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Abstract 

 

Objective The purpose of this article is to determine the feasibility of using computer assisted diagnosis 

(CAD) techniques to automatically identify, localize, and measure body fat tissue from a rapid whole-

body MRI examination 

 
Design Prospective investigative study. 

Setting Dublin, Ireland.  

 

Participants 42 volunteers (21 male, 21 female) aged 18 to 56. The study group consisted of healthy 

volunteers with a wide range of body weights, and included a cohort of high performance athletes. 

 

Main outcome measures The provision of an automated system, which assesses subjects’ whole body 

MRI scans and which provides numerical and visual feedback to illustrate the findings. The system 

generates results in a matter of minutes allowing for an initial assessment to be performed immediately 

following the completion of an MRI scan. By highlighting areas where body fat is concentrated the 

system allows radiologists to quickly identify and examine regions of interest in the scan. 

 

Results Rapid, accurate, and reproducible delineation of body fat distribution can be obtained using 

whole body MRI techniques and Computer Aided Diagnosis. 

 

Conclusions Whole-body MRI in conjunction with CAD allows a fast, automatic, and accurate 

approach to body fat measurement and localization and can be a useful alternative to body mass index. 

Whole-body fat analysis can be achieved in less than 5 min. 
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Introduction 

 

The accurate determination of a person’s total body fat is an important issue in medical analysis because 

obesity is a significant contributing factor to a variety of serious health problems. The medical literature 

identifies a wide range of diseases that are closely linked to obesity. Current methods of fat assessment 

are largely inaccurate, and most current methods of fat determination cannot show regional fat 

distribution, which is important in defining disease risk. We introduce a method that combines 

computer-aided techniques with whole-body MRI techniques and enables accurate quantification and 

visualization of total body fat burden and regional fat distribution. This technique may be important in 

identifying and treating at-risk populations 

 

Materials and methods 

Patients 

This study included 42 patients (21 men and 21 women) who were recruited through local in-hospital 

advertising and a hospital-related sports clinic. These volunteers included a cohort of international 

rowers, a group of elite athletes in whom body fat estimation is of particular importance as individuals 

are weight restricted. Local institutional board approval was obtained. Informed consent was acquired 

from each subject, and his or her weight and height were recorded. These were used to calculate the 

body mass index (BMI) in each patient. 

 

Full body MR acquisition  

MR images were acquired on a 1.5 T imaging unit (Intera, Philips Medical Systems), which was fitted 

with a tabletop extender and allowed automated table movements. With the tabletop extender, 

caudocranial coverage of 200 cm is achieved, which allows examination of all but the tallest subjects. 

Images are acquired in six to seven fully integrated stacks with a small overlap. We acquired coronal 
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T1-weighted gradient-echo images (TR/TE,112/1.62; flip angle, 70°, number of signals averaged, 1; 

matrix, 256 × 256; 80% rectangular field of view, 189 × 189). Automated voxel interpolation was used 

to yield voxels of 2.02 × 2.02 × 8.00 mm3 

For the scanning process, patients are placed supine with their hands crossed over the abdomen. This 

enables the subjects’ upper limbs to be imaged. We had initially placed the subjects’ hands by the sides 

but found that this caused aliasing artifact. After imaging, the raw data are transferred, in DICOM 

format, to a workstation for analysis. At the workstation, complex sets of algorithms are sequentially 

applied to each data set to isolate fat. 

 

Analysis of DICOM images 

 

In full-body MRI, the subject is imaged in a set of overlapping coronal sections. The resulting series of 

MR images must be reconstructed into a volumetric data set to facilitate analysis. There are two issues 

that require particular attention in this process: spatial registration and gray-scale matching. To achieve 

correct spatial registration, we use location and orientation vectors stored in the DICOM headers. This 

allows us to accurately position each image within a global coordinate system. In this way, we can 

account for any overlap between adjacent coronal slices and correctly generate the final volume.  

