
Prototyping Real-Time Systems

Author

Gary Clynch B.Sc.

Supervisor

Mr. Renaat Verbruggen

Submitted to

The School of Computer Applications

Dublin City University

for the degree of

Master of Science

January 1994

This is based on the candidate's own work

i

Declaration

I hereby certify that this material, which I now submit for assessment on the
programme of study leading to the award of Master of Science degree, is entirely my own
work and has not been taken from the work of others save to the extent that such work has
been cited and acknowledged within the text of my work.

S i g n e d : C l y r / ____ D a t e : 3) / ¡ / 1 k

Gary Clynch

Acknowledgements

I w o u ld l ik e to s in c e re ly th ank R e n a a t fo r a ll h is h e lp an d gu id a n ce , P r o f D a v id

B u s ta rd fo r h is h e lp fu l c o m m e n ts, m y fa m ily and a ll m y fr ien d s an d fe llo w p o stgrad u a te s

at the S c h o o l o f C o m p u te r A p p lic a t io n s fo r the ir e n c o u ra ge m e n t and su p p o rt I w o u ld

e sp e c ia lly l ik e to thank m y brother C o n o r fo r p ro o f-re ad in g th is thesis

Ul

Table of Contents
Page

1. Introduction

1 1 Objective of Research 1

1 2 Introduction to Thesis 2

2 Software Prototyping

2 1 Introduction 3

2 2 The Waterfall Life Cycle Model 3

2 3 The Prototyping Paradigm 4

2 3 1 Prototyping Framework 5

2 3 2 Classifying Prototyping 5

2 3 3 Prototype Construction using Executable Specification Languages 7

2 3 4 Prototyping Real-Time Systems 8

2 3 5 Advantages and Disadvantages of Prototyping 9

2 4 The STATEM ATE Prototyping Tool 10

2 5 Summary 11

3. Real-Time Structured Analysis and Design

3 1 Introduction 12

3 2 SA/SD and RTSA/SD 12

3 3 The Extended Systems Modelling Language (ESM L) 13

3 3 1 The ESM L Transformation Schema 13

3 3 1 1 F low s 13

3 3 1 2 Flow Transformations 15

3 3 1 3 Control Transformations 16

3 3 1 4 S to res 19

3 3 1 5 Terminators 20

3 3 1 6 Form ation R ules 20

3 4 The Ward and Mellor RTSA/SD Method 21

3 4 1 The Essential Model 22

3 4 2 The Implementation Model 22

IV

3 4 3 RTSA/SD and Object-Oriented Development 23

3 5 The ESM L Execution Rules 23

3 5 1 Flows 24

3 5 2 Flow Transformations 24

3 5 3 Control Transform ations 25

3 5 4 Stores 26

3 5 5 Multiple Token Placement 26

3 6 Summary 26

4. Petri Nets

4 1 Introduction 28

4 2 Classical Petn Nets 28

4 2 1 Classical Petn Net Structure 29

4 2 2 Transition Enabling and Finng 29

4 2 3 C la ssica l Petn Net A nalysis 31

4 2 4 Advantages and Disadvantages of C lassical Petn Nets 31

4 3 High-Level Petn Nets 31

4 3 1 LOOPN Nets 32

4 3 1 1 Type Declarations 33

4 3 1 2 P laces 34

4 3 1 3 Transitions 34

4 3 1 4 Modules and Module Instances 35

4 3 2 Advantages and Disadvantages of High-Level Petn Nets 36

4 4 Petn Net Simulation and Implementation 37

4 4 1 Centralised Implementation (C) 38

4 4 2 Distnbuted Implementation 38

4 4 2 1 Distribution of Control by Places 38

4 4 2 2 Distribution of Control by Edges 39

4 4 3 Petn Net Code Generators 39

4 4 3 1 The LOOPN Code Generator 40

4 4 3 1 1 Centralised Implementation in LOOPN 40

4 4 3 1 2 Distnbuted Implementation in LOOPN 41

4 4 3 2 Specification of Concurrent Systems (SPECS) 41

4 4 3 3 Concurrent Pascal with Petn Net (CPN) 42

4 4 3 4 AMI 43

v

4 4 3 4 1 TAPIOCA 43

4 4 3 4 2 PNTAGAD A 45

4 4 3 5 PRO TO B 45

4 4 3 6 PROMPT 46

4 5 Summary 46

5 The ESML/LOOPN Prototyping System

5 1 Introduction 47

5 2 Related Work 47

5 3 The ESML/LOOPN Prototyping System 49

5 3 1 Overview 49

5 3 2 The Prototyping Process 50

5 4 The Translation Process 51

5 4 1 Flows 53

5 4 2 Stores 57

5 4 2 1 N on-D epletable Stores 57

5 4 2 2 Depletable Stores 57

5 4 3 Flow Transformations 58

5 4 3 1 Flow Transformation with no Input Prompt 59

5 4 3 2 Flow Transformation with Trigger Input Prompt 61

5 4 3 3 Flow Transformation with an Activate (E/D) Input Prompt 62

5 4 4 Control Transform ations 63

5 4 4 1 Control Transformation with no Input Prompt 64

5 4 4 2 Control Transformation with Activate (E/D) Input Prompt 65

5 4 4 3 Control Transformation with Activate (E/D) and Pause (S/R)

Input Prompts 66

5 5 Summary 68

6 The APU Fuel Subsystem Case Study

6 1 Introduction 69

6 2 The Auxiliary Power Unit (APU) 69

6 2 1 The APU Fuel Subsystem 70

6 3 Prototype Specification in ESM L 72

6 4 Prototype Specification in STATEMATE 77

6 5 Com paring E SM L with STA TEM A TE 84

VI

6 6 Translating the ESM L specification into a LOOPN net specification 85

6 6 1 Special Modules 87

6 6 1 1 Types Module 87

6 6 1 2 APU M odule 88

6 6 2 Flow Transformations 88

6 6 2 1 Pump 88

6 6 2 2 Pump Bypass 89

6 6 2 3 Filter 90

6 6 2 4 H eat 90

6 6 2 5 Heat Bypass 92

6 6 2 6 Fuel Control Unit 92

6 6 3 Control Transform ations 93

6 6 3 1 Fuel Control Valve 94

6 6 3 2 Boost Pump Control 95

6 6 3 3 Heat Control 96

6 6 3 4 Fuel Solenoid V alve 97

6 7 C Language Prototype Generation 98

6 8 Summary 98

7. Conclusions and Further Work

7 1 Introduction 99

7 2 R esearch Sum m ary 99

7 3 Analysis 100

7 4 Further Work 101

7 5 Conclusion 104

R eferences 105
A ppendix A 113
A ppendix B 137
A ppendix C 139

vii

List of Figures

Figure 2

Figure 2

Figure 3

Figure 3

Figure 3

Figure 3

Figure 3 5

Figure 3

Figure 3

Figure 3

Figure 3

Figure 4

Figure 4

Figure 4 3

Figure 5j 1

Figure 5* 2

Figure 5 3

Figure 5 4

Figure 5 5

Figure 5 6

Figure 5 7

The Waterfall Life Cycle Model

The Prototyping Paradigm and its relationship to the Waterfall Life Cycle

Model

Graphical Components of the ESM L Transformation Schema

Flow Convergence and Divergence

STD Behaviour of Control Transformation with Activate input prompt

STD Behaviour of Control Transformation with Activate and Pause input

prompts

ESM L Prompt Scenario

ESM L Formation Rules for Continuous Flows

ESM L Formation Rules for Discrete Flows

ESM L Formation Rules for Signal Flows

Ward/Mellor Abstraction Levels

Classical Petn net modelling of the chemical reaction 2H2 + O2 -> 2H2 O

LOOPN net for the Dining Philosophers Problem

Token Filtering m LOOPN

The ESML/LOOPN Prototyping System

Templates for Flows

Templates for Flow Convergence

Templates for Flow Divergence

Template for Non-Depletable Store

Template for Depletable Store

Template for Row Transformation with no Input Prompt, Mixed Input and

Output

vi 11

Figure 5.8 Template for Flow Transformation with no Input Prompt, Continuous

Input, Mixed Output

Figure 5.9 Template for Flow Transformation with no Input Prompt, Mixed Input,

Continuous Output, Delayed Discrete Output

Figure 5.10 Template for Flow Transformation with Trigger Input prompt

Figure 5.11 Template for Flow Transformation with Activate Input Prompt

Figure 5.12 Template for Flow Transformation with Activate Input Prompt, Discrete

Input, Delayed Discrete Output

Figure 5.13 Template for Control Transformation with no Input Prompt

Figure 5.14 Template for Control Transformation with Activate Input Prompt

Figure 5.15 Template for Control Transformation with matching Activate and Pause

Input Prompts

Figure 6.1 APU Fuel Subsystem Block Diagram

Figure 6.2 APU Fuel Subsystem Behavioural Model

Figure 6.3 STD for Fuel Control Valve

Figure 6.4 STD for Boost Pump Control

Figure 6.5 STD for Heat Control

Figure 6.6 STD for Fuel Solenoid Valve

Figure 6.7 Activity-chart for the APU Fuel Subsystem

Figure 6.8 Statechart for FUEL_CONTROL

Figure 6.9 Activity-chart for BP

Figure 6.10 Statechart for BPC

Figure 6.11 Activity-chart for FH

Figure 6.12 Statechart for FHC

Figure 6.13 Top-level LOOPN net equivalent of the APU Fuel Subsystem

Figure 6.14 LOOPN net module for Pump

Figure 6.15 LOOPN net module for Pump Bypass

Figure 6 16 LOOPN net module for Filter

Figure 6 17 LOOPN net module for Heat

Figure 6 18 LOOPN net module for Heat Bypass

Figure 6 19 LOOPN net module for FCU

Figure 6 20 LOOPN net module for Fuel Control Valve

Figure 6 21 LOOPN net module for Boost Pump Control

Figure 6 22 LOOPN net module for Heat Control

Figure 6 23 LOOPN net module for Fuel Solenoid Valve

Figure 7 1 Future Version of the ESML/LOOPN Prototyping System

Abstract

The traditional software development paradigm, the waterfall life cycle model, is

defective when used for developing real-time systems This thesis puts forward an

executable prototyping approach for the development of real-time systems
A prototyping system is proposed which uses ESM L (Extended Systems Modelling

Language) as a prototype specification language The prototyping system advocates the

translation of non-executable ESML specifications into executable LOOPN (Language of

Object Oriented Petn Net) specifications so that ESM L can be used as a graph ical

executable specification language for the prototyping of real-time systems If the translation

process is automatic then the user need not be aware of LOOPN

The ESML/LOOPN prototyping system defines an execution semantics for the

ESM L language in terms of LOOPN nets, a set of translation templates are supplied for the

translation of ESM L language specifications into LOOPN language specifications The

execution semantics are based on a set of execution rules (guidelines) which have been

defined for ESM L to allow prediction of the behaviour of ESM L specifications over time

A C language program which can be run by the user as a prototype of the modelled system

is generated automatically from the LOOPN specification

The ESML/LOOPN prototyping system has been applied to build an exploratory

prototype of a typical real-time system, 1 e the Fuel Subsystem o f the Auxiliary Power

Unit (APU), an avionic system used on the Boeing-737 airplane series

XI

Chapter 1
Introduction

11 Objective of Research
The objective of the research which has resulted in this thesis has been to develop

a system which allows the prototyping of real-time systems This has been achieved by

the definition of the ESML/LOOPN prototyping system which facilitates the use of

ESM L as a graphical executable specification language

The ESML/LOOPN prototyping system uses the graphical ESM L language to

specify prototypes at a level which is "natural" or "abstract" to the problem at hand

ESM L enjoys the well known benefits of graphics-based languages, mtuitiveness and

ease of use as a vehicle for communication with users Unfortunately, the intuitiveness of

ESM L has a pnce, 1 e the language is not executable and therefore cannot be used in

isolation to prototype real-time systems To overcome this problem the thesis first defines

a set of execution rules for ESM L These rules are a set of guidelines which descnbe how

an ESM L specification will behave over time The execution rules have been specified in

terms of Petn net tokens

The ESML/LOOPN prototyping system provides a set of translation templates

which allow the translation of non-executable ESM L specifications into executable

LOOPN specifications LOOPN is a high-level object-oriented Petn net language which

can be executed and formally analysed The translation templates are based on the

guidelines set down by the ESM L execution rules and so can be seen to define an

execution semantics for ESM L Once the translation process is complete a C program is

generated from the LOOPN specification which runs as the prototype In this way ESM L

can be used as a graphical executable specification language to construct prototypes for

use within a keep-it prototyping approach

The ESML/LOOPN prototyping system ideally does not require the user to have

any knowledge of LOOPN, but since the translation process has not been fully automated

the user needs to understand LOOPN for the present time

To sum up, the objective of the research has been to construct a prototyping

system which allows the use of ESM L as a graphical executable specification language,

ESM L therefore enjoys the twin benefits of mtuitiveness and executability

1 2 Introduction to Thesis
Chapter 2 investigates the prototyping of real-time systems It outlines the

deficiencies of the traditional software development paradigm, i e the waterfall life cycle

model, before describing prototyping as an alternative It outlines various categones of

prototyping, descnbes a framework for constructing prototypes, focusing on the use of

executable specification languages for constructing prototypes Chapter 2 closes with a

descnption of STATEMATE, a popular prototyping tool for real-time systems

Chapter 3 introduces ESM L and the Ward/Mellor Real-Time Structured Analysis

and Design (RTSA/SD) method and defines a set of execution rules for ESM L which

allow the quantitative prediction of the behaviour of an ESM L specification over time

Chapter 4 introduces classical and high-level Petn nets, focusing on LOOPN nets

and the LOOPN code generator Various net implementation strategies are discussed

Chapter 5 introduces the ESML/LOOPN prototyping system and presents the

translation templates which are used to translate non-executable ESM L specifications into

executable LOOPN specifications The translation templates are based on the ESM L

execution rules

Chapter 6 introduces the case study, the APU Fuel Subsystem, and applies the

ESM L/LOO PN prototyping system to produce an executable prototype of it

STATEMATE has been used to build a prototype specification for companson with the

ESM L specification

Chapter 7 offers conclusions and comments about further work

2

Chapter 2
Software Prototyping

2.1 Introduction
The objective of this chapter is to discuss the use of prototyping as a software

development paradigm for real-time systems. The chapter does this by first discussing the

waterfall life cycle model, the paradigm used since the early 1970s, and outlining its

deficiencies. The chapter then describes prototyping, a simple framework which can be

followed in the application of prototyping, and various classifications of prototyping. The

chapter then describes executable specification languages, the technique for constructing

prototypes that has been focused on in this thesis. The application of prototyping to real­

time systems, a relatively new departure, is then discussed. The chapter then presents the

advantages and disadvantages of prototyping. The chapter concludes with an introduction

to the STATEM ATE prototyping tool; it is used as a benchmark for evaluating the

ESML/LOOPN prototyping system defined in Chapter 5.

2.2 The Waterfall Life Cycle Model
Since the early 1970s, software development has been based on the waterfall life

cycle model, also known as the traditional or conventional development life cycle. The

waterfall life cycle model was defined by Royce in 1970 [Royce70], and refined by

Boehm in 1976 [Boehm76] to cope with the growing complexity of software projects

being tackled at the time.
The waterfall life cycle model depicted in Figure 2.1 is a phase-oriented or linear

approach which advocates that software development proceed through a number of

distinct phases: requirements analysis; requirements specification; design;

implementation; validation and verification; installation and maintenance. Its aim is to

provide a basis for estimating the correct distribution of labour and capital over a well-

planned period of time by dividing the development process into a number of phases,

each with its own milestones and deliverables.

Unfortunately, the waterfall life cycle model makes some assumptions which can

no longer be substantiated [Agresti86]. It provides very little user participation after

requirement analysis; the first version of the system that can be executed is the

implemented system. It assumes that a complete, concise and consistent specification of

requirements can be completed before the design phase and that requirements will not

change once the design effort commences. It does not facilitate experimentation with

3

different design decisions The waterfall life cycle model dictates that specification

("what”) and design ("how") be kept separate, however it is very difficult to specify a

problem without some notion of what the solution should be

Requirements
Analysis

U I
Requirements
Specification

Design i
Implementation iValidation

and
Verification

t j 1
Installation i

Maintenance

Figure 2 1 The Waterfall Life Cycle Model

2 3 The Prototyping Paradigm
Prototyping [Vonk90] is a new paradigm for software development which has

been proposed to overcome the deficiencies of the waterfall life cycle model Some forms

of prototyping can be used in conjunction with the waterfall life cycle model, some are

new development approaches in their own nght

Prototyping originated from those engineenng disciplines which were involved in
mass production [Hekmatpour88] There, it refers to a well established phase in the

production process whereby a model is built which exhibits all the intended properties of

the final product Such a model serves the purposes of experimentation and evaluation to

guide further development and production In software engineenng the notion of mass

production is absent, instead production refers to the entire process of building one

product For this reason, the concept of prototyping takes a rather different meaning

Here, most commonly, it refers to the practice of building an early version of the system

which does not necessarily reflect all the features of the final system, but rather those

4

which are currently of interest In particular, the prototype must be able to be developed

quickly at low cost, hence the term rapid prototyping

The main points about this alternative development paradigm are that

• Prototyping is an approach, or strategy, that defines the outline of a

software development process, while leaving the details unspecified Prototyping has

been proposed on the premise that software development, especially in the early stages,

should be a learning process and should actively involve both the developer and the user

• A prototype is a working model of part of a system, which emphasises

specific aspects of that system A prototype is incomplete, and can act as a learning

device, so helping to reduce the risks of the development effort

• Prototyping is an approach for system development that is characterised

by a high degree of iteration, and by a very high degree of user participation in the

development process

• The chief premise of prototyping is that a prototype constitutes a better

means of communication than a paper-based model, and that iteration is necessary to

channel the inevitable learning process in the nght direction

2.3.1 Prototyping Framework
To be effective, prototyping needs to be carried out within a systematic

framework Such a framework provides a step by step guide on how the designer should

proceed Hekmatpour has outlined a general framework for applying prototyping The

framework consists of firstly establishing the prototype objectives and scope, 1 e what a

prototype is supposed to be used for and what aspects of the proposed system it should

include Defining the scope consists of selecting the functions to be included in the

prototype Depending on the prototype objectives, prototyping may be carried out

horizontally, vertically or diagonally Horizontal prototyping involves including all the

system functions m the prototype, where each function is considerably simplified and

reduced Vertical prototyping involves only including some of the functions, where each

of these is fully realised Diagonal prototyping is a hybrid of these two Once the scope is
defined, the prototype development plan is established This entails deciding how the

prototype is to be constructed, and what tools and techniques are to be used

2.3.2 Classifying Prototyping
There are many classifications of prototyping, the most common are explained in

the following paragraphs

5

One classification of prototyping is based on the timing of the development

process Exploratory prototyping [Floyd84], also known as behavioural prototyping, is

used to aid the task of analysing and specifying user requirements Systems developed

using the waterfall life cycle model approach usually satisfy outdated requirements, rarely

current requirements Accurate requirements specification is necessary to avoid mcumng

large costs in fixing software due to requirement errors later in the development process

Exploratory prototyping mvolves the iterative refinement of the prototype until it reflects

the "real" requirements This allows the developer to home in on the "moving target" of

user requirements, the success of a system depending on the quality of the requirements

specification The user is an active participant, evaluating prototypes, proposing

improvements and at the same time continuing to obtain a deeper insight into intended

system behaviour The ESM L/LOOPN prototyping system currently addresses the

construction of exploratory prototypes

Experimental prototyping, also known as structural prototyping, has been

described by Floyd It is used as a complementary tool in the software design phase for

studying the feasibility and appropnateness of vanous system designs This was not

possible in the waterfall life cycle model since the implemented system is the first version

of the system which could be executed A special type of experimental prototyping is

performance prototyping, it mvolves the use of prototypes to evaluate the effect of design

decisions on the ability of the system to handle the anticipated workload
Another class of prototyping, which has been described by Hekmatpour, is

evolutionary prototyping This is a development approach in which the prototype evolves

into the production system Each version of the production system is then used as a

prototype for its successor This approach requires the system to be designed in such a

way that it can cope with change during and after development The success of the

evolutionary approach is very much dependent on the ability of the designer to build

flexibility and modifiability into the prototype from the offset, and for this reason

prototypes are often constructed m an object-oriented manner [Booch91] Evolutionary

prototyping includes both exploratory and experimental prototyping within itself

Another classification of prototyping, described by Hekmatpour, is based on what

happens to a prototype after the objective for its construction has been achieved If a

prototype is used as the basis for the production system it is referred to as keep-it

prototyping If the prototype is discarded, the term throw-away prototyping is used The

need for rapid prototyping is greatest for throw-away prototyping Since the prototype is

to be used for a limited period, quality factors such as efficiency, structure, and

maintainability are of little relevance

6

Figure 2 2 shows the prototyping paradigm and its relationship to the waterfall life

cycle model It shows a framework for applying prototyping and illustrates that

exploratory and experimental prototyping are compatible with the waterfall life cycle

model

Determine
scope and

objectives of
prototype

Extract user
requirements

revise
prototype

Prototype
Development ----------- ►

Plan

field exercise

/
' /

Exploratory
Prototyping /

/

/
Prototyping

Evolutionary
Prototyping

Process
Waterfall Life

Cycle
Model

Delivered
SystemRequirements

Specification ------------ ► Design --------------- ►
implement

Figure 2 2 The Prototyping Paradigm and its relationship to the Waterfall Life Cycle
Model

2 3 3 Prototype Construction using Executable Specification Languages
This thesis focuses on the use of executable specification languages for

constructing prototypes of real-time systems However, executable specification

languages are just one of numerous techniques for constructing prototypes (e g

functional languages [Henderson86])

An executable specification (operational specification) is described by

Hekmatpour as a specification which has an underlying operational semantics facilitating

interactive interpretation of the specification within a software environment, or automatic

generation of a computer program which executes the specification Executable

specifications, by definition, can be used as prototypes They facilitate problem statement

with some consideration of the solution, and so provide a link between the "what" and the

7

"how" of software development Executable specifications can be produced at low cost,

and ensure that a precise level of documentation is always available to the developer It

has been argued that executable specifications restrict expressiveness and adversely effect

implementations [Hayes89], though this has later been refuted [Fuchs92]

Graphical executable specification languages are executable specification

languages which use some form of graphical notation for model specification Examples

of graphical executable specification languages which are suited to the prototyping of

real-time systems, are Statecharts [Harel87] and Petn nets [Petn66] These languages

have special constructs for specifying real-time behaviour

2.3.4 Prototyping Real-Time Systems
The above discussion mainly concerns the use of prototyping as an alternative

development paradigm for transformational systems, such as information and data-

processing systems However, this thesis concerns the prototyping of real-time systems

The following paragraphs describe reactive and real-time systems and how prototyping

applies to them
Reactive systems are systems whose primary role is to maintain some interaction

with the environment [Ledru90] A reactive system, unlike a transformational system, is

not adequately described by a simple relationship that specifies outputs as a function of

inputs, but rather requires relating outputs to inputs though their allowed combination in

time [Harel92] Typically, such descriptions involve complex sequences of events,

actions, conditions and information flow, often with explicit timing constraints, that

combine to form the overall system behaviour

Real-time systems [Agrawala92] [Laplante92] belong to the class of reactive

systems A real-time system is a software system that has been developed to support the

execution of a real-time application ensuring that the real-time requirements of the

application are met Real-time requirements impose timing restrictions on the application,

the correctness of a real-time system depends on the timing requirements being met

Real-time systems are different from other types of software systems in that real-time

systems normally interact with physical devices that have to be monitored and controlled

In real-time systems, concurrent behaviour of the system components is the norm, a
system consists of parts which co-exist, each conducting its affairs concurrently with the

others, although influenced in doing so by the others' behaviour Real-time systems

continue to operate in the absence of inputs, contrasting with transformational systems

which only produce output when supplied with input

8

In recent years there has been growing interest in prototyping real-time systems

[Hughes89] [Tsai89], though, in the past, the systematic use of prototypes for developing

real-time systems has not gained much attention in the literature, indeed real-time

systems were considered by Hekmatpour to be not particularly fit for prototyping due to

their inherent concurrency and time-dependent behaviour

Prototypes of real-time systems need the same quality of specification and design

as in the production system Attempts to shortcut careful specification and design, by

quick and dirty methods, are sure to fail For this reason, real-time systems require a

keep-it prototyping approach, it would be wasteful to throw away the prototype after

completion of the prototyping effort The ESML/LOOPN prototyping system allows the

construction of exploratory prototypes, they are intended for use within a keep-it

prototyping approach

For real-time systems, the use of heterogeneous prototypes [Mortensen90] is an

emerging alternative A heterogeneous prototype is an executable system model whose

different parts reflect different system abstraction levels, and yet can be executed together

as a unit This type of prototype has been motivated by Boehm's spiral model of software

development Boehm's approach is an iterative nsk-dnven approach, it advocates that the

high nsk elements of a system should be developed before the low nsk elements Using a

heterogeneous prototype, the high nsk elements will be explored to a more detailed

abstraction level before the low nsk elements The abstraction mix changes over time A

heterogeneous prototype can therefore be seen as an extension to honzontal prototyping

allowing different parts of the system to develop at different speeds resulting in unequal

abstraction levels

2 3 5 Advantages and Disadvantages of Prototyping
The advantages of prototyping have been discussed at length by Vonk and

