdomen (a). The data set can be examined in 2-D (b) where the air inside the colon lumen is indicated by black regions inside the abdomen. Alternatively, a 3-D representation of the air inside the colon lumen can be generated. An example of this is illustrated in (c) where the white region indicates the colon lumen and the skeleton has been included for reference purposes. ... 4

1.3 Two different representations of a 6 mm polyp imaged using CTC. (a) An axial slice from the CTC data set (MMH-054/prone) where the location of the polyp is indicated by a red circle. Note that the polyp is the small bump attached to the larger protruding colonic structure. (b) A 3-D surface rendering of the same polyp where the location of the polyp is indicated by an arrow. ... 4

1.4 Examples of structures and objects that mimic colorectal polyps in CTC examinations (a) the haustral folds (b) residual faecal material and (c) the rectal catheter used for bowel insufflation. The red shaded patches indicate false positive detections made by a computer aided detection algorithm. ... 5

1.5 An overview of the developed CAD-CTC system where minor and major contributions are highlighted. ... 8

2.1 An example of a case where a large amount of residual faecal material caused a complete blockage of the colon (MMH-010/supine). The blockage can be imaged using a modified scout X-ray where the air inside the lumen is represented by white pixels (a). The location of the blockage, indicated by the red box, is void of air. An examination of the relevant 2-D axial slice from the data set of the same patient (b) confirms that this is a case of blockage and not collapse. The blocked section of the colon, indicated by the red box, contains a large amount of material that has a similar appearance to the soft tissue and fat regions associated with the patient. ... 12

2.2 Two examples of localised residue: (a) Residual fluid near the hepatic flexure of a patient (MMH-138/prone). Note the long horizontal transition at the fluid/air interface. Also note that the fluid/soft tissue boundary cannot be identified, if a submerged polyp is present then it will be undetectable. (b) Residual faecal material in the caecum resembling multiple polyps. ... 13

2.3 An 2-D example of collapse (MMH-381/supine) where the lumen is divided into two distinct sections represented by the red (rectum) and green (remainder) regions (a) and a volume rendering of the same colon illustrating the collapse at the rectosigmoid junction (b). ... 14
List of Figures

2.4 A good example of a case where a polyp is obscured in one position (supine) (a) and visible in the other (prone) (b). The location of the polyp is indicated by a red circle in both images. It should be noted that this patient (WRAMC_VC-241) received orally ingested contrast material. If contrast was not used then both the polyp and the residual material would be of similar density. This would effectively hide the polyp in the supine scan. 15

2.5 An external view of the VSG phantom (a) and a closeup view of one of the latex rubber inserts (b). CT scans of the phantom demonstrating the effect of radiation dose on image quality with a tube current of 100 mAs (c & e) and with a tube current of 13 mAs (d & f). The locations of the magnified regions illustrated in (e & f) are indicated by red boxes in (c & d). The 13 mAs image has 2.9 times more noise than the 100 mAs image. These images are courtesy of T. A. Chowdhury (VSG) ..16

2.6 A polyp viewed using a 2-D axial image (a) and a 3-D surface rendering (b). The location of the polyp is indicated by a red circle in (a) and an arrow in (b). A fold viewed using a 2-D axial image (c) and a 3-D surface rendering (d). The location of the fold is indicated by a red circle in (c) and an arrow in (d). All images were obtained from MMH-357/prone. Note the similarities between the polyp and the fold in the 2-D images (a) & (c). In general 2-D is used for the primary evaluation of a data set and 3-D is used for problem solving. This approach would be relevant in the case of the images presented here. .. 19

2.7 Two different representations of a 10 mm flat polyp located in the rectum of WRAMC-103/prone. (a) An axial slice from the CTC data set where the location of the polyp is indicated by a red circle. (b) A 3-D surface rendering of the same data set where the location of the polyp is indicated by an arrow. The subtle shape of flat polyps, as illustrated in this example, makes them very difficult to detect during CTC examinations. 22

3.1 A CTC data set contains numerous gas filled regions that include the colon lumen, sections of the small intestine, and the stomach. As a result the task of colon lumen segmentation is not a trivial task. This is especially true where the colon lumen consists of more than one segment. A segmentation consisting of all gas filled abdominal regions for a sample data set (MMH-175/supine) contains 364,732 triangles (a) whereas a segmentation of the colon lumen alone contains 189,263 triangles (b) ..32

3.2 A histogram of a randomly selected CTC data set (MMH-120/prone). The three labeled peaks represent air (A), fatty tissue (B), and lean tissue (C). Note that a threshold value of -800 HU adequately separates air and tissue and is suitably positioned to minimise shine through artifacts.34

3.3 An overview of the digital subtraction process. (a) A cropped axial image illustrating a section of the colon lumen containing contrast enhanced residual fluid. (b) The original image following a simple threshold based subtraction. Note the residue artifacts at the air/contrast enhanced material boundary and edge artifacts at the fluid/soft tissue boundary. (c) Removal of the residue artifacts using a subtraction mask derived from the location of strong edges in the image. (d) Reconstruction of the colonic mucosa using targeted Gaussian filtering at the contrast enhanced material/soft tissue boundary. .. 41

3.4 Distance Field generation: (a) A 2-D representation of the human colon. (b) A distance field initiated from a user defined seed point (green cross) in the rectum. (c) A distance from surface field initiated automatically from the set of surface points. White pixels are furthest from the source, whereas black pixels are closest to the source. 49
List of Figures

3.5 The distance from source field alone cannot be used for centreline calculation as the shortest path (i.e., the path with the shortest Euclidean distance) between the start and end points is identified (blue path). This problem, commonly referred to as corner cutting is illustrated for initial seed point in (a) the rectum and (b) the caecum.

3.6 One endpoint (red cross) of the colon can be identified as the point with the largest distance value relative to the seed point (green cross), this process is independent of seed point location. It is evident that the same endpoint is identified with a seed point in (a) the caecum, (b) the hepatic flexure and (c) the mid transverse colon.

3.7 Surface renderings of the colon of the same patient (MMH-166) imaged using (a) prone and (b) supine positioning. Note significant deviation in the morphology of the colon between the two images.

3.8 The six curvature classes: (a) peak or cap, $H < 0$, $K > 0$, $R = 10$, (b) ridge, $H > 0$, $K > 0$, $R = 0.75$, (c) saddle, $K < 0$, $R = 0.5$, (d) valley or rut, $H > 0$, $K < 0$, $R = 0.25$, (e) pit or cup, $H > 0$, $K > 0$, $R = 0.0$, (f) plane, $H = 0$, $K = 0$, R is indeterminable (Koenderink 1990).

3.9 Two common sources of false positives as seen at CTC: (a) A 2-D axial slice illustrating a protruding ileocecal valve where the location of the valve is indicated by a red circle (WRAMC_VC-286/prone) (b) A 3-D surface rendering of the rectal tube (MMH-166/supine). Note that the patient in (a) is in the prone position hence the caecum is on the right side of the image.

3.10 The curvedness property of a surface. Three surfaces with increasing curvedness are illustrated (a) - (c).

3.11 An illustration of how surface normals can be used to identify convex regions associated with polypoid structures: (a) a flat or concave structure, surface normals converge intraluminally, (b) a convex structure, surface normals converge extraluminally.

4.1 A surface rendered model of the colon displayed in conjunction with the Java3D coordinate system.

4.2 The merging process where individual DICOM files are converted into a custom volumetric data set.

4.3 The trilinear interpolation process. The interpolated value at v_{xyz} is based on the values of its eight neighbours ($v_{000} \rightarrow v_{111}$) and its location with respect to these eight neighbours.

4.4 An illustration of the region growing technique utilised for colon lumen segmentation using a simple 2-D example: (a) The original seed point is selected, (b) the identified voxels after two iterations of the region growing algorithm and, (c) All region voxels have been identified after nine iterations of the algorithm.

4.5 An example of the segmentation process: (a) The user selects a single seed point located inside the colon lumen to initiate region growing. The location of the seed point is indicated by black cross hairs and the resulting segmented region is highlighted in red. The extent of the segmentation can be monitored using a simulated scout X-ray where the segmented region has also been highlighted in red. (b) A second seed point is required in this case as the colon consists of two disjoined segments due to collapse.

XII
4.6 The rectum point can be identified by (a) selecting the slice at the base of the data set (the dark region in this image indicated by the red circle represents the air inside the rectum), (b) adding a border of one voxel to the selected slice and initiating region growing from the revised origin (-1, -1, -1) to remove the air outside the patient and, (c) thresholding the image and obtaining the centroid of resulting foreground region. This centroid value is used to represent the location of the rectum point 110

4.7 An overview of the centreline calculation process. (a) the original CTC data set, (b) the segmented colon lumen, (c) the skeleton and, (d) the final colon centreline. ... 111

4.8 Magnified sections of the colon lumen from Figure 4.7 (c) and (d) illustrating how extraneous loops can be caused by the haustral folds (a) and how the removal of these loops yields the final centreline (b) 114

4.9 A 2-D example illustrating the skeleton reduction process. (a) Original binary object (region of interest indicated using white); (b) Skeleton and distance from surface field generation; (c) Inverted distance from surface field (skeleton pixels only); (d) weighted graph (originating from the right); (e) The minimum cost path found using backward propagation through the distance field ... 115

4.10 A 2-D illustration of the LUT index generation process. .. 116

4.11 In cases where the colon consists of multiple segments, a centreline segment must be calculated for each individual colon segment. The resulting centreline segments must be connected to yield the final centreline that extends between the endpoints located in the rectum and the caecum 118

4.12 The anatomy of the colon. (a) An illustration of the ideal colon where all colonic segments and flexures have been identified. (b) An example of an actual human colon which has been segmented from a CTC data set. 119

4.13 Six iterations of the centreline filtering process illustrating the transition from the original distorted centreline (a) to an approximation of the original centreline where all of the kinks and loops have been removed (f) 120

4.14 Flexure detection theory: (a) The centreline of the ideal colon (see Fig. 4.12 (a)) and (b) a graph of adjusted values of θ_p for each point p in the centreline. Note that the six points present in (a) represent the four flexure points (circles) and the two endpoints located in the rectum and the caecum (squares) .. 122

4.15 An illustration of the flexure detection process. (a) The original colon centreline. (b) A filtered version of the original centreline ($W = 319$). (c) A plot of θ_p against p for the filtered centreline. Note that the flexure detection process involves the use of an iterative filter. The filter width continues to increase until all of the flexure points have been detected. In this example, the process terminates after the hepatic flexure has been uniquely identified. [Flexure key: $\nabla = P_{\text{rec}}$, $\triangle = P_{\text{sig}}$, $\bigcirc = P_{\text{spl}}$ & $\blacklozenge = P_{\text{hep}}$. Note that \blacksquare indicates the location of the endpoints in the rectum and caecum.] 123

4.16 The output of the subsegmentation process consists of a colon model where voxels are labeled as (a) the rectum, (b) the sigmoid colon, (c) the descending colon, (d) the transverse colon and, (e) the ascending colon. 124

5.1 An illustration of the marching cubes isosurface generation process. Each $2 \times 2 \times 2$ voxel neighbourhood is examined and the surface patch associated with the neighbourhood configuration is generated and added to the output mesh. In this example, the original eight voxels in the input volume are replaced by a single triangle in the output mesh. Note that the corner sphere in the central image indicates the presence of a voxel located inside the isosurface i.e. the shaded voxel in the original $2 \times 2 \times 2$ volume. 130
List of Figures

5.2 The 15 possible configurations of eight binary voxels arranged in a cubic formation. Voxels located inside the isosurface are indicated by cube corners with spheres and voxels outside the isosurface are indicated by cube corners without spheres. The relevant surface patches (highlighted using red) have been inserted as documented in the original marching cubes algorithm specification (Lorensen & Cline 1987). .. 131

5.3 A sample voxel configuration where \(v_{11}, v_{5}, v_{8}, v_{8} \) are inside the isosurface and all other voxels are outside. A LUT index of 0xB1 is generated which results in the specified edge list. Note that the order of the edges is important as it defines the front face for the associated triangle in Java3D. 132

5.4 The calculation of \(\delta_{iso} \) at three sample boundaries. In each case, the value of \(\delta_{iso} \) is calculated using linear interpolation and the density at the point represented by \(d_{iso} \) is \(-800\) HU, i.e. the isosurface density 132

5.5 The three masks (a, b & c) that are used by Lorensen & Cline (1987) to calculate the edge magnitudes in the \(x, y, z \) directions respectively. Note that the scaling factors are omitted as the implementation discussed here is intended for use with isotropic data. 133

5.6 An illustration of an isosurface model for the colonic mucosa before (a) and after (b) the use of vertex and normal interpolation. 134

5.7 An example of the ambiguous case that results when the complement of configuration 3 (Figure 5.2 (d)) occurs next to configuration 6 (Figure 5.2 (g)). A hole is evident at the interface between these two cubes. 135

5.8 The eight additional configurations of eight binary voxels arranged in a cubic formation as defined by Nielson (2003). These extra configurations remove the need to generate complementary cases and as a result, solve the topology problem associated with the original MCA. 136

5.9 An isosurface extracted using the 15 core neighbourhood configurations of the standard marching cubes algorithm (a) and the extended 23 neighbourhood configurations of the modified algorithm (b). Note that the standard approach creates an unwanted hole, indicated by a red circle, whereas the extended approach results in an airtight isosurface. 137

5.10 The three 26-neighbour masks representing the Zucker-Hummel edge operator where \(m_a = 1.0, m_b = \sqrt{2}/2 \) and \(m_c = \sqrt{3}/3 \). 138

5.11 The Gaussian filter \(g_0(x) \) (a) and its first and second derivatives \(g_1(x) \) (b) and \(g_2(x) \) (c). The standard deviation \(\sigma \) is set to 1.0 as recommended by Lohmann (1998). 141

5.12 The Deriche filter \(d_0(x) \) (a) and its first and second derivatives \(d_1(x) \) (b) and \(d_2(x) \) (c). The values for \(\alpha_1 \) and \(\alpha_2 \) are set to 0.7 and 0.1 respectively as suggested by Campbell & Summers (2004) and the normalisation coefficients \(c_0, c_1, c_2 \) & \(c_3 \) are calculated using Equation 5.3.19 as suggested by Monga & Benayoun (1995). 141

5.13 An example of the segment skipping problem (a) the expected case where colon wall vertices are associated with centreline segments in the same segment (b) the actual case where vertices associate themselves with the closest centreline segment resulting in incorrect segment assignments. 145

5.14 The anatomical vertex labeling process. (a) The wall at the hepatic flexure and the region growing process after three iterations. (b) The completed region growing process where a smooth transition exists between the transverse colon (purple) and the ascending colon (orange). (c) An exterior view of the labeled colon and, (d) An endoluminal view of the splenic flexure. 147
5.15 An illustration of the density sampling process. (a) The interconnected vertices that result from the surface extraction algorithm. (b) The corresponding density samples (or virtual biopsies) are located at a fixed distance (the sampling depth) from each vertex in the opposite direction of the normal at that point. ... 148

5.16 An illustration of how indexing can be used to reduce the amount of data required to specify a mesh structure. A pyramid consists of five vertices and six triangles. The unoptimised representation yields 54 values (a) and the optimised alternative yields only 33 (b). Note that in Java the data type for vertex (float) and index (int) both require four bytes of storage space. 149

5.17 The neighbour indexing process: The neighbouring vertices for each mesh vertex are stored in a list to streamline the process of searching for vertex neighbours. ... 150

5.18 External (a) and internal (b) surface renderings of a sample CTC data set (MMH-765/supine) demonstrating the type of output generated by the initial candidate detection stage. The regions identified as initial polyp candidates appear as red shaded patches. This is an extreme example where there are a total of 562 initial polyp candidates. 151

5.19 Hysteresis thresholding based region growing in a polygonal mesh. An initial seed point is selected that belongs to the polyp cap class V_s (a). Neighbouring vertices belonging to either the polyp cap or polyp collar classes are added to the region (b) & (c). The region growing process completes when no more suitable neighbours are available (d). Note that the region growing process must start from a vertex of the polyp cap class. 153

5.20 Examples of a true polyp and false positive detection generated by the initial candidate detection stage. (a) A 2-D axial slice containing a polyp. The location of the polyp is indicated using an arrow. (b) A 3-D surface rendering of the region containing the polyp. (c) The section of the polyp identified by the initial candidate detection stage. (d) & (e) Irregular shaped false positive detections caused by regions of the colon surface with polyp-like properties. .. 155

5.21 Alternative polyp representations. (a) Polyp candidate projection, where each candidate vertex is projected onto the plane in the direction of the normal to the surface of the plane. (b) Polyp candidate fingerprinting, an extension to polyp candidate projection, where a flattened representation of the surface, that preserves the original vertex layout, is generated. 157

5.22 The smallest angle between a reference vector \vec{r} and another vector \vec{n} can be calculated using the dot product. The resulting angle can be either clockwise (a) or anticlockwise (b) with respect to the reference vector. 159

5.23 Calculating the anticlockwise angle from a reference vector \vec{u} to another vector \vec{v}. (a) If the cross product $(\vec{u} \times \vec{v})$ is in the same direction as the normal to the surface of the plane then the required angle θ is obtained using the dot product. (b) However, if the cross product is in the opposite direction to the normal then the anticlockwise angle is given by $2\pi - \theta$. 160

5.24 An illustration of the different methods used for obtaining the radial component of the polar coordinates for a vertex being mapped to a 2-D plane. (a) Polyp candidate projection (b) Polyp candidate fingerprinting. 161

5.25 The six different fingerprint representations for a polyp candidate (a) depth map, (b) density, (c) curvedness, (d) Gaussian curvature, (e) mean curvature and (f) shape index. In all cases black and white are used to represent the minimum and maximum values for the relevant property. 163
List of Figures

5.26 The candidate expansion process (a) The original candidate regions consisting of a connected set of vertices (b) the minimum bounding ellipse of the original vertices and the set of additional vertices that it encapsulates. The combined set of vertices represents the expanded candidate region. .. 164

5.27 Expanded versions of the fingerprints from Figure 5.25 (a) depth map, (b) density, (c) curvedness, (d) Gaussian curvature, (e) mean curvature and (f) shape index. The red points are the original polyp candidate points and the green points are the expanded polyp candidate points. .. 166

6.1 An illustration of the data flow through the completed system. Each system operation is represented by an individual block and the interconnections represent the data shared between the different operations. .. 174

6.2 The underlying file structure of the final system. Each patient has an individual directory under which the prone and supine data sets are stored. Each data set directory contains the relevant intermediate files generated by the system as well as a directory containing the original data set files in DICOM format. .. 175

6.3 An illustration of the custom data set format. The header is extensible and supports the addition of new fields. The data can be assessed using a range of methods. These methods provide direct access to the voxel data and the associated flag values. .. 176

6.4 The format of a file representing an array of float primitives that was created using a custom OutputStream class. First the constant header is written, then four zero bytes are written for the length field. All of the float values are written to the file and upon completion the length field is overwritten with the actual number of entries. .. 178

6.5 The main user interface for the completed system allowed selected data sets to be processed using selected operations. .. 179

6.6 Four possible visualisation modes of the slice viewer. (a) Polyp marking (interactive), (b) Segmentation (interactive), (c) Centreline calculation (display only), and (d) density calculation (display only). .. 180

6.7 The different modes of operation of the surface viewer. (a) The default external view of the segmented colon lumen. (b) The polyp view where each actual polyp can be viewed. (c) The candidate view where each candidate can be visualised and classified. (d) The fly through mode where the user is automatically guided through the surface model of the colon using the set of points generated during the centreline calculation stage. .. 183

6.8 The different modes of operation of the fingerprint viewer. (a) A sample polyp candidate (in this case an actual polyp) displayed using the 3-D surface viewer. (b) The uninterpolated fingerprint points associated with the candidate. (c) The fingerprint points interpolated with nearest neighbour interpolation. (d) The fingerprint points interpolated using inverse distance weighting based interpolation. (e) The superimposition of the original candidate points. (f) The superimposition of the minimum bounding ellipse and the expanded candidate points. .. 185

7.1 A series of sample images selected from data sets obtained from the BUSM (a) (BUSM-001/supine), the MMH (b) (MMH-640/supine) and from the WRAMC (c) (WRAMC-239/supine). There is usually a small amount of residue in the data sets obtained from the BUSM and the MMH. The samples in (a) & (b) were selected specifically to illustrate this point. This residue is approximately the same density as soft tissue. In the case of the WRAMC data, there is a significant amount of contrast enhanced residue. This is evident from the sample illustrated in (c). .. 188

xvi
List of Figures

7.2 An illustration of the four computer generated synthetic phantom data sets that were used for centreline evaluation. ... 193

7.3 A comparison of the actual and calculated centrelines from an endoluminal perspective. (a) The two centrelines closely track each other but never converge. (b) The calculated centreline converges with the actual centreline. Note that in both cases the standard deviation between the actual and calculated centrelines is less than 1 mm. .. 196

7.4 A comparison of the actual and calculated centreline, for each of the phantoms, from an external perspective. ... 197

7.5 Examples of the centreline displayed in conjunction with transparently rendered colons for colons with 3, 4, 2 and 1 segments, respectively. 199

7.6 The two cases (out of 20) where centreline calculation failed. (a) A shine through artefact resulted in the caecum point being detected in the mid ascending colon. (b) Disjoined centreline segments were incorrectly connected due to a large collapse in the sigmoid colon .. 200

7.7 Examples of the output from the subsegmentation process for colons with 3, 4, 2 and 1 segments respectively. Note: These are from the same data sets as the centrelines that are illustrated in Figure 7.5. .. 202

7.8 An illustration of the same polyp as it appears in the prone (a) and (c) and supine (b) and (d) data sets of a patient (MMH-393). It is evident that there are significant variations in the perceived polyp size and polyp morphology between the two positions. ... 204

7.9 Internal and external renderings of the same data set (MMH-708/supine) where initial candidate detection has performed using the H/K approach (a) & (c) and R/S approach (b) & (d). It is clear from a visual inspection of these renderings that the R/S approach generates far fewer polyp candidate regions. ... 207

7.10 A comparison of candidate coverage for four polyps identified using the H/K (a) - (d) and R/S (e) - (h) approaches to initial polyp candidate detection. All four polyps are from the same data set MMH-017/supine and their sizes from left to right are 5.25, 3.0, 3.0 and 5.5 mm respectively. ... 208

7.11 A comparative evaluation of the original versus expanded shape index in a single patient study: (a) A scatterplot representing the distribution of the original candidates. (b) A scatterplot representing the distribution of the expanded candidates. (c) A FROC analysis comparing the performance of the original and expanded candidates. Note: At 100% sensitivity the expanded candidates provide a 32% reduction in false positive detections. ... 210

7.12 A comparative evaluation of the original versus expanded sphericity in a single patient study: (a) A scatterplot representing the distribution of the original candidates. (b) A scatterplot representing the distribution of the expanded candidates. (c) A FROC analysis comparing the performance of the original and expanded candidates. Note: At 100% sensitivity the expanded candidates provide a 30% reduction in false positive detections. 211

7.13 A comparative evaluation of the original versus expanded density in a single patient study: (a) A scatterplot representing the distribution of the original candidates. (b) A scatterplot representing the distribution of the expanded candidates. (c) A FROC analysis comparing the performance of the original and expanded candidates. Note: The density feature does not provide a good discrimination between true and false positives. .. 212
7.14 A comparative evaluation of the original versus expanded shape index in a five patient study: (a) A scatterplot representing the distribution of the original candidates. (b) A scatterplot representing the distribution of the expanded candidates. (c) A FROC analysis comparing the performance of the original and expanded candidates. Note: At 100% sensitivity the expanded candidates caused a 137% increase in false positive detections. ... 213

7.15 A comparative evaluation of the original versus expanded sphericity in a five patient study: (a) A scatterplot representing the distribution of the original candidates. (b) A scatterplot representing the distribution of the expanded candidates. (c) A FROC analysis comparing the performance of the original and expanded candidates. Note: A sensitivity of 100% was not achievable in this experiment with expanded candidates. ... 214

7.16 A comparative evaluation of the original versus expanded density in a five patient study: (a) A scatterplot representing the distribution of the original candidates. (b) A scatterplot representing the distribution of the expanded candidates. (c) A FROC analysis comparing the performance of the original and expanded candidates. Note: The density feature does not provide a good discrimination between true and false positives. ... 215

7.17 A large polyp located on a fold (a) and its associated fingerprint (b) (from MMH-483/supine). The irregular boundary of the polyp causes the MBE to include points that belong to the fold. This dilutes the polyp's features, e.g. the mean shape index drops from 0.92 in the original candidate to 0.81 in the expanded candidate. ... 216

7.18 A plot of polyp detection sensitivity versus increasing candidate expansion size threshold. Note that the system performance remains largely unaffected up to a size value of 5.6 mm. ... 218

7.19 A plot of false positive detection rate versus increasing candidate expansion size threshold. Note that the false positive detection rate at the optimum candidate expansion size threshold (5.6 mm) is 12.0 per data set. ... 219

7.20 A FROC curve comparing polyp detection sensitivity and false positive detection rate for clinically significant polyps ≥ 5 mm in size. Note that at 97% sensitivity, original candidates generated 20.4 false positives per data set whereas the use of expanded candidates generated 12.0 (a 41.2% reduction). The use of the additional features calculated during the candidate expansion process enabled a further reduction in the false positive rate to a minimum of 8.6 per data set (a 57.8% reduction). ... 220

7.21 2D Scatterplots depicting the distribution of shape index and curvedness values for true polyps and false positives before (a) and after (b) the use of candidate expansion. These scatterplots were generated using 10 CTC data set randomly selected from the MMH database. ... 223

B.1 An overview of how the NeatMed API should be used in the development of medical imaging applications. ... 259

B.2 A representation of how data is stored and queried at the most basic level of the DICOMImage class. ... 264

B.3 A volume rendering of the human colon generated from an abdominal CTC data set using a combination of the NeatMed API and the VTK. ... 268

B.4 The threshold image processing operation. A sample axial CTC slice (a) before and (b) after application of the threshold. ... 270

B.5 Advanced image processing facilitated by NeatMed (a) Centreline calculation at CT colonography. (b) Segmentation of the biliary tree from MRCP data (Image courtesy of K. Robinson (VSG)). ... 270

B.6 The HTML Javadoc documentation for the NeatMed API. This documentation can be accessed online at http://www.eeng.dcu.ie/vsl/DICOM/ ... 271
List of Figures

C 1 MMH data sets 284
C 2 MMH data sets (continued) 285
C 3 MMH data sets (continued) 286

D 1 A 6 mm polyp from MMH-054/prone The mean shape index of the original candidate is 0.924 and the mean shape index of the expanded candidate is 0.920 (a 0.4% reduction) 287
D 2 A 3 mm polyp from MMH-208/prone The mean shape index of the original candidate is 0.896 and the mean shape index of the expanded candidate is 0.879 (a 1.9% reduction) 288
D 3 A 4 mm polyp from MMH-161/prone The mean shape index of the original candidate is 0.859 and the mean shape index of the expanded candidate is 0.856 (a 0.3% reduction) 288
D 4 A 6 mm polyp from MMH-245/prone The mean shape index of the original candidate is 0.899 and the mean shape index of the expanded candidate is 0.886 (a 1.4% reduction) 289
D 5 A 4 mm polyp from MMH-735/prone The mean shape index of the original candidate is 0.919 and the mean shape index of the expanded candidate is 0.900 (a 2.0% reduction) 289
D 6 A polyp candidate from MMH-166/prone that is attributable to the rectal tube The mean shape index of the original candidate is 0.866 and the mean shape index of the expanded candidate is 0.784 (a 9.4% reduction) 290
D 7 A polyp candidate from MMH-263/prone that is attributable to the rectal tube The mean shape index of the original candidate is 0.882 and the mean shape index of the expanded candidate is 0.806 (a 8.6% reduction) 290
D 8 A polyp candidate from MMH-081/supine that is attributable a haustral fold The mean shape index of the original candidate is 0.854 and the mean shape index of the expanded candidate is 0.816 (a 4.4% reduction) 291
D 9 A polyp candidate from MMH-139/supine that is attributable a haustral fold The mean shape index of the original candidate is 0.882 and the mean shape index of the expanded candidate is 0.819 (a 7.5% reduction) 291
D 10 A polyp candidate from MMH-708/supine that is attributable to a patch of the colon surface The mean shape index of the original candidate is 0.863 and the mean shape index of the expanded candidate is 0.778 (a 9.8% reduction) 292
D 11 A polyp candidate from MMH-526/prone that is attributable to a patch of the colon surface The mean shape index of the original candidate is 0.844 and the mean shape index of the expanded candidate is 0.762 (a 9.7% reduction) 292
List of Tables

2.1 The results of large scale studies (involving ≥ 100 patients) that compared the performance of manually read CTC to conventional colonoscopy for the detection of colorectal polyps. Note that there are slight variations between the polyp size ranges and reporting styles used by the different groups. The size ranges used in this table were selected to be continuous and provide the best representation of the ranges reported in the cited studies. 10

3.1 An overview of previously published centreline calculation algorithms. A rank has been calculated for each algorithm by scaling the reported execution time based on the processor speed. This is intended to provide an indication of algorithm performance that is independent of the hardware platform used. Instances where the required information is unavailable are indicated by ‘*’. The accuracy of each technique, compared to a known phantom centreline (P) and/or radiologist markings (R), is presented where available. The order in which the techniques are listed is based on the associated centreline calculation speed ... 64

3.2 A summary of previously published CAD-CTC techniques organised chronologically (by submission date for journals and by meeting date for conferences). Instances where the required information is unavailable are indicated by ‘*’. ... 95

6.1 A selection of the properties supported by the properties file. These are essentially the global variables of the system and can be accessed by any of the system components. .. 177

7.1 The data sets used for centreline evaluation. The average number of segments in this test set was 2.25 and the average number of lumen voxels was 5,521,687. ... 192

7.2 The endpoint detection error distances for each of the four phantom studies. The mean endpoint detection error was approximately 2 mm. 194

7.3 The results of the overall accuracy evaluations for the four phantom studies. The average standard deviation between the actual and calculated centrelines was less than 1 mm. ... 195

7.4 Detailed results comparing the standard and optimised approaches to centreline calculation. Note: The optimisation technique only affected the skeleton generation stage of the process. The time required for all other stages remained the same as the unoptimised approach 198

7.5 The results of a comparative evaluation of the R/S and H/K approaches for initial polyp candidate detection using 10 randomly selected CTC data sets with a total of 27 polyps. The coverage indicates the percentage of the colon surface identified as having polyp-like properties. Ideally the initial polyp candidate detection stage should minimise the colon surface coverage and the total number of candidates while retaining the maximum number of clinically significant polyps. .. 205
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>The mean and standard deviation of the overall values for class separation</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>before and after candidate expansion for a range of different candidate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>expansion size thresholds. Corresponding two-tailed p values are computed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>by paired t tests with the null hypothesis that the difference between the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>class separation for regular and expanded candidates was zero over the 29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>data sets</td>
<td></td>
</tr>
<tr>
<td>C.1</td>
<td>A brief summary of the data that was used in this study</td>
<td>276</td>
</tr>
<tr>
<td>C.2</td>
<td>A detailed summary of the patient data, provided by the MMH, that was used</td>
<td>277</td>
</tr>
<tr>
<td></td>
<td>for system training and evaluation</td>
<td></td>
</tr>
</tbody>
</table>
Glossary of Acronyms

Technical Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-D</td>
<td>one dimensional</td>
</tr>
<tr>
<td>2-D</td>
<td>two dimensional</td>
</tr>
<tr>
<td>3-D</td>
<td>three dimensional</td>
</tr>
<tr>
<td>3DTT</td>
<td>three dimensional topological thinning</td>
</tr>
<tr>
<td>AOF</td>
<td>average outward flux</td>
</tr>
<tr>
<td>API</td>
<td>application programmers interface</td>
</tr>
<tr>
<td>CAD</td>
<td>computer assisted diagnosis</td>
</tr>
<tr>
<td>CAR</td>
<td>computer-assisted reader</td>
</tr>
<tr>
<td>CT</td>
<td>computed tomography</td>
</tr>
<tr>
<td>CS</td>
<td>class separation</td>
</tr>
<tr>
<td>CTC</td>
<td>computer tomography colonography</td>
</tr>
<tr>
<td>DCBE</td>
<td>double contrast barium enema</td>
</tr>
<tr>
<td>DICOM</td>
<td>digital imaging and communications in medicine</td>
</tr>
<tr>
<td>DSC</td>
<td>digital subtraction colonography</td>
</tr>
<tr>
<td>FOBT</td>
<td>fecal occult blood test</td>
</tr>
<tr>
<td>FROC</td>
<td>free-response receiver operator characteristic</td>
</tr>
<tr>
<td>GUI</td>
<td>graphical user interface</td>
</tr>
<tr>
<td>HFP</td>
<td>head first prone</td>
</tr>
<tr>
<td>HFS</td>
<td>head first supine</td>
</tr>
<tr>
<td>HU</td>
<td>Houndsfield unit</td>
</tr>
<tr>
<td>HT</td>
<td>Hough transform</td>
</tr>
<tr>
<td>HTML</td>
<td>hypertext mark-up language</td>
</tr>
<tr>
<td>ICV</td>
<td>ileocecal valve</td>
</tr>
<tr>
<td>IDE</td>
<td>integrated development environment</td>
</tr>
<tr>
<td>IDW</td>
<td>inverse distance weighted</td>
</tr>
<tr>
<td>JDK</td>
<td>Java development kit</td>
</tr>
<tr>
<td>JVM</td>
<td>Java virtual machine</td>
</tr>
<tr>
<td>JPEG</td>
<td>joint photographic experts group</td>
</tr>
<tr>
<td>JRE</td>
<td>Java runtime environment</td>
</tr>
<tr>
<td>MAP</td>
<td>maximum a posteriori (classifier)</td>
</tr>
<tr>
<td>MBE</td>
<td>minimum bounding ellipse</td>
</tr>
<tr>
<td>MCA</td>
<td>marching cubes algorithm</td>
</tr>
<tr>
<td>MDC</td>
<td>minimum distance classifier</td>
</tr>
<tr>
<td>MPLD</td>
<td>multi-plane linear discriminant (classifier)</td>
</tr>
<tr>
<td>MPR</td>
<td>multiplanar reformatted</td>
</tr>
<tr>
<td>MRCP</td>
<td>magnetic resonance cholangiopancreatography</td>
</tr>
<tr>
<td>MRI</td>
<td>magnetic resonance imaging</td>
</tr>
</tbody>
</table>
Glossary of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET</td>
<td>positron emission tomography</td>
</tr>
<tr>
<td>PVE</td>
<td>partial volume effect</td>
</tr>
<tr>
<td>RLE</td>
<td>run length encoding</td>
</tr>
<tr>
<td>ROC</td>
<td>receiver operator characteristic</td>
</tr>
<tr>
<td>SNO</td>
<td>surface normal overlap</td>
</tr>
<tr>
<td>VC</td>
<td>virtual colonoscopy</td>
</tr>
<tr>
<td>VR</td>
<td>virtual reality</td>
</tr>
<tr>
<td>VTK</td>
<td>visualisation toolkit</td>
</tr>
</tbody>
</table>

Non-technical Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACRIN</td>
<td>American College of Radiology Imaging Network</td>
</tr>
<tr>
<td>ACR-NEMA</td>
<td>American College of Radiology - National Electrical Manufacturers Association</td>
</tr>
<tr>
<td>BUSM</td>
<td>Boston University School of Medicine</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Scientific and Industrial Research Organisation</td>
</tr>
<tr>
<td>HRB</td>
<td>Health Research Board (of Ireland)</td>
</tr>
<tr>
<td>MMH</td>
<td>Mater Misericordiae Hospital</td>
</tr>
<tr>
<td>ICS</td>
<td>Irish Cancer Society</td>
</tr>
<tr>
<td>NCRI</td>
<td>National Cancer Registry of Ireland</td>
</tr>
<tr>
<td>NIH</td>
<td>National Institutes of Health</td>
</tr>
<tr>
<td>SFI</td>
<td>Science Foundation Ireland</td>
</tr>
<tr>
<td>SUNY</td>
<td>State University of New York</td>
</tr>
<tr>
<td>UCLA</td>
<td>University of California, Los Angeles</td>
</tr>
<tr>
<td>UC</td>
<td>University of Chicago</td>
</tr>
<tr>
<td>UHG</td>
<td>University Hospital Gasthuisberg (Leuven, Belgium)</td>
</tr>
<tr>
<td>VSG</td>
<td>Vision Systems Group</td>
</tr>
<tr>
<td>WRAMC</td>
<td>Walter Reed Army Medical Centre</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1.1 Background

Colorectal cancer is the second most common cause of cancer-related death worldwide. For example, the latest statistics published by the National Cancer Registry of Ireland (NCRI 2005) show that, in Ireland, colorectal cancer accounted for 14,571 new cancer cases, and resulted in 7,439 deaths, during the period 1994 - 2001. Although the cause of colorectal cancer is as yet unknown, the landmark paper by Burkitt (1971) suggests that it is linked to the lifestyle adopted by people in the developed world.

Colorectal cancer is preceded by the development of benign polyps\(^1\). This type of cancer can be prevented in the majority of cases if these precursor polyps are identified early in their course and are successfully resected. There are a number of screening techniques currently available, the most sensitive of these is conventional colonoscopy. This is an endoscopic procedure that is used to view the interior of the large intestine of a patient using an instrument known as a colonoscope. During the examination the patient typically lies on the left side with both knees drawn up toward the chest. The colonoscope is advanced from the rectum to the caecum and then withdrawn. A more detailed examination of the colonic mucosa can be performed during withdrawal. The colonoscope captures endoluminal images of the colon and rectum. These images are displayed on a monitor and evaluated by a gastroenterologist. Any residual fluid that obscures regions of the colon can be removed using suction and any significant polyps that are encountered can be removed using an electrocautery snare (i.e. colonoscopy is therapeutic as well diagnostic). Cleans-

\(^1\)A colorectal polyp is a growth of tissue protruding from the mucous lining of the large intestine. Images of polyps will be presented later in the text once the relevant image acquisition technologies have been introduced.
Chapter 1

Introduction

Figure 1.1: Two examples of polyps imaged at conventional colonoscopy. A small 4 mm sessile polyp located in the rectum (a) and an 8 mm pedunculated polyp located in the transverse colon (b). In each case the location of the polyp is indicated using an arrow. Both images are provided courtesy of Dr. Richard Choi, Virtual Colonoscopy Centre, Walter Reed Army Medical Centre (Washington D.C.).

ing of the bowel is required prior to a colonoscopy examination. This generally involves a special low residue diet for two days before the examination, combined with the use of laxatives to completely empty the colon before colonoscopy. The amount of pain experienced by the patient is reduced using an analgesic (pain killer), and a sedative is also used to reduce patient discomfort. Examples of polyps imaged at conventional colonoscopy are illustrated in Figure 1.1.

There are a number of problems associated with conventional colonoscopy. The patient must undergo a rigorous bowel preparation immediately prior to the colonoscopy examination. This involves the use of laxatives and is both uncomfortable and embarrassing for the patient. The patient needs to be sedated before the colonoscope is inserted. As a result, the patient is unconscious for a period of time as well as being unable to function normally while recovering from the effects of the anesthetic. Conventional colonoscopy has a further embarrassment factor that is due to the nature of the examination. Although patients are under the effect of an anesthetic and do not recall much of the examination, they still cite the invasive nature of the procedure as being a major deterrent. Finally, there are certain risks associated with performing a colonoscopy examination. Due to the highly invasive
nature of the procedure, it is possible to inadvertently perforate the colon which can in extreme cases, result in patient mortality. In their retrospective evaluation of 26,162 consecutive colonoscopy examinations, Tran et al. (2001) found that 21 of the cases required operations for perforation and that one patient died as a result of perforation.

Computed tomography colonography (CTC), originally known as virtual colonoscopy\(^2\) (VC), is a minimally invasive alternative to conventional colonoscopy for colon imaging. The technique was originally demonstrated by Vining et al. (1994), however the concept of imaging colonic polyps using radiological techniques was proposed over ten years earlier by Coin et al. (1983). A CTC examination involves obtaining an abdominal computed tomography (CT) scan of a suitably prepared patient. The patient must undergo the same bowel preparation that is required for conventional colonoscopy prior to scanning. In addition, the patient’s colon must be inflated with room air or CO\(_2\). The CT scan involves taking a series of one-dimensional (1-D) X-rays from a point that rotates about the patient. This process is repeated at regular points along the axis of rotation until the desired region has been imaged. The CT scan generates a three-dimensional (3-D) data set, referred to as a CTC data set, that consists of a series of two-dimensions (2-D) slices composed of voxels\(^3\). The voxels represent the density at regularly spaced points in the volumetric region imaged by the CT scanner and the density values assigned to each voxel are represented using Hounsfield Units (HU)\(^4\). There are approximately 250 slices in a CTC data set, each slice contains 512 x 512 voxels, the slice thickness is typically 1.5 mm and there are no discontinuities between adjacent slices. The acquired CTC data set is then examined either in 2-D using the raw axial CT images or alternatively in 3-D by generating a virtual reality (VR) model of the colon using the axial CT slices (see Figure 1.2). This model can be evaluated in much the same way that a gastroenterologist examines images of the colon obtained using a colonoscope. If any abnormalities are discovered at CTC, the patient is referred for follow-up using conventional colonoscopy. This screening approach has the potential

\(^2\)Johnson et al. (1998) presented the justification behind the choice of nomenclature for this technique.

\(^3\)A voxel is a volume element and represents a value at a point in a regularly spaced 3-D grid. The term voxel is derived by fusing the word volumetric with the word pixel.

\(^4\)The units of CT attenuation are named after the inventor of the CT technique, G. N. Hounsfield (Hounsfield 1973). The CT attenuation of a material is related to its density. Note that the HU values provide good discrimination between the air in the colon and the surrounding tissue. Voxels associated with these regions typically have densities of -1024 HU and 100 HU respectively.
Figure 1.2: A CTC data set consists of a series of slices that represent the density at regularly spaced points in the volumetric region occupied by the abdomen (a). The data set can be examined in 2-D (b) where the air inside the colon lumen is indicated by black regions inside the abdomen. Alternatively, a 3-D representation of the air inside the colon lumen can be generated. An example of this is illustrated in (c) where the white region indicates the colon lumen and the skeleton has been included for reference purposes.

An additional benefit associated with CTC is that it can be used to image the entire colon in cases were conventional colonoscopy fails to image the entire colon from the rectum to the caecum. (Macari et al. 1999). An example of a polyp imaged using CTC is illustrated in Figure 1.3.

Figure 1.3: Two different representations of a 6 mm polyp imaged using CTC. (a) An axial slice from the CTC data set (MMH-054/prone) where the location of the polyp is indicated by a red circle. Note that the polyp is the small bump attached to the larger protruding colonic structure. (b) A 3-D surface rendering of the same polyp where the location of the polyp is indicated by an arrow.
1.2 Motivation

The most active area of CTC research deals with the computer aided detection of colorectal polyps. A number of techniques dealing with this problem have been described in the literature, these techniques are summarised and compared where possible in Section 3.5. The task of automatically identifying polyps at CTC is extremely difficult due to the variety of polyp morphologies that may occur, and because other structures that are present in the colon at CTC may mimic the shape of polyps and generate false positive detections (see Figure 1.4). Dachman et al. (2002) cite nine potential causes of false positives: Prominent fold, small bowel/stomach, ileocecal valve, stool, rectal tube, flexural pseudotumor, motion artifact, anorectal junction and external compression. However, in their study they found that prominent folds (45%) and residual stool (25%) were the two main sources of false positives. Although the problem of automatically detecting colorectal polyps has been largely solved, the problem of excessive false positive detections still warrants attention.

![Figure 1.4](image)

(a) (b) (c)

Figure 1.4: Examples of structures and objects that mimic colorectal polyps in CTC examinations (a) the haustral folds (b) residual faecal material and (c) the rectal catheter used for bowel insufflation. The red shaded patches indicate false positive detections made by a computer aided detection algorithm.

1.3 Contributions

Yoshida & Dachman (2005) describe computer aided detection of polyps at CTC in terms of three main tasks:
1 Colon lumen segmentation - Separating the voxels representing the colon lumen from the entire CTC data set

2 Polyp candidate detection - Identifying regions of the colon surface that have polyp-like properties

3 False positive reduction - Reducing the list of polyp candidates based on a more detailed analysis of the suspicious regions

The major contribution of this thesis is to address the task of false positive reduction by introducing a novel CTC system incorporating computer aided diagnosis (CAD), that includes a series of innovative enhancements. The reduction in false positive detections is achieved by including an additional stage between stages two and three listed above. The purpose of the additional stage is to

1 Generate an alternative polyp candidate representation. This involves creating a 2-D representation of the 3-D patch of the colon surface that is associated with a polyp candidate.

2 Expand the polyp candidate in a structured manner, based on an analysis of the alternative candidate representation, so that the resulting candidate region is more representative of an actual colorectal polyp.

It will be shown that the inclusion of this additional stage can significantly reduce the number of false positive detections generated by the CAD-CTC system. Other contributions deal with the associated tasks that are required to realise an innovative CAD-CTC system that incorporates a novel automated reporting scheme. These contributions include

1 A medical imaging interpretation toolkit - A custom toolkit that can be used to interpret medical image data encoded according to both the DICOM and Analyze standards (Sadleir et al. 2004a). This toolkit can be used to simplify the task of medical imaging application development.

2 A real time colon centreline calculation algorithm - A novel centreline calculation technique based on 3-D topological thinning that can be used to accurately extract the central path through the colon in a computationally efficient manner (Sadleir & Whelan 2005).
3. **A novel technique for colon lumen subsegmentation** - A technique that divides the centreline so that it represents the five main anatomical regions of the colon: Rectum, sigmoid colon, descending colon, transverse colon and ascending colon (Sadleir et al. 2002). Using this information, the location of an automatically detected polyp can be localised to a particular colon segment, enabling improved reporting of results to the examining radiologists.

An overview of the developed CAD-CTC system is presented in Figure 1.5.

1.4 Organisation

The remainder of this thesis is organised as follows: Chapter 2 reviews the CTC technique and discusses other alternatives to colonoscopy for colorectal cancer screening. Chapter 3 summarises the main technical advances that have been made in relation to automating different aspects of the CTC technique\(^5\). Chapter 4 describes the preprocessing operations that were developed to facilitate high performance CAD-CTC with automated reporting. Chapter 5 provides an overview of a CAD technique that was developed to deal specifically with the reduction of false positive detections. Chapter 6 provides a system overview and discusses some of the implementation issues that were encountered. Chapter 7 describes the testing strategy that was employed and presents the test results that were obtained. Finally, Chapter 8 summarises the main points of this thesis and suggests future research directions. In order to aid the reader, a glossary of acronyms is provided in the preamble to this thesis and a glossary of medical terminology is provided in Appendix A.

\(^5\)In situations where multiple papers are discussed in a common thread the order in which journal papers are discussed will be determined by their respective submission dates. Conference papers will be discussed based on the date of the conference. This approach is adopted to ensure continuity when discussing the work of a particular author or group. In addition, references will be augmented to include the group that the author belonged to at the time of publication. In cases where the group name is represented by an acronym, the Glossary of Acronyms, located in the preamble to this thesis, should be consulted.
Figure 1.5: An overview of the developed CAD-CTC system where minor and major contributions are highlighted.
Chapter 2
Medical Background

2.1 Introduction

This chapter presents the medical background that forms the basis for material discussed in subsequent chapters of this thesis. The majority of the material dealt with in this chapter relates to standard, manually read, CTC. However, the discussion is not limited to CTC as other alternatives to conventional colonoscopy for colorectal cancer screening are also reviewed for completeness. The discussion of CTC is continued in Chapter 3, where enhancements dealing with the automation of different aspects of the standard technique are reviewed.

2.2 CT Colonography

The CTC protocol has been in a continuous state of flux since it was first demonstrated in 1994. Researchers have investigated many different aspects of the technique in order to establish an optimum approach to radiological imaging of the colon. This section reviews a selection of the important early studies, the outcomes of which have defined the way that the CTC protocol has evolved. The first large-scale evaluation of CTC was carried out by Fenlon et al., of the Departments of Radiology and Gastroenterology at the Boston University School of Medicine, between March 1997 and January 1999. Their subsequent report (Fenlon et al. 1999) provides a good overview of the standard CTC technique and will be summarised in the following paragraphs to form an introduction to this section.

The Boston study involved 100 high risk patients consisting of 60 men and 40 women with a mean age of 62 years. The patients underwent the same bowel preparation as that used for conventional colonoscopy, as CTC was performed immediately before conventional colonoscopy for the purposes of the study. Prior to CT scan-
Table 2.1: The results of large scale studies (involving ≥ 100 patients) that compared the performance of manually read CTC to conventional colonoscopy for the detection of colorectal polyps. Note that there are slight variations between the polyp size ranges and reporting styles used by the different groups. The size ranges used in this table were selected to be continuous and provide the best representation of the ranges reported in the cited studies.

<table>
<thead>
<tr>
<th>Group</th>
<th>#Cases/#Polyps</th>
<th>Sensitivity</th>
<th>Spec.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Small < 5 mm</td>
<td>Medium [5, 10] mm</td>
</tr>
<tr>
<td>Fenlon et al. (1999)</td>
<td>100/115</td>
<td>55%</td>
<td>82%</td>
</tr>
<tr>
<td>Yee et al. (2001)</td>
<td>300/223</td>
<td>59.1%</td>
<td>80.1%</td>
</tr>
<tr>
<td>Cotton et al. (2004)</td>
<td>615/827</td>
<td>7.64%</td>
<td>22.7%</td>
</tr>
<tr>
<td>Pickhardt et al. (2003)</td>
<td>1233/550</td>
<td>-</td>
<td>83.6%</td>
</tr>
</tbody>
</table>

Abbreviations: #Cases (number of cases), #Polyps (number of polyps), Spec. (Specificity)

The colon was insufflated with room air to the maximum level tolerated by the patient, and a smooth muscle relaxant was administered to minimise peristalsis and reduce patient discomfort. The level of insufflation was assessed by means of a scout X-ray. Patients were scanned with a helical CT scanner with a table speed of 6.25 mm per second at a dose of 110 mAs and 110 kV. The resolution of the resulting axial images was 512 × 512 pixels. All patients were scanned in the prone and supine positions, a strategy that is employed to reduce the occluding effects of residual material in the colon. All scans were obtained during a single breath hold to reduce motion artifacts and all patients were reviewed by two experienced abdominal radiologists who were blinded to the results of conventional colonoscopy and all other previous evaluations.

There were conventional colonoscopy findings in 49 of the 100 patients. These consisted of three colorectal carcinomas and 115 polyps. Fifty three of the polyps were 1 to 5 mm in size, 40 were 6 to 9 mm and the remaining 22 were ≥ 10 mm. It was noted that 89% of the conventional colonoscopy examinations were incomplete and did not reach the caecum, various reasons were given for incomplete examinations. One complication resulting from colonoscopy was reported (a nonfatal perforation of the sigmoid colon). In total, 71% of the 115 polyps reported at conventional colonoscopy were identified using CTC. The sensitivity of CTC compared to the gold standard (i.e. conventional colonoscopy) increased as the size threshold for significant polyps was increased. A per-polyp sensitivity of 91% was reported for polyps ≥ 10 mm in size. There were a total of 19 false positive detections over all
size ranges. The authors noted that between 10% and 20% of colonic polyps, and up to 5% of colorectal cancers, can be missed by conventional colonoscopy. As a result, the actual number of false positives found in their study may have been slightly lower than the value reported.

The Boston study was the first large scale study to demonstrate the feasibility of CTC for detecting significant colorectal polyps. The results of this study, and those of other significant comparative studies that have been published more recently, are summarised in Table 2.1. These results, with the exception of those presented by Cotton et al. (2004), are promising and demonstrate that CTC is a serious candidate for large scale cancer screening. Cotton et al. note that their results contrast remarkably with the results of many other similar studies. They suggest that the reason for this was due to the fact the radiologists who took part in their study may not have been sufficiently experienced in CTC. Varying levels of reader experience is one reason why it is difficult to make a fair comparison between the outcomes of these studies, other reasons include: (1) varying frequency and range of polyps in the patient cohorts, (2) different patient preparation and data acquisition protocols (3) different approaches to interpreting the CTC data and (4) differences in the way that results are reported.

The remainder of this section discusses the CTC protocol in more detail and elaborates on a number of the potential issues associated with CTC that were identified by Fenlon & Ferrucci (1997) in their early review of the CTC technique.

2.2.1 Bowel Preparation

At present CTC results depend largely on a clean well distended colon. Poor distention and any residual stool or intraluminal fluid may have a severe impact on the ability to detect polyps using CTC. Bowel preparation usually involves ingestion of a bowel cleansing agent prior to the CTC examination. Macari et al. (2001) evaluated the effect of different bowel preparations on the residual fluid during CTC. The study group consisted of 42 patients. Eleven of these patients received a polyethylene glycol electrolyte solution. This preparation was the preference of the gastroenterologists who were affiliated with the authors' institution. The remaining 31 patients received a phospho-soda preparation which was the preference in the radiology department at the authors' institution. In both cases, the bowel preparations were administered the day before the CTC examination. Macari et al. found that on
average, a phospho-soda preparation resulted in significantly less residual intraluminal fluid. These results would suggest that the ideal bowel preparation depends on the type of colon examination being performed and that it is different for CTC and conventional colonoscopy examinations. A wet preparation is acceptable in the case of conventional colonoscopy as any residue can be removed by means of suction to reveal submerged regions. Conversely a dry, low residue, preparation is preferable in the case of a CTC examination. In both cases the bowel preparation is unpleasant for the patient. Recent developments have been made in the area of bowel preparation in which the use of a much more patient friendly non-purgative approach is being considered (e.g. the work by Zalis et al. (2006)). Examples of suboptimal bowel preparation are presented in Figure 2.1, where a large blockage is evident in the proximal descending colon just below the splenic flexure, and in Figure 2.2, where residual material (a) obscures the colon surface and (b) mimics colorectal polyps.

Immediately prior to CT scanning, a small bore rectal catheter is used to in-
Chapter 2

Medical Background

(a) (b)

Figure 2.2 Two examples of localised residue. (a) Residual fluid near the hepatic flexure of a patient (MMH-138/prone). Note the long horizontal transition at the fluid/air interface. Also note that the fluid/soft tissue boundary cannot be identified; if a submerged polyp is present then it will be undetectable. (b) Residual faecal material in the caecum resembling multiple polyps.

Sufflate the colon with room air or carbon dioxide (CO$_2$) to the maximum patient tolerance (generally about 1000 cc). McDermott et al. (2001) compared air and CO$_2$ insufflation techniques in groups of 54 and 45 patients, respectively. Their study found no significant differences in image quality or in patient preference between the two groups. Insufficient bowel insufflation may result in collapsed regions of the colon and thus degrade the quality of the exam. Collapse is common in the sigmoid colon, an example of this is illustrated in Figure 2.3.

