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A bstract

T h is thesis addresses the problem  of finding num erical solutions to ordinary and  

algebraic differential equation system s O ur prim ary focus is the application of one- 

step num erical schemes to these problem  classes

F irstly  we concentrate on the narrower class of explicit O rdinary Differential E q u a 

tion (O D E ) system s W e analyse the theory necessary develop efficient algorithm s 

based on our chosen one-step num erical schemes T hese algorithm s are then applied  

to the solution of a standard test set of O D E  system s T h e  results are then com pared  

w ith those obtained using standard software packages on the sam e problem  test set 

O ur theory is then extended to include the wider class of A lgebraic Differential 

Equation (more com m only called Differential A lgebraic Equ ation  (D A E ))  system s 

B ased on this theory, we are able to adapt our one-step schemes to solve this harder 

class of problem  Once again the resulting algorithm s are tested on a selection of 

problem s and results are com pared w ith  those obtained from  standard software pack

ages On all problem s considered, we dem onstrate th at our techniques can often 

provide efficient alternatives to the more com plex m ethods adopted in the standard  

software packages designed for these problem  classes
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C hapter 1 

Introduction.

1.1 System s of differential equations.
T h e  tim e behaviour o f m any natural and technical processes, can be described b y  

system s o f O rdinary Differential Equations (O D E s) In general, two types of system s 

arise. T h e  explicit first order system

y '(0 =  f(*>y(*))> t € \a,b] (11)

w ith  y ( a )  given For this system , y ( i ) ,  y '( t)  and f (  ) are n — dim ensional  vectors 

T h e  second system  is the general im plicit O D E  given b y

F ( i , y ( * ) , y '( * ) )  =  0  t e  [a, 6] ( 1 2 )

w ith  both  y (a) and y '(a) given. Once again y ( t) ,y '( t )  and F (  ) are n  — dim ensional 
vectors

T y p ic a lly  explicit system s ( 1 1 )  and im plicit system s ( 1 .2 )  arise in sim ilar ar

eas For exam ple, electronic circuits can be modelled by system s of O D E s D ynam ic  

elements such as capacitors and inductors generate differential equations while the in

clusion of static elements in the circuit give rise to algebraic equations T h e  algebraic  

equations are coupled to the differential equations form ing a  Differential A lgebraic  

Equation (D A E ) system , see C am pbell [12]

Control problems, solved b y variational techniques, provide us w ith  another exam 

ple of ordinary differential system s In some cases, the E u ler-Lagran ge equations lead  
to explicit system s However, the best known control problem , is the linear quadratic  
regulator 1

x '  =  A x  — B u  x (a )  =  x a 

w ith  the associated cost functional

J(u ) = j  j x ' / f x  +  u ^ u j dt

T h e  m atrices H and Q are sym m etric and positive definite U sing the theory of 

Lagran ge multipliers, the necessary conditions for a m inim um , see C am pbell &  M eyer

1 We drop the dependence of x  and u on t for clarity
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[11], are

x' =  Ax  +  Bn  x (a )  =  x a

A' =  —At\  — H x  A (b) = 0

0 =  B l A +  Q u

O nce again, we obtain a  system  of differential algebraic eqautions
W h en  a system  of tim e dependent P artial Differential Equation s (P D E s ), are 

solved using an approxim ate technique, such as finite differences or finite elements 

[59], a  system  of differential equations arises If the system  is a  coupled system  of el

liptic and parabolic P D E s , then the resulting equations generated b y  the approxim ate  

technique are differential algebraic, see Petzold &  L o tstedt [59]
T h e  final exam ple we introduce is the singularly perturbed scalar differential sys

tem

y ' = g ( t , y , z , £ )
tz' =  h(t,y,z, e) t  E  [a, b ] (13)

w ith both y(a) and z(a) given Usually, e is a  sm all param eter w ith |e| <C 1 System s  

of this form  prove to be unsuitable for num erical solution T h e  reason for this is that 

the perturbation param eter, e m ay take a value sm aller than the sm allest machine 

representable num ber T hen  the qualitative assessm ent o f the solution becom es im

portant T h e  lim iting case e = 0 must be understood and the resulting D A E  system  

solved num erically

1.2 Objectives and review.
In this thesis, we concern ourselves with the solution of explicit O D E  system s 2 ( 1  1)  

and D A E  system s, which can be w ritten in the form

E y '=  i{t,y(t)) t £ [a,b] (1 4 )

w ith y ( a )  and y '( a )  given In general the m atrix  E  is singular To this end, we will 

draw on theoretical results for the an alytic solution of both ( 1 1 )  and ( 1 .4 ) ,  where 

necessary O ur m ain objective is to use the theory given in this work to develop 

num erical m ethods for the solution of O D E  and D A E  system s W e evaluate the 
perform ance of the techniques we propose against som e standard algorithm s available 
for the num erical solution of these problems

In C h ap ter 2 , we stu d y explicit O D E s and their num erical solution W e concen

trate on ’stiff’ O D E  system s These problems are sim ilar to the singularly perturbed  

system s, but th ey are suitable for numerical solution C oncepts of convergence, order 

of accu racy and stability will be discussed for num erical m ethods applied to O D E s  

W e show how num erical m ethods can be im plem ented to solve explicit O D E  system s 

C h ap ter 3  develops the one step num erical m ethods that form  the core of this 

thesis A g ain , we analyze the accu racy and stability o f these schemes W e give two 

algorithm s based on the one-step form ula proposed Fin ally, we test them  on some 

well known problems th at have appeared in the literature

2We simply call these ODEs for the remainder of this thesis
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T h e  em phasis changes in C hap ter 4, where we consider theoretical aspects of 

D A E s  T w o  im portant topics are addressed in C h ap ter 4. the index, or degree 

of com plexity of a  D A E  and the difficulties associated w ith  initial conditions W e  

outline a selection of techniques that have appeared in the literature for dealing w ith  

these problems
O nce again in C h ap ter 5  we return to num erical m ethods. W e explain w h y some 

D A E s  are solvable by numerical m ethods suitable for explicit O D E s and others are 

not W e show th at the index or degree of com plexity o f a  D A E ,  determ ines both the 

accu racy and stability of a  particular num erical scheme.

C h ap ter 6  parallels C hapter 3  W e extend our one step schemes to the solution  

of system s of the form  ( 1 .4 ) .  A gain , we stu d y the accu racy of these schemes, using 

the theory developed in C hapter 5 . W e outline how we intend to change our one step  

schemes so th at th ey can be used to solve D A E s  W e then consider two well known  

algorithm s, which are available as Fortran routines for the num erical solution o f D A E  

system s These algorithm s are called D A S S L  (D ifferential A lgebraic Syste m  Solver) 

and L S O D I (Liverm ore Solver for Im plicit O D E s) Fin ally, a  w ide selection of test 

problems are proposed and solved using all algorithm s outlined in this thesis

T h e  last C hapter, discusses how successful we feel our software has been m  solving 

the problem s considered W e discuss where we feel progress can be m ade in the future  

in solving D A E  system s and close w ith a  discussion of possible extensions of D A E  

typ e problems which to our knowledge have not appeared in the literature
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C hapter 2

T he num erical solution  of  
Ordinary D ifferential Equations 
(O D E s).

2.1 The theory o f ODEs.
In this C hap ter it is our intention to exam ine the theory of O D E s along w ith  some 

num erical m ethods for their solution In particular we are concerned w ith  solving the 

general first order nonlinear vector O D E  of the form ,

y '( t)  =  f ( t ,  y ( i ) )  ( 2  1 )

where

y (t) R - » R n and f (£, y(i)) R x R n -+ R n, 

subject to  the conditions

y(a) = y tt and t  G [ a , b ] .

T h e  first question we ask ourselves regarding (2 1 )  is, does a solution y ( t )  exist 

and, if so, is it unique In section 2  we outline the conditions th at we need to 

impose on (2 1)  for a  unique well-posed stable solution to exist W e also exam ine  

the concept o f stiffness which is very im portant for the num erical solution of O D E s  

Section 3  introduces discrete variable (num erical) m ethods for the solution of ( 2  1 ) 
In particular we introduce two well known classes of m ethods, the R u n ge K u tta  (R K )  

m ethods and the Linear M ultistep M ethods (L M M ) Section 4 discusses the error, 
order and convergence of numerical m ethods when applied to ( 2  1 ) Stab ility  of 

num erical m ethods is introduced in section 5 . W e give several definitions of stability  

and dem onstrate their usefulness through relevant exam ples Section 6  deals w ith  

the im plem entation o f numerical m ethods. F in a lly  in Section 7, we look at some well 

docum ented techniques for estim ating the error in the num erical integration of ( 2  1 ) 
and the associated problem  o f stepsize adjustm ent.
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2.2 E xistence and uniqueness.
W e assum e that f (t, y (t)) is Lipshitz continuous on [a, b], th at is there exists a  

constant L such that

l |f ( * ,y (0 )  -  f (*»z (0)lloo <  L  ||y(i) -  z (t) ||oo ( 2  2 )

for all i  €  [a, b] and all y (t), z (t) (E R n l.
M ore specifically if we require the first partial derivatives of f ( -)  be bounded by  

a constant K  th at is, ||
- <  K  l < i , ] < n  ( 2 3 )

for all t 6  [a, b] and all y(t) 6  R n, then (2 2) and (2 3) guarantee a  unique, well 

posed (in the sense that the solution can be m ade as accurate as possible b y keeping 

perturbations sm all) solution to problem  (2 1 ), see G ear [31]
T h e  m ost im portant attribute of (2  1 )  we are concerned w ith is stiffness W hen  

solving O D E s num erically, stiffness will d ictate how well a  num erical m ethod will 
perform  on the O D E  To determ ine whether or not ( 2  1 ) is stiff, we need to know  

som ething about the nature of its solutions m the neighbourhood o f a  particular  

solution y ( t)  Hall &; W att [38] consider such a  neighbourhood where (2 1 )  can be 

closely approxim ated by the linearized variational equations

y ' ( i ) - J ( i ) [ y ( i ) - y ] - f ( i , y )  =  0 (2 4)

where J ( t ) is the Jaco bian  m atrix of partial derivatives , evaluated at (t, y )  

Remark 2 1 W e deal only w ith stiff problems m this thesis N on-stiff O D E s are 

better solved by num erical m ethods such as A d am s form ulae, see [31]

If the variation of J(t) in an interval of t is sufficiently sm all, the localized eigenso- 

lutions of (2  4) are approxim ately exponentials eA‘ 4 , where the A[s are the localized  

eigenvalues of the Jaco b ian  m atrix, assum ed w ithout loss of generality to be distinct 

T hu s the solution y  of (2  1 )  in a  neighbourhood of the exact solution y ( i )  at t are 

of the form n
y =  y (0 +  E  c,eA,tVj

»=i

where the c, are constants and the v ,  are the eigenvectors o f J(t)  If we assume 

that Re(A ,), < 0  V  z =  l(l)rz , then clearly the com ponents of the solution y  will 
decay at different rates, given by | 1 /Re(\t) |, these are called the time constants of 

the system  T h e  O D E  (2 1 ) is stiff, if we have w idely differing local time constants 
It is the range m the local values of the ’’ tim e constants” of a  problem  th at provides 
a m easure of stiffness

Definition 2 1 (Lambert [46]) T h e  O D E  ( 2 .1 )  is said to be stiff in an interval I 
of [a, b] if, for t E I , we have

Re(A,) < 0  i =  l ( l ) n

^ h e  Maximum norm is sufficient for the type of functions we consider, however the Supremum 
norm may be more appropriate in certain situations
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= max.,1,„ fle(A ) >> Q
m m ,=lin R e(A,)

where the A ,’s are the eigenvalues of the Ja co b ian  m atrix of f ( ¿ ,y ( í ) )  , evaluated on 

the solution y (t)  at t T h e  ratio S (t)  is called the local stiffness ratio o f the problem, 

see Lam bert [46] Problem s m ay be m arginally stiff if S(t )  is 0 ( 1 0 )  while stiffness 
ratios o f 0 ( 1 0 6) are not uncomm on in practical problem s Som etim es a  problem  

w hich is stiff is referred to as a  problem  w ith  ’’ w idely differing tim e constants” , or as 

a  system  w ith  a ’’ large Lipshitz constant” , since

and

d f  

d y

where p( ) is the spectral radius of the Ja co b ian  of f(-)

' f )  <

2.3 D iscrete variable m ethods.
W ith ou t loss of generality we consider the scalar version o f (2  1 )

y1 = t e  [a, 6] (2  5)

w ith  y(a) = ya T h e  exact solution of (2  5) is approxim ated on set of discrete points

(X   0̂5̂ 1)̂ 25 * 5̂ /   b
If the discrete variable m ethod 2 approxim ates the true solution y (tn) at the point 

tn b y  yn, then we shall consider the class of discrete variable m ethods given b y

yt =  s,(h), 0  <  i <  k  — 1 , startin g values

and
k

^  1  a t Vn+t =  h*f> f (tn, yn+ki ' (2 *6 )
«=0

0 < n < N  — k,

where h = i n + 1  — tn and N  h = tn — t0 If yn+k does not appear in $ / (  )3  then ( 2  6 ) 

is said to be explicit otherw ise it is im plicit. T h e  above class of m ethods contains a  

reasonably wide selection of the most popular discrete variable m ethods, (see Hall &  

W att [38]) For exam ple the general im plicit one-step m ethod, com m only known as 

the B ackw ard  Euler ( B E )  m ethod, is defined by

y»»+l — Vn "I" h f ( t n+l: 2/n+l) (2 7)

W e consider two im portant subclasses o f (2  6 ). T h e  first of these is the R unge  

K u tta  (R K ) m ethods T h e  idea behind the R K  m ethods is to integrate from  tn to 

tn+i = tn +  h, by approxim ating the integral m

f tn+1
y(<n+i) =  y{tn) +  /  / ( T ,  y ( r ) )  dr  (2  8 )

Jtn

2Discrete variable methods are commonly called numerical methods, or numerical schemes when 
discussing ODEs We adopt this convention throughout the thesis

3The function $ / (  ) is often referred to as the increment function
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by a quadrature rule The classical RI< formula« used well known quadrature rules 
such as Sim pson’s rule and were all explicit

To approxim ate (2 8 ) we choose quadrature points

C15 c 2  5 ' ) cq

¿1)̂ 2, ,bq.

t=l

and weights 

W e then use the quadrature formula

9
y(tn+ 1 ) =  y(tn) +  £ ]  6 , fc, +  Error 

w ith the derivatives approxim ated by

fc, — h f  "I- c, h, yn ^ ] a,tj kj 

For RK m ethods therefore, we have that

(2 9)

9

E
t=l

9

L•=i
In general this is a set o f im plicit equations which we solve for the kt 's and use a 

discrete version of (2 9) for our next value of y(tn+i) thus

9
Vn+l =  V n + J 2 b' k'»=1

T hese im plicit Runge K utta  (IRK) m ethods were first introduced by Butcher [8 ] It 
has becom e standard to follow Butcher and display the coefficients as an array thus

Cl an <*12, , Olq
C2 a 21 a to to

c3 «31 a32? ? ^3 q

c q O-q 1 a q2 , , O-qq

w h , " ) b q

(2 10)

It is com m on to  adopt the following shorthand notation

A
(2 11)

where A represents the m atrix o f coefficients atJ, b  is is the vector o f weights and c  is 
the vector of quadrature points T he quadrature points are usually called abscissae, 
while in the literature they are som etim es called the integration stages We point out 
that th is representation includes the classical explicit form ulae if atJ =  0 , whenever 
i <  j  Then each k, is given explicitly  in term s of the previous ones

9



It turns out however that the nonlinear equations which arise from  the apphcation  

of the IR K  m ethod to (2  5)  are very expensive to solve One w ay to circum vent 

this difficulty is to use a lower triangular array o f coefficients atJ in (2 . 1 0 ), such 

m ethods have been called semi-explicit R K  m ethods m  the literature, see Alexander  

[1] If, in addition, all the a„ are equal, we have a D iagonally Im plicit R K  (D IR K )  

form ula These formula have been extensively studied by N orsett [52], A lexan der [1] 

and C rouziex [23] and have the general form

Cl a
C2 Û21 a
C3 °31 Û32 a

C9 a q l 0,2 - • • • a
bx ¿2 • * •• K

(2 12)

Once again, we adopt the shorthand notation

A
( 2 .1 3 )

but m  this case, A  is a  diagonal m atrix, w ith  equal diagonal elements
T h e  second class o f m ethods we consider are called Linear Multistep Methods 

(L M M ), (usually called m ultistep m ethods) T hese m ethods use previously calculated  

inform ation to generate an approxim ation to y (tn+k) b y  yn+k T h e  coefficients for these 

m ethods are generated by fitting an interpolating polynom ial through the points

y n i V n + l t  5V n + k

A n  alternative form ulation is to fit a  T aylor series to the linear com bination

(2  14 )

3 =  0 , 1 , 2 , ,k

up to a certain order o f accuracy, b y  undeterm ined coefficients, using the previously  

calculated values.

Several well known sets of L M M s have been derived based on this form ula, such 
as the A d a m s/B ash fo rth , A d am s/M o u lto n  and B ackw ard  Differentiation Form ula«  

(B D F )  due to G ear [31] These form ulae form  the basis of the most highly successful 
algorithm  for the num erical solution of O D E s im plem ented to date, the L S O D E  
package of H indm arsh [43]

2.4 Order and convergence.
Consider the O D E  (2 5)  and assum e th at the approxim ate solution yn is obtained by  
( 2  6 ) then,

Definition 2 .2 • T h e  global error at tn, is defined as

Cn — yn yi^n)' 

10
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A  natural requirement for any numerical m ethod of the form (2 .6 ) is th at en can 

be m ade as sm all as possible by m aking h sufficiently sm all, this is the concept of 

convergence.

Definition 2.3: A  m ethod of the class (2 .6 ) is said to be convergent if, when 

applied to (2 .5 )  we have,
lim yn = y (tn)n—

where n h  = tn — a for any tn (E [a, 6].
A s  an attem pt at accessing the global error we introduce the following concept. 

Definition 2-4: T h e  local truncation error (lte) of (2 .6) at tn+k is given by,

k
Tn+k — y !  a t y{tn+k) h ^/(^n j J/(^n+fc)j '•> 2/(^n)j ^)* (2 .16 )

t'=l

T h e  quantity r n+jt is the amount by which the true solution of ( 2 .1 )  fails to satisfy  

(2.6) and m ay be regarded as the first m easure of accuracy. If we consider differential 

equations whose solutions are sufficiently differentiable, then it is possible to obtain  

an expression for the lte in terms o f higher derivatives of y(t). In this situation we 

m ay write
r „  =  C ( i „ ,  V + 1 +  0 ( V * 2 )

where C(-)  is called the principal error function.

Definition 2.5: T h e  m ethod (2.6) is said to of order p, if p is the largest integer 

such that
rn =  0 (h p+1), as h —> 0 .

T h e  appropriate minimal level of local accu racy can now be defined.

Definition 2.6: A  method of the class (2 .6 ) is said to be consistent if,

m ax ||r„|| —► 0  as h —> 0 .

It is consistent of order p, if

m ax ||rn|| =  0 {h p)

Remark 2.2: Hall &  W att [38] deal with a norm alised version of the local trun

cation error called the local discretization error. U nder the assum ption th at h —► 0, 
they show that by controlling the local discretization error we also control the global 
error.

Definition 2.7: T h e  local error (le) of a num erical m ethod is given by

le = u (tn) -  yn

where the local solution u(t)  is the solution to the O D E ,

u'(t) =  f ( t ,u ( t ) ) ,  t x ( in _ x )  =  J/n _ ! .

T hu s in contrast to the lte where exact back values are assum ed, the local error 
takes the solution through the last com puted point ( f „ - i , y „ _ i ) .  T h e  local error is 

a very useful concept for test purposes. U sually we think of the the solution un as 

being a very accurate numerical approxim ation to the true solution obtained w ith a  

sm all step size. Using the concept o f local error we are able to include in our test set 

problems which do not have closed form  an alytic solutions. W e then dem and that

our estim ate o f the error behaves like the local error on all problems in our test set
to ensure reliability o f the integration method.
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2.5 Stability o f numerical m ethods.
T h e  stability of a  num erical m ethod is related to the propagation o f perturbations  

throughout the solution trajecto ry T hese perturbations arise from  several sources 
including the local truncation error o f the m ethod, errors in initial values, round-off 

errors in the com puted solution values and the presence o f extraneous eigenvalues 

in the solution T h e  num erical m ethod used m ust be capable of controlling these 

errors throughout the solution trajecto ry A  num erical m ethod is stable if these 

perturbations remain bounded

Definition 2 8 (A-stability) A  num erical m ethod is absolutely stable for a  given  

fixed steplength and for a  given O D E , if the global error rem ains bounded as n —*■ oo, 

(see H all h  W a tt [38] page 34 )

T h e  problem  w ith this condition is th at it depends on the particular initial value  

problem. T h is  has led most workers to consider specific test equations T h en  the 

general procedure for exam ining the stability characteristics of a  particular numerical 

m ethod is to apply the m ethod to the test equation and determ ine the region of 

stability which results.

If the procedure is applied to m ultistep m ethods w e get a  stability polynom ial, 

while a stability function results when we ap p ly it to one step m ethods, see Lam bert  

[46] W e mention that in this thesis we only implem ent one step m ethods and hence 

the stability analysis w ith which we are concerned is m ainly th at associated w ith  this 

typ e  of method

2.5.1 Stability properties of the linear test equation.
T h e  linear test equation is given by

y' =  \ y  y(a) =  ya (2 1 7 )

where A is a  com plex constant w ith Re(A) <  0 L et us denote the sta b ih ty  function  

that results when we ap p ly a particular one step m ethod to the solution of ( 2  1 7 )  by  

R(z), where z — \h  and h is the stepsize W e can then form ulate several stabih ty  
concepts

Definition 2 9 A  num erical m ethod is A -stab le  if

l * M I  <  i

for all z w ith Re(z) <  0 .

Definition 2 10  If further we have that

R(z) —► 0 as z —> —oo

the m ethod is said to be L-stable
Remark 2 3  T h e  im portance o f the A -sta b ility  concept lies in the fact th at m eth

ods which are A -stab le  do not restrict the step size on stiff problem s T h e  Euler 
m ethod, for exam ple, fails to be A -stab le  A  simple calculation yields

R(z) =  1 +  z.
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T h u s for A -stab ility  we would require h <  1 /|A| T h is is a  severe restriction on the 

step length if A <C 0 In fact all explicit m ethods fail to be A -stab le, see Hall &  W att  

[38]
Remark 2 4 L -stab ility  ensures that the num erical approxim ations to rapidly  

decaying solutions w ith very sm all tim e constants will decay quickly T h ese concepts 

were introduced by D ahlquist [24] and Eh le [26] respectively.
Remark 2 5 • A -stab ility  proves too restrictive for m ultistep m ethods, (the stabih ty  

of these m ethods is dealt w ith  in G ear [31] and Lam bert [46]) D ahlquist [24] proved 

th at a  m ultistep m ethod fails to be A -stab le  if the order is greater than two G ear  

[31] introduced a weaker form  of stability called stiff stability, which ensures th at a  

m ultistep m ethod is A -stab le  in a  region D and accurate in a  region A  of the com plex  

plane T h e  following diagram  illustrates the concept

G ear [31] showed th at k step m ethods of order k are stiffly stable for k < 6

It is useful to consider R K  m ethods applied to the hnear test equation (2 1 7 )  It
is easy to verify the relation (c  /  Hall Sz W att [38])

Vn+l =  R{z) Vn

with

R(z)  =  1  +  z b* ( I  — z  A ) - 1  e  (2 .18 )

where e  =  ( 1 , 1 ,  - • , 1 ) * ,  b  and A  have m eanings given in (2  10 ) and I  is a  q-
dim ensional identity m atrix W e then have A -sta b ility  if

|1 +  z b ^ / — z A ) - 1  e| <  1

W riting R(z)  as 1  +  b* [ l / z ( 7  — z  A )] 1  e  and taking the lim it as z —* —oo we get 
L-stab ility  if

b‘ A~l e =  1 (2 19)
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Solving the m odel problem  (2 17) exactly  over one step of length  h , we have

y(tn+l) =  exp(z) y(tn)

while the numerical solution is

yn + 1  =  R(z) y(tn)

thus
exp(z) =  R(z) +  0 ( z p+1)

T he stab ility  function R(z) is thus a rational approxim ation to the exponential of 
order p.

Example 2 1. Consider the 0-m ethod given in RK form  by

0 0 0

1 1 - 0 0

1 - 0 0

T he stab ility  function R (z), that results from  th e application o f the 0-m ethod to  the  
m odel problem  (2.17), is from (2.18)

n M  1 + z - z O  
R{Z) ~  l-zfl

For A -stabihty we require |-R(z)| <  1, th is gives the following inequality for z w ith  
Re(z) <  0

|z |2 ( l  - 2 6 )  +  2Re(z) <  0

W e can ensure this inequality holds w ith Re(z) <  0 , if we choose 0 >  0 5 Since the  
coefficient m atrix A for the m ethod is not invertible, the m ethod cannot be L-stable  
by (2 19) However if d =  1, no function evaluation is required at tn and th e  m ethod  
reduces to

which is the Backward Euler m ethod in RK form ulation.
Several integration routines used the 0-m ethod as the core integrator These  

include the ST IN T integrator of Hall & W att [38], Prothero & R obinson [60] used 
it for the solution of stiff chem ical kinetics problems and Chua & D ew  [22] used  
this schem e m gas dynam ics sim ulations Berzms et al [3] provide a 9- schem e in 
their SPR IN T  package and Carroll [18] has also used it in his C om posite Integration  
Schem e

2.5.2 S-stability.
In their work on large nonlinear system s, Prothero & Robinson [60] found that
1 Som e A -stable m ethods could give highly unstable solutions.
2 T he accuracy o f the solution obtained is som etim es unrelated to  the order o f the  
m ethod used
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To overcom e these difficulties they introduced the concept o f S-stabihty, which 
is concerned w ith  both  stab ility  and accuracy o f num erical approxim ations to the  
solution of the stiff equation

y '= A {y-<?(*)}+ <?'(*) (2  2 0 )

which has solution
y(t) -  exp (A i){y(0) -  s (0 ) }  +  g{t)

Note. g(t) and g'(t) are bounded functions over a su itable interval of interest [0,T] 
In the lim it as t —► oo we have

y(t) -» 9(t)
regardless o f th e  initial conditions

Let us assum e that the one step m ethod IRK m ethod (2 10) is applied to  (2 20), 
we then have the following definition o f S-stability due to  Prothero & R obinson [60] 

Definition 2 1 1 ’ A one step m ethod is S-stable if  when applied to  the test equation  
(2 20) over one step from tn to  tn+1 , there exist real positive constants Ao and h0 
such that

1 ~  <7n+l| ,

ls/n - g n\
provided that yn ^  gn, for all 0 <  h <  ho and for all com plex A w ith Re(—A) >  Ao, 
w ith tn and tn+i G [0, T] If we also have

h m Z£?+± ^  o
fle(A)-»-oo yn — gn

for all positive h the m ethod is Strongly S-stable . N ote S-stability =>■ A -stability  
and Strong S-stability  =>• L-stability (trivially take g =  0) T he converse however is 
not true

R oughly speaking, S-stability m eans that for a given A w ith Re(A) <  0, the  
upper bound on adm issible stepsizes to ensure yn —» g(tn), does not tend to  zero as 
Re(—X) —> oo T he following exam ple illustrates the concept o f S-stability  in practice 
It is sim ilar to  an exam ple given in Carroll [19] but uses a different function g(t) 

Example 2 2  T he application of the Backward Euler m ethod to  (2 20) yields

_  yn ~  9n {gn — </n+1 ) "I"  ̂Sn+ 1
yn+1 fl'n+l — .

1 —  Z

We consider the specific case g(x) =  x2 -f 1, w ith x„ =  nh  and denoting 1 — z by q , 
we have

yn - g n , 1 +  h2
2/n+l — <7n+l — ------------1----------9 9

Using this relation we can an expression for yn — gn in term s o f y0 — g0, we then have 

Vn+i ~  gn+i r,/— /T" ' . •*-i
3In  g n

After som e m anipulation and noting that q >  1 we get the following inequality which  
m ust be satisfied for the m ethod to be S-stable on this problem

1  + h2 + (r/o -  g0) <  q ( y o -  go)
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since <2 =  1 — z — l — Xh we can rewrite the above inequality as

/i2 +  Xh (i/o — go) +  1 <  0

If Vo — go =  0 then the above inequality will never be satisfied as the discrim inant of 
the quadratic is im aginary W hile if yo~go ^  0, the the roots are 0 and —A (y0 — g0) 
W ith A < 0  we therefore have S-stability  for nearly all positive h.