Hekmatpour and also by Alavi [Alavi84] They stem mostly from the benefits accrued

from overcoming the deficiencies of the waterfall life cycle model

• Prototyping facilitates effective communication between developers and

users, a prototype is real and tangible, not abstract

• Prototyping allows developers to cope with fuzzy changeable

requirements, and facilities expenmenting with alternative design decisions

• Prototyping encourages user participation in the development process, and

creates a positive spint between developers and users

• Prototyping causes users to become more enthusiastic about system
development, it provides early product visibility

9

• Prototyping enables low-nsk development, it can reduce development time

and result in better quality software

• Prototyping ensures that the nucleus of the system is correct Systems

developed using prototyping approaches tend to be more user-fnendly, more efficient,

and more maintainable
• Prototyping allows a system to be gradually introduced into an

organisation, it facilitates user training in parallel to system development

The disadvantages of prototyping, outlined in the following paragraphs, are far

outweighed by its advantages
• Prototyping can result in users developing unrealistic expectations about

the system to be delivered, indeed sometimes user interest wanes after a few initial

iterations
• Prototyping is hard to control, resource planning and management can be

difficult, since the number of iterations is unknown beforehand

• Prototyping requires automated tool and method support to ensure cost

effectiveness
• Prototyping can cause misunderstandings, managers may overestimate the

maturity of a prototype and may withdraw resources prematurely

2.4 The STATEMATE Prototyping Tool
STATEMATE [Harel88] is popular CASE tool which facilitates the prototyping of

real-time systems by using graphical executable specification languages for prototype

construction STATEM ATE has been used to build a prototype of the APU Fuel

Subsystem case study (Chapter 6), it therefore serves as a benchmark for comparison with

the prototyping system defined in this thesis The ESML/LOOPN prototyping system

enables the use of ESM L as a graphical executable specification language ESM L is

discussed in the next chapter

The underlying premise of STATEMATE is the need to consider a system from

three closely related viewpoints structural, functional, and behavioural [Harel92]
STATEM ATE provides three languages [i-Logix91] for the description of these

viewpoints, Module-charts, Activity-charts, and State charts

Module-charts are used to describe the system from a structural, or physical
viewpoint Activity-charts provide the dominant system decomposition, 1 e the system is

described as a hierarchy of activities (functions), complete with details of the data items

and control signals that flow between them Activity-charts, like Module-charts, do not

specify system dynamics They do not state when activities are activated, whether or not

10

they terminate on their own, or whether they can be executed concurrently Statecharts

[Harel87], which are formally based on the Finite State Machine (FSM) [Ferrentino77],

describe the system behaviour over time The Statechart is an extension of the FSM to

include hierarchy, concurrency, and broadcast communication

2.5 Summary
This chapter has described the use of prototyping as an alternative paradigm for

developing real-time systems The deficiencies of the waterfall life cycle model are due

mainly to its lack of executability at each stage in the development cycle The prototyping

paradigm overcomes these by providing model executability at each stage in the

development effort and a flexible framework for prototype revision The chapter has

described a framework in which to apply prototyping, various prototyping classifications,

and executable specification languages It has noted that a keep-it prototyping approach is

necessary for real-time systems The emerging idea of heterogeneous prototypmg has also

been discussed The following chapter discusses ESML, it is used to specify prototypes in

the ESML/LOOPN prototypmg system

11

Chapter 3
Real-Time Structured Analysis and Design

3.1 Introduction
The previous chapter has discussed the use of prototyping as an alternative

software development paradigm for real-time systems The objective o f this chapter is to

describe the Extended Systems Modelling Language (ESM L), and define a set of

execution rules (guidelines) for ESM L to allow the behaviour of ESM L specifications to

be predicted over time The chapter starts with a discussion of Real-Time Structured

Analysis and Design (RTSA/SD) methods, before outlining the ESM L components 1 e

flows, transformations, stores and terminators ESM L is used as the prototype

specification language in the ESML/LOOPN prototyping system The Ward/Mellor

RTSA/SD development method is introduced, it can be used to guide the ESM L

specification effort The chapter then defines a set of execution rules for ESM L These

rules are a set of narrative guidelines on how an ESM L specification will behave over

time The rules are specified in terms of Petri net tokens, a token being used to indicate

actual or potential activity The ESML/LOOPN prototyping system uses LOOPN nets to

define an execution semantics for ESM L according to the execution rules which are

defined in this chapter

32 SA/SD and RTSA/SD
The original Structured Analysis/Structured D esign (SA /SD) method

[DeMarco78] dates from the late 1970s and is intended mainly for non-reactive systems

development SA/SD uses intuitive graphical and textual notations to create specification
and design models The main graphical notation used in SA/SD is the Data Flow

Diagram (DFD), it descnbes the flow of data and its processing within a system Many

vanants of SA/SD exist, including those proposed by Gane and Sarson [Gane79], Ross
[Ross77], and Yourdon [Yourdon89]

SA/SD has been extended to allow the modelling of real-time systems, the

extensions being referred to as the Real-Time Structured Analysis and Design

(RTSA/SD) methods The two most widely used RTSA/SD methods are those proposed

by Hatley and Pirbhai [Hatley87], and by Ward and Mellor [Ward85a] [Ward85b]

[Ward86a] The Ward/Mellor RTSA/SD method is a development method for

constructing specification and design models using an extension of the DFD referred to as

12

the Ward/Mellor transformation schema The transformation schema extends the DFD

with notations for describing control and timing

3.3 The Extended Systems Modelling Language (ESML)
The best characteristics of the graphical notations defined by the Ward and Mellor

and Hatley and Pirbhai RTSA/SD methods have been combined to form the Extended

Systems Modelling Language (ESM L) [Bruyn88] ESM L does not define a new

development method but defines a new extension to the data-flow diagram (DFD), the

ESML transformation schema ESM L provides a more comprehensive and flexible set of

constructs for modelling control logic than its predecessors The Ward/Mellor RTSA/SD

method can be used to guide the ESM L specification effort

ESM L is a graphical language especially suited to the early stages of system

development ESM L enjoys the benefits of graphics-based languages, it facilitates

comprehension of the problem to be solved while serving as a vehicle for communication

between developers and users ESM L addresses system modelling at a "natural” or

"abstract” level to the problem at hand The intuitiveness of ESM L has a price, the

language lacks a set of rigorous definitions of its constructs and their possible

combination, 1 e ESM L is not executable The execution rules defined in this chapter are

the basis for the definition of an execution semantics for ESM L m terms of LOOPN nets

(chapter 5)

3.3 1 The ESML Transformation Schema
The graphical components which make up the ESM L transformation schema are

depicted in Figure 3 1 They are based on the components used in the Ward/Mellor and

Hatley /Pirbhai structured languages The following paragraphs describe each component

in turn

33.11 Flows
Flows are directed arcs that carry some form of data from one component to

another A flow is discrete if its data is defined at discrete points in time A flow is

continuous if its data is defined continuously over a time interval Data flows are flows

that carry variable data Signal flows do not carry variable data, they just report an event

occurrence

13

Transformations

1 Control^»
1 y

Terminator

n
Stores

non-dept

^ depletable

discrete
 ►

continuous

Signal

Prompts

Trigger

—

Activate(E/D)

—

Pause(S/R)

Data Flows

Figure 3 1 Graphical Components of the ESM L Transformation Schema

ES ML provides special flows, prompts, to facilitate the more accurate modelling

of control logic Prompts are a special kind of flow representing control imposed by one
transformation on another They are distinguished by a letter placed in a small circle at

the head of the flow ESM L provides three prompts for use in its transformation schema

Activate (E/D), Pause (SIR) and Trigger (T) The Activate prompt is a composite of

Enable (E) and Disable (D) prompts The Pause prompt is a composite of Suspend (S)

and Resume (R) prompts The interpretation of prompts is different here from that

described by Bruyn, the onginal paper being slightly ambiguous on the subject Prompts

are explained in the sections which describe flow and control transformations

Flows of a particular type can converge or diverge to represent multiple sources,

multiple destinations, or m the case of data flows, combination and separation of content

The various alternatives are shown in Figure 3 2

14

Notation Interpretation

> - All of x can be supplied from
either of the two senders

>
Two subsets of x are supplied
by two senders

All of x is sent to both
of two receivers

- < Two subsets of x are
sent to two receivers

z

Figure 3 2 Flow Convergence and Divergence

3.3.1.2 Flow Transformations
Flow transformations, also known as data transformations, are depicted as circles

and represent the basic functional entities of the system Flow transformations are

structured hierarchically into a levelled set of schema At the lowest level, primitive flow

transformations are specified using m ini-specifications A mini-specification is a

definition of the algorithm used by a primitive flow transformation to transform its inputs

into outputs The balance on inputs and outputs between levels of the hierarchy must be

maintained, hierarchy allows the splitting of large models into more manageable units
Flow transformations can have discrete inputs (data and signals), continuous data

inputs, and may have discrete and contmuous outputs A flow transformation can have no

input prompt, an Activate input prompt, or a Trigger input prompt A primitive flow

transformation can execute if it is enabled and all its inputs are available Its discrete

inputs may am ve in arbitrary order A flow transformation with no input prompt is

always enabled A flow transformation with an Activate input prompt is deemed to be

enabled if the last prompt it received was an Enable prompt Trigger prompts are reserved

for flow transformations which have continuous inputs only A flow transformation with

a Trigger input prompt is enabled when it receives the Trigger prompt A Trigger prompt

causes a flow transformation to perform a time-discrete action, such as producing an

discrete flow, or storing the instantaneous value of a continuously available flow

15

The production of discrete data outputs may be associated with a delay This

delay, known as the output delay, is the amount of time between the establishment of the

conditions for the production of discrete output and the completion of the production of

this output The output delay is specified in the mini-specification as a number of clock

ticks

3 3.13 Control Transformations
Control transformations, depicted as dashed circles, represent units of control

logic within the system that dictate when, and for how long, other transformations are

active

In the Ward/Mellor transformation schema, control transformations can only have

signals as input ESM L allows continuous data flows to be inputs to control

transformations, the values of continuous inputs now influence the behaviour of the

system In the Ward/Mellor transformation schema, only one control transformation can

exist per schema, in which case the control transformation represents the centralised

control centre o f the system ESM L relaxes this constraint, several control

transformations, representing the distributed control structure of the system, can exist m

the same schema The control transformations can control each other though prompt

flows, control transformations which are enabled simultaneously are assumed to execute

concurrently

State Transition Diagrams (STDs) are used to define the control logic of an

individual control transformation, l e how it reacts to various signals and continuous

inputs A STD is the graphical representation of a Finite State Machine [Ferrentino77] In

a STD, states (rectangles) are connected by transitions (arcs), one state being deemed the

initial state Transitions are labelled using inputs and outputs

Transition inputs, prefixed by " I ", may consist of an event and flow condition
(both optional) The event corresponds to an input signal, the flow condition is a Boolean

condition on any continuous input A transition input consisting of an event will occur if
the signal occurs while the system is in the origin state A transition input consisting of a

flow condition only will occur if the value of the continuous input was attained before,

when, or after the origin state is reached A transition condition consisting of an event and

one of more flow conditions is the conjunction of the event and flow conditions

Transition outputs, prefixed by "O ", represent zero or more actions to be

performed concurrently with the transition Each action may be the name of a signal

output, a T, E, D, S or R prompt enclosed in " o \ or the assignment of a value to an
output continuous flow

16

A control transformation in ESM L can have no input prompt, an Activate input

prompt, or matching Activate and Pause input prompts A control transformation with no

input prompt is always enabled A control transformation, that is connected to another

transformation by an Activate prompt, can initiate and terminate the activity of that

transformation by sending Enable and Disable prompts along the composite prompt

When a transformation is disabled, it forgets any intermediate results A control

transformation, that is connected to another control transformation by a Pause prompt,

can suspend and resume the activity of that control transformation by sending Suspend

and Resume prompts along the composite prompt A suspended control transformation,

when resumed, continues execution from the exact state it was in when suspended, 1 e

intermediate results are remembered The following paragraphs use STDs to define the

behaviour of control transformation with various input prompts more exactly

Figure 3 3 defines the generic behaviour of a control transformation which has an

Activate (E/D) input prompt Initially the transformation is disabled When it receives an

Enable prompt it becomes enabled and operates according to the STD which defines its

own individual behaviour A transformation is deemed to be activated by a control

transformation if an Activate prompt flows from the control transformation to that

transformation On receipt of a Disable prompt the control transformation becomes

disabled and propagates the Disable prompt on to any other transformations that it

activates This ensures that transformations activated by a control transformation are

disabled once the control transformation itself becomes disabled

I
Disabled

i

I disable
I enable O prop disable

Enabled

Figure 3 3 STD Behaviour of Control Transformation with Activate input prompt

Figure 3 4 defines the generic behaviour of a control transformation which has

matching Activate (E/D) and Pause (S/R) input prompts The behaviour is an extension of

17

that of Figure 3 3 to cope with Suspend and Resume prompts The control transformation

will become suspended if it receives a Suspend prompt while enabled The Suspend

prompt is also propagated on to any other control transformations that the control

transformation activates and to which it is also connected by a Pause prompt This

ensures that a control transformation that is activated and paused by another control

transformation is suspended once the other control transformation is suspended The

control transformation of Figure 3 4 will become enabled if it receives a Resume prompt

while suspended The Resume prompt is propagated, as above, to any other control

transformations that the control transformation activates and to which it is also connected

by a Pause prompt It should be noted that in Figures 3 3 and 3 4, the unexpected arrival

of a prompt (l e a prompt amving at a state for which there is no outward transition)

results in its consumption without effect

i
Disabled

~ K

I enable

Enablec

I suspend i
0 prop suspend 0

Suspended

I disable
O prop disable

I disable
O prop disable

Figure 3 4 STD Behaviour of Control Transformation with Activate and Pause input
prompts

To illustrate the above consider Figure 3 5 which consists of two flow

transformations and four control transformations which are connected by a complex set of

prompts Note that data and signal flows have been omitted for simplicity

Consider the behaviour of control transformation B If while enabled it receives a

Disable prompt from A, B will forward the Disable prompt on to any transformations that

it activates, m this case D, E, and F, and become disabled itself It does not forward the

18

Disable prompt on to G, since it is activated by H If while enabled B receives a Suspend

prompt from A, B will forward the Suspend prompt on to any transformations it activates

and to which it is also linked by a Pause prompt In this case it will send on the Suspend

prompt to F only, and become suspended itself If while enabled B receives a Resume

prompt from A, then it resumes at the state where it was suspended, and forwards the

Resume prompt on to F

Figure 3 5 ESM L Prompt Scenario

3.3.1.4 Stores
Stores are represented by pairs of horizontal lines Stores hold information that

persists within the schema which is accessible to transformations at discrete points in
time

When a non-depletable store is accessed, the contents of the store are merely
copied and the information in the store continues to be available for use at a later time by

other transformations Wnting to a non-depletable causes the store contents to be
overwritten

Depletable stores represent repositories for information that is consumed on being

read Depletable stores act as queues or stacks, a write adds an item to the store, a read

removes an item Depletable stores can have finite capacities

19

33.1.5 Terminators
Terminators model the system environment, representing any real-world entities

that are external to the modelled system, but with which the system must interact

Terminators can represent other systems, devices, or people, and are depicted as shaded

boxes

3.3.1.6 Formation Rules
Formation rules dictate which types of flow may be used to connect one graphical

component to another Unambiguous flow/component connections are prohibited Figures

3 6, 3 7 and 3 8 show the formation rules for continuous, discrete and signal flows

respectively

to
from

Flow
Trans

Control
Trans

N on-dept
Store

D ept
Store Term

Flow
Trans

Control
Trans —

N on-dept
Store

i

Dept
Store

Term

Figure 3 6 ESM L Formation Rules for Continuous Flows

to
from

Flow
Trans

Control
Trans

N on-dept
Store

D ept
Store Term

Flow
Trans

Control
Trans

N on-dept
Store — -

D ept
Store --------►

Term --------►

Figure 3 7 ESM L Formation Rules for Discrete Flows

20

to
from

Flow
Trans

Control
Trans

N on-dept
Store

D ept
Store T erm

Flow
T rans — — — — — —

Control
Trans — — — — — —

N on-dept
Store

D ept
Store

T erm — — — —

Figure 3 8 ESM L Formation Rules for Signal Flows

3.4 The Ward/Mellor RTSA/SD Method
The Ward/Mellor RTSA/SD method, which can be used to guide the ESM L

specification effort, is described in the following paragraphs

The Ward/Mellor RTSA/SD method advocates a three phase approach to the

development of real-time systems which is characterised by progression from higher to

lower levels of abstraction Development should proceed by firstly building the Essential

Model, the logical system model, and then building the Implementation Model, the

physical system model The final phase consists of building the system described by the

implementation model The Ward/Mellor abstraction levels are shown in Figure 3 9

Model Sub-Model Implementation
Dependence

Notation Development
Phase

Logical
Environmental

Independent
Context diagram
Event lists

1

Analysis

f

Behavioural DFD,
STD,
ERD,
Textual
mini-
specs

Physical

Processor
Environment

DependentSoftware
Environment

A
Design

v

Code
Organisation

Structure
chart

Implementation Code Implementation

Figure 3 9 Ward/Mellor Abstraction Levels

21

3.4.1 The Essential Model
The Essential (requirements) Model descnbes the logical essence of the system,

while assuming perfect technology Creating the essential model consists of building two
sub-models the Environmental Model, and the Behavioural Model

The Environmental Model itself consists of two sub-models the Context Schema,
and the Event List Creating the Context Schema consists of determining the boundary
between the system and the environment, identifying the terminators with which the
system must communicate, and defining the interfaces between the system and these
terminators The event list records the external events (stimuli) to which the system must
respond

The Environmental Model is used to build the Behavioural Model, which
describes the system's externally observable behaviour using a levelled set of
transformation schema, and uses STDs for defining the control logic of the system The
behavioural model is constructed using stimulus-response partitioning, the system
response to each event contained on the event list is considered in turn

The data components of the system are described using the Data Schema and the
Data Dictionary The Data Schema models the system as a network of data categories
that are linked to one another by relationships The basic notation used is that of the
Entity-Relationship (ER) diagram [Chen76] The Data Dictionary is an organised list of
definitions of all the data elements that are pertinent to the system

Since the Essential Model assumes perfect technology, it does not consider output
delays for flow transformations, except for those reflecting externally imposed
requirements, and assumes that depletable stores have infinite capacities

3.42 The Implementation Model
The Implementation Model elaborates the essential model to reflect how the

system is to be implemented The Implementation Model views the system as a real
machine with limited resources

The Implementation Model consists of three sub-models the Processor
Environment Model (PEM), the Software Environment Model (SEM), and the Code
Organisation Model (COM)

The PEM details the allocation of the system activities and data of the essential
model to processors that will be used to implement the system, a processor may be
human or mechanical.

The SEM is a description of the software architecture inside one processor,
building the SEM involves imposing sequences on potentially concurrent data

22

transformations, and dropping the assumption that transformations operate
instantaneously

The COM describes the modularisation scheme used to implement the software,
and identifies a hierarchy of modules Structure Charts are used to describe the internal
structure of transformations which represent single tasks on single processors

3.43 RTSA/SD and Object-Oriented Development
The emergence of object-oriented languages, and object-oriented analysis (0 0 A)

and design methods (OOD) has influenced RTSA/SD Ward argues that OOA and OOD
are compatible with RTSA/SD, indeed the Ward/Mellor RTSA/SD has imported some of
its concepts [Ward89] The influence has been seen at the analysis phase, where object-
ldentification is used as the cntenon for analysis model partitioning The objects are
identified by considering the ER diagram constructed at the analysis phase Stimulus-
response analysis is reinterpreted as identification of operations to which object classes
must respond The analysis objects migrate to the design phase Object identification
results in cleaner interfaces between system components, it has been followed in the
construction of the ESML specification of the case study (section 6 3)

3 5 The ESM L Execution Rules
This section defines a set of execution rules for ESML These execution rules are

a set of guidelines on how an ESML specification should behave over time The ESML
execution rules are defined in a similar manner to the execution rules which Ward has
defined for his transformation schema [Ward86b] There is, however, one important
difference between the ESML execution rules and the Ward execution rules The Ward
execution rules facilitate token-based [Brackett87], or qualitative, model execution This
type of execution describes the acceptance of inputs and the production of outputs over
time, but not input and output values The ESML execution rules facilitate prototype
(functional) model execution, this is a more extensive type of execution which involves
modification of data values The ESML execution rules are defined narratively m terms
of Petn net tokens A token, which indicates actual or potential activity, can be placed on
a flow, transformation or store It should be noted that the ESML execution rules are a set
of guidelines on how an ESML is to be executed, they form a theory The ESML/LOOPN
prototyping system of Chapter 5 uses LOOPN nets to define an execution semantics for
ESML based on the guidelines set down by the ESML execution rules The following
paragraphs present the execution rules for each of the ESML constructs in turn

23

3.5.1 Flows
Prototype model execution requires that tokens associated with continuous and

discrete data flows be assigned values to indicate the data content of the flows The
ESML execution rules are therefore specified in terms of high-level Petri nets (section
4 3), where tokens which can be composed of attributes of specific types, so allowing a
token to hold data values

Continuous data flows which are inputs from terminators always carry a token,
the attributes contain the data values Continuous data flows produced by a flow
transformation carry tokens whenever the transformation carries a token and also dunng
the output delay, the tokens indicate that the transformation is actively controlling the
values of its continuous outputs

The placement of a token on a discrete data flow at a point in time indicates that
data is present on the flow The placement of a token on a signal or prompt flow at a
point m time indicates an instance of the signal or prompt has occurred Tokens which
represent signal flows are unstructured Composite prompts, such as the Activate and
Pause prompts, require that tokens placed on prompt flows be assigned values to indicate
the actual prompt sent

3.5.2 Flow Transformations
A token placed on a flow transformation indicates that it is capable of

transforming its discrete and continuous inputs into discrete and continuous outputs The
placement of a token on the input prompt of a flow transformation causes an interaction
between the prompt and the transformation which always results in the removal of the
token placed on the prompt The placement of a token on a composite Activate input
prompt to indicate an Enable prompt, causes a token to be placed on the flow
transformation if it has not already got one The placement of a token on a composite
Activate input to indicate a Disable prompt, causes the removal of any token that the flow
transformation carries, and any tokens that continuous outputs carry Flow
transformations with an Activate input prompt therefore carry tokens while they are
enabled, i e during the penod following receipt of an Enable prompt and preceding
receipt of a Disable prompt, except dunng their output delays

A flow transformation with no input prompt, or a Tngger input prompt, always
cames a token, except dunng the output delay A token placed on a Tngger input prompt
forces production of discrete output from available continuous input

A pnmitive flow transformation which cames a token will transform its inputs
into outputs according to its mini-specification if all its discrete and continuous inputs
carry tokens Tokens are placed on continuous outputs immediately, tokens are placed on

24

discrete outputs after the output delay has expired, during the output delay the
transformation does not carry a token Any discrete inputs that have tokens placed on
them while the flow transformation does not carry a token (1 e while it is disabled or
during the output delay) will have the tokens removed without effect A flow
transformation with continuous inputs only, which carries a token, will compute its
outputs only if its contmuous inputs carry tokens, and its continuous inputs have changed
since the transformation was last executed

3S 3 Control Transformations
Control transformations may carry a token, this is associated with one of the states

of STD It serves to define the state of the control transformation over the time intervals
between state transitions The presence of a token on a control transformation indicates
that it is actively sampling the values of continuous inputs and awaiting input signals in
order to change state and generate outputs according to its STD logic

The placement of tokens on the input prompts of a control transformation dictate
whether the transformation carries a token The token on the input prompt is always
removed A control transformation can be enabled, disabled or suspended, as a result of
the receipt of input prompts A control transformation with an Activate input, or matching
Activate and Pause inputs, carries a token while it is enabled Control transformations
with no input prompts always carry a token

The placement of a token on an input signal flow of a control transformation
causes an interaction between the flow and the transformation which always results in the
removal of the token from the flow If the control transformation carries a token, a state
change may occur, as specified by the STD, possibly resulting in a change of state, and
the placement of tokens of output signal flows State changes may also occur depending
on the values of contmuous inputs

The placement of tokens on the input prompts of a control transformation often
results in the placement of tokens on output prompts so that the effect of the input prompt
may be propagated to other transformations This has been defined by the STDs of
Figures 3 3 and 3 4

3.5 4 Stores

A non-depletable store carries a token whenever it contains data, i e after it is
written, Depletable stores can contain multiple tokens up to the store capacity The
number of tokens in a depletable store equals the number of units of mformation stored
within

25

3.5.5 Multiple Token Placement
The Ward execution rules use special features to deal with circumstances which

result in simultaneous placing of several tokens Examples of these circumstances include
the simultaneous placement of tokens on several outputs by a flow transformation, the
simultaneous placement of tokens on a diverging output flow, or simultaneous placement
of tokens on several signal outputs of a control transformation as a result of a state
transition The Ward execution rules require carrying out the placements and resulting
interactions sequentially, but in arbitrary order Each branch of the interaction is earned
out to its conclusion before returning to the next If more branches are encountered dunng
an interaction, another arbitrary sequencing decision is made and the procedure is applied
recursively This is therefore a depth-first search with random selection and backtracking
scheduling strategy

