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Abstract

This thesis deals with design techmques for robust non-linear multivariable sys-
tems It describes and discusses some design techniques for such systems

First, one-loop-at-a-time design using the root locus method 1s considered The
disadvantages of this approach are outhmed Next, some gain-scheduling con-
trollers are designed for each loop Then, a multivariable optimization approach s
taken Software to find the frequency domain solution of the two-block weighted-
mixed-sensitivity problem using the Youla Parameterisation and Smith-McMillan
form 1s developed This two-variable problem decouples 1nto two single-variable
problems, corresponding to optimizing at the mput and output of the plant

The fundamental imitations and the trade-offs in design are studied at the input
and output of the plant

All controllers are tested and implemented on the inverted pendulum-cart appa-
ratus, an unstable single-input two-output system
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Chapter 1

Introduction

This thesis deals with design techniques for multivariable systems Design of
controllers for single-input single-output (SISO) systems can usually be done very
effectively by using various traditional techniques, such as root locus methods and
methods based on Nyquist and Bode plots But the design of controllers for non-
linear (NL) multi-input multi-output (MIMO) svstems s a different matter This

1s still an 1important open problem and it attracts a good deal of research

1.1 Motivation

Sometimes when dealing with SISO svstems other signals in the control loop are
considered to be disturbances Howeser, 1t often happens that these disturbances
oniginate 1n other loops This effect 1s known as interaction or coupling In
some cases, 1nteraction can be ignored, etther because the coupling signals are
weak or because a clear time-scale or frequency-scale separation exists However,
in other cases 1t can be necessary to consider all signals simultaneously Then,
the problem has to be tackled entirely as a multivanable design Consequently a
good knowledge and understanding of MIMO systems 1s important, since, 1n most
situations, the tools used for analysmg SISO systems are no longer applicable
Simple definitions like poles and zeros, among others, have a different meaning
when dealing with multivarable processes and since matrices are involved, some
functions (e g sensitivity) have a different interpretation at the mput versus the

output of the plant



Rosenbrock [1, 2, 3] was the first researcher to emphasize that the MIMO case 1s
much more challenging than the SISO case, and to recognize that new theoretical
foundations would be required Despite all the advances and improvements 1n
MIMO control theory, multivaniable design 1s still a subject under research, and

1t 1s still, 1n some sense, an unsolved problem, as discussed 1n Section 215

The aim of this thess 1s study some design techniques for multivariable systems
Design methods which allow for certain levels of inaccuracy 1n the model of the
plant to be controlled are emphasized This 1s called robustness Among these
design techniques this thesis focuses mainly on some frequency domain optimiza-
tion techniques, such as minimizing a quadratic cost function 1n order to get a

controller that gives a robust performance

This thesis also discusses some advantages and disadvantages of the design meth-
ods used It also treats trade-offs and fundamental limitations in multivariable
controller design, including the approach of treating the \IMO problem as several

SISO problems

Throughout the thesis the inverted pendulum 1s used as an application example
Since this system 1s multivariable with right half plane poles and zeros, which 1s
non-linear and non-square, 1t gives more insight about the inherent limitations
when facing a control design All controllers are implemented and tested on this

apparatus

1.2 Outline of the Thesis

In Chapter 2, some important background used throughout the thesis 1s pre-
sented First, a discussion of the inverted pendulum s given Then some impor-
tant definitions concerning MIMO systems are stated In Chapter 3, the Youla
parameterization 1s presented, and two approaches to solving the generalised Be-

zout equation are presented and discussed

Next, in Chapter 4, a one-loop-at-a-time design technique 1s used The plant 1s



viewed as a set of SISO plants and some SISO controllers are designed for each
loop using the root locus method Then 1n Chapter 5, using the results of these
designs, the fundamental hmitations imposed by right half plane (RHP) poles
and zeros and the impact of these limitations on the closed-loop performance are
studied Also, fundamental limitations for general SISO systems are discussed for
both the time and the frequencv domain With the benefit of these hmitations for
designing control systems, the one-loop-at-a-time approach 1s further analyzed
in Chapter 6 Within this one-loop-at-a-time framework, some gain-scheduled

controllers are designed for each loop in Chapter 7

In Chapter 8, a multivariable optimization approach 1s taken First a novel ap-
proach 1s attempted Indeed a frequency domain solution of the H, problem
based on the Youla Parameterization using frequency domain (Matlab) software
1s developed The #H, problem 1s recast as a two-block weighted-mized-sensitinity
problem, which results in an optimization problem with two variables Then by
optimising at the input and then at the output of the plant this particular problem
can be reduced to two decoupled single-variable problems Next the standard
two-norm optimization in the frequency domain using the Youla Parameteriza-
tion for SISO systems 1s adapted to the multivariable case Then, in Chapter 9
the fundamental limitations and the trade-offs when designing a multivariable
controller are studied as well as the difference between optimizing transfer func-
tion matrices at the input and at the output In Chapter 10, general conclusions

are given



Chapter 2

Background

In this chapter some basic definitions and some background material that are
used throughout the thesis are stated It starts with a brief discussion about the
mverted pendulum which 1s used as a practical example Then several definitions

and some results that apply to MIMO systems are given

2.1 The Inverted Pendulum

The wmverted pendulum has been a classic tool in control system laboratories It
has been used to demonstrate various control design techmques, see (4], (3] and
the references therein For example 1t was used to illustrate much of the materal
presented 1n the book by Kwakernaak and Sivan [6] In this thesis the Digital
Pendulum Mechanical Unit 33-200 manufactured by Feedback (see (7]) 1s used
as an application example A description of the well-known inverted pendulum

apparatus s given

211 Description

Consider the inverted pendulum of Figure 21 The pivot of the pendulum 1s
mounted on a carriage which can move in the horizontal direction The carriage
1s driven by a motor The control problem 1s to move the carnage to a desired

position while keeping the pendulum up and when the desired position has been



reached the pendulum should stay i the fully upright position (¢ = 0) The

output (measurements) will be the position of the carriage (displacement) and

the angular rotation of the pendulum (angle)

o(t)

d(t)

Figure 21 Inverted pendulum

Next, we develop a physical model for this system

212 Physical Modelling

Figure 2 2 shows the forces acting on the svstem u(t) 1s the force exerted by the
motor, at time ¢, on the carriage This force 1s the input variable to the system
The displacement of the cart at time ¢ 1s d(¢) while the angular rotation at time
t of the pendulum 15 ¢(t) The mass of the pendulum 1s m, the distance from
the pivot to the centre of gravity 1s L and the moment of inertia with respect
to the centre of gravity 1s J The carnage has mass A/ The forces exerted on
the pendulum are the gravitational force mg acting at the centre of gravity, a
horizontal reaction force H(t), and a vertical reaction force V(t) Here g 1s the
gravitational acceleration Friction 1s accounted for only in the motion of the

carriage and not at the pivot F, represents the friction coefficient

From Newton’s second law > F' = ma the sum of the horizontal components
of the forces must be equal to the product of the mass m by the acceleration a
acting on the pendulum, which 1s due to the acceleration of the carriages and the

acceleration of the pendulum Thus

d2

m—z[d(t) + Lsmo(t)] = H(t) (211)



Figure 2 2 Forces acting on the pendulum

where L sin ¢(t) 1s the lever arm of the force acting on the pendulum The lever
arm of a force F about a chosen a\is 1s the perpendicular distance from the line

along that force to the axis Stanford [8 page 93] Simuilarly for the vertical

components,
d2
mE[L cos d(t)] = V(t) — mg (212)
For this system the moment of inertia 1s constant Hence
dw
— J= 21
dor=Jg (213)

Equation (2 1 3) may be thought of as the rotational form of Newton's second
law, Stanford [8 page 185], where w 1s the angular velocity of the pendulum and
7 15 the torque Using Equation (2 1 3) for this system yields,

J;—:qu(t) = LV (t)siné(t) —~ LH(t) cos ¢(t) (214)

For the forces acting on the carriage,

Mj—td(t) () - H(t) - F,%d(t) (213)

Performing the differentiations above yields

md(t) + Lo(t) cos o(t) — Lé?(t) sin g(t) = H(t) (216)
mg — mL¢*(t) cos ¢(t) — mLo(t) sm o(t) = V (¢t) (217)
Jo(t) = LV (t)sino(t) — LH(t) cos ¢(t) (218)
Mad(t) = p(t) - H(t) — F.d(t) (219)

6



In order to ehminate H(t) and V(t) from Equation (2 18), Equations (21 6)
and (2 1 7) are substituted into Equation (2 19), giving

Jo(t) = mgLsm¢(t) — mL2¢(t) sin® ¢(t) — mL2p?(t) sin p(t) cos p(t) —
mLd(t) cos o(t) — mL*¢(t) cos® ¢(t) + mL2¢*(t) sin ¢(t) cos ¢(t)

Simplifving we obtain
[J + mL?¢(t) — mgLsin ¢(t) + mLd(t) cos p(t) = 0 (2110)

Division of this equation by J + mL? yields

1
B(t) = %sm 8(t) = d(t) coso(t), (2111)
where
, _J+mL?
U="=7 (2112)

This quantity has the significance of “effective pendulum length” since a pendu-
lum of length L' that 1s not on a car would also yield Equation (2 1 11}, Kwak-

ernaak [6, page 6]

To simplify the equations, assume that m 1s small with respect to M and therefore
neglect the horizontal reaction force, H(¢), on the motion of the carriage This

allows us to replace Equation (2 1 9) with
Md(t) = p(t) — Fd(t) (2113)
In brief the equations which govern the system are (21 13), (21 11) and (2 1 12)

dt) = 1alt) - 25d(0)

and
8(t) = L s 6(t) — (1) cos 6(2)
=7 % cos ¢(t),
where
, _J+mL?
L= mL



213 Conventional Linearization

In order to get a linearized model, the system must first be described in state

space form

Non-linear State Space Model

We define the states as follows,
= d(t)r I = d(t)r I3 = ¢(t): Ty = QS(tJ) (2 1 14)

and the input 1s

u = p(t) (2115)

Now, differentiating each component with respect to ¢, gives

z = d(t),
T, = d(t),
T3 = ¢(t),
Ty = ¢(t)

Or, using Equations (21 13), (2111) and (2 1 14),

Iy = Iy,
1 F,
= —U-—- —Io, 2116
I VAR VAL (2116)
Tz = Iy,
g
Ty = Esm T3 — EIQ COS Ty

and using the second equation to eliminate =2 from the fourth equation gives

9 1 !
Ty = —SINI3— ——-—UCOST3 + ——TyCOST3

Nz ML ML
A state space description can now be written down Writing the above equations

1n matrix form gives

I )
L F
o= MU T (2117)
T3 Ty
z 4 sinzy — —-ucos £y
4 17 3 ML‘u X3 + WCEQ COS I3

8



For this system the outputs are the displacement d(t) and the angular rotation

of the pendulum &(t), so define the output vector as
d(t) ) ( I )

t) = = 2118

y(t) ( (2) T ( )

Equilibrium Points

Equilibrium points are points in state space where the system can remain “static”,
stationary, where 1t can come to rest or settle down, for some constant mnput level
In other words, they are points where the derivatives of the states are zero (z = 0)

Then, Equation (2 1 16) yields

IL'2=0,
1 F,
ﬁu—ﬂxg—0=>u——0,
.’I.'4=O,

1
%Slﬂxg—EIQCOSIﬁg =0= %51nx3=0:>z3:00r I3=T7

The set of equilibrium points 1s therefore described by z3 = 0, 3 =0 or 23 = 7,

z4 =0, u = 0 and z, 1s arbitrary

These equations say that for an equilibrium point, the carriage and the pendulum
must be stationary (1 e have zero velocity) and the pendulum must have a vertical
position, either upwards or downwards Clearly, z3 = 0 (pendulum up) 1s an
unstable equilibrium point and z3 = 7 (pendulum down) 1s a stable one With
the pendulum 1n equilibrium, the carriage can be at any location This 1s expected

from physical considerations

Linearized Model

Differentiating each row of Equation (21 17) with respect to each state and the

mnput v and then evaluating at the equilibrium point (with z3 = 0) we get the



linearized model for the inverted pendulum

0 1 00 0
_ L
z = 3 OM 8 (1) z+ 164 u (2119)
0 3 # 0 ~WD
1000
y:(OOIO)x (21 20)

wherez = (1, 7o 3 x4)7

The state space representation of the system 1s then

0 1 00 0
0 -& 00 % (1000
A=tg ¢ o 1| B= 0 “={oo10
0 £ 4 9 S
ML U ML’

Transfer Functions

The transfer functions can now be calculated Using the formula
G(s) =C(sI — A)™'B, (2121)

where G(s) 1s the transfer function of the system, gives

1

F

Gl ss+mﬂ
= = 9
G(s) (Gz> L (2122)
(s+35) (s~ &)
Let,
a = Fr
M
g
b = E
ko= (2123)
RV
1
ky = ML

This gives the following linearized model

G(s)=(g;)=( iﬁ ) (21 24)
(

s+a)(s+b)(s-b)

10



where the following values were obtained after several identification experiments

a = 333
b = 546 (21 25)
kl == 11
k2 = 30
and using Equation 2 1 23 yields,
F. = 0303Kg/s,
M = 0091Kyg (2126)
L' = 0328298m,
g = 98m/s’

This 1s the model which will be used for all the experimental work reported here

214 Description of the Real System

In this section the Digital Pendulum Mechanical Unit 33-200 manufactured by
Feedback, [7], 1s briefly described The pendulum-cart set-up consists of a pole
mounted on a cart 1n such a way that the pole can swing free only 1n the vertical
plane The cart 1s driven by a DC motor The cart 1s allowed to move on a rail

of limited length

The pendulum-cart set-up utilises two optical encoders as angle and position
detectors The first one 1s mnstalled on the pendulum axis and the second one on
the DC motor axis The control signal 1s limited to be within a normalized range
from -1 to 1 That 1s, it has a saturation at the input of the plant Another non-
linearity exists due to the cart friction which 1s a non-linear function of the velocity
of the cart Omitting or simphfying the friction on the mathematical model
results in poor compatibility between the real svstem and the simulation model
Notice that the non-lnear friction model was not taken into account during the
modeling stage, which implies that a highly robust system has to be aimed for

when designing controllers This 1s acknowledged by the manufacturer “Due to

11



the presence of disturbances and parameter uncertainties, a robust behavior is

more 1mportant than the optimal character of the control strategv”, [7]

215 Choice of Design Methods

It was said earlier that the inverted pendulum has been used as a classical tool 1n
the control system laboratories Manv methods for designing controllers has been
used and implemented with this system Those include, Linear Quadratic Regu-
lator (LQR), Heo, Fuzzy Logic and Neural Networks It must be acknowledged

that each of these methods will control the pendulum successfully

This thesis focuses mainly on two design methods, the gain scheduling (GS)
approach and the H, optimization approach as well as the analysis of imitations
that exist on any system, specifically the pendulum system GS 1s chosen because
1t has become a very popular method for designing controllers for non-linear
systems and 1t 1s still a subject under research H; optimization 1s chosen because
2-norm-optimization based controller design has become very popular and 1t 1s
still an unsolved problem 1n the sense of its transparency (there are no algebraic
equations for the design of the controllers design 1s an iterative process) and its
design time (1nvolves the selection of some weights, which 15 done sometimes by

trial and error)