Remark 2 6 Carroll [19] points out that S-stability  is only m eaningful when a 
transient com ponent is present in the true solution Thus S-stable m ethods are only  
appropriate for very stiff system s, that is when yo — go is very different from zero 

Remark 2 7  W riting en =  yn — gn Verwer [70] considers the condition for S- 
stab ility  in the following equivalent form

l^n+lj ^  |®n|

and states that the requirement is unnatural since en —► 0 as n —»■ oo unless the local 
truncation error does He proposed an alternative version of S-stability called i n 
stability, which ensures that en is uniform ly bounded w ith  n, for all A w ith  Re(A) <  0

2.6 Im plem entation o f numerical m ethods.
In order for a classical Linear M ultistep M ethod or one-step m ethod to be A -stable  
it is necessary for the m ethod to be im plicit, Hall & W att [38] Recall the general 
Im plicit LMM given in section 3 , reproduced here for com pleteness

k k

£  UjVn+j fn+3 = 0 ,  OLk  =  1, >  0 (2 21)
j = 0  ] = 0

T he im plicit LMM (2 21) above, applied to  the non-linear system  (2 1) results in 
the following system  of non-lmear equations

y n+k -  hf3kf(tn+k,y n+k) -  g  =  0 (2 22)

w ith g  a known vector o f past inform ation, to  be solved at each integration step  
for y n+jt T he stability  properties of (2.21) m ay only be retained by solving (2 22) 
accurately using a convergent iterative m ethod. A sim ple iterative m ethod of the  
form

y l'i?  = h Pk f{ tn+k, y'n+k) + g 1 =  1,2, •
is im practical, since for convergence we would require

M fc £ | <  1

where L is the Lipshitz constant o f f( ), (see Definition 2 1, section 2) For stiff 
system s this convergence condition im poses just the typ e  o f severe restriction on the  
step size that we are trying to avoid

To overcom e this difficulty, we use a N ew ton R aphson procedure, which gives the
following linear system  to be solved at each N ew ton iteration step

[ l - h p k J*] A  y ; + \  =  - y ; +Jt +  h f i k  f  (tn+k, y'n+k) +  g  (2 23)
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with
Ay51* = y jfi -  ŷ +fc * = i , 2, • , im ax

where I  is the identity m atrix and J ‘ is th e  Jacobian of f ( in+/c5 y^+Ar), w ith an upper 
bound imax placed on the number of N ew ton iterations In practice, w ith a good  
initial guess for yn+jt, convergence occurs in two or three iteration steps

In general it is not necessary to re-form the iteration m atrix B  at each iteration  
step. Since we generally have a good initial guess for y n+k, J % is usually close to  
J °  =  J  and we can replace

B ' =  I  -  h/3kJ ‘

by
B  =  I  -  h/3k J

and a single LU-decomposition suffices for the i-iteration steps, th is is called the  
m odified N ew ton m ethod It enhances the efficiency o f im plicit m ethods as frequent 
re-factorisations of the iteration m atrix are avoided

T he IRK m ethods are solved in exactly  the sam e way for the unknowns k, We 
have from  (2 9) that

k , =  h  f +  c3 h ,yn +  J 2  a3i (2-24)

A pplying N ew ton iteration we get the following linear system  to be solved at each 
iteration step

B A  k<*+1) =  h f  +  c7 h, y n +  £  a,, k,(,) j  -  k<,} (2 25)

with
Ak<*+1) =  k<‘+1) -  k$° t =  1 ,2 , , tmax

and the iteration m atrix has the form

B  — I  — h A J

where A is an nq x  nq m atrix for (2 1) and J  is the Jacobian of f(-)  at each internal 
stage k /, I =  1(1)?

As m entioned in section 3, an enormous gam  can be obtained m com putational 
efficiency in these iterations if we use DIRK  formula, that is an IRK schem e w ith at] =  
0 for i <  j  and all the a„ =  a, (2 12) T he reason for th is is that the im plem entation  
of IRK formula involves the solution v ia  an LU-decomposition o f a  system  of linear 
equations o f dim ension nq for (2 1) at each tim e step T h e im plem entation of DIRK  
m ethods is much sim pler as each stage only depends on previous ones

Consider the D IR K (2,2) version of (2.12) given by the form ula (we drop the de
pendence on t for clarity ),

0 =  kx -  h f(y n +  a k i )

0 =  k 2 — h f(y n +  (1 — a )  k x -f- a  k 2) (2 26)
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kx can be generated im plicitly from the first equation using N ew ton’s m ethod as 
follows

B  { k ^ 1 -  k j}  =  h f  ( y n +  a  k \ )  -  k\ 

letting z  =  y „ ( l  — a )  k i we get a sim ilar iteration for k2

B  | k 2+1 -  k 2}  =  h f  (z  +  a  k 2) — k 2 

both  iteration schem es have an identical iteration m atrix 4

B  =  I  — h a J

with J  the Jacobian of f (  ) at y„ This procedure can be extended to  D IR K (p,q) 
m ethods, in such situations we have only one LU-decompositton of a system  of equa
tions of dim ension n W e then have q successive stages where th e  iterative process is 
apphed

For Parabolic P D E s, where n is typically large, due to  discretization via the  
m ethod of lines, the DIRK im plem entation just outlined provides a considerable sav
ing in com putational expense over the full IRK im plem entation

T he im plem entation of the D IR K (2,2) m ethod used in this thesis is via the Rosen- 
brock [69] technique Essentially th is is just one iteration of the m odified New ton  
schem e for the DIRK m ethods W e can im plem ent th e  Rosenbrock technique directly  
by linearizing (2 26) about y„ and z  as follows

k i =  h f(y n) +  a h k l J

k2 =  hi(z) +  a h k 2 J  (2 27)

and again J  is the Jacobian of f (  ) at y„ This form  of im plem entation has been  
widely used by engineers, see Hall & W att [38]

Tw o other well known features can be included to im prove overall efficiency. Stiff 
system s of O DEs generally change very little  over long periods o f the integration  
interval Thus it is not unreasonable to  use the iteration m atrix for several steps of 
the solution trajectory M ost codes include this feature and only update the Jacobian  
when it is really desirable to  do so, usually after a step failure or when the iteration  
m atrix has been used for a fixed number of successive steps

T he final improvem ent is more cosm etic in nature as it is an aid to the user 
Generally the Jacobian m ust be evaluated by hand For large system s of O D Es, this 
m ay be difficult if not im possible w ithout the aid of a sym bolic m anipulator However 
forward differencing can be used to  estim ate th e  partial derivatives thus

d/, _  /«(*,& + e,Q -/,(< ,& ) fo OQN
dyj

where e} is the norm alized j ih coordinate vector and £ is a scalar increm ent which is 
sm all com pared to the m agnitude of / ,  T he choice of £ can cause difficulty, in general 
it should be chosen to prevent scaling difficulties m  evaluating the partial derivatives
of f t

4While this is technically incorrect, it suffices, since it can be assumed that the Jacobians for 
each iteration scheme are virtually identical This assumption is valid because f ( ) is assumed to be 
a reasonably smooth function
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2.7 Error m easurem ent and Stepsize Strategies.
We outline three m ethods for estim ating the lte during the integration of (2 1) It is 
usual to  require this quantity to  lie w ithin som e user defined tolerance so that the  
local error remains bounded on the current step  Based on the result o f this test, 
the code m ay decide to autom atically change the steplength, increase or decrease the  
order or re-evaluate the Jacobian of the system .

In m ultistep m ethods th e  approach to  error estim ation  is to  use M ilne’s device  
[38]. Here a kth order predictor and a kth order corrector pair is used to estim ate the  
error in the latter. T h e sim plest exam ple of this is the Euler and Backward Euler 
pair, for the scalar system  (2 5) this is

2/n+l =  Vn +  h  f n  +  C \  h?

Vn+1 =  V n +  h  f P+1 +  C2 h2

where p and c m ean predict and correct respectively A full description of these  
m ethods m ay be found in Hall h  W att [38] T h e difference betw een these two solutions

(Ct -  c 2) h2 = ypn+l -  ycn+1 - h ( f n -  f p+1)

is a constant m ultiple o f the principal error C2 h2 m  the Backward Euler m ethod  
T he general approach for RK m ethods is to  generate two solutions and use their 

difference as an estim ate of the local truncation error T w o techniques are usually  
em ployed to  obtain the estim ate T he first is the em bedded m ethods originally intro
duced by Fehlberg [28] The idea is to generate two solutions of the form

•2-n+l =  y { i n+l) "I" C\ hP 

?/n+l =  y ( t n + l )  +  C 2 h P+1

using the current solution yn T he difference betw een these |y„+i — zn+ i| «  C\ hp 
T he pth order m ethod for zn+l is em bedded in a m ethod o f order p + 1  for yn+i 
T h e following exam ple, see Cash [21] dem onstrates the technique m practice He 
proposed an em bedded version o f the Strongly S-stable D IR K (3,3) m ethod introduced  
by Alexander [1] for the unknown yn+l

a a

T t  —  a Of
1 bi b2

bi b2 bz

The first two stages of the m ethod are then used as the basis of a  second order m ethod  
for zn+1

i a a
T r —  a a

Cl c2
The coefficients Cy and c2 are then chosen so that this m ethod is of order two

Richardson extrapolation is the second m ethod used to  estim ate the error in the  
RK m ethods We integrate from tn to i n+1 tw ice A full step o f length h is taken to  
give

2/n+u =  y(tn+1) =  hp+l C(tn) +  0(hp+2)
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t/n+U /2 =  y{t n+i) +  2 (h /2 y +1 C (tn) +  0(h»+2) 

subtracting these we have

hp+i C (tn) = Vn+1*  ~ -| i -p 1,/l/2. (2 .29 )

T h is can be added to the more accurate solution to give an extrapolated value

■ o—P f  3/n+l)^ |  /o on\
2/n+i =  yn+i,h/2 +  2  "  | ------- 1 _  2_p--------1  (2 .30 )

U sing a  numerical m ethod th at possesses the appropriate stability properties, 

the stepsize h should not be restricted on account of stability or, hopefully, b y  any  

convergence requirements in the iterative solution of the nonlinear system  U sually  

two stepsize strategies are com m only adopted.

1 .  W hen  the effects on the solution of the transient com ponents w ith  sm all tim e- 

constants are not o f interest, an initial step-size th at is large relative to these time- 

constants can be used N o attem pt is m ade to approxim ate the short term  effects 

accurately W e rely on the stability of the m ethod to dam p out transient solutions 

when calculating long range behaviour

2 W hen  an accurate representation of the rapidly varying transients in the so

lution is required, the initial stepsize m ust be com parable w ith the sm allest tim e- 

constants.

M ethods for estim ating the initial step-size will be dealt w ith  in C h ap ter 3  where  

we discuss our m ethods in more detail W h en  a m ethod leaves the transient (non

stiff) region of integration it is desirable to increase the stepsize quickly, to take full 

advantage of the stability properties o f the m ethod O ur im plem entation of step 

adjustm ent and local error estim ation will also be discussed in the next C h ap ter

and two steps of length / i / 2  to give the more accurate solution
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C hapter 3

Variable step  integrators for th e  
solution  o f stiff O DEs.

3.1 Introduction.
In this chapter, we will consider two specific m ethods for the num erical solution o f stiff 

O D E s T h e  first m ethod we consider is the D IR K (2 ,2 )  scheme introduced in C h ap ter  

2 T h e  second m ethod we consider is the second order Com posite Integration scheme 

of Carroll [18]
In sections 2  and 3 , we discuss the accu racy and stability of both m ethods re

spectively Section 4  deals w ith error estim ation, while in section 5 we develop their 

iteration schemes T h e  rem aining sections im plem ent these m ethods as variable step 

algorithm s and discuss respective perform ances on test problem s taken from  the lit

erature

3.2 The Strongly S-stable D IR K (2,2) schem e.
R ecall the general m atrix representation of a  q-stage IR K  m ethod of order p is, (c f  
equation (2  10 ), C h ap ter 2)

' A
(3  1)

where A  is a  q x  q m atrix of coefficients a tJ, c , a  q-dimensional vector of stages or 

quadrature points and b , a  q-dim ensional vector of weights

T h e  traditional problem  of choosing q2 +  2 q coefficients in a q-stage m ethod, 
so as to obtain the highest possible order of accuracy, su bject to stability or other 

constraints, leads to a nonlinear algebraic jungle, to which civilization and order was 

brought b y J  C  Butcher [7], [8 ] and M  C rouziex [23] T h ese m ethods proved very  

inefficient for reasons we mentioned in C h a p ter 2. In fact E n righ t, Hull and Lin dberg  

[27] showed th at their 2-stage  4i/l-order m ethod produced poorer results than other 

im plicit m ethods. W e introduced the D IR K  m ethods in C h a p ter 2  to overcom e these 

difficulties Som e well known exam ples of D IR K  m ethods include 

1  T h e  im plicit m idpoint rule, a  single stage 2 nd-order m ethod which is A -stab le

1/2 1/2
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2  T h e  2 -stage 3 rd-order Gaussian quadrature rule, which is also A -stab le

V a  +  s i s

t I 1 / 2  +  5 7 3
1 / 2 1 / 2

Following A lexander [1], we refer to the general presentation (3  1 )  and make the  

following conventions 

C  is the q X q diagonal m atrix

diag(cu c2,• ,c9)

and e is a  q-dimensional vector

(1,1, -,1)
Theorem. 3 1 (Alexander [1]) Let p < 5  To ensure th at a  D IR K  m ethod to be  

of order p, for every sufficiently regular function / ( i , y ( i ) ) ,  ^  1S necessary th at the 

relations (3 ,* )  i =  l ( l ) p  be satisfied 1 

3  1 . b*e= 1
3  2  b tC e = l / 2 ,  b*Ae =  l / 2

Theorem 3 2 (Alexander [1]) A n  A -stab le  sem i-im plicit R K  form ula w ith positive  

diagonal elements is S-stable iff

\R0\ =  \ l - b t A - l e \ < l

A n  A -stab le  form ula of this kind is Stro n gly S-stable if it is L-stab le  

W e now can state the m ain result o f this section 

Theorem 3 3 T h e  D IR K (2 ,2 )  form ula given by

a £*

1 1 — a a
1 — a a

or

k\ — h f  (tn -J- ex h, yn -f- oc k\ )

k2 = h f ( t n +  h ,y n +  ( 1  -  a )fc i + a k 2) (3  2)

y n+1 =  y n +  (1  -  Ct) ki  +  a k 2 (3  3)

w ith a  = 1  ±  l / y / 2  is second order accurate, A -, L -, S- and Stro n gly S-stable  
P roof

A c cu ra cy  U sing Theorem  3  1 part 2 , the following relations are satisfied

b ^ e  =  b ^ e  =  c*(l — ct) +  a  =  1 / 2  

T h u s we get second order accu racy if

2 a 2 — 4 a  +  1 =  0

1 We only supply conditions for p  <  2 the interested reader is referred to Alexander [1] for the
full statement which we shall not require
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giving a  =  1 ±  1 /  y/2
A -stability  Recall the stab ility  function for R-K m ethods from Chapter 2, equation  
(2 16),

R(z) =  1 +  z b ' i l - z A y ' e  

Substitu ting the D IR K (2,2) formula (3 2) into this relation we get

<><>

Therefore we require
| 1  — 2az +  z\2 <  | ( l - a z ) 2 |2

to be satisfied, w ith  Re(z) <  0 for A -sta b ih ty

W ritin g z =  Re(z) +  i Im(z) the LHS of this inequality becomes

L H S  =  1 +  2(1 -  2a)Re(z) +  (1 -  2 a ) |* |2

W hile the RHS becom es after some m anipulation,

R H S = L H S  — Re(z) — { 2 a 2 — 4 a  +  l } | z |2 — 4azRe(z)Im2(z)
+ 4  a4Im4(z) +  4 a / m 2 (z )|z |2 +  4a4Re2(z)Im2(z) +  4 a 2Im 2(z)

From the accuracy requirements above, the term  { 2 a 2—4 a + l }  is zero iff a  =  1 ± 1  / y/2 
and the stab ility  requirement reduces to

0 <  — Re(z) — 4a3Re(z)Im2(z) +  4 a 4I r a 4(z) -f  4 a 4/ m 2 (z )|z |2 

+ 4 a iRe2(z)Im2(z) +  4  a2Im2(z).

W ith  Re(z) < 0 this inequality is satisfied

L -stab ih ty  From Chapter 2, equation (2.17) we have L-stabihty if

b ‘ A " 1  e  =  1

This relation trivially holds for the D IR K (2,2) schem e (3 2)
S- &  Strong S-stability: Since the D IR K  scheme (3  2) has positive diagonal elements 

if a  =  1  ±  1  / y/2, both S- and Strong S-stability  follow from  Theorem  3  2 , as the 

m ethod is A  and L-stable, w ith |/?o| =  0 
Finally Expanding R(z) as a polynom ial m  z we get

R(z) =  1 +  z +  (2 a  — a2)z2 +  0 ( z 3)

W ith  a  =  1 — 1 / y/2 we have

\ R { z ) -e z\ is 0 {z 3) □

3.3 The C om posite Integration 6 - BD F2 schem e.
R  E  B an k  et al [2], introduced a  Com posite Linear M ulitistep M ethod as the tim e 

integration scheme in the numerical solution o f coupled system s of nonlinear partial 

differential equations T h eir technique w as to use a  two stage process to integrate
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over one step T h e  first stage used a  Trapezoidal R ule to integrate to an interm ediate  

point T h e  second stage comprised a second order B D F -ty p e  scheme T h e  m ethod  
had im portant features of second order accuracy, A - and L -stab ility  B an k et al 
implem ented the Trapezoidal Rule and the B D F  stages as a  fully im plicit independant 

steps solved via  Newton  iteration. C arroll [18] generalized their schem e so th at it 

retained the im portant features of second order accuracy, A -  and L-stab ility  He 

replaced the Trapezoidal Rule w ith the one-step 0-scheme

» « + 7  =  Vn + l h  [ ( 1  -  0 )/n +  0 /n+7] (3  5)

applied over the interval tn =  nh  to i n + 7  =  (n +  7 )h  w ith 0  <  7  <  1

T h e  second stage of the integration uses a 2-step  backw ard differentiation type

form ula which interpolates the three points tn, t n+-n t n+1 , w ith  the form ula

c*02/n +  «li/n+ 7  +  a 2Vn+l =  ^ /n + 1 (3 6 )

To find the coefficients <2 0 , 0 :1 , 0:2 and 7  two conditions are imposed on the com 
posite pair of formula«

1 that it retains second order local accuracy, A - and L-stab ih ty
2. that both stages have a common Newton  iteration m atrix  

T h is requirement is for com putational efficiency, as only one LU -decom position of the 

iteration m atrix is required

T h e  accu racy requirements of the scheme are obtained by combining both formulae 

and com paring the coefficients of the resulting expression w ith  a T aylor series T h e  

following relationships for the unknown coefficients can be easily derived for second 

order accuracy, see Carroll [18]

1  7 0  =  1 - 1 / V 5
2 tt, =  1=2*-
Q — 2(l-yg)O (*2 ~  i_ 270
4 a 0  = —ai — a2
5  B o th  (3  5) and (3  6 ) have a  common iteration m atrix if a 27 0 =  1

Remark 3 1 .  It is interesting to note th at 7 0  =  1 — l / y /2 ,  is one of the values of 

a  in the D IR K (2 ,2 )  m ethod of section 2. In fact it it not difficult to show that the 

D IR K (2 ,2 )  scheme is a  special case of the Com posite Integration scheme, sim ply set

0 =  1  T h is fact is dem onstrated in A p p en d ix 1 , where we show how the Com posite  
Integration scheme can be put into R K  m atrix form ulation However our im plem enta
tions are quite different, we therefore expect some difference in the num erical results 

which are presented in A p p en d ix 2

C arroll [18] also verifies A - and L -stab ility  for this scheme W e rem ind the reader 

that on expanding the stability function R(z)  in powers of z and recalling that 7 0  =
1  -  l / y /2 ,  we have

where the coefficient of z3 com pares directly w ith the coefficient o f the principal error 

function for the m ethod given in the next section
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3.4 Error estim ation.

3.4.1 Error estimate for the DIRK(2,2) scheme.
For the D IR K (2 ,2 )  scheme, Richardson extrapolation is used to estim ate the local 

truncation error R ecall the approach outlined for R K  m ethods in C h a p ter 2 , section  

6  W e integrate from  tn to tn+1 , w ith one step of length h and then integrate it 

tw ice using two steps of length h /2  T h e  difference in the tw o solutions is a  constant 

m ultiple of the local error (c f  equation (2 .2 8 ) reproduced here for com pleteness)

hp+1C {tn+1) =  yra+1^ f o ± li*/ 2- (3 7)

A s in C h ap ter 2 , we add this to the more accu rate solution to give the extrapolated  

solution
i n~P f  Vn+l,h/2  1 / q  o \

Vn+1 =  yn+l,h/ 2 + 2  P |----- l _ 2 - P  J ( 3  8)

3.4.2 Error estimate for the Composite Integration scheme.
C arroll [18] gives the following expression as an estim ate o f the principal error function  

in the Com posite Integration scheme

e r r e s ! = ■> 37i 2 ( i  _ 7; ;  j  <■ (3 9>

B an k  et al [2] and Carroll [18] suggest estim atin g b y the following hnear

com bination of function values

yi3)( 0  =  ¿2  “  7 ( i  _  7 )^ n+'y +  (3 1 0 )

3.5 Solving the nonlinear equations.

3.5.1 The nonlinear equations arising from the DIRK (2,2) 
scheme.

T h e  Rosenbrock technique [69] outlined in C h ap ter 2 , section 5 , is em ployed for solving  

the nonlinear system  that arises from  applyin g the m ethod to (2  1 ) T h e  resulting  

equations (2  26) for the D IR K (2 ,2 )  scheme (3  2) (reproduced here for completeness) 
are

[I — ahJ]  k x =  h f ( tn + a h ,  y n) (3 1 1 )

and

[I -  a h J ] k 2 =  h i( tn +  h ,y n +  ( 1  -  a ) k i)  ( 3  1 2 )

where J  is the Ja co b ian  of f ( t n, y n)
Remark 3 2  A s mentioned in C h ap ter 2  we are only applying one step o f a  Newton 

m ethod m this case W e therefore have no need to w orry about convergence criteria  

T h e  error estim ate on time integration is the only form  o f control required However, 

as we have only one iteration step o f a  Newton  scheme, the technique is only accurate  

for hnear differential equations, but it perform s well m  p ractice when used in the 

variable step integrator which we develop later in this C h ap ter
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3.5.2 Solving the nonlinear equations of the Composite In
tegration scheme.

T o  retain the stability of the Com posite Integration scheme, a  m odified N ew ton  

m ethod is employed to iteratively solve the nonlinear equations arising in both stages 

o f the scheme
A n  application o f N ew ton ’s m ethod to the first stage 0-schem e (3  5)  yields the 

nonlinear system  (3  1 3 )  below. T h is system  is solved iteratively for a  fixed number 

o f iterations i =  1 , 2 , • ,  im ax  or until convergence is achieved, giving

[I -  7 OhJ] A(y'n+^) =  y „  -  y'n+1 +  7 A [(1 -  0 ) / n -f 0 / „ + 7] (3  1 3 )

where

^ ^ 7 1 + 7  (i/n + 7  V n + 7 )»  i^n+7  V m  ^ n d  f n+ 7  f n

A lso  from  (2  2 2 ) the B D F  scheme (3  6 ) can be solved iteratively, using the Newton 
scheme (3  14 )  for y n+i A gain  we im pose an upper bound on the num ber o f iterations 

em ployed, as w e did for ( 3 .1 3 )  W e obtain

[I -  7 OhJ] A(y;+1) = { h f 'n+1 -  ( a 0y n +  <*iyn+v + a 2y'n+1 ) }  (3 14 )

w ith

^ •V n + l  =  ( i/n + 1 — i/ n + lK  Vn+ 1  =  Vn+ 7  an <l  / n + 1  =  f n + 7

T h e  choice of 1 f a 2 =  7 0  gives an identical iteration m atrix  on each stage and we 

adopt this strategy m our code, while J  is the Ja co b ia n  o f / (  ) at yn 2.
Remark 3 3 W e point out that the use o f =  yn and y ° + 1  =  yn+1 is equivalent 

to using a  zeroth order predictor form ula on each stage A  sim ple Eu ler predictor for

m ula could equally well be used on both steps, w ithout effecting the step adjustm ent 

m echanism  m the algorithm  outlined m section 6  H owever such a m echanism  might 

effect the stability of the scheme.

To term inate the iteration we follow Sham pine [65] and m easure the rate o f con
vergence

11»; - » r ' l i

where i is the iih iteration step and I is stage n -f  7  or stage n  +  1  of the Com posite  
schem e3. W e com pare this w ith a tolerance r , in the form ula

7 -^— \\y}+1 -  3//II < T
1 ~ Px

A ccordin g to Sham pine [65] this guarantees, (w ith  an appropriate pt < 1 / 2 ), that we 

are converging at an acceptable rate to the solution y/, w ith  the dem and th at y z' + 1  be

2Once again using this Jacobian is technically incorrect but it suffices in practice
3To measure the rate of convergence in this way requires at least 2 iteration steps Because linear 

problems only require one Newton step this technique is expensive To overcome this difficulty we 
also terminate the Newton iteration if ||yj+1 — y/|| <  r 2
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sufficiently close to the actual solution yi M ost current codes (such as L S O D I and 

the V ariable Step Integrator o f C h u a &  D ew  [22] use the condition th at p <  1 / 2  while 

D A S S L  [56] uses a condition sim ilar to the one we have adopted.

Remark 3 4 Sham pine [65] points out th at the convergence condition p <  1 / 2 ,  is 
correct, if pt —» A, the largest eigenvalue of the system , w ith A real However if A is 

com plex, then pt will oscillate and the convergence rate |p,|, will assum e larger values 

than Re(pt) In general, most codes allow for this and take the largest observed value  

of pt as their estim ate o f the rate of convergence. W e have also adopted this policy  

on the second and subsequent iteration steps.

3.5.3 Other aspects of solving the nonlinear systems.
T w o  other items we have to consider in relation to the linear system s (3 .9 a ,b ) and  

(3 10 a ,b ), are the form ation of the Jacobian  m atrix o f f(t, y ( t))  and the subsequent 

m ethod of solution o f the linear system . T h e  Ja co b ian  can be provided in two separate  

w ays, the first is for the user of the m ethod to explicitly supply it, while the second is 

to estim ate it w ith finite differences, as outlined in C h ap ter 2 , section 5  Referring to 

equation (2 2 7 ), the scaling of the increment can lead to significant errors m Jaco b ian  

elements, if not properly chosen Our choice has been £ =  1 0 ~ 4 and we have had  

no apparent problem s, working m  double precision F o rtra n 77 on V A X - 1 1 / 7 8 5  and  

V A X -6 2 3 0  com puters O ur original choice £ =  1 0 - 9  worked equally well on all test 

problems considered W e however have endeavored to make £ as large as possible, 
while at the same tim e keeping it within the tolerance band, where we expect our 

m ethods will perform  efficiently Stan dard software packages such as L S O D I [43] and  

D A S S L  [56] use a more com plicated algorithm  to choose the increm ents

T h e  linear system  which arises from  (3  9a,b ) and (3  10 a ,b ), is solved using a  

standard LU -decom position o f the iteration m atrix and subsequent back substitution  

T h is has the advantage th at the LU -decom posed m atrix can be stored for several 

iterations an d/or tim e integration steps, leading to a  considerable im provem ent in 

the overall efficiency of the solution m ethod

3.6 Variable step algorithm s for th e solution of 
ODEs.

3.6.1 Algorithm DIRK(2,2).
R ecall the D IR K (2 ,2 )  scheme (3  2 ) used the full-step half-step technique to estim ate  
the error, thus,

ALG O RITH M  D IR K (2,2);
B E G I N

G iven a tolerance Tol 

S E T  a  = l -  ¡sj2,

W H I L E  tn >  F in a lT im e
I F  the Jaco b ian  has been used for the previous 10  steps 

or the stepsize has changed T H E N  

C O M P U T E  the Jacobian ;
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C O M PU T E  the full step solution yn+\,hn from  yn using a  
step-size hn, by m aking one CALL to the Integrator,

C O M PU T E  the half step solution yn+i,hn/2 from yn using
two steps of size hn/2, by m aking two successive CALLs 
to  the Integrator,

C O M PU T E  an error estim ate E dirk from (3.7) using the  
weighted m ean square norm,

C O M PU T E  the extrapolated solution call it yn+l from (3 8),
IF E dirk >  TH EN  
BE G IN  (reject the step)

R E -C O M PU TE the solution from yn w ith hn+ 1  =  hn/2 
RETAIN this step for at least 3 subsequent steps  
unless there is another step failure,

EN D ,
IF EpifiK <  tol TH EN  
BEG IN  (accept the step)

SET yn =  yn+1,
C O M PU T E the factor by which the step length is to be 
m ultiplied on the next step (hfactor); 
hfactor =  (tol/EDIRK)1/3 ,
IF hfactor > 1 0  hfactor =  10,
IF 4 <  hfactor < 1 0  hfactor =  4,
IF 2 <  hfactor <  4 hfactor =  2,

Otherwise hfactor =  1,
SET hn+i =  hn x  hfactor;
RETAIN this step  size for at least two steps,

END;
EN D ,

EN D { ( D I R K ( 2 ,2 ) .}

I N T E G R A T O R  advances the solution one step of length hn,
BEG IN

Solve the linear system s (3 9a) and (3 9b) respectively,
Advance the solution using the formula 

y n+1 =  Vn +  (1  -  <*)fci +  a k 2;
EN D { I N T E G R A T O R  }

Remark 3 5 Hfactor is the am ount by which hn can be reasonably m ultiplied so 
that estim ated  error on the next step  stays w ith the specified tolerance W ith

hnew =  hfactor x  h

we attem pt to keep the error on the next step , for a m ethod of order p, w ithin  the  
bound

<  toi

equivalently
hfactorp+1\C(tn+1)\ <  tol
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giving
h f a c t o r  =  { t o l /  E d i r k ) 1^ 1 ■

Remark 3.6 T h e  reason we keep the stepsize fixed, for 2  or 3  successive steps after 

the stepsize has changed, is to avoid chattering m the step changing m echanism  and  

to introduce greater stabih ty into the algorithm  T h is constraint on the algorithm  

tends to make it biased toward using a constant stepsize Consequently, the number 

of Ja co b ian  evaluations required to integrate an O D E  over the specified tim e interval, 

is considerably reduced

Remark 3 7  T h e  finite values we have chosen for hfactor are based on the fol

lowing reasoning For exam ple when 2  <  h fac tor <  4  we reduce hfactor to 2  T h e  

reason for this is twofold, firstly if we allowed hfactor to take arbitrary values our 

stepsize would be changing too often, leading to chattering. Secondly, b y  reducing  

hfactor to 2 , we take stepsizes which are more conservative givin g a  more stable algo

rithm  T h is is necessary because we lack perfect inform ation, having only an estim ate  

of the error to increase or decrease the stepsize, instead of the true local error T h e  

value 2  has been chosen to reflect the fact th at we allow an increase in stepsize, if 

E d i r k  <  to l /8 T his choice, along w ith hfac tor =  1 0  were suggested by A lexander  

[ l ]4 W e have also included the value hfac tor  =  4  T h e  choices hfac tor =  2  or 10  

force E d i r k  < to l /8 or t o l / 1 0 0 0 , respectively. O ur reason for including the value 

hfactor  =  4, is that the gap between 8  and 1000 is large and an interm ediate value  

m ay im prove overall efficiency in the algorithm

Remark 3 8 T h e  error test in this algorithm  is constructed as follows If the 

m agnitude, in m axim um  norm  of the solution yn+i,max, is greater than 1 , we use the 
relative com parison

E d i r k  <  y n + i , m a x  x  to l, 
otherw ise ymax < 1  and we use the absolute com parison

Ed ir k < tol

T h is is a  very simple form  of error control, only one tolerance value need be specified  

W e have found it very effective on all problems considered in this thesis

3 .6 .2  A lg o r ith m  C o m p o site  In teg ra tio n  sch em e .