The ESML execution rules dispense with the depth-first random selection and
backtracking scheduling strategy of Ward This scheduling policy limits possible model
concunency by requinng that branches be earned out sequentially in random order The
execution rules of Ward have been cnticised for not directly supporting the execution of
behavioural models of distributed real-time systems The Ward scheduling strategy
assumes that an external event entenng the system has to be completely served before the
next event can enter A distnbuted real-time system is mtnnsically concurrent, any
implementation must respect this property The ESML execution rules adopt a scheduling
policy that allows more concurrency Where multiple token placement occurs, it is
undetermined what branch is followed, indeed several branches may be followed at the
same time Execution may begin on one branch before another branch has completed, the
interaction followed is chosen randomly This results in a more distnbuted execution
pattern which now reflects the nature of the distnbuted system

3.6 Summary
This chapter has introduced ESML for use as the prototype specification language

in the ESML/LOOPN prototyping system It has been noted that ESML is intuitive and
easy to use A set of formation rules have been presented for ESML The behaviour of
control transformation as they receive vanous sequences of prompts has been defined
using STDs The Ward/Mellor RTSA/SD development method has been introduced, it
can be used to guide the use of ESML in the specification process It has been noted that
RTSA/SD and OOA/OOD are compatible The chapter has defined a set of execution
rules for ESML, they provide guidelines on how ESML specifications are to be executed,
the rules have been specified m terms on Petri net tokens A simple scheduling policy has

26

been adopted to allow more concurrency m the execution of an ESML specification The
ESML/LOOPN prototyping system uses LOOPN nets to define an execution semantics
for ESML according to the execution rules The following chapter describes Petn nets,
focusing on LOOPN nets and the LOOPN code generator

27

Chapter 4
Petri Nets

41 Introduction
The previous chapter has introduced ESML and defined a set of execution rules

for it The objective of this chapter is to introduce Petn nets, m particular LOOPN nets
and the LOOPN code generator The chapter starts with an description of classical (low-
level) Petn nets Classical net structure is defined, the transition finng rule is illustrated
by a simple example Formal analysis of Petn nets is also discussed The chapter then
descnbes high-level Petn nets, focusing on LOOPN nets which are illustrated using the
dining philosophers problem LOOPN nets are used to define an execution semantics for
ESML in the ESML/LOOPN prototyping system in Chapter 5 The chapter then
concentrates on Petn net simulation and implementation strategies The LOOPN code
generator is descnbed in detail, it is used in the ESML/LOOPN prototyping system to
generate automatically a C language program from a LOOPN net specification A number
of other Petn net code generators are also surveyed

4.2 Classical Petn Nets

Petri nets [Petn66] are a graphical and mathematical tool suited to the modelling
of many types of reactive and real-time systems As a graphical tool, Petn nets can be
used as a visual communication aid, but unlike most visual languages, Petn nets have a
mathematical basis, multi-set theory, facilitating formal analysis, simulation and
automatic implementation As a mathematical tool, it is possible to set up state equations,
algebraic equations, and other mathematical models governing the behaviour of the
modelled system

28

4 21 Classical Petri Net Structure
A classical Petri net (low-level P et r i net) [Murata89] is a 5-tuple,

N = {P,T,F,W , Mo}, where

P = {pl,p2, ,pm}

T = { fl,f2, ,ta}
F ^ (P x T)kj(Tx P)
W F - * {1,2,3, }
Mo P —>{0,1,2,3, }
P n T = 0

P kjT = 0

P is a finite set of places, T is a finite set of transitions, F is a. flow relation (set of
directed arcs), Wis a weight function on arcs and is the initial marking A Petn net

structure A/ = (P,T,F,W) without any specific initial marking is denoted by N A Petn net
with a defined initial marking is denoted (NMq), a marking is an assignment of tokens to

places The net marking vanes during Petn net execution according to the transition
firing rule Multiple arcs may connect the same place to the same transition and vice-
versa In a graphical sense, places are drawn as circles, transitions as rectangles, and
tokens as dots in a place

4.2*2 Transition Enabling and Firing
A Petn net can be considered to be a game board where tokens are markers which

can only be positioned on places [Jensen90] Each transition represents a potential move
in the 'Tetri net game" The Petn net transition finng rule determines when moves can be
made and so determines the dynamic behaviour of the net

(a) A transition t is said to be enabled if each input place p of t is marked with
at least w(p,t) tokens, where w(p,t) is the weight of the arc fromp to t

(b) An enabled transition may or may not fire
(c) The finng of an enabled transition removes w(p,t) tokens from each input

place p of t, and adds w(t,p) tokens to each output place p of i, where w(t,p)
is the weight of the arc from / to p

29

" 5 t

° 2 e r (a)

H N

Jr= ^ K D h2°
t

° 2 (b)

Figure 4.1 Classical Petri net modelling of the chemical reaction: 2 H2 + O2 -> 2 H2 O

The transition firing rule is illustrated by Figure 4.1 which models the chemical
reaction for the production of water. Two tokens in each input place in Figure 4.1(a)
indicate that two units of H2 and O2 are available, and that transition t is enabled. After

firing t, the marking changes to the one shown in Figure 4.1(b), t is no longer enabled.
For the above transition firing rule, it is assumed that each place can

accommodate an unlimited number of tokens. Such a Petri net is referred to as an infinite
capacity net. For modelling many systems, it is natural to consider an upper limit to the
number of tokens that a place can hold. Such a Petri net is referred to as a finite capacity
net. Condition Event nets (CE-nets) [Petri66] are finite capacity nets whose places can
hold at most 1 token. The places of Place Transition nets (PT-nets) [Peterson81] can hold
multiple tokens.

Petri nets are inherently concurrent or parallel. The enabling of a transition
depends on local conditions only, transitions at disjoint locations in the net can fire
concurrently. A step is a mathematical description of the set of concurrently enabled
transitions. The elements of a step are the transitions which can fire simultaneously at this
marking. A transition may even fire concurrently to itself, depending on the availability
of enough tokens. In general each step is a multi-set over the set of all transitions. A
multi-set is analogous to a set, except that it may contain multiple appearances of the
same element. It should be noted that two transitions are concurrently enabled if they are
independent in the sense that they operate on disjoint sets of tokens; transitions in conflict
cannot fire concurrently. When a step with several transitions occurs, the effect is the sum
of the effects of the individual transitions.

30

4 2 3 Classical Petri Net Analysis
A major strength of Petn nets is their support for formal analysis [Jensen81]

[Murata89] Two types of properties can be studied with a Petn net model [Murata89]
those that depend on the initial marking (behavioural properties), and those that are
independent of the initial marking (structural properties) Murata has descnbed a large
number of behavioural properties and has given a mathematical definition of each A
sample behavioural property is reachability It involves determining whether certain
markings are reachable from the current marking by the finng of transitions Reachability
is the most fundamental property for studying systems modelled using Petn nets
Reachability can be used to check whether a system can deadlock

4.2.4 Advantages and Disadvantages of Classical Petn Nets
The mam advantages of classical Petn nets stem from their mathematical

foundation Classical Petri nets have many well developed formal analysis methods
which allow a designer to reason about a system before implementation

Classical Petn nets have been cnticised for a lack of intuitiveness, they lack any
concept for data representation For practical applications it has turned out,that classical
Petn nets are too low-level to cope with many real-world applications m a manageable
way They are only practical for modelling small systems, since the net grows
exponentially for even moderately sized systems

4 3 High-Level Petn Nets
To improve the practicality of Petn nets, while retaining analytical power, high-

level Petri nets were developed High-level Petn nets allow tokens to carry complex
information, and so provide improved modelling convenience Predicate Transition Nets
(PrT-nets) [Gennch81] were the first kind of high-level Petn net constructed without any
particular application area in mind The step from classical Petn nets to high-level Petn
nets can be compared to the step from assembly languages to third generation
programming languages which contain an elaborated type concept

A large number of high-level Petn net classes have been defined in the literature
They differ m the mscnption language used, which can be based on algebraic [Reisig91]
[Battiston88], object-oriented [Bruno86] [DiGiovanm91], ox functional [Jensen92]
concepts Most high-level Petri nets include some notation for representing time, so
facilitating the modelling of the idiosyncrasies and timing dependencies that arc
commonly found in real-time systems

31

4.3.1 LOOPN Nets
LOOPN (Language of Object-Oriented Petri Net) [Lakos90] is a language for

specifying systems in terms of High-level Timed Petri nets. It includes object-oriented
features such as subtyping, inheritance and polymorphism which allow for the convenient
modularisation of complex specifications. LOOPN nets are currently specified textually
in the LOOPN source language. A graphical interface, XLOOPN, is under development
which will allow the graphical specification of LOOPN nets.

As a simple example, consider the famous dining philosophers problem. A group
of philosophers are seated at a round table, with one fork between each pair of
philosophers, and one bowl of spaghetti in the centre of the table. Initially, all the
philosophers are thinking and all the forks are free. At random intervals each philosopher
becomes hungry and decides to eat. This is possible if the philosopher can get hold of the
fork on each side. This will not be possible if an adjacent philosopher is eating.

The LOOPN net for the dining philosophers problem is shown in Figure 4.2. The
high-level net contains five places (circles) and four transitions (rectangles). A place can
contain tokens whose type, the token colour, must belong to the colour set of the place
(place type). Colour sets not only define possible token colours, but also define
operations and functions which can be applied to the colours. Each place in Figure 4.2
carries tokens which are marked with a number in the range L.n. Place names are located
beside the place. If the place has an initial marking it is defined within brackets following
the place name. Transition names are specified within the rectangle. Arcs may be
annotated with expressions (arc inscriptions) specifying the particular tokens which need
to be transferred on transition firing. Arc inscriptions are specified within brackets beside
the arc. The net inscriptions may include named variables or constants prefixed by "#".
Transitions can be annotated with additional input token selection sections which must
satisfy if the transition is to fire, this allows the firing of a transition to depend on the
values of input tokens. Transitions may also include special output actions to be
performed on output token values at the time of firing. To avoid cluttering, the transition
input and output token sections (if any) are specified beneath the diagram.

As an example, consider the transition "takeRight". For this transition to fire a
token for philosopher i must be present in the place "hasLeft" and the fork numbered i+1
must be available in the place "freeForks" (with addition modulo n assumed). On firing
this transition a token for philosopher i is added to the place "eating". The colouring of
tokens in this case means that the one net structure serves for an arbitrary number of
philosophers, whereas the use of colourless tokens (classical Petri nets) would require
duplication of the net structure.

32

thinking (1 n) hasLeft

? « i - j
► takeleft

(i) (i) (i)
freeForks (1 n) y

retRight
T (i+ (i + l)

takeRight

(i) (0 (i)

hasRigm ^ (i) 6eating

Figure 4 2 LOOPN net for the Dining Philosophers Problem

4.3 1.1 Type Declarations
Type declarations in the LOOPN source language include a subset of Pascal type

declarations, in particular, enumeration, predefined types (integer, real, boolean, char),
strings, single dimensioned arrays, and records Token types are defined as extended
record structures which encapsulate a set of data fields (each of some basic type) and a set
of associated functions m a single object The data fields determine the range of possible
colour combinations that tokens of this type may assume A place holds a list of tokens of
a specified token type Each time a token is added to a place it is timestamped with the
current simulation time

In true object-oriented style, a token type is declared as a subtype of one or more
other token types, and thus inherits the parent's data fields and functions (l e its features)
It may augment the features of the parent and may ovemde the parent's defined functions
With token type inheritance comes polymorphism, a token of some subtype can be used
where tokens of a parent type are expected

The most elementary token type, from which all others inherit, is the "null" type
While it has no data fields, it includes definitions of the functions "first", "last", and
"delay(t)'\ which are available to every other token type The functions "first\ "last" are
parameterless functions returning true if the specified token is the first, respectively last,
token to arrive at the place The function "delay(t)" returns true if the token has been
resident at the place for time t The token type declaration for the dining philosophers net
could be

33

TYPE
phil_num = 1 n,
phil__type =

TOKEN null WITH
ph phil_num,
next = philjium self ph mod n + 1,
has (p philjium) = EXISTS x x p h = p,

END,

This declares a token type which is a subtype of "null", with a field holding a
philosopher number The function "next" returns the number of the neighbouring
philosopher The identifier "self1 can be used to refer to the current token The function
"has" can be used to determine if a place contains a specified philosopher The existential
quantifier EXISTS ranges over all tokens currently m the place

4.3.1.2 Places
Places are declared to be of a specific token type, thus restricting the tokens which

may reside in the place Place declarations may also specify an optional place restriction
which imposes a universal filter on the place Only those tokens satisfying the restriction
are visible in the net This universal filter is useful for localising or encapsulating the
desired place behaviour, but it can be considered simply as syntactic sugar for the
conjunction of this condition to every transition taking input tokens from the place

LOOPN supports timed places, tokens become visible in a place when the delay
has expired, the delay is specified using the "delay(t)" function in the appropriate place
restriction

4.3.13 Transitions
Transitions specify input places, output places, and auxiliary actions, each of

which are optional Each input token is explicitly named together with the place from
which it is derived There is also an optional condition which the selected token must
satisfy m order for the transition to fire Such conditions are equivalent to the global
restrictions applied to places, except that the restriction of token visibility is now local to
the transition rather than global

The transition output places are also explicitly named, together with the tokens
which are to be added to these places All token identifiers have scope local to the
transition The token values may be copies of existing (input) tokens, copies of existing

34

tokens with certain named fields changed, or newly generated tokens with values
specified for named fields The optional auxiliary action of a transition may consist of
one or more procedure calls It does not affect the firing of the net, but allows interaction
with the environment, typically it is used to report the progress of the simulation

4.3 1.4 Modules and Module Instances
A LOOPN net can be coded as one or more modules, each of which consists (in

the simplest case) of constant, type, place, and transition declarations Immediately
preceding the transitions is the initialisation for the module Syntactically, this is similar
to a transition with no input places Semantically, it is executed once at start-up to
establish the initial module marking Modules provide a notation for the hierarchical
decomposition of the LOOPN net model

The LOOPN module specification for a dining philosophers problem of five
philosophers could be as follows

MODULE philosophers (CONST which integer),
CONST n = 5,
TYPE

phil_num - I n ,

philjtype =
PLACE

thinking, eating, freeForks,
hasLeft, hasRight philjtype,

INITIALISATION,
OUTPUT

thinking <-il = [ph 1],
thinking <-i2 = [ph 2],

freeForks <-iI,
freeForks <-i2

TRANSITION take Left,
INPUT

i <-thinking,
j <-freeForks \ j ph = i ph,

OUTPUT

35

hasLeft <-i,
ACTION
printf ("Philosopher %d has raised his left fork", i ph),

END MODULE

Complex Petn nets can be built by including module instances in the definition of
other modules The declaration of an instance effectively duplicates the associated subnet,
including its places, transitions and nested instances

Modules can interact with their environment m a number of ways At the simplest
level, they may include constant parameters so that an mstance can determine its identity
(out of a number of instances) Secondly, a module may interact with its environment by
declaring parameter places Here the interaction with the environment is by transferring
tokens into and out of the module Because of this interface to places, modules may be
thought of as super transitions Parameter places may be declared with usage INPUT,
OUTPUT or IN OUT (1 e input and output) Only those parameters with INPUT or
IN OUT usage may have a restriction attached, m which case the tokens in that place are
only visible within the module if that condition is satisfied in addition to other global
visibility restrictions

LOOPN therefore uses three ways to control token visibility At the global level, a
place can have a restriction which effects the visibility of all tokens in that place At the
local level each transition can decide which tokens are appropnate for itself, by imposing
conditions on input tokens At the intermediate level, modules can specify which tokens
are relevant, by specifying restrictions at the module boundary This three level filtering
scheme is depicted in Figure 4 3

Figure 4 3 Token Filtering in LOOPN

36

LOOPN supports the definition of subclasses of modules with inheritance A
module can be defined to be a subtype of another module and inherit all of the features of
its parent module type A module subtype can augment the features of its parent and can
override declared identifiers of the parent Polymorphism of modules is supported by
allowing an instance of a module subtype to be used where an instance of a parent
module type is specified In this way, complex Petn nets may be built by including
instances of other modules, and by augmenting or modifying existing modules

4.32 Advantages and Disadvantages of High-Level Petri nets
High-level Petn net offer better modelling convenience than classical Petn nets,

the hierarchical techniques supported by most high-level Petn nets allow the system to be
modelled at different levels of abstraction, while facilitating top-down and bottom-up
model construction High-level Petn nets offer notations for representing both the data
and control structures of the system being modelled Though high-level Petn nets offer
better modelling convenience than classical Petn nets, they can result in nets m which the
entire structure of the system is embedded in the net inscnptions High-level Petn nets
have been cnticised for lacking intuitiveness, they do not allow modelling of the system
at a natural level

The analysis methods of classical Petn nets have been extended for high-level
nets, though not without cost The methods are not as well developed, though a lot of
research is progressing in this area

4.4 Petri Net Simulation and Implementation
A Petri net simulator is an algonthm which "plays the token game" [Valette91],

l e cames out the occurrence of the transitions in accordance with the availability of
tokens Petn net simulators work according to a selected simulation strategy (also known
as a scheduling or implementation strategy) A Petn net simulation is usually earned out
by a tool which animates the system model as the transitions are fired

A Petri net implementation refers to a programming language program which
simulates the net This program is produced automatically or semi-automatically from the
net specification A tool which generates a Petn net implementation from a net
specification is referred to as a Petri net code generator A great diversity of Petn net
implementations are discussed in the literature [Silva86] They differ in the class of Petn
net concerned, the target language, and the implementation strategy The implementation
may concern classical or high-level Petri nets, and may be centralised, distributed, or
hybrid, each of which can be compiled or interpreted [Silva89]

37

4.4.1 Centralised Implementation (C)
Centralised implementation is a simple, though widely used, implementation

strategy for Petn nets One central process, the manager, manages all places and tokens,
each transition is represented as a separate process The manager manages an explicit
representation of the net marking, and provides indirect synchronisation between
transitions A transition process which wishes to fire communicates its wish to the
manager, who in turn checks whether the transition can fire, and communicates the result
back to the transition process If the request to fire was successful the manager updates
the marking Since there is only one process for all places and tokens, i e the manager,
transitions cannot be fired concurrently

4.4.2 Distributed Implementation
Distributed Petri net implementations [Taubner88] have been proposed to allow

the concurrent firing of transitions Distributed implementation strategies differ with
respect to the gram of parallelism supported

4.42.1 Distribution of Control by Places
Motivated by the structure of Petn nets, an idea which suggests itself is to provide

one process per place for the management of tokens A transition has to communicate
with several place processes before permission to fire can be established, reservations
have to be made It is possible to either reserve the whole place, or to reserve individual
tokens only

Conflicts can occur while establishing occurrence permission, a problem not
present with centralised implementation This happens, if two or more transition
processes have made some of their reservations and every transition process needs a
further reservation but cannot make it because of the reservations of the others For the
resolution of such a conflict there are several possibilities

(A) Abandonment of the wish to occur of all involved transitions, m general
this leads to an unproductive implementation

(W) A winner amongst transitions is elected depending on a priority order on
transition processes, the priority alters dynamically

(O) Transitions request their places in a fixed order, the reservations are
queued by the place process

Taubner classifies distributed Petri net implementation strategies according to a
three letter code (the Taubner code), the first letter indicates the control strategy, the

38

second letter indicates the reservation unit, the third indicates the method of conflict
resolution The Taubner code can be used to classify the general behaviour of many
distributed net implementation strategies

The PPO strategy uses one process per place, reservations are made on places,
while fixed order reservation ensures freedom from deadlock A transition process
informs the processes which manage its input places about its wish for reservation and
waits for the answer Reservations are made in place number order After the first refusal
or after all places have been reserved, the transition process cancels the reservations, or
initiates the movement of tokens respectively Both can be done for all places m parallel

A place process puts a reservation request m its queue, removes transition
processes with too large requests, and checks if the next reservation can be accepted The
cancellation of a reservation and communications for the movement of tokens are handled
correspondingly

PPA can be derived from PPO by removing the queue, informing requesting
transitions immediately if the place is reserved, and allowing a transition process to run
its reservations in parallel PPA has a smaller overhead for managing places, tokens and
transitions than PPO

The above strategies can be generalised for tokens as the reservation unit PTO
involves smaller communication overhead and allows the greater parallelism in the
execution of transitions

4.42.2 Distribution of Control by Edges
The bottleneck in previous implementation strategies has been that a place process

can communicate with only one process at a time, even if there are enough tokens,
resulting m communication overhead To avoid this bottleneck, the management of a
place is now split up into one place centre process and two part processes for
management of place input and output transitions respectively Reservation units, in such
strategies, are tokens, since a reservation on a place no longer makes sense An example
is ETO, where the E indicates that the distribution of control is determined by the number
of edges, T indicates tokens as the reservation units, and O the fixed-order conflict
resolution strategy

4.43 Petri Net Code Generators
This section surveys a number of Petn net code generators, 1 e tools which

generate computer programs to play the "token game" LOOPN is discussed first,
followed by a number of other generators (any of which could be used to replace LOOPN
as the back-end of the ESML/LOOPN prototyping system) Generators which produce

39

distributed implementations are classified, where possible, according to their Taubner
code

4.43.1 The LOOPN Code Generator
The LOOPN tool supports the centralised and distributed implementation of

LOOPN nets The following paragraphs give overviews of both capabilities

4.43.1.1 Centralised Implementation in LOOPN
The LOOPN tool generates a C language program from a LOOPN net specified in

its source language This program runs as a centralised implementation of the specified
net

The LOOPN scheduler is responsible for implementing the LOOPN net using a
centralised strategy, it is equivalent to the manager described m the C strategy The
scheduler must cope with time since tokens can be delayed m places, for this purpose
traditional discrete event simulation techniques are employed The scheduler maintains a
list of pending events sorted by event time (time at which the event will happen) Events
for the same time are randomly ordered to ensure fairness Pending events correspond to
tokens which are currently delayed, but which are to appear at some time in the future
When the scheduler places a token in a delayed place, the token is timestamped with the
current simulation time The scheduler places a pending event notice on the event queue
for this event, the event time being equal to its timestamp plus the delay period When all
enabled transitions for the current time have been fired, the simulation time is advanced
to the event time of the next pending event (earliest) on the event list This guarantees the
time ordering of events If there are no pending events at this stage then simulation is
complete

A LOOPN source program is translated m two passes into the target language
[Lakos93a] The parser isolates source-specific details and produces an intermediate
clausal form The clausal form is a clausal representation of the LOOPN source program,
essentially a binary tree data structure of clauses The parser uses a special symbol table
in the production of the clausal form It also does syntax-analysis, reporting any errors to
the user

The code generator is template driven in conjunction with the clausal form
Templates or scnpts for modules, places, transitions and types are used to direct the code
generation The templates consist of text, macro-calls and variable references The
template text is produced as source code output, the macro-calls result in clause-specific
code generation functions being called Variable references are replaced by appropriate
values Macros are specified in the template by a dollar ('$'), optionally followed by a flag

40

(,+V*VA7> ') and followed by the macro name For each macro name there is a
corresponding code generation function of the same name, which is invoked, depending
on the macro-flag The flags having meaning as follows

$+ iterate over all components at current level
$* iterate over all components at current and inherited levels, excluding the

first parent
$A iterate over all components at the current level
$> iterate over related components at the current level

The templates are parameterized by including variable references A vanable
reference is flagged in a coding template by enclosing the vanable identifier withm the
brackets '${' *}' In generating code, a variable reference is replaced by the
corresponding value of the vanable, which has been defined in the symbol table The
special code generation functions add vanable definitions to the symbol table

4.43.12 Distributed Implementation in LOOPN
Lakos [Lakos92] has extended the PPO strategy, which was defined for classical

Petri nets, for use with LOOPN nets Reservation requests indicate the specifically
coloured tokens required, furthermore, the ability of a transition to fire depends on any
transition condition present In LOOPN nets, tokens may have defined functions as well
as data values, these functions may be called in the process of evaluating the transition
condition As a result of this the reservation must request one token at a time, and only
when all the tokens are selected will the input condition be evaluated The strategy uses
fixed order reservation order to prevent deadlock, iterating over all possible token
selections for each input place until the input condition is satisfied or no possible
combination satisfies it

4.43.2 Specification of Concurrent Systems (SPECS)
SPECS [Dahler87] is a tool for the construction, animation and implementation of

Petn nets The tool contains centralised and distnbuted simulator components [Butler90],
a transputer network [Fleming88] being the target hardware for the distnbuted
component

SPECS advocates a two stage approach to developing software prototypes of
distnbuted real-time systems First, the system is modelled together with a simulation of
the system environment, and animated to discover errors Then the model is transformed
and simulated on a transputer network, the real environment is connected to the running

41

prototype through dedicated I/O interfaces SPECS automatically generates a
configuration file and OCCAM code for each processor The configuration file specifies
the mapping of processes to processors The distributed prototype execution can be
monitored within SPECS

SPECS uses FunPrE nets [Butler90], an extension of Pr/E nets with finng
functions which consist of conditions and actions, for system modelling FunPrE net
places can hold a maximum of one token only

The implementation strategy is based on the Taubner PPO strategy Control
distribution centres on places, places are the reservation unit, while fixed order
reservation prevents deadlock Transitions reserve their input places, and then calculate
the firing condition based on input tokens If a combination of input tokens has been
selected which satisfies the firing condition, the transition calculates the values of output
tokens and reserves output places If output places are reserved, then token movement is
initiated

The simulator performance depends on how well individual processes are
distributed on processors SPECS uses a net specific configuration tool which employs
simulated annealing techniques to map processes to processors

4.43.3 Concurrent Pascal with Petri Net (CPN)
Hartung [Hartung88I proposes a language for programming multiprocessor

systems which combines Concurrent Pascal with high-level Petn nets (CPN) The
language is implemented on the M5PS multiprocessor system which consists of eight
closely coupled multiprocessor (CCMp) systems built from standard microprocessors
Global memory is used for inter-process communication