2.2.2 Patient Positioning

Chen et al. (1999) investigated how patient positioning influenced bowel distention and polyp detection in a cohort of 23 patients (46 data sets). Distention was graded for each colonic segment in each scan on a four-point scale from 0 (completely collapsed) to 3 (distended optimally). Partially or completely collapsed segments were found to be present in 11 of the prone data sets and 16 of the supine data sets. When both scans were considered together only three patients were found to have partially or completely collapsed segments. A total of 27 colonoscopy confirmed polyps were present in the 46 data sets (seven < 5 mm and 20 ≥ 5 mm). Eighteen
Figure 2.3: An 2-D example of collapse (MMH-381/supine) where the lumen is divided into two distinct sections represented by the red (rectum) and green (remainder) regions (a) and a volume rendering of the same colon illustrating the collapse at the rectosigmoid junction (b).

of these polyps were identified from the prone images, and 13 were identified from the supine images. When both prone and supine data sets were considered together, 21 of the 27 polyps were identified. This study demonstrates that prone positioning is superior to supine positioning, but that dual patient positioning is necessary for adequate overall colonic distention, and results in greater sensitivity for polyp detection. The superiority of prone positioning over supine was also noted by Morrin et al. (2000) in their study evaluating the utility of contrast enhancement at CTC. An example of how dual positioning facilitates the visualisation of a large previously submerged polyp is illustrated in Figure 2.4.

2.2.3 Radiation Dose

Ionising radiation is a known carcinogen, and consequently, the use of CT for colorectal cancer screening may actually result in the patient developing cancer at a later stage. This risk was quantified by Jensch et al. (2004) in a study that evaluated protocols obtained directly from institutions, as well as those found in the literature, as a basis for their calculations. They concluded that if applied once to a population aged 50, CTC performed in both the prone and supine positions would result in one fatal cancer in every 5,000 individuals (0.02%) over a long period of
Figure 2.4: A good example of a case where a polyp is obscured in one position (supine) (a) and visible in the other (prone) (b). The location of the polyp is indicated by a red circle in both images. It should be noted that this patient (WRAMC_VC-241) received orally ingested contrast material. If contrast was not used then both the polyp and the residual material would be of similar density. This would effectively hide the polyp in the supine scan.

time (possibly decades). The problem of dose is compounded by the need for dual patient positioning to adequately image the entire colon surface.

Macari et al. (2002) performed a study to establish the effectiveness of low dose CTC in the detection of significant polyps. Their scanning protocol used a tube current of 50 mAs. This represents at least a 50\% reduction in dose compared to Fenlon et al. (1999), Yee et al. (2001) and Pickhardt et al. (2003) who used 110 mAs, 120 - 150 mAs and 100 mAs, respectively. In the study by Macari et al., 105 patients received CTC followed immediately by conventional colonoscopy (the gold standard). The polyp detection sensitivity of CTC compared to the gold standard was recorded for all polyp sizes (classified into three distinct size ranges). For the small (≤ 5 mm), medium (6 - 9 mm) and large (≥ 10 mm) size ranges Macari et al. reported polyp detection sensitivities of 12\%, 70\% and 93\%, respectively. These results compare very favourably with those presented in Table 2.1 for polyps in the medium and large size categories, indicating that low dose CTC is indeed feasible. The effect of dose reduction on image quality is illustrated in Figure 2.5. It is evident from these images that the air/phantom boundary is still clearly delineated despite
Figure 2.5: An external view of the VSG phantom (a) and a closeup view of one of the latex rubber inserts (b). CT scans of the phantom demonstrating the effect of radiation dose on image quality with a tube current of 100 mAs (c & e) and with a tube current of 13 mAs (d & f). The locations of the magnified regions illustrated in (e & f) are indicated by red boxes in (c & d). The 13 mAs image has 2.9 times more noise than the 100 mAs image. These images are courtesy of T. A. Chowdhury (VSG).
the introduction of a large amount of noise into the image.

Chowdhury et al. (2004) used the Vision Systems Group (VSG) phantom to evaluate the effect different radiation doses had on imaged polyp characteristics. The use of a phantom facilitated the repeated CT scanning of polypoid structures which would not be feasible in the case of a human subject. The VSG phantom (see Figure 2.5 (a)) consisted of a plastic outer tube, with a length of 230 mm and a diameter of 300 mm, that was sealed at both ends. Two slightly longer acrylic tubes with an approximate density of 100 HU, a length 235 mm and a diameter of 50 mm, were placed inside the outer tube, and the space between the outer and inner tubes was filled with water. The inner tubes were open ended and protruded through the sealing plates so that synthetic polyps could be placed inside the phantom. Polyps were fashioned using latex rubber with an approximate density of -75 HU. The synthetic polyps were adhered to a flat latex rubber base (see Figure 2.5 (b)) which was rolled into a cylinder and inserted into one of the phantom's inner tubes. The phantom configuration used in the study contained 11 spherical polyps ranging from 3 - 15 mm in size and three flat polyps. The phantom was scanned using a range of effective tube currents: 150, 90, 80, 70, 60, 50, 40, 30, 20 and 13 mAs. No quantitative results were reported for this study. However, the authors noted that a reduction in radiation dose increased the amount of noise in the resulting images and caused a slight reduction in polyp surface definition. The images in Figure 2.5 (c) - (f) illustrate the observations made by Chowdhury et al..

2.2.4 Image Interpretation: 2-D versus 3-D

There is much debate as to whether a CTC data set should be examined as a series of 2-D slices, or as a reconstructed 3-D volume in which endoluminal views that are comparable to those obtained at conventional colonoscopy are generated. Hara et al. (1996) carried out a qualitative study to establish whether 2-D only, 3-D only, or a combination of 2-D and 3-D provided the best sensitivity for the detection of colorectal polyps. They used a single patient scanned in the supine position only who had no polyps detected at conventional colonoscopy. The resulting data set was copied five times and 11 simulated polyps ranging in size from 1 to 10 mm were randomly placed throughout the five copies. The resulting data sets were blindly evaluated by two experienced radiologists using the three previously mentioned visualisation modes. A location and diagnostic confidence rating was specified for
each polyp that was identified by the observers. None of the visualisation modes resulted in statistically significant differences in polyp detection sensitivity for either of the two observers. However, both observers did achieve the best results using the combined 2-D and 3-D approach.

In a more recent study, Pickhardt et al. (2005) compared the accuracy of linear polyp measurement using 2-D multiplanar reformatted (MPR) and 3-D endoluminal views of the colon. The test data consisted of a colon phantom and ten patient data sets. The phantom contained a total of 10 synthetic polyps (four pedunculated and six sessile), ranging from 6 to 13 mm in size, and the patient data sets contained ten colonoscopy confirmed polyps ranging from 7 to 25 mm in size. Four experienced radiologists, who were blinded to the actual polyp sizes, measured the 10 real and 10 synthetic polyps using the commercially available Viatronix V3D-Colon CTC system. The 3-D endoluminal displays facilitated the most accurate measurements in the phantom as well as in the real patient data.

The general consensus seems to be that 2-D should be used for initial detection as it facilitates a rapid evaluation of the colonic mucosa, and allows a search for extra colonic abnormalities to be carried out, whereas 3-D should be reserved for problem solving (see Figure 2.6) and general assessment of polyp morphology (e.g., size, as demonstrated by Pickhardt et al.)

2.2.5 Contrast Enhanced CTC

CTC examinations are generally performed without the use of intravenously administered contrast material. Morrin et al. (2000) carried out a study to establish the potential benefits associated with the use of an intravenous contrast agent in CTC examinations. Their study group consisted of a cohort of 200 patients (115 of whom received contrast and 85 of whom did not). The patients who received contrast were scanned in the supine position without contrast and then in the prone position after contrast had been administered. Eighty one of the patients (48 of whom received contrast material) also underwent colonoscopy. These patients were used to gauge the effect contrast had on the detection of colonoscopy confirmed polyps (noting of course that the shift in position between scans would have an impact on the results). The use of contrast enhancement was found to significantly increase...
Figure 2.6: A polyp viewed using a 2-D axial image (a) and a 3-D surface rendering (b). The location of the polyp is indicated by a red circle in (a) and an arrow in (b). A fold viewed using a 2-D axial image (c) and a 3-D surface rendering (d). The location of the fold is indicated by a red circle in (c) and an arrow in (d). All images were obtained from MMH-357/prone. Note the similarities between the polyp and the fold in the 2-D images (a) & (c). In general 2-D is used for the primary evaluation of a data set and 3-D is used for problem solving. This approach would be relevant in the case of the images presented here.

the detectability of medium sized polyps (6 - 9 mm) from 58% to 75%. Contrast enhancement was also found to aid in the detection of large submerged polyps due to the difference in intensity between the polyps and the luminal fluid in which they were submerged. The use of contrast only affected the detection of medium sized and large sized polyps (≥ 5 mm), the detectability of small sized polyps (< 5 mm) was not significantly affected. The use of contrast as suggested by Morrin et al. is not common in CTC protocols that are documented in the literature. Evidently, the increase in sensitivity for the detection of medium and large sized polyps does not warrant the risks associated with the use of an intravenously administered contrast agent. Also, it is important to note that the opacification of the bowel wall
to detect submerged polyps is not the only solution to the problem of occluding residual material. Alternatively, opacification of the faecal material using an orally administered contrast agent would have a similar effect (e.g., the approach proposed by Zalis et al. 2006)

2.2.6 Incidental Extracolonic Findings

A conventional colonoscopy examination is restricted to an evaluation of the interior of the colon. A CTC examination is not restricted in this way, and can be used to visualise any organs or bone structures located outside the colon, that are imaged by the abdominal CT scan. Hara et al. (2000) report on a novel study in which they evaluate the frequency and importance of incidental extracolonic findings at CTC. Their study involved a cohort of 264 patients and any extracolonic findings were classified as being of high, moderate or low clinical significance. In total there were 151 findings in 109 (41%) of the patients, and 34 of these findings were considered to be of high importance. The financial impact associated with following up all significant findings was calculated, and the average additional cost per patient was found to be relatively small. The benefits associated with the identification of highly significant findings include a reduction in mortality due to undiagnosed conditions. However, the identification of multiple unimportant findings could result in expensive additional diagnostic examinations. This study by Hara et al. highlights the relatively high frequency of clinically significant extracolonic abnormalities, and suggests that, in the future, the search for abnormalities may become an integral part of the CTC protocol. This will represent a challenge for both radiologists and for those involved in the development of computer aided diagnostic software intended for use in CTC examinations.

2.2.7 Issues Associated with CTC

There are a number of issues associated with CTC due to the nature of the examination as well as the infancy of the technique. These affect both the patient and the radiologist performing the examination. A number of key issues, specifically risk factors, image resolution, patient preference and reader training will be discussed in this section.
2.7.1 Risk Factors

CTC is a minimally invasive alternative to conventional colonoscopy, but it still has a number of associated risks.

As mentioned earlier, the exposure to ionising radiation is a known cause of cancer. Although the possibility of reducing the dose is being investigated, the fact remains that there is an associated risk of mortality in 1 out of every 5,000 screening candidates (Jensch et al 2004). Luboldt et al. (1997) investigated 3-D magnetic resonance imaging (MRI) as an alternative to CTC for colon imaging and found that all relevant abnormalities including polyps were visible in an MRI examination of the colon (MR colonography), water is used instead of room air or CO₂. The resolution of the data obtained from an MRI scan is lower than that obtained at CTC. Luboldt et al. cited a voxel size of 1.25 x 2.0 x 2.0 mm³ in their study, whereas the average voxel size in the CTC data used in this research was 0.848 x 0.848 x 1.5 mm³ (see Appendix C).

While CTC is minimally invasive, it still requires the colon to be fully insufflated via a rectal catheter. Coady-Fariborzian et al. (2004) reported the first known case of bowel perforation at CTC. This occurred in an elderly patient immediately after air insufflation of the colon and did not result in mortality. Although extremely rare, bowel perforation is a potential risk associated with CTC.

2.7.2 Image Resolution, Colour and Texture

Conventional colonoscopy provides detailed, high resolution images of the interior of the colon where polyps and cancers can be identified using a combination of shape, colour and texture information. Conversely, CTC provides a volumetric representation of the region occupied by the colon where these anomalies can be identified using information relating to the structure and density of the colon. CTC is incapable of imaging either colour or texture, and the resolution of CTC images is lower than the resolution of images obtained using conventional colonoscopy. The consequence of these shortcomings is that the sensitivity reported for CTC is lower than the sensitivity reported for conventional colonoscopy. This is particularly evident in relation to the detection of small polyps (i.e., those ≤ 5 mm in size) where the detection rates are significantly lower than those achieved at conventional colonoscopy. The reduced sensitivity for this size category is evident in all of the studies listed.
The fact that small polyps may be missed at CTC is not a major problem due to the slow progression of colon cancer, and the relatively frequent screening interval (every 5 years for individuals of 50 years and older). Another significant problem is the detection of flat or depressed colorectal neoplasia. These can be readily imaged at conventional colonoscopy as irregular, and in some cases discoloured, patches of the colon surface. However, they are very difficult to identify in CTC examinations due to the comparatively low image resolution as well as the lack of colour and texture information. Flat polyps were originally thought to be unique to the Japanese population, however Rembacken et al. (2000) demonstrated from their evaluation of 1,000 UK colonoscopies, that this type of polyp is also frequent in a western population. In their study, 36% of polyps were found to be flat. An example of a 10 mm flat polyp imaged using CTC is illustrated in Figure 2.7

![Image of a 10 mm flat polyp imaged using CTC](image)

Figure 2.7 Two different representations of a 10 mm flat polyp located in the rectum of WRAMC-103/prone. (a) An axial slice from the CTC data set where the location of the polyp is indicated by a red circle. (b) A 3-D surface rendering of the same data set where the location of the polyp is indicated by an arrow. The subtle shape of flat polyps, as illustrated in this example, makes them very difficult to detect during CTC examinations.

2.2.7.3 Patient Preference

Reduced patient discomfort was one of the early promises of CTC, and it is clear that the CTC examination is much less invasive than conventional colonoscopy. A number of studies have been carried out to gauge actual patient opinion.
Hecht et al. (1997) carried out a study to compare CTC and conventional colonoscopy from the patients' perspective. All patients in their study cohort were queried about CTC and conventional colonoscopy both before and after screening using either technique. The results of the questionnaire found that patients were more anxious about colonoscopy than CTC and anticipated markedly higher levels of discomfort and pain. The perceived and actual embarrassment ratings for both procedures was found to be the same, this was due mainly to the common bowel preparation and the invasive nature of both examinations. It should be noted that the post-procedural pain rating was only slightly higher for colonoscopy than for CTC, which is probably due to the fact that the patients were under general anesthetic for colonoscopy and did not remember much of the procedure.

Svensson et al. (2000) carried out a similar patient acceptance study of CTC compared to conventional colonoscopy on a cohort of 110 patients. Following each procedure the patients were queried about overall impression, level of discomfort during air insufflation or colonoscope insertion/extration, and pain. It was found that 82% of the patients preferred the CTC procedure and only 6% of the study group rated CTC as very painful compared with 29% for conventional colonoscopy. Overall, CTC achieved higher levels of acceptance than conventional colonoscopy with less pain and better patient tolerance.

Morrin et al. (1999) present a convincing argument in favor of CTC stating that from the patient's perspective, the examination typically takes less than 10 minutes, does not require sedation or abdominal compression and is well tolerated apart from mild discomfort due to air or carbon dioxide insufflation. One of the major reasons for reduced patient acceptance of CTC is the need to undergo the same bowel preparation as for conventional colonoscopy or barium enema. It may be possible to forego conventional bowel preparation prior to CTC if a new technique, known as digital subtraction colonography, is employed. Using this technique patients are required to take an oral contrast agent prior to CTC in order to highlight any residual stool in the colon. This residue can then be digitally removed from the resulting abdominal CT images leaving only soft tissue. If this new bowel preparation technique proves effective then patients will be offered a preliminary non-invasive colorectal screening procedure that gives them a significant chance of avoiding conventional colonoscopy.
2.2.7.4 Reader Training

In their editorial, Soto et al (2005) pose the question of how much reader training is required for CTC. They recognise that a high standard of performance and interpretation will be required for widespread acceptance of CTC, and that this is only achievable though the specialised training of radiologists in the technique. In an earlier study intended to establish the general consensus regarding CTC training guidelines, Soto et al (2004) sent out a questionnaire to 20 international experts in the field. The outcome of their survey suggested that the most appropriate method for reader training would consist of lectures and supervised hands-on workstation training with 40 to 50 cases (20% of which should be normal). The suitability of this level of training was confirmed by Pickhardt et al (2004) who noted that reader performance was relatively stable after the interpretation of the first 50 cases. Soto et al (2005) believe that the required training should be integrated into the relevant radiology residency and fellowship programmes. However, until that happens radiologists interested in acquiring competency in CTC must undertake a specific training course or participate in dedicated fellowships. This highlights the fact that accessibility to suitable training resources is an issue that will need to be addressed in the very near future.

It is also important to consider the use of CAD-CTC to assist in reader training. CAD-CTC is intended to act as a second reader by highlighting suspicious regions of the colonic mucosa. However, it is feasible that it could also be used to help trainee radiologists to differentiate between what is normal and what warrants further attention. In this way CAD-CTC could be used as a virtual tutor. This would only be possible if the ability of CAD-CTC to differentiate between true polyps and false positives was comparable to that of an experienced radiologist.

2.2.8 Commercial CTC systems

A number of commercial CTC systems have appeared on the market in recent years. These systems originally provided a relatively basic platform that enabled manual CTC reading. However, the latest releases are now starting to incorporate automation tools that have originated from research. The main commercially available CTC systems are listed below. In each case, the manufacturer’s claims are summarised and a link to the product website is provided.
1 **Barco, Voxar Colonscreen** runs on a PC platform and enables 2-D and 3-D visualisation of prone and supine CTC data, supports lumen tracking, facilitates lesion marking and measurement with targeted volume rendering, and provides a virtual double contrast barium enema for colon overview

2 **GE Medical Systems, Navigator** can be used to display prone and supine views synchronously. Bookmarking can be used to record the location of detected polyps. Three oblique images and a 3-D endoluminal view are provided for inspecting potential polyps

3 **MedicSight, ColonCAD²** incorporates a CAD software component and enables CAD findings to be viewed in conjunction with the original CTC images. The tolerance of the CAD system can be altered by adjusting a sphericity threshold

4 **Rendoscopy** provides automatic colon lumen segmentation and path planning, even in the presence of collapsed segments. An unfolded view of the colon is provided to enable a complete evaluation of the colonic mucosa. Automatic reports can be generated that summarise the findings of the radiologist

5 **Viatronix, V3D-Colon** provides automatic segmentation and centreline calculation and electronic bowel cleansing. The user interface also provides measurement tools and facilitates interactive navigation within the colon

6 **Vital Images, CT Colon option for Vitrea 2** facilitates interactive simultaneous visualisation of 2-D and 3-D, prone and supine images. The Vital Images software can also be used to locate polyps throughout the entire length of the colon

²A predecessor to ColonCAD, called ColonCAR, was evaluated by Taylor et al (2006). The results of this evaluation are summarised in Section 3.5.1
Pickhardt (2003) compared the rendering capabilities of three of these systems (2, 5 and 6) with respect to polyp conspicuity, 3-D effect and likeness to optical colonoscopy. In this study 12 radiologists and 13 gastroenterologists evaluated the appearance of eight polyps ranging in size from 6 to 15 mm. In addition, the endoluminal navigation capabilities and other features of the three systems were evaluated. Pickhardt concluded that of the three systems, the only one that seemed feasible for an effective and time efficient primary 3-D evaluation was the Viatronix V3D-Colon system.

2.3 Other Alternative Screening Techniques

As mentioned in Chapter 1, conventional colonoscopy is the most sensitive colorectal cancer screening technique that is currently available. CTC is just one alternative to conventional colonoscopy. Others worthy of note, that will be reviewed in this section are faecal occult blood test, barium enema, flexible sigmoidoscopy and DNA based screening. Different issues associated with these techniques including sensitivity, specificity and patient preference will addressed.

2.3.1 Faecal Occult Blood Test

A faecal occult blood test (FOBT) can be used to detect the presence of small amounts of blood in stool samples, and thus, can be used to detect bleeding lesions that are located anywhere in the gastrointestinal tract. The test involves placing a small amount of stool on a chemically treated card. If there is a sufficient amount of blood in the stool then the card will change colour. Rockey et al. (1998) established the frequency of colorectal neoplasia (and upper gastrointestinal lesions) in 248 patients above 50 years of age all with positive FOBTs. Conventional colonoscopy was performed in each case and any detected polyps or cancers were recorded. Of the 248 patients, 13 (5.2%) were found to have cancers; 29 (11.7%) were found to have large polyps (≥ 10 mm) and a further 29 (11.7%) were found to have medium sized polyps (5 - 9 mm). These results show that a positive test does not necessarily indicate the presence of colorectal cancers or polyps, and demonstrate the considerable lack of specificity provided by the faecal occult blood test for colorectal cancer screening.
2.3.2 Barium Enema

A barium enema involves taking an X-ray of the abdominal region in order to image the large intestine. There are two variations of this examination: (1) the single-contrast technique in which barium sulphate is injected into the rectum prior to X-ray in order to acquire a well defined profile view of the large intestine, and (2) the double-contrast technique in which air is inserted into the rectum after the barium sulphate has been expelled, and prior to the acquisition of the X-ray. The double contrast barium enema (DCBE) provides more detailed results. Gluecker et al. (2003) carried out a study to compare patient preference for CTC, conventional colonoscopy and DCBE. Two groups of patients were recruited for this study. The first group (696 patients) underwent CTC and conventional colonoscopy while the second group (617 patients) underwent CTC and DCBE. The patients were subsequently queried regarding the inconvenience and discomfort associated with the preparation, the examination discomfort, their willingness to repeat either of the examinations and their examination preference. The results for the second group indicated that the discomfort associated with the preparation that was required prior both CTC and DCBE examinations was considered to be comparable (moderate to mild). However, the actual examination discomfort was rated as mild or none for CTC whereas patients undergoing DCBE regarded the discomfort as severe to moderate. Patients in the second group were also more willing to undergo re-examination with CTC rather than DCBE and when patients were asked for their overall examination preference, the majority (97%) opted for CTC.

2.3.3 Flexible Sigmoidoscopy

Flexible sigmoidoscopy is used to endoscopically examine the left sided colon, i.e. the portion of the colon from the rectum to the splenic flexure. If polyps are detected, the patient must be referred for colonoscopy. Prior to the examination, the patient must undergo bowel preparation as used for conventional colonoscopy but does not require sedation. If the left sided colon is free of polyps this usually indicates that there are no polyps in the entire colon. Patel & Hoffman (2001) verify this in their study of the anatomical distribution of colorectal polyps at colonoscopy. They state that an examination limited to the left sided colon would miss approximately 23% of lesions. Flexible sigmoidoscopy is not a complex procedure and can be performed
by non-physician endoscopists. Shapero et al. (2001) present the results of a study where nurse endoscopists performed the flexible sigmoidoscopy examination. Video recordings of the procedures were subsequently reviewed by trained physicians. The results of this study indicate that flexible sigmoidoscopy can be carried out safely and effectively by non-physician personnel. This is very important from the point of view of screening costs, as the manpower costs for non-physician operators are considerably less than those for specialist physician endoscopists.

2.3.4 DNA Testing

An emerging colon screening technique involves the examination of a patient's stool for excreted cells that exhibit DNA mutations associated with colorectal cancer and polyps. DNA-based analysis is non-invasive and requires the acquisition of a stool sample much like the FOBT. Unlike the FOBT, DNA is continually excreted whereas rectal bleeding can be intermittent.

Ahlquist et al. (2000) evaluated the performance of DNA-based stool analysis in discriminating between patients with colonoscopy confirmed colorectal neoplasia and those with normal colons. Their study consisted of three groups: 22 patients with cancer, 11 with large polyps (≥ 10 mm), and 28 patients with normal colons. A sensitivity of 91% was reported for cancers, a sensitivity of 82% was reported for polyps, and an overall specificity of 93% was reported for the technique. There was no reason given for the discrepancy between the sensitivities reported for the detection of polyps and cancers. However, the authors noted that the percentage of mutant DNA was significantly higher in stools from cancer patients. This observation is in agreement with the reported results. It should be noted that the sensitivity of DNA analysis for the detection of large polyps (≥ 10 mm) reported by Ahlquist et al. is lower than that reported for CTC in the majority of the large scale studies summarised in Table 2.1.

In their review article Levin et al. (2003) list a series of advantages and disadvantages associated with testing for DNA mutations in stool. Advantages included the patient friendliness and high accuracy of the test as well as the reduced level of false positive detections. The disadvantages or limitations cited by Levin et al. included lack of automation and the high cost of the test.
CTC has been proposed as a less invasive, more patient friendly, alternative to conventional colonoscopy for colorectal cancer screening. However, there are some issues associated with CTC that must be addressed before it can be considered as a serious candidate to replace conventional colonoscopy. The majority of large scale studies have shown that the performance of CTC is comparable to that of conventional colonoscopy for the detection of significant colorectal polyps (i.e. those $\geq 5\text{mm}$ in size). In the single study where this was not the case, the authors suggested that their poor results were due to insufficient reader experience, thus highlighting the need for formal CTC reader training.

There are two main problems generally encountered during a CTC examination: (1) residual occlusive material which can cause blockages in extreme cases and (2) collapsed colon segments due to inadequate colon insufflation. An optimised bowel preparation can be used to deal specifically with the problem of residual material and dual patient positioning can be used to alleviate both of these problems. The use of dual patient positioning increases the performance of the CTC technique, however, it also doubles the amount of radiation that the patient is exposed to and consequently increases the risk of the patient actually developing cancer as a result of the CTC examination. Low dose CTC has been demonstrated to significantly reduce the level of radiation exposure associated with a CTC examination while maintaining a reasonable level of image quality. CTC has the added benefit of enabling the detection of any extracolonic abnormalities that are imaged by the abdominal CT scan, whereas conventional colonoscopy is limited to an examination of the interior of the colon. Consequently, CTC facilitates a more comprehensive evaluation of the patient. Although a CTC is minimally invasive, it should be noted that there are certain risks associated with the technique. In addition to the exposure to ionising radiation, there is also a slight risk of bowel perforation.

CTC was originally proposed as a patient friendly alternative to conventional colonoscopy, yet the two examinations have many common factors, and from the patients’ perspective, both examinations are equally unappealing. The purgative bowel preparation is probably the most disagreeable aspect that is common to both CTC and conventional colonoscopy. It should be noted that non-purgative bowel preparations are being investigated for CTC, whereas, this type of preparation can
not be used with conventional colonoscopy. Consequently, CTC has the potential to become the more patient-friendly of the two examinations. CTC is not the only alternative to conventional colonoscopy for colorectal screening. Several other alternatives have also been reviewed in this chapter. However, CTC represents the most comprehensive alternative to conventional colonoscopy that is currently available. Finally, it is evident that CTC is gaining popularity. This is clear from the number of commercial CTC systems that were reviewed in this chapter. These products also demonstrate that CTC is moving from the research domain into widespread clinical usage.
Chapter 3

Technical Background

3.1 Introduction

Early CTC studies required a significant level of user interaction, to navigate through, and ultimately analyse CTC data sets. The use of automation at CTC has the potential to greatly increase the performance and productivity of radiologists by allowing them to concentrate on the most important aspect of a CTC examination, i.e. the diagnosis of suspicious regions of the colonic mucosa. The task of automation at CTC is complicated by two main factors (1) the volume of data contained in a data set and (2) the complexity of the anatomy represented by the data set. Studies dealing with automation at CTC began to appear very soon after Vining et al. introduced the technique in 1994. Initial studies dealt with extracting the colon lumen and automating navigation through the extracted lumen to enable 3-D endoluminal flythroughs. More recent studies have dealt with the more difficult tasks of automatic polyp and mass detection. The speed and accuracy of published techniques has continued to increase, while the level of user interaction required has tended to decrease. This chapter will review the technical developments that have be made in relation to the automation of different aspects of CTC, specifically techniques that are related to the developments outlined in Chapters 4 & 5. This discussion deals with the topics of colon segmentation, centreline calculation, data set registration and computer aided diagnosis at CTC (CAD-CTC).

3.2 Colon Segmentation

The region of the CTC data set occupied by the colon must be identified before any analysis of the colon can take place. This process is known as colon segmentation and can be achieved using a variety of techniques. An inadequate segmentation can
Chapter 3

Technical Background

Figure 3.1: A CTC data set contains numerous gas filled regions that include the colon lumen, sections of the small intestine, and the stomach. As a result the task of colon lumen segmentation is not a trivial task. This is especially true where the colon lumen consists of more than one segment. A segmentation consisting of all gas filled abdominal regions for a sample data set (MMH-175/supine) contains 364,732 triangles (a) whereas a segmentation of the colon lumen alone contains 189,263 triangles (b).

hinder any subsequent examination of the colon. The task of colon segmentation is complicated by collapse and blockage. In both of these cases, segmentation of the colon can yield multiple disjoined colon segments. Li & Santago (2005a, Wake Forest) report that a fully segmented colon can have between 1 - 10 individual segments with an average of 2.4 segments. Under-segmentation occurs when the segmentation process fails to identify all of the individual colon segments. Another problem associated with segmentation is that the colon is not the only gas filled region that is contained in a CTC data set (see Figure 3.1). Over-segmentation occurs when extracolonic regions are inadvertently included in the colon segmentation. Yoshida et al. (2002a, UC) found that 19.3% of their false positive detections made by their CAD algorithm were attributable to the small intestine or stomach. Previously documented colon segmentation techniques can be grouped into two distinct categories based on the types of output that they generate. Accordingly, the following review of colon segmentation techniques is divided into two sections. The first section deals
with techniques that identify the air within the colon lumen while the second section deals with techniques that identify the region occupied by the colon walls. The main difference between colon lumen segmentation and colon wall segmentation is that the former identifies the set of air voxels enclosed by the colon walls, whereas the later identifies the set of soft tissue voxels associated with the colon wall. Note that there is no overlap between these two sets. The different outputs enable different postprocessing operations. For example, colon lumen segmentation is typically used in conjunction with centreline calculation and isosurface extraction algorithms, whereas colon wall segmentation is intended for use with polyp detection techniques that analyse the volumetric properties of the colon wall.

3.2.1 Colon Lumen Segmentation

Chen et al. (2000a, SUNY) developed a contrast enhanced segmentation technique that segmented the entire colon lumen including regions that were obscured by residual material. Following the removal of voxels external to the patient, a voxel level classification of the remaining data set voxels was performed. This involved assigning each voxel to one of eight classes: air, soft tissue, muscle, bone (or contrast enhanced material) and four partial volume effect classes. Four of these classes were associated with the colon lumen: air, partial volume effect from air to soft tissue, enhanced material and partial volume effect from contrast enhanced material to soft tissue. This rough segmentation included the bone and the lungs. The lungs were identified based on their location at the top of the data set, left and right of the centre, and were removed using region growing. The remaining air voxels were attributed to the colon lumen, and the connected voxels representing the air to soft tissue interface were also included in the segmentation. Finally, the contrast enhanced material was included in the segmentation by region growing from an adjoining seed point located in the air filled colon. The segmentation results for 13 data sets were evaluated by a trained radiologist and the entire lumen was found to be successfully delineated in all cases (even in four cases with collapsed segments). However, sections of the small intestine and stomach were erroneously segmented in a small number of the test cases. Following a once off initialisation stage, the segmentation process required nine minutes to complete when deployed on a SGI Octane workstation with dual 250 MHz R10000 processors and 890 MB of RAM.
Chapter 3

Technical Background

Wyatt et al. (2000, Wake Forest) developed a colon lumen segmentation technique with automatic seed point identification. Two bowel preparations were also evaluated as part of this study: A standard bowel preparation similar to that used in conventional colonoscopy, and a contrast enhanced bowel preparation that incorporated a liquid diet. A region growing technique was used to segment the background air voxels. A threshold of -800 HU was then applied to identify the remaining gas filled regions located within the patient (justification for the use of this threshold value is illustrated in Figure 3.2). A distance transform was used to identify the voxel within the gas region located furthest from the surrounding tissue. Region growing was initiated at this voxel and the resulting volume was examined. If it met certain requirements relating to shape and location, it was added to the segmentation otherwise it was discarded (e.g. a region located in the top portion of the data set that was not suitably elongated was considered to be the stomach and discarded). The next seed point was identified from the remainder of the gas region and the process continued until the segmentation was complete. An additional stage was included to deal with the contrast enhanced fluid resulting from the second bowel preparation. Large areas of low curvature were identified as the boundary between the gas

Figure 3.2: A histogram of a randomly selected CTC data set (MMH-120/prone). The three labeled peaks represent air (A), fatty tissue (B), and lean tissue (C). Note that a threshold value of -800 HU adequately separates air and tissue and is suitably positioned to minimise shine through artifacts.
and the contrast enhanced material. The gas region was then selectively dilated across this boundary and the region representing the contrasted enhanced material was identified using an adaptive region growing process. An adaptive approach was required due to variations in the density of the contrast enhanced material located throughout the colon. Twenty CTC data sets (ten with standard preparation and ten with contrast enhanced preparation) were used for test purposes. Five data sets from each group were used for determining algorithm parameters and the remainder were used for algorithm evaluation. The entire colon was identified in all data sets, however, the stomach and sections of the small intestine were erroneously identified as belonging to the colon lumen in several of the data sets. An evaluation of the extended algorithm showed that 40.36% to 80.15% (mean 65.74%) of the contrast enhanced material was correctly segmented when compared with manually segmented regions of contrast enhanced material. The algorithm was deployed on an SGI workstation with a MIPS R10000 processor and execution times of 65 minutes for the standard technique, and 60 minutes for the contrast enhanced technique, were reported. Note that data set subsampling was utilised in conjunction with the contrast enhanced technique due to the extra processing overhead required to deal with the contrast enhanced material.

Sato et al. (2001, SUNY) developed a colon lumen segmentation scheme that incorporated a patient-friendly bowel preparation protocol. During the day prior to scanning, patients were instructed to eat only soft food. This diet was augmented with an orally ingested contrast agent to enhance the density of any residual material at CTC. An initial threshold based segmentation was performed using two thresholds T_{gas} and T_{fluid}. These threshold values were automatically identified based on an analysis of the data set histogram and were used to identify colon lumen voxels where CO$_2$ voxels had densities $< T_{\text{gas}}$, and contrast enhanced fluid voxels had densities $> T_{\text{fluid}}$. A filtering stage was then employed to identify voxels representing the partial volume effect (PVE) between CO$_2$ regions and contrast enhanced fluid regions. These PVE voxels were then classified as belonging to the colon lumen. A more accurate segmentation was then obtained by initiating 26-connected region growing from the seed points selected from the PVE voxels, thus limiting the segmentation to the colon lumen and overcoming the over segmentation problems associated with the initial threshold based segmentation. In the final stage of their approach, a gradient magnitude based technique was used to expand the segmented
colon lumen so that it more accurately represented the region enclosed by the colonic mucosa (i.e. the surface within the data set in the region of the colon lumen where the voxels had the highest gradient magnitude values). The PVE filter was then applied to the expanded region in order to yield the final segmentation. The documented technique required an execution time of less than five minutes to segment the colon lumen from typical CTC data sets when deployed on an SGI Onyx2 workstation. No results regarding segmentation accuracy were provided. However, cases of over segmentation were mentioned where the lungs or ribs were mistakenly included in the final result.

Iordanescu et al. (2005, NIH) reported on a study that dealt with automatic seed point selection for region growing based colon lumen segmentation. They noted that one seed point would be sufficient if the colon was well distended with no collapse or blockage. Conversely, where this was not the case, multiple seed points would be required (one seed point for each segment). The documented algorithm automatically detected two seeds located at the most distal points within the colon i.e. in the rectum and in the caecum. Iordanescu et al. demonstrated that two seeds were sufficient to segment the entire colon lumen in the majority of cases (83.2%, or 243 out of 292, according to their report). Additionally, the selected locations for the seed points (i.e. at opposite ends of the colon) guaranteed that the seeds were located in different segments in cases where there was collapse or blockage. Their anatomy based seed point search identified the rectum as the air-filled region that was closest to the base of the data set, and the caecum as the air filled region of greatest diameter that was closest to the side of the data set. The technique was evaluated using a cohort of 146 patients scanned in both the prone and supine positions. All automatically detected seed points were compared against manually placed seed points. The automatic and manually placed seed points generated matching segmentations in 82.2% or 240 of the 292 cases.

Li & Santago (2005a, Wake Forest) presented a region growing based colon lumen segmentation technique that also incorporated isosurface extraction. The authors started by automatically identifying seed points in the uninterpolated CTC data sets by analysing each of the axial slices. Seed point identification was achieved using size and shape filtering of the air regions that were present in a slice. Size filtering involved removing connected air regions with areas above and below specified threshold values, e.g. background air regions and regions associated with the
small intestine (note that this stage was applied to the 2-D axial images). Shape filtering involved evaluating the main axes of the remaining air regions, those with axes whose lengths were within a specified range were retained. Shape filtering was also used to remove areas with large aspect ratios e.g. the lung bases. The seeds were ultimately placed in the centres of air regions that passed the size and shape filters. This approach generated more seed points than were needed to completely segment the colon lumen. This is not a significant problem as unnecessary seeds were absorbed during the segmentation process. Segmentation was achieved using 3-D region growing initiated from the automatically detected seed points. The detected segments were subjected to an elongation test to identify and remove sections associated with the small intestine thus yielding the final segmentation of the colon lumen. An isosurface model of the colon lumen was also generated using a modified marching cubes algorithm. A subjective evaluation of colon coverage was carried out by two radiologists using 100 data sets (50 prone and 50 supine). The average coverage was reported as 81.8% for the supine scans and 55.4% for the prone scans. A combined average coverage of 87.5% was ultimately reported with 6% of the segmentation attributable to extracolonic structures.

Chowdhury et al. (2005a, VSG) described a fully automated colon lumen segmentation technique that did not necessitate the administration of an orally ingested contrast agent. The first stage of their approach involved generating a binary representation of the data set that accurately separated gas and non-gas regions. This was achieved by applying a threshold value that was calculated based on an analysis of the global data set histogram. The lung bases and the air regions outside the patient were then eliminated using seeded 3-D region growing. The remaining lumen candidates were labeled so they could be uniquely identified. During the labeling process the endpoints of each candidate segment were identified. The endpoints were used to identify the orientation of and to calculate the average cross-sectional area (volume/length) of the candidate segments. The length between the endpoints of a segment was approximated using the Dijkstra shortest path algorithm (Dijkstra 1959). A well distended colon was subsequently identified as having an average cross-sectional area and a length that were both above specified thresholds. In addition, the orientation and structure of the colon had to conform to an ideal model. In the case of a collapsed colon, large segments that were above an average cross-sectional area threshold, were linked according to the ideal model to yield a rough
segmentation of the colon. The rough segmentation was then refined by adding smaller sections based on their relative locations, lengths and curvature (highly curved regions were considered to be part of the small intestine). An evaluation of the technique using 115 data sets found that 100% of lumen voxels were identified in the case of well-distended colons and 95% of lumen voxels were identified in the case of colons with collapse or blockages. The number of voxels attributable to extracolonic structures was minimal (approximately 1%).

3.2.2 Colon Wall Segmentation

In many cases it is the colon wall and not the colon lumen that is of interest. This is particularly true where the segmentation of the colon is intended for use with CAD-CTC for polyp detection. A number of techniques that deal with the task of colon wall segmentation have been published.

Masutani et al. (2001, UC) described a technique that was intended to segment only the colon wall from a CTC data set. Their anatomy orientated approach, based on earlier work in the area of segmentation for CT angiography, utilised a number of different image processing techniques including thresholding, region growing, labeling, gaussian smoothing, edge detection and 3-D mathematical morphology. Dual thresholding and labeling were used to identify the air outside the patients body. The high density bone structures were identified using dual thresholding (with higher threshold values than those used in the case of air). The bone structures were labeled and inspected individually and those greater than a predetermined size threshold were flagged for removal. The lung bases were identified, also using dual thresholding and labeling, as the two volumes closest to points at the top left and top right of the data set, that were located halfway between the front and the rear of the patient. These three structures (external air, bones and lungs) were dilated and the resulting regions were masked from the data set. A Gaussian smoothing operator was then applied to the data set to ensure that the colon walls would be of a suitable thickness (3 - 4 mm). The final stage of the technique involved the application of a gradient magnitude operator followed by a final thresholding stage. The colon wall was ultimately selected as the largest connected component following labeling (smaller regions were also included if their size was at least one quarter the size of the largest connected component). Of the 14 data sets used in testing, 12 (85.7%) achieved fair to excellent segmentation (where fair indicated that the segmentation
included a section of the small intestine and was missing less than 5% of the colon.

In a subsequent paper from the same group, Nappi et al. (2002, UC) reported on an improved version of the automatic colon wall segmentation scheme described by Masutani et al. (2001). The technique used to segment the air outside the patient was improved so that no external air associated with either the table or air trapped beneath the patient was retained. The size threshold for including smaller regions in the final segmentation was reduced from 25% of the size of the largest connected component to 1%. This increased the number of extracolonic components as well as the amount of actual colon wall retained. The improved algorithm was augmented with a region growing stage to remove the extracolonic components as these are not usually connected to the colon lumen. Region growing within the colon lumen was initiated at an automatically detected seed point in the rectum. This seed point was readily identifiable due to the relatively invariant location of the rectum in CTC data sets. In cases of collapse between the rectum and the sigmoid colon, a new seed point search was initiated 25 slices above the base of the data set. In the case of further collapse, seed points were selected from the remaining unsegmented internal air filled regions. The region growing process terminated in each colonic segment when the number of voxels added to the segmented region decreased by more than 75% from the previous iteration. The overall segmentation process continued until a series of global properties regarding the segmentation were satisfied (e.g. the amount of segmented voxels in the ascending and the descending colon should not differ by more than 20%). The segmented lumen was then expanded so that it covered the previously detected colon walls, and the intersection of the two structures was defined as the ultimate segmentation result i.e. the colon walls. The improved version of the algorithm, referred to as ‘knowledge guided segmentation’ by the authors, was evaluated by four radiologists using a total of 88 data sets (44 patients scanned in both the prone and supine positions). The average coverage of the improved technique was found to be 95%. However, between 10% and 15% of the segmentation was attributable to extracolonic components. When used in conjunction with polyp detection, the improved segmentation technique resulted in a 15% reduction in the false positive detection rate in a per-patient analysis (i.e. the number of candidates attributable to extracolonic components was reduced).

In a later collaborative effort, Frimmel et al. (2005, Uppsala & Harvard Medical) developed an algorithm that segmented the colon wall based on an analysis
of the colon centreline. The technique utilised a simplified version of a centreline calculation algorithm developed by the same group (Frimmel et al. 2004). Air inside the patient was identified using a threshold based segmentation. External air was subsequently eliminated using region growing initiated from points on the scanner tunnel boundary. Centreline segments were calculated for each of the remaining air volumes. Segments close to the patient boundary were considered to be extracolonic and were removed. An anatomical evaluation of the remaining centreline segments was carried out to yield the final centreline. A segmentation of the colon lumen was then obtained by dilating the final centreline to completely fill the surrounding air filled regions. Finally, an approximation of the walls was generated by dilating the initial segmentation beyond the confines of the air/soft tissue boundary of the lumen to a desired wall thickness, and then subtracting the original segmented lumen from the resulting volume. The centreline-based segmentation algorithm was compared against the knowledge-guided segmentation approach discussed earlier (Nappi et al. 2002). Both techniques identified comparable regions of the colon. However, the centreline-based segmentation identified 21% fewer voxels associated with extracolonic structures. The sensitivity of the centreline-based segmentation technique was reported to be 96%.

It is evident from the previous descriptions, that these approaches are only intended to segment an approximation of the inner walls of the colon. Techniques intended to segment both the inner and outer walls of the colon as a precursor to polyp detection were developed by Hunt et al. (1997, Wake Forest) and Vining et al. (1998, Wake Forest). These techniques will be discussed in detail later in this chapter.

3.2.3 Digital Subtraction Colonography

An extension of colon lumen segmentation touched on by Chen et al. (2000a), Wyatt et al. (2000) and Sato et al. (2001) involves the patient ingesting orally administered contrast material prior to CT scanning in order to facilitate the removal of residual faecal material in the colon using image processing techniques. This approach illustrated in Figure 3.3, which will be referred to as digital subtraction colonography (DSC), has a number of associated potential benefits:

- DSC may remove the need to scan the patient using both prone and supine
Figure 3.3: An overview of the digital subtraction process. (a) A cropped axial image illustrating a section of the colon lumen containing contrast enhanced residual fluid. (b) The original image following a simple threshold based subtraction. Note the residue artifacts at the air/contrast enhanced material boundary and edge artifacts at the fluid/soft tissue boundary. (c) Removal of the residue artifacts using a subtraction mask derived from the location of strong edges in the image. (d) Reconstruction of the colonic mucosa using targeted Gaussian filtering at the contrast enhanced material/soft tissue boundary.
Chapter 3

Technical Background

positioning. Dual patient positioning is used to deal with mobile residual faecal material. If this material is tagged then dual positioning may no longer be required. There are a number of benefits associated with scanning in a single position, most notably a 50% reduction in radiation dose.

• DSC may alleviate the problem of residual faecal material resembling polyps and in extreme cases causing blockages. These problems are illustrated in Figures 2.2 (see Page 13) and 2.1 (see Page 12) respectively.

• DSC doesn’t require the use of laxatives and therefore DSC is more patient friendly and may deal with some of the issues raised in Section 2.2.7.3.

It should be noted that the concept of digital subtraction in radiological examinations of the colon is not entirely new. A similar technique had been used by radiologists to differentiate between polyps and residual faecal material in barium enema studies even before CTC was first demonstrated (Pochaczevsky 2002). The following paragraphs review developments relating to DSC techniques for CTC, that have been reported in the literature.

A number of early techniques utilised a contrast enhanced bowel preparation in conjunction with a threshold based colon segmentation to achieve digital subtraction. Sheppard et al. (1999) reported on the feasibility of subtraction CTC (i.e. DSC) using an animal model with synthetic polyps where a contrast enhanced bowel preparation was used. They employed a basic thresholding approach where voxels with values in excess of 200 HU were subtracted from the data set. The main problems associated with this approach were that the interface between the lumen air and contrast enhanced material was still visible in the processed image and that no attempt was made to reconstruct a smooth representation of the colonic mucosa where the contrast enhanced material had been subtracted. In an evaluation of the digitally subtracted data sets, all synthetic polyps greater than 5 mm were identified with a specificity of 88%. Callstrom et al. (2001) described a very simple threshold based technique that removed pixels with density values greater than 150 HU. Patients were instructed to take contrast material orally for 48 hours prior to the examination to ensure that the entire contents of the colon were labeled. Callstrom et al. evaluated their technique using a cohort of 56 patients. They found that polyp detection levels for stool labeling were comparable to levels achieved with conventional cathartic preparations.
Zalis & Hahn (2001, Massachusetts General) developed an early implementation of their contrast enhanced digital subtraction bowel cleansing CTC protocol that required no alterations to diet (with the exception of an orally administered contrast agent) and no laxatives. Bowel insufflation with room air was still required. Patients were administered an orally ingested contrast agent regularly for 48 hours prior to their CT scan. Following insufflation with room air, patients were scanned in both the prone and the supine positions. Images were analysed using a custom software system that operated independently of the display workstation. The resulting images were then processed using custom software to remove voxels representing the high contrast residual faecal material (and consequently voxels representing other high density regions, most notably bone). In addition, voxels representing the air/residual faecal material interface were also removed, thus eliminating the associated volume averaging artifacts associated with this boundary. The technique was evaluated using a cohort of five patients and colonic neoplasia were reported to be visible post processing using both 2-D axial and 3-D endoluminal views. No detailed results were provided due to the preliminary nature of the study. However, it is evident from the article that the recovered air/soft tissue boundary suffers from a severe edge artefact (Zalis & Hahn 2001, Figure 1 (d)). An example of this is evident at the recovered air/soft tissue boundary illustrated in Figures 3.3 (b) & (c).

In a later report on the subject, Zalis et al. (2003) described a revised version of their approach in which pixels with attenuation values greater than 200 HU were subtracted from the images (these pixels represented contrast enhanced faecal material as well as bone and other high density material). The abrupt edges that resulted from the subtraction process were then identified using a Sobel edge detector. The response of the Sobel edge detector was found to be greater at the abrupt edges than at the naturally occurring edges which incorporated some degree of volume averaging. As an intermediate step, the abrupt edges resulting from the subtraction process (which were identified using the Sobel edge detector) were replaced with a three pixel wide stair step contour. A natural air soft tissue transition was then simulated by applying a 2-D Gaussian filter to the pixels located in this contour region. The technique was evaluated by two experienced radiologists using a cohort of 20 patients scanned in the right decubitus position. Sixteen of the patients underwent digital subtraction bowel cleansing and the remainder (the control group of four patients) underwent traditional bowel cleansing. The readers gave a mean rating for
image quality of the processed data sets of "interpretable with minimum subtraction artefact" (point 4 on a 5 point scale) Of the nine colonoscopy confirmed polyps, the first reader identified six and the second reader identified seven The missed lesions were all ≤ 10 mm Although not mentioned explicitly in the article, it is obvious that remnants of the boundary between the air and the contrast enhanced material are present in the processed images (Zalis et al 2003, Figure 2 (b)) An example of a boundary or residue artifact is evident at the air/contrast-enhanced material boundary in Figure 3.3 (b)

Zalis et al (2004) described a subsequent implementation of their digital subtraction bowel cleansing technique that dealt with the two main artifacts associated with the threshold based approach, i.e. boundary artifacts (between air and contrast enhanced material) and edge artifacts, both of which are described in the previous paragraph and illustrated in Figure 3.3 Boundary artifacts were dealt with by specifying a mask for each axial image that consisted of voxels above a specified threshold and dilated edges above a certain threshold (i.e. the strong edges associated with the air/contrast enhanced material interface) The resulting mask adequately covered all contrast enhanced material and could be used to effectively subtract it from the axial slice The edge artifacts were dealt with using the surface reconstruction technique outlined earlier (Zalis et al 2003) An evaluation of the technique was carried out using a cohort of 30 patients and one custom built phantom with 21 sessile shaped polyps ranging in size from 8 - 22 mm A qualitative evaluation was carried out by two experienced radiologists comparing the 30 digitally subtracted data sets with 10 control cases where a standard bowel preparation was used A small difference in quality was observed, however, this was deemed to be statistically insignificant The phantom study was used to quantify the effect that digital subtraction had on polyp appearance This was achieved by projecting rays from 10 of the synthetic polyps and sampling the density at regular intervals during the transition from colon wall to air Samples were compared in subtracted data sets in which contrast enhanced material was present and unmodified data sets that did not contain contrast enhanced material Again, no statistically significant differences were observed

Zalis et al (2005a) evaluated the effect of DSC on polyp size measurement at CTC using the colon phantom from their earlier study (Zalis et al 2004) A phantom was used in the study due to the ethical and logistical issues associated with
performing repeated CT examinations on a human subject. Four different concentrations of contrast material were used, and the phantom was filled so that 11 of the 21 polyps were submerged or partially submerged for each of the scans. An additional scan was performed without any contrast material. This fifth and final scan was used as the control for the study. Two readers measured the sizes of the 11 relevant polyps in each scan. A subsequent comparison of the DSC measurements compared with the control measurements found no significant difference. The lowest mean measurement error was reported to be 0.6 mm. This was achieved in the case where the attenuation of the contrast-enhanced material was in the range 200 - 560 HU. The study demonstrated that DSC has no significant negative effect on reader performance at CTC.

Zalis et al. (2006) subsequently evaluated the effect of DSC on patient comfort and image readability. A total of 78 patients were used in this study. Ten patients, representing the control group, ingested polyethylene glycol electrolyte prior to imaging (i.e., a standard bowel preparation used in conventional colonoscopy), 25 patients ingested a barium sulfate solution (group 1), 21 ingested nonionic iodinated contrast material (group 2) and 22 ingested a combination of nonionic iodinated contrast material and magnesium citrate (group 3). Each of the 78 patients underwent air insufflated CTC in the prone and supine positions and the same scanning parameters were used across the four study groups. A previously described DSC technique developed by the same group (Zalis et al., 2004) was used to remove the contrast-enhanced material from the resulting CTC data sets. The level of patient discomfort, the bowel preparation quality, and the bowel preparation homogeneity was recorded for each of the patients enlisted in the study. The mean level of patient discomfort reported by the control group was significantly higher than the mean level of discomfort reported by the patients from the three groups that underwent contrast enhanced bowel preparations. A subjective evaluation of bowel preparation quality found that the preparation used for group 3 patients was the most effective of the contrast enhanced approaches with reported readability scores comparable to those of the control group. A qualitative evaluation of bowel preparation homogeneity among the contrast enhanced patients found that the preparation used for group 3 patients yielded the most consistent residual material. This observation was verified quantitatively by determining the mean standard deviation of density values in the tagged faecal material across each of the three contrast enhanced groups.
Again, the residue in group 3 patients was found to be the most consistent with a mean standard deviation of 78 HU. The authors point out that, although the use of DSC markedly reduces patient discomfort, the bowel preparation quality is still slightly inferior to the quality that is attainable with cathartic alternatives utilised in conventional colonoscopy. Consequently, further developments will be required to improve the bowel preparation quality provided by DSC and further evaluation will be required to establish the effect of DSC on polyp detection.

3.2.4 Discussion on Segmentation

Colon segmentation is the first processing task that is performed in a CTC system. An accurate segmentation is extremely important as it forms the basis for all subsequent processing and evaluation of the colon. A variety of segmentation techniques have been reviewed in this section. All of these techniques utilised either thresholding or region growing\(^1\) to obtain the initial segmentation. Various postprocessing techniques were subsequently employed by the different groups to obtain the final result. A number of the region growing based segmentation techniques incorporated novel approaches to automatic seed point detection that enabled a fully automated segmentation of the colon. This review treated colon lumen segmentation and colon wall segmentation separately. The colon lumen segmentation techniques yielded a volumetric representation of the air contained within the colon. The colon wall segmentation techniques typically used gradient magnitude or morphological operators in conjunction with the lumen data to generate an approximation of the region occupied by the colon walls. In many cases, the documented colon segmentation techniques were reported to suffer from the problems of over-segmentation, and to a lesser extent, under-segmentation. Over-segmentation occurred when extracolonic segments were erroneously included in the final result and under-segmentation occurred in the case of collapsed or blocked colons where the final result failed to include all of the individual colon segments. Chowdhury et al. (2005a) proposed a novel approach to segmentation that was intended to alleviate the problems of over- and under-segmentation. They required the output of their system to adhere to an ideal model of the colon. This approach was intended maximise the segmented region while minimising the inclusion of extracolonic segments. Their results demon-

\(^1\)Note that region growing is a version of thresholding where the output consists of a single connected foreground object that maintain connectivity with an initial seed point.
strated that this strategy had the desired effect, as colon lumen voxels were detected with high levels of sensitivity and specificity. The problem of residual material in the colon was dealt with to some extent by early colon lumen segmentation techniques in which contrast enhanced bowel preparations were used to highlight the presence of any residue. The relevant contrast enhanced regions and air regions were ultimately combined to yield an approximation of the region occupied by the colon lumen. A series of subsequent studies by Zalis et al. formalised the concept of digital subtraction chronography with a non-purgative bowel preparation. The most comprehensive version of their technique removed the residual stool contained within the colon, eliminated the partial volume effect at the boundary between the air and contrast enhanced material, and reconstructed the colon surface where the removal of the contrast enhanced material resulted in an edge artifact. An evaluation of this technique using real patient data demonstrated that the segmentation generated by DSC was comparable to that achieved using a conventional cathartic bowel preparation. The introduction of DSC effectively eliminates the problems associated with residual faecal material in the colon, which can resemble polyps, or in extreme cases cause blockages. In addition, DSC promises to make CTC a much more patient friendly examination by removing the need for a purgative bowel preparation. The use of DSC may also eliminate the need for dual patient positioning. This would significantly reduce the amount of radiation that the patient is exposed too during a CTC examination.

