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Chapter 1: Introduction 

Abstract

This introductory chapter establishes the theoretical and contextual background for the 

application o f neural networks and genetic algorithms to solving chemical problems.

This chapter is divided into three major sections, namely neural networks, genetic 

algorithms and a literature review o f previous applications o f these techniques. Each of 

these sections are further subdivided into subsections. In the case o f the neural networks 

section, the order o f the subsections reflects a logical progression from small to large 

scale properties o f biological neural systems. This progression is again expressed in the 

descriptions o f artificial neural networks (ANNs). A number o f different ANN 

architectures which have found chemical applications or have been discussed in a 

cognitive context are described, with particular emphasis on the backpropagation training 

algorithm for feedforward networks.

The genetic algorithms section mainly describes the formal framework underlying 

the use o f the simple genetic algorithm (SGA) and Holland’s Schema Theorem. The 

applications section is divided into those applications which involved neural networks 

and those which involved genetic algorithms.

1.1 Biological Basis For ANNs

1.1.1 Neural Structure [1-5]

Neurons are a class of cells which are highly specialised for impulse conduction in 

the nervous system. While they differ dramatically in morphology depending on their 

functionality, the motor neuron provides a good general model for neural structure. The 

neuron can be divided into three main regions, dendrites, cell body and axon (figure 1.1).
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F ig u re  1 .1  - G r a p h ic a l d e p ic tio n  o f  a  m o to r  n eu ro n  (taken  f r o m  re fe re n c e  2)



The cell body contains a well defined nucleus and nucleolus surrounded by granular 

cytoplasm. It also contains Nissl bodies and neurofibrils. Nissl bodies are orderly 

arrangements o f granular rough endoplasmic recticulum and free ribosomes whose 

function is protein synthesis. Neurofibrils are long thin fibres whose function is to 

provide structural support to the cell body.

Dendrites are a series of short extensions to the cell body which are responsible 

for receiving information and transmitting it to the cell body. The dendrites are profusely 

branched and have a spiny appearance, the resultant dendritic tree surrounds the neuron 

for an area o f approximately 400(im in radius. An axon is an extension from the cell 

body which is responsible for transmitting information the cell body to other nearby 

neurons. It is generally longer and thicker than dendrites although the length of an axon 

can vary greatly depending on the type o f neuron which it is a part. Axons for neurons 

inside the brain can be about 2cm in length but an axon which runs from the spinal cord 

to the feet can be over lm  long. Axons also vary in diameter and this is related to their 

rate o f impulse conduction. Axons contain one or more side branches called axon 

collaterals and both the axons and collaterals each terminate by branching into numerous 

fine filaments called telondria or axon terminals. The distal ends o f the telondria are 

themselves terminated by synaptic end bulbs which are responsible for transmitting 

information across a synapse to the dendrites of an adjacent neuron.

Variations on this structure are found in cases where a neuron may have no 

obvious axon but only extensions that seem to receive and transmit information an 

example o f which includes some cells in the retina. Similarly axons may form synapses 

on other axons and dendrites, examples o f which are found in the retina, thalamus and 

spinal cord although it is rare or absent in the cerebral cortex.
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A neuron has a potential o f -70 mV caused by differences in the concentrations o f 

ions on either side o f the neural cell membrane. A physical or chemical stimulus can 

trigger a sudden exchange o f ions across the membrane which increases the potential of 

the neuron. I f  this potential exceeds a particular potential called the threshold a pulse or 

action potential (+30 to +40 mV) is stimulated.

The period between the membrane potential difference reaching its threshold and 

the onset o f the action potential is known as the latent period. The peak in the potential 

of the neuron is then followed by a period of gradual decline (figure 1.2). The absolute 

refractory period is the time during which a stimulus no matter how strong cannot evoke 

a second action potential as the neuron re-establishes its chemical and electrical 

equilibrium. Following the absolute refractory period there is a relative refractory period 

during which the neuron will not respond to a stronger than normal stimulus. These 

refractory periods place a limit o f about 200 action potentials which can be generated per 

second which is about 1 million times slower than the transmission of electrons in fast 

electronics. Similarly the axon which is analogous to an insulated cable is not that well 

developed for impulse conduction because of its low membrane resistance and high 

resistance across its axis, meaning that signals that enter the axon tend to be dissipated in 

1 or 2 mm. To travel distances the action potential has to be regenerated periodically.

This need to boost the signal also limits the maximum speed at which an impulse travels 

to about lOOm/second.

However the nervous system has a major advantage over conventional serial

electronics by processing information in parallel. Since there are about 10^  neurons in
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F ig u re  1 .2  - C h a n g es  in  m e m b ra n e  p o te n t ia l  d u r in g  an  a c tio n  p o te n t ia l .  The s tim u lu s  
is  a p p l ie d  a t  tim e  S. The la te n t  p e r io d  is  sh o w n  b y  tim e  L  (ta k en  f r o m  
re fe re n c e  2)



the central nervous system there is a potential maximum communication speed of about 

1014 pulses/second.

1.1.3 Synapse

The space between the synaptic end bulbs of the axon and the synaptic contacts 

on the dendrites o f an adjacent neuron is called the synaptic cleft. This cleft can be about 

20-30 nm wide and has too high a resistance for the small current of the nerve impulse to 

cross. The synapse is the mechanism by which a nerve impulse is transmitted from one 

cell to another and is mainly chemical rather than electrical in nature. When an impulse 

travelling down the axon o f the presynaptic neuron reaches it terminal, it stimulates the 

release o f excitatory or inhibitory neurotransmitters.

A neurotransmitter which has an excitatory effect increases the membrane 

potential o f the post-synaptic neuron to bring the potential closer to its threshold value.

A neurotransmitter which has an inhibitory effect reduces the potential o f the post- 

synaptic neuron.

The receiving neuron has thousands of dendrites receiving synapses from 

different presynaptic cells. The firing o f the receiving neuron is thus dependent on the 

net effect o f the excitatory and inhibitory neurotransmitters to produce a potential that 

may be large enough to exceed its threshold and trigger an impulse.

There are a wide variety o f neurotransmitters including serotonin which has an 

inhibitory effect and noradrenaline which can be excitatory or inhibitory. Many drugs 

can affect the neural function by interfering with the synapse, these drugs include LSD 

which combines indiscriminately with the receptor sites for serotonin, and amphetamines 

which increase the release of noradrenaline in the brain.
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The brain is composed of the brainstem, midbrain and forebrain. The brainstem contains 

the medulla oblongata and the pons which act as conduction pathways for motor and 

sensory impulses between the brain and spinal cord and connecting different parts o f the 

brain to each other (figure 1.3).

The forebrain contains the thalamus, hypothalamus and cerebrum. The thalamus 

acts as the principle relay centre for sensory impulses to the cortex and also functions as 

an interpretation centre providing conscious recognition o f pain, temperature, crude 

touch and pressure. The major function of the hypothalamus is the regulation o f the 

pituitary gland and the synthesis o f hormones stored there, providing a link between the 

endocrine and neural systems. The cerebrum makes up the bulk o f the brain and is 

composed of the cerebral cortex and cerebral white matter.

1.1.4 Neural Arrangement In The Brain [6-8]



F ig u re  1 .4  -  L a te ra l v iew  o f  th e  ce re b ru m  (taken  f r o m  re fe re n c e  2)



surface area o f approximately 0.2 m^ which is approximately three times greater than if it 

had been smooth. It is about 2-4 mm thick and consists o f about 100 billion neurons 

arranged in six layers. In many regions o f the cortex, groups o f adjacent neurons 

aggregate into higher functional units known as microcolumns. Such microcolumns act 

by responding to particular stimulus features. Adjacent microcolumns cannot be 

precisely separated, instead there tends to be a gradual transition in the membership o f 

individual neurons. Microcolumns themselves are organised in specialised areas, each of 

these areas being a module for a specific task. Most o f the cortical areas fall into one of 

three groups (figure 1.4) namely primary and secondary sensory areas, association fields 

and primary and secondary motor areas. The sensory or somesthetic areas receive 

sensations from cutaneous, muscular and visceral receptors in various different parts of 

the body. Specific neurons on the surface of the cortex receive these sensory stimuli. If 

a body part is rich in sensors then more neurons on the sensory cortex are required to 

receive those impulses. Hence the size o f the cortical area which represents the body 

part is determined by its sensory importance with the lips, tongue and fingers being 

represented by large cortical areas. The representation of the sensory receptors on the 

cortex display a topographic ordering in which adjacent receptors are mapped to 

adjacent cortical neurons. In these topographically ordered sensory maps a spatially 

localised peak is generated from the activity pattern o f the cortical neurons whose 

location represents the signal features being analysed. Topographic maps also exist in 

the motor regions in which a spatially localised peak creates an activity pattern among 

motor neurons that triggers a particular movement.
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The association fields are responsible for integrating and interpreting sensory 

signals and also for the storage of memories o f past sensory experiences allowing 

comparisons to be made with current sensory signals.

While it may not be possible at present to relate specific neural arrangements to 

particular cognitive functions, it can be seen that particular areas o f the brain, which 

contain highly dense organisations o f neurons can be related to these functions. Some of 

the networks which will be discussed later, function by closely mimicking naturally 

occurring neural arrangements and processing e.g. Kohonen’s self-organising feature 

map.

1.2 Cognitive Aspects Of Neural Networks [9-16]

While there is increasing understanding of the cellular and molecular levels o f the 

brain and nervous system, higher cognitive functions are much more difficult to study 

because o f the complexity o f the different levels of organisation o f the nervous system. 

Modelling the brain can proceed by either using realistic memory models or simplified 

models. Realistic brain models involve large scale simulations o f the brain that try to 

incorporate as much of its cellular detail as possible. But the realism o f the modelling 

strategy produces its own problems. As the model is made increasingly realistic and 

hence more complex, by the addition of more variables and more parameters, the model 

runs the risk o f becoming as poorly understood as the nervous system it is simulating. 

Another problem occurs because all the cellular details o f the nervous system are not 

known yet, producing the risk that some important cellular features could be omitted 

from a model hence invalidating its results. Finally realistically modelling such complex 

systems tends to be highly computer intensive.
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An alternative approach to modelling the function o f the nervous system is to use 

a simplified brain model, connectionist or neural network models perform this function 

and allow the relationship between learning and representation to be studied.

Representation in the brain involves local coding o f memories which are repeated 

in different regions o f the cortex. This may have been a strategy developed by evolution 

as a security against damage to the cortex, because damage to any local part o f the 

cortex would not block its signals, but rather cause them to be re-routed around the 

damaged area.

Memories are stored and retrieved in computers by sending binary encoded 

messages to specific memory locations described by an address. However information in 

the CNS is transferred in a more irregular fashion which makes it less likely that precise 

information is sent to a precise address. Rather memory is considered to be content- 

addressable which means that fragments of a memory can be used as an address to 

retrieve the whole memory. The storage o f memories within a limited capacity network 

performed by short term memory (STM) can be mimicked by the Hoplield network 

which can be specified and completed to retain only the most recent information it 

received. The process o f forgetting or erasure o f STM traces can be described in 

Hopfield nets as resulting from interference o f recent memories over older ones.

One of the features of the human cognitive system is its ability to adapt to 

environments whose rules may change unpredictably, without losing skills already 

learned. An adaptive resonance technique (ART) was developed by Grossberg and 

Carpenter to mimic this stable-plastic property. An ART is capable o f plasticity to learn 

about new events but yet remain stable and retain pre-existing information.
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There are many different psychological classifications of learning including 

classical and operant conditioning and the classification according to whether learning 

requires a conscious record or not such as explicit and implicit learning.

Hebb bridged the divide between psychological views of learning and 

neurophysiology by suggesting that associative learning could be produced by a cellular 

mechanism.

"W hen a n  a x o n  o f  c e l l  A  is  n e a r  en o u g h  to  ex c ite  a  c e l l  B  a n d  r e p e a te d ly  o r  

p e r s is te n t ly  ta k e s  p a r t  in  f i r in g  it, so m e  g ro w th  p r o c e s s  a n d  m e ta b o lic  c h a n g e  ta k e s  

p la c e  in  o n e  o r  b o th  c e l ls  su ch  th a t A 's  e f f ic ie n c y  a s  o n e  o f  th e c e l ls  f i r i n g  B  i s  

in c r e a s e d ."
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1.3 General Introduction To Neural Networks [ 17-24]

The basic components of ANNs are a set if PEs known as processing elements (PEs) or 

neurons. Figure 1. 5 graphically depicts one such PE and the processes which occur 

within it.
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Processing Elem ent Uj

Input j to processing element U, : Xj 

Connection weight between input j and unit U; : Wjj 

Total input to unit U j : Netj

Activity: Aj= Fj (Net; ) [Fj ( ) represents the activation function] 

Output: O- =(|>| (Aj ) [<t>j() represents the transfer function]

F ig u re  1 . 5 -  S c h e m a tic  o f  a  p r o c e s s in g  e le m e n t e m p lo y e d  in  a n  A N N  a n d  th e  p r o c e s s e s  
w h ich  o c c u r  in  it.

The PEs are linked to each other in an ANN by means of network connections. PEs are

able to send and receive signals to and from each other and the outside world by means

of these connections. Every connection has an associated weight. The total input to a

PE is the weighted sum of all the inputs to the PE as seen in eqn 1.1

Net. = E X . W . .  (1.1)
1 j  J U

Netj = the total input to PE Uj Xj = input j to the PE Uj

Wy = weight o f the connection transferring the input Xj to the PE Uj



A positive weight represents an excitatory input to the PE and a negative weight

represents an inhibitory input to the PE (drawing from the analogy o f a biological

neuron). The pattern o f connections between PEs in a networks are often described by a 

weight matrix W in which the element Wy describes the strength of the connection 

between a PE Uj and another PE Uj. As such, the weight Wij is a positive number if the 

PE Uj excites the PE Uj and is a negative number if Uj inhibits Uj. The absolute value of 

Wy specifies the strength o f the connection between the PEs.

Once the total input to a PE has been determined, its activity must be calculated. 

The activity is calculated from the total input to a PE Ui by means o f an activation 

function Fj. The current activity o f the PE may also depend on the previous value o f its 

activity as seen in eqn (1.2) giving the activity a time dependent behaviour.

ai(t)= F i(ai(t-l),N eti(t)) (1.2)

a*(t) = activity o f the PE Ui at time t a;(t-l) = activity o f the PE Uj at time t-1

Fi() = activity function of the PE Uj Neti(t) = total input to the PE Ui at time t

In the majority o f cases however, the activity is the same as the total PE input.

A PE outputs a signal, whose magnitude is related to the activity of the PE, by means of 

an output or transfer function.

Oi=<|,i(ai) (1.3)

Oi= output o f PE Ui <|>i= transfer function o f PE Ui aj= activity of PE Uj

But since the activity o f a PE usually equals its total input 

Oi=<j>i(Neti) (1.4)

There are a wide variety of transfer functions, including
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(a) the threshold linear function

1 Az > 1
0 if lz = 0 (1.5)

Az otherwise

(b) the hyperbolic tangent function

<j>(z)=tanh(z) (1.6)

whose derivative (<J)’) is given by (|)'=(1-<J)2) >0

(c) the sigmoid function

=  T (1.7)1 + exp(-z)

whose derivative (<(>') is given by <|)'=<t> (1-(()). The sigmoid transfer function and its 

derivative are depicted in figure 1.6

— 0 — Sigmoid 

»  Sigmoid Derivative (x4)

F ig u re  1 .6  -  The s ig m o id  tra n s fe r  fu n c tio n  a n d  i ts  d e r iv a tiv e



When these transfer functions are used by processing elements the variable z is related 

to the activity o f the processing element. If  it is assumed that the activity o f the PE is 

equal to its total input, then z refers to the total input to the processing element with an 

additional term called the bias which controls the horizontal offset o f the transfer 

function.

z = N et.+9 (1.8a)
0 = bias

but Net. = Z X .W .. (eqn 1.1) hence,
» j J ‘J

z = E X jW u + 0  (1.8b)
j

In the case of the one dimensional sigmoid depicted in figure 1.7, when the connection 

weight linking the input to a PE is positive, positive bias values shift the centre o f the 

sigmoid to more negative values of the total input to the PE and negative offsets shift it 

to more positive values of the total input to the PE. A negative weight connecting the 

input to the PE produces the inverse behaviour.
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F ig u re  1 .7  -  The v a r ia tio n  o f  th e  p o s i t io n  o f  a  on e  d im e n s io n a l s ig m o id  fu n c tio n  a lo n g  
th e a x is  r e p r e s e n tin g  th e to ta l  in p u t to  a  s in g le  a s  a  fu n c tio n  o f  th e  v a lu e  o f  th e b ia s  to  
th e P E . The P E  h a s  o n e  in p u t w h o se  c o n n e c tio n  w e ig h t h a s  a  va lu e  o f  1.0.



The sigmoid is a centrosymmetric function with its centre located at an output value of

0.5. This output value occurs when the total input to the PE and the bias term summed 

together yield a value o f 0 .0 .

i.e. d)(z) = --------- — -=0.5 when z=0.0. (1.9)
1 + exp(-z)

From expression (1.8) it can thus be said that the centre o f the sigmoid occurs when

0=-Zwijxj (1.10)
j

The shape of the sigmoid (specifically its sharpness) is determined by the magnitude of 

the connection weights (||W ||) to the PE. As can be seen in figure 1.8, increasing values 

of ||W|| yield a sharper sigmoid.
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F ig u re  1 .8  - V a ria tio n  in  sh a rp n e ss  o f  a  o n e  d im e n s io n a l s ig m o id  f o r  a  s in g le  P E  (w ith  
a  b ia s  o f  0 .0 ) a s  a  fu n c tio n  o f  th e c o n n e c tio n  lin k in g  th e in p u t to  th e P E

When 0=0, increasing ||W|| does not affect the position of the centre o f the sigmoid,

-0
however when 0 is not equal to zero, the centre of the sigmoid is shifted by jirrnr. In

many software applications the bias is treated as the weight o f an extra input to



processing element Uj. This extra input has a fixed value o f 1, as such the bias can be 

treated as a weight variable

Individual PEs have a limited capability to form mappings. Early studies with 

neural networks composed of PEs with threshold transfer functions, known as 

perceptrons, demonstrated that single PEs can only perform classification o f linearly 

separable problems. Linearly separable problems are classification problems in which the 

patterns in an N-dimensional space may be separated geometrically by planes o f N -l 

dimensionality (i.e. patterns in a two dimensional space are separated by a line, patterns 

in a three dimensional space are separated by a plane).

A famous example of a pattern classification task which cannot be performed by a 

single PE is provided by the Boolean exclusive OR (XOR) function. Since the XOR 

function is dependent on two binary variables, a perceptron attempting to represent the 

function would require two inputs, one for each variable (as depicted in figure 1.9)
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F ig u re  1 .9  -  S c h e m a tic  o f  a  p e r c e p tr o n  to  be  u s e d  f o r  th e X O R  p r o b le m . X l a n d X 2 
r e p r e s e n t the tw o  b in a ry  in p u ts  to  th e p e r c e p tr o n  (U ) ,  W u a n d  W,2 d e p ic t  the  

c o n n e c tio n  w e ig h ts  f o r  th ese  inpu ts, 0  r e p re se n ts  th e  b ia s  a n d  O t r e fe r s  to  th e  o u tp u t o f  
th e p e r c e p tr o n
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The total input to the unit depicted in figure 1.9 is thus

Netj = XiWa + X2Wi2 (1.11)

The bias o f the perceptron acts as a threshold for its threshold transfer function as 

follows :

~1 WnX1 + Wi2X2 > 0
Ot =4,(Net,) =

Lo w .jX ^ w ^X j < e  *1,12)

The border between the two classes categorised by the perceptron occurs when the total 

input to the perceptron equals its bias

0 = W hX i + Wi2X2 (1.13)

This expression describes a line in the Xi, X2 plane. The plane and the four possible 

inputs to the perceptron are depicted in figure 1.10.

F ig u re  1 .1 0  -  The p la n e  d e s c r ib in g  tw o  b in a ry  v a r ia b le s  (X, a n d X 2)  u s e d  f o r  a  
B o o le a n  X O R fu n c t io n  The re su ltin g  f o u r  p o s s ib le  in p u ts  to  th e  fu n c tio n  a re  d e p ic te d  
a s  c irc le s . T h ose in p u ts  w h ich  p r o d u c e  a n  o u tp u t o f  1 f r o m  th e  X O R  fu n c tio n  a re  
c o lo u r e d  in  w h ite , th o se  w h ich  p r o d u c e  a n  o u tp u t o f  0  a r e  c o lo u r e d  in  black.

The task for the network is thus to find a line in the Xi, X2 plane which separates the

inputs (1,1) and (0,0) which have an XOR output value o f 0 from the inputs (1,0) and

(0,1) which have an XOR output value of 1. There is no single line which can do this, as

such a single perceptron cannot perform the XOR function.



The problem of linear separability was overcome by cascading PEs, so that the 

output of one PE acted as the input to another PE, thereby forming networks composed 

of multiple layers of PEs in which the outputs o f PEs in one layer acted as the inputs for 

the PEs in another layer.

A two layered perceptron (as depicted in figure 1.11) can solve the XOR problem by 

forming convex regions in the Xi, X2 plane (as depicted in figure 1.12).
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F ig u re  1 .1 1  - A  tw o  la y e r e d  p e r c e p tr o n  to  be  u s e d f o r  s o lv in g  th e  X O R  p r o b le m . The 
tw o  b in a ry  in p u ts  to  th e  X O R  fu n c tio n  a re  r e p r e s e n te d  a s  X j  a n d  X 2.. X j  a n d  X 2 a re  
in p u ts  to  th e p r o c e s s in g  e le m e n ts  U j a n d  U 2 in  the f i r s t  la ye r . The o u tp u ts  f r o m  th e se  
p r o c e s s in g  e le m e n ts  a c t  a s  in p u ts  to  the p r o c e s s in g  e le m e n t U3 in  th e n ex t la yer . 'The 
o u tp u t o f  U3 i s  d e s c r ib e d  b y  O 3. O 3 a c ts  a s  th e f i n a l  o u tp u t f r o m  th e  tw o  la y e r e d  
p e r c e p tr o n  n etw ork .

A convex region is one in which any two points in the region can be joined by a line that 

does not leave the region. The PEs Ui and U2 (in figure 1.11) construct two lines in the 

Xi,X2 plane, all the inputs to the left of the line constructed by Ui will produce an output 

of 0 from Ui all the data to the right of the line would produce an output o f 1 from Ui. 

Similarly all the data to the right o f the line constructed by U2 would produce an output 

o f 0 from U2 and all the data to the right o f this line would produce an output o f 1 from 

U 2 .. The unit U 3 produces a convex region from the intersections o f the lines 

constructed by Ui and U2. All the data within this region would produce an output o f 0



from U3 and all the data outside this region outside this region would produce an output 

o f 1 from U 3 .
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F ig u re  1 .1 2  -  S o lv in g  th e  X O R  p r o b le m  b y  m e a n s  o f  a  tw o  la y e r e d p e r c e p tr o n  n e tw o rk  
(fig u re  1 .11).

Individual processing elements can be linked to each other in a number o f different kinds 

of connections (e.g. feedforward, feedback and lateral connections) which are 

determined by the type o f ANN model being used. Figure 1.13 depicts the flow of 

information between units linked by these connections. With feedforward connections, 

information from PEs in a lower layer (layer j) are transmitted to PEs in an upper layer 

(layer I). Connections of this type are to be found in multi-layer feedforward nets which 

will be discussed later

With feedback connections, information from PEs in an upper layer (layer I) are 

transmitted to units in a lower layer (layer j). Examples o f this sort o f connection are to 

be found in the bidirectional associative memory (BAM) type o f network. The BAM is a 

hetero-associative network i.e. a network which accepts input data to which they 

produce some related but different output data. This is achieved by providing examples 

o f the required input and output data, to allow the network to form a mapping between 

the input space (described by the input data) and the output space (described by the 

desired output data).
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F ig u re  1 .1 3  -  D ia g r a m m a tic  r e p re se n ta tio n  o f  th e f l o w  o f  in fo rm a tio n  b e tw e e n  
p r o c e s s in g  e le m e n ts  in  tw o  la y e r s  b y  m e a n s  o f  fe e d fo rw a rd , f e e d b a c k  a n d  la te r a l  
co n n ec tio n s.

In a network with lateral connections, each unit interacts with other nearby units 

in the same layer. These kinds of connections can be found in self organising feature 

map type networks. This sort of network organises itself to reflect the topology of the 

space represented by the patterns which are input to it.

It can be seen from the preceding discussion concerning perceptrons that a 

network formed o f individual PEs linked together can be used as a means of mapping a 

particular input space (described by the input data to the network) to a particular output 

space (described by the output from the network). I f  a function F: Rn—>Rm maps the n 

vectors X to the m vectors Y, then the network can be said to have learned the mapping 

corresponding to the function F if the network produces an output vector Y when a 

vector X acts as the input to the network (for all X). For a particular input space (e.g. 

vector X) the nature o f the mapping formed by the network is determined solely by the 

connection weights since the behaviour o f the PEs themselves (i.e. activation function, 

transfer function) do not change. As such, the connections and/or their weights need to 

be altered in order for a network to form the correct mapping.



These alterations may include the development o f new connections between PEs 

and the loss o f pre-existing connections. This thesis however is concerned with the 

weight adaptations o f pre-existing links. The term learning rule is used to describe the 

strategy employed by a network to improve its mapping. There are two basic 

approaches by which this can be achieved, namely supervised and unsupervised learning.

In supervised learning, training proceeds using a set o f vector pairs (usually called 

patterns). The vector pairs consist of an input vector and an associated output vector 

(which acts as a target for the training process). The aim of supervised learning is to 

adapt the connection weights between PEs so that the network produces the correct 

output (compared to the target output) when the input vector is presented as an input to 

the network. One of the most important rules used in supervised learning is the Widrow- 

Hoff rule also known as the delta rule or least mean squares (LMS) rule.

AW ¡j = Ti(tj-Oi)Oj (1.14)

tj = the desired output o f the PE Ui Oi = the actual output from Uj

Oj = the output o f PE Uj to which Uj is connected 

AWy = change in the weight of the connection between Uj and Uj 

ri = learning rate (used to control the size o f the weight changes)

This learning rule was initially devised for a single layer network o f units with 

differentiable transfer functions, but was later generalised and adapted to form the 

backpropagation algorithm, which will be discussed in more detail later.

In unsupervised training , no specific output vector is associated with an input 

vector to act as a target for the training procedure. Instead, unsupervised learning 

involves allowing the network to self-organise on the input vectors o f the training set.

On of the major rules used in unsupervised training is the Hebbian learning rule.
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AWy = riaiOj (1.15)



TAXONOMY OF CONNECTIONIST MODELS

Compete« Competes Passive Compete» Pmbvc Competes Passive

Feature Competitive Perceptron ART BSB ART Boltzmann
Maps Learning DclU-Rule G roubcrg Hop field Grossbeig
Kohonen Backpropsgabon (19*7) (19*7)
(1 9 8 8 )

Figure 7.14 .  Taxonomy of connectionist models according to connection type and 
learning rules



The terms AWy, rj and Oj retain the same meaning as in the previous expression and a; 

refers to the activity o f the PE Uj. The basic principle underlying this rule is that if  a PE 

Ui receives an input from another PE Uj, then if both PEs are highly active (as 

determined by their activation functions) the weight from PE Uj to PE Uj should be 

strengthened.

There are a number o f different methods o f classifying ANN models including 

according to architectures, transfer functions, learning algorithms and the nature o f the 

inputs to the networks. Figure 1.14 depicts different taxonomies o f ANNs using two 

possible sets o f classification criterion. In the next few sections some o f the ANN 

models which have found chemical application or which have been mentioned before in 

terms of cognitive function will be discussed in greater detail.
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1.4 Examples Of Different ANN Models

1.4.1 Kohonen's Self-Organising Map [20,25-29]

Kohonen's self-organising map is an associative net which uses an unsupervised 

form of training, it has been shown to be able to form topological maps similar to those 

found in the cerebral cortex. In this type o f network, neighbouring cells compete and 

develop into specific detectors of different signal patterns. The responses from the cells 

become ordered in the trained network to reflect different features o f the training set. 

Each cell or local group of cells then acts as a separate feature decoder for the same 

input pattern. As such it is the presence or absence of a response at a cell and not so 

much the input-output signal transformation or the magnitude o f the response that 

provides an interpretation o f the pattern.

1.4.2 The Hopfield Network [29-36]

The Hopfield network has a laterally connected single layer architecture. It can 

perform auto-association (retrieval of a complete pattern given partial information of the 

desired pattern) but can also be used for optimisation purposes. Hopfield's early work 

involved the use o f neurons which could take values of 0 or 1 so that the state space over 

which the network operates is an n-dimensional binary hypercube.

The behaviour o f the network was related to a physical system which is described by the

components o f its state vector X ( coordinates X j, X2, Xx). If  the system has locally

stable limit points X a , Xb etc- then if the system is started near any X a (eg. X = X fl +
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in Hamming distance and far from the other stable points it would tend to proceed to 

terminate at X a .

If  the locations o f the stable points could be considered as the information of a 

particular memory stored in the network and the starting point X_= X a +A as partial

information about the memory, then processes occurring within the network would 

generate the complete memory Xa from the partial memory. Hence the memory is 

accessed by initially supplying a part o f the memory rather than its address, suggesting 

that the network acts as a content addressable memory (see 1.2).

Hopfield later used processing elements whose output Oj was a sigmoidal 

function of the input to the element in order to more closely model biological neurons.

The Hopfield net with N PEs has a limited capacity o f about 0.15 N patterns that 

can be simultaneously retained in the net before retrieval errors become significant as the 

net becomes overloaded. An interesting relationship between REM sleep and 

overloading of Hopfield nets was discussed by Hopfield and Crick. REM sleep occurs in 

almost all mammals and in most birds and is believed to play an important role in the 

development o f the nervous system. A characteristic of REM sleep is bizarre intrusions 

which consist o f a mixture o f features, all or most of which can be related to events 

which have occurred recently. When a net is overloaded it can demonstrate different 

types of behaviour including :producing bizarre associations (fantasy), producing the 

same state (or one of a small group of states) irrespective o f the input (obsession) and 

responding to inappropriate signals which would not normally evoke a response 

(hallucination). Hopfield developed a technique known as reverse learning to remove 

spurious memories created when learning. The technique is very similar to the standard 

learning procedure except that it starts from a random noisy input. The effect o f this
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procedure is to decrease the total accessibility of spurious states by raising their energies 

and reducing their basins o f attraction relative to the stable states corresponding to 

desired memories. The use o f this technique mimics the proposed function o f REM 

sleep.

1.4.3 Multi-Layered Feedforward Networks

As was described earlier, individual PEs have limited capabilities and more 

complex mappings may be created by linking the output o f one PE to the input of 

another PE. The multilayered feedforward (MLF) is a network composed o f multiple 

layers of PEs in which PEs in one layer are linked to PEs in other layers by means of 

feedforward connections. The MLF network is usually composed of an input layer, at 

least one intermediate layer and an output layer.

The input layer performs no processing on its inputs. It merely takes on the 

values of the input data to the network, which it distributes to the first hidden layer. The 

output layer provides the responses or outputs from the network to a particular set of 

input data. The hidden layer(s) enables the net to form its internal representation of 

problems, provided that the output values from these PEs are non-linear functions of 

their inputs. Theses intermediate layers are known as hidden layers because they receive 

no input from and produce no output to the outside world.

The number o f PEs in the input layer is determined by the number o f input 

variables o f the task given to the network and the number o f PEs in the output layer is 

determined by the number of output values required by the task.
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Figure 1.15 depicts a three layered feedforward network. PEs in the input layer in figure 

1.15 are represented by Uj, PEs in the hidden layer are represented by Uj and PEs in the 

output layer are represented by Uk. The weight o f the connection joining the PE Uj in 

the input layer to the unit Uj in the hidden layer is given by Wji and between the PE Uj in 

the hidden layer and the PE Uk in the output layer by Wkj.

F ig u re  1 .1 5  -  A  th ree  la y e r e d fe e d fo r w a r d  n e tw o rk  

If the output from a unit in the input layer is passed directly to a unit in the hidden layer 

without any scaling or other transformation then the input to the hidden unit Uj which is 

given by Ij =0; where O, is the output o f the unit Ui. As such, given a pattern p, the 

hidden PE Uj receives a total input of

(1.16)

and produces an output of Oj=<t>j(Netj) (1*17) (<j)j is the transfer function of PE

A PE in the output layer Uk, thus receives a total input of

( 1. 18)
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and produces a final output of

(1.19)

Determining a method of adapting the connection weights o f hidden layer PEs posed a 

major problem for training MLF networks. The weights to the PEs in the output layer 

(output units) could be adapted according to the delta rule ( equation 1.14) because the 

patterns used to train the network contained data pertaining to the target output o f the 

network. These output values o f PEs in the output layer o f the network could then 

compared with these target output values. The same is not true for the PEs in the hidden 

layer (hidden units) however.

1.5 The Backpropagation Algorithm (18, 20, 21, 24, 37-42)

Backpropagation is an algorithm based on the delta rule designed to address the problem 

o f adapting connection weights from hidden units. The backpropagation algorithm 

employs the instantaneous summed squared error Ep for the current pattern p (given by 

Xp, Y p) defined as follows:

(1.20)

Ep = instantaneous error for the training pattern p

Ykp= component k o f the target output vector Y for pattern p

OkP = component k of the network output vector O when the network is presented with

training pattern p

m= number o f components in the output vector O



The total or cumulative error of all the patterns used to train the network is given by_

E = S E p (1.21)
P

(E= cumulative error over all the training patterns)

Gradient descent involves movement through the weight space (space composed o f the 

weights o f the connections in the network) in the direction which causes the most rapid 

decrease in E. The linear relationship between E and E p depicted in equation (1.21) 

suggests that the gradient o f the instantaneous error at pattern p can be estimated in the 

gradient descent procedure instead of estimating the gradient o f the cumulative error up 

to the pattern p.

The gradient descent approach can thus be written as

SE

( 1 - 2 2 )

ApWkj refers to the change in the weight Wkj when the network is presented with the 

pattern p.

The derivative can be expressed as a product o f two derivative terms via the chain rule. 

5ED 3Ed ÔNetC
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SW V SNetï aw *
(1.23)

Netkp = the total input to the PE Uk when the network is presented with pattern p. 

However according to the discussion relating to figure 1.16

Netkp=SWkjOjP (OjP = output o f PE Uj when the network is presented with pattern p). 

As such the second derivative term in equation (1.23) can be rewritten as

<3Netp d

5Wkj 5Wkj

If a term 5kP is defined as follows

( 2 > „ O î )  =  OÎ (1.24)



SE

5 i = - * <  ( L 2 5 >

then expression (1.23) may be rewritten as

(i.26)

Hence in order to perform gradient descent in E, weight changes should be made 

according to

ApW Uj=ri5kpOjp (1.27)

r\=  a proportionality constant known as the learning rate

This expression has a similar form to the standard delta rule (1.14). The difficulty with

this approach is in determining 5kP for each PE in the hidden layer o f the network (ie 5jP).

As will be shown below however, the backpropagation algorithm can recursively 

calculate the 8kp values by propagating error terms backwards through the network.

The term 8kP can be rewritten as the product o f two derivatives

d E p d E  3 0 ?

Oup= output of PE Uk when the network is presented with pattern p.

The first term in the derivative product describes the change in instantaneous error as a 

function of the output o f PE U k and the second term describes the change in output of 

PE Uk as a function of changes in its total input.

As discussed earlier in the section concerning the processing which occurs in a single PE, 

the output of a PE is determined by the operation of a transfer function on its total input 

(assuming the activity o f the PE is the same as its total input).
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i.e. Oup= <|>k(Netkp) (1.29)

<|>k = the transfer function of the PE Uk

Thus the second term in the derivative product may be rewritten as follows:

so; - (< k [N < |)  = f k(N etî) (1.30)
3Net£ 5Net£

<|)k = the first derivative o f the transfer function of the PE Uk

The instantaneous error for the unit Uk is given by equation (1.20) [where case Okp refers 

to the output of PE Uk to pattern p and Ykp refers to the target output for this PE]

5En / x
Hence ^57 = -(YkP-° k )  (1.31)

The derivation for the change in the weight between a hidden neuron and an input 

neuron is the same as that described by equations 1.23 to 1.30. However after this point 

the derivation proceeds differently because there is no way of explicitly calculating an 

instantaneous error for such neurons.

The total input to a PE Uk in the ouput layer in figure 1.15 is determined by the outputs 

o f PEs Uj in the hidden layer and the weights of the connections linking the PEs. 

N < = I > kjO i (1.32)
J

NetkP= total input to PE Uk in the output layer when the network is presented with 

pattern p

OjP = output o f PE Uj in the hidden layer when the network is presented with pattern p 

8E
The term can thus be rewritten as

5E„ 3E„ aW<

so; so;
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(1.35)

since S- =

(1.36)

The results of this derivation may be epitomised as follows:

(I) A weight connecting PEs in different layers should be modified by a quantity 

proportional to the product of the error term 5 from the PE receiving its input 

along the connection (Uj) and the output o f the PE sending its output data along 

the connection (Ui)-

(ii) The error term is specified according to the PE receiving it and is determined 

recursively starting with the output units.

If  the PE exists in the output layer, then its error is given by

An outline o f the algorithm for the three layered feedforward network is as follows :

1. Apply an input vector X p =(Xip, X2P, Xnp) to the PEs in the input layer of the

(1.37)

8pk = (Y Î -O î)* k(Neti) (1.38)

If  the PE exists in a hidden layer them its error term is given by

k
(1.39)

network.

2. Calculate the total input values to PEs in the hidden layer of the network



n
Net? -  £  W^XJ* +0. (1.40)

i

0j = the bias of PE Uj

3. Calculate the outputs from PEs in the hidden layer

4. Use the outputs from the PEs in the hidden layer to calculate the total inputs to 

PEs in the output layer

Net; = E w , o ;  + ek (i.42)
j

5. Calculate the outputs from the PEs in the output layer

o ;  =<k (n< )  (i.43)

The stage in the operation o f the backpropagation algorithm represented by the steps so 

far is known as th e  f o r w a r d  p a s s  phase of the algorithm.

6 . Calculate the error term for the output units

8 ;= (Y ;-0 ;)* U N e t;)  <1.44)

7. Use the error term from PEs in the output layer to calculate the error term for the 

PEs in the hidden layer

(1.45)
k

8. Update the weights between the output and hidden layers

W kJ( t  + l) = Wkj(t) + ri8pOJ (1.46)

Wuj(t) = the connection weight before adaptation 

W kj(t+1) = the connection weight after adaptation
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9. Update the weights between the hidden and input layers 

WJI(t + l) = WJ1(t)+r|8Jpxr (1.47)

The procedures described in steps 6-9 are known as the b a c k w a r d  p a s s  phase o f the 

backpropagation algorithm.

The steps discussed above can be extended to describe the learning procedures for 

networks with more than one hidden layer. In this case, the output from the first hidden 

layer acts as an input to the second hidden layer and steps 2 and 3 are repeated for as 

many times as there are hidden layers in the network. Similarly step 7 is repeated for the 

same number o f times as steps 2 and 3, with the error terms from PEs in the hidden layer 

closer to the output layer being propagated to PEs in the next hidden layer to which they 

are connected. Step 9 is also repeated as many times as there are hidden layers in the 

network, updating the weights o f the connections between the hidden layers. The 

procedure represented by steps 1-9 are repeated for every pattern in the training set.

This number o f repetitions is referred to as an e p o c h  and is repeated until a particular 

termination criterion has been achieved.

This form of the backpropagation algorithm uses per-sampling adaptation o f the 

connection weights. Another form of the backpropagation algorithm exists which uses 

batch updating of the connection weights. In this case the weights are adapted after all 

the patterns in the training set have been presented to the network (one epoch) by the 

cumulative or summed weight adaptations to each connection weight for each presented 

pattern.

The learning rate parameter t] is important in controlling the learning process of 

the backpropagation algorithm. Unfortunately there are no set rules for what value to 

take for the learning rate, its values can vary depending on the type o f transfer function 

being used by the PEs and the different modifications to the backpropagation algorithm
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being employed in the training process. Typical values for the learning rate exist in the 

range 0.1 to 10.

A common modification to the backpropagation algorithm involves the use o f a 

momentum term in which a certain proportion o f the previous change in a connection 

weight is added to its present weight change

AWi (t)  = ri8iOi +a[A W i ( t - l ) ]  (1.48)

The momentum effectively filters out high frequency variations o f the error surface o f the 

network in the weight space (composed of the connection weights o f the network). It is 

useful in situations in which a network is trying to move downhill in a valley with steep 

sides but a shallow slope along the valley floor. The momentum term must be less than 

1.0 in order for learning to be stable. Otherwise the weight vector (composed o f the 

connection weights) will move on the error surface o f the network under greater 

influence from the previous gradient than the current gradient. Typical settings for this 

parameter range from 0.4 to 0.9.

Training can be considered as a search in the weight space of the neural network 

for the combination of weights that minimises the error measure. The error surfaces of 

feedforward networks are generally very complex. The surface has multiple copies of 

the global minimum due to degeneracy arising from the symmetry in the network 

architecture. Other convolutions of the surface can also complicate the training process. 

These include the existence o f local minima and flat areas or troughs of very small slope. 

These complexities o f the weight space can make it very difficult to train a network and 

there is no guarantee that when a net has trained that it has converged to a global 

minimum in the search space.

When discussing the performance of a network, it is necessary to consider both 

its cumulative error from the data on which it was trained and also the ability o f the
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network to generalise. Generalisation refers to the ability o f a network to extrapolate 

and interpolate from the data on which it was trained to new data drawn from the same 

distribution as the original training data. The ability of a network to generalise can be 

examined by applying the input patterns from the new data to the network inputs and 

observing the resulting network outputs. A comparison between the network outputs 

for the new data and the desired outputs for these data gives an indication o f the 

network’s ability to generalise. While the number of input PEs to a network and the 

number o f output PEs in a network are defined by the problem to be solved by the 

network, the number o f hidden layers and the number of PEs in these layers are variables 

for the network designer to decide upon.