The proposed language treats parallelism implicitly, as defined in the net part of a
CPN program The language contains constructs for the textual definition of places and
transitions, together with inscriptions, enabling conditions and transition actions A
special class of common object is used to allow concurrent access to a shared data
structure

The parallel execution of nets described using CPN is based on a PTO strategy
Tokens and places are stored in common global memory, player processes, which are
allocated to processors, execute a parallel and de-central token player strategy The
players can execute any transition they wish, and so transitions do not have to be
statically allocated to processors This flexibility allows the work to be shared evenly
amongst the processors

The player process chooses a transition to fire by a simple round robin method,
and tries to reserve all adjacent places in a pre-defmed order If the reservation fails, then

42

the player process picks another transition If reservation was successful the player tests
the transition enabling condition by using combinations of input tokens If the transition
is enabled by any combination, the player takes all input tokens and reserves space for
output tokens in output places After the transition action has completed firing, output
tokens are entered in output places and all place reservations are released The reservation
strategy used involves trying to reserve all places in a pre-defined order If dunng the
reservation process, a place is found that is already reserved, then all reservations are
released By using a pre-defined order on reservations livelock is prevented By releasing
reservations when a full reservation cannot be made, other processes may reserve places
just released

The strategy can be considered PPO since player processes behave as transitions,
places are the unit of reservation, and reservation is done is a pre-defined order to prevent
deadlock/livelock, though transitions do release reservations if a full reservation on all
adjacent places cannot be made

The problem with the distributed implementation of Petn nets on a multiprocessor
architecture is that the global memory is a bottleneck for large Petn nets The message
passing transputer architecture, which has no global memory, is more suited to the
distnbuted nature of Petn nets

4 43.4 AMI
AMI is a software environment for the specification, validation and

implementation of distnbuted real-time systems modelled using Petn nets AMI consists
of several Petn net analysis tools and two code generators, TAPIOCA [Breant90] and
PN_TAGADA [Kordon90] for OCCAM and Ada code generation respectively

4.43.4.1 TAPIOCA
TAPIOCA [Breant90] generates a distnbuted OCCAM code implementation of

Petn nets specified in the AMI software environment The TAPIOCA application uses an
architecture description of the target hardware, a mapping specification, and the Petri net
model itself, m the production of OCCAM code The application has recently been
extended to allow the distributed implementation of Coloured Petri nets (CP-nets)
[Jensen90]

The code generated by TAPIOCA can be imported into the Transputer
Development System (TDS), and compiled and executed on the transputer network The
code has been executed on a B012 Inmos board [INMOS88] containing five transputers,
connected with a B004 board, and plugged into a PC Default transition stubs, which are

43

called on transition firing, can be manually filled in by the user TAPIOCA also generates
a configuration file which is used to set-up the transputer network

TAPIOCA proposes a three step prototyping method [Breant91], each of which
gathers information needed by the code generator The process is based on using the
results of formal model analysis to decompose the model into an optimised number of
state machines, each of which can be implemented as a sequential process TAPIOCA is
proposed in opposition to implementing each transition as a process, which though
distributed, increases drastically the number of processes and conflicts TAPIOCA cannot
therefore be described using a three letter Taubner code

The first step, the Analysis/Translation step, involves using linear invariants
[Jensen81] found during the model analysis phase to decompose the Petn net into a set of
state machines, linked by synchronous and asynchronous interaction mechanisms The
resultant decomposition is specified as the interaction net The decomposition into a set
of state machines is based on the premise that each place belongs to, at most, one state
machine, and any transition belongs to at least one state machine The use of model
invanants results m a more optimised implementation The asynchronous interaction
mechanism (AIM) models a place which does not belong to any state machine
Synchronous interaction mechanisms (SIM) model multiple rendezvous, and correspond
to a transition shared by many state machines The interaction net descnbes the net
decomposition, nodes represent state machines or buffers, arcs represent interactions The
interaction net serves as the basis for distributed implementation

The second step, the Object Location step, builds a mapping net from the
interaction net by applying a set of rules The mapping takes into account the software
environment, the architecture constraints, and the model structure Each state machine
and buffer becomes an OCCAM process, moreover a supplementary process is generated
for each SIM

The third and final step, the Code Generation step, integrates target language
constraints, generating three types of OCCAM process, state machine processes, data
manager processes, and rendezvous manager processes State machine processes
sequence transition firings Transition firing involves precondition evaluation (input
places), done as a result of communication with data managers and other state machine
processes Once the transition is fired, tokens are sent to postconditions (output places),
this being done by the sending of messages to data managers

44

4 43 42 PN_TAGADA
PN_TAGADA (Petn Net Translation, Analysis and Generation of Ada code)

[Kordon90] uses the same three step approach, as descnbed for TAPIOCA, to generate
automatically a distributed Ada code implementation of a CP-net The method, as above,
is based on using linear invariants to decompose the model into an optimal number of
sequential processes (state machines)

4.43.5 PROTOB
PROTOB [Baldassan91] supports the automatic generation of Pascal, C, Ada, and

OPS5 prototypes from PROT net models of real-time systems [Bruno86] PROT nets are
a type of object-oriented high-level Petn net

The PROTOB translator translates the PROT net model into the target code The
translator generates and compiles a module for each PROT net This module is linked
with the simulator kernel to produce the executable code The translator is able to
produce code according to centralised or distributed implementation strategies, m the
latter case several processes are generated which run on the workstations of a local area
network, the distnbuted implementation code is installed automatically by the translator
according to the system configuration requirements

For the generation of a distnbuted (Ada) implementation, process types are
considered as ordered collections of places of the same type, tokens represent process
instances, tokens range over the places descnbed by the process type The places of a
process type identify process states Process types are represented by a data structure
which identifies process instances, and the place types The presence of a token in a
process place indicates that the process instance is in that state

The translation of PROT nets into Ada program structures involves two steps, the
identification of process types, and the implementation of synchronisation according to
the logic expressed in the net

Process types are identified by performing a depth-first search of the PROT net
The process type places can be scattered throughout the PROT net, places of the same
type may not be contiguous at transitions Processes are cyclic by nature, and are
equivalent to the circuits of the net, a circuit being a directed path where no vertex
appears more than once The strategy builds a process tree from a PROT net which
contains the reduced feasible main circuits of a given process type

Transitions cause process instances to change state When a transition has both an
input place and an output place belonging to the same process type, the corresponding
states of the process are to be synchronised with the states of other processes which

45

participate m the same transition When a transition has only an input place of a given
type, the firing of the transition results m the process bemg suspended A transition with
only an output place of a given process type resumes the execution of a suspended
process when it fires Transitions are implemented as Ada tasks Process instances are
also implemented as tasks, they cycle continually through their states, state change only
occurs after synchronisation by rendezvous with the appropriate transition task

The implementation strategy visualises tokens as active process instances, and so
cannot be described using a Taubner three letter code

4 43 6 PROMPT
PROMPT (PROtocol Manufacturing Prototyping and Testing) [Parker90] is a tool

for the specification and centralised implementation of high-level Petn nets [Lai91]
PROMPT produces C code automatically for a textual net specification wntten m

XNL (extended Net Language) XNL supports modularity, transition folding and data
encoding PROMPT includes tools for model debugging, tracing and trace file analysis

4.5 Summary
This chapter has described Petn nets, in particular LOOPN nets and the LOOPN

code generator LOOPN nets are used to define an execution semantics for ESML withm
the ESML/LOOPN prototyping system The LOOPN code generator is used in the same
prototyping system to generate a C language program from a LOOPN net specification
The chapter has outlined the advantages and disadvantages of classical and high-level
Petn nets It has been noted that though Petn nets are graphical they lack intuition, even
high-level Petri nets are difficult to use However, they are executable, amenable to
formal analysis, and can have computer programs generated automatically to play their
"token games" The chapter has descnbed how distnbuted net implementation strategies
can be classified accordmg to their Taubner code Several code generators, including
SPECS, CPN, AMI, PROTOB, and PROMPT, are discussed The tools which facilitate
distnbuted net implementation are classified according to their Taubner code where
relevant Any of those tools could replace LOOPN as the code generator component m
the ESML/LOOPN prototyping system, e g an execution semantics could be defined for
ESML in terms of CP-nets and the TAPIOCA tool used to produce an OCCAM language
prototype to run on a transputer network (i e the ESML/TAPIOCA prototyping system)
The following chapter defines the ESML/LOOPN prototyping system

46

Chapter 5
The ESML/LOOPN Prototyping System

5.1 Introduction
The previous chapter has described LOOPN nets and the LOOPN code generator.

This chapter defines the ESML/LOOPN prototyping system. The chapter starts with a
survey of related work in the area. It then presents an overview of the prototyping system
before outlining in detail how to produce exploratory prototypes of real-time systems for
use within a keep-it prototyping approach. The prototyping system uses a set of
translation templates to translate non-executable ESML specifications into executable
LOOPN specifications. The translation templates therefore define an execution semantics
for ESML based on the guidelines set down by the ESML execution rules in Chapter 3.
The bulk of the chapter concerns the translation templates, they provide each component
of the ESML language with an LOOPN net equivalent. A step by step guide on how to
apply the translation templates is described.

5 2 Related Work
The ESML/LOOPN prototyping system advocates the translation of non­

executable ESML specifications into executable LOOPN specifications so that ESML
can be used as a graphical executable specification language for the prototyping of real­
time systems.

The combination of less formal languages, such as the RTSA/SD languages, with
more formal languages, such as Petri nets, has gained some attention in the literature
[Blumofe88] [Martin93] [Pulli86a]. At least two separate approaches can be taken. The
first approach consists of associating formal semantics with SA/SD constructs [Tse88].
The second approach has been to translate the SA/SD constructs into more formal
language equivalents [Pulli86b]. The following paragraphs mention some of the work
performed in each of these areas.

France [France92] proposes two types of extended DFDs: control-extended DFDs
(C-DFD); and semantically extended DFDs (ExtDFD). A C-DFD is a DFD supplemented
with a notation for describing control dependencies amongst the DFD elements. An
ExtDFD is a C-DFD with a formal algcbraic semantics. A semi-automatic approach to
generating ExtDFDs is suggested. Martin has proposed a process for the translation of SA

47

specifications into LOTOS specifications, to ease the introduction of LOTOS into the
development process

The most common language used to add formality to SA/SD notations has been
Petn nets They form a natural choice, since the Ward and ESML execution rules have
been specified in terms of Petn net tokens

Lee and Tan [Lee92] have used Petn nets to analyse and validate DFD
specifications Tse and Pong [Tse88] have provided a formal theoretical framework for
DFDs through extended Petn nets, the new diagrams being referred to as Formal Data
Flow Diagrams (FDFDs) FDFDs combine the theoretical power of Petn nets with the
user-fnendliness of DFDs Petri nets have also been used to define an execution
semantics for SDL (the Specification Description Language) [Munemon88] Sacha
[Sacha91] [Sacha92] describes the use of Petn nets for implementing PAISLey
specifications, a number of behaviour preserving transformations that can be applied to
Petn nets are described Auer [Auer88] has developed a tool for the automatic
prototyping of real-time systems modelled using the Ward/Mellor transformation schema
The tool generates PL/M-86 programs, and produces a Petn net equivalent which can be
used for reachability analysis Teamwork/ES (Executable Specification) is an interpreter
which has been developed by Blumofe to support the token-based execution of the
Ward/Mellor transformation schema Brackett and Reilly [Brackett87] have developed an
interpreter which interfaces with Teamwork/ES to allow prototype execution of the
Ward/Mellor transformation schema The tool automatically translates a system model,i
stored in the Teamwork/ES database, into an OPS5 program This program can be
interpreted using the OPS5 inference engine Coomber and Childs [Coomber90] have
developed an interpreter which supports the prototype execution of the Ward
transformation schema It requires mini-specifications to be wntten in Smalltalk Pulli has
developed an automated process for the translation of systems specified using the
Ward/Mellor transformation schema into Smalltalk-inscnbed high-level Petn nets The
resultant Petn net can be interpreted using the SPECS tool, which implements a special
two-level Ward scheduling algonthm This process also requires mini-specifications to be
wntten in Smalltalk Elmstrom [Elmstrom92] is currently devising a similar translation
process which generates high-level Timed Petri nets as its target It requires mini-
specifications to be wntten in VDM-SL, an executable subset of VDM Pinci and Shapiro
[Pinci91] propose a software development methodology based on a combination of SADT
(Structured Analysis and Design Technique) [Marca88] and Hierarchical Coloured Petn
nets (HCP-nets) The system is partially specified in SADT, and translated into HCP-nets

48

for simulation and generation of ML code prototypes The development methodology has
been applied to NORAD Command Post application [Shapiro90]

5.3 The ESML/LOOPN Prototyping System
This section defines the ESML/LOOPN prototyping system An overview of the

system is first presented followed by detailed explanation of how to build exploratory
prototypes using it

5 3.1 Overview
The ESML/LOOPN prototyping system has been defined to facilitate the

construction of exploratory prototypes of real-time systems for use within a keep-it
prototyping approach The approach taken has been to use LOOPN nets to define an
execution semantics for ESML specifications according the guidelines set down by the
ESML execution rules LOOPN nets are used to provide a rigorous interpretation of
ESML language constructs and their combinations LOOPN nets has been chosen for
defining an execution semantics for ESML since there are a high-level object-oriented
Petn net formalism, mirroring the ESML execution rules which have been specified in
terms of Petri net tokens The prototyping system uses ESML as the prototype
specification language The advantages of graphical languages such as ESML are their
intuitive nature and ease of use (Chapter 3) The execution semantics has been defined for
ESML to allow its use as a graphical executable specification language

At the heart of the ESML/LOOPN prototyping lies a template-driven translation
process which is used to translate non-executable ESML specifications into executable
LOOPN specifications The LOOPN tool is used to generate automatically a C language
program from its input net specification, this program runs as the prototype in the target
environment When the translation process (the application of the translation templates) is
automatic the presence of LOOPN is invisible to the user The user is only concerned
with specifying the prototype in ESML, and exercising it in the target environment

LOOPN could be used to define an execution semantics for other non-executable
languages The whole concept is similar to the compilation of different programming
languages into the same underlying machine language Programming language
compilation involves describing programming language constructs in machine language,
here LOOPN nets provide a rigorous interpretation of the ESML constructs according to
the ESML execution rules

49

5.32 The Prototyping Process
The ESML/LOOPN prototyping system consists of three components, languages,

methods and tools The languages used within this prototyping system are ESML and
LOOPN nets The method used is the Ward/Mellor RTSA/SD method, it guides the
ESML specification effort The tools used are TurboCASE1 and LOOPN TurboCASE
supports the construction of ESML specifications LOOPN, as described in Chapter 4, is
a code generator for LOOPN nets

The ESML/LOOPN prototyping system, as depicted in Figure 5 1, provides a step
by step guide on how to build exploratory prototypes of real-time systems The first step
involves manually specifying the prototype m ESML The Ward/Mellor RTSA/SD
method guides the specification effort The prototyping system needs to address the
execution of mini-specifications of primitive flow transformations Mini-specifications
can be implemented in the output token generation section of the LOOPN transitions,
which allow output token values to be specified using LOOPN expressions If the mim-
specification is simple, it can be implemented directly using the LOOPN source
language If the mim-specification is complex, it needs to be coded externally in the
target language (C in this case) as part of the prototype specification effort The external
C function can be then called during evaluation of the LOOPN expressions used in the
transition output token generation section Once the prototype specification is complete,
the non-executable ESML specification needs to be translated into an executable LOOPN
specification The translation is achieved by successively applying a set of translation
templates (section 5 4) to the ESML specification to produce an executable LOOPN net
specification The translation process produces a graphical LOOPN net specification
which currently needs to be specified manually in the LOOPN source language

Once the LOOPN source program is complete, the LOOPN tool is used to
generate automatically the C program which will run as the prototype in the target
environment The LOOPN tool achieves this by first parsing the LOOPN source program
into an intermediate clausal form, and then generating the target code (section 4 4 3 1)
The parsing and code generation phases are automatic The ESML execution rules
specify a random execution order m the case of multiple token placement (section 3 5 5)
Petn net scheduling strategies randomly select the transition to fire from a set of enabled
transitions, a native Petn net scheduling strategy can therefore be used to direct the
execution of the generated prototype This is the case in the ESML/LOOPN prototyping
system, the prototype generated from the LOOPN tool executes the Petn net according to

1 TurboCASE is a trademark of Structsoft Inc

50

a native Petn net scheduling strategy (currently a centralised scheduling strategy (section
4 4 1)) This contrasts with systems such as those of Pulli which require an
implementation of the Ward execution strategy to limit the possible concurrency which
the generated Petn net would exhibit if allowed to execute according to a native Petn net
scheduling strategy

The ESML prototyping system therefore facilitates the use of ESML as a
graphical executable specification language It does not specifically address how the
prototype is to be used within a prototyping approach to software development, though it
has been noted that ESML can only be currently used to build exploratory prototypes of
real-time systems, and that a keep-it prototyping approach is necessary for such systems

5.4 The Translation Process
This section descnbes how to use the translation templates to translate a non­

executable ESML specification into an executable LOOPN net specification
The translation templates (descnbed m sections 5 4 1 to 5 4 4) provide each of the

ESML constructs with a LOOPN net equivalent, i e they model each ESML construct
using a LOOPN net fragment The templates are based on the guidelines set down by the
ESML execution rules The translation process uses LOOPN net modules to partition the
generated LOOPN net specification, every control and flow transformation is specified as
a separate LOOPN net module The modules are connected together to form the overall
LOOPN net specification through their input and output flows Templates are defined for
flows, stores, flow transformations and control transformations The templates are genenc
in nature, i e they descnbe a typical ESML construct and its LOOPN net equivalent
When applying the translation templates the user fills in the actual detail (e g actual flow
names and types m the case of control and flow transformations) To translate a non­
executable ESML specification into an executable LOOPN net specification the user
needs to examine the ESML specification and proceed as follows

Step 1. Identify all flows, determine the flow type (discrete data, signal,
prompt, continuous data) and apply the appropnate translation template This step must
also consider any flow convergence and divergence and the connection of flows to
terminators The templates for this step are descnbed in section 5 4 1

Step 2: Identify all stores, determine the store type (depletable or non-
depletable), and apply the appropnate template The templates for this step are descnbed
m section 5 4 2

S tep 3: Identify all flow transformations, determine the flow
transformation type (l e no input prompt, Tngger input prompt, Activate input prompt),

51

and apply the appropriate template to build the LOOPN net module The templates for
this step are described in section 5 4 3

Figure 5 1 The ESML/LOOPN Prototyping System

52

Step 4 Identify all control transformations, determine the control
transformation type (1 e no input prompt, Activate input prompt, Activate and Pause
input prompts), and apply the appropriate template to build the LOOPN net module The
templates for this step are described in section 5 4 4

The translation templates are graphical in nature, however, for the present the
generated LOOPN net specification needs to be specified textually m the LOOPN source
language The LOOPN net modules for the flow and control transformations of steps 3
and 4 can use parameter places (section 4 3 14) for connecting to their input and output
flows The LOOPN source program also requires two special modules one for declaring
the flow data types, the other is a driver module which specifies the LOOPN net portions
of steps 1 and 2 and connects them with instances of the modules defined by steps 3 and
4 The following paragraphs describe each of the translation templates in turn

5.4.1 Flows
Figure 5 2 shows the translation templates for discrete data flows, signals,

prompts, and continuous data flows
Discrete flows are modelled as a simple place connected to readers and waters by

uni-directional arcs Writing causes the place to be marked, reading causes any token in
the place to be removed For discrete data flows, the place type indicates the data
structure of the flow A token in the place indicates that data is present on the flow For
signal flows, the place type is unstructured ("null") A token m the place indicates an
occurrence of the signal

Prompts are modelled like discrete data flows The token contains a special
attribute labelled "E", "D", "S", "R", or "T" to indicate the actual prompt Places which
implement composite prompts may carry more than one token at a given time To ensure
that tokens are removed in the order they arrive, each place that implements a prompt is
restricted using the special LOOPN "firstQ" function This ensures that prompts
transmitted along a composite prompt are processed in the order they arrive

Continuous data flows are modelled as places connected to readers and writers by
bi-directional arcs A bi-directional arc corresponds to two uni-directional arcs in
opposite directions These places are always marked The place type indicates the data
structure of the continuous flow The place type contains an additional "undefined"
Boolean attribute which determines whether the place contains meaningful data Writing
a value involves changing the token value, and setting the "undefined" attribute to false,
reading involves taking a copy of the token A read can only be performed if the
"undefined" attribute is false The bi-directional arcs ensure that the place remains
marked The ESML execution rules refer to the placement of "tokens" on continuous

53

flows Here, "tokens" refers to net tokens whose "undefined" attribute is false The
"undefined" attribute is of implementation concern only

54

Flows may converge and diverge to represent multiple sources, multiple
destinations, as well as separation and combination of content (as in Figure 3 2) Figures
5 3 and 5 4 show the templates for convergence and divergence of continuous and
discrete flows

55

Continuous Data

o ^ < ° B

B

Discrete Data

a
A

B

dl (x)

00
-O -M

d

B

d2 (x)

O
A

B

dl (y)

(y.z)
B

d2 (z)

Figure 5 4 Templates for Flow Divergence

Special consideration must be given to flows which are to/from terminators
Flows from terminators are represented as places which are marked m the initial marking
If the flow is a data flow, the initial marking must define values for the attributes of these
initial tokens If the flow is a discrete data flow or signal, the places used to model these
flows must be restricted with "delayft)" functions, so that tokens become visible within
the places at different times as execution proceeds This is used to simulate the generation

56

of discrete inputs and signals by terminators Flows to terminators are also modelled as
places, these places are marked by the net as execution proceeds

5.42 Stores
The following paragraphs describe the translation templates for non-depletable

and depletable stores

5.42.1 Non-Depletable Stores
Non-depletable stores are modelled like continuous data flows, as a place, which

is always marked, connected by bi-directional arcs to readers and writers The place type
determines the structure of the data stored This type defines an additional "empty"
attribute which is set to true in the initial marking Reading can only be performed if the
"empty" attribute is not true The execution rules refer to the placement of "tokens'* on
non-depletable stores, here a non-depletable cames a "token" if its place carries a token
whose "empty" attribute is false

Figure 5 5 shows the template for a non-depletable store connected to a reader and
writer A reader takes a copy of the store value, a writer modifies the store value A non-
depletable store must balance in terms of net inputs and outputs, and can only be attached
to transformations by discrete data flows

5.42.2 Depletable Stores

The contents of a depletable store are consumed on being read Depletable stores
are therefore modelled like discrete data flows as a place which may contain multiple
tokens The place type determines the structure of the individual data items stored
Tokens are added and removed as writes and reads are made Readers and waters are
attached by uni-directional arcs

57

Figure 5 6 shows the template for a depletable store connected to a reader and
writer A special"Tally" place is used to define the store capacity It stores a token which
has a special "cnt" attribute which tallies the number of tokens in the store place "S" The
"cnt" attribute is set to zero in the initial marking Writers to the store can only do so if
the number of tokens will not exceed the store capacity Readers and waters are
responsible for maintaining the "cnt" attribute of the token stored in "Tally"

The way in which readers access the depletable store indicates whether it is
ordered as a queue or a stack, this being done using special functions for selection of the
first (FIFO) or last token (LIFO) in the place based on when the tokens were added to the
place An infinite capacity depletable store would be implemented as in the finite case,
but the "Tally" place would be omitted A non-depletable store must balance in terms of
net mputs and outputs, and can only be attached to transformations by discrete data flows

5.43 Flow Transformations
Flow transformations convert discrete and continuous mputs into discrete and

continuous outputs If the transformation is primitive, this operation is described using a
mini-specification The mim-specification is implemented using the functions which can

58

be applied within LOOPN transitions to generate output tokens, which may include a call
to an external C function

Since the ESML specification is of a prototype, the translation process must deal
with the implementation of non-primitive flow transformations Transitions which
implement non-pnmitive flow transformations generate output tokens which are copies of
input tokens, or which contain dummy values

The format of the translation templates for a flow transformation depends on
whether the input and outputs are continuous, discrete, or both Discrete outputs can be
delayed A flow transformation can have no input prompt, an Activate input prompt, or a
Trigger input prompt

5.43*1 Flow Transformation with no Input Prompt

Figure 5 7 Template for Flow Transformation with no Input Prompt, Mixed Input and
Output

Figure 5 7 shows the template for a flow transformation which has no input
prompts, but has mixed discrete/continuous input and output The transition "Tn must
check that the continuous input "C/n" is defined This is done in the input token selection
section of T " The "Status" place visualises the interaction between the transition and
input flows The execution rules refer to flow transformations carrying tokens A flow
transformation carries a token if the "Status" place cames a token If the transformation is
primitive then the output token generation section of the "T" specifies expressions for
output tokens, this must also set the 11 undefined11 attribute for any continuous outputs to

59

false regardless of whether the transformation is primitive or not Continuous inputs are
accessed via bi-directional arcs Discrete inputs are accessed by um-directional arcs

Figure 5 8 Template for Flow Transformation with no Input Prompt, Continuous Input,
Mixed Output

Figure 5 8 shows the template for a flow transformation which has no input
prompts, but has continuous input and mixed discrete/continuous output This template is
similar to the one in Figure 5 7, but the transition 'T" only fires when the continuous
input has changed This is achieved by storing the last value of the continuous input in a
new place,"CInOld", and comparing it with the current input to determine whether T "
should fire The "CInOld" place is of the same place type as the actual input, "C/n", and
is marked initially with "undefined" set to true