Gray-scale matching is necessary because there can be significant intensity offsets between successive 

coronal sections due to the nature of the MRI acquisition process, particularly the close spatial 

relationship of the back to the receiver coils. It is necessary to minimize these effects to optimize the 

performance of the automated analysis procedure. We achieve this using histogram matching. An 

intensity histogram is constructed for each coronal section, the characteristic peak representing soft 

tissue is algorithmically identified in each case, and the set of peaks are aligned to match the gray-scale 

distributions across all sections. 
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Image Segmentation 

 

A visual examination of the images contained in the data sets reveals that the fat tissues tend to have 

a higher gray-scale value than other tissues. But these images also indicate that there is a high gray-

scale variation within the image regions representing fat tissues. Also, even after histogram matching, 

the gray-scale values for fat in some situations overlap those associated with other nominally lower-

intensity tissues such as those representing liver or brain. Therefore, accurate segmentation cannot be 

achieved by applying simple methods based on thresholding. To cope with these problems, we have 

devised a four-step segmentation algorithm. An initial threshold level is calculated based on an analysis 

of the data histogram. The peak representing soft tissue is located, and voxels with values that fall above 

the end of this peak are initialized as potential fat voxels. We then use a boundary-enhancement step to 

compensate for signal drop-off in some peripheral regions of the data. Next we apply a 3D region-

growing procedure. Finally, we apply a region-refining process whereby the candidate voxels are 

grouped into connected regions [1]. Through this process, we arrive at a robust segmentation of the 

signal due to fat tissue within the data volume. 

 

Total body fat calculation 

Calculation of the total body fat (TBF) is performed using the following formula:  

 

TBF = (NFatVoxels)(Voxel_Dim)(Fat_Density) 

 

where NFatVoxels is the total number of fat voxels contained in the data set, Voxel_Dim is the voxel 

dimension (in cm3), and Fat_Density is the density of the fat tissue (in g/cm3). The voxel dimensions 

can be extracted from the DICOM header and the data sets used in our study have mostly had 

dimensions of 2.02 × 2.02 × 8.00 mm3 . The medical literature indicates that fat tissue density can be 

regarded as constant [2] and is usually assigned a value of 0.9196 g/cm3. The fat content is determined 
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by counting the fat tissue voxels contained in the segmented data (marked in yellow in Fig. 1). We 

normalized these values to yield the total body fat in kilograms. 

 

Results 

Basic User Functions 

Analysis results are presented in a number of ways. Simple orthogonal review allows axial, coronal, and 

sagittal sections to be examined, highlighting regions that have been classified as body fat. Color mark-

up of the images provides effective visual feedback, improving the readability of the data (Fig. 1). This 

form of review also allows detailed examination of the distribution of fat throughout the body and 

facilitates the easy identification of areas of particular fat concentration.  

Three-dimensional volume-rendered views (Fig. 2) provide an excellent overview of the data, and when 

used with data space clipping, can effectively visualize the body fat distribution within a volume of 

interest, providing a more complete view and comprehensive breakdown of the distribution of fatty 

tissue within the body. 

In addition to these visual tools, numeric results are presented to the user. Figure 3 shows an example of 

the typical results generated by the system. Estimates are made of the subjects’ height and weight, and 

measurements are performed to calculate values for the actual and percentage body fat detected, 

measured by volume and by weight. All these calculations are performed automatically without any 

initialization or subsequent intervention required on the part of the user. The entire analysis process, 

from raw DICOM data to final results, takes less than 2 min.  

A database of 42 data sets (Table 1) containing 21 men and 21 women in the age range 18–56 years was 

used to assess the segmentation algorithm. The BMI was calculated directly from the patients’ mass and 

height and indirectly using the segmentation results. The directly measured BMI values of these data 

sets range from 18 to 35. Comparison of the direct and indirect methods was used to validate the 

segmentation procedure, and a good correlation was found (Fig. 4). Much of the data spread in the 
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graph in Figure 4 is due to incomplete body acquisitions in the MRI scanner. Restricting the data to the 

21 most complete data sets, where data loss at the extremities, especially at the feet of tall subjects, is 

kept to a minimum, results in a far superior straight-line fit with greatly reduced deviations from the 

fitted line in the restricted data subsample. This is shown in the broken line and its associated subset of 

data points indicated in Figure 4. The sample points representing incomplete acquisitions all fall above 

the broken line and pull the full-sample trend line (the solid line) in an upward direction. This reflects 

the relative effect of the missing data on the BMI and percentage body fat calculations. The missed data 

represent a relatively small volume and, therefore, weight (the feet and ankles), but can result in a 

disproportionately large variation in the estimated height of the subject. With down-pointing toes, the 

change can be as much as 30 cm in some cases. 

These two factors result in little difference in the estimated percentage body fat but can cause a 

significant elevation in the estimated BMI value since the subject is estimated to be shorter but not 

much lighter than would be the case were the measurements based on a complete data set. Note that in 

the case of complete data sets, the automatic method consistently estimates a BMI less than the 

measured BMI. This is due to an overestimation in the height caused by down-pointing toes. An 

alteration in the acquisition protocol supporting the subject’s feet vertically could correct for this. 

