
Application of Neural Network in Control

of a Ball-Beam Balancing System

by

Yuhong Jiang

A thesis submitted to

DUBLIN CITY UNIVERSITY

for the degree of

Master of Engineering

Supervisor: Dr. Charles McCorkell

School of Electronic Engineering

DUBLIN CITY UNIVERSITY

November 1991

I declare that the research herein was completed by the undersigned and has not been

submitted for a degree to any other institutions.

Date: / 4 D e c .

ACKNOWLEDGEMENT

I wish to express my sincere thanks to my supervisor, Dr. Charles McCorkell for the

continued guidance and support throughout the research and his patient advice and

encouragement dunng the preparation of the thesis.

I would also like to thank the staff members in the School of Electronics Engineering

at Dublin City University, especial Dr J Ringwood for his advice and assistant on some of

the programming Last, but not least, my sincere thanks to John Whelan for his help in the

instrumentation some of the experimental work, and David Condell, who helped in the

installation and maintenance of the hardware involved

Summary

Neural networks can be considered as a massively parallel distributed processing

system with the potential for ever improving performance through dynamical learning. The

power of neural networks is m their ability to learn and to store knowledge. Neural

networks purport to represent or simulate simplistically the activities of processes that occur

in the human bram. The ability to learn is one of the main advantages that make the neural

networks so attractive. The fact that it has been successfully applied in the fields of speech

analysis, pattern recognition and machine vision gives a constant encouragement to the

research activities conducted m the application of neural networks technique to solve

engineering problems. One of the less investigated areas is control engineering. In control

engineering, neural networks can be used to handle multiple input and output variables of

nonlinear function and delayed feedback with high speed. The ability of neural networks to

control engineering processes without prior knowledge of the system dynamic very appealing

to researchers and engineers m the field.

The present work concerns the application of neural network techniques to control a

simple ball-beam balancing system. The ball-beam system is an inherent unstable system, in

which the ball tends to move to the end of the beam. The task is to control the system so

that the ball can be balance at an location of the beam within a short penod of time, and the

beam be kept at an horizontal position.

The state of the art of neural networks and their application in control engineering has

been reviewed. The computer simulation of the control system has been performed, using

both the conventional Bass-gura (chapter 3) method and the neural network method. In the

conventional method the system equations were established using the Lagrangian vanational

principle, and Euler method has been used to integrate the equations of movement.

Two-layered networks have been used m the simulation using neural networks, one

being the action network and the other being the evaluation network. The evaluation network

evaluates the system using the previous information and the action network actuates the

controller according this evaluation. The error back-propagation and temporal difference

algorithms have been used in the neural networks.

The implementation of both the conventional and the neural networks control systems

have been earned out on the ball-beam system in the Control Laboratory m School of

Electronics Engineenng, Dublin City University. The control work was performed using a

80386-based personal computer system. The neural networks system, which is a parallel

processing system in nature, has been implemented with a serial computer. The results and

comparison show that both m simulation and the expenments, the neural networks system

performed favourabl compared with the more established conventional method. This is very

encouragmg since in the implementation of neural networks system the system dynamics is

not necessary. It is the author’s believe that should the neural network system be

implemented using hardware, conserving its parallell processing characteristics.

The general concept and types of neural networks are explained in Chapter 1. The

common algorithms used by neural nets are also presented m this chapter. At the end of this

chapter the aim of the present work has been outlined and previous work reviewed. Chapter

2 and 3 deal with the simulation of a ball-beam system usmg conventional method and neural

network technique, respectively. The implementation of both the control method has been

presented m Chapter 4. Chapter 5 draws the conclusions and supplies the author’s vision of

future work in the field. A list of reference has been given in the of the work.

CONTENTS

1.1 Concept and Bnef History of Neural Networks.. 1

1.11 Bnef h istory 1

1.1.2 Artificial neural network.. 3

1.1.3 Basic aspects and charactenstics of artificial neural learning . . . 8

1.1.4 Construction 10

1.1.5 Application disciplines . . . 11

1.2 Learning Algonthms .. 13

1.2 1 Supervised learning algorithms... 13

1.2.1.1 The perception convergence procedure learning 14

1.2.1.2 Back-propagation learning 14

1 2.2 Unsupervised learning algonthm s.. 18

1 2.2.1 Topology-preserving feature maps 18

1.2.2.2 Adaptive resonance theory.. 19

1.2.2.3 Development of feature-analyzing c e l l s 19

1 2.2.4 The associative reward-penalty learning............................ 20

1.2 2.5 Reinforcement-companson learn ing 21

1.3 Types of Neural Network... 26

1.3.1 Associative search network.. 26

1.3.2 Hopfield neural network.. 27

1.3 3 Multi-layers perception.. 29

CHAPTER 1 INTRODUCTION ... 1

i

1.4 Application of Neural Networks in Control Engineenng............................ 29

1.5 Present W o rk ... 32

CHAPTER 2 SYSTEM MODELLING... 35

2.1 Instrumentation.. 36

2.2 The Equations of Motion of the System ... 39

2.3 Calculation of Moment of Inertia for the Ball and the Beam 45

2.4 Other System Parameters............................ 48

CHAPTER 3 SIMULATION OF CONVENTIONAL AND NEURAL NETWORK

CONTROLLERS... 49

3.1 State Feedback C ontrol.. 49

3.1.1 The continuous-time and discrete-time open-loop m odels.............. 50

3.1.1.1 System equations.. 50

3.1 1.2 System model ... 50

3.1 2 The closed-loop discrete-time model.. 52

3.1.3 Results .. 55

3.2 Neural Network Feedback C ontrol.. 59

3.2.1 The simulation of the p la n t ..60

3 2.2 Structure of the neural networks and the learning algonthms . . 62

3 2.3 Flow chart of the control program .. 68

3.2 4 R e su lts .. 68

3.3 Compansons and D iscussions...84

u

CHAPTER 4 IMPLEMENTATION OF CONVENTIONAL AND NEURAL

NETWORK METHODS...86

4.1 Instrumentation and procedures ... 86

4.2 Conventional Control System......................... 87

4 2 1 Control process .. 87

4 2.2 Results89

4 3 Application of Neural Network Feedback... 93

4.3.1 Neural networks learning algorithm s... 93

4.3.2 Flow chart 93

4.3.3 R e su lts .. 93

4 3 3 1 First and second training runs.. 93

4.3.3.2 Third to tenth training runs 93

4.4 Comparison of State Feedback and Neural Network Control Results . . . 96

4 5 Discussions ..105

CHAPTER 5 CONCLUSIONS ..107

5.1 System Modelling and Coefficient Measurements 107

5.2 Simulation and Implementation of Conventional M ethod..................................108

5.3 Simulation and Implementation of Neural Network M ethod............................ 108

5.4 Further work ..109

Reference ...112

Appendix A

Appendix B

Appendix C

in

LIST OF FIGURES

Figure 1.1 One neural node, x, is input, y is output and w, is the connection weighflsO

Figure 1.2 Threshold functions.. 11

Figure 1.3 A single-layered neural network ... 12

Figure 1.4 Three layers perceptron with N continuous values input . . . 1 5

Figure 1.5 Network construction... 22

Figure 1.6 Network construction... 24

Figure 1.7 Associative search netw ork.. 26

Figure 1.8 Hopfield neural network..28

Figure 1.9 The ball beam balancing sy s te m .. 33

Figure 2.1 The ball-beam apparatus (the actuator)... 35

Figure 2.2 The ball-beam apparatus (full v ie w) .. 37

Figure 2.3 The instrumentation figure... 38

Figure 2.4 The ball and beam system configuration... 39

Figure 2.5 The ball position measuring sy s te m .. 40

Figure 2.6 The computation of the absolute translational velocity of the ball . 41

Figure 2.7 The determination of the absolute velocity of the ball 42

Figure 2.8 The determination of angular velocity of the beam 42

Figure 2.9 The geometrical dimension of the beam, bj =29.98, b2=43.87, b3=4 5,

b4=21.48..46

Figure 2.10 The geometry of element M4 and M5, see Figure 2 . 9 47

Figure 2.11 The geometry of M l and M2 shown m Figure 2.4 46

IV

Figure 3.2 The Simulation using conventional method. Initial position1 x=0.1 m,

a=0.5 rad .. 56

Figure 3.3 Simulation using conventional method. Initial position: x=-0.5 m, a= -0 1

rad...56

Figure 3 4 Simulation using conventional method. Initial position: x=-0.5 m, a=-0.5

rad... 57

Figure 3.5 Simulation using conventional method. Initial position: x= 0 m, a = 0 5

rad... 57

Figure 3.6 Simulation using conventional method. Initial position. x=0.58 m, a = 0 5

rad...58

Figure 3.7 Simulation using conventional method. Initial position* x=2 m, a =2 rafl8

Figure 3 8 Two-layer neural networks used in the control system......................... 62

Figure 3.9 Evaluation network connectivity .. 63

Figure 3.10 Action network connectivity... 63

Figure 3.11 The flow chart for programming the neural network simulation . . 67

Figure 3.12 The first training run... 70

Figure 3.13 The second training run. Initial position: x=-0.1 m, a =0.5 rad. . 70

Figure 3.14 The second training run Initial position x=-0.5 m, a=-0.1 rad. . 71

Figure 3.15 The second training run. Initial position: x= 0 m, a=0.058 rad. . 71

Figure 3.16 The third training run. Initial position: x=0.1 m, a =-0.1 rad. . . 72

Figure 3.17 The third training run. Initial position: x=0.3 m, a =-0.3 rad. . . . 72

Figure 3 18 The third training run. Initial position* x=0.3 m, a =0.3 rad. . . 73

Figure 3.1 System closed-loop state m od el... 53

Figure 3.19 The fourth training run. Initial position: x=0.1 m, a = 0 .5 rad. . . 73

Figure 3.20 The fourth training run. Initial position: x=-0.5 m, a = -0 .1 rad. . 74

Figure 3.21 The fourth training run. Initial position: x=0.5 m, a =-0.5 rad. . . 74

Figure 3.22 The fourth training run. Initial position: x=-0.58 m, a =0.5 rad. . 75

Figure 3.23 The second training run. Initial position: x=-0.5 m, a=-0.5 rad. . 75

Figure 3.24 The second training run. Initial position: x=0 m, a = 0 rad...... 76

Figure 3.25 The second training run. Initial position: x=0.58 m, a =0.5 rad. . 76

Figure 3.26 The second training run. Initial position: x=0.58 m, a =0.5 rad. . 77

Figure 3.27 The third training run. Initial position: x=0.1 m, a =0.5 rad. . . . 77

Figure 3.28 The third training run. Initial position: x=0 m, a= 0 rad........ 78

Figure 3.29 The third training run. Initial position: x=0.58 m, a=0.5 rad. . . 78

Figure 3.30 The fourth training run.. 79

Figure 3.31 The neural network and conventional simulation comparison. Initial

position: x=0.5 m, a=-0.5 rad... 79

Figure 3-32 The neural network and conventional simulation comparison. Initial

position: x=0 m, a =0.5 rad.. 80

Figure 3-33 The neural network and conventional simulation comparison. Initial

position: x=0.58 m, a= 0 rad.. 80

Figure 3-34 The neural network and conventional simulation comparison. Initial

position: x=-2 m, a= 2 rad.. 81

Figure 3-35 The neural network and conventional simulation comparison. Initial

position: x=0.5 m, a=-0.5 rad... 81

Figure 3-36 The neural network and conventional simulation comparison. Initial

condition: x= 0 m, a =0.5 rad... 82

Figure 3-37 The neural network and conventional simulation comparison. Initial

Figure 3-38 The neural network and conventional simulation comparison. Initial

position: x=-2 m, a =2 rad... 83

Figure 4.1 The control system structure... 87

Figure 4.2 Initial position: x=0.407 m... 91

Figure 4 3 Initial position. x=-0.125 m.. 91

Figure 4 4 Initial position: x=0 164 m... 92

Figure 4.5 Initial position: x =-0.485 m... 92

Figure 4-6 The flow chart for programming the neural network controller. . . 95

Figure 4 7 The first and second training run using neural network control. Initial

position: x =0.453 m, a =0.017 rad.. 97

Figure 4.8 The first and second training run using neural network control. Initial

position: x=-0.269 m, a=-0 349 rad .. 97

Figure 4 9 The first and second training run using neural network control. Initial

position: x=0.294 m, a = 0 079 rad.. 98

Figure 4.10 The first and second training using neural network control. Initial position:

x=-0.368 m, a=-0.001 rad... 98

Figure 4.11 The third training run using neural network control. Initial position:

x=0.444 m, a=-0.052 rad... 99

Figure 4 12 The third training run using neural network control Initial position: x=-

0.5 m, a=-0.204 rad.. 99

Figure 4.13 The third training run using neural network control. Initial position:

x =0.463 m, a =-0.039 rad...100

position: x=0.58 m, a = 0 rad... 82

Figure 4.14 The third training run using neural network control. Initial position*

Vll

Figure 4.15 The first and second training run in neural network control....... 101

Figure 4 16 The first and second training run in neural network control. . . . 101

Figure 4 17 The third training run in neural network co n tro l................... 102

Figure 4.18 The neural network and conventional control comparison. Initial position:

x=0.4 m...102

Figure 4.19 The neural network and conventional control comparison. Initial position:

x=-0.12 m..103

Figure 4 20 The neural network and conventional control comparison. Initial position:

x=0.16 m...103

Figure 4 21 The neural network and conventional control comparison. Initial position:

x=-0.4 rad... 104

x=0.160 m, a=-0.070 rad..100

viii

NOMENCLATURES

Position of the ball on the beam.

Angular position of the beam relative to the horizontal plane.

Velocity of the ball along the beam.

Angular velocity of the beam.

The absolute angular velocity of the ball.

The absolute velocity of the ball.

Co-energy.

Potential energy.

Lagrangian function.

Beam length.

The distance of the spring.

Moment of inertia, beam.

Moment of inertia, ball.

Ball rolling radius.

Ball rolling radius.

Ball mass.

Mass density.

Stiffness of the spnng.

t Sample time

F (i) Action force applied to the beam.

g Gravitational acceleration.

j The system co-content.

b Damp factor.

a t The close-loop eigenvector of the system, (i=l,2,3,4)

at The characteristic polynomial of the system, (i= l,2 ,3 ,4)

k The feedback vector.

r' A failure signal from the system.

rx A failure signal from the evaluation network output.

aljt bt, cx The weight value of the evaluation network.

di}, ex, f x The first layer output of the action network.

P, PA, pe, pA, p, y The parameters of the neural network

learning algorithms.

XI

CHAPTER 1 INTRODUCTION

1.1 Concept and Brief History of Neural Networks

An artificial neural network, as its name implies, is a network of artificial

"neurons". These neurons, sometimes knows as nodes, are computational units which

can perform certain simple computations, thus enabling the network as a whole to

represent or simulate simplistically the activities of processes that occur in the human

brain. Essentially, neural networks can be considered as a massively parallel distributed

processing system with the potential for ever improving performance through dynamical

learning. The power of neural networks is in their ability to learn and to store

knowledge. They can be used to handle multiple input and output variables of nonlinear

function, and delayed feedback, with high speed. Applications of artificial neural

networks are mostly found in the area of speech analysis, pattern recognition, but with

the development of fast architectures it is also very attractive to introduce the technique

into control engineering.

1.1.1 Brief history

The initial steps towards artificial neural networks or simply "neural-like

networks", which were motivated by a paper of McCulloch and Pitts (1943), primarily

concerned computational and representational issues. The first major contribution on

1

learning in biological neural networks was made by Hebb (1949), who suggested that

learning results from the formation of neuron assemblies based on the strengthening of

connections between simultaneously firing neurons. Pioneering work on artificial neural

networks learning was done by Rosenblatt (1958, 1962) who introduced the perceptrons

and demonstrated experimentally that these neural-like networks in principle are

capable of learning. Complex networks were poorly understood at that time, and

research mainly focused on the structurally restricted elementary perceptrons. Neural

network research was popular in the early 1960’s due mainly to the contributions of

Rosenblatt (1959) and Widrow and Hoff (1960). It has been proven by Nilsson (1965)

that one of the learning procedures proposed by Rosenblatt (1962), the perception

convergence procedure, achieves the desired input-output behaviour of the elementary

perceptions, if they at all can achieve it. Minsky and Papert (1969) provided an

excellent mathematical analysis of these restricted networks; m particular, they proved

that these networks have several strong computational limitations. Among the many

contributors to the field Grossberg (1967,1982) and Fukushima (1975) have maintained

research efforts since the sixties with continued contributions. These limiting results,

the lack of learning procedures for networks being more complex than elementary

perceptions, and the growing interest in symbolic information processing caused a rapid

decrease m artificial neural networks research.

