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Summary

Neural networks can be considered as a massively parallel distributed processing 

system with the potential for ever improving performance through dynamical learning. The 

power of neural networks is m their ability to learn and to store knowledge. Neural 

networks purport to represent or simulate simplistically the activities of processes that occur 

in the human bram. The ability to learn is one of the main advantages that make the neural 

networks so attractive. The fact that it has been successfully applied in the fields of speech 

analysis, pattern recognition and machine vision gives a constant encouragement to the 

research activities conducted m the application of neural networks technique to solve 

engineering problems. One of the less investigated areas is control engineering. In control 

engineering, neural networks can be used to handle multiple input and output variables of 

nonlinear function and delayed feedback with high speed. The ability of neural networks to 

control engineering processes without prior knowledge of the system dynamic very appealing 

to researchers and engineers m the field.

The present work concerns the application of neural network techniques to control a 

simple ball-beam balancing system. The ball-beam system is an inherent unstable system, in 

which the ball tends to move to the end of the beam. The task is to control the system so 

that the ball can be balance at an location of the beam within a short penod of time, and the 

beam be kept at an horizontal position.

The state of the art of neural networks and their application in control engineering has 

been reviewed. The computer simulation of the control system has been performed, using 

both the conventional Bass-gura (chapter 3) method and the neural network method. In the 

conventional method the system equations were established using the Lagrangian vanational



principle, and Euler method has been used to integrate the equations of movement.

Two-layered networks have been used m the simulation using neural networks, one 

being the action network and the other being the evaluation network. The evaluation network 

evaluates the system using the previous information and the action network actuates the 

controller according this evaluation. The error back-propagation and temporal difference 

algorithms have been used in the neural networks.

The implementation of both the conventional and the neural networks control systems 

have been earned out on the ball-beam system in the Control Laboratory m School of 

Electronics Engineenng, Dublin City University. The control work was performed using a 

80386-based personal computer system. The neural networks system, which is a parallel 

processing system in nature, has been implemented with a serial computer. The results and 

comparison show that both m simulation and the expenments, the neural networks system 

performed favourabl compared with the more established conventional method. This is very 

encouragmg since in the implementation of neural networks system the system dynamics is 

not necessary. It is the author’s believe that should the neural network system be 

implemented using hardware, conserving its parallell processing characteristics.

The general concept and types of neural networks are explained in Chapter 1. The 

common algorithms used by neural nets are also presented m this chapter. At the end of this 

chapter the aim of the present work has been outlined and previous work reviewed. Chapter 

2 and 3 deal with the simulation of a ball-beam system usmg conventional method and neural 

network technique, respectively. The implementation of both the control method has been



presented m Chapter 4. Chapter 5 draws the conclusions and supplies the author’s vision of 

future work in the field. A list of reference has been given in the of the work.
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CHAPTER 1 INTRODUCTION

1.1 Concept and Brief History of Neural Networks

An artificial neural network, as its name implies, is a network of artificial 

"neurons". These neurons, sometimes knows as nodes, are computational units which 

can perform certain simple computations, thus enabling the network as a whole to 

represent or simulate simplistically the activities of processes that occur in the human 

brain. Essentially, neural networks can be considered as a massively parallel distributed 

processing system with the potential for ever improving performance through dynamical 

learning. The power of neural networks is in their ability to learn and to store 

knowledge. They can be used to handle multiple input and output variables of nonlinear 

function, and delayed feedback, with high speed. Applications of artificial neural 

networks are mostly found in the area of speech analysis, pattern recognition, but with 

the development of fast architectures it is also very attractive to introduce the technique 

into control engineering.

1.1.1 Brief history

The initial steps towards artificial neural networks or simply "neural-like 

networks", which were motivated by a paper of McCulloch and Pitts (1943), primarily 

concerned computational and representational issues. The first major contribution on
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learning in biological neural networks was made by Hebb (1949), who suggested that 

learning results from the formation of neuron assemblies based on the strengthening of 

connections between simultaneously firing neurons. Pioneering work on artificial neural 

networks learning was done by Rosenblatt (1958, 1962) who introduced the perceptrons 

and demonstrated experimentally that these neural-like networks in principle are 

capable of learning. Complex networks were poorly understood at that time, and 

research mainly focused on the structurally restricted elementary perceptrons. Neural 

network research was popular in the early 1960’s due mainly to the contributions of 

Rosenblatt (1959) and Widrow and Hoff (1960). It has been proven by Nilsson (1965) 

that one of the learning procedures proposed by Rosenblatt (1962), the perception 

convergence procedure, achieves the desired input-output behaviour of the elementary 

perceptions, if they at all can achieve it. Minsky and Papert (1969) provided an 

excellent mathematical analysis of these restricted networks; m particular, they proved 

that these networks have several strong computational limitations. Among the many 

contributors to the field Grossberg (1967,1982) and Fukushima (1975) have maintained 

research efforts since the sixties with continued contributions. These limiting results, 

the lack of learning procedures for networks being more complex than elementary 

perceptions, and the growing interest in symbolic information processing caused a rapid 

decrease m artificial neural networks research.

Smce about 1980, due to the advances in VLSI implementation techniques and 

the development of parallel computers, this situation has changed completely. Presently 

artificial neural networks are the subject of most intensive research activities, and one 

of the major goals is the development of learning procedures that could work efficiently
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even for large real-time tasks.

Among those who helped the new resurgence of activities are Hopfield and Tank 

(1986, 1985). Rumelhart and Mcclelland and their parallel distributed processing group

(1986), Hecht-Nielsen (1986) and his pioneering work m neuro-computers and Kosko

(1987). The renewed interest was due, in part, to powerful new neural models, the 

multi-layer perception and the feedback model of Hopfield, and to learning methods 

such as back-propagation, but it was also due to advances in hardware that have brought 

within reach the realization of neural networks with very large numbers of nodes.

In the field of control engineering, there have been numerous efforts to develop 

more heuristic approaches to control. Documented results are mostly simulations of the 

controlled plant and neural network. In 1990, Kraff and Campagna reported a 

comparison between CMAC neural network control and two traditional adaptive control 

systems. Sannev and Akin in 1990 reported neurmorphic pitch attitude regulation of an 

underwater telerobot. The application of neural networks m the balancing of a inverted 

pendulum was made by Anderson (1987, 1988, 1989). The neuron-like adaptive 

elements that can solve difficult learning control problems was made by Barto, Sutton, 

and Anderson (1983).

1.1.2 Artificial neural network

Artificial neural network (ANN) can be considered as massively parallel 

distributed processing systems with the potential for ever-improving performance 

through dynamical learning. They allow non-algonthmic information processing, i.e.,
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no "programming" is required as in more conventional algorithmic signal processing. 

The ultimate object of artificial neural network is to closely simulate the function of the 

human neural system. Indeed multi-layered networks have been shown to develop very 

similar structures to existing human physiological structures with no human interaction 

or guidance. Also, the development of fast architectures makes implementation m real 

time feasible unlike artificial intelligence techniques which are infamous for their 

lengthy computation times.

One the objectives of intelligent control is to design a system with acceptable 

performance characteristics over a very wide range of uncertainty The system must be 

robust enough to deal with unexpected occurrences, large parameter variations, 

unquantified data, or extremely large quantities of data. Besides the approaches of 

expert systems and fuzzy logic, an increasingly popular approach is to augment control 

systems with artificial neural networks.

An artificial neural network (ANN) is a system consisting of simple processing 

elements called "units" or "nodes" that interact using weighted connections. It can 

interact with its environment, and it may be capable of learning. A neural network can 

be defined by its processing behaviour, its interface to the environment, its structure, 

and its learning procedure.

The processing behaviour of an artificial neural network is defined by the 

computations performed by its units and their temporal coordination. Generally, a unit 

calculates three functions: an input function producing the unit’s input value; an

4



activation function producing the unit’s activation value; and an output function 

producing the unit’s output value. In most neural network models only one function 

called "transfer function" is assumed to be equal for all units.

In the case of stochastic transfer functions the output of an unit depends on the 

unit’s input in a probabilistic fashion, and changing the weights means changing the 

probability of the output values.

Most widely used transfer functions are the linear function, the sigmoid function 

and the stochastic function. Denoting xt as the inputs, y( as the outputs, wtJ as the

connection weights, and N  as the number of inputs, the three transfer functions can be 

briefly outlined here In the linear function, the output of a node is the linear 

combination of all the inputs,

In the function the output is assumed unit if it is greater than zero and zero 

otherwise, i.e.

The stochastic function is used to describe the undetermmistic nature of the real

N

(1-1)

1
(1-2)

The final values of yt are computed according to the following

1 if yt x>.
i f  otherwise;

y t = (1-3)
0



T

world problem and is given as
r

1 (1-4)
with probability pt=---------

l+ex‘/T
where

x = -b t +Twt} y} (1-5)

and bt and T  are real-valued parameters. The variable bt is sometimes called the

threshold or bias of xt. This threshold can be eliminated by giving each unit an extra

input line with weight -bt and constant input 1.

0, with probability 1-p,

Linear networks, which build up the simplest class of networks, show several 

computational and representational limitations (Rumelhart, Hmton and McClelland,

1986) However, despite these limitations, linear networks exhibit some interesting 

properties and they are useful for a number of theoretical studies. An extensive analysis 

of linear networks is provided by Kohonen (1977, 1988). Non-lmear networks 

overcome these limitations of the linear ones. Furthermore, with regard to prepositional 

logic, for any logical expression there is a network of binary threshold units 

representing it (McCulloch and Pitts, 1943). With regard to automata theory, which was 

mainly influenced by the work of McCulloch and Pitts, the class of threshold-umt 

networks and the class of finite automata are equivalent (Kleene, 1956). Recently it has 

been proven that every mappmg from external input to output patterns can be 

implemented by a finite three-layered network (Hecht, 1986, Homik, Stinchcombe and 

White, 1989).
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The net-environment interaction results m the distinction between input units, 

those receiving input from the environment, output units, those providing output to the 

environment, and hidden units, those being neither input units nor output units Both 

the input and output are called visible units; the set of all visible units, which may be 

time-varying, make up the network’s interface to its environment.

The structure (topology, architecture) of a neural network is defined by the 

arrangement of its units, that means, by the set of all weighted connections between the 

units. Several kinds of structure exist for neural networks.

A layered or hierarchical network is one whose units are hierarchically 

organized mto disjoint layers. Based on this hierarchical ordering, it is usual to 

distinguish between lower and higher layers. A bottom-up (top-down) network is a 

layered network whose umts only affect units at the same and higher (lower) layers, and 

an interactive network is one having both bottom-up and top-down connections. A 

feed-forward network is a layered network whose units only affect umts at higher 

layers, whose lowest layer is an input layer, whose intermediate layers are hidden 

layers, and whose highest layer is an output layer. A perception is a feed-forward 

network consisting of binary threshold units; a one-layered perception is called " 

elementary perception". A recurrent network or cyclic network or network with 

internal feedback is one whose external output may affect its external mput. A 

symmetric network is a network being both symmetrically connected (c exists if and

only if cJt exists) and symmetrically weighted(wi; = w}t) .
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An artificial neural network learns by means of appropriately changing the 

weights of the connections and external input lines. How this is done is described by 

its learning procedure.

1.1.3 Basic aspects and characteristics of artificial neural learning

The central point of artificial neural learning (ANL) is to form associations 

between patterns. There are two variants of the association: auto-association and 

hetero-association. An auto-association is one in which a pattern is associated with 

itself. The goal of the auto-association is pattern completion: After the network has 

learned a pattern, whenever a part of it is presented to the network, the network has 

to produce the total pattern. A hetero-association is one in which two different patterns 

have to be associated. The goal of this is that whenever one of the two associated 

patterns is presented to the network, the network supplies the other one. Learning that 

can be viewed as special variants of the pattern association are regularity detection and 

pattern classification/recognition. Other variants of artificial neural learning, apart from 

the association, are the mapping and the modelling. Due to the former, a 

multidimensional mapping from the input to the output pattern has to be constructed. 

Due to the latter the network’s environment has to be internally modelled (where the 

information about the environment will be encoded in the weights).

Artificial neural networks have shown some interesting and powerful features 

in building up and representing associations (mapping, environment models). In 

particular, artificial neural networks are capable of implicit generalization to new 

associations (see McClell, Rumelhart and Hinton, 1986, for some general considerations
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and Baum and Haussler, 1989, for a formal analysis of generalization and 

representation), thereby the patterns themselves are not stored but the connection 

strengths that enable the network to recollect the associated pattern are, even if it is 

common to speak of "storing a pattern".

A neural network learns by means of appropriately changing the weights, and 

this weight changing or weight adaptation happens during the so-called training phase 

or learning phase. In this phase the external input patterns that have to be associated 

with specific external output patterns or specific activation patterns across the network’s 

units are presented to the network. The set of all these external input patterns is called 

the training set, and a single input pattern is called a training instance. The network 

may receive environmental learning feedback, and this feedback is used as additional 

information for determining the magnitude of the weight changes that are necessary for 

representing the desired associations. Typically the weight changes can be done in 

parallel, and this makes up one of the main characteristics of neural learning; Neural 

learning inherently is parallel distributed learning.

The change of the weights, in comparison with the change of the units activation 

states, occurs on a slow time scale. Hence, one can distinguish two kinds of network 

dynamics: slow dynamics constituted by the process of updating the weights and fast 

dynamics constituted by the process of updating the activation values of the units.

1.1.4 Construction

Neural networks are composed of many units that simulate the properties of real
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I n p u t O u t p u t

x w

y

Figure 1.1 One neural node, x, is input, y is output and w, is the connection weights

neurons in the central nervous system Each unit or node can have many inputs and 

usually a single output. The input may be either inhibitory or excitatory and a node 

produces an output relative to a weighted sum of the inputs. The output is usually a 

binary state (on or off) although more complicated networks use graded outputs. 