Hornik and White (41) showed that multi-layered feedforward networks with as 

little as one hidden layer are a class of universal function approximators, that can 

approximate a function to any degree of accuracy, provided the network contains enough 

PEs in the hidden layers. Lippmann (20) showed that any classification task can be 

solved by a network with two hidden layer s containing enough PEs. This suggests that 

no more than two hidden layers are needed for a network to represent a non-linear 

transform or perform pattern classification tasks. The number o f units in a hidden layer 

is itself dependent on the problem being solved by the network. With too few PEs in the 

hidden layer, the network will not be able to represent the non-linear transform. With 

too many PEs in the hidden layer, the computing time will increase, in addition it may 

limit the ability of the network to generalise, as the large network may store specific 

features of the patterns in the training set rather than their underlying features.

There are many other modifications to the backpropagation algorithm to improve 

its movement through the weight space, and also to improve the ability o f the network to 

generalise outside its training set (for further details the reader is recommended to read
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the thesis by Albert Bos (42)). The backpropagation algorithm and its modifications has 

been applied to  a broad range of chemical problems which will be discussed later in this 

introduction.

1.6 Genetic Algorithms

Artificial life is an area o f study which views life as a property o f the organisation o f 

matter, rather than a property o f the matter which is so organised. It takes a bottom up 

approach to the consideration of organisms, viewing an organism as a large population of 

simple components. It synthetically constructs large aggregates o f these simple rule- 

governed components, which interact non-linearly with each other in the support o f 

global dynamics frequently seen in natural systems.

In nature, an organism has a combination of phenotypic characteristics 

determined by it genotypic makeup. Genetic information about an individual is stored in 

the form o f DNA which consists o f long chains of adenine, thymine, cytosine and 

guanine nucleotides. Different sequences o f nucleotides on the DNA strands known as 

genes encode the production of one or more related proteins. The term chromosome is 

the name give to the state o f the DNA strands when they are densely packed together. 

Each gene has several alternative configurations, which produces differences in the 

manifestations o f the characteristics associated with the gene.
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There are tens o f thousands o f genes in the chromosomes o f a typical vertebrate, each o f 

which has several alleles. The complexity o f these natural systems arises from the 

interactions o f these genes. A major contributor to this complexity is the phenomenon 

known as epistasis, whereby the effect of a particular allele is strongly dependent on the 

effects o f other alleles that are present in the chromosome. In this case small changes in 

the genetic makeup of a single gene can result in very large effects in the organism.

Because o f this phenomenon, there is no simple way to apportion credit to individual 

alleles for the performance of the resulting phenotype.

Given the ubiquity o f epistasis, adaptation by means o f change in genetic makeup 

becomes primarily a search for co-adapted sets of alleles, or alleles o f different genes, 

which together significantly augment the performance o f the corresponding phenotype. 

Various different environmental niches define different adaptational opportunities for the 

genetic system. In order to exploit these opportunities the adaptive system must select 

and use the sets of coadapted alleles which produce the phenotypic characteristics most 

appropriate for the survival o f the organism to the environment.

Genetic algorithms (GAs) are a group of techniques that were initially designed 

to simulate the behaviour of biologically based adaptive systems. These techniques were 

developed to study what kind of emergent behaviour arose from a set o f simple rules and 

how changes in the algorithm would affect this behaviour. Holland’s Schema Theorem 

(43) showed that a simple genetic algorithm (SGA) functioned as a means of optimising 

a sequential decision process involving uncertainty in the form of lack o f prior 

knowledge. Holland showed that GAs produce near optimal sequences o f trials for 

problems with high levels of uncertainty. While the GA was not initially developed as a 

function optimiser itself, modifying the GA can produce powerful GA-based optimisers
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Genetic algorithms behave in a similar fashion to the class o f m o d e r a te  search 

techniques. These techniques make fewer assumptions about the response landscape 

than strong methods, and are less computationally demanding than weak methods.

S tr o n g  m e th o d s  (45) such as gradient search and simplex techniques use heuristics which 

concentrate on local areas o f the response surface, by searching for an optimum, in the 

neighbourhood of a particular point. These methods make assumptions about the 

response surface (e.g. the existence of a derivative for gradient search) to aid the 

exploration. These two characteristics o f local searching and assumptions about the 

response surface can limit the applicability o f s tr o n g  m e th o d s  on surfaces which are 

rough, discontinuous or multimodal. However in cases when the surface is smooth and 

the search technique is close to an optimum, these methods will converge very rapidly 

and efficiently to the optimum position on the surface.

W ea k  m eth o d s, which include grid searching, make very few assumptions about 

the surface and tend to search in an enumerative or random manner. While these 

methods are very robust, they are also computationally inefficient and become quickly 

limited as the dimensionality o f a problem increases. M o d e r a te  te c h n iq u e s  such as 

genetic algorithms and simulated annealing are another class o f optimisation techniques 

which bridge the division between the weak and strong methods. Genetic Algorithms 

(GA) use random events, which are directed by information about the previously 

unknown surface, accumulated during the search for the optimum, in order to identify 

and focus on regions of the search space which are more likely to contain the required 

optimum (46, 47). M o d e r a te  te c h n iq u e s  tend to be particularly useful in situations 

where a problem is very complex (as the assumptions on which strong methods are based 

will make them fail), and also in cases where the dimensionality o f the problem is high (as
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the computational time required for weak techniques to find an optimum becomes 

impractical).

GAs use concepts gleaned from Darwin's theory o f evolution by natural selection 

and also from the mechanisms involved in the alteration and transfer o f genetic 

information to individuals in a population (48). These processes enable a population to 

both survive in the surrounding environment and continuously adapt to any changes that 

may occur in it. A GA which mimics these evolutionary processes, is implemented as an 

iterative procedure which maintains a constant size population P o f possible solutions to 

a particular optimisation problem. The P possible solutions to the optimisation problem 

contained within the population are known as chromosomes and the M  variables o f the 

search space are encoded on the chromosomes as M  genes. The numeric values o f these 

variables which might represent concentration, potential, wavelength or any other 

analytical parameter are encoded in a uniform alphabet on the genes. Quite commonly 

the alphabet used is binary, in which case the number o f bits used to represent the 

variable in the gene determine the resolution with which the variables are optimised.

The basic configuration o f the GA used in this study was composed of an initial 

population setup followed by a cyclic repetition of evaluation, scaled reproduction, single 

point crossover and single point mutation (as depicted in figure 1.16).
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F ig u re  1 .1 6  -  B a s ic  c o n fig u ra tio n  o f  a  g e n e tic  a lg o r ith m

1.6.1 Stages In The Operation Of A GA

1.6.1.1 Population Initialisation.

In the GA studies discussed in this thesis, the parameters to be optimised are 

encoded on a chromosome in a binary form as sixteen bit words. This was achieved by 

establishing a range for each parameter within which the residual sum of squares (SSE) 

o f the calibration model would be expected to be minimised. The range for each 

parameter would thus define a continuous but finite area o f the search space for each 

parameter within which the search would proceed. The maximum and minimum values 

o f these ranges were then mapped into the numeric ranges 0 to 2 ^  -1 using the 

following transform.

(216 - l ) [ U - U min] 
rescale = /L mmJ (1.49)

max min
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Where [Umin, Umax] represents the interval within which the optimisation is to 

proceed for a particular parameter U. The ranges for these variables were set with 

different widths depending on the significance o f the contribution o f each variable to the 

error o f the calibration model. The individual genes corresponding to the parameters of 

the Nikolskii-Eisenman expression were then concatenated to form a single bit string or 

chromosome. Variable sized populations were filled using a random number generator 

to produce numbers in the range 0 to 2*6 _i for each gene. Press et al. discuss the 

difficulties associated with system supplied random number generators (49a) as such 

code for a portable random number generation based on Knuth's subtractive method (47, 

49b) was developed and seeded from the PC clock using the include file 

RANDHEAD.C (see the software appendix).

1.6.1.2 Evaluation

Each candidate model described by a particular chromosome was evaluated in 

order to determine how closely it described the experimental data. This was achieved by 

decoding the binary genes on the chromosomes into values o f the model parameters.

The resulting model was then used to predict the values o f the experimental data. A sum 

of squared errors (SSE) expression (as described by equation 1.50) was thus used as an 

objective function to quantitatively express how well the candidate model described the 

experiemntal data.

encoded on a chromosome, E is the actual value o f the experimental data and N refers to

(1.50)

Where E is the estimated value o f the experimental data predicted from the model

the number of samples used to form the experimental data seta calibration set. Since a



genetic algorithm is normally concerned with maximising the performance or fitness o f a 

population o f chromosomes, the reciprocal of the error (i.e./SSE) was used to describe 

the fitness o f each candidate chromosome. The overall evaluation procedure is depicted 

in figure 1.17.
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Assign Sum O f Squared
Errors To Each
Chromosome
Determining Its
Fitness

V

F ig u re  1 .1 7  -  S c h e m a tic  o f  e v a lu a tio n  p r o c e d u r e  o f  th e  g e n e tic  a lg o r ith m

1.6.1.3 Scaled Reproduction

The existing calibration models in a particular population are exploited to 

improve the future performance of the population by performing biased reproduction 

ensuring that particularly good calibration models have greater probability o f being 

reproduced in the next generation than less good models. This involves sorting the 

models according to their SSE by means o f a quick-sort procedure. In this study 

different forms o f reproduction and scaling are investigated namely roulette wheel 

selection, rank scaling and linear prescaling.



In this study, single point crossover is implemented by randomly selecting two 

chromosomes from the current population by a variety o f different methods. Figure 1.18 

depicts the general processes occurring during the crossover operation.
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1.6.1.4 Crossover

C h o o s e  2 i n d i v i d u a l s  a t  r a n d o m  f o r  c r o s s i n g

\
R a n d o m l y  c h o o s e  g en e  a n d  b i t  p o s i t i o n  at  

w h i c h  c r os s i n g  is to o c c u r

s /
C o n v e r t  the  n u m e r i c  v a l u e  ( b e t w e e n  0 a n d  

6 5 5 3 6 )  o f  b o t h  c h r o m o s o m e s  a t  the 
c r o s s i n g  g e n e  to an  a r ra y  o f  b i n a r y  

c h a r a c t e r s

\
S w a p  t he  e l e m e n t s  o f  t he  c h a r a c t e r  a r r a ys  at  

the c r os s in g  p o i n t

\ /
R e c o n v e r t  b a c k  to n e w  n u m e r i c  v a l u e  o f  the 

a r ray  o f  b i n a r y  c h a r a c t e r s

F ig u re  1 .1 8 .-  S c h e m a tic  o f  g e n e r a l  p r o c e s s e s  o c c u r r in g  d u r in g  th e  c r o s s o v e r  p r o c e s s  
o f  a  g e n e tic  a lg o r ith m  

The position at which crossover was to occur on both bitstrings was chosen at random.

The genes on both chromosomes in which the cross point occurred were converted from

integers in the range 0 to 2 ^  -1 into their binary equivalents. This was achieved by

running a bit mask across the integer representations of the genes and storing the

resulting binary representations in character arrays. The elements of the two character

arrays (corresponding to the two genes within which crossover was to occur) to the right

o f the crosspoint were swapped as depicted in figure 1.19.
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F ig u re  1 .1 9  -  P r o c e s s e s  o c c u rr in g  d u r in g  c r o s s o v e r  a t  th e b i t  leve l. C h ro m o so m e  1 
(d o tte d ) a n d  C h ro m o so m e  2  (w h ite ) a re  ch o sen  to  c r o s s  a t  b i t  p o s i t io n  9  in  g e n e  2. B its  
to  th e r ig h t o f  p o s i t io n  9  in  g e n e  2  a re  s w itc h e d  b e tw e e n  th e tw o  c h ro m o so m e s  a s  a re  
the g e n e s  to  the r ig h t  o f  g e n e  2  in  ea ch  ch ro m o so m e.

The two resulting binary character arrays were reconverted into genes o f an integer form 

according to the following relation.

L j _ j

x = X aj2 (1-51)
i=l

Where x represents the parameter (integer value) and A=aL, aL_i, a2’a l

represents the L element bit string
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Mutation is an operator which inverts the value o f a bit which is chosen at 

random on a chromosome (figure 1.20).

1.6.1.5 Mutation

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5
W m â  I m m à  1 Gene Before Mutation

M utation  A t B it 3
—  I Gene After Mutation

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5

Binary Value 0 

I I Binary Value 1

F ig u re  1 .2 0  -  P r o c e s s e s  o c c u rr in g  d u r in g  m u ta tio n . B i t  3 is  h a s  a  va lu e  o f  0  b e fo re  
m u ta tion , a f te r  m u ta tio n  b it  3 is  to g g le d  to  a  va lu e  o f  1, ( a l l  the o th e r  b i ts  in  th e  g e n e  
re m a in  th e sa m e)

If  it were to be used as the main way o f generating new individuals in the 

population, GAs would become a randomised search which, as described earlier, is 

inefficient for problems o f high dimensionality. Instead, mutation acts to prevent genes 

which may occur in bad combinations with other genes, from being completely lost to the 

population (by selective reproduction), when they may become more useful later in the 

GA in a combination with better genes. In this study, chromosomes were mutated at 

randomly chosen points on the bit strings o f chromosomes by inverting the binary value 

of the bit at the mutation point through a logical XOR operation with a bit o f value 1.

In summary the simple genetic algorithm (SGA) involves encoding a problem of 

M variables onto a population o f N  chromosomes with M  genes (figure 1.16). The 

chromosomes are allowed to reproduce according to their fitness determined by the 

objective function and are randomly subjected to genetic operators such as crossover and 

mutation. This iterative process is continued until some termination criterion is met. It



can be seen that the GA is a highly parallel search technique whose parallelism is 

achieved by the simultaneous movement o f the P search points through the M 

dimensional multivariate search space (43).

1.6.2 Premature Convergence As A Problem In The Implementation Of 

GAs

This is a problem encountered in the implementation of GAs whereby selective 

reproduction causes better individuals to occur in the population in increasing 

proportions, until the population is dominated by an individual chromosome and the GA 

converges to a sub-optimal solution. According to the theory o f GAs (described in 

appendix 10), the number o f copies o f a particular schema should increase or decrease 

exponentially depending on whether its average fitness is above or below that o f the 

population average. But, as it is not possible to directly calculate a schema average 

fitness, it must be estimated by the finite sequential sampling process of evaluating the 

individual chromosomes in the current population. This sampling process introduces its 

own sampling error, which when coupled with the variance associated with the stochastic 

procedures implemented in the GA, can lead to wide deviation between the number of 

schema which occur in the population and the number which would be predicted from 

the theory o f GAs. Repeated iterations o f the GA cause these errors to accumulate 

leading to search trajectories different from those probalistically predicted as useful 

schemata disappear from the population. This process is known as genetic drift and is 

manifested in practice as a premature loss o f diversity in the population. In this chapter a 

number o f different modifications of the genetic algorithm aimed at reducing this 

problem will be investigated.
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For further details o f the theory and use o f GAs, references (47, 50-54), the 

tutorial by Davis (55), the textbook by Goldberg (47) and the seminal work by Holland 

(43) are recommended.

1.7 Literature Review

1.7.1 Applications Of The Feedforward Network In Chemistry 

In recent years artificial neural network techniques and genetic algorithms have been 

successfully applied to a broad spectrum of problems from disciplines as diverse as 

commerce and engineering. However until recently these techniques have not found 

major use in analytical chemistry, although the following examples should demonstrate 

the virtual explosion in analytical applications o f neural networks and genetic algorithms 

that has occurred in the last few years. It is clear that while a number o f different types 

of networks have been used to solve various kinds o f problems, the backpropagation 

training algorithm for feedforward nets and modifications of this training algorithm have 

been most commonly used for analytical applications. Similarly it is clear that a simple 

genetic algorithm is not sufficient to deal with a large number o f analytical problems and 

instead is being modified and hybridised with other optimisation techniques.

Qian and Sejnowski (56) investigated the use of the backpropagation algorithm 

for predicting the secondary structure o f local sequences o f amino acids. The success 

rate obtained using this approach was 64% for the testing set o f proteins non- 

homologous with the training set on three types of secondary structure namely a  helix, (3 

sheet and coils. The correlation coefficients for the structures were found to be higher 

than those obtained using other methods. This method was further developed by Kneller 

et al. (57) who improved prediction to 79% for all a proteins by adding neural network
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units to detect periodicities in the input sequence and by also using tertiary structural 

classes.

Thomsen and Meyer (58) investigated the use of the backpropagation algorithm 

for the classification o f 500 MHz ^H NMR spectra o f six sugar alditols recorded at a 

concentration of 6 mg in 0.5 ml D2O. The effect o f a variety o f distortions on the 

classification o f the alditols was studied. It was found that right and left shifted specra 

were classified correctly as were spectra distorted by the addition o f noise. Reducing the 

intensity o f spectral features had a more dramatic effect on the ability o f the network to 

classify the alditols.

Bos et al (59) applied a backpropagation net for the simultaneous determination 

of calcium and copper(II) ions in binary mixtures of copper(II) nitrate and calcium 

chloride, and also for the simultaneous determination of potassium, calcium, nitrate and 

chloride ions in mixtures of potassium chloride, calcium chloride and ammonium nitrate 

using arrays o f ion-selective electrodes.

Aoyama (60,61) studied the application of a modification o f the backpropagation 

algorithm for the development o f quantitative structure activity relationships for 

carboquinones and benzodiazepines. In this modification to the backpropagation 

algorithm a new transfer function was used for the neurons to mix linear and non-linear 

operation, and a partial correlation coefficient was used to determine the influence o f an 

input parameter on the network output.

Robb and Munks (62) applied a simple linear neural net (i.e. without a hidden 

layer) to the interpretation o f the infra-red spectra of organic compounds in order to 

identify different functional groups present in the molecules. A detection level o f 53.3% 

on a test set o f 541 compounds with 24 functional groups was achieved, and o f the 

detected groups, 91.5% were identified correctly. They later improved upon their linear
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model by adding a hidden layer (63) and demonstrated an improvement in the 

identification of functional groups in the training set using a net with a hidden layer when 

compared with the linear net.

Wythoff, Levine and Tomellini (64) used a fully connected three layer back

propagation net for the verification and recognition of infra-red spectral peaks o f vapour 

phase species. The widths o f some of the spectral features were o f the order o f the 

resolution with which the spectra were acquired, meaning that spectral peaks were 

sometimes represented by a single data point (which made the distinction between the 

spectral features and noise spikes rather difficult). It was found that the addition o f a 

noise reference to the signals in the training set produced an improvement in the mean 

absolute difference between the desired identification o f patterns in the test set and the 

actual output from the network from an original value o f 0.357 to a value o f 0.19.

Long, Gregoriou and Gemperline (65) used a backpropagation net for nonlinear 

multivariate calibration. They then applied neural network techniques to the 

determination of protein in wheat from near infra-red (NIR) spectroscopic data and to 

the quantitation of the ingredients in two pharmaceutical products using UV-visible 

spectroscopic data. It was found that principal components regression (PCR) performed 

better than neural networks when using perfectly linear simulated data. This was 

attributed to model error produced from fitting a sigmoid function to linear data. In the 

case o f the wheat, PCR only slightly outperformed the neural network approach. The 

spectral data from the pharmaceuticals displayed non-linearities due to stray light and 

interactions between the pharmaceutical components at high concentrations. It was 

found that the non-linear response was inadequately modelled by the PCR, and 

consequently the neural network calibration results were found to be slightly better than 

the PCR results.
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Gardner, Hines and Wilkinson (66) applied a back-propagation network to the 

pattern recognition of signals produced from an array of tin oxide gas sensors. It was 

found that vapour patterns of methanol, butan-l-ol, propan-2-ol, 2-methyl-1-butanol and 

ethanol could be recognised at the parts per million (ppm) level in all cases.

Curry and Rumelhart (67) investigated modifications o f the conventional 

backpropagation algorithm for classification of low resolution mass spectra of unknown 

compounds according to the presence or absence of 100 organic substructures. They 

encountered similar overtraining problems as seen by Bos (68) and found that a weight 

reduction method reduced the overtraining effect more than the addition o f random 

noise. It was found that the neural network approach classified mass spectra more 

reliably than STIRS, the most successful mass spectrum classifier (using a nearest 

neighbour classification algorithm) for which there was sufficient detail to allow 

comparison.

Nakamoto et al. (69) used a backpropagation algorithm to classify whiskies using 

quartz resonator array odour sensors. Recognition probability was improved using a 

statistical approach for choosing membranes for the array. An average recognition 

probability o f 76% was achieved using this approach. The measurement system was 

improved (70) by modifying the flow system (using standard air as opposed to 

atmospheric air, minimizing temperature variations, maintaining constant flow rate 

during the measurement, using stainless steel for the production o f the sensor cell and the 

distributor to minimise the adsorbtion of the odourant molecules) and introducing bilayer 

lipid materials to the sensing membrane set. The resulting recognition probability was 

improved to 94%. This approach was extended to identifying perfumes and flavours 

(71). In this case a 100% recognition probability was obtained. In addition the ability of 

the network to discriminate between a pure sample of orange flavouring and the orange
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flavouring contaminated with 2-butylidene cyclohexanone and decanal for different 

concentrations of the contaminant was examined. In both case a detection limit o f 0.5% 

volume contaminant was determined for discrimination between pure and contaminated 

and pure samples, which is comparable to the detection limit o f the human olfactory 

system for these compounds.

Elrod et al. (72) investigated the use o f backpropagation for predicting the 

products o f electrophilic aromatic substitution o f mono substituted benzenes.

Information was represented to the network in the form o f connectivity matrices and 

charge vectors. It was observed that the more descriptive, less specific representation 

derived from connectivity matrices gave better results than representation involving 

charge vectors. Overall, the predictions made by the neural network approach were 

found to be comparable with those made by expert systems and synthetic organic 

chemists.

Chang et al (73) used a backpropagation net for the recognition of patterns 

produced from an array of piezoelectric crystals coated with phosphatidylglycerol, 

phosphatidylethanolamine, phosphatidylserine and lipid A which responded to amyl 

acetate, acetoin, menthone, methanol, ethanol, propanol and butanol. It was found that 

odorants could be identified with 70% probability.

Glick and Hieftje (74) investigated the use o f the backpropagation algorithm for 

classifying metal alloys according to the concentrations of their Si, Cu, Fe, Cr, Al, Mo 

and Ni constituents, it was found that the neural network approach performed slightly 

better than the KNN approach.

Sundgren, Winquist, Lukkari and Lundstrom (75) applied a three layer neural net 

to the quantification o f the individual components in two types o f gas mixtures. The first 

gas mixture was comprised of hydrogen, ammonia, ethanol and ethylene in air and the
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second mixture contained hydrogen and acetone in air. The components o f the mixtures 

were to be quantified based on the responses of six metal oxide semiconductor 

MOSFETs which were exposed to the mixtures. It was found that both hydrogen and 

ammonia concentrations were predicted more accurately by the neural net than by partial 

least squares (PLS) and the same was found for the hydrogen and acetone in the two 

component mixture.

Meyer et al (76), used a backpropagation net for the identification of one

dimensional 1H-NMR spectra of oligosaccharides derived from xyloglucan (a plant cell 

wall hemicellulose). It was found that the spectra were identified correctly by the neural 

net even when the spectra were perturbed by slight variations to their chemical shifts.

Bos and Weber (77) carried out a comparison of the training of neural networks 

by backwards error propagation and genetic algorithms for quantitative x-ray 

fluorescence (XRF) spectrometry of iron, nickel and chromium samples. The backwards 

error propagation trained networks performed better than the genetic algorithm trained 

networks for these samples. However it was found that the two types of training 

procedures produced nets which performed equally well when trained on a larger data 

set composed of XRF spectra of thin iron and nickel layers on a substrate.

Long et al (78) used a backpropagation net for pattern recognition of jet fuel 

chromatographic data obtained by GC and GC/MS. It was found that classification by 

neural nets was dramatically better than that by K nearest neighbour and (SIMCA) for 

the water soluble fraction of the jet fuels.

Gemperline, Long and Gregoriou (79) investigated the use o f different 

multivariate techniques and neural networks for the detection and modelling o f non

linear regions o f spectral response in multivariate, multicomponent spectroscopic assays
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of pharmaceutical products. It was found that neural networks could be used to develop 

non-linear calibration models that performed better than PCR or PLS.

Anker and Jurs (80) used a three layered fully connected network employing a 

backpropagation algorithm for predicting C ^  NMR chemical shifts o f keto-steroid 

carbon atoms. The results obtained from this approach demonstrated a 77% 

improvement on classification o f the training set and 63% improvement for the test set 

when compared with linear regression analysis.

Smits et al. (81) investigated the application o f backpropagation to the 

identification and counting o f phytoplankton based on various optical parameters 

obtained using a flow cytometer. It was demonstrated that the neural network was 

capable o f identifying specific kinds of algal species such as poisonous and non- 

poisonous species and was also capable o f identifying a number of different algal species 

that appear in one sample. The robustness of the neural network to changes in the flow 

cytometer settings were also studied. Improved performance was obtained if the settings 

were used as an additional input parameter to the network.

Weijer et al. (82) studied the application of backpropagation algorithm to the 

development of a model describing the relationship between the physical structure and 

mechanical properties o f poly(ethylene terephthalate) yarns. The physical structure of 

the polymers produced under widely varying manufacturing conditions were studied by 

means o f x-ray diffraction, density measurements, sonic pulse propagation and 

measurements o f birefringence. These properties were then subjected to PCA to 

produce five independent structure parameters. The mechanical properties o f the yarns 

were determined from their stress-strain curves and their shrinkage at different 

temperatures and strain conditions. The neural network approach compared favourably 

with results obtained from PCR and PLS.
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Song et al. (83) investigated the use of the backpropagation algorithm to develop 

a model describing the relationship between the spectral structure o f Eu(II) ion transition 

emission in complex fluorides and the structures of the host complex fluoride lattices. A 

recognition rate o f 98% was obtained for the training set and 92.6% for the test set, 

which compared favourably with results obtained using conventional pattern recognition 

techniques.

Bos et al (68) investigated different modifications o f the backpropagation 

algorithm, applied to the prediction o f water content o f cheese from milk composition 

and process parameters. The complex nature o f the data and the limited number o f 

patterns available for training and testing caused difficulties when they trained networks 

with the standard backpropagation algorithm. While the error from the training set 

decreased during training, the error from the test set would decrease during the early 

stages of training, but start to increase as training progressed. It was suggested that this 

was caused by the network learning the noise in the training set and not the underlying 

principle which would enable the network to generalise to the test set. The modifications 

to the backpropagation which were studied to alleviate this problem, included learning 

with extra neurons in the output layer, the addition o f random noise to the training 

patterns, addition o f uniform noise to the training patterns, Weigand's weight reduction, 

Hinton's weight decay and descending epsilon approaches.

It was found for neurons employing a conventional sigmoid transfer function, that 

the addition of noise both random and uniform, had little or no effect on errors in the test 

set. The descending epsilon, weight reduction and weight decay approaches all reduced 

the overtraining effect, with the weight decay approach producing the lowest error on 

the test set. Adding extra units to the output layer caused a worsening in the network's 

performance, in which case the weight reduction approach worked best. Neurons with
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radial basis transfer functions reversed the trend found with neurons employing sigmoid 

transfer functions, whereby descending epsilon, weight reduction and weight decay 

approaches performed worst and little change was observed between the performance 

obtained when using the conventional backpropagation and the addition o f  noise. 

Symmetrical sigmoidal neurons performed in a similar fashion to neurons using radial 

basis functions, but in general an increased performance was observed using symmetrical 

sigmoids in comparison with conventional sigmoids. Best results overall were obtained 

when using radial basis function neurons with noise.

Bos et al. (84) studied the application of a modified form of the backpropagation 

algorithm known as the scaled conjugate gradient approach to modelling iron, chromium 

and nickel concentrations in stainless steel, determined by XRF. The neural network 

approach was compared with the Rasberry-Heinrich model which is based on empirically 

modelled interelement effects. The calibration coefficients o f this model were 

determined using genetic algorithms. The neural network approach was also compared 

against a linear modelling procedure using singular value decomposition. It was shown 

that the neural network could produce robust models which outperformed the other 

methods for Ni and Fe calibration and outperformed the Rasberry-Heinrich model for Cr 

calibration.

Song and Yu (85) applied the backpropagation algorithm to investigate the 

quantitative structure activity relationship of dihydropteridine reductase inhibitors 

derived from l-methyl-4-phenyl-l,2,3,6 tetrahydropyridine. The results obtained 

compared favourably with those obtained by stepwise multidimensional linear regression 

analysis. They introduced a term known as the partial correlation index in order to 

determine the influence o f individual input variables on the network's output. It was 

found that a molecular shape parameter indicating the distance of the heteroatomic ring
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nitrogens was most important in determining the network's output. The three most 

important parameters determined with this index agreed with those used in previous 

QSAR studies

Li et al. (86) investigated modifications to the conventional backpropagation 

algorithm, applied to the prediction of furnace lining durability based on six parameters 

describing the chemical composition o f the furnace lining and the conditions under which 

the furnace was operated. The modifications to the backpropagation algorithm involved 

the use o f neurons with a symmetrical sigmoid transfer function and also a conjugate 

gradient training algorithm. The predictive results obtained from the neural network 

approach were better than those obtained from PCR and PLS regression. Convergence 

was accelerated using the symmetrical sigmoid function when compared with 

backpropagation using conventional sigmoid functions. Convergence was also 

accelerated with the conjugate gradient training technique, furthermore the conjugate 

gradient technique converged with fewer hidden nodes than could be achieved using the 

backpropagation algorithm, which is an important feature in preventing overfitting.

Smits et al. (87) investigated the use of a modular feedforward network (as 

opposed to a flat feedforward network) for the classification of alcohol and carbonyl 

functional groups. It was found that the neural networks involved in the study had 

difficulty interpreting spectra o f multi-functional compounds, especially if the network 

had not been trained using examples of the combinations o f functional groups involved.

The incorporation of simulated spectra containing the combinations o f functional groups, 

improved the performance of the network but did not completely solve the problem. 

Networks dedicated to determining the presence o f a particular class o f functional group 

e.g. alcohol, performed better than a flat network designed to classify all the functional 

groups.
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When the dedicated networks were combined in a hierarchical structure, it was 

found that false positive errors or doubts in the coarse classification module were 

compensated for by the finer sub-class classification modules. The performance o f the 

modular network was also found to be comparable with that o f a human expert.

1.7.2 Applications Of Genetic Algorithms In Chemistry
[

Wu and Freeman (88) used a GA to optimise pulse shaping functions used in 

NMR spectroscopy, in order to develop an absorbtion mode profile that had a single 

central response with decaying side lobes and a dispersion mode profile that was weak 

across the entire frequency range. These pulse shapes were then used for ©-COSY and 

soft-COSY techniques.

Lucasius and Kateman (89) used GA techniques to select a set o f wavelengths 

which were optimally selective for the measurement of the absorbances o f individual 

species in multi-component samples. The spectral regions of four RNA nucleotides with 

ranges o f thirty six wavelengths each were used for this study. Generally a set o f six or 

seven wavelengths were needed to be chosen for the analysis because of overlap o f the 

spectra o f the nucleotides. The GA were intialised with a population of 100 

chromosomes and within 70 generations had converged. This was noted to be ten times 

faster than convergence by a process of stepwise removal of the wavelengths. The 

stepwise wavelength removal process proved to be robust under different initial 

wavelength distributions, indicating that local minima were not a big problem, and hence 

the GA may not have been the best approach to the optimisation problem. However if 

the wavelength selection problem had been further complicated by the inclusion o f more
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components into the samples and the use o f spectra with more than thirty six 

wavelengths, the use o f the GA may have been more justified.

Lucasius et al. (90) investigated the application o f a GA for the determination of 

conformational parameters o f DNA hairpins. The conformational parameters used in this 

study included torsion angles in the DNA backbone, torsion angles o f the bonds 

connecting the furanose ring and the base ring system and internal rotational parameters 

for the endocyclic torsion angles of the furanose rings. These parameters were coded as 

bit strings using Gray's code. Strongly correlated conformational parameters were also 

represented as tightly linked genes, to reduce the positional bias in the crossover 

operator and minimize its disruptive effect.

The resultant chromosomes were evaluated using a cascaded hybrid evaluation 

criterion, such that the fitness of a chromosome was determined by two different 

procedures. The first procedure involved the calculation o f H-H distances based on the 

DNA conformation proposed by the chromosome in the GA. These distances were then 

compared with those calculated from two dimensional (2D) Nuclear Overhauser 

Enhancement (NOE) NMR spectrometry. The second procedure involved the 

calculation o f a theoretical NOE table from the proposed DNA conformation and its 

comparison with the experimental NOE table. It was found that the GA optimisation 

time was dependent on the choice o f the initial population, but that the conformations 

finally determined were not strongly determined by this parameter. On simulated 

experimental NOE tables created for a mixture of DNA conformations, among which 

one was chosen to be ten times more probable than the others, it was found that the GA 

always converged towards the prominent conformation, although there were sometimes 

stable subpopulations for the other conformations. A similar study was performed by 

Blommers et al. (91) using a G A to determine optimal torsion angles, phase angles and
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pucker amplitude to determine the conformation of the photodimer cis, syn-dUp[ ] dT 

from experimental NMR data.

Fontain (92) used a GA to develop different permutation vectors in order to 

optimise the minimal chemical distance (CDm) between isomeric ensembles o f 

molecules. The CDm refers to the constitutional similarity o f the molecules being 

studied and can be used as a means o f developing reaction trees used to postulate 

mechanistic and synthetic pathways of organic reactions. It was found that there was a 

dramatic reduction in computing time required for optimisation when using the GA as 

opposed to other optimisation techniques.

Wienke et al. (93) compared five optimisation techniques namely, pattern 

search, simplex search, gradient search, simulated annealing and GA for the 

determination o f an optimum set on a simulated three dimensional surface based on 

response surfaces found in chromatography and spectroscopy. The simulated surface 

had one global minimum and two larger local minima and numerous hills, valleys and 

walls. The search space was divided into smaller windows and the search techniques 

were applied several times in each window. Each algorithm had difficulty finding the 

global minimum with the GA being the most successful, finding the global minimum 94% 

of the time and the steepest ascent method being the least successful, finding the 

minimum 14% of the time. The GA was successful when intialised at the top o f the two 

local optima whereas all the other techniques were unsuccessful in these cases. The GA 

was also applied to the optimising the intensities of atomic emission lines o f Cu, Ni, Cr,

Mn, Fe and Si for the determination of these trace elements in highly purified alumina 

powder. The variables of current intensity of the electric arc and the concentration o f the 

added purified NaCl were adapted by the GA to produce an optimal emission intensity.
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The global optimum for the analysis was determined within a few generations under 

constrained and unconstrained conditions.

Li, Lucasius and Kateman (94) developed a modification of the simple genetic 

algorithm (SGA) using diversity functions based on principles from ANOVA to control 

the operation o f the GA and hence reduce the problem of premature convergence by 

reduced population diversity. The diversity functions involved the measure o f the 

diversity between the chromosomes in the population and also the diversity between the 

alleles in all the chromosomes. The SGA was modified by adding two new parameters 

namely a duplication parameter, producing a form of elitism in the process and a 

selective or mating parameter, controlling the selection probability distributions of 

different individuals in the population. A dynamic genetic algorithm (DGA) was 

developed in which the probabilities of crossover and mutation were allowed to vary 

during evolution according to the values o f the new diversity functions in order to 

maintain diversity and guarantee a broad search o f the search space. The DGA and SGA 

were compared on a problem for optimising a calibration set o f NIR data for estimation 

o f percentage protein. On short run modes, the DGA maintained a higher level of 

diversity than SGA. In a long run mode the performance of the most fit individual for 

DGA was better than with SGA. It was also shown that the SGA was sensitive to the 

setting o f mutation probability, with the performance o f the population higher with a low 

value o f the mutation probability than with a higher value, suggesting that the SGA was 

converging to a local minimum. It was found that the predictive residual error sum of 

squares (PRESS) of the calibration set optimised by this procedure was greatly reduced 

when compared with the original data set and also when compared with manual removal 

o f the outliers. The DGA was also used for the optimisation o f LC-DAD data from a 

two component mixture of anthracene and phenanthracene. It was found that the
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predictive quality o f the calibration model was greatly improved by the optimised 

calibration subset.

Wienke et al. (95) used a GA to optimise the slope and shape o f the photometric 

calibration curve of a biochemical dry reagent test strip for the determination o f glucose 

in human urine. The properties o f the calibration curve were dependent on twelve 

different parameters including the concentrations o f the different reagents used in the 

preparation o f the strip and the chemical processing techniques o f the strip itself, in a 

theoretically unpredictable fashion. The calibration graph for the study was developed 

using six different samples involving different concentrations o f glucose and different 

aging conditions. PLS was also used as a means o f directly deducing the required 

variables, it was found that the GA with low resolution predicted optima which were 

close to those predicted by PLS.

Wehrens et al. (96) developed a self-adapting expert system hybridised with a GA 

for the interpretation o f two dimensional NMR spectra o f proteins. A set o f known 

spectra were used to refine and optimise the rules contained within the expert system 

which were used or the identification o f patterns belonging to single amino acids in the 

protein and also for the classification of the patterns as amino acids or specific groups o f 

amino acids. The GA was then used to construct a sequence o f patterns that mapped 

onto the sequence of amino acids . It was found that for a particular test protein that 

77% o f all assignments agreed with the true sequence.

Hibbert (97) studied different variants of the SGA used to optimise the rate 

coefficients for the hydrolysis o f adenosine 5'-triphosphate by fitting a kinetic model to 

concentration Vs. time data by optimising the sum of squares difference between the 

calculated and measured concentrations o f phosphate. The response surface studied had 

several local minima and a global minimum that was neither symmetrical in the parameter
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space nor well defined. The kinetic model contained four rate constants which were to 

be optimised. The genes were encoded as bit strings and also as real numbers, the 

selection process used was stochastic remainder. Diversity maintenance was investigated 

using a similarity algorithm in which individuals which are very similar to the rest o f the 

population are penalised, incest prevention was also studied for this purpose. The 

hybridisation o f the GA with pseudo-Newton steepest descent (SDO) was investigated 

with respect to firstly feeding candidates from the GA into the SDO during training, 

secondly using a feedback system from the SDO into the GA and allowing cycling during 

evolution and thirdly running the GA to completion and using the SGA on each member 

of the resultant population. It was found that the SGA did not produce a good optimum 

and it also suffered from poor search precision. It was also found that increasing the size 

o f the population improved the final solution but that increasing the number o f bits 

involved in the representation of the rate constants did not improve the final solution.

Using the similarity algorithm improved the final solution but also had an 

associated time penalty. The prevention o f incest improved the quality o f the final result 

and also dramatically reduced the variance between the final solutions after repeated runs 

o f the GA. The use o f real coding o f the rate constants was found not to make any 

major change in the final results of the GA. However it ran about 50% faster than the 

SGA because o f the removal o f the encoding and decoding stages o f  the GA.

When hybridising the SGA with the SDO during training, it was found that the 

better the guess provided by the SGA better the result provided by the SDO. When 

recycling was used a good estimate o f the optimum was quickly found but there was a 

discretisation error produced by the conversion of the rate constants from the SDO into 

the bit strings o f the GA. The best final solution was found when the SDO was applied 

to the population produced when the GA had terminated, although strangely it was not

Volume 1 Page 61



Volume 1 Page 62

the most fit individual in the final population from the GA which produced the best result 

from the SDO.

It is evident from these examples that the neural network and GA can be used for 

a wide variety o f different chemical applications and it seems likely that as both 

techniques become increasingly understood that the number of applications investigated 

will increase. It is in the context o f applications to analytical chemistry that this thesis 

will discuss some of the features o f these techniques and their practice.

1.8 Symbol Conventions

1.8.1 Neural Networks

<l>: Transfer function

Scaling constant or gain on the transfer function

Ui: PE N um ber

a,: Activity of the PE Uj

o i: O utpu t of the PE Uj

wij: Connection weight from unit i to unit j

ri: Learning rate

a : M om entum

AWij: Change in weight of connection between PE Ui and PE Uj

ti(t): Desired output of PE Uj

X: Inpu t vector X =[xj,x2 ,......xnl  ̂ G Rn
rj • •aJ' Euclidean distance m etric between two vectors

a : W idth of kernel

Y: Desired ou tput vector

F: M apping function Y=F(X)

X' and Y ': Approxim ations to X and Y

T~Ai* External input to the Hopfield netw ork

Thi: Threshold for Hopfield netw ork

Xa: Stable point for Hopfield netw ork
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Ep: Instantaneous summed squared erro r

E: Cum ulative erro r
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Chapter 2: Neural Network Application to Pattern 

Recognition of Potentiometric Flow Injection Analysis Peaks 

Abstract

This chapter is a discussion of the application of backpropagation neural 

networks to the detection and identification o f waveforms produced by the transient 

responses o f electrodes selective to sodium, potassium and calcium ions injected into a 

flowing stream using the technique known as flow injection analysis (FIA).

The ability o f the network to classify noisy data is studied by deliberately 

distorting the waveforms by a variety of mechanisms sometimes associated with 

potentiometric detection. In addition an investigation o f processes occurring within the 

network during training is performed by studying the variation o f the lengths o f the 

weight vectors and the angles which they make to a vector with unit co-ordinates.

2.1 Introduction

This section provides the context for this chapter by discussing some o f the basic 

principles o f FIA and potentiometry.

2.1.1 Flow injection analysis

With increased public awareness and concern about health, food and environmental 

issues, there has been a concomitantly dramatic increase in the volume o f routine 

analyses performed by laboratories. The problem of producing large volumes of accurate 

and precise data motivated the design and development o f rapid and inexpensive 

automatic analytical systems, which are now employed in a diverse range of applications 

including the monitoring and control o f industrial processes, diagnostic and screening
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clinical tests, environmental monitoring o f a wide variety o f species in the air, soil and 

water and quality control in the food processing and pharmaceutical industries.