Smce about 1980, due to the advances in VLSI implementation techniques and

the development of parallel computers, this situation has changed completely. Presently

artificial neural networks are the subject of most intensive research activities, and one

of the major goals is the development of learning procedures that could work efficiently

2

even for large real-time tasks.

Among those who helped the new resurgence of activities are Hopfield and Tank

(1986, 1985). Rumelhart and Mcclelland and their parallel distributed processing group

(1986), Hecht-Nielsen (1986) and his pioneering work m neuro-computers and Kosko

(1987). The renewed interest was due, in part, to powerful new neural models, the

multi-layer perception and the feedback model of Hopfield, and to learning methods

such as back-propagation, but it was also due to advances in hardware that have brought

within reach the realization of neural networks with very large numbers of nodes.

In the field of control engineering, there have been numerous efforts to develop

more heuristic approaches to control. Documented results are mostly simulations of the

controlled plant and neural network. In 1990, Kraff and Campagna reported a

comparison between CMAC neural network control and two traditional adaptive control

systems. Sannev and Akin in 1990 reported neurmorphic pitch attitude regulation of an

underwater telerobot. The application of neural networks m the balancing of a inverted

pendulum was made by Anderson (1987, 1988, 1989). The neuron-like adaptive

elements that can solve difficult learning control problems was made by Barto, Sutton,

and Anderson (1983).

1.1.2 Artificial neural network

Artificial neural network (ANN) can be considered as massively parallel

distributed processing systems with the potential for ever-improving performance

through dynamical learning. They allow non-algonthmic information processing, i.e.,

3

no "programming" is required as in more conventional algorithmic signal processing.

The ultimate object of artificial neural network is to closely simulate the function of the

human neural system. Indeed multi-layered networks have been shown to develop very

similar structures to existing human physiological structures with no human interaction

or guidance. Also, the development of fast architectures makes implementation m real

time feasible unlike artificial intelligence techniques which are infamous for their

lengthy computation times.

One the objectives of intelligent control is to design a system with acceptable

performance characteristics over a very wide range of uncertainty The system must be

robust enough to deal with unexpected occurrences, large parameter variations,

unquantified data, or extremely large quantities of data. Besides the approaches of

expert systems and fuzzy logic, an increasingly popular approach is to augment control

systems with artificial neural networks.

An artificial neural network (ANN) is a system consisting of simple processing

elements called "units" or "nodes" that interact using weighted connections. It can

interact with its environment, and it may be capable of learning. A neural network can

be defined by its processing behaviour, its interface to the environment, its structure,

and its learning procedure.

The processing behaviour of an artificial neural network is defined by the

computations performed by its units and their temporal coordination. Generally, a unit

calculates three functions: an input function producing the unit’s input value; an

4

activation function producing the unit’s activation value; and an output function

producing the unit’s output value. In most neural network models only one function

called "transfer function" is assumed to be equal for all units.

In the case of stochastic transfer functions the output of an unit depends on the

unit’s input in a probabilistic fashion, and changing the weights means changing the

probability of the output values.

Most widely used transfer functions are the linear function, the sigmoid function

and the stochastic function. Denoting xt as the inputs, y(as the outputs, wtJ as the

connection weights, and N as the number of inputs, the three transfer functions can be

briefly outlined here In the linear function, the output of a node is the linear

combination of all the inputs,

In the function the output is assumed unit if it is greater than zero and zero

otherwise, i.e.

The stochastic function is used to describe the undetermmistic nature of the real

N

(1-1)

1
(1-2)

The final values of yt are computed according to the following

1 if yt x>.
i f otherwise;

y t = (1-3)
0

T

world problem and is given as
r

1 (1-4)
with probability pt=---------

l+ex‘/T
where

x = -b t +Twt} y} (1-5)

and bt and T are real-valued parameters. The variable bt is sometimes called the

threshold or bias of xt. This threshold can be eliminated by giving each unit an extra

input line with weight -bt and constant input 1.

0, with probability 1-p,

Linear networks, which build up the simplest class of networks, show several

computational and representational limitations (Rumelhart, Hmton and McClelland,

1986) However, despite these limitations, linear networks exhibit some interesting

properties and they are useful for a number of theoretical studies. An extensive analysis

of linear networks is provided by Kohonen (1977, 1988). Non-lmear networks

overcome these limitations of the linear ones. Furthermore, with regard to prepositional

logic, for any logical expression there is a network of binary threshold units

representing it (McCulloch and Pitts, 1943). With regard to automata theory, which was

mainly influenced by the work of McCulloch and Pitts, the class of threshold-umt

networks and the class of finite automata are equivalent (Kleene, 1956). Recently it has

been proven that every mappmg from external input to output patterns can be

implemented by a finite three-layered network (Hecht, 1986, Homik, Stinchcombe and

White, 1989).

6

The net-environment interaction results m the distinction between input units,

those receiving input from the environment, output units, those providing output to the

environment, and hidden units, those being neither input units nor output units Both

the input and output are called visible units; the set of all visible units, which may be

time-varying, make up the network’s interface to its environment.

The structure (topology, architecture) of a neural network is defined by the

arrangement of its units, that means, by the set of all weighted connections between the

units. Several kinds of structure exist for neural networks.

A layered or hierarchical network is one whose units are hierarchically

organized mto disjoint layers. Based on this hierarchical ordering, it is usual to

distinguish between lower and higher layers. A bottom-up (top-down) network is a

layered network whose umts only affect units at the same and higher (lower) layers, and

an interactive network is one having both bottom-up and top-down connections. A

feed-forward network is a layered network whose units only affect umts at higher

layers, whose lowest layer is an input layer, whose intermediate layers are hidden

layers, and whose highest layer is an output layer. A perception is a feed-forward

network consisting of binary threshold units; a one-layered perception is called "

elementary perception". A recurrent network or cyclic network or network with

internal feedback is one whose external output may affect its external mput. A

symmetric network is a network being both symmetrically connected (c exists if and

only if cJt exists) and symmetrically weighted(wi; = w}t) .

7

An artificial neural network learns by means of appropriately changing the

weights of the connections and external input lines. How this is done is described by

its learning procedure.

1.1.3 Basic aspects and characteristics of artificial neural learning

The central point of artificial neural learning (ANL) is to form associations

between patterns. There are two variants of the association: auto-association and

hetero-association. An auto-association is one in which a pattern is associated with

itself. The goal of the auto-association is pattern completion: After the network has

learned a pattern, whenever a part of it is presented to the network, the network has

to produce the total pattern. A hetero-association is one in which two different patterns

have to be associated. The goal of this is that whenever one of the two associated

patterns is presented to the network, the network supplies the other one. Learning that

can be viewed as special variants of the pattern association are regularity detection and

pattern classification/recognition. Other variants of artificial neural learning, apart from

the association, are the mapping and the modelling. Due to the former, a

multidimensional mapping from the input to the output pattern has to be constructed.

Due to the latter the network’s environment has to be internally modelled (where the

information about the environment will be encoded in the weights).

Artificial neural networks have shown some interesting and powerful features

in building up and representing associations (mapping, environment models). In

particular, artificial neural networks are capable of implicit generalization to new

associations (see McClell, Rumelhart and Hinton, 1986, for some general considerations

8

and Baum and Haussler, 1989, for a formal analysis of generalization and

representation), thereby the patterns themselves are not stored but the connection

strengths that enable the network to recollect the associated pattern are, even if it is

common to speak of "storing a pattern".

A neural network learns by means of appropriately changing the weights, and

this weight changing or weight adaptation happens during the so-called training phase

or learning phase. In this phase the external input patterns that have to be associated

with specific external output patterns or specific activation patterns across the network’s

units are presented to the network. The set of all these external input patterns is called

the training set, and a single input pattern is called a training instance. The network

may receive environmental learning feedback, and this feedback is used as additional

information for determining the magnitude of the weight changes that are necessary for

representing the desired associations. Typically the weight changes can be done in

parallel, and this makes up one of the main characteristics of neural learning; Neural

learning inherently is parallel distributed learning.

The change of the weights, in comparison with the change of the units activation

states, occurs on a slow time scale. Hence, one can distinguish two kinds of network

dynamics: slow dynamics constituted by the process of updating the weights and fast

dynamics constituted by the process of updating the activation values of the units.

1.1.4 Construction

Neural networks are composed of many units that simulate the properties of real

9

I n p u t O u t p u t

x w

y

Figure 1.1 One neural node, x, is input, y is output and w, is the connection weights

neurons in the central nervous system Each unit or node can have many inputs and

usually a single output. The input may be either inhibitory or excitatory and a node

produces an output relative to a weighted sum of the inputs. The output is usually a

binary state (on or off) although more complicated networks use graded outputs.

Figure 1.1 shows a single node, at which the inputs x t are passed through a non-

lmeanty function.

wt is the weight from input 1 at time t.

Qf is the threshold m the output node (small random values) for typical non­

linear transformations.

Computational element or node which forms a weighted sum of N mput and

passes the result through a non-lmeanty. Three representative nonlmeanties are shown

m Figure 1.2.

N - Ì

y = f (0 = / (£ w , x , - 0') (1-6)

where

10

f (l) f (t) f / t)

H ard l im ite r T h re sh o ld lo g ic S ig m o id

Figure 1.2 Threshold functions

A neural network is composed of many such nodes connected together m a

certain topology. The interconnection topology is important because its complexity

determines how easily the weights may be adjusted for learning. Singly layered units

consisting of only input and output nodes, as shown in Figure 1.3, have been proven

to be unable to perform certain important calculations. Multi-layered networks with

hidden layers between the input and output nodes, as shown in Figure 1.4, can

overcome these problems.

1.1.5 Application disciplines

Artificial neural network research receives interest from several disciplines. For

example, finding algorithms for determining the connections and weights of a neural

networks to solve a problem, mechanizing networks using microelectronic or optical

approaches and investigating the operation and structure of biological neural networks.

Much of the early algorithms work has been m computationally intensive areas of signal

processing, such as adaptive pattern recognition, real-time speech recognition, and

image interpretation. Computer and cognitive scientists have been pursuing the

in p u t o u t p u t

X

X

X

X

y
y
y

yn

Figure 1.3 A single-layered neural network

identification of intelligence and massively parallel distributed information processing

performed by biological systems.

In system and control engineering, neural networks are seen as an alternative

technology by which information processing may be accomplished quickly and easily.

To this end they have predominantly found application in patten recognition and signal

processing (Astrom, 1987). There are also areas that are computationally intensive,

such as real-time identification and control of large flexible structures m aerospace or

robotics.

1.2 Learning Algorithms

Neural networks have the ability to learn to learn and store knowledge. Both of

these important functions are achieved through adaptation of the synaptic weights

12

assigned to each node’s input. The weights are adjusted by a learning algorithm.

Learning algorithms fall into three general categories:

(1) Supervised learning

(2) Unsupervised learning

(3) Associative reinforcement

i

In this work, all error back-propagation algorithm (Lippmann, 1987) and a

supervised learning method are used in action and evaluation networks. The

reinforcement learning method (Barto and Sutton, 1983, Anderson, 1987) and

association reinforcement are used m the action network. Temporal-difference (TD)

learning method (Anderson, 1987) supervised learning is used in evaluation network.

1.2.1 Supervised learning algorithms

The more popular supervised learning techniques employ a "teacher" who

presents the desired output to the network for a given input pattern. For example, the

perceptron convergence procedure, the back-propagation and the Boltzmann learning".

1.2.1.1 The perceptron convergence procedure learning

In the 1950’s and 1960’s Rosenblatt investigated the learning behaviour of

perceptrons Rosenblatt (1962). Much of his work deals with learning procedures for

elementary perceptrons; one of these procedures, which is nowadays known as the

perceptron convergence procedure, performs weight changes for each of its units as

follows:

13

- t y. (+ x y) i f output is 1 (0) but should be 0 (1)

0 i f output is correct

where t is the learning rate and dt is the desired output value of unit u,.

The well-known perceptron convergence theorem states that there is at least one

set of weights such that the elementary perceptron works correctly. This theorem says

nothing about the existence of such a "correct set of weights". If there is no such set

then the perceptron convergence procedure might lead to unreasonable results; (Hinton,

1987) This is because the perceptron convergence procedure ignores the magnitude

of the error produced by the elementary perceptron.

1.2.1.2 Back-propagation learning

The technique of back-propagation (BP) or error propagation was developed by

(Werbos, 1974). Independently of Werbos’ work, and Hinton and Williams(1986) all

applied this technique to the task of learning in artificial neural networks. The word

"back-propagation" refers to a specific type of learning procedure for supervised

learning that is intensively studied within ANN research. The following consideration

focus on the elementary version of back-propagation, back-propagation for semi-lmear

feed-forward networks.

The back-propagation method involves two phases for each input-output case to

be learned, see Figure 1.4 In the first phase, the "forward pass", an external input

pattern is passed through the network from the input units towards the output units,

(1-7)

14

Input Hidden layers

y.i y ji

Output

yi

ya

y.m

Figure 1.4 Three layers perceptron with N continuous values input

adapting to an external output pattern. This output pattern is compared with the desired

external output pattern, and the error signal for each output unit is produced.

In the second phase, the "backward pass", the error signals of the output umts

are passed backward from the output units towards the input units. The error signals

for input and hidden units are evaluated recursively, i.e., iteratively for each next-lower

layer; to evaluate an error signal for an mput or a hidden umt the error signals of the

umts to which this unit is connected has to be taken mto consideration.

The back-propagation training algorithm is an iterative gradient algorithm

designed to minimize the mean square error between the actual output of a multi-layer

feed-forward perceptron and the desired output. It requires continuous differentiable

non-lmeanties. The following assumes that a sigmoid logistic non-lineanty is used

where the function f(zeta) is:

15

(1-8)

step 1:

Initialize weights and offsets.

Set all weights wy and node offsets to small random values 0.

step 2:

Present input and desired outputs.

Present a continuous valued input vector xo, xx, x2, xif_l and specify the

desired output d0, d1} d2 d,^.

step 3.

Calculate actual output yN.

Adapt weights

Use a recursive algorithm starting at the output nodes and working back to the

first hidden layer.

Adjust weights by

y, = / (* , " e .)

V m w j M x j ~ 0 a /)
(1-9)

step 4:

(f+1) = wl} (t) + |i 6y (1-10)
where

wy is the weight from hidden node i.

x x is either the output of node l or is an input.

16

H is a gain term.

If node j is an output node, then

6; = yj (1~?P (dj ~ y) (1_11)

If node is an internal hidden node, then

8; = i J (l - i 7) bk wjM (1-12)

Where

^ is the actual output.

dj is the desired output of node j.

k is over all nodes in the layers about node j.

Internal node thresholds are adapted m a similar manner by assuming they are

connection weights on links from auxiliary constant- valued input. Convergence is

sometimes faster if a momentum term is added and weight changes are smoothed by

wtj (f+1) = wtj (t) +\i Q jij + a (wtf (r) - wtJ (t -1»
(1-13)

(0 < a < 1)
(1-14)

(1-15)

step 5:

Repeat by going to step 2.

There are a lot of variations and extensions of the elementary version of back-

propagation, some of them are mentioned briefly below.

BP described above is only applicable to non-recurrent networks. It can be

applied also to recurrent networks by taking advantage of the fact that for every

5j is an error term for node j.

17

recurrent network there is a non-recurrent network with identical behaviour (for a finite

time); this approach, which is called "unfolding-in-time BP" or "BP through time", is

described in Rumelhart, Hinton and Williams (1986). Other extensions of back

propagation to learning procedures for recurrent networks are presented in the results

of Almeida (1987), Pineda (1987) and Rohwer (1987).

The major problem with BP is that it requires much time to learn, and there are

various attempts to cope with this problem. This method aims at beginning with a

network having few units, and dynamically adding units to hidden layers whenever

gradient descent in the weight error surface happens too slowly.

1.2.2 Unsupervised learning algorithms

Unsupervised learning methods do not need a "teacher", they usually employ a

local gradient algorithm to adjust the networks weights based around the activity near

each particular node. For example, topology-preserving feature maps and adaptive

resonance theory, and development of feature analyzing cells.

1.2.2.1 Topology-preserving feature maps

Topology-preserving feature maps (TPFM) was developed by Kohonen (1982,

1988). This method has been used to the sensory modalities-visual area, auditory area,

somatosensory area, etc, and to the various operational areas-speech area, motor area,

etc.

Topology-preserving feature maps method has two phases. In the first phase, the

18

input pattern x=(xj, x2, x j at time t is located. Denoting the weight vector W as

W = (wt, w2, w j, the following is defined,

Where a is a positive scalar constant and | . |E is a distance function.