Figure 1.1 shows a single node, at which the inputs x t are passed through a non-

lmeanty function.

wt is the weight from input 1 at time t.

Qf is the threshold m the output node (small random values) for typical non­

linear transformations.

Computational element or node which forms a weighted sum of N  mput and 

passes the result through a non-lmeanty. Three representative nonlmeanties are shown 

m Figure 1.2.

N - Ì

y = f  ( 0 = /  ( £  w ,  x ,  - 0' ) (1-6)

where
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f ( l )  f ( t )  f / t )

H ard l im ite r  T h re sh o ld  lo g ic  S ig m o id

Figure 1.2 Threshold functions

A neural network is composed of many such nodes connected together m a 

certain topology. The interconnection topology is important because its complexity 

determines how easily the weights may be adjusted for learning. Singly layered units 

consisting of only input and output nodes, as shown in Figure 1.3, have been proven 

to be unable to perform certain important calculations. Multi-layered networks with 

hidden layers between the input and output nodes, as shown in Figure 1.4, can 

overcome these problems.

1.1.5 Application disciplines

Artificial neural network research receives interest from several disciplines. For 

example, finding algorithms for determining the connections and weights of a neural 

networks to solve a problem, mechanizing networks using microelectronic or optical 

approaches and investigating the operation and structure of biological neural networks. 

Much of the early algorithms work has been m computationally intensive areas of signal 

processing, such as adaptive pattern recognition, real-time speech recognition, and 

image interpretation. Computer and cognitive scientists have been pursuing the
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Figure 1.3 A single-layered neural network

identification of intelligence and massively parallel distributed information processing 

performed by biological systems.

In system and control engineering, neural networks are seen as an alternative 

technology by which information processing may be accomplished quickly and easily. 

To this end they have predominantly found application in patten recognition and signal 

processing (Astrom, 1987). There are also areas that are computationally intensive, 

such as real-time identification and control of large flexible structures m aerospace or 

robotics.

1.2 Learning Algorithms

Neural networks have the ability to learn to learn and store knowledge. Both of 

these important functions are achieved through adaptation of the synaptic weights

12



assigned to each node’s input. The weights are adjusted by a learning algorithm. 

Learning algorithms fall into three general categories:

(1) Supervised learning

(2) Unsupervised learning

(3) Associative reinforcement

i

In this work, all error back-propagation algorithm (Lippmann, 1987) and a 

supervised learning method are used in action and evaluation networks. The 

reinforcement learning method (Barto and Sutton, 1983, Anderson, 1987) and 

association reinforcement are used m the action network. Temporal-difference (TD) 

learning method (Anderson, 1987) supervised learning is used in evaluation network.

1.2.1 Supervised learning algorithms

The more popular supervised learning techniques employ a "teacher" who 

presents the desired output to the network for a given input pattern. For example, the 

perceptron convergence procedure, the back-propagation and the Boltzmann learning".

1.2.1.1 The perceptron convergence procedure learning

In the 1950’s and 1960’s Rosenblatt investigated the learning behaviour of 

perceptrons Rosenblatt (1962). Much of his work deals with learning procedures for 

elementary perceptrons; one of these procedures, which is nowadays known as the 

perceptron convergence procedure, performs weight changes for each of its units as 

follows:

13



- t  y. ( + x  y )  i f  output is 1 ( 0 )  but should be 0  ( 1 )

0 i f  output is correct

where t is the learning rate and dt is the desired output value of unit u,.

The well-known perceptron convergence theorem states that there is at least one 

set of weights such that the elementary perceptron works correctly. This theorem says 

nothing about the existence of such a "correct set of weights". If there is no such set 

then the perceptron convergence procedure might lead to unreasonable results; (Hinton,

1987) This is because the perceptron convergence procedure ignores the magnitude 

of the error produced by the elementary perceptron.

1.2.1.2 Back-propagation learning

The technique of back-propagation (BP) or error propagation was developed by 

(Werbos, 1974). Independently of Werbos’ work, and Hinton and Williams(1986) all 

applied this technique to the task of learning in artificial neural networks. The word 

"back-propagation" refers to a specific type of learning procedure for supervised 

learning that is intensively studied within ANN research. The following consideration 

focus on the elementary version of back-propagation, back-propagation for semi-lmear 

feed-forward networks.

The back-propagation method involves two phases for each input-output case to 

be learned, see Figure 1.4 In the first phase, the "forward pass", an external input 

pattern is passed through the network from the input units towards the output units,

(1-7)
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Figure 1.4 Three layers perceptron with N continuous values input

adapting to an external output pattern. This output pattern is compared with the desired 

external output pattern, and the error signal for each output unit is produced.

In the second phase, the "backward pass", the error signals of the output umts 

are passed backward from the output units towards the input units. The error signals 

for input and hidden units are evaluated recursively, i.e., iteratively for each next-lower 

layer; to evaluate an error signal for an mput or a hidden umt the error signals of the 

umts to which this unit is connected has to be taken mto consideration.

The back-propagation training algorithm is an iterative gradient algorithm 

designed to minimize the mean square error between the actual output of a multi-layer 

feed-forward perceptron and the desired output. It requires continuous differentiable 

non-lmeanties. The following assumes that a sigmoid logistic non-lineanty is used 

where the function f(zeta) is:

15



(1-8)

step 1:

Initialize weights and offsets.

Set all weights wy and node offsets to small random values 0.

step 2:

Present input and desired outputs.

Present a continuous valued input vector xo, xx, x2,  xif_l and specify the

desired output d0, d1} d2 d,^.

step 3.

Calculate actual output yN.

Adapt weights

Use a recursive algorithm starting at the output nodes and working back to the 

first hidden layer.

Adjust weights by

y,  = /  ( * ,  "  e .)

V m  w j M x j  ~  0 a /)
(1-9)

step 4:

(f+1) = wl} (t) + |i 6y (1-10)
where

wy is the weight from hidden node i.

x x is either the output of node l or is an input.
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H is a gain term.

If node j is an output node, then

6; = yj ( 1~?P (dj ~ y) (1_11)

If node is an internal hidden node, then

8; = i J ( l - i 7) bk wjM (1-12)

Where

^ is the actual output.

dj is the desired output of node j.

k is over all nodes in the layers about node j.

Internal node thresholds are adapted m a similar manner by assuming they are 

connection weights on links from auxiliary constant- valued input. Convergence is 

sometimes faster if a momentum term is added and weight changes are smoothed by 

wtj (f+1) = wtj (t) +\i Q jij + a (wtf (r) -  wtJ ( t -1»
(1-13)

(0 < a < 1)
(1-14)

(1-15)

step 5:

Repeat by going to step 2.

There are a lot of variations and extensions of the elementary version of back- 

propagation, some of them are mentioned briefly below.

BP described above is only applicable to non-recurrent networks. It can be 

applied also to recurrent networks by taking advantage of the fact that for every

5j is an error term for node j.

17



recurrent network there is a non-recurrent network with identical behaviour (for a finite 

time); this approach, which is called "unfolding-in-time BP" or "BP through time", is 

described in Rumelhart, Hinton and Williams (1986). Other extensions of back 

propagation to learning procedures for recurrent networks are presented in the results 

of Almeida (1987), Pineda (1987) and Rohwer (1987).

The major problem with BP is that it requires much time to learn, and there are 

various attempts to cope with this problem. This method aims at beginning with a 

network having few units, and dynamically adding units to hidden layers whenever 

gradient descent in the weight error surface happens too slowly.

1.2.2 Unsupervised learning algorithms

Unsupervised learning methods do not need a "teacher", they usually employ a 

local gradient algorithm to adjust the networks weights based around the activity near 

each particular node. For example, topology-preserving feature maps and adaptive 

resonance theory, and development of feature analyzing cells.

1.2.2.1 Topology-preserving feature maps

Topology-preserving feature maps (TPFM) was developed by Kohonen (1982, 

1988). This method has been used to the sensory modalities-visual area, auditory area, 

somatosensory area, etc, and to the various operational areas-speech area, motor area, 

etc.

Topology-preserving feature maps method has two phases. In the first phase, the

18



input pattern x=(xj, x2, x j  at time t is located. Denoting the weight vector W as 

W = (wt, w2,  w j, the following is defined,

Where a is a positive scalar constant and | . |E is a distance function.

1.2.2.2 Adaptive resonance theory

The adaptive resonance theory (ART) was developed by Grossberg (1976,1978) 

and it has been used in speech and visual perceptron. They have two networks, ART1 

and ART2 networks. A mathematical analysis of the fast and slow dynamics of ART1 

network and ART2 network is provided by Carpenter and Grossberg (1987).

1.2.2.3 Development of feature-analyzing cells

The concept of feature-analyzing cells (DFAC) was developed by Linsker (1986,

1988) and Stotzka and Maenner (1989). The method has been successfully applied in 

the area of visual analysis. The method has been introduced to overcome the 

constraints of the supervised learning that the exact performance of each node of the 

network must be known for each training pattern. A type of network has been 

developed which requires a "critic" instead of a "teacher", thus enabling the network 

to adjust its performance according to the response from the critic. Methods of this 

nature are collectively called the associative reinforcement. Some of the examples are 

the associative reward-penalty method, the reinforcement-comparison method, and the

| X(t) -  W \E = min ( | x fl)  -  w fl) \K ) (1-16)
i

In the second phase, the weight vector w;(t) is determined by

(1-17)
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temporal-difference method.

The associative reinforcement learning is achieved by giving the system a "reward" 

when the reinforcement signal indicates a success, and a "penalty" when the 

reinforcement signal indicates a failure.

1.2.2.4 The associative reward-penalty learning

The associative reward-penalty (Ar.p) algorithms were used in control 

engineering, pattern classification and system identification (Barto, 1987, Barto and 

Anderson, 1985, Barto and Sutton, 1981, 1982). This method recognises that 

environmental feedback may not be informative as to providing individualised 

instruction to each adaptive element. A scalar evaluation signal (cntic) is used to assess 

the general performance (reward/penalty) of the A^. This common scalar signal is 

used by all of the elements to adapt their weights. The advantage of this algorithm is 

that learning occurs without the need for a very knowledgable "teacher". A "critic" is 

sufficient which can provide a success/failure indication of the result of an applied 

action.

The Ar.p algorithm nodes output yk is

0 otherwise;
(1-18)

1 i f  e l  xk + i\k > 0;

Where

rjk are independent identically distributed random variables.

0 Kt are weight vector values.
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Xk are input values.

Then

pk = 1 - i|r ( -0[ x ) (1-19)

The weight vector is updated according to the following equation:

k Pk [ 1 "y* ~Pk ] xk if rk = 0 (Penalty );

Pk Iyk ~Pk i  xk if rk =1 (reward); (1-20)

Where 0 ¿1, pt > 0.

The Ar.p algorithm is local both in space and in time, as a consequence the \ . p 

procedure is easy to implement. The Ar.p algorithm has been used for learning in 

layered networks. A major problem with the A ^  procedure is its very slow speed o f  

learning in case o f large networks. To overcome this, another type o f  algorithm has 

been developed, which is named the reinforcement learning algorithm.

1.2.2.5 Reinforcement-comparison learning

In the reinforcement-comparison learning (RCL) method the weights changes are 

correlated with the result o f comparing the current reinforcement level with past 

reinforcement levels. This method has been reported by Sutton in 1984.

Reinforcement-comparison learning has two methods: elementary method and 

prediction method. Prediction methods can be divided into classical prediction 

(reinforcement learning method) method and temporal-difference (TD) method.

1.2.2.5.1 Elementary methods for reinforcement comparison (Barto, 

Anderson and Sutton, 1983, Barto and Sutton, 1981, Sutton, 1984) . This method
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uses the difference between primary reinforcement signals received by the network at 

different time step. The weight update rule based on the approach is

A %  =  T  [  r c  -  rP H  y, -  P, 1 yt d -21*

Where

X is the learning rate

r c is the current reinforcement signal

f P is the preceding reinforcement signal

P. is the probability that y, = 1.

1.2.2.5.2 The classical prediction (Reinforcement learning) method (Barto, 

Sutton and Brouwer, 1981, Sutton, 1984).

i n t e r n a l

This method uses the difference between primary and predicted reinforcement 

signals. A direct approach to reinforcement learning that is highly developed is the 

theory of learning automata, which has been extensively developed since applications 

were found in engineering. The weight update rule realizing a classical prediction 

method is given by



7* = r -  r
h e u r is tic  p re d ic te d

This update rule has been successfully applied in the experimental studies 

done by Sutton (1984)

The element’s output y(t) is determined from the input vector x(t)=(x!(t), 

x2(t) xN(t)) as follows:

m = / 1 £ w,«) i/o * w ] (1-23)
i-i

where b(t) is a real random variable and f is the following threshold function.

- 1, i f  x<0, control dawn
fix )  = (1-24)

+1, i f  xzO, control up.
The weights w, are adjusted according to the following rules,

w,(i+l) = vv(i) + a r(i) et(i) (1-25)

For computational simplicity, we generate exponentially decaying eligibility 

traces e, using the following linear difference equation:

efi+1) = 6 et(t) + (1 -  5) y(t) x t(t)
(1-26)

( 0^5<1 )
where

a is a positive constant determining the rate of change of w,

f(t) is a reinforcement value at time t.

e,(t) is the eligibility at time t of input pathways 1.

8 determines the trace decay rate.

Reinforcement learning involves two problems. The first problem is to construct
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a cntic capable of evaluating plant performance in the way that is both appropriate to 

the actual control objective and informative enough to allow learning. The second 

problem is to determine how to alter controller outputs to improve performance as 

measured by the critic.

1.2.2.5.3 The temporal-difference (ID) methods Barto, Sutton and 

Anderson (1983) and Sutton (1984).

The temporal-difference methods, as shown in Figure 1.6, demonstrate some 

important advantages over classical prediction method: they require less memory, all 

more incremental and therefore easier to compute, and produce better predictions and 

converge faster The temporal-difference methods learn associations among signals 

separated m time, such as the ball-beam system state vectors and failure signals. 