Automated analytical instruments can be broadly classified as being either 

discrete or continuous, although instruments which are hybrids o f the two classes also 

exist. Discrete or segmented flow instruments simulate the operations which would be 

carried out in the manual version of a particular analysis. Samples are retained in 

discrete vessels throughout the various analytical operations such as dilution, reagent 

addition and mixing, leading to the final measurement. In contrast, in a continuous flow 

instrument such as FIA which is depicted in figure 2.1, the sample becomes a plug in a 

flowing stream and is carried from the injection port to the detector and then to waste.
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Sample

p a ir ie r ... 
Phase *

Pump — *
Pre-treatment 

(if necessary)
Detector Waste

F ig u re  2 .1  -  S c h e m a tic  o f  a n  a p p a r a tu s  u s e d  f o r  f lo w  in je c tio n  a n a ly s is

A wide variety o f different detectors and operating conditions such as carrier 

phase composition, mixing reagents and flow rate have provided the means to analyse for 

a diverse range of species. Some applications include: spectrophotometric detection of 

phosphate and chloride in blood sera (1) and glycerol in water (2), kinetic determination 

o f glucose in blood sera (3), and potentiometric determination of chloride in tap and 

sewage water (4), fluoride in tap water, beverages and urine (5) and sodium, potassium 

and calcium in mineral water and plasma (6). For further information concerning the



theory and implementation o f flow injection analysis the reader is recommended the texts 

by Ruzicka and Hansen (7) and Valcarel and Luque de Castro (8).

2.1.2 Potentiom etry

Electrochemical techniques can be broadly divided into voltammetric and potentiometric 

methods. Potentiometry is a technique which involves the measurement under zero 

current conditions of potentials generated by electrochemical cells. One half o f the cell is 

an ion-selective electrode (ISE) which generates a potential related to the activity o f  the 

ion of interest (primary ion). Changes in the potential are measured against that o f a 

reference electrode which is also in contact with the sample solution. Ideally the 

reference electrode potential is unaffected by changes in the sample composition. The 

basic apparatus used for a potentiometric measurement is depicted in figure 2.2.
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Reference
Electrode

M agnetic
Follower

M eter

Ion Selective 
Electrode

Analyte
Solution

F ig u re  2 .2  -  D ia g r a m m a tic  re p re se n ta tio n  o f  a  b a s ic  e x p e r im e n ta l sy s te m  u s e d  f o r  
p e r fo r m in g  p o te n tio m e tr ic  m e a su re m e n ts

The potential measured between an ideal electrode and the reference electrode is 

mathematically described by the Nernst equation (equation 2.1),

E = E °  + S lo g 10 a { (2.1)

Where E is the measured cell potential, E ° is the standard cell potential, S is the slope of 

the electrode, which has a value o f 59.2 mV divided by the charge o f the species



The variable aj in equation 2.1, describes the activity o f the ion being measured. Activity 

is a thermodynamic quantity (9) related to the concentration o f the ion (Cj) in a manner 

described by equation 2.2,

ai=YiCi. (2.2)

Yi in equation 2.2 is a term known as the activity coefficient which may be calculated by 

means o f a number of expressions including the Davis equation (10) depicted in equation

( VT ^
logy, -  - 0 . 5 z f y j  — 0.2IJ (2.3)

The term z\ in equation 2.3 refers to the charge o f the ion and I  refers to the ionic 

strength o f the solution containing the ion. The ionic strength itself can be calculated 

from the concentrations of all the ions present in the analyte solution by means of 

equation 2.4,

n
1 = 1 /2 X ^ 2 ?  (2.4)

i=l

Where Ci and Zj refer to the concentration and charge of any ion i in the solution. 

Unfortunately electrodes do not respond to the primary ion alone, i.e. the electrodes are 

selective but not specific. The additional effects o f other ions present in the system are 

accounted for by the Nikolskii-Eisenman expression.
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involved in the electrochemical process, when measurements are performed at 25°C.

E = E" +S log 10 <2-5>

The variables E, E°, S and aj in equation 2.5 have the same meaning as they did in 

equation 2.1. kPot is a weighting factor or selectivity coefficient which describes the 

selectivity o f an electrode for its primary ion relative to the other ions present in the



system. Because potentiometry is a high impedance technique (the resistance o f  freshly 

made electrodes o f  the kind used in this study [PVC/liquid membrane electrodes] is 

typically 0.5 M Q  [for bench type electrodes] and the resistance gradually increases with 

use (11)), it is particularly prone to  the uptake o f  noise from its surroundings. H ence all 

the cables used in potentiometric experiments are generally shielded to reduce the effects 

o f  noise, but there can still be problems with inductive and RF noise and static. Other 

sources o f  error for this technique include parallel drift o f  the electrode potential (12), 

this is a shift in the calibration line for an electrode system in which the slope o f  the line 

does not change. This may be caused by a number o f  reasons including difficulties with 

the liquid junction between the reference half cell and the sample solution. References 

(13-14) are recommended for further reading about the theory and application o f  

potentiometric analysis.

2.1.3 Potentiometric Flow Injection Analysis

Figure 2.3 depicts a typical trace obtained from FIA apparatus using three ion-selective 

electrodes for the detection o f  sodium, potassium and calcium ions. The traces represent 

the potential differences measured between the different ion selective electrodes and the 

reference electrode over a period o f  time in which a sample containing these three ions is 

injected into the carrier phase and is swept past the electrodes by the carrier phase to  

waste.

The traces show a rapid rise as the sample reaches the electrodes and then a more 

gradual descent as the tail o f  the sample passes the electrodes on its way to waste. The 

duration o f  a particular peak is dependent on several variables including the volume o f  

the sample injected into the flowing stream, the concentration o f  the carrier phase, the 

composition o f  the sample, the flow  rate and dispersion characteristics o f  the FIA
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systems and the response characteristics o f  the sensing membrane, but the typical 

duration o f  a peak would be 60 seconds or less for an optimised system. The potential 

difference measured between the reference and each ion selective electrode is acquired 

and digitised on separate channels o f  a data acquisition card fitted inside a computer. A  

voltage range can then be defined allowing the digitised values corresponding to  the 

responses o f  the electrodes at different times during the analysis to be prescaled for 

further processing.
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F ig u re  2 .3  -  T y p ic a l r e sp o n se s  o f  sod iu m , p o ta s s iu m  a n d  c a lc iu m  IS E s  to  a  sa m p le  
c o n ta in in g  0 .1 M  so d iu m , p o ta s s iu m  a n d  ca lc iu m , in je c te d  in to  a n  F I  A  sy s te m  a t  a  f lo w  
r a te  o f  1 m l/m in u te .

2.2 Experimental Method

The continuous flow system used for transient ion is as described by Forster and 

Diamond (6). The electrodes used for the detection o f  sodium, potassium and calcium  

were based on three ionophores (p-t-butylcalix[4]methyl acetate (15) valinomycin 

(Fluka) and ETH 129 (Fluka), respectively), each o f  which were immobilised within a 

plasticised PVC matrix (15). Membranes were cast from solutions o f  the ionophore, ion  

excluder, plasticiser and PVC in tetrahydrofiiran (THF). The membranes were then 

mounted in the electrode block which was reconnected to the rest o f  the continuous flow  

system.



The experimental data were captured via an Analog D evices R T I-815 data acquisition 

card fitted inside an IBM  286 compatible PC. Data acquisition and processing software 

was written in Microsoft QuickBASIC . The FIA patterns were provided courtesy o f  

Mr.F.J. Säez de Viteri, School o f  Chemical Sciences, Dublin City University.

The FIA patterns used in this study were acquired when 200(il samples o f  the solutions 

(whose composition is described in table 2.1) were injected into the described FIA  

system operating at a flow  rate o f  1 ml/min. The key for each solution in table 2.1 will be 

used to refer to these solutions in further discussions. The entry N O N E at the bottom  o f  

the solution key column refers to a synthetic profile corresponding to the absence o f  any 

o f  the cations
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Solution Key Sodium Ion 
Concentration (M)

Potassium Ion 
Concentration (M)

Calcium Ion 
Concentration

Na 0.1 0.0 0.0
K 0.0 0.1 0,0

Ca 0.0 0.0 0,1
NaK 0.1 0.1 0.0
NaCa 0.1 0.0 0.1
KCa 0.0 0.1 0.1

NaKCa 0.1 0.1 0.1
NO NE 0.0 0.0 0.0

T a b le  2 .1  - C o m p o s itio n s  o f  th e  sa m p le  so lu tio n s  u s e d  f o r  th e s tu d ie s  in  th is  c h a p te r  

The term binary solution will be used to refer to a solution containing two ions namely 

solutions NaK, NaCa and KCa in table 2.1, the term tertiary solution will be used to refer 

to the solution NaKCa in table 2.1, containing all three ions.

Tw o types o f  neural network software were investigated namely, Neural Technologies 

Ltd. N T 5000 running on an 80486 PC and NeuralWorks Professional II running on a 

SU N  SPARC workstation. Data preparation for the neural networks and results 

analyses from the neural nets were performed using software written in Borland Turbo C 

and SU N  C version 1.1.



The subject o f  the investigations discussed in this chapter is the application o f  

feedforward neural networks to the problem o f  classifying patterns produced by a series 

o f  ISEs used in a flow  injection analysis regime. To this end, different aspects o f  the use 

o f  feedforward networks to this specific problem were studied. These studies included :

(i) An investigation o f  the effect o f  the learning rate and momentum parameters 

(see chapter 1) on the rate at which a neural network would learn how  to  

correctly classify simple FIA patterns (as depicted in appendix 1).

(ii) An investigation o f  how  a network trained on these simple FIA patterns would  

perform when confronted with these patterns when distorted by noise addition, 

baseline shifting and variation o f  the heights o f  the peaks in the FIA traces.

This study was devised in order to investigate the ability o f  a network to  

generalise from the simple patterns on which it had been trained to the distorted 

patterns.

(iii) The redesign o f  the training and testing sets for a network based on 

conclusions drawn from the previous study.

(iv) An investigation o f  how  a network trained with this new training set would  

perform when confronted with the same patterns as used in study (ii).

(v) An investigation o f  some o f  the processes occurring within a network as it is 

training.

Studies (i) to (iv) were performed with the N T 5000 software and study (v) was 

performed with the NeuralWorks software. Study (i) was performed with the FIA traces 

from the solutions described in table 2.1. Studies (ii) to (v) were performed with 

patterns which were derived from these FIA traces and distorted as described above. A  

three layer network topology (as depicted in figure 2.4) w as used for all the studies.
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F ig u re  2 .4  - A  d ia g ra m m a tic  r e p re se n ta tio n  o f  th e  th ree  la y e r  f e e d f o r w a r d  n e tw o rk s  
u s e d  f o r  th e  s tu d ie s  d is c u s s e d  in  th is  c h a p te r

Hidden layer

Sodium Potassium Calcium
present/ present/ present/
absent absent absent

Output Layer

Input Layer
Response Response Response
profile from profile from profile from
sodium ISE potassium TSE calcium ISE

The data presented to the input layer o f  the networks corresponded to the simple (or 

distorted) electrode response profiles to the solutions described in table 2.1 (i.e. the 7 

possible combinations o f  the cations and the synthetic profile o f  the absence o f  any 

cations (key N O N E in table 2.1)). The data files describing the responses o f  the 

electrodes were composed o f  80 data points per electrode (240 data points in total 

corresponding to 240 neurons in the input layer). The task o f  the network w as to make 

a decision concerning whether or not a particular ion was present in the solution to  

which the ISEs produced the response profiles, which were presented to the input layer. 

The target outputs for the network, specifying the desired classification o f  the FIA  

patterns were binary numbers referring to the presence (described by a 1) or the absence 

(described by a 0) o f  a particular ion, as seen in table 2.2
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Solution
Key

Desired Output For 
The Neuron 

Describing The 
Absence/Presence O f 

The Sodium Ion

Desired Output For 
The Neuron 

Describing The 
Absence/Presence O f 

The Potassium Ion

Desired Output For 
The Neuron 

Describing The 
Absence/Presence O f 

The Calcium Ion
Na 1 0 0
K 0 1 0

Ca 0 0 1
NaK 1 1 0

NaCa 1 0 1
KCa 0 1 1

NaKCa 1 1 1
NONE 0 0 0

T a b le  2. 2 -  D e s ir e d  o u tp u ts  o f  n eu ro n s  to  so lu tio n s  d e s c r ib e d  in  ta b le  2 .1 .

Three neurons were used in the output layer o f  a network. The outputs o f  these units 

represented the network’s decision concerning the presence or absence o f  a specific ion. 

To simplify the discussion, the output neurons w hose outputs represent the result o f  the 

classification concerning sodium, potassium and calcium will be called the Na, K and Ca 

neurons respectively (i.e. i f  the Na neuron produces an output o f  0 then the network has 

decides that sodium is not present). To simplify the discussions in studies (ii) and (iv), 

the classification decisions o f  the network o f  the network trained with the simple FIA  

patterns will be differentiated from those made by the network trained with the distorted 

patterns, by referring to the former as restricted training (rt) and the latter as broad 

training (bt). As such, the classification decisions o f  the network using restricted training 

will be discriminated from those o f  the network using broad training by means o f  a 

subscript bt on the output o f  the Na, K and Ca neurons o f  networks using broad training 

and rt for the corresponding neurons in the networks using restricted training (i.e. Na(rt> 

=1, indicates that a network using restricted training has decided the sodium is present)



2.3.1. Initial Studies Using The NT5000 software

2.3.1.1 A study of the effect of learning rate and momentum on the learning speed 

of a network trained for the recognition of simple FIA patterns.

This study was performed with the FIA traces from the solutions described in table 2.1, 

the patterns are depicted in appendix 1. The potentials o f  the electrodes recorded in the 

FIA traces were linearly prescaled to have a magnitude similar to the desired output 

values o f  the network (16).

Training in the N T 5000 is terminated according to tw o criterion (a) an upper limit on the 

number o f  epochs for training (b) a lower limit on the maximum output error. The upper 

limit on the number o f  epochs for training means that learning will stop i f  a certain 

number o f  epochs have been exceeded (an epoch is a cycle o f  the backpropagation 

algorithm in which all the training patterns are presented to the network). W hile the 

desired output classifications for the patterns are binary the actual outputs from the 

neurons in the output layer which employ a sigmoid transfer function are continuous.

This is similar to the principle o f  fuzziness, which mathematically means multi-valuedness 

or multivalence. Three valued fuzziness in this study would mean the presence (output 

=1), absence (output =0) or ambiguity

(0 < output < 1) (concerning the presence or absence o f  a particular species). 

Mathematically a fuzzy set is described as follows,

if  X is a collection o f  objects x, then a fuzzy set A in X is a set o f  ordered pairs such that 

A =  {(x,Ha(x))|x gX}. The term Ma(x) is called the membership function the value o f  

which describes the degree to which the element x belongs to the set A. This value also 

describes the degree to which the measurement x  is compatible with the concept o f  A 

(e.g. the degree to which the measured pattern from the ISEs is compatible with the
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concept o f  the presence o f  a particular species). I f  Ha(x) has only tw o values, 0 and 1, 

then A  is not fuzzy (17-18).

The maximum output error refers to an error calculated from the difference 

between the continuous outputs o f  neurons in the output layer o f  the network and the 

binary target output for those neurons specified in the training file. Training will not stop 

until the outputs from the neurons in the output layer o f  the network agree with their 

target values (as specified in the training file) to within the maximum output error.

The maximum output error was set to a default value o f  0.1. The effect o f  choosing 

different termination criterion will be described more fully in the discussion section o f  

this thesis. Since the desired outputs o f  the network were had tw o possible values ( 0  

and 1) the value o f  0.1 for the maximum output error represents a 10% difference 

between the desired and actual outputs o f  each neuron in the output layer o f  a network. 

The number o f  epochs needed for the maximum output error to converge to the desired 

termination levels was investigated with respect to variation o f  the learning rate (r| in 

equation 1.27) and momentum (a  in equation 1.48) by means o f  a 6 level 2 factor full 

factorial experimental design. The network topology used for this study employed seven  

neurons in the hidden layer. The rationale behind the initial choice o f  seven neurons for 

this study w as based on an initial reading o f  the Kolm ogorov network existence theorem  

(19). The theorem was misinterpreted as meaning that any mapping from R” to  Rm could 

be represented by means o f  a network with 2m +1 hidden layer neurons (2*3(number o f  

output neurons) +1 = 7 ) .  In actuality, the theorem says that for any continuous mapping 

from Rn to Rm there must exist a three layer network with a hidden layer o f  (2 n + l)  

neurons. However, the use o f  this theorem itself is controversial (see the discussion 

section o f  this thesis). Table 2.3 depicts the results o f  this study. In those cases where
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the table entries read as no convergence it means that the network did not converge to 

the required levels o f  the maximum output error within a limit o f  1000 epochs.

Unfortunately, it was not possible to  obtain ranges for the number o f  iterations 

until convergence. Repetitions o f  training under the same conditions o f  learning rate, 

momentum and network topology yielded the same number o f  iterations until 

convergence. I f  training w as stopped (prematurely) after a fixed number o f  iterations, 

the studied connection weights had the same values when training was repeated. It 

would be beneficial to determine whether this is due to the initialisation o f  the weights in 

a network prior to training.

It can be seen that at a very high momentum o f  2.0, the network did not converge 

to the desired levels o f  maximum output error within 1000 epochs. This suggests that 

using a momentum greater than one causes the weight vector (the vector describing the 

weights o f  the connections to a neuron) to move during training on the error surface (the 

surface describing the error for the neuron for different values o f  the connection weights) 

under greater influence from the previous gradient than from the current gradient for a 

given step, leading to unstable behaviour o f  the network (see equation 1.48), Strangely 

however, at a slightly lower momentum o f  1.5 the network converged with very low  

learning rates i.e. 0.05 <ri< 0.25. This suggests that low  learning rates stabilise the 

learning process when used with high momentum. However, having a low  learning rate 

slows down the rate o f  learning so that a compromise between having stable learning 

(associated with low  learning rates and high momentum values) and speeding up learning 

with a slightly higher learning rate is achieved with the learning rate o f  0.1. At a lower 

momentum o f  1.25, a higher learning rate o f  0.25 provides the optimal rate o f  

convergence for the network, although the number o f  epochs required for convergence is 

slightly higher than with the learning rate o f  0.1 and the momentum o f  1.5.
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Momentum Learning Rate Number of Iterations Until Convergence
2 1.0 N ot Converged

: 0.75 N ot Converged
¡ 2 0.5 N ot Converged

: ...... 0.25 N ot Converged
2: ■: 0.1 N ot Converged

:V 2 I 0.05 N ot Converged
Î.5 1.0 N ot Converged
1.5 0.75 N ot Converged
i f ' 0.5 N ot Converged

0.25 125
1.5 0.1 94

m ,  i J I r 0.05 132
1 2 5 1.0 N ot Converged

lll'iia ; :.:; 0.75 N ot Converged
1 2 5 0.5 N ot Converged

I 25 X 0.25 100
-  1.25 0.1 152

1 25 0.05 381
1,0 1.0 N ot Converged
1 (i 0.75 N ot Converged

II ill 0.5 140

1 ’ 1 0 0.25 84
1 0 0.1 98
1,0 0.05 98

... 0.75 1.0 N ot Converged
0.75 0.75 N ot Converged
m 75 0.5 74
Ü.75 0.25 85
0 75 0.1 116
0.75 0.05 115
¡¡y 1.0 N ot Converged

..... 0.75 56
0 5 0.5 82
0.5 0.25 106

... 0.5 0.1 129
: 0.5 0.05 135

0 25 1.0 N ot Converged
M  0.25 0.75 79
Ì^H O .25 0.5 137

0 25 0.25 188
0 25 0.1 221
0 2 | P l i 0.05 240

0,1 1.0 N ot Converged
é é  o  i  1 0.75 168

0,1 0.5 325
O . l l l f c 0.25 455
0  J 0.1 548

É É : 0.1 0.05 578
0,0$; 1.0 Not Converged

v:: n 05 |  : 0.75 319
0.05 0.5 609
0,05 0.25 919

0.1 N ot Converged
0.05.. 0.05 N ot Converged

Table 2.3- Variation o f  number o f  epochs o f  a network with seven neurons in the hidden 
layer, trained with the eight FIA patterns depicted in appendix 1 to converge fo r  different 
learning rate and momentum values



However it is difficult to ascertain the reason for this difference because the 

momentum is itself dependent on the learning rate (16). The previous statements 

concerning the use o f  low learning rates with high momentum values agree with the 

conclusions derived by Tollenaere (20) and described by B os (16), that high 

momentum rates do not make learning unstable if  small enough learning rates are used. 

H owever in B o s’s thesis, this related to momentum values up to  0.9. It is interesting 

that the same effect is seen in this case for momentum values greater than 0.9 at which 

learning should be unstable. The software was tested in a similar fashion on a different 

problem and demonstrated again the ability o f  the network to converge at momentum  

values greater than one. It would be o f  benefit to determine whether this behaviour is 

a feature o f  the software rather than the problem being solved.

It can also be seen from table 2.3, that the learning rate with the low est number 

o f  epochs to convergence o f  the network decreased as the momentum increased (see  

table 2.4). This also agrees with the conclusions o f  Tollenaere (20) described by B os  

(16).
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Momentum Learning Rate With The Lowest Number Of 
Epochs Until Convergence

0,05 0.75
0 1 0.75

0 25 0.75
0.5 0.75

0.75 0.5
L0 0.25
1.25 III 0.25

& M 0.1

Table 2.4 - Variation o f  the learning rate with the lowest number o f  epochs until convergence 
(determined from  table 2.3) o f  the network with 7 neurons in its hidden layer applied to the 
classification o f  the patterns produced from the response o f  the sodium, potassium and 
calcium ISEs to the solutions whose composition is given in table 2.1.
It can be noticed from table 2.3 that the network did not converge to the required level

o f  maximum output error within the required number o f  iterations for any value o f  the

momentum when the learning rate is fixed at 1.0. This suggests that training with such

a large learning rate on the patterns in appendix 1 was so unstable that the network

could not converge to the required level irrespective o f  the stabilisation provided by

the momentum. It can be seen table 2.3 that an apparent minimum in the number o f

epochs (presentations o f  the training set) required for the network to converge to the

required level o f  maximum output error exists for a learning rate coefficient in the

region o f  0.5 to 0.75 and a momentum value o f  0.25 to 0.75 . The optimal conditions

found (i.e. low est number o f  epochs required to convergence) were a learning rate

equal to 0.75 and momentum equal to 0.5. Since further training would involve more

noisy patterns, it was decided to use a slightly higher momentum o f  0.75 (to provide

stabilisation) and a lower learning rate o f  0.5 as this would provide stabilisation

without unduly affecting the performance.



2.3.1.2 A study of the effect of the num ber of neurons in the  hidden layer of a 

netw ork on the num ber of epochs until convergence and the  com putational time 

involved in train ing  until convergence

Figure 2.5 and 2.6 shows how the number epochs and computational time 

required for networks (trained with a learning rate o f 0.5 and a momentum of 0.75) to 

converge to the same termination criterion as used for the previous study (maximum 

output error = 0.1) varies with respect to the number o f neurons used in the hidden 

layer o f the netw orks. The training set used for this study is the same as used for the 

previous study (the FLA traces from the solutions described in table 2.1 and the 

synthetic trace describing the absence o f the ions). As with the previous study, it was 

unfortunately not possible to obtain ranges for the values of the number o f epochs and 

computational time by repeating the experiments. Without these ranges it is difficult to 

objectively describe the significance o f the observed trends and as such, the following 

discussion will be o f mainly descriptive value. Figure 2.5 shows a gradual decrease in 

the number o f presentations o f the training set required for network to converge with 

increasing number of neurons in the hidden layer. As is discussed by Bos, while a 

larger number o f neurons in the hidden layer increase the number o f computations that 

must be performed by the backpropagation algorithm (because there are more 

connection weights) increasing the number o f neurons in the hidden layer may lead to 

faster convergence rates because of the larger number o f weight adaptations per epoch.
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F ig u re  2 .5  -  V a ria tio n  o f  th e n u m b er  o f  p r e s e n ta tio n s  o f  th e tr a in in g  s e t  (ep o ch ) to  
n e tw o rk s  w ith  v a r y in g  n u m b er  o f  n e u ro n s  in  th e ir  h id d e n  la y e r s  u n til  c o n v e rg e n c e  to  a  
m axim u m  o u tp u t e r r o r  o f  0.1. The tra in in g  s e t  w a s  c o m p o s e d  o f  th e F I  A  tr a c e s  o f  the  
sod iu m , p o ta s s iu m  a n d  ca lc iu m  IS E s to  the so lu tio n s  d e s c r ib e d  in  ta b le  2 .1 . The 
le a rn in g  r a te  w a s  0 .5  a n d  th e  m o m en tu m  w a s  0 .7 5

The computational time required for convergence of the networks depicted in figure 

2.6 is dependent on both the software and the hardware used for the study but it can be 

seen that there is a general increase in the computational time required for convergence 

as the number o f neurons in the hidden layers increase. Increasing the number of 

neurons in the hidden layer from 20 to 60 leads to a reduction in the number of epochs 

required for convergence from 48 to 32 but results in an increase in the computational 

time required for convergence from 27 to 52 seconds. It can be seen that an 

approximately three-fold increase in the number o f connection weights leads to an 

approximately two-fold increase in computational time, suggesting that the larger 

number o f weight adaptations per epoch partly compensates for the associated increase 

in the number o f computations per epoch. These results agree with those quoted by 

Bos (16) when he discussed the variation in number o f epochs required for 

convergence and computational time as a function of the number o f neurons in the 

hidden layer o f a network. Bos (16) also showed that the number of epochs and 

computational time required for convergence also varies widely depending on the



learning rate, indicating that the final performance of a network on a training set is 

dependent on the learning rate and the number of epochs chosen as a termination 

criterion for training and is also dependent on the number o f neurons in the hidden 

layer o f the network.
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F ig u re  2 .6 -  V a ria tio n  o f  th e  c o m p u ta tio n a l tim e  o f  n e tw o rk s  w ith  v a r y in g  n u m b e r  o f  
n e u ro n s  in  th e ir  h id d e n  la y e r s  u n til c o n v e rg e n c e  to  a  m a x im u m  o u tp u t e r r o r  o f  0.1. 
The tra in in g  s e t  w a s  c o m p o s e d  o f  th e F I  A  tra c e s  o f  the so d iu m , p o ta s s iu m  a n d  
c a lc iu m  IS E s  to  th e  so lu tio n s  d e s c r ib e d  in  ta b le  2 .1 . I h e  le a r n in g  r a te  w a s  0 .5  a n d  
the m o m en tu m  w a s  0 .7 5

This suggests that the balance achieved between the increased computational time and 

reduced number o f epochs required for training large networks should be considered 

when deciding upon a particular network topology. However, the performance o f a 

network should also consider its ability to generalise outside its training set and as such 

the possibility of overfitting by large networks should not be disregarded.

Observations of overtraining will be described in more detail in sections 2.3 .5 .1, the 

specific problems o f overtraining as it relates to this study will be described in the 

conclusion and a more general view o f overtraining will be described in the discussion 

section o f this thesis.

In order to investigate the effect o f various distortions on the ability o f the networks to 

correctly predict qualitatively the composition of an unknown solution, test sets o f
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distortions o f response profiles in the training set were composed. A mean squared 

error (MSE) described in equation 2.6 was used as a measure o f the performance o f 

the networks.

y„ in this expression refers to the j* component of the desired output to pattern i, Oy 

refers to the actual output o f the neuron j to the pattern i, m refers to the number of 

components in the vector describing the desired output of the network to a given 

pattern (or the number o f neurons in the output layer of the network) and n refers to 

the number o f patterns involved in the testing of the network.

For the studies in sections 2.3.1.3 to 2.3.3, networks with 50 to 55 neurons in the 

hidden layer were used. The choice of this topology arose from the study depicted in 

figure 2.5, which suggested that networks with this topology yielded the lowest 

number of epochs until convergence.

2.3.1.3 Classification O f Test P atterns W ith Varying Noise Levels

An investigation was performed into how networks trained with the FIA 

patterns depicted in appendix 1 would perform when tested with patterns derived from 

these FIA traces by the addition o f variable amounts o f noise. Noise was added by 

using the system supplied random number generator to produce numbers in the ranges 

of 0 to 20%, 50%, 100% and 150%, 200%, 300% and 400%. The resulting random 

numbers were then converted positive and negative numbers in the ranges +10% to - 

10%, +25% to -25%, +50% to -50%, +75% to -75%, +100% to -100%, +150% to - 

150% and +200% to -200% of the maximum peak height in each pattern composed of 

the responses of the sodium, potassium and calcium ISEs in the training set. These

(2.6)



random numbers were then added to FIA traces to the solutions described in table 2.1. 

The resulting patterns are depicted in appendix 2. These patterns were then presented 

to networks with variable numbers o f neurons in the hidden layer which had been 

trained on the FIA traces to the solutions described in table 2.1 to a maximum output 

error of 0.1 and a maximum total network error o f 0.01, with a learning rate o f 0.5 and 

a momentum of 0.75. Figures 2.7 a to 2.7g depict the outputs from a network (with 

55 neurons in its hidden layer) to the FIA patterns as a function o f the noise added to 

the valid FIA peak.

As might be expected, it can be seen from figures 2.7a to 2.7g that the outputs of 

neurons corresponding to species which were absent, were more affected by the 

addition o f noise than those o f neurons corresponding to species which were present. 

Even at the highest noise levels the outputs o f neurons corresponding to species which 

were present (desired output =1) remained high. It appears from figure 2.7a that at 

noise levels o f ±10% ±50% of the sodium ISE peak height that the network is sensitive 

to noise added at levels o f ±10% to ±50% to the traces from the potassium and 

calcium ISEs to solutions only containing sodium (as observed from the increasing 

outputs o f the K(rt) and Ca(rt) neurons). In contrast, the Na<rt) neuron output is relatively 

unaffected. At noise levels o f ±200% of the sodium ISE peak height, the network is 

totally incapable of differentiating between the FIA peak and the noise, and every ion is 

classified as being present.

If  the output from neuron Na(rt) in figure 2.7b is compared with the output of neuron 

K(rt) in figure 2.7a it can be seen that at noise levels of ±10% and ±25% of the viable 

peak height, that the network demonstrated a lower sensitivity to noise on the sodium 

ISE trace from solutions containing only potassium than to noise on the trace from the
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Figures 2.7a to 2.7g The outputs from the Na(rt), K(rt) and Ca(rt) neurons of a network with 55 neurons in its hidden layers trained to a maximum output
error of 0.1 with the simple FIA patterns depicted in appendix 1, when the network is tested with the patterns
distorted by noise addition.

Figure 2.7a Solution containing sodium
Desired Output: Na neuron =1, K neuron =0, Ca neuron =0

50 100 150 200
Noise (±% of valid peak height)

0.4

0.2

0

Desired Output: Na neuron =0, K neuron =1, Ca neuron =0

Noise (±% of valid peak height)

Figure 2.7c Solution containing calcium Figure 2.7d Solution containing sodium and potassium
Desired Output: Na neuron =0, K neuron =0, Ca neuron =1 Desired Output: Na neuron =1, K neuron =1, Ca neuron =0

1

0.8

0.6

0.4

0.2

0
50 100 150 200

Noise (£% of valid peak height)
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Figures 2.7a to 2.7g continued The outputs from the Na(rt), K(rt) and Ca(rt) neurons of a network with 55 neurons in its hidden layers trained to a
maximum output error of 0.1 with the simple FIA patterns depicted in appendix 1, when the network is tested
with the patterns distorted by noise addition.

Figure 2.7e Solution containing sodium and calcium
Desired Output: Na neuron =1, K neuron =0, Ca neuron =1

t -----------------------!----------------------- 1-----------------------r ----------------------

0 50 100 150 200
Noise (±% of valid peak height)

0 50 100 150 200
Noise {±% of valid peak height)

Figure 2.7f Solution containing potassium and calcium
Desired Output: Na neuron =0, K neuron =1, Ca neuron =1

Noise (±% of valid peak height)

—O—#REF! 
— iSREF! 
—£ —#REF!

Figure 2.7g Solution containing sodium, potassium and calcium
Desired Output: Na neuron =1, K neuron =1, Ca neuron =1
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potassium ISE from solutions only containing potassium (i.e. the output o f neuron K(rt) 

in the noise range ±10% and ±25% of the sodium ISE peak height in figure 2.7a is 

larger than the output o f the neuron Na<rt) in the same noise range in figure 2 .7b). This 

is interesting because on examination of the original FIA peaks in appendix 1, it 

appears that the sodium ISE demonstrates a larger response to the presence of 

potassium than the potassium ISE demonstrates to the presence o f sodium (this 

coincides with values determined for the selectivity coefficients for the electrodes 

[studies in chapter 3] k j ^  = 0.1, k££a<10'6, literature sources ^ ”^=3.9x1 O’3 (21), 

k ^ a=4. lxlO '4 (22)). It is difficult to follow trends in the outputs from the Na(rt) and 

Ca<rt) neurons in figure 2.7b in the noise range ±50% to ±150% of the potassium ISE 

peak height, because the increase in output from Ca(rt) in the noise range ±50% to 

±100% of the potassium ISE peak height coincides with a decreased output from the 

Ca(rt) neuron, similarly the decrease in output o f the Na^) neuron between the noise 

levels of ±100% and ±150% of the potassium peak height coincides with an increase in 

the output o f Ca(rt).

Comparing the output o f Na<rt) in figure 2.7b and in figure 2.7c, it appears that the 

network, is less sensitive to noise on the trace from the sodium ISE to solutions 

containing calcium than to solutions containing potassium (as judged by the fact that 

the output from Na(rt) in figure 2.7c does not achieve as large an output value as in 

figure 2.7b at noise levels greater than ±25% of the valid peak height.

This may be related to the presence of a negative potential feature on the traces o f the 

sodium and potassium ISEs to solutions containing only calcium as seen in pattern 1.3 

in appendix 1. This negative feature is also present in the traces from the sodium, 

potassium and calcium ISEs to solutions containing only sodium and only potassium,
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but are not as large (solution containing only sodium, negative potential features : 

potassium ISE = -6 mV, calcium ISE = -13 mV, solution containing only potassium, 

negative potential feature: calcium ISE = -15 mV, solution containing only calcium, 

negative potential features: sodium ISE = -27 mV, potassium ISE = -12 mV). If  a 

network was trained with a pattern with negative features to recognise as the absence 

of a species it might have less difficulty recognising patterns with negative noise 

elements1.

There can be seen a gradual decrease in the output from the Ca(rt) neuron in figure 2.7c 

as the noise level increased from 10 to 150% of the calcium ISE peak height. The 

increased output from the Ca(rt) neuron at noise levels o f ±200% of the calcium ISE 

peak height coincides with a slightly increased output from the Na^) neuron.

It can be seen from figure 2.7d that the output of the Ca^) neuron increases 

dramatically as the added noise increases from ±10% to ±200% of the sodium and 

potassium ISE peak heights. This suggests that the network is highly sensitive to noise 

on the trace from the calcium ISE trace to binary solutions containing sodium and 

potassium. This might happen because the network has only got the trace from the 

calcium ISE to use as a judge for the presence of a baseline for patterns produced by 

this type o f binary solution. Since the magnitude o f the peak from the calcium ISE in 

figure 1.3 (of appendix 1) is smaller than the peaks from the sodium and potassium 

ISEs (because the calcium ISE has a lower slope than the sodium and potassium ISEs),
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1 As an aside, the negative feature discussed above usually indicates that there is a lower concentration 

of a primary ion in an injection than in the carrier stream, a method by which this negative feature 

itself could be recognised could be used to alert the FIA user to this problem.



the network trained with the patterns in appendix 1 would probably have been 

classifying the presence of calcium on the basis of low magnitude peaks from the 

calcium ISE. In the absence of any other form of baseline the network may have 

confused the noise on the calcium ISE trace as the presence of the ion in the solution. 

It can be seen however that there is little degradation of the output from the Na(rt) and 

K(rt). neurons with increased noise.

It can be seen from figures 2.7e and 2 .7 f that the networks perform well (in terms of 

the low output from the K(rt) neuron and high output from the Na(rt) and Ca(rt) neurons 

in figure 2.7e and the low output from the Na(lt) and high outputs from the K(rt) and 

Ca(rt) in figure 2 . I f )  at noise levels of +10% and +25% of the sodium ISE peak height 

(in figure 2.7e) and the potassium ISE peak height (in figure 2.7f).

At higher noise levels the outputs from the K(rt) neuron (in figure 2.7e) and the Ca<rt) 

neuron (in figure 2.7f) rapidly increase as the network becomes more sensitive to noise 

on the traces, apparently acting as a judge for the baseline. In the tertiary solutions 

containing sodium, potassium and calcium (depicted in figure 2.7g) , the network 

demonstrates an ability to classify correctly the presence of sodium and potassium, but as 

the noise level increases, the ability o f the network to classify the presence o f calcium is 

reduced dramatically. However noise levels o f ±50% of the height o f the tallest FIA 

peak in the pattern (potassium ISE) corresponds to ~±100% of the height o f the peak 

from the calcium ISE. When this is taken into account, it can be seen that the Ca(rt) 

neuron classification is on a par with the others in the range 0-±100% noise.

In general, it can be said that if a species is present in the original solution, that it is never 

classified as being absent (except for calcium in the tertiary mixture in figure 2.7g). 

However there is a tendency for the network to confuse noise with analytical peaks when
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the noise becomes relatively large (i.e. > ± 50% of the analytical signal). Whether this is 

happening because the network is confusing the spiked features in the noise with the 

shape of the FIA peak or is simply assuming that any feature above a particular potential 

represents a peak will become more clear with the studies involving baseline shifting and 

peak height reduction. However it certainly suggests the possibility o f training with 

patterns distorted by noise addition to alleviate this problem.

The raw data corresponding to the actual classifications made by the network in this 

study is depicted in table 2.1 in the tables appendix.

Studies on the effect o f varying the number of neurons in the hidden layer on the 

classification ability of the networks o f the noisy patterns in appendix 2 did not yield any 

conclusive information pertaining to the generalisation abilities o f variably sized 

networks.

2.3.1.4 Classification O f P atterns W ith Variable Peak Heights

An investigation was performed into how networks trained with the FIA patterns 

depicted in appendix 1 would perform when tested with patterns derived from these FIA 

traces by reducing the height of the peaks from ISEs selective for ions which were 

present in the solutions which produced the original FIA patterns. The heights of the 

peaks were reduced by 25%, 50%, 75% and 90% of their original amplitudes without 

altering the traces from the other ISEs. The resulting patterns are depicted in appendix

3. These patterns were then presented to networks with variable numbers o f neurons in 

the hidden layer which had been trained on the original FIA in the previous section. The 

classifications o f the patterns in appendix 3 by a network with 55 neurons in its hidden 

layer are depicted in figures 2.8a to 2.8f as a function o f the resulting signal to noise
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Figures 2.8a to 2.8f The outputs from the Na(rt), K(rt) and Ca(rt) neurons of a network with 55 neurons in its hidden layers trained to a maximum output
error of 0.1 with the simple FIA patterns depicted in appendix 1, when the network is tested with the patterns
distorted by reduction of the height of the valid FIA peak.

Desired Output: Na neuron =1, K neuron =0, Ca neuron =0 Desired Output: Na neuron =0, K neuron =1, Ca neuron =0

Figure 2.8c Solution containing calcium
Desired Output: Na neuron =0, K neuron =0, Ca neuron =1

r igure 2.8d Solution containing sodium and potassium
Desired Output: Na neuron =1, K neuron =1, Ca neuron =0

=  0 8  +  
Q.
I  0.6-

|  0 .4  -  

Z 0.2 

0
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Figures 2.8a to 2.8f continued The outputs from the Na(rt), K(rt) and Ca(rt) neurons of a network with 55 neurons in its hidden layers trained to a
maximum output error of 0.1 with the simple FIA patterns depicted in appendix 1, when the network is tested
with the patterns distorted by reduction of the height of the valid FIA peak.

Figure 2.8e Solution containing sodium and calcium
Desired Output: Na neuron =1, K neuron =0, Ca neuron =1

3 °-6

I  0.4
4>
Z  0.2 

0
0 5 10

S/N ratio

Of
0 10 20 

S/N ratio

Figure 2.8f Solution containing potassium and calcium
Desired Output: Na neuron =0, K neuron =1, Ca neuron =1
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(S/N) ratios2. The actual outputs o f the network to the patterns are described in 

appendix table 2.2.

It can be seen from figure 2.8a that the output o f the Na(rt) neuron increases very rapidly 

as the S/N ratio increases from 7 to 37, further increase in the S/N ratio beyond this 

point, does not produce as large an increase in the output from the Na(rt) neuron. This 

suggests that the network confidence of the presence o f a species increases rapidly with 

increased S/N ratio, until a point is reached at which the network is almost totally sure o f 

the presence of the species. Increasing the S/N ratio thereafter, merely serves to affirm 

that decision.

A similar pattern is seen for solutions containing potassium in figure 2.8b and 

solutions containing calcium in figure 2.8c. However, the point at which the increase in 

S/N ratio has a reduced affect on the increase in output from the K(rt) neuron in figure 

2.8b, occurs at a much lower S/N ratio o f approximately 15. This is not too surprising 

because the peak from potassium ISE had been reduced whereas the positive potential 

feature in the trace from the sodium ISE (seen in figure 1.2 in appendix 1, arising from 

the contribution of the potassium to the response of the sodium ISE) was unaltered.

Since this positive feature in the sodium ISE trace was included in the calculations o f 

noise, the apparent noise level for the patterns from the solution containing only 

potassium was higher than from the patterns from the solution containing only sodium, 

meaning that the amplitude of the potassium peak was comparable to the height o f the 

positive potential feature from the sodium ISE.
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The S/N ratios for the solution containing only calcium are very low3 and increasing the 

S/N ratio has a reduced affect on the increased output from the Ca(rt) neuron beyond an 

S/N ratio o f approximately 6.