1.2.2.2 Adaptive resonance theory

The adaptive resonance theory (ART) was developed by Grossberg (1976,1978)

and it has been used in speech and visual perceptron. They have two networks, ART1

and ART2 networks. A mathematical analysis of the fast and slow dynamics of ART1

network and ART2 network is provided by Carpenter and Grossberg (1987).

1.2.2.3 Development of feature-analyzing cells

The concept of feature-analyzing cells (DFAC) was developed by Linsker (1986,

1988) and Stotzka and Maenner (1989). The method has been successfully applied in

the area of visual analysis. The method has been introduced to overcome the

constraints of the supervised learning that the exact performance of each node of the

network must be known for each training pattern. A type of network has been

developed which requires a "critic" instead of a "teacher", thus enabling the network

to adjust its performance according to the response from the critic. Methods of this

nature are collectively called the associative reinforcement. Some of the examples are

the associative reward-penalty method, the reinforcement-comparison method, and the

| X(t) - W \E = min (| x fl) - w fl) \K) (1-16)
i

In the second phase, the weight vector w;(t) is determined by

(1-17)

19

temporal-difference method.

The associative reinforcement learning is achieved by giving the system a "reward"

when the reinforcement signal indicates a success, and a "penalty" when the

reinforcement signal indicates a failure.

1.2.2.4 The associative reward-penalty learning

The associative reward-penalty (Ar.p) algorithms were used in control

engineering, pattern classification and system identification (Barto, 1987, Barto and

Anderson, 1985, Barto and Sutton, 1981, 1982). This method recognises that

environmental feedback may not be informative as to providing individualised

instruction to each adaptive element. A scalar evaluation signal (cntic) is used to assess

the general performance (reward/penalty) of the A^. This common scalar signal is

used by all of the elements to adapt their weights. The advantage of this algorithm is

that learning occurs without the need for a very knowledgable "teacher". A "critic" is

sufficient which can provide a success/failure indication of the result of an applied

action.

The Ar.p algorithm nodes output yk is

0 otherwise;
(1-18)

1 i f e l xk + i\k > 0;

Where

rjk are independent identically distributed random variables.

0 Kt are weight vector values.

20

Xk are input values.

Then

pk = 1 - i|r (-0[x) (1-19)

The weight vector is updated according to the following equation:

k Pk [1 "y* ~Pk] xk if rk = 0 (Penalty);

Pk Iyk ~Pk i xk if rk =1 (reward); (1-20)

Where 0 ¿1, pt > 0.

The Ar.p algorithm is local both in space and in time, as a consequence the \ . p

procedure is easy to implement. The Ar.p algorithm has been used for learning in

layered networks. A major problem with the A ^ procedure is its very slow speed o f

learning in case o f large networks. To overcome this, another type o f algorithm has

been developed, which is named the reinforcement learning algorithm.

1.2.2.5 Reinforcement-comparison learning

In the reinforcement-comparison learning (RCL) method the weights changes are

correlated with the result o f comparing the current reinforcement level with past

reinforcement levels. This method has been reported by Sutton in 1984.

Reinforcement-comparison learning has two methods: elementary method and

prediction method. Prediction methods can be divided into classical prediction

(reinforcement learning method) method and temporal-difference (TD) method.

1.2.2.5.1 Elementary methods for reinforcement comparison (Barto,

Anderson and Sutton, 1983, Barto and Sutton, 1981, Sutton, 1984) . This method

21

uses the difference between primary reinforcement signals received by the network at

different time step. The weight update rule based on the approach is

A % = T [r c - rP H y, - P, 1 yt d -21*

Where

X is the learning rate

r c is the current reinforcement signal

f P is the preceding reinforcement signal

P. is the probability that y, = 1.

1.2.2.5.2 The classical prediction (Reinforcement learning) method (Barto,

Sutton and Brouwer, 1981, Sutton, 1984).

i n t e r n a l

This method uses the difference between primary and predicted reinforcement

signals. A direct approach to reinforcement learning that is highly developed is the

theory of learning automata, which has been extensively developed since applications

were found in engineering. The weight update rule realizing a classical prediction

method is given by

7* = r - r
h e u r is tic p re d ic te d

This update rule has been successfully applied in the experimental studies

done by Sutton (1984)

The element’s output y(t) is determined from the input vector x(t)=(x!(t),

x2(t) xN(t)) as follows:

m = / 1 £ w,«) i/o * w] (1-23)
i-i

where b(t) is a real random variable and f is the following threshold function.

- 1, i f x<0, control dawn
fix) = (1-24)

+1, i f xzO, control up.
The weights w, are adjusted according to the following rules,

w,(i+l) = vv(i) + a r(i) et(i) (1-25)

For computational simplicity, we generate exponentially decaying eligibility

traces e, using the following linear difference equation:

efi+1) = 6 et(t) + (1 - 5) y(t) x t(t)
(1-26)

(0^5<1)
where

a is a positive constant determining the rate of change of w,

f(t) is a reinforcement value at time t.

e,(t) is the eligibility at time t of input pathways 1.

8 determines the trace decay rate.

Reinforcement learning involves two problems. The first problem is to construct

23

a cntic capable of evaluating plant performance in the way that is both appropriate to

the actual control objective and informative enough to allow learning. The second

problem is to determine how to alter controller outputs to improve performance as

measured by the critic.

1.2.2.5.3 The temporal-difference (ID) methods Barto, Sutton and

Anderson (1983) and Sutton (1984).

The temporal-difference methods, as shown in Figure 1.6, demonstrate some

important advantages over classical prediction method: they require less memory, all

more incremental and therefore easier to compute, and produce better predictions and

converge faster The temporal-difference methods learn associations among signals

separated m time, such as the ball-beam system state vectors and failure signals.

Through learning, the node output comes to predict the failure signal, with the strength

of the prediction indicating how soon failure can be expected to occur.

The failure signal is adjusted after each step by current system states. The

x s (t) w 3 (t)

r i pred ic tion

r failure signal

Figure 1.6 Network construction

24

change of prediction is dependent on the difference between the failure signal, current

system states and previous prediction.

In order to produce rA(t), the ACE must determine a prediction P(t) of eventual

reinforcement that is a function of the input vector x(t), we let

p(t) = E v,(f) x t(t) (1-27)
¿-1

and seek a means of updating the weights v, so that p(t) converges to an accurate

prediction. The updating rule we use is

v, (f+1) = v, (t) + p [r it) + y P (!) - p (i-1)] xt (t)
(1-28)

(= Ut(t))

where

0 is a positive constant determining the rate of change of v,.

r(t) is reinforcement signal supplied by the environment at time t.

U,(t) is the value at time t of a trace of the input variable x,.

X determines the trace decay rate (0 < A < 1).

j is node ACE’s output, this is a prediction value.

x t (f+1) xt (t) + (1-A.) x, (i) (1-29)

The ACE’s output, the improved or internal reinforcement signal, is computed from

these predictions as follows.

J (t)=r (t) = r (f) + y Pit) - p (i-1) (1-30)

1.3 Types of Neural Network

There are many different types of networks possible in artificial neural

25

networks and some of the more commonly encountered ones are briefly described

below.

1.3.1 Associative search network

Associative search networks (Barto, Sutton and Brouwer 1981) combine

scalar evaluation

y i

y2
recollection

y 3

Figure 1.7 Associative search network

associative memory with a process that searches for associations worth storing

according to an evaluation criterion. It is interesting that this can be done simply by

modifying the type of adaptive element used m the network. Figure 1.7 shows the

organisation of an ASN. The ASN and the environment interact m a closed loop. The

environment provides the ASN with a key, x±, at each discrete time step k. This results

in a recollection or output, yk, emitted from the ASN (yk e {0,1}). The result of the

action yk is evaluated and a reinforcement signal rk e {0,1} generated where 0 and 1

indicate "Penalty" and "Reward" respectively.

key

26

The output yk is:

0, otherwise

yk = ' (1-31)
1, i f 0[xk + \ik > 0;

Where /tk are independent identically distributed random variables, each having

distribution function let Pk denote Pr{ yk= l, xk=x }, then

The advantage of this algorithm is that the learning occurs without the need for a very

knowledgable "teacher", a "cntic" is sufficient which can provide a success/failure

indication of the result of an applied action.

1.3.2 Hopfield neural network

Hopfield network (Hopfield, 1982, 1984), as shown in Figure 1.8, can

be used as a content addressable memory, an associative memory, a classifier and to

solve optimization problem The operation of this network is described below.

The neuron state is assessed by

p k = Pr (0t x + Tit > 0) = l-\Jr (- e j x) (1-32)

The weight vector is updated accordmg to the following equation:

* Pk [I" yk ~Pk] **• i f rk = 0 (Penalty)

Pk t " Pt 1 xk- lf rk = l (reward) (1-33)

(¿1 , p k >0)

0 H -

l*J. (1-34)

Osi, js N -1 .

and the connection weights are updated by

27

J o y i

Figure 1.8 Hopfield neural network

where

0
V 2 2ZXjXi
i*0

*=;

i+j, (i * Q , jú N - l)

(1) the non-lineanty fn is a sigmoid curve

f(x) = l/[l+exp(-x)].

(2) wy are the connection weights from node i to node j.

(3) Xj (which can be +1 or -1) is the output of node i at time t.

(1-35)

The weights are determined by defining a quadratic energy function and adapting

the weights to minimise the energy It has been shown that the rate of convergence

toward a steady state is essentially independent of the number of neurons in the

network.

28

j

Multi-layer perceptron Lippmann (1987) are feed-forward networks with one or

more layers of nodes between the input and output nodes. These additional layers

contain hidden units or nodes that are not directly connected to both the input and

output nodes. A three-layer perceptron with two layers of hidden units is shown m

Figure 1.4.

Multi-layered perceptrons overcome many of the limitations of single-layer, but

were generally not used in the past because effective training algorithms were not

available. This has recently changed with the development of new training algorithms,

they have been shown to be successful for many problems of interest.

1.4 Application of Neural Networks in Control Engineering

The literature of neural networks in control system applications is expanding

rapidly. In 1988, Kawato et al reported on hierarchical neural network models for

voluntary movement with application to robotics. In order to control voluntary

movements, the central nervous system must solve the following two computational

problems at different levels.

(1) determination of a desired trajectory in the visual coordinates.

(2) generation of motor commands. Based on physiological information and

previous models, computational theories are proposed for the first two problems, and

a hierarchical neural network model is introduced to deal with motor command. The

application of this approach to robotics is outlined.

1.3.3 Multi-layers perceptron

29

In 1990, Kraff and Campagna reported a comparison between CMAC neural

network control and two traditional adaptive control systems. This article compares a

neural network-based controller similar to the cerebellar model articulation controllers,

a self-tuning regulator, and a Lyapunov-based model reference adaptive controller. The

three systems are compared conceptually and through simulation studies on the same

low-order control problem. Results are obtained for the case where noise is added to

the system, and for the case where a nonlinear system is controlled. Comparisons are

made with respect to closed-loop system stability, speed of adaptation, noise rejection,

the number of required calculations, system reaching performance, and the degree of

theoretical development. The results indicate that the neural network approach

functions well in noise, works for linear and nonlinear systems, and can be

implemented very efficiently for large scale system.

Borto, Sutton, and Anderson 1983 reported neuron-like adaptive elements that

can solve difficult learning control problems. The task is to balance a pole that is

hmged to a movable cart by applying forces to the cart’s base. The two single-layer

networks were used m control.

The application of neural networks m the balancing of a inverted pendulum was

made by Anderson (1987,1986,1989). An inverted pendulum is simulated as a control

task with the goal of learning to balance the pendulum with no a pnon knowledge of

the dynamics. In contrast to other applications of neural networks m the inverted

pendulum task performance feedback is assumed to be unavailable on each step,

appearing only as a failure signal when the pendulum falls or reaches the bounds of a

30

horizontal track. To solve this task, the controller must deal with issues of delayed

performance evaluation, learning under uncertainty, and the learning of non-linear

functions. Reinforcement and temporal-difference learning methods were used to deal

with these issues in order to avoid unstable conditions and balance the pendulum.

The ability to learn is one of the main advantages that make the neural networks

so attractive. The benefits are most dramatic when a large number of nodes are used.

Some examples of the approaches taken to apply neural networks to control are below.

Sanner and Akin (1990) experimental results are a follow-up of their previous

work involving computer simulations only. The neural networks performed as

predicted m simulations. It was observed that unacceptable delays can be introduced

if a smgle serial microprocessor implementations of neural networks are seen as

necessary. '

The control of robots is the topic addressed by Nagata, Sekiguchi and Asakawa

(1990). Neural networks are used to process data from many sensors for the real time

control of robots and to provide the necessary learning and adaptation capabilities for

responding to the environmental changes in real time. This approach is applied to

several areas of robot research.

The comparison of neural networks control and conventional control is the topic

addressed Chu, Shoureshi and Fenono (1990). Kraft and Campagna (1990). Anderson

(1988, 1989) controlled the inverted pendulum system using action network and

31

evaluation network. There are a lot of neural networks control applications appearing,

an.ong them are the investigations carried out by Antsaklis (1989) and Shriver (1988).

It has heen widely recognized ft* neural networks are a potential powerful tool for the

Control engineering.

evaluation network. There are a lot of neural networks control applications appearing,

among them are the investigations earned out by Antsaklis (1989) and Shnver (1988).

It has been widely recognized that neural networks are a potential powerful tool for the

control engineenng.

1.5 Present Work

The control problem studied m this work is to balance a ball on a beam, as

shown in Figure 1.9. The movement of both ball and beam is constrained to the

vertical plane. The state of this system is given by the beam’s angle and angular

velocity and the ball’s honzontal position and velocity. The only available control

action is to exert forces of fixes magnitude on the beam that push it to move up or

move down.

The event of the beam falling past a certain angle or the ball running into the

bounds of its track is called a failure. A sequence of forces must be applied to avoid

failure as much as possible by balancing the ball at the given position on the beam.

The beam and ball system is reset to its initial state after each failure and the controller

must learn to balance the system for as long as possible.

The present work involves the use of neural networks and conventional control

methods in the control of the beam and ball system. The Bass-Gura control method has

been used m conventional controller design as compared with neural networks control.

In the neural networks system, two networks have been used. One of them is an

32

Figure 1.9 The ball beam balancing system

evaluation network, which maps the current state mto an evaluation of that state. The

evaluation network is used to assign credit to individual action. The error back

propagation and the temporal different algorithms are used m it. The other is an action

network, which maps the current state into control actions. Back propagation and

reinforcement algorithms are used in it. The two networks having a similar structure

are used to learn the action and evaluation function.

In nature, a neural network is a parallel processing system. This has been

simulated serially on an IBM PC 80386. Both the simulation and experimental results

show that the neural network control is favourable compared with the conventional

control.

33

CHAPTER 2 SYSTEM MODELLING

As mentioned in Chapter 1, the problem studied in the present work is to

balance a ball on a pivoted beam. The system is unstable m nature, in the sense that

given any initial condition it will not stay in the balanced state. To stabilize the system

certain feed-back control techniques are necessary.

The apparatus, shown m Figure 2.1 and 2.2, consists of a light aluminium T

section approximately 1 1 m long, two insulated bridge pieces are mounted 1.15 m

apart on the beam onto which two wires, 1.3 cm apart, are tautly stretched. The hybnd

beam is fixed on a cradle which in turn is mounted, via a bearing block, to a ngid back

plate. The beam is pivoted about the axis of rotation and is dnven via a universal joint

coupling by means of a vertically mounted moving coil actuator.

The angle of the beam is measured by a precision servo potentiometer mounted

on axis. The position of the ball on the beam is measured by the potentiometer method

in which the ball replaces the wiper blade in Figure 2.5. A small voltage is developed

across the ends AB of one wire, a voltage Vx proportional to the position of the ball is

measured by connecting one end C of the free wire to an operational amplifier. A

particular problem is the disturbance introduced mto the measurement scheme by the

intermittent contact made by the ball as it rolls along the two wires.

34

The inputs and outputs of the apparatus are made using the instrument action

box shown m Figure 2.4. This allows for an mput drive voltage in the range of ± 10

volts to be applied to the actuator. The measured ball position is presented as a voltage

in the range of ± 10 volts. The measured beam angle is brought out to the front panel

and appears as a voltage between ± 5 volts, a null control is provided for the latter

measurement m case the beam is used on a non-level surface.

2.1 Instrumentation

The moving coil actuator consists of a light electrical coil, which is suspended

by a spring in the field of a permanent magnet, see Figure 2.3. The coil is constrained

to move at right angles to the magnetic field, such that when a current is passed

through the coil, a proportional force occurs which is parallel to the axis of the coil.