Figure 5 9 shows the template for a flow transformation which has no input
prompts, but has mixed input and output, where the discrete output is delayed The delay
penod is determined from the mini-specification It only makes sense to delay discrete
outputs The "7*" transition fires when discrete input and defined continuous input are
available Continuous output, "COut", is produced immediately The discrete output is
placed in the place "Delay", and place "Delayed" is marked to indicate that the discrete
output is currently being delayed The "Delay" place has attached a place restriction
which uses the LOOPN "delay(t)" function to delay any tokens which arrive m it by t
time units, where t is the delay penod The "Status" place is unmarked dunng the delay
penod The "Eat" transition removes any discrete input that arrives dunng the delay
penod When the delay penod has elapsed, the discrete output becomes visible, the "Out"

transition fires making the discrete output available in "DOut" ," Status" is marked and
"Delayed" is unmarked

60

Delayed Status () DOut

T
input ci undefined = false
output ci undefined = false

Figure 5 9 Template for Flow Transformation with no Input Prompt, Mixed Input,
Continuous Output, Delayed Discrete Output

5.43.2 Flow Transformation with Trigger Input Prompt

Figure 5 10 shows the template for a flow transformation with Tngger input
prompt Such a flow transformation may only have continuous input flows and discrete
outputs The place which stores the Tngger prompt allows the transition to fire when it
has a token As before, the input token selection section of 'T" must check the
"undefined" attnbutes of any continuous inputs

Figure 5 10 Template for Flow Transformation with Tngger Input prompt

61

5.43,3 Flow Transformation with an Activate (E/D) Input Prompt

T
input ci undefined = false AND ci o cinold
output co undefined = false

Disable
output co undefined = true AND ci undefined = true

Figure 5 11 Template for Flow Transformation with Activate Input Prompt

Figure 5 11 shows the template for a flow transformation with Activate input
prompt The "Status" place indicates whether the transformation is activated ("#act") or
deactivated ("Meact"), as a result of receipt of an Enable or Disable prompt The
transformation is initially deactivated The transition "T" can only fire if the
transformation is active

If there are only continuous inputs (as in the template), then to prevent the
continual firing of the transition, the "CInOld" place is used as before Any discrete
inputs which arrive while the transformation is deactivated must be removed without
effect

When the transformation is deactivated, the "undefined" attnbute of all continuous
outputs is set to true, this indicates that the transformation is not controlling the value of

62

its continuous outputs This is achieved by the ”Disable" transition, which also undefines
any value stored in "CInOld" As before, if the transformation is primitive, the transition
output token generation section implements the mini-specification

Figure 5 12 Template for Flow Transformation with Activate Input Prompt, Discrete
Input, Delayed Discrete Output

Figure 5 12 shows the template for a flow transformation with an Activate input
prompt which delays its discrete output The template is a combmation of Figures 5 9 and
5 11 The "E atl" transition eats any discrete input that arrives during the delay period
"Eat2" eats any discrete input that arrives while the transformation is deactivated The
"Enablejeat" transition eats any Enable prompts that arrive during the delay period The
"Disable2" transition is responsible for deactivating the transformation dunng the delay
period, it marks the "Kill" place which enables the "Killer" transition which discards the
discrete output before it is made available to the environment

5.4.4 Control Transformations
Control transformations implement the control logic of the ESML model and are

described using STDs, the graphical representation of FSMs A control transformation
can have no input prompt, an Activate input prompt, or matching Activate and Pause

63

input prompts It is invalid for a control transformation to have a lone Pause input
prompt, there must be a matching Activate input

5.4.4.1 Control Transformation with no Input Prompt
Figure 5 13 shows a translation template for a control transformation with no

input prompt The LOOPN net template implements the control structure of a genenc
control transformation with no input prompt

Figure 5 13 Template for Control Transformation with no Input Prompt

The current state of the FSM is stored as an attribute within the "State" place The
"State" place is initially marked as "Meact" (deactivated) The "State" place is the key to
the operation of the template Its content changes as transitions fire The execution rules
refer to control transformations carrying tokens A control transformation carries a token

64

if the "Status" place carries a token. The token in the "Status" place is associated with the
current state of the FSM.

The "Init" place is initially marked and is used to fire the "In it j" transition, which
corresponds to the initial transition of the state machine. The initial transition sets up the
initial state and optionally produces output. In the template the "Init_t" transition sets up
the initial machine state (#init), and generates an output signal "SIOut". State transitions
fire on receipt on input signals, or when a continuous input fulfils a Boolean expression.
The firing of the transition causes a state change and the optional generation of output.
The output may include the sending of prompts to other transformations. The arrival of
unexpected signals does not effect FSM operation, and are removed by special "Eat"
transitions.

The template shows a STD with two state changing transitions, "Tl" and "T2".
"Tl" fires if the FSM is in the initial state (#init) and signal "Sin" arrives, and causes the
FSM to change to a new state (#statel), and produce an output signal "S20ut". The "Eat"
transition removes signal "Sin" if it arrives during any state other than the initial state.
"T2" fires if the state is "#statel", and if the continuous input "CIn" satisfies a Boolean
expression, and causes the state machine to change to the initial state again, and set the
value of the continuous output "COut". Input continuous flows can only be read if their
"undefined" attributes are false. Boolean conditions on input condition flows are tested in
the input token selection section of the LOOPN transition. On writing continuous outputs,
the "undefined" attribute is set to false.

5.4.4.2 Control Transformation with an Activate (E/D) Input Prompt
Figure 5.14 shows the template for a control transformation with an Activate input

prompt. The template is an extension of Figure 5.13 to cope with the prompt.
The FSM is initially deactivated ("Meact"). On receipt of an Enable prompt along

the Activate flow, the "Enable" transition fires and places the FSM in the initial state
("ifinit"). The template does not show any initial actions. Any such actions would be
hooked up as output of the "Enable" transition. The "Eatl" transition removes spurious
Enable prompts that may arrive while the state machine is enabled. The "Disable"
transition fires on receipt of a Disable prompt along the Activate flow. It deactivates the
state machine, which cannot respond to inputs until it becomes enabled again. The
execution rules require that a control transformation, on receipt of a Disable prompt,
should propagate on the Disable prompt to any further transformations that it activates.
This would be achieved by producing the Disable prompts as outputs of the ”Disable"
transition.

65

A Sin

(#statel) SOut
State (#deact)

Eat 1
input s o #deact

Eat 2
input s o #imt

Figure 5 14 Template Control Transformation with Activate Input Prompt

The template shows one simple state changing transition "77", which causes a
state change on receipt of an "Sin" signal, and produces the output signal "SOut" The
signal "Sin" is eaten if it arrives unexpectedly If a state changing transition produces
continuous output, the "undefined" attribute of this output must be set to true when the
FSM is deactivated This is to indicate that the FSM is not controlling the values of its
continuous outputs, and is achieved by the "Disable" transition

5.4.43 Control Transformations with Activate (E/D) and Pause (S/R) Input Prompts
Figure 5 15 shows the template for a control transformation with matching

Activate and Pause input prompts The template is an extension of the Figure 5 14 to cope
with the Suspend and Resume prompts

The FSM is initially deactivated ("#deact") The "Enable" and "Enable_eat"
activate the FSM and remove spunous Enable prompts If the FSM is not suspended, the
"DisableI" transition fires on receipt of a Disable prompt

66

Figure 5.15 Template for Control Transformation with matching Activate and Pause
Input Prompts

67

The "Suspend_eat" transition removes Suspend prompts from input if the FSM is
already suspended or deactivated On receipt of a Suspend prompt, if the FSM is not
suspended or deactivated, the "Suspend" transition fires, saves the current state in the
"Remember" place, updates the state to "tfsuspend", and propagates the Suspend prompt
onto any transformations that are paused by this transformation, but also activated by this
transformation, as defined in the execution rules The place labelled "PI n" is used to
represent these transformations

The "Disable2" transition is used to disable the transformation when it is
suspended When it fires, it empties the "Remember" place, and propagates the Disable
prompt onto any transformations activated by this transformation These transformations
are represented by the place labelled "A1 n" The "Disable7" transition also propagates
the Disable prompt onto these transformations Note that the template shows several
places of the same name, these are in fact the same place, they have been duplicated only
as a drawing convenience The template also omits any state changing transitions for
simplicity

The "Resume" transition is responsible for resuming a suspended transition It
fires if the FSM receives a Resume prompt while suspended The "Resume" transition
restores the transformation state to that stored in the "Remember" place, and propagates
the Resume prompt onto any transformations paused by this transformation that are also
activated by this transformation ("PI n") The "Resume_eat" transition removes Resume
prompts that amve while the FSM is not suspended

5.5 Summary

This chapter has defined the ESML prototyping system and has presented the
translation templates used to translate non-executable ESML specifications into
executable LOOPN specifications, so defining an execution semantics for ESML
according to the ESML execution rules The prototyping system facilitates the use of
ESML as a graphical executable specification language for constructing prototypes for
use within a keep-it prototyping approach The translation templates model the ESML
language constructs using LOOPN net fragments The translation templates concern the
vanous flow types, stores, flow transformations and control transformations Stores are
further refined by type (non-depletable/depletable) Flow transformations are further
refined by the type of input prompt (1 e no input prompt, Trigger input prompt, Activate
input prompt) Control transformations are refined similarly by input prompt type (1 e no
input prompt, Activate input prompt, matching Activate and Pause input prompt) The
following chapter applies the prototyping system to the case study, the APU fuel
subsystem

68

Chapter 6
The APU Fuel Subsystem Case Study

I

6.1 Introduction
The previous chapter has defined the ESML/LOOPN prototyping system This

chapter describes the chosen case study, 1 e the APU (Auxiliary Power Unit) Fuel
Subsystem, and uses the ESML/LOOPN prototyping system to generate an exploratory
prototype of it The chapter starts with a general description of the APU, followed by a
detailed description of the Fuel Subsystem The chapter then describes the specification
of the prototype of the case study in ESML, the Ward/Mellor RTS A/S D method having
guided the specification effort The chapter then describes an equivalent specification of
the prototype m STATEMATE (using the Activity-chart and Statecharts languages) This
results in a companson of ESML with the languages of STATEMATE The chapter then
describes the application of the translation templates and shows the executable LOOPN
specification which is produced The chapter closes with a description of the prototype
execution output

62 The Auxiliary Power Unit (APU)
The case study is a subsystem of a typical real-time system, the Auxiliary Power

Unit (APU), an avionic system used on the Boemg-737 airplane series The APU is an
avionic system used for the production of electrical power for the airplane electrical
system, and for the production of compressed air for engine starting and air conditioning
The bulk of the APU itself is located under the main tail section It interfaces with
components located in the flight compartment, electronic equipment compartment, main
wheel well, and aft cargo compartment The APU consists of several subsystems, the
APU engine, a start subsystem, an air intake subsystem, an accessory cooling and bleed
subsystem, an oil subsystem, and a fuel subsystem

The APU engine is a gas-turbine engine consisting of a two-stage centrifugal
compressor directly coupled to a single-stage radial inflow turbine The turbine shaft is
geared to the accessory drive section and provides power for driving the engine
accessories and the generator The generator supplies power to the airplane electrical
system

The Start Subsystem (SS) consists of a starter motor, which is responsible for
rotating the APU engine to starting speed, and an igniter and spark plug, which are

69

responsible for igniting the fuel/air mix in the combustion chamber A special 90 second
timeout operates to cut power from the starter and ignition circuits in case of malfunction

The Air Intake Subsystem (AIS) consists of an inlet door for air inflow from the
atmosphere The incoming airflow is split into two flows, one for the engine compressor,
the other for accessory cooling Used cooling air is exhausted overboard through a hole in
the titanium shroud which encloses the APU This shroud provides a fireproof sound
reducing enclosure

The Accessory Cooling and Bleed Subsystem (ACBS) fans the accessories with
cool air and regulates the bleeding of air from the engine It consists of pneumatic,
mechanical and electronic components, which function automatically to regulate the rate
and maximum amount of bleed air that can be drawn from the APU, so as not to exceed
the APU operational limits Bleed air is supplied from the APU engine to the airplane
pneumatic system through a bleed air valve A fan driven by the accessory drive
circulates cooling air to the electnc generator, lubricating oil cooler and engine
accessories A surge bleed valve prevents compressor surge during APU operation in­
flight

The Oil Subsystem (OS) lubricates the APU engme bearings and gearbox with a
supply of pressurised oil from a pump The oil is then scavenged and passed though a
cooler and filter and returned to the oil tank

6.2.1 The APU Fuel Subsystem

The APU Fuel Subsystem delivers fuel from the airplane fuel tank no 1 to the
combustion chamber of the APU engine The subsystem consists of a fuel control valve,
fuel solenoid valve, pump, filter, heater, fuel control unit, and bypass valves Figure 6 1
presents a block diagram description of the subsystem

The boost pump and control valve are located in the left mam wheel well The
remaining components are located in the APU engine and in the upper shroud The APU
Fuel Subsystem interfaces with the P5 overhead cockpit panel, the airplane fuel tank no
1, the AIS, the engine speed detection switch, the ACBS, the APU engine, the
atmosphere, and the OS

The APU fuel control valve, also known as the APU fuel shutojf valve, allows fuel
supply from fuel tank no 1 to the APU engme When the APU switch, located on cockpit
panel P5, is placed in the On position, the valve opens allowing fuel to flow The valve
signals the AIS to open the air inlet door so as to allow inlet airflow for engine turbine
operation When the APU switch is placed in the Off position, the valve closes and
signals the inlet door to close

70

The fuel solenoid valve (FSV) allows fuel flow to the engine combustion after
initial rotation of the APU The valve is controlled by the sequencing oil pressure switch
and the APU switch The valve opens when the sequencing oil pressure switch closes as a
result of adequate oil pressure, activating the fuel control unit The valve closes when the
APU switch is placed in the Off position

The boost pump is used during engine starting for providmg pressunsed fuel It is
controlled by the fuel control valve and fuel tank no 1 switches If the APU switch is in
the On position and the fuel tank no 1 switch is in the Off position, the boost pump is
activated When the speed switch detects 95% engine rpm during the start cycle, the boost
pump is deactivated, and the pump bypass operates Fuel flow from the pump and bypass
is passed through a cleaning filter

The fuel heater is used to prevent the fuel becoming frozen It is controlled by the
fuel control valve and a temperature sensor When the fuel temperature drops to 37° F,
the heater is activated It uses hot bleed air from the accessory cooling and bleed system
to heat the fuel, the resultant air is exhausted into the atmosphere When fuel temperature
increases to 64° F, the heater is deactivated A bypass operates when the heater is
deactivated

71

The fuel control unit (FCU) is used to regulate fuel flow to the engine combustion
chamber during starting and normal operation. The regulated fuel flow controls the
acceleration of the engine during the starting operation. The FCU is controlled by the fuel
solenoid valve. The FCU regulates the fuel flow to maintain a near constant speed and a
safe operating temperature of the unit.

Airplane maintenance personnel required a software simulation of the APU Fuel
Subsystem which could be used for training and fault diagnosis. The problem was that the
exact requirements for the proposed system were not known and that developers were
unsure on how to simulate physical system components. The ESML/LOOPN prototyping
system has been used to construct an exploratory prototype of the case study. The
prototype is to be evolved into the production system as part of a keep-it prototyping
approach.

6.3 Prototype Specification in ESML
The ESML/LOOPN prototyping system first requires that the prototype be

specified manually in ESML. The Ward/Mellor RTSA/SD guides the specification effort.
A Behavioural Model specification of the case study has been built using TurboCASE.
The ESML specification, depicted in Figure 6.2, has been constructed by identifying the
objects in the problem domain, and partitioning the model on that basis. A context
schema and event list have been used as the basis for constructing the Behavioural
Model. The specification is that of a diagonal prototype, all functions have been
included, but they have been described in varying amounts of detail.

The Behavioural Model consists of four control transformations, six flow
transformations, and eight terminators. The mini-specifications of primitive
transformations are simple, not requiring external specification as C functions.

All data flows within the model are continuous, reflecting the physical nature of
the system. Fuel is modelled as a composite continuous data flow consisting of pressure,
temperature and filtered components. The pressure and temperature components are
floating point values, the filtered component is a Boolean data item. Air is a similar
composite flow, but omits the filtered component.

The fuel control valve controls the boost pump and heat controllers, which in turn
activate the pump, heater and bypasses. The STD for the fuel control valve is shown in
Figure 6.3. The valve opens on receipt of an APU_On signal from the cockpit Panel_P5.
On opening, the valve signals the AIS to open the air inlet door, and enables the boost
pump and heat control transformations. The valve closes on receipt of an APU_Off

72

signal, and signals the air inlet door to close and disables the boost pump and heat control
transformations

The STD for the boost pump control, which provides pressurised fuel during
engine starting, is shown in Figure 6 4 It disables the fuel pump and enables the pump
bypass on its initial transition, which happens once the transformation is enabled On
receipt of a Tankl_Off signal from Panel_P5, the pump is enabled and bypass disabled
Once the engine reaches 95% rpm, which is sensed by the speed switch, the pump is
disabled and bypass enabled again

The STD for the heat control is shown in Figure 6 5 The heat control disables the
heater and enables the heater bypass initially The fuel temperature is an input to the
heater control transformation which determines when the heater should operate If the
temperature falls below 37° F, the heater is enabled and the bypass is disabled If the
temperature rises above 64° F, the heater is disabled and the bypass is enabled

The FSV works independently of the other control transformations, its STD is
shown m Figure 6 6 When the sequencing oil pressure switch closes, the fuel control unit
is enabled When the APU is switched off, the unit is disabled

The pump transformation is a primitive flow transformation which increases the
pressure component of the input fuel composite flow The pump bypass simply copies its
input to output The filter transformation is a primitive flow transformation which sets the
filtered component of the continuous fuel to true The heat transformation is a non-
pnmitive flow transformation which uses hot bleed air to heat incoming fuel, and expels
the resultant air to the atmosphere The heat bypass copies its input to output The FCU is
a non-pnmitive data transformation which regulates fuel flow to the engine based on a
control air input

73

Figure 6 2 APU Fuel Subsystem Behavioural Model

74

I APUOn
O Open Door
0 <E> Boost Pump Control
0 <E> Heat Control

I APU Dff
0 Close Door
0 <D> Boost Pump Control
0 <D> Heat Control

Figure 6 3 STD for Fuel Control Valve

O <D> Pump
O <E> Pump Bypass

>1
O ff

I Tank! Off
O <E> Pump
O <D> Pump Bypass

! Rpm 95
O’ <D> Pump
O <E> Pump Bypass

On

Figure 6 4 STD for Boost Pump Control

75

0 <D> Heat
0 <E> Heat Bypass

i
Off

I (temperature<= 37)
0 <E> Heat
0 <D> Heat Bypass

On

I (temperature>= 64)
0 <D> Heat
0 <E> Heat Bypass

Figure 6 5 STD for Heat Control

Closed

I Seq Oil Closed
0 <E> FCU

I APU Off
0 <D> FCU

Open

Figure 6 6 STD for Fuel Solenoid Valve

76

V

6 A Prototype Specification ui STATEMATE
For comparison purposes a prototype of the case study has been specified in

STATEMATE using the Activity-chart and Statechart languages
Figure 6 7 shows the Activity-chart for the APU Fuel Subsystem The chart has

been built using the STATEMATE graphical editors It consists of one control activity,
four activities, and eight external activities The box-is-chart operator (@) has been used
to structure the chart Unlike the ESML specification, all data flows within the model are
discrete approximations of real-world quantities, such as fuel and air The data item
definitions are as in the ESML specification

The control activity, FUELjCONTROL, is described by the Statechart of Figure
6 8 It uses AND-lines to model the concurrent operation of the fuel shutoff and solenoid
valves, which have been modelled separately in the ESML specification

The fuel shutoff valve is initially closed, but opens on receipt of an APU_On
signal from Panel_P5, and activates the Pump, Heat and Filter activities This activation
is defined in the forms dictionary, a "throughout" relationship exists between the Open
state of the shutoff valve and the Pump, Heat and Filter activities In opening, the fuel
shutoff valve generates the Open_Door event which is sent to the AIS The valve closes
on receipt of an APU_Off signal, deactivates its activities and sends a Close„Door signal
to the AIS The fuel solenoid valve works similarly, its Open state has a "throughout"
relation on the FCU activity

The Filter activity is a basic activity which sets the filtered component of the fuel
data item to true The FCU activity is an activity which has not been further descnbed, it
is non-basic

The BP Activity-chart, which details the Pump activity, is shown m Figure 6 9 It
consists of two basic activities, a Pump_F which mcreases the pressure component of the
fuel data item, and a Bypass_F which duplicates its input to output The control activity
BPC is descnbed using the Statechart shown in Figure 6 10 While in the Off state it
keeps the Bypass_F activity active (via a "throughout" relation in the forms dictionary),
while in the On state, the Pump is active, the Bypass_F is no longer active

The FH Activity-chart, which details the Heat activity, is shown in Figure 6 11,
and is very similar to the Activity-chart of Figure 6 9 The control activity FHC is
descnbed by the Statechart in Figure 612 FHC changes states by testing the value of the
temperature component of the input fuel flow, and activates the bypass if the temperature
is normal (>= 64° F), but activates the heater if the fuel temperature is too low (<= 37°

F)

77

Figuro 6 7 Activity'chart Cor th® APU Fuel Subsystem

Figure 6 8 Statechart for FUEL_CONTROL

FUEL_SHUTOFF__VALVE

FUEL SOLENOID VALVE

J

Figure 6 9 Activity-chart for BP

+ | FILTER

L___

Figure 6 10 Statechart for BPC

B PC

ON

J

Figure 6 11 Activity-chart for FH

Figure 6 12 Statechart for FHC

r

V
[T E M P>~ 64]

 \
FHC

65 Comparing ESM L with STATEMATE
This section compares and contrasts ESML with the languages of STATEMATE

by considenng the prototype specifications of the case study
The ESML transformation schema and Activity-charts of STATEMATE have

been used to describe the system from a functional viewpoint Activities m Activity-
charts correspond to flow transformations in ESML, both represent the functional entities
of systems Control activities in Activity-charts correspond to control transformations in
ESML, both represent the control logic of systems There are some notations in the
ESML transformation schema which do not have equivalents in Activity-charts Activity-
charts do not include a notation for modelling continuous data flows, 1 e flows whose
content is defined at every point in time In the STATEMATE version of the case study,
fuel and air, though real-world quantities, had to be approximated using discrete data
flows Activity-charts also have no notation for modelling depletable data stores, 1 e
stores whose contents are consumed on being read

ESML allows a transformation schema to contain several control transformations,
so reflecting the distributed control nature of the system In the ESML version of the case
study, the fuel control valve and fuel solenoid valve, which are modelled using control
transformations, execute concurrently according to the ESML execution rules In
Activity-charts only one control activity can exist per level The FUEL_CONTROL
control activity uses AND-lines to describe the concurrent operation of its orthogonal
components, the fuel control (shutoff) and solenoid valves By allowing multiple control
activities per level, each descnbed using separate Statecharts, AND decomposition of
states, which has complicated the Statechart semantics, would be redundant

There is an equivalence between the types of control that can be exerted in
STATEMATE and ESML, start, stop, suspend and resume corresponding to enable,

*

disable, suspend and resume respectively Simple inspection of an ESML transformation
schema reveals the types of control exerted by control transformations on flow
transformations It is clear that the fuel solenoid valve can enable and disable the FCU,
but cannot suspend or resume it In the STATEMATE version we cannot determine by
inspection the type of control exerted by control activities on the activities By looking at
the activity chart it cannot be determined if the FCU is suspended and resumed by some
component within the control activity Activity charts have no graphical representation of
control imposed, which would be equivalent to the prompts of ESML

The use of static reactions, and "within" and 11 throughout” relationships, detracts
from STATEMATE model visibility These relationships are specified m the forms
dictionary, and have no graphical representation

84

From the above discussion it is clear that the ESML transformation schema are a
better language for describing system functionality than the Activity-charts of
STATEMATE The former provides a more comprehensive set of modelling
components, offering better model visualisation

The STDs of ESML and the Statecharts of ESML have been used to descnbe the
control logic of systems The STDs used within ESML are an extension of the STD used
in the Ward transformation schema to include prompts and the testing of continuous
inputs They provide a set of intuitive constructs for modelling the reactive behaviour of
systems, and provide excellent model visualisation

Statecharts are an extension of STDs to facilitate the modelling of complex
reactive behaviour, and provide a richer set of modelling components than STDs
Statecharts are therefore a superior language to STDs Statecharts allow the hierarchical
decomposition of states, no such facility exits in STDs The transition labelling syntax of
Statecharts provides much flexibility However transitions, which move across state
boundaries, lower model clarity

STATEMATE lacks a well accepted development method for its languages Israel
Aircraft Industries have developed a specialised analysis method; ECS AM (Embedded
Computer Systems Analysis Method) [Wmokur89] [Winokur90] for use on a special
project, an electro-optical embedded computer system designed for operation on
helicopter platforms ECS AM is a specialist analysis method, and not suited to general
real-time systems development, indeed STATEMATE does not support ECSAM in full
ESML does not suffer any such problem, the Ward/Mellor RTSA/SD method is a widely
accepted method which can guide its use

A disadvantage of ESML is that the only way time can be modelled is by the use
of fixed time delays for flow transformations Statecharts provide more comprehensive
constructs for modelling time, timeout events and scheduled actions