2.2 The Smith-McMillan Form

The Smith-McMillan form of a multivariable plant transforms the plant’s transfer
function into a diagonal transfer function matrix by pre- and post-multiplying by
ummodular matrices A polynomial matrix 1s called umimodular 1if 1t has an
mverse which 1s also a polynomial matrix It follows that its determinant 1s a
constant (independent of the variable s) It 1s possible to analyze the position
and number of poles and zeros from the diagonal equivalent transfer matrix The

Smuth-McMillan form, [9, §2] [10] relies on the fact that every rational transfer



function matrix can be expressed as a polynomial matnx, divided by a common
denominator polynomial For more information about the Smith-McMillan form

see Maciejowski [9, §2] and Tadeo [10]

An elementary matriz 1s a matrix which represents an elementary row (column)
operation “Represents” means that multiplying on the left (right) by the elemen-
tary matrix performs the row (column) operation We say that two (polynomial
or rational) matrices P(s} and Q(s) are equivalent (symbolized P(s) ~ Q(s)) if

there exist sequences of left and right elementary matrices {L,(s), ,Li(s)} and

{R1(s), ,R.(s)} such that

P(s) = Ls)Li-1(s)  Li(s)Q(s)Ri(s)  R-(s)

The next theorem 1s a result gien 1n Maciejowsk {9, §2 2]

Theorem 2 21 (Smuth-McMillan Form) If G(s) s a rational matriz of
normal rank r, then G(s) may be transformed by a series of elementary row and

column operations into a pseudo-diagonal rational matriz M(s) of the form

V(s) = dia z1(s) €q(s) er(s)
R b e B GO B LR

m which the monic polynomals {£,(s),¥,(s)} are coprime for each 1 (1 e they

have no common factors) and satisfy the dinsibility properties

&u(s)leir1(s)

'¢'1+1(S)Id)z(s)

M(s) 1s the Smath-McMillan form of G(s)

This theorem says that any transfer function matrix can be factorized as
G =UAV

where U and V' are ummodular matrices and A 1s a diagonal transfer function

matrix with the structure given in Equation 2 2 1

13



221 Smith-McMillan Form of the Inverted Pendulum

In this section the inverted pendulum is used as an example of how to find the

Smith-McMillan form of a transfer function matrix

First, the rational matrix G(s) Equation (21 24), 1s expressed as a polynomial

matrix, divided by a common denominator polynomial, as follows

1
o) = Gram-m (223
where
kl (32 — b2)
G, =
—k282

Using elementary matrices the polynomial matrin G, 1n the equation above,
can be transformed into a diagonal matrix pre-multiplied (row operations) and
post-multiphed (column operations) by unimodular matrices Notice that an
elementary matrix 1s ummodular, and the product of unimodular matrices 1s a

unimodular matrix Thus G, can be transformed as follows,

1 Interchange row 1 and 2

G1 - L1Gp

01
n=(10)

k
2 Replace row 2 with row 2 plus k—l times row 1,
2

It

where

—k‘gSz
Gy = LsG, =
—k1 b

where

14



3 Interchange row 1 and 2,

—k b
Gs = LGy =

—k232

01
n=(10)

2

k
4 Replace row 2 with row 2 plus —;—ZQ times row 1,
1

where

—k b?
Gy = LGy =
0

1 0
Ly = ( kas® >
T kb2

1
5 Replace row 1 with s times row 1
1

where

where

_ 1l
.= k16
B=( 75 1)

Now, G5 1s the “diagonal” matrix after the transformation

Thus, 1n this case, the product of the sequence of left elementary matrices 1s

1 1

T k167 k2b?
L= L5L4L3L2L1 = (2 2 —1)
ag k(- )
1
It can be checked that 1ts determinant 1s a constant, TR which indicates that
1
L 1s a ummodular matrix Moreover, 1ts mverse, L™}, 1s a polynomial matny,
which 1s - .
. ki (s* - b?) b ]
*k282 1



Notice that, 1n this case, the matrix of nght elementary matrices is equal to the
identity matrix, since no column operations were performed Hence, G5 ~ G,

(where G, 1s given 1n Equation (22 3)), and therefore

1
LGP = G5 =
0

and 1t follows from the equation above and Equation (2 2 3) that

1 1
o= Graw-m |,
Thus \(s)
G(s) = L™ (226)
0
where
As) = !

s(s+a) (s —b?)

and L~! 1s given 1n Equation (22 5) The matny

1
As) P ) ey

Il
—~
[N\]
(S}
-1
~——

0 0
1s then the Smuth-McMillan form of G(s)

2.3 Poles and Zeros of a Transfer-Function

Matrix

In the SISO case, the zeros of a system are defined as the solutions s = z,
to G(s} = 0 and, sumilarly, the poles are defined as the solutions s = p, to
G~1(s) = 0 Moreover, m the scalar case the zeros and poles could be found
easily from a transfer function representation However, for multivariable systems
things are not that easy The main difficulty in the MIMO case 1s that one has to
work with matrix, rather than scalar, transfer functions It 1s well known that the
principal difference between scalars and matrices 1s the presence of directions and

that directions are relevant for vectors and matrices, but not for scalars Thus,

16



as 15 shown next, the zeros and poles of VIIMO plants not only nvolve a scalar

value (1e s = z,) but also directions

2 3.1 Poles and Zeros

As stated at the beginning of Section 2 2 the poles and zeros of a multivanable

system can be found from the Smith-Mc\illan form The result 1s as follows (see

Maciejowsk [9, §2 3))

Definition 23 1 Let G(s) be a rational transfer-function matriz wrth Smath-

McMillan form

-l S o

and define the pole polynomial and zero polynomial as

p(s) =t(s)  vr(s)

2(s) =als) els)
respectively The roots of p(s) and z(s) are called the poles and zeros, wnth thewr

respectiwe multiphcity, of G(s), respectively

Then from Equation (2 2 7) one can see that the pendulum system does not have
any zeros, and 1t has four poles at s =0,s = —a,s = —band s = b It 1s therefore

obvious that this system 1s unstable since a > 0 and b > 0

232 Input and Output Directions

Definition 2 3 2 (Input and Output Zero Directions) If G(s) has a zero
at s = z € C then there ezist non-zero vectors called the output zero direction

y, € C' and the wnput zero direction u, € C™, such that vy, =1, wlu, =1 and
¥,G(2) =0, G(2)u.=0 (231)

where [ 1s the number of outputs and m 1s the number of inputs of the system

G(s)



Definition 2 3 3 (Input and Output Pole Directions) If G(s) has a pole
at s = p € C then there ezist non-zero vectors called the output pole direction

yp € C' and the input pole direction u, € C™, such that YpYp =1, upu, =1 and
y,G(p) =00, G(p)u, =00 (232)

where | 1s the number of outputs and m 1s the number of wnputs of the system

G(s)

In the next definitions the hinear time invariant (LTI) system 1n state space form
T = Az + Bu (233)

y=Cz+ Du (234)

corresponding to a minimal realization 1s considered

Definition 2 3 4 Let z be a zero of G(s) Then

41—zl B T,
=0 (239)

C D U,

has a solution wnth uju, =1 where x, 1s the wnput zero state direction and u, s

the wnput zero direction

Defimtion 2 35 Let z be a zero of G(s) Then

A-z B
ExX3 =0 (236)
c D

has a solution wnth yly, = 1, where z, 1s the output zero state direction and vy, s

the output zero direction

For more mformation regarding zeros, poles and their directions see [11] and [12]
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A 4

Chapter 3

Youla Parameterization

The Youla Parameterization technique gives a simple and elegant solution to the
problem of describing the set of compensators that stabilize a given plant This
set 1s a function of the so-called “Q” parameter @ = Q(s), which 1s an arbitrary
stable proper transfer matrix of size m x [ where m 1s the number of inputs
and [ 1s the number of outputs of the system As shown later the result 1s
extremely important since nstead of thinking 1n terms of the controller transfer
matrin K(s), 1t 1s generally much better to design Q(s) However 1n order to
find the set, a coprime factorization of the multivanable plant 1s needed as well
as a solution of the generalised Bezout 1dentity Maciejowski [9, §6] and Tadeo et

al [10]

Theorem 3 01 (The Youla Parameterization) Let K, = L;V,”! = V"0,

be such that the generalised Bezout equation

N D U -D, I 0
i ! t _ (301)

-V, U, Vi N, 0 I
holds For any Q € Hy (that is, for any stable Q@ of compatible dimensions),
define
X, =U - D.Q Y, =Vi+NQ (302)
X =U,-QD i =V, +QN,
Then K =Y, ' X; = X,Y,7! 1s a stabilzing controller for the plant G = N,D;! =

D 'Ny  Furthermore, any stabilizing controller has fractional representations as

i Equation (80 2)
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As can be seen, solving the generalised Bezout equation plays an important role in
the Youla Parameterization The next two sections show two possible procedures

to find a solution to this equation

3.1 Solving the Generalised Bezout Equation -

Approach 1

Finding the solution of the Bezout equation of a multivariable system may not
be an easy task In this section a solution of the generalised Bezout equation
1s sought using the Smith-McMillan form, which was discussed previously The

procedure 1s demonstrated with an example, again the inverted pendulum 1s used

First, start with a coprime factorization of the plant From Equation (2 2 6) and
finding a stable coprime factorization of A(s) (1e A.(s) and Ay(s)) gives

1
S(s+a) (s+0)(s=0)

G(s) = L7t
0
-1
1 s(s—b)
_ L_l ((s+a)(s+b)3) ((s+b)2)
0
1
_ - ((S+a)(5+b)3) (s(s - b)) -
B ) (s +b)?
= N.D;!
where
1
(s+a)(s+b)3
N, = L7} ( ) (311)
0
s(s —b)
D. = ((5+b)2> (312)

and L' 1s given 1n Equation (2 2 5)

Similarly, a left coprime factorization of G(s) can be found Again, from Equa-
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tion (2 2 6) and finding a stable coprime factorization of A(s) yields,

s(s—b) -1 1
_1 (s+0)2 (s+a)(s+b)®

G(s) = L
0
s(s—b -1 0 1
= L! ((5+l>)2 (s+a)(s+b)°
0 1 0
(s—b) -1 1
(ssi-b)2 0 (s+a)(s+b)3
0 1 0
- Dl—l.Nl
where L 1s given 1n Equation (2 2 4)
s(s—b) 0
(s5+a)?
D, =
0 1
__s(s=b) ___ s(s—=b)
kib*(s~a)? ka2b2(s+a)?
= (313)
g2 (-
and
1
(s+a)3(s+b)
N = (314)
0

Now solve the first Bezout equation N;U; + D;V; = I as follows Recall that

s(s—b)
(sia)l 0
D= L
0 1

Vi 0
V= L7 (315)

0 VW

thus, let

and U, = [Uyn Up] Thus
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1 S!S—b) 0 1/1 0

(s+a)3(s+b) (s+a)?
MU['{*D[V[ = [Un U[Q]+
0 0 1 ¢ ¥
1 - 1 s(s—b
(s+a)3(s+b)bll (51—0)3(s+b)Ul2 (3+a)2V1 0
= +
0 0 0 Va
10
01

Notice that now the elements of U; and V; can be found by solving four scalar
Bezout equations given in the equation above Similarly, we can solve U. N, +
V.D, = I The only problem with this approach i1s that some of the elements
of some of the matrices involied in the Youla parameterization may be improper
(see Equation (313)) As Tadeo said ([13]) “ el umico problema es que s
bien las matrices de transferencia (N, D, etc) son causales (en el sentido que
tiene menos ceros de transmision que polos), no se asegura qua cada uno de
sus componentes individuales sea causal * ( the only problem 1s that, even
though the transfer function matrices (.V, D;, etc) are causal (in the sense that
thev have less transmission zeros than poles), 1t cannot be assured that every

individual element will be causal )

3.2 Solving the Generalised Bezout Equation -

Approach 2

Because of the problem found above, an alternative approach 1s needed Here the
approach used in Nett et al [14] 15 adopted In this paper, the authors describe
how to find the solution of the generalised Bezout equation using a state-space

realization This involves constant matrices K and F The result 1s as follows

Theorem 3 21 Suppose G(s) = C(sI — A)"'B € R*™ where 4 € R™",
B e R™™, C e R*", (C 1) 1s detectable and (A, B) s stabilizable Select



K e R™*, F € R such that 4 — BK and A — FC are stable Define

N,=C(sI-A+BK)'B D,=I-K(sI-A+BK)'B
U =K I—A+FC)'F  V,=I+K(sI-A+FC)'B (321)
Di=I-C(sI-A+FC)" F N =C(sI-A+FC)™'B
Vi=I+C(sI-~A+BK)'F U =K(sI - A+BK)"'F

Then

(1) all exght mairices described by (3 2 1) are stable

(1) D, and D, are nonsingular

(1) G=N,D;'=D;'N,

(1v) The transfer functions in (3 2 1) fulfill the generalized Bezout equation (8 0 1)
As can be seen, the solution to the Bezout equation may not be umque and in

this case approach, there are many choices for the matrices K and F' Next this

method 1s applied to the mverted pendulum

3.3 Generalized Bezout Equation of the Inverted

Pendulum

In this section the solution of the Bezout equation of the inverted pendulum
1s found, so that the Youla Parameterization of this system can be used sub-
sequently The approach given in Section 3 2 1s followed First, the controller
canonical form of the plant 1s obtained, which 1s more convenient to facihtate the

selection of the matrices K and F
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3.3.1 State Space Realization of the Plant

Based on Equation (2.2.3) the controller canonical form of the plant can be found,

see Maciejowski [9, §2.5]. Notice that
S(s+ a) (s2- b2) = s4+ asi - b2s2- ab2s. (3.3.1)

Thus the state-space realization of the plant of Equation (2.1.24) is

X = AX + Bu and y =Cx 4-Du 3.3.2)
where
/0 1 0 0\ / 0\
0 0 1 0 0
A = R =
0 0 0 1 0

3.3.2 Design of a Stabilizing Controller for the Plant

Next, at least one stabilizing controller is needed. Thus in this section a gain
matrix, K, is designed such that the matrix [A- BK) is stable. First notice that

for a single-input system in controller canonical form, as in Equation (3.3.2),

0~ /0o 0 .. 0\
BK = (kn kn—t e ¥ = ) ¢
0 0 0 0
| y k4 kn— . kx/
Thus for the system described by Equation (3.3.2) one obtains
/ 0 1 0 0 \
0 0 1 0
Ar=A-B K =
0 0 0 1 (33.3)
\ -k4(@2-kz) (b2-k2) {-a- ki) )
Hence, the gains k2,... are simply “added” to the coefficients of the open-loop

matrix .4 to give the closed-loop matrix .4C [15]. Thus, for a single-input system

in the controller canonical form, the gain matrix elements are given by
—ai - N = 3 or ki —0i di (3.3.4)
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where the a,'s are the coeflicients of the open-loop characteristic polynomal
(o1cp) and the a,’s are the coefficients of the desired closed-loop characteristic
polynomial (clc p),1e s®+a@,s" '+ +a, Therefore, for this system, 1t 1s nec-
essary to define the desired closed-loop characteristic polynomial In order to re-
duce the order of the transfer functions given 1n Theorem 3 2 1 (see Remark 33 1
below), the desired pole locations are chosen as s = —a,s = —a,s = ~b,s = —b