Through learning, the node output comes to predict the failure signal, with the strength 

of the prediction indicating how soon failure can be expected to occur.

The failure signal is adjusted after each step by current system states. The

x s ( t )  w 3 ( t )

r i pred ic tion

r  failure signal

Figure 1.6 Network construction
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change of prediction is dependent on the difference between the failure signal, current 

system states and previous prediction.

In order to produce rA(t), the ACE must determine a prediction P(t) of eventual 

reinforcement that is a function of the input vector x(t), we let

p(t) = E v,(f) x t(t) (1-27)
¿-1

and seek a means of updating the weights v, so that p(t) converges to an accurate 

prediction. The updating rule we use is

v, (f+1) = v, (t) + p [r it) + y P (!) -  p  (i-1)] xt (t)
(1-28)

( = Ut(t) )

where

0 is a positive constant determining the rate of change of v,.

r(t) is reinforcement signal supplied by the environment at time t.

U,(t) is the value at time t of a trace of the input variable x,.

X determines the trace decay rate (0 <  A < 1).

j is node ACE’s output, this is a prediction value.

x t (f+1) xt (t) + (1-A.) x, (i) (1-29)

The ACE’s output, the improved or internal reinforcement signal, is computed from 

these predictions as follows.

J (t)=r (t) = r (f) + y Pit) -  p  (i-1) (1-30)

1.3 Types of Neural Network

There are many different types of networks possible in artificial neural
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networks and some of the more commonly encountered ones are briefly described 

below.

1.3.1 Associative search network

Associative search networks (Barto, Sutton and Brouwer 1981) combine

scalar evaluation  

y i

y2
recollection

y 3

Figure 1.7 Associative search network 

associative memory with a process that searches for associations worth storing 

according to an evaluation criterion. It is interesting that this can be done simply by 

modifying the type of adaptive element used m the network. Figure 1.7 shows the 

organisation of an ASN. The ASN and the environment interact m a closed loop. The 

environment provides the ASN with a key, x±, at each discrete time step k. This results 

in a recollection or output, yk, emitted from the ASN (yk e {0,1}). The result of the 

action yk is evaluated and a reinforcement signal rk e {0,1} generated where 0 and 1 

indicate "Penalty" and "Reward" respectively.

key
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The output yk is:

0, otherwise

yk = ' (1-31)
1, i f  0[  xk + \ik > 0;

Where /tk are independent identically distributed random variables, each having 

distribution function let Pk denote Pr{ yk= l, xk=x }, then

The advantage of this algorithm is that the learning occurs without the need for a very 

knowledgable "teacher", a "cntic" is sufficient which can provide a success/failure 

indication of the result of an applied action.

1.3.2 Hopfield neural network

Hopfield network (Hopfield, 1982, 1984), as shown in Figure 1.8, can 

be used as a content addressable memory, an associative memory, a classifier and to 

solve optimization problem The operation of this network is described below.

The neuron state is assessed by

p k = Pr (0t x  + Tit > 0 ) = l-\Jr ( - e j  x) (1-32)

The weight vector is updated accordmg to the following equation:

* Pk [ I" yk ~Pk ] **• i f rk = 0 (Penalty)

Pk t " Pt 1 xk- lf rk = l  (reward ) (1-33)

( ¿1 , p k >0)

0 H -

l*J. (1-34)

Osi, js N -1 .

and the connection weights are updated by
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J o  y i

Figure 1.8 Hopfield neural network

where

0
V  2 2ZXjXi
i*0

*=;

i+j, ( i * Q , jú N - l )

(1) the non-lineanty fn is a sigmoid curve 

f(x) = l/[l+exp(-x)].

(2) wy are the connection weights from node i to node j.

(3) Xj (which can be +1 or -1) is the output of node i at time t.

(1-35)

The weights are determined by defining a quadratic energy function and adapting 

the weights to minimise the energy It has been shown that the rate of convergence 

toward a steady state is essentially independent of the number of neurons in the 

network.
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Multi-layer perceptron Lippmann (1987) are feed-forward networks with one or 

more layers of nodes between the input and output nodes. These additional layers 

contain hidden units or nodes that are not directly connected to both the input and 

output nodes. A three-layer perceptron with two layers of hidden units is shown m 

Figure 1.4.

Multi-layered perceptrons overcome many of the limitations of single-layer, but 

were generally not used in the past because effective training algorithms were not 

available. This has recently changed with the development of new training algorithms, 

they have been shown to be successful for many problems of interest.

1.4 Application of Neural Networks in Control Engineering

The literature of neural networks in control system applications is expanding 

rapidly. In 1988, Kawato et al reported on hierarchical neural network models for 

voluntary movement with application to robotics. In order to control voluntary 

movements, the central nervous system must solve the following two computational 

problems at different levels.

(1) determination of a desired trajectory in the visual coordinates.

(2) generation of motor commands. Based on physiological information and 

previous models, computational theories are proposed for the first two problems, and 

a hierarchical neural network model is introduced to deal with motor command. The 

application of this approach to robotics is outlined.

1.3.3 Multi-layers perceptron
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In 1990, Kraff and Campagna reported a comparison between CMAC neural 

network control and two traditional adaptive control systems. This article compares a 

neural network-based controller similar to the cerebellar model articulation controllers, 

a self-tuning regulator, and a Lyapunov-based model reference adaptive controller. The 

three systems are compared conceptually and through simulation studies on the same 

low-order control problem. Results are obtained for the case where noise is added to 

the system, and for the case where a nonlinear system is controlled. Comparisons are 

made with respect to closed-loop system stability, speed of adaptation, noise rejection, 

the number of required calculations, system reaching performance, and the degree of 

theoretical development. The results indicate that the neural network approach 

functions well in noise, works for linear and nonlinear systems, and can be 

implemented very efficiently for large scale system.

Borto, Sutton, and Anderson 1983 reported neuron-like adaptive elements that 

can solve difficult learning control problems. The task is to balance a pole that is 

hmged to a movable cart by applying forces to the cart’s base. The two single-layer 

networks were used m control.

The application of neural networks m the balancing of a inverted pendulum was 

made by Anderson (1987,1986,1989). An inverted pendulum is simulated as a control 

task with the goal of learning to balance the pendulum with no a pnon knowledge of 

the dynamics. In contrast to other applications of neural networks m the inverted 

pendulum task performance feedback is assumed to be unavailable on each step, 

appearing only as a failure signal when the pendulum falls or reaches the bounds of a
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horizontal track. To solve this task, the controller must deal with issues of delayed 

performance evaluation, learning under uncertainty, and the learning of non-linear 

functions. Reinforcement and temporal-difference learning methods were used to deal 

with these issues in order to avoid unstable conditions and balance the pendulum.

The ability to learn is one of the main advantages that make the neural networks 

so attractive. The benefits are most dramatic when a large number of nodes are used. 

Some examples of the approaches taken to apply neural networks to control are below.

Sanner and Akin (1990) experimental results are a follow-up of their previous 

work involving computer simulations only. The neural networks performed as 

predicted m simulations. It was observed that unacceptable delays can be introduced 

if a smgle serial microprocessor implementations of neural networks are seen as 

necessary. '

The control of robots is the topic addressed by Nagata, Sekiguchi and Asakawa 

(1990). Neural networks are used to process data from many sensors for the real time 

control of robots and to provide the necessary learning and adaptation capabilities for 

responding to the environmental changes in real time. This approach is applied to 

several areas of robot research.

The comparison of neural networks control and conventional control is the topic 

addressed Chu, Shoureshi and Fenono (1990). Kraft and Campagna (1990). Anderson 

(1988, 1989) controlled the inverted pendulum system using action network and
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evaluation network. There are a lot of neural networks control applications appearing, 

an.ong them are the investigations carried out by Antsaklis (1989) and Shriver (1988). 

It has heen widely recognized ft*  neural networks are a potential powerful tool for the

Control engineering.



evaluation network. There are a lot of neural networks control applications appearing, 

among them are the investigations earned out by Antsaklis (1989) and Shnver (1988).

It has been widely recognized that neural networks are a potential powerful tool for the 

control engineenng.

1.5 Present Work

The control problem studied m this work is to balance a ball on a beam, as 

shown in Figure 1.9. The movement of both ball and beam is constrained to the 

vertical plane. The state of this system is given by the beam’s angle and angular 

velocity and the ball’s honzontal position and velocity. The only available control 

action is to exert forces of fixes magnitude on the beam that push it to move up or 

move down.

The event of the beam falling past a certain angle or the ball running into the 

bounds of its track is called a failure. A sequence of forces must be applied to avoid 

failure as much as possible by balancing the ball at the given position on the beam. 

The beam and ball system is reset to its initial state after each failure and the controller 

must learn to balance the system for as long as possible.

The present work involves the use of neural networks and conventional control 

methods in the control of the beam and ball system. The Bass-Gura control method has 

been used m conventional controller design as compared with neural networks control. 

In the neural networks system, two networks have been used. One of them is an
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Figure 1.9 The ball beam balancing system

evaluation network, which maps the current state mto an evaluation of that state. The 

evaluation network is used to assign credit to individual action. The error back 

propagation and the temporal different algorithms are used m it. The other is an action 

network, which maps the current state into control actions. Back propagation and 

reinforcement algorithms are used in it. The two networks having a similar structure 

are used to learn the action and evaluation function.

In nature, a neural network is a parallel processing system. This has been 

simulated serially on an IBM PC 80386. Both the simulation and experimental results 

show that the neural network control is favourable compared with the conventional 

control.
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CHAPTER 2 SYSTEM MODELLING

As mentioned in Chapter 1, the problem studied in the present work is to 

balance a ball on a pivoted beam. The system is unstable m nature, in the sense that 

given any initial condition it will not stay in the balanced state. To stabilize the system 

certain feed-back control techniques are necessary.

The apparatus, shown m Figure 2.1 and 2.2, consists of a light aluminium T 

section approximately 1 1 m  long, two insulated bridge pieces are mounted 1.15 m 

apart on the beam onto which two wires, 1.3 cm apart, are tautly stretched. The hybnd 

beam is fixed on a cradle which in turn is mounted, via a bearing block, to a ngid back 

plate. The beam is pivoted about the axis of rotation and is dnven via a universal joint 

coupling by means of a vertically mounted moving coil actuator.

The angle of the beam is measured by a precision servo potentiometer mounted 

on axis. The position of the ball on the beam is measured by the potentiometer method 

in which the ball replaces the wiper blade in Figure 2.5. A small voltage is developed 

across the ends AB of one wire, a voltage Vx proportional to the position of the ball is 

measured by connecting one end C of the free wire to an operational amplifier. A 

particular problem is the disturbance introduced mto the measurement scheme by the 

intermittent contact made by the ball as it rolls along the two wires.
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The inputs and outputs of the apparatus are made using the instrument action 

box shown m Figure 2.4. This allows for an mput drive voltage in the range of ±  10 

volts to be applied to the actuator. The measured ball position is presented as a voltage 

in the range of ±  10 volts. The measured beam angle is brought out to the front panel 

and appears as a voltage between ±  5 volts, a null control is provided for the latter 

measurement m case the beam is used on a non-level surface.

2.1 Instrumentation

The moving coil actuator consists of a light electrical coil, which is suspended 

by a spring in the field of a permanent magnet, see Figure 2.3. The coil is constrained 

to move at right angles to the magnetic field, such that when a current is passed 

through the coil, a proportional force occurs which is parallel to the axis of the coil. 

Because of the spring suspension system, this force is perceived as a displacement 

parallel to the coil axis and proportional to the coil current. Since the apparatus is 

intended to be dnven by voltage signals from operational amplifiers, the actuator dnve 

circuit is configured such that a voltage applied at the ’actuator input’ terminal 

produces a proportional current. The actuator characteristic therefore relates mput 

voltage to actuator shaft displacement in a linear manner, with a maximum displacement 

being set by mechanical stops inside the actuator. Moreover, because of friction and 

the mass of the coil, the actuator has dynamical properties which are discussed m the 

modelling section. The output force, too, is presented as a voltage in the range of <  

± 6  volts.
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F i g u r e  2 . 1  The ball-beam apparatus (the actuator)

Figure 2.2 Ball-beam apparatus (full view)

36



Figure 2.3

1 Tnmmoo 10
2 Body 11
3 Centre pole magnet 12
4 Terminal! 13
5 Air vent 14
6 Top access cover 15
7 Top suspension spacer and securing 16

bolt (2 off)
8 Moving cod and suspension assembly 17
9 Package mounting hole

Top cover securing bob (4 off)
Top suspension spider (put 7)
Moving coil nupauMD support plate securing bolt 0  off) 
Moving coil (part 7)
Moving coil suspension support plate 
Bottom suspension spider 
Trunnion clamp bolt

Support screw
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Figure 2.4 The ball and beam system configuration

2.2 The Equations of Motion of the System

To denve the equations of motion in a useable form, it is necessary to make 

several assumptions. The ball is assumed to move on the beam with pure rotation, 

disregarding the possible slip between the ball and the beam, the rolling faction 

between the ball and the beam is considered negligible, and the friction at pivot of the 

beam is represented by a single linear coefficient b, which is also referred to as the
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Figure 2.5 The ball position measuring system

damping factor. In addition, the stiffness of the spring mounting of the actuating coil 

is denoted as k, and the force exerted by the actuator is F(t).

With the above assumptions, the system equations can be conveniently derived 

using variational methods. Referring to Figure 2.8, the ball position x along the beam 

and the beam angular position a  in relation to the horizontal plane are selected as the 

mdependent variables for variation. Thus, the Lagrange equation of the system can be 

written as

L0 = U* - T  (2-1)

where L0 is the Lagrange function, U* is the kinetic co-energy, and T is the potential

energy of the system. The system equations are obtained by applying the Lagrange

theorem to Equation (2-1).