This section has shown that there are various different approaches to colon segmentation and that these approaches ultimately yield either a representation of the colon lumen or a representation of the colon wall. The lumen representation is generally used when calculating the central path through the colon or when extracting an isosurface representation of the colonic mucosa (e.g. when using the marching cubes algorithm (Lorensen & Cline 1987)). The wall representation is used in CAD algorithms that perform an analysis of the voxels surrounding the colonic mucosa in order to identify regions with polyp-like characteristics. It is extremely important to obtain an accurate segmentation of the colon in any of these applications in order to ensure the correct operation of the subsequent processing stages.
3.3 Centreline Calculation

A large number of centreline calculation algorithms are described in the literature. The common objective of each algorithm is to approximate the central path through the human. The centreline is typically used for automating endoluminal navigation in 3-D CTC examinations. However, it should be noted that the centreline provides a compact representation of colonic structure and can also be used in a variety of other applications, for example, to facilitate prone/supine registration or to enable the detection of the main flexures of the colon. It is apparent from published results that this objective has been achieved with varying levels of accuracy, efficiency and user interaction. A review of previously published centreline calculation algorithms is presented in this section. The reviewed algorithms are categorised based on their use of the following: (1) User defined path points, (2) 3-D topological thinning, (3) distance from source fields, (4) distance from surface fields, (5) combined distance fields and (6) mesh analysis. The algorithms discussed in the review are also summarised and compared (where possible) in Table 3.1. It should be noted that the differential characteristics of distance maps, such as local maxima, ridge points and negative divergence points, are used extensively in the centreline calculation algorithms that are discussed in this section.

3.3.1 Connection of User Defined Path Points

Early techniques for centreline calculation required a significant level of user interaction. An example of this is described by McFarland et al. (1997, WUSM) in which key points along the entire length of the colon were identified by a radiologist. The density of these points was greater in regions of increased tortuosity to ensure that the resulting centreline resided within the colon lumen at all points. A cubic spline fit of the manually selected key points was ultimately calculated to approximate the colon centreline. A total of nine centrelines were generated by three radiologists for a single human colon in an average time of 18 minutes. A mean spatial error of 11 mm was reported and the worst fit centreline was found to deviate outside the colon lumen on four occasions. Note that the spatial error was calculated by comparing each individual centreline with the average of the nine centrelines that were calculated during the study. More recently, automated centreline calculation algorithms have been published. These are much more efficient, generate more reproducible
Chapter 3 Technical Background

Figure 3.4 Distance Field generation (a) A 2-D representation of the human colon (b) A distance field initiated from a user defined seed point (green cross) in the rectum (c) A distance from surface field initiated automatically from the set of surface points. White pixels are furthest from the source, whereas black pixels are closest to the source.

results and require considerably less user interaction. Automated techniques generally employ either 3-D topological thinning (3DTT) or distance fields (see Figure 3.4) to calculate an approximation of the colon centreline.

3.3.2 3-D Topological Thinning

3-D topological thinning can be used to generate a skeleton representation of the structure of a volumetric object. The skeleton of the colon lumen includes the set of voxels that are associated with the colon centreline. The centreline can ultimately be identified by removing redundant skeleton loops and branches to yield a single path connecting endpoints in the rectum and caecum.

Members of the Visualisation Laboratory from the State University of New York (SUNY) at Stony Brook have made a significant contribution to research in the area of automated centreline calculation for CTC. Their earliest publication (Hong et al. 1995, SUNY) described a colon centreline calculation technique that was based on 3DTT (sometimes referred to as onion peeling) and involved the removal of successive layers of voxels from a binary representation of the colon lumen until only centreline points remained. A voxel was not removed if it was either one of the user defined centreline endpoints, or if its removal resulted in a breach in connectivity between the two endpoints. The technique was evaluated using two colon phantoms and the Visible Human data set. The colon phantoms were created by CT scanning plastic pipes looped inside a water tank. No performance results were provided, however, the evaluation data was used to generate a series of images,
interactive flythroughs, and animations that clearly demonstrated the feasibility of their centreline calculation technique

Ge et al (1996, Wake Forest) described a centreline calculation technique that was based on 3-D skeletons. An initial skeleton was generated using 3DTT constrained by the centres of maximally inscribed spheres. The user was subsequently required to select the centreline endpoints from the skeleton. Thinning was applied a second time with these two endpoints as the only anchor points. The user was then required to identify points on extraneous skeletal loops. These points were subsequently removed prior to the third and final application of the 3DTT algorithm. The resulting skeleton represented the centreline of the colon. The technique was evaluated using four abdominal CT data sets. No results were provided regarding the performance or accuracy of the techniques. However, the authors noted that a minimum amount of user interaction was required as there were less than 10 extraneous loops encountered in their experiments. More recently, Ge et al (1999) described an improved centreline calculation algorithm also based on 3DTT where the user was only required to select the two centreline endpoints located in the rectum and in the caecum. The task of extraneous loop reduction was performed automatically. In addition, optimisation techniques including sub sampling and surface voxel tracking were utilised to improve performance. Ge et al. used a total of 20 CTC data sets to evaluate their technique. They reported that centreline calculation required an average of approximately 518 seconds. However, when subsampling was used the average time for centreline calculation reduced to approximately 60 seconds.

Paik et al. (1998, Stanford) proposed a novel variation of 3DTT for centreline calculation that did not require extensive local neighbourhood analysis. Their technique involved identifying the shortest path between two user defined endpoints, that consisted of only surface voxels. The binary representation of colon lumen was then thinned using a three stage process:

1. The surface voxels were removed in parallel. No local neighbourhood testing was performed and all voxels were removed regardless of whether they were endpoints or their removal resulted in a connectivity breach.

2. A revised shortest path between the start and end voxels was then obtained. This was calculated using a union of the previous shortest path voxels and the new surface voxels. Voxels on the new surface were preferred over voxels on
the old shortest path

3 The iterative process continued until only the centralised path remained

This approach effectively initialised the centreline on the surface of the segmented colon lumen and iteratively centred it using an extremely efficient 3-D thinning algorithm, until the final result is obtained. The technique described by Paik et al. was evaluated using five data sets that included one CTC data set. The time required for centreline calculation in the CTC data set was reported to be 759 seconds. However, it should be noted that this value included the time required for colon lumen segmentation (129 seconds).

Sadleir & Whelan (2002, VSG) developed an approach based on 3DTT (Tsao & Fu 1981) which extended the work by Ge et al. (1999). An endpoint in the rectum was automatically identified by examining the slice at the bottom of the data set. This endpoint was subsequently used as the seed point for region growing and the generation of a distance from source field. Both operations occurred simultaneously and facilitated colon lumen segmentation and the detection of the second endpoint in the caecum. Standard 3DTT is an extremely slow process. This is mainly due to the extensive local neighbourhood analysis that must be performed prior to the removal of each surface voxel. In order to enhance the performance of 3DTT, Sadleir & Whelan generated every possible $3 \times 3 \times 3$ binary neighbourhood (2^{26} combinations) and determined if the central voxel could be deleted without compromising the topology of the object being thinned. The results were then stored in a lookup table where the unique index to a particular result was generated as a function of the associated neighbourhood configuration. This table was calculated only once and required 67 MB of memory. Subsequently, thinning could be performed much more efficiently by consulting the lookup table as opposed to performing an extensive local neighbourhood analysis prior to the conditional removal of each surface voxel. The thinning operation resulted in a skeleton representation of the segmented colon lumen. The skeleton was then reduced to the centreline, i.e., the set of points between the two automatically detected endpoints that is furthest from the original colon wall. This was achieved by pruning any extraneous loops that were present in the skeleton. A more comprehensive evaluation of this technique was subsequently published by the same authors (Sadleir & Whelan 2005). This later work also provided a more detailed description of the automatic endpoint detection technique that was used.
for the detection of endpoints in the rectum and in the caecum. The technique was evaluated using a total of 12 CTC data sets that represented a mixture of prone and supine studies. The optimised approach to centreline calculation required an average of 3.438 seconds. This was reported to be approximately 45 times faster than the unoptimised approach which required an average of 155 seconds for centreline calculation.

Bouix et al. (2005, Harvard Medical School) described a fully automatic centreline extraction algorithm based on their previous work in the area of skeletonisation. The algorithm started by calculating the average outward flux (AOF) at each point in the segmented colon lumen. The AOF was lower for voxels further away from the surface of the colon and decreased to a strictly negative value at the centre. The AOF values essentially represented an inverse distance from source field for the segmented colon lumen. The centreline calculation process involved the sequential removal of simple voxels\(^2\), that were not endpoints and had an AOF value above a specified threshold. The order in which voxels were examined was determined by their Euclidean distance from the colon surface. Finally, the centreline was extracted from the resulting medial curve using the Dijkstra shortest path algorithm (Dijkstra 1959). This was achieved by identifying the longest of the shortest paths between any two endpoints of the medial curve. The accuracy of the technique was evaluated using six synthetic shapes with known centrelines. An additional six shapes were generated by randomly adding boundary noise to copies of original shapes in order to simulate acquisition noise or segmentation errors. The percentage overlap, the maximum deviation and the mean deviation between points on the known and calculated centrelines were recorded for each of the 12 shapes. The percentage overlap was above 80% in all but one case where a value of 56% was recorded. The mean deviation never exceeded 0.5 mm and the maximum deviation between calculated and known centreline points for all 12 shapes was 5 mm. The performance of the technique was evaluated using a range of data sets that included one CTC data set. A centreline calculation time of 31 seconds was reported for the CTC data set.

\(^2\) i.e. points whose removal did not (1) create a hole (2) create a cavity or (3) disconnect a connected component

Chapter 3 Technical Background

52
3.3.3 Distance from Surface Fields

A distance from surface field representation of the segmented colon lumen contains local maxima that are associated with points on the colon centreline. Consequently, an approximation of the centreline can be obtained by identifying and connecting these local maxima\(^3\).

Zhou et al. (1998, UCLA and SUNY) developed a centreline calculation technique based on distance fields. This technique involved the generation of a distance from surface field using a segmented version of the colon lumen. The skeleton was identified from the distance field by identifying the set of clusters and the set of local maximum paths (LMpaths). A cluster was a set of at least edge connected local maximum voxels that had the same distance value, and a LMpath was defined as the set of voxels connecting two clusters that were furthest from the colon wall. User defined skeleton endpoints were selected (ps and pt). The nearest points on the skeleton were subsequently identified (psl and ptl). A distance from source field was then generated originating from psl. The minimum cost path from ptl back to psl (i.e. in the opposite direction of the distance field) was subsequently identified as the colon centreline. The technique was evaluated using the SUNY colon data set, previously used by Hong et al. (1997), and the entire centreline calculation process was reported to take 199 seconds.

Chiou et al. (1998, 1999, SUNY) developed a centreline calculation technique based on the work by Zhou et al. (1998). They started by calculating distance fields for the segmented colon lumen representing the distance from the surface (DFSrf) and distance from a user defined target point (DFTrg). Local maximum points/clusters were identified from the DFSrf field. These local maxima were subsequently referred to as attractors. Most of these attractors contributed to the centreline. However, some attractors were associated with irregularities in the colon and resulted in superfluous centreline loops. Therefore, the task of centreline calculation involved identifying and ultimately connecting the set of principal attractors. This was achieved by identifying the most powerful attractor and locating any attractors in its vicinity, i.e. its children. These children were then stored in a tree structure and the process was repeated for the next most powerful attractor in the

\(^3\)In some cases a distance from source field is used to connect the local maxima in the correct order. However, it is important to note that the centreline calculation techniques reviewed here are primarily based on the use of distance from surface fields.
tree, until both the start and end principal attractors were identified, these were the attractors with the shortest Euclidean distances to the user defined start and end points. A connection process that utilised the DFSrf and DFTrg fields was ultimately used to combine the principle attractors and yield the final centreline. The technique was evaluated using the CTC data set originally used by Hong et al. (1997). The time required for centreline calculation was reported to be in the order of a few minutes, an exact figure was not provided.

Frimmel et al. (2004, Uppsala & UC) presented a centreline calculation technique that involved the analysis of a distance from surface field representation of the segmented colon lumen. An initial set of local maxima were identified from the distance map based on an inspection of local four and six-connected neighbourhoods. This set was refined by associating an exclusion zone with each local maximum, where the value of the local maximum defined the radius of the exclusion zone. A threshold was then used to identify seed points from the remaining local maxima. These seed points were connected, according to a set of rules\(^4\), to form graphs representing minimum distance spanning trees within the colon lumen. The other local maxima (i.e., those below the threshold) were appended to the resulting graphs to form branches. All branches were then eliminated except those representing graph endpoints. Finally, any graphs that did not contain a seed point were removed as they were considered to be associated with extracolonic structures. The resulting set of graphs represented the final colon centreline. The proposed algorithm was evaluated against a computer generated phantom with a known centreline and centrelines identified from real patient data by three radiologists. In all cases the deviation of the calculated centreline from the gold standard was small. In the case of the phantom studies, where the true centreline was known, the mean displacement between the true and calculated centreline was typically of the order of 3 mm. In the clinical cases the average value for the mean displacement between the automatically calculated centreline and those indicated by the three radiologists was 3.8 mm. The performance of the technique was evaluated using a total of 40 CTC data sets and the average time required for centreline calculation was reported to be 10.5 seconds.

Note Frimmel et al. (2005, see Section 3.2.1) subsequently published a colon lumen segmentation technique using their centreline calculation algorithm.

\(^4\)These rules ensured that the resulting graph, representing the shortest path between the seed points, did not contain any loops, and did not go through the colon wall at any point.
3.3.4 Distance from Source Fields

Distance from source fields can be used to identify the shortest path between the two endpoints of the colon. This approach typically suffers from the corner cutting problem illustrated in Figure 3.5. Consequently, a centring stage is required in order to generate the final centreline\(^5\).

![Figure 3.5: The distance from source field alone cannot be used for centreline calculation as the shortest path (i.e. the path with the shortest Euclidean distance) between the start and end points is identified (blue path). This problem, commonly referred to as corner cutting is illustrated for initial seed point in (a) the rectum and (b) the caecum.](image)

Samara et al. (1998, UC) developed a centreline calculation algorithm that involved the generation of a distance from source field. This field was initiated from a user defined seed voxel in the rectum and effectively represented voxel wave fronts that radiated from the seed point. The centreline was subsequently approximated as the set of voxels that represented the centre of mass for each of the voxel wave fronts. Two approximations of the centreline were calculated from seed points that were located in both the rectum and the caecum. These antegrade and retrograde centrelines were then averaged to generate the final result. Centreline calculation using this technique was reported to take approximately one minute. Centreline points were indicated by two radiologists and the average RMS difference between indicated and calculated points was found to be 4.924 mm, this was less than the inter-observer RMS difference. In a revised version of this technique, Samara et al. (1999, UC) determined the orthogonal plane to each point in the averaged centreline. The centre of mass of voxels was calculated for each plane, and the resulting

\(^5\)In some cases distance from surface fields are used in the centring stage. However, it is important to note that the techniques reviewed under this heading are primarily based on the use of distance from source fields.
Figure 3.6 One endpoint (red cross) of the colon can be identified as the point with the largest distance value relative to the seed point (green cross), this process is independent of seed point location. It is evident that the same endpoint is identified with a seed point in (a) the caecum, (b) the hepatic flexure and (c) the mid transverse colon.

Centroid points were then connected together to generate the final centreline. The revised centreline calculation technique required an average of five minutes for centreline calculation and improved centreline accuracy for clinical cases by between 0.4 - 1.0 mm. In a phantom study the mean RMS errors between known and calculated centrelines was found to be between 1.0 - 1.5 mm.

Zhou & Toga (1999, UCLA) described a centreline calculation technique that involved generating two distance fields for the segmented colon lumen. These represented the distance from the colon surface (i.e., a boundary-seeded distance field) and the distance from a single source point located within the colon lumen (i.e., a source-seeded distance field). A source point for the main source-seeded field was automatically identified by initiating an intermediate source-seeded distance field from an arbitrary point in the segmented lumen, the point with the highest distance value was subsequently identified as the source point (see Figure 3.6). In their paper, Zhou & Toga defined the concept of a cluster as “a connected set of object voxels with the same source seeded distance value.” The centreline was then calculated using a two stage process that consisted of path identification and path centring. The centreline was initiated from the cluster with the highest source seeded distance value (this fact was implied in their results section). The face neighbour of the starting point with the lowest source seeded distance value was used as the next point in the centreline and this process continued until the endpoint was reached. This first approximation of the centreline suffered from the corner cutting problem illustrated in Figure 3.5 on Page 55. The second stage was required to centre the
initial centreline. Here each point in the approximated centreline was replaced by the medial point in the associated cluster. The resulting set of medial points represented the final centreline. This technique was also evaluated using the SUNY data set and the time required for centreline calculation was reported to be 519 seconds.

Chen et al. (2006, SUNY) described a multi-resolution approach to skeletonisation for virtual endoscopy. A simplified version of this approach was used to identify the centreline of the colon at CTC. This technique was based on the generation of a Euclidean distance field from a user defined root. This root voxel was defined as one endpoint of the centreline and the voxel with the maximum distance value was identified as the other endpoint (see Figure 3.6). Note that for the more general case of skeleton extraction, voxels with local maximum distance values were taken as skeleton endpoints. The minimum cost path was then identified by tracing from the endpoint back to the root. This path represented the shortest path between the two endpoints of the colon and, as such, suffered from the corner cutting problem (see Figure 3.5 on Page 55) and had to be centred. Voxels were selected from this initial centreline at regular intervals. The tangent was obtained for each of the selected voxels and the plane perpendicular to the tangent was determined. The centre of mass of lumen voxels that were contained in this cross-section was taken as a revised centreline voxel. The final centreline was generated by calculating the bi-cubic B-spline fit of the revised centreline points. Chen et al. included a data reduction technique based on the 1-D discrete wavelet transform. This technique was used to significantly reduce the size of the original CTC data set and thus greatly increase the performance of the technique. However, the authors point out that an over-reduction in size may compromise connectivity in the segmented colon lumen and compound the centreline calculation process. The technique was evaluated using three data sets that included a single CTC data set. In the case of the CTC data set, the centreline calculation process required a total of 36 seconds.

Deschamps & Cohen (2000, 2001, Philips & Universite Paris IX Dauphine) described a navigation path identification technique for virtual endoscopy based on extracting minimum energy paths from 3-D images. This involved the calculation of a minimal action map that defined the minimal energy path between a user defined start point and any other point in the lumen. The energy for each path was calculated using a simplified snake energy model where the potential at a point in the image corresponded to the intensity value at that point. The path endpoint
could either be user defined, or automatically detected as the last point added to the minimal action map, i.e. the furthest point from the start point (Truyen et al 2001) The minimum energy path was subsequently identified from the minimal action map by backward propagation from the endpoint to the start point. At CTC the potential inside the colon lumen was effectively constant, and as a result the minimal energy path between the start and end points was the path between these two points with the shortest Euclidean distance. Consequently, this approach suffered from the corner cutting problem common to all distance field techniques (see Figure 3.5 on Page 55). This problem was alleviated by introducing a centring potential that decreased with distance from the colon wall. The resulting minimal path, calculated in the presence of this centring potential, provided a more accurate representation of the colon centreline. The technique was evaluated using a single CTC data set. The time required for centreline calculation was reported to be 30 seconds.

3.3.5 Combined Distance Fields

A number of centreline calculation techniques have been proposed that combine distance from surface fields with distance from source fields to generate hybrid distance fields. The centreline can subsequently be identified as the path of least resistance through the hybrid distance field.

Hong et al (1997, SUNY) described an early centreline calculation technique that was based on potential fields. Two distance fields were generated, one represented the distance from target (located in the caecum or the appendix) and the second represented the distance from surface of the colon. These distance fields were combined to generate a potential field which was ultimately used to guide the user through the colon lumen. This technique facilitated automated navigation though the colon lumen. However, in cases where the central path was unable to escape from local minima, user intervention was required. The technique was evaluated using phantom data, the Visible Male data set and real patient data acquired using CTC. In the case of the real patient data, the centreline calculation technique was reported to generate real time virtual flythroughs of the colon lumen with frame rates between 18.8 and 22.7 frames per second.

Bitter et al (2001, SUNY) described a general skeletonization technique for volumetric objects that could also be applied to the colon for centreline calculation.
This work improved on their earlier CEASAR6 (Bitter \textit{et al.} 2000) and TEASAR7 (Sato \textit{et al.} 2000) algorithms and consisted of two main stages: Data set reduction and centreline calculation.

1. The colon lumen was segmented from the abdominal CTC data set and the resulting data set was cropped. The cropping operation resulted in new volume that contained only the colon lumen plus a small boundary. A Euclidian distance from boundary field was calculated for the segmented colon lumen. This distance from boundary field was then used to calculate gradient vectors for each voxel in the segmented lumen. All local minima and local maxima in the gradient vector field were then flagged. The flagged voxels were connected along the gradient field vectors. The resulting set of voxels represented a small subset of the original colon voxels (15% - 30%) which included all voxels that would ultimately represent the centreline.

2. A distance from source field originating from an arbitrary point in the set of flagged voxels was then used to identify one of the centreline endpoints, this was the voxel with the greatest distance value (see Figure 3.6). This voxel was referred to as the root voxel. A penalised distance from root field was then calculated. Here each voxel was assigned an accumulated cost, which was a combination of the Euclidean distance from the source and the penalty, and had an inverse relationship with the distance from the surface. The accumulated distance was also calculated for each voxel. This value was used to identify the other end of the centreline (i.e. the furthest point from the root voxel). The centreline was then identified as the minimum cost path from the endpoint back to the root. This graph reduction technique was an adaptation of the Dijkstra shortest path graph algorithm (Dijkstra 1959).

The technique was evaluated using five data sets, including a single CTC data set. The time required for centreline calculation of the CTC data set was reported to be 119 seconds.

Wan \textit{et al.} (1999, 2002, Boeing \& SUNY) developed a technique similar to that described by Bitter \textit{et al.} (2001), which operated on the entire segmented colon lumen. The required centreline start and end points were either manually selected

6A smooth, accurate and robust centreline extraction algorithm.

7Tree-structure extraction algorithm for accurate and robust skeletons.
(Wan et al. 1999) or automatically detected (Wan et al. 2002). An inverse Euclidean distance from the surface field was generated for the set of lumen voxels. The result of this operation was referred to as a 3-D directed weighted graph. The Dijkstra algorithm (Dijkstra 1959) was then employed to find the minimum cost spanning tree of the directed graph. Each node in the resulting tree was assigned a weight that corresponded to the minimum cost path back to the start point. The centreline was ultimately identified from the minimum cost spanning tree as the minimum cost path from the endpoint back to the start point. The technique was evaluated using four CTC data sets and a mean centreline calculation time of 14.7 seconds was reported. However, it should be noted that the time required for the calculation of the distance from boundary and distance from source fields was not included in the documented results.

Kang & Ra (2005) proposed a centreline calculation technique that was intended to maximise the visibility in virtual flythrough examinations of CTC data sets. Their algorithm started by obtaining a segmentation of the colon using a seeded region growing algorithm. An initial centreline was then obtained from the segmented lumen using the distance field technique developed by Wan et al. (2002). An approximation of the thickness of the colon at each point along the centreline was obtained using a 3-D distance transform calculated using the 3-4-5 chamfer based method. The endoluminal visibility was subsequently maximised by moving the view point back from the current centreline point so that the full diameter of the colon at that point could be visualised within the limited field of view. Potential problem cases where the viewpoint was moved outside the lumen or behind an obstruction were avoided by ensuring that there was a clear line of sight between the viewpoint and the current centreline point. The path traced by the viewpoint, representing the improved visibility centreline, was smoothed using a low-pass-filter. Finally the up-vectors were selected to minimise the rotation between consecutive images. This new centreline facilitated the visualisation of the colon surface in highly curved sections of the colon lumen. The visualisation of regions obscured by the haustral folds was made possible by the use of bidirectional (antegrade & retrograde) endoluminal navigation. The documented approach was tested using three patient data sets and enabled the visualisation of an average of 97% of the colon surface for a camera field of view of 60 degrees. This represented an average improvement of 4.74% over the

8 An up-vector indicates which direction is up, and as such controls the orientation of the camera.
conventional technique with the same field of view. The average time required for centreline calculation in the three data sets was reported to be 18,667 seconds.

3.3.6 Mesh Analysis

Iordanescu & Summers (2003, NIH) presented a method where the centreline was calculated from a polygonal mesh representation of the colon surface. This approach differed from conventional methods, as it operated on the colon surface rather than on the set of lumen voxels. The authors cited applications of their approach including the registration of polyps between prone and supine data sets and the estimation of local colonic distention. The algorithm started by extracting an isosurface representation of the colon surface using the marching cubes algorithm (Lorensen & Cline 1987). Decimation was then used to reduce the amount of data (i.e., the number of vertices) thus increasing the performance of the technique. A reduction in vertices of approximately 80% was reported. An approximation of the centreline was obtained by iteratively averaging the vertex locations in the decimated colon model. The thinned structure was sampled at regular intervals (~10 mm) to generate a line strip array representation of the thinned surface. This was achieved using a vertex-based region growing technique. Pairs of points on the line strip array and their associated distance from rectum values were mapped to cylindrical segments of the decimated surface model. The edge vertices of each of the cylindrical segments were averaged and the resulting set of points represented the final centreline. A post-processing stage was used to deal with any points that fell outside the colonic lumen. Finally, points in the decimated colon were mapped back to the original colon to facilitate polyp matching between prone and supine data sets. The technique was validated quantitatively using a computer-generated phantom and qualitatively using data sets from 10 patients scanned in both the prone and the supine positions (i.e., a total of 20 data sets). The average time required for centreline calculation was reported to be 108 seconds. The phantom study demonstrated the accuracy of the approach (the average deviation from the known centreline was reported to be 1.1 ± 1.0 mm). The use of real patient data demonstrated the ability to accurately register 11 polyps in seven patients between prone and supine data sets. Registration was achieved using the distance from the rectum along the normalised prone and supine centrelines.
3.3.7 Discussion on Centreline Calculation

The centreline is an important feature of the colon lumen as it can be used to automatically guide the viewer on a flythrough examination of the interior of the colon. The centreline is not limited to automating endoluminal navigation and has been used for other purposes, e.g. to register polyps between prone and supine data sets. Early centreline calculation techniques required a significant level of user interaction and were highly depended on the users’ ability to accurately identify points along the colon centreline. Automated techniques greatly reduced, and in some cases entirely eliminated, the need for user interaction. In cases where user interaction was required it was limited to the identification of one or both of the centreline endpoints. Automated centreline calculation techniques typically operate on a binary representation of the segmented colon lumen where the centreline voxels are identified using either 3DTT or distance fields.

Standard 3DTT generates a representation of the skeleton of the colon lumen voxels that can include redundant loops and branches. Further processing is required to remove the unnecessary sections and yield the final centreline connecting endpoints located in the rectum and the caecum. Modifications to standard 3DTT have been described in this section. Paik et al. (1998) proposed identifying an initial representation of the centreline located on the surface of the colon and then used a modified 3DTT algorithm to obtain a centred version of the initial centreline. This approach has the benefit of removing the need for skeleton reduction because the calculated centreline is guaranteed not to contain any redundant loops or branches. Sadleir & Whelan (2002) proposed another modification to standard 3DTT that involved using lookup tables to greatly improve the performance of the skeleton generation stage. 3DTT is generally considered to produce an accurate representation of the colon centreline. However, it is also considered to be extremely computationally intensive, and consequently, unsuitable for realtime applications. The optimisations to 3DTT that were reviewed in this section address the issue of performance and thus make 3DTT a more attractive option of centreline calculation.

A variety of different approaches to centreline calculation have been proposed that involve the generation and analysis of distance fields. Methods that use a distance from source field initiated from one of the centreline endpoints invariably suffer from the corner cutting problem illustrated in Figure 3.5 on Page 55. Consequently,
a centring stage is required to generate the final representation of the centreline. The accuracy of the centreline generated using this technique is dependant on the centring strategy that is employed. The centreline can also be calculated using a distance from surface field. Using this approach local maxima considered to be associated with the colon centreline are identified from the distance from surface field and connected to yield a single centred path connecting endpoints located in the rectum and the caecum. The accuracy of centrelines generated using this approach is dependent on the method used to connect the local maxima. Other approaches to distance field based centreline calculation techniques combined the distance from source and distance from surface field to generate hybrid distance fields. The centreline can be identified using this approach, as the path of least resistance connecting the two centreline endpoints. One of the main benefits associated with the use of distance fields is that they can also be used to automate the endpoint detection process. The is demonstrated in the centreline calculation technique described by Bitter et al. (2001). There are also other alternative approaches to centreline calculation that do not use either 3DTT or distance fields. For example, Iordanescu & Summers (2003) described a novel centreline calculation technique that operated on a polygonal mesh representation of the colon surface.

Recently published centreline calculation techniques require less than 60 seconds to identify the central path through the colon (see Table 3.1). As a result, these techniques can be used to facilitate a real time flythrough examination of the colon in a clinical environment. The question of accuracy has been addressed by comparing the calculated centreline to a known centreline in computer generated phantom studies (e.g. Bouix et al. (2005)) and by comparing the calculated centreline to radiologist markings in real patient data (e.g. Frimmel et al. (2004)). The approach by Kang & Ra (2005) represents a further development in centreline calculation research where the calculated centreline represents the path that provides the best visibility as opposed to the more central path through the colon. The area of CTC research dealing with centreline calculation has evolved considerably from the semi-automated approach proposed by McFarland et al. (1997) to the fully automated, real time approaches that have been discussed in the literature more recently.

9It should be noted at this point that the centreline calculation technique documented in this thesis is intended to provide an accurate representation of the structure of the colon, i.e. it is not intended to maximise the visibility of the colon surface. The centreline is ultimately used to identify the colonic flexure points and thus enable the subsegmentation of the colon lumen.
Table 3.1: An overview of previously published centreline calculation algorithms. A rank has been calculated for each algorithm by scaling the reported execution time based on the processor speed. This is intended to provide an indication of algorithm performance that is independent of the hardware platform used. Instances where the required information is unavailable are indicated by ‘-’. The accuracy of each technique, compared to a known phantom centreline (P) and/or radiologist markings (R), is presented where available. The order in which the techniques are listed is based on the associated centreline calculation speed.

<table>
<thead>
<tr>
<th>Group</th>
<th>Technique</th>
<th>Accuracy (mm)</th>
<th>Platform</th>
<th>CPU (Mhz)</th>
<th>RAM (MB)</th>
<th>EPs</th>
<th>Time (s)</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sadleir & Whelan (2005)</td>
<td>Optimised 3D topological thinning using lookup tables.</td>
<td>-</td>
<td>Intel</td>
<td>1600</td>
<td>512</td>
<td>0</td>
<td>3.438</td>
<td>1</td>
</tr>
<tr>
<td>Frimmel et al. (2004)</td>
<td>Identification and connection of distance field local maxima followed by spline interpolation.</td>
<td>~3 (P), 3.8 (R)</td>
<td>Intel</td>
<td>800</td>
<td>512</td>
<td>0</td>
<td>10.5</td>
<td>2</td>
</tr>
<tr>
<td>Wan et al. (2001)</td>
<td>Minimum cost path through a distance from surface field with manual endpoint selection.</td>
<td>-</td>
<td>Intel</td>
<td>700</td>
<td>655</td>
<td>1</td>
<td>14.75a</td>
<td>4</td>
</tr>
<tr>
<td>Wan et al. (2002)</td>
<td>Minimum cost path through a distance from surface field with automatic endpoint detection.</td>
<td>-</td>
<td>Intel</td>
<td>700</td>
<td>655</td>
<td>0</td>
<td>18.205ab</td>
<td>5</td>
</tr>
<tr>
<td>Sadleir & Whelan (2002)</td>
<td>Optimised 3D topological thinning using lookup tables.</td>
<td>-</td>
<td>Intel</td>
<td>700</td>
<td>512</td>
<td>0</td>
<td>24.42</td>
<td>7</td>
</tr>
<tr>
<td>Deschamps & Cohen (2000, 2001)</td>
<td>Minimum energy path though a distance from source field with a centring stage.</td>
<td>-</td>
<td>Sun/Solaris</td>
<td>300</td>
<td>1024</td>
<td>1</td>
<td>30</td>
<td>3</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Group</th>
<th>Technique</th>
<th>Accuracy (mm)</th>
<th>Platform</th>
<th>CPU (Mhz)</th>
<th>RAM (MB)</th>
<th>EPs</th>
<th>Time (s)</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bouix et al (2005)</td>
<td>Skeletonisation algorithm that utilises voxels properties including the average outward flux and the Euclidian distance from boundary</td>
<td>0.11 (P)</td>
<td>Intel</td>
<td>2000</td>
<td>1024</td>
<td>0</td>
<td>310</td>
<td>11</td>
</tr>
<tr>
<td>Chen et al (2006)</td>
<td>Minimum cost path through a distance from source field followed by a centring stage</td>
<td></td>
<td>SGI</td>
<td>195 x 2 (R10000)</td>
<td>896</td>
<td>1</td>
<td>36</td>
<td>6</td>
</tr>
<tr>
<td>Samara et al (1998)</td>
<td>Distance from source field with cluster centring</td>
<td></td>
<td>SGI</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>~60</td>
<td>-</td>
</tr>
<tr>
<td>Iordanescu & Summers (2003)</td>
<td>Average of colon surface vertices followed by a set of refinement stages to yield final result</td>
<td>11 ± 1.0 (P)</td>
<td>Intel/Windows</td>
<td>1500</td>
<td>2048</td>
<td>0</td>
<td>108</td>
<td>13</td>
</tr>
<tr>
<td>Bitter et al (2001)</td>
<td>Centreline calculated as minimum cost path from end to start point in a penalised distance field</td>
<td></td>
<td>Intel/Windows</td>
<td>1000</td>
<td>-</td>
<td>0</td>
<td>119</td>
<td>-</td>
</tr>
<tr>
<td>Zhou et al (1998)</td>
<td>Skeleton extraction using a distance form surface field followed by centreline identification</td>
<td></td>
<td>SGI</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>199</td>
<td>-</td>
</tr>
<tr>
<td>Sato et al (2000)</td>
<td>Centreline calculated as minimum cost path from end to start point in a penalised distance field</td>
<td></td>
<td>SGI</td>
<td>194 (R10000)</td>
<td>-</td>
<td>0</td>
<td>208</td>
<td>9</td>
</tr>
<tr>
<td>Bitter et al (2000)</td>
<td>Centreline calculated as minimum cost path from end to start point in a penalised distance field</td>
<td></td>
<td>SGI</td>
<td>194 (R10000)</td>
<td>4096</td>
<td>0</td>
<td>276</td>
<td>10</td>
</tr>
<tr>
<td>Samara et al (1999)</td>
<td>Distance from source field with cluster centring and centreline refinement stage</td>
<td>4 - 5 (R), 10 - 15 (P)</td>
<td>SGI</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>~300</td>
<td>-</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Group</th>
<th>Technique</th>
<th>Accuracy (mm)</th>
<th>Platform</th>
<th>CPU (Mhz)</th>
<th>RAM (MB)</th>
<th>EPs</th>
<th>Time (s)</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge et al. (1999)</td>
<td>3-D topological thinning used in conjunction with surface voxel tracking.</td>
<td>-</td>
<td>SGI</td>
<td>- (60c)</td>
<td>-</td>
<td>2</td>
<td>518(60c)</td>
<td></td>
</tr>
<tr>
<td>Zhou & Toga (1999)</td>
<td>Distance from source field with cluster centres used as centreline points.</td>
<td>-</td>
<td>SGI</td>
<td>- (R10000)</td>
<td>-</td>
<td>0</td>
<td>519</td>
<td></td>
</tr>
<tr>
<td>Paik et al. (1998)</td>
<td>A combination of a distance from source field and streamlined 3D topological thinning.</td>
<td>-</td>
<td>SGI</td>
<td>180 (R5000)</td>
<td>256</td>
<td>2</td>
<td>759d</td>
<td>12</td>
</tr>
<tr>
<td>McFarland et al. (1997)</td>
<td>Radiologist marking & spline interpolation.</td>
<td>11 (R)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1080</td>
<td></td>
</tr>
<tr>
<td>Chiou et al. (1998, 1999)</td>
<td>Identify and connect principal attractors, i.e. local maxima in distance from surface field.</td>
<td>-</td>
<td>SGI</td>
<td>-</td>
<td>3072</td>
<td>2</td>
<td>Exact figure unavailable</td>
<td></td>
</tr>
<tr>
<td>Hong et al. (1997)</td>
<td>Uses a potential field, derived for distance from source and distance from surface fields, to identify the central path through the colon lumen.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Hong et al. (1995)</td>
<td>Reduce the segmented colon lumen to a single path of connected voxels using onion peeling (i.e. 3DTT).</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: EPs The number of colonic endpoints that must be manually specified. An EP count of zero indicates that the associated centreline calculation technique is fully automated.

*Does not include the time required to generate the distance fields (approximately 20 seconds).

bThe same results as Wan et al. (2001), however, the time required for extraneous branch removal (i.e. 3.46 seconds) is included.

cObtained by subsampling the data set.

dIncludes time required for segmentation stage.
3.4 Prone/Supine Registration

The registration of prone and supine CTC data sets can be used for a number of purposes e.g. to match polyp candidates between prone and supine studies or to identify the presence of mobile residual stool (Nappi et al 2005a, UC). The task of accurately registering prone and supine data sets is challenging in cases where the colon is severely deformed or contains several collapsed regions. An example of the significant differences between scans of the same patient using prone and supine positioning is illustrated in Figure 3.7. This section reviews a number of methods that address the registration problem. The reviewed techniques register prone and supine data sets by matching centreline points, or alternatively, by matching landmarks identified during region growing. The process of prone/supine registration is discussed at this point due to its relevance to colon lumen subsegmentation, a process that will be introduced in Section 4.6.

![Figure 3.7](image)

Figure 3.7 Surface renderings of the colon of the same patient (MMH-166) imaged using (a) prone and (b) supine positioning. Note significant deviation in the morphology of the colon between the two images.

3.4.1 Centreline Based Registration

Acar et al (2001, Stanford) described a method for automatically registering points between the prone and supine centrelines that were calculated using a previously...
published algorithm (Paik et al. 1998). Their technique involved matching local extrema in the \(x, y & z \) directions. The first stage in the process involved scaling the supine centreline points in a linear manner so that the supine centreline was the same length as the prone centreline. The extrema were then calculated and neighbouring extrema were clustered to simplify the matching problem. The clusters were then ordered and matched based on their distance along the centreline and their perpendicular distance from the horizontal plane. The scaling was then modified in a nonlinear fashion so that all of the extrema matched and not just the two endpoints as described earlier. Using experimentally obtained optimum parameters for their system, Acar et al. compared the locations of 25 reference points (five reference points in five patients). They found that the mean registration error decreased significantly from 51.0 mm down to 14.2 mm after the application of their registration algorithm.

Li et al. (2004, Stanford) extended the approach described by Acar et al. (2001) to include polyp registration. Three polyp properties were used for this purpose:

1. The distance of the polyp along the central path (after path registration). An approximation of the relevant path point was found by identifying the path point with the shortest Euclidean distance to the polyp.

2. The location of the polyp, represented as a 3-D orientation vector, on the intersecting plane that was perpendicular to the central path. A transformation was used to reduce variations caused by colonic distortions between prone and supine scans.

3. The shape characteristics of the polyp. The CAD intensity score from the surface normal overlap polyp detection algorithm (Paik et al. 2004) was used for this purpose. A higher score indicated a higher likelihood of the candidate being an actual polyp.

A match score for a pair of prone/supine polyp candidates was then calculated from a joint probability density function that was approximated using the density functions for each of the three polyp characteristics listed above. In each case the individual density functions were estimated using a reference standard (in this case all data sets except for the one being evaluated). A total of three experiments were carried out to evaluate the polyp registration algorithm. The first experiment used only
known polyps and resulted in a 78% success rate. In the second experiment when nonpolyps were included, the success rate dropped to 50%. The final experiment determined the number of manual comparisons required to identify polyp pairs. This was found to be 1.78 with polyp registration compared to 4.28 comparisons without registration.

Nain et al. (2002) described a registration technique that used dynamic programming to align the colon centrelines calculated from prone and supine studies of the same patient. Their centreline calculation technique involved modeling the temperature distribution across the surface of the colon where the ends the colon were held at constant temperatures of 0 and 1 degrees respectively. The interval $[0, 1]$ was divided into a series of sub-intervals and the centreline points were calculated as the centres of mass of the vertices belonging to each sub-interval. The average radial distance r and the normalised distance along the centreline d was recorded for each centreline point. The registration process utilised dynamic programming to obtain the optimum minimal cost solution for matching all pairs of points from the prone and supine centrelines by means of recursion. The cost of matching a pair of points increased as the differences between r and d increased. Penalties were also included for excessive stretching and compression. An evaluation of the registration technique was carried out using prone and supine scans of a single patient. A total of three different system configurations were evaluated. An estimate of the accuracy for each configuration was obtained by recording how many frames appeared to match in synchronous prone/supine flythroughs. A maximum match rate of 94% was reported.

Balci et al. (2005) described a registration technique in which parametric representations of prone and supine centrelines were matched using dynamic time warping. The registration process involved warping the supine centreline so that point pairs from the prone and supine centrelines corresponded to the same anatomical location. The cost of matching a prone centreline point with its warped counterpart from the corresponding supine centreline was defined as the square of distance between the two points. Weights were used in the distance calculation to indicate the relative importance of centreline deviations in the coronal, sagittal and axial planes. Dynamic programming using the dynamic time warping algorithm was ultimately used to determine the optimal minimum cost solution for the warping function. The algorithm was evaluated using a cohort of 24 patients. A single radiologist identified
a total of five corresponding reference points in the prone and supine data sets of each patient. The distance along the centreline between each pair of reference points was measured before and after centreline registration. The registration process was found to decrease the mean distance between reference point pairs from 47.08 ± 48.2 mm before registration to 9.29 ± 8.72 mm after registration. The maximum decrease was from 226.0 mm to 85.0 mm and the minimum decrease was from 1.0 mm to 0.0 mm. The registration process was found to increase the distance between reference point pairs in 13 of the 120 reference points. In these cases the mean distance between the prone and supine reference points increased from 9.29 ± 8.72 before registration to 18.57 ± 20.30 after registration.

3.4.2 Region-Growing Based Registration

Näppi et al. (2004a, UC) described an automated method for establishing a correspondence between the segmented colons of prone and supine data sets of a particular patient. Their approach involved automatically identifying a series of landmarks (anus, rectosigmoid junction, sigmoid junction, splenic flexure, hepatic flexure and caecum) in both data sets. Then, each voxel in the segmented colon lumen was assigned a value that represented its distance from the caecum. The distance values of the voxels in the prone and supine lumens were subsequently normalised based on the distance values at the landmarks. The prone and supine lumens were then divided into segments where a segment was located between two landmarks. Small segments (below a predefined minimum length) were merged, and large segments (above a predefined maximum length) were split into smaller overlapping segments. This registration technique was developed to reduce false positives at CAD-CTC. If a polyp candidate is flagged in only one of two corresponding segments then it is disregarded as mobile stool. Only polyps that are present in both corresponding segments were retained. An evaluation of this technique on 121 prone and supine CTC data sets (where 28 patients had 42 confirmed polyps 5 - 25 mm in size) demonstrated a reduction in the number of false positives by 20%.

In a subsequent publication Näppi et al. (2005a) provided a more detailed description of their approach dealing with landmark detection, segment generation, true positive retention and parameter estimation. A more thorough evaluation of their approach, using the same patient cohort as their earlier study and a slightly different CAD scheme, demonstrated that prone/supine correspondence reduces false positives by 20%.
positives by 19% (or from 3.0 per data set to 2.4 per data set). The authors note that only 41% of potential landmarks were detected using their technique thus the ability to eliminate potential false positives was greatly reduced.

3.4.3 Discussion on Prone/Supine Registration

The registration of prone and supine CTC data sets enables two representations of the same region of the colon to be evaluated synchronously. Registration can be used to match polyps between prone and supine data sets, and consequently, it can be used to reduce false positive detections by providing the ability to distinguish between actual polyps, naturally occurring colonic features and mobile residual stool. A number of different approaches to registration have been reviewed in this section. These approaches use either centreline analysis or region growing to perform the registration. Centreline based approaches involve matching points between the prone and supine centreline in a non-linear fashion to account for the expansion and compression of the colon that can occur when the patient changes position between scans. Centreline based registration can be achieved by matching clusters of centreline extrema between prone and supine centrelines (Acar et al. 2001), or alternatively, by obtaining a minimum cost match for point pairs in prone and supine centrelines using dynamic programming (Nam et al. 2002, Balci et al. 2005). These are essentially low level approaches to registration that adapt depending on the structure of the input data to give the best results.

A higher level alternative to the proposed centreline based registration techniques involves identifying anatomical landmarks in the colon (e.g. the flexures) and using the detected landmarks to facilitate the registration of the prone and supine data sets. This approach to registration is highly dependent on the ability to automatically identify the required landmarks from the input data. Nappi et al. (2004a) describe how these landmarks can be detected using region growing. However, it is clear from a subsequent evaluation of their technique (Nappi et al. 2005a) that automatically detecting landmarks using this method is unreliable. The observations made in this review would seem to indicate that centreline based registration is more robust than the region growing based alternative. This is mainly because the region growing based technique must identify specific landmarks prior to registration, a process that has been demonstrated to be problematic. Conversely, the centreline based techniques do not have this requirement and instead adapt to match arbi-
trary points in the input data that need not correspond to established anatomical landmarks

3.5 CAD-CTC

At present clinical CTC examinations are read manually. This involves a radiologist examining all of the images that constitute the data set using 2-D, 3-D or a combination of both viewing techniques. Manually reading CTC data sets is a slow process that is prone to error. CAD algorithms can be used in CTC examinations to act as a second reader. The utilisation of CAD in this manner has the potential to increase the diagnostic performance of readers in the detection of colorectal polyps and decrease the variability in the diagnostic accuracy among readers (Yoshida & Dachman 2005, UC). There has been a great deal of activity in the area of CAD-CTC research. Summers (2003) identified the main contributing institutions as

- The National Institutes of Health (NIH)
- Department of Radiology, University of Chicago (UC)
- Department of Radiology, Stanford University
- Wake Forest University School of Medicine
- University Hospital Gasthusberg (UHG), Leuven, Belgium
- State University of New York (SUNY)
- Vision Systems Group (VSG), Dublin City University

The work of these and other groups will be reviewed in this section. This review will discuss the tasks of automated polyp and mass detection separately as these techniques deal with the detection of very different types of anomaly.

3.5.1 The Role of CAD at CTC

CAD-CTC is intended to be an assistive tool that will aid radiologists in the detection of colorectal polyps and masses. A number of studies have been carried out to establish how CAD-CTC will affect the diagnostic performance of radiologists involved in colorectal cancer screening.
Summers et al. (2002, NIH) compared the performance of two radiologists who examined a cohort of 40 patients (20 normal and 20 with at least one polyp ≥ 10 mm). Each patient was examined with and without the help of their CAD system (Summers et al. 2001) and the results were ultimately compared with same day conventional colonoscopy findings. Of the 65 polyps present in the study, 25 were ≥ 10 mm (large polyps). The study found that CAD increased the polyp detection sensitivity for all polyps by 16% and for large polyps (≥ 10mm) by 33%.

Mani et al. (2004, Stanford) evaluated the performance of three radiologists with and without the aid of CAD results. A total of 41 data sets were used containing a total of 30 polyps. The CAD system employed was that described by Paik et al. (2004). Unassisted readers detected on average 63% of polyps ≥ 10 mm. This increased to 74% when CAD was used.

Näppi et al. (2005b, UC) reported on the complementary effect of their CAD-CTC system (Yoshida & Näppi 2001) when used by experienced radiologists. In their study the colon was examined by three observers (an experienced radiologist, an inexperienced radiologist and a gastroenterologist). The observers evaluated a series of 20 CTC data sets consisting of 10 normal data sets and 10 abnormal data sets containing 11 polyps ranging in size from 5 - 12 mm. The data sets were evaluated with and without the benefit of CAD. The CAD scheme coloured the colon lumen so that folds were assigned a pink colour, the background was assigned a dark red colour and regions detected by the CAD algorithm were given a green colour. This colouring scheme was referred to by the authors as shape-scale colouring. The performance of the three observers was evaluated both with monochromatic colouring and shape-scale colouring using receiver operator characteristic (ROC) curves, and in all cases the performance of the observer increased with the aid of the CAD scheme. An earlier report from the same group (Okamura et al. 2004) also demonstrated improved performance by human readers when assisting CAD was used.

Taylor et al. (2006, UK) compared the performance of a cohort of radiologists, with the performance of computer-assisted reader (CAR) software, for the detection of colorectal polyps. The CAR software, ColonCAR version 1.2, identified potential polyps using sphericity and protrusiveness measurements calculated from the axial slices of a CTC data set. The software was trained using prone and supine data sets from 45 patients with 100 colonoscopy confirmed polyps ≥ 3 mm in size, and evaluated using prone and supine data sets from an additional 25 patients with 32
polyps ≥ 5 mm in size. These additional data sets were also independently evaluated by three radiologists who had extensive CTC experience. In all cases a polyp was deemed to be detected if it was identified in either the prone data set or the supine data set. The ColonCAR software identified 15 (75%) of the 20 polyps 6 - 9 mm in size and 11 (92%) of the polyps ≥ 10 mm in size. The overall sensitivity was 81% and there were an average of 13 false positive detections per patient (i.e., per prone and supine data set pair). The first and second radiologists achieved individual overall sensitivities of 88% (28/32) and 91% (29/32) respectively. However, the third radiologist achieved a much lower overall sensitivity of 56% (18/32). As a result, the average overall sensitivity achieved by the radiologists was 78%. This was slightly lower than the sensitivity reported for the ColonCAR software. The authors observed that the ColonCAR software identified all seven polyps missed by the first and second radiologists, and 12 of the 14 polyps missed by the third radiologist. Consequently, if the ColonCAR software was used as a second reader, the three radiologists would have achieved sensitivities of 100%, 100% and 94% respectively.

3.5.2 Task Division Primary versus Secondary Techniques

Early CAD-CTC systems provided high sensitivity, however, the level of false positive detections was unacceptably high. Gokturk et al. (2001, Stanford) recognised this problem and proposed the use of a two stage CAD-CTC system to reduce the number of false positive detections to a reasonable level. A primary stage is used to identify a list of initial polyp candidates and a secondary stage refines this list, increasing specificity while maintaining the sensitivity of the primary stage. Most of the more recent polyp detection techniques utilise this two stage approach. This will be evident in the review of published CAD-CTC algorithms that follows.

3.5.3 Colorectal Polyp Detection Techniques

The majority of research in the area of CAD-CTC has dealt with the issue of automated polyp detection. The following review will discuss the main colorectal polyp detection algorithms that have been published in the literature. The reviewed techniques are categorised based on their use of the following (1) colon wall thickness analysis, (2) isosurface vertex curvature analysis, (3) isosurface voxel curvature analysis, (4) surface normal analysis, (5) perception based methods and (6) contrast...
enhancement Each of the reviewed studies are summarised and compared where possible in Table 3.2. By comparing the performances listed in this table with those for manually read CTC (see Table 2.1 on Page 10) it is evident that CAD has much to offer radiologists, particularly in the role of a second reader at conventional CTC.

3.5.3.1 Wall Thickness Analysis

A number of early CAD-CTC techniques involved an assessment of the colon wall to identify regions of abnormal thickness. These techniques were developed by the Wake Forest group i.e., the group that originally demonstrated the CTC technique (Vinmg et al, 1994).

Hunt et al. (1997, Wake Forest) provided the earliest description of a software system that automatically highlights potential colorectal lesions in CTC data. Their approach involved measuring the colon wall thickness. This was achieved by initially fitting a triangular mesh to the air/soft tissue interface representing the inner surface of the colonic mucosa (inner surface). Then at each vertex in the mesh, by traveling along the associated normal vector away from the colon lumen, the corresponding outer surface vertex was identified where either a soft tissue/air or a soft tissue/fat interface was encountered. A maximum search depth was specified in the event that neither type of interface was found in the vicinity of the inner vertex. In regions of abnormal wall thickness the convexity of the inner surface was measured and convex patches greater than a certain size threshold were ultimately highlighted as potential polyps. Hunt et al. reported that an evaluation of their technique on a cohort of five patients with known polyps yielded no false negative detections. However, the authors also reported that their technique generated numerous false positive detections. The number of actual polyps or false positive detections was not documented in their paper.

An extended version of this technique was presented by the same group in a later publication (Vinmg et al, 1998, Wake Forest). As before, an approximation of the internal and external surface of the colon was estimated. Vertices with abnormal wall thickness, increased curvature and increased convexity were considered to be abnormal (i.e., representative of polyps and masses). Patches of abnormal vertices with a surface area $\geq 50 \text{ mm}^2$ were flagged as initial polyp candidates. A shape filter was then used to eliminate elongated candidates caused by the haustral folds to yield the final list of polyp candidates. Colour coding was used in conjunction
with their FreeFlight virtual endoscopy system (Vining et al. 1997) to highlight the presence of potential colorectal lesions. In a cohort of 10 patients with a total of 11 polyps ranging in size from 7 - 40 mm the system was found to have a sensitivity of 73% with an average of 49.1 false positive detections per data set (range 9 - 90).

3.5.3.2 Isosurface Vertex Curvature Analysis

A number of the CAD-CTC techniques that are described in the literature involve the extraction of an isosurface, in the form of a polygonal mesh, that represents the colonic mucosa. The curvature characteristics are subsequently calculated and recorded for each of the mesh vertices. The mesh is then evaluated and suspicious regions with polyp-like characteristics are flagged for further evaluation. The main group involved in this research is based at the National Institutes of Health (NIH)\(^\text{10}\). The six different curvature classes and their curvature characteristics (Gaussian curvature (K), mean curvature (H) and shape index (R)) are illustrated in Figure 3.8.

Figure 3.8 The six curvature classes: (a) peak or cap, $H < 0$, $K > 0$, $R = 1.0$, (b) ridge, $H > 0$, $K > 0$, $R = 0.75$, (c) saddle, $K < 0$, $R = 0.5$, (d) valley or rut, $H > 0$, $K < 0$, $R = 0.25$, (e) pit or cup, $H > 0$, $K > 0$, $R = 0.0$, (f) plane, $H = 0$, $K = 0$, R is indeterminable (Koenderink 1990).