Then, theclcp 1s
(s +a)* (s +0)2 = s+ a,5° + @y5° + dgs + a4

Thus, 1t follows that @, = 17 394,a; = 113 81,G3 = 32042 and a4 = 33168
The coefficients of the open-loop characteristic polvnomial are a; = 3 3333 a3 =
—29 851, a3 = —99 503 and ay = 0 (see Equations (2125) and (33 1)) Then

the coefficients of the gain matrin K can be obtained as follows

ki =a, —a =173594~ 33333 = 14 261

ky =Gz — as = 113 81 ~ (—29 851) = 143 66
ks = @3 — a3 = 320 42 — (—99 303) =419 92
ky = a4 — a3 = 33168 ~ 0 =331 68

and then the gain matnx, K =[Ay k3 hy k], 18 given by
K =[33168 41992 14366 14261 (333)

Now a matrx F need to be designed such that (4 — FC) 1s stable

333 Design of an Observer for the Plant

The fact that the system has one mnput (1e the matrix B has one column) makes
the design of the controller K relatively easy However, the selection of the matrin
F 1s more difficult, since the design of the observer involves the matrix C which
has two rows (1 e the system has two outputs) Thus, the observer problem must
be solved, which 1s equivalent to find a matrix F' such that (A — FC) 1s stable

The form of the observer selected 1s

T= AT+ Bu+ Fy (336)



where u and y are the input and the output respectively The matrices ;f, B and

F have to be selected in a way that the error

e=z-12 (337
15 acceptably small Then using Equations (3 3 2), (33 6) and (3 3 7) gives
e=1—-%=(Adz+Bu)— (AZ+ Bu+ Fy)=Az+ Bu— A(z —¢) — Bu— FCxz

and thus

~

e=Ae+(A— 4— FC)z + (B - B)u (338)

Now, 1t 1s desired that the error goes to zero asymptotically, independent of z and
u, therefore the coefficients of z and u must be zero and 1 must be the dynamic

matrix of a stable system Thus

o~

A=4-FC (339)

and

B=B (33 10)

Notice that 4, B and C are known matrices therefore 1t 1s onlv needed to design
F Now if Equations (339) and (3 3 10) are satisfied then Equation (3 3 8)

becomes

e = Ae

The only thing left 15 to make the matrix A= A - FC stable It 1s known that

every eigenvalue of A can be located at any desired location whatsoever if the

matrix

has full column rank n, 1 e if the system 1s observable Recall that A and A are
n X n matrices, F 1s m x m and C 1s m x n Remember also that the eigenvalues

of A are the solution to the equation |Al, — X| = 0 and that the o[ ¢ p 1s equal
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to |sI — Al, where | | stands for the determinant of a matrix That 1s

clep = AL, - 1=0
= Mp~A+FC|=0
= M,=4] [L+0\L,-A)FCl=0
= aW| + (M, - Y7'FCl=0

where a()) 1s the open loop characternistic polynomial evaluated at A Now let

the n X n matrix

®(A\) = (M, — A)7! (3311)

and using the fact that |I, + ®(A\)FC| = {I, + C®(A)F| yelds

clep =a(MN)| [+ CONF| =0 (3312)

Hence a matrin F' needs to be chosen such that {1, + C®(A)F| = 0 for each
desired eigenvalue A, with 2 = 1, ,n or equnalently, such that the matrin
I, + C®(s)F 1s singular for each desired \, Thus the idea 1s to make one row of
the matrix C®(A,) F equal to the negative of the corresponding row of the identaty
matrin I, That 1s, 1t 1s desired that row; (C®(A,)F) = —rowy (I,,), where row; ()
stands for the k-th row of a matrix Notice that 1n this way one row of the matrix
I, + C®(\)F 1s equaled to zero which makes this matrix singular It 1s known
that if O has full column rank, » linearly independent rows can be selected from
the rows of C®(A) = C(A — A)~! (or its derivatises if necessary when repeated
eigentalues are desired) for each desired \, Therefore Equation (3 3 12) can be
made zero for n specified eigenvalues A, bv requiring

row (C®(\,)F) = —row(l,) or %rowk(CCI’(/\)F) F=07 (3313)
A=A,

where 07 1s the 1 X m zero row vector Using one equation like Equation (3 3 13)
for each desired eigenvalue and defining the n X n non-singular matrix
row, (C®(A)F)

G, =
row; (CO(A,)F)
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and letting . be the n x m matrix whose rows are either row(I,) or 07, leads to

G.F = -3,
= F=-G]'S, (3314)

Now for the system described by Equations (2 1 25) and (3 3 2}, and using Equa-
tion (3 3 12) gives

A -1 0 0
0 A -1 0
2() = 0 0 A -1
0 —ab® —-b* A+a
and thus
é ‘”1 q((LIIP + ag)) _%K((/\A + a)) o
+a wilAt+a
(I) /\ — W ab? w W 3315
U I FOta) b (3319)
0 % (02X + ab?) Av
where
W = A+ a)? - b2) — ab?
It 1s desired to locate the eigenvalues at s = ~a, s = —a, s = —band s = —b

Since there are repeated poles the derivative of ®(\) 1s needed Thus using
Equations (3 3 12), {3 3 13) and (3 3 14) a matrix F which locates the eigenvalues
of A — FC at the desired positions 1s obtammed This F 1s as follows

—0026791 -0 0098232

—0055464 —0 05367
F=- -0 30303 —029323 (3316)

-1 6556 —16021

Now the solution of the generalized Bezout equation can be found

3 34 Solution of the Generalized Bezout Equation

Now the stabilizing controller, K, and the observer, F', can be used together with
Theorem 3 2 1 to find a solution of the Generalized Bezout equation Using the

equations given n the theorem yields
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k1(s—b)

(s+b)(s+a)?

N, = (3317)
—ko3s?

(s+b)2(s+a)?

s(s — b)
= —_— 3318
T (s+b)(s+a) ( )

_ [ =993201(s+01852) —51 7069
Ur = ( (s+b)(s+a) {s+a) ) (3 3 19)
Vo= (5* + 23 065 + 239 8) (33 20)
"7 (s+b)(s+a) )
and
ky

(s+b)(s+a)
N, = (3321)

=k

{s+b)(s+a)

w0
l =
D (3322)
_=90909s  s—b
(s+b)(s+a) s+a
_ { -993201(s—03036)  -g0 768
Ui = ( (5+b){s+a) (s+b)(s+fz) ) (3323)
(s+16){s>+1 5945+88 31) 998 4483
(s+b)(s+a)? (s+b)(s+a)? ( )
Vi= 3324
9 0909(s+26 31)(s—3 854)(s+0 5986)  (s—1 281)(s+0 4653)(s2+27 215+339 4)
(s+b)2(s+a)? (s+a)2(s+b)2

Remark 3 3 1 Notice that the matrices K and F, were chosen in order to locate
the eigenvalues of the matrices A — BK and A — FC at s = —a and s = —b
Thas was done to place the poles of the transfer matrices (8 § 17)-(8 3 24) at these
locations These pole locations were chosen because in this way more cancellations
between poles and zeros are obtained, which reduces the order of these transfer

maltrices
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Remark 3 3 2 The observer F was designed in the way explained in Section 3 3 3
because this procedure makes the matriz Dy lower triangular, see Equation (3 3 22)

For other methods for designing observers see Kauath [15]

Now that the solution of the generalized Bezout equation has been found, the
set of all stabilizing controllers for the pendulum 1s easily obtained That set 1s
given by Equation (3 02) (Theorem 301) Notice that the set depends on the

parameter

One way [16] to choose this parameter 1s by finding the optimal @ which minimizes

the two norm of 1/|W,S|? + |W,T|2, where W, and W, are weighting functions and
S and T are the sensitivity and complementary sensitivity functions respectively

This approach 1s discussed later
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Chapter 4

One-Loop-at-a-Time Method -

Approach 1

In multivariable controller design 1t 1s possible 1n some cases, to group some
iputs and outputs so that the system can be seen as a collection of several SISO
loops This may be done when the interaction between the two loops 1s relatively

low

This chapter deals with the design of controllers using this approach The method
1s 1llustrated by using a design example Again the imverted pendulum svstem 1s
taken to describe the approach Therefore a one-loop-at-a-time method 1s used
to design a controller for this plant That 1s, SISO controllers are designed for

each output, (1e angle of the pendulum and position of the cart)

4.1 Controller Design

The steps taken to design a controller for the inverted pendulum using this ap-

proach are explained next Recall that the model of the system 1s given by

Equations (2 124) and (2 1 25)

The pendulum system has one input and two outputs Therefore, two controllers
need to be designed, one for the angular rotation of the pendulum, ¢(t), and one
for the displacement of the carriage, d(t) The command must only be followed

by the displacement, since the angle of the pendulum should be 1deally at zero
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degrees (upnght position) and the goal 1s to control the position of the cart The

general 1dea 1s to introduce a feedback system as shown 1n Figure 4 1

»

Hj

uy G —>

(2]

Figure 4 1 Feedback system

411 Controller Design for the Angular Rotation

For this part of the system, a controller H,(s), for the plant G1(s) (see Equa-
tion (2 1 24)) must be designed, that 1s, to implement the controller for the angle
One way to do this 1s by using the root locus method which 1s a plot of the poles
of the closed loop transfer function as the constant gain of a given controller 1s

varied The characteristic equation of the closed loop 1s
1+ kGy(s)Hy(s) =0

where k& varies from 0 to oo The system 1s stable when all the poles lie in the

OLHP for a specific gam £ The root locus of the plant G; 1s shown 1n Figure 4 2

Clearly, the plant 1s unstable for any k (1 e there 1s always a portion of the root
locus 1in the RHP) Now, a controller has to be designed i order to make the
system stable First, a first order controller with a negative gain 1s tried That 1s,
an unstable pole 1s placed between the zero at the origin and the unstable pole,
and another zero 1s placed in the LHP to attract the two unstable poles towards
the LHP In this case this zero 1s cancelling the pole at @ = —333 Figure 4 3

shows the new root locus

[t can be noticed in this figure that a portion of the plot 1s always in the RHP,

which 1ndicates that the system 1s still unstable So we need to place another
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Figure 4 2 Root locus of the angular rotation, G, without controller
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Figure 4 3 Root locus with another unstable pole

(stable) pole-zero pair so that the new root locus 1s pulled into the LHP In this
case, the plant pole at b = —5 46 1s being cancelled by the new zero The new

root locus 1s shown 1n Figure 4 4 A sufficiently large gain, &, 1s chosen from the
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Figure 4 4 Root locus with the new pole-zero pair

In this controller, a pole was placed at —30, which 1s not shown 1n Figure 4 4

The transfer function for the controller Hy(s) 1s,

(s +a)(s+b)
(s +30)(s — 2)

where k& = —400 was chosen 1n order to get an appropriate trade-off between

transient response and robustness

For this controller the gain and phase margins are good as well as the sensitivity
and complementary sensitivity functions As can be seen in Figure 4 6 the system
has good stability margins The sensitivity and complementary sensitivity are

shown 1n Figure 47

As was said earler, the gain k 1s chosen with the performance of the system 1n
mind A smaller gain would have given a system with faster response but with
little robustness, whereas a larger gain would have given a robust system with a
slower response Now that a controller was designed for the angular rotation, the

controller for the displacement must be designed
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Figure 4 5 Step response of the angle control system

Bode Diagrams

Gm=-10 145 dB {at 3 3306 rad/sec) Pm=69 199 deg (at 23 253 rad/sec)

20 T T T T

Phase (deg) Magnitude (dB)

Frequency (rad/sec)

Figure 4 6 Bode diagram of the angle control system

412 Controller Design for the Displacement

[t can be seen from Figure 4 1 that the design of the controller for the displace-

ment, H), depends on the displacement and the angle transfer functions, as well
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Figure 4 7 Sensitivity functions of the angle control system

as on H, This means that the stabilization of the angle has to be taken into
account when designing a stabilizing controller for the displacement rather than
designing a controller for only Gy In order to do this, the equivalent plant which

1s seen by the controller H; has to be found It 1s clear from Figure 4 1 that

d = uGy(s) (412)
¢ = uGy(s) (413)
u=u; — oHo(s) (414)

Substituting Equation (4 1 3) into Equation (4 1 4) gives

1
. S (413)
31 1+G2H2

Substituting Equation (4 1 5) into Equation (4 1 2) gives the transfer function for

the equivalent plant,
d G,

w1+ GoH, (16)

Geq(s) =

Notice, from Equation (4 1 6), that any unstable pole 1n the angle svstem (G5 or

Hs) turns into a non-mmimum phase zero of the equivalent plant and, clearlv,

36



any non-munimum phase zero or unstable pole in G, becomes a RHP zero or pole
respectively, of the equivalent plant The control system for the displacement s

shown 1n Figure 4 8 Equations (2124) (2125) and (4 1 1) are substituted 1nto

c U d

| H

Figure 48 Equivalent control svstem for the displacement

Equation (4 1 6), to obtain the transfer function for the equnvalent plant, G,

_ 11(s + 500)(s — b)(s — 2) -
Cedls) = ST 175 1) (55 16 T1) (5 + 0] (5 0 598) (417)

The same procedure used for designing the controller for the angle is used to

design this controller One possible controller 1s

q - 35(s + a)(s + 0 6888)
P (s +20)(s + 25)

The step response the bode plot and the sensitivity and complementary sensi-

(418)

tivity functions are shown in Figures 19 110, and 4 11 respectively

4.2 Discussion

With the above controller, (Hy, H,) the linear system has acceptable stability
margins, but 1t 1s not fast enough, in the sense that around 8 seconds for the
settling of the linear model of the pendulum 1s too much, 1t may led to instability
of the real system It would be desirable 1f 1t could be settled in less than 5
seconds Aiming for a fast and robust closed-loop system 1s not easy with this
plant In fact, this controller cannot stabilize the real plant Thus more insight
about the system 1s required in order to improve the performance as much as
possible That 1s why 1n the next chapter himitations that exist in this system
and 1n many other systems are investigated Then, the approach studied 1n this

chapter 1s further discussed in Chapter 6
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Figure 49 Step response of the displacement system

Bode Diagrams

Gm=8 4957 dB (at 2 2497 rad/sec) Pm=64 024 deg (at 0 55214 rad/sec)
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Figure 4 10 Bode diagram of the displacement system
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Sensitivity function
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Figure 4 11 Sensitivity functions of the displacement system
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Chapter 5

Fundamental Limitations - SISO

case

Before starting to design anv controller for any system, 1t 1s important to be
aware of factors that limit the achievable performance As we saw in the previous
chapter, the plant 1s unstable 1e the transfer function has a pole in the RHP
and another on the unagmary axas Nowadays 1t 1s known that RHP poles and
RHP zeros make the control design problem more difficult, {17}, [18], [19], [20)
In this chapter some limitations that applv to SISO systems are discussed First

some basic results about linear SISO systems are given

5.1 Some Facts About SISO Systems

The results given in this section are used 1n later sections and chapters Thev are

based on the definition of the Laplace transform

Definition 5 1 1 (Laplace-transform) The Laplace transform is defined as

L{y(t)} = Y(s) = /0 " y(t)e dt

The transform s well defined if there exists o € R and a positive constant k < oo

such that
ly(t)] < ke™ Vit>0

The region R{s} > o 1s known as the reqion of convergence
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Lemma 511 (Goodwin et al [16], pp 81) Let H(s) be a strictly proper
function of Laplace variable s unth region of convergence R{s} > —a Then for

any z, such that R{s} > —a, we have

/00 h(t)e %' dt = him H(s) (511)