W e give the variable step algorithm  based on the theory developed so far for this 
m ethod

ALG O RITH M  COM POSITE IN TEG R A TIO N  SCHEM E;
B E G I N

G iven  an absolute (atol) and or relative (rtol) tolerance,

S E T  t n = a, the starting time,

C O M P U T E  the Jaco b ian  at the startin g time,

W H I L E  tn < f in a l t im e

4In fact Alexander demands that E d i r k  < t o l /10, our choice is 23 reflecting the possibility of 
doubling the stepsize on the next step
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B E G I N

I F  (hn+1 =  2  x hn) O R  (r  >  0 8 5) O R
(the Ja co b ian  has not been updated for the previous 1 5  steps) T H E N  

R E - C O M P U T E  the Ja co b ian  and the iteration m atrix,

S E T  the iteration counter i to 0,

S E T  m axim um  iteration limit tmax,
W H I L E  N O T (con verged) A N D  (i <  im ax)

C O M P U T E  yn + 7  using ( 3 .1 3 ) ,

I F  converged

R E - S E T  the iteration counter 1 to 0,

W H I L E  N O T (con verged) and (? <  tm ax)
C O M P U T E  yn+i using (3  14 ),

I F  converged

C O M P U T E  the error estim ate E n+i 
using (3  9) and (3  10 ),

C O M P U T E  en =  rtol\yn+i \ + atol;
C O M P U T E  the mean square norm

r2 = l/w {££, /e„+1,)2};
I F  r >  1  T H E N  (reject the step) 

hn+1 — hn/ “lj  
E L S E  (accept the step)

V n —  2/n+l
I F  r > 1 / 2  T H E N  

S E T  hn+i = hn,
E L S E

SET hn+1 =  r 1/3 x hn 
ENDIF,
{R e m a rk  3 6  also applies here also }

E N D I F ,

E N D IF ,
E N D IF ,

I F  N O T (con verged) (reject the step)
S E T  hn+i — hnf 4 

E N D  {  W H I L E }

E N D  {A lg o rith m  Com posite Integration scheme }

Note  W e follow Carroll [18], and set the iteration lim it im ax to 5  W e also point 

out that remarks 3 6 and 3  7  also ap p ly to the Com posite Integration scheme for 

exactly  the sam e reasons as the D IR K (2 ,2 )  scheme.

Remark 3 9 T h e  convergence criteria are those given in subsection 3 5  1

Remark 3 10 T h is algorithm  is very sim ilar to the algorithm  given b y C arroll [18] 

T h ere is one significant difference, (i e )  we reject the step if the Newton  iteration  

fails T h is alteration is essential for solving Differential A lgeb raic Equ ation s (D A E s ),  
which we consider in later C hapters.
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3.6.3 E stim ating the initial step length.
To com plete both algorithm s we provide a means of estim ating the initial steplength  

W e follow Sham pm e &  W att [67] and suppose the error in a first order m ethod is h 

times the error in a zeroih order method
W e place an upper bound htnput (given below ) on the size of the initial step, which  

indicates the general scale of the problem, along w ith  preventing an y difficulty due 

to f ( 0 ,y ( 0 ) )  =  0 W e use their estim ate o f the initial step size as

and set htnput = tol/ 10

3.7 Num erical experim ents.
T h e  perform ance of the two variable step algorithm s outlined in previous sections are 

evaluated against several test problems th at have arisen in the literature Specifically  

w e test our m ethods on problem s B l ,  B 5 , C l ,  C 5 ,  D l ,  D 2  and E 3  of the well known  

stiff O D E  test problem s of En right et al [27] W e reproduce these problem s here for 

com pleteness Also considered are two other problems which we refer to as P I  and P 2  

respectively In this section our approach will be to define each problem  and discuss 

its perform ance before m oving to the next problem  m  our test set

W e feel our choice of test problems is representative of those th at have appeared  

in the literature. In particular problems B l ,  B 5 ,  C l  and C 5  have also been solved 

A lexan der [1], En right et al [27] and Carroll [18] W e have also included D l ,  D 2  and  

E 3 ,  as C arroll [18] observed that his code found it difficult to solve these problems 

It is our intention to discuss the problems encountered m ore fully as each problem  is 

dealt w ith

In our im plem entation of the Com posite Integration scheme, we have followed 

Carroll [18] and taken 6 =  0 5 5  He suggests th at this value is close to optim al for the 

problems arising m the literature In fact, this value was originally suggested by Hall 

&  W att [38] It provides a comprom ise between second order accu racy and stability  

in the 9—scheme (3  5) t

In the num erical experim ents to follow, we m easure the statistics given in the Key  
Table below at different tolerance values for both m ethods T h e  m ethods are then 

evaluated w r t  these statistics T h is m ethod of testing and evaluation is analogous 

to En right et al [27]

N STE P No. o f Intégration Steps
NFE No o f Function Evaluations
N JE No o f Jacobian Evaluations
GERR Global Error

Key Table

W e also provide results for the problems using two other polyalgorithm s based  

on B D F  form ulae, the L S O D I package of H indm arsh &  Painter [43] and the D A S S L  

solver of Petzold [56]. T h e  reason for including these results are twofold (a) they are
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used for comparison purposes,
(b) they are two of the D A E  solvers which we describe and whose perform ance we 

evaluate in C h ap ter 6

W e point out that error control for both L S O D I and D A S S L  is accom phshed by as
signing the absolute (atol) and relative (rtol) tolerances to scalar values and adopting  

a m ixed form  of error control.
In our im plem entation of the D IR K (2 ,2 )  scheme we rem ark th at two iteration  

m atrices are used on every step However only one Jaco b ian  of the system  of O D E s  

is evaluated In the figures we quote for the D IR K (2 ,2 )  scheme we have adopted the 

convention of supplying only the actual number o f Jaco b ian s evaluated during the 

integration o f a  particular problem . T h e  num ber o f LU -decom positions is therefore 

tw ice the N J E  value
W e finally mention th at the exact solution for the one-step m ethods was generated  

using the N A G  routine D 0 2 E A F  w ith a tolerance o f 10 - 8 . W h ile  the exact solution 

for both  routines L S O D I and D A S S L , w as generated b y  calling these routines w ith  

absolute and relative tolerances set to 10 ~ 8. A lso  we point out th at in the succeeding 

discussions, the following notation is used

D IR K (2 ,2 ) : T h e  D IR K (2 ,2 )  scheme outlined in A lgo rith m  3  6  1

C om p Int T h e  Com posite scheme given in A lgo tith m  3  6  2

L S O D I B D F -b a se d  code by Hindm arsh [43], described more fully m  C h ap ter 6

D A S S L  B D F -b a sed  code by Petzold [56], described in C h ap ter 6

C a rr Carrolls version of the Com posite scheme [18]

T R A P E X  Trapezoidal R ule w ith extrapolation based error control, implem ented  
b y E n righ t et al [27]

I M P R K  A  tw o-stage fourth-order Im plicit R K  m ethod im plem ented by En right 

et al T h is code also uses extrapolation based error control

A le x  Alexanders D IR K (2 ,2 )  scheme w ith  extrapolation based error control T h is  

code uses full N ew ton iteration to solve the nonlinear equations A lexan der also 

measures error in R M S  norm  A ll other references to error quoted are in m axim um  

norm

Problem  B l .

2/i =  —2/i +  2/2 

?/2 =  -lO O y i -  2/2 

2/3 -  —IOO2/3 +  y4 
y'A =  -lOOOOj/3 -  IOO2/4

w ith initial values

2/i = l 2/2 = 0 2/3 = 1 2/4 = 0
and t  G [0 , 2 0 ]

T h is problem  is linear w ith  non real eigenvalues — 1  ±  1 0 z, —10 0  ±  1 0 0 i. W e  

mention that En right et al [27] comment th at m ost m ethods require a large number 

of step changes, both increases and decreases on this problem  Therefore we expect 

that m ost m ethods will use a large num ber o f Ja co b ian  evaluations In T ab le  3  1  to 

follow, we give our test results for this problem.

N  B  T h e  Com posite Integration scheme does not com pute a solution to the same 
accu racy as the other methods
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Problem B l
Toi =  IO"'2 D IR K  (2,2) Comp Int LSODE DASSL
N STE P 1 2 7 1 5 1 2 2 7 15 9

NFE 8 2 2 880 4 78 3 3 4

N JE 26 2 1 36 2 5

GERR 3  0 x  10 ~ 2 1 0 X 1 0 " 1 3  0 x  1 0 " 6 10 ~ 8
© II o
1 ffc. D IR K  (2,2) Comp Int LSO D I DASSL

N STE P 26 5 6 19 3 9 3 1 3 9 1

N FE 1 7 1 0 3690 7 1 6 802

N JE 5 3 8 5 4 5 24

GERR 1 0 x  1 0 " 4 1 . 1  x  1 0 " 2 5  0 x  lO "8 1 0 " 9

Table 3.1

T h e  D IR K (2 ,2 )  scheme performs m oderately well on this problem  w ith  a reason

able level of accu racy In Table 3  2  we reproduce A lexan d er’s results for this problem  

along w ith those for E n righ t’s IM P R K  scheme W e mention th at Alexander only 

published statistics for this m ethod at a  tolerance of 1 0 -2

Problem B1 Toi =  10 ~ 4 Alex IM P R K
Toi =  1 0 " 2 Alex IM PRK N ST E P 1 4 2

N ST E P 67 3 7 N FE 1 7 5 1
N FE 4 3 5 4 4 3 N JE 26
N JE 28 12 G ERR 2 0 x  10 ~ 4
G ERR 8 4 x  1 0 " 3 1 .8  x  lO " 2 Table 3 2

A s can be seen from  T able 3  2  the I M P R K  schem e is least expensive However the 

error in all E n righ t’s codes [27] is the m axim um  error/u m t-step encountered over the 

integration interval It m ay therefore be less stringent than the other form s of control 
on this problem En right et al comment th at error/u m t-step control is usually less 

problem  dependant than other forms and therefore more suitable for test comparisons 

T h e  perform ance of the Com posite Integration scheme can be directly com pared  
w ith the results published by Carroll [18] He also com pares his algorithm  w ith  

S D B A S I C  and T R A P E X  given in En right et al S D B A S I C  is a  variable step variable  
order (V S V O )  m ultistep code using m ethods o f orders four to nine W e feel therefore 

th at it is unreasonable to com pare S D B A S I C  w ith  our second order schemes However 

the T R A P E X  algorithm  does provide a reasonable level o f com pansion. Before we 

reproduce the statistics for C arro ll’s code and T R A P E X  we mention th at Carroll does 

not provide global error values on some problem s W here this statistic is unavailable  
we have om m itted it
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Problem B1 T ol = 1 0 ^ “ Carr T R A P E XCN1or—HII"o Carr T R A P E X N STE P 409 204

N STE P 98 69 N FE 1 8 1 4 15 0 2

NFE 464 5 1 1 N JE 67 29

N JE 19 20 G ERR 2  0 x  10 ~ 4

GERR 2 6  x  lO "2 Table 3 3

T ab le  3  3  duplicates the figures published b y C arroll [18] and E n righ t et al [27] for 

this problem  It can be seen from  T able 3  1 th at our im plem entation of the Com posite  

scheme is more expensive than the m ethods quoted in T able 3  3 . W e expect th at the 

T R A P E X  code will be less expensive as it requires less function evaluations/step  

A ll m ethods require roughly the sam e num ber of Jaco b ian  evaluations w ith  both  our 

algorithm  and C arro ll’s requiring about five function evaluations/step

Before m oving on to the next problem  we mention the perform ance of L S O D I and  

D A S S L  on this problem  B oth m ethods perform  quite well at the tolerance values 

considered w ith m oderately m ore Jaco b ian  evaluations 
Problem  B 5

y'i = —IO3/1 + a y  2

y*2 = -ay i -  IO1/2

2/3 = -42/3

y'i = “ 2/4

2/5 = - 0  5y$

2/6 = - 0  l y 6

w ith  initial values
yt =  1  t =  l(z)6 ,

a  =  100 and t £  [0,20]

T h is problem  is linear and has non real eigenvalues T h is problem  is known to 

cause severe difficulties for B D F -b a se d  codes as the transient eigenvalues he in an un

stable region for higher order B D F  form ulae Indeed w e can see th at the perform ance  

o f both L S O D I and D A S S L  is very poor as Table 3  4 dem onstrates at the higher 
tolerance value

For the D IR K (2 ,2 )  scheme we again com pare the perform ance of this algorithm  
w ith  the A le x  and IM P R K  codes in T able 3  5

T h e  perform ance of both codes listed m Tab le 3  5  is very reasonable on this prob
lem T h e y  both use a m oderate number o f steps, function evaluations and Ja co b ian  

evaluations, w ith  reasonable levels of global error Com pared to these results the per

form ance o f the D IR K (2 ,2 )  scheme m  T able 3  4 is very poor. W e have noticed that 

our D IR K (2 ,2 )  scheme appears to behave poorly in the presence o f w ildly oscillating  

solutions T h a t is, solutions w ith large im agin ary eigenvalues which are not rapidly  

dam ped out T h is  observation is born out b y the statistics given in T ab le  3  6 for 

problems B 3  and B 4  T hese problems are identical to B 5  except th at the param eter
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Problem B5

Toi =  10 " '2 D IR K  (2,2) Comp Int LSO D I DASSL
N STE P 7 6 1 69 1 2 5 2 3 5
N FE 4626 37 0 2 5 3 4 3 4

N JE 8 1 1 1 16 1 2

GERR 3  7  x  IO "3 1 2  x  IO "2 1 0 x  1 0 - 3 8 0  x  lO " 1

Toi =  10 ~ 4 D IR K  (2,2) Comp Int LSO D I DASSL
N ST E P 10 46 2 7 8 2 3 7 9 500
N FE 6330 1 3 2 6 3 7 6 2 1008
N JE 106 3 1 1 4 5 7

GERR 9 8 x  IO "5 1 0 x  lO "3 1 0 x  lO-5 5  0 x  lO "5

Table 3 4

Problem B5 Toi =  lO " 4 Alex IM P R K
Toi = lO "2 Alex IM PR K N ST E P 88
N STE P 5 2 30 NFE 10 5 7
NFE 3 4 2 3 6 1 N JE 1 3
N JE 1 5 12 G ERR 7 0 x  10 ~ 5
G ERR 2  7  x  l O '2 5  0 x  lO "3 Table 3 5

a  is set to 8 and 2 5  for B 3  and B 4  respectively T h u s the solutions to these problem s 

do not oscillate as w ildly as the solutions to B 5

It is apparent from  T ab le  3  6 th at the perform ance of our code on problem s B 3  

and B 4  is sim ilar to both A lexan d er’s [1] and E n n g h t et al [27] on problem  B 5  

It therefore appears that our code is unsuitable for problem s w ith  extrem ely large 

im aginary eigenvalues W e comment th at sim ilar behaviuor is observed at the higher 
tolerance value

A g ain  we com pare the Com posite scheme w ith  C arro ll’s code and T R A P E X  in 
Table 3  7

B oth  T R A P E X  and C arro ll’s algorithm  ( c /  T ab le  3  7) once again prove much  
m ore efficient than our Com posite scheme. W e m ainly attribu te this discrepency to 

the conservative approach we have adopted to handling a  failed N ew ton  iteration  

step. O ur code is on average least expensive on Ja co b ian  evaluations/step, but as the 

global error is larger the m ethod is the least successful at integrating this problem  
Problem  C l*

y[ = - y i  + v l  + yl + yl 
2/2 = iOt/2 + 1 0 (2/3 + y\)
2/3 =  -40?/3 +  40i/2 
2/4 =  —100y4 +  2

35



Tol =  10 ~ Ji B3 B4
N STE P 58 68

NFE 3 5 4 4 1 4

N JE 1 1 12

GERR 5 .1  x  10 ~ 3 5.0  x  10 ~ 3

Table 3.6

Problem B5 1Ot—
HIIoEx Carr T R A P E X

Tol =  IO "2 Carr T R A P E X N STE P 19 9 17 8

N STE P 49 4 1 NFE 8 52 12 6 5

NFE 2 6 1 29 7 N JE 20 1 7

N JE 9 14 GERR 2.0 x  1 0 - 5

GERR 2.0 x  IO "2 Table 3.7

w ith initial values

y% = 1 i =  l(0 4

and t €  [0,20].

T h is problem  exhibits nonlinear coupling from  the transient to the sm ooth com 

ponents. T h e  stiffness ratio is 100 and all eigenvalues are real. O nce again the B D F  

based codes behave very well on this problem  in term s of the statistics we give in 

T able 3.8 .

For this problem , as w ith problem  C 5  to be considered later, we com pare our re

sults for the D IR K (2 ,2 )  scheme w ith those of A lexan d er [1] and C ash  [21]. T h e  results 

reproduced here from  C ash  [21] are for a  fourth order Stron gly S-stab le  scheme w ith  

a third order em bedded scheme to estim ate the error. T h e  results are sum m arisied in 

Table 3 .9 , where we use C ash  to denote C a sh ’s schem e and only give figures for the 

1 0 -2  tolerance value.

B o th  second order schemes D IR K (2 ,2 )  ( c ./  T ab le  3 .8 )  and A lexan d er’s produce 
com parable statistics at the low tolerance value. T h e  fourth order m ethod of C ash  

produces a  greater number of function evaluations/step. W e would expect this be

haviour from  this m ethod. O ur scheme uses half the num ber of Ja co b ian  evaluations 

reflecting our design criteria that the m ethod should be cheap w.r.t. this statistic. 
It is therefore about twice as efficient as the other two m ethods on this problem. 
Statistics are unavailable from  A lexander [1] at the 1 0 -4  tolerance, we therefore do 

not include an y further comparisions.

T h e  C om posite scheme has also produced very good results for this problem. 
A n alysis of the statistics reveals our code to be more expensive than C arro ll’s (see 

T able 3 .10 ) .  T h e  T R A P E X  code gives rise to sim ilar behaviour as the statistics given  

in T able 3 .10  dem onstrate. T h e  difference between the figures for the Com posite  

scheme and C arro ll’s code is again due to our conservative approach to dealing with
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Problem C l

Tol =  IO " ' D IR K  (2,2) Comp. Int. LSO D I DASSL
N STE P 2 2 3 2 44 46
N FE 1 3 2 12 8 1 3 2 97
N JE 5 9 1 5 1 3

G ERR 3.0  x  I O '4 3 .6  x  lO "5 3.0  x  1 0 " 6 4.0 x  10 ~ 5

Tol = IO "4 D IR K  (2,2) Comp. Int. LSO D I DASSL
N ST E P 56 8 5 98 10 7
NFE 3 4 2 5 3 8 2 1 0 2 2 4
N JE 1 2 10 19 19
GERR 2.0 x  IO "9 7 .5  x  lO“ 5 3.0  x  lO "7 2.0 x  lO "6

Table 3.8

Problem Cl
Tol =  1 0 " 2 Alex Cash
N STE P 20 2 7
NFE 1 3 9 5 2 6
N JE 1 1 1 1
GERR 2 .3  x  lO” 3 4 .7  x  lO“ 3

Table 3.9

failed N ew ton iteration steps. T h is fact m ay also account for the poor perform ance  

o f T R A P E X  on this problem  as com pared to C arro ll’s im plem entation.

W e note that the T R A P E X  uses about two Ja co b ian  evaluations/step, m aking it 
very uncom petitive overall.

Problem  C 5 :

y'\ — —2/ i  +  2
y'2 =  - 1 0 y 2 +  P y l

2/3 =  ~ 402/3 +  4/?(yJ +  y\)
t/4 = -100t/4 + 10 p ( y \  + y] + y l )

w ith initial values

2/* =  1 i =  l( t)4

P = 100 and t G [0,20],

T h is problem  exhibits nonlinear coupling from  the sm ooth to the transient com 

ponents. T h e  rem aining characteristics are sim ilar to those of problem  C l .  T h e  

B D F -b a se d  codes again perform  very well on this problem  as T able 3 . 1 1  shows.

W e make the sam e comparisions for this problem  as we m ade the previous problem. 

T ab le 3 . 1 2  sum merises the results of both A lexan d er’s and C a s h ’s codes. O nce again
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Problem C l Tol =  IO "2 Carr T R A P E X
Tol = IO "2 Carr TR A P E X N STE P 68 20

N STE P 2 2 9 NFE 336 2 6 1

NFE 7 3 1 0 1 N JE 1 1 16

N JE 8 16 GERR 2 0 x  lO "5

G ERR 1 0 x  10 ~ 3 Table 3 10

Problem C5
Tol = lO’ 2 D IR K  (2,2) Comp Int. LSO D I DA SSL
N STE P 7 3 4 3 4 2 48
NFE 4 38 2 7 3 10 3 10 7

N JE 1 2 10 10 1 4

GERR 6 0 x  l O '4 6 7 x  10 ~ 3 1 0 x  10 ~ 4 2  0 x  10 ~ 4

1Or—HIIO D IR K  (2,2) Comp Int LSO D I D ASSL
N ST E P 2 10 1 5 3 99 10 3
NFE 129 0 10 6 4 2 2 8 208
N JE 3 2 30 20 2 1
GERR 1  0 x  lO "9 1 5  x  lO "4 4 0 x  1 0 “ 6 2 0 x  1 0 " 6

Table 311

the lower tolerance value is quoted because A lexan der only gives results at this value 

and C ash  uses a  fourth order code. Com parisions w ith C a sh ’s schem e are therefore a  

little unrealistic as the tolerance is reduced

A gain  all m ethods behave reasonably well on this problem  as can be inferred from  

Tables 3  1 1  and 3  1 2  Based on the statistics it appears th at this typ e  o f problem  is 

quite am enable to solution by most stiff solvers

T h e  Com posite scheme is also cheap on this problem  Com parision w ith C arro ll’s 

code and T R A P E X  whose perform ance figures are reproduced in T ab le  3  1 3 ,  reveal 
our code to be significantly cheaper.

T h e reason our code is significantly cheaper on this problem  is th at when our code 

fails the N ew ton iteration step we reduce the stepsize b y a factor of four, re-evaluate  
the Ja co b ian  and re-take the step T h is feature enhances behaviour on som e nonlinear 
problems

Problem  D 1

y[ = 0 2(j/2 — 2/i)
V2 =  IO2/1 -  (60 -  0 1 2 5 1 /3 )2/2 +  0 1252/3

Vz =  1
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with initial values
Vi =  0,y2 =  0,?/3 =  0

and t G [0,400]

T h is problem  is nonlinear w ith real eigenvalues Specifically we com pare our re
sults given m  T able 3  1 4  w ith C arro ll’ s code and E n righ t et al I M P R K  and T R A P E X  

codes given in Table 3  1 5
O n this problem  the C om posite scheme proves m ore expensive than the m ethods 

listed in T able 3  1 5  A t  the higher tolerance similar behaviour is observed, the prob

lem proving difficult for the Com posite scheme and those m ethods given in Table  

3 . 1 5  O nce again the reason for the large number o f Ja co b ian s required b y the C o m 

posite scheme is prim arily due to the conservative approach adopted to failed N ew ton  

iteration steps. T h e  Com posite scheme once again fails to com pute a solution to the 

sam e accu racy as the other m ethods.

Com paring the D IR K (2 ,2 )  scheme w ith the I M P R K  m ethod, we see th at the 

former is considerably more efficient T h is fact, once again adds weight to our claim  

th at the D IR K (2 ,2 )  algorithm  seems quite cheap on problem s w ith  real eigenvalues 

Indeed the D IR K (2 ,2 )  scheme com pares favourably w ith  both L S O D I and D A S S L ,  

whose perform ance is once again excellent at both  tolerances
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Problem C5

es 1 
1 

Or-HII"o Alex Cash
N STE P 2 7 78

NFE 18 8 1 3 3 3

N JE 1 3 26

GERR 5  0 x  IO "5 7  7 x  1 0 " 3

Table 3 12

Problem C5 1ot-HII Carr T R A P E X
Toi = 1 0 ~ 2 Carr T R A P E X N ST E P 10 29 298

N STE P 2 3 4 56 N FE 5 4 7 1 9 2 5 7

NFE 1 7 9 2 15 9 8 N JE 16 4 16 3

N JE 19 3 5 GERR 1  9 x  IO "4

GERR 1 2  x  IO "2 Table 3 13

Problem D l
Toi =  1 0 " 2 D IR K  (2,2) Comp. In t LSO D I DASSL
N ST E P 29 2 1 2 2 3 5 2
NFE 1 5 4 10 3 6 9 7 10 7
N JE 6 56 9 19
GERR 2 0 x  1 0 " 4 3  9 x  IO "3 1 0 x  1 0 - 3 1 0 x  1 0 " 6

II o
1 D IR K  (2,2) Comp Int. LSO D I DASSL

N STE P 50 36 9 5 5 1 1 4
N FE 3 1 8 24 2 0 16 4 2 3 1
N JE 1 1 1 2 1 1 3 2 3
GERR 2  0 x  IO "6 2  5  x  1 0 " 5 2  0 x  1 0 " 5 1.0  x  1 0 " 6

Table 3 14
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Problem, D l

© II t—‘ o
1 to Carr T R A P E X IM P R K

N STE P 130 19 20
NFE 806 7 8 5 659
N JE 2 3 36 65

GERR 3 0 x  1 0 " 3 2 4  x  1 0 " 4

Toi =  IO "4 Carr T R A P E X IM P R K
N STE P 56 7 46 6 7
NFE 3 2 8 7 19 8 3 2009
N JE 99 1 5 2 5 5

GERR 7 0 x  10 ~ 5 6 .3  x  1 0 " 3

Table 3 15
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Problem D2

y[ =  - 0  0 4yx +  0 01?/2j/3 

j/2 =  400yx -  100^22/3 -  3000?/2 

S/3 =  3000?/2

w ith  initial values

J/i =  1 ,  2/2 =  0, 2/3 =  0

and t  €  [0,40]
A g a in  this problem  is sim ilar to D l in that it is nonlinear w ith real eigenvalues W e  

make com parisions sim ilar to those m ade for problem  D l.  Table 3  16  lists the statistics  

generated b y our m ethods applied to this problem  while Table 3  1 7  reproduces the 

statistics taken from  the literature.

Problem D2
Tol =  I O '2 D IR K  (2,2) Comp Int. LSO D I DASSL
N STE P 4 1 14 5 36 4 3
NFE 246 646 10 3 86
N JE 9 4 3 1 3 16
GERR 1  0 x  IO "2 2  3  x  1 0 - 3 7  0 x  lO "3 9 0 x  1 0 " 3

Tol =  10 ~ 4 D IRI((2,2) Comp Int LSO D I D ASSL
N STE P 79 7 1 1 92 94
NFE 474 3 5 0 5 209 1 9 1
N JE 1 3 2 39 19 2 3
GERR 6 0 x  1 0 " 3 5  5  x  lO "5 3  0 x  lO "4 1 0 x  10 ~ 4

Table 3.16

O n this problem  our Com posite scheme (c f  T ab le  3 .16 )  produces figures sim 

ilar to those listed in Table 3  1 7  for C arro ll’s code at both tolerance values listed  

T h e  other m ethods listed perform  much better, so we conclude th at this problem  is 

unsuitable for solution by the Com posite scheme.
T h e  D IR K (2 ,2 )  scheme employed solves the problem  reasonably efficiently A gain  

the m ethod is proving suitable for this problem  which does not oscillate w ildly W e  

com m ent also that the B D F  based m ethods perform  extrem ely well on this problem  

indicating their appropriateness for solving m ildly oscillatory system s of O D E s  

Problem  E 3

y[ = -(55 + 3/3 )2/! + 6 5 2 / 2  

2/' = 0 0785(j/i — 2/2 )

^3 =  °  lj/1

with initial values
2/i =  1, 2/2 =  1, 1/3 =  0
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Problem D2
Tol =  I O '2 Carr T R A P E X IM PRK
N STE P 130 1 1 1 1
NFE 6 22 2 3 7 3 8 7

N JE 2 2 29 89

GERR 0.0 x  1 0 " ° 1.0  x  lO "3

Tol =  1 0 " 4 Carr T R A P E X IM P R K
N STEP 5 6 1 2 1 16

NFE 2692 59 3 3 8 5

N JE 80 40 2 5

GERR 1.0  x  1 0 " 5 4 .3  x  1 0 " 4

Table 3.17

and f G [0,500].