Correspondingly, calculated BMIs based on incomplete data sets tend to be higher than the equivalent 

measured values for the reasons given. These observations support the assertion that the automatic 

measurements achieved represent accurate results for the data under examination. Avoiding errors in 

height estimation can be easily performed by supporting the feet in a neutral position and by 

recognizing that 200 cm is the maximum obtainable coverage. With careful technique, all but the tallest 

patients can be included.  

The measure that is of greater interest is that of percentage body fat, the accurate determination of 

which was the main goal of the study. The results showed that there was a reasonable correlation 

between this measurement and BMI, with the expected sex differences as highlighted in Figure 5. 

However, the complexity of the relationship illustrated in Figure 5 confirms the recognized 
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shortcomings of BMI as a measurement of body fat level. The results for the cohort of international 

rowers highlight their unusually high muscle mass, showing one of the drawbacks of BMI—its inability 

to distinguish between body mass stemming from different sources. The results are presented in Table 1 

and Figures 4 and 5. In all cases, results were obtained within minutes of receiving the DICOM data. 

 

Discussion 

Obesity is increasingly recognized as a major health problem in the developed world. An emotive issue 

that is firmly in the public eye, fat deposition is a complex process that is poorly understood. Genetic, 

environmental, and hormonal influences are all known to have an effect. It is known from diseases such 

as growth hormone deficiency and hypercortisolism, which predispose to increased fat deposition, that 

abnormal fat distribution often occurs in a central or visceral distribution. This visceral adiposity is a 

known risk factor for hypertension and cardiovascular disease [3]; cerebrovascular disease [4]; insulin 

resistance and type 2 diabetes [4]; endometrial, colon, and other forms of cancer [5]; and depression and 

other psychological dysfunctions [6–8]. Despite extensive research interest in obesity, estimation of 

body fat content in a noninvasive manner is difficult. Widely used anthropometric measurements are 

crude markers of body fat distribution and also allow no breakdown of regional distribution of fat. In 

addition, they are subject to extensive inter- and intraobserver error and have poor reproducibility. 

Many authors have questioned their validity in defined populations such as the young [9] and in 

different ethnic groups [10]. The derivation of body fat from anthropometric means is difficult and 

requires the use of equations, more than 3,000 of which have been validated in different age, sex, and 

ethnic populations.  

The BMI, which infers body fat content from height and weight alone is convenient for mass screening, 

but again, its validity has been questioned in different ethnic groups and age populations [11–13]. It is 

also known to be inaccurate in athletic individuals [14, 15] and elderly individuals [14, 16] due to 

extremes of muscle content. In addition, it gives no insight into the regional distribution of fat.  
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Complex laboratory-based methods of total body fat measurement include techniques such as 

hydrodensity, radioactive dilution, and air displacement (Bod Pod, Life Measurement). While water 

displacement is recognized as the gold standard, it is time consuming, extremely inconvenient, and not 

widely available. The validity of some of these techniques has also been questioned [17–19].  

More recently, new techniques have been developed, and among the most important are dual-energy X-

ray absorptiometry (DEXA), near infrared interactance (NIR), and total body electrical conductivity 

(TOBEC). DEXA is probably the most widely available and appears to be reasonably accurate, 

although it does require ionizing radiation exposure. TOBEC, segmental, and total body impedance 

infer body fat distribution from resistance to an electric current and have their detractors [18, 20, 21]. In 

most cases, these techniques are accurate but the equipment is dedicated and expensive, and this is a 

deterring factor for their application in current medical investigations. In addition, DEXA requires 

exposure to ionizing radiation.  

In our study, we compared our investigational method for fat analysis with BMI alone. While a broad 

correlation was obtained, we think that most of the disparity between the two techniques is based on a 

flawed reference standard. Comparison with a better method of fat analysis such as water displacement 

would have increased the validity of our results, but we did not have access to such techniques. 

Furthermore, institutional review board restrictions precluded us from using any methods that included 

ionizing radiation. Finally, even if we had an absolute reference method available for comparison, no 

gold-standard test exists today for quantifying regional fat distribution, which we think is one of the 

more important outcomes of our research methods.  