\(^{10}\)The work of the NIH group in automated polyp detection at CTC extends from their earlier work dealing with the computer assisted detection of polypoid lesions of the airways at virtual bronchoscopy (Summers et al. 1998).
Summers et al (2000, NIH) evaluated the feasibility of an early shape-based automated polyp detector using a single CTC data set that was modified to include 10 computer generated polyps, all approximately 10 mm in size. Two main experiments were carried out to evaluate different polyp detection criteria. The second experiment, designed to enhance the profile of polyps, diminish the profile of haustral folds and improve conspicuity between polyps and adjacent folds, yielded the best results, with a sensitivity of 80% and no false positive detections. The first stage of this algorithm involved identifying candidate polyps. This was achieved by locating regions of the colon that were spherical in shape and that projected into the colon lumen. This was referred to as the primary shape criterion. The process of calculating the relevant vertex curvature information is described in detail elsewhere Summers (2000, Chapt 45) and will be summarised later in this thesis.

In a subsequent publication, Summers et al (2001) evaluated the feasibility of an improved version of their automated polyp detector using a cohort of 20 patients. In their improved algorithm a range of different filters were introduced to account for the greater variety of polyp morphologies found in real patient data. In addition, a false positive reduction technique based on sampling the CT attenuation of suspected polyps was also included. A sensitivity of 71%, with 3.5 false positives per data set, was reported when this algorithm was applied to well-distended segments of the colon. Ling et al (2002) evaluated the performance of this CAD technique in a phantom study where polyp size, scan orientation, scanner type and radiation dose were all varied. A total of eight synthetic polyps were used in the study ranging in size from 10 x 10 to 5 x 5 (diameter x height in mm), the orientation of the phantom to the scan plane was varied between 0, 45 and 90 degrees. Single and multislice helical scanners were used in the study and the dose was varied between 0.7 and 10 mGy. They found that clinically significant polyps (i.e., those 10 mm in size) could be detected with 100% sensitivity in all orientations, doses, collimations and modes that were examined.

Jerebko et al (2003a, NIH) used the output generated by the CAD-CTC system described earlier (Summers et al 2001) in their study evaluating neural networks and binary trees for use in false positive reduction. In each case the classifier input consisted of a number of shape based features including minimum and maximum principal curvatures, the number of candidate vertices and the sphericity of the candidate. Prone and supine studies of 40 patients (i.e., 80 data sets) containing 39
polyps ranging in size from 3 - 25 mm were used in the evaluation. Neural networks were found to provide the best results with a sensitivity of 90% and a specificity of 95% (or 16 false positives per study). In a follow-up study Jerebko et al. (2003b) described a multiple neural network classification scheme that used 12 features (eight classifiers with four features per classifier where feature reuse occurred). A majority vote from the committee of classifiers was ultimately used to classify a polyp based on the feature set provided. The system was evaluated using a cohort of 40 patients scanned in both positions resulting in a total of 23 polyps ranging in size from 5 - 25 mm. The use of multiple classifiers in this way was found to reduce the false positive rate by 36% from 4.6 per study to 2.9. An overall sensitivity of 82.9% was reported for the system with a specificity of 95.3%.

Yao et al. (2004, NIH) introduced a novel method for volumetric polyp segmentation intended to address the task of false positive reduction at CAD-CTC. Their multistage algorithm started by identifying initial candidates using the standard NIH isosurface filtering technique. Four features: mean curvature range, vertex count, maximum dimension and sphericity were used in the filtering stage. Single 64 × 64 2-D slices centred on the initial candidate clusters were extracted for further analysis. The intensities of voxels within these images that had polyp-like properties (i.e. voxels close to convex boundaries) were increased using a process referred to as knowledge guided intensity adjustment. Fuzzy C-means clustering was then used to group voxels into one of three classes: lumen air, polyp tissue or nonpolyp tissue. Ultimately the polyp segmentation process was performed using active contours where the contour was attracted to high gradients in the edge map of the membership function for polyp tissue. This process was applied to adjoining slices until the entire 3-D volume of the polyp had been identified. In an evaluation of their technique using 40 data sets containing 65 polyps (3 - 30 mm) a 76.3% correspondence was found between automatic and manually segmented regions. When used in conjunction with the aforementioned CAD-CTC technique (Summers et al. 2001), automatic segmentation reduced the number of false positives by 30% at a sensitivity of 100%. A further reduction in false positives was achieved by eliminating polyp candidates based on an analysis of their volumetric features. This resulted in a total reduction in false positives of 50%, however, the sensitivity was slightly compromised, reducing to 80%.

The basic isosurface curvature CAD-CTC technique was further extended by
Summers et al. (2004) to deal with a common source of false positive detections i.e. the ileocecal valve (ICV) (see Figure 3.9 (a)). The documented approach recognised the ICV at CTC based on two main characteristics: its low density (< −124 HU) and its large size (>1.5 cm³). Using this technique in a cohort of 60 patients, 14 of the 27 false positives attributable to the ICV were eliminated, whereas none of the true positives were affected. In a subsequent study, Iordanescu & Summers (2004, NIH) dealt with another common source of false positives, i.e. the rectal tube required for bowel insufflation (see Figure 3.9 (b)). Their approach involved an analysis of the slices toward the base of the data set. Potential rectal tube shaft regions, visible as small pockets of air, were identified using morphological operators with circular structuring elements. A set of shaft candidate voxels was then generated by matching a template to each potential rectal tube shaft region and retaining those with the highest similarity (the template simulated the actual rectal tube cross-section). Candidate voxels were connected to form axes and the axis that traversed mostly air was identified as the rectal tube cylinder axis. This axis was extended to the tip of the tube and then expanded to yield the final region occupied by the rectal tube by means of conditional dilation. Iordanescu & Summers tested their technique
using 40 patients scanned in both the prone and the supine positions. The rectal tube was completely identified in 72% of cases (58 data sets). Removal of the rectal tube reduced the number of initial (primary stage) false positive detections at CAD by 9.2%. The number of (secondary stage) false positives after the application of the classifier was reduced by 7.9%. In both cases the true positive detections were unaffected.

In a further extension of the NIH technique, Summers et al. (2005) incorporated support for dealing with contrast-enhanced CTC data sets. This was achieved using a bowel segmentation technique that included a contrast-enhanced fluid subtraction algorithm. The segmentation process utilised a region-growing algorithm that could traverse from air to contrast-enhanced fluid and back again, and ultimately yielded a surface representation of the colonic mucosa located at transitions from air to colon wall, fluid to colon wall and fluid boundary to colon wall. A threshold refinement stage was included to reduce the level of over-segmentation (i.e. inclusion of the small intestine). Curvature values were calculated for all vertices in the resulting surface and calculated values were inverted for vertices associated with contrast enhanced fluid. Surface patches that met the previously discussed shape criteria (elliptical curvature of the peak sub-type) were ultimately selected as polyp candidates. An evaluation of the technique was carried out using 17 patients with 22 submerged polyps ranging in size from 5 - 51 mm. Leakage into the small bowel was quantified as small or none in the majority of cases (15/17) based on a visual inspection of the segmented data sets, and 19 of the 22 polyps (86%) were automatically detected. One of the three polyps that were missed was located on the air/fluid boundary.

Jerebko et al. (2005) extended the original NIH technique (Summers et al. 2001) by utilising a committee of support vector machines for the detection of colorectal polyps. The input to their system was an isosurface representation of the inner surface of the colon wall. Regions of the isosurface were identified as initial polyp candidates using features including mean curvature, maximum dimension, vertex count, sphericity, wall thickness, average density and surface area. Four additional candidate features, including the curvature of the candidate neck and an approximation of candidate texture, were also calculated for use in the classification stage. The effectiveness of subsets of these features for polyp classification was quantified and classifiers with an effectiveness above a certain threshold qualified for inclusion in the committee. This resulted in a committee consisting of four support vector
machine classifiers each using four features drawn from a core set of nine (feature reuse was permitted). The ultimate decision regarding the class of a candidate was based on the majority vote of these four classifiers. The system was trained using 40 data sets containing a total of 47 polyps > 4 mm and evaluated, using a modified leave-one-out method, with a further 80 data sets containing 20 polyps. The committee of support vector machines was found to have a sensitivity of 81%, with an average of 2.6 false positives per data set. This represented a notable improvement over the performance of a single support vector machine using all nine input features and the average performance of each committee member when applied individually.

The Wake Forest Group also developed a CAD-CTC technique based on isosurface curvature analysis (Li et al. 2005b). The first stage in the documented approach involved obtaining a surface representation of the colon using their aforementioned segmentation technique (Li & Santiago 2005a, see Section 3.2.1). Each vertex in the resulting mesh retained references to its directly connected neighbors in order to facilitate region growing within the mesh. The two principal curvatures, and subsequently the mean and Gaussian curvatures, were calculated directly from the mesh. Polyp candidates were then identified, using region growing, as surface patches above a specified size threshold that met certain requirements regarding mean and Gaussian curvature. Features including minimum and maximum candidate radius, candidate surface area, roundness, elongation factor and distance from catheter were used in conjunction with multi-plane linear discriminant function (MPLD) and maximum a posteriori (MAP) classifiers to reduce false positives and yield the final list of polyp candidates. Both classifiers were evaluated using a cohort of 34 subjects. ROC and free-response receiver operator characteristic (FROC) analyses indicated that there was no statistically significant difference between the two classifiers. At a patient level sensitivity of 90% the MLDF classifier yielded 1.3 false positives per case and the MAP classifier yielded 1.2 false positives per case.

3.5.3.3 Voxel Curvature Analysis

Voxels belonging to the colon wall can be used instead of isosurface vertices for approximating the curvature characteristics of the colonic mucosa. This removes the need to extract an isosurface representation of the colon wall from the CTC data set. A number of techniques that utilise this alternative have been developed at the University of Chicago. The Chicago group use the shape index (R) (see Figure
Yoshida et al. (2002a, UC) developed a CAD technique that analysed a segmented model of the colon lumen obtained from a linearly interpolated isotropic data set. The segmentation of the colon was achieved using a previously described technique also developed by the Chicago group (Masutani et al. 2001, see Section 3.2.2) and yielded a representation of the entire colon wall and not just the inner surface of the colonic walls. Two features: the shape index and the curvedness were calculated for all voxels belonging to the segmented colon wall. The shape index could be used to assign a voxel to a particular shape class (rut, saddle, ridge & cap). The curvedness gave the magnitude of the curvature for each voxel. Voxels with a shape index between 0.9 and 1.0 (representing cap structures) and a curvedness between 0.08 and 0.2 mm\(^{-1}\) (corresponding to effective polyp sizes from 12.5 to 5 mm) were identified as initial candidate voxels. Hysteresis thresholding with relaxed shape index and curvedness thresholds was used to identify polyp candidate regions. Relaxed thresholds were used to reflect the fact that polyps do not always appear as perfect cap-like shapes. Candidate regions that were close together were merged and fuzzy C-means clustering was employed to remove voxels attributable to noise. A subsequent refinement involving a rule based linear discriminant analysis was used to further reduce the number of false positives. Finally minimum and maximum values were identified for the CT values and the gradient of the CT values of actual polyps.
These did not provide a high level of discrimination between true and false positives, but were used to eliminate outliers from the ultimate list of polyps using a simple threshold. An evaluation of this technique, using 82 data sets containing a total of 18 polyps, resulted in a sensitivity of 89% with 2 false positives per data set, and a sensitivity of 100% with 2.5 false positives per data set. Upon an analysis of the false positives, the majority were found to be caused by prominent folds, incorrectly segmented small intestine and stomach, the ileocecal valve, residual stool and the rectal tube. Other less frequently occurring false positives were attributed to flexural pseudo tumors, motion artifacts, the anorectal junction and external compression.

Members of the same group (Yoshida & Näppi 2001) provided a detailed report on an improved version of the the UC technique that incorporated a more accurate segmentation stage Näppi et al. (2002, see Section 3.2.2). Further enhancements included the use of two new features: the gradient concentration which provides a measure of sphericity and the directional gradient concentration which provides a similar measure that accounted for the hemispherical shape of polyps. A total of six features and nine statistics (i.e. 54 feature statistics) were used to represent each candidate. Linear discriminant analysis and quadratic discriminant analysis were employed to reduce the number of false positive detections. The improved technique was tested using 86 data sets with a total of 21 polyps ranging in size from 5 to 30 mm. An overall evaluation of performance demonstrated a sensitivity of 95% with 1.2 false positives per data set and a sensitivity of 100% with 2.0 false positives per data set.

In a related study Näppi & Yoshida (2002, UC) carried out an unbiased estimation of the performance of their CAD technique using the leave-one-out method for classifier evaluation. The effect of different combinations of the 54 feature statistics on system performance was also evaluated. Their results indicated that the optimum combination of feature statistics consisted of the mean shape index, the mean directional gradient concentration and the variance of the CT value. An evaluation of their CAD technique using the optimum feature statistics and the same patient data from their previous study (Yoshida & Näppi 2001) resulted in a per-patient sensitivity of 95% with 1.7 false positives per data set, and a per-patient sensitivity of 100% with 2.4 false positives per data set. A round-robin evaluation of the per-polyp performance of the same technique using a similar patient cohort (Yoshida et al. 2002b) resulted in a maximum sensitivity of 90% with a total of 2.0 false positives per data set.
Näppi & Yoshida (2003) noticed two problems associated with the fuzzy clustering stage of their algorithm: (1) insufficient polyp coverage and (2) the inability to completely extract large polyps (i.e. those ≥ 10 mm). In an effort to solve this problem, an alternative to fuzzy clustering, referred to as feature-guided analysis, was proposed. This involved the iterative conditional morphological dilation of the initial polyp candidates to yield expanded candidate regions. The expanded regions provided a more comprehensive representation of the polyp candidate, comparable to the region that would be associated with the candidate upon visual inspection. In addition, an alternative to the directional gradient concentration, referred to as the modified gradient concentration, was used to identify candidates with spherical (pedunculated) and hemispherical (sessile) shape characteristics. Experimentally determined thresholds were used to limit expanded candidate voxels to those with polyp-like properties. The resulting voxels were used to calculate candidate features including mean shape index, mean modified gradient concentration and the variance of the CT values. Ultimately candidate classification was performed, as in the previous version of the technique, using quadratic discriminant analysis. A round-robin evaluation comparing feature-guided analysis with fuzzy clustering was carried out using a cohort of 72 patients (14 of whom had 21 polyps ranging in size from 5 to 25 mm). At a maximum per-polyp sensitivity of 95% feature-guided analysis generated 1.51 false positives per data set compared with 5.19 for fuzzy clustering. The inclusion of the modified gradient concentration did not have a significant impact on the performance of either technique.

Wang et al. (2005, SUNY) also developed a CAD-CTC technique that utilised the surface curvature characteristics of a voxel representation of the colonic mucosa. Local and global shape index values were calculated for each voxel and regions with polypoid characteristics were identified using a clustering algorithm. The authors reported that clustering typically generated over 100 suspicious regions. A filtering stage was subsequently employed to eliminate small regions below a given size threshold, and regions whose global general shape was not indicative of a spherical cup or trough structure. The filtering stage was reported to eliminate up to 80% of suspicious regions and its output represented the set of initial polyp candidates. Sub-

\[11^{\text{The SUNY group uses an approach to surface curvature calculation that considers a polyp to be concave structure, whereas other groups invariably use approaches to surface curvature calculation that consider a polyp to be a convex structure.}}\]
sequently, the authors utilised a false positive reduction scheme that approximated, and analysed the volumetric region occupied by each polyp candidate. This region, referred to as the ellipsoid region of interest (eROI), was approximated by fitting an ellipsoidal model to the inner and outer border points of the candidate, where the inner border points were located at the candidate/normal tissue boundary and the outer border points were located at the candidate/air boundary. Wang et al. noted that identifying the inner border points is an extremely challenging problem due to the small variation in density between the candidate region and its surroundings. They proposed a ray-driven solution to this problem that involved projecting a series of rays from each outer border point into the candidate region. A wavelet-based edge detector was used to generate a profile for each ray where numerical values were used to represent regions of increasing, constant and decreasing density. The approximate position of the inner border point associated with each ray was identified by locating a specific variance pattern in the ray profile. This approximation was subsequently refined, using the first and second order derivatives of the original data, in order to yield the final position of the inner border point. A maximum search distance was defined to reduce the number of false border point detections attributable to noise and other artifacts. A total of six candidate features were identified during the ellipsoid fitting process: the volume of the candidate region, the ratio of the smallest and largest axes of the eROI (the axis ratio), a measure of density distribution within the candidate region (the growth ratio), the mean density for the candidate, a measure of the level of candidate coverage provided by the border points (the coverage ratio) and a measure of the symmetry among the border points (the radiation ratio). Ultimately, a suitably trained two-level linear discriminant classifier was used to map the feature values to the range \([0, 1]\) and generate the final decision regarding the class of a polyp candidate. The prone and supine data sets from 153 patients were used for system evaluation. A total of 45 of these patients had 61 colonoscopy confirmed polyps \(\geq 4\) mm in size. A leave one out strategy was employed for system evaluation and a polyp was deemed to be detected if it was found in either the prone data set or the supine data set. An overall sensitivity of 100% was reported with 2.68 false positives per data set. A false positive rate of 3.44 was reported for polyps 4 - 10 mm in size and a false positive rate of 2.0 was reported for polyps 10 - 30 mm in size.
Chapter 3

Technical Background

(a) (b)

Figure 3.11 An illustration of how surface normals can be used to identify convex regions associated with polypoid structures (a) a flat or concave structure, surface normals converge intraluminally (b) a convex structure, surface normals converge extraluminally

3.5.3.4 Surface Normal Analysis

At a more basic level the curvature characteristics of the colon wall can be evaluated based on an inspection of the surface normals. A number of groups have used this approach to identify potential polyps from CTC data sets. Figure 3.11 illustrates the distribution of surface normals for normal regions of the colon and region that contain convex polyp-like structures.

Kiss et al. (2002, UHG) provided a description of a technique that utilised both surface normal analysis and sphere fitting in order to automatically detect potential colorectal polyps. Polyp candidates were ultimately identified as the local maxima of sphere centres in the processed data set. Their approach was tested using 18 data sets (nine with polyps and nine without polyps) containing a total of 20 polyps of various sizes. 100% sensitivity with 1.88 false positives per data set was reported for polyps ≥ 10 mm.

Paik et al. (2004, Stanford) developed a novel CAD algorithm, called the surface normal overlap (SNO) method, for automatically detecting both colonic polyps and lung nodules in CT images. The following discussion will concentrate on the polyp detection aspect of their approach, as it is most relevant to this review. The SNO method started by obtaining an isotropic segmentation of the colon that was representative of the region occupied by the colonic mucosa and had a thickness.

86
of approximately 5 mm. This was achieved using a combination of thresholding, interpolation, region growing, masking and morphological dilation. The surface normals of the segmented colon were subsequently calculated using a modified Canny edge detector. Then each voxel belonging to the segmented colon was assigned a score proportional to the number of intersecting surface normals in its vicinity. An exact intersection was not required thus facilitating the detection of roughly globular hemispherical objects representative of polyps. Regions with a high overlap score that were above a specified size threshold were ultimately flagged as potential colorectal polyps. A theoretical analysis of the SNO technique was carried out involving the creation of shape models representing polyps (hemispheres) and haustral folds (half-cylinders). The models were deformed using parameters obtained from an analysis of real patient data in order to more accurately reflect the morphology of the actual anatomical structures being approximated. In this analysis, the SNO method was compared with a previously published Hough transform (HT) based technique (Erberich et al. 1997). The SNO method was found to provide greater discrimination between polyps and folds particularly when the structures began to deviate from their ideal cases (i.e. hemispheres and half-cylinders). In addition, the response of the SNO method was found to increase with polyp size, whereas, the opposite was found to be the case with the HT method. The parameters for the Canny edge detector were optimised using 110 hemispherical phantoms generated using simulated CT scanning software. The optimisation involved the identification of parameters that placed the centre of the hemisphere detected using the SNO method closest to the true hemisphere centre. The system was tested using a cohort of eight patients selected from a database of 116. All patients were scanned in the supine position only. The test set contained a total of seven polyps \geq 10 mm and 11 polyps in the range 5 - 9 mm. An evaluation of the performance of the system using a leave-one-out approach found that a maximum sensitivity of 100% was achieved for polyps \geq 10 mm with an average of 7.0 false positives per data set.

Chowdhury et al. (2005b, VSG) developed a CAD-CTC technique that utilised surface normal analysis to identify initial polyp candidates. Their system operated on a voxel based representation of the colon surface and calculated the required surface normals using the 3-D Zucker-Hummel edge operator (Zucker & Hummel 1981). Intersections of surface normals, where the number of intersections was above a specified threshold, were identified as polyp candidate centres, and each centre was
associated with a cluster of surface voxels. A convexity test was used to eliminate non-convex surface voxels and clusters were divided into multiple candidates in cases where discontinuities occurred. A total of seven features were computed for each candidate cluster. These included features that were calculated using sphere and ellipsoid fitting. A suitably trained nearest neighbour classifier was ultimately used to determine the class of the initial polyp candidates. The system was trained using 64 polyps and 354 nonpolyps, and evaluated using real patient data, real patient data augmented with synthetic polyps, and a colon phantom. The real patient data consisted of 36 patients with 57 colonoscopy confirmed colorectal neoplasia (polyps and masses). An overall sensitivity of 70% was reported with a false positive rate of 4.05 per data set. The authors also reported that the documented CAD-CTC technique required an average of 3.9 minutes to process each data set. In a subsequent study, Chowdhury et al. (2005c) evaluated the effect of radiation dose on the operation of their CAD-CTC technique. A synthetic colon phantom containing a total of 48 polyps was scanned using a range of effective tube currents: 100, 70, 60, 40, 30, 20 and 13 mAs. A sensitivity of 87% was achieved for all tube currents with the exception of 13 mAs where a slightly lower sensitivity of 85% was achieved. This study demonstrated that a substantial reduction in radiation dose is possible without a significant impact on the automatic detection of polypoid structures.

3.5.3.5 Perception Based Methods

A number of techniques developed by the Stanford group attempted to identify polyps at CAD-CTC based on the methods and techniques that radiologists use to identify polyps at conventional, manually read, CTC.

Göktürk et al. (2001, Stanford) recognised the low specificity associated with early CAD-CTC systems as a significant problem and proposed a two stage system to address the issue of false positive reduction. Initial polyp candidates were identified using a Hough transform based technique previously developed by the Stanford group (Paik et al. 2000), this yielded a list of polyp candidates and constituted the primary stage of their system. The secondary stage was intended to replicate, and to attempt to improve on, the way that a radiologist examines a data sets using axial, sagittal and coronal views. This involved the generation of a novel representation of the candidates that consisted of 100 randomly orientated triples of mutually orthogonal planes rotated about the centre of each $32 \times 32 \times 32$ voxel candidate...
subvolume. The planar images were cropped to eliminate regions associated with extraneous tissue and the geometric features of the resulting cropped images were calculated and combined to generate a feature vector or shape signature for the candidate. The ultimate classification of a candidate as either a polyp or nonpolyp was achieved using a support vector machine classifier trained using a gold standard consisting of manually segmented polyps. The system was tested using a cohort of 48 patients with a total of 40 usable polyps ranging in size from 2 - 15 mm (six polyps were excluded due to their proximity to the data set boundary). A ten-fold cross-validation evaluation of the two stage system showed that, on average, the specificity of the system, at 100% sensitivity, increased from 0.35 to 0.75 when the secondary stage was included.

Acar et al. (2002, Stanford) also developed a CAD-CTC system based on the way a radiologist identifies polyps while performing a 2-D evaluation of a CTC data set. The Hough transform based technique developed by Paik et al. (2000), was used to identify initial polyp candidates. Volumes of interest of size 21x21x21 voxels and centred at each initial candidate voxel were extracted. Subsequently, a smoothed mean edge displacement field for each volume was calculated for the axial, sagittal and coronal directions. A characterisation of the resulting edge displacement fields resulted in three parameters: the divergence, the circulatory behavior and the spread of the streamlines about the centre. An average value for each parameter was obtained for the axial, sagittal and coronal directions thus creating a 3-D feature vector for each candidate volume. A binary classification of candidates was then carried out using a Mahalanobis distance based linear classifier in order to yield the final list of polyp candidates. Evaluation data was generated by extracting volumes of interest for all usable polyps and 50 nonpolyps randomly selected from each patient in their cohort of 48 (as in the study by Göktürk et al. (2001)). These volumes were divided into 10 sets and a system evaluation was carried out using the leave-one-out approach. The results of this evaluation showed that the use of the edge displacement fields (secondary stage) increased the mean specificity of the Hough transform approach (primary stage) from 0.19 to 0.47 at a sensitivity of 100%.

3.5.4 A Contrast-Enhanced Approach

Luboldt et al. (2002, Frankfurt) evaluated the feasibility of a threshold based CAD technique used in conjunction with contrast enhanced CTC data. Following a stan-
standard bowel preparation, their study cohort of 18 patients underwent CTC followed
by conventional colonoscopy. Immediately before CT scanning, an iodine based con­
trast agent was administered to increase the conspicuity of polyps and masses. A
segmentation of the colon lumen was obtained and dilated by two iterations to over­
come the partial volume effect. An experimentally determined threshold of 90 HU
was applied to the surface voxels of the segmentation (i.e., those representing the
colon wall). Any voxels found to be above this threshold were colour coded to indi­
cate the presence of potential colorectal neoplasia. The intensity of the colour coding
ranged from 0% to 100% for voxels in the range 90 to 160 HU. The resulting colour
coding information was ultimately superimposed onto a virtual barium enema and a
virtual endoscopic display for evaluation purposes. The lower threshold value of 90
HU was found to highlight 80% of the significant masses (≥ 10 mm) and only 10%
of the entire colon wall. A qualitative comparison of the two display modes found
the virtual endoscopic perspective to be superior. The results show that the density
value of the colon wall is a useful parameter for CAD-CTC systems if intravenous
contrast is used. A similar study dealing with the use of intravenously administered
contrast at manually read CTC, carried out by Morrin et al. (2000) (discussed in
Section 2.2.5), also yielded positive results.

3.5.5 Colorectal Mass Detection Techniques

The CAD studies discussed in the previous section dealt specifically with the de­
tection of colorectal polyps. A more difficult problem, due to reduced contrast en­
hancement, smooth transition to the colon wall and variable shape characteristics,
is the detection of colonic masses or carcinomas. The detection of colorectal masses
is generally treated as a separate issue as masses do not have the same geometrical
properties as polyps, and as such cannot be reliably detected using polyp detection
algorithms. The following paragraphs review colorectal mass detection algorithms
that have been published in the literature. The reviewed methods typically use
the density characteristics of the colon surface to identify the location of potential
masses.

Nappi et al. (2004b) described an approach to colorectal mass detection based
on their earlier work in the area of polyp detection Nappi & Yoshida (2003, see
Section 3.5.3.3). The authors characterised masses as either projecting (lobulated,
polypoid or circumferential) or non-projecting (those associated with a thickening
of the mucosal wall) Separate detection techniques were proposed for each of these
categories of colorectal mass Projecting masses were detected using a fuzzy merging
method that combined polyp candidate regions to yield potential mass regions The
merging process was governed by three criteria

1. The CT values along the path between the merge candidates were reasonably
 consistent

2. There were no boundaries (i.e., large deviations in the gradient of the CT
 values) between the two merge candidates

3. The distance between two merge candidates was less than a predetermined
 threshold of 50 mm

If a merged region met a certain size requirement it was included as a projecting
mass candidate otherwise its component regions were referred for analysis using the
polyp detection technique referenced above. Non-projecting masses were detected
using an analysis of wall thickness based on the method described by Vinmg et al
(1998, reviewed in Section 3.5.3.1) This involved identifying solid, clearly delineated
regions of the colon wall, with a high density relative to the surrounding tissue
and an abnormal thickness (\(\geq 5 \) mm) that did not arise from adjoining bones or
other internal organs. Only regions with diametrically opposed counterparts were
considered as non-projecting mass candidates\(^{12}\). The final list of non-projecting mass
candidates was obtained by omitting regions below a volume threshold and regions
deemed to be associated with residual fluid. The final mass regions were extracted
using a level set method where the projecting and non-projecting candidate regions
were used as seeds. A round robin by-patient evaluation of the technique using
a cohort of 82 patients with 14 masses detected all but one of the masses with an
average false positive rate of 0.21 per patient. The single mass that was not detected
resided in a boundary region; i.e., the entire mass was not imaged in the CT study.

Luboldt et al. (2005, Frankfurt) presented results from their preliminary study
dealing with colonic mass detection. Their algorithm was based on the observation
that voxels associated with a mass have a greater density than those associated
with normally occurring colonic features. The first stage of the algorithm involved

\(^{12}\)This restriction was imposed as only non-projecting masses of the circumferential variety were
present in the available patient data.
identifying voxels that represent the air filled colon lumen. Subsequent steps included identifying border voxels13 and then identifying clusters of border voxels that were above a specified density threshold. Cluster regions above a specified size threshold were then coloured to indicate the presence of a potential mass. The algorithm was tested using a cohort of five patients with known colorectal carcinomas. All five carcinomas were detected by the automated mass detection algorithm. Seventeen false positives were also identified by the algorithm.

3.5.6 Discussion on CAD-CTC

It is clear that CAD-CTC techniques are evolving. Early single stage algorithms (e.g., Hunt et al. (1997)) are yielding to more recent dual stage algorithms that consist of initial candidate detection followed by false positive reduction (e.g., Gokturk et al. (2001)). It is evident from Table 3.2 that the performance of recent CAD systems compares well to the performance of radiologists (see Table 2.1 on Page 10), particularly in the detection of clinically significant polyps. The problem of false positive detections by CAD-CTC algorithms has been highlighted. Kiss et al. (2002) reported false positives caused by the colonic wall (45.58%), the haustral folds (31.97%), residual stool or fluid (12.25%), the inflation tube (7.48%) and the ileocecal valve (2.71%). Yoshida et al. (2002a) also provides a breakdown of false positive detections generated by their algorithm with the most common causes being prominent folds (29.7%), the small intestine or stomach (19.3%), the ileocecal valve (13.8%), residual stool (13.1%) and the rectal tube (9.6%). The reduction of false positives caused by the ileocecal valve and the rectal tube has been investigated by Summers et al. (2004) and Iordanescu & Summers (2004) respectively. The utility of orally administered contrast (see Section 3.2.3) to reduce the number of false positives caused by residual material has been investigated by Summers et al. (2005). Registration of polyps between prone and supine data sets has also been used to reduce the number of false positives caused by mobile residual stool (Nappi et al. 2005a).

Various different approaches to initial (or primary stage) candidate detection have been investigated. Early approaches attempted to establish the thickness of the colon wall to facilitate the detection of potential polyps. The use of wall thick-

13 i.e., those voxels that were within 4 mm of the air/soft tissue boundary representing the colonic mucosa, this was intended to be an approximation of the colon wall.
ness analysis has great promise, however, the task of accurately identifying the inner surface of the wall is extremely problematic. A similar approach has been investigated more recently (Wang et al. 2005) and a more comprehensive method for identifying the inner surface of the colon wall has been proposed. The results of this later work indicate the potential of techniques based on colon wall thickness analysis. Initial polyp candidates can also be identified by analysing the curvature characteristics of a polygonal mesh representation of the colon surface (Summers et al. 2000). One of the main benefits associated with this approach is that the mesh can be used for analysis as well as visualisation. A similar approach to initial polyp candidate identification involves analysing the curvature characteristics of a voxel based representation of the colon surface (Yoshida & Näppi 2001). This approach is not ideal for visualisation, however, it does provide a volumetric representation of the colon surface and thus, can be used to calculate additional volumetric features for candidate regions. A range of techniques have also been proposed that involve the analysis of colon surface normals. Using this approach, the locations of polyp candidates are identified as regions with a high number of surface normal intersections. This is a robust and reasonably straightforward approach to polyp detection that avoids the computational overhead associated with the surface curvature based techniques. A variety of different false positive reduction schemes (secondary stages) have also been proposed. These include the use of techniques that have been developed to emulate human perception (Göktürk et al. 2001, Acar et al. 2002). Modeling the way that a radiologist recognises polyps facilitates the calculation of additional candidate features that cannot be obtained using conventional candidate representations. The use of a variety of different classifiers has also been shown to provide better discrimination between true and false positive detections and one of the most promising approaches involves the use of a committee of classifier (Jerebko et al. 2005). It is clear from the previous review that CAD-CTC is evolving into two separate but related research streams that deal with the detection of colorectal polyps and colorectal masses separately. This subdivision is necessary due to the significant difference in morphology between the two types of anomaly. Further similar refinements can be expected as CAD-CTC continues to evolve.

There is one significant issue that is apparent from a review of the relevant CAD-CTC literature. This relates to the inconsistent reporting of system performance. For example, Näppi & Yoshida (2003) use the terms by-patient and by-polyp to describe
the sensitivity of their system. A 100% by-patient sensitivity occurs when at least one polyp is detected from either the supine or prone data set of a patient with one or more polyps. If a patient has four significant polyps visible in both the prone and supine data sets and a CAD-CTC algorithm detects only one of the eight polyps, then a by-patient sensitivity of 100% can be reported even though only 12.5% of the polyps have been detected. The intended role of CAD-CTC is as an assistive tool, i.e., as a second reader to increase polyp detection sensitivity (see Section 3.5.1). By-patient reporting would only be relevant if CAD-CTC were intended as the primary reader. Conversely, a by-polyp sensitivity of 100% occurs when all polyps are detected from either the prone or supine scans of a patient. If a patient has one significant polyp that is only detected in one of the two orientations, then a by-polyp sensitivity of 100% can be reported even though only 50% of the polyp instances have been identified. Other groups use different reporting strategies. Testing strategies also differ greatly between studies. Test sets can consist of complete patient data sets or alternatively sets of sub-sampled volumes containing (all) true and (selected) false positives that were identified by a primary stage algorithm. Acar et al. (2002) adopt the latter test set generation strategy in their study due to computational concerns. There are various other differences between CAD-CTC techniques that are summarised in Table 3.2. The number of patients (8–72), the scanning orientations used, the number of polyps (7–65), the bowel preparation and the CT equipment used. All of these factors make a direct comparison between different techniques difficult.
Table 3.2 A summary of previously published CAD-CTC techniques organised chronologically (by submission date for journals and by meeting date for conferences) Instances where the required information is unavailable are indicated by '-'

<table>
<thead>
<tr>
<th>Group</th>
<th>Study Date</th>
<th>Cohort Size</th>
<th>Scans</th>
<th>P (_{\text{mm}})</th>
<th>P#</th>
<th>Sens</th>
<th>FPR / Spec</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chowdhury et al (2005b)</td>
<td>'05, Sept</td>
<td>36</td>
<td>P & S</td>
<td>(< 5)</td>
<td>34</td>
<td>62%</td>
<td>-</td>
<td>A per polyp sensitivity is reported Note Separate training and evaluation data sets were used in this study</td>
</tr>
<tr>
<td>Wang et al (2005)</td>
<td>'05, Mar</td>
<td>153</td>
<td>P & S</td>
<td>4 - 10</td>
<td>50</td>
<td>100%</td>
<td>3 44</td>
<td>A per polyp sensitivity is reported The false positive reduction stage eliminated 93.1% of initial candidates without affecting sensitivity</td>
</tr>
<tr>
<td>Taylor et al (2006)</td>
<td>'04, Dec</td>
<td>25</td>
<td>P & S</td>
<td>(\geq 10)</td>
<td>20</td>
<td>75%</td>
<td>-</td>
<td>Per polyp sensitivity reported Patient level false positive rate reported i.e. false positive rate is 6.5 per data set</td>
</tr>
<tr>
<td>Li et al (2005b)</td>
<td>-</td>
<td>34</td>
<td>P & S ((\times 2))</td>
<td>-</td>
<td>-</td>
<td>90%</td>
<td>1 2 [1 3]</td>
<td>FP rates given for MAP & [MLDF] classifiers Prone and supine scans obtained with and without oral contrast (i.e. 4 scans) Patient level sensitivity reported</td>
</tr>
<tr>
<td>Jerebko et al (2005)</td>
<td>'04, Mar</td>
<td>40</td>
<td>P & S</td>
<td>(< 10)</td>
<td>5</td>
<td>81% [73%]</td>
<td>2 6 [4 0]</td>
<td>Comparative results provided for a committee of classifiers and [a single classifier] A per-data set FPR reported</td>
</tr>
<tr>
<td>Summers et al (2005)</td>
<td>'04, Feb</td>
<td>17</td>
<td>P & S</td>
<td>5 - 9</td>
<td>14</td>
<td>-</td>
<td>-</td>
<td>Orally administered contrast agent used All polyps were submerged or partially submerged No FP information reported</td>
</tr>
<tr>
<td>Paik et al (2004)</td>
<td>'03, Sept</td>
<td>8</td>
<td>SO</td>
<td>(\geq 10)</td>
<td>7</td>
<td>100%</td>
<td>7 0</td>
<td>A dual purpose algorithm capable of detecting lung nodules as well as colorectal polyps 90% sensitivity & a FPR of 5.6 reported for lung nodule detection</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Group</th>
<th>Date</th>
<th>Cohort</th>
<th>Scans</th>
<th>$P_{(mm)}$</th>
<th>$P_#$</th>
<th>Sens</th>
<th>FPR</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summers et al (2004)</td>
<td>'03, Aug</td>
<td>20 (d_{s1}) 40 (d_{s2})</td>
<td>P & S</td>
<td>≥ 10</td>
<td>26</td>
<td>81% [50%]</td>
<td>4.6 [2.0]</td>
<td>FP rate before and after elimination of FPs caused by ICV d_{s2} used for evaluation and d_{s1} used for training. Sensitivity unaffected by FP reduction.</td>
</tr>
<tr>
<td>Jerebko et al (2003b)</td>
<td>'02, Sept</td>
<td>40</td>
<td>P & S</td>
<td>5 - 25</td>
<td>21</td>
<td>83% [58%]</td>
<td>2.9 [4.5]</td>
<td>Results provided for an eight member committee of four input classifiers and a single input classifier.</td>
</tr>
<tr>
<td>Nappi & Yoshida (2003)</td>
<td>'02, June</td>
<td>72</td>
<td>P & S</td>
<td>5 - 10</td>
<td>17</td>
<td>-</td>
<td>-</td>
<td>By-polyp and by-patient results reported. By-polyp a polyp is considered detected if found in either orientation. By-patient a patient is considered to be diagnosed correctly if any polyps are detected.</td>
</tr>
<tr>
<td>Luboldt et al (2002)</td>
<td>'01, Nov</td>
<td>18</td>
<td>P</td>
<td>< 10</td>
<td>28</td>
<td>-</td>
<td>-</td>
<td>Although no specificity rate is reported, the authors do state the their algorithm flags an estimated 10% of the colon surface as abnormal.</td>
</tr>
<tr>
<td>Yoshida et al (2002b)</td>
<td>'01, Nov</td>
<td>71</td>
<td>P & S</td>
<td>5 - 10</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>By-polyp and by-patient results reported. These terms are defined above (see comment for Nappi & Yoshida (2003) study).</td>
</tr>
<tr>
<td>Nappi & Yoshida (2002)</td>
<td>'01, Sept</td>
<td>43</td>
<td>P & S</td>
<td>≥ 5</td>
<td>12</td>
<td>95% [100%]</td>
<td>1.7 [2.4]</td>
<td>Data set-based and case-based results reported. True positive occurs when any polyps are detected in one orientation or in either orientation.</td>
</tr>
<tr>
<td>Acar et al (2002)</td>
<td>'01, July</td>
<td>48</td>
<td>P</td>
<td>2 - 15</td>
<td>40</td>
<td>100% [95%]</td>
<td>47% [56%]</td>
<td>Ten test sets generated using 40 polyps from a total of 46 available (six omitted due to proximity to boundary) and 50 random nonpolyps per patient. Average specificities for 10 experiments reported.</td>
</tr>
</tbody>
</table>
Table 3.2 Continued from previous page

<table>
<thead>
<tr>
<th>Group</th>
<th>Date</th>
<th>Cohort</th>
<th>Scans</th>
<th>P (mm)</th>
<th>P#</th>
<th>Sens</th>
<th>FPR</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yoshida & Nappi (2001)</td>
<td>'01, June</td>
<td>43</td>
<td>P & S</td>
<td>≥ 5</td>
<td>12</td>
<td>95%</td>
<td>1.2</td>
<td>Patient level results reported i.e. A true positive occurs if any polyp is detected in either the prone or supine data sets</td>
</tr>
<tr>
<td>Gokturk et al (2001)</td>
<td>'01, June</td>
<td>48</td>
<td>P</td>
<td>2 - 15</td>
<td>40</td>
<td>100%</td>
<td>74% [35%]</td>
<td>See comment for Acar et al (2002) above Square brackets indicate specificity for the Hough transform based primary stage</td>
</tr>
<tr>
<td>Kiss et al (2002)</td>
<td>'01, Mar</td>
<td>18</td>
<td>-</td>
<td>≥ 10</td>
<td>5</td>
<td>40%</td>
<td>8 17</td>
<td>Four flat lesions and one polyp < 5 mm were present but not detected FPs attributed to colon wall, haustral folds, residual stool/fluid, inflation tube & ICV</td>
</tr>
<tr>
<td>Yoshida et al (2002a)</td>
<td>'01, Feb</td>
<td>41</td>
<td>P & S</td>
<td>5 - 10</td>
<td>9</td>
<td>100%</td>
<td>2.5</td>
<td>As with their later study (Yoshida & Nappi 2001) patient level results are reported i.e. a true positive is recorded if a polyp is detected in either orientation</td>
</tr>
<tr>
<td>Summers et al (2001)</td>
<td>'00, May</td>
<td>20</td>
<td>SO</td>
<td>≥ 10</td>
<td>28</td>
<td>64%</td>
<td>6 [3 5]</td>
<td>A density based false positive reduction scheme is employed The false positive rate is given before [and after] density based false positive reduction Per-polyp sensitivity reported</td>
</tr>
<tr>
<td>Summers et al (2000)</td>
<td>'99, Aug</td>
<td>1</td>
<td>SO</td>
<td>10</td>
<td>10</td>
<td>80%</td>
<td>0 0</td>
<td>All polyps were simulated as spherical structures 10 mm in diameter with the appropriate attenuation, pixel dimensions and partial volume effect</td>
</tr>
<tr>
<td>Vining et al (1998)</td>
<td>'98, Sept</td>
<td>10</td>
<td>-</td>
<td>7 - 40</td>
<td>11</td>
<td>73%</td>
<td>49 1</td>
<td>Although a high level of false positives was reported (range 9 - 90) a ranking scheme was used and true positives generally had a high rank</td>
</tr>
<tr>
<td>Hunt et al (1997)</td>
<td>'97, May</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100%</td>
<td>-</td>
<td>A 100% sensitivity was reported for significant polyps however Hunt et al also reported numerous (but unquantified) false positive detections</td>
</tr>
</tbody>
</table>

Abbreviations P (mm) (polyp sizes), P# (polyp count), Sens (sensitivity), Spec (specificity)
3.6 Discussion

The discussion at the end of Chapter 2 highlighted a number of shortcomings associated with standard CTC, and indicated that further refinement of the technique is required before CTC can be considered as a serious replacement for conventional colonoscopy. It is clear from the review presented in this chapter that there is a great deal of research underway to enhance the standard CTC technique and deal with these shortcomings. The four main areas dealt with in this review were selected due to their relevance to the research contributions that will be introduced later in this thesis. Nevertheless, the review presented in this chapter covers a significant number of the technical developments that have been made in the area CTC to date. The most notable developments reviewed here have addressed two of the main issues associated with CTC: patient friendliness and polyp detection sensitivity.

CTC was originally proposed as a more patient friendly alternative to conventional colonoscopy for colorectal cancer screening. However, both examinations presently require the same purgative bowel preparation in order to facilitate a complete, unobstructed, assessment of the colon surface. Consequently, patients consider both examinations to be equally unappealing. A colonoscopy examination involves an indirect visual inspection of the colon surface using a colonoscope. Any residual material in the colon obscures the surface of the colon, and significant levels of residue would obstruct the progress of the colonoscope. Conversely, a CTC examination involves inspecting the boundary between air and soft tissue that represents the colon surface. Residual material in the colon typically has a similar attenuation to soft tissue, thus complicating the identification of this boundary. However, the presence of any residual material can be highlighted by administering an oral contrast agent to the patient prior to the CTC examination. Thus, a non-purgative bowel preparation is feasible for use with CTC, whereas this is not possible in the case of conventional colonoscopy. Several groups have investigated the possibility of automatically removing contrast enhanced material from CTC data in order to facilitate an unimpeded inspection of the colon surface. More recent subtraction techniques have incorporated improvements such as eliminating artifacts associated with the subtraction process and reconstrucing the surface of the colon where the residual material was removed. The use of a contrast enhanced bowel preparation in conjunction with subtraction has also been demonstrated to yield CTC data sets.
comparable to those obtained where a purgative bowel preparation was used. These results indicate that the widespread use of subtraction in CTC examinations is feasible. Removing the need for a purgative bowel preparation in this way promises to make CTC a much more patient friendly examination.

The sensitivity of CTC for the detection of significant colorectal polyps is typically lower than the sensitivity achieved using conventional colonoscopy. In addition, there is a great deal of variability in relation to the results published by different groups regarding the performance of CTC. Both of these issues are evident from the results of recent large scale comparative studies that are summarised in Table 2.1 on Page 10. The use of CAD as a second reader in CTC examinations has the potential to increase polyp detection sensitivity while also reducing the inconsistency between different groups. A variety of different CAD-CTC techniques have been proposed in the literature. Recently published CAD-CTC techniques typically consist of two stages: Initial candidate detection followed by false positive reduction. The purpose the initial candidate detection stage is to eliminate regions of the colon attributable to naturally occurring structures. This typically leaves all true polyps and a high, but not excessive, number of false positive detections (i.e. \(\sim 100 \) per data set). The false positive reduction stage is intended to reduce the number of false positive detections to an acceptable level (i.e. \(< 10\) per data set). The objectives of the initial candidate detection stage are achievable, however, the issue of false positive reduction still warrants attention. Consequently, false positive reduction is the focus of the main research contribution outlined in this thesis.

The other developments that were reviewed in this chapter dealt with the tasks of centreline calculation and prone/supine registration. Calculation of the centreline is generally considered to be a computationally intensive operation. Consequently, much of the research in this area has dealt with the development efficient centreline calculation techniques that can accurately approximate the central path through the colon. More recent research relating to centreline calculation has focused on optimising the calculated centreline to maximise visualisation of colon surface during flythrough examinations of the colon. Prone/supine registration is used to generate a correspondence between data sets acquired while the patient is lying in the prone and supine positions. Registration can be used to identify false positives caused by mobile residual stool, and can be used in conjunction with CAD-CTC algorithms to reduce false positive detections. The task of registration is complicated due to the
significant change in the morphology of the colon when the patient moves from the prone to the supine position. However, the results published in the literature suggest that registration can be accomplished with a reasonable degree of accuracy. It is clear from the review presented in this chapter that CTC is evolving to overcome many of the shortcomings highlighted in Chapter 2. Continued research in this area leading to further enhancements, will increase the attractiveness of CTC as a potential alternative to conventional colonoscopy for colorectal cancer screening.
Chapter 4

Preprocessing Contributions

4.1 Introduction

It is evident from Figure 15 on Page 8 that the CAD-CTC system described in this thesis consists of a range of well defined and interrelated tasks. These tasks can be divided into two main groups:

- **Preprocessing tasks** Those that are required to enable automatic polyp detection, automated reporting and system testing. These tasks can be divided into two further groups:
 - Mandatory tasks that must be performed and whose outcomes are necessary for system operation (and testing).
 - Optional tasks that complement system operation by providing additional functionality and information.

- **CAD specific tasks** Those that deal directly with automated polyp detection and automatic reporting. These are essentially the core system tasks.

This chapter provides details of the preprocessing tasks, describing their function in relation to overall system operation. The discussion regarding CAD specific tasks is presented in Chapter 5.

4.2 Choice of Coordinate System

At this point it is important to be aware of the implementation language, as the choice influences certain aspects of system development. The Java programming language from Sun Microsystems and its related application programmers interfaces.
(API)s were used for all aspects of system implementation. The choice of 3-D coordinate system is dictated by the implementation software. In the case of Java3D the positive x-axis is from the left of the screen to the right, the positive y-axis is from the bottom of the screen to the top and the positive z-axis projects outward from the screen. A default patient orientation is selected so that the patient is upright and facing outward with respect to this coordinate system; i.e., the positive x-axis is from the patient's right to their left, the positive y-axis is from the pelvis to the lung bases and the positive z-axis is from the posterior of the patient to the anterior. Adhering to this convention ensures that the orientation of the patient data is consistent, and independent of the position of the patient during scanning. This is beneficial when visualising patient data and in the case of global operations where the anatomy of the colon is examined. Figure 4.1 illustrates a surface rendered model of the colon displayed in accordance with the selected coordinate system.

4.3 Volumetric Data Interpretation

All CTC data sets are presented to the system as a sequence of image files. Each file represents a single slice from the study volume and is encoded according to the digital imaging and communications in medicine (DICOM) standard. This data format is not ideal for processing as
1. Voxel densities and other salient information is not readily accessible due to the encoding scheme employed by the DICOM standard.

2. Only a small amount of information from the considerable DICOM header is required for subsequent processing. The unnecessary header information is also replicated across all files in the data set. This effects interpretation time as well as storage requirements.

As a result, the interpretation of DICOM encoded data is slow with a significant processing overhead. In order to address this problem, a custom data set format is used that provides a compact representation of the DICOM encoded CTC data in which all of the required information is directly accessible and all unnecessary header information is discarded.

The DICOM images are interpreted using the NeatMed (API) (Sadleir et al. 2002a, 2004a). This API provides direct access to medical image data and associated header information that is encoded according to either the DICOM or Analyze standards. A custom data set representation is initialised using a subset of the data elements from the original DICOM files and then populated with the relevant image data in accordance with the coordinate system outlined in Section 4.2. The DICOM data elements that are required for this process are:

- **The patient ID** (0x0010, 0x0020): A numerical value that uniquely identifies a particular patient. This was the only patient specific information used in this research.

- **The patient position** (0x0018, 0x5100): A text value representing one of eight possible patient positions. Only two of these, head first prone (HFP) where the patient is lying facedown and head first supine (HFS) where the patient is lying down facing upwards, were utilised during the acquisition of the data that was used in system testing and evaluation.

1 A bespoke API was developed as no suitable alternatives were available at the commencement of the research programme outlined in this thesis. In addition, the use of an in-house API ensures maximum levels of flexibility and control when developing medical imaging applications. The operation of the NeatMed API is described in detail in Appendix B.

2 Each DICOM data element has a unique identifier that consists of two numbers. These numbers, typically represented in hexadecimal format, are referred to as the group and element numbers.

3 All CTC data sets were anonymised upon receipt. This was achieved using a custom application developed using the NeatMed API (see Section B.3.4).
- **The instance number (0x0020, 0x0013):** A numerical value representing the position of a particular slice within a CT volume. An instance number of 1 is assigned to the first image in a volume. Since all patient positions are head first, this slice will always be located at the base of the lungs. The y coordinate for the slice with an instance number i is calculated as $y = s - i$, where s is the number of slices in the data set.4

- **The slice location (0x0020, 0x1041):** A numerical value representing the location of the slice relative to an unspecified (scanner specific) reference point. The distance between two slices with consecutive instance numbers is used to determine slice spacing (i.e. the voxel spacing along the y axis).

- **The pixel spacing (0x0028, 0x0030):** A pair of numerical values representing the horizontal and vertical spacing between pixel values. These values were ultimately used to represent the voxel spacing along the x and z axes respectively in the 3-D representation of the CTC data.

- **The image data (0x7fe0, 0x0010):** A sequence of numerical values representing the density values that constitute a particular slice.

Ultimately, a custom data set contains only the density information (stored as a 1-D array of 16-bit signed values), the data set dimensions and the voxel dimensions. The remainder of the information (i.e. the patient ID and the patient position) are made available as global system values as they are relevant to all subsequent instances of the data set that may be generated by the system. The volumetric data set interpretation process is illustrated in Figure 4.2.

4.3.1 Resampling

The data sets are resampled in order to generate isotropic volumes where the size of each voxel is the same in the x, y and z directions. This was a preemptive measure to avoid difficulties associated with anisotropic volume processing and visualisation. The resampled voxel size was selected to be the same as the minimum original voxel dimension.5. This ensured that no information was lost and that the minimum amount of memory was required to store the resulting isotropic data set. The

4The DICOM standard does not provide a data element for the number of slices in a CT data set. This number can only be found by counting the number of files representing that data set.

5Voxel sizes ranged from 0.486 - 0.848 mm (mean 0.699 mm) in the axial plane for the data sets used in this research.
Use of resampling (or interpolation) to generate isotropic CTC data sets has previously been documented in the literature (Yoshida & Nappi 2001). Resampling was performed using a trilinear interpolation scheme derived from the bilinear scheme described by Press et al. (1992, pg 123). Using this technique an interpolated value \(v_{xyz} \) is calculated using the weighted values of its eight nearest neighbours. The weight for each neighbour is based on the distance from that neighbour to the interpolation position. This relationship is formalised in Equation 4.3.1 and the required values are illustrated in Figure 4.3.

\[
v_{xyz} = v_{000}(1 - \Delta x)(1 - \Delta y)(1 - \Delta z) + \\
v_{001}(1 - \Delta x)(1 - \Delta y)\Delta z + \\
v_{010}(1 - \Delta x)\Delta y(1 - \Delta z) + \\
v_{011}(1 - \Delta x)\Delta y\Delta z + \\
v_{100}\Delta x(1 - \Delta y)(1 - \Delta z) + \\
v_{101}\Delta x(1 - \Delta y)\Delta z + \\
v_{110}\Delta x\Delta y(1 - \Delta z) + \\
v_{111}\Delta x\Delta y\Delta z
\]

Equation 4.3.1

It should be noted that resampling is only required along the \(y \) axis. The full 3-D interpolation equation is specified here as it will be referred to at a later stage. In general the values for \(\Delta x \), \(\Delta y \) and \(\Delta z \) must be normalised, however this is only required in the case of non-integer or anisotropic sampling.
4.4 Colon Lumen Segmentation

The data set must be segmented following interpolation in order to identify the data set voxels that represent the colon lumen. The task of colon segmentation is extremely important especially when used in conjunction with CAD. Yoshida et al. (2002a) report that approximately 20% of false positives generated by their CAD technique were attributable to over segmentation where sections of the small intestine and stomach were mistakenly identified as belonging to the colon. It is evident from the review of segmentation techniques described in the literature (discussed in Section 3.2.1) that, although a high level of accuracy has been demonstrated, no technique can guarantee complete and accurate segmentation of the entire colon in all cases. For this reason a manual segmentation technique is utilised. This ensures that all subsequent processing and analysis is applied to the entire colon lumen and that no segments are omitted. It should be noted that the segmentation stage is the only part of the entire CAD-CTC system discussed in this thesis that is not completely automated. Manual segmentation has also been used in some of the more recent CAD-CTC studies e.g. Jerebko et al. (2005). Segmentation is performed using a manually seeded 3-D region growing algorithm. A 2-D example of the region growing process is presented in Figure 4.4. The operation of this algorithm can be summarised as follows:

1. A threshold is selected to define the air/soft tissue boundary representing the colon wall. A value of -800 HU is generally selected for this purpose. This
threshold provides an adequate segmentation while minimising the possibility of shine through between disconnected regions, see Figure 3.2 on Page 34.