T h is is the last problem  from  the En right et al test set. It is nonlinear w ith  non- 

real eigenvalues. In particular the eigenvalues values stay close to the real axis and  

therefore the problem  does not possess highly oscillatory solutions. W e endeavour to 

m ake the sam e com parisions as we did for the previous problem.

Problem E3
Tol =  1 0 " 2 D IR K  (2,2) Comp. Int. LSO D I DASSL
N STE P 3 1 14 8 39 3 4
N FE 186 647 1 1 8 78
N JE 7 4 1 16 14

GERR 3.0  x  10 ~ 2 8.8 x  lO "4 2.0 x  1 0 " 3 2.0 x  1 0 " 3

Tol = 1 0 " 4 D IR K  (2,2) Comp. Int. LSO D I DASSL
N STE P 5 7 2 8 7 8 5 88
NFE 3 4 2 15 8 5 1 7 7 19 5
N JE 1 1 8 5 1 7 1 5
GERR 2.0 x  10 ~ 3 5.0 x  10 ~ 5 1.0  x  1 0 " 4 1 .0  x  lO“ 4

Table 3.18

Com paring our results in Table 3 . 1 8  w ith those published by Carroll and replicated  

in T able 3 .19 ,  sim ilar behaviour is observed at both tolerance values. B oth  algorithm s 

are however less efficient than IM P R K  and T R A P E X .  B ased  on our results we again  

conclude th at this scheme is unsuitable for this problem.

Looking at the D IR K (2 ,2 )  scheme we see that it com pares favourably w ith all 
other results quoted, espcially in terms of function evaluations. A g ain  the nature of 

this problem  proves am enable to to solution b y our D IR K (2 ,2 )  scheme. F in a lly  we
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Problem E3

Tol = IO’ 2 Carr T R A P E X IM PR K
N STE P 12 9 1 2 9
NFE 40 7 2 4 7 2 1 7

N JE 3 1 26 40

GERR 1.0  x  1 0 " 3 3.0  x  1 0 " 3

Tol =  10 ~ 4 Carr T R A P E X IM P R K
N STE P 396 2 1 18
NFE 1 4 1 2 5 5 5 4 2 7
N JE 13 0 38 18

GERR 4  0 x  1 0 " s 1  8 x  lO "3

Table 3 19

mention L S O D I and D A S S L  on this problem  W e can see from  Tab le 3  18  th at both  

m ethods perform  very  well once again  

Problem  P I

y[ = -PiVx + y2x * = 1(1)4
w ith

Pi =  —1000, f$2 =  —800, Pz — —10  and  /?4 =  —0 1 

w ith initial values

y, -  - 1  i =  1(*)4  

and t  6  [0,20] T h e  exact solution o f this problem  is

(A -  A  
y ‘ U  1 - ( 1  + Pt)eP't

T h is problem is a  R icatti typ e equation. O ur results are displayed in Table 3  20  

while Tab le 3  2 1  shows the perform ance of C arro ll’s version of the C om posite scheme 
on this problem

T h e  results from  both tables dem onstrate th at all m ethods applied to this prob
lem behave sim ilarly T h e problem is solved b y all m ethods quite efficiently w ith  
reasonable values for global error.

Problem  P 2

y[ =  - 0  04y-L +  1 0 4i/2J/3

y'2 =  0 0 4 1/! -  10 4i/22/3 -  3  x  10 7t/|

Vz — 3  x  10  t/2

w ith  initial values

2/i =  1,2/2 =  0,?/3 =  0

and t  £  [0,40]
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Problem PI
Tol =  IO "2 D IR K  (2,2) Comp. Int. LSO D I DASSL
N STE P 26 3 2 8 5 50

NFE 15 6 15 0 1 7 7 1 1 0

N JE 6 8 1 7 20

GERR 5.0  x  10 ~ 3 5.0  x  1 0 " 3 1.0  x  IO "3 6.0 x  lO "3

1Oi—HII~o D IR K  (2,2) Comp. Int. LSO D I DASSL
N STE P 60 9 5 1 3 1 1 1 0
NFE 366 594 300 2 3 4

N JE 1 2 1 1 2 7 19

GERR 1.0  x  10 ~ 3 3.0  x  10 ~ 4 2.0  x  1 0 " 5 2.0 x  1 0 " 5

Table 3.20

Carr
Tol 10 ~ 2 lO“ 4
N STEP 3 7 1 1 5
NFE 17 4 6 72
N JE 10 1 3

GERR 1.6  x  lO "2 4.4  x  10 “ 4

Table 3.21

T h is problem has been considered by m any authors including Hall &: W att [38], 
Prothero &  Robinson [60] and Carroll [18]. O ur results are presented in T ab le  3 .2 2 . 
W e also quote C arro ll’s results in Table 3 .2 3 .

T h e  figures quoted in both Tables 3 .2 2  and 3 .2 3  indicate that our codes produce 

sim ilar results to those of Carroll. A ll codes solve the problem  efficiently. W e therefore 

conclude that this problem  is suitable for solution by the stiff O D E  codes considered 
here.

Finally, to sum  up we adopt the approach of Carroll [18] providing totals for each  

statistic in Table 3 .2 4 . T h is table sum m arises the results given in a convenient form  

for general discussion. W e have not included a sum m ary o f the global error. In all, 
statistics for five m ethods are diplayed, the four codes we have tested, D IR K (2 ,2 ) ,  

C om p. Int., L S O D I and D A S S L , along w ith C arro ll’s version of the Com posite scheme 
denoted by C arr.

Tab le 3 .2 4  clearly shows that our fixed order schemes are uncom petitive when 

com pared to the B D F  based codes in term s of steps and function evaluations. T h e  

C om posite scheme performs worst on the problems considered. However we point 

out th at the problem s chosen were those those distinguished by Carroll [18] to be 

the ’worst case’ set available from  En right et al stiff O D E  test set. It is therefore 

reasonable for us to observe poorest perform ance on these problem s. W e mention
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Problem P2

Tol =  1 ( T 2 D IR K  (2,2) Comp. Int LSO D I D ASSL
N ST E P 2 4 3 5 46 14

N FE 14 4 1 1 6 1 1 4 86

N JE 5 10 36 7

GERR 1  0 x  1 0 '* 1 .2  x  1 0 " 3 5  0 x  1 0 " 2 6 0 x  1 0 " 3

Tol =  IO "4 D IR K  (2,2) Comp Int LSODE DASSL
N STE P 4 5 60 3 7 24

NFE 270 266 56 50

N JE 7 16 1 5 7

GERR 3  0 x  1 0 " 3 8 9 x  1 0 “ 5 3  0 x  IO "5 1 0 x  1 0 " 4

Table 3 22

Carr
Tol IO "2 IO "4

N STE P 3 5 5 4

NFE 99 2 30
N JE 8 1 2

G ERR  j 3  6 x  IO "3 1 1 x  10 ~ 4

Table 3 23

that the figures quoted for C arroll’s code should in fact be N S T E P - 1  less than those 

quoted here His code uses three function evaluations on every step H owever two 

will suffice as the function call on the previous step at tim e t n- i  +  h w ill be very  

close to the value of the function at t n on the current step Ofcourse the former 

im plem entation is effectively P E C E  which is more stable (c  /  Hall &  W a tt [38]) 

than the latter P E C  im plem entation In fact we would recom m end the former when  

solving D A E s  which we consider in subsequent chapters
T h e  D IR K (2 ,2 )  algorithm  also fairs badly overall B u t most of the fault lies with  

problem  B 5  In fact this problem  accounts for over half o f the total figures quoted for 

this m ethod in table 3 .2 4  A s we have already stated, the highly oscillatory nature  

of the solutions proves to be a  problem  for our code. R ecall we dem onstrated that 

problems B 3  and B 4  which were sim ilar to B 5 , but the sm aller im agin ary eigenvalues 
proved easy for our code to handle.

In conclusion, the fixed order algorithm s we have discussed can provide a  com pet

itive alternative to the polyalgonthm s L S O D E  and D A S S L  based on B D F  formulae 

in certain instances In particular the num ber of Ja co b ian  evaluations required by the 

fixed order algorithm s is low, at low tolerance T h is is particularly im portant since a 

Jaco b ian  evaluation requires N 2 function evaluations b y finite differences T h is is a 

crucial factor in the efficiency o f these m ethods w hen applied to the system s of tim e
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Totals fo r  all problems
Tol =  IO "2 D IR K  (2,2) Comp Int. LSODE DASSL Carr
N STE P 1 1 3 4 12 4 4 667 6 8 1 864
NFE 6904 4 2 7 8 1 5 7 5 14 6 7 4698
N JE 1 5 7 2 10 16 8 140 14 9

Tol =  1 0 " 4 D IR K  (2,2) Comp Int LSODE DASSL Carr
N STE P 18 6 4 26 6 5 33 6 9 1 5 3 1 3 3 9 8
N FE 114 0 0 15 0 2 4 58 8 2 3 1 2 3 16 76 6

N JE 259 630 320 15 8 596

Table 3 24

dependant P artial Differential Equations (P D E s ).
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C hapter 4 

D ifferential A lgebraic Equations 
(D A E s).

4.1 Introduction
T h e  general first order differential system  described b y

F(i,y(<)»y#(0) = o t E [a,b] (4 1)

is called a vector implicit system  of O D E s or sim ply an im plicit system  o f O D E s 1

T h ese system s look similar to standard explicit first order O D E  system s, which we

have dealt w ith  in earlier C hapters and of course include explicit first order system s  

as a special case

If  we assum e F (  ), has continuous first partial derivatives, we can differentiate 

(4 1 )  ffl r i  t as follows
dF dF dF

a 7 y + V  +  a i  =  °  ( 4 2 )

L ettin g y  =  y i  and y '  =  y 2, we have

y'i = Y2

dF . \  dF  dFl

W / '  =  l § y i y 2  +  " § i j

Since F (  ) has continuous first partial derivatives, we can assum e ( j^ ~ )  exists and  

is bounded Therefore we can rew rite the above system  in explicit form  2

y i  =  y 2

' y ' 2 =  - 1
d F V 1

dy?

\  dF  dF!
(a ^ y2+ ar)

Im plicit O D E  system s where is singular are called Differential A lgeb raic E q u a 

tions (D A E s ).

1 We assume that y  and y' are mappings from R  —* R"
2This follows from the Implicit Function Theorem of Vector Calculus, see Marsden & Tromba 

[48]
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In this thesis we concern ourselves w ith the stu d y and developm ent of numerical 
O D E  m ethods for D A E s  of the form

E ( t , y ) y '  = f ( t , y )  ( 4 3 )

where E  is a  square m atrix usually singular System s of this form  are called Linearly  

Im plicit D A E s , because of their linear dependence on y '
T h ere  are two special cases of the Lin early Im plicit D A E  (4 3) th at have been 

studied m  the literature.
(a) T h e  Lin ear C on stant Coefficient D A E

E y '  =  A y  +  g (t) (4 4)

and
(b). T h e  Lin ear N on-C on stant Coefficient D A E

E {t)y '  =  A(f)y +  g(i) (4 5)

W e devote sections 3  &  4 respectively, of this C h ap ter, to review ing the literature on 

these forms

O ther forms have also appeared in the literature, G ear [33] and Petzold &  Lotstedt 

[58], [59] considered Sem i-explicit D A E s  which have the following structure

y' = f(*,y,z)
o = g(*,y,z) (4 6)

B renan &  En gquist [4] have considered a special form  of the Sem i-explicit D A E , called  

the Trian gu lar (Hessenberg) form  given by

y' =  f( i ,y ,z)
o =  g(i,y) (4 7)

Note  A ll the above forms have been studied both an alytically  and num erically  

m  the literature, however we intend to prim arily concern ourselves w ith  their an alytic  

aspects in this C h ap ter

R eturning to the Lin early Im plicit equation (4 3 ) , we point out th at there is no 

loss of generality in considering system s o f this form , since we can easily transform  the 

general Im plicit O D E  into a D A E  by letting z  =  y '  T h e  Im plicit O D E  then becom es

y ' = z

0 =  F ( t , y , z )  (4 8)

and the equation is now linear in y ' ,  the equation is also in Sem i-explicit form
Example 4 1■ Consider the following Im plicit O D E

(:v ' f  +  y 'y  =  t  e  [o, oo] (4 9)

w ith ?/(0) =  1  Lettin g  y ' = z , we get

y' = z
0 =  z2 + z y (4  10 )
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T h e  first point to notice about (4.9) is that only one initial condition is supplied. 
T h is would seem reasonable from our knowledge of O D E s, since the equation is first 

order. However the equation has two solutions, the first is y(t) = e~l and the second 

is the constant function y(t)  =  1 .  Therefore our exam ple problem  will not possess a 

unique solution unless further constraints are imposed. T h e  following definitions, see 
C am pbell [13], help us to characterize the set of conditions, which m ust be inmposed  

in order for a  D A E  to possess a unique solution.
Definition ^ . l :  A n  initial vector y a is said to be a  consistent initial vector for 

( 4 .1 1 )  at a  point t(a ), if (4 .1)  possesses at least one solution.

Definition 4-2: T h e  equation (4 .1)  is said to be solvable at a point t(a),  if a  unique 

solution exists for each consistent initial vector.

T h u s in (4 .9 ), j/(0) is a  consistent initial value, but the equation is not solvable 

from  this point. However in (4 .10 ), it is a  trivial task to generate consistent initial 

values. W e substitute the initial t/(0) into the algebraic equation and solve the 

resulting quadratic equation for z, giving two possible initial values, z =  1  and —1.

T h e  purpose of this C h ap ter then, is the study of D A E s . O ur discussion centres 

on two im portant issues, nam ely the concept of an index or degree of com plexity  

of a  D A E  and the characterization of consistent initial conditions. W e therefore are 

prim arily concerned w ith an alytic solutions of D A E s , where they can be obtained. 

However certain num erical aspects will be considered where we feel th ey are appro

priate. A  fuller treatm ent of the issues involved in the solution of D A E  system s will 

be given in the next C hapter. W e begin by considering w hat are regarded as the 

sim plest D A E  system s, in the sense that they can be solved by O D E  m ethods and  

are also com pletely understood analytically.

4.2 Infinitely Stiff ODEs.
W e begin this section by considering a  special case of the stiff O D E  system s discussed  

in earlier Chapters. In particular we exam ine the pair of scalar O D E s:3

y'(<) = t e [<*,&]
ez '(f) =  g{t ,y( t ) , z ( t ) )  ( 4 .1 1 )

w ith y(a)  and z(a)  given at the initial point t =  a. In the above equations we assum e  

that / ( • ) ,  <7(-), y(-) and z(-) are 0 ( 1 ) ,  while e is a  sm all param eter different from  

zero. W e also assum e that these functions are continuous throughout the interval 

and satisfy the conditions laid down for ( 2 .1 ) .  Under these conditions, the stiffness 
of ( 4 .1 1 )  is determ ined by t  and the stiffness ratio is of order (1/ e ) .

T h e  scalar Infinitely S tiff  ODE, is a generalization of the stiff system  ( 4 .1 1 ) ,  ob
tained b y considering the lim iting case e =  0, giving the sem i-explicit D A E  system

y' =  f ( t , y ( t ) , z ( t ) )  t e  [a, b] 

o = 9{i,y{i),z{i))

with y(a)  and z (a ) given.

3Recall, this is the scalar singular perturbation problem, introduced in Chapter 1.
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Remark 4 1- It was this relationship between Infinitely S tif f  ODEs and semi- 
exphcit DAEs, th at prom pted G e a r [32] to propose solving these problems using 
standard stiff O D E  integration schemes, based on the im plicit num erical m ethods of 

C hapter 2
W e com plete the characterization of Infinitely S tiff  ODEs, by givin g a form al 

definition. W e denote the differential ’’ state”  variables by the vector y ( t )  and the 

algebraic ” non-state” variables b y the vector z(t)
Note W e shall often refer to the algebraic subsystem  in the definition, as the con

straints o f the system .
Definition 4 3 (Infinitely S tiff  ODE systems) T h e  Differential A lgebraic Syste m

y'{ t)  =  i ( t , y ( t ) , z ( t ) )  t  €  [a,b]

0 =  g ( t ,y ( t ) ,z ( t ) )  (4 .12 )

where

and

y ( f )  and z(<) R  —► R n and R m, respectively

f(-)  and g (-) R n+m+1 -  R "  and R m, respectively

possess a unique solution for consistent initial conditions on y ( a )  and z (a ) , provided  

f (  ) and g ( ) satisfy the Lip shitz conditions 4

l|f(*,yi,z) -  f(<,y2,z)|| < Allyi -  yzll

| |g ( * ,y ,Z i)  - g ( i , y , z 2)|| <  Xr2||zi — z2||

for all t E [a, 6]

Remark 4 2 T hese conditions are m inim al and also require th at the Jaco b ian  of 

the non-state variables | |  be non-singular, (see Cam eron [9])

Since the Ja co b ian  o f the non-state variables exists and is bounded V  t £  [a, 6], we 

can differentiate the constraint and apply the Implicit Function Theorem. [48] T h is  

transform s the constraint equations into a differential system , as follows5

- I » ' * ! - '

giving

* ' = ( 2 s V \\ d z )

T h is differential system  can now be solved by the techniques used in earlier Chapters  
U sing the Implicit Function Theorem  in this w ay appears to answer all our needs 

for this problem , but it does have serious draw backs. Firstly, the transform ation is 

an alytic and tedious to com pute T h is can be overcom e, to some extent, b y  decoupling  

the differential and algebraic subsystem s in (4  1 2 ) .  T h e  individual state and non-state  

subsystem s are then solved independently, at each step of the tim e interval, using a 

suitable num erical integration scheme for the state com ponents and an inner N ew ton

4We drop the dependence y (t) and z(t) on t for clarity
sThis transformation is identical to that used in (4 2) Once again we drop the dépendance on t 

for clarity
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iteration for the non-state components Cam eron [10], in his thesis solved chem ical 

system s in this w ay using functional iteration for the differential subsystem  of (4 12 )  

T h e  approach seems reasonable since the state equations are non-stiff However, for 

tightly coupled state and non-state subsystem s the perform ance of this approach was 

poor W e note, th at the effect o f increased coupling between the two subsystem s, 
is equivalent to a virtual instantaneous change from a non-stiff to an infinitely s tiff 
O D E  system  T h is to some extent explains the existence of D irac 8 functions in the 

solution of D A E s  W e will return to this topic later m this C hapter.

T h e  second m ajor draw back associated w ith the Implicit Function Theorem  is 

sparsity  If  the original D A E  system  is sparse, then the transform ation outlined will 

not, in general, preserve the original system  structure. T h e  resulting O D E  system  

m ay be dense and therefore the storage and calculation of Ja co b ian  m atrices required  

for num erical solution is greatly increased

T h e  last question we address regarding (4 1 2 )  is the existence of a  consistent 

set of initial conditions6 which guarantee a unique solution. In general this is a  

non trivial task However the question can be satisfactorily answered for (4 .12 )  

It is reasonable to assum e th at the initial conditions for the state equations are 

autom atically consistent m (4 1 2 )  T h e  non-state initial values can be easily com puted  

b y substituting the state values into the algebraic equations and using a N ew ton  

iterative scheme on these equations only T h is au tom atically generates consistent 

non-state initial values It is also expedient to use a damped Newton iteration  for 

this purpose, as conditions for a  descent direction m ay not be au tom atically satisfied 

for a full N ew ton iteration scheme In this situation the full N ew ton schem e m ay  

diverge or possibly ” hunt” around a saddle point

4.3 Linear Constant Coefficient D A Es
In this section we review  the structure o f the linear constant coefficient D A E  given

by
A  y'(i) +  B  y (t) =  g (t) t  e  [a, b] (4 13 )

w ith  y(a) and y '(a)  given A  and B  are assum ed to be n  x  n  dim ensional m atrices, 

both possibly singular and y(t )  and y'(2) are m appings from  R  —* R ”
In particular we define the concept of index for (4 1 3 )  and derive the general 

solution In the literature, (4 1 3 )  has been referred to b y  different names Sincovec 

et al [68] follow Luenberger [47] and call (4 1 3 )  a  D escriptor System , while Cam pbell 

[13] and Newcom b [51] call (4  1 3 )  a  Singular System  and a set of sem i-state equations 
respectively W e shall use the title linear constant coefficient DAE, w hich is now  
com m on in the literature

W h en  the m atrices A  or B  are singular, the structure of (4 1 3 )  can be com pletely  

understood v ia  a  canonical form , called the Kronecker Canonical Form  ( K C F )  for the 

m atrix pencil (A  - f  A # ) ,  w ith  A a scalar. In fact if the m atrix ( A  +  A jB )- 1  exists 

and is bounded, then (4 1 3 )  will have a  solution. W e form alize this statem ent w ith a  

definition of solvability, see C am pbell [13].

Definition 4 4■ T h e  linear constant coefficient D A E  (4 1 3 )  is solvable if f

d e t(A  +  A B ) ^  0
-- *

6 We have assumed consistent initial conditions
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Remark 4 3 W hen  ( A  +  A B )  is singular for all values of A in (4 1 3 ) ,  then either no 

solutions or infinitely m any solutions exist Fortunately the num erical O D E  m ethods 

we propose m this work reject these problem s au tom atically O ur m ethods factorize  

a linear system  of the form  (A  + h(3B), where h is the stepsize and 0  is a  scalar which  

depends on the m ethod. T h is m atrix is singular for all values of h
Sincovec et al [68] ap p ly a  non-singular row scaling m atrix P  and non-singular 

change of variables m atrix Q to ( 4 .1 3 )  as follows

P A Q  Q~ly '  +  P B Q  Q~ xy  =  Pg( t ) (4  14 )

To gam  further insight into equation (4 .14 ) ,  it is necessary to define the concept of 

nilpotency for an n x  n m atrix.

Definition 4 5 A n  arb itrary square m atrix A  is m lpotent, if there exists an integer 

m  > 0, such th at A m_1 0, but A m =  0. T h e  integer m  is defined as the index o f 
nilpotency, or sim ply the index, for the m atrix  A .

Remark 4-4• In the case where A  is em pty, ( the zero by zero matrix,) we assum e 

0° =  / ,  the identity m atrix
T h e  transform ations outlined in (4 14 )  reduces the D A E  (4 1 3 )  to the following 

equivalent system .

w ith

x i  +  C x !  =  f i( i )  Xi(<0) =  X ii0

E x '2 +  x 2 =  f 2(f) x 2(i0) = x 2,0

Q~ly =  [ x i , x 2]t  and P g  = [ f i . f j ] 7

(4  15 )

and E  is a  m lpotent m atrix  o f index m  >  0 In general, the m atrix E  is com posed  

of Jordan blocks o f the form

0 

1 0 

1  0

0

1 0

and m  is the size of the largest of these blocks If m  =  0, the system  is transform ed  
into an explicit first order O D E  system

Remark 4 5 T h e  transform ation ju st outhned com pletely de-coupled (4 1 3 )  into 

a purely differential part and a purely differential algebraic part W e follow the liter

ature and consider the latter case only, as differential system s have been com pletely  
dealt w ith  earlier

Example 4 2 (An m = 2 system)

' 0 1 ' / ' 1 0 '
0 0

x '  +
0 1

W e can easily solve system s o f this form  b y starting w ith the last equation to obtain  

x 2(i) =  sin (i) and x\ ( t )  = x'2(t) =  — cos(i)
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Remark 4 6 Luenberger [47] calls system s of this form  Pure predictors, as the 

solution is independent of initial conditions C learly  this system  is very different from  

a traditional O D E  system , where the constants of integration are uniquely specified 

b y the initial conditions For Pure Predictor system s, like the m  = 2 system  above, 

no constants of integration arise so th at the system  is independent of initial values 

W e say the solvability of (4 13 )  is equivalent to the existence of non-singular 

m atrices P  and Q, which transform  ( 4 .13 )  into (4 1 5 )  T h e  solution o f (4 1 5 ) ,  (see 

Sincovec et al),  is

X i =  etCXi,o + / e(i ’V f ^ d s  
Jt0

m—1
x2 = - ■ £  E ‘ fW(t)

1 = 0

w ith the i th derivative of f2 T h e  solution X j is well the known integral solution 

of a  differential system  For the differential/algebraic subsystem , we verify th at x 2 is 

correct for the m  = 2 D A E  system  considered A n  easy calculation for this exam ple  

yields

- U , , ,  M " 1 " “ 1 )
which agrees w ith the solution given earlier

A n other interesting, albeit sim ilar characterization has been suggested b y C a m p 

bell &  M eyer [1 1] .  T h e y  introduce the notion of a  Drazm  generahzed inverse of a 

singular m atrix and use the concept to generate a  solution of (4 13 )

Definition 4 6 For an y singular m atrix A  w ith  index m  >  0 there exists a 

non-singular m atrix P  such th at

A  = P C  0 
0 N

where C  is non-singular and N  is m lpotent of index m  T h e  Drazm  Pseudo Inverse 
of A  (w ritten A D)7 is then

A D = P c - 1 0 

0 0

Cam pbell &  M eyer [11]  consider the following commutative  m atrices

A = ( A  + \ B ) ~ XA  and B = (A + X B ) ~ 1B

Remark 4 7  T h e  com m u tativity o f A  and B  is easily verified B y  considering the 
equation

A B  = B A

and pre-m ultiplying both sides by A ~l on the left and (A  +  B )  on the right Then, 
by taking inverses of both sides, equality holds trivially

7If A is non-singular, then both the Drazm and ordinary inverses are identical and A A °  =  I
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C am p bell &  M eyer [1 1]  define a general solution to (4 1 3 )  in term s o f the m atrix  

exponential based on the D razin inverse of A  For the hom ogeneous problem

the solution is

A x '  + B x  =  0

x( t )  = e~AD A  A °  q

where q  6  R "  is a  vector of initial values.
Example 4-3 Consider the homogeneous linear constant coefficient D A E  w ith

1 0 1 to
1

' 0 1 2

A  = - 1 0 2 , B  = - 2 7 - 2 2 - 1 7

2 3  2 18 1 4 10

A  is singular, but (A  +  B )  is invertible, thus A =  1 and

> 1 = 1 / 3

- 3  - 5  - 4  
6 5 - 2

- 3  2  10

T h e  eigenvalues of A  are {  0, 1 ,  3  } ,  so that A v  m ay be com puted from  the 

eigenvectors of A  v ia  a  sim ilarity transform ation as

' - 2 7 - 4 1 - 2 8

A d = 1 / 2 7 5 4 7 7 46

- 2 7 - 3 4 - 1 4

and the general solution follows from  above C am p bell &; M eyer [ 1 1]  also generahze 

these results to the mhomogeneous case.

In this section, we have developed two useful characterizations of (4 1 3 )  th at have 

appeared in the literature T h e  theory given in Sincovec et al is useful in dem on

stratin g how (4 1 3 )  n aturally de-couples into differential and differential algebraic  

subsystem s T h is will be our take off point for dealing w ith these system s later. It is 

also useful in defining the concept of index . C am p bell &  M eyer [ 1 1 ]  and C am pbell 

[13], introduce the idea of a  generalized inverse as a  generalization of the ordinary  

inverse of a  m atrix T h is proved useful in defining a solution to (4 1 3 )  m  the classical 
exponential sense and w ill prove to be useful later when we discuss initial conditions 

for this problem  In the next section, we shall attem pt to generalize the ideas intro

duced here to the non-constant coefficient D A E , where we shall see th at these notions 
will be carried over in a hm ited sense

4.4 Linear non constant coefficient D A E system s
W e explore the linear non constant coefficient D A E  system

A(t) ÿ ( t )  +  B(t )  y (t) =  g (t) t e  [a, b] (4 16 )

w ith y ( a )  and y '( a )  given, by m aking a brief review of the im portant contributions 

that have appeared in the literature, to understanding the structure o f this problem
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It is our intention to sum m arize the combined works of C am p bell, G ear and Petzold,

[13], [14], [16], [17] and [35], in an effort to generalize the results of the previous 

section to (4 16 ) , we begin w ith a definition of solvability for this problem.