39



The kinetic co-energy U* of the system is the sum of translational and rotational 

kinetic energy of the ball, and the rotational kinetic energy of the beam. Denote the 

relative velocity of the ball as ± , and the angular velocity of the beam as a , then the 

absolute velocity of the ball can be easily found as (see Figure 2.6)

Figure 2.6 The computation of the absolute translational velocity of the ball

v = sjx1 + [ x a f  <2"2>

Thus, the translational kinetic energy of the ball is given by

I m v2 (a)

Let g) be the absolute angular velocity of the ball and I„ the moment of inertia 

of the ball around the axis passing through its centre and perpendicular to the plane of 

the paper (see Figure 2 6), then the rotational kinetic energy of the ball can be written 

as

\ h <»>

where g> can be determined from Figure 2.8. The angular displacement of the ball d
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Figure 2.7 The determination of the absolute velocity of the ball 

is given by Equation (2-3)

Figure 2.8 The determination of angular velocity of the beam

where y  is the angle "rolling over" by the ball, r is the rolling radius of the ball,



0 = i|r + a = — + o (2-3)
r

which is determined by the radius of the ball and the distance between the two parallel

wires supporting the ball. From Figure 2.7, r is determined as

r = JR2 -  s2I4 = sjO.Oll1 -  0 0132/4 = 0 0101 m  (2_4)

By differentiating Equation (2-3) with respect to time, we get the angular velocity o

as

o) = — + a (2-5)
r

The kinetic energy of the beam can be simply written as

where I* is the moment of inertia of the beam around its centre.

Thus, the co-energy of the system is given by the sum of terms in (a), (b) and

(c), or

U* = — m v2 + — /. g>2 + — I  a.2 (2-6)
2 2 2

The potential energy of the system is associated with the energy stored in the spnng.

Assuming small angular excursions, the spnng will be a linear one. Thus the potential

energy T is given by

T = -  k, (I a)2 (2-7)
2

where 1 is the distance from the spnng to the centre of the beam.

By combining Equation (2-6) and (2-7) and substituting v, we obtain the
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\  [m(x2 + a2 x2) + Ib ( -  + a)2 + /„ a2 -  kx (I a)2] (2-8)
« r

The damping effect of the system can be considered by introducing the system 

co-content J, which is given by

J  = -  b (I d)2 (2-9)
2

By applying Lagrangian theorem to Equations (2-8) and (2-9), we have

d rdLo, dLo a1— [— 1 -  —  + —  = m g sin a
dt dx d x d x

system Lagrangian as

(2-10)

a dL dLn £LJ
+ TT  = cosa 0 * 8 * -  Fw  1 )dt da da da

^  = m x + Ib ( -  + a) -  (2-ID
oir r r

Carrying out the differentiation m Equation (2-10) and (2-11), and re-ranging

the terms, we obtain the following equations of motion,

L  Ib
(m  + — ) x + — a -  m x a -  m g sina 

r2 r

h  ,  ( 2 ' 1 2 )—  x + (m or + Jc + -+-7̂) a + 2 m  x x a

+ k l 2 a + b l 2 a + cosa (m g x - lF(t))

The equations can be reduced to a more usable from by introducing further 

assumptions which are valid for the present problem. The moment of inertia of the 

ball Ia and its mass m are small and can be regarded as having little effect on the 

behaviour of the beam. Furthermore, « and a can also be considered to have
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negligible effect in the equations.

Using the above approximations and remembering that for small a , s in a -a , 

the equations of motion can be simplified as

( m  + — ) x  = m g a  (2-13)
r2

Ia a  + b I2 d + kx I2 a  = -lF (t)  (2-14)

2.3 Calculation of Moment of Inertia for the Ball and the Beam

The moment of inertia of the ball ^ can be simply determined as

Ib = |  m R2 = 0.00162 g -m 2 (2-15)

The moment of inertia Is for the beam is compnsed of the contributions from 

the attached fixtures on the beam and the beam itself, see Figure 2.9. The calculation 

of moment for each part is briefly listed below. The total value is found to be

Aj =  ImI + I  M2 + I  M3 + 1*14 + ^M5 (2-16)

(1) For aluminium,

pm= 2.7 g/cm3 = 2.7X10 3 g/mm3.

(2) The contribution of mass MUM2, M3, M4. (See Figure 2.9)

=0.05052 kg. M2=pmV2=0.2804 kg.

M3=pmV3=0 25 kg. M4=pmV4=0.062 kg.

(3) From point 1 and point 2 in the Figure 2.10 , we have:
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Point 1 = (-75.5/2, -14.49) =(-37.75, -14.49). 

Point 2 = (-16.1/2, 29.98) = (-8.05, 29.98).

y-29.98 = 29 98+14.49 = x 5 U
x+8.05 " -8.05+37.75 '  * (2-17)

x  = 0.67 (y-29.98) -  8.05

990

,7 5 5 , 1610

-J -a  \
M4

01 ""■^02 O 03 M3 SSnM2X'

1150

Unit mm

Figure 2.9 The geometrical dimension of the beam. bt=29.98, b2=43.87, b3=4.5, 
b4=21.48,

Im4,5 fm4 ^m5 -^^4 ^

= 54.856 -185144 pmt+M 4(43.87/2 +  14.99)2 

= 21.25 kg-mm2 

= 0 02125 g-m2

(4) The moment of inertia about pivot I,:
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9 75

Figure 2.10 The geometry of element M4 and M5, see Figure 2.9

4 42

Figure 2.11 The geometry of M l and M2 shown in Figure 2.4

* 'n  * 4.1779 g -m 2

\  - V »J M2 = 31-3 S '« 2 

I« , ' ( . * ' ! « , =  27.6 g-m 2 

= 0.02125 g-m 2

= + m̂2 + î/3 + + Jjf, = 63.04 g-m2

(2-19)

(2-20)

(2-21)

(2-22)

(2-23)

2.4 Other System Parameters
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dIa5 = dm I*  = ** P ^  = r2P t ds 

= p  t  (x2+y2) dx dy.

Ias= p * f f  (*2+y2) ^  (2-18)

/*2998 /*-067 (y-29.98)
= p  t  I / X

J-1449 J+067 (y-2998)

(a^+y2) ¿it dy =-185144 p f

Same of the other experimentally determined system parameters are listed below,

(1) Ball radius R=0.012 m.

(2) Ball mass m=28.11 g.

(3) Ball rolling radius r=0.0101 m.

(4) Beam length L0=1.15 m.

(5) Stiffness of the spnng kt=3.26 N/m.

(6) Damp factor b=0.6 N.s/m.
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CHAPTER 3 SIMULATION OF CONVENTIONAL AND 

NEURAL NETWORK CONTROLLERS

The conventional and neural network control algorithms are developed for the 

ball-beam system and simulation has been performed on a personal computer. In the 

simulation work, the plant, or the system has been modelled using the set of equations

of motion established earlier m equation (2-12). The simulation results have been

presented for both the conventional and the neural network control methods.

3.1 State Feedback Control

In the conventional control theory, the state of a system at any time can be 

descnbed by a set of state variables For the present problem, the state variables are 

the ball position x x, velocity x2 and the beam angular position jc3 and velocity x4. The

goal of the control problem is to decide what the input should be so that the state will 

behave in a favourable fashion. The most general state space description of a linear 

system is given by

i(f) = A(t) x(t) + B(t) u(t) (3-1)

y(r) = C(f) x(t) + D(t) u(t) (3-2)

where *(*) is the state vector, y(*) is the output from the system, u(t) is the input to

the system and A(r), B(i), C(f) and D(r) are matrices.
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3.1.1 The continuous-time and discrete-time open-loop models

3.1.1.1 System equations

The equations of motion of the system have been established in Section 2.2 

earlier. Using the state variables we have

( m  + i ) x 2 = m g x s  (3-3)
r2

( + h  ) *4 + b I2 x4 + k  l \  = -I  F(t) (3-4)

or

where

i 2=c1x3

* 4  = C3*3 + C2X A +  C4 F ( t )

c^m gK M + IJr2) c2=-bl2/(Ib+Ia)

c3=-ki2K ib+ia) cr - m b*i; )

(3-5)

The numerical value of cx, c2 , c3 and c4 are respectively 4.503, -0.003, -0.0171 and - 

0.009.

3.1.1.2 System model

Re-wnte Equations (3-1) and (3-2), and insert the identities x t =xx and x3 =x3 ,

we obtain the continuous-time system model as

x ( k t) = A x (k t) +B F(kt)

y (k t)  =C x (k t)  
where x and y  are column vectors,

(3-6)
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and A., B and C are

jc =\
y - W

A  =

B =

0 1 0  0

0 0 5.643 0
0 0 0 1
0 0 -0.0171 -0.003

0

0

0

-0.009

c=
1 0  0 0 
0 0 1 0

(3-7)

(3-8)

The open-loop discrete-time model can be obtained as 

x[(*+l)t] = <Kt) x(kx) + IXt) F(kx)
(3-9)

y(Jh) = C x(kx)

where <j>(x) is a matrix, and r(x) is a column vector. The matrix <j>(t) can be 

determined by first considering the continuous model, then setting time t to the sample 

time x • Thus

<l>(f) = ST1 { [ s i- A ] 1 ) (3-10)

Denoting $ (s) = [s i-A Y 1, we have
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<1*S) =

C 1 1 c A A
s 2(s ~B) s ’ s2 s 3(s -B ) s 3 s \ s - B )

o C 1 A A
s \ s - B )  s ’ s2’ s2(s -B )

0, o, 1 1
s s(s-B )

0, o, C 1

(3-11)

In the inverse transformation (see Appendix A) let t = x =0.02 seconds, we obtain the 

numerical values of transition function as

4>(t) =

0.805 0.0201 0.001129 0
0 0.805 0.11286 -0.312
0 0 1 -0.333
0 0 0.0067 0.999

The matrix r (t) can be obtained as

(3-12)

0

-0.000562 

-0.000598 

-0.0199

Finally, we obtain the open-loop discrete-time model as

T(t) = f  eM B d t  = 
Jo

(3-13)
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X[(k+l)T] =

0.805 0.0201 0.001129 0

0 0.805 0.11286 -0.312

0 0 1 -0.333
0 0 0.0067 0.999

y ( k ? )  =

o

-0.000562

-0.000598
-0.0199

1 0  0 0 

0 0 1 0

F(kx)

x(kx)

x(kx) +

(3-14)

3.1.2 The closed-loop discrete-time model

To implement the state feedback controller, the closed-loop discrete-time model

Figure 3.1 System closed-loop state model

of the plant is needed. Referred to Figure 3 . 1 ,  we can write the system model as

x[(*+l)x] = (<t>+r K) x(kx) + T G F(kx) 

y(kx) = C x(kx)
where $ and r  are as shown m Equations , respectively, K  is feedback vector and G 

is the gam.

(3-15)
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The vector k  and the scalar G can be determined using the Bass-Gura method. 

The characteristic polynomial of the system can be written as

a(z) = det[z/-<J>] = z4 + a x z 3 + a2 z1 + a3 z  + a4 (3-16)

where ax, a2, a3 and a4 are factors to be determined. By substituting Equation (3-12)

into the above we get

^=-3.700 a2= 5.049

a3=-2.998 a4= 0.647

According to the Bass-Gura formula the feedback vector K can be determined

by

K  = [a-a] { a } '1 c '1 (3-17)

where z  1S the close-loop eigenvector of the following (see Appendix B)

z = [ z ,, Zj’ z4 i = [~0.9±/2.85, -0.075, -1.412 ]

and

a  =

a.

(3-18)

a_ [1 atj a2 a3 ]7 is the lower triangular Toeplitz with the first column as

[ 1 ^3]

and
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c ii (J)2r, <|)3r] =

0 0.0000192 -0.0000555 -0.000129
0.000484 -0.00185 -0.00397 -0.00526
-0.0084 -0.00156 -0.0132 -0.0109
-0.3885 -0.326 -0.266 -0 210

Thus, the feedback vector is obtained as,

K  = [ 11.06, -0.098, 8.078, -0.098] (3-20)

The gain G can be determined by the fact that

H(z) = C(z)-(4> +t*) BG  = 1 (3-21)

which gives

G= -0  248 (3-22)

The close-loop discrete-time system model as

0.8951, -2.514, -0.000177, 0 0 226
0.129, 0.651, 0 000144 0

x(fcc)+
0.0284

-0.0759, 0, 0.843, 0 0.000124
-4.634, 0.0685, -3.396, 0.896 0.104

y(kt) = C x(kx)

3.1.3 Results

The computer implementation of the conventional simulation are described m 

this section. The input of the system is a force acting on the beam. The output of the 

system mcludes the position and velocity of the ball and the angular position and 

velocity of the beam. The Equations (3-23) were used to program the controller in the 

simulation. The sample time is t  =0.02 seconds.
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The system has been simulated for different combinations of initial state variables. 

The position of the ball along the beam ranges from -0.5 to 0.5 metres and the angular 

position of the beam vanes between -20° and 20°, or between -0.3491 and 0.3491 in 

radius. The results from the simulation are presented in Figures (3-2) through (3-7). 

From these results it is evident that m simulation the ball-beam system can be balanced 

under any initial conditions of interest.

55



t im e ,  sec
Figure 3.2 The Simulation using conventional method. Initial position: x=0.1 m, 
a =0.5 rad.

t im e ,  sec
Figure 3.3 Simulation using conventional method. Initial position: x=-0.5 m, a =-0.1
rad.
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t im e ,  sec
Figure 3.4 Simulation using conventional method. Initial position: x=-0 5 m, a=-0.5  
rad.

T i m e ,  s e c

Figure 3.5 Simulation using conventional method. Initial position: x= 0  m, a =0.5 rad.
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T im e , sec

Figure 3.6 Simulation using conventional method. Initial position: x=0.58 m, a=0.5  
rad.