It is difficult to draw similar conclusions concerning the affect of increasing the S/N ratio 

on the increase in output from the Na(rt) and K(rt) neurons in figure 2.8d. However, it can 

be seen that the increase in output from Na(rt) and K(rt) coincides with a decreased output 

from Ca^t) as the S/N ratio increases. When the heights o f the sodium and potassium ISE 

peaks are reduced by 90% (i.e. S/N ratio of approximately 6) the network can no longer 

discriminate between the sodium and potassium ISE peaks and the calcium ISE baseline 

(as judged by the similar outputs from the Na^), K(rt) and Ca(rt) neurons).

For the other binary solutions (i.e. solutions containing (a) sodium and calcium and (b) 

potassium and calcium) depicted in figures 2.8e and 2.8f, it can be seen that increasing 

the S/N ratio causes rapid increase in the outputs from the Ca^) neuron whereas the 

increase in output from the Na(rt) neuron (in figure 2.8e) and the K(rt) neuron(in figure 

2.8f) show a similar pattern of increase as was seen for the Na<rt) neuron in figure 2.8a. 

the outputs o f neurons corresponding to ions present (e.g. Na(rt) in figure 2.8e) were 

always much higher than the outputs from neurons corresponding to ions which were 

absent (e.g. K(rt) in figure 2.8e) even at the lowest S/N ratios.

I f  it is assumed that an output o f 0.5 of greater from a neuron indicates the presence o f a 

species, then it can be seen from table 2.6 that the network is capable o f classifying the
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3 One might wonder why the S/N ratios quoted for the calcium containing solutions in table 2.2 in the 
table appendix are not approximately half those for the sodium containing solutions, given that the 
peaks form both ISEs were subjected to the same degree of peak height reduction. However an 
examination of pattern 1.3 in appendix 1, it can be seen that there is a negative potential feature on the 
traces form the sodium and potassium ISEs, which was included in the noise calculations in order to 
determine the S/N ratio. Hence the apparent noise level was is higher than that for the sodium ISE, 
meaning that the S/N ratio is lower than might be expccted on the basis of the different slopes of the 
electrodes.



presence o f a species correctly up to a peak height reduction o f 50% of the original 

height.

2.3.1.5 Classification O f Patterns W ith Baseline Shifting

An investigation was performed into how networks trained with the FIA patterns 

depicted in appendix 1 would perform when tested with patterns derived from these FIA 

traces by the shifting o f the baselines of the traces from the ISEs. The baselines o f the 

peaks were shifted by +50, +100 and -40 mV, which corresponds to approximately 

+20%,+40% and -16% of the original monovalent ion peak heights. The resulting 

patterns are depicted in appendix 4. These patterns were then presented to networks 

with variable numbers o f neurons in the hidden layer which had been trained on the 

simple FIA patterns in the fashion described in section 23.1.3. The classifications o f the 

patterns in appendix 4 by a network with 55 neurons in its hidden layer are depicted in 

table 2.5.

It can be seen from this table that shifting the baseline in the positive or negative 

direction appears to have a greater influence on misclassifying an absent species as being 

present than misclassifying a present species as being absent. It can be seen that for 

solutions containing only sodium that a negative baseline shift increases the output K(rt) 

neurons when compared with its output to patterns with the positive baseline shift. In 

contrast to this, a negative baseline shift decreases the output o f the Ca^) neuron.

Volumel Page 100



Volume 1 Page 101

............ K « ..............
Pattern Solution Baseline Desired Actual Desired Actual Desired Actual

Number Key Shift Output .Output Output Output Output Output
1 Na +50 mV 1 0.978 0 0.222 0 0.321
2 Na -40 mV 1 0.992 0 0.363 0 0.080
3 K +50 mV 0 0.422 1 0.965 0 0.275
4 K -40 mV 0 0.370 1 0.996 0 0.119
5 Ca +50 mV 0 0.400 0 0.164 1 0.813
6 NaK +50 mV 1 0.984 1 0.957 0 0.577
7 NaK +100 mV 1 0.987 1 0.947 0 0.835
8 NaCa +50 mV 1 0.986 0 0.363 1 0.826
9 NaCa +100 mV 1 0.989 0 0.760 1 0.835
10 KCa +50 mV 0 0.288 1 0.958 1 0.798
11 KCa +100 mV 0 0.831 1 0.948 1 0.803
12 NaKCa +50 mV 1 0.987 1 0.947 1 0.840
13 NaKCa +100 mV 1 0.987 1 0.947 1 0.840

T a b le  2 .5  -  C la s s if ic a tio n  re su lts  f r o m  a  n e tw o rk  w ith  5 5  n e u ro n s  in  i ts  h id d e n  la y e r  
tr a in e d  a s  d e s c r ib e d  in  th e te x t to  a  te s t  s e t  c o m p o s e d  o f  the F IA  p a t te r n s  d e p ic te d  in  
a p p e n d ix  4.

On examination o f the original FIA trace in appendix 1 it can be seen that the trace from 

the calcium ISE has a larger negative potential feature than the potassium ISE for a 

solution containing only sodium (pattern 1.1). If  the network was trained to recognise a 

negative feature in the calcium ISE trace for a solution containing only sodium as being 

related to the absence o f the calcium, it may not have been as sensitive to a negative 

displacement of the baseline from the calcium ISE as to a negative baseline shift o f the 

trace from the potassium ISE. It can also be seen that for solutions containing only 

potassium, the outputs from the Na^) and Ca(rt) neurons decreased with the negative 

baseline shift relative to their outputs with a positive baseline shift. On examination o f 

the original FIA pattern (pattern 1.2 in appendix 1) it can be seen that there is a negative 

potential feature in the trace from the calcium ISE and a positive potential feature in the 

trace from the sodium ISE. The network may not have been as sensitive to negative 

displacements o f the baseline of the calcium ISE as to positive displacements because of



the presence of this negative feature in the original FIA pattern. Applying a negative 

shift to the baseline of the sodium ISE would have brought the peak o f its original 

positive feature into the general region where the negative feature existed in the original 

calcium ISE FIA trace and this may have influenced the reduction in the output from the 

Na(,t) neuron. It can be seen from table 2.5 that a baseline shift o f +100 mV on the traces 

from solutions containing sodium and calcium, produced an output from the K(rt) neuron 

comparable to that achieved with the addition of noise at 150% o f the peak height o f  the 

sodium peak (but the classification of the presence o f calcium is better with the baseline 

shift than with the noise). Similarly for FIA traces from solutions containing potassium 

and calcium, a baseline shift o f+100 mV produces an output from the Na(rt) neuron 

comparable to that achieved with addition o f noise at 150% of the height of the peak 

from the potassium ISE (as before the baseline shift produced a better output from the 

Ca(rt) neuron than the noise addition). This is suggestive that the presence o f baselines at 

different positions in the potential range within which the original FIA traces were 

acquired had a comparable role in the misclassification o f patterns as the presence of 

noise on the patterns. The study did not yield conclusive information concerning the role 

of variable numbers o f neurons in the hidden layer on the classification o f these patterns 

unfortunately.

2.3.1.6 Sum m ary

From the previous sections it can be seen that the different effects o f noise addition, 

baseline shifting and peak height variation have different effects on the classification of 

patterns by networks trained on undistorted patterns. Noise addition and baseline 

shifting appear to play an important role in determining the outputs of neurons 

corresponding to the decisions concerning the presence or absence of species which were
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absent in the solutions responsible for the original FIA traces in appendix 3, whereas 

peak height variation played an important role in determining the outputs from neurons 

corresponding to the decisions concerning the presence or absence o f species which were 

present in the solutions which produced the patterns in appendix 1. If  it is assumed that 

an output from a neuron of 0.5 or greater indicates the presence o f a species and an 

output of less than 0.5 indicated the absence o f the species, then the networks trained on 

the patterns in appendix 1 were capable of classifying patterns correctly up to noise 

levels of approximately 50% of the largest peak in a particular FIA pattern, baseline 

shifts of approximately 50 mV (approximately 20% of the height o f  the peak o f the 

original FIA traces from the sodium and potassium ISEs) and reduction o f the heights of 

peaks by approximately 50%. The next stage in this study was to determine whether this 

performance could be improved by redesigning the set o f patterns used to train the 

networks to contain variable amounts of these distortions and to test the performance of 

the resulting networks against new sets o f testing patterns also containing variable 

amounts o f these distortions.

2.3.2 Perform ance O f Networks Trained W ith P atterns C ontaining Noise,

Baseline Shifts and V ariation O f Peak Heights

A training set composed of 70 random patterns representing the flow injection peaks 

distorted by different combinations of baseline shift, peak reduction and noise addition, at 

levels much worse than normally encountered under experimental conditions was 

designed and a test set o f 56 patterns was composed in a similar fashion. Table 2.6 

describes the contents of the training set used for subsequent studies. The patterns in the 

training set are graphically depicted in appendix 5.
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For a net with 50 neurons in its hidden layer, 77% o f the patterns in the testing set were 

classified correctly, based on the assumption that an output o f greater than 0.9 indicated 

the presence o f the species and an output of less than 0.1 indicated its absence.

Tables 2.7 to 2.13, list the outputs o f the network with 50 neurons in its hidden 

layer to the different patterns in the test set, it also lists the ratios of the network outputs 

to the ions which are supposed to be present in the sample to the ions which are 

supposed to be absent from the sample. The tables also contain a listing o f the different 

distortions applied to the original experimental trace required for the generation o f the 

particular pattern.
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Pattern
Number

Solution
Key

Noise (at %  
of

maximum 
peak height)

Baseline shift 
(at % of 

maximum peak 
height)

Reduction in 
height of 

sodium 1SE 
peak

Reduction in 
height of 

potassium 
ISE peak

Reduction 
in height of 
calcium ISE 

peak
1 NaKCa - -20% - - -

2 NaK 25% - 75% 75% 75%
3 NaCa - - 30% - 75%
4 NaK 50% +20% 35% 35% -

5 Na - +16% 60% - -

6 Na - - 25% - -

7 Ca - +222% - - 75%
8 NaCa - +21% - - 75%
9 Na - +42% - - -

10 Ca 50% +56% - - -

11 KCa 10% - - - -

12 Ca - - - - 50%
13 NaK - +20% 50% 25% -

14 NaK - - 2 5% 50% -

15 NaKCa - - 75% 25% 50%
16 Ca - +56% - - 25%
17 KCa 50% +19% - 35% 35%
18 NaK - +20% - - -

19 NaCa - +22% 50% - -

20 NaK - +20% 25% 50% -

21 Na - - 10% - -

22 K - - - 25% -

23 Ca 25% - - - -

24 K 25% - - 35% -

25 Na 50% +21% 80% - -

26 NaCa - +22% - - -

27 Na - -17% 75% - -

28 Ca 10% - - - -

29 KCa 25% - - 75% 75%
30 K 50% +19% - 80% -

31 K 75% - - - -

32 KCa - +29% - - -

33 K - +38% - 60% -

34 NaKCa - - 25% 50% 75%
35 NaKCa - +20% - - -

36 NaCa - -17% - - -

37 K - -15% - 75% -

T a b le  2 .6  - A  lis t  o f  th e  p a t te r n s  c o m p o s in g  th e  tra in in g  s e t  f o r  fu r th e r  s tu d ie s . The  
so lu tio n  k ey  re fe rs  to  th e  c o m p o s itio n  o f  th e  o r ig in a l so lu tio n s  u se d  to  p r o d u c e  th e  
p a tte r n s  (d e te rm in e d  f r o m  ta b le  2. 1, a n d  th e  su b se q u e n t co lu m n s re fe r  to  th e  
d is to r tio n s  a p p l ie d  th e  re le v a n t F IA  p a t te r n
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Pattern
Number

Solution
Key

Noise (at % 
of

maximum 
peak height)

Baseline Shift 
(at % of 

maximum peak 
height)

Reduction in 
height of 

Sodium ISE 
Peak

Reduction in 
height of 

Potassium 
ISE Peak

Reduction 
in height of 

Calcium 
ISE Peak

38 NaCa 75% - - - -

39 NaKCa 75% - - - -

40 NaKCa - -20% 40% 40% 80%
41 NaCa 50% +4% - - -

42 NaK 75% - - - -

43 K - - - 35% -

44 NaKCa 25% - 50% 75% 25%
45 KCa - +19% - 25% 50%
46 NaK 10% - - - -

47 Na 75% - - - -

48 NaCa - - 50% - 50%
49 KCa - +19% - 25% 50%
50 KCa 75% - - - -

51 NaKCa 10% - - - -

52 NaK - - 25% 50% -

53 NaK - - 25% 50% -

54 NaCa 25% - 75% - 75%
55 Ca - - - - 50%
56 NaKCa 50% +4% 80% 80% 60%
57 Na 25% - 35% - -

58 NaKCa - +20% 40% 40% 40%
59 KCa - - - 25% 50%
60 Ca 25% - - - 75%
61 KCa - - - 50% 35%
62 K - - - 25% -

63 K 10% - - - -

64 Na - -13% - - -

65 Na 10% - - - -

66 Ca - +111% - - -

67 KCa - +38% - - -

68 K - +38% - - -

69 Na - +250% 25% - -

70 Ca 50% +330% - - -

T a b le  2 .6 c o n tin u e d -  A  l is t  o f  th e  p a t te r n s  c o m p o s in g  the tra in in g  s e t  f o r  f u r th e r  s tu d ie s . 
The so lu tio n  k e y  r e fe r s  to  th e  c o m p o s itio n  o f  th e o r ig in a l so lu tio n s  u s e d  to  p r o d u c e  the  

p a t te r n s  (d e te r m in e d fr o m  ta b le  2.1, a n d  th e  su b se q u e n t co lu m n s  r e fe r  to  th e  d is to r t io n s  
a p p l ie d  the r e le v a n t FIA  p a tte r n
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Table 2.7 depicts the outputs from the network to the distorted pattern generated from 

FIA traces to a sample which contained sodium only. The natures of the distortions 

employed and the resultant network responses suggest that as the height o f the sodium 

ISE peak became smaller and hence closer to the level o f the noisy signals from the 

potassium and calcium ISEs, that it became more difficult to distinguish between the 

presence of sodium or calcium in the sample, because of the sensitivity o f the network to 

low amplitude calcium ISE signals relative to the sodium and potassium ISE peak 

amplitudes. The worst response from the network obtained for this series o f patterns 

was obtained for pattern 7 in which the height o f the sodium ISE peak had been reduced 

by 70% and noise at 40% of the original peak height had been added. The network 

response to this pattern was 0.999 (Na), 0.032 (K), 0.546 (Ca), however even with this 

level o f distortion it is evident that the network output indicates a degree o f confidence 

in the presence o f sodium almost twice that of the presence of calcium.

Table 2.8 depicts the outputs of the network to the distorted patterns generated 

from FIA traces to samples which contained only potassium. Interference signals from 

the sodium ISE to the potassium present in the sample produces the relatively low output 

ratio of potassium to sodium seen in pattern 13 (6.566) in which the baseline had been 

shifted in the negative direction by approximately 8% of the original peak height, and the 

height of the potassium ISE peak had been reduced by 80%. Noise at 60% of the 

original peak height also produced low output ratios in pattern 16 (6.098 for K/Na and 

2.874 for K/Ca).



Table 2.7. Classification results to the test patterns 1-8 in appendix 6 o f a network with 50 neurons in its hidden layer trained with the patterns
depicted in appendix 5 and described in table 2.6. Learning rate = 0.5, momentum =  0.75, maximum output error = 0.1. These test patterns are
derived from the FIA traces to a solution containing sodium only.

Network Outputs Decision Output Ratio Distortions Of Original Pattern Employed'4
Pattern Na neuron K neuron Ca neuron 1 Na/K • Na/Ca Ü Noise Addition Baseline Shift Peak:Height Reduction

1 1.000 0.067 0.017 14.926 58.823 -62%
2 1.000 0.011 0.010 90.909 100.000 60%
3 1.000 0.038 0.02 26.316 50.000 30% -38% 40%
4 1.000 0.245 0.035 4.082 28.571 60% -42% 50%
5 0.986 0.017 0.021 58.000 46.952 -10% 80%
6 1.000 0.021 0.104 47.619 9.615 50%
7 0.999 0.032 0.546 31.219 1.830 40% 70%
8 1.000 0.251 0.023 3.984 43.478 70% -30%

T a b le  2 .8 . C la ss if ic a tio n  re su lts  to  th e te s t  p a t te r n s  9 -1 6  in  a p p e n d ix  6 o f  a  n e tw o rk  d e s c r ib e d  a s  p e r  ta b le  2 .7 . T hese te s t  p a t te r n s  a re  d e r iv e d f r o m
th e F IA  to  a  so lu tio n  co n ta in in g  p o ta ss iu m  o n ly

Network Outputs Decision Output Ratio Distortions Of Original Pattern Employed4
Pattern : Na neuron I K neuron Ca neuron K/Na K/Ca - i Noise Addition::: Baseline Shift Peak Height Reduction

9 0.020 1.000 0.005 50.000 200.000 40% 60%
10 0.008 1.000 0.007 125.000 142.857 30% -23% 60%
11 0.042 1.000 0.023 23.809 43.478 30%
12 0.029 0.999 0.006 34.448 166.500 50% -30% 70%
13 0.152 0.998 0.006 6.566 166.333 I I oo V© ox 80%
14 0.023 1.000 0.028 43.478 35.714 I O 0s

15 0.013 1.000 0.095 76.923 10.526 70% -20%
16 0.164 1.000 0.348 6.098 2.874 60%

4 The distortions are expressed as percentages of the valid peak height in the original FIA patterns Volume 1 Page 108
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Table 2.9 depicts the outputs of the network to the distorted patterns generated from 

FIA traces to samples which contained only calcium. The high sensitivity o f the network 

to low amplitude signals from the calcium ISE and the high selectivity o f the other ISEs 

to calcium meant that all the patterns were classified correctly with a very high degree of 

confidence (worst output ratio for Ca/Na is 12.500 for pattern 21. Interestingly, the 

output ratios for Ca/K were around an order of magnitude larger than for Ca/Na, 

suggesting that under the conditions o f this study, the system is able to discriminate 

potassium interference much better than sodium interference on signals arising from 

calcium.

Table 2.10 depicts the network outputs to distorted FIA traces generated from a 

sample containing sodium and potassium. In these cases the FIA traces were distorted 

by shifting the baseline and adding noise as before, but the heights o f the sodium and 

potassium ISE peaks were changed independently of each other. The worst network 

output to any o f the patterns in the test set was produced to pattern 26. Although the 

sodium and potassium were positively identified as being present, the high levels o f noise 

on the calcium ISE signal made it difficult to determine whether there was a calcium 

peak present too. However, even in this difficult case, the output ratios of 1.704 

(Na/Ca) and 1.709 (K/Ca) the network is almost twice as confident o f the presence of 

the correct ions in the test solution.

Table 2.11 depicts the network outputs to distorted FIA traces generated from a 

sample containing sodium and calcium. The network had most difficulty with patterns 

38 and 40. For pattern 38, the noise addition at 60% the original peak height and the 

interference signals from the potassium ISE to the sodium and calcium present reduced 

the output ratios for Na/K and Ca/K to just over six. Similarly for pattern 40 in which 

noise at 50% of the maximum peak height had been added and the heights of the sodium 

and calcium ISE peaks had been reduced, the same output ratios were reduced to 10.753 

and 8.581, respectively.



Table 2.9. Classification results to the test patterns 17-24 in appendix 6 o f a network described as per table 2.7. These test patterns are derived from

Network Outputs Decision Output Ratio Distortions of original pattern employed'
Pattern Na neuron K neuron Ca neuron Ca/Na ¡1 1 * 1 1 Noise Addition Baseline Shift Peak height Reduction

17 0.062 0.020 0.910 14.677 45.500 -213% 60%
18 0.017 0.008 0.995 58.529 124.375 60% -22% 40%
19 0.080 0.012 0.989 12.362 82.417 65%
20 0.037 0.006 0.998 26.973 166.333 40% -75% 20%
21 0.080 0.002 1.000 12.500 500.000 30%
22 0.038 0.010 1.000 26.316 100.000 75% 40%
23 0.049 0.010 1.000 20.408 100.000 -85%
24 0.037 0.020 1.000 27.027 50.000 80% -43%

Table 2 .10  C lassification  results to the test pa ttern s 25-32  in appendix  6 o f  a  netw ork described  as p e r  table 2.7. These test pa ttern s are d erived  fro m
the FIA traces to a  solution containing sodium  an d  potassium

1 Nctwork Outputs Decision Output Ratio Distortions Of Original Pattern Employed6
IPiièrn Na neuron K neuron Ca neuron Na/Ca K/Ca Noise AddliM- • Baseline Shift Peak Reduction

25 1.000 1.000 0.136 7 353 7.353 30% 40% (Na), 60%(K)
26 0.997 1.000 0.585 1.704 1.709 60% -40% 60% (Na), 40% (K)
27 1.000 1.000 0.023 43.478 43.478 -2 0 % 20% (Na), 20% (K)
28 0.986 1.000 0.024 41.083 41.667 70%(Na), 60% (K)
29 1.000 1.000 0.007 142.857 142.857 -12%
30 0.993 1.000 0.021 47.286 47.619 -28% 60%(Na), 30% (K)
31 1.000 1.000 0.000 - - 40%
32 1.000 1.000 0.032 31.250 31.250 20% -8%

5 The distortions are expressed as percentages of the valid peak height in the original FIA patterns
6 The noise distortion is expressed as a percentages of the height of the largest peak in the original FIA patterns, the baseline shift and peak height reduction are 
expressed as a percentage of the height of the valid FIA peak
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Table 2.11 Classification results to the test patterns 32-40 in appendix 6 o f a network described as per table 2.7 These test patterns are
derived from the FIA traces to a solution containing sodium and calcium

Network Outputs Decision Output Ratio Distortions Of Original Pattern Employed7
Pattem Nû neuron K neuron Ca neuron 1 Na/K Ca/K Noise Äddllöh Baseline Shift- 1  Peak Height Reduction

33 1.000 0.025 0.971 40.000 38.840 40% (Na), 40% (Ca)
34 0.996 0.050 0.546 19.920 10.920 -43% (Na), 

~127%(Ca)
60% (Na), 60% (Ca)

35 0.999 0.003 0.982 333.000 327.333 40% 70% (Na), 20% (Ca)
36 1.000 0.020 0.988 50.000 49.400 -30% (Na), 

-90% (Ca)
37 1.000 0.005 0.988 200.000 197.600 40%
38 1.000 0.152 0.993 6.579 6.118 60% -13% (Na), 

-38% (Ca)
39 0.798 0.020 0.995 39.900 49.750 20% -26% (Na), 

-76% (Ca)
85% (Na), 30% (Ca)

40 1.000 0.093 0.798 10.753 8.581 50% -13% (Na), 
-138% (Ca)

45% (Na), 65% (Ca)

7 The noise distortion is expressed as a percentages of the height of the largest peak in the original FIA patterns, the baseline shift and peak height reduction are
expressed as a percentage of the height of the valid FIA peak
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Table 2.12 details the network outputs to distorted FIA traces generated from a 

sample containing potassium and calcium. In all cases described in this table the patterns 

were identified correctly with a high degree o f confidence, the worst case being pattern 

48 where increasing the noise added to 70% of the original peak heights caused the 

output ratios for K/Na and Ca/Na to fall to around 20 from values of over 300 (pattern 

47), even though other distortions were not as severe.

Table 2.13 which details the network outputs to distorted FIA traces generated 

from a sample containing all three cations. The network was able to cope confidently 

with all distortions investigated. The least confident result was a 0.760 prediction for Ca 

(pattern 56), which may have been caused by a larger shift in the baseline (150% of peak 

height compared to 70% for sodium and 60% for potassium).

It can be seen from these tables that for 44 o f the 56 ion combinations 

investigated, the patterns in the testing set were classified correctly, based on the 

assumption that an output of greater than 0.9 indicated the presence o f the species and 

an output o f less than 0.1 indicated its absence. However for those patterns which were 

not classified correctly according to these criteria there was still a greater degree o f 

confidence in the presence of the correct ion(s) rather than the other ions which may 

have been present in the sample. If  we consider the outputs of the neural network to 

ions which are present relative to ions which are absent, it can be seen that in around 38 

of the 48 possible patterns studied, the classification of the pattern indicated a degree of 

confidence o f at least 10 times greater for the presence o f the correct ion relative to the 

other possible ion permutations. In fact, in every case, the network favoured the correct 

composition, with the worst case being the output ratio o f 1.7 for the correct prediction 

o f the presence o f sodium and potassium compared to the presence of calcium as 

discussed above (see table 2.10, pattern number 26).



Table 2.12. Classification results to the test patterns 41-48 in appendix 6 o f a network described as per table 2.7. These test patterns are

derived from the FIA traces to a solution containing potassium and calcium

Network Outputs Decision Output Ratio Distortions Of Original Pattern Employed8
Pattem Nà neuron K neuron Ca neuron : K/Na Ca/Na Noise Addition. Baseline Shift Peak Reduction

41 0.001 1.000 0.999 1000.000 999.000 40% - -
42 0.001 0.998 0.998 998.000 998.000 60% -10% (K), 

-25% (Ca)
60% (K), 40% (Ca)

43 0.005 1.000 1.000 200.000 200.000 30% 40% (K), 20% (Ca)
44 0.003 1.000 1.000 333.333 333.333 - -38% (K), 

-103% (Ca)
-

45 0.002 1.000 0.997 500.000 498.501 - —15% (K), -  
40% (Ca)

70% (K), 60% (Ca)

46 0.000 1.000 0.989 - - 45% -23% (K), 
-61% (Ca)

45% (K), 45% (Ca)

47 0.003 1.000 0.987 333.333 329.000 - - 25% (K), 50% (Ca)
48 0.047 1.000 1.000 21.276 21.276 70% -13% (K), 

-36% (Ca)

8 The noise distortion is expressed as a percentages of the height of the largest peak in the original FIA patterns, the baseline shift and peak height reduction are
expressed as a percentage of the height of the valid FIA peak

Volume 1 Page 113



Table 2.13. Classification results to the test patterns 41-48 in appendix 6 o f a network describedfor table 2.7. These test patterns are
derived from the FIA traces to a solution containing sodium, potassium and calcium

Isetwork Outputs Distortions Of Original Pattern Employed9
Pattern Nä

neuron !
K lS i l i i i Ca neuron

X;:: . : . Noise Addition Baseline Shift Peak Redaction

49 1.000 1.000 0.990 ~47%(Na),
~40%(K),

~100%(Ca)
50 1.000 1.000 0.992 40% (Na), 40% (K), 

30% (Ca)
51 1.000 1.000 0.991 60%
52 0.991 1.000 0.965 -35% (Na), 

-30% (K), 
-75% (Ca)

70% (Na), 40% (K), 
Ca (55%)

53 1.000 0.917 0.984 40% 30% (Na), 70% (K), 
35% (Ca)

54 0.999 1.000 0.999 60% -12% (Na), 
-10% (K), 
-25% (Ca)

50% (Na), 30% (K), 
20% (Ca)

55 0.999 0.999 0.981 30% -28% (Na), 
-24% (K), 
-60% (Ca)

55% (Na), 55% (K), 
25% (Ca)

56 1.000 1.000 0.760 70% -70% (Na), 
-60% (K), 

-150% (Ca)

9 The noise distortion is expressed as a percentages of the height of the largest peak in the original FIA patterns, the baseline shift and peak height reduction are
expressed as a percentage of the height of the valid FIA peak
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2.3.3 Comparison Of The Ability Of A Network Trained With A Data Set 

Composed Of Simple FIA Peaks And A network Trained With A Data Set 

Composed O f Distorted FIA Peaks To Recognise Patterns Distorted By Noise 

Addition, Baseline Shifting And Peak Height Variation

In this section the performance o f networks trained with the new data set composed of 

the distortions o f the simple FIA peaks (depicted in appendix 5) will be tested with the 

same data sets as were used in the studies described in 2.3.1.3-2.3.1.5 and will be 

compared with the performance of the network trained with the simple FIA patterns 

(depicted in appendix 1).

Test 1: Varying Noise Levels

Figures 2.9 a to 2.9g graphically depict the results of this for a network with 55 neurons 

in its hidden layer trained with the patterns described in table 2.6 to a maximum output 

error o f 0.1. Training was performed with a learning rate of 0.5 and a momentum of 

0.75. The actual classifications made by the network in this study are described in table

2.3 in the table appendix. Comparing figures 2.7a (from 2.3.1.3) and 2.9a, it can be 

seen that for patterns generated from solutions containing sodium that the network 

trained with the distorted training set described in table 2.8 (broad training) performs 

better than the network trained with the simple FIA patterns (restricted training) up to a 

noise level of ±75% o f the sodium ISE peak height. At a noise level o f ±75% there is an 

unusual increase in the output from the K(bt> neuron. A corresponding effect is seen in the 

case o f solutions containing potassium where there is an increase in output from Ca(bt) 

neuron and from the Na(l,t) neuron at noise levels of ±50% and ±100% of the potassium 

ISE peak height respectively. This is difficult to explain as the this effect does not 

appear in patterns from the other solutions and examination of the relevant patterns in 

appendix 2 does not provide any visual clues. Although it is extremely debatable 

whether a decision should be made on this basis, if the increased output from the K(bt)
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10neuron is disregarded, the network performs a correct classification o f patterns up to a 

noise level of ±150% of the sodium peak height (using the criteria that an output greater 

than 0.5 indicates the presence of a species and a n output o f less than 0.5 indicates its 

absence). This compares with the network trained with the simple FIA patterns in 

appendix 1, which can classify the patterns to a noise level of ±25% of the original peak 

height. Given that the original training set (table 2.8) contained patterns with noise 

levels up to ±75% of the maximum peak height, it is surprising that the network is 

capable o f extrapolating to higher noise levels. At noise levels o f ±200% of the sodium 

peak height the network is incapable of distinguishing between the pattern from the 

sodium ISE and the noisy patterns from the other ISEs and classifies every species as 

being present.

In the case of solutions containing potassium only, the classification of patterns becomes 

very unpredictable at noise levels greater than ±50% of the peak height and there does 

not appear to be much o f an improvement in classification performance o f the network 

trained with the distorted patterns and the network trained with the simple FIA patterns. 

In contrast the network trained with the distorted patterns classifies the patterns from 

solutions containing calcium much better than the network trained with the simple FIA 

patterns, in terms o f the outputs from the Na<bt) and K(bt) neurons and is capable of 

classifying patterns correctly to a noise level o f ±200% o f the peak height using the 

previously discussed classification criteria. In the case o f patterns from solutions 

containing sodium and potassium, the network trained with the distorted patterns

10 It is disturbing that the network trained with the simple FIA patterns performs better than the network 
trained with the distorted training set for these cases. When the experiment was repeated with a 
different sequence of random numbers used as added noise, this effect was dramatically reduced for the 
sodium containing solutions. The outputs from the Na(ht), K(bt) and Ca(bt) neurons were equal to 1.000, 
0.113 and 0.000 respectively for the addition of noise at ±50% of the sodium ISE peak height and 1.000, 
0.060 and 0.085 for the addition of noise at ±75% of the peak height.. Unfortunately the same cannot be 
said for the patterns from potassium containing solutions. Although the output form the Ca<bt) neuron 
decreased dramatically to 0.004 for the pattern with noise added at ±50% of the calcium ISE peak 
height, it increased with noise levels of ±75% to 0.777. At noise levels of ±100% the outputs for the 
Na(bt) and Ca^t) neurons had decreased to 0.001 and 0,067 respectively. These results are suggestive that 
the network trained with the distorted data set may have been sensitive to patterns in the noise on which 
it was trained, rather than an underlying feature in the FIA trace. Altering the noise pattern with a 
different random number sequence, may have had a deleterious on its classification abilities. This 
suggests that a more comprehensive training set should be designed, probably with different seeds for 
the random number generator
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produces a much lower output from the Ca<bt) neuron than the network trained with the 

simple FIA patterns up to a noise level ±100% of the maximum peak height. At noise 

levels greater than this the network misclassifies the presence o f calcium (this is not too 

surprising because it can be seen from table 2.6 that the network was trained with noise 

levels o f up to ±75% of the maximum peak height from the FIA trace to this solution). 

This means that the network interpolated well within the noise range with which it had 

been trained, but did not extrapolate outside this noise range).

Similarly the network trained with the distorted patterns misclassiffied solutions 

containing sodium and calcium (seen in figure 2.9e) and potassium and calcium (seen in 

figure 2.9f) at noise levels grater than ±100% of the maximum peak height.

For the solution containing sodium, potassium and calcium (seen in figure 2.9g), the 

network trained with the distorted patterns correctly classified the patterns from this 

solution, up to a noise level o f ±200% of the maximum peak height. At this point it 

classified the calcium ion as being absent (however noise at ±200% of the peak height of 

the trace from the sodium ISE would correspond to noise at approximately ±400% of 

the peak height o f the trace from the calcium ISE).



Figures 2.9a to 2.9g The outputs from the Na(bt), K(bt) and Ca(bt) neurons of a network with 55 neurons in its hidden layers trained to a maximum output
error of 0.1 with the distorted FIA patterns depicted in appendix 5, when the network is tested with the patterns
distorted by noise addition.

Figure 2.9a Solution containing sodium
Desired Output: Na neuron =1, K neuron =0, Ca neuron =0

Figure 2.9b Solution containing potassium
Desired Output: Na neuron =0, K neuron =1, Ca neuron =0

Noise (±% of valid peak height)

Desired Output: Na neuron =0, K neuron =0, Ca neuron =1
Figure 2.9d Solution containing sodium and potassium
Desired Output: Na neuron =1, K neuron =1, Ca neuron =0
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Figures 2.9a to 2.9g continued The outputs from the Na(bt), K(bt) and Ca(bt) neurons of a network with 55 neurons in its hidden layers trained to a
maximum output error of 0.1 and a maximum total network error of 0.01 with the distorted FIA patterns depicted in appendix 5, when the network is tested
with the patterns distorted by noise addition.

Figure 2.9e Solution containing sodium and calcium
Desired Output: Na neuron =1, K neuron =0, Ca neuron =1

Noise (±% of valid peak height)

Figure 2.9f Solution containing potassium and calcium
Desired Output: Na neuron =0, K neuron =1, Ca neuron =1

Figure 2.9g Solution containing sodium, potassium and calcium
Desired Output: Na neuron =1, K neuron =1, Ca neuron =1
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Test 2: Variable Peak Heights

Figures 2 .10a to 2 .10b graphically depict the results of this study for a network with 55 

neurons in its hidden layer trained with the patterns described in table 2.6 to a maximum 

output error o f 0.1. Training was performed with a learning rate o f 0.5 and a momentum 

o f 0.75. The actual outputs o f the network in this study are depicted in table 2.4 in the 

table appendix.

Comparing figures 2.10a to 2.10g with figures 2.8a to 2.8g (in 2.3.1.4) it can be seen 

that the network trained with the distorted patterns (see table 2.6) perform much better 

than the networks trained with the simple FIA patterns (see appendix 1) when confronted 

with patterns distorted by varying the height of the peak from a species which was 

present in the solution which generated the FIA trace.

Comparing figures 2.8a and 2 .10a it can be seen that the output of the Na<bt) neuron is 

much higher than the Na(rt) neuron for the S/N ratio of 7.5 (output of Na<bt) = 0,912, 

output o f Na(rt) = 0.113). This indicates that the network trained with the distorted 

patterns is much more sure o f the presence of the sodium than the network trained with 

the simple FIA patterns even at the lowest S/N ratios used in the study. On increasing 

the S/N ratio beyond a value o f 19, the Na<bt) neuron is totally sure of the presence of 

sodium and its output is virtually unaffected by further increase in the S/N ratio. This 

compares with the output of the Na(rt) neuron which can be clearly seen from figure 

2 .10b to be highly sensitive to increasing S/N ratio.

It can be seen from figure 2 .10b that while the output from the K(bt) neuron is very high 

(0.915) at low S/N ratios (indicating that the network was very sure of the presence of 

potassium), the output from the Nâ bt) neuron was also quite high (0.355), indicating that 

the network was unsure of the presence o f sodium. Moreover the network trained with 

the simple FIA patterns produced a smaller output for the Na(rt) neuron to this same 

pattern. However, the outputs from all the neurons trained with the simple FIA patterns 

were very low to this pattern (see table 2.2 in the table appendix). In this case, the 

increased output from the Na<bt) neuron at low S/N ratios may be indicative o f a general 

increased sensitivity of the network to positive potential features, including that arising



Figures 2.1 Oa to 2.10 The outputs from the Na(bt), K(bt) and Ca(bt) neurons of a network with 55 neurons in its hidden layers trained to a maximum output
error of 0.1 with the distorted FIA patterns depicted in appendix 5, when the network is tested with the patterns
distorted by reduction of the height of the valid FIA peak.

Desired Output: Na neuron =1, K neuron =0, Ca neuron =0 Desired Output: Na neuron =0, K neuron =1, Ca neuron =0

Figure 2.1 Od Solution containing sodium and pota;
Desired Output: Na neuron =1, K neuron =1, Ca neuron =0
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Figures 2.10a to 2.1 Og continued The outputs from the Na(rt), K(rt) and Ca(rt) neurons of a network with 55 neurons in its hidden layers trained to a
maximum output error of 0.1 and a maximum total network error of 0.01 with the simple FIA patterns depicted in appendix 1, when the network is tested
with the patterns distorted by reduction of the height of the valid FIA peak.

Desired Output: Na neuron =1, K neuron =0, Ca neuron =1
Figure 2.1 Of Solution containing potassium and calcium
Desired Output: Na neuron =0, K neuron =1, Ca neuron =1
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from the contribution o f the potassium ion to the response of the sodium ISE. It can be 

seen from figure 2 .10b however that the network is sure of the presence of potassium 

where a S/N ratio of approximately 7.5 is reached and is virtually sure o f the absence of 

sodium by an S/N ratio o f approximately 15.

The increase in output between the Ca^) neuron and the Ca(bt) neuron for the S/N ratio of

1.5 is not as large as that seen between the K(bt) neuron and the K(rt) neuron (i.e., 

Ca(bt)=0.554, Ca<rt)=0 .104 [S/N ratio ~ 3]; K(bt) =0.915, K<rt) = 0.152). This may be due to 

the different magnitudes o f the peak from a calcium ISE and the sodium or potassium 

ISEs (due to their different slopes).

If  an output from a neuron of 0.5 or greater corresponds to a classification that a species 

is present and an output o f less than 0.5 indicates that the species is absent then it could 

be said that the network trained on the patterns in table 2.8 performed well to a 

reduction to 10% of the original peak heights of the peaks in the FIA patterns. This 

compares with the performance of the network trained with the simple FIA patterns 

which was capable p f classifying patterns correctly according to these criteria to a 

reduction to 50% of the original peak heights in the FIA patterns.

Test 3: Baseline Shifting

Table 2.14 depicts the results of this study for a network with 55 neurons in its hidden 

layer trained with the patterns described in table 2.8 to a maximum output error of 0.1. 

Training was performed with a learning rate of 0.5 and a momentum of 0.75.

It can be seen by comparing this table with table 2.5 that a network trained with the 

distorted patterns (described in table 2.6) performs much better than a network trained 

with the simple FIA patterns (described in table 2.1) when confronted with patterns 

distorted by baseline shifting. This is particularly evident in the outputs o f neurons 

corresponding species which were not present in the solutions which produced the 

associated FIA traces. For example the output o f the Ca(rt) neuron to pattern 1 is 0.321 

(see table 2.5), whereas the output from the Ca<bt) neuron to the same pattern is 0.000 

(desired output = 0.0). Similarly the output o f the K(rt) neuron to pattern 9 is 0.760
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whereas the output from the K(bt) neuron to the same pattern is 0.008 (desired output =

0 .0).

A slight increase in the outputs of neurons corresponding to species which were actually 

present in the solutions which generated the original FIA peaks is also observed. For 

example the output of the Ca(rt) neuron to pattern 9 is 0.835 (table 2.5) whereas the 

output of the Ca(bt) neuron to the same pattern is 0.998 (desired output =1.0). These 

results suggest that a network trained with patterns distorted by noise addition, baseline 

shifting and peak variation were less sensitive to the position of the baseline in the 

potential range with which the patterns were acquired compared to a network trained 

with simple FIA patterns.

i Na™ Kb!) Câ bi)

Pattern Solution Baseline Desired Actual Desired Actual f Desired Actual
Number .'Key Shift Output Output Output I Output Output Output

1 Na +50 mV 1 1.000 0 0.044 0 0.000
2 Na -40 mV 1 1.000 0 0.034 0 0.000
3 K +50 mV 0 0.006 1 1.000 0 0.033
4 K -40 mV 0 0.004 1 1.000 0 0.029
5 Ca +50 mV 0 0.014 0 0.022 1 1.000
6 NaK +50 mV 1 1.000 1 1.000 0 0.006
7 NaK +100 mV 1 1.000 1 1.000 0 0.010
8 NaCa +50 mV 1 1.000 0 0.009 1 0.999
9 NaCa +100 mV 1 1.000 0 0.008 1 0.998
10 KCa +50 mV 0 0.002 1 1.000 1 1.000
11 KCa +100 mV 0 0.005 1 1.000 1 1.000
12 NaKCa +50 mV 1 1.000 1 1.000 1 0.998
13 NaKCa +100 mV 1 1.000 1 1.000 1 0.992

T a b le  2 .1 4  -  C la s s if ic a tio n  re su lts  f r o m  a  n e tw o rk  w ith  5 5  n eu ro n s  in  i ts  h id d e n  la y e r  
tr a in e d  a s  d e s c r ib e d  in  th e te x t w ith  the p a t te r n s  in  ta b le  2.8 to  a  te s t  s e t  c o m p o s e d  o f  
th e  F IA  p a t te r n s  d e p ic te d  in a p p e n d ix  4.



2.3.4 A Comparison Of Neural Network And Statistically Based 

Pattern Recognition Techniques

Lippmann (23) discussed the similarities between the operation o f different neural 

network models and the clustering and classification activities o f traditional statistical 

pattern recognition techniques. In the sense that its use yields the lowest probability of 

committing classification errors on average, Baye’s decision rule provides an optimal 

statistical classification rule. However many statistical techniques based on this rule 

make assumptions concerning the distributions o f the joint probability density functions 

p(x, Ci) ,i.e. the probability density that a pattern be x and be in the class Ci (24-25).