Previous authors have used cross-sectional imaging techniques to estimate body fat content [22–24]. CT 

is widely available, quick, and, because of the unique reproducibility of fat attenuation, suitable for 

automated image analysis. However, the prohibitive dose of radiation involved precludes its use in a 

general population. In addition, whole-body imaging using a helical or newer generation MDCT would 

necessitate extensive image interpolation, thus potentially introducing bias.  
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MRI, although not as widely available as CT, is becoming more widely used and does not entail 

ionizing radiation. Previous authors have determined the accuracy and reproducibility of MRI for fat 

analysis when compared with cadaveric dissection [25] and in animal models [26]. On T1-weighted 

imaging, fat returns high signal because of a high concentration of relatively immobile protons. Only 

paramagnetic substances such as iron or melanin, highly viscous fluids, and moving spins (e.g., flowing 

blood) also return high signal using this sequence. Iron and melanin are not present in the body in any 

meaningful quantities. In addition, because we acquired coronal images oriented parallel to the axes of 

most major blood vessels, flow-related enhancement was not a major issue.  

Although MRI for fat analysis has already been used by previous authors, a review of the literature 

reveals that a wide spectrum of techniques has been used, often consisting of single or selected slices, 

with subsequent extrapolation to the remainder of the body [27–30]. Other early studies on whole-body 

MRI for fat analysis used gaps of 1–3 cm between axial slices, which require interpolation and thus 

inevitably introduce bias. Indeed, previous authors have shown that subsampling and limited scanning 

do introduce bias and increased uncertainty into recorded fat measurements [29]. In our study, we 

achieved whole-body coverage without slice gaps, thus eliminating any potential for bias and ensuring 

accurate and reproducible results. In addition, developments in hardware, field homogeneity, and the 

use of gradient-echo sequences have reduced our imaging time to approximately 140 sec.  

Our technique effectively divides the body into voxels of 2.02 × 2.02 × 8.00 mm3 . By dividing the 

body into such small 3D voxels and subsequently using computer-assisted diagnostic (CAD) techniques 

as outlined, a definite representation of fat distribution is obtained, and potential inaccuracies due to 

partial volume effects are kept to a minimum. A degree of controversy exists in the literature as to the 

exact biochemical consistency of the tissue detected as fat by MRI. However, most authors accept that 

adipose tissue is composed of 84.67% triglyceride, 12.67% water, and 2.66% protein, giving a density 

of 0.9196 kg/L [31]. In addition, this biochemical consistency appears to be homogeneous throughout 

the human body, so that confounding variables that underlie the difficulties with other body 

composition methods such as age, sex, and ethnic origin are removed. Thus, the use of equations, apart 
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from the automated total body fat calculation mentioned previously, is removed. In our cohort of 

patients, we examined a group with a wide spectrum of body fat levels and distributions without 

obvious detriment or difficulty, including athletes who are ill served by other available methods.  

In this investigation, we illustrate how the use of CAD techniques based on the methodologies of 

advanced image processing and analysis can be used to quantify the fat distribution within the body in 

sequences of fullbody MR images. The outcome of this research effort is a system that assesses a 

subject’s full-body MRI scan, providing numeric and visual feedback to illustrate its findings. This 

system generates results in a matter of minutes, allowing for an initial assessment to be performed 

immediately after the completion of an MRI scan. By highlighting areas where body fat is concentrated, 

the system allows radiologists to quickly identify and examine regions of interest in the scan.  

The system’s numeric outputs also provide an accurate measurement of body fat as a percentage of 

whole-body mass. This is an important metric, which is difficult and time consuming to derive by 

alternative means. As alluded to previously, the distribution of actual fat tissue in the body is an 

important measurement of health and overall fitness and is not well quantified by BMI. In this regard, 

the assessment of body fat in athletes involved in programs of intensive training was an area of 

particular importance in our study. The ability to localize fat distribution and to show an athlete exactly 

where it is on the body is of great interest because such information can be used to help shape the 

training schedule of the athlete. This has particular import for many weight-restricted athletes, such as 

rowers, boxers, and jockeys. The entire body is covered, without gaps, in an imaging time of 

approximately 2 mins 20 secs, and 32 coronal slices of 8 mm thickness are acquired for each of the six 

to seven stacks. 

Although we had a cohort of athletes in our study, this technique could be applied to obese patients with 

equal facility. To account for greater body mass, the slice thickness can be increased, which slightly 

reduces the specificity of the technique, or the number of slices can be increased, which slightly 

increases the time of acquisition. All MRI tables have tabletop weight restrictions (usually 300–350 lb) 

and limited bore size (60 × 60 cm on the Intera). These restrictions preclude analysis of extremely large 
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patients on the system we used. However, the offline analysis program we have developed could be 

applied to data from any MRI machine, and because it realigns information according to information 

obtained in the DICOM header, whole-body analysis could be applied even without a moving tabletop, 

as long as meticulous patient positioning was observed. Hence, the imaging units that are currently used 

to image the largest patients in clinical practice today could be adapted to measure body fat content with 

this software.  