520

Proof This 1s easily proved by using the defimition of the Laplace-transform, [16]
]

Consider the standard feedback control loop shown 1n Figure 51

Lemma 5 1 2 (Interpolation Constraints) Let 2, and p, be a closed right-
half plane (CRHP) zero and a CRHP pole, respectively, of the plant G(s) Then

for the sensitwity function, S(s), and complementary sensitwnty function, T(s),

we have
S(z,)=1 and  S{p,) =0 (512)
T(2,)=0 and T(p,) =1 (513)

where
S(s) = 1+1L(3) i T(s)= - f(zzs) (514)

and L(s) = G(s)C(s)

Proof Since CRHP poles and zeros cannot be canceled they haive to appear in

the loop gan, L(s) The results follow from the defimtion of S(s) and T(s),

Equation (51 4) and the definition of poles and zeros O
r € u

d,
‘{f_’ C(s) G(s) a(gfa y

Figure 51 Control loop

A result similar to the next two lemmas 1s given 1n \iddleton [20], for both the

continuous and the discrete case
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Lemma 5 1 3 (“Unstable” open loop pole) Let e..(t) and y(t) denote the
responses for a unit step at the command input (r(t)), and suppose there 1s an

open loop CRHP pole at s =p Then for any stable closed loop system

(41}

—

1
N’

/ err(t)e P dt =0 (
0

and

/ ) y(t)e P dt = % (51 6)

Proof Let E,.(s) and R(s) be the Laplace-transforms of e..(t} and r{t), respec-

tivelv Since (¢) 15 a unit step 1t follows that R(s) = > Then

Since the closed loop 1s stable s = p1s in the region of convergence R{s} of E.,

then using Lemma 51 1 gives

/ er(t)e P dt = hmErr(s)zhm&
0 s p s—=p 8
_ S
1Y

and Equation (5 1 5)can be obtained from Lemma 5 1 2 and Equation (5 1 2)

To prove Equation (5 1 6) notice that

Again by Lemma 511

/w y(t)e“m dt = hmY (3) — llmT_(Sl

5-+p s=p 8

T'(p)

1
, 5 (bv Lemma 5 1 2, Equation (51 3))

O

Lemma 5 1 4 (“Non-minimum phase” zero) Let e,..(t) and y(t) denote the
responses for r(t) being a unit step and suppose there 1s an open loop CRHP zero

at s = 2o Then for any stable closed loop system

Ut

—

—~I
A

/oo y(t)e ™' dt = 0 T
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and

/ err(t)e™ ™ dt = 1 (318)
0

29

Proof As for Lemma 51 3 except that S(z) =1 and T(z) = 0 O

Remark 511 Since e 15 positive, 1t can be concluded from Equation (51 5)
that any CRHP pole must produce a change wn sign in the error signal, which
implies that the output, y(t), must overshoot Furthermore, for a large CRHP
pole, the exponential function decays fast relative to the settling tume of the closed-
loop Hence, 1t 1s necessary that the error has a large negatwe value and/or the
error changes sign rapidly at the beginning of the transient so that the weighted
integral of the error 1s zero Hence 1t can be argued that CRHP poles with a large

magnitude are more difficult to control than CRHP poles with a small magnitude

Remark 512 On the other hand, for a system with an open-loop CRHP zero
one can see, from Equation (51 8), that for a step input, the error need not
change sign, but for a small z, the integral of the error will be large and positive
Moreover, from Equation (51 7) it 1s obwvious that the output must undershoot

Hence, large CRHP zeros are more difficult to control than small CRHP zeros

Following these remarks 1t can be seen that CRHP poles and zeros impose fun-

damental limitations on the achievable performance of the closed-loop function

Next fundamental himitations for both the time and the frequency domain are

discussed

5.2 Time Domain Limitations

In this section, 1t 1s shown how RHP poles and zeros impose restrictions on the
desired transient response of the closed-loop system The following results are

similar to those given m Middleton [20]
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Lemma 521 (Middleton [20], Rise time, overshoot and real RHP
poles)

(a) A stable unit feedback system which has a real open loop RHP pole, must

have overshoot in its step response

(b) The amount of overshoot is related to the rise time and the location of the

RHP pole, p, as follows Define the rise time, t., as

t
t,=sup{T y(t)g—forte[O,T]} (521)
T T
Then, the overshoot,
Yos = sup{—err(t)} (522)
satisfies
1
Yos 2 — [(ptr - l)ept.- + 1] (5 2 3)
ply
Proof

(a) Since e7P* > 0, then 1t can be seen from Equation 5 1 5 that any open-loop

RHP pole must produce a change in sign in the error and hence overshoot

(b) From the nise time definmition one can see that

v

t
e-r(t) > <1 - t_) t€[0,t,] (524)
Usmg Lemma 5 1 3, Equation (51 3) we have that
/ er(t)e P dt =0
Otr 0
= / e (t)e P dt+/ e (t)e P dt =0
0 te

r

00 tr ¢
= yos/ e""a’tZ/ (1—-) ePdt (by Eq (522))
tr 0

r

‘ tr t oc

‘ = 02/ (1-?) e""dt+/ err(t)e P dt (by Eq (52 4))
0 tr

|

|

1
= Yos > ot [(pt, - 1)eP + 1]
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Lemma 5 2 2 (Setthing time, undershoot and real RHP zeros)
(a) A stable closed loop system which has a real RHP open loop zero must have
undershoot in its step response

(b) The amount of undershoot 1s related to the setthng time and the location of

the RHP zero, z, as follows Define the setthng time, t,, as

tszuTlf{T y(t) > (1=0) fort € [T,00] and § < 1} (523)

Then, the undershoot,

Yus = Sl:p{-y(t)} (5 2 6)
satisfies
1-4¢ - a =
Yus > e-__Zts — 1 1 (O 2 1)
Proof

(a) Recall that e™* > 0 Then 1t can be seen from Equation 51 7 that for an
open-loop RHP zero the response to a step change in the set-point must

produce a change 1n sign on the output, which implies undershoot

(b) (Simular to Lemma 52 1) From Equation 5 1 7 follows that

ts 00
/ y(t)e ™ dt-{-/ y(t)e ™t dt =0
0 ts
ts (o}
= 02/ y(t)e‘”dt+(1—5)/ e=dt (by Eq (525))
0 ts

and using Equation (5 2 6) we obtain

oC ts ts
= (1- 5)/ e *tdt < —/ y(t)e *tdt < yus/ e *tdt
t, 0 0



Remark 521 Ifpt. > 1, then 1t can be seen from Equation 5 2 3 that y,5 >
ePtr  Thus two conclusions can be drawn from this The first conclusion s that if
the plant has an unstable pole then a fast response s desirable (1 e t. small) in
order to avord large overshoots The second conclusion s that if the unstable pole
s fast (1 e p > 0) then the transient response of the close-loop system has to be
fast (1 e t. small) i order to avoid large overshoots In summary, RHP poles in

the open loop system demand a fast closed-loop response

Remark 522 Similar conclusions can be drawn for RHP zeros using Fqua-
tion 527 Notice the trade-off between slow RHP zeros and the setthing time
ts A system wnth a slow RHP zero tends to have a large undershoot unless the

setthing tyme 1s very large, 1 e a slow response of the closed-loop system

5.3 Frequency Domain Limitations

As explained 1n the previous section, RHP poles and zeros impose fundamental
limitations on the closed-loop response In this section, limitations imposed in
a frequency domain sense are studied There are different results concerning
limitations from a frequency domain pomt of view [20], [21] [12], [17] The
results shown here are based on those given n [17] since they are easier to apply
and conclusions are easier to draw In [17], Astrom investigates the general
restrictions that RHP poles and zeros 1mpose when designing a controller It also

shows restrictions on possible gam crossover frequencies

One way to assess the crossover frequencies that can be achieved for a given system
15 the so-called crossover frequency wnequality, [17, Section 4] The achievable
bandwidth 1s characterized by the gain crossover frequency wy. The crossover

frequency 1nequalhity 1s

T

a (531)

arg anp(]wgC) 2 =7+ Pm — Tgc

where ¢, 1s the desired phase margin in radians, 7, 1s the slope of the mmimum

phase transfer function at the crossover frequency w,., and the plant must be
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factored as

P(s) = Prp($)Pump(s),
where P,y 1s the minimum phase part and P, 1s the non~-minimum phase part
The factorization must be normalized in such a way that |P,,,,(yw)| = 1 and the
sign is chosen so that P,,, has negative phase For example, for a system with a
RHP pole the non-minimum phase part 1s thus

_S+p
_S_p

Prmp(s)

where p > 0 Notice that

Jw-+p —w+Jp
anp(]w) = =
Jjw-—p —w-—=]p

Then the magnitude 18 [Popmp(w)| = 1 and arg Pymp = —2arctan 2 Therefore,
the magnitude 1s 1 and the phase 1s negative It follows form the crossover

frequency nequality that

x
—2arctan 2 2 =T+, — r)gc—t— = -2«
Wge 2

=T _ ¢m ut
where @ = 5 — 2 + 1,7 Hence

Wee 2 tan o
This shows again that RHP poles impose a lower bound on the achievable band-
width This conclusion confirms the results stated im Remark 521 It can also
be shown that RHP zeros impose an upper bound on the achievable bandwidth
In the next section, the crossover frequency nequality 1s apphed to the inverted
pendulum, giving some conclusions about the effect of RHP poles and zeros on

the achievable bandwidths of this system

5.4 Limitations and the Inverted Pendulum

As discussed in Chapter 4, the design of controllers for the pendulum system,

following the procedure described 1n that chapter, has to deal with unstable
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poles and RHP zeros These RHP poles and zeros impose restrictions on the final
closed-loop system Next the limitations that exist on the design of controllers

for each loop 1s described

5.4 1 Limitations of the Angular Rotation

Recall from Equation (2 1 24) that the transfer function of the plant 1s

—k‘gS
(s+a)(s+b)(s—b)

Gy =

It 1s worth mentioning that this plant, G,(s) cannot be stabilized by any stable
controller due to the zero at the onigin and the RHP pole, see [22] This can be
seen from the root locus of the plant shown in Figure 4 2 since the RHP pole
cannot be moved into the LHP by changing the gain of any stable controller
A negative gain would move the RHP pole towards the zero at the origin and
a positive gain would move the pole towards mfimitv Hence, in either case we

would alwavs have a closed-loop pole 1n the RHP

Now the limitations of this plant are analvzed Following the crossover frequency

mequality, Equation (5 3 1), the plant must be factored as

-AQS sS+b
:GmGnm =
G2 ampanmp ((s+a)(s+b)2> (S—b>

For the non-mimmum phase, one obtains

Jgw+b —w+ b
Gnm = =
nmp(70) Jw—b —w-73b

and

b
arg GQnmp(]w) = —2arctan E

It follows from the crossover frequency inequality, Equation (5 3 1), that

b T

—2arctan — > =7 + @y — Nge=

w 2

= < tan (—7{ — &m + Zf)
Wy — 2 2 ngc4
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5 0. (541)

~ tana

Wgc

where

w3

Ym
a=5 =T e

TR

A RHP pole thus gives a lower bound on the crossover frequency For systems with
unstable poles the bandwidth must be sufficiently large The range of achievable
bandwidths 1s decreased with increasing frequency of the pole It 1s thus more

difficult to control fast unstable poles than slow unstable poles

Choosing a controller that gives an 1y = ~1 or —20dB/dec (which 1s common
for stability reasons) for the compensated minimum phase part, Gomy H2, and the

phase margin, ¢,, 1s chosen to be 45deg (¢, = 7/4), hence

Wge 2>
*~ tanZ’

Using the values in Equation (2 1 25) gives
wge > 13 19 rad/sec

It can be seen from Figure 4 6 that the bandwidth for the angle control 1s indeed

larger than this lower bound

5.4.2 Limitations of the Displacement

Next the fundamental himitations which apply to the second control loop, the
displacement, are considered As it 1s know, the compensator for the displacement
1s designed looking at the equivalent plant G.,, Equation (41 7)

11(s + 30)(s — b)(s — 2)
s{s +4751)(s+ 16 71)(s + a)(s + 0 688)

G(s) =
The plant must be factored as

G = GrmpGomp
_ ( 11(s +50)(s +b)(s +2) ) ((—s+b)(—s+2))

s(s +475 1)(s + 16 7T1)(s + a){s + 0 688) (s +b)(s+2)

49



It follows for the non-minimum phase part that

(21 — Jw)(2z3 — Jw)
(21 + Jw){ze + Jw)

Gnmp(.]w) =
where z; = b and z, = 2, s0
w w
arg Gamp(yw) = —2arctan — — 2arctan —
2 Z2

It follows from the crossover frequency nequality, Equation (5 3 1), that

w w m
—2arctan — — 2arctan — > -7 + @, — Mge =
21 22 2
w w
-+ = T ) T
= arctan 2+—2 > — - T2 4 —
1-2 =2 2 ¥y
122
21+ 2 (71' Pm
<tan|(-—-— + )
2129 — ’lb2 - 2 2 gc'l

ﬁwzc + wge(21 + 22) — 8212, 0

Choosing a controller that gives an ng. = —1 or —20 dB/dec for the compensated

where 8 = tan (I — &* + 1y,

Lb]

mimmum phase part, GmpH; and the phase margin, ¢, 1s chosen to be 45 deg
(om = 7/4), this yields
wge < 058729 rad/sec

Unstable zeros thus give an upper bound on the crossover frequency Slow RHP

zeros are thus more difficult to control than fast RHP zeros

5.5 Discussion

Limitations imposed by unstable poles and RHP zeros were studied in this chap-
ter Thus, 1t 1s important to be aware of how well a system can be controlled
in terms of some performance requirements, 1e bandwidths, setthing tiume, rise
time, etc Systems with RHP poles and zeros are, by nature more difficult to

control

From Figures 4 5 and 4 9 one can see the most noticeable characteristic of the

RHP zeros Figure 4 515 the step response of the angle control closed-loop system,
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which has a non-minimum phase zero at s = 2 due to the controller H, Figure 49
1s the closed-loop response of the displacement, which has two RHP zeros due
to the plant G, In the first case, the mitial response of the system is 1n the
opposite direction compared to its steady state value and the system has a large
undershoot In the second case, the mnitial response 1s 1n the same direction as 1ts
steady state value but eventually 1t changes the direction and reverses the sign
to finally move back toward the steady state In general, for a stable system with
n, RHP zeros, 1its step response will cross zero (1ts original value) n, times that
18, the system will have undershoot This result 1s a well known charactenistic
of RHP zeros (Holt and Moran [19]) and 1t 1s another way to verify that non-
minmimum phase zeros 1mpose fundamental restrictions 1n the design of control
systems It was shown that RHP zeros close to the imaginary a\is give a larger
overshoot (see Lemma 52 2) which also illustrates the result obtained in this
chapter That is, slow non-mimimum phase zeros are more difficult to control

than fast RHP zeros

Following Chapter 4 and this chapter, 1t can be concluded that the pendulum
system 1s not easy to control since strong fundamental limitations apply to it
Now that these imitations are understood one can proceed to improve the design

of Chapter 4
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Chapter 6

One-Loop-at-a-Time Method -
Approach 2

In Section 4 1 some controllers were designed for good command following of
the displacement control The resulting response was not fast enough It 1s now
understood that this 1s because of the two slow RHP zeros 1n the equivalent plant
Gey(s) This restrains the final response as illustrated mn the previous section
In this chapter we counter this restriction 1n as much as this i1s possible, using a

one-loop-at-a-time strategy

6.1 Controller Design - Approach 2

It can be seen, from Equation (41 6), that RHP poles in the controller H, be-
come RHP zeros in the equivalent plant This plant has two RHP zeros (see
Equation (417)) One 1s due to the plant G5 and the other 1s due to the con-
troller H, It 1s obvious that the RHP zero that comes from the plant cannot be
avoided but one can avoid the RHP zero due to the controller H, One way to

do this 1s shown 1n Figure 6 1, which may be compared with Figure 4 1

From this figure and using a similar procedure to that used to get Equation (4 1 6),

the new equivalent plant, 1 e the plant seen by the controller H, can be obtained

i GH

R S FEN7A

(611)