Time, sec

Figure 3.7 Simulation using conventional method. Initial position: x=2 m, a =2 rad.
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3.2 Neural Network Feedback Control

The present task is to balance the ball-beam system using the neural network 

technique. As shown m Figure 1.9 a ball moves on two parallel wires spanned on a 

beam. The beam itself is pivoted at the centre to a mount. The movement of both the 

ball and the beam is constrained in the vertical plane. Thus, the state of this system is 

given by the position and velocity of the ball and the angular position and velocity of 

the beam.

Starting from any initial state, the ball tends to move away from the initial position 

thus causing the system un-balanced. Hence the system is inherently a unstable one.

To balance the system, the only control actions available are to exert forces of 

fixed amplitude on the beam is such a way that the beam can be kept at the horizontal 

position and the ball at a predetermined position. The way the force is applied is 

dependent on the control method used. In this section, the neural network technique will 

be used to evaluate the system performance and applied the action force accordingly.

The neural network system used, as shown in Figure 3.8, consists of two 

networks termed the evaluation network and the action network. The evaluation 

network learns an evaluation function of the system state, so that it can predict the 

future action the system needs to take in order to avoid certain states. The action 

network generates the system behaviour. It decides which action to apply for a given
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state of the ball-beam system.

When an undesired state of the system is reached, it is called a failure In the 

current problem, a failure is defined as the beam’s falling past a certain angle relative 

to the horizontal plane, or the ball’s running into the bounds of its track. The purpose 

of the controller is to apply a sequence of forces so that the failure is avoided as much 

as possible, or the balance is maintained as long as possible

Three different learning algorithms have been used in the neural networks. In 

the hidden layers of both the evaluation and the action network, the error back- 

propagation algorithm has been used. The temporal-difference algorithm was used in 

the output layer of the evaluation network. Reinforcement learning algorithm was used 

in the output layer of the action network.

3.2.1 The simulation of the plant

As stated in Section 1.2, in the control system using neural networks the system 

dynamics is not required. This is certainly a great advantage m real time control, but 

m simulation it is necessary to simulate the system dynamics using a set of differential 

equations In the present study, the ball-beam system is modelled using the equations 

of motion, Equation (2-12). In the simulation, the equations of motion are solved using

the Euler’s method. By denoting Xj as the horizontal position of the ball in relation 

to the centre of the beam, x2 as the velocity of the ball, x3 as the angular position of
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the beam and x4 the angular velocity of the beam, the Euler’s method gives the solution
/

to the equations of motion as (see Appendix C)

x1[(fc+l),c]=:ic1[fc'c]+T x2[kx].

(g Xi[kx]+x2[kx] x4[frc]2)
Xj[(^+l)r] = x2[*t]+t -

x3[(£+ l)r] =x3[£t] +t x4[kx].

Ib
<!♦—

m r"

(m g  3c0[£t] -F (kx) 1-— -2  m Xj[fcT]x2[fcT]x4[fct]-fc l2x2[kx
* 4 K i + l ) t ] ^ 4[ t t ] + T ---------------------------------------------------- ^ ---------------------------------------------------------------------------------

(m x x[kx f+ Ib+Ia)

(3-24)

where
\+Iblmr2

The objective of this study is to avoid failure. The beam was balanced within 

a very narrow angle about the horizontal position, and the ball was balanced at any 

position on the beam. This objective can be formalized by defining a failure signal.

r'[t] =
-1, i f  10(f) | >6° A |x(f) | >0.5m

(3-25)

0, otherwise.

Other limits imposed on system parameters are

An additional input, x5, with a constant value of 0.5 is provided.
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|Xj| < 0.01 m 

|x2| < 0.05 m /s

K l < 6°

|ï 4| < 1 0 7 s

3.2.2 Structure of the neural networks and the learning algorithms

The architecture of the neural networks control system is shown in Figure 3-8.

Hidden Unit

Figure 3.8 Two-layer neural networks used in the control system.

The system is composed of two networks, one evaluation network and one action 

network. Each of the two networks has two layers of nodes, a hidden layer and an 

output layer. There are 5 nodes in the hidden layers and one node in the output layers.
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The node connectivities of the action and the evaluation networks are shown in Figure 

3-9 and Figure 3-10 respectively. In Figure 3-9, A  is the matrix of connection weights 

for the hidden layer with components au, and B  and C are the vectors of connection

weights with components bu, and c.., for the input and output layers respectively. D , Ev V

and F  in Figure 3-10 have similar meanings as A ,  B  and C in Figure 3-9, and their 

components are respectively d^, ei and

First  layer

Three types of learning algorithms have been used in the neural network system. 

The reinforcement learning method has been used in the output layer of the action 

network, and the temporal difference learning algorithm was used in the output layer 

of the evaluation network to adjust the connection weights. In the hidden layers of both 

the action net and the evaluation net, the back-propagation algorithm was used. In the 

output layer of the action network, the difference between the actual value and
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F irst la y er

expected value rx of the action are fed-back to adjust the connection weights of the

action network. The weights in the output layer of the evaluation network was adjusted 

by feeding the difference between the successive values of v, which is the vector of 

outputs as given by Equation (3-29).

The parallel algorithm of the neural network has been simulated seriously using 

an IBM PC 80386. The learning algorithms of the neural networks are outlined below. 

Here, k + 1 refers to the current time step and k the previous step, x is the sample 

time.

1. The outputs yt from the first layer m the evaluation network are calculated 

according to the error back-propagation algorithm,
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v ' (3-26)
y ,[i,^ i]= 5 (S ^ W ^ [i+i])

2. The output v, from the output layer in the evaluation network is determined by 

the temporal-difference learning algorithm as

(3-27)
v[i,i+l]=EfcI[i]xl[i]+Ec|[i]y,[i,i+l]

3. The failure signal from the evaluation network is given by Equation (3-28)

r,[i+l] =

0; i f  state a t time t+1 is a start state;
r[f+l] -  i f  state a t time t+ l is a failure state;
r[f+l] + y vfv+ 1] -  v[f,i]; otherwise,

4. The modification on the connection weights m the evaluation network is 

performed according to Equation (3-29).

*J[i+l]=è,W +P r,[f+l] m

r,[i+l] y t[t,t] (3-29)

ay[i+l]=ay[i]+PA rjf+ l] (l-yj/,*]) sgfl(cï[f])x;[i] 

where sgn. is the sign function defined by
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sgn(c,[i]) =
i+l.

-1,

C,W 2: 0

C,[f] < 0

5. The first layer output m the action network is given by

p[t] =g(2el[t]xl[t\ +2/ l[i]zl[i])

q[t\ =
1.

0,

with probability p[t\;

with probability 1 -p \t\,

(3-30)

(3-31)

(4-1)

6. And the action force is determined by

F[t] =
+3.5,

-3.5,

i f q[ t ]=1
(4-2)

7. The connection weights in the action network are adjusted accordmg to the 

following,

e,[i +1] =e,[f]+p r jf+ l](?[f] -p[f])z,[i].

r,[(+l] z,W sgrifStXt (<j[f]-p[<])i,W

The Values of the parameters used m the above equations are as following:

p =0.045 PA=0.045 p =0.2

p =0 95 pA=0 2 y =0 9

3.2.3 Flow chart of the control program
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figure 3.11 The flow chart for programming the neural network simulation.
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The simulation work has been performed on a personal computer equipped with 

an Intel 80386 processor, by training the neural networks with different initial 

conditions. At the start of each training run, the ball-beam system was "initialized", 

which included the assignment of random values to state variables, within the 

corresponding limits, and the assignment of small random values to all the connection 

weights Dunng each training run, the weights were adjusted according to the learning 

rules and the system performance. These adjusted weights were consequently stored 

and became the initial weights for the subsequent training run.

In the first training run, the system starts from the initialized state. In all the 

simulation it took 30 to 40 seconds for the network to learn to balance the system in 

the first training run. The curve of the number of failure versus the number of time 

steps before failure is shown m Figure 3.12 for the first run. The network failed about 

1500 times before it could balance the system.

The time needed to balance the system decreases sharply m the subsequent two 

training runs, and approached a constant of 0.3 to 0.4 seconds in and after the fourth 

training run. While it took 20-25 seconds to balance the ball and beam in the second 

run, it only took 0 6-0.7 seconds in the third run. The simulation results from first to 

four runs are presented in Figures 3.12 to 3.38 inclusive.

3.2.4 Results

68



It has been noted that all the weights tends to approach constant values after a

raining runs. The set of weights after the fifth run is presente

-0.00255 0.03012 -0.08009 -0.66811 0.12363
-0  07688 0.02718 0 03043 -0.64686 0.20023

D = 0.07473 -0.0199 -0.00338 -0  58907 0 03698
-0.08559 -0.00247 -0.02312 -0.52872 0.05066
0.02908 -0.00247 - 0.00112 -0.54343 0.10600

-0.63912 -0.06556 0.08299 0.05223 -0.96392
-0  09169 0.06309 0 52880 0 91910 -0 01464

A = 0 06791 0 06218 0 02095 0.01991 0.04400
-0.0187 0.03425 -0.00178 -0.03110 -0.04711
-0.0153 -0.06726 0.02909 -0  09939 -0.04620

E = {-0.05484 -0.08159 -0.05249 0 33470 0 09490}

F = {-2.7037 -2 65897 -1 85765 10.1612 -2.49669}

B == {0.02070 0.06100 - 0.017200 -0 01803 -0.01898}

C == {-3.98423 0.06100 -0.01720 -0.01803 -0.02898}

(4-4)

(4-5)

(4-6)

(4-7)

(4-8)

(4-9)
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Figure 3.12 The first training run.

Time, sec

Figure 3.13 The second training run. Initial position: x=-0.1 m, a =0.5 rad.
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Time, s e c

Figure 3.14 The second training run. Initial position x=-0.5 m, a=-0.1 rad.

Time, sec

Figure 3.15 The second training run. Initial position: x= 0 m, a =0.058 rad.
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Tim e, s e c

Figure 3.16 The third training run. Initial position: x= 0 1 m, a=-0.1 rad.

Time, s e c

Figure 3.17 The third training run. Initial position: x=0.3 m, a =-0.3 rad.
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Time, se c

Figure 3.18 The third training run. Initial position: x=0.3 m, a =0.3  rad.

Time, sec

Figure 3.19 The fourth training run. Initial position: x=0.1 m, a =0.5 rad.
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Time, s e c

Figure 3.20 The fourth training run. Initial position: x=-0.5 m, a =-0.1 rad.

Time, sec

Figure 3.21 The fourth training run. Initial position: x=0.5 m, a=-0.5 rad.
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Time, s e c

Figure 3.22 The fourth training run. Initial position: x=-0.58 m, a =0.5 rad.

Time s te p s  u n t i l  fa i lure  ( th o u sa n d s)

100 200 300 400 500 600
N um ber of fa i lu r e s

700 800

Figure 3.23 The second training run Initial position: x=-0.5 m, a =-0.5 rad
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Time s te p s  u n t i l  fa i lu re  ( th o u s a n d s )

100 200 300 400 500
N um ber of fa i lu re s

600 700 800

Figure 3.24 The second training run. Initial position: x= 0 m, a = 0  rad.
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Figure 3.25 The second training run. Initial position: x=0.58 m, a= 0.5  rad.

Time s tep s  u nt i l  fa i lure  ( th o u sa n d s)
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Time s te p s  u n t i l  fa i lu re  ( th o u s a n d s )

0 100 200 300 400 500 600 700 800
N u m ber  of fa i lu re s

Figure 3.26 The second training run. Initial position: x=0.58 m, a= 0.5  rad.

140

120

Time s te p s  u n t i l  fa i lu re  ( th o u s a n d s )

10 20

N u m b er  of fa i lu r e s
30 4 0

Figure 3.27 The third training run. Initial position: x=0.1 m, a =0.5 rad.
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Figure 3.28 The third training run Initial position: x= 0 m, a = 0  rad.
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Figure 3.29 The third training run. Initial position: x=0.58 m, a =0.5 rad.
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Time step until failures (Thousands) 
120 ----------------------------------------------------------

100 -  f
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Figure 3.30 The fourth training run.

t i m e ,  s e c

Figure 3.31 The neural network and conventional simulation comparison. Initial
position: x=0 5 m, a=-0.5 rad.
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t i m e ,  s e c

Figure 3-32 The neural network and conventional simulation comparison. Initial 
position: x= 0 m, a =0.5 rad.

t i m e ,  s e c

Figure 3-33 The neural network and conventional simulation comparison Initial
position: x=0.58 m, a = 0  rad.

80



time, sec

Figure 3-34 The neural network and conventional simulation comparison. Initial 
position: x =-2 m, a =2 rad.

0 01 02  03  0 4  0 5  06  07
time, sec

Figure 3-35 The neural network and conventional simulation comparison. Initial
position: x—0.5 m, o=-0.5 rad.
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time, sec

Figure 3-36 The neural network and conventional simulation comparison. Initial 
condition: x = 0  m, a= 0 .5  rad.

time, sec

Figure 3-37 The neural network and conventional simulation comparison. Initial
position: x=0.58 m, a = 0  rad.
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time, sec

Figure 3-38 The neural network and conventional simulation comparison. Initial 
position: x =-2 m, a =2 rad.
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3.3 Comparisons and Discussions

The histones of the ball position x and beam angular position a  are given in 

Figure (3-31) to (3-38) for different initial positions. From these curves, it is easy to 

find out the time needed to balance the system for different control method. For 

example, Figure (3-19) shows that it took 0.3 seconds for the neural network controller 

to balance the system while it took 0.7 seconds to do the same. This shows that the 

neural network is competitive even when implemented serially.

The learning process is crucial for the neural network controller. For a novice 

controller, as shown m Figure (3-12), it took about 20-30 seconds to balance the 

system, while after several training runs, it only needed 0.3-0 4 seconds.

It took about 30-40 seconds for the network to learn to balance from the first 

training run. The balanced weights are used as initial weights in the second training 

run. They took about 1500 times running program making ball balanced on the beam. 