The technique o f linear discriminant analysis in which patterns are classified 

according to whether they are on one side or another of a set of hyperplanes makes the 

assumption that the joint probability density functions for the different classes have 

normal distributions with equal variances. Techniques which classify patterns according 

to which distribution centre or cluster centre is nearest requires that the distributions of 

the joint probability density functions o f all the classes have equal variance and equal 

probabilities that a pattern belongs to each class regardless o f the identity of the class.

Neural networks make fewer assumptions and as such may prove to be more 

robust than these statistical techniques when distributions are generated by non-linear 

processes or are strongly non-Gaussian (23, 27). Whilst both linear discriminant analysis 

(LDA) and feedforward networks use a supervised approach to the development of their 

discriminants between the different classes, LDA is a parametric technique whereas 

ANNs are non-parametric. However, as has been discussed previously in chapter 1, the 

search space o f a neural network can be very complex and as such it can be difficult to 

guarantee that a network has converged to a global minimum on the error surface when
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it has finished training, whereas if the assumptions o f normality and equal variances are 

true for the data being studied, the statistical techniques derived from Baye’s rule are 

guaranteed to find the optimal classification rule for the data. Smits et al. (26) discussed 

the performance of LDA and ANNs on the classification of data containing outliers. It 

was shown that ANNs can cope better with outliers in the training data than LDA 

because LDA tends to focus on the mean pattern in each class. Hence patterns deviating 

from this mean cause deterioration of the LDA performance, whereas an ANN at the end 

of its training focuses on boundary objects and as such is not as impeded by outliers.

Unfortunately multivariate statistical pattern recognition techniques were not 

applied to the patterns in this study. Without the results o f such a study it is not possible 

to directly compare the performance of the neural network and the more conventional 

approaches. The degree o f distortion o f the patterns used for training (broad training 

set) and testing the networks was very severe and it might be expected that conventional 

statistical approaches would have difficulties with these distortions.
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2.3.5 Using NeuralWorks II

Following the apparent success o f the pattern classification demonstrated by the neural 

networks trained using the NT5000 software, it was decided to investigate the learning 

process more closely using a different type of neural network simulation software namely 

NeuralWorks Professional II which would provide more information concerning 

processes occurring within the network.

Using this software it was possible to study the MSE on the training and testing 

sets during the training period, it was also possible to save the connection weights at 

intervals during training. It was decided to investigate some o f the processes occurring 

in the neural nets during training by studying the lengths of the vectors represented by 

the connection weights between the input and hidden layers and hidden and output 

layers, and also to study the variation of the angle formed between these vectors and the 

unit vector during training.

If  all the connection weights from one layer to another are treated as a single vector, then 

its length can be described by :

Where Wy describes the connection weight between a neuron I and a neuron j in another 

layer (alternatively described by the vector W), ||w|| is the length o f the vector referring 

to the connection weights between one layer and another. The length o f the vector U

(2.7)

with unit co-ordinates is given by Vn , (n being the dimension o f the weight vector) 

From the definition o f the dot product o f two vectors:

U .W =  U f w  C O S 0 (2.8)
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(2.9)

£ 2 > „
(2 .10)

9 refers to the angle between the vector describing the connection weights between one 

layer and another (W) and the vector with unit co-ordinates (U).

2.3.5.1 Com parison of train ing and testing set errors

Figure 2.11 shows the variation of MSE values from the training and testing sets with the 

number of presentations of the training set for a backpropagation net with 20 neurons in 

its hidden layer. It can be seen that the MSE values from both sets of patterns undergo 

their most rapid decrease within 100 epochs after which the decrease in the MSE value is 

more gradual.

F ig u re  2.11 -  V a ria tio n  d u r in g  tra in in g  o f  M S E  f r o m  th e  p a t te r n s  u s e d  to  tra in  (see  
ta b le  2 .6)  a n d  te s t  (see  ta b le s  2. 7 -2 .1 3 ) a  n e tw o rk  w ith  2 0  n eu ro n s in  i ts  h id d e n  layer, 
tr a in e d  w ith  a  le a rn in g  ra te  o f  0 .5  a n d  a  m om en tu m  o f  0 .7 5  u s in g  the N e u ra lW o rk s  
S o ftw a re
Figure 2.12 zooms in on the later stages of training o f this net and demonstrates that

— Test  Set  MSE

Training Set MSE

100 : 200 
Number Of Epochs

,300

while it appears from figure 2.11 that there is not much change in the MSE after 100



epochs that in actuality the MSE of the training set is continuing to decrease (because the 

network is training on this set of patterns) while the MSE of the test set is beginning to 

increase. This effect is a feature o f overtraining.
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F ig u re  2 .1 2  -  V a ria tio n  d u r in g  the la te r  s ta g e s  o f  tra in in g  o f  M S E  f r o m  th e p a t te r n s  
u s e d  to  tra in  (see  ta b le  2.6)  a n d  te s t  (see  ta b le s  2 .7 -2 .1 3 )  a  n e tw o rk  w ith  20 n e u ro n s  in  
i ts  h id d e n  la yer , tr a in e d  w ith  a  le a rn in g  ra te  o f  0 .5  a n d  a  m o m en tu m  o f  0 .7 5  u s in g  the  
N e u ra lW o rk s  S o ftw a re .

It was observed that overtraining or the potential for overtraining was a problem for all 

the neural nets studied. For some of the nets the overtraining was much more obvious 

and occurred before the convergence point defined in the NT5000 software, indicating 

the difficulties associated with the interpretation o f the MSE of the test set as a function 

o f the number of hidden layer neurons.

In addition to the overtraining problem there was some oscillation in the MSEs of 

the test set in the later stages of training which, while being very small relative to the 

error at the start o f training, made direct comparison of the networks in terms of their 

MSEs after a fixed number o f iterations difficult. However, it was observed that were 

differences between the variations and values of the MSEs between the NT5000 

software and the NeuralWorks II software. This may be due to variations in the random 

values o f the connection weights at the start o f training.
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2.3.5.2 V ariation of vector length and angle formed with the unit vector during 

train ing

Figure 2.13 shows how the lengths of the vectors corresponding to the connection 

weights between the input and hidden layers and hidden and output layers varied during 

training for a backpropagation net with 25 neurons in the hidden layer.

Length  o f the  
v e c t o r  of 

c o nnec t ion  
w eigh ts  

b e tw e e n  th e  
Inpu t and 

hi dden lay e r

Length  of the  
v e c t o r  of 
c o nnec t ion  
w eigh ts  
b e tw e e n  th e  
hidden end  
o utp ut l a y e r «

60

50

40

30

20

10

50 100 150 200  250 300  350

N um ber o f E pochs

F ig u re  2 .1 3  -  V a ria tio n  d u r in g  tra in in g  o f  th e  len g th  o f  th e  v e c to r  c o r r e s p o n d in g  to  the  
c o n n e c tio n  w e ig h ts  b e tw e e n  th e in p u t a n d  h id d en  la y e r  (H n orm  in  th e g ra p h )  a n d  
h id d e n  a n d  o u tp u t la y e r  (O n o rm  in  th e  g ra p h )  f o r  a  n e tw o rk  w ith  2 5  n e u ro n s  in  i ts  
h id d e n  la yer . The n e tw o rk  w a s  tr a in e d  w ith  th e p a t te r n s  d e s c r ib e d  in  ta b le  2 .6 w ith  a  
le a r n in g  r a te  o f  0 .5  a n d  m o m en tu m  o f  0 .7 5  w ith  th e N e u ra lW o rk s  so ftw a re .
Figure 2.14 shows how the angles between the unit vector and the vectors corresponding

to the connection weights between the input and hidden layers and hidden and output

layers varied during training for the backpropagation net in figure 2.13.
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F ig u re  2 .1 4  -  V a ria tio n  d u r in g  tra in in g  o f  th e  a n g le  b e tw een  th e v e c to r  c o r re sp o n d in g  
to  th e c o n n e c tio n  w e ig h ts  b e tw een  th e in p u t a n d  h id d en  la y e r  (H th e t in  th e g ra p h ) a n d  
h id d e n  a n d  o u tp u t la y e r  (O th e t in  th e g ra p h ) a n d  the v e c to r  w ith  u n it c o -o r d in a te s  f o r  a  
n e tw o rk  w ith  2 5  n eu ro n s  in  i ts  h id d e n  la yer . The n e tw o rk  w a s  tr a in e d  w ith  the p a t te r n s  
d e s c r ib e d  in  ta b le  2.6 w ith  a  le a rn in g  r a te  o f  0 .5  a n d  m o m en tu m  o f  0 .7 5  w ith  the  
N e u ra lW o rk s  so ftw a re .

It can be seen in figure 2.13 that the length of the input to hidden layer vector was 

greater than the length o f the hidden to output layer vector throughout the training 

process, which can be attributed to the greater dimensionality o f the first vector.

Similarly it can be seen in figure 2.14 that the hidden to output layer vector made a larger 

angle with the unit vector than did the input to hidden layer vector.

The initial rapid decrease in MSE during training is characterised by a rapid 

increase in the length of the hidden to output layer vector in figure 2.13, whereas the 

input to hidden layer vector length tends to display a smooth continuous trend 

throughout training. The angle that the input to hidden layer vector makes to the unit 

vector in figure 2.14 forms a spike during this period, while the hidden to output layer 

vector angle increases slowly. This suggests that during the initial stages of training that



the input to hidden layer vector gradually increases in length but fluctuates in direction, 

whereas the input to hidden layer vector shows a rapid change in length and direction. 

After this initial period of rapid change the length of the hidden to output layer vector 

continues to increase, but at a much slower rate than before and the input to hidden layer 

vector continues its smooth increase in length.

Those networks which displayed signs of overtraining also suggested some 

interesting properties of their vector lengths and angles. Figure 2.15 shows how the 

angle formed between the unit vector and the vectors corresponding to the input to 

hidden layers and hidden to output layers vary during training for the network whose 

MSE change is shown in figure 2.11.

As can be seen in figure 2 .11a  net with 20 neurons in its hidden layer was clearly 

overtraining after about 120 iterations. This period, in which the model for the training 

set was improved to the detriment of the test set, was associated with a rapid decrease in 

the angle that the hidden to output layer vector made with the unit vector compared to 

the rate o f decrease of the angle formed by the hidden to output layer vector (figure
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N u m b e r  o f  E p o c h s

F ig u re  2 .1 5  -  V a ria tio n  d u r in g  tra in in g  o f  th e a n g le  b e tw een  th e v e c to r  c o r re sp o n d in g  
to  th e  c o n n e c tio n  w e ig h ts  b e tw een  the in p u t a n d  h id d en  la y e r  (H th e t in  th e g ra p h ) a n d  
h id d e n  a n d  o u tp u t la y e r  (O th e t in  the g ra p h )  a n d  the v e c to r  w ith  u n it c o -o r d in a te s  f o r  a  
n e tw o rk  w ith  2 0  n e u ro n s  in  i ts  h id d e n  la yer . The n e tw o rk  w a s  tr a in e d  w ith  th e p a t te r n s  
d e s c r ib e d  in  ta b le  2 .6  w ith  a  le a rn in g  r a te  o f  0 .5  a n d  m o m en tu m  o f  0 .7 5  w ith  the  
N e u ra lW o rk s  so ftw a re .

Figure 2.16 shows the variation of MSE of the training and testing sets during training 

for a backpropagation net with 45 neurons in the hidden layer. As can be seen from this 

figure the MSE on the training set is improving as the magnitude o f the oscillations in the 

MSE of the test set are reducing during the later stages o f training.
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T e s t  S e t  
M S E T r a i n i n g  S e t  

M S E

N u m b e r  o f  E p o c h s

F ig u re  2 .1 6  - V a ria tio n  d u r in g  the la te r  s ta g e s  o f  tra in in g  o f  M S E  f r o m  the p a t te r n s  
u s e d  to  tra in  (see  ta b le  2 .6 )  a n d  te s t  (see  ta b le s  2 .7 -2 .1 3 )  a  n e tw o rk  w ith  4 5  n e u ro n s  in  
i t s  h id d e n  la yer, tr a in e d  w ith  a  le a rn in g  ra te  o f  0 .5  a n d  a  m o m en tu m  o f  0 .7 5  u s in g  the  
N e u ra lW o rk s  S o ftw are .

Figure 2 17 shows how the lengths o f the vectors corresponding to the connection 

weights between the input and hidden layers and hidden and output layers vary during 

training for the same net .

As with the other networks studied, two distinct regions can be identified in the 

variation of the hidden to output layer vector length during training. It can be seen that 

the normal rapid increase in the vector length during the early stages of training is 

present, followed by a slower increase in the vector length while the network model of 

the training set is being more gradually improved, until about 130 presentations o f the 

training set, at which point the vector length appears to be increasing more rapidly.



This suggests the presence of another period of change in the vector length 

corresponding to the period in the training of the network in which the network model 

stabilises.
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F ig u re  2 .1 7  -  V a ria tio n  d u r in g  tra in in g  o f  the len g th  o f  th e v e c to r  c o r re sp o n d in g  to  the  
c o n n e c tio n  w e ig h ts  b e tw e e n  th e in p u t a n d  h id d e n  la y e r  (H n orm  in  th e  g ra p h )  a n d  
h id d e n  a n d  o u tp u t la y e r  (O n o rm  in  the g ra p h ) f o r  a  n e tw o rk  w ith  4 5  n eu ro n s  in  its  
h id d e n  la yer. The n e tw o rk  w a s  tr a in e d  w ith  the p a t te r n s  d e s c r ib e d  in  ta b le  2 .6 w ith  a  
le a r n in g  r a te  o f  0 .5  a n d  m o m en tu m  o f  0 .7 5  w ith  the N e u ra lW o rk s  so ftw a re .

Figure 2.18 shows how the angles formed between unit vector and the vectors

corresponding to the connection weights between the input and hidden layers and hidden

and output layers vary during training for this network.

The three regions already seen in figure 2.17 can also be seen in figure 2.18, 

which shows how the angles formed between unit vector and the vectors corresponding 

to the connection weights between the input and hidden layers and hidden and output 

layers vary during training for this network. A rapid increase in the angle is seen during 

the initial stage o f training, followed by a more gradual increase corresponding to the
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second region in the variation o f vector length plot and followed again by a region where

the angle gradually decreases, corresponding to the stabilisation of the network model.

Angle
( rad ian s )

N um ber of Epochs

F ig u re  2 .1 8  -  V a ria tio n  d u r in g  tra in in g  o f  th e a n g le  b e tw een  th e v e c to r  c o r re sp o n d in g  
to  th e  c o n n e c tio n  w e ig h ts  b e tw e e n  th e in p u t a n d  h id d en  la y e r  (H th e t in  th e g ra p h )  a n d  
h id d e n  a n d  o u tp u t la y e r  (O th e t in  the g ra p h ) a n d  the v e c to r  w ith  u n it c o -o r d in a te s  f o r  a  
n e tw o rk  w ith  4 5  n e u ro n s  in  i ts  h id d e n  la yer . The n e tw o rk  w a s  tr a in e d  w ith  th e p a t te r n s  
d e s c r ib e d  in  ta b le  2 .6 w ith  a  le a rn in g  ra te  o f  0 .5  a n d  m o m en tu m  o f  0 .7 5  w ith  the  
N e u ra lW o rk s  so ftw a re .

2.4 Summary

Backpropagation networks have been investigated for the detection and identification of 

metal ions in solution based on the transient response profiles o f ion selective electrodes 

to these ions when they are injected into a flowing stream. The effects o f distorting the 

patterns on the ability o f the networks to perform their identification task was studied, 

and training and testing sets were devised to consider these deleterious effects. The 

networks performed well on the test sets even at distortion levels much higher than those 

normally found in real-life measurements.



Networks trained on a patterns containing typical distortions performed better than those 

trained on simple patterns, when tested on patterns containing similar distortions, 

indicating the importance of the choice o f the training set for a network.

The same testing and training sets were used to investigate the training process 

further using a second type o f neural network software. There were some variations 

between the results produced by the two pieces of software which was attributed to 

possible differences in the initial connection weights. The processes occurring within 

some networks during training were investigated by studying the variation o f the lengths 

o f the vectors representing the connection weights between the input and hidden layers 

and the hidden and output layers and also by studying the variation of the angle formed 

between these vectors and the unit vector as training progressed.

2.5 Discussion

This investigation has studied some o f the features associated with the use of 

feedforward neural networks to the recognition of patterns from arrays o f ISEs used in 

an FIA system. However, there are a number of failings in this investigation which limit 

the scope o f its conclusions. The biggest problem with these studies has arisen from the 

limited availability of experimental data with which to construct the training and testing 

sets for the networks. These studies were performed with eight experimentally acquired 

patterns, the training and testing sets were then composed of distortions of these 

patterns. Ultimately however, the conclusions drawn from these distorted patterns are 

limited by the fact that the training and testing sets are derived from the same set of 

experimental data.

Another feature related to this problem arises from the dimensionality of the 

patterns studied and the topologies o f the networks used. In general, the networks used
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for these studies were oversized for the number o f available training patterns. This is 

especially evident in the studies in2.3 .1 .3 to2.3 .1 .5 . In these studies the eight original 

FIA patterns (described in table 2.1) were used to train networks with 55 neurons in the 

hidden layer. This implies a total of 240 (number o f input layer neurons) *55 (number of 

hidden layer units) +55 (bias) connection weights between the input and hidden layer (i.e. 

13255 connection weights) and 55 (number of hidden layer neurons) *3(number of 

output layer neurons) +3 (bias) connection weights between the hidden and output layers 

(i.e. 168 connection weights), leading to a total o f 13423 connection weights in the 

network. It is very clear that the number of training patterns available (8) are inadequate 

for the task o f training a network of this size. It is very probable that a network trained 

in this fashion would encode the specific training patterns in its connection weights 

effectively forming a “look-up” table for the patterns. While the networks trained with 

the broad training set had 70 patterns available for training, these patterns were derived 

from the same original eight FIA patterns. Given this fact, it is interesting that a network 

trained on this broad data set performed better than a network trained on the original 

FIA traces when confronted with test sets containing similar distortions.

Another issue to consider relates to the nature o f the distortions used for these 

studies. These distortions were simulated and applied digitally to the original FIA 

patterns. The levels o f the distortions used would not be found in practical situations 

and are so extreme (e.g. noise at 200% of the peak height) to make the conclusions 

drawn from them of limited practical use.

The discussion section of this thesis deals with the issues associated with the 

choice of different thresholds (on the outputs of the output neurons) for classifying 

patterns. It is necessary however, to clarify the choice of different thresholds in 

different studies of this investigation. In sections 2.3.1.4, 2 .3 .1 .6  and 2.3.3 there is
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reference made to a threshold of 0.5, i.e. the two thresholds for deciding the presence 

or absence of a species were merged into one threshold such that if the output of a 

unit was greater than 0.5, the species was classified as being present, if the output was 

less than 0.5 then the species was classified as being absent (i.e. no uncertainty 

region). In sections 2.3.2, a lower threshold of 0.1 and an upper threshold of 0.9 

were used such that if a neuron’s output was less than 0.1 the corresponding species 

was considered absent if the output of the neuron was greater than 0.9 the species was 

considered present. The reasons for the use of the two different sets of thresholds is 

that they were being used for two different studies with different objectives in mind.

In sections 2 .3 .1 .4  and 2.3.1.6 the study’s objective was to investigate how a network 

trained on a restricted set of data (given that the network was overdetermined) would 

perform when confronted with a set of progressively distorted data. It was expected 

that a network trained in this fashion would not be able to classify the patterns and as 

such the tightness of the requirements for classification were relaxed by broadening 

the classification output ranges for each conclusion (to 0.49 for each conclusion). 

Section 2.3.3 compares the performance of a network trained on a broader training set 

to classify the same test set of distorted patterns. In order to compare the 

classification performance of the networks it was necessary to use the same threshold 

criteria. Section 2.3.2 describes a completely different study, its objectives were to 

study the performance of a network trained on the broad data set when tested with a 

similarly distorted testing set. It would be desired and expected that a network trained 

in this fashion would be able to classify the testing set. As such the requirements for 

definitive classification were tighteened by reducing the output ranges for definitive
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classification to 0.1 for both classification decisions. In addition the relative merits of 

the classification in this study are described by ratioing the outputs of the neurons.

Section 2.3.5 refers to another completely different study, the purpose of this 

study was to investigate some of the internal processes occurring within a network 

during training. The motivation behind the choice of network topologies invetsiagted 

in this study had very little to do with the previuos studies described in this cahpter. 

Instead, the networks discussed in this section were chosen because the results of the 

studies demonstrated some interesting features such as overtraining. This is not too 

say that the other network topologies would not demonstrate this behaviour, rather 

that in the study described this behaviour was not as clear. Further studies in this area 

might yield information concerning the role of the topology of a network on this 

behaviour. While some interesting features were observed, they do not have an 

immediate impact or use for those employing ANNs. However, it is hoped that it 

may contribute to future research which may provide some practical help for users of 

ANNs.

In terms o f future research, it would be desirable to continue this work with 

training sets composed of more experimental data. A particularly useful approach would 

be to acquire patterns from the ISEs over a range of concentrations of the cations 

particularly because the selectivity o f an ISE against interferences (as determined from 

the selectivity coefficients in the Nikolskii-Eisenman expression (2.5)) is dependent on 

the activity o f the interfering ion (when the charges of the primary and interfering ions 

are dissimilar) (28).

It would also be of interest to study the effect of different schemes of presenting 

the patterns to the network. In these studies a crude approach to presentation was taken
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whereby the potential (mV) responses o f the electrodes were prescaled and presented to

the network. Alternative approaches for presenting data to a network are described

more fully in the discussion section of this thesis.
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Chapter 3 : Potentiometric Non-Linear Multivariate 

Calibration With Genetic Algorithm and Simplex 

Optimisation

Abstract

In this chapter a genetic algorithm (GA) and a modified simplex technique are 

investigated as a means o f developing non-linear multivariate calibration models for an 

array of ion-selective electrodes. The responses of an array of ammonium, sodium, 

potassium and calcium selective electrodes employed in a flow injection analysis system 

were modelled over the concentration range o f l x l 0"^ M  to l x l  0"2 M  using the G A  and 

simplex techniques to optimise the cell potentials, slopes and selectivity coefficient 

parameters o f the Nikolskii-Eisenman equation for each electrode. Correlations between 

activities predicted from the calibration model and the actual activities o f the solutions 

presented to the array ranged from 0.98 to 0.88 for the four ions.

A  variety o f different modifications to the simple genetic algorithm (SG A ) 

configuration are investigated, including fitness and rank based scaling, roulette wheel 

and stochastic remainder sampling and post-hybridisation of the genetic algorithm with 

the simplex technique.
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In this contribution, we consider the application of GAs to modelling the response of an 

array of ion-selective electrodes (ISEs) used in a flow injection Analysis (FIA) system. 

The response of an ISE is described by the well-known Nikolskii-Eisenman expression

3.1 Introduction

where E j j  is the measured potential of the jth electrode to the ith sample , E °  is the 

standard cell potential o f the electrode and Sj is the slope of the electrode or the change 

in potential o f the electrode per decade change in activity o f the primary ion in the 

absence o f interferents. The activities of the primary ion k  is ajfc and the activity o f the

represents the error arising from the net contribution o f all the interferents and e;

represents the experimental error.

Previous work of this kind had already been performed using simplex techniques 

(1-3). However, Betteridge et al. (4) noted that the final result of a simplex is dependent 

on the estimates of the function variables with which the simplex is initialised. It was 

also clear that the size o f the simplex could have quite a dramatic effect on the final result 

obtained as the complexity of the surfaces studied grows due to increased possibility of 

local minima existing. With this problem in mind, it was decided to investigate the use of 

the GA because it is useful in high dimensional search spaces and makes less assumptions 

about the search space than strong optimisation methods like the simplex technique (for 

further details see section 1.6).

(3.1)

interfering ions 1 are given by an. The term k?°,‘ refers to the selectivity coefficient of 

the electrode against the 1th interfèrent with respect to the primary ion, ^ k f f a * ,“7*1
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A simplified form o f the Nikolskii-Eisenman expression was used for modelling the 

responses of the ISEs in these studies. This simplified expression is described in 

equation 3.2.

r
E = E° +S log a i + X K Ì a i (3.2)

In this expression k  is a “conditional selectivity constant” which is related to the

selectivity coefficient defined in equation 3.1 as follows:

K ÿa = KP0ta Z|/7j (3.3)

Hence Ky=KPot when Zi=Zj. As discussed in (1), Ky is not a global constant but is

rather a constant within the constraints o f the conditions o f the experiment and 

calibration design. This investigation involved the use of an array o f ammonium, sodium 

potassium and calcium selective electrodes used in an FIA system. As such, the 

simplified Nikolskii-Eisneman expression for each electrode is as follows

^iNHj ^°Slo(a jNH} + ^ N I l j N a + a i N a +  + ^NHjK+a>K + k j N H j C a ^ i C a 2 *  ) P*4)

E iN a+ — E N a+ " ^ N a + ^ ° ^ l o ( a iN a+ ^ N a + N H ^ i N H j  ^ ^ N a +K + a >K ^ N a +C a 2+ a iC a 1+ )

E iK+ = E k* + Sk+ log10(a.K+ + k ^ NHÎa iNHÎ +  k ; +Na+a jNa+ + k ; +Ca2+a.Ca2+) (3.6)

E iCa2+ =  E C a2+ + ^ C a 2 + ^ ° 8 l û ( a iCa2+ +  ^ C a ^ N H j  a UNHj +  ^ c a ^ a ^ i N a *  +  ^ C a 2+K + f l iK+ )

In these expressions E ^ ,  E jNa+, E.K+ and E.Ca2+ refer to the potential (mV) responses 

o f the ammonium, sodium, potassium and calcium ISEs to the ilK sample. E ^ ,  E^a+,

E^, and E° a2+ refer to the standard cell potentials o f the ammonium, sodium, potassium 

and calcium ISEs respectively. SNH+, SNa+, SK+ and SCa2+ refer to the slopes o f the 

ammonium, sodium, potassium and calcium ISEs respectively, a iNH+, a iNa+, a .K+ and



a.Ca2+ refer to the activities of ammonium, sodium, potassium and calcium in the ith

sample. k^HjNa, , kJjH+K, and k ^ Ca2+ refer to the conditional selectivity coefficient of the

ammonium ISE against sodium, potassium and calcium. k^a+NH+, k^a+K+ and k^a+Ca2+

refer to the conditional selectivity coefficient of the sodium ISE against ammonium, 

potassium and calcium. k ^ NH+, k ^+Na+ and k ^ +Ca2+ refer to the conditional selectivity

coefficients o f the potassium ISE against ammonium, sodium and calcium. Similarly 

kcV+NHj’ ^ca2+Na+ and ^ c a2+K+ re êr to the conditional selectivity coefficients of the 

calcium ISE against ammonium, sodium and potassium.

The objective o f the GA is to determine the values o f the cell potentials, slopes and the 

conditional selectivity coefficients of each electrode (e.g. for the ammonium ISE, E " ^ ,

S iNHî ’ k NH;K+and k NHjCa2+) which best describes the response o f the electrode.

This is achieved by using the parameters and the Nikolskii-Eisenman expression for each 

electrode (3.4-3.7) to predict the potential (mV) responses of the electrodes to a series 

o f calibration solutions. The compositions o f these calibration solutions are depicted in 

table 3.1. The predicted potentials are then compared with the experimentally measured 

values for the potential (mV) responses o f the electrodes to the same solutions.

The extent to which the predicted and measured potentials differ is described by a sum 

squared error (SSE) term defined in equation 3.8.
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The objective o f the SSE is thus to determine the values of the cell potential, slope and 

conditional selectivity coefficient which minimises the SSE over the calibration solutions 

described in table 3.1.

(3.8)



To this end the parameters of the simplified Nikolskii-Eisenman expressions were 

encoded as genes in a simple binary format (see section 1.6 for a discussion of the 

encoding o f parameters on genes and reference 5 for a discussion o f different encoding 

methods). For the purposes of the GA, the fitness of an individual chromosome in the 

population is inversely related to the magnitude o f the SSE (see equation 3.8) such that 

the larger the value o f the SSE , the less fit the individual is and hence the lower the 

chances are of it reappearing in the population in the next generation.

While GAs are very robust techniques they also have their limitations, namely 

poor search precision (6) and premature convergence (5). Poor search precision is used 

to describe the variation in the final solutions about a global optimum produced on 

repeating a GA, an effect which is most likely to be due to the random processes 

occurring within the GA itself. This is less likely to be a problem with strong methods 

such as simplex optimisation, which are driven by more deterministic rules.

Premature convergence occurs when the finite population used in a GA becomes 

dominated by a particularly fit individual from an earlier generation by the process o f 

selective reproduction. In this case, the diversity o f the population is reduced within a 

few iterations to such an extent, that crossover can no longer function as a means o f 

searching new areas o f the response surface, because the crossover between two 

chromosomes will have no effect if  the chromosomes involved are identical. As such 

mutation becomes the only way of investigating new areas of the search space. In these 

cases the GA has effectively become trapped in a local minimum because it has 

converged to a rapidly to allow for searching of the entire response surface with 

acceptable resolution.
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In order to develop a GA for determining the response parameters (from the 

simplified Nikolskii-Eisenman expression) for an array of ISEs a number o f issues were 

studied, these include :

(i) An investigation o f the effects of linear prescaling, population size and 

percentage crosspool on the performance o f the GA.

(ii) A study of crossover and mutation processes occurring during the operation o f a

GA with a population of 75 chromosomes, employing a linear prescaling constant

o f 1.5 and allowing 80% of the population to cross.

Studies (iii) and (iv) were performed to investigate the use o f alternative scaling and 

selection schemes as a means of reducing the problem of premature convergence in the 

GA.

(iii) A study of the use of rank prescaling

(iv) A study of the use o f stochastic remainder sampling and reduction of premature

convergence by preventing incest

(v) A study of the use o f a simplex technique post-hybridised with the GA at 

different stages in its operation. The purpose o f this study was to address the 

difficulty of the poor search precision o f the GA.

(vii) Having studied different aspects of the use o f GAs relevant to the problem of 

developing a GA for multivariate calibration, it was then necessary to directly 

apply the adapted GA to the task o f optimising the response parameters o f the 

ammonium, sodium, potassium and calcium ISEs using the responses of the ISEs 

(described in table 3.2) to the solutions (described in table 3.1).
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(viii) The values of the response parameters determined by the GA for the four ISEs 

were compared with the values for the same response parameters described in the 

literature.

(ix) The performance o f the GA was compared with the performance o f a simplex 

technique on the same set o f responses of the electrodes.

(x) The dynamics o f the search for the response parameters o f the sodium ISE.

3.2 Experimental Details

The data used for this study were provide courtesy o f Mr. F.J. Saez de Viteri,

School o f Chemical Sciences, Dublin City University. The data were acquired from an 

array o f electrodes selective for ammonium, sodium, potassium and calcium which were 

employed in a flow injection system. For a fuller information on the use o f sensor arrays 

see reference 7. The compositions o f these calibration solutions are depicted in table 3.1. 

Table 3 .2 depicts the potential (mV) reponses of the ISEs to these solutions. Fuller 

details o f the construction of the electrodes and the flow injection analysis system can be 

found in (1). The experimental data were acquired via an Analog devices RTI-815 data 

acquisition card fitted inside an IBM 386 compatible PC. Data acquisition and processing 

software were written in Microsoft QuickBasic and Visual Basic. The calibration 

solutions were prepared according to a two level, four factor, partial factorial 

experimental design, developed in a fashion to evoke a significant response from the 

electrodes to their interferents in comparison to that o f the corresponding primary ions.
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Solution [N H /]  (M ) [ N a l  (M ) a c t (M ) i< v  ! (M ) Solution [N H 4 * jo 4 [N a+] (M ) [K !] (M ) [Ca3+J (M)

1 1 0 '2 9x10-3 3x10-3 8x10-3 i l l i S I S 8x10-3 8x10-3 10-2 8x10-3

2 10-2 3x10-3 5x10-4 9x10-4 18 9x10-4 6x10-4 10-2 5x10-3

3 10-2 10-3 5x10-3 7x10-4 I t 4x10-3 8x10-4 10-2 7x10-4

4 10-2 5x10-4 6x10-4 3x10-3 20 8x10-4 3x10-3 10-2 9x10-3

5 10-4 7x10-3 4x10-3 4x10-4 21 2x10-3

^rioo
\ 10-4 9x10-3

6 10-4 5x10-3 8x10-4 2x10-3 22 3x10-4 4x10-3 10-4 3x10-3

7 10-4 2x10-4 3x10-3 6x10-3 23 10-3 5x10-3 10-4 9x10-4

8 10-4 3x10-4 2x10-4 2x10-4 3 4 2x10-4 4x10-4 10-4 3x10-4

9 9x10-3 10-2 9x10-3 7x10-3 ; “25■| . 8x10-3 7x10-3 8x10-4 10-2

10 9x10-4 10-2 6x10-3 6x10-4 26 5x10-3 7x10-4 8x10-3 10-2

11 4x10-4 10-2 7x10-4 4x10-3 w 3x10-4 10-3 4 x l0 -4 10-2

12 3x1 O'3 10-2 9x10-4 8x10-4 28 7x10-4 10-4 10-3 10-2

13 5x10-4 10-4 2x10-3 5x10-3 2 9 6x 10"3 6x10-3 7x10-4 10-4

14 6 x l0 -3 10-4 7x10-3 10-3 30 3x10-3 8x10-4 3x10-3 10-4

15 7x10-3 10-4 4x10-4 6x10-3 31 8x10-4 2x10-3 2x10-3 10-4

16 2x10-4 IQ"4 3x10-4 5x10-4 6x10-4 5x10-4 IQ"4 IQ"4

T a b le  3 .1  -  C o n c e n tra tio n s  o f  am m on iu m , sod iu m , p o ta s s iu m  a n d  ca lc iu m  in  th e c a lib ra tio n  so lu tio n s  (the a c tiv i t ie s  c o rre sp o n d in g  to  th ese  
c o n c e n tra tio n s  ca n  be  f o u n d  in  ta b le  3 .1  in  the ta b le s  a p p e n d ix ).



Solution N tt4‘ ISE 

■: Potential

( m ^

NV ISE 

, Potential 

(mV)

K ISE 

Potential 

(mV)

Ca' ISE 

Potential 

(mV>

Solution NIE' ISE 

Potential ^  

(raV)

If Na' ISE 

Potential

■ » y )

K ISE 

Potential 

(mV)

( V  i s n

Potential

(mV)

1 130.3 141.2 142.7 66.7 17 130.8 142.4 164.6 69.5

2 131.7 118.3 117.2 45.5 18 105.7 101.7 167 62.8

3 132.3 108.2 153.8 40.1 !9 126.3 99.7 161.2 38.7

4 133.7 79.3 121.5 57 20 106 124.8 163.8 33.8

5 83.2 149.2 149.5 33.7 21 102 85.5 92.7 61.5

6 59.9 135.9 113 49.2 22 67.8 119.6 70 51.8

7 78.2 78.6 141.1 58.6 23 92.1 125.6 80.7 43

8 48.2 68.9 81.5 23.1 24 58.5 58.5 68.5 28.1

9 130.1 144.1 157.5 59.2 25 131 129.4 122.3 63.8

10 98.9 142.6 154.3 41.6 26 126.1 100.3 160.6 63.4

11 72.5 143.5 107.2 59 27 65.7 88.3 93.6 63.6

12 111.9 145.9 115.9 34.9 28 81.1 58.6 117.9 64.4

13 85.7 64.9 131.7 51.4 29 123.7 148.2 119 20.6

14 131.4 84.9 157.3 40 30 114.2 98.5 145 21.1

15 128.9 49.9 112.9 59.3 31 90.7 119.2 134 22

16 63.6 42.8 97.4 35.6 32 78.8 85.6 76.4 21.5

Table 3.2 - Responses o f the ammonium, sodium, potassium and calcium ISE array to the solutions described in table 3.1.



The genetic algorithm, modified simplex (8a) and Gauss Jordan elimination (8b) software 

were written in Borland Turbo C++ and appear as [GENCA5.C], [SIMPLEX.C] and 

[INVERT. C] respectively in the software appendix.

3.3 Results:

3.3.1 Modifications to the SGA

3.3.1.1 Effects of linear prescaling and elitism during crossover

A SGA was first studied in which chromosomes produced offspring in the next 

generation according to the ratio o f the error o f the individual chromosome to the 

average error o f the population.

^ ¿ S S E ,
Offspring, = — ^ ----- (3.9)

In which Offspring! denotes the number o f offspring that will be produced by individual

i in the next generation, SSEj denotes the error o f individual i and P denotes the total

number o f individuals in the population.

An attempt was made to reduce premature convergence by placing an upper limit 

on the number o f offspring which could be produced by the chromosome with the lowest 

error. The errors of the chromosomes in the current population were linearly prescaled 

according to two criteria.

In which Offspring; denotes the number of offspring that will be produced by individual

i in the next generation, SSEj denotes the error of individual i and P denotes the total

number o f individuals in the population.

An attempt was made to reduce premature convergence by placing an upper limit 

on the number of offspring which could be produced by the chromosome with the lowest
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error. The errors of the chromosomes in the current population were linearly prescaled 

according to two criteria.

(V) The ratio between the average error o f the population and the error o f  the
    ::;1 : !: .... - : : ' ■ ■ ■

Chromosome which most closely models the behaviour o f  an ISE remains 

constant during the entire operation o f the GA at a value a  This value ex also
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ensures that a chromosome whose error is close to the average error o f 'ntirc

population contributes one offspring to the population in the next generation.

Appendix 8 describes the mathematics for the scaling which fulfils these two 

requirements. This form of scaling eliminates the problems of negatively scaled fitness 

values which can occur in the procedure described by Goldberg (9) which involves 

scaling according to the ratio of the performance of the most fit individual to the average 

performance of the population. Negatively scaled values can occur during the later 

stages o f the operation of a GA (in which case the average population performance is 

very close to that of the most fit individual in the population) when an individual 

chromosome in the population has a performance much worse than either the most fit 

individual in the population or the population average fitness.

In this study however, scaling and reproduction are performed with respect to the 

ratio o f the average population error to the lowest error in the population. The scaling 

procedure places a lower positive limit on the ratio of individual error to the average 

population error that prevents any negatively scaled values occurring.

represents an upper limit on the number o f  offspring which could be produced by

fitness proportional reproduction.

(II): : T he average fitness o f  the population is unaffected by the transform Ti

:



The effect of such linear prescaling is to reduce the differences in the errors of 

individuals during the early stages o f the search and hence prevent domination o f the 

population by particularly fit individuals leading to premature convergence. However 

during the later stages of the search (at which point there is not a great deal of variation 

between the errors o f different members o f the population) prescaling serves to increase 

the differences in the errors of chromosomes, similarly reducing convergence by 

increasing the degree o f competition between the chromosomes for reproduction in the 

next generation. Crossing was achieved by sorting the current population according to 

the SSE o f each chromosome. The population was then split such that a certain 

percentage o f the population would be used to generate a crosspool. Chromosomes 

within this crosspool, were chosen at random as mates and were crossed at random 

along their bitstrings. The resulting chromosomes were then resubstituted back into the 

population in place o f chromosomes with a higher error. GAs commonly use 

populations of size 50-500 chromosomes (5). Smaller populations o f 25, 50 and 75 

chromosomes were used to study the effect of varying the upper limit on the number of 

offspring produced by the most fit chromosome (chromosome with the lowest error) in 

the range o f 1.5 to 2.0 and the variation o f the size o f the crosspool (the number of low 

error chromosomes used for crossing and substitution in place o f chromosomes with high 

error) as 40%, 56% and 80% of the population.

There are a number of different metrics for discussing the performance of a GA, 

but for the purposes o f this study two performance measures will be used, namely 

Grefenstette's off-line performance and the SSE from the most fit individual in the 

population.

Grefenstette (10) defined the offline performance of a GA as

Volume 1 Page 154



*;(s) = ̂ Z r,'(t) (3.10)
1 t= l

in which x^(s) refers to the off-line performance o f a particular configuration o f a GA 

denoted by s on a particular problem domain denoted by e and f e“(t) refers to the best 

objective function value on iteration t. This expression indicates that the off-line 

performance is a running average of the best performance values to a particular iteration 

o f the GA. In this study, the offline performance will describe a running average of the 

SSE from the calibration solutions to the ammonium ISE obtained after averaging the 

results from three repetitions o f the GA configuration involved. This indicates that a GA 

with a low final offline performance described the response o f the ISE to the calibration 

solutions better than a GA with a high final offline performance because the first GA has 

a lower calibration error than the second. Table 3.3 depicts the results obtained from 

studies o f the variation o f GA configuration with respect to the number o f chromosomes 

used for a population, the percentage o f those chromosomes which were allowed to 

cross
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Population Presenting 
Facto* «

Crosspool Si/e (% 
«1 population)

Average Offline
Performance>■

Change in
Offline
Performance

Premature
Convergence

25 1.7 56 122.38 4.041 19:26

25 1.7 80 137.68 54.87 35:29

25 2,0 40 123.5 77.679 29

25 2.0 56 138.86 49.31 61:30

25 2.0 80 108.27 12.369 19:51

:: 50 : 15 56 \....... 12.025

w ¡¿
M

l

i 5 ■■■; so 8’’ i.i? 7S7 •V,

50 : ': I; 7 - 40 104 2& -S7 ^ -

51» 1,7 ; 56 HÌ4JÌ5 :- ;;i 12 Î0|(|p:: 11 20

50 1 ? 'I f f »7 16 ' ?(.575 : 44:71 :

50 2« '40' ' 91.305

50 2,0 : ok: b..'9 27

50 2,0 SO 112 58 18 8? 73 '

75 1.5 40 87.271 99.977 -

75 1.5 56 89.126 9.91 92

75 1.5 80 79.268 9.02 57:61

75 1.7 40 116.04 45.663 -

75 1.7 56 99.79 3.43 30

75 1.7 80 87.52 3.786 9

75 2.0 40 108.74 16.8 -

75 2.0 56 86.634 10.47 52

75 2.0 80 119.99 21.68 58

T a b le  3 .3  - A v e r a g e  f in a l  o fflin e  p e r fo rm a n c e , a v e ra g e  c h a n g e s  in  the o fflin e  
p e r fo r m a n c e  a n d  n u m b e r  o f  i te r a tio n s  b e fo re  p re m a tu re  c o n v e rg e n c e  f o r  th ree  
r e p e ti t io n s  o f  d if fe re n t G A  c o n f ig u ra tio n s  -with r e s p e c t to  p o p u la t io n  size , p r e s c a l in g  
c o n s ta n t f o r  re p ro d u c tio n  a n d  p e r c e n ta g e  o f  the p o p u la tio n  a l lo w e d  to  c ro s s



and the size o f the prescaling constant (limiting the number o f offspring that the most fit 

individual in the population could produce in the next generation). This investigation 

was performed by using three repetitions o f a particular GA configuration (the random 

number generator being seeded with different values for each repetition).The different 

GA configurations are evaluated in terms o f the average of the offline performances 

achieved at the end of the GA for the three repetitions o f a particular configuration. The 

average change in offline performance from the start of the operation o f a GA to its 

finish for the three repetitions is also examined to consider the effect of the different 

initial offline performances on the final offline performances achieved by a GA. I f  a 

repetition o f a particular GA converged before the designated termination criterion of 

100 iterations, the number of iterations at which it converged is described in the column 

entitled premature convergence. From the table it can be seen that for the very small 

population o f 25 chromosomes the GA converged prematurely at least once and the 

offline performance was quite high at convergence. This suggested that the GA was not 

performing a very efficient search of the space and was converging before a good 

solution could be found, irrespective of the degree of prescaling used or the percentage 

o f the population used for a crosspool. It can also be seen that in the cases of larger 

populations that increasing the size of the crosspool increased the chances of premature 

convergence. This is probably caused by the réintroduction o f particular chromosomes 

into the population by unproductive reproduction. This is the term given to a crossing 

procedure performed between two homogeneous mates, the results o f which cross are 

identical to the original mates, which in this form of GA are substituted back into the 

population.