2. The user then selects a seed point located within the lumen that is to be segmented. If the seed point is less than the threshold value then it is flagged and its coordinates are placed in a queue (queue_1). The region growing process is initiated from this point, and involves the following steps:

(a) Each of the voxels stored in the queue (queue_1) are removed in sequence and their neighbours are examined. Any neighbouring voxel that is not flagged and has a value less than the threshold, is flagged and its coordinates are placed in a second queue (queue_2).

(b) When queue_1 is empty it is replaced by queue_2 and the process outlined in (a) continues.

(c) The region growing process completes when both queues have been emptied.

3. Upon completion, the set of flagged voxels represents a connected volume, with a density less than the specified threshold, that contains the original seed point.

Where the colon consists of a number of different segments due to collapse or blockage, the process listed above must be repeated for each segment. The 6-
Figure 4.5: An example of the segmentation process: (a) The user selects a single seed point located inside the colon lumen to initiate region growing. The location of the seed point is indicated by black cross hairs and the resulting segmented region is highlighted in red. The extent of the segmentation can be monitored using a simulated scout X-ray where the segmented region has also been highlighted in red (b). A second seed point is required in this case as the colon consists of two disjoined segments due to collapse.

connected (face connected) approach is adopted in the region growing process. Other options including 18-connected (face & edge) and 26-connected (face, edge & corner) were decided against as they could inadvertently introduce shine through artifacts in the resulting segmentation. An illustration of how the user initiates and monitors region growing is presented in Figure 4.5. The segmentation process generates a binary representation of the data set where colon lumen voxels have a value of one and non-lumen voxels have a value of zero.

Two other related tasks are performed at this stage in addition to colon lumen segmentation. These are data set cropping, previously described by Paik et al. (1998) and Bitter et al. (2001), and rectum point detection. Data set cropping reduces the size of the data set so that it only includes the colon lumen surrounded by a small border. In general, this significantly reduces the amount of space required to store a CTC data set, while at the same time reducing the amount of time required to reload the data set. Rectum point detection is important for the centreline calculation process that will be described later in this chapter.
4.4.1 Data Set Cropping

A CTC data set contains a vast amount of information that does not relate to the colon or its immediate surroundings. This information is not important for subsequent processing and as such it is deemed unnecessary\(^6\). Data set cropping can reduce the amount of memory required to store a CTC data set by discarding any information outside the 3-D cuboid ROI that encloses the colon lumen and includes a small border region. During the colon segmentation process, the minimum and maximum values of \(x\), \(y\) & \(z\) for all lumen voxels are recorded. For subsequent processing only the lumen voxels and their immediate neighbours are of interest, and for this purpose a border is defined indicating the thickness of this region. The data set is then cropped around the lumen voxels with the necessary border region included. The revised origin \((x_0, y_0, z_0)\) is given by:

\[
\begin{align*}
x_0 &= x_{\text{min}} - \text{border} \\
y_0 &= y_{\text{min}} - \text{border} \\
z_0 &= z_{\text{min}} - \text{border}
\end{align*}
\] (4.4.1)

And the revised data set dimensions are:

\[
\begin{align*}
\text{width} &= x_{\text{max}} + \text{border} - x_0 \\
\text{height} &= y_{\text{max}} + \text{border} - y_0 \\
\text{depth} &= z_{\text{max}} + \text{border} - z_0
\end{align*}
\] (4.4.2-4.4.4)

The data set defined by the revised origin and dimensions is then saved for processing by subsequent stages of the system.

4.4.2 Rectum Point Detection

The rectum point is an important landmark in a CTC data set, and is a point that can be readily detected during the segmentation process. Because of the way a CTC data set is populated (see Section 4.2), it can be assumed that the data set is captured from the pelvis, at the point where the inflation device is inserted.

\(^6\)It should be noted that this information is important from a conventional diagnostic perspective due to the presence of extracolonic abnormalities that are imaged at CTC (Hara et al. 2000).
Figure 4.6: The rectum point can be identified by (a) selecting the slice at the base of the data set (the dark region in this image indicated by the red circle represents the air inside the rectum), (b) adding a border of one voxel to the selected slice and initiating region growing from the revised origin (-1, -1, -1) to remove the air outside the patient and, (c) thresholding the image and obtaining the centroid of resulting foreground region. This centroid value is used to represent the location of the rectum point.

to the base of the lungs, thus ensuring that the entire colon is imaged. During the segmentation process the lumen point with the lowest y coordinate (according to the coordinate system introduced in Section 4.2) is recorded as the rectum point. If multiple points are recorded with the lowest y coordinate, then the centremost point is used as the rectum point. Alternatively, the rectum point can be determined independently of the segmentation process based on an examination of the pelvic region of the data set (i.e. the base of the data set). This alternative approach to rectum point detection is outlined in Figure 4.6.

4.5 Centreline Calculation

The centreline of the colon is generally used to automate endoluminal navigation at CTC. It can also be used for other purposes including the registration of prone and supine data sets and identifying the locations of anatomical landmarks associated with the colon (Sadleir et al. 2002). An efficient, accurate and fully automated colon centreline calculation algorithm, that is based on work previously published by Ge et al. (1999), will be presented. This algorithm will initially be discussed for the ideal case, i.e. where the colon lumen is presented as a single connected hollow tube extending from rectum to caecum. The more realistic case where the colon is presented as multiple disconnected segments will then be addressed. An overview of
the centreline calculation process is presented in Figure 4.7

Figure 4.7 An overview of the centreline calculation process (a) the original CTC data set, (b) the segmented colon lumen, (c) the skeleton and, (d) the final colon centreline

4.5.1 Caecum Point Detection

The identification of the rectum point was discussed in Section 4.4.2. The rectum point represents one of the centreline endpoints. The other endpoint, located in the caecum, must be identified before the centreline calculation process can be initiated. The caecum is the most distant region from the rectum within the colon lumen. Based on this observation, the caecum point can be identified by initiating a distance from source field from the rectum point. The caecum point is subsequently identified as the point with the greatest distance value. A 2-D example of the caecum point
detection process is illustrated in Figure 3.4 (a) on Page 49 where a distance from source field is initiated from the automatically detected rectum point (green cross) and terminates at the caecum point (red cross). This approach to detecting the second endpoint of the colon lumen was used in many of the distance field based centreline calculation techniques outlined in Chapter 3.

4.5.1.1 Revised Caecum Point Positioning

Although the automatically detected caecum point is located in the caecum, it is not guaranteed to be positioned in the most appropriate location. This is because the distance field approach identifies the most distant point from the rectum. The identified point is not necessarily centrally positioned at the base of the caecum. An illustration of this problem can be found in Figure 3.5 (a) on Page 55 where the automatically detected caecum point is indicated by red cross hairs. A refinement stage consisting of the following stages was developed to obtain a more accurate approximation of the caecum point position:

- A localised distance field was initiated from the initial caecum point location. A maximum distance of 20 cm was imposed to limit the distance field to the region occupied by the caecum.
- Each of the voxels identified during the region growing process were identified, and the voxel with the lowest y coordinate was identified as the revised caecum point.
- In cases where multiple points met this criteria, the centremost point was used as the revised caecum point.

4.5.2 Skeleton Generation

The skeleton of the segmented colon lumen is obtained using 3DTT (Tsao & Fu, 1981). The thinning process involves the removal of layers of surface voxels from a binary object. A surface voxel, i.e., one that is not completely surrounded by other object voxels, is only removed if it does not effect certain structural properties of the object being thinned. These properties describe the object in terms of overall connectivity, holes and endpoints. Layers of surface voxels are removed iteratively and the process terminates when no more surface voxels can be removed without
compromising the structural properties outlined above. The resulting set of voxels represents the skeleton of the original object.

The initial set of surface voxels are identified by performing a raster scan of the entire volume. Subsequent surface voxels can be identified more easily by examining the six directly connected (face) neighbours of deleted voxels. A total of three tests must be performed prior to the deletion of a particular surface voxel, these tests deal with the following requirements:

1. **Endpoint retention** - The number and location of endpoints in the skeleton must be the same as in the original object. In the case of centreline calculation, there are only two endpoints of interest, these are located in the rectum and caecum.

2. **Connectivity preservation** - The number of distinct binary objects in the scene must be the same before and after the application of the topological thinning algorithm.

3. **Hole prevention** - The removal of a surface voxel must not introduce a new hole into the object being thinned.

If the deletion of a particular surface voxel respects all of these requirements then it is removed, otherwise it is retained possibly to be deleted at a subsequent iteration. The endpoint retention test is trivial and involves comparing the coordinates of the voxel under examination with those of the two predefined endpoints. The other two tests, connectivity preservation and hole prevention, are much more complicated and require a significant amount of time to perform. In each of these cases, the test involves extensively examining the configuration of the 26 voxels in the $3 \times 3 \times 3$ region surrounding the deletion candidate.

4.5.3 Skeleton Reduction (Centreline Generation)

The skeleton that results from the topological thinning stage incorporates the colon centreline. Unfortunately, it also includes a number of extraneous loops that occur due to holes in the original segmented colon lumen (see Figure 4.8 (a)). These holes are a common occurrence usually associated with the haustral folds. The holes found in the segmented colon lumen are typically quite small and difficult to visualise. Consequently, Figure 4.8 is not intended to illustrate the holes, but the effects of
the holes on the skeleton (i.e. the extraneous loops). The skeleton branches caused by holes are closer to the surface of the colon than those associated with the actual centreline. The proximity of a particular skeleton voxel to the original surface is related to the thinning iteration at which that voxel was uncovered. By assigning the relevant thinning index to each voxel as it is exposed, it is possible to generate a distance field that represents the approximate distance of each lumen voxel from the colon surface. Following an inversion of the distance values it is possible to generate a weighted graph where the centreline can be identified as the minimum cost path between the two predefined endpoints. The minimum cost path can be found in an extremely efficient manner using a simplified version of the Dijkstra shortest path algorithm (Dijkstra 1959). The resulting set of points represents the final centreline, i.e. the path between the two predefined endpoints that is farthest from the surface of the original segmented colon lumen (see Figure 4.8 (b)). The skeleton reduction process is illustrated in Figure 4.9 using a 2-D example.

Figure 4.8: Magnified sections of the colon lumen from Figure 4.7 (c) and (d) illustrating how extraneous loops can be caused by the haustral folds (a) and how the removal of these loops yields the final centreline (b).
Figure 4.9: A 2-D example illustrating the skeleton reduction process. (a) Original binary object (region of interest indicated using white); (b) Skeleton and distance from surface field generation; (c) Inverted distance from surface field (skeleton pixels only); (d) weighted graph (originating from the right); (e) The minimum cost path found using backward propagation through the distance field.

4.5.4 Optimisation

The method for centreline calculation outlined in the previous paragraphs forms the basis for an optimised implementation and will be used as a standard for comparison purposes. The enhancements deal specifically with the skeleton generation stage, particularly the tests for connectivity preservation and hole prevention. Both of these tests must be performed repeatedly, at least once for each object voxel, and represent the most time consuming aspect of the centreline calculation process. In each case the $3 \times 3 \times 3$ neighbourhood surrounding the voxel under examination is extensively analysed in order establish whether its removal will affect the relevant global properties of the object, i.e. overall connectivity and number of holes. The
result of this analysis is dependent on the values of the 26 neighbours surrounding the voxel under examination. Each of these voxels can belong to one of two classes, either object or background, consequently the number of possible neighbourhood configurations is $67,108,864 (2^{26})$.

In order to streamline the centreline calculation process, all possible neighbourhood configurations are generated. Each neighbourhood is tested for connectivity preservation and hole prevention. The results of these tests are combined into a single pass/fail binary value and stored in a LUT array. The array index, I, that represents a particular result is generated by multiplying the value of each binary voxel V_n in the relevant neighbourhood $(V_0 - V_{25})$ by a weight in the range $2^0 - 2^{25}$ and then summing the results

$$I = \sum_{n=0}^{25} 2^n V_n \quad (4.5.1)$$

This is essentially a 3-D convolution operation where the value of the central voxel is not used in the calculation. A simplified 2-D example of the index generation process is illustrated in Figure 4.10.

General Case:

<table>
<thead>
<tr>
<th>P_0</th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>P_4</th>
<th>P_5</th>
<th>P_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_7</td>
<td>P_7</td>
<td>P_7</td>
<td>P_7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* $2^0 2^1 2^2$
* $2^7 0 2^1$
* $2^6 2^5 2^4$

= LUT Index

Example:

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

t $2^0 2^1 2^2$
* $2^7 0 2^1$
* $2^6 2^5 2^4$

= 248

$(8 + 16 + 32 + 64 + 128)$

1 Foreground Pixel
0 Background Pixel
* Central Pixel (value irrelevant)
* Convolution Operation

(a)

Figure 4.10 A 2-D illustration of the LUT index generation process

\footnote{Recall that the segmentation process yields a binary representation of the data set where colon lumen voxels have a value of one and non-lumen voxels have a value of zero}
The LUT array can subsequently be used to streamline the standard centreline calculation algorithm. During the thinning phase of the algorithm, the computationally intensive tests for connectivity preservation and hole prevention are no longer necessary. Instead, the relevant index is quickly generated using the equation above and the relevant entry in the LUT array indicates whether or not the central voxel can be removed. The thinning process continues until only skeleton voxels remain and the skeleton is reduced using the technique described earlier to obtain the final centreline.

It is extremely important to note that the LUT is calculated only once. It is subsequently stored in a file on the hard disk and reloaded (not recalculated) each time it is required for centreline calculation. The time required to load the LUT is significantly less than the time required to generate it.

4.5.5 The Real Case

Typically, the segmented colon lumen consists of two, or in some cases more, individual segments. The centreline calculation algorithm described above deals with the case where the colon is represented by a single hollow lumen with two endpoints located in the rectum and the caecum. The same algorithm is valid in the case where the colon consists of multiple disconnected segments. In such cases, a centreline segment must be calculated for each colon segment. The resulting centreline segments must ultimately be connected in order to yield the final centreline.

Starting with the rectum point, the endpoint for the rectum segment is identified using the distance from source field approach, outlined in Section 4.5.1. The centreline segment is then calculated for the rectum segment between these two endpoints. Each of the remaining segments are identified using a raster scan of the entire volume. A distance from source field is initiated from the point where the raster scan encounters each segment. The point in the resulting distance field with the largest distance value is identified as the first endpoint for that segment. The second endpoint is identified by initiating a new distance from source field from the first endpoint, and identifying the point in the resulting distance field with the largest distance value. This endpoint detection technique is essentially an extension of the approach described by Bitter et al. (2001). The remaining centreline segments are then calculated for each of the additional colon segments. The individual centreline segments are ultimately connected together, based on the proximity of their
endpoints, to yield the final centreline. The process for centreline calculation in cases where the colon consists of multiple disconnected segments is illustrated in Figure 4.11.

![Figure 4.11](image)

Figure 4.11: In cases where the colon consists of multiple segments, a centreline segment must be calculated for each individual colon segment. The resulting centreline segments must be connected to yield the final centreline that extends between the endpoints located in the rectum and the caecum.

4.6 Colon Subsegmentation

This section describes a novel use of the colon centreline to automatically identify the locations of anatomical landmarks associated with the colon. This novel technique, which will be referred to as subsegmentation, has been developed to complement CAD by providing meaningful information about the location of automatically detected colorectal neoplasia.

4.6.1 Overview

The human colon is divided into five anatomical regions: the caecum and ascending colon, the transverse colon, the descending colon, the sigmoid colon and the rectum. From the ideal model of the colon (see Figure 4.12 (a)), it is apparent that each of these regions represents either a horizontally or a vertically aligned colonic segment. Furthermore, the junction between each of these regions is characterised by a significant change in direction, or flexure. There are four flexures in total, the hep-
atic (P_{hep}), splenic (P_{spl}) and sigmoid (P_{sig}) flexures and the rectosigmoid junction (P_{rec}), which will also be classified as a flexure for the purpose of this discussion.

In reality, the shape of the human colon can deviate significantly from the ideal model (see Figure 4.12 (b)). Kinks and loops are introduced over time, and the colon invariably becomes distorted with age. The general shape of the colon is retained to some extent, and can still be identified. However, the task of automatic flexure detection is compounded by the frequency and magnitude of the colonic distortions. The remainder of this section describes a series of techniques that can be used to reliably and accurately detect the four flexure points from real patient data, even in the presence of significant colonic distortions. Accurate identification of these flexures is required to facilitate colon lumen subsegmentation.

![Figure 4.12: The anatomy of the colon. (a) An illustration of the ideal colon where all colonic segments and flexures have been identified. (b) An example of an actual human colon which has been segmented from a CTC data set.](image)

4.6.2 Flexure Detection

The centreline consists of a set of 3-D points. These points can be readily analysed to determine changes in direction, thus facilitating automated flexure detection. As mentioned earlier, real human colons deviate significantly from the ideal model and, as a result, steps must be taken to simplify the centreline in order to assist automatic flexure detection.

The colon is generally observed from a coronal perspective and although deviations may be present in the sagittal plane, these do not have a significant influence
Figure 4.13 Six iterations of the centreline filtering process illustrating the transition from the original distorted centreline (a) to an approximation of the original centreline where all of the kinks and loops have been removed (f)

on the location of the colonic flexures. Sagittal deviations in the centreline points can be ignored by simply projecting the centreline points from x-y-z space (3-D) onto the x-y plane (2-D). Reducing the dimensionality of the centreline points in this manner decreases the amount of information required to describe the centreline, while retaining much of the important shape information.

The projected centreline still retains the distortions described earlier. These distortions must be eliminated, or at least their magnitude must be reduced, so that the flexure points can be reliably detected. If the colon centreline is treated as signal then the kinks and loops represent noise. It is apparent that the frequency of this noise is significantly higher than the frequency of the underlying signal, i.e., the undistorted colon centreline. In many cases, high frequency noise of this type can be suppressed by passing the data points through a symmetrical lowpass filter. In the case of the colon centreline, lowpass filtering is achieved by calculating the average location of each centreline point over a certain range W (the filter width)

$$(x_p, y_p) \rightarrow (\bar{x}_p, \bar{y}_p)$$

Several iterations of the filtering process are illustrated in Figure 4.13; it is clear that the final version of the filtered centreline (f) conforms much better to the ideal model than the original centreline (a).
The four flexures can be reliably identified by examining the antegrade (rectum to caecum) direction of the filtered 2-D representation of centreline at each point. An approximation of the centreline direction can be obtained by calculating the discrete first derivative \(\left(\frac{dy}{dx} \right) \), i.e., the slope of the tangent to the centreline. Recall that the subsegmentation process uses a 2-D representation of the centreline where the original 3-D points have been projected onto the x-y plane. The tasks of filtering and differentiating can be combined by calculating the change in the \(x \) position \(\Delta x_p \) and the change in \(y \) position \(\Delta y_p \) over a number of points. The number of points must be the same as the lowpass filter width \(W \).

\[
\Delta x_p = \sum_{t=p-w+1}^{p+w-1} x_t - x_{t-1} \quad (4.6.1)
\]

\[
\Delta y_p = \sum_{t=p-w+1}^{p+w-1} y_t - y_{t-1} \quad (4.6.2)
\]

An approximation of the angle between the tangent to the centreline and the \(x \) axis \((\theta_p) \) can then be calculated for each of the centreline points.

\[
\theta_p = \tan^{-1} \left(\frac{\Delta y_p}{\Delta x_p} \right) \quad (4.6.3)
\]

The resulting value for \(\theta_p \) will be in the range \(-\frac{\pi}{2} \rightarrow \frac{\pi}{2}\). It is possible to adjust this value to the range \(0 \rightarrow 2\pi \) by examining the discrete second derivative of the centreline \(\left(\frac{d^2y}{dx^2} \right) \). The values of \(\theta_p \) for the ideal colon centreline illustrated in Figure 4.14 (a) are plotted in Figure 4.14 (b).

It is apparent from an examination of the ideal centreline (see Figure 4.14 (a)), that the flexure points are located where the centreline transitions from horizontally to vertically aligned colonic segments and vice versa. Consider the splenic flexure, which is located where the direction of the centreline changes from \(\frac{\pi}{2} \) (ascending colon) to \(\pi \) (transverse colon). The ideal splenic flexure is located midway between these two angles, at the point where the \(\theta_p \) curve intersects with the line at \(\frac{3\pi}{4} \), i.e., the splenic angle \((\theta_{spl}) \). Similarly the hepatic angle \((\theta_{hep}) \) is at \(\frac{5\pi}{4} \) and the sigmoid angle \((\theta_{sig}) \), which identifies both the rectosigmoid junction and the sigmoid flexure, is at \(\frac{\pi}{4} \). It is possible to differentiate between the sigmoid flexure and the rectosigmoid junction by examining the discrete second derivative of the centreline at each of
Figure 4.14 Flexure detection theory (a) The centreline of the ideal colon (see Fig. 4.12 (a)) and (b) a graph of adjusted values of θ_p for each point p in the centreline. Note that the six points present in (a) represent the four flexure points (circles) and the two endpoints located in the rectum and the caecum (squares).

In the case of the rectosigmoid junction, the value of θ_p transitions from $\frac{\pi}{2} \rightarrow 0$, therefore the value of θ_p is decreasing and the discrete second derivative of the centreline will be negative at this point. Note that the opposite is true for the sigmoid flexure.

An iterative lowpass filter is used in the final system. The width of the filter W is initialised at a low value and then increased until all flexure points are identified. The location of each flexure point is recorded immediately after it has been uniquely detected. This approach ensures that regions with a large number of strong deviations do not affect those that are relatively smooth, thus ensuring maximum accuracy for individual flexure point detection. The flexure detection process terminates when the last flexure point has been uniquely identified (see Figure 4.15). The automatically detected flexure points are used to facilitate the subsegmentation of the colon lumen (see Figure 4.16). The subsegmentation information is ultimately used to accurately report the location of automatically detected polyps (e.g., an automatically detected polyp could be localised to the transverse colon).

Note that this figure only presents the final result of the filtering process. The iterative nature of the filter is better illustrated in Figure 4.13 where six iterations of the centreline smoothing process are presented.
Chapter 4

Preprocessing Contributions

Figure 4.15: An illustration of the flexure detection process. (a) The original colon centreline. (b) A filtered version of the original centreline ($W = 319$). (c) A plot of θ_p against p for the filtered centreline. Note that the flexure detection process involves the use of an iterative filter. The filter width continues to increase until all of the flexure points have been detected. In this example, the process terminates after the hepatic flexure has been uniquely identified. [Flexure key: $\blacktriangledown = P_{rec}$, $\blacktriangle = P_{sig}$, $\blacksquare = P_{spl}$ & $\blacklozenge = P_{hep}$. Note that \blacklozenge indicates the location of the endpoints in the rectum and caecum.]

4.7 Discussion

This chapter has introduced the preprocessing tasks that are performed by the CAD-CTC system described in this thesis. A number of these tasks are core to system operation i.e. data set interpretation, data set resampling and colon lumen segmentation, while others are value added tasks that ultimately enhance the operation of the system i.e. centreline calculation and colon lumen subsegmentation. The outcomes generated by the preprocessing stages enable a range of subsequent system operations e.g. automatic polyp candidate detection, automated reporting, polyp visualisation, endoluminal navigation and overall system testing. The value added tasks of centreline calculation and subsegmentation represent the key research contributions of this chapter.

Centreline calculation is generally considered to be a computationally intensive operation. Consequently, a range of centreline calculation techniques have been developed to address the issue of efficiency. Many of the previously published centreline calculation algorithms used distance fields to efficiently calculate an approximation of the centreline of the colon. A more accurate representation of the centreline can be calculated using 3DTT. This involves the removal successive layers of lumen voxels until a skeleton representation of the colon is obtained. The centreline is subsequently identified as the path through the skeleton, connecting endpoints in the
Figure 4.16 The output of the subsegmentation process consists of a colon model where voxels are labeled as (a) the rectum, (b) the sigmoid colon, (c) the descending colon, (d) the transverse colon and, (e) the ascending colon.

rectum and caecum, that is furthest away from the colon walls. The skeleton generation stage is the most computationally intensive aspect of 3DTT based centreline calculation, as it involves an extensive evaluation of the local neighbourhood of each colon lumen voxel prior to removal. The centreline calculation technique proposed in this chapter utilises 3DTT. However, it replaces the extensive neighbourhood evaluation with a simple array lookup, thus significantly improving the efficiency of the technique while maintaining the accuracy of the un-optimised approach.

The subsegmentation technique outlined in this chapter utilises the centreline points to identify the main colon flexures. The flexure points are then used to identify the five main anatomical regions of the colon. In the case of the ideal colon, the flexure points can be identified as transitions between vertically and horizontally aligned colon segments. In the case of real patient data, the colon centreline deviates significantly from the ideal model, however, the general shape of the colon is still retained. An iterative filtering technique is used to smooth the actual centreline.
so that it conforms better to the ideal model. The width of the filter is increased until all of the required flexure points have been detected. Each flexure location is recorded as soon as it is uniquely identified and the process terminates when the last flexure point is identified. The use of the iterative filter in this way ensures that the flexure points are identified both accurately and efficiently. The subsegmentation information is ultimately intended to allow the assignment of automatically detected polyps to particular segments of the colon, thus enabling automated reporting and enhancing the output generated by the CAD-CTC technique.
Chapter 5

CAD-CTC Contributions

5.1 Introduction

Colorectal polyps appear as projections into the air insufflated colon lumen at CTC. The task of automating the polyp detection process has been discussed at length in the literature and a number of different polyp detection techniques have been proposed. The majority of these techniques analyse either surface curvature characteristics or the distribution of surface normals in order to identify suspicious regions of the colonic mucosa that have polyp-like properties. One of the main problems associated with these automated techniques is the high number of false positive detections. This problem is a result of numerous factors including the complicated morphology of the colon surface and the presence of residual material with polyp-like shape and density characteristics. More recently documented CAD-CTC techniques have addressed this problem to some extent by utilising a two stage approach to polyp detection. The first, or primary, stage is intended to identify all polyp candidates with a very high level of sensitivity. The high sensitivity of the primary stage is invariably achieved by sacrificing specificity. A second stage is intended to refine the list of candidates using a secondary processing technique and/or classifier to yield the final list of polyp candidates with an acceptably low number of false positives.

This chapter introduces a novel CAD-CTC technique that identifies initial polyp candidates based on the curvature characteristics of an isosurface representation of the colonic mucosa. The primary stage evaluation consists of a hybrid approach that combines earlier surface curvature analysis techniques, particularly those developed at the NIH (Summers et al. 2000) and the University of Chicago (Yoshida & Nappi 2001). The shape of candidates generated by primary stage algorithms is not necessarily representative of the underlying polyp morphology. This is particularly true in
the case of false positives where the candidate shape can be quite irregular. A range of true and false positives that illustrate this observation are presented in Appendix D. Upon inspection of these examples it is clear that actual polyps have a roughly circular or elliptical shape, whereas false positives have a much more irregular shape. Based on this observation, a novel intermediate stage has been developed to increase the differentiability between true polyps and false positives. This intermediate stage restructures initial candidates, expanding them to fill minimum sized elliptical regions. It will be demonstrated that this process causes false positives to include more vertices with false positive characteristics, whereas, polyps retain vertices with polyp-like characteristics. As such, the expansion process essentially optimises the candidates prior to classification.

The following discussion will deal with issues such as initial design considerations, isosurface extraction, surface normal calculation, calculation of vertex curvature characteristics, anatomical vertex labeling (i.e., assigning a vertex to a particular colon segment), vertex density measurements, initial polyp candidate identification, and false positive reduction using the aforementioned intermediate stage for structured candidate expansion.

5.2 Initial Considerations

At the most basic level, a CAD-CTC algorithm performs an analysis of the local shape characteristics of the colonic mucosa in order to identify suspicious regions that warrant further attention. As a result, when developing a CAD-CTC algorithm, two important decisions must be made: (1) what representation of the colon surface should be used, and (2) which local shape characteristics should be evaluated. These decisions were influenced by previously published techniques from two of the main contributors to surface curvature based CAD-CTC research.

- Summers et al. (2000) used a polygonal mesh representation of the colon surface in their CAD-CTC system. They evaluated vertex level shape characteristics including mean curvature and Gaussian curvature as well as global candidate sphericity in order to identify initial polyp candidates. The required curvature characteristics were calculated for voxels in the original volume and subsequently assigned to the vertices of the isosurface mesh.
Yoshida & Näppi (2001) used a voxel based representation of the colon surface. Their initial candidate detection scheme involved calculating shape index and curvedness values for each voxel that belonged to the colon surface. Initial polyp candidates were subsequently identified using a hysteresis threshold based region growing technique. Note that other groups, e.g. Wang et al. (2005), have also used the shape index for initial polyp candidate detection.

The main difference between these two techniques is the method used for representing the colon surface. Summers et al. used a polygonal mesh representation of the colon surface, whereas Yoshida & Näppi used a voxel based representation of the area occupied by the colon surface (obtained using their segmentation technique (Masutani et al. 2001, Näppi et al. 2002)). The mesh representation has a number of benefits over the voxel based alternative:

1. The mesh representation provides a much more compact representation of the colon surface than the voxel based approach.

2. It is possible to achieve sub-voxel precision with the mesh representation by using the interpolation techniques in conjunction with isosurface extraction.

3. The mesh representation can be readily visualised using standard computer graphics hardware, i.e. surface rendering can be used as opposed to volume rendering, which is much more computationally intensive.

Based on these observations, the mesh approach was adopted for representing the colon surface. This approach provides a compact and accurate representation of the surface of the colon that can be easily visualised.

The sets of curvature characteristics used by the NIH and Chicago groups, although different, can all be calculated in a similar manner. The choice of surface curvature characteristics used for initial candidate detection was based on an evaluation of these two sets of characteristics. The results of this evaluation indicated that the shape index and curvedness measurements used by Yoshida & Näppi provided a high level of sensitivity for initial candidate detection with the lowest level of false positive detections. The details of this study will be outlined in Chapter 7.

\[\text{Note that CAD-CTC techniques that utilise a polygonal mesh representation of the colon surface have also been documented by the Wake Forest group e.g. Hunt et al. (1997), Vining et al. (1998) and Li et al. (2005b). However, other groups invariably used a voxel based representation of the colon surface.}\]
The initial stage of the CAD-CTC system outlined in this chapter, i.e. the component that deals with surface extraction and initial polyp candidate detection, is essentially a hybrid technique that draws on the best aspects of approaches published by two of the main contributors to surface curvature based CAD-CTC research. The isosurface approach to colon surface representation was selected over the voxel based alternative as it provides a compact representation of the colon with sub-voxel precision. In addition, an isosurface model can be readily visualised using standard computer graphics hardware. Conversely, a comparative evaluation of the two sets of surface curvature characteristics for the detection of initial polyp candidates found that shape index and curvedness provided the best results, hence their selection for use in the CAD-CTC system.

5.3 Isosurface Extraction & Vertex Classification

The task of identifying the isosurface representing the air/soft tissue interface associated with the colonic mucosa is performed using a modified version of the marching cubes surface extraction algorithm (Lorensen & Cline 1987). In addition to geometry extraction, the basic algorithm is extended so that curvature, density and information regarding anatomical location is obtained for each vertex. Isosurface extraction using the marching cubes algorithm forms the basis of the polyp detection scheme outlined in this thesis, and due to its importance and relevance to subsequent sections it will be briefly outlined at this point. The modifications and enhancements will be discussed following a review of the standard algorithm.

5.3.1 The Standard Marching Cubes Algorithm

The marching cubes algorithm (MCA) is used to extract a surface represented by an isosurface value \(d_{iso} \) from a volumetric data set. The value of \(d_{iso} \) is dependent on the surface being extracted and in the case of the colon surface \(d_{iso} \) has a value of -800 HU (see Section 4.4). The MCA begins by thresholding the data set, assigning a 1 to voxels \(\geq d_{iso} \) (inside the isosurface) and a 0 to voxels \(< d_{iso} \) (outside the isosurface). The isosurface associated with the colonic mucosa cannot be uniquely identified using a simple threshold operation due to the the number of gas/soft tissue interfaces that are present in a CTC data set (i.e. those due to the lung bases, the small intestine, the stomach and the exterior of the patient). In this case, the
segmentation information is used in conjunction with the isosurface value to identify the region associated with the colon surface. A cubic mask of size $2 \times 2 \times 2$ is then passed through the volume and at each mask location the configuration of the eight underlying voxels is examined and the relevant surface patches are generated. This process is illustrated in Figure 5.1.

There are $256 (2^8)$ possible configurations of eight binary voxels and although possible, the task of manually specifying the surface patches associated with each configuration is both tedious and prone to error. Lorensen & Cline observed that this task could be greatly simplified by considering all rotations and complementary cases for each configuration. Using this approach, the number of possible configurations is reduced from 256 down to just 15, as illustrated in Figure 5.2. This significant reduction in the number of configurations makes the task of manually specifying surface patches associated with particular voxel configurations much more manageable and a lot less prone to error.

Once the relevant surface patches have been specified for the 15 base configurations, the original 256 configurations are regenerated by applying a series of rotations to the original 15 configurations and their complements. In each case the associated list of vertices (i.e. surface patches) and their complements are also rotated. The resulting information is used to populate a 256 element lookup table associating voxel configurations with edge lists (i.e. lists of vertices that are positioned relative to the local origin of the cube). The lookup table index is generated based on the
Figure 5.2: The 15 possible configurations of eight binary voxels arranged in a cubic formation. Voxels located inside the isosurface are indicated by cube corners with spheres and voxels outside the isosurface are indicated by cube corners without spheres. The relevant surface patches (highlighted using red) have been inserted as documented in the original marching cubes algorithm specification (Lorensen & Cline 1987).

By default a vertex will lie midway between the two complementary valued voxels \((v_a \& v_b)\) that led to its creation. This is demonstrated in general by all of the vertices associated with each of the 15 cases illustrated in Figure 5.2 and in particular, by the vertex resulting from \(v_1 \& v_2\) in Figure 5.3. In order to fit the extracted surface more accurately to the actual isosurface identified by \(d_{iso}\), each vertex must be interpolated between \(v_a\) \& \(v_b\) based on the relationship between their densities \(d_a\) \& \(d_b\) and the isosurface density \(d_{iso}\). This is achieved by calculating the normalised distance \(\delta_{iso}\) between the voxel that is closest to the origin (either \(v_a\) or \(v_b\)) and the isosurface (see Equation 5.3.1).
Chapter 5

CAD-CTC Contributions

Figure 5.3 A sample voxel configuration where \(v_1, v_5, v_6 \) & \(v_8 \) are inside the isosurface and all other voxels are outside. A LUT index of 0xB1 is generated which results in the specified edge list. Note that the order of the edges is important as it defines the front face for the associated triangle in Java3D.

\[
\delta_{tso} = \frac{d_{tso} - d_a}{d_b - d_a} \tag{5.3.1}
\]

The value for \(\delta_{tso} \) represents the intersection location relative to the reference voxel in terms of the intervoxel spacing (see Figure 5.4). The closest voxel to the origin is used as the reference voxel \(v_0 \) to ensure \(\delta_{tso} \) has positive value and to standardise the interpolation process throughout the surface extraction algorithm. The \(\delta_{tso} \) value can then be used to calculate an interpolated vertex location that is more representative of the actual isosurface. Assuming that \(v_a \) is the closest voxel to the origin, the interpolated vertex location \((x, y, z)\) located between \(v_a \) and \(v_b \) is calculated using

Figure 5.4 The calculation of \(\delta_{tso} \) at three sample boundaries. In each case, the value of \(\delta_{tso} \) is calculated using linear interpolation and the density at the point represented by \(d_{tso} \) is -800 HU, i.e., the isosurface density \(d_{tso} \).
\[x_i = x_a + \delta_{iso}(x_b - x_a) \]
\[y_i = y_a + \delta_{iso}(y_b - y_a) \]
\[z_i = z_a + \delta_{iso}(z_b - z_a) \]

(5.3.2)

where \((x_a, y_a, z_a)\) and \((x_b, y_b, z_b)\) are the locations of \(v_a\) and \(v_b\) respectively.

The final stage of the MCA involves generating unit normals for each vertex in the extracted isosurface. The normals are used to facilitate surface shading (Gouraud shading in the case of Java3D). Normals are calculated at each voxel in the original data set using a 3-D gradient operator. The three masks for the gradient operator proposed by Lorensen & Cline are illustrated in Figure 5.5. The resulting gradient magnitude in each direction is divided by the overall gradient magnitude to yield the unit normal.

Figure 5.5 The three masks (a, b & c) that are used by Lorensen & Cline (1987) to calculate the edge magnitudes in the x, y & z directions respectively. Note that the scaling factors are omitted as the implementation discussed here is intended for use with isotropic data.

The normals of the two voxels (e.g. \(v_a\) & \(v_b\) as above) associated with a particular vertex must be interpolated in order to give an approximation of the normal value at the vertex location \((a_i, b_i, c_i)\). As with the vertex locations, the normals are interpolated using \(\delta_{iso}\) from Equation 5.3.1 as follows:

\[a_i = (1 - \delta_{iso})a_a + \delta_{iso}a_b \]
\[b_i = (1 - \delta_{iso})b_a + \delta_{iso}b_b \]
\[c_i = (1 - \delta_{iso})c_a + \delta_{iso}c_b \]

(5.3.3)
Where \((a_a, b_a, c_a)\) and \((a_b, b_b, c_b)\) are the normals associated with voxels \(v_a\) and \(v_b\) respectively. The effect of vertex and normal interpolation on the quality of the extracted surface is illustrated in Figure 5.6.

![Figure 5.6](image)

Figure 5.6 An illustration of an isosurface model for the colonic mucosa before (a) and after (b) the use of vertex and normal interpolation.

This completes the basic description of the standard MCA. The vertices and their associated normals can now be rendered using conventional 3-D graphics techniques. The standard MCA is only suitable for display purposes. In order to use the MCA for polyp detection, a number of modifications and enhancements are required. These modifications, which are summarised below, are dealt with in the remainder of this section.

1. The standard MCA does not generate airtight surfaces. In certain cases holes may be inadvertently introduced into the generated mesh. The standard MCA must be updated so that such surface discontinuities do not occur.

2. The standard MCA uses a very basic method to generate normals. A more accurate normal generation technique is proposed as normals will be used for surface analysis as well as surface visualisation.

3. The mesh generated by the standard MCA is wasteful of memory as it contains a vast amount of repeated information. A more streamlined alternative is used.
to reduce the amount of memory required to store vertex coordinates and associated information (e.g. normals, colours, etc.).

4. Curvature characteristics, density information and anatomical location markers are assigned to each mesh vertex to facilitate automatic polyp detection and automated reporting.

5. In the streamlined mesh, mentioned in 3. above, a vertex is no longer represented by an \((x, y, z)\) coordinate. Instead, it is represented by a unique index into a list of common coordinates. A neighbour list is generated for each vertex index that identifies all of the directly connected neighbouring vertices. This is extremely useful for region growing in a triangular mesh and crucial in identifying the surface of the mesh with polyp-like properties.

5.3.2 Topology Errors (Holes)

Upon visual inspection of the output generated by the standard MCA, it is clear that topology errors (or holes) are present in the generated surface, see Figure 5.9 (a). These holes are due to ambiguous cases resulting from mismatches between the surface patches of adjoining cubes. An example of an ambiguous case is illustrated in Figure 5.7.

![Figure 5.7: An example of the ambiguous case that results when the complement of configuration 3 (Figure 5.2 (d)) occurs next to configuration 6 (Figure 5.2 (g)). A hole is evident at the interface between these two cubes.](image)

The ambiguous cases that result in unwanted holes are a direct result of the use of complementary cases in the standard MCA to reduce the number of core cube configurations that must be specified. By disregarding complementary cases
and using only rotation to identify equivalent cube configurations the number of core configurations increases from 15 to 23. The eight additional cases and their associated surface patches (as defined by Nielson (2003)) are illustrated in Figure 5.8.

![Figure 5.8: The eight additional configurations of eight binary voxels arranged in a cubic formation as defined by Nielson (2003). These extra configurations remove the need to generate complementary cases and as a result, solve the topology problem associated with the original MCA.](image)

Altering the standard MCA to include these eight extra cases removes the necessity to generate complementary cases and thus results in the generation of airtight surfaces that do not contain unwanted holes. The result of using the revised algorithm is presented in Figure 5.9 (b) where the solitary hole that is evident at the top of Figure 5.9 (a) is no longer present.

5.3.3 Improved Normal Calculation

The edge detector that is used for normal generation by the standard MCA (see Figure 5.5) is very basic and provides only a rough estimation of 3-D edge direction. Vertex normals are usually only used for visualisation purposes i.e. to enable shading so that surfaces generate a more realistic response to lighting. In the enhanced MCA, normals have a dual role and are used for both visualisation and analysis purposes. As a result, a more accurate estimation of 3-D edge direction is required. The Zucker-Hummel edge operator (Zucker & Hummel 1981) was selected for this
Chapter 5 CAD-CTC Contributions

Figure 5.9 An isosurface extracted using the 15 core neighbourhood configurations of the standard marching cubes algorithm (a) and the extended 23 neighbourhood configurations of the modified algorithm (b). Note that the standard approach creates an unwanted hole, indicated by a red circle, whereas the extended approach results in an airtight isosurface task due to its inherent smoothing effect. The use of this edge operator gives a more global indication of the normal at each vertex location. The three masks for the 3-D Zucker-Hummel operator are illustrated in Figure 5.10.

5.3.4 Vertex Curvature Classification

It is clear from the reviews of the Chicago and NIH techniques in Sections 3.5 and 5.2 that these groups used a combined total of five local curvature characteristics to describe the surface of the colon. The mesh curvature is important for analysis purposes as polyps generally present as spherical projections into the colon lumen. Accordingly, each mesh vertex is classified in relation to the curvature of the mesh at that point. The curvature characteristics calculated for each vertex are:

- **Mean curvature** - indicates whether the surface is convex (the mean curvature is negative) or concave (the mean curvature is positive) and the level of convexity or concavity. A flat surface has a mean curvature of 0.

- **Gaussian curvature** - indicates whether the surface is elliptic (the gaussian curvature is positive) or hyperbolic (the gaussian curvature is negative). A
gaussian curvature of 0 is indicative of parabolic surface

- **Shape Index** - a value in the range 0 - 1 that defines the local shape as a member of one of six shape classes: cup, rut, saddle, ridge, cap and plane. The shape index of a perfect cup is 0 and the shape index of a perfect cap is 1 (see Figure 3.8).

- **Curvedness** - indicates the curvature per unit length at the selected point, thus quantifying the level of surface curvature at the point represented by a vertex. A low curvedness value would indicate a flat region whereas a high value would indicate a highly curved region (see Figure 3.10).

- **Sphericity** - a property that is defined for a region (i.e., a set of vertices). The sphericity indicates how spherical a region is. A sphericity value of 0 would indicate a perfectly spherical region whereas a value of 2 would indicate a flat surface.

Sample surfaces and their respective mean curvatures, Gaussian curvatures and shape indices are illustrated in Figure 3.8 on Page 76, and the concept of curvedness is illustrated in Figure 3.10 on Page 82.

Summers et al. (1998) originally demonstrated the use of isosurface curvature analysis to detect endobronchial lesions at virtual bronchoscopy. They subsequently extended this research to deal with the automatic detection of colorectal polyps at CTC, initially using computer generated polyps (Summers et al. 2000) and then, in a more recent study (Summers et al. 2001), real polyps. Their technique involved...
calculating mean and Gaussian curvature values at all points that belong to the
relevant isosurface, i.e. the colon wall, and then identifying regions that have polyp­
like characteristics or “elliptical curvature of the peak subtype”. These two measures,
the Gaussian curvature (K) and the mean curvature (H) can be calculated as follows:

\[K = \frac{1}{h^2} \left[f_x^2(f_y f_z - f_y f_z) + 2f_y f_z(f_x f_y - f_x f_z) +
\right.
\left. f_z^2(f_x f_y - f_z f_y) + 2f_x f_y(f_x f_z - f_z f_y) \right] \]
\[H = \frac{1}{2h^{3/2}} \left[f_x^2(f_y f_z + f_z f_x) - 2f_y f_z f_x +
\right.
\left. f_y^2(f_x f_z + f_z f_y) - 2f_x f_y f_z +
\right.
\left. f_z^2(f_x f_y + f_y f_z) - 2f_x f_y f_z \right] \]

where \(f_x \) is the partial derivative of the image data with respect to \(x \), \(f_{xx} \) is the
second partial derivative of the image with respect to \(x \), \(f_{xy} \) is the mixed partial
derivative with respect to \(x \) and \(y \) etc. and \(h = f_x^2 + f_y^2 + f_z^2 \). The derivation of these
formulae is addressed by Thirion & Gourdon (1995). Once the values for \(H \) and \(K \)
have been determined, the principle, i.e. minimum and maximum, curvatures (\(\kappa_{\text{min}} \)
& \(\kappa_{\text{max}} \)) can be calculated for each point:

\[\kappa_{\text{min}}, \kappa_{\text{max}} = H \pm \sqrt{H^2 - K}, \kappa_{\text{max}} \geq \kappa_{\text{min}} \]

Summers et al. (2000) also suggest the use of another shape measurement to
identify potential polyps. This measure, sphericity, indicates how spherical a region
is, and ranges from 0 for a perfect sphere to 2 for a flat region. The sphericity at a
point is calculated using the principle and mean curvatures as follows:

\[s = \frac{\kappa_{\text{min}} - \kappa_{\text{max}}}{H} \]

It is important to note that sphericity as defined by Summers et al. is a global
measurement. It is calculated for an entire polyp candidate and not for individual
vertices, using the average values for principle \(\kappa_{\text{min}}, \kappa_{\text{max}} \) and mean \(H \) curvatures.

The principle curvatures \(\kappa_{\text{min}} \) & \(\kappa_{\text{max}} \) can then be used to calculate values for
the shape index \(R \) and the curvedness \(S \) (Koenderink 1990, pp 319 - 324).

\(^2\)A technical report on the same topic is also available (Thirion & Gourdon 1993).
\[R = \frac{1}{2} - \frac{1}{\pi} \arctan \left(\frac{\kappa_{\text{min}} + \kappa_{\text{max}}}{\kappa_{\text{min}} - \kappa_{\text{max}}} \right) \] \hspace{1cm} (5.38)

\[S = \frac{2}{\pi} \ln \sqrt{\frac{\kappa_{\text{min}}^2 + \kappa_{\text{max}}^2}{2}} \] \hspace{1cm} (5.39)

Yoshida & Nappi (2001) use these curvature values for identifying initial polyp candidates in their polyp detection algorithm.

5.3.4.1 Discrete Implementation

It can be seen from Equations 5.3.4 and 5.3.5 that several first and second order derivatives must be calculated for a particular surface (the colonic mucosa in this case) before the associated values for the mean and Gaussian curvatures can be obtained. It is possible to calculate the first derivative of a 3-D digital image by convolving the image with the derivative of a Gaussian in one direction and smoothing it with Gaussians with the same standard deviation in the other two directions. Similarly, the second derivative can be found by convolving the image with the second derivative of a Gaussian in one direction and smoothing it as outlined above. Mixed partial derivatives can be obtained using a similar method (Lohmann 1998).

The one-dimensional Gaussian \(g_0(t) \) and its first and second derivatives, \(g_1(t) \) and \(g_2(t) \), are given below.

\[g_0(t) = ce^{-\frac{t^2}{2\sigma^2}} \] \hspace{1cm} (5.3.10)

\[g_1(t) = -\frac{tc}{\sigma^2} e^{-\frac{t^2}{2\sigma^2}} \] \hspace{1cm} (5.3.11)

\[g_2(t) = \frac{c}{\sigma^2} e^{-\frac{t^2}{2\sigma^2}} \left(\frac{t^2}{\sigma^2} - 1 \right) \] \hspace{1cm} (5.3.12)

where \(c = \frac{1}{\sigma \sqrt{2\pi}} \). Plots of these three functions are illustrated in Figure 5.11. Alternatively, Deriche filters (Deriche 1987) can be used to calculate the required derivatives.

The one dimension Deriche filter \(d_0(t) \) and its first and second derivatives, \(d_1(t) \) and \(d_2(t) \), are given below.

\[d_0(t) = c_0(1 + \alpha_1 |t|)e^{-\alpha_1 |t|} \] \hspace{1cm} (5.3.13)

\[d_1(t) = c_1 t \alpha_2^2 e^{-\alpha_1 |t|} \] \hspace{1cm} (5.3.14)

\[d_2(t) = c_2 (1 - c_3 \alpha_2 |t|) e^{-\alpha_2 |t|} \] \hspace{1cm} (5.3.15)
Figure 5.11: The Gaussian filter $g_0(x)$ (a) and its first and second derivatives $g_1(x)$ (b) and $g_2(x)$ (c). The standard deviation σ is set to 1.0 as recommended by Lohmann (1998).

Figure 5.12: The Deriche filter $d_0(x)$ (a) and its first and second derivatives $d_1(x)$ (b) and $d_2(x)$ (c). The values for α_1 and α_2 are set to 0.7 and 0.1 respectively as suggested by Campbell & Summers (2004) and the normalisation coefficients c_0, c_1, c_2 & c_3 are calculated using Equation 5.3.19 as suggested by Monga & Benayoun (1995).

where α_1 and α_2 are smoothing parameters and control the specific shape of the filters. Plots of the Deriche function and its derivatives are illustrated in Figure 5.12. Note that the wider Deriche filters provide a greater degree of smoothing than the Gaussian filters.

The process of curvature calculation using the aforementioned technique (i.e. Gaussian smoothing) is extremely computationally intensive and calculating the curvature characteristics at each voxel in a CTC data set is an extremely time consuming (and unnecessary) process. Only the curvature values for voxels in the proximity of the isosurface vertices associated with the colonic mucosa are required (i.e. those voxels associated with cases 1 - 21 of the extended MCA) to completely
characterise the curvature of the surface model of the colon. This significantly reduces the amount of data processing required as the isosurface voxels represent a very small percentage of the voxels that are present in the data set. The partial derivatives can be calculated as follows:

\[
\begin{align*}
 f_x &= (f_1(x)f_0(y)f_0(z)) * I, \\
 f_{xx} &= (f_2(x)f_0(y)f_0(z)) * I, \\
 f_{xy} &= (f_1(x)f_1(y)f_0(z)) * I, \\
 f_y &= (f_0(x)f_1(y)f_0(z)) * I, \\
 f_{yy} &= (f_0(x)f_2(y)f_0(z)) * I, \\
 f_{yz} &= (f_0(x)f_1(y)f_1(z)) * I, \\
 f_z &= (f_0(x)f_0(y)f_1(z)) * I, \\
 f_{zz} &= (f_0(x)f_0(y)f_2(z)) * I, \\
 f_{xz} &= (f_1(x)f_0(y)f_1(z)) * I.
\end{align*}
\]

(5.3.16)

where \(f_n(t) \) is replaced by a discretised version of the selected filter, i.e. either \(g_n(t) \) or \(d_n(t) \) and \(I(x, y, z) \) is the 3-D image in question (i.e. the CTC data set).

Lohmann (1998) recommends using Gaussian filters and suggests a filter width of 7 voxels and a standard deviation of 1.0 (see Figure 5.11). In contrast, Summers (2000) advises the use of Deriche filters. This choice is motivated by the fact that the mean and Gaussian curvatures are susceptible to noise, and that Deriche filtering can be used to smooth the data and to calculate the derivatives simultaneously. Deriche filters were used for calculation of the required partial derivatives based on this observation.

Monga & Benayoun (1995) suggest using values of 1.0 and 0.7 for \(\alpha_1 \) & \(\alpha_2 \) in conjunction with the Deriche filters. This is based on the fact that higher order derivatives require greater smoothing in order to obtain reasonable immunity to noise. However, a recent analysis of the kernel method for surface curvature estimation by Campbell & Summers (2004) suggests that the smoothing parameters \(\alpha_1 \) & \(\alpha_2 \) should be 0.7 and 0.1, respectively, as these demonstrated a reasonable accuracy and low variance in their study. To complete the calculation of the relevant derivatives Monga & Benayoun suggest selecting the normalisation coefficients for the Deriche filters \(c_0, c_1, c_2 \) and \(c_3 \) so that:
\[
\int_{-\infty}^{+\infty} d_0(x) dx = 1 \\
\int_{-\infty}^{+\infty} x d_1(x) dx = 1 \\
\int_{-\infty}^{+\infty} d_2(x) dx = 0 \quad \text{and} \quad \int_{-\infty}^{+\infty} \frac{x^2}{2} d_2(x) dx = 1
\]
(5 3 17)

In the case of a discrete implementation with integer sampling, these formulae become

\[
\sum_{-\infty}^{+\infty} d_0(x) = 1 \\
\sum_{-\infty}^{+\infty} x d_1(x) = 1 \\
\sum_{-\infty}^{+\infty} d_2(x) = 0 \quad \text{and} \quad \sum_{-\infty}^{+\infty} \frac{x^2}{2} d_2(x) = 1
\]
(5 3 18)

By substituting the Derche filter and its first and second derivatives for \(f_0(x), f_1(x) \) & \(f_2(x) \) the following representations of the normalisation coefficients are obtained

\[
c_0 = \sum_{-r}^{+r} \frac{1}{(1 + \alpha_1 |x|) e^{-\alpha_1 |x|}} \\
c_1 = \sum_{-r}^{+r} \frac{1}{x^2 \alpha_1^2 e^{-\alpha_1 |x|}} \\
c_2 = \sum_{-r}^{+r} \frac{2}{x^2 (1 - c_3 \alpha_2 |x|) e^{-\alpha_2 |x|}} \\
c_3 = \sum_{-r}^{+r} \frac{1}{\alpha_2 |x|}
\]
(5 3 19)

where \(r \) is the half filter width (the filter width \(w \) being \(2r + 1 \) voxels) and \(\alpha_1 \) and \(\alpha_2 \) have the values suggested by Campbell & Summers (2004)

This process generates the relevant curvature values for the voxels that encapsulate the isosurface representing the colon wall. In order to calculate the curvature values for the vertices of the isosurface that represents the colon wall, an interpolation scheme must be used. The interpolated value of the relevant curvature property \(p_i \) (e.g., shape index \((R_i) \) or Gaussian curvature \((K_i) \)) is calculated as follows

\[
p_i = (1 - \delta_{iso}) p_a + \delta_{iso} p_b
\]
(5 3 20)
where, p_a and p_b are the curvature values associated with the two voxels that lead to the generation of the vertex in question, and δ_{iso} is the normalised distance from the voxel that is nearest the origin.

5.3.5 Additional Vertex Properties

Other properties are calculated for each vertex in addition to the curvature characteristics. These are:

- The colon segment that the vertex belongs to (i.e. the rectum, sigmoid colon, descending colon, transverse colon or ascending colon, as identified using subsegmentation described in Section 4.6). This information can be used to facilitate automated reporting by localising an automatically detected polyp to a particular colon segment, thus providing a much more meaningful indication of polyp location than an (x, y, z) coordinate.

- The density, measured in HU, at the point in the colonic mucosa that corresponds to the vertex. The density information can be used to discriminate between true polyps and false positives that are caused by residual faecal material.

Both of these vertex properties are calculated during the surface extraction process using the modified marching cubes algorithm.