It took about 20-25 seconds for the network to learn to balance from the second training 

run. The balanced weights are used as initial weights m the third training run. They 

took about 700-900 times running program making ball balanced on the beam. It took 

about 0.6-0.7 seconds for the network to learn to balance from the third training run. 

The balanced weights are used as initial weights in the third training run. They took 

about 30-60 times running the program to make the ball balance on the beam. It took 

about 0.3-0.4 seconds for the network to learn to balance from fourth to tenth training



runs. The balanced weights are used as initial weights in the fourth to tenth training 

runs. It took 17 times running the program to make the ball balance on the beam.

In the conventional controller, no learning is needed, and the "best" performance 

is obtained from the beginning. In neural network control, the system performance is 

improved through learning. In essence, dynamics by adjusting the connection weights 

of the nodes. This is why the system dynamics is not needed m neural network control. 

Through the learning runs, the connection weights gradually approach constant values. 

It can be predicted that since the system dynamics is certain for a given problem, so 

should the connection weights, given the structure of the networks is predetermined. 

This has been shown in the simulation that after the fourth training run, the set of 

weights is nearly constant. If this set of connection of weights are applied to the 

network, then the ideal performance is reached. It has also been noted that the ideal set 

of connection can be reached starting from any set of initial conditions for the training 

runs. In another word, the ideal set of weights is characteristic of the system, including 

the controller and plant, and not to be altered by different time histories.

It should be noted that in the neural network control simulation, only the results 

of the first four runs are given, since after the fourth training, the results are essentially 

the same.

The amplitude of the actuating force F(t) should be properly chosen. If the force 

is too great, the ball will be tossed out of the wire track and if it is too small, it will 

not be able to balance the system.
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CHAPTER 4 IMPLEMENTATION OF CONVENTIONAL AND 

NEURAL NETWORK METHODS

The control of a ball moving on a beam has been simulated in the previous 

chapter using conventional and neural network control methods. The simulation results 

show that the neural network controller can achieve similar or better performance than 

the conventional controller. In this chapter, both the conventional and the neural 

network method will be implemented on a laboratory apparatus using a personal 

computer.

4.1 Instrum entation and procedures

The control task involves the balancing of a ball on a beam which is pivoted m 

the middle, as shown in Figure 1.9 earlier. The control system consists of the ball and 

beam apparatus (type CE6) itself, a 80386 based IBM compatible personal computer, 

analogue to digital and digital to analogue converters and certain other general purpose 

meters.

Figure 4.1 shows a system sketch. It should be noted that although the neural
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network technique favours parallel processing, it is implemented here serially due to 

lack of resource.

4.2 Conventional Control System

4.2.1 Control process

Figure 4.1 The control system structure.

The control cycle begins by evaluating the system status, which is represented 

by the linear displacement and the velocity of the ball moving on the beam and the 

angular displacement and the velocity of the beam revolving around the pivot. These 

variables are measured using a linear and an angular transducers, and they are 

converted into digital signals by an A/D converter. The linear and angular velocities 

of the ball and beam can be computed from the displacement history and this has been 

done by the programs of conventional control method and neural network control 

method, respectively. The decision making process was performed by the computer,
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according to conventional theory and neural network algorithms. The computer then 

outputs a digital signal which represents a positive force +F(t) (upward) or a negative 

force -F(t) (downward). This signal is converted into an analog signal and sent to the 

plant to control its behaviour. At this point the cycle is complete and a new cycle 

begins.

According to the laboratory experiment, the following equation is obtained to 

provide low pass filtering. The calculated ball position is:

JCj = 0 75 x[ + 0.25 xA ] D
(4-1)

The velocity of the ball is:

*2 = (* i * * i) h  (4_2)

where x, is ball position obtained from the previous sampling, xt’ is ball position

obtained from the last sampling, x ^  is ball position obtained from the A/D, and r is

the sample time.

The continuous time model of the plant is given by

= A + B  F(t)

(4-3)

y(t) = C

where xt is the ball position and x2 is the ball velocity. The output y (f) =xx is the ball

position. The matrices A , B  and C  are given as

Since velocity is the first derivative with respect to time of position, we get
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A  =
0 1

0 0

(4-4)
B  =

C=[ 1 0]

Xi = x2 (4-5)

System stability is determined by the eigenvalues of the system A matrix:

| XI-A | =0. X! =  0, X2 =0. system unstable.

To stabilize the system, a controller has shown in Figure (4-1) has been used. 

According to the laboratory practice, the feedback matnx is determined as

K=
*1 0.6

*2. 0 6

The action force is given by

F(t) = G x(t) = [kv k ^ = *1 *1 + *2 *2- (4-6)

The controller can thus be programmed by combining Equations (4-3) and (4-6).

4.2.2 Results

The experimental results obtained from the conventional control are presented 

below. Results corresponding to different initial states are shown in Figures (4-2) to 

(4-5). It is evident that the conventional controller was able to balance the system and 

the average time needed was 15-20 seconds, depending on the initial conditions and the
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system noise such as the influence on the measurement accuracy of the ball’s 

intermittent contact, etc.
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time, sec

Figure 4.2 Initial position: x =0.407 m.

time, sec

Figure 4.3 Initial position: x=-0.125 m.
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t ime, sec

Figure 4.4 Initial position: x= 0 164 m.

posit ion, m ve loc i ty ,  m /s

time, sec

Figure 4.5 Initial position: x =-0.485 m.
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4.3 Application of Neural Network Feedback

4.3.1 Neural networks learning algorithms

The same learning algorithms as used in the simulation work are used in the 

experiments. The rules for updating the connection weights m the evaluation network 

and the action network are given in Equations (3-29) and (3-36).

The value of F(t) is different in simulation and real time control.

F(t)=q(t) (xj+x2).

4.3.2 Flow chart

See Figure 4-6.

4.3.3 Results

4.3.3.1 F irst and second training runs

For the first two training runs, it took about 10-11 seconds for the network to 

learn to balance the ball-beam system. When the ball is balanced on the beam, the 

network weight matrices A ,  B , C , D , E  and F  are saved and these weights are used 

as initial weights m the subsequent training run. The results of experiments are shown 

in Figure 4-7,4-8, 4-9 and 4-10. The corresponding failure curves are shown in Figure 

4-15 and 4-16.
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The neural networks were able to adapt themselves rapidly to control the 

system. The time need to balance the ball reduced sharply for the third training run, 

to roughly 5-7 seconds. From the fourth run on, up to tenth run, the system stabilized 

and the balancing time remained approximately the same. The experimental results are 

shown m Figures 4-11 to 4-21

4.4 Comparison of State Feedback and Neural Network Control Results

Figures 4-18 to 4-21 present the experimental results for both the conventional 

control method and the neural network method, with the same initial conditions and 

same sample time. It is evident that results from the two control methods show 

different characteristics. It is evident that the neural network controller performed better 

than the conventional controller in the experiments.

It took about 20-30 seconds to balance the system, while after several training runs, it 

only needed 0.3-0.4 seconds.

4.3.3.2 Third to tenth training runs
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Figure 4.6 The flow chart for programming the neural network controller.
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time, sec

Figure 4.7 The first and second training run using neural network control. Initial 
position: x =0.453 m, a =0.017 rad.

t ime, se c

Figure 4.8 The first and second training run using neural network control. Initial
position: x=-0 269 m, a=-0.349 rad.
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t ime, sec

Figure 4.9 The first and second training run using neural network control. Initial 
position: x =0.294 m, a =0.079 rad.

t ime, sec

Figure 4.10 The first and second training using neural network control. Initial position:
x =-0.368 m, a= -0  001 rad.
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posi t ion ,  m angle, rad

time, sec

Figure 4.11 The third training run using neural network control. Initial position: 
x =0.444 m, a =-0.052 rad.

t ime, sec

Figure 4.12 The third training run using neural network control. Initial position: x=-
0.5 m, a =-0.204 rad.
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t ime, s e c

Figure 4.13 The third training run using neural network control. Initial position: 
x=0.463 m, a=-0.039 rad.

t ime, sec

Figure 4.14 The third training run using neural network control. Initial position:
x =0.160 m, a =-0.070 rad.
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N u m b e r  of f a i lu r e s  
Figure 4.15 The first and second training run m neural network control.

0 2 0  4 0  6 0  80  100 120 140  160  180 2 0 0

N u m b e r  of fa i lu re s  
Figure 4.16 The first and second training run in neural network control.
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Time s t e p s  u n t i l  fa i lu re  ( th o u s a n d s )  
6 0 ---------------------------------------------------------------------------------------

5 0  - 

4 0  - 

3 0  - 

20  -  

10 -

o I 1------ 1------ 1------ 1------ 1------ 1------ 1~ __ l------ 1____ I------ 1__ J-1------1------
0 10 2 0  3 0  4 0  50  6 0  70  8 0  90  100  110 120  130  140

N u m b e r  of f a i lu re s
Figure 4.17 The third training run in neural network control.

tim e, sec

Figure 4.18 The neural network and conventional control comparison. Initial position:
x=0.4 m.
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0 2 4 6 B 10 12 14 16 18 20
time, sec

Figure 4.19 The neural network and conventional control comparison. Initial position: 
x= -0.12 m.

time, sec

Figure 4.20 The neural network and conventional control comparison. Initial position.
x=0.16 m.

102



time, sec

Figure 4.21 The neural network and conventional control comparison. Initial position: 
x=-0.4 rad.
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4.5 Discussions

In this chapter, the neural networks and conventional control are used in real 

time control. In the conventional control. It took about 15-20 seconds to balance the 

ball and beam system. In the neural networks control, two-layered neural networks are 

used in the control experimental ng. Input states are ball position, ball velocity, beam 

angle, beam angular velocity. The output is an action force applied on the beam , action 

force F[t] =p[t] |xo+xl | • Ball position ranges from -0 5 to 0.5 meter, and the beam 

angle is between -20° - 20°. The system sample period is r=0.02 seconds. An action 

force is applied on the beam, which is controlled by the output from the action network. 

This force is determined by calculating the output of the action networks once for each 

action. The weights values are adjusted after each learning training, and these weights 

are used to retrain themselves. When the system is balanced, the weights values become 

constant values. It took about 11-12 seconds for the networks to learn to balance for the 

first and second training runs, and gradually reduced to 5-7 seconds for third to tenth 

training runs. It took about 11-12 seconds to balance the system for first training runs, 

while after several training runs, it only needed 5-7 seconds

The experimental results show that the neural networks control method was able 

to balance the ball beam system under all the initial conditions tested. The ball started 

moving from the initial position towards the balancing position, then when it was in the 

vicinity of it, the ball oscillated around it and as the amplitude decreases, balance was 

achieved. The balancing position can be changed by adjusting the potentiometer on the
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ball beam system.

It has been observed m the experiments that the amplitude of the actuating force 

should be properly chosen. If the force is too great, the ball will be tossed out of the 

wire track and if it is two small, it will not be able to balance the system. The 

amplitude of the actuating force was determined experimentally in this work, (see 

section 4.3.1)
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CHAPTER 5 CONCLUSIONS

A neural networks technique has been successfully applied to the control of a 

balancing system. A detailed study of neural network control and conventional pole 

placement control applied to the ball-beam system has been completed. System 

modelling, simulation, and controller implementation using a personal computer for 

control have been presented in this thesis.

A great advantage of neural network control system is that no prior knowledge 

of system dynamics of plant is needed. The neural network determined the action from 

the previous performance of the system, which is very much the same as the human 

neural system. To simulate the neural network control system solely on computer, 

without the involvement of an " external" plant, it is necessary to simulate the plant 

itself. Here we need to simulate the ball-beam system. This is done by integrating the 

system equations denved m chapter 3 (equation 3-15) for any given initial conditions 

from which we can obtain the ball linear position and the beam angle. This is similar 

to the process of measuring the real value. It should be noted however, the closeness 

of these values to real ones not only depends on the numerical method used, but also 

depends on the accuracy on the original model.

5.1 System Modelling and Coefficient Measurements
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The system equations have been established by using Lagrangian variational 

principle. The input to the system is an action-force on the beam, and the outputs from 

the system are the ball position, and velocity, and beam angle, and angular velocity. 

The relevant coefficients of the system have been determined experimentally.

5.2 Simulation and Implementation of Conventional M ethod

This model was simulated on a digital computer using Bass-gura feedback 

control method. It took about 1 second to balance the ball beam system using 

conventional simulation. It took about 15-20 second to balance the ball beam system in 

the experiment control.

5.3 Simulation and Implementation of Neural Network M ethod

The simulation of neural networks method means that a simulated neural 

network system is used to control a simulated plant. In the present work, the plant, 

which is the ball-beam system, has been simulated by the equations of motion (Equation 

from 3-3, 3-4). Euler method has been used to integrate the equations of motion to 

obtain the current positions of the ball and the beam. The neural network was 

simulated usmg software.

The results from simulation show that by adjusting the connection weight, the 

neural network was able to learn to balance. The time needed to balance reduced from 

40 seconds for the first training run to 0.3-0 4 seconds for tenth training run.
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The neural network control method has been used to control the actual ng. 

Neural networks are, again, simulated serially using a personal computer, while the 

plant is related by the apparatus. The experimental results show that m the first several 

training runs, the neural network method takes a longer time to balance the system than 

the conventional method. But after 4-5 training runs, the neural networks could balance 

the system within 6 seconds, while it took 15-20 seconds for the conventional method 

to do the same. In addition, since no system dynamics are involved in neural network 

method, it would be relatively easy to control similar systems with different parameters. 

For instance, it has been demonstrated successfully that balls with different diameters, 

hence different weights, can be balanced with effectually no change (the actuating force 

may need to be adjusted).

5.4 Further work

In the present work, the parallel processing neural network system was 

simulated using a serial digital computer. This no doubt has slowed down the system 

speed and degraded the performance. It is hoped that the neural network method 

presented here would be implemented using parallel hardware to exploit the full power 

of the neural network’s ability to perform parallel processing.