Hy H

G

v

Figure 6 1 New feedback system

As can be noticed from the above equation, the poles of Hy cancel with themselves
when G, 15 calculated, which means that now there 1s only one RHP zero in the
equivalent plant instead of two RHP zeros as was the case In other words
unstable poles of A, resulting in RHP zeros in G, are avoirded Notice that 1n
this way, unnecessary limitations on G, (1 e displacement loop, not on the angle

loop) are avoided

Both controllers need to be redesigned This 1s discussed 1n the following sections
It 1s important to notice that in order to have a good performance of the real
system and since a precise mathematical model 1s not available, 1t has to be
assured that the overall system 1s robust 1n order to cope with uncertainties
and non-lineanties existing 1n the real sistem This 1s why good sensitivity and

complementary sensitivity functions are required for this plant

611 Controller Design for the Angular Rotation

The controller designed for this part of the system 1s

(s +a)(s+b)
(s +100){s — 2)

H?(S) = -80 (6 1 2)
The step response, the Bode plot of the loop gain, the sensitivity and complemen-
tary sensitivity functions are shown 1n Figures 6 2, 6 3 and 6 4 respectively From
these figures one can see that there 1s no big difference between the response of
this design and that of Section 4 11 This 1s because the limitation of the plant

RHP pole 1s stall imposed



612 Controller Design for the Displacement

Before designing a controller for the displacement, the new equivalent plant has

to be found From Equations (21 24), (2125), (61 1) and (6 1 2) one obtains

(s +b)(s—b)
s(s + 68 45)(s + 23 4)(s + 0 6821)

Geg(s) = —880 (613)

Notice that there 1s only one RHP zero The controller designed for this part of

the system 1s
(s +23 4)(s + 0 6821)

(s +13)(s + b) (614)

Hi(s)=035

The step response, the Bode plots for the loop gain, the sensitivity and comple-

mentary sensitivity functions are shown in Figures 6 3 6 6 and 6 7 respectively

From these figures, one can see that with this controller good stability margins

are obtained as well as a faster response which was the objective
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Figure 6 2 Step response of the angle loop



Bode Diagrams

Gm=-10 135 dB (at 3 4364 rad'sec) Pm=58 534 deg (at 22 666 rad/sec)
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Figure 6 3 Bode diagram of the angle loop

6.2 Discussion

From Equation (6 1 3) 1t can be seen that with this new setup (see Figure 6 1) a

RHP zero has been avoided when designing the control svstem for the displace-
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Figure 6 4 Sensitivity functions of the angle loop
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ment This makes the design easier in the sense that the overall performance 1s
not highly hmited, bandwidths can be improved thus facilitating the shaping of
the sensitivity and complementary sensitivity function All in all, this improves
the performance and robustness of the svstem In fact as can be noticed from
Figures 49, 410, 411, 6 5, 6 6 and 6 7 the performance was notably improved

The system 1s much faster and more robust

In Chapter 5, 1t was stated that no stable controller could stabilize the angle
plant and 1n the design process a controller with one RHP pole was chosen It 1s
worth mentioning that a controller with one unstable pole gives a better response
than controllers with two or more RHP poles To check this Lemma 51 3 can

be used Hence, for the case of a controller with two unstable poles one obtains
o0 o0
/ er(t)e P dt + / er(t)e ™t dt =0
0 0
o0
= / en(t) (677 + e ) dt =0
0

Since the response of the error 1s equivalent to the response of the sensitivity

function to a disturbance at the output of the plant, d, (from Figure 3 1, E(s) =

Step Response
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Figure 6 5 Step response of the displacement loop
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Bode Diagrams

Gm=9 9085 dB (at 7 9433 rad/sec) Pm=64 756 deg (at 1 7052 rad/sec)
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Figure 6 7 Sensitivity functions of the displacement loop

S(s)R(s) and Y (s) = S(s)D,(s)), 1t can be concluded from the above equation
that a controller with more RHP poles would give a change in sign 1n the signal

y(t) and a higher overshoot 1n the transient response when a disturbance 1s applied



to the pendulum Indeed, this 1s an undesirable effect In other words, increasing
the number of RHP poles that are added to the controller during the design has

the effect of decreasing the level of disturbance attenuation

Finally, the controllers were implemented 1n the real system and further tuning
was needed The gain of the controllers was increased in order to get more
robustness 1n the control system The linear model used to design the controllers
is not accurate, that 1s why more robustness 1s required in order to deal with the

uncertainty and non-linearties inherent in the system The final controllers are

(s +23 4)(s+06821)
H =07 621
' (s+15)(s + 5 464) (621)
and
5 464
H2:_150(3+a 64)(s + 3 333) (622)

(s +100)(s — 2)
The respective response 1s given 1n Figure 6 8 Notice from this figure the small

oscillation on the responses of the syvstem This 1s due to the resolution of the

discrete sensors (see Section 2 1 1) used 1n the system
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Chapter 7

Gain Scheduling

Gain Scheduling (GS) design has become a popular method for designing con-
trollers for non-linear plants speciallv during the last decade It has special
features that make 1t easy to applyv compared with others design methods for
non-linear plants Among those features the most attractive 1s that GS emplovs

linear design tools in the design stage See Rugh and Shamma [23] for a survey

on GS

Many different design notions can be viewed as GS such as switching gain values
according to operating conditions, precompensating a non-linear gain with the
inverse gain function, etc Technmiques like switching controllers also fit a broad
interpretation of GS In this chapter the focus 1s on gain scheduling in the sense
of continuously varying the controller coefficients according to the current value

of a scheduling signal

The design of GS controllers for non-linear plants can be summarized 1n four
broad steps, [23] The first step 1s to compute a linear parameter-varying (LPV)
model for the plant The second step 1s to use linear design methods to obtain
linear controllers for the LPV model The third step 1s to implement the fami-
lies of controllers obtained in the second step 1n such a way that the controller
coefficients vary according to the current value of the scheduled variable(s) The

fourth step 1s performance assessment

Again the inverted pendulum 1s used as an application example The controllers

that have already been designed for the inverted pendulum work properly for the
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linearized plant at the equilibrium point with z3 = 0 (pendulum in the upright
position), but when applied to the nonlinear plant the system behaves differently
when 1t 1s at a point that 1s not the equilibrium point In order to see how the
system behaves at every point In state space the non-linear transfer functions

may be found

7.1 Non-Linear Transfer Functions

A representation of the plant 1s found which allows us to obtain a transfer function
for points other than equilibrium points To calculate the transfer functions i1t
1S necessary to get an appropriate non-linear state space form of the system

Finding a standard linearization of Equation (2 1 17), vields

0 1 0 0 0
o -£ 00| i .
T 0 g 01 |t 0 u  (711)
0 i7cos(zs) w O ~ 3777 cos(z3)

and from Equation (21 20),

1 000
_ 712
v (o 010 > g (712)
where
T= (1 T, 14)T
and
g 1 F -
w= = cos(zz) + ik sin(r;) — I sin(z3) (T13)

Thus, z3 can be chosen as the scheduled variable Now, the transfer functions

can be calculated using Equation (2 121) A few calculations gives

Gy = —M __ 714
s (s+ L) (714
Gy = ML) (715)

(s+£)(s2-w)

From these transfer functions one can see that G, 1s nonlinear and its gain and
two poles (1e (s> —w)) depend on the state of the plant z(t) This model can

be viewed as an LPV model Now, the scheduled controller can be designed
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7.2 GS Controller Design

Based on the controllers already designed m Chapter 6 one can design the GS
controllers Again two controllers are needed, one to control the displacement of

the carriage and one to control the angular rotation

721 GS Controller Design for the Angular Rotation

It can be seen from Equation (7 13) that the gain of the plant varies with the
variation of the angle z3 To counteract that variation 1t 1s possible to vary the
gam of the controller H; One way to deal with this 1s to replace the gain of Hj
say ho by ha/cos(z3) It can be noticed from Equation (7 1 5) that the plant has
two poles that change with the parameters of the plant +.,/w, where w 1s given
in Equation (713) H; (Equation (6 1 2) was designed aiming to cancel the two
stable poles of G2, (—/w and —%) at equlibrium Hence for the GS controller
one could have two zeros at the same location but varying as the poles of the
plant varies So the new controller for the angular rotation is

sty (5 + 37)(s + V)
(s +100)(s — 2)

H, = (721)

722 @GS Controller Design for the Displacement

It can be noticed from Equation (6 1 1) that the gain of the equivalent plant,
Geq, only depends on the gain of G; and H, The gain of G, 1s constant (see
Equation (7 14)), thus the only vanation of the gain of G, 1s due to H; Hence

the gain of H| can be adjusted to h, cos(z3), where h; 1s the gain of this controller

It can also be checked that with the H} of Equation (7 2 1) the new equivalent
plant has two zeros at +v/w So H] can be set to cancel the two stable zeros of

G, The new equivalent plant 1s

o i (s + V) (s ~ Vi) 729)
0 s[s3+ (90 — w)s? + (80ky — 200 — 90y/w)s + 200v/w |
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From Equations (6 1 3) and (6 1 4) 1t can be noticed that H, was canceling two
poles of G.; So this controller might need to cancel those poles, but their location
varies with the vanation of some parameters of the plant, such as the angle, z3
In order to do such cancelations the variation of the poles of G, as x3 changes
from 0 to 90 degrees 1s calculated while setting u and z, (see Equation 71 3)
to zero The vanation of these poles is tabulated The table below shows the

vanation of the angle at several values

Angle (z3) 0 5 10 15 20
poles -68452 | 68445 | 68422 | -68 384 | -68 33
-23402 | -23422 | -23481 | -2358 -23 72
-0 68214 | -0 68034 | -067495 | -0666 | -0 65354
Angle (z3) 30 15 60 80
poles -68 172 | -67 797 | -67 206 | -65 772
-24 125 | -25068 | -26 497 | -29 718
-0 6183 | -0 54065 | -0 43391 | -0 23296

Table 71 Vanation of poles of G,

So 1t 1s needed to find functions that describe the variations of the two slower
poles Using Matlab’s commands polyfit and polyval the polynomials which fit
the variations of the poles (including negative values of the angle) were computed

So the new controller for the system 1s

o = 0 35cos(z3)(s + a)(s + 3)

b (s +13)(s + Vw) (723)

where

o 2=

0 00093273(z3 x 180/7)% + 23 289

= 306275 +23289  (z3inrad)

and

—6 9113 x 1075(z3 x 180/7)% + 0 68136

= —022688 27 +068136  (z3nrad)
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7.3 Discussion

The controllers of the previous chapters work properly on the real system (see Sec-
tion 6 2), but despite the fact that those controllers are robust, their performance
decreases as the pendulum angle drifts away from the vertical position This 1s
because the sensitivity and complementary sensitivity functions are affected by
the angle as well as the stability margins which decrease as the angle moves away
from zero This 1s one of the advantages of the GS approach, since 1t keeps the
stability margins and the robustness of the closed loop system unaffected, or at

least between a small range of variation

It can be checked from simulations that when the imitial conditions are close to
the equilibrium the transient and steady state response of the closed loop system
with the GS controllers 1s very similar to that of the system with the controllers
described 1n Section 6 2 The advantage as was said above, 1s that the GS
controllers are more robust regarding variations of the plant due to non-linearities
Several tests were performed on the real system with the GS controllers and the
controllers of the previous chapters the initial position of the pendulum was
changed With the controllers of the previous chapter the svstem could not
be stabilized when the mitial condition was greater than or equal to 0 2 rad
(11° approx ), whereas the GS controllers could stabilize the svstem with nitial

position of around 0 35 rad (20° approx )
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Chapter 8

Ho Optimization and
Multivariable Control

In this chapter a full MIMO perspective 1s adopted As mentioned earlier, some
of the tools and definitions used for SISO svstems are no longer applicable for
MIMO systems An example of this is discussed in Chapter 2 where the poles and
zeros were defined for MIMO systems There are several methods for designing
controllers for multivariable svstems, [16] [9], [12], [24] Here, an approach based

on frequency domain H, optimization 1s considered

8.1 Introduction

The 1dea of H, control 1s to find a controller that stabilizes the system and
minimizes a given quadratic cost function There are many ways in which control
design problems can be cast as H, optimization problems The best known
solution of the standard H, problem 1s described by Doyle et al [25] but 1t 1s
only applicable to a limited class of problems and 1t relies on the solution of

Riccati equations

The approach taken here uses the sensitivity and complementary sensitivity func-
tion as a measure of robustness The sensitivity function, S, determines the effect
of disturbances on the closed-loop system The complementary sensitivity func-

tion, T, 1s important for the closed-loop response, the effect of measurement
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Figure 81 Control loop

noise and robust stability For the configuration of Figure 8 1 these functions are

defined as

So(s) = (I+G(s)K(s))™" (811)
To(s) = 1= S,(s)=G(s)K(s) (I +G(s)K(s))™" (812)
S(s) = (I+K(s)G(s))™ (813)
T(s) = I-S(s)=K(s)G(s) (I + K(s)G(s))" (814)

where the subscripts ¢ and o stand for input and output, respectively This 1s to
distinguish the functions evaluated at the mput and at the output of the plant
Of course, for SISO systems S, = S, and 7T, = T, Typically, control sistem

design amounts to shaping these functions aiming for the following objectives

e Make the sensitivity S small at low frequencies
e Make the complementary sensitivity T small at high frequencies

e Prevent both S and T from peaking at crossover frequencies

Therefore the H, problem can be cast in terms of the sensitivity and complemen-

tary functions, as follows

Problem The H; problem can be cast as

argunf [W.S(w)ll; + [W.T(jw)]; (813)

where W, and W, are weighting functions used to shape S and T, respectively,

and the #H,-norm 1s defined as

IRl = = / " TracelF* (yw) F(w)ldw (816)

27 o
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The Youla parameterization (Chapter 3) 1s a useful tool that facilitates the solu-
tion of the H, problem, since 1t allows the cost function (Equation (8 1 5)) to be
written 1n terms of a single parameter, ) That 1s, the optimal @ 1s calculated
and then, using the Youla parameterization, the corresponding optimal controller

K 1s found In this way, closed loop stability 1s equivalent to the stability of Q

In this chapter, two different approaches are studied, both of them in the fre-
quency domain The first uses an optimization of S and T at the input and then
at the output of the plant in order to find @ In the second approach, the cost
function 1s minimized 1n terms of S, and T, that 1s the optimzation is only done
at the output Again, the procedure 1s explained based on the inverted pendulum

plant (Equations (2 1 24) and (2 1 25))