Definition 4 7. (C am pbell &  Petzold [17]) W e shall say (4 .16 )  is analytically solv
able on the interval [a, 6] if for any sufficiently sm ooth input function g (t) , there 

exist solutions to (4  16 )  and these solutions are defined V  t £  [a, b] and are uniquely 

determ ined at any tim e t E [a, b].
Remark 4 8  C am pbell &  Petzold point out th at (4 .16 )  fails to be an alytically  

solvable if it has a  turning point, th at is, a  point in tim e where the dimension o f the 

m anifold of solutions changes, since at these points solutions m ay fail to exist or be 

unique ( c /  example 4  1  at t — 0 )
W h en  the coefficient m atrices are not constant as in (4 .16 ) , we can define two 

form s of index T h e  sim plest is the local index  T h is is the index of the corresponding  

constant coefficient problem  obtained by considering (4 16 )  at some fixed point in 

tim e W e can also define the global index o f (4 16 )  when it exists in term s o f a  

sem i-canonical form , see G ear &  Petzold [35]
Once again we consider a change of variables y  =  Q(t)  x  and a  row scaling P(t), 

where Q(t) and P (t)  are non-singular V  tE[a ,b]  A p p lyin g  P(t)  and Q(t) to (4 16 )  

gives

P(t)  A ( t ) Q(t)  x '  +  {P(t )  B( t )  Q( t ) +  P(t)  A ( t ) Q'(t)}  x  =  P(t )  g (t) 

and transform s (4 16 ) to the sem i-canonical form

x'l +  C M x = fi(t)
N( t )  x ' 2 4- x 2 =  f 2(<) (4 1 7 )

where C (t)  is non-singular, N (t) is nilpotent and lower triangular, as in the time  

invariant case considered in the last section. Following C am p bell &  Petzold [17], we 

say the system  is in Standard Canonical Form  ( S C F )  and the index-m  of (4 16 ) is 

the index of m lpotency o f N (t) In particular, if N (t)  is tim e invariant we say the 

system  has global index m  and (4 17 )  is in Strong Standard Canonical Form  ( S S C F )  

Note that the global index is the local index o f the semi-canonical form  above, when 
N (t) is time invariant

W e also point out th at the S S C F  is the canonical form  considered in Sincovec et al
[6 8 ], Petzold [55] and G ear &  Petzold [35] W e mention in passing that C am pbell &  
Petzold [17] provide exam ples to dem onstrate th at an alytic  solvability does not im ply  

the existence of a  S S C F  as had been originally thought It does however im ply the 

existence of an S C F  W hen the S S C F  does not exist, it therefore is not possible to 

define the concept of global index W hen the S S C F  exists, the global index determines 

the behaviour of the solution In this case, we know that n x independent initial values 

can be chosen, where n x is the dimension o f the differential part o f the system  and  

the driving term  can be subject t o m  -  1  differentiations

Remark 4 9. T h e  local index in some sense governs the behaviour of num erical 

O D E  m ethods applied to (4 16 ) For exam ple, if the local m atrix  pencil is singular, 

then numerical O D E  m ethods cannot solve the problem , because th ey will be faced  

w ith the solution of a  singular linear system  In understanding w hy O D E  m ethods 

break down, it is natural to ask how the local and global indices are related G ear &  

Petzold [35] provide the following theorem  which answers this question
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Theorem 4 1 If the local index is not greater than 1 ,  then it is not changed by  
a sm ooth transform ation If the local index is greater than 1 ,  then a  sm ooth non

constant transform ation of variables in (4 16 ) will yield a  system  whose local index is 

2, unless additional constraints are satisfied by the transform ation. A  restricted set of 

transform ations will cause the index to be greater than 2  or the pencil to be singular 

W hen  the transform ation to sem i-canonical form  is used, this shows the relationship  

between the local and global indices.

In this section, we have tried to show how the concepts we introduced earlier 

can be generalized in a useful w ay to the non-constant coefficient problem  W e have  

dem onstrated that the concept of index can be generalized v ia  a suitable canonical 

form , but the characterization is more restricted for (4  16 ) . However, if a  global index 

exists then the non-constant coefficient problem  will in a  certain sense have a linear 

D A E  subsystem  em bedded w ithin it

4.5 The general Im plicit D ifferential Equation
W e return in this section to the general Im plicit O D E  introduced in section 4  1,

F(t,y(t),y'(t)) = <e[a,6], > (4 18 )

w ith  y( t )  and y' ( t )  being vector m appings from  R  —> R n and F (  ) a  m apping from
R 2 n + 1  R n

It is our intention to tie together the theory o f the previous three sections m  a  

m ore m eaningful and appropriate w ay for this work W e intend to develop w hat  

is perhaps the best known and simplest definition of index of m lpoten cy for (4 18 ),  

which has appeared in the literature T h is definition also applies to all other forms 

o f D A E  considered earlier. T h e  general idea, is to take the constraint equations and  

differentiate them  to generate an equivalent O D E  system  v ia  suitable m anipulations  

W e give an exam ple to illustrate the technique on a  set of E u ler-L agran g e equations 

for the Sim ple Pendulum  T h is exam ple has appeared in several papers including 

G ear [33], Petzold &  Lotstedt [59] and Pantelides [54]

Example 4 4 In the following second order system  ( x , y )  represents the position  

of the Pendulum , g the acceleration due to gravity and T  is a  Lagrange Multiplier 
(representing the tension m the string) T h e  equations o f m otion are

x"  =  - T x  

y" = - T y - g
0  =  x 2 + y 2 -  1

and the initial values are chosen to satisfy the constraint, (i e. an y position on the 
unit circle) W e can easily put this in first order form  (4 18 )  by letting x 1 = u and  
y’ — v givin g the following system  of sem i-explicit D A E s

x  =  u 

y = v

u ' =  - T x  (4 19 )

v = - T y - g
0  =  x 2 +  J/2 - !
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To transform  (4 19 )  into a differential system , we repeatedly differentiate the con

straint w r t tim e, as follows

2 x x '  + 2 y y ' = 0 

Su bstitutin g for x'  and y',  w ith u and v, respectively gives

x u +  y v =  0

D ifferentiating this equation and using suitable substitutions we get

u2 +  v2 —T  — y g  =  0

One further differentiation of this equation yields the following differential equation  

for T
T'  + Z v g  +  2 T ( u x  + v y )  =  0

giving
T '  =  - 3 v g

since u x  + v y  = 0, from  above W e can replace the constraint equation m (4 .19 ) , by  

the O D E  for T  and a full O D E  system  results T h is exam ple prom pts the following 

definition of index for the im plicit differential equation and it holds in general It is 

due to Rhem boldt [61]

Definition 4 8  T h e  index of (4 18 )  is the m inim um  num ber of differentiations of 

the constraint equations, required to reduce (4 18 )  to an O D E  system

From  this definition, it is clear that the index of a  D A E  represents its degree of 

com plexity, as each e xtra  differentiation increases the num ber of degrees of freedom  

of the resulting system  b y one, eventually reducing the index of the system  to zero In 

this case, a  degree of freedom  is the introduction of an e x tra  constant o f integration, 

as the requirement for the constraints to be satisfied at the initial point is lifted from  

the D A E  system

T h e  m ethod outlined for finding the index of (4 18 )  and generating a  reduced  

index-0 problem  has been proposed as an algorithm  G e ar h  Petzold [35], Petzold  

&  Lotstedt [58], [59], G ear [33] and Pantelides [54] However this technique has the 

disadvantage that it m ay introduce additional instabilities into the problem  T h is can 

be overcom e by stabilizing the problem, th at is, by taking a linear com bination of the 
constraint equations with their first and second den avatives T h is is called B au m garte  

stabilization [30] For the Sim ple Pendulum  equations above, the constraints are
( 1 ) In dex-3 position constraint

x 2 +  y2 -  1  =  c3(x,y) =  0

(2) Index-2 velocity constraint

x u +  y v =  c2(x, y, u, v) =  0

(3) Index- 1  force constraint (Tension)

u2 +  v2 - T - y g  =  C i ( x , y , u , v , T )  =  0
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T h e  constraint equation in the original system  is now replaced b y the stabilized Index- 

1  constraint
c i(x , y, u, v , T )  + a  c2 (x,  y, u,v)  + /3 cx(x , y)  =  0

Führer [30] suggest th at for initial values x  = l , y  = u = v = T  =  0, the system  

will have a period of e xactly  2  seconds In this case he proposes that the stabilizing  

factors are a  =  50, and ft =  6 2 5 . T h e  constants c x ,c 2 ,c 3 , are then chosen to satisfy  

the constraint at the initial point

G ear [33] has adopted a sim ilar approach. He reintroducs the algebraic equations 

generated by differentiation into the derived O D E  system , m aking the resulting sy s

tem  overdeterm ined His m ethod removes the constants o f integration introduced by  

earlier differentiation and sim ultaneously lowers the index. A n  exam ple based on the  

Eu ler-Lagran ge equations for the Sim ple Pendulum  equations is given in G e a r [33].

4.6 Initial conditions for D AE system s
In the introduction, we indicated that initial conditions (ic’s) for a  D A E  system  m ay  

be inconsistent, th at is they m ay fail to satisfy the system  at the initial tim e w ith  

the possibility of non-unique solutions at the initial point. W e propose to exam ine  

this question more fully m  this section, reviewing those contributions to the literature  

that have increased our understanding in this area O ur prim ary sources of reference 

are C am pbell [13], Sm covec et al [6 8 ] and Pantelides [54]

4 .6 .1  In it ia l co n d itio n s  for th e  lin ear  co n sta n t co e ffic ien t  
p ro b lem

W e begin by introducing the following index-1 one D A E  system  which is taken from  
Sm covec et al [6 8 ]

Example 4 5

i ']  +  i '2 =  x\ + x 2 x i ( 0 ) =  2

0 =  xi — x-i — 5  £ 2 (0 ) =  1

Lettin g 3/1 =  x \  +  x 2 and y2 = x x — x 2, this system  is equivalent to

y[ = Vi y i(0 ) =  3

0  =  i / 2 - 5  2/2(0 ) =  1

W e can see from  this system , th at the i .c  on y2 is not consistent and it appears
that no solution exists w ith this 1 c However, if we choose to neglect the 1 c  on the
algebraic equation we can obtain the following solutions 8

3  e( — 5  3  e4 +  5

Xl =  “ T "  X2 =  “ T “

It is therefore reasonable to think of this system  as having lost one degree o f freedom  

associated w ith its 1 c ’s, due to the presence of the constraint

3These solutions are the differentiable or smooth solutions, as they can also be obtained by
differentiating the constraints
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Sincovec et al, ap p ly the B ackw ard Eu ler to this problem  and show th at the 

approxim ate solution obtained is identical to the solution of this problem  specified 

w ith  consistent i c ’s on all but the first step, where a  sudden jum p occurs m  the 

behaviour of the solution. T h e y  also com m ent th at a  ju m p  at the initial step gives 

an indication of inconsistent i.e .’s and point out th at this situation holds in general 

for the linear constant coefficient D A E .
C am p bell [13] gives a  com plete analysis of the linear constant coefficient problem  

R ecall from  section 3  that we can put this problem  into a canonical form  and it is 

sufficient for us to consider the m lpotent equation9

E  z ' +  z  =  f2 t  €  [0, oo] (4 20)

where E  is the m lpotent operator. C am p bell [13] investigates necessary conditions 

on z , so th at a  solution (4 20) can be obtained for inconsistent l c ’s He applied  

Laplace transforms to (4 .20 ) assum ing z  and f2 to be sufficiently sm ooth V  t >  0 

W e will denote the Laplace transform  o f a  function f ( t )  b y  f ( s )  A p p lyin g  Laplace 
transforms to (4 20 ), gives

z (s ) = { s E -  I ) - 1 E  z(0) +  (s E  -  I ) ' 1 f 2(s)

since the index of E  is m,  we have

m — 1 m — 1
£ (*)  =  -  £  S' E ' + 1  z ( 0 ) + £  s ' E ' % \ s )

t= 0  t = 0

Takin g inverse Laplace transforms  and denoting the ith distributional derivative of 

the Dirac delta function  by we can w rite the solution of (4 20) as

m — 1 m — 2 (  m —r —2 ^
z (t) =  -  £  E ' f2(,)(i) -  £  S[r] E r+ 1   ̂ z(0) +  £  E 3 f (j)(0) | (4 .2 1)

«=0 r=0 [ j=0 J

Therefore, if z (i)  is continuous on t  >  0, we get

m — 1
z(0) =  - £  £ ' f | ’>(0) (4 22)

t=0

and the solution is sim ply
m — 1

z(t)  =  -  ■£ E ‘ f|'>(i) (4 23)
1 = 0

If however z(0) does not satisfy (4 2 2 ), then (4 2 1 )  provides a solution to (4  20) T h is  

solution is im pulsive at the origin It explains w hy a num erical m ethod O D E  m ethod  

will generate the exact solution (4 2 3 )  on all steps except the first. In some sense 

then, these problems adm it an infinite boundary layer at the origin, of negligible 

duration. Sincovec et al have shown th at this im pulse is sm oothed out using a  k-step  

B D F  m ethod in ( m - l ) k + l  steps, for an index m  linear constant coefficient problem  

For num erical work, where we are prim arily concerned w ith  sm ooth differentiable 

solutions, the ic ’s we specify are unim portant, since their distributional nature will

9We change the interval because we wish to introduce Laplace transforms
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not be exhibited by the num erical m ethod T hu s we can say the solution is unique 

for the problem  being solved num erically when the solution exists
Remark 4-10 C am pbell [13] discusses the use of linear sta te  and non-state feed

back to elim inate im pulsive behaviour b y choosing a control u  =  K  z  +  v  for (4 20), 
so th at the resulting system  is index-1 . T h e  solution of this new system  is then unique 

in the ordinary sense

4.6.2 Initial values for the general problem
Pantehdes [54], in a recent paper discussed the consistent initialization of the general 

problem

F ( i ,  u , u ',  v )  =  0 (4 .24 )

where the state variables are labelled b y u  and non-state variables b y v  A  set of ic ’s 

(u 0, u '0, v 0) are consistent for (4 .24 ), if th ey satisfy the system  at the initial point, 

that is, if

F ( i , u 0, u '0, v 0) =  0

T h is condition is necessary but not alw ays sufficient D ifferentiating some or even all 
of the original constraints produces new equations which must also b e satisfied b y  

the ic ’s However this need not constrain the initial vector further T h e  index- 1  case 

is an obvious exam ple o f this

Pantehdes [54] proposes a graph theoretical algorithm  for analyzing the structure  

of (4 24 ), to determ ine the m inim al subset of equations whose differentiation m ay yield  

useful inform ation, in the sense that they im pose further constraints on the vector 

of ic ’s T h e  algorithm  generates a  bi-partite m atching between the equations o f the 

system  (both  original equations and those derived b y differentiation) and variables of 

(4 24 ). T h is assignm ent uniquely determines the set of consistent l c ’s if they exist 

W e give an exam ple of the application of this technique but the full algorithm  can be 
found in Pantehdes [54]. W e assum e the reader is fam iliar w ith the basic notions of 

graph theory such as nodes, edges, colourings, m atchings and augm enting paths  

Example 4 6  Consider the following D A E  system

x ' = - y

y' = z  (4 2 5 )

0  =  x  — y — 1

which is index-2 A n  exact solution which satisfies these equations is

a:(i) =  1  +  e_ t, y(t)  =  e-t  z ( t ) =  -  e_t

W e intend to generate an extended system  b y differentiating the constraints, whose 

solution is identical to the solution of (4 2 5 )  Pantehdes graph colouring algorithm  

proceeds as follows for this problem, we denote the equation nodes m  our graph by  

/ , and the variables by v, .
1  C on struct a  graph relating the equations to variables in the problem  O n ly include 

variables whose derivatives do not appear, the following graph fig 3  1 (a) results
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fig 3.1(a).

2. A p p ly  a depth first search procedure to the above graph to see if it has an aug

m enting path. For the above graph no augm enting path  can be found.

3 . W e differentiate / 3 , giving

/ 4 =  x'  -  y =  0

and introduce it into our graph as a  new node. T h e  resulting graph is given in fig 

3 .1(b ) .

4. A p p lyin g a depth first search to this graph yields an augm enting path  w ith m axim al 

m atching
(/i... x>... fA ... y' ... f2 ... z).

N ode / 3  is left exposed giving four equations in the five variables ( x , y , x ' , y \ z ) .  
T hu s one initial variable can be chosen arbitrarily, su bject to the constraint th at the 

four equations are non singular w .r.t. to the rem aining four initial values.
Remark 4-11: T h is m ethod is com pletely general. O nce again however it is neces

sa ry  to explicitly differentiate the equations. A s we have previously pointed out, this 
is unreasonable in practice.

4.7 Finding the index o f D A E system s
Previous sections of this C h ap ter have outlined the im portance of the concept of 

index for a  D A E . In the next C hapter we shall see how the index also determ ines the 

num erical behaviour of an O D E  m ethod for solving D A E s . W e have also identified one
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m ethod for finding the index for the general problem  by differentiating the constraint 

equations T h is m ethod is of little use m the num erical context, as it is virtu ally  an 

im possible task to generate a set of O D E s for a  large system  of constraints Because  

the index is im portant numerically, a  num ber of contributions have appeared m  the 

literature which attem pt to find or estim ate it for a  specific typ e  of D A E  It is our 

intention m this section to discuss the devices th at have been proposed for this purpose  

and to outline some of the difficulties associated w ith  finding the index using these 

devices
W e return again to the linear constant coefficient problem  (4 1 3 )  T h e  index of 

this problem  is the index of the m atrix pencil ( A  +  A B )  and can be found v ia  a 

Generalized, Singular Value Decomposition ( G S V D )  or m ore precisely Cosme-Sme 
decom positions o f partitioned orthonorm al m atrices, see M oler &  Stew art [50] Since  

the singular values are the square roots of the eigenvalues, the num ber of zero singular 

values determ ines the dimension of the nullspace of a  general m atrix G enerating a 

Singular Value Decomposition (S V D ) involves the determ ination o f the rank of a 

m atrix T h e  dimension of the nullspace o f the associated m atrix pencil is therefore 

the index o f the system

M ore recently K an gstrom  [44] has further im proved the G S V D  to include the 

com putation o f the Kronecker structure of (4 1 3 )  His algorithm , the R e-iteratin g  

G S V D  or ( R G S V D ) , generates the K C F  of (4 1 3 )  T h u s the understanding of (4 13 )  

is com plete as the index can be found using a finite algorithm  H owever G S V D  

algorithm  is 0 ( N 3) where N  is the dimension of (4 1 3 )  T h is would seem  a reasonable 

am ount of com putation, but for large problem s, such as a  system  of coupled P D E s ,  

it is not com putable w ithin a reasonable am ount of tim e In fact, this is equivalent 

to or greater than the am ount of com putation that is associated w ith  num erically 

integrating the system  over a reasonably finite time horizon T hu s, m  all but the 

sm allest of problem s, it is quite inefficient to use a G S V D  to find the index T h e  

G S V D  is com pletely inefficient for the nonlinear problem , as the index m a y change 

over the tim e interval It therefore does not seem a reasonable alternative in practice  

Sincovec et al [6 8 ] proposed a m ethod for com puting the index m  o f (4 1 3 )  using 

a backtracking function R ecall from  the previous section th at we stated that a  k 

step B D F  m ethod converged to the solution of (4 13 )  m  (m -l)k  + 1  steps. T h e y  

proposed the following technique for finding m

C reate two problem  instances of (4 1 3 )  having two different sets of initial condi

tions Integrate both problem  instances w ith  a  k step B D F  m ethod, using a fixed  
stepsize, until both solutions agree to w ithm  round-off level Let the num ber of steps 

required be N S T E P  W e then have

m  = ( N S T E P  - l ) / k  + l

T h e  m otivation behind this technique is th at (4 1 3 )  adm its distributional solutions 
which will be sm oothed out b y the integration m ethod

W hile this technique is very appealing, our experience has shown us th at the device  

is very unreliable W e know of no integration routine which em ploys this technique 

for estim ating the index of a  problem  and therefore discount it

B ecause the problem  of rank (index) determ ination is ill-conditioned, other m eth

ods have been sought to find the index which avoid com puting the rank of a  system  

D uff &  G ear [25] proposed a graph theoretical algorithm  for finding the structural

63



index of a  system  T h eir m otivation for doing this is th at the index is often deter
mined by the pattern o f non zero entries in the Jaco bian s o f a  D A E  system  and

Since system s of index-2 or less can be solved b y  O D E  m ethods, it is valuable  

to know if the index of a  system  is greater than two D u ff &  G ear [25] provide an  

algorithm  for answering this question for system s of the form

y' =  f ( i , y )  +  G z  

H  y  =  A z .

If the dimension of the differential part is n and the algebraic part is m , then a  

necessary and sufficient condition for the index to b e less than three is

rank
A

N G H =  m

where N  is an r by r m atrix for which N  A  =  0 . In other words, the rows o f A  span  

the left null space o f A  W h ile  we are not concerned w ith  the details o f the algorithm  

here, we provide an exam ple to show how the notion of structural index is useful. 

Example 4 7* Assum e

H G = [ a  P ]
0

7
-  P i

and

¿  = [0]
Choose N  such that N  A  — 0, a  suitable N  is [1]. W e then have

rank
A 0

N H G . 0 7  .
=  1

and the structural index of the problem  is two. W e point out that this is exam ple 4  6 

considered earlier, w ith  the coefficients of the variables chosen arbitrarily

W hile it m ay be useful to obtain the structural index using this algorithm , D uff 

&  G ear [25] mention th at it m ay take exponential tim e on som e problem s

T h e  im portance of this C h ap ter hes in finding solutions of D A E  system s W e have 

reviewed w hat we feel are the m ain approaches to generating an alytic solutions that 

have appeared in the literature O ur whole understanding can be encapsulated in 
the concept of index or degree o f com plexity of a  D A E , which is also vital for later 

num erical work T h e  inadequacy of the tools we have outlined for finding the index  

leads us to rely com pletely on an alytic techniques, in particular differentiation, which  

is unreasonable in practice, unless the system  possess some sim ple stru cture Since  

the index is vital both for num erical work and for an an alytic understanding of these 

problem s, it is the central non-num eric concept which w ill pervade the rem ainder 

of this work W e however, have not included m ethods for its com putation in D A E  

solvers which will be developed later, as it does not fall directly w ithin the objec

tives of this work It does however remain an outstan ding research question, which  

must be satisfactorily addressed in order for D A E s  to be efficiently solved b y current 

techniques.
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C hapter 5 

N um erical A sp ects o f Solving  
D A E s.

5.1 Introduction
H aving considered D A E s  from  an an alytic point o f view , we return m  this C h a p ter to 

pertinent questions regarding their num erical solution Perhaps the m ost intriguing  

aspect of D A E s  is th at numerical O D E  m ethods can be successfully used to solve these 

problem s, which are very  different to O D E s. In the early sections o f this C h ap ter, we 

will discuss w hy it is possible to solve some types of D A E  w ith num erical m ethods 1  

and not others Once again the index or degree of com plexity of a  D A E  determ ines 

this In solving O D E s, the error and stability o f the num erical schem e give us a 

com plete picture o f the behaviour of the scheme on a specific problem  W e intend  

to  see how effective these concepts are when w e solve D A E s  using O D E  m ethods by  

looking at specific exam ples

T h e  other vita l question involved m  applying im plicit num erical m ethods to the 

solution of D A E s , is the stabih ty of the iteration schem e In fact we shall see that 

an effective iteration scheme is the prim ary key to obtaining solutions. W hile  we 

propose standard m ethods based on Newton  iteration, a  technique is outlined in the 

final C hapter based on a second order tensor  approxim ation which we feel could be 

of considerable value in this context

T h e  typ e of problem  we consider m  this C h a p ter for num erical analysis has the  
form  2

E y ' ( t )  =  f ( t ,y ( < ) )  t e [ a , b )  (5  1)

subject to given initial conditions y(a) =  ya W e assum e th at f (  ) and y (t) are 

n-dimensional vector mappings with f (  ) having continuous first p artial derivatives 

T h e  index of (5  1 )  is determ ined only by the index of nilpotency of E, w hich we denote 

b y m  >  1  T h is equation is our starting point for analysis of local error In the next 

section, we follow Petzold [55] and consider the application o f the B ack w ard  Eu ler  

( B E )  m ethod introduced in C h ap ter 2, to the solution o f this problem

1 We use the term numerical method to mean numerical ODE method
2Our numerical integration routines have been coded to handle problems of the form 

E( t , y (y ) ) y ' ( t )  =  f(*>y(*)) These problems are difficult to analyze theoretically We therefore 
have restricted our analysis to the case where the L H S is linear
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5.2 Errors in Solving DAEs numerically
Suppose we start w ith  exact solution values for our num erical scheme at tim e tn. 
W h a t then is the error after one step in solving (5  1 ) w ith  the B E  m ethod ?
Taking one step of size h, we obtain the numerical solution b y replacing the derivative  

y ^ n + i )  by the linear combination yn^ v”, giving

£ ( y n + l  -  yn) =  / lf( in + l,y n + l)  (5  2)

T h e  exact solution at tim e tn, expanded about tn+i is

y(<n) =  y(*n+i) -  h y '( tn+1) +  y  y"(0  

where t n < £ < tn+1 T hus

y'(*»+i) = ^ |y(i»+i) -  y(<») + y  y"(£)j •

Substitutin g this expression in (5  1 ) we get

e  |y(in+i) - y ( t n) +  y  y"(o| = h i(^i,y(<»+i) (5 3)

L et us denote the error at the point t n b y  e n, therefore

y (*n + i) =  y « + i  +  e n+i,

giving

f(^ n + l,y (in + l))  =  f(^ n + l,y n + l +  e n+l)

E xp an d in g the R H S  of this equation about y n +1, we get

f(in + l> y(^ n + l)) =  f(^ n + ljy « + l)  +  ^ Cn+i + h o t

D enoting the m atrix of partial derivatives (d  f  /d  y n +1) b y  A , 3  substitutin g the above  

expression into (5  3) and subtracting the result from  (5  2 ) , we get the following error 
equation

(E  -  h A )  e n+i =  E  e n -  /i2/ 2  E  y " ( f ) + h o t  (5  4)

To gam  further insight into (5  4) we assum e f (  ) is locally linear In this situation  

(5 .4 ) contains no higher order term s and we can generate the following closed form  
expression for e n + 1

e n+ i = ( E - h  A ) “ 1 E e n - j ( E - h  A ) “ 1  E  y " ( £ )  (5  5)

3In earlier chapters we used J to denote the Jacobian matrix of partial derivatives We have 
decided to use A in this chapter to keep our theory consistent with previously published literature 
on DAEs
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T h u s if we start our integration scheme off w ith exact initial values, the error after 

one step is

*  = - j { E - h A ) - ' E y " ( i )  (5  6 )
/

Petzold [55] points out th at there are several consequences o f (5  6 ) and we briefly 

review  them  here to dem onstrate the difficulties w hich m ay arise in solving some 

problem s It is these difficulties which set lim itations on the use o f O D E  schemes for 

solving D A E s
Consider the m  =  2  linear constant coefficient problem

0  1  

0  0 y' + y =
o

we have

and

9(t)

( E  — h A ) ~ l E  =  

so th at the error after one step is

0  - 1 / h  
0  0

e i =

T h e  first thing to  note about this result, is th at the algebraic equation is solved 

e x actly  W e expect this as an Implicit m ethod will be exact for an algebraic equation  

if it em ploys a Newton iterative scheme. T h e  im portant point here however, is th at the 

error in state variables is 0 (h )  and not 0 ( h 2), as predicted for the B E  m ethod applied  

to O D E s T h u s an error estim ate of the usual form  based on (h2 / 2) y " ( £ )  would be 

asym p to tically a  gross underestim ate T h is situation can obviously w reak havoc w ith  

an y step selection algorithm  which assum es errors are 0 (hk+1) for a  m ethod of 

0 ( h k) It is possible to reduce the error y n+i b y  decreasing h,  in this case, provided  

a suitable error estim ate is available to accom plish this task.

U nfortunately, there are several even more severe problem s in solving system s of 

nilpotency m  >  3 . For the hnear constant coefficient problem

y'i =  2/i 2/a =  V2 2/3 -  g(t)

we have

(.E - h A ) ~ 1E  = 

and the error after one step is

0  - 1 / h  - 1 / h 2 

0  0  - 1 / h
0 0 0

^n+l —
/ V ' ( 0 / 2  +

I 9 " ( t )
\ 0

O nce again the algebraic equation is solved exactly  but the state  variables cause  

difficulties T h e  error in y2 is 0(h) ,  which can be controlled as in the m  =  2  case

67



B u t the error in yi  depends on terms independent of h T h u s we cannot choose h 
sm all enough, so that the error in the solution after one step, startin g w ith exact 

solution values is sm all

T h e  results for these two problems appear to conflict w ith  those of Sincovec et 
al [6 8 ] T h e y  show that when a k step constant stepsize B D F  m ethod is applied to 

the linear constant coefficient problem  w ith k < 7, the solution is 0 ( h k) accurate  

globally after a  m axim um  o f (m  — 1)  k  -f  1  steps, regardless of initial conditions For 

the m  =  3  system  ju st considered, a  simple calculation yields the following solution 

for y i ,n + 1

Vl,n+ 2  = (dn+ 2  ~  2  0„+l +  gn), (5  7)

which is a  second order approxim ation for the exact solution

yi(tn+2 ) = 9"{tn+2)-

Petzold [55] points to a qualification on the theorem  given m Sincovec et al [6 8 ] T h a t  

is, the convergence o f the solution only applies to the end point of som e fixed interval 

of integration T h is is because the first m  — 1  solution values, contain impulsive 
com ponents which do not becom e arbitrarily sm all when h is decreased. T h e  results 

for later steps depend only on the function g ( i)  at past steps and not on the startin g  

values, so that the solution converges in an y interval bounded aw ay from  the startin g  

point

A  second constraint on the result o f Sincovec et al, is th at it only applies to 

constant stepsizes G ear k. Petzold [35] show th at when the ratio of adjacent stepsizes 

is not bounded, the B E  m ethod fails to pick up the divided difference (5  7) correctly  

and the error in the m  =  3  case has the form

e n + i  =  1 / 2  ( 1  — hn/ h n+i)  g w(£) +  0 ( h n+1) (5  8 )

W ith  O D E  codes the stepsize taken on the current accepted step is fixed and the 

stepsize required for the next step, is chosen to achieve the desired level o f local 

accu racy In this m odel, the error in the m  =  2  case does not go to zero as h 

is reduced, while m the m  =  3  case, the error diverges as shown by (5  8 ), where 

the error behaves like 0 ( / ^ + i )  G ear h  Petzold provide the following theorem  which  

shows that even under the assum ption of adjacent stepsizes rem aining bounded, order 
reduction can occur for B D F  m ethods

Theorem 5 1  If the k-step B D F  m ethod is applied to the linear constant coefficient 

D A E  w ith  k <  7 and the ratio of adjacent stepsizes is bounded, then the global error 
is 0 (hq) where q =  m m ( k ,  k — m  +  2 ) .