5.3.5.1 Colon Segment Information

The most straightforward method for obtaining the segment vertices is to find the closest centreline point to each individual vertex and assign the vertex to the same region as this point. This approach may seem to be adequate, however, it was found to be susceptible to a problem where vertices in one segment were incorrectly flagged as belonging to another segment. This occurred in cases where, for example, a vertex actually belonged to the rectum but it was closer to a centreline point located in the sigmoid colon. In this case, the rectum vertex would be incorrectly flagged as belonging to the sigmoid colon. This particular case is illustrated in Figure 5.13. A simple line of sight solution was considered where a vertex was assigned to the same segment as the closest centreline point in its field of view. However, this solution was not practical as the line of sight between a vertex and the centreline can be obscured.
by a haustral fold or some other obstruction. In these cases, the colon surface would contain a patch with undefined colon segment information.

Figure 5.13: An example of the segment skipping problem (a) the expected case where colon wall vertices are associated with centreline segments in the same segment (b) the actual case where vertices associate themselves with the closest centreline segment resulting in incorrect segment assignments.

An alternative solution ensures that each vertex is assigned the correct colon segment information and that no patches are left undefined. This involves reversing the centreline calculation process and performing automated seeded region growing within the limits of the colonic mucosa. This region growing process is initiated from the centreline points i.e. each centreline point represents an individual seed point. As the centreline expands, the voxels that are added to the resulting structure are assigned the same colon segment information as their nearest neighbour. This process effectively dilates the colon centreline so that it expands to fill the same region as the original segmented colon lumen. As a result, each individual centreline segment expands to fill its associated region in the colon lumen. In order to prevent leakage between the segments during the dilation process, planar structures three voxels thick are inserted at each flexure point that lies on the colon centreline (i.e those points detected during the subsegmentation process). The planes are orientated perpendicularly to the centreline at the relevant flexure points. This ensures that the border between each segment is smooth and well defined.

Once the dilation process is complete, each vertex is assigned to the same colon segment as its closest neighbouring lumen voxel. The closest lumen voxel to a vertex
is detected by performing a search in the $3 \times 3 \times 3$ voxel neighbourhood surrounding the vertex. The vertex is subsequently assigned to the same segment as the lumen voxel with the shortest Euclidean distance. An illustration of the anatomical vertex labeling process is presented in Figure 5.14. Colour coding is used to indicate the different colon segments.

5.3.5.2 Vertex Density Information

Density information, i.e., the HU values of the tissue voxels associated with a polyp candidate, has been used by others to discriminate between true polyps and false positives that are caused by residual faecal material e.g. Summers et al. (2001) in CTC data sets. This process is particularly effective when a contrast enhanced bowel preparation is used (see Section 3.2.3), as the conspicuity between polyps and residual faecal material is greatly increased. Density information can also be used to identify false positive detections that are attributable to the ICV (Summers et al. 2004).

The HU value representing the density of the colon wall at a particular vertex location can be obtained by sampling the data set at a fixed distance from the vertex in the opposite direction of the surface normal at that point. The data at the required sample point is obtained using the trilinear interpolation technique described in Section 4.3.1 on Page 104. This is essentially the same as performing a virtual biopsy at every vertex in the mesh representing the colon surface. The distance of the sample from the vertex (i.e., the sampling distance) was selected to be 2 mm in order to overcome the partial volume effect at the colon walls. The density sampling process is illustrated in Figure 5.15. It is important to note that the virtual biopsy is not a part of the isosurface extraction process, its purpose is to augment the information represented by the extracted surface mesh.

5.3.6 Mesh Representation

The mesh generated by the standard MCA consists of a disjoined set of triangular patches where there is a high degree of vertex repetition. This representation, although suitable for visualisation purposes, is not ideal for analysis. It is also extremely wasteful of memory due to the high degree of vertex repetition.

3An evaluation of several data sets used in this research found that each colon surface vertex was reused an average of six times.
Figure 5.14: The anatomical vertex labeling process. (a) The wall at the hepatic flexure and the region growing process after three iterations. (b) The completed region growing process where a smooth transition exists between the transverse colon (purple) and the ascending colon (orange). (c) An exterior view of the labeled colon and, (d) An endoluminal view of the splenic flexure.
An alternative mesh representation involves storing each vertex in an array structure where a particular vertex can be present only once. Using this approach, triangles that represent the mesh are specified as indices into the vertex array and not as actual vertex locations. An array of unit normals is generated and populated in the same manner, and the same approach is used to store the vertex measurements discussed in Sections 5.3.4 and 5.3.5. This approach to mesh storage has the potential to significantly reduce the amount of memory required to store a fully characterised isosurface representation of the colonic mucosa. A simple example illustrating the difference between the standard mesh and the indexed mesh is presented in Figure 5.16.

The indexing process requires a modification to the standard MCA. As each vertex is encountered it is assigned an index and stored in the vertex list. This index is then used to represent the relevant vertex coordinates (i.e., an Integer primitive (four bytes) is used to reference three floating point primitives (12 bytes)). If a vertex that was already assigned an index is encountered then that index is used. Conversely, a new index is generated if a new vertex is encountered. Only vertices associated with the same slice or two adjacent slices can be shared. As a result, only two slices need to be resident in memory at any one time. Noting that in the context...
Figure 5.16 An illustration of how indexing can be used to reduce the amount of data required to specify a mesh structure. A pyramid consists of five vertices and six triangles. The unoptimised representation yields 54 values (a) and the optimised alternative yields only 33 (b). Note that in Java the data type for vertex (float) and index (int) both require four bytes of storage space.

of the marching cubes algorithm a slice is actually two voxels thick.

5.3.7 Neighbour Identification

The final modification to the standard MCA involves identifying all of the directly connected neighbouring vertices within the mesh. This step is required to facilitate region growing operations where region growing is used to identify initial polyp candidates that meet the required shape and size criteria. As each triangle, consisting of vertices e_0, e_1, and e_2, is identified, its vertex relationships are added to an array structure where e_0 is associated with e_1 & e_2 (i.e. two vertex pairs (e_0, e_1) and (e_0, e_2)), e_1 is associated with e_0 & e_2 and e_2 is associated with e_0 & e_1. A vertex pair is only added to the array structure if this vertex pair is not already present. An example illustrating the neighbour identification process is illustrated in Figure 5.17. Representing the vertex neighbours in this way reduces the task of neighbourhood identification from an extensive mesh search to a simple table lookup i.e. by specifying the index of one vertex the indices of all of the neighbouring vertices are returned. This method for recording the vertex relationships within the mesh has also been used by (Li et al. 2005b)
5.3.8 Modified MCA Summary

The improved version of the MCA described in this section represents a significant extension over the standard MCA. The standard version generates vertices and unit normals that represent a particular isosurface. The improved version fixes the topology problems associated with the standard algorithm; provides local shape measurements for each vertex in the extracted mesh; generates more accurate unit normals and provides information regarding vertex neighbours, density at a particular vertex, as well as being able to assign a vertex to a particular anatomical segment of the colon. All of this is done in an extremely memory efficient manner. Organising and characterising the colonic mucosa in this way provides a robust and flexible foundation for the development and implementation of multistage CAD-CTC algorithms.

5.4 Initial Polyp Candidate Identification

Initial polyp candidate identification involves segmenting the colonic mucosa into two categories: suspicious regions that may be representative of colorectal polyps and normal regions attributable to benign, naturally occurring colonic features. This operation represents the primary stage in a multistage CAD-CTC system typical of the more recently documented systems that were reviewed in Section 3.5. The primary stage is intended to quickly remove large sections of the colon surface that

4The amount of memory required to hold all of this information is approximately 50% of the amount of memory required to store the original data set.
Figure 5.18: External (a) and internal (b) surface renderings of a sample CTC data set (MMH-765/supine) demonstrating the type of output generated by the initial candidate detection stage. The regions identified as initial polyp candidates appear as red shaded patches. This is an extreme example where there are a total of 562 initial polyp candidates.

...are obviously representative of benign structures, and its output typically consists of a distinct set of surface patches that represent any actual polyps that are present in the CTC data set as well as numerous false positive regions (see Figure 5.18). These surface patches can then be evaluated individually using a subsequent, more comprehensive, analysis stage. Thus, the purpose of the primary stage is twofold:

- **Data reduction** - to eliminate the need to perform a detailed, time consuming analysis of regions of the colon surface that are obviously not attributable to colorectal polyps.

- **Data formatting** - so that the pertinent regions of the colon surface are represented as a series of surface patches that are more suitable for individual analysis.

It is extremely important that the primary stage retains all regions that are associated with clinically significant polyps. As a result, even though a significant amount...
of data reduction can be achieved, the number of false positive detections retained for subsequent evaluation can be extremely high.

Initial polyp candidate identification is performed based on an analysis of surface characteristics at vertices in the polygonal mesh that represents the colonic surface. All vertices in the mesh are grouped into three distinct classes as defined by Yoshida & Näppi (2001):

1. **Polyp cap** - Vertices of the polyp cap class have a shape index greater than 0.9 and a curvedness in the range 0.08 mm$^{-1}$ - 0.33 mm$^{-1}$.

2. **Polyp collar** - Vertices of the polyp collar class have a shape index greater than 0.8 and a curvedness in the range 0.05 mm$^{-1}$ to 0.5 mm$^{-1}$. The requirement for the polyp collar class is motivated by the fact that peripheral regions of a polyp do not always conform to a perfect cap shape.

3. **Nonpolyp** - All other vertices that do not meet the criteria for polyp cap or polyp collar classes fall into the nonpolyp class.

Note that the maximum curvedness values for the polyp cap and polyp collar classes are higher than the values suggested by Yoshida & Näppi. This modification was made in order to facilitate the detection of smaller polyps in the 2 - 3 mm size range.

The identification of initial polyp candidates can be performed once the vertex level classification has been completed. This process involves the use of hysteresis thresholding (as described by Lohmann (1998)). Seed points are identified that belong to the polyp cap class. Vertex based region growing is initiated at these vertices and allowed to expand into vertices of the polyp collar class. The process continues until all of the surface patches with polyp like properties have been identified (see Figure 5.19). Any patches that have a maximum patch diameter above 2 mm are recorded for further analysis while the remainder, which do not meet this requirement, are discarded. The minimum size constraint eliminates extremely small candidate regions and reduces the number of detections retained for further processing. It is clear that the polyp size specified above is much smaller than the minimum size for clinically significant polyps, i.e. 5 mm. This is due to the fact that only a portion of the surface of a polyp may be flagged as having polyp-like characteristics. Setting the minimum size to 2 mm ensures that a 5 mm polyp will be retained for
Chapter 5

CAD-CTC Contributions

- Polyp cap vertices
- Polyp collar vertices
- Non-polyp vertices

Figure 5.19: Hysteresis thresholding based region growing in a polygonal mesh. An initial seed point is selected that belongs to the polyp cap class V_s (a). Neighbouring vertices belonging to either the polyp cap or polyp collar classes are added to the region (b) & (c). The region growing process completes when no more suitable neighbours are available (d). Note that the region growing process must start from a vertex of the polyp cap class.

Further processing even if only a small proportion the surface was flagged (i.e. approximately 15% in the case of a perfectly spherical polyp). An example of the output generated by the initial polyp candidate detection technique is illustrated in Figure 5.18. In this example, the total number of vertices in the colon surface is 714,716. The initial polyp candidate detection technique flags 13,526 (1.89%) of these before the application of the size filter, and 7,208 (1.01%) are retained after the application of the size filter. Thus, it is clear that the primary stage significantly reduces the amount of data retained for subsequent analysis.

The vertex based region growing process that is used to identify polyp candidate regions is much the same as the voxel based region growing process that is used for colon segmentation (see Section 4.4). The main difference between the two
approaches is the concept of a neighbour. In the case of voxel based region growing there are several different possible neighbourhood configurations: face connected with six neighbours, edge connected with 18 neighbours and corner connected with 26 neighbours. Conversely, in the case of vertex based region growing the concept of a neighbour is very well defined. Here, the neighbours of a vertex are only those vertices that are directly connected as outlined in Section 5.3.7.

5.5 False Positive Reduction

Following initial polyp candidate detection, a more detailed analysis of the flagged regions is generally carried out. This second stage analysis is intended to reduce the number of false positive detections to an acceptable level while, at the same time, retaining the high sensitivity achieved by the primary stage. This section describes a novel false positive reduction technique that is based on a number of important observations:

1. A polyp is a spherical or ellipsoidal projection into the colon lumen. As a result the boundary of a polyp will be circular or elliptical. This is evident from the illustration of an actual polyp in Figure 5.20 (b) where the boundary of the polyp is roughly elliptical.

2. In the case of an actual polyp, the candidate region may not completely encompass the region of the colon surface that is attributable to that polyp. This is evident from the illustration of an actual polyp and its associated candidate region in Figure 5.20 (c).

3. A candidate region attributable to a false positive detection can have an irregular boundary with numerous bays. This is evident from the illustration of sample false positive detections in Figures 5.20 (d) & (e).

This novel false positive reduction technique involves generating an alternative polyp candidate representation and expanding the resulting candidate region so that it is more representative of an actual polyp. Thus, an actual polyp should retain its original polyp-like properties, whereas a false positive should expand to include more nonpolyp features. The objective of this enhancement technique is to improve the ability to discriminate between true polyps and false positives.
Chapter 5

Figure 5.20: Examples of a true polyp and false positive detection generated by the initial candidate detection stage. (a) A 2-D axial slice containing a polyp. The location of the polyp is indicated using an arrow. (b) A 3-D surface rendering of the region containing the polyp. (c) The section of the polyp identified by the initial candidate detection stage. (d) & (e) Irregular shaped false positive detections caused by regions of the colon surface with polyp-like properties.

The polyp enhancement technique described in this section is novel, however, the concept of polyp enhancement is not new and other approaches have been described in the literature. For example, Konukoglu et al. (2005a) developed a polyp detection technique based on heat diffusion fields that included a built-in enhancement scheme. Using this technique the colon lumen was initially considered to be held at a constant temperature. The subsequent heat diffusion process generated heat diffusion pattern singularities near the centres of structures that protruded into the colon lumen. These singularities were considered to represent the locations of potential polyps. Further enhancement was achieved by using a non-linear diffusion scheme that depended on the curvature of the iso-temperature surfaces of the diffusing heat field. This involved increasing the rate of diffusion in cases where the iso-temperature surfaces were concave and had the effect of emphasising the apex of
protruding structures. The same group also developed a level-set based approach to polyp enhancement that was designed to suppress the neck of a polyp while emphasising its apex (Konukoğlu et al. 2005b). This enhancement technique was developed to improve the performance of any CAD-CTC algorithm that considers a polyp to be an approximately spherical structure that protrudes into the colon lumen. An evaluation of the technique was carried out using the surface normal overlap (SNO) CAD-CTC algorithm (Paik et al. 2004, discussed in Section 3.5.3.4). A single supine data set containing 31 polyps > 5 mm in size was assessed using the SNO algorithm. A maximum pre-enhancement sensitivity of 55% was achieved with 368 false positive detections. The use of level-set based enhancement reduced the number of false positive detections at this sensitivity level from 368 to 49 (an 87% reduction). Enhancement was also reported to increase the maximum sensitivity of the SNO algorithm from 55% to 74%. These results demonstrate the potential benefits of using an enhancement scheme in conjunction with a CAD-CTC algorithm.

5.5.1 Alternative Polyp Representation

The alternative polyp representation involves generating a 2-D approximation of the 3-D surface patch that is associated with a polyp candidate. This alternative polyp representation can then be analysed using 2-D techniques. The generation of the alternative representation consists of two stages: The first stage, polyp candidate projection, involves projecting the vertices of the candidate onto a plane. The second stage essentially unwraps the candidate onto the plane so that the entire surface of the candidate can be visualised. Both of these concepts are illustrated in Figure 5.21. The entire process will be referred to as fingerprinting as it creates a 2-D approximation of a 3-D surface.

5.5.1.1 Polyp Candidate Projection

Polyp candidate projection involves projecting the individual vertices of the polyp candidate onto a plane that is roughly parallel to the surface of the candidate. Projection has previously been used in conjunction with colon data to generate a flattened representation of the colon surface specifically for visualisation purposes (Haker et al. 2000). The approach outlined here can also be used for visualisation, however, its primary purpose is to enable enhancement of polyp candidate data prior to false positive reduction. The first stage in the projection process involves
Alternative polyp representations (a) Polyp candidate projection, where each candidate vertex is projected onto the plane in the direction of the normal to the surface of the plane (b) Polyp candidate fingerprinting, an extension to polyp candidate projection, where a flattened representation of the surface, that preserves the original vertex layout, is generated

Figure 5.21

The definition of the projection plane A plane can be defined by specifying

- A point that belongs to that plane \((x_p, y_p, z_p)\) The central candidate vertex is used for this purpose, and is found by identifying the vertex with the minimum accumulated Euclidean distance to all other vertices in the candidate by means of an exhaustive search. This is essentially an implementation of the vector median filter.

- A vector specifying the direction of the normal to the surface of the plane \((a, b, c)\) The required vector is calculated by averaging the normals at each vertex in the polyp candidate. Thus yielding the average normal for the candidate region.

(see Equation 5.5.1) The resulting plane intersects the centremost candidate vertex and is roughly parallel to the surface of the candidate

\[a(x - x_p) + b(y - y_p) + c(z - z_p) = 0 \quad (5.5.1) \]

The projection process involves generating a line perpendicular to the plane (i.e., in the same direction as the normal to the surface of the plane) that intersects each of the candidate vertices. The intersection that this line makes with the plane is recorded as the projected vertex location. The line is defined by a direc-
tion i.e. \((a, b, c)\) from above and a point that belongs to the line \((x_i, y, z)\) (i.e. the relevant vertex location). This is represented by the following parametric equation

\[
\begin{align*}
x &= x_i + at \\
y &= y_i + bt \\
z &= z_i + ct
\end{align*}
\] (5.5.2)

By substituting the values of \(x, y\) and \(z\) from 5.5.2 into 5.5.1 the following value for \(t\) is obtained

\[
t = \frac{a(x_p - x_i) + b(y_p - y_i) + c(z_p - z_i)}{a^2 + b^2 + c^2}
\] (5.5.3)

Substituting this value for \(t\) back into 5.5.2 gives the coordinates for the intersection between the line originating from the associated polyp candidate vertex and the plane, i.e. the intersection point \((x, y, z)\). This process is repeated for all candidate vertices, as well as their immediate neighbours.

The intersection points consist of a set of coplanar 3-D coordinates and must be transformed into 2-D coordinates in order to facilitate analysis of the projected candidates using 2-D techniques. This is achieved by first transforming the points to 2-D polar coordinates and subsequently transforming them to 2-D cartesian coordinates as follows:

- Identify an origin point. The central point used to define the plane. The point \((x_p, y_p, z_p)\) is probably the most suitable option.

- Identify another random intersection point with the plane that is not \((x_p, y_p, z_p)\). These two points are considered to define a vector in the direction of the positive x-axis (reference vector \(\hat{u}\)).

- Calculate all of the vectors \(\vec{v}_n\) that connect the origin to each intersection point.

- Each intersection point can then be represented by:
 - An angle \(\theta_n\), the angle between \(\hat{u}\) and \(\vec{v}_n\), which is calculated from the dot product (5.5.4)
 - A length \(r_n\), which is the magnitude of \(\vec{v}_n\).
The smallest angle between a reference vector \vec{r} and another vector \vec{n} can be calculated using the dot product. The resulting angle can be either clockwise (a) or anticlockwise (b) with respect to the reference vector \vec{e}.

The polar coordinates (r_n, θ_n)

$$\theta_n = \cos^{-1} \left(\frac{\vec{u} \cdot \vec{v}_n}{|\vec{u}||\vec{v}_n|} \right)$$ \hspace{1cm} (5.5.4)

Further calculations are necessary because the dot product will only generate angles in the range $0 \rightarrow \pi$, i.e., the smallest of the angles between the two vectors (see Figure 5.22). The required angle, which represents the anti-clockwise angle φ_n between the two vectors (from the viewer's perspective), can be obtained using the cross product (see Equations 5.5.5 and 5.5.6) as follows:

- If the cross product is in the same direction as the surface normal then the anti-clockwise angle φ_n with respect to the reference vector \vec{u} is the angle obtained from the dot product, i.e., θ_n.

- However, if the cross product is in the opposite direction to the surface normal then the anti-clockwise angle φ_n with respect to the reference vector \vec{u} is equal to $2\pi - \theta_n$.

Where the cross product of the reference vector \vec{u} and the vector under investigation \vec{v}_n is

$$\vec{u} \times \vec{v}_n = \begin{vmatrix} u_y & u_z & 0 \\ v_{ny} & v_{nz} & 0 \\ 0 & 0 & 1 \end{vmatrix} i - \begin{vmatrix} u_x & u_z & 0 \\ v_{nx} & v_{nz} & 0 \\ 0 & 0 & 1 \end{vmatrix} j + \begin{vmatrix} u_x & u_y & 0 \\ v_{nx} & v_{ny} & 0 \\ 0 & 0 & 1 \end{vmatrix} k$$ \hspace{1cm} (5.5.5)
Figure 5.23: Calculating the anticlockwise angle from a reference vector \(u \) to another vector \(v \). (a) If the cross product \((u \times v)\) is in the same direction as the normal to the surface of the plane then the required angle \(\theta \) is obtained using the dot product. (b) However, if the cross product is in the opposite direction to the normal then the anticlockwise angle is given by \(2\pi - \theta \).

or more appropriately from an implementation perspective:

\[
\vec{u} \times \vec{v}_n = (u_y v_{nz} - u_z v_{ny}) - (u_x v_{nz} - v_{nx} u_z) + (u_z v_{ny} - v_{nx} u_y)
\]

(5.5.6)

Note that the orientation of the angles \(\theta_n \) and \(\varphi_n \) is from the viewer’s perspective and that the viewing vector is in the opposite direction to the surface normal \((a, b, c)\) discussed earlier. The angle adjustment process is illustrated in Figure 5.23. Once the angle has been adjusted, the intersection point can be converted from polar coordinates to cartesian coordinates for display purposes where, \(x_n = r \cos(\varphi_n) \) and \(y_n = r \sin(\varphi_n) \).

5.5.1.2 Polyp Candidate Fingerprinting

It is evident from the example in Figure 5.21 (a) that polyp candidate projection results in vertex overlap in situations where the vertices being projected belong to a surface that is perpendicular to the projection plane. An alternative polyp representation, that provides a more even distribution of candidate vertices, can be achieved by making a minor modification to the polyp candidate projection process. The alternative representation, which will be referred to as polyp candidate fingerprinting, involves altering the radial component of polar coordinates generated during the polyp candidate projection process.
CAD-CTC Contributions

Figure 5.24 An illustration of the different methods used for obtaining the radial component of the polar coordinates for a vertex being mapped to a 2-D plane (a) Polyp candidate projection (b) Polyp candidate fingerprinting

The revised radial component of the polar coordinates represents the geodesic distance from the relevant vertex to the reference point along the surface of the colonic mucosa. This process is illustrated in Figure 5.24 (b) and can be compared to the original approach, illustrated in Figure 5.24 (a), where the distance from the relevant intersection to the reference point was used. In the revised approach, the distance along the colon surface from a particular vertex to the reference vertex is approximated by identifying the shortest path between the two vertices in the polygonal mesh that represents the colon surface. Mapping the modified polar coordinates into cartesian coordinates, provides a flat representation of the polyp candidate vertices that can be visualised and analysed using conventional 2-D techniques.

5.5.1.3 Reformatted Polyp Candidate Visualisation

The final stage of the reformating process involves visualising the 2-D representation of the polyp candidate. The reformatted polyp candidate consists of irregularly spaced coplanar data points. The visualisation of these data points as a continuous 2-D digital image necessitates the use of some kind of interpolation scheme. Shepard (1968) proposed a 2-D interpolation technique for irregularly-spaced data that was developed for use with variables such as population density, housing conditions and other variables from the fields of planning and geography. The inverse distance weighted (IDW) interpolation scheme, proposed by Shepard, can be used to calculate the value $f_i(P)$ at any point P in a randomly sampled set of data points as follows.
\[f_i(P) = \begin{cases} \sum_{i=1}^{N} (d_i)^{-u} z_i, & \text{if } d_i \neq 0 \text{ for all } D_i \ (u > 0) \\ z_i, & \text{if } d_i = 0 \text{ for some } D_i \end{cases} \]

(5.5.7)

where \(f_i(P) \) is the interpolated value to be calculated at point \(P \), \(d_i \) is the distance from \(P \) to the data point \(D_i \), \(z_i \) is the value at data point \(D_i \), \(u \) is an arbitrary positive real number called the power parameter (a value of 2 is typically used) and \(N \) is the number of points in the randomly sampled data.

This approach can be used to visualise different properties associated with a polyp candidate including its depth map, density, curvedness, Gaussian curvature, mean curvature and shape index. In each case, the minimum and maximum values for each property are used to normalise the relevant property values in the range 0 - 255 for display purposes. The fingerprints associated with the polyp from Figure 5.20 are presented in 5.25.

5.5.2 Polyp Candidate Expansion

Polyp candidates generally occur as irregularly shaped surface patches that are not necessarily representative of the shape of the actual candidate region. An example of this can be seen in Figure 5.20 (c) on Page 155 where it is evident that the candidate region is a subset of the actual polyp surface. Polyps appear as roughly spherical or ellipsoidal projections into the colon lumen. Consequently, the fingerprint representation of a polyp will have a circular or elliptical boundary. A novel expansion technique, based on this observation, has been developed to increase the surface coverage of a polyp candidate in a structured manner (i.e., so that the structure of the candidate conforms more closely to that of an actual polyp).

The expansion technique involves an analysis of the fingerprint points to find the minimum bounding ellipse (MBE) for the subset of points that constitute a polyp candidate. Any additional points enclosed by the MBE, that were not already flagged as polyp candidate points, are included in the candidate region. There are two main consequences associated with expanding the candidate in this way:

- Candidates that represent actual polyps expand to include additional points that belong to the polyp. As a result, the candidate region retains its polylike...
Figure 5.25: The six different fingerprint representations for a polyp candidate (a) depth map, (b) density, (c) curvedness, (d) Gaussian curvature, (e) mean curvature and (f) shape index. In all cases black and white are used to represent the minimum and maximum values for the relevant property.
The candidate expansion process (a) The original candidate regions consisting of a connected set of vertices (b) the minimum bounding ellipse of the original vertices and the set of additional vertices that it encapsulates. The combined set of vertices represents the expanded candidate region.

- False positive regions, on the other hand, expand to include additional points that do not belong to a polyp. The inclusion of these points effectively dilutes the overall shape characteristics of the candidate so it becomes less polyp-like.

Note that this approach is intended to expand the candidate region so that it is more representative of an actual polyp. It is different to approaches that use 3-D sphere or ellipsoid fitting to obtain a volumetric representation of polyp candidates (e.g. Wang et al. (2005)) or to quantify conformance of polyp candidates to spherical/ellipsoidal models (e.g. Kiss et al. (2002) and Chowdhury et al. (2005b)).

Expanding polyp candidates in this manner should ultimately improve the ability to discriminate between true polyps and false positive detections. This observation is verified in Chapter 7, where the results of a study comparing the use of regular and expanded candidates for polyp detection will be presented. An example of the polyp candidate expansion process is illustrated in Figure 5.26.

There are various methods available for calculating the MBE for a set of coplanar points. Post (1994) proposed a brute force approach that involved calculating...
every ellipse that intersected with all subsets of 3, 4 or 5 points selected from the entire set of points. The ellipse with the smallest area that enclosed all of the original points was identified as the MBE. Welzl (1991) developed a simple randomised MBE algorithm, based on the Linear Programming algorithm developed by Seidel (1990). This approach was more efficient than the technique proposed by Post. An implementation of Welzl’s approach, developed by P. Sakov from the Marine Research division of the Commonwealth Scientific and Industrial Research Organisation (CSIRO), was ultimately used for MBE calculation. An illustration of the candidate expansion process is presented in Figure 5.27.

5.5.3 Global Polyp Candidate Features

Up to now a polyp candidate has been described in relation to its vertex level or local features. A statistical analysis of these local features can be used to yield a set of global features that describe the overall shape or density characteristics of the polyp candidate. It is also possible to obtain additional global polyp candidate features during the fingerprinting and candidate expansion processes. Three of these features, expansion, eccentricity and protrusiveness, will be introduced below and their utility in discriminating between true polyps and false positives will be evaluated in Chapter 7.

5.5.3.1 Expansion

An actual polyp generally has a roughly spherical or elliptical boundary. As a result the number of extra points added to an actual polyp during the candidate expansion process should be minimal. Conversely, a false positive can have an extremely irregular boundary with numerous bays (see Appendix D). Consequently, in the case of a false positive, the number of extra points added during the candidate expansion process can be quite high.

The expansion is a global polyp candidate feature that is based on this observation. The expansion can be calculated as the ratio of the number of extra candidate points to the original number of candidate points. In the case of the example in Figure 5.26 (i.e. eight additional points and 16 original points), the expansion would be 0.5. The expansion gives an indication of the irregularity of the original polyp candidate.

Figure 5.27: Expanded versions of the fingerprints from Figure 5.25 (a) depth map, (b) density, (c) curvedness, (d) Gaussian curvature, (e) mean curvature and (f) shape index. The red points are the original polyp candidate points and the green points are the expanded polyp candidate points.
Chapter 5
CAD-CTC Contributions

5.5.3.2 Eccentricity

The MBE generated during the candidate expansion process provides an approximation of the shape of the polyp boundary. In the case of an actual polyp, the boundary should be circular or slightly elliptical. Conversely, in the case of a false positive the shape can be more elongated. This is particularly true in the case of false positives caused by the haustral folds and those caused by the rectal tube (see Appendix D). Li et al. (2005b) also proposed the use of candidate elongation as a discriminating feature for the detection of colorectal polyps.

The eccentricity of the MBE can be used as a global polyp candidate feature to distinguish between true polyps and false positive detections based on this observation. The eccentricity of an ellipse e, defined in Equation 5.5.8, provides a relationship between the semimajor axis a and the semiminor axis b of an ellipse where $0 \leq e < 1$.

$$e \equiv \sqrt{1 - \frac{b^2}{a^2}} \tag{5.5.8}$$

A perfect circle has an eccentricity of exactly 0, whereas an ellipse has eccentricity greater than 0 but less than 1. The more elongated an ellipse the higher the eccentricity value.

5.5.3.3 Protrusiveness

A polyp is a protrusive growth that projects from the colonic mucosa into the colon lumen. A global measure of protrusiveness should help to distinguish between true polyps and flat false positives that have shape characteristics that conform to those of an actual polyp. The protrusiveness (or flatness) of a polyp candidate has previously been used as a discriminating feature for polyp detection (Taylor et al. 2006). The protrusiveness of a polyp candidate can be obtained during the fingerprinting process and is defined as the ratio of the maximum polyp candidate radius to the maximum vertex depth relative to the projection plane. The maximum polyp candidate radius is the Euclidean distance between the centremost vertex and furthest vertex belonging to the candidate. The maximum vertex depth is the distance between the projection plane ($ax + by + cz + d = 0$) and the furthest vertex from the projection plane (x_f, y_f, z_f) (see Equation 5.5.9).
\[
D = \arg\max \left(\frac{ax_f + by_f + cz_f + d}{\sqrt{a^2 + b^2 + c^2}} \right), f \in C
\] (5.59)

where \(C \) is the set of candidate surface points. Note that the protrusiveness can also be measured during the fingerprinting process by calculating the distance between each candidate vertex and its associated intersection point in the projection plane. A perfectly hemispherical candidate would have a protrusiveness value of 1.0, a candidate caused by flat region with polyp-like properties would have a protrusiveness less than 1.0 and a non-flat region caused by a sharp fold for example would have a protrusiveness greater than 1.0.

5.5.4 Polyp Candidate Feature Summary

A total of nine polyp candidate features have been introduced. Five of these features—shape index, curvedness, sphericity, mean curvature and Gaussian curvature (see Section 5.3.4 for definitions)—are based on local measurements that are calculated at each vertex in the mesh representation of the colon surface. A density measurement is also obtained at each vertex (see Section 5.3.5.2) and brings the number of measurements made using vertex level information to six. For each measurement, with the exception of sphericity, the associated global candidate feature is obtained by calculating the mean of the relevant local measurements for the set of vertices that represent the polyp candidate. Recall that sphericity is already a global candidate feature that is calculated using the average values for the principle (i.e., minimum and maximum), and mean curvatures for the set of vertices representing the candidate region (see Equation 5.3.7). Two versions of each global feature are generated for each candidate. One for the original candidate, and one for the expanded candidate. Three additional features—Expansion, eccentricity and protrusiveness—are also calculated during the candidate expansion process.

5.5.5 Polyp Candidate Classification

A polyp candidate is described by a feature vector \(x \) that consists of \(n \) individual measurements \((x_1, x_2, \ldots, x_n)\) and can be represented by a point in the feature space i.e., \(x \in \mathbb{R}^n \). The classification process involves determining the class of an object based on an evaluation of its feature vector. In the case of polyp candidate classification, the feature vector contains the pertinent candidate properties (e.g., a selection of those summarised in Section 5.5.4) and a candidate can be classified as
either a true polyp or a false positive (i.e., the classification process involves a binary decision).

It is clear from the review in Section 3.5 that a range of different classifiers and classifier configurations can be used for false positive reduction in CAD-CTC systems. It is also clear from this review that the choice of classifier is motivated to some extent by the type of study that is being carried out. The main objective of the study outlined in this thesis, is to compare the use of regular polyp candidates to those that have been expanded using the technique outlined in Section 5.5.2. A linear classifier provides an adequate solution to the two-class classification problem of false positive reduction. It also provides a means of generating a reasonably unbiased comparison between multiple feature sets. Consequently, a minimum distance classifier (MDC), which is a type of linear classifier, was selected for use in the comparative evaluation of the aforementioned feature sets and, ultimately, a MDC using the optimum feature set was used for the purpose of false positive reduction in the documented CAD-CTC system. A brief discussion concerning the training and operation of a MDC will follow.

5.5.1 Minimum Distance Classifier

A MDC (see Gonzalez & Woods (1992, pg 580) for description) can be used to perform supervised classification and must be trained prior to use. The training process involves obtaining the mean feature vector m_j for each class ω_j that is supported by the classifier i.e.

$$m_j = \frac{1}{N_j} \sum_{x \in \omega_j} x \quad j = 1, \ldots, c$$

(5.5.10)

where c is the number of classes supported by the classifier, N_j is the number of training vectors that are available for class ω_j and only feature vectors x that belong to objects of class ω_j are used in the summation.

Once the MDC has been trained, it can be used to assign an unknown object with feature vector x to one of the classes supported by the classifier. The process involves calculating the Euclidean distance $D_j(x)$ between x and m_j for all c classes where

$$D_j(x) = \|x - m_j\| \quad j = 1, \ldots, c$$

(5.5.11)
or alternatively:

\[D_j(x) = \sqrt{\sum_{i=1}^{n} (x_i - m_{ji})^2} \quad j = 1, \ldots, c \]

(5.5.12)

where \(n \) represents the size of the feature vector. The unknown object is subsequently assigned to the same class \(\omega_j \) as that of the closest reference vector.

5.6 Discussion

This chapter has provided a complete description of the CAD element of the CTC system that is outlined in this thesis. It is clear that the documented CAD system incorporates novel elements and draws on previously published techniques and as such, represents a hybrid approach. The use of a polygonal mesh provides a memory efficient way of representing the colon surface that also provides subvoxel accuracy. Modifications to the standard marching cubes algorithm have been introduced. These modifications facilitate the generation of an enhanced representation of the colon surface that includes a range of vertex level measurements as well as guaranteeing airtight surfaces and enabling mesh based region growing.

A novel false positive reduction scheme has also been introduced. This scheme involves the generation of an alternative representation of a polyp candidate prior to polyp candidate classification. The alternative representation expands the polyp candidate to fit an elliptical boundary. The expansion process is intended to make the structure of a candidate conform more accurately to that of an actual polyp. This causes actual polyps to retain their polyp-like characteristics, while false positives expand to include more false positive features. The alternative candidate representations proposed in this chapter are not limited to facilitating candidate enhancement. Another option would be to treat them as 2-D images and apply pattern recognition techniques, or classification techniques, from the image processing literature to identify true polyps. The use of such techniques may complement candidate enhancement and further improve the ability to differentiate between true polyps and false positives.

It should be noted that the choice of classifier is not optimum. The MDC was selected to expedite system implementation, and to facilitate a preliminary comparison between the original and expanded features in order to evaluate the effectiveness of
the candidate expansion process. It is clear from the review of the literature in Section 3.5 that a range of other more complex classifiers are available. Options include the use of linear discriminant analysis, quadratic discriminant analysis, neural networks, binary trees, support vector machines, Mahalanobis distance classifiers and many more. Novel classification strategies were also proposed, for example, the use of a committee of support vector machines. The use of a more complex classification system would almost certainly improve the overall performance of the CAD-CTC system outlined in this chapter. However, the purpose of the classifier in this instance was to compare two feature sets and an MDC adequately met this requirement.

The testing and evaluation of all aspects of the CAD scheme introduced in this chapter will be addressed in Chapter 7 following a discussion regarding system implementation in Chapter 6.
Chapter 6

System Implementation

The task of implementing the concepts discussed in Chapters 4 and 5 requires some consideration. This is due to a number of issues relating to overall system performance and memory usage. Of particular concern was the significant computational overhead associated with certain operations (e.g., the modified marching cubes algorithm), and the large volume of data being processed by the system as a whole. With these issues in mind, a modular approach to system implementation was adopted. This strategy enabled a phased system implementation, which was beneficial in relation to testing and development, and ultimately streamlined the system integration process.

6.1 Implementation Software

All system software was implemented using the Java programming language from Sun Microsystems. This choice was influenced by a number of contributing factors:

- Java is a multi-platform programming language and can be deployed on a number of different platforms without modification. This is especially important in a collaborative research environment.

- Java provides good support for both 2-D and 3-D graphics through well-documented, dedicated APIs.

- The object-orientated features of Java make it suitable for large scale structured software development.

- The performance of recent versions of Java, particularly in the case of data intensive operations typical of those performed in a CTC system, has been demonstrated to be comparable to that of C++ (Sadleir & Whelan 2005).
6.2 Implementation Strategy

Each system operation is implemented as a separate standalone Java application. Data is shared between related operations by means of a common filesystem. In general, the only parameter that is passed to each application upon execution is the name of the directory where the common data is stored. In the case of the classifier, multiple directories representing multiple data sets must be specified for training and evaluation purposes. An illustration of the dataflow between the modules of the completed system is presented in Figure 6.1. This approach to system implementation has a number of associated benefits.

6.2.1 Staggered Execution

Executing all of the system operations sequentially within a single application would require significant memory resources due to the large amount of intermediate data that is generated. Bearing in mind that a single data set is typically between 100 and 150 MB in size, the available system memory would quickly be exhausted. In addition to the considerable memory requirements, there would be a significant processing overhead if system execution took place in this manner. A modular system implementation with staggered execution is a much more attractive alternative, particularly in the case where a phased approach to system implementation is employed.

6.2.2 Well Defined Structure

Generally speaking, each of the operations has a well defined set of inputs and outputs (e.g., centreline calculation requires the segmented colon lumen as an input and generates a set of points representing the central path through the colon as an output). Implementing the operations as separate applications helps to formalise the boundaries, requirements and deliverables of the different system operations. This is evident from the system overview illustrated in Figure 6.1.

1 The amount of memory that can be allocated to a particular instance of the Java Virtual Machine (JVM) is limited. This value varies from platform to platform. In the case of the test platform, the maximum was found to be 1612 MB. However, the use of Java3D reduced this to under 1024 MB.
Figure 6.1 An illustration of the data flow through the completed system. Each system operation is represented by an individual block and the interconnections represent the data shared between the different operations.
Figure 6.2: The underlying file structure of the final system. Each patient has an individual directory under which the prone and supine data sets are stored. Each data set directory contains the relevant intermediate files generated by the system as well as a directory containing the original data set files in DICOM format.

6.3 Data Management

A significant amount of intermediate data is generated by the system due to its modular structure. The common information shared between different system modules is stored in data files. These data files are generally related to a particular data set and as such, a directory structure reflecting this relationship is utilised. The root system directory contains a subdirectory for each patient, which in turn contains two subdirectories for the prone and supine data sets respectively. A data set directory contains all of the intermediate files that are shared between the system modules as well as a further subdirectory containing the original DICOM files. Using this file structure, the data associated with a particular data set can be identified once the patient number and patient position are specified. The expanded file structure for the MMH-010/prone data set is illustrated in Figure 6.2.

The issue of data access is extremely important and has a significant impact on overall system performance. This is due to the large amount of information stored in each of the data files, and the number of read and write operations that must be performed by the system as a whole. In order to deal with this issue, a number of custom data files were introduced. In the majority of cases, these data files exploited the high speed ObjectInputStream and ObjectOutputStream classes provided by Java. The different data files that are provided, deal with the storage of data sets,
Figure 6.3 An illustration of the custom data set format. The header is extensible and supports the addition of new fields. The data can be assessed using a range of methods. These methods provide direct access to the voxel data and the associated flag values.

data set related properties and miscellaneous data that can be stored using arrays of primitives.

6.3.1 Data Set Files

A data set file contains both header and voxel information. The variable length header holds the dimensions of the data set, and can be used to store additional information if required. The voxel information is stored in a 1-D array of short primitives, in which each voxel value requires only 12-bits of storage space. The remaining bits are used to store four binary flags or a single 4-bit flag value, thus utilising all of the available storage space. The flag values can be used to specify additional information regarding a voxel e.g. in relation to the segmentation process, a flag value of 1 indicates that a particular voxel belongs to the colon lumen. A data set file is used to represent the original data set, the interpolated data set and the segmented data set. Saving and loading the data sets takes just seconds. An overview of the data set file format is illustrated in Figure 6.3.

6.3.2 Properties File

Each data set has a properties file in which certain information that is required by multiple modules is stored. The properties file is essentially a hashtable structure in which predefined property names are paired with the relevant property values. Each time a property value is set, the entire property file is saved. A selection of the supported properties are listed in Table 6.1.
Table 6.1: A selection of the properties supported by the properties file. These are essentially the global variables of the system and can be accessed by any of the system components.

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient ID</td>
<td>String</td>
<td>A numerical value (stored as a string to preserve leading zeros) that uniquely identifies a particular patient.</td>
</tr>
<tr>
<td>Patient position</td>
<td>String</td>
<td>The position of the patient when scanned. The possible value of this field are prone, supine and unknown.</td>
</tr>
<tr>
<td>Original voxel size</td>
<td>Point3f</td>
<td>The voxel size in mm determined from the original DICOM data set.</td>
</tr>
<tr>
<td>Interpolated voxel size</td>
<td>Point3f</td>
<td>The voxel size in mm after interpolation. The values for x, y and z should be equal.</td>
</tr>
<tr>
<td>Origin after cropping</td>
<td>Point3f</td>
<td>The offset in voxels from the cropped origin to the original origin.</td>
</tr>
<tr>
<td>Isosurface density</td>
<td>Float</td>
<td>The isosurface density in HU used for segmentation and isosurface extraction.</td>
</tr>
</tbody>
</table>

6.3.3 Miscellaneous Data Files

Other data files are used to store 1-D and 2-D arrays of float and int primitives as Java objects. These files are generally used in conjunction with the extracted isosurface associated with the colonic mucosa and store vertex coordinates, vertex indices and vertex normals. These files are also used to store the curvature measurements for each vertex, the colon segment index for each vertex and the density information for each vertex. A range of special classes were developed to allow an array object to be written as a series of primitive values. The resulting data file is compatible with, and can be retrieved using, a suitably constructed ObjectInputStream object. This significantly reduces the amount of memory required by the modified marching cubes algorithm and also improves the performance of subsequent system stages. The file format for an array of float primitives is illustrated in Figure 6.4.

6.4 User Interfaces

The majority of system modules, being autonomous, require no user interaction. Hence, user interfaces are mostly used for visualisation and navigation purposes. A limited level of user interaction is supported to enable tasks that must be performed manually i.e. colon lumen segmentation, polyp marking (in 2-D) and manual candi-
Chapter 6 System Implementation

Figure 6.4 The format of a file representing an array of float primitives that was created using a custom OutputStream class. First the constant header is written, then four zero bytes are written for the length field. All of the float values are written to the file and upon completion the length field is overwritten with the actual number of entries.

do date classification (in 3-D)² In order to support these operations, user interfaces are provided for visualisation of data representing either a series of slices or a polygonal surface mesh. Both user interfaces are multipurpose and support several modes of operation.

6.4.1 The Main System Interface

The main system user interface (see Figure 6.5) allows any of the available operations to be performed on any of the available data sets. A list of the available data sets is obtained by automatically querying the file system. Once an operation and a data set are selected, the main user interface is hidden and the selected operation is initiated. All operations require only a single data set, with the exception of the classifier where multiple data sets must be specified. The main user interface can be easily updated to include new operations, and upon loading the interface recalls the previously selected data set(s) and operation.

6.4.2 The Slice Viewer

The slice viewer facilitates the visualisation of 3-D voxel data as a series of 2-D slices. The slices can be orientated in any of the axial, sagittal or coronal directions (with axial being the default). The display slice is selected by means of a slider or by using the navigation buttons. Additional visualisation features, including zoom and simulated scout X-ray generation, can be accessed via the menu system. Colour

²Segmentation is the only aspect of the system that requires manual intervention. Polyp marking and candidate classification are only required for testing and evaluation purposes.
maps can be used to associate a colour with a particular intensity value, flag bit or flag value. The location and density of the voxel associated with the current mouse position are displayed in the title bar. The slice viewer and its associated visualisation modes are illustrated in Figure 6.6. The three modes that support user interaction will be outlined in the following text.

6.4.2.1 Polyp Marking

One of the first tasks that must be performed upon receipt of a data set is to mark the actual polyp locations. This is achieved using gold standard information that was determined by a radiologist based on an unblinded review of the CTC data sets where the radiologist has access to the conventional colonoscopy findings. These locations are stored in the file system and are used at a later stage for classifier training and evaluation purposes. Other polyp information including polyp size and type is also recorded at this stage. The polyp marking process is illustrated in Figure 6.6 (a).

The polyp marking process is supported by the slice viewer through a custom mouse listener interface. Two types of event are supported by this interface:

- **Add polyp**: Initiated by a mouse click on the display panel of the slice viewer, this event records the current mouse coordinates \((x, z)\) and slice number \(y\) as a polyp.

- **Remove polyp**: Initiated by a key press (CTRL key) and a mouse click on the display panel of the slice viewer. This event removes a previously recorded
Figure 6.6: Four possible visualisation modes of the slice viewer. (a) Polyp marking (interactive), (b) Segmentation (interactive), (c) Centreline calculation (display only), and (d) density calculation (display only).
polyp from the list if the click location is within a certain distance of the actual polyp location.

The position of each marked polyp is indicated by a red circle with a radius of 3 mm representing the region occupied by that polyp. If the number of marked polyps is greater than zero, the marked polyp count is displayed in the top left corner of the slice viewer display. The gold standard polyp information identified using the polyp marking interface is saved to the file system in a file called `polyp info`.

6.4.2.2 Seed Point Selection

The only aspect of polyp detection requiring user input is the task of seed point selection for colon lumen segmentation (see Section 4.4). Note that a fully automated colon lumen segmentation technique has been developed by the VSG (Chowdhury et al. 2005a). This technique will ultimately be incorporated into the CAD-CTC system described in this thesis, thus fully automating the polyp detection process.

In order to initiate the segmentation process, a seed point is selected using the slice viewer interface (see Figure 6.6(b)). This operation is facilitated by a custom mouse listener interface. Only one event is supported by this interface:

- **Seed point select** Initiated by a mouse click on the display panel of the slice viewer. This event initiates region growing from the current mouse coordinates (x, z) and slice number y.

Multiple seed points can be selected in cases where the colon lumen is presented as multiple segments due to collapse or blockage. The simulated scout X-ray can be used to monitor the segmentation process. Upon completion, when the slice viewer window is closed, the segmented version of the data set is saved to the file system as `dataset iso seg`.

6.4.2.3 Viewpoint Selection

The slice viewer can be used to update the current viewpoint for the 3-D surface rendered model of the colon that is displayed in an associated surface viewer interface. This operation is facilitated by a custom viewpoint update listener interface. One event is supported by this interface:

- **Viewpoint update** Occurs following a mouse drag event. The coordinates associated with the mouse release and mouse press represent the start and
end points of the view vector respectively. The viewpoint is represented by the mouse release coordinates.

The viewpoint selection tool essentially bridges the gap between the slice and surface representations of the colon lumen and greatly simplifies the viewpoint selection process.

6.4.3 The Surface Viewer

The surface viewer is a custom Java3D application that is used to visualise the 3-D triangular mesh representation of the colon generated by the modified MCA that was described in Section 5.3. The surface viewer has several mandatory inputs including vertex coordinates, normals and vertex indices. All of these inputs must be specified for the surface to be displayed. Additional optional inputs may also be specified to enable additional functionality and visualisation modes. These optional inputs include the centreline points and the vertex subsegmentation information.

The initial view provided by the surface viewer is presented in Figure 6.7 (a). There are three other main modes of operation provided by the surface viewer: polyp view, candidate view and flythrough.

6.4.3.1 Polyp View

Each actual polyp can be viewed using backward and forward navigation buttons or by selecting the relevant polyp index from a dropdown menu. When a polyp is selected, the viewer is positioned directly above the polyp (in the direction of the central normal for the polyp) and moved back a fixed distance (20 mm) so that the entire polyp can be visualised. A button is provided so that the viewer can jump to the nearest candidate to enable manual candidate classification (required for classifier training). The polyp view mode is illustrated in Figure 6.7 (b). This polyp visualisation technique is based on the method described by Vining et al (1998).

6.4.3.2 Candidate View

A similar set of controls is provided to view each of the polyp candidates identified by the initial polyp candidate identification stage (see Section 5.4). Extra functionality is provided so that each candidate can be assigned to a class. This manual classification can be used in the training and automatic evaluation of the classifier.
Figure 6.7: The different modes of operation of the surface viewer. (a) The default external view of the segmented colon lumen. (b) The polyp view where each actual polyp can be viewed. (c) The candidate view where each candidate can be visualised and classified. (d) The fly through mode where the user is automatically guided through the surface model of the colon using the set of points generated during the centreline calculation stage.
stage of the system. When a candidate is assigned to a class, its colour is changed to reflect the class to which it belongs. A save option is provided so that the classified polyp information can be saved for use in conjunction with the classifier. A button is also provided so that the viewer can jump to the nearest actual polyp. The candidate view mode is illustrated in Figure 6.7 (c).

6.4.3.3 Flythrough

The set of points generated by the centreline calculation stage can be used to automatically guide the user through the data set between endpoints located in the rectum and the caecum. The centreline points must be lowpass filtered before they can be used. This ensures that the transition from one point to the next is smooth. Dedicated navigation controls can be used to initiate flythrough, indicate direction, pause and ultimately stop the navigation process. The centreline path is displayed by default but can be turned on and off depending on user preference. The flythrough mode is illustrated in Figure 6.7 (d).

6.4.4 The Fingerprint Viewer

A dedicated user interface is provided for visualising the fingerprint representation that is associated with a polyp candidate. The fingerprint view automatically updates as the user sequences through the list of polyp candidates. The fingerprint view has a number of different display modes. The interpolation can be set to none, nearest neighbour or inverse distance weighted. In addition, the original and/or expanded candidate points can be displayed in conjunction with the MBE. The different modes of operation of the fingerprint viewer are illustrated in Figure 6.8.

6.5 Discussion

The modular implementation strategy described in this chapter enabled the concepts outlined in this thesis to be realised in a phased manner. Each module in the final system represents a specific operation and has a well defined set of inputs and outputs. The inputs and outputs are typically stored in intermediate files and the modules are implemented as independent standalone applications that are executed sequentially. This approach to system implementation reduces the amount of memory required for data processing while simultaneously streamlining the performance of the overall system. The modular approach adopted also facilitates the
Figure 6.8: The different modes of operation of the fingerprint viewer. (a) a sample polyp candidate (in this case an actual polyp) displayed using the 3-D surface viewer. (b) The uninterpolated fingerprint points associated with the candidate. (c) The fingerprint points interpolated with nearest neighbour interpolation. (d) The fingerprint points interpolated using inverse distance weighting based interpolation. (e) The superimposition of the original candidate points. (f) The superimposition of the minimum bounding ellipse and the expanded candidate points.
integration of new system components in a straightforward manner. This is particularly beneficial in the case of a research system that is continually evolving.

The entire system was implemented using the Java programming language from Sun Microsystems. The use of Java enabled the development of a system that was not restricted to a specific platform. This ensures flexibility in relation to how the completed system is ultimately deployed. Java provides ample support for 2-D and 3-D graphics and can be used to develop tools for visualising various representations of medical image data. This is evident from the range of figures illustrating different aspects of CTC data that are presented throughout this thesis. Java is an interpreted programming language and is typically considered to be less efficient than a native programming language. However, it has been demonstrated that Java is as efficient as native code for implementing data intensive operations typical of those performed by the system outlined in this thesis. The complexity, functionality and robustness of the completed system demonstrates that Java was a worthy choice for system implementation.
A series of novel CTC techniques are introduced in this thesis. These techniques deal with different aspects of CTC including centreline calculation, colon lumen subsegmentation and automated polyp detection. This chapter outlines the testing strategy that was used to evaluate these techniques, and presents the results of the evaluation. The test data included clinical CTC data sets obtained from a number of sources as well as a range of computer generated synthetic colon phantoms.

7.1 Test Data

A range of CTC data was used in the development, training and evaluation of the different techniques outlined in this thesis. This data was also used to illustrate numerous concepts, issues and examples throughout the thesis. The data was obtained from three sources:

- **Boston University School of Medicine (BUSM)**
 - Location: Boston, MA, United States
 - Number of Patients: 1

- **Mater Misericordiae Hospital (MMH)**
 - Location: Dublin, Ireland
 - Number of patients: 37

- **Walter Reed Army Medical Centre (WRAMC)**

 \(^1\)The WRAMC data is provided courtesy of Dr Richard Choi, Virtual Colonoscopy Centre, Walter Reed Army Medical Centre. This data is available online and can be downloaded from http://nova.nlm.nih.gov/wramc/data_index.html, Accessed May 26th 2006.
Chapter 7

Testing and Results

- Location Washington, DC, United States
- Number of Patients 52

The data provided by these three sources will be reviewed below with particular attention given to the MMH data, which represented the main data used in this study. Sample images from each of the sources are illustrated in Figure 7.1.

![Figure 7.1](a) (b) (c)

Figure 7.1 A series of sample images selected from data sets obtained from the BUSM (a) (BUSM-001/supine), the MMH (b) (MMH-640/supine) and from the WRAMC (c) (WRAMC-239/supine). There is usually a small amount of residue in the data sets obtained from the BUSM and the MMH. The samples in (a) & (b) were selected specifically to illustrate this point. This residue is approximately the same density as soft tissue. In the case of the WRAMC data, there is a significant amount of contrast enhanced residue. This is evident from the sample illustrated in (c).