Because of the spring suspension system, this force is perceived as a displacement

parallel to the coil axis and proportional to the coil current. Since the apparatus is

intended to be dnven by voltage signals from operational amplifiers, the actuator dnve

circuit is configured such that a voltage applied at the ’actuator input’ terminal

produces a proportional current. The actuator characteristic therefore relates mput

voltage to actuator shaft displacement in a linear manner, with a maximum displacement

being set by mechanical stops inside the actuator. Moreover, because of friction and

the mass of the coil, the actuator has dynamical properties which are discussed m the

modelling section. The output force, too, is presented as a voltage in the range of <

± 6 volts.

35

F i g u r e 2 . 1 The ball-beam apparatus (the actuator)

Figure 2.2 Ball-beam apparatus (full view)

36

Figure 2.3

1 Tnmmoo 10
2 Body 11
3 Centre pole magnet 12
4 Terminal! 13
5 Air vent 14
6 Top access cover 15
7 Top suspension spacer and securing 16

bolt (2 off)
8 Moving cod and suspension assembly 17
9 Package mounting hole

Top cover securing bob (4 off)
Top suspension spider (put 7)
Moving coil nupauMD support plate securing bolt 0 off)
Moving coil (part 7)
Moving coil suspension support plate
Bottom suspension spider
Trunnion clamp bolt

Support screw

37

1

BALL
DISPLACEMENT

FILTER

—((§))-
IN

BALL POSITION
OUTPUT

■ ©

Figure 2.4 The ball and beam system configuration

2.2 The Equations of Motion of the System

To denve the equations of motion in a useable form, it is necessary to make

several assumptions. The ball is assumed to move on the beam with pure rotation,

disregarding the possible slip between the ball and the beam, the rolling faction

between the ball and the beam is considered negligible, and the friction at pivot of the

beam is represented by a single linear coefficient b, which is also referred to as the

38

Figure 2.5 The ball position measuring system

damping factor. In addition, the stiffness of the spring mounting of the actuating coil

is denoted as k, and the force exerted by the actuator is F(t).

With the above assumptions, the system equations can be conveniently derived

using variational methods. Referring to Figure 2.8, the ball position x along the beam

and the beam angular position a in relation to the horizontal plane are selected as the

mdependent variables for variation. Thus, the Lagrange equation of the system can be

written as

L0 = U* - T (2-1)

where L0 is the Lagrange function, U* is the kinetic co-energy, and T is the potential

energy of the system. The system equations are obtained by applying the Lagrange

theorem to Equation (2-1).

39

The kinetic co-energy U* of the system is the sum of translational and rotational

kinetic energy of the ball, and the rotational kinetic energy of the beam. Denote the

relative velocity of the ball as ± , and the angular velocity of the beam as a , then the

absolute velocity of the ball can be easily found as (see Figure 2.6)

Figure 2.6 The computation of the absolute translational velocity of the ball

v = sjx1 + [x a f <2"2>

Thus, the translational kinetic energy of the ball is given by

I m v2 (a)

Let g) be the absolute angular velocity of the ball and I„ the moment of inertia

of the ball around the axis passing through its centre and perpendicular to the plane of

the paper (see Figure 2 6), then the rotational kinetic energy of the ball can be written

as

\ h <»>

where g> can be determined from Figure 2.8. The angular displacement of the ball d

40

Figure 2.7 The determination of the absolute velocity of the ball

is given by Equation (2-3)

Figure 2.8 The determination of angular velocity of the beam

where y is the angle "rolling over" by the ball, r is the rolling radius of the ball,

0 = i|r + a = — + o (2-3)
r

which is determined by the radius of the ball and the distance between the two parallel

wires supporting the ball. From Figure 2.7, r is determined as

r = JR2 - s2I4 = sjO.Oll1 - 0 0132/4 = 0 0101 m (2_4)

By differentiating Equation (2-3) with respect to time, we get the angular velocity o

as

o) = — + a (2-5)
r

The kinetic energy of the beam can be simply written as

where I* is the moment of inertia of the beam around its centre.

Thus, the co-energy of the system is given by the sum of terms in (a), (b) and

(c), or

U* = — m v2 + — /. g>2 + — I a.2 (2-6)
2 2 2

The potential energy of the system is associated with the energy stored in the spnng.

Assuming small angular excursions, the spnng will be a linear one. Thus the potential

energy T is given by

T = - k, (I a)2 (2-7)
2

where 1 is the distance from the spnng to the centre of the beam.

By combining Equation (2-6) and (2-7) and substituting v, we obtain the

42

\ [m(x2 + a2 x2) + Ib (- + a)2 + /„ a2 - kx (I a)2] (2-8)
« r

The damping effect of the system can be considered by introducing the system

co-content J, which is given by

J = - b (I d)2 (2-9)
2

By applying Lagrangian theorem to Equations (2-8) and (2-9), we have

d rdLo, dLo a1— [— 1 - — + — = m g sin a
dt dx d x d x

system Lagrangian as

(2-10)

a dL dLn £LJ
+ TT = cosa 0 * 8 * - Fw 1)dt da da da

^ = m x + Ib (- + a) - (2-ID
oir r r

Carrying out the differentiation m Equation (2-10) and (2-11), and re-ranging

the terms, we obtain the following equations of motion,

L Ib
(m + —) x + — a - m x a - m g sina

r2 r

h , (2 ' 1 2)— x + (m or + Jc + -+-7̂) a + 2 m x x a

+ k l 2 a + b l 2 a + cosa (m g x - lF(t))

The equations can be reduced to a more usable from by introducing further

assumptions which are valid for the present problem. The moment of inertia of the

ball Ia and its mass m are small and can be regarded as having little effect on the

behaviour of the beam. Furthermore, « and a can also be considered to have

43

negligible effect in the equations.

Using the above approximations and remembering that for small a , s in a -a ,

the equations of motion can be simplified as

(m + —) x = m g a (2-13)
r2

Ia a + b I2 d + kx I2 a = -lF (t) (2-14)

2.3 Calculation of Moment of Inertia for the Ball and the Beam

The moment of inertia of the ball ^ can be simply determined as

Ib = | m R2 = 0.00162 g -m 2 (2-15)

The moment of inertia Is for the beam is compnsed of the contributions from

the attached fixtures on the beam and the beam itself, see Figure 2.9. The calculation

of moment for each part is briefly listed below. The total value is found to be

Aj = ImI + I M2 + I M3 + 1*14 + ^M5 (2-16)

(1) For aluminium,

pm= 2.7 g/cm3 = 2.7X10 3 g/mm3.

(2) The contribution of mass MUM2, M3, M4. (See Figure 2.9)

=0.05052 kg. M2=pmV2=0.2804 kg.

M3=pmV3=0 25 kg. M4=pmV4=0.062 kg.

(3) From point 1 and point 2 in the Figure 2.10 , we have:

44

Point 1 = (-75.5/2, -14.49) =(-37.75, -14.49).

Point 2 = (-16.1/2, 29.98) = (-8.05, 29.98).

y-29.98 = 29 98+14.49 = x 5 U
x+8.05 " -8.05+37.75 ' * (2-17)

x = 0.67 (y-29.98) - 8.05

990

,7 5 5 , 1610

-J -a \
M4

01 ""■^02 O 03 M3 SSnM2X'

1150

Unit mm

Figure 2.9 The geometrical dimension of the beam. bt=29.98, b2=43.87, b3=4.5,
b4=21.48,

Im4,5 fm4 ^m5 -^^4 ^

= 54.856 -185144 pmt+M 4(43.87/2 + 14.99)2

= 21.25 kg-mm2

= 0 02125 g-m2

(4) The moment of inertia about pivot I,:

45

9 75

Figure 2.10 The geometry of element M4 and M5, see Figure 2.9

4 42

Figure 2.11 The geometry of M l and M2 shown in Figure 2.4

* 'n * 4.1779 g -m 2

\ - V »J M2 = 31-3 S '« 2

I« , ' (. * ' ! « , = 27.6 g-m 2

= 0.02125 g-m 2

= + m̂2 + î/3 + + Jjf, = 63.04 g-m2

(2-19)

(2-20)

(2-21)

(2-22)

(2-23)

2.4 Other System Parameters

46

dIa5 = dm I* = ** P ^ = r2P t ds

= p t (x2+y2) dx dy.

Ias= p * f f (*2+y2) ^ (2-18)

/*2998 /*-067 (y-29.98)
= p t I / X

J-1449 J+067 (y-2998)

(a^+y2) ¿it dy =-185144 p f

Same of the other experimentally determined system parameters are listed below,

(1) Ball radius R=0.012 m.

(2) Ball mass m=28.11 g.

(3) Ball rolling radius r=0.0101 m.

(4) Beam length L0=1.15 m.

(5) Stiffness of the spnng kt=3.26 N/m.

(6) Damp factor b=0.6 N.s/m.

47

CHAPTER 3 SIMULATION OF CONVENTIONAL AND

NEURAL NETWORK CONTROLLERS

The conventional and neural network control algorithms are developed for the

ball-beam system and simulation has been performed on a personal computer. In the

simulation work, the plant, or the system has been modelled using the set of equations

of motion established earlier m equation (2-12). The simulation results have been

presented for both the conventional and the neural network control methods.

3.1 State Feedback Control

In the conventional control theory, the state of a system at any time can be

descnbed by a set of state variables For the present problem, the state variables are

the ball position x x, velocity x2 and the beam angular position jc3 and velocity x4. The

goal of the control problem is to decide what the input should be so that the state will

behave in a favourable fashion. The most general state space description of a linear

system is given by

i(f) = A(t) x(t) + B(t) u(t) (3-1)

y(r) = C(f) x(t) + D(t) u(t) (3-2)

where *(*) is the state vector, y(*) is the output from the system, u(t) is the input to

the system and A(r), B(i), C(f) and D(r) are matrices.

48

3.1.1 The continuous-time and discrete-time open-loop models

3.1.1.1 System equations

The equations of motion of the system have been established in Section 2.2

earlier. Using the state variables we have

(m + i) x 2 = m g x s (3-3)
r2

(+ h) *4 + b I2 x4 + k l \ = -I F(t) (3-4)

or

where

i 2=c1x3

* 4 = C3*3 + C2X A + C4 F (t)

c^m gK M + IJr2) c2=-bl2/(Ib+Ia)

c3=-ki2K ib+ia) cr - m b*i;)

(3-5)

The numerical value of cx, c2 , c3 and c4 are respectively 4.503, -0.003, -0.0171 and -

0.009.

3.1.1.2 System model

Re-wnte Equations (3-1) and (3-2), and insert the identities x t =xx and x3 =x3 ,

we obtain the continuous-time system model as

x (k t) = A x (k t) +B F(kt)

y (k t) =C x (k t)
where x and y are column vectors,

(3-6)

49

and A., B and C are

jc =\
y - W

A =

B =

0 1 0 0

0 0 5.643 0
0 0 0 1
0 0 -0.0171 -0.003

0

0

0

-0.009

c=
1 0 0 0
0 0 1 0

(3-7)

(3-8)

The open-loop discrete-time model can be obtained as

x[(*+l)t] = <Kt) x(kx) + IXt) F(kx)
(3-9)

y(Jh) = C x(kx)

where <j>(x) is a matrix, and r(x) is a column vector. The matrix <j>(t) can be

determined by first considering the continuous model, then setting time t to the sample

time x • Thus

<l>(f) = ST1 { [s i- A] 1) (3-10)

Denoting $ (s) = [s i-A Y 1, we have

50

<1*S) =

C 1 1 c A A
s 2(s ~B) s ’ s2 s 3(s -B) s 3 s \ s - B)

o C 1 A A
s \ s - B) s ’ s2’ s2(s -B)

0, o, 1 1
s s(s-B)

0, o, C 1

(3-11)

In the inverse transformation (see Appendix A) let t = x =0.02 seconds, we obtain the

numerical values of transition function as

4>(t) =

0.805 0.0201 0.001129 0
0 0.805 0.11286 -0.312
0 0 1 -0.333
0 0 0.0067 0.999

The matrix r (t) can be obtained as

(3-12)

0

-0.000562

-0.000598

-0.0199

Finally, we obtain the open-loop discrete-time model as

T(t) = f eM B d t =
Jo

(3-13)

51

X[(k+l)T] =

0.805 0.0201 0.001129 0

0 0.805 0.11286 -0.312

0 0 1 -0.333
0 0 0.0067 0.999

y (k ?) =

o

-0.000562

-0.000598
-0.0199

1 0 0 0

0 0 1 0

F(kx)

x(kx)

x(kx) +

(3-14)

3.1.2 The closed-loop discrete-time model

To implement the state feedback controller, the closed-loop discrete-time model

Figure 3.1 System closed-loop state model

of the plant is needed. Referred to Figure 3 . 1 , we can write the system model as

x[(*+l)x] = (<t>+r K) x(kx) + T G F(kx)

y(kx) = C x(kx)
where $ and r are as shown m Equations , respectively, K is feedback vector and G

is the gam.

(3-15)

52

The vector k and the scalar G can be determined using the Bass-Gura method.

The characteristic polynomial of the system can be written as

a(z) = det[z/-<J>] = z4 + a x z 3 + a2 z1 + a3 z + a4 (3-16)

where ax, a2, a3 and a4 are factors to be determined. By substituting Equation (3-12)

into the above we get

^=-3.700 a2= 5.049

a3=-2.998 a4= 0.647

According to the Bass-Gura formula the feedback vector K can be determined

by

K = [a-a] { a } '1 c '1 (3-17)

where z 1S the close-loop eigenvector of the following (see Appendix B)

z = [z ,, Zj’ z4 i = [~0.9±/2.85, -0.075, -1.412]

and

a =

a.

(3-18)

a_ [1 atj a2 a3]7 is the lower triangular Toeplitz with the first column as

[1 ^3]

and

53

c ii (J)2r, <|)3r] =

0 0.0000192 -0.0000555 -0.000129
0.000484 -0.00185 -0.00397 -0.00526
-0.0084 -0.00156 -0.0132 -0.0109
-0.3885 -0.326 -0.266 -0 210

Thus, the feedback vector is obtained as,

K = [11.06, -0.098, 8.078, -0.098] (3-20)

The gain G can be determined by the fact that

H(z) = C(z)-(4> +t*) BG = 1 (3-21)

which gives

G= -0 248 (3-22)

The close-loop discrete-time system model as

0.8951, -2.514, -0.000177, 0 0 226
0.129, 0.651, 0 000144 0

x(fcc)+
0.0284

-0.0759, 0, 0.843, 0 0.000124
-4.634, 0.0685, -3.396, 0.896 0.104

y(kt) = C x(kx)

3.1.3 Results

The computer implementation of the conventional simulation are described m

this section. The input of the system is a force acting on the beam. The output of the

system mcludes the position and velocity of the ball and the angular position and

velocity of the beam. The Equations (3-23) were used to program the controller in the

simulation. The sample time is t =0.02 seconds.

54

The system has been simulated for different combinations of initial state variables.

The position of the ball along the beam ranges from -0.5 to 0.5 metres and the angular

position of the beam vanes between -20° and 20°, or between -0.3491 and 0.3491 in

radius. The results from the simulation are presented in Figures (3-2) through (3-7).

From these results it is evident that m simulation the ball-beam system can be balanced

under any initial conditions of interest.

55

t im e , sec
Figure 3.2 The Simulation using conventional method. Initial position: x=0.1 m,
a =0.5 rad.

t im e , sec
Figure 3.3 Simulation using conventional method. Initial position: x=-0.5 m, a =-0.1
rad.

56

t im e , sec
Figure 3.4 Simulation using conventional method. Initial position: x=-0 5 m, a=-0.5
rad.

T i m e , s e c

Figure 3.5 Simulation using conventional method. Initial position: x= 0 m, a =0.5 rad.

57

T im e , sec

Figure 3.6 Simulation using conventional method. Initial position: x=0.58 m, a=0.5
rad.

Time, sec

Figure 3.7 Simulation using conventional method. Initial position: x=2 m, a =2 rad.

58

3.2 Neural Network Feedback Control

The present task is to balance the ball-beam system using the neural network

technique. As shown m Figure 1.9 a ball moves on two parallel wires spanned on a

beam. The beam itself is pivoted at the centre to a mount. The movement of both the

ball and the beam is constrained in the vertical plane. Thus, the state of this system is

given by the position and velocity of the ball and the angular position and velocity of

the beam.

Starting from any initial state, the ball tends to move away from the initial position

thus causing the system un-balanced. Hence the system is inherently a unstable one.