8.2 Finding the H, Controller - Approach 1

As stated above, the H, problem 1s to find the optimal @ which minimizes the

two-norm of

J = |WSQw)l; + W, T (gw)ll3

where S and T are the sensitivity and complementary sensitivity functions respec-
tively Notice that in the pendulum system, Q 1sa 1 x 2 matrix (1e Q = [Q) Qa))

and by the 1dentity
GUI+KG)'=(I+GK)'G

1t can be concluded that GS, = 5,G Thus the optimal @ at the input of the
plant 1s the same as the output The solution sought in this section 1s based on

the structure of the pendulum plant

For the pendulum system the sensitivity at the input 1s a scalar, therefore 1t
should be easier to find the optimal @ at the input of the plant To do so,
two expressions are needed They are the sensitivity, S(s) and complementary

sensitivity, T'(s), functions at the input of the plant They should be expressed in
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terms of the Youla parameter This can be done using Theorem 3 0 1 as follows,

S, = (I+KG)™
= (I+Y'X;N,D;")™" (by Theorem 30 1)
= [Y'(MD, + XiN,) D7)
= D,(Y,D, + X\N,)™'Y;
= D,V;D; + QN:D, + U N, — QDN 7 (V; + @N))  (by Th 301)
= D,[I+QND, - QN.D,]"\(V, + QN)
= D.(V; +QN)

In the above equations, the identities G = N, D, = D|N, and U, N, + V,.D, = I
(see Theorem 3 0 1) were used Thus S, in terms of the @ parameter 1s

Sz = Dr(vr + QM) (8 2 l)

Following a similar procedure 1t can easilv be proved that

T, = (Ui - D.Q)N, (822)

Note also that
So = (Vl + ]VrQ)Dl (8 2 3)
T, = N.{(U,-QD) (824)

Now the H, problem can be cast in terms of the Q parameter

8 2.1 Solution via Completion of Squares

Here the term * will denote complex conjugation Notice that
WS, )2+ [W,T,)? = (W,S,)* (W,S,) + (W,T.)* (W, T.)
and using Equations (8 2 1) and (8 2 2) 1n the equation above yields

|W,S,]* + W, T,|* = (W,D,V, + W,D,QN,)"(W,D,V, + W,D,QN,)
+(WUN, — W,D,QN,)"(W,UiN, - W.D,QN,)
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Notice that Vy1isa2x 1 matnix, Uyis 1 x2,Qiisal x2and D, V,, W, and W,

are scalar transfer functions Thus
IWSSJ2 + IWJ’,I2 = W;DV'W,D,V, + W:D;V;W,D.QN,
+W:DINQ'W,D.V, + WD N;Q"W,D.QN,
+W N UW.UN, — W;NU'W,D.QN,
-W;DINQ"W,UN, + W;D: N} Q*W,D,QN,

= DD (W'W, + W;W)N;Q QN + D:(W:W,D,V, — W, W,UN)N; Q"
+D, (W W,D,V, = W W UiN) QN + W W, D:D,VV, + W W,N; U U,

Let
AA, = DD (W W, + W, (8253)
Thus
= AANQON + D (W WDV, = T TLUN)Q V)
+D, (W WD, V, — W WU N) QN + VTV, D: D, V'V,

+1 W NS U ULN,
and completing the square

= (MQN +B) (MQN + B) + WW, DDV V, + W W N U U,
~ (D;(IV;WSD,V, - W;WMN,))’ (D;‘(W;WSD,V, - W;‘WtUlN,))

* =
‘\ 1 /\ t

where

* I/Vx 7 * 7 V
Bz — (Dr( s I’V.sl)rl/r I'Vt I’VtUU l)) (8 2 6)

A;
After ssmphfying gives
WS, + [W.T,|* =

D; DWW, WrW,
ATA,

(A@QN; + B)"(\.QN, + B,) + (D,V, + UN)(D,V, + U;N,)

Since @ can do nothing to affect the second term 1n the above equation, only one

@ that minimizes the 2-norm of the first term needs to be chosen and this 1s a
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1-block problem which should be easier to solve than the 2-block problem Thus

the problem can be recast as
opt g QlE?f"" “At it z” ( )

where A, and B, are given 1n Equations (8 2 5) and (8 2 6) In the equation above
some of the terms are vectors In order to express that equation 1n terms of the
scalar components of the vectors, let @ = [@; @,] and N, = [Ny NpJT and

substituting into Equation (8 2 7) yields

(I\IQM+B!) (\QVI+B

(e ] 5] (voci[ 3] )

Thus

(LQN+B,) (AQN+B,) = (L1 Ny + L@Qa N2+ B,)" (AQ1 Niy+A,Q2.Vp+B,)
(828)

or equiy alently
(;) = nf /\,(2 Ny + /\lQ Np+ B 2 829
opt Ql,éhEH ” 17¥1 24¥[2 l“ ( )

Clearly the problem has been 1educed to an optimization problem of two scalar

variables () and (o Now a solution to this problem 1s sought

Finding the Optimal (); and @5, - Approach 1

From Equation (8 2 9) and from the well known Projection Theorem ([26]) 1t 1s

known that Qup = [Qopt  Q20pe] 15 Optimum 1f and only 1f

/(AlQlopt + AoQoopt + B))*(11Q1 + A2Q0)dw =0 V@ @ eH™

where 4; = A, Ny, 45 = A, Nz and B, are stable and strictly proper In this case
N;; and Np; differ only by a constant (see Equation (3 3 21)) and hence, so do 4,
and A; Therefore, from an inner/outer factorization of A, and 4, it can be seen

that the inner products are the same Now, let 4; = 4,4,,, and 45 = 4,4y, be
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their respective inner/outer factorizations, thus the above integral becomes
= [ (A Qu + Qg + B (i Qi) +
/ (A A16pQ1opt + A A20pQaopt + By)* (A, Agop@2)dw
= / A} (AropQuopt + A20pQaopr + A7 B,) (A A1pQ1 ) dw +
[ A iy Qua + Loy Qau + 47 B (Ao Qo)
but A* = A7, hence
/ (A1Quopt + A2Qo0pt + Bi)™(41Q1 + ArQ:)dw
= / (A1opQuopt + 20pQa0pt + A7 B)* (A16p@1 )du +

/ (Aloleopt + "bopQ?opt + AI_IB:)*(A?opQQ)dw

Now, since Aj,p and Azy, are mimimum phase transfer functions, let

7. (4718,
lop

where 7, ( ) denotes stable projection Thus replacing this, in the integral above

and Q2opt =0 (8 210)

yields
/ (J‘llQlopt + A2Q‘20pt + Bz)‘( 41@1 + AQQ?)dw

_ / (7 (A~ B))" (410501 ) + / (7 (A7 B))* (420 Qs)

= /W+(A:lBt)AloledU/ + ‘/.WJrv(Az_le)"l?opQ?dw

Since Ajop, @1 and Agy,, @2 are stable the integrands of the equation above
are analytic in the RHP, therefore the above integrals are zero (by the Cauchy-
Goursat Theorem) This shows that Q1,p and Qe given by Equation (8 2 10)
are optimal' Notice that, in this way, the optimal Q 1s not umque, since one

could have let @1opr = 0 and found an expression for Qgqpt

Finding the Optimal @, and @, - Approach 2

So far, the problem of Equation 8 1 3 has been reduced to find the optimal Q =
Q) @3] of the cost function J see Equation (8 2 9),

J = f A,Q" : 2
g o, o [ 4:1Q + A:Q; + B.lI3
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where 4, = A,NV; and Ay = A, Ny Clearly A, and A, differ only by the terms
Nj; and Npp, which, 1n the pendulum case differ only by a constant, say £ Since
A; and A, differ only by a constant 1t can be included 1n either @} or @5 and then
A; and A, will be the same, say if Q) = Q] and Q2 = k@) then 4; = 4, = 4
Thus

J= fo4 B3 8211
o AE L 14(Q1+Q2) + B (8211)
where B, 1s given by Equation (8 26) and 4 = A,V;; Let
Q, = Qs 42’ Qs
and
Q, = Q3 ; Qs
or equivalently
Q=@ +Q and Qy=Q1—Q (8212)

Notice that Equation (8 2 11) reduces to an optimization problem of one variable

when Equation (8 2 12) 1s used

Now using Equation (8 2 12) 1t can be found how the sensitivity and complemen-
tary sensitivity depend on these @) s Recall that the sensitivity function at the

input 1s given by Equation (8 2 1)
Sl = (VT + lel)Dr

where, 1n this case, D, and V; are scalars (see Equations (3 3 18) and (3 3 20)),
Q=1[Q7 @ 1salx2vectorand N;=[N; Np|T1sa2x1 vector Since Ny |

and N, differ only by a constant gives

S, = VD, +[Q] @Q4[Nu Np)"D,
= V.D, + Q\NuD, + Q3N D
= ViDr+ Q1NuD, + QuNuD;
= V.D, + (Ch + Q2)Nu D,
= (Vr + Q3Nn) D, (8213)
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The complementary sensitivity function at the input 1s (see Equation (8 2 2))
Tt = (Ul - DrQ) Vl

where, 1n this case, U and Q = [@Q] @] are 1 x 2 vectors, D, 1s a scalar transfer

function and V; 1s a 2 x 1 vector Again, since NV;; and N, differ only by a

constant yields,

I, = UN-QND,
= U[lV[ - QBNIIDr (8 2 14)

Now analyze the sensitivity and complementary sensitivity functions at the out-

put Recall from Equation (8 2 3) that the sensitivity at the output 1s
50 = (Vl + -\IrQ)Dl

where V, and D; are 2 x 2 matrices and V, 1s a 2 x 1 vector Here there 1s
no wav of simplifying S,, therefore S, 1s a function of @, and Q,, or, similarly
by Equation (8 2 12) 1t 1s a function of Q3 and @y The same happens to the

complementary sensitivity function (see Equation (8 2 4)),
To = Nr((jr - QDI)

In summary, @3 can be found using Equations (8 2 11) and (8 2 12) and then Q)
can be calculated by optimising S, and T, Thus the minimization of the two-
norm of the sensitivity and complementary sensitivity functions at the output 1s

needed

8 22 Optimal Q at the Output

Recall that
|WSo|? + W2 = (W,S,)(W,S,) + (W, T,)(W.T,)
Using Equations (8 2 3) and (8 2 4) in the equation above yields

WS, )2+ W, = (W,ViD, +1V,N,QD,)*(W,V,D, + W,N,QD,)
+(WeN.U, = W,N,QDy)*(W,N,U, - W,N,QD),)
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Notice that NV, 1sa2x 1 matrix, Uy 1s 1 x 2, Qisal x 2 and Dy, V|, W, and W,
are 2 x 2 matrices (see Equations (33 17)-(3322)) Thus

W,S,2 + WL, = D{VW:W,\ D+ DV, 'W:W,N.QD,
+D;Q*N*W W, VD, + D} Q" N:W:W,N,QD,
+UN' W W MU, — UrN*W,; W, N,QD,
—D;Q*NW;W,N,U, + D;Q*N*W;W,N,QD,

= D;Q*N:(W'W, + W;W,)N,QD, + D; Q"N (W:W,V.D, - W;W,N,U,)
DIV WEW, — U NW;W)N,QD, + DV W*W,V;D, + U N:W;W,N,U,

Let

ATAL = N (W + W W)N, (8213)
Thus
1TV S,)2 + |1V, T, (82 16)

= D;Q AIMQD + (QDy)* N (W W VD, — W;W,N,U,)
+(H/; I"’SV[Dt — W’;"th‘er’,.)*erQD[ + Dl’ V}*IVS"H/SVEDZ + U:jV:W/:I,vthrUr

and completing the square

= (\QD; + B)" (M\@D; + B) + D;V ;W W, ViDy + U N W W, N, U,
— [(AD)TINF (W W VD, - W)W VUL [(A)) TN (WIW, WD, — Wi W N, U, )]

where

By = (A" NI (WIW, WDy — WrW,N,U,) (8217)

Again since @ can only affect the first term in the previous equation, one
that minimizes the 2-norm of this term needs to be chosen Thus, the two block
problem has been reduced to a one-block optimization problem That 1s, the

problem now 1s

Wopt = arg QleI’le“ 1A.QD: + Bual; (8218)

where A, (a scalar) and Bz (a 1 x 2 vector) are given by Equations (8 2 15)

and (8 217) In the equation above, some of the terms are vectors, so in order
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to express this equation 1n terms of the scalar components of the vectors, let
=[@1 @] and Biz = [B; Bs| and, using the defimition of the 2-norm, 1t can

be shown that

IAQD + Bua)ll3 = ||AL(Q1 D1 + Q2Dpan) + Bilf3
+[|A1(Q1 Dii2 + Q2Dizz) + Balf3 (8219)

From Section 8 2 1 1t 1s known that (J; can be found by using Equations (8 2 11)
and (8 2 12) Therefore Q4 can be calculated using Equations (8 2 12) and (8 2 19)
taking Q3 as a constant That 1s, following Equation (8 2 19), yields,
[(AL(@1Duy + Qe Diy) + Bl [A1(Q1 Diny + Q2Diay) + By
+[A1 (@1 Dz + Q2 Dize) + Bo* [A1(Q1Dna + Q2 Di2) + Ba]

*

1
= ?M[(Dm + Dio1)Qs + (Din — Diay)Qy) + B

= ]
X 5-’\1[(Dz11 + Di21)Q3 + (Diyy — Din) Q4] + By

1
+ 51\1[(17112 + Di22)Q3 + (Dpa — Diga) Q4] + B

] :
X 5A1[(D112 + Di2) @3 + (D2 — Dizg) Q4] + BQJ

1 x * 1 1 * * *
= ZADAOQ4Q4 + 3 (;1\1(17111 + D) Qs + 31) Al(Di — Dia1)" @4

1 /1

+§ (51\1 (D112 + Dl?Q)Qs + B2> ’\I(DH? - Dl22)*Q;
1[(1 I

+§ [(51\1(13111 + Di21)@Qs + Bl) A(Duy = Dia1)* | Qs
1[/1 I

+§ {(2/\1(17112 + Dp2) Qs + Bg) 1(Dn2 = Dia)*| Qs

1

.1 ] )
+ Q‘AI(DIII + Din))@s + B, A1(Diy + Diay)@s + By

o

0S| —

2
| | [

1
+ §A1(D112 + Di22) @3 + Bz

A1(Dig + Dina) Q3 + BQJ



where

ANy = MM [(Diny — Dio) (D — Dizi) + (Duz — Digg)*(Dug — Diza))
(8 2 20)

Now let

1
B, = ()7} K; \1(Duy + Doy )@Qs + Bl) A(Dyy — Din)”

1
+ (5/\1(0112 + Dip2)Qs + 32) AT (Dng — Dm)*J (8221)

and completing the square 1n @4 yields

1 "1
[5/\0Q4 + Bo] [5 \0Q4 + Bojl

1 1
+ [5 A(Dny + Digy)@s + BIJ [5’\1(D111 + Diy)Qs + Bl}

1 1
+ [5/\1(D112 + Dipg)@Q3 + Bz] {*2'1\1(17112 + Digg)@Qs + Bz} - BB,

Thus the optimal ) can be found from

2

1
Quope = arg f |5 1Q4 + B, (8222)

2
where A, and B, are given by Equations (8 2 20) and (8 2 21), respectively Notice
that after finding the optimal @3 and @, @, and @); have to be found and then

the substitution Q) = Q2/k needs to be done

In summary, using approach 2 (Section 8 2 1), one can find the optimal @, from

the following the steps

1 Find the constant & by which N;; and Ny, differ In this case,

, , —k -k
QN = Qz——gle—l = Q2N
k, ko
where
; -k
Q:=Q)k and k= k—2 (8 2 23)
1

2 Let Q3 =Q,+Q2and Qy = @, — Q2 and find the optimum (at the input of
the system) of Equation (8 2 11), that 1s find the optimal Q3 of