6.6 Translating the ESM L specification into a LOOPN net specification
This section follows the translation process described in section 5 4 to generate an

executable LOOPN specification from a non-executable ESML specification of the APU
Fuel Subsystem case study

85

Figure 613 Top-level LOOPN net equivalent of the APU Fuel Subsystem

86

Step 1 requires the identification of flow types and the application of the
templates shown in Figure 5 2 This step also requires the user to consider
convergence/divergence of flows and the connection of flows to terminators The
LOOPN net produced by this step is shown in Figure 6 13, it depicts all transformations
as super-transitions (to be further refined as in steps 3 and 4) Figure 6 13 is "top-level”
since it describes the overall connection of flows and transformations

Figure 613 contains continuous data flows, prompts and signals An example of a
continuous data flow is "Fuel_l", a place that holds tokens of type "fueltype", each token
contains 11filtered" ," temperature" and "pressure" attributes An example prompt is "A7",
a place which holds tokens of type "prompttype", each token contains an "E", "D \ "S",
hr" or ityt* exampie signal is "Open_Door'\ the place is unstructured ("null")

The three places "APUjOn", "APU_Ojf' and "TankljO ff' model interaction with
the "P an el_P 5" terminator These correspond to the three flows that connect the
terminator to the system The places which represent these three flows are delayed so that
their tokens become visible as execution proceeds Another example of a terminator is
"F u e lja n k l", which is modelled by one place, "Fuel_7", which is marked in the initial
marking, with the "filtered" attribute set to false, the "temperature" attribute set to 1 0 , the
"pressure” attribute set to 0 , and the undefined attribute set to false

The templates shown in Figure 5 4 has been used to generate a LOOPN net to
model the divergence of the "APU _O ff signal flow Since there are no stores in the
ESML specification, step 2 is skipped

6,6*1 Special Modules
The translation process has described the need for two special modules They are

described m the following paragraphs

6*6.1 *1 Types Module
The Types module is a special module used to define the place types used within

the LOOPN net model It defines the type of prompts ("prompttype"), and types for fuel
('fueltype") and air ("airtype") continuous flows Fuel contains "filtered" ," temperature",
and "pressure" attributes Air contains ju st"temperature" and "pressure" components

The Types module uses token type inheritance to include the " undefined" attribute
in the type definition of continuous flows The Types module is inherited by all other
modules within the system so that the type definitions can be used The LOOPN source
program for the Types module is shown in Appendix A

87

6 .6 .1 . 2 APU Module
The APU module is the main dnver module for the prototype It defines places for

signals, continuous flows, and prompts, and links instances of modules It defines the
time delays to be associated with signals from terminators, and the initial values of
continuous flows The initial marking is set-up by the special "initial" transition The
"diverge" transition is defined to create a duplicate of the "APUjOn" signal The module
instances are created by filling in actual places for module parameter places The APU
module specifies the top-level LOOPN net of Figure 6 13 The LOOPN source program
for the APU module is shown m Appendix A

6.6.2 Flow Transformations
Step 3 specifies the identification of flow transformation types and the application

of the appropriate template The following paragraphs describe each flow transformation
and the LOOPN net modules generated

6 62 1 Pump

Fuel_l

F l.O ld
(undefined = true)

(#act)

(#act)

(fA)
Fuel A

(fA)

(# d e a c t) ^ \ status (#deact)

(fA)

Pump_f
input f 1 undefined = false AND f l o flo ld
output fA temperature = f l temperature

fA pressure = f l pressure + 5
fA filtered = f 1 filtered
fA undefined = false

Disable
output f l undefined = true AND fA undefined = true

Figure 6 14 LOOPN net module for Pump

88

)

The fuel pump is responsible for supplying pressurised fuel to the APU engine It
is a primitive flow transformation with an Activate input prompt, "A4'\ from the boost
pump controller, one continuous input, "Fuel_l" , and one continuous output,"Fuel_A"

The "Pum pJ11 transition implements the pump mim-specification It increases the
"pressure" attribute of the incoming fuel flow by 5 units This is implemented m the
output token generation section of the transition

The translation is achieved by considering the template of Figure 5 11 The
LOOPN net module is shown m Figure 614, its LOOPN source language specification is
shown in Appendix A

6.622 Pump Bypass
The pump bypass is responsible for conveying fuel from its input to the fuel filter

It is a primitive flow transformation with an Activate input prompt, "A3", from the boost
pump controller, one continuous input,"Fuel_V\ and one continuous output, "Fuel_A"
The "Bypass J " transition simply duplicates its input at the output stage

Bypass_f
input fl undefined = false AND fl o flold

Disable
output fl undefined = true AND fA undefined = true

Figure 615 LOOPN net module for Pump Bypass

89

6 62.3 Filter
The filter is responsible for filtering fuel passing through it It is a primitive flow

transformation with no input prompt, one continuous input, "Fuel_A", and one continuous
output, "Fuel_B" The "B ypassJ" transition sets the "filtered" attribute of the outgoing
fuel to true

The translation is achieved by considering the template of Figure 5 11 The

LOOPN net module is shown m Figure 6 15, its LOOPN source language specification is

shown in Appendix A

Fuel A Filter_f -<(rï' 1 '1 — F l l e ' 1 R

(fa) > Ji (fb)
(faOld) (S)

ç f w ; <»>

FA_01d CJ

StatusQ

Filter_f
input fa undefined = false AND fa o faOld
output fb filtered = true AND

fb temp = fa temp AND
fb pressure = fa pressure AND
fb undefined = false

Figure 6 16 LOOPN net module for Filter

The translation is achieved by considering the template of Figure 5 8 The
LOOPN net module is shown in Figure 6 16, its LOOPN source language specification is
shown m Appendix A

6.62 4 Heat

The heater is responsible for heating fuel passing through it It is a non-pnmitive
flow transformation with an Activate input prompt, "A 6'\ two continuous inputs,
"Fuel_B" and "Hot_bleed_air_2", and two continuous outputs,"Air", and "FueljC" The
heater uses the hot bleed air to heat incoming fuel, and expels the resultant air into the

90

atmosphere The transformation has not been refined to a primitive level, and is therefore
not described using a mim-specification

The "H e atJ 11 transition, since it implements a non-pnmitive transformation, just
its defines its continuous outputs, and does not consider the other token attributes

The translation is achieved by considenng the template of Figure 5 11 The
LOOPN net module is shown in Figure 6 17, its LOOPN source language specification is
shown in Appendix A

Figure 6 17 LOOPN net module for Heat

91

6.62.5 Heat Bypass
The heat bypass is responsible for conveying fuel from its input to the FCU. It is a

primitive flow transformation with an Activate input prompt, "A5", from the heat
controller, one continuous input, "Fuel_B'\ and one continuous output, "Fuel_C". The
" B ypassJ" transition simply duplicates its input at the output stage.

The translation is achieved by considering the template of Figure 5.11. The
LOOPN net module is shown in Figure 6.18, its LOOPN source language specification is
shown in Appendix A.

Bypass_f:
input: fB .undefined = false AND fB o fBold

Disable:
output: fB .undefined = true AND fC.undefined = true

Figure 6.18 LOOPN net module for Heat Bypass

6.62.6 Fuel Control Unit
The FCU is responsible for regulating the fuel flow to the APU engine. It is a non­

primitive flow transformation with an Activate input prompt, "A 7", two continuous
inputs, "Fuel_C" and " Control_air_3", and one continuous output, "Fuel_3".

The "Heat^J" transition, since it implements a non-primitive transformation, just
defines its continuous output and does not consider the other token attributes.

92

The translation is achieved by considering the template of Figure 5 11 The

LOOPN net module is shown in Figure 6 19, its LOOPN source language specification is

shown in Appendix A

Control
a ir 3

Fuel 3

Fuel_C

Ca_01d
(undefined = true)

FC Old
(undefined = true)

A7

FCU_f
input fC undefined = false AND ca undefmed = false

AND (fC o fCold OR ca o caold)
output f3 undefined = false

Disable
output f3 undefined = true AND fC undefmed = true

AND ca undefined = true

Figure 619 LOOPN net module FCU

6.63 Control Transformations
Step 4 specifies the identification of control transformation type and the

application of the appropnate template The following paragraphs describe each control
transformation and the LOOPN net modules generated

93

6.63.1 Fuel Control Valve
The fuel control valve is responsible for controlling the boost pump control and

heat control modules It is a control transformation with no input prompt, two inputs
signals, "APU_On" and "A P U _O ff2 " , two output signals, "Open_Door" and
"Close_Door'\ and two Activate output prompts, "A 1" and "A2" The fuel control valve is
either closed ("ftclosed") or open ("ftopeti")

Figure 6 20 LOOPN net module for Fuel Control Valve

The translation is achieved by considering the template of Figure 5 13 The
LOOPN net module is shown m Figure 6 20, its LOOPN source language specification is
shown in Appendix A

94

6.63.2 Boost Pump Control
The boost pump control is responsible for controlling the boost pump and pump

bypass It is a control transformation with an Activate input prompt, "A 1", from the fuel
control valve, two input signals, "Rpm_95", and "T ankljO ff', and two Activate output
prompts, "A3" and "A4" The boost pump controller is either deactivated, on (the boost
pump is on), or off (the pump bypass is on)

Figure 6 21 LOOPN net module for Boost Pump Control

The translation is achieved by considering the template of Figure 5 14 The
LOOPN net module is shown in Figure 6 21, its LOOPN source language specification is

95

shown in Appendix A Note that the LOOPN net contains two identically name places
This is a drawing convenience, they represent the same place

6 6 3 3 Heat Control
The heat control is responsible for controlling the heater and heater bypass It is a

control transformation with an Activate input prompt, "A2", from the fuel control valve,
an mput continuous flow,"Fuel_B", and two Activate output prompts, "A5" and "A6 "

Figure 6 22 LOOPN net module for Heat Control

The "temperature" attribute of "Fuel_B" is used to trigger state transitions and
cause the enabling and disabling of the heat and heat-bypass flow transformations
Transitions "77" and "72" operate by checking the value of this attribute The heat
controller is either deactivated, off (the heat bypass is on), or on (the heater is on)

96

6.63,4 Fuel Solenoid Valve
The fuel solenoid valve is responsible for controlling the (FCU) It is a control

transformation with no input prompt, two input signals, "Seq__Oil_Closed" and
"APUjO ffl", and an Activate output prompt, "A7", to the FCU The fuel solenoid is
either closed (the FCU is off), or open (the FCU is on)

The translation is achieved by considering the template of Figure 5 14 The

LOOPN net module is shown in Figure 6 22, its LOOPN source language specification is

shown in Appendix A

Figure 6 23 LOOPN net module for Fuel Solenoid Valve

The translation is achieved by considering the template of Figure 5 13 The
LOOPN net module is shown in Figure 6 23, its LOOPN source language specification is
shown in Appendix A

97

6.1 C Language Prototype Generation
The LOOPN tool has been used to generate a C program which has been

compiled and run as a prototype of the case study The program is long and difficult to
understand and therefore has not been included as an appendix

Appendix B shows the output produced by the running prototype The output,
which is produced by the auxiliary action sections of the LOOPN transitions, reports the
simulation progress and the simulation time It also indicates which transition has fired,
this was used as a debugging aid which would be removed when the translation process
becomes automatic and the user unaware of the LOOPN formalism The output reflects
the distributed execution strategy defined by the ESML execution rules Observation of
the prototype can be used to study indeterminism within the system and possible event
concurrency The prototype can be used to aid the requirements specification effort The
output is used to revise the prototype for future iterations in the prototyping approach

The prototype of the case study built using STATEMATE has been interactively
simulated using the STATEMATE simulation tool component Appendix C shows the
output produced by the prototype The output, like the above, is textual, though
STATEMATE facilitates the connection of specifications to simulated interfaces

6.8 Summary
This chapter has discussed the APU Fuel Subsystem case study, and applied the

ESML/LOOPN prototyping system to produce a running prototype of it The prototype
has been specified in ESML, an equivalent specification has been built in STATEMATE
for companson purposes It has been noted that ESML is a more superior language for
descnbing the functional viewpoint of a system than Activity-charts, but it lacks the
intricacies provided by Statecharts for modelling complex reactive behaviour The
translation templates have been applied to translate a non-executable prototype
specification of the case study into an executable one The LOOPN nets have been
specified in the LOOPN source language The prototype has been exercised m the target
environment The prototyping system has provided a framework for using ESML as a
graphical executable specification language The LOOPN code generator has been used
to generate a C program from the LOOPN specification which can be compiled and run
as the prototype in the target environment The following chapter offers conclusions,
analysis, and ideas about further work

98

Chapter 7
Conclusions and Further Work

7.1 Introduction
This chapter summarises the research which has resulted in this thesis, critically

analyses the ESML/LOOPN prototyping system, and offers some ideas about further
work in the area.

7.2 Research Summary
The research forming the basis of this thesis has resulted in definition of the

ESML/LOOPN prototyping system which facilities the use of ESML as a graphical
executable specification language, 1 e it can be used to build prototypes Prototyping is a
new paradigm for software development which has been developed to overcome the
deficiencies of the traditional software development paradigm, 1 e the waterfall life cycle
model This thesis has described how prototyping is applicable to real-time systems The
ESML/LOOPN prototyping system currently facilitates the construction of exploratory
prototypes of real-time systems for use withm a keep-it prototyping approach

The ESML/LOOPN prototyping provides a set of translation templates which can
be used to translate non-executable ESML specifications into executable LOOPN
specifications An unambiguous dialect of ESML has been defined for use with the
Ward/Mellor RTSA/SD method The translation templates are based on a set of
guidelines (the ESML execution rules) which have been defined for ESML to allow
prediction of the behaviour of an ESML specification over time The execution rules have
been specified m terms of Petn net tokens to allow quantitative, rather than qualitative,
specification execution LOOPN nets, an object-oriented high-level Petn net formalism,
have been therefore used to define an execution semantics for ESML, they provide a
rigorous interpretation of the ESML constructs and their combinations The
ESML/LOOPN prototyping system uses the LOOPN code generator to automatically
produce a C program from a LOOPN net specification This program can be complied
and run as the prototype in the target environment The LOOPN code generator is just
one of a number of Petn net code generators surveyed in the thesis The prototyping
system has been applied to the case study, 1 e the APU Fuel Subsystem STATEMATE, a
popular CASE tool for real-time systems, has been used as a benchmark for evaluating
the ESML/LOOPN system

99

In summary, the thesis has
• described the waterfall life cycle model and its deficiencies
• described an alternative paradigm, 1 e prototyping, and how it can be

applied to real-time systems
• descnbed an unambiguous dialect of ESML and its use with the

Ward/Mellor RTSA/SD method
• defined a set of execution rules (guidelines) for ESML in terms of Petn net

tokens which facilitate quantitative specification execution
• descnbed LOOPN nets and the operation of a number of Petn net code

generators (including the LOOPN code generator)
• defined the ESML/LOOPN prototyping system which facilities the

translation of non-executable ESML specifications into executable LOOPN specifications
• defined the translation templates used in the translation process
• applied the prototyping system to the generate a prototype of the APU

Fuel Subsystem the case study
• compared ESML with the languages of STATEMATE by considenng the

prototypes constructed of the case study using both

7.3 Analysis
The following paragraphs provide a critical analysis of the ESML/LOOPN

prototyping system
The ESML/LOOPN prototyping system provides a simple framework for using

ESML as a graphical executable specification for the prototyping of real-time systems
The system has bound together existing tools (TurboCASE and LOOPN) and a method
(Ward and Mellor RTSA/SD) to form a complete approach

The ESML structured language is an intuitive and easy to use language for the
specification of prototypes of real-time systems It encompasses the best features of
previous structured languages Its constructs for modelling data and control flow are
particularly nch It has been noted that STDs do not provide as many facilities for
modelling complex reactive behaviour as do the Statecharts of STATEMATE Currently
the ESML transformation schema addresses the logical modelling of systems (the
construction of behavioural models), and so can only be used to specify exploratory
prototypes of systems

The prototype specification effort requires the specification of complex mini-
specifications m the target language, this may be a little premature at this stage of the

100

development An executable formal language, such as VDM-SL, might be more
appropriate for the definition of mini-specifications

The translation templates are complex since they have LOOPN nets as the target
language The automation of the translation process is needed to fully exploit the
prototyping system, the presence of LOOPN is then oblivious to the user

The program which is output automatically from the LOOPN code generator can
be compiled and run in the target environment This is especially important for real-time
systems, their prototypes need to execute at realistic speeds As an intermediate step it
might be better to animate the ESML specification initially before generating any code
Such an animation would show the flow of tokens (as defined by the execution rules) as
the prototype is exercised, this would allow debugging of the prototype before it is
exercised by the user m the field

The format of the prototype output is currently unimpressive The user requires
more realistic output, i e connection of the prototype to a graphical interface (e g a
graphical mock-up of the cockpit panel m the case of the APU Fuel Subsystem) Such an
interface would allow the user to manipulate objects and view result (e g press switched
and view resultant dial readings) This would aid the user in evaluating the prototype and
proposing amendments

7 4 Further Work
The following paragraphs consider various extensions of the ESML/LOOPN

prototyping systems and further work in the whole area
The most attainable extension of the ESML/LOOPN prototyping system would be

one which incorporates an automatic translation process and which utilises extensions of
the LOOPN tool which are being proposed Figure 7 1 shows a possible future version of
the ESML/LOOPN prototyping system after such a scenario The future version has an
automatic translation process which has a graphical specification of the resultant LOOPN

^net specification as its output The XLOOPN tool [Lakos93a] is under development
which will allow the graphical specification of LOOPN nets The output from the
translation process is in XLOOPN format A set of Petn net analysis tools [Lakos93b] for
LOOPN are also under construction which will allow formal model analysis Formal
analysis of LOOPN nets can be used to mathematically prove certain properties (such as
absence from deadlock) of the prototype The LOOPN code generator is also bemg
modified to produce different target languages, such as OCCAM, which would allow the
prototype to execute on a transputer network This will allow the prototyping of
distributed real-time system in a natural environment To generate prototypes to run on

101

parallel architectures the LOOPN tool needs to implement a distributed implementation
strategy to allow the concurrent firing of transitions, such as the PPO strategy extended to
LOOPN nets (section 4 4 3 1 2) At the moment the prototype generated by the LOOPN
code generator interacts with the environment through simple print statements which
report execution progress In the future it will be possible to interface the prototype with a
graphical mock-up of its environment, e g gauges, switches, dials etc , so as to provide a
more realistic execution output

The ESML/LOOPN prototyping system could also be expanded to allow the
heterogeneous prototyping (section 2 3 4) of real-time systems This would first require
the definition of a new set of ESML execution rules which would concern
Implementation Model abstraction levels such as Processor Environment Models
(PEMs), Software Environment Models (SEMs), and possibly Code Organisation Models
(COMs) These execution rules would have to consider the allocation of portions of the
system model to different processors, how execution would proceed at the boundary
between processors, and how execution within individual processors is determined by
software architecture The execution rules would also have to consider Structure Charts
as used within the COM Once a full set of execution rules have been defined, the
ESML/LOOPN prototyping system could use LOOPN nets to provide a ngorous
interpretation of them through a new set of translation templates The prototyping system
would then facilitate the construction of heterogeneous prototypes

It would be also possible to replace LOOPN as the code generator component and
use a different high-level Petn net language for defining the execution semantics for
ESML A possibility would be the use of TAPIOCA and CP-nets The TAPIOCA code
generator generates an OCCAM program to run on a transputer network, it supports the
distributed implementation of CP-nets The translation templates would have to be
modified to produce CP-nets as output The modifications would however be minimal
since the various high-level net languages differ only in the inscription language used, the
basic concepts are the same The mam advantage of TAPIOCA is the clever use of
invariant analysis m its code generation process The CPN code generator could be used
if the user wished to run the prototype on a multiprocessor platform, indeed any of the
code generators surveyed in Chapter 4 could be used to define new ESML/779
prototyping systems (e g ESML/TAPIOCA, ESML/CPN, ESML/PROTOB etc) The
choice would depend on the target language and architecture required

An extension of the ESML language to allow the modelling of complex reactive
behaviour would be beneficial Such a facility is provided by the Statecharts language
through its use of hierarchy, concurrency, and broadcast communication Features such as

102

these could be imported into ESML to augment the current method of specifying control
logic using simple STDs ESML could even use Statecharts m their entirety to replace
STDs The ESML execution rules would have to be updated to cope with the
improvements, the translation templates would then be modified to implement the
execution rule changes

Figure 7 1 Future Version of the ESML/LOOPN Prototyping System

103

It would also be a useful exercise to examine how the translation templates could
be arranged into some sort of object-oriented class hierarchy so as to fully exploit the
object-oriented features provided by LOOPN, especially the definition of module
subclasses with inheritance

7.5 Conclusion
The ESML/LOOPN prototyping system provides a simple framework for using

ESML as a graphical executable specification language In such a capacity, ESML can be
used to build exploratory prototypes of real-time systems for use within a keep-it
prototyping approach ESML can therefore be used for prototyping real-time systems, an
approach which is characterised by executable models at each stage of development and
closer co-operation with users

104

References

[Agrawala92] A Agrawala and W Levi, Real-Time System Design, McGraw-Hill,
1992

[Agresti86] W Agresti, "The Conventional Software Life-Cycle Model It's Evolution
and Assumptions", New Paradigms for Software Development, IEEE Computer Society
Press

[Alavi84] M Alavi, "An Assessment of the Prototyping approach to Information
Systems development", Communications of the ACM 27, 6,1984

[Auer88] A Auer, "Automated Code Generation of Embedded Real-time Systems",
Microprocessing and Microprogramming 24, 1988

[Baldassari91] M Baldassan and G Bruno, "PROTOB An Object Oriented
Methodology for Developing Discrete Event Dynamic Systems", Computer Languages
16, 1,1991

[Battiston88] E Battiston, "OBJSA Nets A Class of High-level Nets having Objects as
Domains", Advances in Petn Nets 1988, edited by G Rozenberg

[Blumofe88] R Blumofe and A Hecht, "Executing Real-Time Structured Analysis
Specifications", ACM Sigsoft, Software Engineering Notes, Vol 13, No 3

[Boehm76] B Boehm, "Software Engineering Economics", Englewood Cliffs, Prentice
Hall, 1976

[Booch91] G Booch, Object-Oriented Design with Applications, Benjamin/Cummings
Pub C o , 1991

[Brackett87] J Brackett and E Reilly, "An Experimental System for Executing Real-
Time Structured Analysis Models", Proceedings of the 12th Structured Methods
Conference, August 1987, Chicago, USA

105

[Breant90] F Breant, "TAPIOCA OCCAM Rapid Prototyping from Petn-net", 5th
Jerusalem Conference on Information Technology, October 1990

[Breant91] F Breant, "Rapid Prototyping from Petn-net on a Loosely Coupled Parallel
Architecture”, Proceedings of the 3rd International Conference on the Applications of
Transputers, Glasgow, Scotland, 1991

[Bruno86] G Bruno and G Marchetto, "Process-Translatable Petn Nets for the Rapid
Prototyping of Process Control Systems", IEEE Transactions on Software Engineenng,
Vol SE-12, No 2, February 1986

[Bruyn88] W Bruyn, R Jensen, D Keskar, P Ward, "ESML An Extended Systems
Modelhng Language based on the Data Flow Diagram", ACM SIGSOFT Software
Engmeenng Notes, Vol 13, No 1, January 1988

[Butler90] B Butler, R Esser, R Mattmann, "A Distnbuted Simulator for High Order
Petn Nets", Advances in Petn Nets 1990, Spnnger-Verlag, edited by G Rozenberg

[Chen76] P Chen, "The Entity-Relationship Model - Towards a Unified View of Data",
ACM Transactions on Database Systems, Vol 1, No 1, March 1976

[Coomber90] C CoomberandR Childs, "A Graphical Tool for the Prototyping of
Real-Time Systems", in ACM SIGSOFT Software Engineering Notes, Vol 15, No 2,
Apnl 1990

[Dahler87] J Dahler et a l , "A Graphical Tool for the Design and Prototyping of
Distnbuted Systems", ACM Software Engmeenng Notes, Vol 12, No 3, July 1987

[DeMarco78] T De Marco, "Structured Analysis and System Specification", Yourdon
Press, New York, 1978

[[DiGiovanm91] R Di Giovanni, "HOOD nets", Advances m Petn Nets 1991, Spnnger-
Verlag, edited by G Rozenberg,

106

[Elmstrom92] R Elmstrom, R Lintulampi, M Pezzi, "Giving Semantics to SA/RT by
Means of High-Level Timed Petn Nets", Institute of Applied Computer Science (IFAD),
Denmark, 1992

[Ferrentmo77] A Ferrentino and H Mills," State Machines and their semantics in
Software Engineering”, Proc IEEE COMPSAC 77

[Fleming88] P Fleming, Parallel Processing m control the Transputer and other
architectures, IEE Control Engineering Senes, 1988

[Floyd84] C Floyd, "A Systematic look at Prototyping", in Approaches to Prototyping,
edited by R Budde et a l , Springer-Verlag, 1984

[France92] R France, "Semantically Extended Data Flow Diagrams A Formal
Specification Tool", IEEE Transactions on Software Engineering, Vol 18, No 4, April
1992

[Fuchs92] N Fuchs, "Specifications are (preferably) executable", Software Engineenng
Journal, September 1992

[Gane79] C Gane and T Sarson, Structured Systems Analysis and Design, Prentice
Hall, Englewood Cliffs, NJ, USA, 1979

[Gennch81] H Gennch and K Lautenbach, "System Modelling with High-level Petri
Nets", Theoretical Computer Science 13,1981