To balance the system, the only control actions available are to exert forces of

fixed amplitude on the beam is such a way that the beam can be kept at the horizontal

position and the ball at a predetermined position. The way the force is applied is

dependent on the control method used. In this section, the neural network technique will

be used to evaluate the system performance and applied the action force accordingly.

The neural network system used, as shown in Figure 3.8, consists of two

networks termed the evaluation network and the action network. The evaluation

network learns an evaluation function of the system state, so that it can predict the

future action the system needs to take in order to avoid certain states. The action

network generates the system behaviour. It decides which action to apply for a given

59

state of the ball-beam system.

When an undesired state of the system is reached, it is called a failure In the

current problem, a failure is defined as the beam’s falling past a certain angle relative

to the horizontal plane, or the ball’s running into the bounds of its track. The purpose

of the controller is to apply a sequence of forces so that the failure is avoided as much

as possible, or the balance is maintained as long as possible

Three different learning algorithms have been used in the neural networks. In

the hidden layers of both the evaluation and the action network, the error back-

propagation algorithm has been used. The temporal-difference algorithm was used in

the output layer of the evaluation network. Reinforcement learning algorithm was used

in the output layer of the action network.

3.2.1 The simulation of the plant

As stated in Section 1.2, in the control system using neural networks the system

dynamics is not required. This is certainly a great advantage m real time control, but

m simulation it is necessary to simulate the system dynamics using a set of differential

equations In the present study, the ball-beam system is modelled using the equations

of motion, Equation (2-12). In the simulation, the equations of motion are solved using

the Euler’s method. By denoting Xj as the horizontal position of the ball in relation

to the centre of the beam, x2 as the velocity of the ball, x3 as the angular position of

60

the beam and x4 the angular velocity of the beam, the Euler’s method gives the solution
/

to the equations of motion as (see Appendix C)

x1[(fc+l),c]=:ic1[fc'c]+T x2[kx].

(g Xi[kx]+x2[kx] x4[frc]2)
Xj[(^+l)r] = x2[*t]+t -

x3[(£+ l)r] =x3[£t] +t x4[kx].

Ib
<!♦—

m r"

(m g 3c0[£t] -F (kx) 1-— -2 m Xj[fcT]x2[fcT]x4[fct]-fc l2x2[kx
* 4 K i + l) t] ^ 4[t t] + T -- ^ ---

(m x x[kx f+ Ib+Ia)

(3-24)

where
\+Iblmr2

The objective of this study is to avoid failure. The beam was balanced within

a very narrow angle about the horizontal position, and the ball was balanced at any

position on the beam. This objective can be formalized by defining a failure signal.

r'[t] =
-1, i f 10(f) | >6° A |x(f) | >0.5m

(3-25)

0, otherwise.

Other limits imposed on system parameters are

An additional input, x5, with a constant value of 0.5 is provided.

61

|Xj| < 0.01 m

|x2| < 0.05 m /s

K l < 6°

|ï 4| < 1 0 7 s

3.2.2 Structure of the neural networks and the learning algorithms

The architecture of the neural networks control system is shown in Figure 3-8.

Hidden Unit

Figure 3.8 Two-layer neural networks used in the control system.

The system is composed of two networks, one evaluation network and one action

network. Each of the two networks has two layers of nodes, a hidden layer and an

output layer. There are 5 nodes in the hidden layers and one node in the output layers.

62

The node connectivities of the action and the evaluation networks are shown in Figure

3-9 and Figure 3-10 respectively. In Figure 3-9, A is the matrix of connection weights

for the hidden layer with components au, and B and C are the vectors of connection

weights with components bu, and c.., for the input and output layers respectively. D , Ev V

and F in Figure 3-10 have similar meanings as A , B and C in Figure 3-9, and their

components are respectively d^, ei and

First layer

Three types of learning algorithms have been used in the neural network system.

The reinforcement learning method has been used in the output layer of the action

network, and the temporal difference learning algorithm was used in the output layer

of the evaluation network to adjust the connection weights. In the hidden layers of both

the action net and the evaluation net, the back-propagation algorithm was used. In the

output layer of the action network, the difference between the actual value and

63

F irst la y er

expected value rx of the action are fed-back to adjust the connection weights of the

action network. The weights in the output layer of the evaluation network was adjusted

by feeding the difference between the successive values of v, which is the vector of

outputs as given by Equation (3-29).

The parallel algorithm of the neural network has been simulated seriously using

an IBM PC 80386. The learning algorithms of the neural networks are outlined below.

Here, k + 1 refers to the current time step and k the previous step, x is the sample

time.

1. The outputs yt from the first layer m the evaluation network are calculated

according to the error back-propagation algorithm,

64

v ' (3-26)
y ,[i,^ i]= 5 (S ^ W ^ [i+i])

2. The output v, from the output layer in the evaluation network is determined by

the temporal-difference learning algorithm as

(3-27)
v[i,i+l]=EfcI[i]xl[i]+Ec|[i]y,[i,i+l]

3. The failure signal from the evaluation network is given by Equation (3-28)

r,[i+l] =

0; i f state a t time t+1 is a start state;
r[f+l] - i f state a t time t+ l is a failure state;
r[f+l] + y vfv+ 1] - v[f,i]; otherwise,

4. The modification on the connection weights m the evaluation network is

performed according to Equation (3-29).

*J[i+l]=è,W +P r,[f+l] m

r,[i+l] y t[t,t] (3-29)

ay[i+l]=ay[i]+PA rjf+ l] (l-yj/,*]) sgfl(cï[f])x;[i]

where sgn. is the sign function defined by

65

sgn(c,[i]) =
i+l.

-1,

C,W 2: 0

C,[f] < 0

5. The first layer output m the action network is given by

p[t] =g(2el[t]xl[t\ +2/ l[i]zl[i])

q[t\ =
1.

0,

with probability p[t\;

with probability 1 -p \t\,

(3-30)

(3-31)

(4-1)

6. And the action force is determined by

F[t] =
+3.5,

-3.5,

i f q[t]=1
(4-2)

7. The connection weights in the action network are adjusted accordmg to the

following,

e,[i +1] =e,[f]+p r jf+ l](?[f] -p[f])z,[i].

r,[(+l] z,W sgrifStXt (<j[f]-p[<])i,W

The Values of the parameters used m the above equations are as following:

p =0.045 PA=0.045 p =0.2

p =0 95 pA=0 2 y =0 9

3.2.3 Flow chart of the control program

66

figure 3.11 The flow chart for programming the neural network simulation.

67

The simulation work has been performed on a personal computer equipped with

an Intel 80386 processor, by training the neural networks with different initial

conditions. At the start of each training run, the ball-beam system was "initialized",

which included the assignment of random values to state variables, within the

corresponding limits, and the assignment of small random values to all the connection

weights Dunng each training run, the weights were adjusted according to the learning

rules and the system performance. These adjusted weights were consequently stored

and became the initial weights for the subsequent training run.

In the first training run, the system starts from the initialized state. In all the

simulation it took 30 to 40 seconds for the network to learn to balance the system in

the first training run. The curve of the number of failure versus the number of time

steps before failure is shown m Figure 3.12 for the first run. The network failed about

1500 times before it could balance the system.

The time needed to balance the system decreases sharply m the subsequent two

training runs, and approached a constant of 0.3 to 0.4 seconds in and after the fourth

training run. While it took 20-25 seconds to balance the ball and beam in the second

run, it only took 0 6-0.7 seconds in the third run. The simulation results from first to

four runs are presented in Figures 3.12 to 3.38 inclusive.

3.2.4 Results

68

It has been noted that all the weights tends to approach constant values after a

raining runs. The set of weights after the fifth run is presente

-0.00255 0.03012 -0.08009 -0.66811 0.12363
-0 07688 0.02718 0 03043 -0.64686 0.20023

D = 0.07473 -0.0199 -0.00338 -0 58907 0 03698
-0.08559 -0.00247 -0.02312 -0.52872 0.05066
0.02908 -0.00247 - 0.00112 -0.54343 0.10600

-0.63912 -0.06556 0.08299 0.05223 -0.96392
-0 09169 0.06309 0 52880 0 91910 -0 01464

A = 0 06791 0 06218 0 02095 0.01991 0.04400
-0.0187 0.03425 -0.00178 -0.03110 -0.04711
-0.0153 -0.06726 0.02909 -0 09939 -0.04620

E = {-0.05484 -0.08159 -0.05249 0 33470 0 09490}

F = {-2.7037 -2 65897 -1 85765 10.1612 -2.49669}

B == {0.02070 0.06100 - 0.017200 -0 01803 -0.01898}

C == {-3.98423 0.06100 -0.01720 -0.01803 -0.02898}

(4-4)

(4-5)

(4-6)

(4-7)

(4-8)

(4-9)

69

Time s tep s unti l fa i lure (th o u sa n d s)
1200 --

1000

800

600

400

200

j J l . i . A ■Aj. •L.
200 400 600 800 1000

N um ber of fa i lu res
1200

a J
1400 1600

Figure 3.12 The first training run.

Time, sec

Figure 3.13 The second training run. Initial position: x=-0.1 m, a =0.5 rad.

70

Time, s e c

Figure 3.14 The second training run. Initial position x=-0.5 m, a=-0.1 rad.

Time, sec

Figure 3.15 The second training run. Initial position: x= 0 m, a =0.058 rad.

71

Tim e, s e c

Figure 3.16 The third training run. Initial position: x= 0 1 m, a=-0.1 rad.

Time, s e c

Figure 3.17 The third training run. Initial position: x=0.3 m, a =-0.3 rad.

72

Time, se c

Figure 3.18 The third training run. Initial position: x=0.3 m, a =0.3 rad.

Time, sec

Figure 3.19 The fourth training run. Initial position: x=0.1 m, a =0.5 rad.

73

Time, s e c

Figure 3.20 The fourth training run. Initial position: x=-0.5 m, a =-0.1 rad.

Time, sec

Figure 3.21 The fourth training run. Initial position: x=0.5 m, a=-0.5 rad.

74

Time, s e c

Figure 3.22 The fourth training run. Initial position: x=-0.58 m, a =0.5 rad.

Time s te p s u n t i l fa i lure (th o u sa n d s)

100 200 300 400 500 600
N um ber of fa i lu r e s

700 800

Figure 3.23 The second training run Initial position: x=-0.5 m, a =-0.5 rad

75

Time s te p s u n t i l fa i lu re (th o u s a n d s)

100 200 300 400 500
N um ber of fa i lu re s

600 700 800

Figure 3.24 The second training run. Initial position: x= 0 m, a = 0 rad.

60

50

40

30

20

10

0
0 100 200 300 400 500 600 700 800 900 1000

Num ber of fa i lu res

Figure 3.25 The second training run. Initial position: x=0.58 m, a= 0.5 rad.

Time s tep s u nt i l fa i lure (th o u sa n d s)

76

Time s te p s u n t i l fa i lu re (th o u s a n d s)

0 100 200 300 400 500 600 700 800
N u m ber of fa i lu re s

Figure 3.26 The second training run. Initial position: x=0.58 m, a= 0.5 rad.

140

120

Time s te p s u n t i l fa i lu re (th o u s a n d s)

10 20

N u m b er of fa i lu r e s
30 4 0

Figure 3.27 The third training run. Initial position: x=0.1 m, a =0.5 rad.

77

60

50

40

30

20

10

0
0 5 10 15 20 25 30 35 40 45 50 55 60

N u m b er of fa i lu r e s

Figure 3.28 The third training run Initial position: x= 0 m, a = 0 rad.

70

60

50

40

30

20

10

0
0 20 40 60 80 100

N um ber of fa i lu re s

Figure 3.29 The third training run. Initial position: x=0.58 m, a =0.5 rad.

Time s te p s u n t i l fa i lu re (th o u sa n d s)

Time s t e p s u n t i l f a i lu re (t h o u s a n d s)

78

Time step until failures (Thousands)
120 --

100 - f

80 - /

60 -

40 -

20 -

0 -.-1-.-1-. i .-1-- i---1- 1-i------1----
0 2 4 6 8 10 12 14 16 18 20

N u m b er o f fa ilu r e

Figure 3.30 The fourth training run.

t i m e , s e c

Figure 3.31 The neural network and conventional simulation comparison. Initial
position: x=0 5 m, a=-0.5 rad.

79

t i m e , s e c

Figure 3-32 The neural network and conventional simulation comparison. Initial
position: x= 0 m, a =0.5 rad.

t i m e , s e c

Figure 3-33 The neural network and conventional simulation comparison Initial
position: x=0.58 m, a = 0 rad.

80

time, sec

Figure 3-34 The neural network and conventional simulation comparison. Initial
position: x =-2 m, a =2 rad.

0 01 02 03 0 4 0 5 06 07
time, sec

Figure 3-35 The neural network and conventional simulation comparison. Initial
position: x—0.5 m, o=-0.5 rad.

81

time, sec

Figure 3-36 The neural network and conventional simulation comparison. Initial
condition: x = 0 m, a= 0 .5 rad.

time, sec

Figure 3-37 The neural network and conventional simulation comparison. Initial
position: x=0.58 m, a = 0 rad.

82

time, sec

Figure 3-38 The neural network and conventional simulation comparison. Initial
position: x =-2 m, a =2 rad.

83

3.3 Comparisons and Discussions

The histones of the ball position x and beam angular position a are given in

Figure (3-31) to (3-38) for different initial positions. From these curves, it is easy to

find out the time needed to balance the system for different control method. For

example, Figure (3-19) shows that it took 0.3 seconds for the neural network controller

to balance the system while it took 0.7 seconds to do the same. This shows that the

neural network is competitive even when implemented serially.

The learning process is crucial for the neural network controller. For a novice

controller, as shown m Figure (3-12), it took about 20-30 seconds to balance the

system, while after several training runs, it only needed 0.3-0 4 seconds.

It took about 30-40 seconds for the network to learn to balance from the first

training run. The balanced weights are used as initial weights in the second training

run. They took about 1500 times running program making ball balanced on the beam.

It took about 20-25 seconds for the network to learn to balance from the second training

run. The balanced weights are used as initial weights m the third training run. They

took about 700-900 times running program making ball balanced on the beam. It took

about 0.6-0.7 seconds for the network to learn to balance from the third training run.

The balanced weights are used as initial weights in the third training run. They took

about 30-60 times running the program to make the ball balance on the beam. It took

about 0.3-0.4 seconds for the network to learn to balance from fourth to tenth training

runs. The balanced weights are used as initial weights in the fourth to tenth training

runs. It took 17 times running the program to make the ball balance on the beam.

In the conventional controller, no learning is needed, and the "best" performance

is obtained from the beginning. In neural network control, the system performance is

improved through learning. In essence, dynamics by adjusting the connection weights

of the nodes. This is why the system dynamics is not needed m neural network control.

Through the learning runs, the connection weights gradually approach constant values.

It can be predicted that since the system dynamics is certain for a given problem, so

should the connection weights, given the structure of the networks is predetermined.

This has been shown in the simulation that after the fourth training run, the set of

weights is nearly constant. If this set of connection of weights are applied to the

network, then the ideal performance is reached. It has also been noted that the ideal set

of connection can be reached starting from any set of initial conditions for the training

runs. In another word, the ideal set of weights is characteristic of the system, including

the controller and plant, and not to be altered by different time histories.

It should be noted that in the neural network control simulation, only the results

of the first four runs are given, since after the fourth training, the results are essentially

the same.

The amplitude of the actuating force F(t) should be properly chosen. If the force

is too great, the ball will be tossed out of the wire track and if it is too small, it will

not be able to balance the system.

85

CHAPTER 4 IMPLEMENTATION OF CONVENTIONAL AND

NEURAL NETWORK METHODS

The control of a ball moving on a beam has been simulated in the previous

chapter using conventional and neural network control methods. The simulation results

show that the neural network controller can achieve similar or better performance than

the conventional controller. In this chapter, both the conventional and the neural

network method will be implemented on a laboratory apparatus using a personal

computer.

4.1 Instrum entation and procedures

The control task involves the balancing of a ball on a beam which is pivoted m

the middle, as shown in Figure 1.9 earlier. The control system consists of the ball and

beam apparatus (type CE6) itself, a 80386 based IBM compatible personal computer,

analogue to digital and digital to analogue converters and certain other general purpose

meters.

Figure 4.1 shows a system sketch. It should be noted that although the neural

86

network technique favours parallel processing, it is implemented here serially due to

lack of resource.

4.2 Conventional Control System

4.2.1 Control process

Figure 4.1 The control system structure.