In conclusion, we have developed a technique that, by combining MRI and CAD, makes it possible to 

improve the ease, efficiency, and effectiveness with which the analysis of body fat distribution can be 

conducted on a routine basis.  
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TABLE 1: Estimated Body Mass Index, Calculated Body Mass Index, and Derived Body Fat Detected

 
Male 

Subjects Age Measured 
BMI 

Calculated 
BMI 

Calculated 
% Body Fat  

Female 
Subjects Age Measured 

BMI 
Calculated 

BMI 
Calculated 
% Body Fat 

1 31 32.6 28.67 29.45 1 27 19.3 18.11 21.06 
2 33 24.1 23.54 17.27 2 29 24.8 23.53 30.54 
3 32 25.4 23.73 27.79 3 20 20.3 19.72 19.61 
4 51 27.3 24.43 16.85 4 53 26.8 24.07 34.36 
5 29 25.0 22.76 17.36 5 56 22.5 20.77 28.66 
6 29 24.8 22.59 6.97 6 27 20.8 20.23 25.21 
7 29 25.0 23.68 13.06 7 21 24.6 21.73 30.29 
8 28 21.6 19.58 4.77 8 43 21.9 20.59 29.02 
9 49 31.1 28.42 30.07 9 41 25.6 26.69 37.46 

10 52 34.7 32.58 25.98 10 19 18.0 17.68 15.89 
11 24 28.7 23.18 6.24 11 26 21.8 22.21 16.39 
12 28 28.7 26.91 31.79 12 18 25.3 26.83 28.89 
13 23 26.3 22.62 10.32 13 26 30.5 30.96 38.05 
14 19 21.5 19.63 11.63 14 33 22.8 24.11 17.99 
15 28 26.3 25.58 20.04 15 23 20.5 22.10 23.71 
16 25 18.9 22.30 11.57 16 25 20.3 20.89 19.97 
17 26 26.9 24.80 12.21 17 25 29.4 30.74 41.67 
18 24 20.9 21.12 6.24 18 27 25.7 25.86 31.78 
19 26 27.7 27.58 21.19 19 55 25.1 28.52 35.20 
20 30 26.0 25.20 14.96 20 53 20.8 24.27 29.66 
21 45 29.9 32.70 28.3 21 42 23.7 23.65 25.16 

 

Note—BMI = body mass index.
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Fig 1. 28-year-old female volunteer. System display output illustrating localized regions identified as fat 
(marked in yellow in image on right). Slider bar allows user to step through image sequence. Image on 
left is original data after alignment and basic image processing to reduce noise artifacts



 
 

15 

 
 
Fig 2. - 28-year-old female volunteer. Volume rendering of full-body MRI data set giving overview of 
patient's superficial body-fat distribution. This fully interactive 3D model allows flexible data clipping 
to be performed, which enables detailed analysis of regional fat distribution 
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Fig 3.- —System output text on per patient basis in 31-year-old male volunteer. Two slightly different 
methods for  fat calculation are used. DICOM weight is that entered by the MRI technologist and is 
inaccurate in this patient, whose body weight was 102 kg. System provides accurate assessment of body 
fat. By applying clipping tool to 3D volume-rendered image (see Fig. 2), similar detailed voxel-by-
voxel interrogation of particular body region can be performed.
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Fig 4. 
Comparing manually measured BMI and the automatic CAD calculation. This illustrates that the CAD 
system does a good job in matching the manual BMI measurements. This test was used as an initial 
validation of the segmentation procedure and demonstrates that the CAD system developed produces 
reliable measurements. See the text for a full discussion. 
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Fig 5. 
BMI mapped against percentage body fat. The data is divided by gender and the two trend lines clearly 
illustrate the gender difference. Men tend to have a lower percentage body fat than women for the same 
BMI. The very lean subjects coming from the cohort of athletes examined further lift the trend line for 
the male subset, as their high muscle mass offsets low body fat and results in relatively high BMI values 
in this group, situated at the extreme left of the graphed data. The complexity of the relationship 
between percentage body fat and BMI illustrates the shortcomings of BMI as a reliable indicator of  
body fat. 
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