[Harel87] D Harel, "Statecharts A Visual Formalism for Complex Systems", Science
of Computer Programming, Vol 8, 1987

[Harel88] D Harel, "STATEMATE A Working Environment for the Development of
Complex Reactive Systems", 10th International Conference on Software Engineenng,
Washington, USA, 1988

[Harel92] D Harel, "Biting the Silver Bullet Toward a Bnghter Future for System
Development", IEEE Computer, January 1992

107

[Henderson86] P Henderson, "Functional Programming, Formal Specification, and
Rapid Prototyping", IEEE Transactions on Software Engineenng, Vol Se-12, No 2,
February 1986

[Hekmatpour88] S Hekmatpour and D Ince, "Software Prototyping, Formal Methods
and VDM", Addison-Wesley, International Computer Science Series

[Hartung88] G Hartung, "Programming a closely coupled Multiprocessor system with
high-level Petn Nets”, Advances in Petn Nets 1988, Spnnger-Verlag, edited by G
Rozenberg

[Hatley871 D Hatley and I Pirbhai, "Strategies for Real-Time System Specification",
Dorset House Publishing, New York, 1987

[Hayes89] I Hayes and C Jones, "Specifications are not (necessarily) executable",
Software Engineering Journal, November 1989

[Hughes89] T Hughes and J Cooling, "The Emergence of Rapid Prototyping as a Real-
Time Software Development Tool", BEE Colloquium on the Specification of Complex
Systems, London, 1989

[INMOSS88] Transputer Reference Manual, INMOS, Prentice-Hall, 1988

[i-Logix91] "The Languages of STATEMATE", Technical Report, i-Logix Inc ,
Burlington, MA, 1991

[Jensen81J K Jensen, "Coloured Petri-Nets and the Invariant Method", Theoretical
Computer Science 14, 1981

[Jensen81] K Jensen, "Coloured Petri-Nets and the Invariant Method", Theoretical
Computer Science 14, 1981

[Jensen90] K Jensen, "Coloured Petn Nets A High Level Language for System Design
and Analysis", Advances in Petn Nets 1990, edited by G Rozenberg

108

[Jensen92] K Jensen, "Coloured Petri Nets Basic Concepts, Analysis Methods and
Practical Use", EATCS Monographs on Theoretical Computer Science, Springer-Verlag,
1992

[Kordon90] F Kordon, P Estraillier, R Card, "Rapid Ada Prototyping Principles and
example of a complex application", 9th Annual International Phoenix Conference on
Computers and Communications, Scottsdale, USA, March 1990

[Lai91] R Lai and D O’Connor, "Automatic Implementation of Communication
Protocols based on Petn Nets", Proceedings of the 1991 Singapore International
Conference on Networks

[Laplante92] P Laplante, "Real-Time System Design and Analysis - an Engineer’s
Handbook", IEEE Press, 1992

[Lakos90] C LakosandC Keen, "Simulation with Object-Oriented Petn Nets",
Australian Software Engineenng Conference, Sydney, 1991

[Lakos92] C Lakos et a l , "A Flexible Distnbuted simulator for Object-Onented Petn
Nets", Transputer and Parallel Applications Conference, Melbourne, Australia, 1992

[Lakos93a] C Lakos, "LOOPN System Manual", Department of Computer Science,
University of Tasmania, Hobart, Australia

[Lakos93b] C Lakos and C Keen, "Applying Invanant Analysis to Modular Petn
Nets", Australian Computer Science Conference, 1993, Bnsbane

[Ledru90] Y Ledru, "Hierarchical Specification of Reactive System a Case Study",
COMPEURO ’90, Proceedings of the 1990 IEEE International Conference on Computer
Systems and Software Engineenng

[Lee92] P Lee and K Tan, "Modelling of Visualised Data-Flow Diagrams using Petn
Net model", Software Engineenng Journal, January 1992

[Marca88] D MarcaandC McGowan, SADT, McGraw-Hill, New York, 1988

109

[Martin93] D Martin, "Introducing the Formal Specification Language LOTOS into
Structured Analysis based Development", M Sc Thesis, School of Computer
Applications, Dublin City University, 1993

[Mortensen90] B Mortensen, "Incremental Prototyping of Embedded Real-Time
Systems (IPTES), part 1 project summary and consortium information", Esprit II project
proposal, Odense, Denmark, Institute of Applied Computer Science (IFAD), 1990

[Munemon88] J Munemon et a l ," An Extension of SDL for Executable Specification
of Communication Systems based upon Petn nets", ISIIS 88, Proceedings of the 2nd
International Symposium on Interoperable Information Systems, Tokyo, Japan, 1988

[Murata89] T Murata, "Petn Nets Properties, Analysis and Applications", Proceedings
of the IEEE, Vol 77, No 4, April 1989

[Parker90] K Parker, "The PROMPT Automatic Implementation Tool - Initial
Impressions", 2rd International Conference on Formal Descnption Techniques, FORTE
90, Madnd, Spain

[Peterson81] J Peterson, "Petn Net Theory and the Modelling of Systems", Prentice
Hall

[Petn66] C A Petn, "Communication with Automata”, New York Gnffis Air Force
Base Technical Report, RADC-TR-66-377,1966

[Pinci91] V PinciandR Shapiro, "An Integrated Software Development Methodology
Based on Hierarchical Coloured Petn nets", in Advances in Petn Nets 1991; edited by G
Rozenberg, Spnnger-Verlag

[Pulli86a] P Pulli, "Execution of Structured Analysis Specifications with an Object
Oriented Petn Net Approach", Proceedings of the 1986 International Conference on
Computer Languages, Miami, USA

[Pulli86b] P Pulli, "Execution of Structured Analysis Specifications with an Object-
Onented Petn Net Approach", P Pulli, Proceedings of the 1986 International Conference
on Computer Languages, Miami, USA

110

[Reisig91] W Reisig, "Petn Nets and Algebraic Specifications'1, Theoretical Computer
Science 80,1991

[Ross77] D Ross, "Structured Analysis A Language for Communicating Ideas", IEEE
Transactions on Software Engineering, Vol 3, No 1, January 1977

[Royce70] W Royce, "Managing the development of large software systems Concepts
and techniques", WESCON, August 1970

[Sacha91] K Sacha, "Transnet A method for Transformational Development of
Embedded Software", Microprocessing and Microprogramming, Vol 32, 1991

[Sacha92] K Sacha, "Transformational Implementation of PAISLey using Petn nets",
Software Engmeenng Journal, May 1992

[Shapiro90] R Shapiro et a l , "Modelling a NORAD Command Post using SADT and
Coloured Petn Nets", Proceedings of the IDEF Users Group, Washington DC, May 1990

[Silva86] M Silva et a l , "On the Software Implementation of Petn Nets and Coloured
Petn Nets usmg high-level concurrent languages", 7th European Workshop on the
Application and Theory of Petn Nets, Oxford, England, 1986

[Silva89] M Silva, "Petn Nets and Flexible Manufactunng", Advances in Petn Nets
1989, Spnnger-Verlag, edited by G Rozenberg

[Taubner88] D Taubner, "On the Implementation of Petn Nets", Advances in Petn Nets
1988, Spnnger-Verlag, edited by G Rozenberg

[Tsai89] J Tsai and T Weigert, "Exploratory Prototyping through the use of Frames
and Production Rules", Proceedings of the 13th International Computer Software and
Applications Conference

[Tse88] T Tse and L Pong, "An Application of Petn nets in Structured Analysis",
ACM SIGSOFT Software Engmeenng Notes, Vol 11, No 5, October 1988

111

[Valette91] V Valette, "Software Implementation of Petri Nets and Compilation of
Rule-based Systems”, Advances in Petn Nets 1991, Sponger-Verlag, edited by G
Rozenberg

[Vonk90] R Vonk, "Prototyping The effective use of CASE technology", Prentice
Hall

[Ward85a] P Ward and S Mellor, Structured Development for Real-Time Systems,
Volume 1 Introduction and Tools, Prentice Hall, NJ, USA, 1985

[Ward85b] P Ward and S Mellor, Structured Development for Real-Time Systems,
Volume 2 Essential Modelling Techniques, Prentice Hall, NJ, USA, 1985

[Ward86a] P Ward and S Mellor, Structured Development for Real-Time Systems,
Volume 3 Implementation Modelling Techniques, Prentice Hall, NJ, USA, 1986

[Ward86b] P Ward, "The Transformation Schema An Extension of the Data Flow
Diagram to Represent Control and Timing", IEEE Transactions on Software Engineenng,
Vol SE-12, No 2, February 1986

[Ward89] P Ward, ”How to Integrate Object Orientation with Structured Analysis and
Design”, IEEE Software, March 1989

[Winokur89] W Winokur and J Levi, "ECSAM A Method for the Analysis of
Complex Embedded Computer Systems and their Software”, Proceedings of the 5th
Structured Techniques Association Conference, Chicago, May 1989

[Winokur90] W Winokur et a l , "Requirements Analysis and Specification of
Embedded Systems with ECSAM - a case study", COMPEURO '90, Proceedings of the
1990 IEEE International Conference on Computer Systems and Software Engineenng

[Yourdon89] E Youdon, Modem Structured Analysis, Prentice Hall, Englewood Cliffs,
NJ, USA, 1989

112

Appendix A
LOOPN Source Program Code for the APU Fuel

Subsystem Prototype

{//}
{ Types Defintion Module (types 1) }
{/////////////////////////////////////̂ ^^ ̂ >

MODULE types,

TYPE
{ enable, disable, suspend, resume, trigger}
prompts = (E, D, S, R, T),

prompttype = TOKEN null WITH
pr prompts,

end,

defaulttype = TOKEN null WITH { token defined or not}
undefined boolean,

end,

fueltype = TOKEN defaulttype WITH { fuel token type }
filtered boolean,
temperature real,
pressure real,

end,

airtype = TOKEN defaulttype WITH { air token type }
temperature real,
pressure real,

end,

TRANSITION initial,

END MODULE

{iiiiiiiiiiiiiiiiiiiifiin iiin iu im iiiiiim)
{ Fuel Control Valve (fcv 1) }
{ Control Transformation, no input prompt, 2 output activations, }
{ 2 input signals, 2 output signals }
{lllillllllllllllllllillllllllllllllllllllllllllilllllflllllllllllllllHIIIIIIIIIIIIIIIIIHIIHIIHIII}

MODULE fcv = types(INOUT APU_On, APU_Off2, Open_door, Close_door null,
INOUT A1, A2 prompttype),

TYPE states = (DEACT, CLOSED, OPEN), { valve is closed or open }

113

statetype = TOKEN null WITH { inhent from null }
st states,

end,

PLACE Imt null, { S-elements }
State statetype,

TRANSITION initial, { setup initial marking }
OUTPUT

Imt <- tO,
State <- sO = [st DEACT], { deactivated initially }

ACTION
WnteStnng("Initial transition fired - fuel control valve" ,0),
WnteStnng(", t =M,0),
WnteReal(globaltimeO,5,2),
WnteLn(),

TRANSITION Imt_t, { valve is initially closed }
INPUT

t <- Imt,
sin <- State I sin st = DEACT,

OUTPUT
State <- sout = [st CLOSED], { valve closed }

ACTION
WnteStnng("Imt_t fired - fuel control valve" ,0),
WnteStnngf, t =",0),
WnteReal(globaltime(X5,2),
WnteLn(),

TRANSITION Tl, { valve becomes open }
INPUT

d <- APU_On, { Apu On switch pressed }
sm <- State I sin st = CLOSED,

OUTPUT
Open_door <- d, { signal door to open }
A1 <- pi = [pr E], { enable boost pump control}
A2 <- p2 = [pr E], { enable heat control }
State <- sout = [st OPEN],

ACTION
WnteStnngf'Tl fired, valve opens - fuel control valve\0),
WnteStnng(\ t - \0),
WnteReal(globaltime(),5,2),
WnteLn(),

TRANSITION T2, { valve becomes open }
INPUT

d <- APU„Off2, { Apu Off switch pressed }

114

sin <- State I sm st = OPEN,

OUTPUT
Close_door <- d, { signal door to close }
A1 <- pi = [pr D], { disable boost pump control}
A2 <- p2 = [pr D], { disable heat control }
State <- sout = [st CLOSED],

ACTION
WnteStnng("T2 fired, valve closes - fuel control valve",0),
WnteStnngO', t =",0),
WnteReal(globaltime0.5,2),
WnteLn(),

TRANSITION Eatl, { remove APU_On if wrong state }
INPUT

d <- APU_On, { Apu On switch pressed }
s <- State I s st o CLOSED, { not closed }

OUTPUT
State <- s,

ACTION
WnteStnngC'Eatl fired, APU_On eaten - fuel control valve",0),
WnteStnngO’, t =",0),
WnteReal(globaltime(),5,2),
WnteLn(),

TRANSITION Eat2, { remove APU_Off2 if wrong state }
INPUT

d <- APU_Off2, { Apu Off switch pressed }
s <- State I s st o OPEN, { not open }

OUTPUT
State <- s,

ACTION
WnteStnng("Eat2 fired, APU_Off2 eaten - fuel control valve",0),
WnteStnngO', t =",0),
WnteReal(globaltime(),5,2),
WnteLn(),

END MODULE

{ll}
{ Boost Pump Control (bpc 1) }
j Control Transformation, 1 input Activation prompt, 2 output }
{ Activation prompts, 2 input signals }
{//}

MODULE bpc = types(INOUT Tankl_off, Rpm_95 null,
INOUT Al, A3, A4 prompttype),

TYPE states = (DEACT, OFF, ON),

115

statetype = TOKEN null WITH { inherit from null }
st states,

end,

PLACE State statetype, { S-element}

TRANSITION initial, { setup initial marking }
OUTPUT

State <- sO = [st DEACT], { deactivated }

ACTION
WnteStnngO’Imtial Transition fired - boost pump control",0),
WnteStnngC, t =",0),
WnteReal(globaltimeO,5,2),
WnteLn(),

TRANSITION Disable, { disable self }
INPUT

pi <- A 11 pi pr = D, { from fuel control valve }
sin <- State,

OUTPUT
A3 <- p2 = [pr D], { disable pump bypass }
A4 <- p3 = [pr D], { disable pump }
State <- sout = [st DEACT], { deactivated }

ACTION
WnteStnngC Disable fired - boost pump control",0),
WnteStnngC, t =",0),
WnteReal(globaltime(),5,2),
WnteLnO,

L
TRANSITION Enable, { enable self }

INPUT
pi <- A11 pi pr = E, { from fuel control valve }
sin <- State I sin st = DEACT,

OUTPUT
A3 <- p2 = [pr E], { enable pump bypass J
A4 <- p3 = [pr D], { disable pump }
State <- sout = [st OFF], {o ff is initial State }

ACTION
WnteStnngC*Enable fired - boost pump control",0),
WnteStnngf, t= \0),
WnteReal(globaltime(),5,2),
WnteLn(),

TRANSITION Eatl, { superflous E received }
INPUT

p <- A1 I p pr = E, { from fuel control valve }

116

OUTPUT
State <- s,

ACTION
WnteStnng("Eatl fired, enable signal eaten - boost pump control" ,0),
WnteStnng(", t =\0),
WnteReal(globaltuneO,5,2),
WnteLn(),

TRANSITION T l, { turn on pump if tank no 1 is off }
INPUT

d <- Tankl_off, { fuel tank no 1 is o f f }
sin <- State I sin st = OFF, { pump off }

OUTPUT
A3 <- pi = [pr D], { disable pump bypass }
A4 <- p2 = [pr E], { enable pump }
State <- sout = [st ON], { pump on }

ACTION
WnteStnngfTl fired, pump goes on - boost pump control",0),
WnteStnng(\ t =”,0),
WnteReal(globaltime(),5,2),
WnteLn(),

TRANSITION T2, { turn off pump if rpm_95 reached }
INPUT

d <- Rpm_95, { 95% engine rpm }
sin <- State I sin st = ON, { pump on }

OUTPUT
A3 <- pi = [pr E], { enable pump bypass }
A4 <- p2 = [pr D], { disable pump }
State <- sout = [st OFF], { pump off }

ACTION
WnteStnng("T2 fires, pump goes off - boost pump control\0),
WnteStnng(”, t ='\0),
WnteReal(globaltime(),5,2),
WnteLn(),

TRANSITION Eat2, { eat Tankl_off if wrong state }
INPUT

d <- Tankl_off,
s <- State I s st o OFF, { pump not off }

OUTPUT
State <- s,

ACTION
WnteStnng("Eat2 fired, Tankl_off eaten - boost pump control”,0),
WnteStnngC, t =",0),

s <- State I s st o DEACT,

117

TRANSITION Eat3, { eat Rpm 95 if wrong state }
INPUT

d <- Rpm_95,
s <- State I s st o ON, { pump not on }

OUTPUT
State <- s,

ACTION
WnteStnng("Eat3 fired, Rpm_95 eaten - boost pump control",*)),
WnteStnngC, t =",0),
WnteReaI(gIobaltimeO,5,2),
WnteLn(),

END MODULE

{IlillllllllllllllllllllllllllllllllllllllillllillllllllllllllllllllllllllllllllilllllllllillllHH}
{ Fuel Heater Control (fhc 1) }
{ Control Transformation, 1 input Activation prompt, 2 output }
{ Activation prompts, 1 continuos input }
{iiiiiiiiiin iiin n iiiiiiiii)

MODULE fhc = types(INOUT Fuel__B fueltype,
INOUT A2, A5, A6 prompttype),

TYPE states = (DEACT, OFF, ON),

statetype = TOKEN null WITH { inhent from null }
st states,
end,

WnteReal(globaltime(),5,2),
WnteLnO,

PLACE State statetype, { S-elelment}

TRANSITION initial, { setup initial marking }
OUTPUT

State <- sO = [st DEACT], { deactivated initially }

ACTION
WnteStnngC'Imtial Transition fired - fuel heater control"^),
WnteStnngC, t =",0),
WnteReal(globaltimeO,5,2),
WnteLn(),

TRANSITION Disable, { disable self }
INPUT

pi <- A2 I pi pr = D, { from fuel control valve }
sin <- State,

OUTPUT

118

A5 <- p2 = [pr D], { disable heat bypass }
A6 <- p3 = [pr D], { disable heat}
State <- sout = [st DEACT], { deactivated }

ACTION
WnteStnngfDisable fired - fuel heater control" ,0),
WnteSlnngf, t =”,0),
WnteReal(globaltimeO*5,2),
WnteLnO,

TRANSITION Enable, { enable se lf}
INPUT

pi <- A2 I pi pr = E, { from fuel control valve }
sin <- State I sin st = DEACT,

OUTPUT
A5 <- p2 = [pr E], { enable heat bypass }
A6 <- p3 = [pr D], { disable heat}
State <- sout = [st OFF], { off is initial state }

ACTION
WnteStnngf'Enable fired - fuel heater contror',0),
WnteStnng(", t =",0),
WnteReal(globaltime(),5,2),
WnteLn(),

TRANSITION Eatl, { already enabled }
INPUT

p <- A2 I p pr = E, { from fuel control valve }
s <- State I s st o DEACT,

OUTPUT
State <- s,

ACTION
WnteStnngC'Eatl fired, Enable eaten - fuel heater control",0),
WnteStnng(", t =\0),
WnteReal(globaltimeO»5,2),
WnteLn(),

TRANSITION Tl, { turn on heat if temp <= 37 }
INPUT

f <- Fuel_B I (f undefined = false and f temperature <= 37),
sin <- State I sin st = OFF, { heat off }

OUTPUT
Fuel_B <- f,
A5 <- pi = [pr D], { disable heat bypass }
A6 <- p2 = [pr E], { enable heat}
State <- sout = [st ON], { heat on }

ACTION
WnteStnng("Tl fired, Heater goes on - fuel heater controln,0),
WnteStnngC, t =”,0),

119

TRANSITION T2, { turn off heat if temp >= 64 }
INPUT

f <- Fuel_B I (f undefined = false and f temperature >= 64),
sm <- State I sin st = ON, { heat on }

OUTPUT
Fuel_B <- f,
A5 <- pi = [pr E], { enable heat bypass }
A6 <- p2 = [pr D], { disable heat}
State <- sout = [st OFF], { heat off }

ACTION
WnteStnng("T2 fired, Heater goes off - fuel heater control" ,0),
WnteStnng(", t =",0),
WnteReal(globaltime(),5,2),
WnteLn(),

END MODULE

{llllllllllllllllllllllllllllllllllilllUlillililllllllllllllllllllllllllllllllllllHlllllllilllllll}
{ Fuel Solenoid Valve (fsv 1) }
{ Control Transformation, no input prompt, 1 output Activation }
{ prompt, 2 input signals }
{IIIIIIIIIIIJIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIHUIIilHlllliilllllll}

MODULE fsv = types(INOUT Seq_oil_closed, APU_Off 1 null,
INOUT A7 prompttype),

TYPE states = (DEACT, CLOSED, OPEN), { valve is closed or open }

statetype = TOKEN null WITH { inherit from null }
st states,

end,

WnteReal(globaltime(),5,2),
WnteLn(),

PLACE Imt null, { S-elements }
State statetype,

TRANSITION initial, { setup initial marking }
OUTPUT

Imt <-t0,
State <- sO = [st DEACT], { deactivated initially }

ACTION
WnteStnng("Initial transition fired - fuel solenoid valve”,0),
WnteStnng(", t =”,0),
WnteReal(globaltime(),5,2),
WnteLn(),

TRANSITION Imt_t, { setup initial state }
INPUT

120

t <- Imt,
sin <- State I sin st = DEACT,

OUTPUT
State< - sout = [st CLOSED], { closed is initial state }

ACTION
WnteStnng("Init_t fired - fuel solenoid valve\0),
WnteStnng(", t =",0),
WnteReal(globaltime(),5,2),
WnteLnQ,

TRANSITION Tl,
INPUT

d <- Seq_oiLclosed,
sin <- State I sin st = CLOSED,

OUTPUT
A7 <- p = [pr E],
State <- sout = [st OPEN],

{ valve becomes open }

{ sequencing oil pres switch }

{ enable feu }

ACTION
WnteStnngO'Tl fired, valve opens - fuel solenoid valve",0),
WnteStnng(", t =",0),
WnteReal(globaltime(),5,2),
WnteLnQ,

{ valve becomes closed }

{ Apu Off switch pressed }

TRANSITION T2,
INPUT

d <- APUJDffl,
sm <- State I sin st = OPEN,

OUTPUT
A7 <- p = [pr D], { disable feu }
State <- sout = [st CLOSED],

ACTION
WnteStnng("T2 fired, valve closes, fuel solenoid valve",0),
WnteStnng(", t =",0),
WnteReal(globaltime(),5,2),
WnteLnQ,

TRANSITION Eatl,
INPUT

d <- Seq_oiLclosed,
s <- State I s st o CLOSED,

OUTPUT
State <- s,

{ eat Seq_oil_closed if wrong state }

{ pressure switch closed }
{ not closed }

ACTION
WnteStnng("Eatl fired, Seq_oil_closed eaten - fuel solenoid valveM,0),
WnteStnng(", t =",0),
WnteReal(globaltime(),5,2),

121

WnteLn(),

TRANSITION Eat2, { remove APU_Off 1 if wrong state }
INPUT

d <- APU_Off 1, { Apu Off switch pressed }
s <- State I s st o OPEN, { not open }

OUTPUT
State <- s,

ACTION
WnteStnng("Eat2 fired, Apu_Off 1 eaten - fuel solenoid valve",0),
WnteStnngO’, t =M,0),
WnteReal(globaltime(),5,2),
WnteLn(),

END MODULE

[lllillllllllllllllllllllilllHII)
{ Pump (pump 1) }
{ Pnmitive Flow Transformation, 1 continous input, 1 continuos }
{ output, I input activation prompt }

MODULE pump = types(INOUT Fuel_l, Fuel_A fueltype,
INOUT A4 prompttype),

TYPE statuses = (DEACT, ACT), { visulaization of transformation }

statustype = TOKEN null WITH { inherit from null }
st statuses,

end,

PLACE Status statustype, { S-elements }
Fl_01d fueltype,

TRANSITION initial, { setup initial marking }
OUTPUT

Status <-s0 = [st DEACT],

{ dummy token }
Fl_01d <- fO = [filtered false,

temperature 0,
pressure 0,
undefined true],

ACTION
WnteStnngC'Imtial Transition fired - pump",0),
WriteStnng(", t = ’*,0),
WnteReal(globaltime(),5,2),
WnteLn(),

TRANSITION Pump_f, { pump fuel, increase pressure }

122

INPUT

{ input defined }
fl <- Fuel_l I fl undefined = false,

{ input changed }
flold <- Fl_01d I flold filtered o fl filtered OR

flold pressure o fl filtered OR
flold temperature o fl temperature OR
flold undefined o fl undefined,

fA <- Fuel_A,
s <- Status I s st = ACT, { active }

OUTPUT
FueLl <- fl, { return input}
Fl_01d <- fl, { copy old fl to Fl_01d }

Status <- s,

{ fuel pressure is incresed 10 by transition }
FueLA <- fAnew = [filtered f 1 filtered,

pressure (fl pressure + 10),
temperature fl temperature,
undefined false],

ACTION
WnteStnng("Pump_f fired - pump”,0),
WnteStnng('\ t= \0),
WnteReal(globaltime(),5,2),
WnteLn(),

TRANSITION Enable, { enable self }
INPUT

p <- A4 I p pr = E, { from boost pump control }
sin <- Status,

OUTPUT
Status <- sout = [st ACT], { active }

ACTION
WnteStnngO'Enable fired - pump",0),
WnteStnng(”, t =”,0),
WnteReal(globaltime(),5,2),
WnteLn(),