J= wf [|AQs+ B,|?
Ql,g;}enwn @3 + B.l|;
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which 1s
(A

INNner

B))

m
Q3opt = - s (8 2 24)

Aouter

where

g _ (DIWiWaD.Y, - WaWuUiy)
[ 2 A: 1
ArA, = DED,(WiW, + Wi W)

and A;nner and Agyrer are the 1nner and outer part of A = A, V),

3 Find the optimum of Equation (8 2 22), that 1s

W+(Bo)
7%

Qaopt = — (8225)

where
1 * x
B, = (Ay)7! [(;‘\1(17111 + Dip1)Qs + Bl) A1 (D1 — Digy)
1
+ (Ef\l(Duz + Di0)Q3 + Bz) Al (Dya - Dm)'} ,

Ao = AJAL[(Diny — Diat)*(Diy — Diar) + (D — Diga)*(Dina — Diga)]

By =[B, By = (AN (W W, VD, — W W,N,U,)

and
AT\ = N (W W, + W W,)N,
4 Find
N _
Q1:Q32Q4 and QQZQS—QQ.E

5 Find Q. = (@) @3] Recall that @} = Q, and from Equation (8 2 23) find

Remark 8 21 This approach has the advantage that the algorithm 1s based on
scalar transfer functions, rather than transfer matrices But 1t has the disadvan-
tage that two sets of wewghts are needed, one for the input (W, and Wy, ) and one
for the output (W, and W,) The algorithm was wmplemented 1 Matlab, but no
appropriate weights were found For all weights that were tried, the peaks in the

mazmum singular values of S, and T, were very large, see Figure 8 6

Following the above remark, 1t 1s obvious that a new approach 1s needed
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8.3 Finding the H, Controller - Approach 2

In this section the optimization problem given by Equation (8 2 18) 1s studied

To do so, some further definitions are needed and are stated n this section

Definition 8 3 1 (All-pass Function) A transfer function matriz, B(s), 1s
called all-pass of B(s)B(s)* = I, which implies that all singular values of B(jw)

are equal to one

The next theorem 1s a result given 1 [11] and the proof 1s given there It uses

the definitions given 1n Section 2 3 2

Theorem 8 3 1 (Input Factorization of RHP-zeros) A system G(s) con-

taining N, RHP-zeros z,, with input directions ., and ., defined by

A- Z] Bz-—l .'ff~1

z

=0 (831)
cC D iz

can be factorized in a minimum phase system G(s) and an all-pass function By(s)
which 15 stable and has zeros cownciding unth the RHP-zeros of G(s), G(s) =
G(s)B;(s) where

Gi(s)=C(sI - A)"'B'+ D (832)

The modified input matriz B' can be calculated by applying the follounng formula
repeatedly forr =1, , N,

B, = B,_; — Re(2,)&,4, (833)
unth By = B and B' = By, The all-pass function B;(s) 1s gren by

BI(S) = BN_(S)BNz—l(S) Bl(s)

N -1
= [] Bv-(s) (834)
1=0
where
2Re(z,) . .
1 =1~ zt ; 3
B,(s) i3, i (835)



Note that a non-minimum phase transfer function also admits an output factor-
1zation analogous to the input factorization and 1t can be expressed 1n a similar
way For more information about multivanable poles and zeros and factorization

of RHP zeros and poles refer to [24], [11], {12], [27] and/or [28]

Now 1t 1s possible to prove the next theorem which allows us to find the optimal

solution of the optimization problem given by Equation (8 2 18)

Theorem 8 3 2 Suppose that 4 and B are strictly proper stable transfer function

matrices, where 4152 x 2 and B 1s1x2 Then
arg Qel'l}l{g“ ”QA + B”2 = [—TF+(BA:)(1) - 7T+(BA:)(2)] 4;1

where 4, and A, are the all-pass and mimimum phase factors found at the input
of A, respectwvely (see Theorem 8 3 1) That 1s A can be factored at the input as
A= A, 4, where 4, 15 an all-pass function and A, 18 a mimimum phase function

T+(BA}) ) denotes the stable projection of the 1-th element of B 4;

Proof From the Projection Theorem (see Luenberger [26, §3 3]) 1t 1s hnown that
Qopt 1s optimum 1f and only if (Q,,, 1 -+ B) 1s perpendicular to the space generated
by QA That s

(Qupi+B)L Q4 VYQeH?

Thus, 1t 1s needed to show that
1 9
< Quud +B,Q4>= 1= [ Tr{(@uA + B)(@4)}duw =0, VQe WL

where <, >, Tr{ } and ( )* denote inner product, trace and conjugate transpose,

respectively

Since A 1s stable, 1t can be factored as 4 = A,A, (see Theorem 8 3 1) where 4,
1s an all-pass factor (1e 4,47 = I) and A, 15 a minimum phase factor (1e no

transmission zeros on the ORHP) Hence

/TT{(QopzA+B)(Q4)'}dw = /TT{(Qopt/'loAz+B)A:A;Q‘}dw

/ Tr {(Qopedo + BAT)AZQ" } dus
(836)
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Now let
Quwe = [=m2 (B - m (B 4] 47 (837)

and substituting into Equation (8 3 6) yields

/ Tr {(Qued + B)(QA)} dw = / Tr{[n_(BADy 7 (BA@] A:Q") du
(838)
where m_( )(,) denotes anti-stable projection of the :-th element of the respec-
tive matrix Since [7_(BA})yy 7-(B 4:)(2)], A% and @* are all anti-stable, the
integrand of Equation (8 3 8) 1s analytic in the CLHP and 1t 1s known, by the
Cauchy-Goursat Theorem (see Brown and Churchill [29, ch 4]), that this inte-
gral 15 zero Thus, 1t has been proven that Q,, given by Equation (8 37) 1s

optimal O

Remark 8 3 1 Notice that, in the pendulum case, 4 = A\ Dy, thus the emstence
of the wnverse of A, 15 guaranteed by the fact that the transfer matriz D; has an
wmwverse and Ay 1s a scalar transfer function Also, notice that Dy has a zero at the
omgin which does not allow to apply the theorem directly, but the poles and zeros

of the plant can be shifted winto the RHP in order to be able to use the theorem

Remark 8 32 Thus theorem can easily be ertended to higher order matrices

prowided that the square matriz 4 has an inverse

The n x n case 1s explained next First notice that in the n x n case, all the
matrices involved 1n Equation 8 2 18 have dimension n x n Therefore, A, 1s no
longer a scalar Also, recall that A; 1s the solution to a spectral factorization (see
Equation (8 2 15)) Hence, A; 1s an n X n minitmum phase transfer matrix Thus

the theorem 1s as follows

Theorem 8 3 3 Suppose that AQ 4 and B are strictly proper stable transfer
function matrices, where A, Q, A and B are n x n matrices Moreover, assume

that A 1s minimum phase Then

At (839)

nxn

arngl?r{Ifxn NAQA4 + B3 = A" [-m(BA ) 1]

o0

where A, and A, are the all-pass and minimum phase factors found at the input

of A, respectwely (see Theorem 8 8 1) That 1s, 4 can be factored at the input as
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A = A, A, where A, s an all-pass function and A, 1s a minimum phase function
[—7r+(BA{)(J,k)]nxn 15 an n X n matriz whose element (7,k) withy) =1, | n and

k=1, ,n s the stable projection of the element (3, k) of the matriz B A:

Proof From the Projection Theorem (see Luenberger (26, §3 3]) 1t 1s known that
Qopt 15 optimum 1f and only if (\Q,,A + B) 1s perpendicular to the space gener-
ated by AQA That s,

(AQoA+ B) LAQA  VQ e HY"
Thus, 1t 1s needed to show that

1
< AQopt 14 B, AQA >= ﬂ/TT {(AQop A+ BYAQ ) }dw =0 VQ e HX"

Since 4 1s stable, 1t can be factored as 4 = A4, 4, (see Theorem(8 3 1)) where A,
15 an all-pass factor 1e 4,47 = I) and A, 1s a mimmum phase factor (1e no

transmission zeros on the ORHP) Hence

/Tr {(AQoptA + BY(AQA) }dw = /Tr {(AQopt o4, + B) 4 £5Q" A"} dw
= /Tr {AQup A4y + BAT) L:Q" A"} dw

(8 3 10)

Now, let
Qopt = \—1 [_W+(B {:)(Jvk)]nxn {;1 (8 3 11)

and substituting into Equation (8 3 10) gives

f Tr {(AQopA + B)(AQA)} dw = / Tr { [r(BAD) 6w, . .4;@*1\*} duw

(8312)
where [W—(BA:)(J»k)]an 1S an n X n matnx whose element (3, k) with ) =1, ,n
and £k =1, ,n s the anti-stable projection of the element (3, k) of the matrix

BA} Since [L(BA{)(J,;C)]HX" A*, A> and Q* are all anti-stable, the integrand of
Equation (8 3 12) 1s analytic in the CLHP and by the Cauchy-Goursat Theorem
(see Brown and Churchill [29, ch 4]) 1t 1s known that this integral 1s zero Thus,

1t has been proven that Q,, given by Equation (8 3 9) 1s optimum O
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8.4 Hs, Control of the Inverted Pendulum

As explained 1n the previous sections, the approach 1s to solve the problem given
by Equation (8 1 5), which was shown to be equivalent to solving the problem of

Equation (8 2 18), which 1s shown next
Qopt = arg Qlel,l}foo l[’\lQDl + Bl2llg

where
ATA, = N (W, + WSW)N,
By = (\})7IN (W W ViDy — WW,NU,)
and N, Dy, V; and U, are given 1n Section 3 34 The problem can be extended
to include a weight on R = K(I + GA)™! so that it covers the same weighted

muxed sensitivity problem as the Robust Control Toolbox for Matlab [30] To do

so, just change the last two equations to

ATA, = NY(W W, + W)V, + DIV W, D, (841)

B = (A)UN(W MWD, - WIVNU.) - DWW, U0, (84 2)

Thus, the algorithm to find the Hs-optimal controller after choosing the appro-
priate weights can be summarized as

Step 1 Find the solution of the generalised Bezout equation using Theorem 3 2 1
Step 2 Find the inner-outer factorization of A = A;D; using Theorem 8 3 1
Step 3 Find the optimal @ using Theorem 8 3 2, Equation (8 3 7)

Step 4 Find the optimal controller, X' using Theorem 301

The algorithm was 1mplemented and tested in Matlab The important question

1s how to choose the weights W, and W, which 1s not a trivial task Thev are

usually chosen based on experience and knowledge of the plant to be controlled



Sometimes 1t 1s a trial and error process For the pendulum system many sets of

weights were tried The best choices obtained are shown next

{s+50) 0 s 0
(s+01) 10000
Ws = ( Wt = (8 4 3)
10(s+100 s
0 S 0w

The resulting sensitivity and complementary sensitivity functions are shown in

Figures 8 2, 8 3F1gures 8 4 and 8 5, respectively

Sensrivity at the nput [Si(w)|

Magnitude (dB)

1 1 1
107 10 10° 10’ 160 10
Frequency (rad/sec)

Figure 8 2 Sensitivity function at the mput, |S,(3w)|

From those figures, note the peaks of the components of the matrix functions
Also, notice that disturbances 1n a range of about 0 1 to 10 rad/sec applied to
the pendulum-angle have a considerably effect on the cart position, since this dis-
turbance 1s amplified due to the high peak of the component (1,2) of Figure 8 4
at those frequencies Moreover a disturbance on the cart of any frequency 1s
attenuated due to the low gain of the element (2,1), making no significant effect
on the angle position From physical considerations, 1t can be argued that inter-
actions have to exist in this system, since a disturbance on either the cart or the

pendulum has to affect the state of the other component The 1deal 1s to have
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Complementary sensitvity at the mput [Ti(jw))

10 T T T T T

Magnituda (dB)

v
10 10° 10 10 1’ 10 10
Frequency (rad/sec)

Figure 8 3 Complementary sensitinity function at the input |7,(jw)]

a balance between the off-diagonal elements since they represent the interaction
inherent in the svstem It 1s important to be aware that these peaks cannot be

avoided at all due to hhmitations imposed by the RHP poles of the plant

Figures 8 6 and 8 7 show the singular values of 5, and T, and the step response

of the simulation with the linearized plant model, respectively

8.5 Discussion

As can be seen 1n this chapter, dealing with MIMO systems 1s not a trivial task
As 1s known, there are many different aspects of the control design problem that
have to be taken into account Also there are many new concepts (compared to
the theory for SISO systems) that have to be used and some others that have to
be further developed One area that 1s still under research 1s the limitations that

exist 1n the design of multivariable control systems

The pendulum system 1s not an easy system to control As shown in Chapters 5

84



Component (1,1) Component (1,2)

10 20

0 0
o) o

z -10 2 -20
o} 2]
° °

2 -20 2 -40
c [=
(o]

g -30 g -60
P =

-40 -80

‘50 2 1 ) 1 2 -100 0 2 a
10 10 10 10 10 10 10 10
Frequency (rad/sec) Frequency (rad/sec)
Component (2,1) Component (2,2)

0 8

-20 6
o )

z 40 Z 4
D D
k=] <

= -60 = 2
S S

3 -80 3 0
2 b3

-100 -2

-120 -4 - 1
10° 10° 10" 10 10 102
Frequency (rad/sec) Freguency (rad/sec)

Figure 8 4 Sensitinity function, [(So(yw),,)|

and 9, there are fundamental limitations that apply, especially the ones 1imposed
by RHP poles These lhimitations make controller design much more challenging
In this case, they make the selection of weights, 1e W, and W;, more difficult
The night selection of weights 1s a difficult and tricky part of this design process
Despite the fact that nowadays there 1s more literature with guidelines on how
to choose the weights, [31], [12], [32], this part of the design 1s often done as
a tral and error process When using the approaches presented here and the
H, approach of the Robust Control Toolbox many sets of weights were tried
It was noticed that a change in one of the elements of the weights changes the
shape of the overall S and T This also shows that the selection of weights for
multivanable systems 1s more challenging than the selection of weights for SISO

systems
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Figure 8 5 Complementary sensitivity function, |(T,(yu),;)]

Freudenberg and Looze [31] state that the real unanswered question 1s how
effective the weighting functions will prove to be as design parameters ” Here,
the designed controller with the weights of Equation (8 4 3) was implemented as
well as many other controllers obtained with different sets of weights, but even
though stability of the real svstem was achieved with most of the controllers,
the performance was not as good as expected The main reason for this lack of
quality performance was the high uncertainty present in this system, since some
non-linearities such as saturation and friction, among others, were not taken into
account during the modeling process One of the drawbacks of #, 1s that 1t
does not deal with large uncertainty compared with #H., control as 1s mentioned
i [33] and [30] In [33] an application of H; to a dynamically tuned gyroscope
(DTG) 1s presented The reason why the authors choose Hs 1s that “the Hoo
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methodology 1s suitable when the uncertainties of the plant are large, and the H,
methodology 1s suitable when the uncertainties are small and the performances
are more important” “Because a DTG 1s a very precise and expensive instrument,
the model parameters of the DTG are precisely measured and determined, thus