W e rem ark th at for second order m ethods on in d ex-1 and -2  D A E s , no order 
reduction occurs b y this theorem

From  the exam ples, it can be inferred (see G ear &: Petzold [35]) th at a  problem  

o f index no greater than k  +  1  can be solved b y a  k-step  B D F  m ethod However 

the above discussion shows that this is not the case and variable step B D F  form ulae 

are not suitable for D A E s  w ith arbitrary index In [35], it is also shown, th at the 

asym p to tic expansion of the global error in the B D F  form ulae m ake it possible for 

the hnear constant coefficient problem  to be solved by extrapolation m ethods applied  
to fixed step B D F  methods.
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O ur discussion so far has only considered the B E  and B D F  m ethods In fact 
M arz [49] has studied the general linear m ultistep m ethods applied to index- 1  D A E  

system s. She has shown th at the coefficients of the L M M  m ust satisfy an e x tra  set of 

conditions, (which happen to be satisfied b y the B D F  form ula«), for the m ethod to 

be convergent w ith the expected order of accuracy. Hence, it is not entirely surprising  

that Im plicit R K  m ethods should suffer some order reduction on D A E s . Petzold [57] 

gives a set of necessary and sufficient conditions to ensure the the local truncation  

error of an R K  m ethod attains a given order for the in d ex-1 problem  It is fortunate  

that the D IR K (2 ,2 )  m ethod o f C h ap ter 2  attains the expected order of local accu racy  

0 ( h k), as these conditions are effectively the order conditions of C rouziex [23] coupled  

w ith  L-stability. R ecen tly Brenan &  Petzold [5] have studied I R K  m ethods applied  

to nonlinear sem i-explicit index-2 system . B y  exam ining the accu racy and stability  

o f a  m ethod they derive a  set of necessary and sufficient conditions to ensure th at a  

m ethod is accurate to a given order on these system s

5.3 Error E stim ates for D AEs.
In this section we shall exam ine several potential error estim ates for D A E  system s 

O ur aim  is to find an estim ate which accu rately reflects the behaviour o f the error for 

in dex-1 and -2  D A E s  G ear [31] and G ear &  Brow n [34] proposed solving system s of 
the form

f ( ^ y , y ' )  +  p  v  =  o i e [ a , 6] (5 .9)

where y  and y '  are vectors o f length p i, P  is an n  x  (n — pi)  m atrix  and f  is a  

vector function of length n In (5  9) the algebraic variables v  appear linearly B oth

[32] and [34] make no attem pt to  estim ate errors in v  T h is  m ake sense, since v  on 

every step is com pletely determ ined by y ,  thus errors in v  do not cause errors in y  

Petzold [55] shows that the index-3 linear constant coefficient problem  can be put in 

this form  In this case error control is not attem pted on y\,  which is the com ponent 

w ith  largest error after a  stepsize decrease She also points out, th at an O D E  code 

m ay behave very differently if the algebraic variables do not appear linearly. For these 

reasons w e are led to discount this technique m  favour of estim ates to b e discussed 
in the rem ainder o f this section

Sincovec et al [6 8 ] observed, for the linear constant coefficient problem , th at the 

error m the non-state com ponents has a different asym p to tic behaviour to th at of 
the state components In addition, errors in non-state com ponents only affect the 

solution locally and are not propagated globally to the state  com ponents Let us 

denote the ordinary O D E  error estim ate b y e „  and the D A E  estim ate by e* T h e  
estim ate proposed in [6 8 ] has the form

e ;  =  M e n (5  10)

M  is called the state variable projection matrix  and its purpose is to filter out the
non-state values from  the O D E  error estim ate M  has the form

M ( h , j )  = ( ( E - h A ) ~ 1) E y

M  =  h m M ( h , j )  (5 11)

with
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and j  >  m , the nilpotency of the D A E  system
Remark 5 1 T h is estim ate is easily com puted, as the LU-decomposition o f E —h A  

is already available from  the iterative scheme for solving the nonlinear equation, 

( c /  sectton 5). However im plem enting the estim ate has a serious draw back, m that 

it requires a knowledge of the index of the D A E  system  which, as we have seen in 

C h ap ter 4, can be difficult to com pute

of errors for all k-step B D F  formulae, w ith  k < 6  and m  < 2  B ased on this 

observation, Petzold suggests th at, b y  using this error estim ate, D A E s  w ith  m  < 2  

can be adequately handled b y O D E  integration m ethods w ith  only slight m odification  

T h is is also our prim ary reason for restricting the one step schemes o f C h ap ter 3  to 

solving m  <  2 D A E s  In the next C h ap ter we incorporate this estim ate into our 
schemes.

R ecently Petzold &  Lotstedt [59] have proposed a generalization o f this estim ate  
for the sem i-explicit system

T h e y  observe that part of the error e in x and y, due to the truncation error h r n is

Petzold [55] proposed an error estim ate sim ilar to (5  10 ). In her paper, she quoted  

results from  Sachs-D avies [63], that error estim ates for second derivative O D E  m eth

ods (see H all &  W att [38]) are asym ptotically correct as h —* 0 and are reliable and  

efficient for very stiff O D E s T h e  estim ates have the form

( 5 .1 2 )

where W  is the iteration m atrix for the second derivative m ethod Petzold [55] 

suggests using the iteration m atrix for the Im plicit num erical scheme, in place of W, 
based on the fact, that the local contribution to the global error for the B E  scheme 

on the linear constant coefficient D A E  is

c  = ( E - h A ) ~ 1 E e n (5  13 )

T h is is precisely the estim ate (5  10 ), (5  1 1 )  proposed by Sincovec for use on the 

in dex-1 problem . Petzold [55] also shows th at (5  1 3 )  accurately reflects the behaviour

x  =  f ( t , x , y )

o = g{t,x,y)

(5  14 )

w ith iteration m atrix

. - W i t  ~ W % .

e = - B ~ '  ( d f / d x )

T h e y  propose the following estim ate

which is identical to the estim ate (5  1 2 )  (w ith  W  — B )
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5.4 Linear Stability for DAEs
In this section we apply classical linear stability to D A E  system s, we consider the 

linear version of (5  1 )  th at is

E  y '  =  D y t €  [a, b] (5  1 5 )

where D  is a  m atrix o f eigenvalues A,, 1 <  t < n . If we a p p ly  the B E  to this system  

we obtain

( E - h D )  y n + 1  =  E y n 

and we once again keep the ratio

l l * r a  =  llyn+ill/llynll

bounded b y 1 .  For the B E  m ethod, we have

l|y«+i||
( 5 1 6 )

as am plification factor m easured m some norm  W e have adopted the /2 norm  which  

measures the spectral radius 4. For a  m atrix A,  the /2 norm  is defined as (see B utch er  

161)
W A h ^ p d A A ^ )

where p( ) is the spectral radius. W hile an y m atrix norm  would be suitable, the true  

am plification factor of a m atrix is directly related to the size o f the spectral radius 

and this is precisely the quantity we wish to m easure. W e intend to look at some 

sim ple exam ples to gain some further insight 

Consider the index- 1  problem

y[ =  Axyx

0 = A2 J/2

w ith

E 1  0 

0  0

In order to consider stability, we introduce a  param eter e >  0 and an alyze the fol
lowing system

y'i =  Ax yi 

e V2 =  ^ 2  i/2

w ith

From  (5  16 ) , we com pute

E  = 1  0 

0  e

A  = ( E - h D ) ~ 1 E  = 1-Z1
0

0
c

4 Recall that the spectral radius is the magnitude of the largest eigenvalue in modulus, (see Krysig 
[45], page 350)
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and denote h A, b y  z, T akin g the limit as e -* 0, we get

A = 1- 2!

0

0

0

T h e  /2 norm  of this m atrix is easily com puted as

P(a) = 1 / ( 1  “  z i)

T h is is the ordinary stabih ty function for the differential equation in yi  and is bounded  

b y 1 ,V z  <  0, w ith  Re(zx) <  0. In this case no difficulties arise, as the algebraic  

com ponents do not affect the stability of the system  Therefore we expect the sam e  

behaviour on this problem  as we would for an O D E  system .

T h e  In d ex-2 case proves less am enable to the foregoing analysis Consider the 

system

2/2 =  2/i

: 2/2 -¿ 2/i

In the lim it as e —» 0, we have

E  = 0

0

and this m atrix has Index-2 However, the O D E  system  from  which it is derived does 

not n atu rally decouple into its constituient com ponents, as in the Index- 1  exam ple  

T h e  resulting solutions have the form  a sm h(t) +  b cosh(t) and stability classical 

analysis is useless W e know from  the previous section, th at errors in Index-2 system s 

m ay not decrease as h is decreased A s  our stabih ty analysis is inadequate even on the 

sim plest Index-2 system , it is therefore impossible to guarantee th at an integration  

m ethod will perform  satisfactorily on problem s of In d e x -m >  1 However, if we are 

m indful of these lim itations, lim ited success can be obtained on In d ex-2 system s, as 

our test results of the next C h ap ter dem onstrate

T h e  question of stability of D A E s  has received little attention in the literature  

To our knowledge, this question has only been addressed m  the contributions of 

G n epen trog &  M arz [37], G ear &  Petzold [35] and Petzold [57] In G ear &  Petzold

[35], the B E  is exam ined on linear non-constant coefficient D A E s , where it is shown  

that error am plification is not dam ped out T h e y  therefore reject this m ethods for 
solving D A E s  in general and suggest, for this reason, th at higher order m ethod should 

also be rejected Petzold [57] considered stability for R K  m ethods on the m dex- 

1  problem  W e mentioned earlier, that she dem onstrated th at order reduction can  

occur for some R K  m ethods on these problems She arrives at this conclusion, by  

accessing the stabih ty and the contribution of local error to global error on each  

step Petzold points out th at her results are sim ilar to those of Frank, Schneid &; 
U eberhuber [29] for R K  m ethods applied to O D E s

5.5 Im plem entation of Im plicit Schem es for DAEs
In C h ap ter 2 , we outlined how im plicit num erical m ethods are applied to O D E s and  

subsequently solved b y a  modified N ew ton iterative schem e In this section we intend
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to generalize this work to solve D A E  system s. In contrast to C h a p ter 2 , we propose 

two different approaches to fram ing our problem , so that a  solution can be found to 

the resulting nonlinear equations.
T h e  typ e of problem  we have designed our m ethods to solve can be w ritten in the 

form  (5  l ) 5 A p p lyin g  the L M M  (2  20) to this problem  yields the following nonlinear 

system  of equations, to be solved at tim e tn+k for the unknown y n+k

{ k -1  )  k- 1
Yn+k +  £  a .y n + j I  -  h/3kfn+fc -  h £  P3 in+k =  0 (5  17 )

A p p lyin g  a modified N ew ton iteration to (5  1 7 )  gives the following system  to be  

applied iteratively

£ A y n + f e  =  w ; + f e  -  - E y U f c  +  g  ( 5 1 8 )

w ith

y'n+k =  & y'n + k +  y'n+k

Once again, g  is the vector o f past inform ation, but m this case has the form

fc-i k - l

S =  & fn+J ~ E Y 1  W n + j,
J=l J=l

while the iteration m atrix is given by

W e w ill return to the iteration m atrix later. W e first point out an im portant difference 

between (5  18 )  and (2  2 2 ) regarding the structure of g , the vector of past inform ation  

In (5  18 ) , we have the linear combination E  a j y « + j  instead of ]£ * = i a 3 y n+ j,  
which arose in the O D E  case T h is removes the sta te  effect from  the non-state  

variables in the iterative scheme, we illustrate the idea w ith  an exam ple

Example 5 1 Consider the application of 0-schem e to the solution of the following 

system

y f2 =

o =  g{ t , y \ , y 2 ) (5  19 )

For this system  using the 0-scheme, (5  17 )  becom es

£ ( y n + i  -  y n) = h [(l -  6) fn +  0 f;+1]

and the iteration scheme is

B  Ay;++\  =  h [(1 -  0) f„ +  e f;+1] -  £ (y; +1 -  y„)

For the system  (5  19 ) the R  H S of the iteration scheme is

(  h [(1 — 0) f i tn +  0 — t/2,n+l +  3/2,

\ M ( 1  “  0) h ,n  +  6 /2,„+ l]

5In fact our codes can handle a linearly implicit R H S , as we previously remarked
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T hu s, for the second equation, we are only applying an ordinary N ew ton scheme to 

the nonlinear equation

0  =  / 2 ( i , y i , y 2).

In this way, we are able to m ix the differential and algebraic equations in one iterative  

scheme, takin g full advantage o f the natural coupling th at exist between the variables 

m  the system . T h is technique was first proposed by G ear [32] for the solution of 

O D E s b y  B D F  m ethods. T h is approach has been used in several D A E  integration  

routines including our own schemes (c./. Chapter 6 ) and those o f [9], [22] and [18] 

W e call the form ulation outlined above, the D irect form ulation of the problem  

An other m eans of treating D A E s  num erically b y  O D E  m ethods is to use R esidual 

form ulation. Here we define a  residual vector for ( 5 .1 )  as

r(*,y,y') =  £ y ' - f ( i , y )  =  0 (5 20)

and approxim ate the derivative b y a  linear com bination o f back values. U sing the 
B E  on ( 5 .1 3 ) ,  we get the following nonlinear system  o f equations to be solved at each  

tim e step, for y n + 1

r ( < n+i , y n+i , ( y n + 1  - y n) /h)  =  0 .

In this case the iterative scheme is

B  A y ; + \  =  - r  ( iB +1, y ^ + 1 , ( y ^+ 1  -  y n) /h)

w ith

B = E - h  f
d y n

T h e  im portant point about this form ulation o f the problem , is th at it is not 

necessary explicitly generate E  and J, the Jacobian o f  f, required b y the iteration  

m atrix  B  and add them  together It is th e iteration m atrix  itself th at is com puted  

by finite differencing, thereby halving the work involved M ost production codes 

designed to solve D A E s , such as D A S S L  [56] , L S O D I [43] and S P R I N T  [3], use this 

form ulation T h e y  require the user to supply tw o routines, one to com pute E, that 

is, only those term s involving y '  and a second routine for the full residual

5.6 The Iteration M atrix and Scaling
T h e  iteration m atrix that arises in solving O D E s, as we have seen m C h ap ter 2 , has 
the form

B o d e  =  I  — h  ¡3J

where ft is a  param eter that depends on the m ethod and J  is the Ja co b ia n  o f f (  ) 

in (2  1 ) W h en  a  num erical O D E  m ethod uses this iteration m atrix  to solve the  

nonlinear equations ( 2  2 2 ), it is usual to decrease h if the resulting iteration fails to 

converge reasonably quickly, or the error on the current step is outside the tolerance  

Thus as h  — » 0, the condition num ber6 IC(B) - *  1, since B o D E — ► I  Therefore  

the resulting LU-decomposition  of B o d e  becom es more stable and we expect that

6The condition number is the ratio in absolute value of the largest to the smallest eigenvalues of 
a matrix, (see Krysig, [45])
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yn+fc-i =  Yn+fc to becom e a better approxim ation to y n+it W ith  O D E s we are 
fortunate, since as h —► 0, B o d e  I- However, for D A E s , this does not occur In 

the D A E , case the iteration m atrix is

B d a e  =  E  —  h ftJ

If we ap p ly the usual O D E  argum ents to B d a e ,  we run into serious problems It is 

the structure on E, that causes these problem s in solving the nonlinear system  In 

particular we are concerned w ith w hat happens, when our error estim ate fails to lie 

w ithin the tolerance or the N ew ton iteration fails In this case, reducing h causes

E  — h(3J -> E

which is singular. T hu s we m ay be faced w ith the LU-decomposition o f a  singular 

system , causing the code to fail com pletely, w ithout giving any indication of the  

cause of failure. T h is can easily occur. For exam ple, Petzold [55] has shown that 

steep gradients in a solution can cause error estim ates to be unbounded as h —> 0 

T hu s the initial guess m ay not im prove as h —» 0, causing the corrector iteration to 

diverge A  code faced w ith  this situation has no w ay of deciding whether the problem  

is due to error estim ates, or to poor conditioning o f the iteration m a trix  One thing  

is clear, th at is, if a  code fails to converge on a N ew ton  step or fails the error test 

while attem pting a tim e step, we should be careful about how we choose h to ensure 

th at the next integration step will be accepted Petzold [55] tries to overcom e this 

difficulty b y using a  m ore robust iteration scheme such as Damped Newton  In her 

code, D A S S L  [56], she sim ply multiplies the correction at each step o f the N ew ton  

iteration b y  0 7 5  instead of 1

R ecently Petzold &  Lotstedt [59] have suggested scaling the iteration m a trix , so 

that the iterative scheme is more stable Consider the application o f a  q-stage R K  

m ethod to the solution of (5  1 )  R ecall w ith an R K  m ethod, we replace y '( tn + c,h)  
by unknowns kt ( 1  <  t < q) and the solution y (tn +  c, h), is obtained by w riting  

it as a  linear com bination of y(tn) and the derivatives k, T h e  coefficients of the 

m ethod are then chosen so that the scheme has the desired level of local accu racy  

For exam ple, the l si-order R K  m ethod (the B ackw ard E u ler m ethod) gives

E k  = / i f ( i n+i , y „  +  k)

Linearizing this equation gives (c f  Rosenbrock technique C h ap ter 2)

(E  - h J )  k  =  h i ( t n+uy n)

Let us see how scaling can be applied to this system  If (5  1 )  is in d ex-1 ,  then E  has 
block form

'  I  0 

0  0

where /, is an n — r  x  n — r identity m atrix  T hu s

( E  — h J )  = I  — h J n  —h J\ 2 

—h J i\  ~ h J 22

where J tjl is the Jaco b ian  of the block of equations f, w.r.t. variables y_, T h is  

system  is easily scaled, we sim ply m ultiply the bottom  r  rows by 1  jh .  Since we are
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not scaling variables, but only equations, the effect o f this scaling should improve 
overall accu racy in solving the nonlinear system . However our experience on m dex- 

1  D A E s  has shown us th at this scaling is unnecessary on th e test problem s which  

we consider in the next C h ap ter. In fact w e have had no apparent problem s w ith  

conditioning of the index- 1  problems which were tackled b y our one-step codes.

If our problem  is index-2, then E  w ill have a sub-block of the form

0  I  
0  0

and

(E  — h J )  =
—h J n  
—h J 21

I - h J l2 
—h J 22

Once again, it would seem appropriate to scale the algebraic system  b y  1 / h, for the  

index-2 case In [59], it is shown that round off errors proportional to 1 /h  and 1 / h 2 

are introduced into the state and non-state variables respectively, w ithout scaling  

W ith  this scaling, the errors are m ultiplied b y a  factor of h T h u s in the m d ex-2 case, 

we still should be careful how we choose h, so th at these errors w ill not dom inate the 

solution
Perhaps the most im portant feature of the proposed scaling is to control the size of 

round off error in the state variables, while, at the sam e tim e, the algebraic variables 

m ay contain errors proportional to 1/h.  T h ese m ay b e tolerable, since the error m  the  

non-state com ponents m ay not be propagated throughout the solution interval. In this 

case, we m ust be careful to accurately solve the algebraic equations at the final tim e  

A lso, we m ust not include algebraic variables in error tests, as large errors in non-state  

com ponents m ay cause unnecessary failure o f the integration scheme T h e  estim ate  

proposed earlier autom atically takes care of this restriction In [59], it is mentioned  

that Painter [53] used this scaling in solving the Navier-Stokes  equations which, on 

discretization, are index-2. Painter found the scaling to be valuable w hen the code 

was starting w ith  a  sm all stepsize, or when it w as integrating over a  discontinuity in 

a derivative

5.7 Initial conditions for N um erical Schemes
In this section we propose a  strategy for the initialization o f D A E  system s Recall 

from  C h ap ter 4, that we outlined the available an alytic approaches to guarantee a 

consistent set of initial conditions for D A E s  W e pointed out, th at consistency in 

this context m eant that initial values for the variables and the derivatives should 

satisfy the equations at the starting point T h is was only a necessary condition W e  

also required the derivatives to satisfy the derived O D E  system  for sufficiency and  

mentioned the algorithm  o f Pantelides [54] as a  tool for generating a  set o f consistent 

initial conditions However the real difficulty w ith  the techniques w hich w e proposed  

were their an alytic nature, which ruled out using them  in a num erical context 

C am pbell [15] and Newcom b [51] considered a system  of the form

Ax!  +  B ( x )  -  g(i) (5.21)
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which is virtu ally  identical to the type of system  (5  1 ) ,  given the assum ption that 

B ( x)  is sufficiently differentiable. Following on their work, we consider the following  

limit

lim  -  {  A ( x  -  xo) +  8  B ( x )  -  8 g }  =  0.o—►O 0

E xp an d in g B ( x )  about Xo, we have

hm  y  { A ( x  -  Xo) +  S [B(xo) + B t {x  -  x 0) +  B 2 + ---------g ]}
6—>Q 0

where B x is the Ja co b ian  of B  at Xo and B } j  >  2 , is j-hnear  in ( x  — x 0) T h u s B 2 

is a  quadratic form  in ( x  — Xo) W e can w rite this hm it as

lim (A  +  6B i ) /S  | ( x  — Xo) +  ( A  + 8B X) 1 8 [ 5 ( x o )  +  B 2 +  • • — g]l =  0
i-+0  ̂ *

or

h m (A  +  8B \ ) 1  8 [ $ ( x o )  +  B 2 +  — g] =  0
5—>0

since, if the system  is solvable, the K C F  is invertible and continuity ensures that 

x  =  x 0, as 8  —» 0 If we neglect higher order term s in x  — Xq, this limit suggests the 

following possible iterative scheme

X i =  Xo -  ( A  +  ¿ ^ ( X o ) ) - ^  [-B(xo) -  f i ]

which is, in, essence one step w ith  the B E  m ethod W e use precisely this technique 

w ith our D IR K (2 ,2 )  scheme in the next C h ap ter R ecall, this scheme has a B E  first 

stage which we solve using the Rosenbrock technique In the case o f the Com posite  

Integration Schem e we additionally provide a  sim ple Damped Newton  iteration W e  

point out, th at using our schemes m this w ay au tom atically generates the initial values 

for the derivatives. T h u s, w ith the Direct form ulation outlined, it is not necessary to 

explicitly provide initial values for derivatives, as is the case in the R esidual approach  

T h is is our prim ary reason for adopting the D irect form ulation

In closing this C h a p ter then, we remind the reader th at, in solving D A E s  nu

m erically, errors behave differently to the O D E  case In particular the higher index 

problem s are virtu ally  im possible to solve, even w ith  constant stepsizes. W h ile  the  

stability of the num erical scheme should guarantee linear error grow th, we m ay not 

have this for simple linear problem s It is the conditioning of the iteration m atrix, 
as ft. —+ 0  however, th at is the real deficiency of num erical schem es m  this context 

Unless this problem  can be overcome, O D E  m ethods will alw ays rem ain experim ental 

for general D A E  system s It is our opinion th at this question can be satisfactorily  

addressed, b y  the tensor  m ethod which w e outline m the final C h a p ter A ll things 

considered, it is quite rem arkable that O D E  softw are is so successful m solving D A E s .  
In the next C h ap ter we solve several D A E  system s b y the one-step and m ultistep  

m ethods w hich were introduced m  C h ap ter 3  W e intend, m so far as is possible, to 

dem onstrate the versatility of these m ethods for handling such com plex system s
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C hapter 6 

N um erical schem es for solving  
D A Es.

6.1 Introduction
In C h ap ter 3 , we developed and provided test results for one step num erical O D E  

m ethods. W e dem onstrated th at, at low tolerances, these sim ple schemes provided  

efficient alternatives to B D F  m ethods espcially in term s of Jaco b ian  evaluations. 

T h is C h ap ter parallels the work o f C hapter 3. W e extend our one-step m ethods to 

the solution of D A E  system s of the form

E y '  =  f(f,y(f)) t €  [a,b] (6.1)

w ith y ( a )  =  y (ta). W e will evaluate the perform ance of the one-step m ethods against 

two special purpose software packages designed for num erically solving D A E  system s: 

the L S O D I package of H indm arsh [43] and the D A S S L  integrator developed b y L. 

Petzold [56]. B oth  of these packages are based on B D F  form ulae and we will consider 

them  later in this C hapter.

In this C h ap ter, it is our intention to incorporate into the one-step m ethods, 

some of the im provem ents suggested in the last C hapter. R ecall th at the difficulties 

which arise are due to poor error estim ation, preventing the iteration m atrix from  

becom ing singular and providing a robust iteration scheme. W e will com pare the 

perform ance of the one-step codes, w ith both L S O D I and D A S S L  on a selection of 

test problems. W e mention here th at the test set o f E n righ t et. al. ( D E T E S T )  [27], 
was choosen in solving O D E s. However no such test set is available for D A E s . W e  

solve a selection of problems that have appeared in the literature, along with some of 

the O D E s solved in C h ap ter 3 , recast as D A E s . W e therefore have a  benchm ark for 

m easuring perform ance. T h a t is, a  m ethod should solve an O D E  re-cast as a  D A E ,  
w ithout an y loss o f overall efficiency or accuracy.

6.2 D IR K (2,2) schem e for DAEs.
T h e  general technique of applying R u n g e-K u tta  m ethods to (6 .1) ,  is to approxim ate  

the unknown y n+i by a linear com bination of yn and its derivatives, at interm ediate  

stages in the interval tn to in +1. T h e  D IR K (2 ,2 )  scheme applied to (6 .1)  gives the
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E  k t =  h f ( t n + a h ,y n + a k t )
E  k 2 =  / if(* n +  / i ,y „  +  ( l - a ) k x +  a k 2) (6  2)

Y n + i =  y «  +  (1 -  < *)k i +  a k 2

O nce again, we are concerned w ith the structure of the error and stability of these
schemes. W e mentioned in C h ap ter 5 that Petzold [57] has considered order results 

for the general IR K  form ula on index-1 D A E s  W e will not review  her results here, 

but an alyze the solution of the linear constant coefficient problem

E y '  = A y  (6  3)

using the D IR K (2 ,2 )  scheme (6  2).
A p p lyin g the D IR K (2 ,2 )  scheme (6  2) to the linear problem  (6  3 )  and denoting 

the m atrix E  — a h  A  b y  B, we have

k i =  h B * 1 A y  „

and

k 2 =  h B - xA y n +  h \  1  -  a )B ~ 1 A B ~ 1 A y n

giving

7  +  h B ~ l A  +  h2a(  1  -  a ) B ' 1 A B ~ 1 A\ y n (6  4)

following equations

y*i+i —

Su btractin g the exact solution

y (*n + i) =  y(<n) +  h y \ t n) +  y y  "(tn) +  y y (3)( 0  

from  (6  4 ), letting e n =  y n — y ( t n) and m ultiplying through b y B, we get 

B e n+1 =  B e n +  h A y n + h2a ( l  -  a )A B ~ 1 A y n 

- h B y ' ( Q  -  j B y " ( t „ )  -

Splitting up the m atrix B  into E  and —a h A  we can w rite the above equation as 

B e n+1 = B e n +  h A y n + h2a ( l  -  a ) A B ~ l A y n 

- h E y '( t n) +  a f t M y '( i „ )  -  j E y " ( t „ )

+ a y  V ' ( i n )  -  />3 6 B y <3 > ( 0

Since

E y 1 = A y  => E y "  = A y ' E y ^  = A y"

we have

B e n + 1  =  (B  +  h A )en

+ y  { 2 a ( l  -  a )A B -'E y '„  -  ( 1  -  2a )A y '(t„ )}  + 0 ( h 3 )
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B e n+i =  y  { 2 q ( 1  -  a ) A ( B ~ ' E ) y '„  -  ( 1  -  2 a ) A y '( t „ ) }  +  0 (h 3) 

then setting B ~ XE  = I  in the r h.s of this expression, our error has the correct form

2 a ( l  — a) = 1  — 2 a  

a  =  1  ±  1  /  .

T h u s the error estim ate suggested in (5  1 3 ) ,  is reasonable m this case and we propose 

using the following estim ate for D A E s

gdae  = B ~ l EeoDE • (6  5)

R eturning to (6  4) and assum ing that A  =  D , a  diagonal m atrix o f eigenvalues, 

we require for stability th at

||A|| =  || J  -  h B - 'D  +  h2a(  1  -  a )B ~ 1 D B ~ 1 D\\ <  1 .