The effect of increasing the size of the crosspool appears to be complicated by 

the degree o f prescaling employed by the GA. In the population of 50 chromosomes
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with prescaling o f 1.7, increasing the size o f the crosspool from 50-80% appears to 

improve the performance of the GA in terms o f increasing the number o f iterations 

performed by the GA before premature convergence and also in terms o f the final offline 

performance o f the GA. This was probably caused by increasing the chances of 

exploring the search space, produced by increasing the chances of recombination. 

However within the same population but with a prescaling constant o f 2.0, increasing the 

crosspool from 56 to 80% may have had the effect o f reducing premature convergence 

(although that was only observed in one example of three repetitions o f the GA), it did 

not appear to improve the final performance of the GA. This ambiguity seems to be 

demonstrated again in the population of 75 chromosomes which clearly shows that a low 

degree o f prescaling and a small crosspool produce the most dramatic improvements in 

the offline performance o f the GA, even if its final offline performance may not be as 

good as other configurations o f the GA (whose populations were most likely initiated 

with better candidates for the calibration parameters of the electrode in question).
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F ig u re  3 .6-  P r o g r e s s  o f  A  G A  w ith  a  p o p u la t io n  o f  75 c h ro m o so m e s  a llo w in g  8 0 %  o f  
the p o p u la t io n  to  c r o s s  a n d  u s in g  a  p r e s c a l in g  c o n s ta n t o f  1 .5  to  c o n tr o l  th e n u m b e r  o f  
o ffsp r in g  p r o d u c e d  in  a n  ite ra tio n  b y  the m o s t  f i t  in d iv id u a l th e  p o p u la t io n

Point Operation Number of Different Chromosomes
1 Mutation 2 (7), 1(42), 4 (1), 5 (1 ),3 (1 ), 7 (1 )
2 Crossover 2 (4), 1 (4), 3 (3), 4 (1), 5 (1), 8 (2), 9 (1), 20 (1)
3 Crossover 1(11), 2 (4), 3 (4), 4 (1), 9(1), 27(1)
4 Crossover 1(7), 4 (1), 8 (2), 9(1), 10(1), 1 6 (1 )1 3 (1 )
5 Mutation 1(11), 5(1), 7(1), 8 (3),13(1),15(1)
6 Mutation 1 (4), 2 (2), 3 (2), 12(1),25 (1),24(1)
7 Mutation 1(3), 4(1), 7(1), 61(1)
8 Crossover 1 (5), 2(1), 5 (1), 6 (1), 20 (1), 37 (1)
9 Crossover 1 (9), 4 (1),5 (1), 6 (1), 8 (1), 10 (1), 14 (1), 19 (1)
10 Mutation 1 (3),2(1), 13 (1), 20(1), 37(1)
11 Crossover 1(4), 3(1), 6(1), 62(1)
12 Mutation 1(3), 3(1), 7 (2),13(1),18(1), 24(1)
13 Mutation 1(1), 2(1), 14(1), 27(1), 31(1)
14 Mutation 1(3), 10(1), 11(1), 51(1)
15 Mutation 1(1), 74(1)
16 Mutation 1(1), 2(1), 72(1)
17 Mutation 1(2), 3(1), 14(1), 56(1)
18 Mutation 1 (2X73 (1)

T a b le  3 .4 -  The n u m b e r  o f  c o p ie s  o f  p a r t ic u la r  c h ro m o so m e s  p r e s e n t  in  th e p o p u la tio n  
d e p ic te d  in  f ig u r e  3.6 a t  th e d iffe re n t s ta g e s  o f  th e  G A  d e s c r ib e d  b y  th e b la c k  c o lo u r e d  
d a ta  p o in ts  w ith  m a tc h in g  in d ic e s  in f ig u r e  3 .6. The n u m b er  in  b ra c k e ts  d e s c r ib e s  the  
in c id e n c e  o f  th e  m u ltip le  c o p ie s  in  the p o p u la tio n  (i.e. 2 (2)  in d ic a te s  th a t th ere  tw o  
d if fe r e n t s e ts  o f  c h ro m o so m e s  w ith  tw o  c o p ie s  e a c h  in  the p o p u la tio n )



Table 3.4 and figure 3.6 depicts the off-line performance of the GA with 75 

chromosomes with prescaling of 1.5 (to allow the chromosome which best described the 

response o f the ammonium ISE [lowest SSE] to have a probability of producing 

offspring in the next iteration of the GA 1.5 times greater than a chromosome whose 

SSE was close to the average SSE of the current population) and 20% of the most fit 

chromosomes in the population allowed to cross. The averaging effect o f the off-line 

performance smoothes out the sudden decreases in the error o f the most fit chromosome 

which is produced by random beneficial changes in its genetic makeup arising from 

crossing or mutation. It can be seen that in the early stages o f searching, as the diversity 

o f the population is high, that crossover is predominantly responsible for improvements 

in the performance of the most fit organism in the population. But as the diversity in the 

population is reduced in the later stages of searching, mutation becomes the more 

predominant searching mechanism (since the chances o f crossing occurring between 

identical chromosomes increase and hence the chances of crossing acting as a productive 

means o f searching for a solution decrease) and the search prematurely converges to a 

solution after 60 iterations, without examining the search space sufficiently well to find 

an adequate solution.

Based on these results it was determined that variation o f the prescaling constant 

and the percentage of the most fit chromosomes involved in crossing, slowed down 

premature convergence but did not reduce the problem satisfactorily.

3.3.1.2 R ank  Scaling and Roulette W heel Selection

In the SGA, the number o f progeny an individual will produce is related to the 

fitness o f the individual determined from the objective function. In the case of this study 

the lower the SSE, the more progeny an individual would produce. The number of
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offspring o f each individual is determined by calculating the fitness o f the individual 

relative to the average fitness o f all the individuals o f the population. This direct 

relationship between an individual's fitness and the number of its offspring while being a 

central part o f an SGA is also a reason for its susceptibility to premature convergence.

If there is a particularly fit individual in a population of otherwise very unfit individuals 

the ratio of the individual's fitness to the average fitness of the population does not place 

any limitations on the number o f offspring it can produce, other than that it must be less 

than or equal to the size of the population itself. Linear prescaling attempts to limit the 

number of offspring a particular individual can produce for the next generation but it 

does not fully tackle the problem of "super-fit" individuals. An alternative approach to 

this problem described by Baker (11) allocates the number of offspring to an individual 

according to the rank of its performance rather than its magnitude. In this procedure the 

chromosomes in the population are sorted and assigned a rank according to their errors. 

An individual with a low error would be given a higher rank than an individual with a 

high error according to this scheme. The number of offspring that could be produced by 

an individual according to its rank was prescaled such that the area under the linear 

transform was equal to the population size, and such that the highest ranking individual 

would produce a certain number o f offspring according to a prescaling constant. In this 

modification o f the SGA, individuals are selected to reappear in the next generation by a 

roulette wheel selection procedure. Roulette wheel selection is a random process which 

is depicted in figure 3.7. The procedure simulates a roulette wheel whose slots are 

weighted according to the number of offspring an individual should produce. A random 

number is generated which may or may not fit within one o f the particular slots in the 

wheel and as such determines which individual will produce one offspring in the next
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generation, the actual procedure was implemented in the manner described by Goldberg

N= Number of chromosomes in the population 
(N=12 in this case)

F ig u re  3 .7 -  D ia g r a m m a tic  r e p re se n ta tio n  o f  ro u le tte  w h e e l se le c tio n , th e  s lo ts  in  the  
w h e e l  a re  w e ig h te d  a c c o r d in g  to  the n u m b er  o f  o f fsp r in g  w h ich  a n  in d iv id u a l s h o u ld  
p r o d u c e  [ th e  c h ro m o so m e  w ith  th e lo w e s t S S E  is  w e ig h te d  to  1 .5  in  th is  d ia g ra m ]. A  
ra n d o m  n u m b e r  i s  g e n e r a te d  in  the ra n g e  0 -n u m b er  o f  c h ro m o so m e s  in  th e p o p u la tio n .  
I h e  c h ro m o so m e  in to  w h o se  s lo t  the ra n d o m  n u m b e r  l ie s  w i l l  p r o d u c e  o n e  o ffsp r in g ..

This approach was investigated for a population of 75 chromosomes with rank prescaling 

to 1.5 and 1.7.

F ig u re  3 .8  -  V a ria tio n  o f  S S E  o f  b e s t  f i t t in g  c a lib ra tio n  m o d e l in  a  p o p u la t io n  o f  75  
c h ro m o so m e s  b e in g  s c a le d f o r  re p ro d u c tio n  a c c o r d in g  to  th e ir  ra n k s  w ith  a  p r e s c a l in g  
c o n s ta n t o f  1 .5  a n d  s e le c te d  f o r  re p ro d u c tio n  u s in g  the ro u le tte  w h e e l a p p r o a c h

Figure 3.8 depicts the change in SSE of the most fit individual in the population during

the operation o f the GA. The curve is not as smooth as the offline performance curve in



figure 3 .6 because there is no averaging effect being used. There are sporadic dramatic 

decreases in error with randomly occurring beneficial changes in the genetic makeup of 

the chromosome with the lowest error. The GA was repeated twice and it can be seen 

that the performance o f the GA during the repetition is marked by sporadic decrease in 

error as would be expected, however in some cases the reduction in error is followed by 

return of the error to its previous value. This is probably caused by a chromosome with 

a low error being genetically modified to produce a lower error, which instead of 

reappearing in the next generation is instead lost, returning the lowest error o f the system 

to its previous state. This apparently random loss o f the most fit individual in the 

population also occurred in the GA with prescaling to 1.7.

It can also be seen that the two repetitions o f the GA do not achieve the same 

SSE, reflecting the poor search precision of the GA.

3.3.1.3 Stochastic R em inder Sampling W ithout Replacem ent And

Reduction O f Prem ature Convergence By Prevention O f Incest

Roulette wheel selection is a stochastic process with a high degree o f variance 

between the expected number of progeny and the actual number which occur in the next 

generation (as seen in the possibility of losing the most fit individual from the current 

population). To reduce this problem, an alternative selection procedure known as 

stochastic remainder sampling without replacement was implemented in the manner 

described by Goldberg (9). In this procedure the expected number of offspring are 

calculated according to rank as before. Individual chromosomes are assigned offspring 

according to the integer part of their expected number o f offspring. The fractional parts 

o f the expected number values are treated as probabilities. Each chromosome in turn 

will use the fractional parts o f their expected number of offspring in weighted coin tosses
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in order to determine whether they will have another offspring in the next generation 

(e.g. a chromosome with an expected number of offspring of 1.7 will definitely produce 

one offspring and will have a 0.7 chance of producing another offspring). This process 

continues until the population is full.

The crossover operator was targeted next as a part o f the GA within which 

modifications could be made to prevent the convergence of the GA to sub-optimal 

solutions. The modification was developed to increase the occurrence o f productive 

crossover. The modification involved the use of a rejection loop, whereby two 

chromosomes were selected randomly from the current population as mates for the 

crossover operator. The two chromosomes were compared and if they were identical 

then the second chromosome from the pair would be rejected and a new chromosome 

would be chosen from the population at random, until the two chromosomes were no 

longer identical. The second modification was developed to prevent crossovers between 

related but non-identical chromosomes. If a particular chromosome mated with its 

parent, there would be little change in the genotype of either chromosome, reducing the 

exploration efficiency o f the crossover operation. The modification to the GA involved 

the storage of the genetic profile o f each parent o f a chromosome produced by crossing 

and a rejection loop similar to the one described for ensuring two identical chromosomes 

did not mate. When a chromosome was chosen for crossing in the next generation, its 

mate was compared with the genetic profile of its parents. If the two genetic profiles 

were identical, the chromosome was rejected and another chromosome was selected.

This modification, which while being similar to that of Eshelmann and Schaffer (12), 

does not explicitly establish a variable threshold between the crossing chromosomes, 

comparing their similarities on the basis o f their Hamming distance. Rather, the threshold 

is implicitly established by the parental relationships between the chromosomes.
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It can be seen from figure 3.9, that for a population o f 300 chromosomes and a 

crosspool which was composed of 80 % of the total population, rank selection reduced 

the chances o f premature convergence and increased the chances o f finding optimal 

solutions to the optimisation problems, but incest prevention during crossing did not 

result in any major changes in the performance o f the GA. Since the prevention of incest 

during crossing added a large overhead to the programs memory requirements it was 

decided not to pursue this approach any further.
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F ig u re  3 .9  -  V a ria tio n  o /S S E  o f  b e s t  f i t t in g  c a lib ra tio n  m o d e ls  in  a  p o p u la t io n  o f  3 0 0  
c h ro m o so m e s  (c r o s s p o o l o f 2 4 0  ch ro m o so m e s) p r e s c a le d f o r  re p ro d u c tio n  a c c o r d in g  to  
th e ir  ra n k s  a n d  s e le c te d  f o r  re p ro d u c tio n  u s in g  the s to c h a s tic  r e m a in d e r  sa m p lin g  
a p p r o a c h

3.3.1.4 Post-H ybridisation O f GA W ith Simplex Optim isation

A GA was written to switch to a simplex method of optimisation by using the 

different six most fit individuals in the population at that time to generate the initial 

vertices of the simplex. The switch to the simplex was triggered when the difference 

between the average fitness o f the population and the fitness of the most fit individual 

had fallen below a certain threshold, indicating that the diversity of the population was 

being reduced to a level where the efficiency of the GA for searching would be affected. 

The magnitude o f the threshold was determined by letting a GA calculate through a 

number of iterations until it converged on a particular set of parameters for the Nikolskii-



Eisenman expression for the ammonium ISE. The threshold was then varied in units of a 

similar magnitude as the SSE of the solution to which the preliminary GA had 

converged. If the threshold has a low value then the population of the GA had a low 

diversity (almost converged to a single set of calibration parameters for the ammonium 

ISE), this tends to happen in the later stages of the operation of a GA as the population 

gradually fills with a chromosome which best solves the particular task set to the GA.

As such the magnitude o f the threshold would determine at what stage in the GA there 

would be a switch to the simplex. A large threshold would indicate that there was a 

switch to a simplex in an earlier stage o f the GA than a small threshold. A study was 

performed on the effect o f  variation of the threshold level in different sized populations 

on the SSE of the chromosome which best described the response of the electrode 

Table 3.5 depicts the results obtained by repeating a GA three times over 

different population sizes and at different switching thresholds. From table 3.5 it can be 

seen that the changes in average SSE from the best fitting calibration models are very 

small. The uncertainty expressed in the standard deviations of the SSEs are larger than 

the cahnegs in the average SSE. As such, the changes in the average SSE are not 

significant relative to the uncertainty in its determination. Therefore this data suggests 

that varying the size o f the populatiom and the threshold for transfer to a simplex have 

no significant effect on the SSE determined by the GA. Although the results o f this 

study do not any significant changes in the average SSE it might have been expected that 

with smaller populations a transfer to a simplex method in the early stages o f the GA 

(before the diversity o f the population had decreased significantly) would be beneficial 

because it would bypass the problem of premature convergence in the population.
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Population Size I; Average SSE From The 
Best Fitting Calibration 

Models

Standard Deviation of SSE 

From The Best P ittif |g |; 
Calibration Models

50 10 73 661 1.459
50 5 75.489 1.604
50 1 77.885 3.708
Ì00 10 78 483 | r l : j l ! i l  5 0205 |MM;;
100 5 ■; 78.4249 4 079;

TOO : . P i- 74.744 : ■ 2.2606 :
200 io 76.3395 5.0279
200 5 79.6375 9.377
200 1 76.0098 1.63

©ÜÜHP 719397 0. 10986
300 . III 74.473 2:2828,::. 1
300 111 79.488: 5.245 : :

T a b le  3 .5  - R e s u lts  f r o m  p o s t-h y b r id is a tio n  o f  GA w ith  s im p le x  r e p e a te d  th ree  tim es  
u s in g  the G A  c o n fig u ra tio n  d is c u s s e d  in the tex t

This approach to post-hybridising the simplex technique with a GA was not pursued in 

the further studies because it was observed that while the solutions from the most fit 

individuals in the population were different, the genes which were most significant in 

determining the fitness of these individuals were very similar. Since the vertices of the 

simplex were taken from the six most fit individuals of the population, some of the 

dimensions o f the vertices were effectively set as constants, limiting the movement o f the 

simplex in the search space (Nelder and Mead (13) noted that if one variable of a simplex 

is set to a constant on the vertices o f the simplex, the simplex is constrained to search in 

one dimension less).

3.3.2 Application to an array of ISEs used in FIA regime

The previous study showed no significant difference in average SSE achieved with 

differnt population sizes when transferring to a simplex with the differnt six most fit
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individuals in a current population. This method of post-hybridising the simplex with the 

GA was abandoned for the reasons discussed above. Instead a GA was reperated six 

times, the calibration parameters obtained from the chromosomes which most closely 

modelled the response of the ISE from each repetition of the GA were then employed as 

vertices o f a simplex optimisation procedure used to refine the eventual calibration 

model.

The results from the investigations discussed in sections 3.3.1.1-3.3.1.3 

suggested a particular configuration for the GA to be used for the determination of the 

optimal calibration parameters of the array o f ISEs used in this study. This configuration 

involved the use of a population o f 300 chromosomes which were selected for 

reproduction by stochastic remainder sampling without replacement according to their 

ranks. Single point crossover was performed with a crossover probability o f 0.65 and 

mutation was performed by random bit inversion with a probability inversely related to 

the size o f the population i.e. 0.003.

The data used in this application were the potentials (described in table 3 .2) 

measured by a series of ISEs to a series o f solutions whose concentrations are described 

in table 3.1. Details o f the experimental system used are described in (1). The activities 

o f  the ammonium, sodium, potassium and calcium ions were calculated from the 

concentrations of the ions in the calibration solutions by means o f the Davies expression

The activities o f the ions in these solutions were determined by linearisation o f the 

respective Nikolskii-Eisenman expression followed by Gauss-Jordan elimination o f the 

selectivity coefficient matrix.

(14).

(3.11)
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ISE ir<mV) S (mV) K 'n jNn;
x 3 ,  j r ^ '  'ViÉiSS 

A jNit* ' fK* , >, 
::: 

? 
•

n h 4+ 100-300 50-60 - 10-5-0.01 10’3-1.0 H-
* 0
 1 1 o 1

Na+ 100-1000 10-100 10'3-1.0 - 10-3-1.0 10’5-1.0-3

K+ 200-300 50-60 5x10-4-0.5 5xl0 '6-0.5 - 10-4x1O'2

Ca2+ 100-300 20-30 10’7-0.05 io-7-o.i 10-4-0.5 -

T a b le  3 .6  -  R a n g e s  w ith in  w h ich  the s e a r c h  is  c o n fin e d  f o r  e a c h  c a lib r a tio n  p a r a m e te r

Table 3.6 describes the ranges within which each calibration model parameter was 

encoded for each ISE. The ranges for the parameters were initially set more broadly 

(e.g. for the potassium ISE 100<E<1000, 10<S<100, 0.001<lT^,Nij.+ <1.0,

0.001<Z*W <1.0, 0.00001<A^.+Cal+ <0.001). A GA was operated within these initial

ranges, as the general values of the calibration parameters obtained from the most fit 

individuals in the population became more clear, the initial ranges for the calibration 

parameters were refined into those described in table 3.6.

ISE : j SSE B  (mV) Sj(mV) K POt IT  p o t

j\y-
(xlO'O

K % 0jK
(xlO"3)

;< a :
(x 10'3)

nti4+ 0.021
(8.3)

2 2 6 m i  
(0.5)

45.526
(0.8)

- 0.816
(37.6)

186.4
(2-l)

6.226
(31.4)

Na+ 0.027
(9.0)

257.875
(0.7)

55.02
(1.1)

0.635
(96.9)

- 107.757
(1 8 )

15.656
(8.6)

K+ 0.045
(18.0)

271.386
(1.4)

51.952
(2 .5 )

154.9
d 2-3)

0.17
(15.0)

- 4.853
(8.7)

Ca2+ 0.099
(49.4)

122.2
(5.7)

24.354
(7.896)

0.136
(236.4)

1.843
(60.2)

5.306
(56.5)

-

T a b le  3 .7  -  C a lib r a tio n  p a r a m e te r s  d e te r m in e d  f o r  ea ch  IS E  a f te r  s ix  r e p e tit io n s  o f  the  
G A . The te rm s  in  b ra c k e ts  r e fe r  to  th e  p e r c e n ta g e  r e la tiv e  s ta n d a r d  d e v ia tio n s (% R S D s)  
o f  th e  a s s o c ia te d  p a ra m e te r s ) .
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Table (3.7) describes the calibration parameters obtained from the most fit individual in a 

population after the termination o f a GA. Since the GA was repeated six times for each 

electrode, the calibration parameters are represented as their average values obtained 

from the repetitions accompanied by their percentage relative standard deviations 

(%RSDs). It can be seen that the %RSDs of the calibration parameters generally tend to 

increase as the magnitude o f the calibration parameters decrease (e.g. for the ammonium 

ISE, %RSD K ‘ . 2,~ 6 0  times %RSD Ej, for the sodium ISE %RSD K ‘ . 2| ~ 13
iV ji 4 Cfl J\U Cfl

times %RSD Ej).

This is to be expected since larger magnitude parameters such as the slope or cell 

potential would make a much larger contribution to the SSE term which is being 

minimised by the GA. The use of narrower initial ranges for such parameters, tends to 

offset the possibility that these parameters would become rapidly fixed within a 

population to effectively become constants, allowing the parameters of lower significance 

to the SSE term to be determined more precisely because o f the diversity in the 

population o f genes encoding these parameters.

The results obtained from the ammonium and sodium ISE are interesting since 

the initial ranges of E  were much bigger than those for S, yet E was determined more 

precisely than S. The %RSDs of the calibration parameters o f the potassium selective 

electrode do not appear to vary as much as those of the other ISEs. This is most likely 

due to difficulties establishing the range for the search for the calibration parameters.

This problem would be more clearly demonstrated by the operation o f the simplex 

technique which does not have its search space confined by the encoding procedure in 

the same way as the GA. It can also be seen that the determination o f the calibration 

parameters tends to have a large range for the calcium ISE, with this effect being



particularly noticeable for K ‘CauNH+ ■ This problem may have occurred because the ISE

being selective for the divalent ion Ca2+, would produce a lower magnitude signal to its 

primary ion than an ISE selective for a monovalent ion would have to the same activity 

o f its primary ion (i.e. has a lower slope than an ISE selective for a monovalent ion). As 

such the sensitivity o f the calcium ISE to the calibration solutions would be reduced 

relative to the other ISEs.

If  the models with the smallest SSE from the repeated runs o f the GA are used to 

determine correlations between predicted activity and actual sample activity for all the 

solutions used to calibrate all the electrodes a correlation coefficient o f 0.9800 was found
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for the NH4+ ISE, 0.9391 for the Na+ ISE, 0.9810 for the K+ ISE and 0.8703 for the 

Ca2+ ISE.

ISE j= S} K ,m'j\tK §jl
(xK>-~ )

K p?tjt '

(xl0~3)

: K ‘%  .i< .t

(xlO*3)

SSE Correlation

n h 4+ 225.776 45.443 - 0.936 184.9 6.465 0.019 0.980

Na+ 257.19 54.19 <0.001 - 106.89 17.226 0.022 0.939

K+ 270.155 51.396 143.04 <0.001 - 5.36 0.037 0.981

Ca2+ 119.081 23.293 <0.001 0.897 1.672 - 0.028 0.870

T a b le  3 .8  -  C a lib r a tio n  p a r a m e te r s  d e te r m in e d  f o r  e a c h  IS E  a f te r  s im p le x  o p tim isa tio n  
b a s e d  o n  r e s u lts  o b ta in e d f r o m  th e  G A

Table 3 .8 depicts the parameters obtained for the calibration models for each 

electrode following simplex optimisation based on the results o f the GAs. Comparing 

table 3.7 with table 3.8 it can be seen that there is not a great deal o f change between the 

best fit calibration models from the GAs and the results from the simplex optimisation.



The largest improvement in SSE s seen for the calcium electrode with large changes in 

the least precisely determined calibration parameter namely K'Cai+NH+, due to difficulties

encountered with the GA encoding the range of the search space for this parameter, 

similar to the difficulties encountered for the potassium selective electrode described 

earlier.

Figures 3.10 a, b, c and d depict the spread of the predicted activities against the 

known sample activities for the four ISEs. They show a fairly even spread about the 

hashed diagonal line depicting the ideal case o f the predicted activity equalling the known 

sample activity. Some outliers have been labelled in the figures in an attempt to relate 

these outliers to patterns in their associated solution compositions.

In the case of the activities predicted by the ammonium ISE in figure 3.10a, the 

data points labelled N H 4 1, NH42 and N H 4 3 demonstrate a predicted ammonium activity 

lower than its known activity. In each o f the solutions associated with these data points 

the concentration of one or more of the interferents is much higher than the 

concentration o f the ammonium ion. In the case of the data point labelled N H 4 1 (which 

refers to solution 28 in table 3.1) the concentration of the calcium ion is approximately 

14 times higher than the concentration of the ammonium ion. Similarly, for the data point 

N H 4 2 (which refers to solution 18 in table 3.1) the concentration o f the potassium ion is 

approximately 11 times higher than the concentration of the ammonium ion. For the data 

point N H 4 3 (which refers to solution 10 in table 3.1) the concentration o f sodium is 

approximately 11 times higher than the concentration of the ammonium ion. This 

suggests that the model may be overcompensating for the influence of the interferences 

on the response o f the electrode, and as a consequence, underestimating the activity of 

the primary ion. At higher activities of the ammonium ion there can be seen a cluster in
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(c ) (a)
F ig u re  3 .1 0  -C o rre la tio n  b e tw een  p r e d ic te d  a n d  so lu tio n  a c t iv i ty  f o r  th e e n tire  c a lib r a tio n  s e t  b y  th e (a) am m o n iu m  IS E  (b) so d iu m  IS E  (c )p o ta ss iu m  
IS E  a n d  (d) ca lc iu m  ISE. The tex t on  the g r a p h s  (e.g . C a l, N a ' e tc .)  a re  in d ic e s  w h ich  w il l  b e  u s e d  to  r e fe r  to  th e a s s o c ia te d  o u tlie r s  in  th e te x tu a l  
d iscu ss io n .
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which the predicted activity o f the ammonium ion is higher than its known activity. The 

data point labelled N H 4 4 is a member of this cluster. This data point refers to solution 25 

in table 3.1. It can be seen from the table that the concentrations of the sodium, 

potassium and calcium ions are either lower than, or very similar to, the concentration of 

the ammonium ion in this solution. In this case the contribution of the interferents to the 

response o f the ammonium ISE would be insignificant relative to the contribution from 

the primary ion and most likely could not be modelled properly. A similar case is found 

for the data point labelled N a1 in figure 3.10b, this data point refers to solution 24 in 

table 3.1. It can be seen from table 3.1 that the concentrations of the ammonium, 

potassium and calcium are smaller than the concentration of the sodium in this solution.

In this case however, the predicted sodium activity is smaller than its known activity. At 

higher sodium activities outliers can be seen in which the predicted activity is larger than 

the known sodium activity. The data point labelled Na2 refers to solution 3 in table 3.1.

It can be seen from table 3.1 that the concentration of ammonium is 10 times larger than 

the concentration o f sodium in this solution. The data point labelled Na3 which refers to 

solution 5 in table 3.1 has a composition which contrasts with that of the solution 

referred to by data point Na2. In this case, it can be seen from the table that the 

concentrations o f the interferents are lower than the concentration o f the sodium. One of 

the most obvious outliers exists for the potassium ISE (labelled as K2 in figure 3.10 c), 

refers to solution 25 in table 3.1. It can be seen from the table that the concentration of 

calcium is approximately 12 times larger than the concentration o f potassium for this 

solution. While the data point labelled K3 (which refers to solution 29 in table 3.1) does 

not demonstrate as large a difference between the predicted and known activity of 

potassium (distance between the data point and the hashed diagonal, in the direction 

parallel to the y-axis) it can be seen that the concentration o f ammonium and sodium are
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approximately 8.5 times higher than the concentration o f potassium. In the case of the 

data point labelled K1 (which refers to solution 16 in table 3.1), the predicted activity of 

the potassium ion is higher than its actual activity. It can be seen from table 3.1 that the 

ammonium, sodium and calcium ions are o f lower or very similar concentration to the 

potassium ion. In the case o f the predictions o f calcium activity depicted in figure 3. lOd 

it can be seen that the data points Ca1 and Ca2 are distinctive outliers in which the 

predicted calcium activity is lower than the known calcium activity. The data points Ca1 

and Ca2 refer to the predicted activity of the calcium in to solution 8 and solution 13 in 

table 3.1 respectively. In both cases it can be seen that the concentration o f ammonium, 

sodium and potassium are either lower or very similar to the concentration o f the calcium 

ion. The data point Ca3 is a member of a cluster of data points which describe a higher 

predicted calcium activity than its known activity. The data point Ca3 refers to solution 

17 in table 3.1, from which it can be seen that concentrations o f the ammonium, sodium 

and potassium ions are very similar to the concentration o f the calcium ion.

In summary, it can be seen that the outliers labelled in figures 3 .10 a, b, c and d referred 

to solutions in which two main problems existed, namely;

(I) the concentration o f the interferents for a particular ISE were much higher than the 

primary ion concentration. In this case the calibration models were not capable of 

decoupling the large contributions to the response o f the electrodes arising from the 

interferents from the contribution arising from the primary ion.

(II) The concentration o f the interferents for a particular ISE were either lower or of 

similar magnitude to the concentration of the primary ion In this case the contribution 

o f the interferents to the response of the ISE would be insignificant relative to the 

contribution from the primary ion, as such the activities of the interferents could not be 

modelled correctly.
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3.4. Comparison Of Calibration Parameters With Those 

Determined By Other Procedures

Table 3.9 depicts the response parameters calculated for the four ISEs by the 

GA-simplex method compared with values for the same parameters obtained by (i) a 

simplex method, applied by Sáez de Viteri et al to the same set o f concentration and ISE 

response data as was used for this study (1) (referred to as simplex method 1 in the table) 

(ii) a separate solution method described by Davies et. al. (referred to by the reference 

number in the table) (15), (iii) a simplex method applied to data acquired from an FIA 

system in a different concentration range by Forster et al. (3) (referred to as simplex 

method 2 in the table), (iv) a simplex method applied to an array o f dip-type ISEs by 

Forster et al. (2) (referred to as simplex method 3 in the table), (v) mixed and separate 

solution (referred to by the reference number in the table) methods described by Svehla 

et al. (16) and by (vi) similar traditional manual methods described by Forster et al. (2). 

Simplex method 1 provides the most valid comparison with the Ha-simplex method since 

the other techniques mentioned involve the use o f different experimental approaches (eg. 

separate solution method) and/or different concentration ranges (eg. simplex method 2). 

It can be seen from the table that for the ammonium and sodium selective electrodes a 

sub-Nernstian slope was determined by the GA approach and by all the other literature 

sources. It can also be seen that for the ammonium ISE that the selectivity coefficient 

against sodium is the lowest valued selectivity coefficient o f the ISE determined by GA- 

simplex and simplex method 1 approaches. The value for this selectivity coefficient 

determined by the simplex method 1 is larger than that determined by the GA-simplex 

approach and is comparable with the value determined by the separate solutions method 

(reference 15). However the percentage relative standard deviation (%RSD) for this 

parameter determined by the simplex method 1 is quite high indicating that the parameter 

was not very precisely determined by this approach. A similar effect is seen for the 

selectivity coefficient o f the sodium ISE against ammonium, in which the value for the 

selectivity coefficient determined by the simplex method 1 is larger than the value 

calculated by the GA-simplex approach and comparable to the value calculated by the
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separate solution method 2. The mixed solution method determines a larger value again 

for this selectivity coefficient. The %RSD of this parameter determined by this approach 

is the highest for all the selectivity coefficients o f this electrode. It can be seen from the 

table that there is a close agreement between the values calculated for the selectivity 

coefficient o f the ammonium ISE against potassium by the GA-simplex approach, 

simplex method 1 and separate solutions method . This is reflected in a %RSD which 

has a smaller value than the %RSDs o f the other selectivity coefficients calculated by 

simplex method 1. There is not as close an agreement between the values of the 

selectivity coefficient o f the ammonium ISE against calcium determined by the GA- 

simplex, simplex methods 1 and separate solution method 1. This in turn is reflected by 

a large %RSD calculated for this parameter by simplex method 1. The GA-simplex 

method and simplex method 1 determine a high value for the selectivity coefficient of the 

sodium ISE against potassium relative to the values calculated for this parameter by the 

other methods depicted in the table. This suggests that the high value determined for this 

parameter is less a feature o f the optimisation procedure used as much as a feature o f the 

experimental data itself. There can be seen a close agreement between the value of the 

selectivity coefficient o f the sodium ISE against calcium calculated by the GA-simplex 

approach and simplex method 1 but an interestingly wide variation between the values 

determined for this parameter over all the other methods. It is very difficult to draw 

conclusions from this because the differences in the selectivity coefficients may be due to 

differences in the ways the experiments were performed (e.g., concentration ranges for 

the measurements) (1).

It can be seen that the GA simplex and simplex method 1 approaches determine a 

sub-Nernstian slope for the potassium ISE, whereas slightly higher slopes are obtained 

by the other methods, indicating that this is likely to be a feature of the experimental data 

itself rather than the optimisation procedure employed. This, however, may be a feature 

o f the experimental data itself rather than the optimisation procedure employed. It can 

be seen that there is a close agreement between the values calculated for the selectivity 

coefficient o f the potassium ISE against ammonia calculated by the GA-simplex and
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simplex method 1 approaches. The same cannot be said for the selectivity coefficient of 

the ISE against sodium. The value of the selectivity coefficient calculated by simplex 

method 1 is comparable with the values calculated for this selectivity coefficient by 

simplex method 2 and the simplex method in a steady state system. However this 

parameter has a very high %RSD calculated by the simplex method 1. The value o f the 

selectivity coefficient of the potassium ISE against calcium calculated by the GA-simplex 

approach is much smaller than the value calculated by the simplex approach and is 

comparable to the value calculated for this variable by the other multivariate approaches. 

However the selectivity coefficient calculated by the simplex method 1 has a very large 

%RSD, suggesting that the determination o f this parameter by the simplex method 1 is 

rather imprecise.

A great deal of variation can be observed between the calibration parameters determined

for the calcium ISE using the different techniques, even between the same technique

applied to the same data (as judged by the %RSDs of the parameters determined by

simplex method 1). It is difficult to draw any conclusions from these data because o f the

imprecision o f the simplex method 1 (although it could be said that the selectivity

coefficient of the ISE against sodium have some agreement) and because the selectivity 

coefficients involved in the Nikolskii-Eisenman expression for this electrode (i.e. z¡ =£ Z j)

are a function o f the interfering ion activity (1).



ISE Response
Parameter

GA-Simplex
Method

Simplex Method 1 
fll

Separate Solutions Method 
references f 15] and [161

Simplex 
Method 2 Î3]

Simplex 
Method 3 [21

Mixed Solution 
Method [161

Manual Methods [2J

NIL,' E 225.78 226.9 (0.2) * [15]
S 45.44 45.6 (0.4) 47.0 [15]

Kpot
NH^Na 9.36xl0"4 4.7xl0-3 (51.1) 6.35x 10"3 [15]

KpotNĤ K*
0.185 0.173 (3.4) 0.15 [15]

p - p o t

WH*Ca2+ 6.46xl0‘3 5.2x10-3 (69.2) 3.27x10-3 [15]

Na* E 257.19 261.87 (0.9) *[16] 348.2 -72.3 *

S 54.19 54.16(1.6) *[16] 55.9 54.3 54,2
.v-pOt

Wa'NH-; <lxl0*6 2.0x10-3 (45.0) 1.58x10-3 {16j * * 1x10-2
v p o t

¡Xa’ K* 1.07x10'1 0.103 (1.6) 3.16x10-3 [16] 2.13xl0*2 2.03xl0-2 3.98x10*3
rs pot 

\ ’a&Ca2' l.72xl0"2 1.46xl0'2 (15.1) 5.01X10-4 [16] 8.0xl0-3 1.79xl0-2 3.16X10-4

« P l i E i | , - 270.15 269 28 (0.3) I I I É 5 4 .2 i l l !  $7 8 1ÉÉÉIÉ-I =: * j

s 5! .39 52.2 i  ( i | ) !  ■ 55.2 54.1 53.8 .. ;
: : trpu<

W , X AWj I.45XI0"1 & : " t

m K potA W < i.Ox 1er6 ].3xlO-5 (130.8) I t § §  5.5xl0*3 4,2x10*3 * 4 h m n i
rrpot

W Ê m Ê S 5 36x10--’ 1.27X10'2 {128.3) ; 6 .2x10° 3 j 2 x i r 3 1.6xi0*4

Ca2’ E 119.08 125.89 (2.7) 326.8 50.4 *

S 23.29 25.01 (3.9) 27.8 26.8 27.2
„ pot

Ca2+N H t < lx l0 ‘6 2.0xl0"4 (50.0)
* * *

JT'POt

Ca2+Na+ 8.97xl0-4 1.5x10-3 (60 0) 4.3x10-3 l.OxlO'5 2.0x10*5

jrP ot
Ca^K* 1.67xl0‘3 7.5x10-3 (54.7) 5.1x10-3 1.7xl0-5 2.8x10*5

Table 3.9 - Calibration parameters determined for the four ISEs by the GA-simplex approach compared with values determined for the same parameters by other 
methods (The terms in brackets beside the parameters determined by simplex method 1, refer to the %RSDs o f  these parameters, the terms in square brackets in the 
separate solutions parameters refer to the references from which the parameters come)
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3.5 Comparison Of Genetic Algorithm With Simplex Technique

IS E  = j
111

=:

SSE Ej (mV) Sj

(mV)

K jnhì

(xlO-3)

jNa

( x l 0 ‘3 ) (x lO -3 ) (x lO -3 )

m i 4 +

i : .

0.021

(24.27)

225.846

(0.22)

45.502

(0.34)

2.09

(96.34)

185.13

(2.63)

4.19

(93.41)

■ Na+ 0.048

(23.61)

256.241

(0.31)

55.419

(0.56)

4.419

(50.33)

- 109.1

(3.59)

5.679

(102.63)

K * 0.038

(13.28)

270.506

(0.19)

51.523

(0.43)

142.63 

. (2.45)

0.453

(238.5)

- 5.322

(6.48)

C a2+ 0.032

(22.11)

119.37

(0.31

23.378

(0.49)

0.264

(187.46)

0.823

(40.34)

1.674

(12.12)

j

T a b le  3 .1 0  -  C a lib ra tio n  p a r a m e te r s  d e te r m in e d  b y  s ix  r e p e tit io n s  o f  the s im p le x
m e th o d  a p p l ie d  to  d a ta  c o m p o s e d  o f  th e re sp o n se s  o f  th e  f o u r  IS E s d e s c r ib e d  e a r lie r  to  
th e c a lib r a tio n  so lu tio n s  d e s c r ib e d  in  ta b le  3 .1  (i.e. the sa m e  d a ta  s e t  a s  w a s  u s e d  b y  the  
G A ). The te rm s  in  b ra c k e ts  r e fe r  to  the p e r c e n ta g e  r e la tiv e  s ta n d a r d  d e v ia tio ti  (% R S D )  
o f  e a c h  p a r a m e te r .

Table 3.10 depicts the calibration parameters determined for the four ISEs by a simplex 

optimisation procedure, using the same data set as was used for the GA-simplex 

technique. The simplex used in this approach was initialised randomly in the ranges for 

the calibration parameters developed for the GA. The simplex was repeated six times, as 

such table 3.10 describes the average value of each calibration parameter accompanied 

by its %RSD.