7.1.1 BUSM Data

The single patient data set received from the Department of Radiology, BUSM, was used in the early stages of the research that is outlined in this thesis, and was the only CTC data that was available while the MMH were initiating their CTC programme. This data set was previously used by Fenlon & Ferrucci (1997) in their publication outlining the CTC technique and its associated issues.

The BUSM data was used in the development of the data interpretation software that is discussed in Appendix B. It was also used to determine the implementation strategy outlined in Section 4.4, and in the early stages of the development of the centreline calculation technique that is discussed in Section 4.5. The main difference between this data and the data that was ultimately provided by the MMH is the slice spacing. The slice spacing in the BUSM data is 2.0 mm whereas the slice spacing...
in the MMH data is 1.5 mm. This was not a significant problem as all data was ultimately interpolated to generate isotropic voxels.

7.1.2 MMH Data

The data provided by the Department of Radiology and the Gastrointestinal Unit at the MMH represented the main data used in this research, specifically in relation to the development and evaluation of the CAD-CTC technique that is outlined in Chapter 5. The data provided by the MMH was generated for their comparative evaluation of conventional colonoscopy and CTC. A detailed summary of this data is provided in Appendix C. Thirty-seven patient data sets were received from the MMH on a phased basis resulting in a total of 68 usable data sets (from a possible 74). A total of 155 colorectal neoplasia are visible in these data sets; two (1.3%) are flat polyps, 98 (63.2%) are polyps < 5 mm in size, 44 (28.4%) are polyps 5 mm or greater in size and the remaining 11 (7.1%) represent colorectal masses.

7.1.2.1 Patient Preparation

Prior to their scheduled examination, patients were instructed to take a low-residue diet for 48 hours followed by clear fluids for 24 hours. The day before their examination, patients were instructed to take one sachet of Picolax at 08:00, a second sachet of Picolax at 12:00, a sachet of clean prep in a litre of cold water at 18:00 and a Senokot tablet at 23:00. Immediately before the examination, the colon was gently insufflated with room air to a maximum tolerable level and the patient was subsequently scanned in the prone and supine positions to reduce the effect of residual material in the colon.

7.1.2.2 Data Acquisition

The majority of scans were obtained using a 16 slice Siemens CT scanner with a collimation of 1.5 mm, a tube current of 250 mAs, a slice thickness of 3 mm, a reconstruction interval of 1.5 mm, a gantry rotation of 0.5 s and a field of view that varies with patient size. The scanning time for a single position was 10 - 15 seconds. Some of the older data sets were acquired using a Siemens Somatom 4, four slice multidetector spiral CT scanner with similar scanning parameters and a slightly longer scanning time of 20 - 30 seconds. In both cases a scan was acquired during a single breath-hold. The procedure was first performed in the prone position and...
then repeated in the supine position to reduce the effect of residual material in the colon. Patients were sent for a conventional colonoscopy examination immediately after CTC.

Each slice in the resulting data set contained 512×512 pixels and the number of slices varied from 153 to 316 with a mean of 263 slices per data set (see Appendix C). The number of slices depended on the height of the patient as well as the extent of the colon. The spacing between slices was typically 1.5 mm, with the exception of one data set where the slices were 3 mm apart. The average space between slices (1.522 mm) was approximately twice the average spacing between pixels within a slice (0.699 mm) and the average data set volume was 51.270 litres. The amount of memory required to store each volumetric data set was approximately 150 MB.

7.1.3 WRAMC Data

The WRAMC data consists of prone and supine data sets for 52 patients. Detailed virtual and optical colonoscopy reports are provided for each patient. In some cases optical colonoscopy videos and and pathology reports are also provided. The 52 patients had a total of 70 colonoscopy confirmed polyps. Forty nine (70%) of these polyps were reported to be visible in the prone, in the supine, or in both data sets.

The main difference between the WRAMC data sets and the data sets received from the BUSM and the MMH is the type of bowel preparation that was used. The CTC protocol utilised by the WRAMC incorporated a contrast enhanced bowel preparation (this is evident in Figure 7.1 (c)). Consequently, a colon lumen segmentation technique incorporating digital subtraction (sec Section 3.2.3) is required to identify the full extent of the colon.

The colon lumen segmentation technique outlined in Section 4.4 was developed for use with patient data sets in which a relatively low residue dry bowel preparation was used. This was typically the case with the BUSM and MMH data sets. A shortcoming of the segmentation technique outlined in this thesis, is that it is unable to deal with wet contrast enhanced data sets e.g. those provided by the WRAMC. In the case of the WRAMC data sets, the segmented version of the colon represents only voxels attributable to endoluminal air. The contrast enhanced regions are not included, the boundary of the contrast enhanced regions and the colon wall are not reconstructed, and the boundary artifacts between the endoluminal air and the contrast enhanced material are not removed. Consequently, limited use was made of
the WRAMC data, as it was not possible to obtain a complete segmentation

7.2 Test Platform

All tests were carried out using a Dell Precision 370 Workstation with a single Intel Pentium 4 CPU running at 3.2 GHz with 2 GB of RAM. The operating system was Microsoft Windows XP Professional Edition. The following additional software was installed:

- The Java Runtime Environment (JRE), Standard Edition 5.0 (build 1.5.0.04-b05)
- Java 3D for Windows (OpenGL Version) Runtime for the JRE (build 1.4.0-build5-experimental)

The choice of Java for system implementation was motivated by the factors listed in Section 6.1. In addition, the uncertainty regarding the performance of Java, particularly in the case of computationally intensive operations typically found in a CAD-CTC system, was resolved in the study by Sadleir & Whelan (2005). This study compared the use of interpreted Java and natively executed C++, for the implementation of the centreline calculation technique outlined in Section 4.5, and found the two alternatives to be comparable in terms of performance.

7.3 Centreline Evaluation

The centreline calculation technique outlined in Section 4.5 was evaluated in relation to the accuracy of the generated centreline and the overall performance of the centreline calculation process.

7.3.1 Test Data

The test data that was used in the evaluation of the centreline calculation algorithm consisted of 20 real patient data sets and four computer generated synthetic phantoms that were developed specifically for centreline evaluation.

7.3.1.1 Clinical Cases

The clinical data sets were selected to include a mixture of prone and supine studies with varying levels of collapse, blockage and residual material. This diverse range of
Table 7.1 The data sets used for centreline evaluation. The average number of segments in this test set was 2.25 and the average number of lumen voxels was 5,521,687.

<table>
<thead>
<tr>
<th>Patient ID</th>
<th># Segs</th>
<th># Voxels</th>
<th>Patient ID</th>
<th># Segs</th>
<th># Voxels</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMH-010S</td>
<td>3</td>
<td>3,667,269</td>
<td>MMH-234S</td>
<td>2</td>
<td>7,199,653</td>
</tr>
<tr>
<td>MMH-033S</td>
<td>4</td>
<td>2,258,287</td>
<td>MMH-291P</td>
<td>2</td>
<td>4,643,454</td>
</tr>
<tr>
<td>MMH-093P</td>
<td>1</td>
<td>3,584,789</td>
<td>MMH-316S</td>
<td>3</td>
<td>2,345,333</td>
</tr>
<tr>
<td>MMH-057S</td>
<td>2</td>
<td>7,009,275</td>
<td>MMH-368S</td>
<td>1</td>
<td>4,871,789</td>
</tr>
<tr>
<td>MMH-915S</td>
<td>3</td>
<td>1,662,761</td>
<td>MMH-451P</td>
<td>5</td>
<td>7,354,106</td>
</tr>
<tr>
<td>MMH-081S</td>
<td>1</td>
<td>3,479,881</td>
<td>MMH-526P</td>
<td>2</td>
<td>5,478,727</td>
</tr>
<tr>
<td>MMH-109S</td>
<td>3</td>
<td>2,991,453</td>
<td>MMH-640P</td>
<td>1</td>
<td>8,150,997</td>
</tr>
<tr>
<td>MMH-138P</td>
<td>2</td>
<td>3,905,869</td>
<td>MMH-672P</td>
<td>2</td>
<td>4,878,404</td>
</tr>
<tr>
<td>MMH-139S</td>
<td>2</td>
<td>4,770,474</td>
<td>MMH-765S</td>
<td>2</td>
<td>11,153,259</td>
</tr>
<tr>
<td>MMH-166S</td>
<td>2</td>
<td>6,404,688</td>
<td>MMH-909S</td>
<td>2</td>
<td>5,478,789</td>
</tr>
</tbody>
</table>

test data ensured that a realistic indication of overall algorithm operation would be obtained. The clinical cases that were used are listed in Table 7.1.

7.3.1.2 Phantom Data Set

Computer generated colon phantoms with known centrelines have been used for quantifying the accuracy of previously published centreline calculation techniques (Samara et al. 1999, Iordanescu & Summers 2003, Frimmel et al. 2004, Bouix et al. 2005). Similarly, a phantom study was carried out to evaluate the centreline calculation technique described in this thesis. A series of phantom data sets were created specifically to establish the accuracy of the centreline calculation technique. Each phantom was generated by initially specifying a curved path in 3-D space. A sphere was generated at each point along the path. The radius of successive spheres was cycled between two extrema in order to simulate the undulating effects caused by the haustral folds in a real patient data set. The 3-D curve, minimum and maximum sphere radii and frequency of the transitions between the minimum and maximum radii were all varied in order to generate different phantoms. All of the phantom data sets were lowpass filtered using a $3 \times 3 \times 3$ filter in order to simulate the partial volume effect at the boundary between air and soft tissue. A total of four distinct phantoms data sets (P1 - P4) were generated for evaluation purposes, these are illustrated in Figure 7.2.
Figure 7.2 An illustration of the four computer generated synthetic phantom data sets that were used for centreline evaluation.
Table 7.2 The endpoint detection error distances for each of the four phantom studies

The mean endpoint detection error was approximately 2 mm

<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectum Error (mm)</td>
<td>0.0</td>
<td>1.5</td>
<td>0.5</td>
<td>3.0</td>
<td>1.25</td>
</tr>
<tr>
<td>Caecum Error (mm)</td>
<td>2.0</td>
<td>2.0</td>
<td>3.5</td>
<td>4.0</td>
<td>2.875</td>
</tr>
<tr>
<td>Mean (mm)</td>
<td>1.0</td>
<td>1.75</td>
<td>2.0</td>
<td>3.5</td>
<td>2.063</td>
</tr>
</tbody>
</table>

7.3.2 Accuracy Evaluation

The accuracy evaluation consisted of three distinct tests that involved the use of clinical and phantom data sets to

1. Compare the location of the automatically detected endpoints with the actual endpoints (phantom data)

2. Establish, on a point by point basis, the correspondence between the automatically generated centreline and the actual centreline (phantom data)

3. Verify that the calculated centreline agreed with the expected centreline in all cases, particularly in cases where the colon lumen consisted of multiple segments (clinical data)

Euclidean distance measurements were used extensively in the first two tests.

7.3.2.1 Endpoint Detection Accuracy

There is no precise definition for the location of the two endpoints of the colon centreline. In general these points are taken as being the lowest points in the rectum and the caecum. This was the definition that was used in the development of the centreline calculation algorithm discussed in Section 4.5. In many cases the colon lumen consists of multiple segments due to collapse or blockage, and in these cases, the locations of the intermediate endpoints are even less obvious. The process of determining the accuracy of the automatically detected centreline endpoint locations involved quantifying the distance between the calculated endpoint and the known endpoints of the phantom centreline. The results of this evaluation for the four phantom studies are presented in Table 7.2. The mean error for the rectum point was found to be 1.25 mm and the mean error for the caecum point was found to be 2.875 mm, giving an overall mean endpoint detection error of approximately 2 mm.
Table 7.3 The results of the overall accuracy evaluations for the four phantom studies. The average standard deviation between the actual and calculated centrelines was less than 1 mm.

<table>
<thead>
<tr>
<th>Correspondence (%)</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Deviation (mm)</td>
<td>39</td>
<td>42</td>
<td>24</td>
<td>28</td>
<td>33 25</td>
</tr>
<tr>
<td>Maximum Deviation (mm)</td>
<td>0.463</td>
<td>0.425</td>
<td>0.952</td>
<td>1.105</td>
<td>0.736</td>
</tr>
<tr>
<td></td>
<td>2.693</td>
<td>2.179</td>
<td>3.606</td>
<td>5.679</td>
<td>3.539</td>
</tr>
</tbody>
</table>

7.3.2.2 Overall Centreline Accuracy

The evaluation of the overall accuracy of the automatically generated centreline was effectively an extension of the approach used to determine the accuracy of the automatically detected endpoints. The process involved measuring the distance between each voxel in the calculated centreline and its nearest neighbour in the original phantom centreline (this is similar to the mean displacement metric proposed by Frimmel et al. (2004)). If the distance was zero then a perfect match was recorded; otherwise, the measured distance value was recorded. Two centreline properties were generated during this evaluation: the standard deviation of the calculated centreline from the known centreline, and the percentage correspondence between the two centrelines.

The results of the accuracy evaluation are presented in Table 7.3. On average, the calculated centreline voxels perfectly matched the actual centreline voxels in approximately 33% of instances; the standard deviation between the two centrelines was less than 1 mm and the maximum deviation was 3.539 mm. This level of accuracy is comparable with levels reported by other groups (see Table 3.1). Sample renderings of the actual and calculated centrelines are illustrated in Figure 7.3 and Figure 7.4.

7.3.3 Performance Analysis

The performance analysis involved calculating the centrelines for the clinical cases discussed earlier. This was intended to provide an indication of overall system performance. An additional study was performed to quantify the effects of the optimisations outlined in Section 4.5.4 had on system performance. Both techniques produced perfectly matching centrelines in all cases. The comparison was performed by calculating the distance from each voxel in the optimised centreline with the nearest voxel in the standard centreline (similar to the phantom accuracy evaluation). In all cases, the sum of these distances was zero. The average time required for centreline calculation using the optimised approach was 5.284 seconds compared to...
Figure 7.3 A comparison of the actual and calculated centrelines from an endoluminal perspective. (a) The two centrelines closely track each other but never converge. (b) The calculated centreline converges with the actual centreline. Note that in both cases the standard deviation between the actual and calculated centrelines is less than 1 mm.

169,468 seconds for the standard approach (see Table 7.4 for a detailed breakdown of results). This represented an improvement of over 32 times. The once-off task of lookup table initialisation required approximately 41 minutes. However, loading the table prior to each centreline calculation required less than one second.

7.3.4 Centreline Correctness

The accuracy of the colon centreline technique was established quantitatively for the ideal case (i.e., for a synthetic phantom) using the two tests outlined in Sections 7.3.2.1 and 7.3.2.2. The purpose of the final test was to perform a qualitative evaluation of the calculated centreline for the clinical cases that were used in the study. There is no accepted definition for the actual centreline of a human colon (Iordanescu & Summers 2003). In the many studies a visual inspection is performed to ensure the correctness of the calculated centreline. A similar approach to evaluating centreline correctness was used in this study. The evaluation consisted of two main components:

1. To verify that the calculated centreline followed the expected path from the rectum to the caecum and that it was correctly centred in all cases.
Figure 7.4: A comparison of the actual and calculated centreline, for each of the phantoms, from an external perspective.
Table 7.4 Detailed results comparing the standard and optimised approaches to centreline calculation. Note: The optimisation technique only affected the skeleton generation stage of the process. The time required for all other stages remained the same as the unoptimised approach.

<table>
<thead>
<tr>
<th></th>
<th>Data set A (best case)</th>
<th>Data set B (worst case)</th>
<th>Average for all data sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient position</td>
<td>supine</td>
<td>supine</td>
<td>-</td>
</tr>
<tr>
<td>Data set size (slices)</td>
<td>239</td>
<td>281</td>
<td>264</td>
</tr>
<tr>
<td>Lumen size (voxels)</td>
<td>3,479,881</td>
<td>7,199,653</td>
<td>5,291,415</td>
</tr>
<tr>
<td>Number of colon segments</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Ratio of centreline/skeleton voxels</td>
<td>0.573</td>
<td>0.523</td>
<td>0.515</td>
</tr>
<tr>
<td>Loading of LUT (s)</td>
<td>0.312</td>
<td>0.25</td>
<td>0.307</td>
</tr>
<tr>
<td>Loading of cropped data set (s)</td>
<td>0.687</td>
<td>4.156</td>
<td>2.366</td>
</tr>
<tr>
<td>Endpoint detection (s)</td>
<td>0.218</td>
<td>1.578</td>
<td>0.948</td>
</tr>
<tr>
<td>Caecum point revision (s)</td>
<td>0.047</td>
<td>0.078</td>
<td>0.066</td>
</tr>
<tr>
<td>Surface detection (s)</td>
<td>0.282</td>
<td>0.453</td>
<td>0.329</td>
</tr>
<tr>
<td>Skeleton generation (s)</td>
<td>0.828</td>
<td>1.625</td>
<td>1.247</td>
</tr>
<tr>
<td>Skeleton reduction (s)</td>
<td>0.031</td>
<td>0.078</td>
<td>0.096</td>
</tr>
<tr>
<td>Overall with optimisation t_1 (s)</td>
<td>2.343</td>
<td>8.093</td>
<td>5.284</td>
</tr>
<tr>
<td>Overall without optimisation t_2 (s)</td>
<td>110.157</td>
<td>225.906</td>
<td>169.468</td>
</tr>
<tr>
<td>Improvement (t_2/t_1)</td>
<td>47.015</td>
<td>27.916</td>
<td>32.739</td>
</tr>
</tbody>
</table>

2 To verify, in the case of multi-segment colons, that the individual colon segments were linked up correctly.

This evaluation was purely qualitative and involved a visual inspection of the centrelines calculated for the clinical cases. The correct centreline was calculated in the majority of cases, even when the colon lumen consisted of several disjoined segments (see Figure 7.5). However, the process failed in two cases. In the first case, the failure occurred due to a shine through artefact that resulted in the caecum end point being detected in the mid ascending colon (see Figure 7.6 (a)). In the second case, disjoined centreline segments were incorrectly connected. This occurred due to a significant collapse in the sigmoid colon that resulted in the ascending colon/caecum being closer to the rectum than the descending colon. Thus, the rectum was incorrectly connected to the caecum, and the caecum point was incorrectly placed at the sigmoid flexure (see Figure 7.6 (b)).
Figure 7.5: Examples of the centreline displayed in conjunction with transparently rendered colons for colons with 3, 4, 2 and 1 segments, respectively.
7.4 Subsegmentation Evaluation

The subsegmentation process outlined in Section 4.6 was evaluated using the same clinical data set that was used in the centreline evaluation (see Table 7.1). In five of these cases, the flexure points were identified by a radiologist experienced in CTC. The subsegmentation evaluation consisted of establishing the difference between the automatically detected flexure points and those specified by the radiologist. In addition, a visual inspection of the remaining data sets was performed to ensure repeatability, and verify the correctness, of the subsegmentation process.

7.4.1 Flexure Detection Accuracy

In each of the five cases, the four flexures (rectosigmoid junction, sigmoid flexure, splenic flexure and hepatic flexure) were uniquely detected from each of the relevant colon centrelines in an average time of 2.55 seconds (range 0.55 - 4.04). No false positive detections were made. The position of the automatically detected and manually selected flexure points d_p was calculated relative to the centreline endpoint located in the rectum.
\[dp = \sum_{c=1}^{n} \sqrt{\frac{(v_s(x_c-x_{c-1}))^2 + (v_s(y_c-y_{c-1}))^2 + (v_s(z_c-z_{c-1}))^2}{v_s}} \]

(7.4.1)

where \(v_s \) represents the voxel size, \((x_c, y_c, z_c)\) are points on the centreline, and \(n \) is the number of centreline points. For all data sets used in this study the voxel size ranged between 0.617 mm and 0.847 mm. The mean error (ME) was calculated for each of the automatically detected flexure points, this was found to be 31.03 mm. The most accurately detected point was the hepatic flexure (ME = 7.53 mm) while the least accurately detected point was the sigmoid flexure (ME = 54.30 mm). It should be noted that it is impossible to uniquely identify the flexure points and that mean errors of this magnitude are acceptable. In addition, these errors should be considered in relation to the average colon length (including rectum) which was approximately two metres\(^2\). Therefore, the mean error for the detection of all points was 1.43\% of the actual colon length.

7.4.2 Subsegmentation Correctness

A qualitative evaluation of the correctness of the subsegmentation process was carried out based on a visual inspection the subsegmented colons. The subsegmentation process was applied in cases where the centreline was correctly calculated. The subsegmentation process operated as expected in all cases. Samples of the output from the subsegmentation process are illustrated in Figure 7.7. Note: These are the same data sets that are illustrated in Figure 7.5.

7.5 CAD-CTC Evaluation

The evaluation of the CAD-CTC technique outlined in Chapter 5 consisted of three main stages:

1. A comparison of the two main surface curvature based techniques for identifying initial polyp candidates.

2. A comparative evaluation of the use of regular candidate features versus expanded candidate features in discriminating between true polyps and false positives.

\(^2\)Based on the average lengths of the correctly calculated centrelines from Table 7.1 (2,173.375 mm).
Figure 7.7: Examples of the output from the subsegmentation process for colons with 3, 4, 2 and 1 segments respectively. Note: These are from the same data sets as the centrelines that are illustrated in Figure 7.5.
3. An overall comparison of the two classes of features using a linear classifier to determine the optimum candidate representation.

All aspects of CAD-CTC training, testing and evaluation were carried out using the MMH data sets.

7.5.1 Test Data

The MMH data (summarised in Appendix C) was used exclusively in the testing and evaluation of the CAD-CTC technique. Patients in the study underwent CTC followed immediately by conventional colonoscopy. The gold standard information regarding polyp size and location was determined based on an unblinded evaluation of the CTC data sets (i.e. the radiologist had access to the colonoscopy results). This ensured that the most accurate polyp information was available for training and evaluating the CAD-CTC system.

The tasks of polyp and mass detection are mutually exclusive operations and should not be combined due to the difference in morphology between the two types of anomaly. Consequently, masses were excluded from the test data as their inclusion would obviously have an adverse effect on the training and thus the operation of the polyp detection system being evaluated. This strategy was also employed by Acar et al. (2002) where a single 32 mm mass present in their study cohort was omitted from the training/evaluation data.

In order to increase the amount of test data available, each prone or supine data set was treated as a separate patient. This effectively doubled the amount of polyps available for CAD-CTC testing while ensuring a more rigorous evaluation as prone/supine polyp registration (see Section 3.4) was no longer an option to increase polyp detection sensitivity. The justification behind using the same polyp scanned in different positions as different polyps is illustrated in Figure 7.8. The gold standard information was entered manually using the dedicated user interface that was described in Section 6.4.2.1.

7.5.2 Primary Search Criteria

The two main groups involved in surface curvature based CAD-CTC research are from the National Institutes of Health (NIH) and the University of Chicago (UC). Each of these groups uses a different approach for identifying initial polyp candidates.
Figure 7.8 An illustration of the same polyp as it appears in the prone (a) and (c) and supine (b) and (d) data sets of a patient (MMH-393). It is evident that there are significant variations in the perceived polyp size and polyp morphology between the two positions.

- Candidate vertices were identified by the NIH approach as having a positive nonzero mean curvature ($H > 0$) and a positive nonzero Gaussian curvature ($K > 0$). Candidate regions with a maximum dimension greater than a minimum size threshold C_{min} were retained as polyp candidates. This approach to initial polyp candidate detection will be referred to at the H/K approach in the following text.

- The UC approach involved the use of shape index (R) and curvedness (S) curvature characteristics. The approach was described in relation to voxels but will be discussed here in relation to vertices. Two classes of candidate vertices were identified.
Table 7.5 The results of a comparative evaluation of the R/S and H/K approaches for initial polyp candidate detection using 10 randomly selected CTC data sets with a total of 27 polyps. The coverage indicates the percentage of the colon surface identified as having polyp-like properties. Ideally, the initial polyp candidate detection stage should minimise the colon surface coverage and the total number of candidates while retaining the maximum number of clinically significant polyps.

<table>
<thead>
<tr>
<th>Patient ID #Polyps</th>
<th>#Detections</th>
<th>#Candidates</th>
<th>Coverage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H/K</td>
<td>R/S</td>
<td>H/K</td>
</tr>
<tr>
<td>MMH-017S</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>MMH-120S</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MMH-161P</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MMH-208P</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MMH-234S</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>MMH-368P</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MMH-378P</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>MMH-451S</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MMH-483S</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>MMH-708S</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Mean</td>
<td>2.7</td>
<td>2.7</td>
<td>2.6</td>
</tr>
</tbody>
</table>

- **Cap** - Vertices of the polyp cap class have a shape index greater than 0.9 and a curvedness in the range 0.08 mm$^{-1}$ - 0.33 mm$^{-1}$

- **Collar** - Vertices of the polyp collar class have a shape index in the range 0.8 - 1.0 and a curvedness in the range 0.05 mm$^{-1}$ - 0.5 mm$^{-1}$

Candidate regions (consisting of both cap and collar vertices) and a maximum dimension that was greater than a minimum size threshold C_{min} were retained as polyp candidates. This approach to initial polyp candidate detection will be referred to as the R/S approach in the following text.

7.5.2.1 Initial Evaluation

A comparative evaluation of the two sets of features was carried out to establish which set of features provided the best overall performance. In both cases C_{min} was set to a value of 2 mm in order to guarantee the detection of all clinically significant polyps. This evaluation involved the use of 10 data sets (all with polyps) that were selected from the MMH CTC database (see Appendix C). The results of the evaluation are presented in Table 7.5 and will be summarised below.

- The H/K approach retained on average 6.912% (removed on average 93.088%) of the colon surface, whereas the R/S approach retained on average 1.172%
Testing and Results

(removed on average 98.828%) This difference is evident from a visual inspection of the same colon processed using the H/K approach (see Figure 7.9 (a) & (c)) and the R/S approach (see Figure 7.9 (b) & (d))

• The mean number of candidates generated by the H/K approach was 1,038 whereas the R/S approach generated an average of just 135.5 candidates3 (i.e., the H/K approach generated of seven times more candidates than the R/S approach)

• The H/K approach identified all 27 polyps that were present in the 10 data sets (100% sensitivity) However, the R/S approach failed to detect a single 3 mm polyp in one of the data sets (96% sensitivity)

Both initial polyp candidate detection techniques provided similar sensitivity levels However, the H/K approach generated over seven times more candidates than the R/S approach The single polyp that was not detected by the R/S approach was 3 mm in size and was not clinically significant. A qualitative evaluation of the differences in candidate patch size for actual polyps found no significant differences between the two approaches, see Figure 7.10

The R/S approach detected all clinically significant polyps in the test set and provided adequate polyp surface coverage with the relatively low number of false positive detections per data set (when compared with the use of the H/K approach) As a result, the R/S approach was used for initial polyp candidate detection

7.5.2.2 Overall Findings

When the R/S approach was used for initial candidate detection in the full test set, all 13 large polyps were identified, all 31 medium polyps were identified and of the 98 small polyps, a total of 90 (92%) were identified The average number of false positives per data set was 183

7.5.3 Automated Scoring

Each of the candidate regions detected by the primary stage must be manually classified as either a true polyp or false positive in order to automate subsequent tasks

3Other groups that used shape index for initial polyp candidate identification reported a similar number of detections, e.g., Wang et al. (2005) (SUNY) reported that their approach identified over 100 initial polyp candidates
Figure 7.9: Internal and external renderings of the same data set (MMH-708/supine) where initial candidate detection has performed using the H/K approach (a) & (c) and R/S approach (b) & (d). It is clear from a visual inspection of these renderings that the R/S approach generates far fewer polyp candidate regions.
including feature evaluation and classifier evaluation. The number of candidates generated by the primary stage was quite high (on average 183 per data set). As a result, an automated approach to scoring based on the technique described by Paik et al. (2004) was employed. Using this approach, a polyp candidate was defined as a true polyp if it was within a fixed distance of the gold standard coordinates of an actual polyp. This approach fully automated the task of candidate definition and greatly reduced the potential for errors that would be associated with manually defining the class of so many candidates. Following this process, candidate patches that were associated with polyps were shaded green, whereas those that were associated with false positives were shaded red.

7.5.4 Original versus Expanded Polyp Candidates

A series of tests were performed to compare the use of original candidates and expanded candidates for polyp detection. It was only possible to carry out an individual evaluation of three features: Shape index, sphericity and density. The remaining features: Mean curvature, Gaussian curvature and curvedness all needed to be com-

Figure 7.10: A comparison of candidate coverage for four polyps identified using the H/K (a) - (d) and R/S (e) - (h) approaches to initial polyp candidate detection. All four polyps are from the same data MMH-017/supine and their sizes from left to right are 5.25, 3.0, 3.0 and 5.5 mm respectively.
bined with at least one other feature in order to effectively discriminate between true polyps and false positives. The capability of each feature to discriminate between true polyps and false positives was evaluated using scatterplots and FROC curves. The FROC curves assumed the use of a threshold operation and were generated by moving the threshold across the range of values for the feature under evaluation from the highest feature value to the lowest. Candidates with feature values above the threshold were classified as true positives, whereas those with values below the threshold are classified as false positives. The sensitivity and false positive rate was plotted for each threshold value. Scatterplots enabled a visual comparison of the two candidate types, and FROC curves enabled a quantitative comparison of the sensitivities and false positive rates for the two candidate types over all three features.

7.5.4.1 Initial (Limited) Individual Feature Evaluation

A proof of concept evaluation was carried out using the prone and supine data sets for a single patient. The patient in question (MMH-017), had four polyps, all of which were visible in both the prone and the supine views. Following initial candidate identification, the prone study yielded 329 candidates and the supine study yielded 178 candidates (i.e., a total of 507 candidates). The scatterplots and FROC curves for each of the three candidate features are presented in Figures 7.11 to 7.13. Note in the expanded feature scatterplots, some of the outliers have been truncated. With the exception of the density feature, the use of fingerprinting and candidate expansion reduced the number of false positive detections by at least 25%, thus, demonstrating that the use of candidate expansion has the potential to markedly reduce the number of false positive detections in CAD-CTC.

7.5.4.2 Extended Individual Feature Evaluation

A more rigorous evaluation of the use of expanded candidates was carried out using a larger test set consisting of prone and supine data sets from five patients. These data sets contained a total of 24 polyps and initial polyp candidate detection yielded 1,948 candidates. The scatterplots and FROC curves for each of the three candidate features are illustrated in Figures 7.14 to 7.16. It is clear from an inspection of these plots that the use of expanded candidates had a detrimental effect on polyp detection sensitivity in the larger test set. Upon inspection of the missed polyps, it
Figure 7.11 A comparative evaluation of the original versus expanded shape index in a single patient study. (a) A scatterplot representing the distribution of the original candidates. (b) A scatterplot representing the distribution of the expanded candidates. (c) A FROC analysis comparing the performance of the original and expanded candidates. Note: At 100% sensitivity, the expanded candidates provide a 32% reduction in false positive detections.
Figure 7.12 A comparative evaluation of the original versus expanded sphericity in a single patient study (a) A scatterplot representing the distribution of the original candidates (b) A scatterplot representing the distribution of the expanded candidates (c) A FROC analysis comparing the performance of the original and expanded candidates. Note: At 100% sensitivity, the expanded candidates provide a 30% reduction in false positive detections.
Figure 7.13: A comparative evaluation of the original versus expanded density in a single patient study: (a) A scatterplot representing the distribution of the original candidates. (b) A scatterplot representing the distribution of the expanded candidates. (c) A FROC analysis comparing the performance of the original and expanded candidates. Note: The density feature does not provide a good discrimination between true and false positives.
Figure 7.14: A comparative evaluation of the original versus expanded shape index in a five patient study: (a) A scatterplot representing the distribution of the original candidates. (b) A scatterplot representing the distribution of the expanded candidates. (c) A FROC analysis comparing the performance of the original and expanded candidates. Note: At 100% sensitivity the expanded candidates caused a 137% increase in false positive detections.
Figure 7.15: A comparative evaluation of the original versus expanded sphericity in a five patient study: (a) A scatterplot representing the distribution of the original candidates. (b) A scatterplot representing the distribution of the expanded candidates. (c) A FROC analysis comparing the performance of the original and expanded candidates. Note: A sensitivity of 100% was not achievable in this experiment with expanded candidates.
Figure 7.16: A comparative evaluation of the original versus expanded density in a five patient study: (a) A scatterplot representing the distribution of the original candidates. (b) A scatterplot representing the distribution of the expanded candidates. (c) A FROC analysis comparing the performance of the original and expanded candidates. Note: The density feature does not provide a good discrimination between true and false positives.
Figure 7.17: A large polyp located on a fold (a) and its associated fingerprint (b) (from MMH-483/supine). The irregular boundary of the polyp causes the MBE to include points that belong to the fold. This dilutes the polyp's features, e.g. the mean shape index drops from 0.92 in the original candidate to 0.81 in the expanded candidate.

was found that candidate expansion diluted the properties of some polyps to such an extent that they were considered to be false positives. This problem occurred in the case of large polyps, or polyps that included sections of the folds that they were attached to. In both cases the major axis of the associated MBE was large, i.e. this problem did not occur in smaller candidate regions. An example of this problem is illustrated in Figure 7.17. Consequently, this study showed that candidate expansion can fail in certain cases, particularly in the case of large polyp candidates.

7.5.4.3 Candidate Density as a Discriminating Feature

The density feature was found, in all cases, to provide very bad discrimination between true polyps and false positives (i.e. the FROC curve approximated a straight line). As a result, the density feature was not included in the final polyp candidate feature set.

7.5.5 Combined Feature Evaluation

A classifier study was ultimately used to quantify the difference between using standard and expanded candidates for polyp detection. All of the candidate features, with the exception of candidate density, were used in this evaluation.
7.5.6 Classification of Standard Candidates

The classification of standard polyp candidates was performed using a MDC (described in Section 5.5.1). Each of the individual candidate features were normalised in the range 0 - 1 prior to classifier training. The leave one out approach was used for evaluating the classifier. The decision boundary was initially set to be midway between the mean true polyp feature vector and the mean false positive feature vector. At this setting, the use of standard candidates was found to give a sensitivity of 97% for polyps in the range 5 - 9 mm, and 92% for polyps that were 10 mm or larger. There were on average 17.5 false positive detections per data set when standard candidates were used.

7.5.7 Classification of Expanded Candidates

The classification of expanded polyp candidates was performed in a similar manner with one minor modification. The classifier was trained using standard polyp candidates as before, however, unknown candidates were expanded prior to classification. Polyp candidate expansion was not applied to all candidates due to the limitations discussed in Section 7.5.4.2. Only polyps below a certain size were expanded, the remainder retained their original features. A study was carried out to determine the maximum size threshold for reliable candidate expansion. This study had two objectives:

1. To determine the effect on polyp detection sensitivity as the size threshold was increased, and hence, determine the optimal operating threshold for the candidate expansion process.

2. To determine the effect on false positive detections as the size threshold was increased, and consequently, determine the level of false positive detections at the optimal operating threshold.

The required performance characteristics (i.e., sensitivity and false positive rate) were obtained for a range of candidate expansion thresholds. The range extended from zero to the size of the largest polyp candidate and was sampled at regular intervals. The size of a candidate was taken to be the length of the major axis of its MBE.

4This approach to classifier evaluation has been used extensively by other groups involved in CAD-CTC research (see Section 3.5).
Figure 7.18 A plot of polyp detection sensitivity versus increasing candidate expansion size threshold. Note that the system performance remains largely unaffected up to a size value of 5.6 mm.

A plot of the polyp detection sensitivity versus candidate expansion size threshold is illustrated in Figure 7.18. It is evident that the sensitivity for the detection of large polyps (≥ 10 mm) improves when the candidate expansion size threshold is low. However, as the threshold is increased, the sensitivity for the detection of large polyps decreases the most of all the size ranges that are plotted. The impact on the sensitivity for medium polyps is also negative but less pronounced and the impact on the sensitivity for the detection of small polyps is slightly negative initially before stabilising and increasing. These results are as expected based on the observations from Section 7.5.4.2. It is clear from this plot, that there are a range of candidate expansion sizes where polyp detection sensitivity for clinically significant polyps is improved or unaffected. This range extends from zero to a maximum value of 5.6 mm. This is the optimal operating threshold for candidate expansion. It should be noted at this point that a candidate region of this size may be indicative of a much larger polyp.

A second plot, representing the false positive rate per patient versus the candidate expansion size threshold is illustrated in Figure 7.19. The false positive rate
associated with standard candidates, i.e., where the candidate expansion size threshold is set to zero, is 17.5 per data set. As the size threshold increases, the false positive rate decreases. The false positive rate at the maximum candidate expansion size threshold is 12.0 per data set. This represents a 31.4% reduction in false positive detections, compared with the use of standard candidates. The reduction in false positive detections is achieved without adversely affecting polyp detection sensitivity. In fact, the candidate expansion process slightly increases the sensitivity for the detection of large polyps. At the optimum threshold, it was found that 10,900 (87%) of the 12,250 candidates were expanded, and 114 (85%) of the 134 actual polyps were expanded. Therefore, candidate expansion successfully meets its original objectives in the large majority of cases.

7.5.8 Classifier Performance Characterisation

The final part of this evaluation involved characterising the performance of the classifier for both modes of operation. This enabled the optimal classifier performance to be determined and thus, enabled the most accurate comparison between the use
of regular and expanded polyp candidates. The performance characterisation was performed using FROC analysis. A series of FROC curves were generated for clinically significant polyps (i.e. those ≥ 5 mm in size). This was achieved by moving the decision boundary of the classifier between the mean true polyp feature vector and the mean false positive feature vector. The FROC curve for clinically significant polyps is illustrated in Figure 7.20, at 97% sensitivity, original candidates generated 20.4 false positives per data set whereas, expanded candidates generated 12.0 (a 41.2% reduction).

Figure 7.20: A FROC curve comparing polyp detection sensitivity and false positive detection rate for clinically significant polyps ≥ 5 mm in size. Note that at 97% sensitivity, original candidates generated 20.4 false positives per data set whereas the use of expanded candidates generated 12.0 (a 41.2% reduction). The use of the additional features calculated during the candidate expansion process enabled a further reduction in the false positive rate to a minimum of 8.6 per data set (a 57.8% reduction).

7.5.9 Additional Candidate Features

Recall that three additional features were calculated during the fingerprinting and candidate expansion processes: Eccentricity, protrusiveness and expansion (see Section 5.5.3). An additional experiment was carried out to determine the maximum reduction in false positives achievable through the use of these features. In each case, the maximum feature value was calculated for the set of actual polyps that were used in this study. In the case of the protrusiveness feature, the minimum feature
value was also calculated. The combination of minimum and maximum protrusiveness values enabled the identification of flat as well as highly curved false positive regions. The calculated values were used as upper and lower thresholds to filter out false positive detections prior to candidate classification. The use of these three features, in addition to candidate expansion, resulted in a false positive rate of 8.6 per data set at a sensitivity of 97% (see Figure 7.20). This represents a 57.8% reduction in false positives when compared with the use of standard polyp candidates.

7.5.10 Statistical Analysis of Improvement

The results presented in this section indicate that the use of candidate expansion does improve the ability to differentiate between true polyps and false positives. An evaluation of the system was subsequently carried out in order to quantify the improvement and verify that it was statistically significant. All of the 29 data sets that contained polyps ≥ 5 mm were used in this evaluation. In each case, the class separation (CS)\(^5\) was recorded before and after candidate expansion. This process was repeated over a range of different candidate expansion size thresholds. The statistical significance of the difference in class separation was assessed for each threshold by computing the two-tailed \(p\) values of the paired \(t\) test on the relevant set of class separation values. The null hypothesis was that the difference between the class separation for regular and expanded candidates was zero over the 29 data sets. The results of this evaluation are presented in Table 7.6. At the optimum candidate expansion size threshold, the mean class separation increased by 3.9% (from 0.406 ± 0.100 to 0.422 ± 0.103) with a \(p\) value of 0.0106. These results verify that an improvement in the separation between true polyps and false positives was achieved and that the improvement was significant (\(p < 0.05\)). An example of the increased separation between the two classes is illustrated in Figure 7.21 where 2-D scatterplots of the candidates before and after candidate expansion are illustrated. These results also indicate that an increase in candidate expansion size threshold above the optimum value (5.6 mm) causes the separation between the mean CAD scores for true polyps and false positives to begin to decrease. It is important to note that this outcome is expected based on the results of the evaluation of the candidate expansion process (see Figure 7.18).

\(^5\)The class separation is a measure of the difference between the mean CAD score for true polyps and false positives for a particular data set. The CAD score indicates the likelihood of candidate
Table 7.6: The mean and standard deviation of the overall values for class separation before and after candidate expansion for a range of different candidate expansion size thresholds. Corresponding two-tailed \(p \) values are computed by paired \(t \) tests with the null hypothesis that the difference between the class separation for regular and expanded candidates was zero over the 29 data sets.

<table>
<thead>
<tr>
<th>Expansion size threshold (mm)</th>
<th>CS before expansion</th>
<th>CS after expansion</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>0.398 ± 0.130</td>
<td>0.5109</td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>0.404 ± 0.129</td>
<td>0.8794</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>0.422 ± 0.103</td>
<td>0.0106</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>0.420 ± 0.102</td>
<td>0.0014</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>0.416 ± 0.100</td>
<td>0.0042</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>0.412 ± 0.098</td>
<td>0.0002</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>0.409 ± 0.100</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>0.406 ± 0.100</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.406 ± 0.100</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>0.406 ± 0.100</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

7.6 Discussion

The three main contributions outlined in this thesis deal with colon centreline calculation, colon lumen subsegmentation and the computer assisted detection of colorectal polyps. This chapter outlined the testing strategy that was employed to evaluate each of these contributions, and presented the results of this evaluation.

The centreline calculation technique introduced in this thesis is fully automated and requires no user interaction. The results of the evaluation outlined in this chapter have shown that it is also fast, accurate and robust. On average, the optimised approach to 3DTT was found to be over 32 times faster than the standard approach. It reduced the average time required for centreline calculation from 169 seconds to 5.284 seconds. This included the time required to load the data, detect the relevant endpoints, obtain the skeleton for each colonic segment and, finally, to reduce the skeleton in order to yield the single path of voxels connecting the endpoints located in the rectum and the caecum. The accuracy of the technique has been confirmed using a series of computer generated synthetic colon phantoms with known centrelines. Endpoints were detected within approximately 2 mm of their actual locations and the standard deviation between the calculated centreline points and the actual centreline point was found to be less than 1 mm, with perfect matches in 33% of cases. This level of accuracy is comparable to, and in the majority of cases better being a true polyps and is normalised in the range 0 - 1.
Figure 7.21: 2D Scatterplots depicting the distribution of shape index and curvedness values for true polyps and false positives before (a) and after (b) the use of candidate expansion. These scatterplots were generated using 10 CTC data set randomly selected from the MMH database.
than, previously published centreline calculation algorithms (see Table 3.16). The centreline calculation technique has also been demonstrated to be robust using wide range of clinical test cases, including cases consisting of multiple colon segments due to instances of collapse or blockage. The Euclidean distance based approach to connecting disjoined centreline sections was successful in 15 of the 16 cases where the colon consisted of multiple segments. The error that occurred in the single case where this approach failed could have been avoided by modifying the connection process to ensure that the final centreline conformed to an ideal model of the colon. This type of model based enhancement was previously demonstrated by Chowdhury et al. (2005a) for use in conjunction with their colon lumen segmentation technique.

The subsegmentation algorithm has been demonstrated to accurately identify the flexures and junctions of the colon based on an analysis of the centreline. On average, the automatically detected flexure and junction points were found to be within approximately 30 mm of points identified by a radiologist. This error is equivalent to approximately 1.5% of the length of the colon centreline. The flexure points were ultimately used to associate each colon surface vertex with a particular colon segment. A visual inspection of the resulting subsegmented colon surface confirmed the correctness of the outcome, even in cases where the colon consisted of multiple disconnected segments due to blockages or collapse. The subsegmentation information can ultimately be used in conjunction with CAD, or manually read CTC, to automatically assign a polyp to a particular colon segment. Thus it can be used to enable automated reporting or to automatically register polyps between prone and supine data sets (see Section 3.4). The evaluation outlined in this chapter demonstrated the feasibility of subsegmentation technique described in this thesis, however, a more detailed quantitative analysis is required in order to demonstrate the robustness of the technique. A statistical comparison of the automatically detected flexure locations with those selected by a trained radiologist would establish the significance of the reported results. In addition, the proposed iterative filtering technique may not be optimal and other alternative approaches need to be investigated in order to determine the most effective method for flexure detection.

The evaluation of the CAD-CTC contributions outlined in this thesis consisted of two main components. An initial study was carried out to determine the optimal
approach to initial polyp candidate detection. This study involved the comparative evaluation of the features used by two of the main groups involved in surface curvature based CAD-CTC research: shape index/curvedness (UC) and mean/Gaussian curvature (NIH). Initial polyp candidate detection, using these two sets of features, was performed on ten sample data sets containing a total of 27 polyps. In both cases all of the clinically significant polyps were detected. However, the use of the shape/index curvedness features resulted in far fewer false positive detections. When the shape index/curvedness features were used to identify initial polyp candidates in the full test set, all of the clinically significant polyps, and 92% of the polyps < 5 mm in size, were detected. The number of false positive detections was 182. The initial polyp candidate detection stage of the CAD-CTC system outlined in this thesis is essentially a hybrid approach that combines the colon surface representation suggested by the NIH group with the candidate features suggested by the UC group.

A subsequent study was carried out to establish the effect of candidate expansion on polyp detection sensitivity. A total of 68 data sets were used in this evaluation. Fifty four of these data sets contained 42 clinically significant polyps (i.e. ≥ 5 mm in size) and the remaining 14 data sets did not contain any polyps. Prone and supine data sets were treated as different patients to increase the number of individual polyps that were available for evaluation purposes. The justification behind this decision is illustrated in Figure 7.8 on Page 204. An initial evaluation of the candidate expansion technique found that it could not be applied to all candidates, particularly in the case of large candidates. A subsequent, more comprehensive evaluation, found that candidates up to 5.6 mm in size could be reliably expanded. At this setting, 87% of all candidates, and 85% of all actual polyps, could be expanded without adversely affecting polyp detection sensitivity. A comparison between standard and expanded candidates was carried out using FROC analysis. At a maximum sensitivity of 97%, the use of standard candidates resulted in 20.4 false positives per data set. At the same sensitivity, expanded candidates resulted in 12.0 false positives per data set (a 41.2% reduction). When the additional features obtained during the candidate expansion and fingerprinting processes were used in conjunction with the expanded candidates the number of false positives per data set reduced to 8.6 (a 57.8% reduction when compared with standard candidates). These results demonstrate that candidate expansion does improve CAD-CTC performance and a subsequent evaluation indicated that the improvement was statistically significant. However, it should
be noted that only one possible use of candidate expansion was investigated in this study. This involved comparing the use of original and expanded candidates to determine whether the inclusion of expanded regions improved the ability to discriminate between true polyps and false positives. The results presented in this chapter confirm that the use of candidate expansion in this way does improve the separation between these two classes. However, other alternative variations of the candidate expansion process remain to be investigated. For example, a better strategy might involve classifying an unknown candidate based on its expansion region (i.e., the region added to the original candidate as a result of the expansion process) rather than its expanded region (i.e., the original candidate region combined with the expansion region).

Finally, it is important to recall that there is a great deal of inconsistency in the way results are reported for CAD-CTC studies. Individual per-polyp sensitivities were reported in this study. This contrasts with other studies documented in the literature where combined per-polyp or even combined per-patient sensitivities are reported. In the case of combined per-polyp sensitivity, a polyp is deemed to be detected if it is identified in either the prone or the supine data sets. For example, if all polyps were detected in either the prone scan or the supine scan of a particular patient (but not in both scans), it would be acceptable to report a 100% combined per-polyp sensitivity. However, this would correspond to an individual per-polyp sensitivity of just 50%. It should also be noted that at an individual per-polyp sensitivity of 50%, the number of false positives generated using expanded candidates in conjunction with additional features is 1.32 per data set. This is comparable with the lowest false positive rates that have been reported in the literature (see Table 3.2 on Page 95).
Chapter 8

Conclusions and Future Work

This thesis introduced a novel methodology for automating various aspects of CTC, particularly the tasks of polyp detection and reporting. The formulation of the proposed methodology was based on an extensive review of the related literature and gave rise to a series of research contributions. The theoretical contributions involved:

- Improving the performance of 3DTT based colon centreline calculation by using a novel LUT-based optimisation approach. An evaluation of the optimised approach demonstrated that a significant improvement in performance could be achieved without compromising accuracy.

- Accurately identifying the individual flexure points of the colon based on an analysis of the colon centreline. The detected flexure points were ultimately used to automatically divide the colon into its main anatomical regions, thus enabling automated reporting of CAD findings.

- Determining the optimal approach for the detection of initial polyp candidates. This involved a comparative evaluation of different surface curvature characteristics associated with a polygonal mesh representation of the colonic mucosa.

- Comparing the use of regular and expanded polyp candidates for the automatic detection of colorectal polyps. The main objective of this comparative study was to establish what effect the use of expanded candidates had on the rate of false positive detections.

The practical contributions related to the realisation of a comprehensive CAD-CTC system that incorporated all of the techniques and enhancements outlined in the
preceding chapters of this thesis. The completed CAD-CTC system consisted of the following components:

1. An extensible framework developed specifically to enable rapid prototyping and evaluation of CTC algorithms.

2. A suite of tools, utilities and algorithms that were developed during the course this research programme to deal with various aspects of CTC, specifically:

 (a) **Image interpretation** - accesses the DICOM encoded CTC data stored in the file system, extracts the pertinent patient details and acquisition information and reformats the relevant voxel data so that it is suitable for subsequent analysis.

 (b) **Colon lumen segmentation** - identifies each region in a CTC data set that is attributable to the colon lumen. This operation essentially creates a binary volumetric representation of the colon lumen.

 (c) **Centreline calculation** - reduces the volumetric representation of the colon lumen to a single path of centralised voxels spanning the entire length of the colon and terminating at endpoints located in the rectum and the caecum.

 (d) **Colon subsegmentation** - identifies the flexure points based on an analysis of the colon centreline. The flexure points are then used to divide the colon lumen into five distinct anatomical segments.

 (e) **Isosurface extraction** - converts the binary volumetric representation of the colon lumen resulting from segmentation into a polygonal mesh representation that is suitable for both processing and realtime visualisation.

 (f) **Vertex classification** - calculates a series of properties for each vertex in the mesh representation of the colon surface. These properties include shape characteristics, density information and information regarding anatomical location.

 (g) **Initial polyp candidate identification** - highlights patches of the colon surface that have polyp-like properties. This process involves analysing the surface curvature characteristics of the entire colon surface.
(h) **Polyp candidate expansion** - reformat polyp candidates and restructures them so that their shape conforms more closely to that of an actual polyp. Actual polyps retain their original polyp-like characteristics, whereas, false positives expand to include more false positive characteristics.

(i) **Polyp candidate classification** - determines whether an unknown polyp candidate is either a true polyp or a false positive and thus represents the final stage of the CAD-CTC system.

The completed system operates with minimal user interaction and has been validated using a range of clinical data.

8.1 Research Contributions

8.1.1 Major Contributions

The main contribution of this research is the novel approach to the computer aided detection of colorectal polyps at CTC. The primary objective of the CAD-CTC technique was to address the issue of false positive reduction. This was achieved by incorporating a novel intermediate stage into the conventional two stage model for polyp detection. The purpose of the intermediate stage was to expand polyp candidate regions in a structured manner so that their shape was more representative of actual polyps. The expansion process was intended to amplify the false positive characteristics of nonpolyps, while retaining the true positive characteristics of actual polyps. An evaluation of the expansion process demonstrated that it could be successfully applied to 87% of candidates without adversely affecting polyp detection sensitivity. Ultimately, the use of expanded candidates and their associated features was demonstrated to reduce false positive detections by 57.8%, from 20.4 per data set to 8.6 per data set, while maintaining a sensitivity level of 97% for the detection of clinically significant polyps. The improvement achieved by using expanded candidates was also demonstrated to be statistically significant. Other significant contributions include:

- A Java based medical image interpretation toolkit that supports images encoded using either DICOM or ANALYZE formats. This toolkit has been made available to the medical imaging community and is currently being used by
a number of different groups involved in various aspects of medical imaging research.

- An efficient centreline calculation algorithm that identifies the central path through the colon, even in cases where the colon consists of multiple disconnected segments due to collapse or blockage. The accuracy of the algorithm has been verified using a series of computer generated colon phantoms with known centrelines. An evaluation of the technique using clinical cases demonstrated that centreline calculation typically requires approximately five seconds.

- A novel approach to identifying the individual flexure points along the centreline of the colon and thus enabling the identification of the main anatomical regions of the colon. The resulting information can be used to automatically assign a polyp to a particular colonic region. Thus enabling automated reporting in accordance with the recommendations made by Zalis et al. (2005b).

- A detailed comparative evaluation of the two main surface curvature based techniques for identifying initial polyp candidates. This evaluation demonstrated that the use of shape index and curvedness features generated fewer false positive detections that the use of mean and Gaussian curvature, while maintaining the same polyp detection sensitivity for clinically significant polyps.

8.1.2 Minor Contributions

Although the research outlined in this thesis dealt specifically with CTC, many of the techniques discussed have potential applications in other areas of medical imaging research. Consequently, other contributions of this research include:

- A demonstration of the utility of the Java programming language and its associated APIs for large scale medical imaging application development.

- A series of development techniques that can be used to streamline the implementation of a large scale medical imaging system, particularly in the case of a collaborative research environment.

- A range of medical image processing and visualisation utilities (e.g. the modified marching cubes algorithm) that have potential uses in other areas of medical imaging.
8.2 Future Work

It is clear from the reviews in Chapters 2 and 3 that CTC is a multifaceted and extremely active research area. This thesis addressed a number of different aspects of CTC research. However, numerous opportunities remain to investigate other aspects of the technique.

8.2.1 Improved Colon Lumen Segmentation

The segmentation of the colon lumen is currently carried out manually. The user must select a seed point for each gas filled region that belongs to the colon. It is important to note that this is the only aspect of the entire system that requires user interaction. The reason for this is to ensure that a perfect segmentation of the colon is available for analysis in the CAD stage of the system.

Automation of the segmentation stage would completely remove the need for user interaction. The VSG has developed a fully automated colon lumen segmentation technique that is capable of identifying 100% of colon lumen voxels where the colon is well distended, and 95% of colon lumen voxels where there is collapse or blockage, with only 1% of detected voxels attributable to extracolonic structures (Chowdhury et al. 2005a) (reviewed in Section 3.2.1). The use of this colon segmentation technique would fully automate the task of computer aided polyp detection.

An additional improvement would involve using an orally ingested contrast agent to opacify residual faecal material prior to a CTC examination. This makes the bowel preparation much more patient friendly and may remove the need for scanning in dual positions, thus significantly reducing the amount of radiation that the patient is exposed to. Zalis et al. have published a series of studies dealing with incremental improvements to the digital subtraction colonography technique. However, there are still areas of this technique that warrant further attention, specifically the removal of PVE artifacts at the air/contrast interface and the accurate reconstruction of the air/tissue boundary at the subtraction interface. The WRAMC protocol incorporates an orally ingested contrast enhanced bowel preparation and thus the WRAMC data sets could be used to enable research in this area.
8.2.2 Enhanced False Positive Reduction

The candidate expansion process was found to be applicable to 87% of polyp candidates. The reason it could not be applied to the remaining 13% was because in certain cases polyp candidate patches extended beyond the boundary of the actual polyp. This was particularly true in the case of large candidate regions. A refinement of the initial candidate detection process, so that the candidate regions more accurately cover actual polyps, would enable candidate expansion to be applied to all candidates and enable a further reduction in false positive detections.