One of the main subjects of future research on neural networks will be the 

improvement of the speed of learning. At present there are ways which can be used to 

speed up learning. One is to up grade the computer.
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APPENDIX A

The dynamics of the ball beam system are given by the following equations of 

motion. All angular measurements are given m radians.

_ g x 3 + x 2 x4
X2

i - t
m

Ib
m g  x. - F I    2 m x, x, x.

1 r  C 1 2 4= ------------------- -— s---------------------
m X l + l b + 7a

where

8  x3 + x 2 X4

m r1

This system was simulated on a digital computer by numerically approximating 

the equations of motion using Euler’s method with a time step x =0.02 seconds and 

the following discrete-time state equations:

XjKfc+1) x] = Xj[*t] + x x2[*x]

x2[(fc+l) x] = x2[kx] + X x2[*t]

X3[(^+1) t] = x3[kx] + tx4[£t]

x4[(*+l) t] = x4[kx] + tx4[£t]

i



The sampling rate of the ball beam system’s state and the rate at which control 

forces are applied are the same as the basic simulation rate, i.e ., 50 Hz.

r
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APPENDIX B

The eigenvalue-eigenvector method is usually used m the solution of higher 

order systems.

The open-loop discrete-time model is given by

*[(*+1)t] = AxfJfcx] +BF\kx]

0.805 0.0201 0.001129 0 0
0 0 805 011286 -0.312

x[fcx] +
-0  000562

0 0 1 -0.333 -0.000598
0 0 0.0067 0.999 -0.0199

y[fcx] = C x[fcx]

where <|>(t) = eA\  0(t) = f T <J> (x) B dxJo

By applying the eigenvalue-eigenvector method, we obtain

where

0(x) = j* <|>T(f-fcx) 0(fcx) t y t - k x )  dt
k x

(*+1)t
M(x) = J  <|>T(t-kx )  0(fcx) O(f-fcx) d tkx

(*+l)x
R(x) = j  Br (t-kx ) Q(kx)Q( t -kx)  d tkx

q  = <t> -  eft~1M x 

r  = 0 -  M i + M x

Thus the eigenvalue can be determined by

1



[zl -  V]=0

where the matrix V is given by

V =
q 1 q 1 e f t 1 eT

r  Q l  q t  + r  q 1 e  f t 1 eT

The Equations above were used in programming, and the eigenvalues are

z = [ zp Zj, Z3, z4] = [ -0.075, -1.4125, -0.9+y2.85, -0 .9  - j2 .85] .
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APPENDIX C

PROGRAMS LISTS

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Simulation Using Conventional Method 

****************************************************

/include <math.h>
#include <stdio.h>
/include <dos.h>

main()
{char strin[50], strout[50];
FILE *iop, *iopl;
double fmod(double x, double y);
float x[4],v[4],Force,1[4],Q,k,sample,result[4],i,j,time;

/* Open input/output file */
printf("Input file name:"); 
gets(strin);
printf("Output file name:"); 
gets(strout); 
iop=fopen(strin,"r"); 
iopl=fopen(strout,"w");

/* Read in data */
(void) fscanf(iop," %f %f %f %f \ n",

&x[0],&x[l],&x[2]/&x[3]) ;
fprintf(iopl," t x[t] \n");
Q=0.0,time=0.0,Force=0.0, sample=0.02 ;
V [ 0 ] = 0 . 2 2 6 ,  V [ 1 ] = 0 . 0 2 8 4 , V [ 2 ] = 0 . 0 0 0 1 7 4 , V [ 3]=0.104  ;

fprintf ( iopl,"%.6f %.6f %.6f \n", Q, x[0], 
x [ 2 ]) ;

loopl:
if (time<=100.0)

X [0 ] = 0 . 8 9 5 1 * x [ 0 ]-2 . 5 1 4 * X [1 ] - 0 . 00 0 17 7 *X [2] ;
X [1]=0.129*X[0]+0.651*x[1]+0.000144*X[2]; 
X[2]=-0.0759*X[0]+0.843*X[2];
X [ 3 ] = - 4 . 6 34 * X[ 0 ] + 0 . 0 6 85*X[1 ] - 3 . 3 9 6 * X [ 2 ] + 0 . 8 9 6 * X [ 3 ] ;

x[0]=x[0]+v[0]*Force; 
x[l]=x[l]+v[l]*Force; 
x[2]=x[2]+v[2]*Force; 
x[3]=x[3]+v[3]*Force; 
if(fabs(x[0])>0.001 ¡j fabs(x[2 ])>0 .0i)

{
F o r c e = -2 .0  ;

l



}else
{ Force=2.0 ;
}time++;

Q=time*o;
if(fmod(time,2)==0)
{ fprintf ( iopl,"%.3f %.6f %.6f \n", Q, x[0], x[2]);
}goto loopl;
>else
{foiose(iop); 
foiose(iopl);
}

u



* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Simulation Using Neural Networks 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

/include <math.h> 
/include <stdio.h> 
/include <stdlib.h> 
main()
{char strin[100],

strout3[50],
stroutl[50], 
strout4[50],

s t r o u t 2 [ 5 0 ] ,  
strout5[50];

FILE *iop, *iopl,*iop2 ,*iop3,*iop4 ,*iop5;
extern double exp() «

9double fabs(double x);
unsigned long k,maxk step,k fail;
int i,j,times, q,min step,fail num,max fail Ìfloat x[5], zl[5], Z[5], y2[5], yi[5],y22[5], Xl[5], c[5]. b[5], e[5],

f[5], f f [ 5 ] , dl[5][5], d [ 5 ] [ 5 ] ;
float P, beida, push, limit, lb, la

mm, rr, 1, bb, kk, rl
satime, temp2, low, high, g, XX
y y. yyi# zz, zzi, zz2,
templi, w , gama, r, lou,
loue, i o u f
louh, V, s, mil, beidah,
sgnc, sgnf, PP, x_lim,
angle_lim, temp22, t;

float a[5][5]={{-0.63912,-0.06556,0.082999,0.05223,-0.96392
{-0.09169, 0.06309,0.05288, 0.09191, -0.01464}, 
{ 0.06791, 0.06218, 0.020951, 0.01994, 0.044 >, 
{-0.01876, 0.03425, -0.00178,-0.0311,-0.047118

>/

-0.0462}}; 
extern int rand() ; 

/*-----------------------

{-0.01539,-0.06726, 0.02909, -0.09939,

Open Input/Output File
printf("Input file name:"); 
gets(strin);
printf("Output fail_num and k_fail number file name:"); gets(strout1);
printf("Output d[i][j] and a[i][j] weight file name:"); 
gets(strout2);
printf("Output state e[i],f[i]___:");
gets(strout3);
printf("Output state f[i]:"); 
gets(strout4);
printf("Output state variables:"); 
gets(strout5); 
iop=fopen(strin,"r");



iopl=fopen(stroutl,"w") 
iop2=fopen(strout2,"w") 
iop3=fopen(strout3,"w") 
iop4=fopen(strout4,"w") 
iop5=fopen(strout5,"w")

/ * ----------- Read In Data
( v o i d )  f s c a n f ( i o p , " % f , % f , % f , % f , % f , % f  

\n",&lou,Sloue,&louh,Sbeida,Sbeidah,Sgama);
(void) fscanf(iop,"%f,%f,%d \n",&x_lim,&angle_lim,&limit); 
( v o i d )  f s c a n f  ( i o p ,  " % d , % d , % d  \ n " ,

Stimes,&min_step,&max_fail);
(void) fscanf(iop,"%f,%f,%f,%f,%f,%f,%f,%f \n",

&Ib,&Ia,&nun,&1,&rr,&kk,&bb,&g);
(void) fscanf(iop ,"% f,% f,% f,%f \n",

&x[0],&x[1],&x[2],&x[3]);
/*   Input random limit and initial weights—  */

low=-0.1; high=0.1; push=0.0;
for(i=0;i<5;i++)
{zl[i]=(rand()/32767.0)*(high-low)+low;
}

/ *  zero state */
k=0.0, t=0.0, fail_num=0, k_fail=0, temp2=0.0, templl=0.0, 
satime=0.02,w=0.0, s=0.0, p=0.0, maxk_step=300;
rl=0.0, X[4]=0.5, Xl[0]=0.58, xl[l]=0.l,Xl[2]=0.5,
xl[3]=0.1; xl[4]=0.5;
e[0]=-0.05484,e[l]=-0.08159, e[2]=-0.05249,e[3]=0.2247,
e[4]=0.0949;
f[0]=-2.7037,f[l]=-2.65893,f[2]=-1.85765, f[3]=10.16119,f[4]=-2.49699;
b[0]=0.0207,b[l]=-0.03322,b[2]=-0.00118, b[3]=-0.0852,
b[4]=0.0606;
C[0]=-3.98423,C[1]=0.0610,C[2]=-0.0172, c[3]=-0.01803,
C[4]=-0.02898;
d[0][0]=-0.00255,d[0][1]=0.03012,d [0][2]=-0.08009,d[0][3]=-
0.66811,d[0][4]=0.12363;
d [1][0]=-0.07688, d[l][1]=0.02718, d [1][2]=0.030437,
<*[1] [ 3 ] =-0.64686,d[l] [4 ] =0.20023 ;
d[2][0]=0.074733, d[2][1]=-0.0199, d[2][2]=-0.003387,
d[2][3]=-0.58907,d[2][4]=0.03698;
d[3][0]=-0.08559, d[3][l]=-0.01518, d[3][2]=-0.023125,
d[3][3]=-0.528729,d[3][4]=0.05066;
d [ 4 ] [0]=0.02908, d [4] [l]=-0.00247, d[4] [2 ] =-0.00112,
d [4][3]=-0.54343,d[4][4]=0.106;

/* Using Euler's method soluting system function 
and determine output state limit



loopl:
if(f[i]>=0.0){

sgnf=1.0;> 
else{

sgnf=-l.0;} 
if(c[i]>=0.0){

sgnc=1.0;}
else{

sgnc=-l.0;}
if(k!=0)

{ if(fabs(x[2])>=angle_lim ¡j fabs(x[0])>=x_lim) /* 
have failure */

{ for(i=0;i<5;i++)
{x[i]=(rand()/32767.0)*(high-low)+low;

}
>

}xx=(g*x[2]+x[l]*x[3]*x[3])/(1.0+Ib/(mm*rr*rr)); 
yy=mm*x[0J*x[0]+Ib+Ia;

zz2=mm*g*x[0]-Ib*xx/rr-2*mm*x[0]*x[1]*x[3]-kk*l*l*x[2]-bb*l 
*l*x[3];

zzl=push*l; 
zz=zz2-zzl; 
yyl=zz/yy; 
if(x[2]>0.0){

x[0]=-fabs(x[0]);} 
else{

x[0]=fabs(x[0]);} 
fprintf(iopl,"%0.3f %0.6f %0.6f \n ",t/ x[0],x[2]);
x[0]+=satime*x[1]; x[1]+=satime*xx; 
x [2]+=satime*x[3]; x[3]+=satime*yy1;

 * /

if(x[0]>x_lim){ 
x[0]=x_lim;} 

else{
if(x[0]<-x_lim){ 
x[0]=-x_lim;} 

else{
x [ 0]=x[0];}} 

if(x[2]>angle_lim) { 
x[2]=angle_lim;} 

else {
if(x[2]<-angle_lim){ 
x[2]=-angle_lim;} 

else{
{

x[2]=x[2];}}

v



if(x[l]>0.05){ 
x[1]=0.05 ; 

else{
if(x[l]<-0.05) { 
x[l]=-0.05;} 

else{
x[l]=x[l];}} 

if(x[3]>l.){ x[3]=l.;} 
else{

if(x[3]<—1.){ 
x[3]=-l.;} 

else{
x[3]=x[3];>}

x[4]=0.5;

/* ------  Output sate ealuation in evaluation
network ---- */

for (i=0;i<5;i++){
templl=0.0; temp22=0.0 ; 
for (j=0;j<5;j++){

templi += a[i][j]*x[j]; 
temp22 += a[i][j]*xl[j];} 

if(templl>6.0){
y2[i]=l.0;} 

else{
if (texnplK-6.0) { 

y2[i]=0.0;} 
else{
y2[i]=1.0/ (1.0+exp(-1.0*texnpll) ) ;}>

if(temp22>6.0){ 
y22[i]=l.0;} 
else{
if (temp22<-6.0){ 

y22[i]=0.0;} 
else{

y22[i]=l.0/(1.0+exp(-1.0*temp22));>} 
v=c[i]*y2[i]+b[i]*x[i]; 
w=c[i]*y22[i]+b[i]*xl[i];}

/* -----  Action network: Failure signal plus chang in
evaluation net */

if(fabs(x[2])>=angle lim \\ fabs(x[0])>=x_lim) /* havefailure */
{ fail_num +=1; 
printf(" %d %d \n", fail_num,k_fail); 
k_fail=0; 
if (fail_num>max_fail){ 

goto loop2;}

vi



r=-l.0; 
rl=r-w;}

else{
if(k!=0){

r=0.0;
rl=r+gama*v-w; /* w=v[t,t], v=v[t,t+l]