It can be seen that the %RSD of a calibration parameter tends to decrease as the 

magnitude of the parameter increases, in a similar fashion to that observed for the GA. It 

can also be seen that the %RSDs o f the selectivity coefficients of the potassium ISE vary 

more than those obtained using the GA approach depicted in table 3.7. The calibration 

parameters determined by the simplex technique are very similar to those obtained by the



GA even for the calcium ISE. The largest difference between the calibration parameters 

occurs for the selectivity coefficients, in particular those describing the selectivity of the 

sodium ISE against ammonium, which is approximately seven times larger when 

determined by the simplex approach than when determined by the GA approach. This 

selectivity coefficient however, is the least precisely determined o f the selectivity 

coefficients o f the ISE using the GA approach.
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ISE j SSE Ej (mV) Sj (mV) K'
m i

(xlO-3)

K ' ,pVa

(xlO*3)

* ; *

(xlO '3)

K ‘ „jCa

(xl0"3)

:n h 4 1 0.108 5.66 6.28 . 2.32x10-2 6.48x10-! 2.49x10-!

: Na4 ' 6.21xl0-2 6.10 3.62 7.66xl0-2 2.35x10-! 5.32x10-2

§1 2.63 48.52 34.35 29.46 5.56xl0-4 1.48

Ca24" 0.46 342.59 273.69 0.42 11.14 218.81 -

T a b le  3 .1 1  -  R a tio s  o f  th e  v a r ia n c e s  o f  th e  c a lib ra tio n  p a r a m e te r s  d e te r m in e d  b y  GA  
a n d  s im p le x  a p p r o a c h e s  to  th e sa m e  d a ta  s e t  c o m p o s e d  o f  the r e s p o n s e s  o f  the f o u r  IS E s  
d e s c r ib e d  e a r l ie r  to  th e so lu tio n s  o f  c o m p o s itio n  d e s c r ib e d  in  ta b le  3 .1

Table 3.11 depicts the ratios o f the variances o f the calibration parameters determined by

means of the GA and simplex approaches. Using an f-test at a 95% significance level

( / s° f  = 5.05 (17)) it was determined that the variance of the SSE determined by the

simplex approach was significantly larger than that determined by the GA for the sodium 

and ammonium ISEs. The variances with which the cell potentials are determined are 

significantly greater using the GA approach as opposed to the simplex approach. This is 

also observed for the slopes o f the ammonium, potassium and calcium ISEs. Since the 

SSEs o f the ammonium, potassium and calcium ISEs determined by the GA-simplex 

approach were not significantly larger than those determined by the simplex approach 

and the estimates for the slopes and cell potentials of these electrodes determined by the



former approach were significantly larger than those determined by the latter approach, it 

suggests that the precision with which the selectivity coefficients are determined plays a 

part in the variances o f the calibration errors. The variances with which the smallest 

magnitude selectivity coefficients are determined are significantly greater using the 

simplex technique than using the GA technique. However in the case o f the calcium ISE 

where there is not a great deal o f difference between the selectivity coefficients, the 

variance with which the selectivity coefficients determined by the GA are significantly 

greater than those determined by the simplex.

Saez de Viteri et al. (1) discussed how variation of the value o f for an

ammonium ISE affected its calibration error when the rest of the Nikolskii-Eisneman 

parameters were held constant at their optimum values determined previously by a 

simplex method. It was found that if K \. remained less than 10'2 that variation of its 

value did not influence the calibration error very much. In general, variation o f the value 

o f K¡j had little effect on the calibration error unless the parameter was grossly 

overestimated. As such, it is not surprising that K s are the least precisely determined

parameters in the Nikolskii-Eisenman expressions for each electrode by both GA and 

simplex approaches. These results suggest, however, that the simplex approach more 

precisely determines parameters which contribute most to the SSE. Conversely the GA 

determines parameters which contribute less to the SSE than the simplex approach. As 

such, it suggests the advantages to be had from hybridisation of the simplex and GA 

approaches.
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3.6 Dynamics Of The Optimisation Procedure

F ig u re  3 .1 1  -V a r ia tio n  o f  S S E  o f  b e s t  f i t t in g  c a lib ra tio n  m o d e l (M ea n  F it)  a n d  a v e ra g e  
p o p u la t io n  S S E  (M ea n  A v fit)  in  a  p o p u la tio n  o f  3 0 0  c h ro m o so m e s  w ith  ra n k  p r e s c a l in g  
a n d  s to c h a s tic  r e m a in d e r  sa m p lin g  a p p l ie d  to  th e  so d iu m  IS E  r e p e a te d  s ix  tim e s

Figure (3.11) depicts the changes in the average values of the SSE o f the calibration 

models which most closely model the response o f the sodium ISE, obtained from the six 

repetitions o f the GA. It also depicts the changes in the average SSE for the entire 

population averaged over the six repetitions. It can be seen that the SSE from the best 

fitting calibration model rapidly decreases as the GA progresses and improved very little 

after 80 iterations o f the GA. It can also be seen that the average SSE o f the population 

decreases as the GA progresses (as the population becomes filled with chromosomes 

encoding calibration expressions which model the response of the electrode increasingly 

well). The average SSE of the population approaches that of the individual which most 

closely models the response o f the electrode in about 100 iterations. This suggests that 

when the GA finds an individual which encodes a good calibration model that the GA 

rapidly fills the rest o f the population with chromosomes encoding very similar 

calibration models.
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F ig u re  3 .1 2  -  V a ria tio n  O f  % R S D  o f  b e s t  f i t t in g  c a lib r a tio n  m o d e l(% R S D  F it)  a n d  
a v e r a g e  p o p u la t io n  S S E  (% R S D  A v fit)  in  a  p o p u la t io n  o f  3 0 0  c h ro m o so m e s  w ith  ra n k  
p r e s c a l in g  a n d  s to c h a s tic  re m a in d e r  sa m p lin g  a p p l ie d  to  th e so d iu m  IS E  r e p e a te d  s ix  
t im e s

Figure (3.12) depicts the changes in the %RSDs of the error terms whose averages are 

depicted in figure (3.11). It can be clearly seen that the %RSDs of the errors of 

calibration models that most closely model the response of the electrode rapidly decrease 

as the GA progresses and then slow after about 80 iterations (i.e. after the average SSE 

o f the best calibration model slows). This suggests that the populations repetitively 

started from different positions in the search space initially had very different models best 

representing the response of the electrode, but the GAs rapidly converged to a similar 

expression, suggesting that perhaps a global optimum had been found in the search 

space. The changes in the %RSD values of the average SSE o f the population are more 

difficult to follow. It appears that in the periods o f maximum decrease in %RSD of the 

SSE of the best calibration models in the population that the %RSDs of the average SSE 

o f the population are increasing. This suggests that while the GAs may be finding very 

similar calibration models that best represent the response of the electrode that the rest of 

the populations are not all moving towards this model at the same rate. Some 

populations are becoming increasingly dominated by the particular model, while others 

are not. By the time the %RSD of the best calibration model has stabilised the %RSD of 

the average SSE of the populations has decreased again. Thereafter, while there is small 

change in the %RSD of the best calibration model, there is gradual decrease in the
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%RSD of the average SSE of the population with sporadic increase probably due to 

random mutation or crossing processes occurring within the population.

F ig u re  3 .1 3  -  V a ria tio n  o f  s ta n d a r d  c e l l  p o te n t ia l  (M ea n  E ) a n d  s lo p e  (M ea n  S) o f  b e s t  
f i t t in g  c a lib r a tio n  m o d e l in  a  p o p u la tio n  o f  3 0 0  c h ro m o so m e s  w ith  ra n k  p r e s c a l in g  a n d  
s to c h a s tic  r e m a in d e r  sa m p lin g  a p p l ie d  to  the so d iu m  IS E  r e p e a te d  s ix  tim e s

Figure (3 .13) depicts the changes in the values o f the standard cell potential and slope 

parameters obtained from the chromosome which most closely models the response of 

the sodium ISE, averaged over the six repetitions o f the GA. It can be seen that the first 

30 iterations o f the GA demonstrate the most dramatic changes in these calibration 

parameters whose final values are virtually established by about 80 iterations.

F ig u re  3 .1 6  - V a ria tio n  o f  % R S D  o f  s ta n d a r d  c e l l  p o te n t ia l  (% R S D  E ) a n d  s lo p e  
(% R S D  S) o f  b e s t  f i t t in g  c a lib ra tio n  m o d e l in  a  p o p u la tio n  o f 3 0 0  c h ro m o so m e s  w ith  
ra n k  p r e s c a l in g  a n d  s to c h a s tic  re m a in d e r  s a m p lin g  a p p l ie d  to  the so d iu m  IS E  r e p e a te d  
s ix  tim e s



The %RSDs of these parameters are depicted in figure (3.14) which spike during the 

period of most change in the average values of the slopes and cell potentials. The 

%RSDs of these parameters also stabilise rapidly although slightly earlier than the 

average values do. This suggests that the GA converges to particular values o f the slope 

and cell potential at the same time as it has converged to a solution in the response space 

and that the precision with which these parameters are determined does not change as 

the GA further progresses.

F ig u re  3. J 3  -  V a ria tio n  o f  s e le c t iv i ty  c o e ff ic ie n ts  o f  b e s t  f i t t in g  c a lib r a tio n  m o d e l  in  a  
p o p u la t io n  o f  3 0 0  c h ro m o so m e s  w ith  ra n k  p r e s c a l in g  a n d  s to c h a s tic  r e m a in d e r  
s a m p lin g  a p p l ie d  to  th e  so d iu m  IS E  r e p e a te d  s ix  lim es. K N a N H , K N a K  a n d  K N a C a  
r e fe r  to  the s e le c t iv i ty  c o e ff ic ie n ts  o f  the so d iu m  e le c tr o d e  a g a in s t  am m on iu m , 
p o ta s s iu m  a n d  c a lc iu m  r e s p e c tiv e ly

Figure (3.15) depicts the changes in the selectivity coefficients o f the sodium ISE against 

ammonium, potassium and calcium obtained from the calibration model which most 

closely describes the response o f the electrode as the GA progressed, averaged over six 

repetitions o f the GA. It can be seen that the selectivity coefficients o f the ISE against 

ammonium which has the lowest magnitude of all the three selectivity coefficients in the 

finally determined calibration model undergoes a decrease o f approximately one order of 

magnitude in the first 80 iterations of the GA at which point it stabilises and undergoes a



smaller decrease in the later stages o f the GA. The selectivity coefficient o f the ISE 

against calcium which is the next highest to the selectivity coefficient o f the electrode 

against ammonium undergoes less dramatic change than the previously discussed 

selectivity coefficient and stabilises by about 60 iterations. The selectivity coefficient of 

the electrode against potassium which has the highest value of the selectivity coefficients 

in the final model converges very rapidly within about 30 iterations o f the GA.

F ig u re  3 .1 6  -  V a ria tio n  o f  % R S D s o f  th e  s e le c t iv i ty  c o e ff ic ie n ts  o f  the b e s t  f i t t in g  
c a lib r a tio n  m o d e l in  a  p o p u la t io n  o f  3 0 0  c h ro m o so m e s  w ith  ra n k  p r e s c a l in g  a n d  
s to c h a s tic  re m a in d e r  s a m p lin g  a p p l ie d  to  the so d iu m  IS E  r e p e a te d  s ix  tim es. K N a N H  
R S D  ,K N a K  R S D  a n d  K N a C a  R S D  r e fe r s  to  the % R S D  o f  the s e le c t iv i ty  c o e ff ic ie n t o f  
th e  so d iu m  IS E  a g a in s t  a m m on iu m , p o ta s s iu m  a n d  ca lc iu m  re sp e c tiv e ly .

Figure (3.16) depicts the changes in the %RSDs of the values o f the selectivity 

coefficients depicted in figure (3.15). It can be seen that the %RSD of the selectivity 

coefficient of the ISE against ammonium increases as the GA progresses and generally 

stabilises within 100 iterations. The %RSD of the selectivity coefficient o f the ISE 

calcium undergoes rapid decrease and stabilisation by about 80 iterations and the 

selectivity coefficient against potassium also undergoes rapid decrease and stabilisation 

by about 80 iterations. This suggests that while multiple repetitions o f a GA converge to

solutions involving similar values of the calibration parameters, such as E ° and S which
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are more likely to make a significant contribution to the SSE, which the GA is 

minimising, that a parameters such as the selectivity coefficient of the lowest magnitude 

is least precisely determined and the optimisation process o f the GA may actually 

decrease the precision with which such parameters are determined.

F ig u re  3 .1 7  V a ria tio n  o f  the re sp o n se  p a r a m e te r s  o f  th e b e s t f i t t in g  c a lib ra tio n  m o d e l  
in  a  p o p u la t io n  o f  3 0 0  c h ro m o so m e s  w ith  ra n k  p r e s c a l in g  a n d  s to c h a s tic  r e m a in d e r  
s a m p lin g  a p p l ie d  to  the so d iu m  IS E  s ix  tim es. The te rm s  u s e d  in  the g r a p h  a re  a s  
d e s c r ib e d  in  f ig u r e s  3 .1 1 -3 .1 6 .

Figure 3.17 summarises the effects seen in figures 3.11,3.13 and 3.15. It can be clearly 

seen that the slope and standard cell potentials undergo very little change during the 

progress o f the GA. This is likely to be due to a rapid initial search for these parameters 

followed by filling o f the population with the values for these parameters, thereby 

effectively reducing the dimensionality o f the search space for the GA. The selectivity 

coefficient of the ISE against ammonia undergoes a slight change until about 20 

iterations . In contrast the less significant selectivity coefficients (e.g. the selectivity 

coefficient of the sodium ISE against ammonium and calcium) undergo change until 

much later stages of the GA as the population is less likely to fill with the values of genes 

which make a small contribution to the fitness o f a given chromosome.

0  40 60 100

Iterations



Genetic algorithms were investigated as a means of optimising a least squares error 

parameter for non-linear calibration of an array o f ion-selective electrodes. A variety of 

different modifications to the simple GA were investigated with a view to reducing the 

effects o f premature convergence and poor search precision inherent to the GA 

technique. Simple linear prescaling was considered to slow down the process of 

diversity reduction within a population but not sufficient to reduce the effect. Rank 

selection reduced the effect of diversity reduction within the chromosomes of a 

population although the population still tended to converge more quickly on some genes 

relative to others depending on their significance in determining the fitness of the 

organism. Roulette wheel selection was considered, but found to be unsatisfactory with 

low degrees o f prescaling because the stochastic nature if the selection process led to the 

possibility if losing the most fit individual within a population during evolution, 

remainder stochastic sampling was found to be a more useful means of selection in this 

respect because there was less chance o f losing the most fit individual in the population. 

Prevention o f incest during crossing as investigated as a means o f reducing the 

réintroduction of genetic material into a population, but was found not to make any large 

contribution to the final result produced by the GA and because o f the increased 

complexity of the program produced by having to keep account of chromosomes and 

their parents was not continued in further work. The GAs developed were then used for 

calibration, very high degrees of correlation were found between predicted activities of 

samples and their actual activities.

3.7 Conclusion
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3.9 Glossary:

Chromosome: A data structure which holds a string of parameters for the problem being

solved by the GA

Fitness: A value assigned to a chromosome which reflects how well the 

chromosome solves the task o f interest. A fitness function is used to map 

the parameters encoded on a chromosome to a fitness value. In this study 

the fitness is inversely related to the SSE o f a particular calibration model 

encoded by a chromosome.

Gene: A subsection o f a chromosome which (usually) encodes the value o f a 

single task parameter.

Generation: An iteration o f a GA

Genetic Drift: Changes in gene numbers in a population over many generations resulting

from chance rather than reproduction

Ham m ing Distance : Number o f vector components in which two vectors differ.

i.e. the Hamming distance between two binary numbers means the

number of bits that are different in the numbers

Schema: A pattern o f gene values in a chromosomes which may include “don’t 

care” states, i.e. for chromosomes encoded in a binary alphabet (2 

characters) each schema may be represented by a string o f the same 

length as the chromosomes but encoded in an alphabet o f 3 characters 

(1 ,0 , *)



Chapter 4 Determination of Stability Constants Using 

Genetic Algorithms

Abstract:

A genetic algorithm (GA)-simplex hybrid approach has been developed for the 

determination of stability constants using calorimetric and polarographic data obtained 

from literature sources. The polarographic data were obtained from studies o f cadmium 

chloride and lead with the crown ether dicyclohexyl-18-crown-6 The calorimetric data 

were obtained from a study of a two step addition reaction of Hg(CN)2 with thiourea. 

The stability constants obtained using the GA-simplex hybrid approach compare 

favourably with the values quoted in the literature.

4.1 Introduction

This section describes the definition of stability constants and different experimental 

methods used for their determination, focusing specifically on polarographic and 

calorimetric techniques, data from which were used in this study. Problems associated 

with existing methods o f calculating stability constants and the advantages posed by 

genetic algorithm approaches in these contexts are discussed. Finally the design o f the 

genetic algorithm devised to determine stability constants are discussed placing particular 

emphasis on the genetic representation of the stability constants and associated equilibria 

and the implementation of the objective function.
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A stability constant is a thermodynamic quantity which refers to the formation of 

a complex MjLjH^ in which M is usually a metal ion, L refers to a ligand which can be a 

simple anion or a neutral molecule o f variable complexity and H refers to a proton which 

may be involved in the reaction (1) (2).

Mathematically, the stability constant describes the equilibrium

/  \im + k—jl
iMT+jL1 +kH+ *=* (M iLjHk) (4.1)

as follows

i f  \ im + k - j l )
(m ,l jh k)

P‘"‘ '  {m " 1 } {l ' ¡ > ‘)k <4'2)

where the terms in curly brackets refer to the activities o f the species involved in the 

equilibrium. Since many experimental techniques such as spectroscopy and calorimetry 

have responses which are dependent on the concentrations o f different species rather 

than their activities, a stoichiometric stability constant may be calculated as follows :

[ i ^ r ]
P"k [m '“'] [l ' ]j[h  1 ]11 <4'3)

The terms in brackets in expression (4.3) refer to the free concentrations o f the 

species involved in the equilibrium as opposed to the total concentrations o f the species 

which are experimental variables of the investigation in question.

If  the experiments are performed in media of constant ionic strength, so that the 

activity coefficients o f the species involved do not vary during the experiment then the 

stoichiometric stability constant Pijk can be converted to the thermodynamic stability

constant P°jkby multiplying it by a constant corresponding to the ratio of the activity
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4.1.1 Stability Constants
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coefficients o f the metal, ligand and complexed species.

(4.4)

Otherwise, the stoichiometric coefficient should be corrected for changes during the 

experiment in the activity coefficients o f the species involved in the equilibria:

The activity coefficients (y) o f the species involved in this contribution may be calculated 

by means of the Davies expression (3).

In which Yi is the activity coefficient of species i, zj is the charge o f species i and I  is the 

ionic strength o f the medium under investigation.

There are a number of experimental techniques used for the determination of 

stability constants including potentiometry (4), polarography (5), NMR spectroscopy (6) 

and calorimetry (7). Stability constants can be calculated from the experimental data by 

a number o f means o f graphical or numerical methods (8) (9). The numerical approaches 

to the determination o f stability constants normally involve the minimisation of a sum of 

squares or weighted sum of squares parameter. This is achieved by a number of different 

methods including the Gauss method used by the program SCOGS for pH titration data 

(10) and the pit mapping technique used by the program DALSFEK for spectroscopic 

data (11).

A major problem associated with many of these approaches arises from the numerical 

difficulties posed by high dimensional search spaces associated with increasingly complex 

equilibrium models. This is especially true for experimental methods which require the 

determination of additional parameters such as heats of formation in calorimetry or molar 

extinction coefficients in spectroscopy, thereby increasing the dimension of the search

(4.5)
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space. Because of the multi-dimensional nature of the data space involved, the GA was 

investigated as a means o f solving the minimisation problem, because it is known from 

literature (12) that these algorithms are very suited to dealing such tasks.

Laouenan and Suet (13) discussed the inability o f many existing programs to deal 

with different types o f experimental data. However the GA described in this paper is 

readily adaptable to data from different experimental methods to produce new objective 

functions.

4.1.2 Polarographic M ethods

The stability constants o f electroactive species which undergo reversible 

reduction can be determined polarographically by the method of DeFord and Hume (14). 

Changes in the half-wave potential and diffusion current o f the metal on addition of 

ligand can be related to the concentration o f the metal by means of a term Fo which 

describes the ratio between the total concentration o f metal (in all its complexed and 

uncomplexed forms) Cm and the concentration o f the free metal [M] described by 

equation (4.6)

The term Fo can also be related to the experimental variables o f the study as described by 

equation (4 .7)

where F refers to the Faraday constant, R  refers to the gas constant, T refers to 

temperature in Kelvin and n refers to the number o f electrons involved in the 

electrochemical process. E j / j f  and E j/2 C  refer to the half wave potentials of the metal

(4.7)



ion in the absence o f ligand and in the presence o f ligand, respectively, and I j j r  and i j c  

refer to the diffusion currents o f the metal ion in the absence o f ligand and in the 

presence o f ligand, respectively.

The concentration o f free metal ion is related to the total concentration o f metal ion by 

the mass balance expressions involving the stability constants for the system.

CM = ± ± i P u[M ]'[L ]1 (4.8)
0 0

(4.9)
0 0

The stability constants can thus be determined by a process o f minimising the sum of 

squared errors (SSE) (the term error refers to the difference between the experimentally 

derived value of Fo(expt) and the value calculated from the free metal concentrations 

Fo(calc)).
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numdata A- 1 r  l  ' l

S S E =  £  ( jF o („ pt)J - [ f „ (ci1c(] J

numdata r f n F  -, <4-10)

2  I CX̂ 1_RT ^ 1/2F ( ^ i /2C) i}j +  ̂ n
l l  ,J (c „),Y
} j+ ln

_(^dc),_ [M], J

The term num data  refers to the number o f measurements performed in the experiment 

and the index i refers to the measurement i in a particular experiment. Leggett's program 

POLAG (15) which performs the least squares calculations by means o f a Gauss-Newton 

approach, is one of the more advanced software packages for determining stability 

constants from polarographic data.

4.1.3 C alorim etrie Determ ination O f Stability Constants

Calorimetrie titration can be used for the determination o f stability constants by 

the measurement o f the heat evolved upon addition of a ligand solution to a metal



solution (16). When the heat measurements are corrected for dilution effects, changes in 

heat capacity and other factors external to the complexation reaction itself, the resulting 

corrected heat Qc can be described by

Qc(calc) = S A H im ol1 (4.11)
i—1

where N refers to the number of species formed, A H j  refers to the heat of formation of a 

species i, molj refers to the number of moles of species i present in the reaction vessel 

and can be calculated from the stability constants and the total concentrations of metal 

and ligand used for the experiment. (17).

This indicates that in addition to determining the stability constants for the system, one 

must also determine the heats of formation of these complexes, thereby effectively 

doubling the dimension o f the search space. These parameters are generally determined 

by minimising the sum of squares of the difference between the predicted value of heat 

produced in the system (by means of stability constants and heats of formation) and the 

experimentally calculated values as depicted in expression (4.12),

numdata /  \  ^ numdata  ̂ N  |

S S E =  2  (Q c („ pt) - Q c ,„ kJ)  =  Z  j Q c ^ - Z A I ^ m o I j J  (4.12)

4.1.4 Genetic Algorithms

A description o f the theory behind the operation o f genetic algorithms is found in 

chapter one o f this thesis and a description of its practical implementation is described in 

chapter 3.

The representation of an optimisation problem associated with a GA appeared 

suitable for designing a system which was capable o f determining both the nature of the 

equilibrium model and the value of the stability constants involved in this equilibrium. In
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many software systems, the operator can determine the relative suitability of different 

equilibrium models by selecting different models manually for optimisation and 

comparing the relevant statistics associated with each model. In this GA approach a 

range o f different models will be evaluated in parallel removing the need for manual 

comparison.

4.1.5 Genetic R epresentation O f The Stability C onstant D eterm ination Problem

Since the aim o f this study was to optimise equilibrium models and stability 

constants, a variable length chromosome format was decided upon for the population. 

Each chromosome was represented as a structure which encoded the number of different 

metals and ligands involved in the candidate equilibrium model. The structures also 

described the stoichiometric numbers o f the metals and ligands in the candidate 

equilibrium model. Figure 4.1 graphically depicts the chromosome structure.
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Number o f Different Metals (<=2) 1 Mixed Metal/Ligand
Number o f Different Ligands (<=2) J System 
Stoichiometric Number of Metal 1 (MnL)
Stoichiometric Number of Metal 2 (NnL )
Stoichiometric Number of Ligand 1 (MLq)
Stoichiometric Number o f Ligand 2 (MPq)
Resulting Number o f Parameters in the Model 
Fitness o f the model (Sum of Squared Errors)
Pointer to Linear Array O f Stability Constants (Gene Sequence)

Gene 1 Gene 1 Gene 1
P 11 P l2  P 13

Unsigned Integer Unsigned Integer Unsigned Integer

(0-65535) (0-65535) (0-65535)

F ig u re  4 .1  -  G e n e tic  r e p r e s e n ta tio n  o f  s ta b il i ty  c o n s ta n t m o d e l  in  a  c h ro m o so m e  
s tru c tu re
This representation scheme was used to build up a series o f equilibria for the lowest 

order complex ML to the highest order complex specified by the chromosome. This 

scheme was then used to determine the number of stability constants needed to



determine the equilibria encoded by the chromosome and hence the total number of 

parameters needed to be optimised (depending on whether the experimental data used 

was derived from a polarographic or calorimetric analysis). The value o f each parameter 

was represented as an integer scaled in the range 0- (2 l^ -l). The resulting string of 

parameters for each model were dynamically allocated and reallocated according to the 

breeding processes involved in the GA.
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The actual configuration for the GAs used for this study is depicted in table 4.1.

P o p u la t io n : 200-300 chromosomes
Scaling: Rank Scaling ( 18)
Rank Scaling U p p e r  Limit 1.1
Selection Stochastic Remainder (19)
Crossover Single Point (19)
Crossover Restriction Chromosome mates must encode the

same number o f parameters
Hamming distance restriction (20)

Cross Rate 0.65
Mutation Single Point
Mutation Rate 1.0/(Population Size)
T a b le  4 .1 -  G e n e r a l c o n fig u ra tio n  o f  G e n e tic  A lg o r ith m s  u s e d  f o r  th is  stu dy .

A problem with the implementation of GAs is the low precision with which a solution is 

determined (12), in order to improve on the end solution determined by the GA, the GA 

was post-hybridised with a simplex technique. In this case, members o f the population 

which fit the experimental data well were used to fill the vertices o f the simplex.

4.1.6 Im plem entation of Objective Function

In the previous sections discussing polarography and calorimetry, it was shown 

that stability constants determined by these techniques were calculated by means of 

optimising a sum of squared errors expression given by equations (4.10) and (4.12) 

respectively. It can be seen that both expression (4.10) and (4.12) involve the 

equilibrium concentrations o f the species described by the equilibrium model. The



equilibrium concentrations of the species can be calculated from the total metal and 

ligand concentrations (which are experimental variables) and from the proposed 

equilibrium model and stability constants, by means of the mass balance expressions (4.8) 

and (4.9).

As such, it can be seen that the calculation of a fitness measure for a chromosome is an 

indirect procedure which involves using the chromosome encoded model and 

experimental data describing total metal and ligand concentrations to calculate the 

equilibrium concentrations o f the species described by the model. This is achieved by a 

separate optimisation routine which minimises the difference between the total metal and 

ligand concentrations predicted from the mass balance expressions and the total metal 

and ligand concentrations used experimentally. These equilibrium concentrations are 

then used to predict a value o f Fo or corrected heat value respectively for polarographic 

data or calorimetric data. These Fo or heat values are then compared with the 

experimentally determined values for these parameters to generate a fitness measure 

(which is inversely related to the sum squared error calculated from equations 4.10 and 

4.12) for the chromosome.

Figures 4.2 and 4.3 schematically depict the processes occurring during the evaluation of 

the objective function for data from polarographic and calorimetric experiments
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A major advantage o f computational methods of determination o f stability 

constants over graphical methods is the ability to estimate the precisions o f the model 

parameters determined by the optimisation procedure.

The principle o f the GA approach involves the minimisation of a sum of squared 

errors value, calculated as the difference between an experimental observation and a 

corresponding value calculated from the equilibrium model as follows :

SSE = —f ( a 1. . . a n,x 1|1. . .x lk}j (4*13)

Where W j represents the weighting of each experimental point (assumed to be unity in 

this case), m represents the number of observations, yi(expt) represents the

experimental observation (fo for polarography and heat for calorimetry) and 

f ( a 1. . . a n,x i|1. . .x ik)  represents the function calculating a value corresponding to the 

experimental value. In this case f  is a function of x,(l=l to k) independent variables (e.g. 

total metal and ligand concentrations) and oij (j=l to n) parameters (e.g. stability 

constants, heats o f formation).

The principle o f propagation of errors described by Deming (21) can be used to 

determine the standard errors of the function parameters cij by means o f the linear term in 

the Taylors expansion of the function f. The variance of each function parameter can be 

determined from the diagonal elements of the matrix Bct2 . B is calculated as (J^ W J) '^  

where J  is the Jacobian matrix o f the function depicted as follows
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4.1.7 Parameter Standard Deviations
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J  =

d a 1 da„

( 4 .1 4 )

represents the variance between the experimental observation and the calculated 

value. The partial derivatives contained in the Jacobian were calculated numerically in 

this study by means o f Ridder's method o f polynomial extrapolation (22a) and a singular 

value decomposition (22b) approach was used to invert the matrix B.

For further details o f this approach, the reader is directed to references (23), (24) and 

(25).

The dataflow diagram for the GA and the associated error handling software is depicted 

in figure 4.4.

4.2 Experimental

The GA software was written in ANSI style C running on an Atari ATW-800 

transputer workstation using the Helios operating system. The equilibrium 

concentrations o f  the different species present in a given equilibrium were calculated by 

means of the program EQ U IL (26) which was merged with the GA. The GA software 

appears in the software appendix as the program GASTAB.C and the simplex 

optimisation routine appears as the program GASIM P.C, the standard deviation 

software appears as the program STDEV.C.
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F ig u re  4 .4  D a ta f lo w  d ia g ra m  f o r  the G A  a n d  a s s o c ia te d  e r r o r  h a n d lin g  so ftw a re



4.3.1. Determ ination O f Stability Constants From Polarographic Experim ents

4.3.1.1 Complexation O f Cadm ium  Chloride in a Perchlorate M edium

The ability of the GA to determine stability constants from data obtained from 

polarographic experiments was tested initially with data published by Heath and Hefter 

(27) concerning a cadmium (II) chloride system studied by means o f differential pulse 

polarography. It involved the measurement o f the peak potential and peak current from 

the polarographic reduction of cadmium (II) in 1.0 M sodium perchlorate with varying 

concentrations of sodium chloride The total concentration o f cadmium(II) was 4.0x1 O'5 

M  and the chloride concentration varied over the range 0.05 to 1.00 M. The raw data 

used for this study is described in table 4.2.
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4.3 Results

[C1-]t (M) -Ep (V vs. Ag/AgCl) Ip (|iA)
0 0.5885 7.10

0.05 0.5989 7.25
0.1 0.6057 7.37
0.2 0.6151 7.37

' 0.4 0.6277 7.37
0.6 0.6365 7.40

0.80 0.6435 7.40
1.00 0.6493 7.40

T a b le  4 .2  P o la r o g r a p h ic  d a ta  u s e d  f o r  th e  d e te rm in a tio n  o f  th e s ta b i l i ty  c o n s ta n ts  o f  the  
c a d m iu m  (II) c h lo r id e  system . (Ep a n d  Ip r e p re se n t the p e a k  p o te n t ia l  a n d  p e a k  c u rre n t  
r e s p e c tiv e ly , [ ] t  r e p r e s e n ts  th e to ta l  c o n c e n tra tio n  o f  th e s p e c ie s  in  the sq u a re  
b ra c k e ts )

In order to determine the stability constants from these data the original DeFord and 

Hume expressions (4.7) for data obtained from linear potential sweep (d.c) polarography 

were altered for the differential pulse (d.p.) technique, by replacing the half-wave 

potential and diffusion currents with the peak potential and peak current respectively.



Three different complexes are expected to exist, namely CdCl+, CdCh and CdCl3' in 

which the stability constants, (3n, P12 and P13 describe the equilibria depicted in figure
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F ig u re  4 .5  C o m p le x a tio n  e q u ilib r ia  f o r  ca d m iu m  c h lo r id e  in  a  p e r c h lo r a te  m ed iu m  
These data were also studied by Leggett (15) with the POL AG program and by

Laouenan and Suet (13)with the MICMAC program. The estimates of the stability

constants provided by these different studies are depicted in table 4.3.

Literature Values

Parameters | Heath and Hefter 
(27)

Leggett (15) Laouenan and Suet 
(13)

L ogP lt 1.352 1.329 1.328

L o g p if- 1.748 1.736 1.735

J U # 1 3 1.544 1.514 1.511

T a b le  4 .3  V a lu es o f  th e s ta b i l i ty  c o n s ta n ts  f o r  ca d m iu m  c h lo r id e  c o m p le x a tio n  
d e te r m in e d  p r e v io u s ly  f r o m  lite ra tu re  so u rc e s  b a s e d  on  d a ta  a c q u ir e d f r o m  a  
d if fe r e n tia l  p u ls e  p o la r o g r a p h y  e x p e r im e n t p e r fo r m e d  b y  H e a th  a n d  H e f te r

It can be seen from table 4.3 that there are some differences between the values of the

stability constants calculated by Heath and Hefter (27) and the other studies. It can also

be seen that there is much closer agreement between the values of the stability constants

determined by Leggett (15) and Laouenean and Suet (13). This was most likely to have

been caused by Heath and Hefter’s (27) use of a graphical method to calculate the



stability constants from their experimental data whereas Leggett (15) and Laouenan and 

Suet (13) used more sophisticated numerical techniques.

A GA with a configuration similar to that in table 4.1 was used for this study 

except for employing a population containing 200 chromosomes and a rank prescaling 

constant o f 1.3 and was allowed to iterate thorough 100 cycles before termination. The 

population o f chromosomes was initialised to search for a suitable model for the 

complexation o f the cadmium chloride from a range of possible models.

* M+L ML

* M+2L ^  ML2

* M+3 L «"“* ML3

The GA was also initialised to search for stability constants in the range 0 < log P < 2.

The resulting GA was repeated five times and in each case converged to the correct 

model for the cadmium chloride complexation (in terms of the stoichiometric coefficients 

of the metal and ligand involved in the equilibria). Table 4 .4 depicts the statistics 

concerning the values o f the stability constants determined from the repetitions o f the
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GA.

Parameters Mean Value Of The Parameter 
Determined After Repetition Of 

TheGA

Standard Deviation Of The 
Parameter Determined After 

Repetition O f The GA
tékM 1.301 0.025
Logph 1.804 0.059
Logpu 1.290 0.224

T a b le  4 .4  The m ea n  v a lu e s  o f  th e s ta b il i ty  c o n s ta n ts  o f  ca d m iu m  c h lo r id e  c o m p le x a tio n  
d e te r m in e d f r o m  th e d if fe r e n tia l  p u ls e  p o la r o g r a p h ic  d a ta  o f  H e a th  a n d  H e f te r  (2 7 ) b y  
a  G A  w ith  2 0 0  c h ro m o so m e s  in  i ts  p o p u la tio n  c o n f ig u re d  a s  d e s c r ib e d  in  ta b le  4 .1  
(e x c e p t f o r  a  ra n k  p r e s c a l in g  c o n s ta n t o f  1 .3 ) to  s e a rc h  f o r  s ta b il i ty  c o n s ta n ts  w h o se  
v a lu e s  la y  in  th e ra n g e  0 < logP < 2.

These results show that the first stability constant predicted by the GA agrees more 

closely with that predicted by the literature sources than the other stability constants o f 

the model. It can also be seen that the first stability constant was more precisely



determined on repetition o f the GA than the other stability constants. The stability 

constants determined from the repetitions of the GA were used to provide the vertices of 

a simplex to refine the model determined by the GA and the standard deviations of the 

parameters in the refined model were then determined by means o f the techniques 

discussed in section 4.1.7. The resulting parameters and their standard deviations are 

depicted in table 4.5.
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Parameters Parameter Value After 
Refinement O f A G A Model 

Using A Simplex Method

Standard Deviation Of The 
Parameters Determined From 

Simplex Refined Model
LogpH 1.322 0.003
l-ogpu 1.742 0.008

LogPis 1.502 0.015
T a b le  4 .5  -  The v a lu e s  a n d  s ta n d a r d  d e v ia tio n s  o f  the s ta b i l i ty  c o n s ta n ts  o f  ca d m iu m  
c h lo r id e  c o m p le x a tio n  d e te r m in e d  f r o m  th e  d if fe re n tia l p u ls e  p o la r o g r a p h ic  d a ta  o f  
H e a th  a n d  H e f te r  (27 ) f o l lo w in g  s im p le x  re fin em en t o f  th e s ta b i l i ty  c o n s ta n ts  
d e te r m in e d  b y  a  G A  w ith  1 0 0  c h ro m o so m e s  in  its  p o p u la t io n  c o n f ig u r e d  a s  d e s c r ib e d  in  
ta b le  4 .1  (e x c e p t f o r  a  r a n k  p r e s c a l in g  c o n s ta n t o f  1 .3 ) to  s e a r c h  f o r  s ta b il i ty  c o n s ta n ts  
w h o se  v a lu e s  la y  in  th e ra n g e  0 < logP < 2.

It can be seen from table 4.5 that there is a particular improvement in the agreement 

between the literature quoted values and GA-simplex determined values of the stability 

constants encoding higher order complexes. It can also be seen that the standard 

deviation of the stability constant describing the CdCl3‘ has the largest value. This may 

be explained by examining the distribution plot for the cadmium complexes depicted in 

figure 4.6, where it can be seen that the CdCl3‘ complex remains at a very low 

concentration relative to the other cadmium containing species until the later stages of 

the titration (i.e. chloride concentrations >0.6 M) and as such it contributes very little to 

the estimate o f the total concentration of cadmium as determined from expression 4.8 

which is in turn used for the calculation o f an fo value (see expression 4.6) which is used



in the objective function in the minimisation process of the GA. Since the CdCl3' 

complex contributes little to the variable used in the objective function until the later 

stages o f the titration whereas the CdCf and CdCl2 complexes contribute more to the 

total cadmium concentration estimate (except for the CdCl+ complex at the chloride 

concentrations > 0.8 M) for the duration of the experiment it is more likely that the 

stability constants associated with the CdCl+ and CdCh complexes will be determined 

more precisely than the stability constant associated with the CdCl3' complex.
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F ig u re  4 .6  D is tr ib u tio n  o f  ca d m iu m  b e tw een  i ts  f r e e  a n d  c o m p le x e d fo r m s  a s  a  fu n c tio n  
o f  c h lo r id e  c o n c e n tra tio n  f o r  a  to ta l  ca d m iu m  c o n c e n tra tio n  o f  4. Ox 10'5 M  a s  c a lc u la te d  

f r o m  th e s ta b i l i ty  c o n s ta n ts  d e te r m in e d  b y  th e G A -s im p le x  h y b r id  (the v a lu e s  o f  th ese  
s ta b i l i ty  c o n s ta n ts  a r e  d e p ic te d  in  ta b le  4 .4 )

4.3.1.2 Complexation O f Lead By the Crown E ther Dicyclohexyl-18-Crown-6 In 

0.1M  M ethanol.

This study concerned the determination o f the equilibrium model and stability 

constants for the complexation o f lead by dicyclohexyl-18-crown-6 in methanol from 

sampled d.c. polarography data originally investigated by Chen et al. (28) The total 

concentration o f lead(II) varied from 0.5mM to 0.455 mM and the concentration of the 

crown ether varied from 0.98mM to 4.5mM.
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The raw experimental data for this study are depicted in table 4.6

[Ligand]r (10'3M) [Lead (II)]T (10‘3 M) E 1/2(V) Id (l-i A)

0.500 -0.3038 1.290

0.980 0.490 -0.4300 1.211

1.456 0.485 -0.4377 1.217

1.923 0.480 -0.4412 1.211

2.381 0.476 -0,4442 1.202

2.830 0.472 -0.4470 1.201

3.704 0.463 -0.4511 1.181

4.128 0.459 -0.4532 1.181

4.546 0.455 -0.4551 1.178

T a b le  4 .6  -  P o la r o g r a p h ie  d a ta  f o r  the sy s te m  P b 2 V d ic y c lo h e x y l-18 -c r o w n -6 /  0 .1 M  
T B A P / m e th a n o l ( [  ] T r e p r e s e n ts  th e  to ta l  c o n c e n tra tio n  o f  th e  s p e c ie s  in  the sq u a re  
b ra c k e ts )

The study by Chen et al. involved the use o f the POLAG program which suggested that 

two species could exist described by the equilibria depicted in figure 4.7

F ig u re  4 .7  C o m p le x a tio n  e q u ilib r iu m  m o d e ls  f o r  le a d  b y  d ic y c lo h e x y l-  1 8 -c r  o w n -6  in  

m e th a n o l

The values o f the stability constants determined by the POLAG program for the 

experimental data were logPn=7.46±0.01 and log(32i=14.2±0.1.



The initial GA used for this study had a population o f 100 chromosomes and a crosspool 

o f 30 chromosomes. The population o f chromosomes was initialised to search for a 

suitable model for the complexation of the lead by the crown ether from a range of 

possible models

* M+L *=* ML

* M+2L ^  ML2

* 2M+L 5=5 M2L

* 2M+2L *=* M2L2

The GA was also initialised to search for stability constants in the range 7 < logP < 18.

Initial studies with the GA yielded , 2M +L5=4 M2L and 2M+2L *=* M2L2 models with 

stability constants Pn and Pi2 (when the model encoded an ML2 complex) in the 

approximate range of 7.3 to 7.5 and p2i and p22 (when the model encoded an M2L2 

complex) in the approximate range 13.7 to 15.7. Based on this initial study the range of

models to be searched by the GA was reduced to those encoding 2M+L ^  M2L and

2M+2L ^  M2L2 equilibria and the stability constant range to be searched was reduced 

to 7 < log P < 16. The newly configured GA yielded models encoding 2M+L ^  M2L

and 2M+2L ^  M2L2 equilibria with very little difference in their SSE. As such it was 

decided to use members from the population yielding the simpler equilibrium model to 

construct the vertices o f a simplex for further refinement of the model.