?

the model uncertainties are very small This paper 1s also a proof that H; 1s

still an important tool for control system design

The algorithm presented in Section 8 2 has the disadvantage that two different
sets of weights are needed, one for S and T at the input of the plant and the other
set for S and T at the output Indeed, simulations showed that the selection of
weights 1s “easier” with the algorithm of Section 8 3 One disadvantage of the
algorithm presented 1n Section 8 3 1s wn terms of its implementation For large
svstems (1e many nputs and/or outputs) or for systems with high order the
implementation 1s difficult In fact, this algonthm was implemented 1n Matlab
for the pendulum svstem and a lot of problems were encountered mainly because

of round-off errors and 1mprecision 1n some functions
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Figure 8 6 Singular values of So and To

87



Step Response
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Figure 8 7 Step response of the system d(t) (upper plot) and o(t) (lower plot)
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Chapter 9

Fundamental Limitations on

Control - MIMO case

During the last two decades much attention has been paid to understand the
limitations inherent in the design of control systems in both the frequency and
the time domain For some results see [18] [19] [20], [21], [27], [17], [34] and [33]
Nowadays, the trade-offs and design himitations for SISO systems are well un-
derstood and the theory 1s well established However despite much progress
design limitations for MIMO sivstems are less well understood compared with

their counterparts for SISO svstems

Many design hmitations for multivanable systems are phrased as integral in-
equalities that must be satisfied by the sensitivity and complementary sensitivity
functions Some of the results are either very conservative or not easy to appls
since some of the mequalities do not relate S and T directly they are usually
given 1n terms of their logarithms Some other iequalities involve the singular
values of S and T, which have drawbacks 1n that i1t may be difficult to relate the
singular values to properties of the system under consideration Another impor-
tant disadvantage 1s that some of the 1nequalities are valid only for square plants
In the paper by Woodyatt et al [34], hmitations for a single-input two-output
systems are analyzed It gives mequahties that the complementary sensitiity
function has to obey But, again, they are in terms of the logarithm of T Also

some inequalities concerning elements of 7" are given 1n the same paper

89



In the next section, the MIMO version of the interpolation constraints stated 1n

Section 5 1 are given

9.1 Interpolation Constraints

The results given 1n this section have to be obeyed by S and T 1n order to
guarantee stability of the closed-loop svstem of the pendulum and in general of
any system Only the effect of RHP poles 1s studied here, since the pendulum
does not have RHP zeros, but the result can easily be extended to non-minimum

phase zeros by using a similar procedure

Assume that the plant G and the controller K are represented by a coprime
factorization For ease, the left-coprime factorization given 1n Theorem 301 1s
used, that 1s G = D;'N; It 1s obvious that the RHP poles of G are the RHP
zeros of D, Therefore, there eusts at least one vector from the right nullspace

and one vector from the left nullspace of D, such that
u,Dip)=0  D(p)y,=0
where p1s a RHP pole of G Following Equation (823) (1e S, = (Vi+N.Q)D))
and using the equations above 1t 1s easy to show that
So(p)yp =0 (911)
and using the identity S + T = I vields

(I-To(p))y, =0

= To(p)yy = Yp (912)

It can easily be proved that the input direction of the RHP zero of D;, y, 1s the
output direction of the pole at p of G Thus, for MIMO systems, the interpolation
constraints on S, and To not onlv depend on the location of the pole (or zero)

but also on 1ts direction

Next, limitations inherent in the pendulum svstem 1n terms of the individual

elements of S and T are studied since they give more insight about the limitations
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of the overall system They also give guidelines on how to choose the weighting

functions W, and W,, see Chapter 8

9.2 Limitations in Terms of the Elements of S

and T

Here, the hmitations inherent in the pendulum system are studied First, define
the plant G and one possible stabilizing controller K 1n terms of their elements
that 1s G = (g1 ¢2)T and K = (k; ko) where g, g2, k; and ky are scalar
transfer functions Notice that thev are functions of the complex vanable s The

dependence on (s) of transfer functions 1s not shown exphcitly Thus, the loop

gam L, at the output 15

gihy giko
L, = GK = 921)
Gah1  gakso

Thus, 1t can be shown, using simple algebra that

1+ goka  —giks

1
So=I+L,) = (922)
1 k k
+ G181 + G2k —goki 1+ g1k
and
1 aky giko
o= I=Se= 1 o7 F
+gl 1+92 2 gzkl g2k2
k L g
1
= nn (923)
L+ gikr + @2ko \ g0 ok
91 gik1

To understand the limitations on S and T, these functions can be rewritten in
terms of the numerator and denominator of the scalar transfer functions involived
The result 1s as follows

! (dg2diz + Ngane2)dgr@ry —Ng1 Nk2dgadi
—Ng2Nk1dg1 Ak (dgidi1 + ng1ne1 ) dgadio
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and
ngnkidgadiz Mg Mk2dgadi

1
To = ae; (9 2 5)
ng2nk1dgldk2 nank‘ngldkl
and
den = dgldggdklde + ‘)’lngludgldkl + nglnkldgzdkg (9 2 6)

where ng, and dg, are the numerator and denominator, respectively, of g, Simu-

larly, ng, and dy, are the numerator and denominator, respectively, of k,

Recall Equations (2124) and (2125) Then, the following conclusions can be
drawn from Equations (9 2 4) and (9 2 3)

e First, notice that den 1s a Hurwitz polynomial (1e no roots in the CRHP)

e The element (1,1) of S, has a zero at the origin as 1s usuallv the case, due

e The magmtude of the off-diagonal elements of S, and 7, are the same

o The element (2,2) of S, does not necessarily have a zero at the origin, which
mahes more difficult the attenuation of low-frequency disturbances on this
channel

e The element (1,1) of 7, and the element (1 2) of S, and To have at least
one RHP zero Hence following a similar procedure to that of [17, §4] 1t
can be shown that these elements have an upper bound on 1ts achievable
bandwidth

e Because of this upper bound on the element (1 2) and the fact that 1t does
not have any zero at the ongin, it can be concluded that there 1s a range
of frequencies for which S, 2 and 7,5 are greater than or equal to one It
follows that interactions on this channel cannot be avoided, which from a
physical point of view 1s clear, since a deflection of the pendulum has to
affect the position of the cart

o The element (2,2) of 7, has two zeros at the origin, due to ngy, and dg,

e T, 1s a singular transfer matrix (see Equation (9 2 3)), which means that the
minimum singular value 1s zero (up to numerical precision in Figure 8 6)

e A change on either the numerator or denominator of one of the elements
of the controller will affect several elements of S, and T, This makes the
selectron of weights more difficult since one change 1n one of the elements
of the weights will affect the overall S, and T,



Also notice that the response of the system Y (s) to an mnput R(s) is given by

the complementary sensitivity function, thus

hn To1 Ton ry Tor1

I
Il

1 (9 2 7)
Y2 To1 Tox 0 Ty

Hence, the response of the system (cart and angle position) to a command mput

r(s) 1s determined by the first column of 7,

9.3 Input vs Output Properties

The algorithm given 1n Section 8 2 1s based on an optimization at the plant mput
and output Here, a discussion of the mput and output properties 1s given in
order to understand better the implications of such optimization [t will become
clear that the input optimization is not independent of the output This coupling

presents design difficulties

First define the plant/controller alignment angle as

|K(uw)G(yw)
HKow)nnG(yw)n) (31)

where K (yw) # 0 and G(jw) # 0 and juw 1s netther a pole of A (s) nor G(s) The

#(yw) = arccos (

-~

alignment angle satisfies ¢(yw) € {0°,90°] To analyze the alignment angle at a
pole use the numerator polynomial of a right coprime factorization of the plant
The following two theorems are taken from {36] The norm used in the theorems

1s the Euclidean norm

Theorem 9 31 The closed loop transfer functions satisfy

1S < 1+ 1T0w) P tan? o(yw) + [S,(7w) (932)
IS0l < max{1, [S,(w)[} + IT.0w)l tan o(yu) (933)
IS0 > max{y/1+|TGw)P tan? 6(w), IS,(w)l}  (934)
I = el (935)
and

1K Gw)Sulll = —202) 936)

cos ¢(yw) |G (w)ll
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Proof See [36] a

Theorem 9 3 2 The off-diagonal elements of T,(jw) satisfy the bounds

T2 (gw)| + |Tozr (w)| 2 |T.(yw)] tan 6(jw) (937)
and, for 1 # ) B
Towl (. [pw)F)
Tu0)] < S22 (1 - R ) 939)
Proof See [36] a

Thus, the sensitivity functions at the output of the plant, S, and T,, are not
independent of those at the input of the plant, S, and 7, Thev depend on
plant/controller alignment as well as the magnitude of S, and 7, Notice, from
Equation (9 3 3), that alignment 1s important at frequencies where |T,(yw)| > 1
That 1s 1t 1s important at frequencies smaller than the bandwidth of T,(jw), since
at higher frequencies |T;(jw)| <« 1 and therefore the effect of a bad alignment
1s attenuated Bad alignment means ¢{ju) =~ 90°, and good’ ahignment means

o(jw) =~ 0°

It can also be concluded, from Theorem 9 3 2, that bad alignment will give higher
closed loop 1nteractions, since at least one of the off-diagonals elements of T,
will have relatively high gain From the conclusions about limitations given 1n
Section 9 2 1t can be seen that for the pendulum, the element (1 2) will tend to
have a higher gain than the element (2 1) being even higher when the alignment
1s bad Hence, nteractions of this system are difficult to avord Also, notice that
the interactions may be very sensitive to small variations of the alignment angle,
since tan ¢ increases hnearly with small vanations of ¢ from zero whereas, cos ¢

1s not that sensitive regarding these variations

Unfortunately, achieving perfect alignment 1s not easy, specially if the plant di-
rections change considerably with frequency, as discussed mn [37] The pendulum
system changes direction 1n the frequency range from 1 to 10 rad/sec as shown in
Table 9 1 This shows that the system will tend to have large peaks on S, and T,

within this range Indeed, during the design of several controllers for this plant,
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the system always presented high peaks on these functions within this range
Figure 9 1 shows the variation of the plant/controller ahgnment with respect to
frequency when using the controller obtained with the weights of Equation 8 4 3
This shows that alignment 1s not easily achieved when the direction of the plant

varies considerably

Frequency (w) 01 1 5 10 100
Direct ] ~0 9% —0627 043 —0 345
trection 0 0009 0 088 0 779 09 0938

Table 91 Frequency vs direction of the plant

Fmuency vs plant/controller algnment
) T
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plan¥controller algnment (deg)
8 b3
o

»
o

10 10 10° 10' 10 10
Frequency (rad/sec)

Figure 91 Frquency vs plant/controller alignment

9.4 Discussion

It 1s shown from a MIMO point of view that the pendulum system has strong
limitations imposed by RHP poles As1s well known, these limitations cannot be
avorded, no matter what control design approach 1s used In fact, several control

design methodologies were used to design controllers for the pendulum, among
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these are LQR, H, using the approaches of Chapter 8, H, using the Robust
Control Toolbox [30], one-loop-at-a-time (Chapter 6) and with all of them these

limitations were noticeable

Also, 1t 1s shown that the relation between the sensitivity functions at the input
and output depend on the plant/controller alignment But this raises important
questions How choose the weights so that a ‘good” alignment 1s achieved? Is 1t
possible to use alignment as a measure of system quality, since 1t clearly varies

with scaling, and with the choice of units for the two system outputs?
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Chapter 10

Discussion and Conclusions

In this thesis some multivariable design approaches were presented The inverted
pendulum was used as an application example It i1s a non-linear unstable plant
characteristics that makhe 1t useful for analyzing design methods and trade-offs in

control systems design

Several different approaches were discussed The first two approaches were based
on one-loop-at-a-time SISO design The second one was better because i1t was
designed taking into consideration the mherent limitations and trade-offs in the
system The third approach was based on a non-linear method Gain Scheduling
which was combined with the one-loop-at-a-time technique The fourth was a
full 2-norm-optimization MIMO approach Among all controllers implemented
the Gain S(zheduled (GS) controller gave the best performance for this specific
system The author believes that the reason for this 1s that this method takes
into consideration some nonlinearities of the plant One of the most attractive
advantages of the GS approach 1s 1ts simplicity compared with other design meth-
ods for non-linear systems since 1n the design stage it makes use of linear system

theory

The importance of analysing the fundamental limitations that exist 1n any system
was also discussed, since these limitations were found to give more insight and

guidelines on how to improve the performance of the final closed-loop

Also, a multivaniable H, optimization approach was studied The method pre-

sented 1n this thesis is based on a frequency domain approach This feature makes

97



1t more transparent 1n the sense of analysing and interpreting the algorithm, since
all the steps are based on linear algebra unlike many other algorithms which de-
pend on the solution of a Riccati equation The algorithm given 1n [25] 1s one
of the most popular methods for solving the H, problem, but it 1s based on
several assumptions and conditions that the plant has to obey, 1e stability and
detectability of some state space matrices and the choice of the weighting matrix
W 1s restricted to strictly proper transfer functions The only condition that the
algorithm presented here has to obey 1s that the matrices A and By, are stricthy
proper Furthermore, the weight W can be biproper as long as A and B, are
strictly proper This gives more flexibility 1n the choice of the weights However
the main disadvantage with this algorithm 1s that the implementation is not east
1in cases were the plant 1s complex or with high order In those cases serious
numerical difficulties were encountered Also commercially available software
(1e Robust Control Toolbox [30]) was used to design H, controllers It uses a
state-space approach It was slightly less flexible since 1t has some restrictions
on the plants and weights to which 1t can be apphed Once these restrictions
were fulfilled, this software presented no numerical problems However, 1t has the
disadvantage that the set of possible weights was reduced In general, the results

were broadly similar to the author’s frequency domain software

As mentioned above, the GS approach was found to be very effective for the pen-
dulum system since 1t 1t deals with non-linearities of the plant, which 1s an impor-
tant characteristic of this system The H, MIMO approach was taken because 1t
was expected to give better results than the one-loop-at-a-time approach since it
can deal ngourously with multivariable aspects such as interactions or coupling
In practice the designed H; controllers stabilized the system, but the perfor-
mance was not very good The conclusion 1s that the impact of non-linearities
outweighed the benefits of a full MIMO optimization design For future work, the

combination of H, and Gain Scheduling would be an obvious direction forward

The #, approach 1s still a useful tool for designing multivariable systems How-
ever, 1t relies on the proper choice of weights This task 1s much more difficult

when the plant presents high interactions or strong limitations, specially those
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coming from RHP poles or zeros The real theoretical problems seem to be how
to select good weights and how to treat non-hnearnties using H; control One
reason for this 1s that the benefits that would be expected from a full MIMO
optimization-based design may not be realized 1n practice because of the difficul-
ties 1in weight selection Thus, 1t would be desirable to study in more depth the
relation of the weighting functions to some properties of the closed-loop system,
such as the relation of weights to plant/controller alignment and/or the relation
with respect to some stability margins Also, it would be desirable to have more
theoretical methods and algorithms for the GS approach, since most of the ex-

1sting literature 1s based on ad hoc methods or approaches that are not easy to

apply
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