The control cycle begins by evaluating the system status, which is represented

by the linear displacement and the velocity of the ball moving on the beam and the

angular displacement and the velocity of the beam revolving around the pivot. These

variables are measured using a linear and an angular transducers, and they are

converted into digital signals by an A/D converter. The linear and angular velocities

of the ball and beam can be computed from the displacement history and this has been

done by the programs of conventional control method and neural network control

method, respectively. The decision making process was performed by the computer,

87

according to conventional theory and neural network algorithms. The computer then

outputs a digital signal which represents a positive force +F(t) (upward) or a negative

force -F(t) (downward). This signal is converted into an analog signal and sent to the

plant to control its behaviour. At this point the cycle is complete and a new cycle

begins.

According to the laboratory experiment, the following equation is obtained to

provide low pass filtering. The calculated ball position is:

JCj = 0 75 x[+ 0.25 xA] D
(4-1)

The velocity of the ball is:

2 = (i * * i) h (4_2)

where x, is ball position obtained from the previous sampling, xt’ is ball position

obtained from the last sampling, x ^ is ball position obtained from the A/D, and r is

the sample time.

The continuous time model of the plant is given by

= A + B F(t)

(4-3)

y(t) = C

where xt is the ball position and x2 is the ball velocity. The output y (f) =xx is the ball

position. The matrices A , B and C are given as

Since velocity is the first derivative with respect to time of position, we get

88

A =
0 1

0 0

(4-4)
B =

C=[1 0]

Xi = x2 (4-5)

System stability is determined by the eigenvalues of the system A matrix:

| XI-A | =0. X! = 0, X2 =0. system unstable.

To stabilize the system, a controller has shown in Figure (4-1) has been used.

According to the laboratory practice, the feedback matnx is determined as

K=
*1 0.6

*2. 0 6

The action force is given by

F(t) = G x(t) = [kv k ^ = *1 *1 + *2 *2- (4-6)

The controller can thus be programmed by combining Equations (4-3) and (4-6).

4.2.2 Results

The experimental results obtained from the conventional control are presented

below. Results corresponding to different initial states are shown in Figures (4-2) to

(4-5). It is evident that the conventional controller was able to balance the system and

the average time needed was 15-20 seconds, depending on the initial conditions and the

89

system noise such as the influence on the measurement accuracy of the ball’s

intermittent contact, etc.

90

time, sec

Figure 4.2 Initial position: x =0.407 m.

time, sec

Figure 4.3 Initial position: x=-0.125 m.

91

t ime, sec

Figure 4.4 Initial position: x= 0 164 m.

posit ion, m ve loc i ty , m /s

time, sec

Figure 4.5 Initial position: x =-0.485 m.

92

4.3 Application of Neural Network Feedback

4.3.1 Neural networks learning algorithms

The same learning algorithms as used in the simulation work are used in the

experiments. The rules for updating the connection weights m the evaluation network

and the action network are given in Equations (3-29) and (3-36).

The value of F(t) is different in simulation and real time control.

F(t)=q(t) (xj+x2).

4.3.2 Flow chart

See Figure 4-6.

4.3.3 Results

4.3.3.1 F irst and second training runs

For the first two training runs, it took about 10-11 seconds for the network to

learn to balance the ball-beam system. When the ball is balanced on the beam, the

network weight matrices A , B , C , D , E and F are saved and these weights are used

as initial weights m the subsequent training run. The results of experiments are shown

in Figure 4-7,4-8, 4-9 and 4-10. The corresponding failure curves are shown in Figure

4-15 and 4-16.

93

The neural networks were able to adapt themselves rapidly to control the

system. The time need to balance the ball reduced sharply for the third training run,

to roughly 5-7 seconds. From the fourth run on, up to tenth run, the system stabilized

and the balancing time remained approximately the same. The experimental results are

shown m Figures 4-11 to 4-21

4.4 Comparison of State Feedback and Neural Network Control Results

Figures 4-18 to 4-21 present the experimental results for both the conventional

control method and the neural network method, with the same initial conditions and

same sample time. It is evident that results from the two control methods show

different characteristics. It is evident that the neural network controller performed better

than the conventional controller in the experiments.

It took about 20-30 seconds to balance the system, while after several training runs, it

only needed 0.3-0.4 seconds.

4.3.3.2 Third to tenth training runs

94

Figure 4.6 The flow chart for programming the neural network controller.

95

time, sec

Figure 4.7 The first and second training run using neural network control. Initial
position: x =0.453 m, a =0.017 rad.

t ime, se c

Figure 4.8 The first and second training run using neural network control. Initial
position: x=-0 269 m, a=-0.349 rad.

96

t ime, sec

Figure 4.9 The first and second training run using neural network control. Initial
position: x =0.294 m, a =0.079 rad.

t ime, sec

Figure 4.10 The first and second training using neural network control. Initial position:
x =-0.368 m, a= -0 001 rad.

97

posi t ion , m angle, rad

time, sec

Figure 4.11 The third training run using neural network control. Initial position:
x =0.444 m, a =-0.052 rad.

t ime, sec

Figure 4.12 The third training run using neural network control. Initial position: x=-
0.5 m, a =-0.204 rad.

98

t ime, s e c

Figure 4.13 The third training run using neural network control. Initial position:
x=0.463 m, a=-0.039 rad.

t ime, sec

Figure 4.14 The third training run using neural network control. Initial position:
x =0.160 m, a =-0.070 rad.

99

N u m b e r of f a i lu r e s
Figure 4.15 The first and second training run m neural network control.

0 2 0 4 0 6 0 80 100 120 140 160 180 2 0 0

N u m b e r of fa i lu re s
Figure 4.16 The first and second training run in neural network control.

100

Time s t e p s u n t i l fa i lu re (th o u s a n d s)
6 0 ---

5 0 -

4 0 -

3 0 -

20 -

10 -

o I 1------ 1------ 1------ 1------ 1------ 1------ 1~ __ l------ 1____ I------ 1__ J-1------1------
0 10 2 0 3 0 4 0 50 6 0 70 8 0 90 100 110 120 130 140

N u m b e r of f a i lu re s
Figure 4.17 The third training run in neural network control.

tim e, sec

Figure 4.18 The neural network and conventional control comparison. Initial position:
x=0.4 m.

101

0 2 4 6 B 10 12 14 16 18 20
time, sec

Figure 4.19 The neural network and conventional control comparison. Initial position:
x= -0.12 m.

time, sec

Figure 4.20 The neural network and conventional control comparison. Initial position.
x=0.16 m.

102

time, sec

Figure 4.21 The neural network and conventional control comparison. Initial position:
x=-0.4 rad.

103

4.5 Discussions

In this chapter, the neural networks and conventional control are used in real

time control. In the conventional control. It took about 15-20 seconds to balance the

ball and beam system. In the neural networks control, two-layered neural networks are

used in the control experimental ng. Input states are ball position, ball velocity, beam

angle, beam angular velocity. The output is an action force applied on the beam , action

force F[t] =p[t] |xo+xl | • Ball position ranges from -0 5 to 0.5 meter, and the beam

angle is between -20° - 20°. The system sample period is r=0.02 seconds. An action

force is applied on the beam, which is controlled by the output from the action network.

This force is determined by calculating the output of the action networks once for each

action. The weights values are adjusted after each learning training, and these weights

are used to retrain themselves. When the system is balanced, the weights values become

constant values. It took about 11-12 seconds for the networks to learn to balance for the

first and second training runs, and gradually reduced to 5-7 seconds for third to tenth

training runs. It took about 11-12 seconds to balance the system for first training runs,

while after several training runs, it only needed 5-7 seconds

The experimental results show that the neural networks control method was able

to balance the ball beam system under all the initial conditions tested. The ball started

moving from the initial position towards the balancing position, then when it was in the

vicinity of it, the ball oscillated around it and as the amplitude decreases, balance was

achieved. The balancing position can be changed by adjusting the potentiometer on the

104

ball beam system.

It has been observed m the experiments that the amplitude of the actuating force

should be properly chosen. If the force is too great, the ball will be tossed out of the

wire track and if it is two small, it will not be able to balance the system. The

amplitude of the actuating force was determined experimentally in this work, (see

section 4.3.1)

105

CHAPTER 5 CONCLUSIONS

A neural networks technique has been successfully applied to the control of a

balancing system. A detailed study of neural network control and conventional pole

placement control applied to the ball-beam system has been completed. System

modelling, simulation, and controller implementation using a personal computer for

control have been presented in this thesis.

A great advantage of neural network control system is that no prior knowledge

of system dynamics of plant is needed. The neural network determined the action from

the previous performance of the system, which is very much the same as the human

neural system. To simulate the neural network control system solely on computer,

without the involvement of an " external" plant, it is necessary to simulate the plant

itself. Here we need to simulate the ball-beam system. This is done by integrating the

system equations denved m chapter 3 (equation 3-15) for any given initial conditions

from which we can obtain the ball linear position and the beam angle. This is similar

to the process of measuring the real value. It should be noted however, the closeness

of these values to real ones not only depends on the numerical method used, but also

depends on the accuracy on the original model.

5.1 System Modelling and Coefficient Measurements

106

The system equations have been established by using Lagrangian variational

principle. The input to the system is an action-force on the beam, and the outputs from

the system are the ball position, and velocity, and beam angle, and angular velocity.

The relevant coefficients of the system have been determined experimentally.

5.2 Simulation and Implementation of Conventional M ethod

This model was simulated on a digital computer using Bass-gura feedback

control method. It took about 1 second to balance the ball beam system using

conventional simulation. It took about 15-20 second to balance the ball beam system in

the experiment control.

5.3 Simulation and Implementation of Neural Network M ethod

The simulation of neural networks method means that a simulated neural

network system is used to control a simulated plant. In the present work, the plant,

which is the ball-beam system, has been simulated by the equations of motion (Equation

from 3-3, 3-4). Euler method has been used to integrate the equations of motion to

obtain the current positions of the ball and the beam. The neural network was

simulated usmg software.

The results from simulation show that by adjusting the connection weight, the

neural network was able to learn to balance. The time needed to balance reduced from

40 seconds for the first training run to 0.3-0 4 seconds for tenth training run.

107

The neural network control method has been used to control the actual ng.

Neural networks are, again, simulated serially using a personal computer, while the

plant is related by the apparatus. The experimental results show that m the first several

training runs, the neural network method takes a longer time to balance the system than

the conventional method. But after 4-5 training runs, the neural networks could balance

the system within 6 seconds, while it took 15-20 seconds for the conventional method

to do the same. In addition, since no system dynamics are involved in neural network

method, it would be relatively easy to control similar systems with different parameters.

For instance, it has been demonstrated successfully that balls with different diameters,

hence different weights, can be balanced with effectually no change (the actuating force

may need to be adjusted).

5.4 Further work

In the present work, the parallel processing neural network system was

simulated using a serial digital computer. This no doubt has slowed down the system

speed and degraded the performance. It is hoped that the neural network method

presented here would be implemented using parallel hardware to exploit the full power

of the neural network’s ability to perform parallel processing.

One of the main subjects of future research on neural networks will be the

improvement of the speed of learning. At present there are ways which can be used to

speed up learning. One is to up grade the computer.

108

References

Almeida, L.B., A learning Rule for Asynchronous Perceptions with Feedback in a

Combinatorial Environment, Proc. o f the 1987 Inti, con f on Neural Networks, voi 2,

pp. 609-618. 1987.

Anderson, C.W., Strategy Learning with Multilayer Connectiomst Representation,

Tech. Rept. TR87-509. 3, GTE Laboratones,Waltham, MA, 1087. (This is a corrected

version of the report published in Proc. Fourth International Workshop on Machme

Learning, Irvine, CA, pp. 103-114, June 1987.)

Anderson, W., Learning to Control an Inverted Pendulum Usmg Neural Networks,

IEEE Control System Mag, pp 31-37, April. 1989.

Anderson, C.W., Learning and problem solving with multilayer connectiomst systems;

Doctoral Dissertation; Dept.of Computer and Information science, Univ.of

Massachusetts (Amherst, MA). 1986.

Antsaklis, P .J., Passino, K.M. and Wang, S.J., Towards Intelligent Autonomous

Control System: Architecture and Fundamental Issues, J.Intell.Robotic Syst., vol. 1,

pp. 315-342, 1989; a shorter version appeared m the Proceedings o f the American

Control Conference, pp. 602-607, Atlanta, GA, June 15-17, 1988.

Antsaklis, J., Neural Networks in Control System, IEEE Control System Mag. pp.3-5,

109

Apnl 1990.

Ash, T. Dynamic Node Creation in Backpropagation Networks; ICS Report No. 8901,

Institute for Cognitive Science, University of California, San Diego. 1989.

Astrom, K .J., Anton, J.J. and Arzen, K.E., Expert Control, Automatica, vol.22,

no.3, pp.277-286, 1986.

Astrom, K.J., Adaptive Feedback Control, Proc. IEEE, vol.75, no.2, pp. 185-217,

1987.

Autsaklis, P .J., Passino, K.M. and Wang, S.J., Towards Intelligent Autonomous

Control Systems, Architecture and Fundumental Issues. Intel, Robotic Syst. vol 1, pp.

315-342, 1989.

Barto, A.G. and Sutton, R .S., Goal Seeking Components for Adaptive Intelligence,

Air Force W nght Aeronautical Lab. AFWAL-TR-81-1070, 1981.

Barto, A.G. and Anderson, C.W ., Structural Learning in Connectiomst Systems,

Proc. 7th Annual Conf. Cognitive Science Society, pp. 43-53, 1985.

Barto, A.G., An Approach to Learning Control Surfaces by Connectionist Systems,

Arbib, M.A., Brains, Machines, and Mathematics, Spnnger, 1987.

110

Vision, Brain and Cooperative Computation, MIT Press (Cambridge), pp. 665-703,

1987.

Barto, A.G ., Sutton, R.S. and Anderson C.W ., Neuronlike Adaptive Elements That

Can Solve Difficult Learning Control Problems, IEEE Trans. Syst., Man, Cybem., vol.

SMC-13, pp. 834-836, Sept.-Oct. 1983.

Barto, A.G ., Sutton, R.S. and Brouwer,P.S., Associative Search Network: A

Reinforcement Learning Associative Memory, Biol. Cybem., Vol.40, pp.201-211,

1981.

Barto, A.G. and Sutton, R .S., Simulation of Anticipatory Respouses in Classical

Conditioning by a Neuron-like Adaptive Element, Behavioral Brain Research, vol.4,

pp. 221-235, 1982.

Baum, E.B. and Haussier, D ., What Size Net Gives Valid Generalization?, Neural

Computation, vo l.l, pp. 151-160, 1989.

Bavarian,B., Guest Editor of Special Section on Neural Networks for Systems and

Control, IEEE Contr. Syst. Mag , vol.8, no.2, pp.3-31, Apr. 1988.

Carpenter, G. A. and Grossberg, S, Self-organization of Stable Category Recognition

Code for Analog Input Pattern, Proc Int. Conf. Neural Networks, Vol n , pp. 727-735,

1987.

I l l

Cheok, K.C. and Loh, N.K ., A Ball-Balancing Demonstration of Optimal and

Disturbance-Accommodating Control, IEEE Contr. Syst. M ag., vol. 7, no. 1, pp. 54-

57, Feb. 1987.

Chu, R ., Shoureshi, R. and Tenorio, M ., Neural Networks for System Identification.

IEEE Control System Mag, April 1990.

Cohen, M .A. and Grossberg, S., Absolute Stability of Global Patten Formation and

Parallel Memory Storage by Competitive Neural Networks, IEEE Trans. Syst., Man,

Cyber., vol. 13, no.5, pp.815-826, 1983.

EiJLeithy, N. and Newcomb, R.N., Guest Editors of Special Issue on Neural

Networks, IEEE Trans Circ. S y s t , vol.36, no.5, May 1989

Fu, K .S., Learning control systems-Review and outlook. IEEE Transactions on

Automatic Control, pages 210-221, 1970.

Fukushima, K. Cogmtron: A Self-Organizing Multilayered Neural Network, Biol.

Cyber , Vol.20, pp. 121-136, 1975.

Grossberg, S., Nonlinear Difference-Differential Equations m Prediction and Learning

Theory, Proc. Nat. Acad. S a ., 58, pp 1329-1334, 1967.

Grossberg, S. A Theory of Human Memory: Self-Organization and Performance of

112

Sensory-Motor Codes, Maps, and Plans, Progress in Theoretical Biology (Editors:

Resen R. and Snell F.), Vol 5, Academic press, New York, pp. 233-374, 1978.

Grossberg, S., Studies of Mind and Brain, Boston: Reidel, 1982.