In addition, there are a number of consistent sources of false positive detection that commonly occur in CTC data sets. These include the rectal tube, the ileocecal valve and residual faecal material. The issue of residual faecal material has been addressed by the recent introduction of an oral contrast agent to opacify faecal material prior to CTC. The other sources, i.e. the rectal tube and the ileocecal valve, have been addressed by Iordanescu & Summers (2004) and Summers et al. (2004) respectively. Inclusion of these false positive reduction techniques in the CAD-CTC system outlined in this thesis would further reduce the number of false positive detections.

8.2.3 Further Evaluation

The evaluation of the techniques outlined in this thesis was limited by the number of suitable data sets provided by the Mater Misericordiae Hospital. Only 37 of the 250 patient data sets received contained polyps. Further evaluation would provide a more accurate indication of the performance of these techniques. The WRAMC has made their series of data sets available via the Internet for general usage. These data sets are all contrast enhanced. Once the updated segmentation scheme has been incorporated into the system, these data sets can be used for evaluation purposes. In addition, the American College of Radiology Imaging Network (ACRIN) CTC database will be archived and made available for academic and commercial groups to evaluate their CAD systems (Aberle et al. 2005). The inclusion of the WRAMC and ACRIN studies in the test database will facilitate a more detailed evaluation of all aspects of the system.
8.2.4 CTC Education

The need for reader training has been highlighted in the literature (Soto et al. 2005). A research project that is addressing this issue is currently underway at the VSG. This project involves the development of a remote access CTC training system that can be accessed over the Internet. The trainee marks and annotates suspected polyps and then submits their work for automatic evaluation (Luaute et al. 2006a). Many of the techniques outlined in this thesis are compatible with, and can be incorporated into, this remote access CTC training system.
Bibliography

Bouix, S , Siddiqi, K & Tannenbaum, A (2005), ‘Flux driven automatic centreline extraction’, Medical Image Analysis 9, 209–221

Bibliography

235
Bibliography

Dachman, A H , Nappi, J J , Frimmel, H & Yoshida, H (2002), Sources of false positives in computerized detection of polyps in CT colonography, in 'Proceedings of the 88th Scientific Assembly and Annual Meeting of the Radiological Society of North America (RSNA02)', Chicago, IL, USA, 1-6 December (abstract)

Deschamps, T & Cohen, L D (2000), Minimal path in 3D images and application to virtual endoscopy, in 'in Proceedings of the 6th European Conference on Computer Vision (ECCV00)', Dublin, Ireland, 26 June - 1 July

Deschamps, T & Cohen, L D (2001), 'Fast extraction of minimal paths in 3D images and applications to virtual endoscopy', *Medical Image Analysis* 5(4), 281–299

Dijkstra, E W (1959), 'A note on two problems in connexion with graphs', *Numerische Mathematik* 1, 269–271

Fenlon, H M & Ferrucci, J T (1997), 'Virtual colonoscopy What will the issues be?', *American Journal of Roentgenology* 169(2), 453–458
Bibliography

Frimmel, H, Nappi, J & Yoshida, H (2004), 'Fast and robust computation of colon centerline in CT colonography', *Medical Physics* 31(11), 3046–3056

Frimmel, H, Nappi, J & Yoshida, H (2005), 'Centerline-based colon segmentation for CT colonography', *Medical Physics* 32(8), 2665–2672

Bibliography

Hara, A K, Johnson, C D, Reed, J E, Ehman, R L & Ilstrup, D M (1996), 'Colorectal polyp detection with CT colography two- versus three-dimensional techniques Work in progress', *Radiology* 200(1), 49-54

Hecht, J R, Chen, S C, Lu, D S K & Gralnek, I M (1997), 'A patient satisfaction study of CT colonography (virtual colonoscopy) and colonoscopy', *Gastrointestinal Endoscopy* 45(4), Suppl 333 (abstract)

Hounsfield, G N (1973), 'Computerized transverse axial scanning (tomography) Part I Description of system', *British Journal of Radiology* 46, 1016-1022

Iordanescu, G & Summers, R M (2003), 'Automated centreline for computed tomography', *Academic Radiology* 10(11), 1291-1301

Iordanescu, G & Summers, R M (2004), 'Reduction of false positives on the rectal tube in computer-aided detection for CT colonography', *Medical Physics* 31(10), 2855-2862

239
Bibliography

Konukoğlu, E., Acar, B., Paik, D. S., Beaulieu, C. F. & Napel, S. (2005b), Polyp enhancement scheme for improved detection of colonic polyps in CT colonography,
in 'Proceedings of the 91st Scientific Assembly and Annual Meeting of the Radiological Society of North America (RSNA05)', Chicago, IL, USA, 27 November - 2 December. (abstract).

Luaute, V., Sadleir, R. J. T. & Whelan, P. F. (2006b), An automatic evaluation strategy for a remote access CT colonography training system, in ‘in Proceedings of Biosignal 2006 - The 18th International EURASIP (European Association for
Bibliography

Signal, Speech and Image Processing) Conference’, Brno, Czech Republic, 28-30 June

Bibliography

NCRI (2005), *Cancer in Ireland, 1994-2001 Incidence, mortality and treatment*
Bibliography

Paik, D S , Beaulieu, C F , Rubm, G D , Acar, B , Jeffrey, R B , Yee, J , Dey, J & Napel, S (2004), 'Surface normal overlap A computer-aided detection algorithm with application to colonic polyps and lung nodules in helical CT', *IEEE Transactions on Medical Imaging* 23(6), 661–675

Pickhardt, P J (2003), 'Three-dimensional endoluminal CT colonography (virtual colonoscopy) Comparison of three commercially available systems', *American Journal of Roentgenology* 181(6), 1599–1606

245
Bibliography

Robinson, K, Whelan, P F & Stack, J (2002), Segmentation of the biliary tree in MRCP data, in 'Proceedings of OPTO-Ireland SPIE's Regional Meeting on Optoelectronics, Photonics and Imaging', Galway, Ireland, 5-6 September, pp 192–200

and Annual Meeting of the Radiological Society of North America (RSNA03), Chicago, Nov 30th - Dec 5th. (abstract).

Bibliography

Thirion, J.-P & Gourdon, A (1993), The marching lines algorithm new results and proofs, Technical Report 1881-1, INRIA

250
Bibliography

Bibliography

Appendix A

Glossary of Medical Terminology

This thesis is intended for an engineering/computer science audience. It does, however, deal with an interdisciplinary research area and contains a significant amount of medical terminology. This appendix provides a glossary of some of the medical terms that are present and is intended to act as a reference for the reader.

A

Antegrade The term antegrade indicates forward motion. In the case of an examination of the colon, forward motion is considered to be movement into the colon.

Axial plane An axial plane through the body is a horizontal plane perpendicular to the direction of the spine that divides the body into top and bottom halves.

C

Caecum The caecum is the region at the start of the colon, resembling a pouch, that is located at the junction with the small intestine. The appendix extends from the caecum.

Carcinoma A carcinoma is a malignant new growth that usually occurs in the lining of an organ. Carcinomas are inclined to spread to other organs.

Colonic mucosa The colonic mucosa is the mucosal lining of the inner surface of the colon.

Colorectal mass A colorectal mass is a large growth that is located in either the colon or the rectum.
Colorectal neoplasia This term literally means new growths located in either the colon or the rectum. These growths can be either benign or malignant.

Coronal plane A coronal plane through the body is a vertical plane parallel to the direction of the spine that divides the body into front and back halves.

Distention The act of distention involves expanding an object by applying pressure from within.

Electrocautery snare A device used to remove lesions by using electric current to generate heat.

Endobronchial lesion An endobronchial lesion is a lesion that is located in the lungs.

Endoluminal The term endoluminal indicates something that is associated with the interior of a tubular organ, e.g., the colon.

Extracolonic An extracolonic finding is a finding associated with an organ other than the colon.

Haustral fold A haustral fold is a naturally occurring colonic structure that resembles a ridge.

Hepatic flexure The hepatic flexure is the turn in the colon that is located at the junction between the ascending colon and the transverse colon.

Intraluminal The term intraluminal indicates something that is located within a tubular organ.

Ileocecal valve The ileocecal valve is the junction between the small intestine and the large intestine.

Isosurface represents a surface of constant value. In the case of CT data, an isosurface can be used to represent a region of a particular density.
L

Lumen: The lumen is the cavity within a tubular organ. The colon lumen essentially represents the air within the colon and a lumen voxel is a voxel that is associated with the air within the colon.

P

Partial volume effect: The partial volume effect occurs when a voxel represents more than one type of material due to the finite resolution of medical imaging devices.

Pedunculated: The term pedunculated is used to describes a polyp on a stalk with a mushroom like appearance.

Precursor polyps: The term precursor polyp is used to describe polyps that ultimately evolve into cancer.

Prone: The prone position is the position assumed by a person when lying face downward.

R

Rectosigmoid junction: The rectosigmoid junction is the junction between the sigmoid colon and the rectum.

Retrograde: The term retrograde indicates backward motion. In the case of an examination of the colon, backward motion is considered to be a retreat from the colon.

S

Sagittal plane: A sagittal plane is a plane through the body parallel to the spine that divides the body into left and right halves.

Scout X-ray: A scout X-ray is an X-ray of the abdomen that is obtained to verify the location and extent of the colon prior to CT scanning.

Shine-through: Shine-through is a type of artifact that occurs in CT data sets when the boundary between two air filled regions is too thin to be imaged. A shine-through artifact appears as a hole in a 3-D rendered image.
Sigmoid flexure The sigmoid flexure is the turn in the colon that occurs between the descending colon and the sigmoid colon.

Splenic Flexure The splenic flexure is the turn in the colon that occurs between the transverse colon and the descending colon.

Supine The supine position is the position assumed by a person when lying face upward.

V

Virtual barium enema A virtual barium enema is a 2-D representation of a CT data set that has a similar appearance to the type of X-ray obtained in a barium enema examination.

Virtual bronchoscopy Bronchoscopy is an examination of the lungs. Virtual bronchoscopy involves generating a computer model of the lungs from CT data, thus enabling a virtual examination of the lungs.

Visible Human The visible human is a complete 3-D representation of a human cadaver consisting of CT, MR and cryosection images.
Appendix B

DICOM Interpretation

Custom medical imaging applications are becoming more common place. This is primarily driven by the increasing role of computer aided image processing and analysis in radiology research. An important and common stage in the development of such applications is the interpretation of medical image data. This data is generally stored in accordance with the Digital Imaging and Communications in Medicine (DICOM) standard (ACR-NEMA 2004) (summarised by Mildenberger et al. (2002)). Interpretation of medical images involves decoding the relevant DICOM data and making it readily available to the application developer for analysis and display. This appendix summarises a Java based medical imaging toolkit that was developed to facilitate the rapid development and deployment of medical imaging applications in a research environment (see Figure B 1). This toolkit was initially developed for use in the research project outlined in this thesis. However, over the past number of years it has been used within the VSG as a platform for the development of a number of research applications in the areas of CT colonography (Sadleir et al. 2002, Sadleir & Wheelan 2005), magnetic resonance cholangiopancreatography (MRCP) (Robinson et al. 2002) and also functional MRI (Malone et al. 2003). In the course of this work the toolkit has been exposed to a wide range of medical images obtained from various imaging modalities.

This medical imaging toolkit, which will be referred to as the NeatMed application programmers interface (API), was developed using the Java programming language (Sun Microsystems, Mountain View, Calif.). The use of Java has previously been demonstrated in the development of custom medical imaging applications. Fernandez-Bayo et al. (2000), describe a web based Java viewer developed for use with a custom web server, Bernardmg et al. (2001), describe a framework for the development of DICOM server applications implemented using Java and
Mikolajczyk et al. (1998), describe a Java environment for the analysis of positron emission tomography (PET) image data. The choice of Java for implementing the NeatMed API was also influenced by a number of key features associated with the Java programming language.

- **Ease of use** Java is a modern programming language that was designed with simplicity in mind. Many of the complexities that are associated with other programming languages have been omitted while much of the power and flexibility has been retained. This makes Java very easy to learn and use, particularly in the case of novice programmers.

- **Level of support** Although Java is a relatively new programming language, there is a significant amount of support material available. Numerous texts have been written dealing with all aspects of the language. In addition, tutorials, sample source code, API documentation and freely available integrated development environments (IDEs) can all be accessed via the Internet.

- **Portability** Java is a multi-platform programming language. This means that a Java application developed on one operating system (e.g., Mac OS) can be deployed on a number of other different operating systems (e.g., Windows, Solaris and Linux). This is sometimes referred to as the “write once, run anywhere”
paradigm. In theory, the use of a multi-platform programming language significantly increases the potential user base with little or no extra development overhead.

• **Core functionality:** The core Java libraries encapsulate an extensive range of functionality that can be easily reused to create reliable, diverse and powerful applications. Some of the main capabilities supported by the core libraries include: networking, file IO, image processing, database access and graphical user interface development.

• **Extension APIs and toolkits:** There are a large number of extension APIs and toolkits that can be used in conjunction with the core Java libraries. These extensions usually deal with a particular speciality such as advanced image processing, 3D graphics or speech recognition.

The concept of a Java based medical imaging toolkit is not entirely new. In fact there are a number of commercial toolkits already available: the DICOM Image I/O Plugin (Apteryx, Issy-les-Moulineaux, France), the LEADTOOLS Medical Imaging suite (LEAD Technologies, Charlotte, N.C.) and the Java DICOM toolkit (Softlink, Halle Zoersel, Belgium). NeatMed was developed as a freely available alternative to these commercial toolkits. It is primarily intended for use in a research environment, specifically for dealing with offline medical image data. A major benefit associated with NeatMed is that it was designed with simplicity and ease of use in mind. This is especially important as it makes NeatMed accessible to all those involved in medical imaging research including radiologists, computer scientists and engineers.

Other freely available toolkits e.g. ImageJ\(^1\) and jViewbox\(^2\) facilitate the development of applications that deal with DICOM images. However, they lack the low level functionality required to create applications that deal with all aspects of the DICOM file format.

This appendix is intended to provide an introduction to the NeatMed API and deals with implementation issues, toolkit structure, sample applications, support material and current API status. The NeatMed website\(^3\) can be consulted for further information.

\(^2\)jViewbox, Laboratory of Neuro Imaging, UCLA. Available at http://www.loni.ucla.edu/Software/SoftwareDetail.jsp?software_id=1; Accessed May 26th 2006.

information about the NeatMed API and associated resources. The NeatMed API is distributed in accordance with the terms and conditions laid out in the GNU Lesser General Public License. This licence was selected to ensure that the NeatMed API is accessible to all potential users.

B.1 API Implementation

NeatMed was developed using the Java programming language. Java was created by Sun Microsystems in the early 1990s. It was initially intended for the development of software for use in the consumer electronics industry (e.g., set-top boxes). Unfortunately, the Java development team were unable to find a target market for their new programming language. Forced to reconsider, it was decided to redeploy Java as an Internet technology. Java programs known as Applets first appeared on the Internet in 1994. These interactive Applets were embedded in standard hypertext mark-up language (HTML) web pages and greatly enhanced the previously static Internet. The Java programming language can also be used for the development of stand-alone client-side applications which can run independently of a web browser and are not subjected to the same security restrictions as Applets. The core Java libraries maintained by Sun Microsystems are used as the foundation for the development of any Java application. These libraries can be used in conjunction with extension APIs in order to develop specialised applications. See Whelan & Molloy (2000) for further information about the Java programming language, particularly in relation to image processing and analysis.

An extension API is a set of classes that can be instantiated by a programmer to create a particular type of application, thus facilitating software reuse. NeatMed is an example of an extension API that can be used for the development of applications that deal with offline medical image data. A large number of Java APIs exist, these deal with a broad range of applications ranging from communicating with the serial and parallel ports to advanced image processing. The set of classes representing the API is deployed in some type of library. Java provides a packaging tool that can be used to package a set of class files and associated resources into a Java archive or JAR file. In order to be useful, an API must be well documented. Java provides a documentation tool called Javadoc that allows an API developer to document software as it is being written. The resulting documentation provides...
detailed information about each class, method and variable that is defined in the associated API. The structure of Javadoc documentation is more or less the same for every API. This makes it very easy for programmers to familiarise themselves with a new API once they are comfortable with the basic Javadoc documentation structure. The API documentation is generated in HTML and can be viewed using any standard web browser.

Java has a wide range of benefits associated with it. However, there are also some limitations. One example is performance: Java is a multiplatform programming language, the byte code (i.e. binary form) that represents a Java program is interpreted and not executed directly. This reduces the performance of a Java program compared to a natively executed program. Overall, however, the benefits associated with Java (listed previously) far outweigh the drawbacks, hence its selection for the development of NeatMed.

B.2 API Overview

The NeatMed API is a group of core and support classes that can be used to interpret, represent and manipulate images and related data that are stored in DICOM compliant files. The central class in the API is the DICOMImage class. A DICOMImage object can be instantiated by specifying a reference to a suitable data source in the constructor. The constructor will accept data from a number of sources (e.g. local file, data stream and remote URL). Once constructed a DICOMImage object provides direct access to all of the data elements stored within the specified DICOM source. Other classes in the API are used to represent individual components within a DICOM file such as DICOMTag: a data element tag (i.e. group number and element number combination) or DICOMDataElement: a special wrapper class created for storing data associated with a particular value representation. There is a subclass of DICOMDataElement for each of the 26 value representations, examples include: DICOMAgeString, DICOMPName and DICOMUniqueIdentifier. The API also provides utilities classes such as DICOMDataDictionary: a data dictionary containing value representation definitions for all of the data elements defined in the DICOM 3.0 standard (required when the value representation is not specified explicitly). This section describes how the DICOMImage class operates and how it interacts with other classes in the API to provide access to DICOM encoded data.
B.2.1 Data Interpretation

When a DICOMImage object is constructed, it reads and decodes all the data from the specified source. The decoder automatically determines the type of data and the transfer syntax to be used. If the value representation is not specified explicitly, then the required value representation for a particular data element is obtained from the pre-programmed data dictionary (i.e., DICOMDataDictionary). Each data element in the DICOM file is subsequently decoded and stored using the relevant wrapper class. Data stored within a wrapper class can easily be accessed for further processing. The image data (0x7fe0, 0x0010) is a special type of data element that can be stored using one of two possible value representations. Other byte string or other word string. The image data is always packed and sometimes compressed using either joint photographic experts group (JPEG) (Wallace 1991, Pennebaker & Mitchell 1993) or run length encoding (RLE) compression. Information required to unpack and decompress the image data is usually stored within group 0x0028 data elements. The DICOM decoder automatically unpacks and decodes the image data and stores it internally as a one-dimensional array of signed 32-bit integer primitives.

B.2.2 Data Management

Once decoded all data elements are stored internally using a modified hash table structure. A hash table allows information to be stored as key/value pairs. In this case, the key is the data element tag that consists of a group number and an element number and the value is the data element associated with the relevant tag. A tag is represented by a DICOMTag class and all data elements are represented by dedicated wrapper classes, which are subclasses of DICOMDataElement. A specific data element value can be retrieved from the hash table by specifying the relevant group number and element number combination. The method employed for storing and querying decoded data elements is illustrated in Figure B.2.

B.2.3 Data Access/Manipulation

Data can be accessed at several levels. At the most basic level, a data element can be retrieved from the hash table using the getDataElement() method of the DICOMImage class. There are two versions of the getDataElement() method. The first version takes a single argument of type DICOMTag, which encapsulates the group
number and element number of the desired data element and the second version takes two integer arguments, one for the group number and the second for the element number. In either case, the `getDataElement()` method will return an object of type `DICOMDataElement` representing the requested data element. This object must be cast (i.e. converted) into the relevant subclass of `DICOMDataElement` before the actual data element value can be accessed. An existing data element can be modified, or a new data element can be added to a `DICOMImage` object by calling the `setDataElement()` method. This method takes arguments that represent a tag and the new data element value to be associated with that tag. The basic level representation does not provide direct access to the actual image data. This data is packed and in some cases compressed and further decoding is required in order to facilitate pixel level operations.

There are an extremely large number of data elements defined by the DICOM standard. It is possible for any of these data elements to be present in a DICOM file. Some data elements occur more frequently than others, and have particular significance to the application developer. In order to facilitate straightforward access to important, and frequently used data elements, a number of special accessor methods are defined by the `DICOMImage` class. This set of methods represents a higher level of access than that provided by the `getDataElement()` and `setDataElement()` methods, and simplifies access to particular frequently used or important data elements.
Internally each accessor method calls the `getDataElement()` method with the relevant `DICOMKey` argument and casts the returned data element value into the relevant Java primitive (or object). Some examples of the accessor methods provided by the `DICOMImage` class are as follows:

- **String getPatientID()** retrieves the data element value associated with the key (0x0010, 0x0020) from the hash table. The `DICOMLongString` object at this location is converted into a Java `String` object that is then returned.

- **int getSeriesNumber()** retrieves the data element value associated with the key (0x0020, 0x0011) from the hash table. The `DICOMIntegerString` object at this location is converted into a signed 32-bit integer primitive and returned.

- **int getBitsAllocated()** retrieves the data element value associated with the key (0x0028, 0x0100) from the hash table. The `DICOMUnsignedShort` object at this location is converted into a signed 32-bit integer primitive and returned.

Accessor methods are also provided for adding new data element values or modifying existing data element values. These methods take a single argument that represents the new value of the relevant data element. Internally, these methods call `setDataElement()` with the relevant `DICOMKey` and new value arguments. Examples include `setPatientID(String ID)`, `setSeriesNumber(int seriesNumber)` and `setBitsAllocated(int bitsAllocated)`.

The final level of abstraction is used to provide direct access to image data. As mentioned previously, the image data is stored in data element (0x7fe0, 0x0010). After the initial decoding/interpretation stage, this data is still packed and sometimes compressed. The final stage of decoding performed by the `DICOMImage` class, automatically unpacks and decompresses the image data that is ultimately stored within the `DICOMImage` class as a one-dimensional array of signed integer values. Individual pixel values can be accessed/modified using special accessor methods `getSample()` and `setSample()`. In either case, the (x, y) coordinates of the relevant pixel must be specified in the argument list of the accessor method. In the case of multi-frame image data (i.e., where the number of frames is greater than one) a time coordinate must also be specified, and for multi-plane image data (e.g., ARGB or CYMK) a colour plane index must also be specified. Some examples of the pixel level accessor methods provided by the `DICOMImage` class are as follows.
• **getSample(int x, int y)** returns an integer primitive that represents the pixel value at the specified (x, y) coordinates.

• **getSample(int x, int y, int t)** returns an integer primitive that represents the pixel value at the specified (x, y, t) coordinates.

• **setSample(int x, int y, int value)** sets the value of the pixel at the specified (x, y) coordinates to be the same as that indicated by the value argument.

B.2.4 Data Storage

In many cases an application developer will only need to read from a DICOM file. However, there are some cases where it may be useful to modify the contents of a DICOM file. In order to facilitate this operation the `DICOMImage` class provides a `save()` method. This method saves the current state of the associated `DICOMImage` object, and takes a single argument that represents the output stream to which the data will be written. The saving operation involves writing all of the data elements represented by the `DICOMImage` object (including the packed pixel information) to the specified output stream. The saved data will be stored according to the specified transfer syntax, i.e. data element (0x0002, 0x0010). If this data element is not present, the default transfer syntax will be used. The data storage feature completes the range of functionality provided by the NeatMed API.

B.3 Sample Applications

The NeatMed API can be used to develop a wide variety of medical imaging applications. This section describes a number of sample applications that demonstrate the power, flexibility and ease of use of the NeatMed API. In some cases NeatMed is used in conjunction with extension APIs and toolkits in order to demonstrate its development potential. The source code and associated instructions for the compilation and execution of each sample application can be downloaded directly from the NeatMed website.

B.3.1 Simple DICOM viewer

A simple DICOM image viewer application can be created quite easily. The source code for the application is extremely compact (see Listing B.1). The application takes
Listing B 1 The complete source code for a DICOM image viewer application The application takes one argument, the name of the DICOM compliant image that is to be loaded

a single argument which represents the name of the image to be displayed This filename is subsequently used to construct a DICOMImage object A BufferedImage object representation of the DICOMImage object is then obtained This BufferedImage object is ultimately displayed using Swing graphical user interface (GUI) components (see DICOMViewer.java)

B.3.2 Sequence Viewer

The simple DICOM viewer application can be extended to deal with multi-frame DICOM images This extension is facilitated by adding two buttons to the application GUI These buttons allow the user to sequence backward and forward through the available frames Internally the buttons update the value of a counter, the backward button decrements the counter and the forward button increments the counter After either button is pressed the frame with the index that corresponds to the counter
value is displayed. This application demonstrates how user interaction is handled by Java. (see SequenceViewer.java).

B.3.3 Volume Rendering

The NeatMed API can be used in conjunction with the visualisation toolkit (VTK) (Schroeder et al. 2000) to provide 3-D volume or surface renderings of medical image data. NeatMed is used to read in axial slices from a volumetric data set. The image data from the slices is used to populate an array of scalar values that represents the volumetric data. Two transfer functions (opacity and colour) are specified to indicate how the volume should be displayed. The opacity transfer function indicates the opacity values associated with particular voxel intensity. The colour transfer function indicates the RGB colour value associated with a particular voxel intensity, this can be used for pseudo colouring the volume data. The rendering of the volume is handled by the VTK, and the user can interact with the resulting model using the mouse. Supported operations include rotate, zoom and translate. A sample volume rendering using this application is illustrated in Figure B.3 (see VolumeRendering.java).

Figure B.3: A volume rendering of the human colon generated from an abdominal CTC data set using a combination of the NeatMed API and the VTK.
B.3.4 Anonymising Data

A DICOM file usually contains a number of data elements that hold sensitive patient information. It is important to be able to anonymise this information in certain cases in order to protect the patient's identity. The anonymisation process involves constructing a `DICOMImage` object from a suitable source, overwriting all of the sensitive data element values (e.g. patient's name, patient's birth date and patient's address) and saving the modified `DICOMImage` object to an output stream using the `save()` method. The saved file represents the anonymised data. Each of the sensitive data element values can be overwritten using the `setDataElement()` method or special accessor methods (where available). Note that this application is a command line only application, there is no GUI (see `Anonymise.java`).

B.3.5 Image Processing

The NeatMed API can be used for the development of medical image analysis applications. This can be achieved using any of the well documented image processing operations that are described in the literature, see Whelan & Molloy (2000) for examples of image processing algorithms in Java. The threshold operation is a simple example of a point operation that is based on a raster scan of the input image. Thresholding converts a grey scale image into a binary (black and white) image based on a user defined threshold value. Any pixel that is greater than or equal to the threshold is set to white, while any pixel less than the threshold is set to black. The threshold operation performs a rough segmentation of the image and demonstrates both looping and conditional data processing. The threshold operation is illustrated in Figure B.4 (see `Threshold.java`).

As mentioned earlier, NeatMed has been used internally over the past number of years as a platform for the development of a number of medical imaging research applications. Examples of this research are illustrated in Figure B.5.

B.4 Support Material

All support material for the NeatMed API is accessible through the official NeatMed website. In addition to providing access to the latest version of the NeatMed API, the website also provides access to documentation, sample source code and contact information for technical support.
Figure B.4: The threshold image processing operation. A sample axial CTC slice (a) before and (b) after application of the threshold.

Figure B.5: Advanced image processing facilitated by NeatMed (a) Centreline calculation at CT colonography. (b) Segmentation of the biliary tree from MRCP data (Image courtesy of K. Robinson (VSG)).
The NeatMed API documentation is generated using Javadoc. The NeatMed API documentation (see Figure B.6) can be browsed online or downloaded as a ZIP file for subsequent offline access. In either case, the documentation can be viewed using a standard web browser. The documentation itself provides an overview of the entire API. Each class and its associated methods and variables are described in detail. The relationship between classes is indicated and hyperlinks are provided to facilitate easy navigation through the documentation.

Figure B.6: The HTML Javadoc documentation for the NeatMed API. This documentation can be accessed online at http://www.eeng.dcu.ie/vsl/DICOM/

Fully commented source code for each of the sample applications described earlier in this paper can be downloaded from the NeatMed website. These applications can be compiled and executed using the Java Development Kit (JDK) from Sun Microsystems. The latest version of the JDK (currently v5.0 update 6) can be downloaded at no cost from official Java website4. All sample applications require the NeatMed API to be included in the Java class path and some applications also require the installation of additional APIs or toolkits such as the VTK. The NeatMed

website should be consulted for detailed information about compiling and executing the sample applications. Links to sites providing DICOM images that can be used in conjunction with the sample applications can also be accessed via the NeatMed website.

B.5 Current Status

The NeatMed API is constantly evolving. Its ongoing development is driven by internal requirements and external requests for additional features. NeatMed supports data that conforms to version 3 of the DICOM standard as well as the older American College of Radiology - National Electrical Manufacturers Association (ACR-NEMA) standard. NeatMed currently supports all of the uncompressed DICOM transfer syntaxes as well as the lossless RLE transfer syntax (1.2.840.10008.1.2.5). Support for JPEG compressed image data is currently being incorporated into the API. Dedicated wrapper classes are provided for storing each of the 26 possible data element value representations defined in the DICOM standard. The pixel data decoder is extremely flexible and supports any valid pixel encoding (packing) scheme, the majority of commonly used photometric interpretations are also supported and the recent addition of the basic data write feature completes the range of functionality available for dealing with DICOM data.

NeatMed has recently been updated to support version 7.5 of the ANALYZE file format. As with DICOM data, the ANALYZE file pair (image and header) is automatically interpreted, and all encoded information is made readily available to the programmer. The ANALYZE file format has a finite number of header fields and direct access is provided to each of these. Individual image sample values can be obtained by simply specifying the relevant 2-D, 3-D or 4-D coordinates. The ANALYZE section of the API can also be used in conjunction with other toolkits and APIs to create powerful medical imaging applications.

The NeatMed API is intended for use by programmers interested in developing medical imaging applications, particularly for computer aided analysis. There is no reason why nonprogrammers should be excluded from developing such applications. In order to facilitate nonprogrammers, NeatMed has recently been incorporated into the NeatVision visual programming environment (Whelan et al. 2004, Whelan & Sadleir 2004). NeatVision is a free, Java based software development environ-
Appendix B

NeatVision is a software tool specifically designed for use in image analysis applications. It is both user-friendly and powerful, providing high-level access to over 300 image manipulation, processing, and analysis algorithms. A visual program can be created by simply instantiating the required algorithms (blocks) and creating data paths (interconnections) between the inputs and outputs to indicate the data flow within the program. This combination of NeatVision and NeatMed makes a vast library of image processing operators easily accessible to the medical image analysis community.

B.6 NeatMed Users

The NeatMed API was released in 2002 at the 88th scientific assembly and annual meeting of the Radiological Society of North America. Since then, its user base has grown steadily. A selection of groups who have downloaded and are using NeatMed include:

- Montreal Neurological Institute and Hospital (a teaching and research institute of McGill University), Montreal, Canada

 http://www.mni.mcgill.ca/

- GE Healthcare

 http://www.gehealthcare.com/

- DeVry University, Columbus, Ohio, United States

 http://www.devrycols.edu/

- Medical Micrographics, Three Rivers, Michigan, United States

 http://medicalmicrographics.com/

- New Rochelle Radiology, New Rochelle, New York, United States

 http://www.newrorad.com/

- United States Department of Veterans Affairs

 http://www.med.va.gov

- University Hospital of Lund, Lund, Sweden

 (no website available)

- Medical School of Ribeirão Preto, Brazil

 http://www.fmrp.usp.br/
B.7 Summary

The interpretation of medical image data is an important and common stage in the development of any medical imaging application. NeatMed removes the need to deal directly with encoded medical image data, thus increasing productivity and allowing the developer to concentrate on other aspects of application development. NeatMed is written in Java, a multiplatform programming language with a large amount of freely available support material that is straightforward to learn and use. These and other features of Java make NeatMed accessible to a large group of potential users. NeatMed is well supported with documentation and sample code available through the NeatMed website. Most importantly, NeatMed is a freely available research tool whose ongoing development is driven by the needs and requirements of its users.

Note: All URLs accessed May 26th 2006
Appendix C

Summary of Available Data

This appendix provides a detailed summary of the CTC data and gold standard polyp information that was obtained from the Department of Radiology and the Gastrointestinal Unit at the Mater Misercordiae University Hospital, Eccles Street, Dublin 7, Ireland. All patients were scanned in the prone and supine positions and underwent conventional colonoscopy immediately following the CTC examination. The gold standard was obtained from an inspection of the data sets where the reviewer was unblinded to the results from colonoscopy examination. This ensured that the most accurate information regarding colorectal neoplasia was available for CAD-CTC training and evaluation. A comprehensive overview of the test data is presented in Table C.2 and the more important information is summarised in Table C.1. Surface renderings of all available data sets are presented in Figures C.1, C.2 and C.3.

There were a total of 37 individual patient studies yielding 68 data sets. There were four instances where only one data set was provided for a patient and two instances where only partial data sets were received. In the majority of cases the tube current was 250 mAs. The average number of slices per study was 263 and, thus, the average data set consisted of just under 70 million voxels. In general, the slice thickness was 1.5 mm and the pixel size ranged from 0.486 mm to 0.848 mm. In 25 data sets (37%), the colon was found to be well distended and the segmentation process resulted a single segment that represented the entire colon lumen. Prone positioning resulted in the best overall distention. The remaining 43 data sets consisted of multiple colon segments. The maximum number of segments was seven and the mean number of segments per data set was 2.162. These observations were comparable with those made by Li & Santiago (2005a), who reported that a fully segmented colon can have between 1 - 10 individual segments with an average of 2.4
Table C 1 A brief summary of the data that was used in this study

<table>
<thead>
<tr>
<th>Data set information</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of usable data sets</td>
<td>68</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data set statistics</th>
<th>min</th>
<th>max</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation dose (mAs)</td>
<td>167</td>
<td>250</td>
<td>241</td>
</tr>
<tr>
<td>Number of Slices</td>
<td>153</td>
<td>316</td>
<td>263</td>
</tr>
<tr>
<td>Pixel size (mm)</td>
<td>0.486</td>
<td>0.848</td>
<td>0.699</td>
</tr>
<tr>
<td>Slice depth (mm)</td>
<td>1.5</td>
<td>3.0</td>
<td>1.522</td>
</tr>
<tr>
<td>Slice Dimensions</td>
<td>512 x 512</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distension information</th>
<th>prone</th>
<th>supine</th>
<th>all</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single segment colons</td>
<td>16</td>
<td>9</td>
<td>25</td>
</tr>
<tr>
<td>Mean number of segments</td>
<td>1882</td>
<td>2441</td>
<td>2162</td>
</tr>
<tr>
<td>Maximum number of segments</td>
<td>5</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neoplasia information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of neoplasia</td>
<td>155</td>
</tr>
<tr>
<td>Number of flat polyps</td>
<td>2</td>
</tr>
<tr>
<td>Number of < 5 mm polyps</td>
<td>98</td>
</tr>
<tr>
<td>Number of [5, 10) mm polyps</td>
<td>31</td>
</tr>
<tr>
<td>Number of ≥ 10 mm polyps</td>
<td>13</td>
</tr>
<tr>
<td>Number of masses</td>
<td>11</td>
</tr>
</tbody>
</table>

There were a total of 155 colorectal neoplasia, 44 of these were clinically significant polyps (i.e. ≥ 5 mm), 11 were colorectal masses, two were flat polyps (both < 5 mm) and the remaining 98 were < 5 mm in size. Each data set was treated as a separate patient in order to increase the number of polyps available for testing and evaluation purposes.
Table C 2: A detailed summary of the patient data, provided by the MMH, that was used for system training and evaluation.

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Patient Position</th>
<th>Full Dose (mAs)</th>
<th>Slices</th>
<th>V_{xx} (mm)</th>
<th>V_{yy} (mm)</th>
<th>Segs</th>
<th>Polyp/Mass Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMH-010</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>260</td>
<td>0.652</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>249</td>
<td>0.637</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>MMH-017</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>266</td>
<td>0.596</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>249</td>
<td>0.656</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>MMH-033</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>281</td>
<td>0.742</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>294</td>
<td>0.785</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>MMH-054</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>223</td>
<td>0.691</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>supine</td>
<td>No</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MMH-081</td>
<td>prone</td>
<td>Part</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>239</td>
<td>0.665</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>MMH-093</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>293</td>
<td>0.781</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>267</td>
<td>0.813</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>MMH-109</td>
<td>prone</td>
<td>Part</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>251</td>
<td>0.742</td>
<td>15</td>
<td>3</td>
</tr>
</tbody>
</table>

Continued on next page
Table C 2 Continued from previous page

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Position</th>
<th>Full Dose</th>
<th>Slices</th>
<th>V_{xz}</th>
<th>V_y</th>
<th>Segs</th>
<th># flat</th>
<th>< 5</th>
<th>[5, 10)</th>
<th>≥ 10</th>
<th>mass</th>
<th>Location</th>
<th>Size</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMH-120</td>
<td>prone</td>
<td>Yes</td>
<td>167</td>
<td>257</td>
<td>0.486</td>
<td>15</td>
<td>1 1 0 0 1 0 0</td>
<td>(174, 27, 277)</td>
<td>5 24</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>supine</td>
<td>Yes</td>
<td>167</td>
<td>226</td>
<td>0.551</td>
<td>15</td>
<td>1 3 0 2 1 0 0</td>
<td>(265, 20, 334)</td>
<td>5 24</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MMH-138</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>267</td>
<td>0.742</td>
<td>15</td>
<td>2 0 0 0 0 0 0</td>
<td>(407, 158, 229)</td>
<td>7</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>231</td>
<td>0.742</td>
<td>15</td>
<td>4 0 0 0 0 0 0</td>
<td>(355, 52, 145)</td>
<td>2</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MMH-139</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>233</td>
<td>0.695</td>
<td>15</td>
<td>2 0 0 0 0 0 0</td>
<td>(371, 54, 207)</td>
<td>8</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>241</td>
<td>0.617</td>
<td>15</td>
<td>2 2 0 1 0 1 0</td>
<td>(134, 71, 239)</td>
<td>> 20</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MMH-142</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>290</td>
<td>0.742</td>
<td>15</td>
<td>2 0 0 0 0 0 0</td>
<td>(240, 113, 262)</td>
<td>7</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>153</td>
<td>0.814</td>
<td>3</td>
<td>4 3 0 0 1 0 2</td>
<td>(135, 58, 217)</td>
<td>> 20</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MMH-161</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>238</td>
<td>0.660</td>
<td>15</td>
<td>2 1 0 1 0 0 0</td>
<td>(305, 57, 301)</td>
<td>4</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>233</td>
<td>0.652</td>
<td>15</td>
<td>2 0 0 0 0 0 0</td>
<td>(287, 97, 188)</td>
<td>6</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MMH-166</td>
<td>prone</td>
<td>Yes</td>
<td>167</td>
<td>313</td>
<td>0.789</td>
<td>15</td>
<td>2 1 0 0 1 0 0</td>
<td>(368, 225, 185)</td>
<td>4</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>301</td>
<td>0.813</td>
<td>15</td>
<td>2 1 0 0 1 0 0</td>
<td>(258, 29, 152)</td>
<td>3</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MMH-175</td>
<td>prone</td>
<td>No</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>- - - - - -</td>
<td>(361, 170, 309)</td>
<td>3</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>295</td>
<td>0.848</td>
<td>15</td>
<td>1 2 1 1 0 0 0</td>
<td>(372, 101, 231)</td>
<td>3</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MMH-208</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>235</td>
<td>0.742</td>
<td>15</td>
<td>2 3 0 3 0 0 0</td>
<td>(121, 136, 106)</td>
<td>3</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>220</td>
<td>0.742</td>
<td>15</td>
<td>2 2 0 2 2 0 0</td>
<td>(121, 136, 106)</td>
<td>3</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Position</th>
<th>Full</th>
<th>Dose</th>
<th>Slices</th>
<th>V_{xx}</th>
<th>V_y</th>
<th>Segs</th>
<th># flat < 5</th>
<th>[5, 10)</th>
<th>> 10 mass</th>
<th>Location</th>
<th>Size</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMH-234</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>273</td>
<td>0.742</td>
<td>15</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>281</td>
<td>0.684</td>
<td>15</td>
<td>2</td>
<td>4</td>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MMH-245</td>
<td>prone</td>
<td>Yes</td>
<td>167</td>
<td>273</td>
<td>0.779</td>
<td>15</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>supine</td>
<td>Yes</td>
<td>167</td>
<td>258</td>
<td>0.648</td>
<td>15</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MMH-263</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>303</td>
<td>0.688</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>287</td>
<td>0.715</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MMH-284</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>282</td>
<td>0.742</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>supine</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>MMH-291</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>275</td>
<td>0.742</td>
<td>15</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>272</td>
<td>0.742</td>
<td>15</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MMH-316</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>267</td>
<td>0.742</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>240</td>
<td>0.668</td>
<td>15</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MMH-357</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>267</td>
<td>0.672</td>
<td>15</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>267</td>
<td>0.668</td>
<td>15</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Position</th>
<th>Full</th>
<th>Dose</th>
<th>Slices</th>
<th>(V_{xx})</th>
<th>(V_y)</th>
<th>Segs</th>
<th>#</th>
<th>flat</th>
<th>< 5</th>
<th>[5, 10)</th>
<th>(\geq 10)</th>
<th>mass</th>
<th>Location</th>
<th>Size</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMH-368</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>316</td>
<td>0.742</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(187, 234, 288)</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>286</td>
<td>0.738</td>
<td>1.5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MMH-378</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>263</td>
<td>0.617</td>
<td>1.5</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(228, 62, 291)</td>
<td>> 20</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>243</td>
<td>0.617</td>
<td>1.5</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(127, 171, 260)</td>
<td>< 20</td>
<td>P</td>
</tr>
<tr>
<td>MMH-393</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>267</td>
<td>0.775</td>
<td>1.5</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>(386, 140, 173)</td>
<td>6</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>267</td>
<td>0.785</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>(142, 129, 168)</td>
<td>6</td>
<td>P</td>
</tr>
<tr>
<td>MMH-451</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>249</td>
<td>0.605</td>
<td>1.5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(377, 182, 235)</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>261</td>
<td>0.662</td>
<td>1.5</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>(213, 168, 207)</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>MMH-483</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>287</td>
<td>0.742</td>
<td>1.5</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>(274, 51, 251)</td>
<td>12</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>243</td>
<td>0.617</td>
<td>1.5</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>(149, 192, 100)</td>
<td>12</td>
<td>P</td>
</tr>
<tr>
<td>Patient ID</td>
<td>Position</td>
<td>Full</td>
<td>Dose</td>
<td>Slices</td>
<td>V_{xx}</td>
<td>V_y</td>
<td>Segs</td>
<td>#</td>
<td>flat</td>
<td>< 5</td>
<td>[5, 10]</td>
<td>≥ 10</td>
<td>mass</td>
<td>Location</td>
<td>Size</td>
<td>Type</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>---</td>
<td>------</td>
<td>-----</td>
<td>--------</td>
<td>-----</td>
<td>------</td>
<td>----------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>MMH-523</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>266</td>
<td>0.688</td>
<td>1.5</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td>(135, 94, 174)</td>
<td>4</td>
<td>5 P</td>
</tr>
<tr>
<td></td>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>261</td>
<td>0.688</td>
<td>1.5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>(290, 96, 295)</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>MMH-526</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>245</td>
<td>0.598</td>
<td>1.5</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td>(203, 61, 215)</td>
<td>2</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>235</td>
<td>0.623</td>
<td>1.5</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td>(229, 86, 240)</td>
<td>4</td>
<td>P</td>
</tr>
<tr>
<td>MMH-576</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>254</td>
<td>0.602</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td>(145, 109, 147)</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>248</td>
<td>0.598</td>
<td>1.5</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>(100, 167, 299)</td>
<td>4</td>
<td>P</td>
</tr>
<tr>
<td>MMH-640</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>267</td>
<td>0.703</td>
<td>1.5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>(331, 225, 112)</td>
<td>2</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>252</td>
<td>0.672</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>(203, 216, 181)</td>
<td>4</td>
<td>P</td>
</tr>
<tr>
<td>MMH-672</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>267</td>
<td>0.742</td>
<td>1.5</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>(414, 158, 201)</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>273</td>
<td>0.729</td>
<td>1.5</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td>(67, 151, 214)</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>MMH-708</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>265</td>
<td>0.672</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>(141, 128, 164)</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>267</td>
<td>0.691</td>
<td>1.5</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
<td>(72, 150, 202)</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>MMH-735</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>274</td>
<td>0.723</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td>(251, 179, 257)</td>
<td>4</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>supine</td>
<td>No</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>MMH-765</td>
<td>prone</td>
<td>Yes</td>
<td>167</td>
<td>284</td>
<td>0.582</td>
<td>1.5</td>
<td>1</td>
<td>21</td>
<td>0</td>
<td>17</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>(191, 13, 153)</td>
<td>< 5</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>supine</td>
<td>Yes</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Continued on next page
Table C 2 Continued from previous page

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Position</th>
<th>Full</th>
<th>Dose</th>
<th>Shces</th>
<th>V_{xx}</th>
<th>V_y</th>
<th>Segs</th>
<th>#</th>
<th>flat</th>
<th>< 5</th>
<th>[5, 10)</th>
<th>≥ 10</th>
<th>mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>supine</td>
<td>Yes</td>
<td>167</td>
<td>287</td>
<td>0.535</td>
<td>1.5</td>
<td>2</td>
<td>15</td>
<td>11</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(199, 69, 210)</td>
<td></td>
</tr>
<tr>
<td>(185, 61, 368)</td>
<td></td>
</tr>
<tr>
<td>(249, 81, 191)</td>
<td></td>
</tr>
<tr>
<td>(189, 104, 283)</td>
<td></td>
</tr>
<tr>
<td>(202, 60, 141)</td>
<td></td>
</tr>
<tr>
<td>(191, 90, 191)</td>
<td></td>
</tr>
<tr>
<td>(222, 107, 244)</td>
<td></td>
</tr>
<tr>
<td>(244, 127, 236)</td>
<td></td>
</tr>
<tr>
<td>(178, 82, 207)</td>
<td></td>
</tr>
<tr>
<td>(269, 107, 254)</td>
<td></td>
</tr>
<tr>
<td>(272, 118, 253)</td>
<td></td>
</tr>
<tr>
<td>(223, 78, 170)</td>
<td></td>
</tr>
<tr>
<td>(182, 74, 159)</td>
<td></td>
</tr>
<tr>
<td>(229, 58, 133)</td>
<td></td>
</tr>
<tr>
<td>(169, 121, 270)</td>
<td></td>
</tr>
<tr>
<td>(246, 71, 310)</td>
<td></td>
</tr>
<tr>
<td>(281, 75, 322)</td>
<td></td>
</tr>
<tr>
<td>(236, 93, 264)</td>
<td></td>
</tr>
<tr>
<td>(372, 68, 181)</td>
<td></td>
</tr>
<tr>
<td>(247, 88, 279)</td>
<td></td>
</tr>
<tr>
<td>(305, 125, 230)</td>
<td></td>
</tr>
<tr>
<td>(261, 121, 207)</td>
<td></td>
</tr>
<tr>
<td>(217, 100, 240)</td>
<td></td>
</tr>
<tr>
<td>(215, 92, 295)</td>
<td></td>
</tr>
<tr>
<td>(231, 106, 221)</td>
<td></td>
</tr>
<tr>
<td>(291, 90, 321)</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Position</th>
<th>Full</th>
<th>Dose</th>
<th>Slices</th>
<th>V_{xx}</th>
<th>V_y</th>
<th>Segs</th>
<th>#</th>
<th>flat < 5</th>
<th>[5, 10]</th>
<th>≥ 10</th>
<th>mass</th>
<th>Location</th>
<th>Size</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMH-909</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>253</td>
<td>0.660</td>
<td>15</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMH-915</td>
<td>prone</td>
<td>Yes</td>
<td>250</td>
<td>259</td>
<td>0.824</td>
<td>15</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(227, 64, 151)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>supine</td>
<td>Yes</td>
<td>250</td>
<td>299</td>
<td>0.777</td>
<td>15</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations V_{xx} (pixel size), V_y (slice spacing), P (sessile/pedunculated polyp), F (flat polyp), M (colorectal mass)
Appendix C

Summary of Available Data

(a) MMH-010 (P & S) (b) MMH-017 (P & S) (c) MMH-033 (P & S)
(d) MMH-054 (PO) (e) MMH-081 (SO) (f) MMH-093 (P & S)
(g) MMH-109 (SO) (h) MMH-120 (P & S) (i) MMH-138 (P & S)
(j) MMH-139 (P & S) (k) MMH-142 (P & S) (l) MMH-161 (P & S)
(m) MMH-166 (P & S) (n) MMH-175 (SO) (o) MMH-208 (P & S)

Figure C 1 MMH data sets
Figure C-2. MMH data sets (continued)
Figure C 3 MMH data sets (continued)
Appendix D
Sample Candidates

This appendix illustrates a range of sample polyp candidates that were detected using the initial candidate detection technique outlined in Section 5.4. The associated fingerprint and expanded candidate region are also illustrated in each case. The shape index version of the fingerprint is used as this provides the best indication of overall candidate morphology.

D.1 Colorectal Polyps

Figure D.1: A 6 mm polyp from MMH-054/prone. The mean shape index of the original candidate is 0.924 and the mean shape index of the expanded candidate is 0.920 (a 0.4% reduction).
Figure D.2: A 3 mm polyp from MMH-208/prone. The mean shape index of the original candidate is 0.896 and the mean shape index of the expanded candidate is 0.879 (a 1.9% reduction).

Figure D.3: A 4 mm polyp from MMH-161/prone. The mean shape index of the original candidate is 0.859 and the mean shape index of the expanded candidate is 0.856 (a 0.3% reduction).
Figure D.4: A 6 mm polyp from MMH-245/prone. The mean shape index of the original candidate is 0.899 and the mean shape index of the expanded candidate is 0.886 (a 1.4% reduction).

Figure D.5: A 4 mm polyp from MMH-735/prone. The mean shape index of the original candidate is 0.919 and the mean shape index of the expanded candidate is 0.900 (a 2.0% reduction).
Appendix D

D.2 Rectal Tube

Figure D.6: A polyp candidate from MMH-166/prone that is attributable to the rectal tube. The mean shape index of the original candidate is 0.866 and the mean shape index of the expanded candidate is 0.784 (a 9.4% reduction).

Figure D.7: A polyp candidate from MMH-263/prone that is attributable to the rectal tube. The mean shape index of the original candidate is 0.882 and the mean shape index of the expanded candidate is 0.806 (a 8.6% reduction).
D.3 Haustral Folds

Figure D.8: A polyp candidate from MMH-081/supine that is attributable a haustral fold. The mean shape index of the original candidate is 0.854 and the mean shape index of the expanded candidate is 0.816 (a 4.4% reduction).

Figure D.9: A polyp candidate from MMH-139/supine that is attributable a haustral fold. The mean shape index of the original candidate is 0.882 and the mean shape index of the expanded candidate is 0.819 (a 7.5% reduction).
D.4 Miscellaneous

Figure D.10: A polyp candidate from MMH-708/supine that is attributable to a patch of the colon surface. The mean shape index of the original candidate is 0.863 and the mean shape index of the expanded candidate is 0.778 (a 9.8% reduction).

Figure D.11: A polyp candidate from MMH-526/prone that is attributable to a patch of the colon surface. The mean shape index of the original candidate is 0.844 and the mean shape index of the expanded candidate is 0.762 (a 9.7% reduction).
Publications arising from this Work

Refereed Journal Papers

Sadleir, R J T & Whelan, P F (2005), 'Fast colon centreline calculation using optimised 3D topological thinning', Computerized Medical Imaging and Graphics 29, 251-258

Invited Conference Papers/Presentations

Sadleir, R J T & Whelan, P F (2003), 'A comparative study of selected computer aided diagnosis techniques utilised in CT colonography' The 4th International Workshop on Multislice CT, 3D Imaging and Virtual Endoscopy, Rome, November 3rd - 4th

Refereed Conference Papers

Luaute, V, Sadleir, R J T, & Whelan P F (2006) 'An automatic evaluation strategy for a remote access CT colonography training system' in Proceedings of BioSignal 2006 - the 18th International EURASIP (European Association for Signal, Speech and Image Processing) Conference, Brno, Czech Republic, June 28th to 30th

Refereed Conference Abstracts (in Journals)

Refereed Conference Abstracts (in Proceedings)

Publications Arising from this Work

at CT colonography using shape information', in Proceedings of the Association of Physical Scientists in Medicine, 2004 Annual Scientific Meeting, Dublin, June 11th

296

Whelan, P, & Sadleir, R (2000) ‘3-D virtual colonoscopy for the detection of colorectal cancer’ in Proceedings of IMVIP 2000 - Irish Machine Vision and Image Processing Conference, Queen’s University Belfast, Northern Ireland, August 30th - September 2nd

Technical Reports

Sadleir, R and Whelan, P F ‘Virtual colonoscopy Proposal for an enhanced virtual colonoscopy system’, Dublin City University, School of Electronic Engineering, Internal Technical Report, 24th October 2001

Sadleir, R and Whelan, P F ‘Virtual Colonoscopy’, Dublin City University, School of Electronic Engineering, Internal Technical Report, 26th February 2001

Publications Under Review

Conference Abstracts

Luauté, V, Sadleir, R J T, Whelan, P F ‘A remote access web based tutor system for reader training at CT colonography’ submitted to the 92nd scientific assembly and annual meeting of the Radiological Society of North America (RSNA 2006) - April 13th 2006)
Awards & Grants

RSNA infoRAD Exhibit Subsidy

The paper entitled 'A portable toolkit for providing straightforward access to medical image data' (Sadleir et al. 2002a) received a subsidy from the RSNA. The value of the subsidy was $582.12 and its purpose was to fund the exhibition of the paper at RSNA 2002. The exhibit was recommended for publication in *RadioGraphics* by a *RadioGraphics* selection panel. Consequently, a manuscript based on the exhibit was submitted, accepted and subsequently published in *RadioGraphics* (Sadleir et al. 2004a).

EE School Research Fellowship

A grant of €35,000 was received from the School of Electronic Engineering, Dublin City University to fund research into remote access training for CTC. This research project is ongoing and has resulted in a number of publications (Luauté et al. 2006a, b).

APSM Best Presentation Prize

The paper entitled 'Automatic detection of colorectal polyps at CT colonography using shape information' (Sadleir et al. 2004b) received the best presentation prize at the 2004 Annual Scientific Meeting of the Association of Physical Scientist in Medicine. The award, which was in the form of a travel bursary (valued at €500), was used in conjunction with other funding to attend RSNA 2004. A review of the papers presented at RSNA 2004, that dealt with CTC research, was subsequently submitted to the APSM for circulation to its membership.

Sadleir, R. J. T. & Whelan, P. F. (2005), 'CT colonography at RSNA 2004'

Circulated to the members of the APSM (submitted 02/02/2005)