O nce again in the index- 1  case the stability is determ ined b y the differential variables, 

since if

Assuming that e„ =  0 we have

E  =

then we require

1  0 

0  0
and D  =

Aj 0

0  a 2

1 * 1  “  1 - A T ^  +  ft2“ ( 1 - ^ ( T r ^  < >

which is the A -sta b ih ty  polynom ial for the O D E  case

F in a lly  for the D IR K (2 ,2 )  integrator, we extend the Rosenbrook im plem entation  

given in C h ap ter 2 , to  system s of the form  (6  1 ) A g a m  w e linearize (6 .2 ) about y n 
as follows-

E  k x =  h i( tn +  a h ,  y „  +  ak x )

giving

E k i  — h f ( t n + a h ,y n) +  a h J k i

where J  is the Ja co b ian  of f ( t n, y n) T h e  second stage is handled in the sam e way, 

expanding about y n +  ( 1  — o ) k i ,  to give

E k .2 =  h f ( tn +  h, y n +  ( 1  — o;)ki) +  a h J k .2

and we use the sam e Ja co b ian  of f ( ), for both stages W e then com pute

yn + i — y n +  ( 1  ~  a )k i +  a k .2

as before T h e  algorithm  for the D A E  case, is therefore identical to the O D E  algorithm  
except for the following

1 T h e  error estim ate (6 .5) replaces the O D E  error estim ate

2  W e place a lowerbound on the stepsize to enhance the stability  of the integration  

scheme and prevent the iteration from  becom ing singular W e propose the following

h m ax | hmm, y r  r J

where / , )TOax, represents the scale of the problem  at an y tim e and hmin, is a  lower- 
bound m  the stepsize, supplied b y the user

3  W e use the im plem entation outlined above for solving D A E  system s
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6.3 The Com posite Integration Schem e for DAEs.
W e return to the Com posite Integration scheme introduced in C h ap ter 3  m this section 

and apply it to the D A E  system

E y '  = A y  + g(t)  (6  6 )

R ecall from  C h ap ter 5  the application of the 0-scheme to a D A E  system  For the

system  (6 .6 ) the 0-stage of the integration using the C om posite scheme is

E y n + 1  = E y n +  7 ^ ( 1  -  0 ) ( A y „  +  g „ )  +  0 ( A y n + 7  +  g n+7)]

D enoting the iteration m atrix E  — 7  Oh A  by B  we have

y n + 7  =  B ~ xE y n +  7 /1 ( 1  -  0 ) B - 1 A y n +  7 /1 ( 1  -  0)B~l g n +  ^OhB~l gnJri

W ith  B D F  m ethods we approxim ate the derivative b y a  linear com bination of past 

solution values, thus for the B D F  stage of the Com posite schem e we have

E { a 0y n +  e*iy„ + 7  +  ^ Y n + i }  =  h A y n+ 1 

Su bstitutin g the expression derived above for y n + 7  into the above equation we obtain

B y n+i = ~ — E y n 
« 2  

—— { E B ~ l E y n +  7 /1 ( 1  -  0 ) E B ~ \A y n +  g n) +  jO h E B - 1 g „ + 7 }
«2
h 

H gn+l
« 2

which gives using (6  6 )

B y n+i = ~ — E y n
a  2

- ^ { E B - ' E y *  +  7 /1 ( 1  -  0 ) E B - 1 E y 'n +  7 O h E B ^ g ^ }  (6  7) 
a 2 
h 

H gn+l-
a  2

It is not our intention to give a com plete analysis of the error in this case, instead  
we look at the m dex- 2  problem

y + ( - e ' )
w ith  t/!(0) =  2/2 (0 ) =  1  and exact solution «/x(i) = y2( t) =  e* For this problem  we 
have E 2 =  0 so th at (6  7) becom es

B y n+i = ~ — E y n -  — y O h E B ^ g ^  +  — g „ + i  
a 2 a 2 a 2

A  sim ple calculation then yields that

' 0 1 ' / ‘ 1 0 ‘
0 0 y =

0 1



The exact solution at tn +  h which we multiply by the matrix B for simplicity, is

B
Din + /> 

Din + />
_  J n+h (  1  ~  h /a 2 \

V ~ h / a *  J

Su btractin g this expression from  the approxim ate solution and substitutin g etn for 

?/2 ,n, we get

B e n+1 =  e "
_  « i e7^ a 2 Of2

0
(6 8)

E xp an d in g the exponentials in h in equation (6  8 ) and using the order conditions 

from  C h a p ter 3 , we obtain

Bfin+l —
2 ao

T hus

en+l —  -  77

(2  -  a n 2 -  a 2) +  |  (3  -  a ^ 3  -  a 2) 

0

(2 -  «X7 2 -  et2) +  |  (3  -  a i 7 3  -  a 2) 

0
(6  9)

W e can see from  equation (6  9) th at the error is 0 ( h )  in the sta te  com ponent
while the algebraic equation is solved exactly  T h is result is in keeping w ith  analysis

given m  section 5  2 , where we showed th at the B ackw ard  Eu ler does not attain  the  

expected order of accu racy on D A E s

Fin ally, by m ultiplying through by B ~ XE  we have

0

0
=  0

Therefore the use of Petzold ’ s error estim ate (4 5) on this problem  results m  no error 

control, even though the observed errors are 0 (h ) .  T h u s we recom m end th at index-2  

problems are solved w ith constant stepsizes only

W e do not consider stability for the C om posite Integration schem e However we 

expect that no stability problem s will arise for the index- 1  case, since in this case  

stability is determ ined by differential variables only.

T h e  im plem entation of the Com posite scheme is sim ilar to th at outlined in C h a p 

ter 2  In this case, the nonlinear equations to b e solved on the 6- stage are

£ ( y n+7 -  yn ) -  7 M (! -  e Y n  +  0fn+-y] =  0

A p p lyin g N ew to n ’s m ethod to this system  gives the following iterative schem e for the 
unknown y n + 7

B A y l S ,  =  l M ( l  -  »)fn +  W ;+ 7] -  E(y-n+ ,  -  y „ )

w ith

and starting values
Ayn+7 = y|£-y -  y«+7

y  +7 ~  y n a*1*! ^n+7 —
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W hile the B D F  scheme gives the following nonlinear equations to be solved at each  

stage

E (a 0y n +  Q!iyn-Py +  C*2yn+l) — ^ n + 1  =  0.

Once again N ew tons m ethod gives

£ A y ;+ \  =  hf'n+l -  E (a 0yn +  aiy„+7 +  a2y|l+i)

w ith

Ayn+l =  yitfl -  Yn+l
and starting values

y°+l =  y n + 1  a n d  fn+l =  fn+7- 

Also both stages have the comm on iteration m atrix

B  = E - ' y 6 h ~ .
d y n

B ased on the results outlined above, we propose the following changes to the algorithm  

given in C h ap ter 3  for the Com posite Integration scheme:

1 .  A n  error estim ate of the form

£dae  =  (E  -  7 6h J)~ 1)EeoDE  

where J  is the Jacobian  o f f( -)  at y„
2. P lace  a lowerbound on the stepsize for the index-2 problems identical to the one 

given earlier for the D IR K (2 ,2 )  scheme. N ote this is reasonable since 7 0 =  a ,  the 

param eter of the D IR K (2 ,2 )  scheme.

3. R eplace the original im plem entation w ith th at outlined earlier in this section.

4. Provide a simple form  of dam ping in the iterative process, sim ilar to th at given in 

D A S S L  [56]. T h a t is, add 0 .75  times the correction vector on the 6- stage during the 
first step, for integrating index- 2  problems.

6.4 ODEPACK & LSODI.
O D E P A C K  is a ” system atized collection” of Fortran routines for the num erical so

lution o f differential system s. T h e  philosophy behind the concept is to provide a  set 

general purpose routines w ith a standard user interface and com m on internal struc
ture which m ake the routines more flexible, more portable and easier to install in 

software libraries. T h e  first routine developed to conform  w ith this philosophy was a 

package based on the G E A R  [31] and G E A R B  [40] O D E  codes, called L S O D E  ( Liv
ermore Solver fo r  ODEs [43] w ritten by A . C . Hindm arsh in 19 7 5 .  L S O D E  combines 

the capabilities both G E A R  &  G E A R B  in that it solves exp licitly given non-stiff and  

stiff O D E s of the form  y ' = f ( t , y ( t ) ) .  In the stiff case, it treats the Ja co b ian  m atrix  

d i / d y  as either full or banded and as either user supplied or generated internally by  

differencing. L S O D E  is therefore a direct decendent of the G E A R  package and also 

uses B D F  form ulae of orders 1  <  k < 5. O ther routines in the O D E P A C K  fam ily  

include L S O D E S , the general sparse Jacobian  m atrix solver w ritten join tly  w ith A .

H. Sherm an. L S O D A , w ritten jointly with L . Petzold, sw itches au tom atically be

tween stiff and non-stiff m ethods ( the suffix A  stands for autom atic). L S O D A R , is
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a version of L S O D A  having a  root finding capability for a set of functions g(t, y) of 

independent and dependent variables in the O D E  system  T h is is som etim es called  

the g-stop feature It can be helpful in particle tracking where it is desireable to know  

when a particle reaches the walls of a  container T h e  last m em ber of this fam ily is the  

L S O D I package, the linearly im plicit solver. W e shall discuss this code in m ore detail 

in the rem ainder o f this section Before we go on to deal w ith  L S O D I, we mention  

that all the routines in O D E P A C K  use basically the sam e stepsize and order changing  

m echanism  th at is used m  the G E A R  package w ith  slight m odifications

L S O D I [43] was w ritten join tly by A . C . Hindm arsh &  J  F  Painter at the L aw -  

erence Liverm ore N ational L a b  in California, U .S  A  . L S O D I treats system s of the  

linearly im plicit form  A ( t , y) y' =  g(f, y) , where A  is a  square m atrix  L S O D I allows 

A  to be singular, but the user must then input consistent initial values for y and y' 
In the singular case we have a  D A E  system  T h en  the user m ust be cautious about 

form ulating a well posed problem , as L S O D I is not designed to b e robust in this case. 

L S O D I is based on and supersedes G E A R I B  [41] and is only suitable for in d e x -1 D A E  

system s

A  num erical m ethod for the linearly im plicit system

A ( t , y ) y '=  g( t , y )  ( 6 i o )

can be developed from the B D F  formulae

k

y n =  h/30y 'n +  £  a , y n_,
1= 1

=  a n +  h(l0f ( t n, y n) (6  1 1 )

where the order of the m ethod is k, w ith (1  <  k  <  5)  and ¡30 > 0 M u ltip lyin g both  

sides b y  A (tn, yn), replacing A(in,y n)y'n b y g(i„,y„) and solving the resulting  

im plicit relation for yn, we obtain the following im plicit relation using (6  1 1 )

S ( y )  =  A (tn, y) {y -  an} -  hp0g( tn, y )

to be solved for y =  y„, where a„ is a  constant vector T h is system  is solved using 

a modified N ew ton iteration L S O D I introduces a residual vector

r (y )  =  g ( <n , y ) - ^ n , y ) s

of values which the user is to supply Here s represents an approxim ation y ' n and s 
is specifically defined to be

T h a t is, s is the predicted value of y 'n th at corresponds to the prediction y^0) 

through the original form ula y£0) =  a„ +  h(30s S ( y )  and r ( y )  are then related by

S ( y )  =  A ( t n, y ) ( y  -  y f ) )  -  h/30r ( y )

L S O D I m fact solves this system  the associated iteration m atrix  is

P  = S'(y<°>) = A(t,,y£») -  hp„r'(y«»))
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where r^ y ^ 0)) denotes the Ja co b ian  of r( ), that is, r '(  ) =  d r j d y  C learly  in the case 
A  =  I  the identity m atrix, the m atrix  P  reduces to the usual O D E  iteration m atrix  

T h e  L S O D I package and interface provide the following useful features-
(a) T h e  m atrices involved can be either treated as either full or banded b y use o f a 

m ethod flag
(b) T h e  dependence of A  on y  is au tom atically and inexpensively accounted for 

whether the partial derivatives are supplied or generated internally
(c) W h en  A  is singular the user need only supply the initial value of y '  but no later 

values. If  A  is nonsingular then L S O D I can be used to com pute the initial value of 

y '  using a flag

(d) T o  the m axim um  extent possible, L S O D I shares the sam e user interface as L S O D E  

and so reflects all the advantages over G E A R I B  th at L S O D E  has over G E A R  &  

G E A R B ,  in term s of flexibility, convenience and portability.

T h e  differences between L S O D I and L S O D E  occur prim arily in the user interface. 

In L S O D I it is necessary to supply a  routine to com pute the residual function r ( y )  =  

g ( i,  y )  — A (t,  y ) s  and another routine to add the m atrix  A  to a given array, while 

the Jaco b ia n  of r ( ) w r.t y  can be optionally supplied T h e  use o f r  as the basic 

user-supplied quantity, as opposed to constructing r  from  g  and A , is designed to 

allow for both com putational and storage economies U su ally the user can construct 

r  w ithout explicitly form ing A , thus saving considerably on storage

L ater in this C h ap ter, we discuss the perform ance of L S O D I on a selection of test 

problem s W e have also considered it in C h ap ter 3  for solving O D E s, recall th at the 

m ethod proved very reliable and efficient on all problem s considered, except those  

w ith  eigenvalues close to the im aginary axis It is w orth pointing out here, that 

L S O D I proves itself an efficient solver on all m d ex-1 D A E s  we consider later in this 

C h ap ter and is equally efficient at solving these in O D E  or D A E  form

6.5 DASSL.
D A S S L  [56] is an acronym n for D ifferential/A lgebraic System  Solver, a  Fortran  code 

designed b y  Lin d a Petzold for the num erical integration of general im plicit system s 
of differential equations of the form

F ( i , y , y ' )  =  0  (6  12 )

w ith  consitent initial conditions

y(o) =  y0 y'(o) = y'0

T h e  underlying idea behind D A S S L  is to replace the derivative in (6  1 2 )  b y  a  B D F  

difference approxim ation and solve the resulting nonlinear equations at each tim e step  

by N ew tons m ethod For the purpose of illustration, the first order B D F  form ula ( 
i e the B ackw ard Eu ler) gives the following nonlinear system

p(i”’y”’?::Li r =1) =0 <613>
to be solved at each tim e step by N ew ton ’s m ethod
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D A S S L  obtains an initial guess for y n by evaluating a polynom ial which interpo

lates the solution at the last k + 1  points in_ i ,  i n_ 2, • • • ,  i„_(/t+i) at the current tim e 

tn. A n  initial guess for y' is obtained by evaluating the derivative o f this polynom ial 

at t n. N ew ton ’s m ethod is then used to generate y n as in ( 6 .13 )  and the derivative  
is approxim ated by kth order B D F  formula, instead of the backw ard difference of y n. 
W hen the stepsize is not constant, D A S S L  uses the fixed leading coefficient form  of 

the B D F  formulae. Petzold [56] comments that these formulae tend to be more sta 
ble than the fixed coefficient formulae used in L S O D I and are more efficient than the 

variable coefficient formulae used in E P I S O D E  [40] in some cases. In D A S S L  these 

polynom ials are represented in terms of scaled divided differences and the details can  

be found in Petzold [56].
T h e  equation (6 .13 )  can be rewritten as

F ( t , y , a y  + ft) =  0 (6 .14 )

where a  is a  constant that changes whenever the stepsize or order changes, ft is a  

vector which depends on the solution at past times and t, y ,  a,  ft are evaluated at tn. 
T h e  nonlinear equation (6 .14 )  is solved in D A S S L  b y a modified N ew ton  m ethod as 

follows:

y ' + 1  =  y ‘ -  l f l F ( f , y \ a y  +  D) ( 6 .15 )

w ith the iteration m atrix B  com puted as ( ^ 7  +  a  and used for as m any time 

steps as possible. In general the value of a  when B  was last com puted is different

from  a  the value required at tn. If a  is very different from a  the (6 .14 )  m ay not
converge. In D A S S L  the constant 7  is chosen to speed up convergence and is given

1  +  a / a

T h is relaxation process has also been used by D ew  &  W alsh [22] and by Berzins et. 

al. [3] in their S P R I N T  solver.

T h e  stepsize and order for the next step are determ ined using b asically the sam e  

strategies as in Sham pine &  Gordon [6 6 ]. D A S S L  estim ates the error that would  

have been m ade if the last few steps had been m ade w ith  a constant stepsize at the 

current order k and at orders k-2, k- 1  and k+1 . If these estim ates increase, then k 
is increased; if they decrease, the order is lowered. T h e  new stepsize is chosen so that 

the error estim ate based on taking constant stepsizes at order k satisfies the error 
test.

D A S S L  also provides a damped Newton  iteration in conjunction w ith a B ack 
w ard Eu ler step to com pute the initial values o f y ' .  T h u s, in contrast to L S O D I, 

the approach is applicable even if d F /d y '  is singular and the system  is differen

tial/algebraic. T h is capability is also available in the S P R I N T  solver of Berzins et. 
al. [3]. R ecall that our one step schemes au tom atically generate the derivatives at the 

starting point because we have adopted the direct form ulation outlined in C h ap ter 5 .

T h e  user-interface to D A S S L  is sim ilar to th at o f L S O D I in th at it uses a  residual 
form ulation. In using D A S S L , it is necessary to define the residual vector A  =  

F ( i , y ,  y r)) thus A  is the am ount by which F  fails to be zero for the inputs t, y , y ' .  
T h e  interface is a  little more straightforw ard than that of L S O D I in th at the user 

can optionally supply the Jaco b ian  of the full residual. T h u s one routine is required
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instead o f the two required in L S O D I D A S S L  has m ost of the other features o f the 

O D E P A C K  codes. H owever it also includes a flag for dealing w ith discontinuities in 

the solution if the user has knowledge of the position of these points in the indepentant 

variable
T h e  perform ance of D A S S L  along w ith the other integration schemes developed  

in this thesis will b e  considered in the next section

6.6 D AE test problem s and results.
Perhaps the m ost irritating feature about D A E s  is the lack of published results in 

the literature on the perform ance of O D E  m ethods for solving this typ e  of problem  

G ear [32] and Cam eron [9] have both published test results and problem s in this area. 

However the num ber o f problem s considered is sm all T h is  contrasts com pletely w ith  

the O D E  case, where com parisions have been m ade for all types of m ethod using  

the stiff test set o f En right et. al. [27] Because o f the lack of problem s, we have 

constructed several o f our own problems and taken a  sm all num ber o f others from  the 

literature.

O ur approach for constructing index- 1  problem s is sim ply to recast som e o f the stiff 

problem s considered in C h ap ter 3  as D A E s  In particular we have chosen Problem s 

B 5 , C 5 , D l ,  E 3  and P 2  A d d itio n ly we consider an eight dim ensional exam ple solved 

b y both G ear [32] and Cam eron [9] W e have also included a test problem  given to us 

b y C  Fuher [30], which displays peculiar behaviour when solved in O D E  and D A E  

form  T h e  final in dex-1 problem  is taken from  Roche [62] and is a  modified version of 

the Pendulum  equations. W e also mention that Problem  P 2  is the exam ple problem  

provided w ith  both the L S O D I and D A S S L  packages. W e also consider two index-2  

problem s, the first can be found in Brenan &  Petzold [5] It is a  linear non-constant 

coefficient problem  T h e  second problem  is also borrowed from  [5], it in an index-2  

version of the Pendulum  equations.

W e mention that the m ethod o f testing and the presentation of our results for the 

recast O D E s is the sam e as th at outlined in C h ap ter 3  However for some of the later 

problem s considered, we also supply tables illustrating accu racy achieved b y the one 
step m ethods

6.6.1 Recast Index-1 problems.
Problem  B 5

Vi =  2/7

2/2 =  2/8

y's =  -4  y3
V* =  -2/4

y's =  -0  5y 5

Ve =  -0  ly6
0 =  -10 yi +  a y 2 +  j/7
0 =  a y 7 +  101/2 +  ys
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and a  =  100 as in C hapter 3.

Recall from  C h ap ter 3  that Problem  B 5  is taken from  En right et. al. [27]. It 

is linear w ith non real eigenvalues. In particular this problem  is known to cause 
difficulties for B D F  based codes, as transient eigenvalues lie in an unstable region for 

the higher order B D F  formulae.
In the D A E  version of Problem  B 5 , given above, we have chosen to replace the 

rhs’s of the first two equations of the system  w ith  two new variables y7 and y8. In order 

to m ake the system  consistent again we introduce two new algebraic equations for 

these new variables. Now variables 2/i •> J/2 7 2/7 and t/8 will oscillate wildly. Therefore we 

expect th at this problem  should be more difficult to solve than its O D E  counterpart.

w ith initial values
V, =  1 * =  1(1)6 y 7 =  90 ys =  -1 1 0

Problem B5
Tol =  lO" 2 D IR K  (2,2) Comp. Int. LSO D I D ASSL
N STE P 8 6 6 2 76 6 1 7 8 3 3 6 3
NFE 5 2 5 6 1 3 8 7 2 3 1 1 7 7 3 4

N JE 9 3 13 8 0 1 1 6 1 4

GERR 9.4 x  1 0 - 4 5.9  x  lO ' 1 1.0  x  lO" 2 2 .0  x  1 0 " 3

1Or-~1II
*■««*»o D IR K  (2,2) Comp. Int. LSO D I D ASSL

N ST E P 1 5 1 4 2 1 7 6 2 4 5 9 1 0 1 5
N FE 9 15 0 1 8 5 2 4 4 19 0 2 0 5 4
N JE 14 8 10 6 7 1 5 2 2 3
GERR 4.8 x  10 “ 5 2 .7  x  lO" 1 4.0 x  1 0 ~ 3 4.0 x  lO" 5

Table 6.1

T h e  D IR K (2 ,2 )  scheme proves less efficient on the D A E  version of B 5  as the re

sults in Tab le 6 .1  dem onstrate. In the O D E  case, ( c.f. Table 3.4), recall at both  

tolerance values the m ethod produced poor results and we attributed the difficulties 

encountered to this particular problem. It must still be stated that the D A E  per

form ance is considerably worse than that quoted in A lexan der [1 ] for this problem. 

A g ain  we mention that we solved B 5  as a D A E  w ith c* =  8  and 2 5 1 . It is clear from  

the results presented in Table 6 .2., that the m ethod is solving both versions of B 5  

efficiently when a  is reduced. T h is is exactly  the behaviour we observed in the O D E  

case. W e are therefore led to question the validity of A lexan d er’ s results [1 ] on this 

problem , as he uses the sam e scheme with a slightly modified im plem entation.
T h e  C om posite Integration scheme finds this problem  particularly difficult. It 

does not com pute the solution to the sam e accu racy as the other m ethods. W e 

also com puted the solution to this problem  using the C om posite schem e w ithout 

the addition of Petzold ’s error estim ate ( 5 .1 3 ) .  In this instance the the figures were 

identical to those quoted in Table 6 .1 .  It therefore appears th at the structure of the 

problem  is causing the New ton iterative scheme to m isbehave and we attribu te the

1 Recall that those are Problems B3 and B4 respectively from Enright et. al. [27].
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D IR K (2,2) on Problem B5 Tol  =  1 0 ~ 4 a  =  8 a  =  2 5

1O1—
1II"0 a  =  8 a  =  2 5 N ST E P 14 9 250

N STE P 50 1 3 1 NFE 894 150 0

NFE 300 79 2 N JE 19 2 7

N JE 1 3 2 1 GERR 9.0 x  10 ' 5 2 7 x  1 0 - 5

G ERR 1  0  x  IQ' 3 5  0 x  10 " 4 Table 6  2

poor perform ance to this fact W hile som e deterioration is to be expected based on 

the other figures in T able 6  1 ,  we feel the figures quoted are excessive

Fin ally, com paring the figures given in T ab le  3  4  w ith  those of Tab le 6  1  for both  

L S O D I and D A S S L , the anticipated deterioration in perform ance is bourne out In 

fact L S O D I’s perform ance is a  good deal poorer at both  tolerance values D A S S L  

performs roughly tw ice as b ad as it did in the O D E  case, but still a  good deal better  

than L S O D I W e attribute this difference to the fact th at D A S S L  uses the fixed  

leading coefficient form  of B D F  formulae Petzold [56] suggest th at these formulae 

m ay be more stable than other versions B D F  form ulae.

Problem  C 5

Vi =  2/s 

3/2 =  Ve
2/3 =  -40j/3 +  4 / % x2 +  2/|)

?/4 = - 1002/4 + 10^(2/1 + 2/2 + 2/3)
0 =  2/1 +  2/s — 2
0  =  i02/2 -  Pyl +  ye

T h e  initial values are

2/, =  1 . =  1 ( 1 ) 5  2/6 =  10

and /? =  2 0  once again

T h is problem  is nonlinear with real eigenvalues. T h e  O D E  version exhibits non

linear coupling from  the sm ooth to the transient com ponents In the D A E  version 

above, we have chosen to replace the rhs’s o f equations 1  and 2  w ith  new variables 

2/s and ?/6 T h e  rhs’s in turn are re-introduced as algebraic equations T h is retains 
the coupling from  sm ooth to transient com ponents, except th at now the coupling is 

through the interm ediate variables we have artificially introduced

Firstly, we consider the D IR K (2 ,2 )  scheme C om parin g the results given in Table  

3  1 1  w ith  those of Table 6  3 ,  we observe th at the m ethod is efficient at solving this 

problem  m either O D E  or D A E  form  In either case, very sim ilar statistics were 

produced. T h e  Com posite Integration schem e also com pares favo u rably as does both  

L S O D I and D A S S L  A ll m ethods considered found this problem  easy to handle, pro

ducing virtu ally  identical statistics in both  O D E  and D A E  form s H owever we again  

rem ark th at the Com posite scheme does not com pute a solution to the sam e accu racy  

as the other schemes 

Problem  D l .

2/i =  0 2 (2/2  -  2/1)
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Problem C5
Tol = IO" 2 D IR K  (2,2) Comp. Int. LSO D I DASSL
N STE P 7 3 40 4 2 49

N FE 4 38 2 3 4 1 3 2 10 7

N JE 1 2 1 1 1 1 14

GERR 2.0 x  IO" 5 1 . 1  x  1 0 ~ 2 4.0  x  1 0 ~ 5 2 .0  x  1 0 ~ 5

1OHII"oEh D IR K  (2,2) Comp. Int. LSO D I DASSL
N STE P 18 4 1 6 1 1 1 5 1 1 2

N FE 1 1 2 8 10 64 2 9 5 2 3 6
N JE 29 4 2 2 1 24

GERR 8.0 x  IO" 9 3 .5  x  IO" 4 2.0  x  IO" 7 2 .0  x  1 0 " 6

Table 6.3

y'2 =  lOj/i -  (60 -  0 . 12 5 2 /3 ) j/2 + 0 .1 2 5 y 3 

0 =  2/3 -  t

(6 .16 )

w ith

Vi =  0 i =  1 ( 1 ) 3 .

T h is problem  is nonlinear w ith real eigenvalues. T h e  D A E  is sim ply generated  

from  the O D E  by replacing the 3 rd differential equation y '3 =  1 , by the algebraic  

equation 2/3 — t =  0 .

Problem D1
Tol =  IO“ 2 D IR K  (2,2) Comp. Int. LSO D I DASSL
N STE P 3 2 244 2 3 30
NFE 19 2 1 4 2 1 9 7 79
N JE 7 7 5 9 1 5
GERR 4.0 x  1 0 " 2 3 .4  x  1 0 ~ 3 1.0  x  lO" 3 7.0 x  lO" 4

4 o_ II >—
» 

0
 1 •f
r,

D IR K  (2,2) Comp. Int. LSO D I D ASSL
N STE P 108 5 1 9 5 5 6 8

NFE 6 6 6 3 5 5 3 16 4 1 4 7
N JE 1 5 16 8 1 3 19
GERR 1.0  x  IO" 3 1 . 1  x  1 0 ~ 4 2 .0  x  1 0 ~ s 1.0  x  lO " 5

Table 6.4

T h is problem  caused particularly severe difficulties for the Com posite Integration  

scheme, as the figures in Table 3 . 1 4  show. Sim ilar behaviour is observed for the 

m ethod solving the problem  cast as a D A E , as the statistics in T ab le  6 .4  indicate. T h e  

m ethod still requires a large number of steps and function evaluations dem onstrating  

that this problem  is unsuitable for solution using the C om posite scheme. In order to
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further explain the weakness of the Com posite schem e on this problem , we set 0 =  1 , 
giving a  D IR K (2 ,2 ) scheme W e expected th at perform ance of the resulting scheme 

would be similar to the results quoted for the D I R K ( 2 ,2 ) scheme given m Table 6  4 

W hile the results of T ab le  6  5  for this experim ent show a  good deal of improvem ent, 
th ey still fall short o f expected perform ance Therefore we are led to the conclusion  

th at the poor perform ance is due to the different im plem entations used.

Com positeschem e 0 = 1

Tol =  1 0 - 2 Tol =  1 0 " 4

N STE P 1 3 1 28 9

NFE 8 1 7 2096

N JE 2 1 79

GERR  j 3  0 x  1 0 " 3 1 .9  x  IQ" 4

Table 6.5

T h e  D IR K (2 ,2 )  scheme does m oderately better on this problem  in O D E  form  at 

the lower tolerance and proves itself tw ice as good at the higher tolerance value W e  

feel this deterioration is due prim arily to th e change in structure of the problem  which  

m ay affect the stability of the one step schemes O ur reason for statin g this is because  

this behaviour also m anifests itself for the C om posite scheme on this problem

F in a lly  the B D F  based codes solved both forms of D 1  w ithout an y difficulty and  

w ith  broadly sim ilar statistics, indicating that these form ulae have ideal stability  

properties for this problem  

Problem  E 3

y[ =  - ( 5 5  +  y3)yi +  6 5  y2 

y2 =  0 0785(j/i -  y2)

2/3 =  Vi 
0 =  2/4 -  O .lyi

w ith

Vi =  1 ,  2/2 =  1 ,  2/3 =  0, 2/4 =  0 1.