Grossberg, S. Adaptive Pattern Classification and Universal Recoding II: Feedback,

Expectation, Olfaction and Illusions, Biological Cybernetics, Vol. 23, pp. 187-202,

1976.

Hebb, D.O ., The Organization of the Behaviour, Wiley (NEW YORK), 1949

Hecht-Nielsen, R ., Performance Limites of Optical, Electro-Optical and Electronic

Artificial Neural System Processors, Proc. SPIE, vol.624, pp.277-306, 1986.

Hinton, G.E., Connectiomst learning procedures; Technical Report CMU-CS-87-115

(version 2); Computer Science Department, Camegiemellon University. 1987.

Hopfield, J.J. Neural Networks and Physical Systems with Emergent Collective

Computational Abilities, Proc.nat.Acad. Sci., vol. 79, pp. 1554-1558, Apr. 1982.

Hopfield, J.J., Neurons with Graded Response Have Collective Computational

Properties Like Those of Two-State Neurons, Proc. o f the Natl. Acad. Sci, USA, vol.

81, pp. 3088-3092. 1984.

113

Hopfield, J.J. and Tank, D.W ., Computing with Neural Circuits: a Model, Science,

Vol 233, pp. 625-533, 1986.

Hopfield, J.J. and Tank, D.W ., Neural Computation of Decisions in Optimization

Problems, Biol Cyber., vol.52, no.3, pp. 1-25, July 1985.

Hornik, K ., Stinchombe, M. and White, H ., Multi-layer Feedforward Networks are

Universal Approximators, 1989.

Kleene, S.C ., Representations of Events m Nerve Nets and Finite Automata, Automata

Studies, Princeton University Press (Pnnceton); pp. 3-40, 1956.

Kohonen, T., A Simple Paradigm for the Self-Orgmzed for Motion of Structured

Feature Maps, Am ans and Arbib M .A ., pp. 248-266, 1982.

Kohonen, T., Self-Orgnization and Associative Memory, Springer, 1988.

Kohonen, T. Associative Memory, Berlin: Springer-Verlag, 1977.

Kosko, B.A., Adaptive Bidirectional Associative Memories, Appl. O pt., vol.26, no.23,

pp.4947-4960, Dec, 1987.

Kraft, L.G. and Campagna, D.P., A Comparison Between CAMC Neural Network

Control and Two Traditional Adaptive Control Systems, IEEE Control System Mag.

Apnl 1990.

Linsker, R ., From basic Network Principles to Neural Architecture: Emergence of

Spatial-opponent Cells, Proc. Natl. Acad. Sci, USA, Vol.83, pp7508-7512, 1988.

Linsker, R ., Self-organization m a Perceptual Network, Computer, Vol. 21, pp. 105-

117, 1988.

Lippmann, R.L., An Introduction to Computing with Neural Nets, IEEE Acoustics,

Speech, Signal Proc. M ag., pp.4-22, Apr. 1987.

Mayr, O ., The Ongms of Feedback Control, Cambridge, MA. MAT Press, 1970.

McClelland, J.L ., Rumelhert D.E. and Hinton G.E., The Appeal of Parallel

Distributed Processing, Rumelhert D.E. and McClelland, J .L ., pp.3-44.1986.

Mendel, J.M . and Fu, K.S. Adaptive, Learning, and Pattern Recognition Systems:

Theory and Applications. Academic Press, New York, 1970.

Minsky, M. and Papert, S., Perceptions. An Introduction to Computational Geometry;

MIT Press, 1969.

Nagata, S ., Sekiguchi, M ., and Asakawa, K ., Mobile Robot Control by a Structured

Hierarchical Neural, IEEE Control System Mag, Apnl 1990.

115

Nilsson, N .J., Learning Machines: Foundations of Trainable Pattern Classifying

Systems. McGraw-Hill New York. 1965.

Parker, D.B., Learning -Logic; Invention Report, S81-64, File 1; Office of

Technology Licensing, Stanford University. 1982.

Pineda, F.J., Generalization of back-propagation to recurrent networks, Physical

Review Letters, vol.59, no. 19, pp.2229-2232. 1987.

Psaltis, D ., Sideris, A ., and Yamamura, A.A., A Multilayered Neural Network

Controller. IEEE control system mag. pp. 17-21. April, 1988.

Rohwer, R. and Forrest, B. Training Time-dependence in Neural Networks,

Proc. o f the Intl.Conf. on neural networks. 1987.

Rosenblatt, R ., Principles of Neurodynamics. New York: Spartan Books, 1959.

Rosenblatt, F., Principles of Neurodynamics and the Theory of Brain Mechanisms,

Spartan Books (Washington D.C.), 1962.

Rumelhart, D.E. and McClelland, J.L ., Parallel Distributed Processing: explorations

m the Microstructure of Cognition. vols.I and E/MAT Press, 1986.

116

Samuel, G .N., Saridis and Gillbert, H .D., Self-Organizing approach to the stochastic

fuel regulator problem. IEEE Transactions on System, Man, and Cybernetics, 6: 186-

191, 1970.

Sanner, R.M. and Akin, D.L., Neu-romorphic Pitch Attitude reghlation of an

Underwater Telerobot, IEEE Control System Mag, Apnl 1990.

Shriver, B.D., Guest Editor of Special Issue on Artificial Neural Systems, IEEE

Computer, vol.21, no.3, Mar. 1988.

Special Section on Neural Networks for Control System, IEEE Contr. Syst. M ag., vol.

9, no. 3, pp. 25-59, Apr. 1989.

Stotzka, R. and Maenner, R ., Self-organization of A Linear Multilayered

Feedforward Neural Network, Physics Institut, University of Heidelberg, FRG, 1989.

Sutton, R.S. and Barto, A.G., Toward a Modem Theory of Adaptive Networks:

Expectation and Prediction, Psychol. Rev., vol. 88, no. 2, pp. 135-170, 1981.

Sutton, R .S., Learning to Predict by the Methods of Temporal differences, Machine

Learning, vol. 3, pp. 9-44, 1988.

Sutton, R .S., Temporal Credit Assignment in Reinforcement Learning, Doctoral

Dissertation, COINS Tech. Rept. 84-02,Umv.of Massachusetts, Amherst, 1984.

117

Waltz, M.D. and Fu, K .S., A heuristic approach to reinforcement learning control

systems. IEEE Transactions on Automatic Control, 10:390-398, 1965.

Werbos P.J., Beyond Regression: New Tools for Prediction and Analysis in the

Behavioral Sciences, Thesis in Applied Methematics, Harvard University, 1974

Widrow, B. and Hoff, M.E. Adaptive Switching Circuits, IRE WESCON Convention

Record, pp.96-104. 1960.

Williams R .J., Reinforcement Learning in Connectiomst Networks, A Mathematical

Analysis, ICS Report 8605, Institute for Cognitive Science, University of California,

San Diego, 1986.

118

APPENDIX A

The dynamics of the ball beam system are given by the following equations of

motion. All angular measurements are given m radians.

_ g x 3 + x 2 x4
X2

i - t
m

Ib
m g x. - F I 2 m x, x, x.

1 r C 1 2 4= ------------------- -— s---------------------
m X l + l b + 7a

where

8 x3 + x 2 X4

m r1

This system was simulated on a digital computer by numerically approximating

the equations of motion using Euler’s method with a time step x =0.02 seconds and

the following discrete-time state equations:

XjKfc+1) x] = Xj[*t] + x x2[*x]

x2[(fc+l) x] = x2[kx] + X x2[*t]

X3[(^+1) t] = x3[kx] + tx4[£t]

x4[(*+l) t] = x4[kx] + tx4[£t]

i

The sampling rate of the ball beam system’s state and the rate at which control

forces are applied are the same as the basic simulation rate, i.e ., 50 Hz.

r

11

APPENDIX B

The eigenvalue-eigenvector method is usually used m the solution of higher

order systems.

The open-loop discrete-time model is given by

[(+1)t] = AxfJfcx] +BF\kx]

0.805 0.0201 0.001129 0 0
0 0 805 011286 -0.312

x[fcx] +
-0 000562

0 0 1 -0.333 -0.000598
0 0 0.0067 0.999 -0.0199

y[fcx] = C x[fcx]

where <|>(t) = eA\ 0(t) = f T <J> (x) B dxJo

By applying the eigenvalue-eigenvector method, we obtain

where

0(x) = j* <|>T(f-fcx) 0(fcx) t y t - k x) dt
k x

(*+1)t
M(x) = J <|>T(t-kx) 0(fcx) O(f-fcx) d tkx

(*+l)x
R(x) = j Br (t-kx) Q(kx)Q(t -kx) d tkx

q = <t> - eft~1M x

r = 0 - M i + M x

Thus the eigenvalue can be determined by

1

[zl - V]=0

where the matrix V is given by

V =
q 1 q 1 e f t 1 eT

r Q l q t + r q 1 e f t 1 eT

The Equations above were used in programming, and the eigenvalues are

z = [zp Zj, Z3, z4] = [-0.075, -1.4125, -0.9+y2.85, -0 .9 - j2 .85] .

11

APPENDIX C

PROGRAMS LISTS

* *
Simulation Using Conventional Method

**

/include <math.h>
#include <stdio.h>
/include <dos.h>

main()
{char strin[50], strout[50];
FILE *iop, *iopl;
double fmod(double x, double y);
float x[4],v[4],Force,1[4],Q,k,sample,result[4],i,j,time;

/* Open input/output file */
printf("Input file name:");
gets(strin);
printf("Output file name:");
gets(strout);
iop=fopen(strin,"r");
iopl=fopen(strout,"w");

/* Read in data */
(void) fscanf(iop," %f %f %f %f \ n",

&x[0],&x[l],&x[2]/&x[3]) ;
fprintf(iopl," t x[t] \n");
Q=0.0,time=0.0,Force=0.0, sample=0.02 ;
V [0] = 0 . 2 2 6 , V [1] = 0 . 0 2 8 4 , V [2] = 0 . 0 0 0 1 7 4 , V [3]=0.104 ;

fprintf (iopl,"%.6f %.6f %.6f \n", Q, x[0],
x [2]) ;

loopl:
if (time<=100.0)

X [0] = 0 . 8 9 5 1 * x [0]-2 . 5 1 4 * X [1] - 0 . 00 0 17 7 *X [2] ;
X [1]=0.129*X[0]+0.651*x[1]+0.000144*X[2];
X[2]=-0.0759*X[0]+0.843*X[2];
X [3] = - 4 . 6 34 * X[0] + 0 . 0 6 85*X[1] - 3 . 3 9 6 * X [2] + 0 . 8 9 6 * X [3] ;

x[0]=x[0]+v[0]*Force;
x[l]=x[l]+v[l]*Force;
x[2]=x[2]+v[2]*Force;
x[3]=x[3]+v[3]*Force;
if(fabs(x[0])>0.001 ¡j fabs(x[2])>0 .0i)

{
F o r c e = -2 .0 ;

l

}else
{ Force=2.0 ;
}time++;

Q=time*o;
if(fmod(time,2)==0)
{ fprintf (iopl,"%.3f %.6f %.6f \n", Q, x[0], x[2]);
}goto loopl;
>else
{foiose(iop);
foiose(iopl);
}

u

* *
Simulation Using Neural Networks

* *

/include <math.h>
/include <stdio.h>
/include <stdlib.h>
main()
{char strin[100],

strout3[50],
stroutl[50],
strout4[50],

s t r o u t 2 [5 0] ,
strout5[50];

FILE *iop, *iopl,*iop2 ,*iop3,*iop4 ,*iop5;
extern double exp() «

9double fabs(double x);
unsigned long k,maxk step,k fail;
int i,j,times, q,min step,fail num,max fail Ìfloat x[5], zl[5], Z[5], y2[5], yi[5],y22[5], Xl[5], c[5]. b[5], e[5],

f[5], f f [5] , dl[5][5], d [5] [5] ;
float P, beida, push, limit, lb, la

mm, rr, 1, bb, kk, rl
satime, temp2, low, high, g, XX
y y. yyi# zz, zzi, zz2,
templi, w , gama, r, lou,
loue, i o u f
louh, V, s, mil, beidah,
sgnc, sgnf, PP, x_lim,
angle_lim, temp22, t;

float a[5][5]={{-0.63912,-0.06556,0.082999,0.05223,-0.96392
{-0.09169, 0.06309,0.05288, 0.09191, -0.01464},
{ 0.06791, 0.06218, 0.020951, 0.01994, 0.044 >,
{-0.01876, 0.03425, -0.00178,-0.0311,-0.047118

>/

-0.0462}};
extern int rand() ;

/*-----------------------

{-0.01539,-0.06726, 0.02909, -0.09939,

Open Input/Output File
printf("Input file name:");
gets(strin);
printf("Output fail_num and k_fail number file name:"); gets(strout1);
printf("Output d[i][j] and a[i][j] weight file name:");
gets(strout2);
printf("Output state e[i],f[i]___:");
gets(strout3);
printf("Output state f[i]:");
gets(strout4);
printf("Output state variables:");
gets(strout5);
iop=fopen(strin,"r");

iopl=fopen(stroutl,"w")
iop2=fopen(strout2,"w")
iop3=fopen(strout3,"w")
iop4=fopen(strout4,"w")
iop5=fopen(strout5,"w")

/ * ----------- Read In Data
(v o i d) f s c a n f (i o p , " % f , % f , % f , % f , % f , % f

\n",&lou,Sloue,&louh,Sbeida,Sbeidah,Sgama);
(void) fscanf(iop,"%f,%f,%d \n",&x_lim,&angle_lim,&limit);
(v o i d) f s c a n f (i o p , " % d , % d , % d \ n " ,

Stimes,&min_step,&max_fail);
(void) fscanf(iop,"%f,%f,%f,%f,%f,%f,%f,%f \n",

&Ib,&Ia,&nun,&1,&rr,&kk,&bb,&g);
(void) fscanf(iop ,"% f,% f,% f,%f \n",

&x[0],&x[1],&x[2],&x[3]);
/* Input random limit and initial weights— */

low=-0.1; high=0.1; push=0.0;
for(i=0;i<5;i++)
{zl[i]=(rand()/32767.0)*(high-low)+low;
}

/ * zero state */
k=0.0, t=0.0, fail_num=0, k_fail=0, temp2=0.0, templl=0.0,
satime=0.02,w=0.0, s=0.0, p=0.0, maxk_step=300;
rl=0.0, X[4]=0.5, Xl[0]=0.58, xl[l]=0.l,Xl[2]=0.5,
xl[3]=0.1; xl[4]=0.5;
e[0]=-0.05484,e[l]=-0.08159, e[2]=-0.05249,e[3]=0.2247,
e[4]=0.0949;
f[0]=-2.7037,f[l]=-2.65893,f[2]=-1.85765, f[3]=10.16119,f[4]=-2.49699;
b[0]=0.0207,b[l]=-0.03322,b[2]=-0.00118, b[3]=-0.0852,
b[4]=0.0606;
C[0]=-3.98423,C[1]=0.0610,C[2]=-0.0172, c[3]=-0.01803,
C[4]=-0.02898;
d[0][0]=-0.00255,d[0][1]=0.03012,d [0][2]=-0.08009,d[0][3]=-
0.66811,d[0][4]=0.12363;
d [1][0]=-0.07688, d[l][1]=0.02718, d [1][2]=0.030437,
<*[1] [3] =-0.64686,d[l] [4] =0.20023 ;
d[2][0]=0.074733, d[2][1]=-0.0199, d[2][2]=-0.003387,
d[2][3]=-0.58907,d[2][4]=0.03698;
d[3][0]=-0.08559, d[3][l]=-0.01518, d[3][2]=-0.023125,
d[3][3]=-0.528729,d[3][4]=0.05066;
d [4] [0]=0.02908, d [4] [l]=-0.00247, d[4] [2] =-0.00112,
d [4][3]=-0.54343,d[4][4]=0.106;

/* Using Euler's method soluting system function
and determine output state limit

loopl:
if(f[i]>=0.0){

sgnf=1.0;>
else{

sgnf=-l.0;}
if(c[i]>=0.0){

sgnc=1.0;}
else{

sgnc=-l.0;}
if(k!=0)

{ if(fabs(x[2])>=angle_lim ¡j fabs(x[0])>=x_lim) /*
have failure */

{ for(i=0;i<5;i++)
{x[i]=(rand()/32767.0)*(high-low)+low;