* / k_fail+=l;}>
/ * -----------  Modification in evaluation----------- */

for(i=0;i<9;i++){ 
i f ( i < 5 ) {c[i]+=beida*rl*y22[i];} 
else{

b[i]+=beida*rl*xl[i-5];}}
for (i=0;i<5;i++){

for(j=0;j<5;j++){
a[i][j]+=beidah*rl*y22[i]*(1.0-y22[i])*sgnc*xl[j];}}

/*-------------Output action-----------*/
for (i=0;i<5;i++){ 

temp2=0.0; 
for (j=0;j<5;j++){

temp2 += d[i][j]*xl[j];} 
if(temp2>6.0){ 

z[i]=1.0;} 
else{
if(temp2<=-6.0){ 

z [ i ] = 0 . 0 ; >  
else{

z[i]=1.0/(1.0+exp(-1.0*temp2));}>>s=0.0;
for(i=0;i<5;i++){

s+=f[i]*z[i]+e[i]*xl[i];} 
if(s>6.0){
P=1•0;} else{ 
if(s<—6.0){

p=0.0;}
else{
p=l.0/(1.0+exp(-s));}> 

i f ( P > = 0 • 5 ) {
q = i ; }else{
q = o ;} 

i f ( q = = i ) {push=5.0;} 
else{

push=-5.0;>

vii



/ * ----------------------- Output a c t io n  m o d if ic a t io n

f o r ( i = 0 ; i < 9 ; i + + ) { 
if(i<5){f[i]+=lou*rl*(q-p)*z[i];} 
else{
e[i]+=lou*rl*(q-p)*xl[i-5];>} 

f o r ( i = 0 ; i < 5 ; i + + ) {
for(j=0;j<5;j++){

d[i][j]+=louh*rl*z[i]*(1.0-z[i])*sgnf*(q-p)*xl[j];>}
X1[0]=X[0],Xl[l]=X[l],X1[2]=X[2],X1[3]=X[3],xl[4]=x[4]; 
dl[i][j]*d[i][j];
/*------------------ Save Weights--------*/

if(k<maxk_step){ 
if(k_fail>l){

for (i=0;i<4;i++){ 
for(j=0;j<5;j++){

fprintf(iop4,” %f %f », d[i][j]fa[i][j]); 
fprintf(iop4, "\n");}> 

for(i=0;i<9;i++){
fprintf (iop3, "%f %f %f %f %f %f %f", 

b[i] ,e[i],c[i],f[i],z[i]#x[i],yl[i]);
f p r i n t f ( i o p 3 , "\ n M);> >

k++;
t+=0.02 ; 
goto loopl;} 
else{ 
k++;
goto loop2;}

loop2: fclose(iop);
fclose(iopl); 
foiose(iop2); 
fclose(iop3); 
fclose(iop4); 
fclose(iop5);
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Real Time Conventional Control 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

/include <stdio.h>
/include <dos.h>
/include <bios.h>
/include "dashS.h"
float ball_pos, beam_angle, control_input, old_pos, 
ball_vel,terml,term2,sample; 
int k=0; 
main()
{ char strout[50];

FILE *iopl;
/* 'error' is a variable declared globally that is set to 1
i.e. TRUE if

an error occurs in any function. */
setfreq(3 0); /*function to set
freq*/
getset_dat(); /* function to get
file */

printf("Output file name:"); 
gets(strout); 
iopl=fopen(strout,"w");

printf("\n Enter the ball position multiplying term\n\n"); 
scanf("%f",&terml);
printf("\nBall position multiplying term is %f",terml); 
printf("\n Enter the ball velocity multiplying term\n\n");
scanf("%f",&term2);
printf("\nBall velocity multiplying term is %f",term2);

interrupt 

setup info

printf("\n\n\nProgram is running..Hit any key to stop program..Not Ctrl/Break");
install();
'getdata1
* /dasSset(); 
old_pos = 0.0; 
loop*/ 
sample=0.0 ; 
loop:if(k<=500) 
{speedchk(); 
program ru

/* function to install isr
at appropriate interrupt vector

/* function to 'let her rip'jp 
/♦initialize before entering

/*function to ensure user



between interrupts */
/* USER APPLICATION CODE IS PUT HERE */
ball_pos = int_volt(int_in[0]);
ball__pos = old_pos*.75+ball_pos*.25; /*low pass filter*/
ball_vel = (ball_pos - old_pos)*samp_freq;
control_input = termi*ball_pos + term2*ball_vel; 
fprintf(iopl," %. 4f %0.4f %0.4f
\n",sample,ball_pos/10.0,ball_vel);
if (control_input > 2.0) control_input =2.0; /*clamp
output to avoid error*/
if (control_input < -2.0) control_input = -2.0; 
old_pos = ball_pos;
volt_dac(control_input,0); /*send voltage to
DAC */
sample+=0.05 ; 
k++;
goto loop;
}volt_dac(0,0) ; 
stop(); 
fclose(iopl);
}/* END */
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Real Time Neural Network Control 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

/include <stdio.h> 
/include <dos.h>
/include <bios.h> 
/include "dash8.h" 
main()
{ char strout[100];
FILE *iop;
extern double exp();
double fabs(double x);
int
float

float

i, j,times,k,q,fail_num,n,intval,DAC_channel,chann 
el;
Zl[5],z[5],y2[5],yl[5],y2 2[5],xl[5],c [5],b [5], 
e[5],f[5],ff[5],dl[5][5],x[5],sgnc[5],sgnf[5], 
xx[2],Xk[4],d[5][5],p,beida,limit, lb, la, mm, rr, 
l,bb ,kk,rl, temp2, low, high, g, yy,yyl, zz,zzl, 
zz2,templi, w ,  gama, r, loue, louf, 
louh,v,s,sl,s2,mll,beidah,pp,x_lim,angle_lim, 
temp22,k_fail,push,sample,ball_pos,old_pos, 
ball_vel;
a[5] [5]={{-0.6084,-0.0649,0.1005,0.0475,-0.776} ,
{ -0.0663, 0.0618, 0.0557, 0.0654, 0.1498 >,

0.0414, -0.0030, 0.2455 }, 
0.0187, -0.0548, 0.1544 }, 
0.0495, -0.1226, 0.1544 > };

{ 0.1087, 0.0634,
{ 0.0223, 0.0355,
{ 0.0254, -0.0660, 

extern int rand();
/♦Parameter assigning*/ 
loue=1.0, louf=1.0, louh=0.2, beida=0.05,

beidah=0.05, gama=0.9, x_lim=0.3,
angle_lim=0.069, n = 5 0
low=-0.1, high=0.1, push=0.0, x [ 4 ] =
ball_pos=ball_vel=old_pos=0.0;
r Initialise Weights '/

for(i=0;i<5;i++)
{zl[i]=(rand()/32767.0)*(high-low)+low;
}

f o r ( i = 0 ; i < 5 ; i++)
{yl[i]=(rand()/32767.0)*(high-low)+low; 
}

r

k=0.0, 
templl=0.0, 
x[4]=0.5, 
xl[3]=0.1, 
XX[0]=0.0,

zero state
fail_num=0, 
w = 0 .0, 
xl[0]=0.58, 
x l [ 
XX[2]=0.0,

'/

k_fail=0, 
s=0.0,p=0.0 ; 
xl[l]=o.l,
4 ]
Xk[0]=0.0,

temp2=0.0, 
rl=0.0, 
xl[2]=0.5,0 . 5
Xk[l]=0.0,
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x k [ 2 ]= 0 . 0 , Xk [ 3 ] =0 .0 , push=0.0  ;

e[0 
e[4 
f[0 
f [4 
b[0 
b[4 
C[0 
C[4 
d[0 
d[0 
d[l 
d[l 
d[2 
d[3 
d[3 
d[4 
d[4

=-0.2093, e[l]=
=0.0949; 
=-1.4708, f[l] = 
=-2.59338; 
=0.0207, b[l] =
=0.0606; 
=-3.98423, C [ l ]  
=-0.02898;
[0]=0.0625,
[3]=-0.5782,
[1]=0.0224,
[4]=0.2168 ;
[2]=-0.0197,
[0]=-0.0245,
[3]=-0.6227,
[1]=-0.0072,
[4]=0.1227 ;

=-0.0845, e [ 2 ] =-0.1322 , e[3]=0. 2856,
=-2.646, f [2]=-1.5804, f[3]=8 . 04 3 ,
=-0.03322, b[2]=-0.00118, b [ 3 ] =-0. 08 52 ,
=0.0610, C[2]=-0.0172, C[3]=-0.01803,
d[0][1]=0.0254, 
d[0][4]=0.1396; 
d[l][2]=0.0141, 
d [2][0]=0.0142,
[ 2 3 [ 3 ] =-0. 4987 , 

d[3][1]=—0.0103, 
d[3][4]=0.0346 ; 
d[4][2]=-0.0175,

d[0][2]=-0.0946, 
d [1][0]=-0.1375, 
d[l][3]=-0.5549, 
d[2][l]=-0.0246f 
d[2][4]=0.0529 ; 
d[3][2]=-0.0067, 
d [4][0]=-0.0322, 
d[4][3]=-0.4508,

getset dat();

loop:

(m)
(C)

printf("Output state x file name:");
gets(strout);
iop=fopen(strout,"w");
k=0 ;
sample=0.0 ; 

setfreq(20);
getset_dat();

install(); 
das8set();
if(k<n)

{speedchk();
Xk[0]=int_volt(int_in[0]);
Xk [ 2 ]=int_volt(int_in[1]); 
x[0]=Xk[0]/10.0;

'/
x[2]=Xk[2]/10.0;

/* Position of beam is meter 
/* Angle of beam is degree

x[l]=(x[0]-xx[0])*samp_freq; 
x[3]=(x[2]—XX[2])*samp_freq; 
fprintf(iop,"%0.4f %0.4f

\n",sample,x[0],x[l],x[2]); 
for (i=0;i<5;i++)

{ if (f[i]>=0.0){ 
sgnf[i]=l.0;
}else
sgnf[i]=-1.0;

%0.4f %0.4f
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{ sgnc[i]=1.0;
}else
{sgnc[i]=-l.0;
}

>

if(x[l]>0.0)
{x[0]=-fabs(x[0]);
>else
{x[0]=fabs(x[0]);
>if(x[0]>x_lim)

{ x[0]=x_lim;
}else
{ if(x[0]<-x_lim)

{ x[0]=-x_lim;
}else
{ x[0]=x[0];
}

>if(x[2]>angle_lim)
{ X[2]=angle_lim;
}else
{ if(x[2]<-angle_lim)

{ X[2]=-angle_lim;
}else
{

X [ 2 ] = x [ 2 ] ;
}

}

if(x[l]>0.1)
{

>

}

i f ( c [ i ] > = 0 . 0 )

X[ 1 ] = 0 . 1 ;
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else
{ if(x[l]<-0.1)

{ x[l]=-0.1;
}else
{

x [ 1 ] = x [ 1 ] ;
>

>if(x[3]>1.0)
{ x[3]=1.0;
}else
{ if(x[3]<-1.0)

{ x[3]=-1.0;
>else
{ x[3]=x[3];
}

}x[4]=0.5 ;
/*—  Output State Evaluation In Evaluation Network  */

for(i=0;i<5;i++)
{ tempi1=0.0; 

temp22=0.0;
for (j=0;j<5;j++)
{ tempi1 += a[i][j]*x[j]; 

temp22 += a[i][j]*xl[j];
} if(templl>6.0)

{ y2[i]=l.O;
}else
{ if (templl<-6.0)

{ y2[i]=o.o;
}else
{

y2[i]=1.0/(1.0+exp(-1.0*templl));
>

}
if(temp22>6.0)
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{y22[i]=1.0;
}else
{if (temp22<-6.0)

{ y22[i]=0.0;
}else
{ y22[i]=1.0/(1.0+exp(-1.0*temp22));
}

} v=c[i]*y2[i]+b[i]*x[i]; 
w=c[i]*y22[i]+b[i]*xl[i];

}

/* ----  Action network: Failure Signal Plus Change In
Evaluation Network 

 */

if(fabs(Xk[2])>=0.1 ¡[ fabs(x[0])>=0.01)
{ fail_num +=1; 
k_fail=0; 
r=-l.0; 
rl=r-w;

}else
{ if(k!=0)

{ r=0.0 ;
rl=r+gama*v-w; /*w=v[t,t], v=v[t,t+l]

* / k_fail+=l;
}

>

/ * -------  Modification In Evaluation------------ */

f o r ( i = 0 ; i < 9 ; i++)
{ if(i<5)

{ c[i]+=beida*rl*y22[i];
}else
{ b[i]+=beida*rl*xl[i-5];
}

>
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{ for(j=0;j<5;j++)
{

a[i][j]+=beidah*rl*y22[i]*(1.0-y22[i])*sgnc[i]*xl[j]; 
}

>

/*----------- Output Action--------------- */
for (i=0;i<5;i++)
{ temp2=0.0;

for (j=0;j<5;j++)
{ temp2 += d[i][j]*xl[j];
}if(temp2>6.0)

{ z[i]=1.0;
}else
{if(temp2<=-6.0)
z[i]=0.0;
}else
{z[i]=1.0/(1.o+exp(-l.0*temp2));
>

>
}s=0.0;

for(i=0;i<5;i++)
{ sl=f[i]*z[i]; 
s2=e[i]*xl[i]; 
s+=sl+s2;

}if(s>6.0)
{p=l.0;
}else
{if(SC-6.0)

{ p=0.0;
}else
{

f o r  ( i = 0 ; i < 5 ; i + + )

p = l . 0 / ( 1 . 0 + e x p ( - s ) ) ;
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}

{
q=l;

}else
{ q=o;
}ball_vel = (ball_pos - old_pos)*samp_freq;

push =p*(ball_pos + ball_vel); 
if(push>2.0) push=2.0; 
if(push<-2.0) push=-2.0;

volt_dac(push,0); 
xx[0]=x[0],xx[2]=x[2]; 
old_pos=ball_pos;

/*------------ Output Action Modification-------------
* /

for(i=0;i<9;i++)
{ if(i<5)

{f[i]+=louf*rl*(q-p)*z[i];
>else
{e[i]+=loue*rl*(q-p)*xl[i-5];
}

}for(i=0;i<5;i++)
{ for(j=0;j<5;j++)

{

d[i][j]+=louh*rl*z[i]*(1.0-z[i])*sgnf[i]*(q-p)*xl[j];
>

>

xl[0]=x[0],xl[1]=x[1]/xl[2]=x[2],xl[3]=x[3],xl[4]=x[4],dl[i
][j]=d[i][j];

k++;
sample+=0.05; 
goto loop;

}volt_dac(0,0); 
stop() ; 
fclose(iop);

}

}

i f ( p > = 0 .5)
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