Table 4.7 depicts the values o f the stability constants determined for the model encoding 

the 2M+L ^  M2L equilibrium determined by the GA and GA-simplex hybrid.
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Optimisation Technique h i P21 SSE

GA 1 A 1 14.04 1.0x1 O'4

GA-simplex hybrid 7.459 (0.08) 14.147 (0.66) 8.4xl0"5

POLAG program (28) 7.46 (0.01) 14.3 (0.1) 1.9x1 O'6

T a b le  4 .7  V a lu es o f  th e s ta b i l i ty  c o n s ta n ts  d e te r m in e d  f o r  th e c o m p le x a tio n  o f  lea d (II)  
b y  d ic y c lo h e x y I -1 8 -c ro w n -6  in  0 .1 M  m e th a n o l b y  a  G A  c o n f ig u r e d  a s  d e s c r ib e d  in  the  
te x t a  G A -s im p le x  h y b r id  a n d  th e P O L A G p r o g r a m . The te rm s  in  b ra c k e ts  b e s id e  the  
s ta b i l i ty  c o n s ta n ts  d e te r m in e d  b y  th e G A -s im p le x  h y b r id  r e fe r  to  th e s ta n d a r d  d e v ia tio n s  
o f  th e  p a r a m e te r s  d e te r m in e d  in  th e m a n n e r  d e s c r ib e d  in  s e c tio n  4 .1 .7 .

It can be seen from table 4.7 that while the POLAG program finds a better fitting model

than the GA-simplex hybrid, that there is a close agreement between the stability

constants determined by the POLAG program and the GA-simplex hybrid.

4.3.2 D eterm ination of stability constants from calorimetric experiments

The ability of the GA to determine stability constants from calorimetric data was 

tested with data published by Eatough, Izatt and Christensen (29) concerning the two 

step addition reaction of Hg(CN)2 with thiourea whose resulting equilibria can be

described by the models depicted in figure 4.8

M + L * —  M L  

P 12
M  I-2 L  M l . 2

F ig u re  4 .8  C o m p le x a tio n  e q u ilib r iu m  m o d e ls  f o r  H g (C N )2 w ith  th io u rea  
The experiment involved the measurement o f the heat released on the titration of

0.09999L o f 0.03010 F Hg(CN)2 with 1.422 F thiourea. The raw experimental data used

for this study is depicted in table 4.8.
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Time (Sec) Volume Of 
Added Ligand 
(ml)

[Thiourea^ (M) [Hg(CN)2]T(M) Corrected Heat 
Qc (Cal)

54.06 0.307493 0.00436 0.030008 -0.44
114.06 0.648773 0.009167 0.029906 -0.91
174.06 0.990053 0.013942 0.029805 -1.39
234.06 1.331333 0.018685 0.029704 -1.85
294.06 1.672613 0.023396 0.029605 -2.31
354.06 2.013893 0.028075 0.029506 -2.76
414.06 2.355173 0.032723 0.029407 -3.2 ,

474.06 2.696453 0.03734 0.02931 -3.61
534.06 3.037733 0.041927 0.029213 -4.02
594.06 3.379013 0.046484 0.029116 -4.42
654.06 3.720293 0.05101 0.02902 -4.81
714.06 4.061573 0.055507 0.028925 -5.18
774.06 4.402853 0.059974 0.028831 -5.54
834.06 4.744133 0.064412 0.028737 -5.89
894.06 5.085413 0.068822 0.028643 -6.23
954.06 5.426693 0.073202 0.02855 -6.56
1014.06 5.767973 0.077555 0.028458 -6.88
1074.06 6.109253 0.08188 0.028367 -7.18

T a b le  4 .8  C a lo r im e tr ic  d a ta  f o r  th e tw o  s te p  a d d it io n  re a c tio n  o f  th io u re a  to  H g (C N )2- 
The ti tr a n t d e l iv e r y  r a te  u s e d  f o r  c a lc u la tio n  o f  th e v o lu m e  o f  th io u re a  a d d e d , w a s  
0 .0 0 5 6 8 8  m l/sec .

The stability constants calculated from the resulting data by Eatough et al. (29) had the 

values logP ii=2.074, logPi2=2.644 and the heats of formation for the resulting 

complexes had the values AH for the ML complex =-1.279 kcal/mole and AH for the 

ML2 complex = -9.957 kcal/mole. The GA for this study was initialised to search for 

stability constants in the range 0 < log 0 < 3 and heat of formation values in the range 

-l.O kcal / mole < AH < -lO.Okcal / mole. Repetitions o f the GA yielded either ML2 or 

ML3 models with little difference in their SSE values but widely varying AH values. 

Members o f the population from the GA which converged to the simplest model (i.e. 

ML2) were used to construct the vertices o f a simplex for refinement of the model. The 

results o f this study are depicted in table 4.9.
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Literature GA GA-simplex hybrid

L o g p n 2.074 1.411 2.124 (0.132)

LogPi2 2.644 2.186 2.687 (0.105)

AH(ML) kcal/mole -1.279 -2.303 -1.248 (0.08)

AH(ML2) kcal/mole -9.957 -7.231 -10.113 (0.57)

SSE 0.00018 0.000316 0.000215

T a b le  4 .9  C o m p a r iso n  o f  s ta b i l i ty  c o n s ta n ts  a n d  h e a ts  o f  fo r m a tio n  d e te r m in e d  f r o m  a  
c o lo r im e tr ic  s tu d y  o f  th e  tw o  s te p  a d d itio n  r e a c tio n  o f  th io u re a  w ith  H g (C N )2 f r o m  
re fe re n c e  2 9  b y  G A  a n d  G A -s im p le x  h y b r id  w ith  th e v a lu e s  f o r  th ese  v a r ia b le s  
d e te r m in e d  in  th e re fe ren ce . The te rm s in  b ra c k e ts  b e s id e  th e  s ta b il i ty  c o n s ta n ts  
d e te r m in e d  b y  th e G A -s im p le x  h y b r id  r e fe r  to  the s ta n d a r d  d e v ia tio n s  o f  th e p a r a m e te r s  
d e te r m in e d  in  th e m a n n e r  d e s c r ib e d  in  se c tio n  4 .1 .7 .

As can be seen from the table there is an obvious difference between the parameters of 

the models predicted by the different techniques with relatively large standard deviations 

for the stability constant and the heat o f formation for the ML2 complex. However on 

examination o f the correlation matrix for the stability constants and heats o f formation 

determined by the GA-simplex hybrid as depicted in table 4.10, it can be seen that the 

first stability constant is very highly correlated with the second stability constant. In 

addition the first heat o f formation of the ML complex and the second stability constant 

are also highly correlated with the heat o f formation for the ML complex.

Logpn 

LogPi2 

AH(ML)

AH(ML2)

T a b le  4 .7  C o r r e la tio n  m a tr ix  f o r  th e s ta b i l i ty  c o n s ta n ts  a n d  h e a ts  o f fo r m a tio n  f o r  the  
tw o -s te p  a d d itio n  r e a c tio n  o f  H g (C N )2 w ith  th io u re a
This high degree o f correlation between some o f the variables may have caused some of 

the problems encountered by the GA by making it difficult to find a unique solution for 

the modelling problem in the highly correlated variables. In addition to this it can be seen

Logpn Logpn AH(ML) AH(ML2)

1.000 0.987 0.999 -0.878

0.987 1.000 0.990 -0.790

0.999 0.990 1.000 -0.868

-0.878 -0.790 -0.868 1.000
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from figure 4.9 that the ML2 complex has a very low concentration relative to the 

concentration of the ML complex until a thiourea concentration of about 0 .03 M  is 

reached. As such it may have been more difficult to estimate the heat contribution from 

the ML2 complex as precisely as the heat contribution from the ML complex as is 

demonstrated by the larger standard deviation of the former in table 4.9.

F ig u re  4 .9  D is tr ib u tio n  o f  H g (C N )2 b e tw een  its  f r e e  a n d  c o m p le x e d fo r m s  a s  a  fu n c tio n  
o f  th io u re a  c o n c e n tra tio n  f o r  a  to ta l  H g(C N)2 c o n c e n tra tio n  v a ry in g  b e tw e e n  0 .0 3 M  
a n d  0 .0 2 8 M  a s  c a lc u la te d  f r o m  th e s ta b il i ty  c o n s ta n ts  d e te r m in e d  b y  th e G A -s im p le x  
h y b r id  (th e v a lu e s  o f  th e se  s ta b i l i ty  c o n s ta n ts  a re  d e p ic te d  in  ta b le  4 .6 )

4.4 Conclusion

It can be seen from the preceding discussions that the technique o f variable 

chromosomes length genetic algorithms hybridised with the simplex technique have the 

potential for wide application in equilibrium studies. The ease with which the objective 

function can be redefined indicates that this approach could be used for data from a 

broad range of experimental techniques and lens itself to studies involving data from 

combined techniques. The variable chromosome length GA itself could be improved by 

the use of an f-test to compare to increase competition between the different models 

encoded on the chromosomes. This might be achieved by developing f-distributions for

0.03 -------
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r  0.025
«ïlÉ É lti V

• -  [ML2]

jjs. - « •  •  •  "
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each chromosome to fuzzify their objective functions. In addition it would be o f interest 

to develop methods o f dynamically rescaling the search space as the GA progressed, to 

improve the resolution o f the search and reduce the possibility o f premature 

convergence.
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Chapter 5. Discussion

The study of the application o f artificial neural networks (ANNs) and genetic algorithms

(GAs) to chemical problems is a new area of research. The number o f publications in this

area has dramatically increased in the last two or three years (see table 5.1) as different

types o f networks, different training algorithms and different modifications to the GA are

being investigated in the context of solving chemical problems.

Number of Publications

Year Neural Networks Keyword Genetic Algorithms Keyword

1993 40 7

1992 17 1

1991 7 1

T a b le  5 .1  -  The n u m b e r  o fp u b l ic a t io n s  w ith  the k e y w o rd s  n e u ra l n e tw o rk s  a n d  g e n e tic  
a lg o r i th m s  f r o m  th e  y e a r s  1 9 9 1 -1 9 9 3  r e c o r d e d  in  the R o y a l  S o c ie ty  o f  C h e m is try  
A n a ly t ic a l  A b s tr a c ts  D a ta b a s e  (C D -R O M ) 1 9 8 0 -1 9 9 4 , S ilv e r P la tte r  V ersio n  3 .1 1  (a s  o f  
S e p te m b e r  1 9 9 4 )

While the ANN and GA techniques have been used in other disciplines for a longer time, 

it is only recently that the results of these studies have been presented in formats which 

make accessible reading for those o f a lesser technical knowledge of mathematics. From 

my own personal experience, I found that my initial studies o f these techniques frustrated 

by the mass o f new terminology and new concepts which I had to ingest before obtaining 

the vaguest idea o f where to start.

While software packages are becoming increasingly available which enable people to 

learn about ANNs and GAs more quickly (because they don’t have to expend the time in 

developing their own software) these packages, like most packages which employ more 

conventional statistical analysis, should be approached with a degree of caution. ANNs 

and GAs appear deceptively simple, and with such software it might appear that their use



is merely a question o f throwing data at the technique and awaiting the “correct answer” 

to be “pop-out” .

ANNs and GAs should not be considered as “magic bullets” which solve every problem 

nor should they be used blindly as “black-boxes”. This thesis is not written as a “how

to” guide to ANNs and GAs, rather, it is a chronicle o f my studies from an initial 

condition little or no knowledge to a stage o f hopefully a little more enlightenment. In 

retrospect, many o f the experiments described in this thesis were not designed in the best 

possible fashion and have some important failings which will be discussed later. 

Unfortunately, research is not a linear process from a state of complete ignorance to 

understanding.

Another aspect o f this discussion should include a consideration of the reasons for a 

chemist using GAs and ANNs. These techniques are extremely alluring and it is very 

easy to lose sight o f the chemical problem which provided the initial reason for using the 

GA or ANN. Personally, my chemical knowledge provided a contextual background 

understanding o f the chemical problem of interest. However, that knowledge existed 

more in terms o f an awareness o f the nature o f the available information and the required 

information from the GA or ANN. However, while this understanding helped in 

designing the GA or ANN to solve the chemical problem, the emphasis tended to lie 

more in the design of the GA or ANN than in the underlying chemistry. In retrospect, 

this may have not been the best approach to take, it would probably have been better to 

have more control over the quantity and quality o f the data used for the studies. It 

would also have been desirable to have a clearer view o f the applications of these 

techniques to “real-life” situations.

In discussing some of the features o f using GAs and ANNs, it is hoped that it will 

help to reduce the amount of time and effort that a novice would spend in learning about
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GAs and ANNs before getting to the stage o f being able to apply them to anything 

chemical. This is not a listing o f different approaches to use, more o f general features to 

be aware o f when using these techniques. It should be recognised however that the 

interpretations o f these features and the approaches taken in this thesis are specific for 

the problems in question and undoubtedly will not be generally applicable to every 

problem.

As discussed earlier, GAs and ANNs should not be used blindly to solve chemical 

problems. There may be other methods o f approaching these problems. While GAs and 

ANNs are very powerful techniques, they also have their drawbacks. For ANNs, large 

data sets should be available for training (it is difficult to quantify the word “large” 

because it depends on the problem in hand, however for noisy data it is recommended 

that there should be approximately ten times as many training patterns as weights in a 

network (la)). However this is often not practical because o f a limited availability of 

data. Hence, in retrospect, the small number o f patterns used in the ANNs study in 

chapter 2, relative to the number of weights in the networks studied, was a major 

shortcoming in this work and limits the scope of its conclusions. For both ANNs and 

GAs long computational times may be involved (the computational time will vary 

depending on the particular problem, the software implementation and the hardware 

used, the ANN study in chapter 2 would run for about an hour on a SPARC workstation 

and the GA used in chapter 4 modelling an M2L system would run for about 3 to 4 hours 

on a 66 MHz 486). These two requirements may be prohibitive for the application of 

interest. Another consideration is that it requires a certain degree o f skill to use GAs and 

ANNs, although this is also true of alternative numerical or statistical techniques.

One o f the major roles o f a chemometrician using ANNs and GAs is identifying in very 

clear terms the nature o f the chemical problem to be solved. This involves defining the
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available or input data and the desired or output data. For the ANN studies in this thesis, 

the input data were the potential (mV) responses o f a series of ISEs and the output data 

were the classifications o f the presence/absence o f a particular cation. For the GA study 

o f mulitvariate calibration described in chapter 3, the input data were the potential (mV) 

responses o f a series of ISEs and the activities o f the series o f cations which evoked the 

responses. The output data in this study were the standard cell potentials, slopes and 

selectivity coefficients o f the ISEs. For the GA study of stability constant determination, 

the input data were half-wave potentials, diffusion currents and metal and ligand 

concentrations for polarographic experiments and corrected heat and metal and ligand 

concentrations for calorimetric experiments. The output data were equilibrium models 

and stability constants. For the calorimetric experiment, the heats of formation of the 

complexes involved in the equilibria were additional output data. The definition of the 

input and output data may not always be clear and requires some understanding o f the 

underlying chemical problem itself.

Given that the input and output data have been decided upon, the next hurdle involves 

deciding on how to present the data. Part o f the problem involves deciding on how 

much of the input data is actually needed for the task in question. Wavelet transforms 

(lb), PC A or a range o f other techniques could be considered as potential initial screens 

for reducing the dimensionality o f a set of input data. In retrospect, the FIA patterns 

could have been presented to the network in chapter 2 with a smaller number o f inputs, 

using the techniques just discussed. The large number of inputs (240) used for these 

patterns meant that there was also a large number of connection weights in the network 

(e.g. 13423 connections for a network with 55 neurons in the hidden layer and 3 output 

neurons). The number o f patterns available (70) (based on the eight independent 

experimentally acquired patterns) for training was inadequate for the task o f training a
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network o f this size and the network was clearly overdetermined. Another presentation 

issue refers to the scaling of data, especially if the input and output data refer to variables 

o f widely differing ranges. In this type o f situation it is preferable to scale each variable 

separately to prevent the effect of one variable dominating the others. In chapter 2, the 

input patterns were scaled in the range 0 to 1 to match the output range o f a sigmoid, 

which turned out to be a rather fortuitous. Bos (lc ) has discussed how inputs should be 

scaled to  a similar magnitude to the activations o f the neurons and Annema (2) has 

shown how unipolar inputs (inputs scaled in a range covering only one sign e.g. 0 to 1 

instead o f +0.5 to -0.5) would result in faster learning by reducing the amount of time 

spent in temporary minima.

For GAs, variables can be represented in a binary or floating point form on a 

chromosome. The work described in this thesis has focused on binary representation. A 

number o f things need to be considered when using this form of representation. These 

considerations include how many bits should be used to represent the variables. Another 

consideration refers to the search range specified for the variable. These two 

considerations will determine the resolution with which a variable can be determined and 

the number o f bits used to represent the variable will also play a part in determining the 

memory requirements o f the program (which is a consideration when allocating and/or 

reallocating memory to a population during the running of a GA). In the work described 

in this thesis, variables were represented by 16 bit integers . This was decided upon in an 

attempt to achieve a compromise between the minimum of 8 bit characters and 64 bit 

double precision floating point data types defined under the ANSI C standard. As 

mentioned above the search range specified for a variable also determines the resolution 

with which a variable is evaluated. A problem with this arises if  the optimal value for a 

particular parameter lies outside the search range. I f  this occurs, the GA will not be able
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to find the optimal value for the parameter. If  the parameter is a major contributor to 

SSE (1/fitness) o f the particular problem, the SSE will remain high (the term “high” itself 

depends on the problem of interest, as is the question of what is acceptably and 

unacceptably high, but for analytical purposes a difference between a predicted and true 

value of less than 10% is desirable).

In cases where there is little information available about the likely range for a particular 

variable, a GA with a broad range for the variable (covering maybe 100s or 1000s of 

orders o f magnitude depending on the likely magnitude of the variable itself) might be 

used to provide an initial search for the variable. The results of this initial GA could then 

be used to narrow the search range for another GA, thereby enabling a more refined 

search for the variable. Another approach might be to narrow the search range 

dynamically as the GA progresses. Although this approach has not been used in this 

thesis it could be expected that there might be difficulties with its implementation. These 

difficulties would arise in deciding at what point in the operation o f the GA, and at what 

rate the search range is decreased. This might be problematic because there would 

always be the risk, that a particular area could be removed from the search for a 

particular variable. This removed area might later prove beneficial in combination with 

other values for the other variables encoded on the chromosome.

Having decided upon the nature and presentation o f the input and output data to a ANN, 

the next consideration involves the choice o f the training and testing sets from this data 

and deciding whether a cross validation set is needed. The training and testing sets 

should be chosen in a fashion which attempts to maintain a uniform distribution o f the 

patterns (in a classification problem) or values of the variables (in function estimation), in 

order to prevent the model formed by the network from being biased. The training and
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testing sets should also be constructed considering that networks interpolate better than 

they extrapolate.

The next question for the user refers to the topology o f the network. The number of 

input units and output neurons are determined by the dimensionality o f the input and 

output data as presented to the network. However, the number o f hidden layers and the 

number o f units within those layers is entirely up to the user. The number o f hidden 

layers to use is a contentious issue. Lippmann (3) showed that two hidden layers could 

potentially solve almost any pattern classification task. The literature concerning the 

theory behind these issues, especially in relation to function approximation, tends to be 

mathematically intense (and contradictory when dealing with the Kolmogorov theorem

(4,5)). If  possible a single hidden layer should be used, for the simplistic reason of 

reducing both the computational time o f the training algorithm and the complexity of the 

network.

The question o f how many neurons to use in a hidden layer is also controversial.

It is very much dependent on the problem in hand. However the underlying thought in 

many attempts to choose the optimal number of neurons in the hidden layer assumes that 

if  too few neurons are used for the application, the network will not be able to form a 

representation o f the problem. Similarly, it is thought that if too many neurons are used 

in the hidden layer, the generalisation ability o f the network will be deteriorated. The 

quantification for the term “too few neurons” can be based on the observation that a 

network will not be able to produce the desired outputs to the patterns in the training set. 

This occurs because the network will not be able to form a representation o f the mapping 

sampled by the training set. Similarly the quantification for the term “too many neurons” 

might be based on an increase in the MSE on the test set (with increasing number of
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neurons in the hidden layer) because of generalisation difficulties associated with 

overfitting.

Figures 5.1 is a grossly exaggerated simplification o f what might be seen when varying 

the number o f neurons in the hidden layer, according to this viewpoint. In practice plots 

like this are not likely to be seen.

Number o f  Hidden Layer Neurons

F ig u re  5 .1  S im p lif ic a tio n  o f  the p o s s ib le  v a r ia tio n  o f M S E  o f  a  tra in in g  a n d  a
te s t in g  s e t  w ith  v a r ia tio n  in  th e  n u m b e r  o f  n e u ro n s  in  th e h id d e n  la y e r  o f

Using this approach, the optimal number of neurons in the hidden layer could be taken as 

the minimum number o f neurons which enables a network to form a mapping with an 

adequate MSE on the training set. The range o f hidden layer neurons which could be 

chosen according to this criterion is depicted as the optimal range in figure 5.1.

neurons which minimises the MSE on the training set.

This approach takes an extremely simplistic view o f the performance of a network with 

the number o f neurons in the hidden layer. In practice, the behaviour o f networks in 

such studies are complicated by changes in the initialisation o f the weight space. As such 

this approach of manually optimising a network topology has doubtful use. However 

there are a number o f techniques concerned with automated optimisation o f the number 

o f neurons in the hidden layer. These can be divided into two major classes, namely

□

a  ■ 
a ■

■ ■ ■ Testing Set 
□ □ □ Training Set

a n  A N N

According to this view, the optimal choice o f hidden layer neurons is also the number of



growing and pruning techniques. Growing techniques are based on the idea of taking a 

small network e.g. one neuron in the hidden layer and progressively adding more neurons 

to the hidden layer. Hines et al (6) compare three growing algorithms namely RCE, 

Alpaydin and RV and found the Alpaydin algorithm the most efficient in terms of 

learning speed and number of neurons in the hidden layer. Pruning techniques take 

oversized networks and progressively remove hidden layer neurons or connections which 

make little contribution to the overall output o f the network. Reed (7) in his survey of 

pruning techniques discusses the problems associated with these techniques, these 

include the difficulty in deciding when to stop pruning and also the problem of possible 

correlations between the weights or neurons being deleted. While these techniques have 

not been used in the studies described in this thesis, they would appear a potentially 

useful area o f future research.

Having decided upon (a) the nature and presentation of the input and output data to a 

ANN, (b) the composition of the training and testing sets and (c) the possible topology 

o f the network, the next stage to consider is the actual training of the network. In this 

context it is necessary to consider the type o f training algorithm being used, the values of 

any adjustable parameters such as momentum and learning rate and the criterion by 

which training will be terminated.

The backpropagation algorithm is based on a gradient descent approach (through the 

space formed by the network weights) to minimise the difference between the desired 

and actual output o f the network. The number o f iterations required to reach a minimum 

in the weight space with this form of optimisation may be very large (the term “large” 

depends on the problem in hand but can mean anything from hundreds to thousands of 

iterations for chemical problems). A particular area o f research attempting to reduce the 

number o f iterations required for optimisation use information concerning the second

Volume 1 Page 227



derivative o f the error surface. Van Der Smagt (8) made a comparison o f different 

optimisation techniques for this purpose and found that a much shorter training time was 

achieved using the second derivative o f the error function, although the standard back- 

propagation algorithm was less likely to get stuck in local minima. While training 

algorithms which use information concerning the second derivative of the error surface 

have not been used in the studies described in this thesis, these techniques would appear 

to be potentially useful for future research. An example o f these techniques is the scaled 

conjugate gradient approach used by Bos (Id). Another advantage of this approach 

discussed by Bos (le ) is that it does not need any user setting o f parameters such as 

learning rate and momentum. In the standard back-propagation algorithm however, 

these two parameters need to be set by the user. The values of these parameters help to 

determine how fast the optimisation algorithm finds an optimum (however it would also 

be dependent on the weight space and as such on the topology o f the network and the 

initialisation of the weights). The meaning of these parameters have already been 

discussed in terms o f the back-propagation algorithm in the introduction, however little 

attention has been given to the practicalities o f the choice o f their values. There aren’t 

any fixed rules or fixed values for these parameters which will work for every problem. 

Instead, it is up to the user to try different values for themselves keeping a couple of 

things in mind such as

* the behaviour observed may be due to different initialisations of the weights

* the effect of the momentum is likely to be interdependent on the effect o f the 

learning rate. This can be seen because the momentum adds a fraction o f the 

previous weight change to the present weight change, but the previous weight 

change was dependent on the learning rate and momentum.
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* the values o f the learning rate and momentum should also be considered in 

terms o f the transfer function or basis function between the different layers. A 

sigmoid transfer function bounds the output o f a neuron between 0 and 1. A 

linear transfer function does not have this bounding. Smits et al. (9) recommend 

that the learning rate in this case should be kept below 0.1 to prevent divergence 

or oscillation

The investigations described in this thesis solely used the sigmoid transfer function.

Based on studies in this work (see table 2.3) it was found that learning rates o f 0.25-

0.75 and momentum values o f 0.5 to 0.8 were preferable for the particular application.

It should be emphasised again that these values were specific for the application in 

question and should not be considered as being generally applicable to every application. 

Given the considerations discussed above, the approach of experimenting with different 

values for the learning rate and momentum, should probably involve looking for gross 

rather than specific features. A simple way of observing the training behaviour of a 

network involves plotting the MSE on the training set as a function o f the number of 

iterations o f the algorithm. Ideally, one might expect to see a very rapid initial decrease 

in the MSE on the training set followed by a much slower decrease in the MSE in the 

later stages of training (see figure 5.2 ).
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If  the learning rate was too small for the particular application it would show up as a 

very slow decrease in the MSE with the number of iterations o f the back-propagation 

algorithm (as can be seen in figure 5.2).

Similarly if the learning rate were too high for the particular application it might be 

expected to see severe oscillation on the MSE versus iteration number plot (see figure 

5.3).
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F ig u re  5 .3 -  S im p lif ie d  ex a m p le  o f  tra in in g  b e h a v io u r  o f  a  n e tw o rk  w ith  a  h ig h  le a rn in g  
r a te  a s  se e n  b y  o s c illa tio n  o n  th e v a r ia tio n  o f  the M S E  o f  th e tra in in g  s e t  w ith  the  
n u m b e r  o f  i te r a tio n s  o f  a  b a c k p ro p a g a tio n  a lg o r ith m

Between these two extremes, optimising the learning rate and momentum is likely to be 

very difficult.

The decision of when to terminate training can be based on a number of criteria including 

termination after a fixed number o f iterations, or after a predefined MSE has been 

achieved. Both these criteria are likely to be very dependent on the problem itself and as 

such rather subjective. Bos (If) has discussed a termination criteria based on studying 

the rate of change o f the MSE during the later stages of training (when the MSE is 

changing more slowly than the initial stages o f training). I f  the rate o f change of MSE 

does not increase with further iterations of the training algorithm, then it is assumed that



the network is approaching a minimum and that the network training can be terminated 

with little risk.

Before training it is also worth considering how to evaluate the performance of the 

network. It is unlikely that the behaviour o f networks can be deterministically proven 

and/or predicted on anything other than toy problems. The best that could be achieved 

would be to test the performance o f the network as rigorously as possible and then to 

quote the performance of the network under the conditions o f the testing. There are two 

different ways o f looking at the performance of a network namely performance in terms 

o f the training set and performance of the network on the testing set. It is desired of a 

network that it be able to learn the representation of the mapping sampled by the training 

set and be able to generalise to the testing set. In this context it is worth discussing the 

problem o f overtraining. This can be observed by an examination of a plot o f the MSE 

on the training set and the MSE on the testing set during training. In cases of 

overtraining one might expect to see the MSE of the training and testing sets to initially 

both decrease, at some point however, the MSE on the testing set will start to increase 

while the MSE of the training set will continue to decrease (see figure 5 .4)
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M S E  on  th e  tra in in g  s e t  c o n tin u e s  to  d e c re a se



Definitive reasons for how or why overfitting happens are generally not readily accessible 

to those o f limited mathematical understanding, as the theory behind generalisation tends 

to be mathematically intense. Instead it is likely that the initial decrease in the MSE of 

the training and testing sets is due to the formation o f a crude model which is appropriate 

for both sets. After a while however, this coarse model takes on specific attributes of the 

training (e.g. noise) that doesn’t exist in the same form in the test set. Apart from the 

causes o f overfitting, the question of how to alleviate it is also controversial. One 

approach taken is to stop training if an increase is seen in the MSE of the testing set 

while there is a decrease in the MSE of the training set. A problem with this approach is 

that it implicitly establishes the testing set into the training regime. This problem can be 

dealt with by using a cross-validation set to cross-check the performance o f a network 

trained in this fashion.

Chapter 2 o f this thesis dealt with the use of ANNs for pattern classification purposes.

In this case the final result o f the network is related to the network output by means o f a 

threshold. I f  the output o f the threshold is above a certain threshold, then the particular 

feature or species is deemed as being present, if the output o f the network is below a 

certain threshold the feature or species is deemed absent. The region between these two 

thresholds is a region o f uncertainty. The larger the difference between the two 

thresholds, the tighter are the classification criteria. For example, let the possible output 

range o f a neuron be 0 to 1, in this case an output o f 0 indicates that the species/feature 

is absent and an output o f 1 indicates that the species/feature is present. If  the lower 

threshold is set to a value o f 0.1 and the upper threshold to 0.9, then the patterns can 

only be classified definitively as being present or absent within an output range o f 0.1 for 

each conclusion. Similarly if the lower threshold is 0 .2 and the upper threshold is 0 .8, 

then the patterns can be definitively classified within the broader output range o f 0.2 for
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each conclusion. As such, given a set o f patterns and network outputs the thresholds 

themselves can be altered, to automatically optimise the number o f correct 

classifications.

Having discussed ANNs in some length, it is time to focus attention on the 

genetic algorithm (GA). The issue of clearly identifying a problem and the relevant input 

and output data has already been addressed, as has the issue o f representing the problem 

on the chromosome. The next thing to consider is how large a population to use.

Studies described in this thesis mainly used populations o f between 100 and 500 

chromosomes. With smaller populations, particularly fit1 individuals can rapidly 

dominate the population. For instance if an individual can produce 2 offspring in the 

next iteration o f a GA, then within 7 iterations it will fill a population o f 100 

chromosomes. This is o f course a gross simplification, because it doesn’t take into 

account the disruptive effects of crossover and mutation, but it gives a feel for how 

quickly an individual can fill a population.

The reasons for not using a population o f more than 500 chromosomes relate to simple 

practicalities, the computational time involved in evaluating each chromosome can be 

prohibitive.

Having settled on a particular problem representation, one o f the biggest problems in the 

implementation o f GAs involves maintaining diversity within a population without 

disrupting potentially useful solutions. In the investigations described in this the 

selection and crossover operators were the most deeply studied. There are a broad range 

of genetic operators which have not investigated in this thesis, Lucasius thesis (10) gives 

a good overview o f these operators and their use.

1 The fitness of an individual refers to how well a chromosome performs the required task of the 
particular application. In cases of calibration the fitness o f the individual refers to how well the model 
encoded by the chromosome fits the experimetal data and is quantified by the reciprocal of the SSE of 
the model
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O f the approaches used in this thesis, scaling o f one form or another was found to be 

essential to reduce the chances of particular individuals dominating the population.

Linear prescaling limits the number of offspring an individual can produce in the next 

iteration o f a GA. As such, it limits the effects o f individuals which represent solutions 

tens or hundreds o f times better than the rest of the population (a “super-fit” individual). 

For instance, without prescaling, an individual who was 100 times more fit than any 

other individual in the population, would be 100 times more likely to produce offspring 

in the next iteration of the GA, and would rapidly fill a population o f 100 chromosomes. 

With linear prescaling however, the number of offspring it could produce relative to the 

average fitness of the population would be limited. While linear prescaling removes the 

problem of a super-fit individual (as would be seen in an absolute sense without 

prescaling), it preserves the relative differences in the fitnesses of the chromosomes 

which gave rise to the super-fit individual.

With this in mind, rank prescaling was found to be particularly effective, because it scales 

individuals with respect to their rank (when sorted according to their fitnesses), and as 

such doesn’t consider the relative differences in the fitnesses. The approach taken to 

rank prescaling did not exactly follow the form described by Baker (11). Instead, a 

modified form of rank prescaling was used in which the most fit individual in the 

population (rank 1) would have its fitness scaled according to a user-defined upper-limit 

and the individual with middle ranking (rank =P/2 where P= the number of chromosomes 

in the population), would have its fitness scaled to 1.0. The reasoning behind this is the 

same as that used for linear fitness prescaling but in this case the ranks are scaled. Baker 

found that an upper limit o f 1.1 was necessary to prevent premature convergence. In 

initial studies with the modified rank prescaling approach, it was found that there was 

too much disruption happening with upper limits of this magnitude (i.e. potentially useful
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solutions to a problem were being lost during the operation o f the GA). Instead, after a 

degree o f experimenting manually with different upper limits, it was found that upper 

limits o f between 1.3 and 1.5 provided a better balance between reducing premature 

convergence and reducing disruption. The selection scheme used in these studies was 

stochastic remainder sampling without replacement, in this case it is guaranteed that an 

individual with a fitness scaled to 1.3 or 1.5 will produce one offspring in the next 

iteration o f the GA, with a 0.3 or 0 .5 chance o f it producing another offspring. Using an 

upper limit o f 1.3 to 1.5 on the rank prescaling, is a cautious attempt to reduce the 

certainty o f an individual doubling itself every iteration of the GA, whilst providing some 

degree o f incentive for propagating more fit individuals in the population.

O f the selection schemes available, roulette wheel selection and stochastic remainder 

selection were used in the studies described in this thesis. Stochastic remainder selection 

was found to be preferable because if the most fit individual in the population has its 

fitness prescaled to a value greater than or equal to 1.0, then it is guaranteed that the 

individual will reappear at least once in the next iteration o f the GA. This is something 

which cannot be said o f roulette wheel selection. While it is probablistically more likely 

that the most fit individual will reappear in the population in the next iteration o f the GA, 

there is no deterministic way o f saying it will happen. As such I feel that cautious 

intervention by the user is justified.

In the studies described in this thesis, the single point crossover operator was used when 

performing crossover. There are a wide variety o f other operators as discussed by 

Lucasius (10) and certainly uniform crossover looks particularly useful in alleviating the 

problems experienced with highly correlated parameters. An example o f this problem 

can be seen in the calorimetric based determination o f stability constants in section 4.3.2.
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Depending on the type of problem involved, the user may need to consider the 

scheme by which individuals are selected as mates for crossing. In the studies described 

in this thesis, mates were not chosen from the population for two reasons. The first 

reason was to reduce the chances o f crossover producing chromosomes identical to the 

original mates (unproductive crossover). The second reason was to prevent the 

production o f chromosomes which were inappropriate for the chemical requirements of 

the application. Both o f these considerations were handled by means of rejection loops. 

In the implementations o f rejection loops used in this thesis, a chromosome is randomly 

chosen from the population to act as the first mate for the crossover, a second 

chromosome which is also chosen randomly from the population, is rejected as a 

prospective second mate if it fails to fulfil certain conditions. Chromosomes are 

repeatedly chosen from the population until one o f them fulfils the conditions, at which 

point, it is used as the second mate in the crossover with the chromosome chosen as the 

first mate. The process o f random selection and rejection o f chromosomes is continued 

until a fixed number of chromosomes have been crossed, or until a fixed number of 

chromosomes have been successively rejected as second mates.

There are a number o f points to consider in this rejection loop. The first consideration 

refers to the requirements which have to be satisfied before a chromosome is used as a 

second mate in crossing. These requirements check for similarities between the 

prospective mates and also checks the history o f mates which have already been selected 

for crossover (in the same iteration of the GA). The rationale behind these rules is to 

attempt to make crossover as productive as possible, by ensuring that the same 

individuals are not repetitively chosen for crossover and also to ensure that those 

chromosomes which are chosen, will produce different chromosomes when crossed. For
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the study in chapter 3, chromosomes which were identical were rejected as mates. In 

chapter 4, a Hamming distance threshold was used to reject mates. Since chapter 4 dealt 

with variable length chromosomes, the threshold was set to be dependent on the length 

o f the chromosomes, such that chromosomes which differed in less than 10% of their bit 

positions were rejected. This 10% was chosen as an arbitrary value, there is a lot of 

scope for optimising it or for dynamically changing it during the operation o f the GA.

The second requirement o f the rejection loop was specific to the study described in 

chapter 4. Since variable length chromosomes were being used, it was possible to cross 

chromosomes which encoded different numbers o f parameters and different chemical 

equilibria. This would be valid in the sense o f the GA, but would have no chemical 

meaning. In this sense, it is necessary to identify the chemical features and requirements 

of the problem of interest and to adapt the genetic operators according to those needs.

To solve this problem, chromosomes were rejected as crossover mates if they did not 

encode the same number o f parameters. This rejection rule could also be more refined.

The next issue refers to how many cycles o f the rejection loop to use before terminating 

the selection of mates for crossover. In the studies described in chapter 4, this was 

chosen to be 100 times the required number o f mates. This ensures that the number of 

attempts to find a second mate are dependent on the number o f required mates. This is 

based on the assumption, that the larger the number o f chromosomes required to mate, 

the more difficult it is going to be to find enough mates which satisfy the conditions of 

the rejection loop. As such, there should be more chances to select the second mate to 

fulfil the conditions.

The third issue refers to how many chromosomes should be allowed to cross. The work 

described in this thesis did not allow the entire population to cross. The probability of
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crossing was also not directly determined from the fitness o f the individual. Instead, 

during the selection stage o f the GA, the previous population was completely replaced 

with the population determined by the selection strategy. As such, the probability of 

crossing according to fitness, was implicitly established by the distribution o f the 

individuals in the newly replaced population. In this case a percentage o f the population 

called the crosspool was chosen for crossing. The crosspool was filled with 

chromosomes chosen at random from the entire population, according to the conditions 

specified by the rejection loop. The original logic for this approach was to ensure that 

the most fit individuals in the population were not disrupted by crossover. This was 

achieved by ensuring that only the least fit chromosomes (in the population) could be 

overwritten by the crossed chromosomes (in the crosspool). However a balance had to 

be achieved, because limiting the percentage of the population which could be used for 

crossover also limits the scope of the crossover operator to explore new regions o f the 

search space. By following the history of the population through several iterations it was 

found that using crosspools o f 80% of a population o f 25 chromosomes caused problems 

because o f non-productive crossover (before rejection rules had been developed). As the 

GA developed in complexity (with rejection loops) and larger populations were used this 

was less problematic.

In the backpropagation algorithm the learning rate and momentum were parameters 

whose values had to be set by the user. In GAs the upper limit for fitness prescaling (if 

prescaling is being used), the crossrate and the mutation rate are parameters whose 

values also need to be set by the user. Fitness prescaling and the reasoning behind the 

choice o f a particular value for the upper limit have already been discussed. The 

crossrate describes the probability that crossing will occur in a given iteration o f the GA.
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De Jong’s studies described by Goldberg (12) suggested a crossrate o f 0.6 In the 

studies described in this thesis, a value o f 0.7 tended to be used, as a medium between 

guaranteeing that crossover will happen (crossrate = 1 .0) and having an equal probability 

o f crossover happening/not happening (crossrate = 0.5). The mutation rate is used to 

determine whether a chromosome in the population will undergo mutation during a given 

iteration o f the GA. In the studies described in this thesis, the mutation rate was set to 

be the reciprocal o f the population size. The rationale behind this approach comes from 

the idea that if the population is small, then it is easier for an individual which is fitter 

than the rest o f the population to fill the population within a few iterations o f the GA.

As such, the random effect o f mutation could be used to alleviate this problem, with 

larger sized populations it is more difficult for an individual to completely fill the 

population, while at the same time it is desirable to minimise the disruptive effect of the 

mutation operator.

This discussion has hopefully given some general idea of some of the features to look out 

for, when using GAs and ANNs. Table 5.2 summarises the ideas I have discussed in this 

document. There are many other techniques and features specific to those techniques 

which I haven’t discussed for greater details o f these techniques the thesis by Bos (1) and 

Lucasius (10) are recommended.

There is a great deal o f scope for future research into the applications of ANNs and GAs. 

In the course o f this discussion, some techniques which could be particularly interesting 

have been discussed. The GA and ANN approaches described in this thesis have not 

been optimised for their particular tasks and there is a lot o f room for future research in 

their optimisation. In a broader sense, there still does not exist a standard methodology
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for designing and using GAs and ANNs, this area still requires a degree o f skill and
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experience on the part o f the user.

ANNs GAs

* Identify the chemical problem and the 
nature o f the input and output data

* Identify the chemical problem and the 
nature o f the input and output data

* Consider the representation o f the input 
and output data

* Dimensionally Reduction
* Scaling

* Consider the representation o f the input 
and output data

* Scaling the search range for a variable
* Number o f bits used to represent the 

variable

* Choosing the training and testing sets 
* Cross-validation set

* Choosing the data on which the GA 
optimises

* Topology of the network
* Number of hidden layers
* Number of neurons in the hidden layer
* Pruning and growing methods

* Size of the population

* Training algorithm
* Standard back-propagation
* Scaled conjugate gradient

* Fitness/rank prescaling
* Selection scheme
* Rejection loop for crossover

* Learning rate/momentum * Crossrate and mutation rate

* Overtraining

* Validation

T a b le  5 .2  S u m m a ry  o f  th e s u b je c ts  d e a l t  w ith  in  th is  d is c u ss io n  d o c u m e n t  

An area o f future research which will be o f particular interest, will lie in the areas of 

automated development o f these techniques. To do this however, a more clear definition 

o f the features and problems associated with the use of GAs and ANNs will need to be 

developed, as will a clearer understanding of the contributing factors to these features.
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