}
>

}xx=(g*x[2]+x[l]*x[3]*x[3])/(1.0+Ib/(mm*rr*rr));
yy=mm*x[0J*x[0]+Ib+Ia;

zz2=mm*g*x[0]-Ib*xx/rr-2*mm*x[0]*x[1]*x[3]-kk*l*l*x[2]-bb*l
*l*x[3];

zzl=push*l;
zz=zz2-zzl;
yyl=zz/yy;
if(x[2]>0.0){

x[0]=-fabs(x[0]);}
else{

x[0]=fabs(x[0]);}
fprintf(iopl,"%0.3f %0.6f %0.6f \n ",t/ x[0],x[2]);
x[0]+=satime*x[1]; x[1]+=satime*xx;
x [2]+=satime*x[3]; x[3]+=satime*yy1;

 * /

if(x[0]>x_lim){
x[0]=x_lim;}

else{
if(x[0]<-x_lim){
x[0]=-x_lim;}

else{
x [0]=x[0];}}

if(x[2]>angle_lim) {
x[2]=angle_lim;}

else {
if(x[2]<-angle_lim){
x[2]=-angle_lim;}

else{
{

x[2]=x[2];}}

v

if(x[l]>0.05){
x[1]=0.05 ;

else{
if(x[l]<-0.05) {
x[l]=-0.05;}

else{
x[l]=x[l];}}

if(x[3]>l.){ x[3]=l.;}
else{

if(x[3]<—1.){
x[3]=-l.;}

else{
x[3]=x[3];>}

x[4]=0.5;

/* ------ Output sate ealuation in evaluation
network ---- */

for (i=0;i<5;i++){
templl=0.0; temp22=0.0 ;
for (j=0;j<5;j++){

templi += a[i][j]*x[j];
temp22 += a[i][j]*xl[j];}

if(templl>6.0){
y2[i]=l.0;}

else{
if (texnplK-6.0) {

y2[i]=0.0;}
else{
y2[i]=1.0/ (1.0+exp(-1.0*texnpll)) ;}>

if(temp22>6.0){
y22[i]=l.0;}
else{
if (temp22<-6.0){

y22[i]=0.0;}
else{

y22[i]=l.0/(1.0+exp(-1.0*temp22));>}
v=c[i]*y2[i]+b[i]*x[i];
w=c[i]*y22[i]+b[i]*xl[i];}

/* ----- Action network: Failure signal plus chang in
evaluation net */

if(fabs(x[2])>=angle lim \\ fabs(x[0])>=x_lim) /* havefailure */
{ fail_num +=1;
printf(" %d %d \n", fail_num,k_fail);
k_fail=0;
if (fail_num>max_fail){

goto loop2;}

vi

r=-l.0;
rl=r-w;}

else{
if(k!=0){

r=0.0;
rl=r+gama*v-w; /* w=v[t,t], v=v[t,t+l]

* / k_fail+=l;}>
/ * ----------- Modification in evaluation----------- */

for(i=0;i<9;i++){
i f (i < 5) {c[i]+=beida*rl*y22[i];}
else{

b[i]+=beida*rl*xl[i-5];}}
for (i=0;i<5;i++){

for(j=0;j<5;j++){
a[i][j]+=beidah*rl*y22[i]*(1.0-y22[i])*sgnc*xl[j];}}

/*-------------Output action-----------*/
for (i=0;i<5;i++){

temp2=0.0;
for (j=0;j<5;j++){

temp2 += d[i][j]*xl[j];}
if(temp2>6.0){

z[i]=1.0;}
else{
if(temp2<=-6.0){

z [i] = 0 . 0 ; >
else{

z[i]=1.0/(1.0+exp(-1.0*temp2));}>>s=0.0;
for(i=0;i<5;i++){

s+=f[i]*z[i]+e[i]*xl[i];}
if(s>6.0){
P=1•0;} else{
if(s<—6.0){

p=0.0;}
else{
p=l.0/(1.0+exp(-s));}>

i f (P > = 0 • 5) {
q = i ; }else{
q = o ;}

i f (q = = i) {push=5.0;}
else{

push=-5.0;>

vii

/ * ----------------------- Output a c t io n m o d if ic a t io n

f o r (i = 0 ; i < 9 ; i + +) {
if(i<5){f[i]+=lou*rl*(q-p)*z[i];}
else{
e[i]+=lou*rl*(q-p)*xl[i-5];>}

f o r (i = 0 ; i < 5 ; i + +) {
for(j=0;j<5;j++){

d[i][j]+=louh*rl*z[i]*(1.0-z[i])*sgnf*(q-p)*xl[j];>}
X1[0]=X[0],Xl[l]=X[l],X1[2]=X[2],X1[3]=X[3],xl[4]=x[4];
dl[i][j]*d[i][j];
/*------------------ Save Weights--------*/

if(k<maxk_step){
if(k_fail>l){

for (i=0;i<4;i++){
for(j=0;j<5;j++){

fprintf(iop4,” %f %f », d[i][j]fa[i][j]);
fprintf(iop4, "\n");}>

for(i=0;i<9;i++){
fprintf (iop3, "%f %f %f %f %f %f %f",

b[i] ,e[i],c[i],f[i],z[i]#x[i],yl[i]);
f p r i n t f (i o p 3 , "\ n M);> >

k++;
t+=0.02 ;
goto loopl;}
else{
k++;
goto loop2;}

loop2: fclose(iop);
fclose(iopl);
foiose(iop2);
fclose(iop3);
fclose(iop4);
fclose(iop5);

vili

* *
Real Time Conventional Control

* *

/include <stdio.h>
/include <dos.h>
/include <bios.h>
/include "dashS.h"
float ball_pos, beam_angle, control_input, old_pos,
ball_vel,terml,term2,sample;
int k=0;
main()
{ char strout[50];

FILE *iopl;
/* 'error' is a variable declared globally that is set to 1
i.e. TRUE if

an error occurs in any function. */
setfreq(3 0); /*function to set
freq*/
getset_dat(); /* function to get
file */

printf("Output file name:");
gets(strout);
iopl=fopen(strout,"w");

printf("\n Enter the ball position multiplying term\n\n");
scanf("%f",&terml);
printf("\nBall position multiplying term is %f",terml);
printf("\n Enter the ball velocity multiplying term\n\n");
scanf("%f",&term2);
printf("\nBall velocity multiplying term is %f",term2);

interrupt

setup info

printf("\n\n\nProgram is running..Hit any key to stop program..Not Ctrl/Break");
install();
'getdata1
* /dasSset();
old_pos = 0.0;
loop*/
sample=0.0 ;
loop:if(k<=500)
{speedchk();
program ru

/* function to install isr
at appropriate interrupt vector

/* function to 'let her rip'jp
/♦initialize before entering

/*function to ensure user

between interrupts */
/* USER APPLICATION CODE IS PUT HERE */
ball_pos = int_volt(int_in[0]);
ball__pos = old_pos*.75+ball_pos*.25; /*low pass filter*/
ball_vel = (ball_pos - old_pos)*samp_freq;
control_input = termi*ball_pos + term2*ball_vel;
fprintf(iopl," %. 4f %0.4f %0.4f
\n",sample,ball_pos/10.0,ball_vel);
if (control_input > 2.0) control_input =2.0; /*clamp
output to avoid error*/
if (control_input < -2.0) control_input = -2.0;
old_pos = ball_pos;
volt_dac(control_input,0); /*send voltage to
DAC */
sample+=0.05 ;
k++;
goto loop;
}volt_dac(0,0) ;
stop();
fclose(iopl);
}/* END */

x

* *
Real Time Neural Network Control

* *

/include <stdio.h>
/include <dos.h>
/include <bios.h>
/include "dash8.h"
main()
{ char strout[100];
FILE *iop;
extern double exp();
double fabs(double x);
int
float

float

i, j,times,k,q,fail_num,n,intval,DAC_channel,chann
el;
Zl[5],z[5],y2[5],yl[5],y2 2[5],xl[5],c [5],b [5],
e[5],f[5],ff[5],dl[5][5],x[5],sgnc[5],sgnf[5],
xx[2],Xk[4],d[5][5],p,beida,limit, lb, la, mm, rr,
l,bb ,kk,rl, temp2, low, high, g, yy,yyl, zz,zzl,
zz2,templi, w , gama, r, loue, louf,
louh,v,s,sl,s2,mll,beidah,pp,x_lim,angle_lim,
temp22,k_fail,push,sample,ball_pos,old_pos,
ball_vel;
a[5] [5]={{-0.6084,-0.0649,0.1005,0.0475,-0.776} ,
{ -0.0663, 0.0618, 0.0557, 0.0654, 0.1498 >,

0.0414, -0.0030, 0.2455 },
0.0187, -0.0548, 0.1544 },
0.0495, -0.1226, 0.1544 > };

{ 0.1087, 0.0634,
{ 0.0223, 0.0355,
{ 0.0254, -0.0660,

extern int rand();
/♦Parameter assigning*/
loue=1.0, louf=1.0, louh=0.2, beida=0.05,

beidah=0.05, gama=0.9, x_lim=0.3,
angle_lim=0.069, n = 5 0
low=-0.1, high=0.1, push=0.0, x [4] =
ball_pos=ball_vel=old_pos=0.0;
r Initialise Weights '/

for(i=0;i<5;i++)
{zl[i]=(rand()/32767.0)*(high-low)+low;
}

f o r (i = 0 ; i < 5 ; i++)
{yl[i]=(rand()/32767.0)*(high-low)+low;
}

r

k=0.0,
templl=0.0,
x[4]=0.5,
xl[3]=0.1,
XX[0]=0.0,

zero state
fail_num=0,
w = 0 .0,
xl[0]=0.58,
x l [
XX[2]=0.0,

'/

k_fail=0,
s=0.0,p=0.0 ;
xl[l]=o.l,
4]
Xk[0]=0.0,

temp2=0.0,
rl=0.0,
xl[2]=0.5,0 . 5
Xk[l]=0.0,

XI

x k [2]= 0 . 0 , Xk [3] =0 .0 , push=0.0 ;

e[0
e[4
f[0
f [4
b[0
b[4
C[0
C[4
d[0
d[0
d[l
d[l
d[2
d[3
d[3
d[4
d[4

=-0.2093, e[l]=
=0.0949;
=-1.4708, f[l] =
=-2.59338;
=0.0207, b[l] =
=0.0606;
=-3.98423, C [l]
=-0.02898;
[0]=0.0625,
[3]=-0.5782,
[1]=0.0224,
[4]=0.2168 ;
[2]=-0.0197,
[0]=-0.0245,
[3]=-0.6227,
[1]=-0.0072,
[4]=0.1227 ;

=-0.0845, e [2] =-0.1322 , e[3]=0. 2856,
=-2.646, f [2]=-1.5804, f[3]=8 . 04 3 ,
=-0.03322, b[2]=-0.00118, b [3] =-0. 08 52 ,
=0.0610, C[2]=-0.0172, C[3]=-0.01803,
d[0][1]=0.0254,
d[0][4]=0.1396;
d[l][2]=0.0141,
d [2][0]=0.0142,
[2 3 [3] =-0. 4987 ,

d[3][1]=—0.0103,
d[3][4]=0.0346 ;
d[4][2]=-0.0175,

d[0][2]=-0.0946,
d [1][0]=-0.1375,
d[l][3]=-0.5549,
d[2][l]=-0.0246f
d[2][4]=0.0529 ;
d[3][2]=-0.0067,
d [4][0]=-0.0322,
d[4][3]=-0.4508,

getset dat();

loop:

(m)
(C)

printf("Output state x file name:");
gets(strout);
iop=fopen(strout,"w");
k=0 ;
sample=0.0 ;

setfreq(20);
getset_dat();

install();
das8set();
if(k<n)

{speedchk();
Xk[0]=int_volt(int_in[0]);
Xk [2]=int_volt(int_in[1]);
x[0]=Xk[0]/10.0;

'/
x[2]=Xk[2]/10.0;

/* Position of beam is meter
/* Angle of beam is degree

x[l]=(x[0]-xx[0])*samp_freq;
x[3]=(x[2]—XX[2])*samp_freq;
fprintf(iop,"%0.4f %0.4f

\n",sample,x[0],x[l],x[2]);
for (i=0;i<5;i++)

{ if (f[i]>=0.0){
sgnf[i]=l.0;
}else
sgnf[i]=-1.0;

%0.4f %0.4f

xn

{ sgnc[i]=1.0;
}else
{sgnc[i]=-l.0;
}

>

if(x[l]>0.0)
{x[0]=-fabs(x[0]);
>else
{x[0]=fabs(x[0]);
>if(x[0]>x_lim)

{ x[0]=x_lim;
}else
{ if(x[0]<-x_lim)

{ x[0]=-x_lim;
}else
{ x[0]=x[0];
}

>if(x[2]>angle_lim)
{ X[2]=angle_lim;
}else
{ if(x[2]<-angle_lim)

{ X[2]=-angle_lim;
}else
{

X [2] = x [2] ;
}

}

if(x[l]>0.1)
{

>

}

i f (c [i] > = 0 . 0)

X[1] = 0 . 1 ;

xiii

else
{ if(x[l]<-0.1)

{ x[l]=-0.1;
}else
{

x [1] = x [1] ;
>

>if(x[3]>1.0)
{ x[3]=1.0;
}else
{ if(x[3]<-1.0)

{ x[3]=-1.0;
>else
{ x[3]=x[3];
}

}x[4]=0.5 ;
/*— Output State Evaluation In Evaluation Network */

for(i=0;i<5;i++)
{ tempi1=0.0;

temp22=0.0;
for (j=0;j<5;j++)
{ tempi1 += a[i][j]*x[j];

temp22 += a[i][j]*xl[j];
} if(templl>6.0)

{ y2[i]=l.O;
}else
{ if (templl<-6.0)

{ y2[i]=o.o;
}else
{

y2[i]=1.0/(1.0+exp(-1.0*templl));
>

}
if(temp22>6.0)

xiv

{y22[i]=1.0;
}else
{if (temp22<-6.0)

{ y22[i]=0.0;
}else
{ y22[i]=1.0/(1.0+exp(-1.0*temp22));
}

} v=c[i]*y2[i]+b[i]*x[i];
w=c[i]*y22[i]+b[i]*xl[i];

}

/* ---- Action network: Failure Signal Plus Change In
Evaluation Network

 */

if(fabs(Xk[2])>=0.1 ¡[fabs(x[0])>=0.01)
{ fail_num +=1;
k_fail=0;
r=-l.0;
rl=r-w;

}else
{ if(k!=0)

{ r=0.0 ;
rl=r+gama*v-w; /*w=v[t,t], v=v[t,t+l]

* / k_fail+=l;
}

>

/ * ------- Modification In Evaluation------------ */

f o r (i = 0 ; i < 9 ; i++)
{ if(i<5)

{ c[i]+=beida*rl*y22[i];
}else
{ b[i]+=beida*rl*xl[i-5];
}

>

xv

{ for(j=0;j<5;j++)
{

a[i][j]+=beidah*rl*y22[i]*(1.0-y22[i])*sgnc[i]*xl[j];
}

>

/*----------- Output Action--------------- */
for (i=0;i<5;i++)
{ temp2=0.0;

for (j=0;j<5;j++)
{ temp2 += d[i][j]*xl[j];
}if(temp2>6.0)

{ z[i]=1.0;
}else
{if(temp2<=-6.0)
z[i]=0.0;
}else
{z[i]=1.0/(1.o+exp(-l.0*temp2));
>

>
}s=0.0;

for(i=0;i<5;i++)
{ sl=f[i]*z[i];
s2=e[i]*xl[i];
s+=sl+s2;

}if(s>6.0)
{p=l.0;
}else
{if(SC-6.0)

{ p=0.0;
}else
{

f o r (i = 0 ; i < 5 ; i + +)

p = l . 0 / (1 . 0 + e x p (- s)) ;

xvi

}

{
q=l;

}else
{ q=o;
}ball_vel = (ball_pos - old_pos)*samp_freq;

push =p*(ball_pos + ball_vel);
if(push>2.0) push=2.0;
if(push<-2.0) push=-2.0;

volt_dac(push,0);
xx[0]=x[0],xx[2]=x[2];
old_pos=ball_pos;

/*------------ Output Action Modification-------------
* /

for(i=0;i<9;i++)
{ if(i<5)

{f[i]+=louf*rl*(q-p)*z[i];
>else
{e[i]+=loue*rl*(q-p)*xl[i-5];
}

}for(i=0;i<5;i++)
{ for(j=0;j<5;j++)

{

d[i][j]+=louh*rl*z[i]*(1.0-z[i])*sgnf[i]*(q-p)*xl[j];
>

>

xl[0]=x[0],xl[1]=x[1]/xl[2]=x[2],xl[3]=x[3],xl[4]=x[4],dl[i
][j]=d[i][j];

k++;
sample+=0.05;
goto loop;

}volt_dac(0,0);
stop() ;
fclose(iop);

}

}

i f (p > = 0 .5)

xvu