TRANSITION Disable, { disable self }
INPUT

p <- A 41 p pr = D, { disable from boost pump control }
sin <- Status,
flold <- Fl_01d,
fA <- Fuel_A,

OUTPUT

123

Status <- sout = [st DEACT],

{ undefìne output }
Fuel_A <- fAnew = [temperature fA temperature,

pressure fA pressure,
filtered fA filtered,
undefined true],

Fl_01d <- flnew = [temperature flold temperature,
pressure flold pressure,
filtered flold filtered,
undefined true],

ACTION
WnteStnngC’Disable fired * pump",0),
WnteStnng(", t =",0),
WnteReal(globaltimeO,5,2),
WnteLnO,

END MODULE

{illllllllllllllllllllllllllllllilllilHHHIIIHil}
{ Pump Bypass (pump_b 1) }
{ Pnmitive Flow Transformalion, 1 contmous ínput, 1 continuos }
{ Pnmitive Flow Transformation, 1 continuos output, 1 ínput }
{ Activation prompt, 1 continuos output }
{¡llillllllHllllilllllHIIHIHIIIIIIHIII}

MODULE pump_b = types(INOUT Fuel_l, Fuel_A fueltype,
INOUT A3 prompttype),

TYPE statuses = (DEACT, ACT),

statustype = TOKEN null WITH { inherit from null }
st statuses,

end,

PLACE Status statustype,
Fl_01d fueltype,

{ S-elements }

TRANSITION initial,
OUTPUT

Status <- sO = [st DEACT],

{ setup initial marking }

{ dummy token }
Fl_01d <- fO — [filtered false,

temperature 0,
pressure 0,
undefined true],

ACTION
WnteStnngC’Imtial Transition fired - pump bypass'*,0),
W w t f l C i w n n / ” * — " A \WnteStnngC, t =",0),

124

TRANSITION Bypass_f, { bypass fuel}
INPUT

{ input defined and changed }
fl <- Fuel_l I f 1 undefined = false,
flold <- Fl_01d I flold filtered o fl filtered OR

flold temperature o fl temperature OR
flold pressure o fl pressure OR
flold undefined o fl undefined,

fA <- Fuel_A,
s <- Status I s st = ACT, { active }

OUTPUT
Fuel_l <- fl,
Fl_01d < -fl,
Status <- s,
Fuel_A <- fl,

ACTION
WnteStnng("Bypass_f fired - pump bypass!,,0),
WnteStnng(", t =",0),
WnteReal(globaltime()»5,2),
WnteLn(),

TRANSITION Enable,
INPUT

p <- A3 I p pr = E,
sin <- Status,

OUTPUT
Status <- sout = [st ACT], { active }

ACTION
WnteStnngC'Enable fired - pump bypassf,,0),
WnteStnng(", t =”,0),
WnteReal(globaltime(),5,2),
WnteLn(),

TRANSITION Disable,
INPUT

p <- A3 I p pr = D,
sin <- Status,
flold <- Fl.Old,
fA <- Fuel_A,

OUTPUT
Status <- sout = [st DEACT],

{ undefine output}
Fuel_A o fAnew = [temperature fA temperature,

WnteReal(globaltime(),5,2),
WnteLn(),

{ disable se lf}

{ disable from boost pump control }

{ enable se lf}

{ from boost pump control }

{ return input}
{ copy old fl to FlJDld }

{ copy input to output}

125

pressure fA pressure,
filtered fA filtered,
undefined true],

Fl_01d <- flnew = [temperature flold temperature,
pressure flold pressure,
filtered flold filtered, ^
undefined true],

ACTION
WnteStnng("Disable fired - pump bypass",0),
WnteStnng(",t=’\0),
WnteReal(globaltimeO,5,2),
WnteLn(),

END MODULE

{IIHIIIIIIIIIIIIIIIIIHIIIIIIIIHIIIII}
{ Filter (filter 1) }
{ Primitive Flow Transformation, 1 continous input, 1 continuos }
{ output, no input prompts }
{¡iiiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiHiiHiiniiuiii}

MODULE filter = types(INOUT Fuel_A, Fuel_B fueltype),

PLACE Status null, { S-elements }
Fuel_A_01d fueltype,

TRANSITION imual, { setup initial marking }
OUTPUT

Status <- sO,

{ dummy token }
Fuel_A_01d <- fO = [filtered false,

temperature 0,
pressure 0,
undefined true],

ACTION
WnteStnng("Imtial Transition fired - filter",0),
WnteStnng(", t =",0),
WnteReal(globaltime(),5,2),
WnteLnO,

TRANSITION FilterJ, { filter fuel }
INPUT

{ continuos input defined and changed }
fA <- Fuel_A I fA undefined = false,
fAold <- Fuel_A_01d I fAold filtered <> fA filtered OR

fAold temperature <> fA temperature OR
fAold pressure o fA pressure OR
fAold undefined o fA undefined,

fB <- Fuel_B,

126

s <- Status,

OUTPUT
Fuel_A <- fA,
FueLA_01d <- fA,

{ return conunuos input}
{ copy old fA to Fuel_A_01d }

Status <- s,

{ set filtered = true }
Fuel_B <- fBnew = [filtered true,

pressure f A pressure,
temperature f A temperature,
undefined false],

ACTION
WnteStnng("Filter_f fired - filter",0),
WnteStnng(", t =",0),
WnteReal(globaltime(),5,2),
WnteLn(),

END MODULE

{lllillilllllllUHHIHHIUIIHHII)
{ Heat (heat 1) }
{ Non-Pnmitive Flow Transformation, 2 continous inputs, }
{ 2 contmuos outputs, 1 input Activation prompt }
{//^^ ̂ >

MODULE heat = types(INOUT Fuel_B, Fuel_C fueltype,
INOUT Hot_bleed„air, Air airtype,
INOUT A6 prompttype),

TYPE statuses = (DEACT, ACT),

statustype = TOKEN null WITH { inhent from null }
st statuses,

end,

PLACE Status statustype,
FB_01d fueltype,
Hb_01d airtype,

{ S-elements }

TRANSITION initial,
OUTPUT

Status <- sO = [st DEACT],

{ setup initial marking }

{ dummy tokens }
FB_01d <- fO = [filtered false,

temperature 0,
pressure 0,
undefined true],

Hb_01d <- aO = [temperature 0,

127

pressure O,
undefined true],

ACTION
WnteStnngC’Initial Transition fired - heat”,0),
WnteStnng(", t =",0),
WriteReal(globalUme(),5,2),
WnteLn(),

TRANSITION Heat_f, { heat fuel }
INPUT

{ continuos input must be defined }
fB <- Fuel_B I fB undefined = false,
hb <- Hot_bleed_air I hb undefined = false,

{ continous outputs }
a <- Air,
fC <- Fuel_C,

{ only fire if continous inputs have changed }
hbold <- Hb_01d,
fBold <- FB_01d I ((fB filtered o fBold filtered OR

fB temperature o fBold temperature OR
fB pressure o fBold pressure OR
fB undefined o fBold undefined) OR
(hb temperature o hbold temperature OR
hb pressure o hbold pressure OR
hb undefined o hbold undefined)),

{ must be active }
s <- Status I s st = ACT,

OUTPUT
{ continuos inputs }

Fuel_B <- fB,
Hot_bleed_air <- hb,

{ continuos outputs are defined }
Air <- anew = [temperature a temperature,

pressure a pressure,
undefined false],

Fuel_C <- fCnew = [temperature fC temperature,
pressure fC pressure,
filtered fC filtered,
undefined false],

{ store old values of contmuos inputs }
HbOld <- hb,
FB_01d <- fB,

{ status still active }
Status <- s;

128

ACTION
WnteStnng(MHeat_f fired - heat",0),
WnteStnng('\ t =",0),
WnteReal(globaltime(),5,2),
WnteLn(),

TRANSITION Enable,
INPUT

p <- A6 I p pr = E,
sin <- Status,

OUTPUT
Status <- sout = [st ACT], { active }

ACTION
WnteStnngC'Enable fired - heat",0),
WnteStnng(", t =",0),
WnteReal(globaltime(),5,2),
WnteLn(),

TRANSITION Disable,
INPUT

p <- A6 I p pr = D,
sin <- Status,

{ continous outputs }
a <- Air,
fC <- Fuel_C,

hbold <- Hb_01d,
fBold <♦ FB_01d,

OUTPUT
Status <- sout = [st DEACT],

{ continuos outputs become undefined }
FueLC <- fCnew - [temperature fC temperature,

pressure fC pressure,
filtered fC filtered,
undefined true],

Air <- anew = [temperature a temperature,
pressure a pressure,
undefined true],

{ undefine remembered inputs }
Hb_01d <- hbnew = [temperature hbold temperature,

pressure hbold pressure,
undefined true],

FB_01d <- fBnew - [temperature fBold temperature,
pressure fBold pressure,
filtered fBold filtered,

{ disable se lf}

{ disable from heat_control }

{ from heat_control }

{ enable se lf}

129

ACTION
WnteStnng("Disable fired - heatM,0),
WnteStnng(\ t=",0),
WnteReal(globaltime(),5,2),
WnteLnO,

END MODULE

{flllllllllllllllllillUHHIHIHIIillllil)
{ Heat Bypass (heat_b 1) }
{ Primitive Flow Transformation, 1 continous input, 1 continuos }
{ output, 1 input Activation prompt }
{lllHlllllllllllllllllilllMIIIIUHHIIIIill}

MODULE heat_b = types(INOUT FueLB, Fuel_C fueltype,
INOUT A5 prompttype),

TYPE statuses = (DEACT, ACT),

statustype = TOKEN null WITH
st statuses,

end,

undefined true],

PLACE Status statustype,
FB_01d fueltype,

TRANSITION initial,
OUTPUT

Status <- sO = [st DEACT],

{ dummy token }
FB_01d < - fO = [filtered false,

temperature 0,
pressure 0,
undefined true],

ACTION
WnteStnng("Initial Transition fired - heat bypass",0),
WnteStnng(", t =",0),
WnteReal(globaltime(),5,2),
WnteLnO,

TRANSITION Bypass_f, { bypass fuel}
INPUT

{ contionuos input must be defined and have changed }
fB <- Fuel_B I fB undefined = false,
fBold <- FB_01d I fBold filtered o fB filtered OR

fBold temperature o fB temperature OR
fBold pressure <> fB pressure OR
fBold undefined o fB undefined

{ inhent from null }

{ S-elements }

{ setup initial marking }

130

fC <- FueI_C,
s <- Status I s st = ACT,

OUTPUT
Fuel_B <- fB,
FB_01d <- fB,
Status <- s,
Fuel_C <- fB,

{ active }

{ return input}
{ copy old fB to FB_01d }

{ copy input to output}

ACTION
WnteStnng("Bypass_f fired - heat bypass" ,0),
WnteStnngf, t =\0),
WnteReal(gIobaltime () ,5,2),
WnteLnO,

TRANSITION Enable, { enable se lf}
INPUT

p <- A5 I p pr = E, { from heat control}
sin <- Status,

OUTPUT
Status <- sout = [st ACT], { active }

ACTION
WnteStnng("Enable fired - heat bypass",0),
WnteStnngf, t =”,0),
WnteReal(globaltime(),5,2),
WnteLnO,

TRANSITION Disable, { disable self}
INPUT

p <- A5 I p pr = D, { disable from heat control }
sm <- Status,
fBold <- FB_01d,
fC <- Fuel.C,

OUTPUT
Status <- sout = [st DEACT],

{ continuos output becomes undefined }
Fuel__C <- fCnew = [temperature fC temperature,

pressure fC pressure,
filtered fC filtered,
undefined true],

{ undefine remembered input}
FB_01d <- fBnew = [temperature fBold temperature,

pressure fBold pressure,
filtered fBold filtered,
undefined true],

ACTION

131

WnteStnngO’Disable fired - heat bypass",0),
WnteStnngO’, t =",0),
WnteReal(globaltime(),5,2),
WnteLn(),

END MODULE

{llilllllllllllllllllllllllllHIIIIIIIH}
{ Fuel Control Unit (feu 1) }
{ Non-Pnmitive Flow Transformation, 2 contmous inputs,}
{ 1 contmuos output, 1 input Activation prompt }

MODULE feu = types(INOUT FueLC, Fuel_3 fueltype,
INOUT Control_air_3 airtype,
INOUT A7 prompttype),

TYPE statuses = (DEACT, ACT),

statustype = TOKEN null WITH
st statuses,

end,

PLACE Status statustype,
FC_01d fueltype,
Ca_01d airtype,

TRANSITION initial,
OUTPUT

Status <- sO = [st DEACT],

{ dummy tokens }
FC_01d <- fO = [filtered false,

temperature 0,
pressure 0,
undefined true],

Ca_01d <- aO = [temperature 0,
pressure 0,
undefined true],

ACTION
WnteStnng(”Imtial Transition fired - fuel control unit",0),
WnteStnng(", t =",0),
WnteReal(globaltime(),5,2),
WnteLn(),

TRANSITION Fcu_f, { fuel control unit}
INPUT

{ contionuos input must be defined and have changed }
fC <- Fuel_C I fC undefined = false,
ca <- Control_air_3 I ca undefined = false,

{ inherit from null }

{ S-elements }

{ setup initial marking }

132

caold <- Ca_01d,

fCold <- FC_01d I ((fCold filtered <> fC filtered OR
fCold temperature o fC temperature OR
fCold pressure o fC pressure OR
fCold undefined <> fC undefined) OR
(caold temperature o ca temperature OR
caold pressure o ca pressure OR
caold undefined o ca undefined)),

{ continuos output}
f3 <- Fuel_3,

s <- Status I s st = ACT,

OUTPUT
Fuel_C <- fC,
ControLair_3 <- ca,

{ remember old input values }
FC_01d <- fC,
Ca_01d <- ca,

{ define output based on input}
Fuel_3 <- fout = [temperature f3 temperature,

pressure f3 pressure,
filtered f3 filtered,
undefined false],

Status <- s,

ACTION
WnteStnng(”Fcu_f fired - fuel control unit”,0),
WnteStnng(", t =**,0)>
WnteReal(globaltime(),5,2),
WnteLn(),

TRANSITION Enable,
INPUT

p <- A7 I p pr = E,
sin <- Status,

OUTPUT
Status <- sout = [st ACT], { active }

ACTION
WnteStnng("Enable fired - fuel control umt",0),
WnteStnngC, t =",0),
WnteReal(globaltime(),5,2),
WnteLn(),

TRANSITION Disable, { disable self }
INPUT

p <- A7 I p pr = D, { disable from solenoid valve }

{ enable self]

{ from fuel solenoid valve }

{ active }

{ return input}

133

sin <- Status,

fC <- FC_01d,
ca <- Ca_01d,

f3 <- Fuel_3,

OUTPUT
Status <- sout = [st DEACT],

{ continuos output becomes undefined }
Fuel_3 <- Onew = [temperature D temperature,

pressure f3 pressure,
filtered f3 filtered,
undefined true],

{ undefine remembered input}
FC_01d <- fCnew = [temperature fC temperature,

pressure fC pressure,
filtered fC filtered,
undefined true],

Ca_01d <- canew = [temperature ca temperature,
pressure ca pressure,
undefined true],

ACTION
WnteStnngC’Disable fired - fuel control unit",*)),
WnteStnng(", t =\0),
WnteReal(globaltime(),5,2),
WnteLnO,

END MODULE

{//////////////////////////////////}
{ Dnver Module (apu 1) }
{//////////////////////////////////}

MODULE apu = typesQ,

PLACE
{ signals from terminators }

APU_On
APU_Off
Rpm_95
Tankl.off
Seq_oil_closed

null I self delay(l),
null I self delay(20),
null I self delay(15),
null I self delay(5),
null I self delay(lO),

{ APU ON swtich pressed }
{ APU Off swtich pressed }
{ 95% engme rpm reached }
{ Fuel tank no 1 switch off }
{ sequencmg oil pressure switch
closes }

{ signals to terminators }
Open_door null,
Close_door null,

{ signal to open inlet door}
{ signal to close inlet door }

134

{ diverged APU_Off}
APU.Offl null,
APU_Off2 null,

{ continous data flows }
FueL 1»Fuel_3 fuelty pe,
FueLA, Fuel_B, Fuel_C fueltype,
Hot_bleed_air_2 airtype,
Air airtype,
Control_air__3 airtype,

{ fuel from/to terminators }
{ internal fuel flows }
{ bleed air for fuel heating }
{ exhasut air from heater}
{ air for FCU regulation }

{ activation prompts
A1 prompttype
A2 prompttype
A3 prompttype
A4 prompttype
A5 prompttype
A6 prompttype
A7 prompttype

}
I self flrstO,
I self first(),
I self first(),
I self firstO»
I self firstO,
I self first(),
I self first(),

TRANSITION initial, { setup initial marking }
OUTPUT

APU_On <- eO, { events}
APU.Off <- eO,
Rpm_95 <- eO,
Tankl_off <- eO,
Seq_oil_closed <- eO,

{ dummy values for continuos flows }
Fuel_l <- fO = [filtered false,

temperature 10,
pressure 0,
undefined false],

Hot_bleed_air_2 <- aO - [temperature 90,
pressure 20,
undefined false],

Control_air_3 <- al = [temperature 20,
pressure 20,
undefined false],

Fuel_A <- uO = [filtered false,
temperature 0,
pressure 0,
undefined true],

Fuel_B <- ul = [filtered false,
temperature 0,
presure 0,
undefined true],

135

Fuel_C <- u2 = [filtered false,
temperature 0,
pressure 0,
undefined true],

Fuel_3 <- u3 = [filtered false,
temperature 0,
pressure 0,
undefined true],

Air <- a3 = [temperature 0,
pressure 0,
undefined true],

ACTION
WnteStnngO’Imtial Transition fired - APU driver",0),
WnteStnng(", t - \0),
WnteReal(globaltime(),5,2),
WnteLn(),

TRANSITION Diverge, { diverge APU_Off to APU_Off 1 and APU_0ff2 }
INPUT

e <- APU_Off,

OUTPUT
APU.Off 1 <- e,
APU_Off2 <- e,

ACTION
WnteStnng("Diverge fired - APU driver",0),
WnteStnng(”, t = H,0),
WnteReal(globaltime(),5,2),
WnteLn(),

{ Module instances }

INSTANCE fcvl fcv (APU_On, APU_Off2, Open_door, Close_door, Al, A2),
INSTANCE bpcl bpc (Tank l_off, Rpm_95, A 1, A3, A 4),
INSTANCE pumpl pump (FueLl, Fuel_A, A 4),
INSTANCE pump_bl pump_b (Fuel_l, Fuel_A, A3),
INSTANCE filterl filter (Fuel_A, Fuel_B),

INSTANCE fhcl fhc (FueLB, A2, A5, A6),
INSTANCE heatl heat (FueLB, FueLC, Hot_bleed_air_2, Air, A6),
INSTANCE feat_b heat_b(FueLB, Fuel_C, A5),

INSTANCE fsv 1 fsv (Seq_oil_closed, APU_Off 1, A7),
INSTANCE fcul feu (Fuel_C, Fuel_3, ControLaiO, A7),

END MODULE

136

Appendix B
ESML/LOOPN Prototype Execution Output

Initial Transition fired - APU driver, t = 0.00
Initial transition fired - fuel control valve, t = 0.00
Initial Transition fired - boost pump control, t = 0.00
Initial Transition fired - pump, t = 0.00
Initial Transition fired - pump bypass, t = 0.00
Initial Transition fired - filter, t = 0.00
Initial Transition fired - fuel heater control, t = 0.00
Initial Transition fired - heat, t = 0.00
Initial Transition fired - heat bypass, t = 0.00
Initial transition fired - fuel solenoid valve, t = 0.00
Initial Transition fired - fuel control unit, t = 0.00
Init_t fired - fuel solenoid valve, t = 0.00
Init_t fired - fuel control valve, t = 0.00
T1 fired, valve opens - fuel control valve, t = 1.00
Enable fired - fuel heater control, t = 1.00
Enable fired - boost pump control, t = 1.00
Disable fired - pump, t = 1.00
Enable fired - pump bypass, t = 1.00
Bypass_f fired - pump bypass, t = 1.00
Filter_f fired - filter, t = 1.00
Enable fired - heat bypass, t = 1.00
T1 fired, Heater goes on - fuel heater control, t = 1.00
Disable fired - heat, t = 1.00
Disable fired - heat bypass, t = 1.00
Enable fired - heat, t = 1.00
Heat_f fired * heat, t = 1.00
T1 fired, pump goes on - boost pump control, t = 5.00
Enable fired - pump, t = 5.00
Pump_f fired - pump, t = 5.00
Disable fired - pump bypass, t = 5.00
T1 fired, valve opens - fuel solenoid valve, t =10.00

137

Enable fired - fuel control unit, t =10 00
Fcu_f fired - fuel control unit, t =10 00
T2 fires, pump goes off - boost pump control, t =15 00
Disable fired - pump, t =15 00
Enable fired - pump bypass, t =15 00
Bypass_f fired - pump bypass, t =15 00
Diverge fired - APU dnver, t =20 00
T2 fired, valve closes, fuel solenoid valve, t =20 00
T2 fired, valve closes - fuel control valve, t =20 00
Disable fired - fuel heater control, t =20 00
Disable fired - heat, t =20 00
Disable fired - boost pump control, t =20 00
Disable fired - heat bypass, t =20 00
Disable fired - pump, t =20 00
Disable fired - pump bypass, t =20 00
Disable fired - fuel control unit, t =20 00

138

Appendix C
ST ATEM ATE Prototype Execution Output

SIMULATION TRACE REPORT

Simulation name trace 1
Project APU_CASE_STUDY
Work area /home/l/capg/gclynch/workarea
Operator gclynch

SCOPE

Statechart name State name Watchdog

BPC No
FHC No
FUEL_CONTROL No

CLOCKS DEFINITION

GLOBAL CLOCK Clock unit

Statechart BPC Clock unit
Statechart FHC Clock unit
Statechart FUEL_CONTROL Clock unit

1 SECONDS

1 SECONDS
1 SECONDS
1 SECONDS

139

Changes caused by SUD

Activated activities FUEL_SYSTEM

States entered FUEL_SHUTOFF_VALVE,
FUEL_SHUTOFF_VALVE CLOSED, FUEL_SOLENOID_VALVE,
FUEL_SOLENOID_VALVE CLOSED

Basic states configuration

FUEL_SHUTOFF_VALVE CLOSED, FUEL_SOLENOID_VALVE CLOSED

=== Step 1 Phase 1 Time 0 clock units ===

=== Step 2 Phase 2 Time 0 clock units ===

Changes caused by environment

Generated events APU_ON

Changes caused by SUD

Generated events OPEN_DOOR

Activated activities FILTER, HEAT, PUMP, BP BYPASS_F, FH BYPASS_F

States exited FUEL_SHUTOFF_VALVE CLOSED

States entered FUEL_SHUTOFF_VALVE OPEN, BPC, BPC OFF, FHC,
FHC OFF

Basic states configuration

BPC OFF, FHC OFF, FUEL_SHUTOFF_VALVE OPEN,
FUEL_SOLENOID_VALVE CLOSED

140

Changes caused by environment

Generated events TANK1_0FF

Activated activities PUMP_F, HEAT_F

Stopped activities BP BYPASS_F, FH BYPASS.F

States exited BPC OFF, FHC OFF

States entered BPC ON, FHC ON

Basic states configuration

BPC ON, FHC ON, FUEL_SHUTOFF_VALVE OPEN,
FUEL_SOLENOID_VALVE CLOSED

=== Step 3 Phase 3 Time 0 clock units ===

=== Step 4 Phase 4 Time 0 clock units =====

Changes caused by environment

Changed data_items FUEL_TEMP changed to 70

Changes caused by SUD

Activated activities FH BYPASS_F

Stopped activities HEAT_F

States exited FHC ON

States entered FHC OFF

Basic states configuration

BPC ON, FHC OFF, FUEL_SHUTOFF_VALVE OPEN,
FUEL_SOLENOID_VALVE CLOSED

141

===== Step 5 Phase 5 Time 0 clock units ===

Changes caused by environment

Generated events SEQ_OIL_CLOSED

Changes caused by SUD

Activated activities FCU

States exited FUEL_SOLENOID J/A L V E CLOSED

States entered FUEL_SOLENOID_VALVE OPEN

Basic states configuration

BPC ON, FHC OFF, FUEL_SHUTOFF_VALVE OPEN,
FUEL_SOLENOID_VALVE OPEN

=== Step 6 Phase 6 Time 0 clock units ===

Changes caused by environment

Generated events RPM_95

Changes caused by SUD

Activated activities BP BYPASS_F

Stopped activities PUMP_F

States exited BPC ON

States entered BPC OFF

Basic states configuration

BPC OFF, FHC OFF, FUEL_SHUTOFF_VALVE OPEN,
FUEL_SOLENOID_VALVE OPEN

142

/

=== Step 7 Phase 7 Time 0 clock units ===

Changes caused by environment

Generated events APU_OFF

Changes caused by SUD

Generated events CLOSE_DOOR

Stopped activities FCU, PUMP, HEAT, FILTER

States exited FUEL_SHUTOFF_VALVE OPEN,
FUEL_SOLENOID_VALVE OPEN

States entered FUEL_SHUTOFF_VALVE CLOSED,
FUEL_S OLENOID_V AL VE CLOSED

Basic states configuration

FUEL_SHUTOFF_VALVE CLOSED, FUEL_SOLENOID_VALVE CLOSED

143

