Monitoring and Modelling the Occurrence of **Priority Substances in Wastewater**

Jones, L.*; Regan, F.

National Centre for Sensor Research, Dublin City University, Dublin 11, Ireland

Email: lisa.jones2@mail.dcu.ie

Introduction

In 2000 the Water Framework Directive (WFD), 2000/60/EC, was introduced and a group of 66 chemicals, including pesticides, polycyclic aromatic hydrocarbons, and metals were listed as chosen priority pollutants. The levels of these priority pollutants in the environment are regulated by set environmental quality standards (EQSs) and are affected by a number of emission factors including anthropogenic activities, population equivalents, and weather. In order for these EQSs to be enforced, regular monitoring of all water bodies must be carried out, a process which is both costly and time consuming. We have developed a model defining emission levels relating to priority pollutants occurrence in the environment. This is based on information collected from local authorities, Met Eireann and pollutant levels in waste water treatment plant (WWTP) effluents.

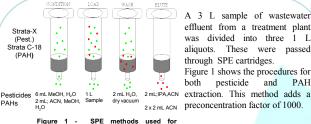
This study involved the analysis of samples from 8 WWTPs in both Cork and Dublin, Ireland, for priority pollutants, Table 1. These sites were chosen for their varying population equivalents, geographic locations, and main contributions, in order to make the final model of emission factors as comprehensive as possible.

Table 1 – Comparison of WWTPs included in this study, with the largest sites; Ringsend and Swords, located in County Dublin, and the rest of the sites located in County Cork.

WWTP:	Ringsend	Swords	Ballincollig	Bandon	Charleville	Fermoy	Mallow	Ringaskiddy
Population Equivalent	1,900,000	50,000	26,000	20,000	15,000	20,000	18,000	97,556
Main contributions	Industrial and domestic		Domestic and Industrial					
Level of treatment	Tertiary		None					
Type of sample	Grab	Composite Grab						Composite

Wastewater effluent was the chosen medium for this study for a number of reasons; Wastewater major point-source

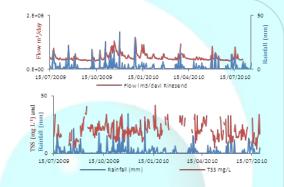
Responsible for localised EQS exceedances

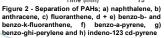

Often upstream of drinking water abstraction

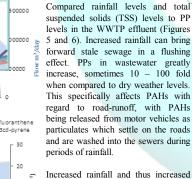
Can be controlled

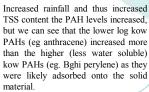
Few data on wastewater PS discharges

Will complement storm water studies, and inform targeted PS

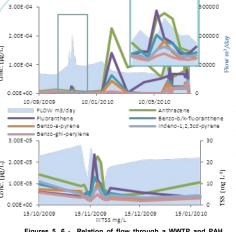

Results


effluent from a treatment plant was divided into three 1 L aliquots. These were passed through SPE cartridges. Figure 1 shows the procedures for pesticide and extraction. This method adds a


extraction 1000000 800000 600000 200000


A 3 L sample of wastewater effluent from a treatment

Figures 3, 4 - Relation of flow through a WWTP and local rainfall. Then relation of rainfall to total suspended solids (TSS) levels in WWTF



Parameter	AA EQS (μg L ⁻¹)	LOD SPE-GCMS (µg L-1)	Frequency (N=71)	Rang	je
				Min	Max
Naphthalene	1.2	0.0001	48	1.07 x 10-4	0.035
Anthracene	0.1	0.0005	27	6.30 x 10 ⁻⁴	0.013
Fluoranthene	0.1	0.0001	28	1.40 x 10 ⁻⁴	0.0086
Benzo-b/k- fluoranthene	Σ=0.003	0.0001	29	1.20 x 10 ⁻⁴	0.0044
Benzo-a-pyrene	0.05	0.0005	19	5.50 x 10 ⁻⁴	0.0036
Indeno-1,2,3cd- pyrene	Σ=0.002	0.0005	35	1.55 x 10 ⁻⁴	0.0025
Benzo-ghi- perylene		0.0005	20	5.90 x 10 ⁻⁴	0.0032

CONCLUSIONS

Relation of flow through a WWTP and PAH with the insert highlighting the value concentration, intensive sampling data. Relation of PAH concentration to total suspended solids levels in WWTP effluent.