T h is problem  is nonlinear w ith non real eigenvalues. T h e  D A E  version is derived  
from  the O D E  form  by coupling the 3 rd differential equation to an algebraic equation  
incorporating a new variable y4

T h e  results we present in T able 6 .6  show, th at the D IR K (2 ,2 )  schem e solves the 

problem  efficiently at both  tolerances. Com pan sions w ith  the O D E  case, ( c /  Table 
3 18),  show th at sim ilar statistics are reproduced in T ab le  6  6  T h e  C om posite scheme 

also produced sim ilar figures albeit requiring quite a  lot more steps and function  

evaluations than the other m ethods L astly, both B D F  codes solve the problem  

efficiently in either O D E  or D A E  form  

Problem  P 2

y[ =  - 0  04yx +  1 0 4?/2 ya

y2 =  0.04t/i -  1 0 4y22/3 ~  3  x  lO7^

0 =  2/1 +  2/2 +  2/3-1
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Problem, E3

Tol  =  10"2 D IR K (2 ,2 ) Comp. Int LSO D I DASSL
N ST E P 31 157 33 33
N FE 186 707 106 76
N JE 7 39 12 12
GERR 1.0 x 10"1 91 x 10~4 7 0 x 10~4 2.0 x IO"3

Tol =  IO"4 D IR K  (2,2) Comp. Int. LSO D I DASSL
N ST E P 77 279 79 88
NFE 462 1558 195 190
N JE 15 77 17 15
GERR 1 0 x 10"2 1.4 x  10"4 6 0 x IO"6 5 0 x 10~5

Table 6 .6

w ith

2/1 =  1 , i/2 — J/3 — 0

T h is is the well known chem ical kinetics problem  given in C h ap ter 3. R ecall that 

as anv O D E  this problem  has been considered b y several workers In D A E  form  it is 

the original exam ple problem  supplied with both L S O D I and D A S S L  W e have taken  

this version of the problem  directly from  these codes

Problem P2
Tol =  10-2 D IR K  (2,2) Comp Int LSO D I DASSL
N STE P 35 35 46 22
NFE 210 114 114 45
N JE 11 10 36 17
GERR 2 5 x 10"2 1 2 x lO“3 4 8 x lO"3 2.0 x lO"3

Tol =  10~4 D IR K  (2,2) Comp Int LSO D I DASSL
N ST E P 87 60 37 41
N FE 522 267 56 90
N JE 14 16 15 17
GERR  j 4 8 x 10“4 1 0 x 10~4 3 0 x lO"5 4 0 x 10~5

Table 6  7

T h e  D IR K (2 ,2 )  scheme proves slightly more efficient on the O D E  problem  as a 

com parision of figures in Tables 3  2 2  and 6  7 show It does however prove to be less 

efficient than the other m ethod’s. T h e  reason for this is prim arily due to the fact that 

this m ethod is using the extrapolation based error estim ate w hich requires six function  

evaluations per step. A ll other schemes integrated the problem  efficiently, producing

sim ilar results regardless of problem form ulation T h e  other point worth noting about

this problem  is the im proved perform ance o f L S O D I at the higher tolerance T h is we

attribu te to the m ethod of error control we use, specifically, setting ierror =  1 , rtol

and atol as scalers set to 1 0 - 2  and 1 0 ~ 4 for the statistics quoted
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T h e  totals for each statistic are sum m erizied here in Tab le 6  8  T ab le  6  8  also 

includes the totals for each statistic, when these problem s are cast in both O D E  and  
D A E  form. T hese figures are based on the five problem s considered above and the 

O D E  figures are taken from  C hapter 3 . T h e  benchm ark we have adopted to m easure 

the success of a  numerical O D E  based m ethod on D A E s , is th at the m ethod should  

perform  equally well on an y problem  regardless o f its form ulation Specifically, we 

require th at any m ethod w ill be efficient on any problem , cast in O D E  or D A E  form  

m  term s o f the statistics measured and that sim ilar levels o f global accu racy are 

obtained

Firstly, the results given for the D irk (2,2) scheme in T ab le  6 .8  are poorer for the  

D A E  case. T h is  again is prim arily due to Problem  B 5  w hich in fact perform s even  

worse as a  D A E  O verall one thing is apparent, that is the econom y o f the m ethod in 

term s of Jaco b ian  evaluations. O ur im plem entation is bias tow ard a  constant stepsize 

m  order to achieve stability in the integration process. T h is  reduces the num ber of 

step changes and consequently keeps the number o f Ja co b ian s required quite low  

T h e  Com posite Integration scheme shows considerable change in perform ance on 

these problem s However the excessive difference is due solely to problem  B 5  In 

fact this problem  accounts for over 4 / 5 i/l o f the total work on all problem s R ecall 

in C h ap ter 3  we stated that the selection of problem s chosen included some o f those 

that Carroll [18] found most difficult to solve w ith  his scheme O ur im plem entation  

has not im proved on this situation

L S O D I and D A S S L  both produce sim ilar results regardless o f problem  form ula
tion O nce again D A S S L  proves the m ost efficient solver of those considered Based  

on these results it is apparent that these B D F  based codes are excellent though it 

m ust be said that the one step schemes com pare favou rably in term s of Jaco b ian  

evaluations required Therefore these m ethods m ay be a w orthwhile alternative to 

the B D F  codes in some application areas

A  final point we rem ark on here, is th at the use of Petzold ’s error estim ate (5  1 3 )  

proved o f little value W hen the correction vectors o f an algorithm  are kept bounded,

both the ordinary estim ate and Petzold ’s estim ate behave identically on the in dex-1
problem s considered above

6.6.2 Other Index-1 problems.
Problem  P 3  (G e a r’s problem  [32])

y[ =  s - { r - y 2t) - Y , b t]y3
j=i

0  =  2 / 5 -  2/i 2/e

0 =  22/6 +  2/| -  2/i +  2/7 -  1 -  e-<

0 =  2/7 -  ys +  2/12/6

0 =  2/7 +  Vs +  52/i2/2

w ith

r - ^ I / j / 2 , 5  =  X X r “  r f ) / 2
.7=1 J=1

t e (o, io 3)
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Totals fo r  all problems

Toi  =  IO" 2 D IR K  (2,2) Comp. Int. LSO D I D ASSL
N ST E P O D E 89 5 50 7 2 7 5 3 8 3

D A E 3 7 3 2986 476 49 7

N FE O D E 5 7 7 0 2 4 4 2 685 6 12

D A E 229 6 16 3 4 8 3 5 5 6 10 4 1

N JE O D E 1 7 6 12 8 87 76

D A E 6 1 1 5 1 5 16 4 7 2

Toi =  IO" 4 D IR K  (2,2) Comp. Int. LSO D I D ASSL
N ST E P O D E 1 1 4 2 1 1 4 7 2 2 5 5 829

D A E 14 2 2 2 6 3 2 1 0 19 1 3 2 4

N FE O D E 7 3 7 4 666 1 4 3 8 7 16 9 2

D A E 8 736 249 66 4900 2 7 1 7

N JE O D E 169 2 8 3 2 1 0 7 3
D A E 1 0 0 13 7 0 2 1 8 98

Table 6 .8

and initial conditions

y{ =  - 1 ,  i =  1 ( 1 ) 4 ,  y5 = y6 =  1 ,  y7 =  - 2 ,  y8 =  - 3 ,

also

bij =

4 4 7 . 5 +  e —4 5 2 .5  +  e - 4 7 . 5  +  e - 5 2 . 5  -  e

- 4 5 2 . 5  +  e 4 4 7 .5  +  e 5 2 .5  +  e 4 7 .5  -  e

- 4 7 . 5  +  c 5 2 .5  +  e 4 4 7 .5  -f  e 4 5 2 .5  -  c
- 5 2 . 5  -  e 4 7 .5  -  e 4 5 2 .5  -  c 4 4 7 .5  +  e

w ith t  =  0 .00025.

G ear [32] originally constructed and proposed Problem  P 3 . W e applied the four 

m ethods outlined to this problem. A s  the results given in Table 6.9 show, the  

D IR K (2 ,2 ) , Com posite Integration scheme and L S O D I algorithm s all perform ed effi
ciently.

O riginally we attem pted to solve this problem  w ith  C arro ll’s version o f the C o m 
posite scheme. It failed to adequately solve the problem. His version does not alw ays  

reject the tim e step if the N ew ton scheme fails to converge. T h e  resulting errors in 

the correction vector are therefore not picked up on the current tim e step. T hese are 

allowed to build up in the local error estim ate until the local error estim ate exceeds 

the tolerance. On this problem , we found th at the corrections were large and grew  too 

quickly for C arro ll’s version o f the Com posite scheme to control them . T h is caused  

the num erical solution to becom e unbounded and eventually overflow. T o  overcom e 

this problem  we decided to reject the step if the N ew ton iteration failed to converge. 

W e then asked the code to decrease the stepsize by a factor of 4 and evaluate a new  
Ja co b ian  and iteration m atrix.

Cam eron [9] also solved this problem  using a fixed order D I R K (2 ,2 ) m ethod iden

tical to our scheme, but w ith a full N ew ton iterative scheme. A  quick check on his
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Problem P 3

Toi =  10-2 D IR K  (2,2) Comp. Int LSO D I A D IR K  (2,2)
N STE P 52 64 57 27
NFE 318 311 304 294
N JE 11 19 29 17
GERR 3 0 x IQ"3 4 7 x IQ"3 4 0 x 10“3 9 0 x IQ”5

Toi =  1 0 ~ 4 D IR K  (2,2) Comp. Int. LSO D I ADIRI<(2,2) G ear

N STE P 1 3 5 1 3 9 92 1 6 5 16 8
NFE 8 3 4 9 2 5 3 8 3 1 5 1 3 9 3 7
N JE 24 40 28 5 3 5 4

G ERR 5  0 x 1 0 - * 3  5  x 1 0 " 4 1  0  x 1 0 ~ 5 4 0 x 10 " 6 3  0 x IQ"3
T able 6.9

results (c  /  Table 6  9, A D I R K ( 2 ,2 ) )  reveals th at our results for all m ethods are b et
ter than C am eron’s, in term s of function and Jaco b ian  evaluations W e also mention  

that Cam eron solved this problem  w ith  variable order em bedded D IR K  codes W e  

will not consider these results here, but rem ark that the variable order im plem enta

tions were less efficient due to the greater overhead required to select the order and  

stepsize

G ear [32] also solved this problem  at tolerances ranging from  1 0 - 4  to 1 0 - 8  W e have 

reproduced his results at the 1 0 ~ 4 tolerance value C learly  the fixed order schemes 

perform  equally well, but L S O D I, which is a  descendant o f the G ear algorithm , proved  

to be over tw ice as efficient as the fixed order schemes L S O D I is however a  more 

finely tuned algorithm , in that it has im proved error control capabilities over the G ear  

algorithm . T h is accounts to some extent for the im proved perform ance.

T h e  last point of interest we draw  to the readers attention, is the perform ance  

of D A S S L  on this problem  T h is code does generate a  solution, but we halted the 

integration after the code reached t =  50  using 3000 integration steps at a  tolerance  

of 1 0 - 2  W e therefore have not supplied statistics for this m ethod on this problem  

W e also mention th at the remarks we m ade above about Petzold ’s estim ate apply  
here also

Problem  P 4  (see Fuher [30])

y[ = V2 -  ay \ +  cos(t)
0 =  y 2 -  ay\

w ith t  e  [0, lOff], a — 200 and yx = y2 =  0 
T h is problem  has solutions

yx =  sin(f)

3/2 =  2 0 0  sin2 (t)

T h is problem  was solved reasonably efficiently in D A E  form  as the statistics given in 

Table 6  10  dem onstrate T h e  highly oscillatory nature o f the solution is the m ajor
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factor causing some num erical instability and the values o f G lobal error to be large 

for one step schemes at the low tolerance.

Problem P4 as a D AE
Tol =  10-2 D IR K  (2,2) Comp Int. LSO D I DASSL
N ST E P 152 160 181 216
N FE 1068 1148 296 526
N JE 47 47 65 61
G ERR 7.9 x 10° 4.8 x 10° 3 3 x 10~3 6 0 x 10"2

Tol =  lO"4 D IR K  (2,2) Comp Int. LSO D I DASSL
N STE P 417 540 405 389
NFE 2754 4034 637 888
N JE 88 188 111 73
GERR 3 0 x 10"1 6.6 x 10"3 1 0 x 10“4 1 0 x 10"5

Table 6.10

In Tab le 6  1 1  we supply results for this problem  recast as the O D E

y'\ =  2/2 ~  ayl +  cos(i) 

y'-i =  2 a y 1 (y2 - a y 2 +  co s(i))

w ith  t €  [0 , lOx], a =  2 0 0  and y i ( 0 ) =  y 2 (0 ) =  0

Firstly, as a  D A E  both one-step m ethods produced large absolute global errors 

w ith  reasonably efficient perform ance statistics In the case of the D IR K (2 ,2 )  scheme, 
the reasonable perform ance w ith  poor error is explained b y  the fact th at we used 

P etzold ’s error estim ate (5  1 3 )  T h is in effect rem oves the algebraic com ponent y 2 , in 

the solution from  the com putation of error. It is this com ponent which is oscillating  

wildly, from  0 to 200 In O D E  form  this com ponent is included in error control, giving  

much im proved accu racy and poorer perform ance

T h e  C om posite scheme is behaving sim ilarly to the D IR K (2 ,2 )  schem e in term s 

of the statistics m easured G lobal error however is still large for this scheme at the 

lower tolerance, indicating th at the m ethod is finding the problem  hard to integrate  

In fact the nature of this problem  resembles that o f Problem  B 5 ,  w hich also proved  
difficult for this m ethod

T h e  perform ance of the two other routines L S O D I and D A S S L  was very  different 
to th at of the one step m ethods In D A E  form  they produced accu rate solution 

values w ith  good perform ance characteristics H owever as O D E s both  m ethods failed 

to produce accu rate solution values It m ust be said th at the large values of error 

quoted are again only in the y2 com ponent. C learly  both algorithm s are unstable on 

this problem  considered as an O D E  T h is can be partially explained b y the fact that 

the eigenvalues o f the system  are lying on the im agin ary axis in the com plex plane 

T h is region is known (see C h ap ter 2 ) to be unstable for higher order B D F  form ula 

In fact sm all perturbations in the numerical solution m ight drive the eigenvalues into 

the right hand half of the com plex plane, causing the solution to becom e unbounded  

T h is appears to be happening to  the num erical O D E  solution in this case.
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Problem P4 as an ODE

Tol =  IO'2 D IR K  (2,2) Comp Int LSO D E DASSL
N STE P 1507 1920 124 178
N FE 9414 15359 522 589
N JE 212 685 90 210
GERR 2 5  x 101 4.7 x 10~° 3 0 x 105 8 0 x 107

Tol =  10"4 D IR K  (2,2) Comp. Int LSO D E D ASSL
N STE P 9965 4938 340 550
NFE 62334 40525 1394 2023
N JE 1380 863 340 550
GERR 9.0 x IO"3 1.3 x 10° 2 0 x 103 4.6 x 102

Table 611

Problem  P 5  (R oche [62], in dex-1 pendulum  equations)

y[ =  ya-yiye
V2 =  2/4 -  V2V6

y'z =  - y i y s  

y'4 = -y iy $  - 1 
0  =  y l + y l - y 2 - y s
0 =  y6 (6  1 7 )

w ith  yx =  1 , y2 =  y 3 =  y 4 =  y 5 =  ye =  o and t €  [0 , 1 ]
T h is  is the last index-1  problem  we consider, it is a  version of the Pendulum  

Equ ation s, introduced in C h ap ter 4 , in modified in dex-1 form  A ll m ethods solved 

this problem  w ith no apparent problems except for the D IR K (2 ,2 )  scheme at the 

higher tolerance. T h e  m ethod requires about 6  function evaluations per step, this 

coupled w ith  the fact th at the m ethod is conservative accounts for this difference 

R oche [62] solved this problem  w ith  a constant step m ethod in order to access the 

behaviour o f the global error W e repeated sim ilar experim ents for the Com posite  

scheme O ur results shown in Table 6  1 3  indicate that we are n early obtaining an  

0 ( h 2) level of global accu racy for the stepsizes considered W e mention th at this level 
of accu racy falls off as h is further decreased and we attribu te  this to rounding error 

It therefore appears th at this scheme does not seem  to suffer from  the order reduction  

effects th at occur for some m ethods as pointed out by R oche [62]

6.6.3 Index-2 problem s.
Problem  P 6  (linear)

T h is problem  is taken from Brenan &  Petzold [5], it is a  linear non-constant coefficient 

Index- 2  D A E

y[ = -e _<yi +  V2 +  y 4 + y s -  e-<

97



Problem P5

cs10r-HII~oE-. D IR K  (2,2) Comp. Int. LSO D I D ASSL
N STE P 4 5 20 9 1 3
NFE 270 10 3 1 2 2 2
N JE 10 6 3 8
GERR 3.0  x  IO "3 6.6 x  IO "3 3.0  x  IO "2 1.0  x  1 0 " 1

Tol  =  IO "4 D IR K  (2,2) Comp. Int. LSO D I DASSL
N ST E P 3 2 6 3 7 19 2 2
N FE 2004 29 8 30 40
N JE 40 1 7 4 10

GERR 3.0  x  IO "4 2 .2  x  I O '4 1.0  x  IO "3 2.0 x  IO "3

Table 6.12

Global errors o f Composite Scheme
h error /i3

1 .0 - 1

5 .0 - 2 

l.O "2

1.6  x  IO "3 

4.0 x  IO "4

1 .7  x  IO "5

1.0  x  IO "3 

1 .3  x  I O '4

1.0  x  1 0 " 6

5 .O- 3 7 .1  x  1 0 " 6 1 .3  x  1 0 " 7

Table 6.13

y'2 = - y i  + i/2 -  sin(f)t/3 + 2/5 -  cos(i)

2/3 =  sin (i)y i +  y3 +  sin (i)y4 -  sin2(i) -  e_< sin(i)

y\ =  cos(*)t/2 +  y3 +  sin (i)y4 -  e_ t( l  +  sin (i)) -  cos2(<) -  e-<

0 =  y i sin2(t) +  1/2 cos2(i) +  (y3 — et)(sin (i) +  2  cos(i))

+  sin(i)(t/4 — e_ i )(sin (i) +  cos ( t )  — 1 )  — sin3 (i)  — cos3 (i)

w ith  exact solution

2/i =  sin (i), 2/2 =  cos(f), y3 = et yA = e~t y 5 =  e* sin (i)

and i e  [0 ,1].

W e initially rem ark, that at the higher tolerance D I R K (2 ,2 ) failed to take a first 

step w ith  a singular iteration m atrix. T h e  difficulty here is th at the error on the initial 

step is large. T h e  reason for this is that two solutions are being com puted in the one- 
step tw o-half-step error estim ate. T h e  discrepency between these is quite large when  

h is sm all for this problem. It is therefore im possible for the m ethod to take a step  

once the tolerence is decreased. Petzold’s error estim ate also proved useful here, 

the m ethod was unable to integrate the system  w ithout its use. L S O D I was unable 

to solve the problem  at either tolerance, the corrector iteration failed repeatedly. 

However when a one-step m ethod did succeed in integrating the equations, it did so 

quite efficiently, finding no apparent problem s w ith the higher index.
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Problem P6
Tol  =  IO" 2 D IR K  (2,2) Comp. Int LSO D I D ASSL
N STE P 5 4 65 28

N FE 34 8 659 7 3

N JE 1 3 3 1 14

G ERR 7  0 x 1 0 " 3 7  9 x 1 0 " 3 1  0  x 1 0 ~ü 1  0  x 1 0 “ °

Toi =  10 -4 D IR K  (2,2) Comp. Int LSO D I D ASSL
N ST E P
NFE
N JE
GERR 1 0 x 10°

54 4  

58 6 3  

25 8  

2  4 x  10 3~ 

Table 6.14
1 0 x 10°

634  

12 9 7  

3 3 6  

1  0  x  1 0 °

W e also conducted fixed step experim ents sim ilar to those o f B renan &  Petzold [5] 

for the one step schemes W h ile  the presentation of our results is different to th eir’s, 

we point out that the results of T able 6 .1 5  show that our m ethods are 0 ( h )  accurate  

which is consistent w ith their results

Global errors o f One Step schemes
h D IR K  (2,2) Comp In t
1 3 _ 1 3.9  x IO" 2 7  5  x IO ’ 2

6 3 ~ 2 1  6 x 1 0 " 2 2  7  x 1 0 " 2

3  I " 2 1  2  x 1 0 ~ 2 1  1  x 1 0 ~ 2

1 . 5 - 2 7  4 x 10 ~ 3 5  1 x 1 0 ~ 3

CO1OO 4.0 x 10 " 3 2  4  x 1 0 “ 3

3  9 ~ 2 2  0  x 1 0 ~ 3 1  1  x 1 0 ~ 3

1 9 - 3 1  1  x IO“ 3 5  8 x 1 0 ~ 3

7 9 ~ 4 5  3  x IO" 4 2  9  x 1 0 " 4

Table 6  15

Problem  P 7  (Sim ple Pendulum  Equations m index- 2  form  )

Once again these are taken from  Brenan &  Petzold [5] T h is is a  nonlinear index-2  

system  o f D A E s

Vi =  2/3 -  ?/i 2/6

V2 =  i/4 -  i/22/6

y'3 =  - 2/ 1 2 /s

Va =  “ 2/22/5 -  1

0 =  ( i - y i - y D / 2

0 =  ym  + 2/22/4
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with initial values y l =  1 , 2/2 =  2/3 =  2/4 =  2/s =  0  and t G [0 , 1 ]
Sim ilar behaviour to the previous exam ple is observed here, D IR K (2 ,2 )  failing at 

the higher tolerance and unable to successfully integrate the system  w ithout Petzold ’s 

estim ate. L S O D I was unable to take a first step at an y tolerance and both the 

C om posite scheme and D A S S L  integrated the problem  efficiently at both tolerances 

as the figures m T ab le  6 .16  indicate.

Problem P7
Tol  =  IO"2 D IR K  (2,2) Comp. Int. LSO D I DASSL
N STE P 343 27 17
NFE 2118 173 47
N JE 44 9 13
GERR 2.7 x 10"2 1.6 x 10~2 1.0 x 10° 1.7 x IO“2

Tol =  10~4 D IR K  (2,2) Comp. Int LSO D I D ASSL
N STE P 80 78
NFE 620 200
N JE 23 66
GERR 1 0 x 10° 9.0 x IO"3 1 0 x 10° 1 3 x IO"4

Table 3 16

O nce again we conducted fixed step experim ents sim ilar to those conducted for the 

previous problem  A s  the figures given indicate the D IR K (2 ,2 )  scheme does not attain  

0 ( h )  accuracy. T h u s it seem  to be experiencing significant order reduction effects 

T h e  Com posite scheme however is approaching the 0( h )  level of global accu racy  

which is quite good considering the nature of the problem

Global errors o f One Step schemes
h D IR K  (2,2) Comp. Int
1 3 - 1 2.6 x IO"1 7 7 x IO"3
6 3-2 1 4 x IO"1 5.7 x 10~3
3 I"2 7 0 x IO”2 3.2 x IO"3
1 5 - 2 3 0 x IO"2 1.7 x IO“3
7 8-3 1.8 x IO’ 2 1 1 x IO“3
3.9-2 7 6 x IO"3 5 0 x IO"4
I . 9 - 3 5 0 x IO"3 3 0 x IO"4
7 9-4 2.0 x IO"3 2 0 x IO"4

Table 6  17

T h e  results discussed for the m dex-2 system s clearly indicate th at the conditioning  

of the iteration m atrix is the key issue m solving higher index D A E  sytem s Unless 

this question can be successfully resolved, num erical O D E  schemes will rem ain exper

im ental for this typ e o f problem  A  robust D A E  solver therefore w ill p robably have
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to avoid N ew ton based iterative schemes. T h e  Tensor approach outlined in the next 

C hapter, m ay help in overcom ing this draw back m current D A E  integration routines
B ased on our results, we can also suggest that Petzold ’s error estim ate (5  1 3 )  and  

its derivations given in C h ap ter 5  appear to be very useful R ecall from  above, th at it 
was an essential ingredient for the one step m ethods developed in this thesis to solve 

the index- 2  problem s considered.

A ll the results quoted dem onstrate that the one-step solvers are adequate and  

reasonably efficient for solving D A E s . However it must be pointed out th at the L S O D I  

and D A S S L  integration routines are m ore accurate and efficient at higher tolerances, 

as w as th e case for O D E s. C learly  the preference for index- 1  problem s should be  

the L S O D I algonthm , because it is m ore reliable, although sometimes less efficient 

than the other m ethods considered For index-2 problem s there appears to be only  

one choice in term s o f reliability and accuracy, the D A S S L  algorithm . However the 

sim plicity of the one step schemes along w ith  their efficiency at low tolerances, m ay  

make them  useful as E llip tic/P ara b o lic  P D E  integration routines using the M ethod  

of Lines. W e therefore feel justified m saying th at the schemes researched in this 

thesis provide an adequate alternative to B D F  based codes for in dex-1  problem s at 

low tolerance values
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C hapter 7 ,

C onclusions and Future 
D irections.

7.1 Introduction.
T h is thesis has studied the num erical solution of O rd in ary and A lgebraic Differential 

Equations In the first C h ap ter we set out the objectives of this stu d y W e identified 

the prim ary objective as the developem ent of efficient one step num erical m ethods 

for the solution of O D E s A ssociated  w ith this, we pointed out our intention to study  

the theory of num erical schemes for O D E s.

H aving completed our stu d y of O D E s, we extended our brief to include D A E s  

O ur objective was to extend the one step num erical schemes to handle D A E s  In 

order to accom plish this task, we intended to cite recently published theory, which  

m ight aid our understanding of D A E s  and their num erical solution.

O ur intention then in this C hapter, is to evaluate our work against the objectives  

set out initially In the next section we will review  our work and try  to draw  some 

conclusions T h en  in section 3 , we w ill briefly consider the Tensor approach to solving  

nonlinear system s of equations as an alternative to N ew to n ’ s m ethod F in a lly  we close 

the thesis w ith a look at some possible extensions o f D A E  type problem s It is our 

belief th at these problem s have never been seen in the literature

7.2 R eview  and Conclusions.
In C h a p ter 2 we outlined the theory of stiff O D E s Con cepts of convergence and  

order o f accu racy were defined for num erical schemes applied to O D E s In particular  

we identified two well known types o f num erical m ethod, the R u n g e -K u tta  (R K )  

m ethods and the B ackw ard  Differentiation Form ulae (B D F ) ,  as special cases o f the  

general Lin ear M ultistep M ethod (L M M ) W e concentrated heavily on R K  m ethods, 

defining stability concepts th at have been well docum ented m the literature W e gave  

a num ber o f reasons w hy it is desirable for a  one-step m ethod to possess one of the 

m any form  of stability discussed B u t prim arily we pointed out th at stability would  

ensure linear error grow th when solving stiff O D E s C lassical m ethods such as the 
Eu ler m ethod

V n + l  —  V n 4" h f ( t n, y n)
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failed to be efficient for solving these problem s T h e  reason w e gave for this w as that 

the stepsize had to be kept very sm all to ensure th at the num erical solution converged  

to the true solution of the problem  w ith  the expected order of accu racy

W e also considered practical aspects o f solving O D E s  in C h ap ter 2  N ew to n ’s 

m ethod was applied to solve the nonlinear equations th at arise from  the application  

of an im plicit num erical m ethod to an O D E  R ecall th at we pointed out that the 

size o f the Lip shitz constant forced us to use a M odified N ew ton  m ethod rather than  

functional iteration on stiff O D E s. T h en  we considered error estim ation for num er

ical schemes. T h e  purpose of an y practical error estim ate is to instruct a  num erical 

m ethod to change the stepsize when conditions are desirable to do so. W e considered  

three possible estim ates that have been w id ely im plem ented. T h e  B D F  m ethods usu

ally use the difference between the predicted and corrected solutions, while em bedded  

and extrapolation techniques are used for R K  m ethods. W ith  an y error estim ate, the  

am ount of work involved in its im plem entation is the prim ary factor in its choice 

However this must be m easured against the sim plicity o f the estim ate and its reliabil

ity  W e adopted the one-step-tw o-half-step extrapolation estim ate for the D IR K (2 ,2 )  

scheme for this reason T h a t is because the technique is easily understood, well doc

um ented m the literature and proved reliable for other workers, such as A lexan d er [1 ] 

and Hall &  W att [38]

C h ap ter 3  introduced the one step schemes th at are the backbone of this thesis 

W e proved accuracy, A -,  L -, S- and Stron g S-sta b ih ty  for the D IR K (2 ,2 )  m ethod, 
while we quoted C arro ll [18] for accu racy requirem ents, A - and L -sta b ility  of the  

C om posite Integration scheme Based on this theory, we developed two algorithm s 

for the num erical solution of Stiff O D E s T h ese algorithm s were coded as variable  

step integration routines in Fortran Recall th at the D IR K (2 ,2 )  im plem entation used 

an extrapolation based error estim ate and Rosenbrock m ethod for the solution of the 

nonlinear system  T h e  C om posite Integration schem e used a  modified N ew ton m ethod  

for the nonlinear equations and an error estim ate based upon a  linear com bination of 

available function values.

T h ese algorithm s were tested on a selection of problem s from  D E T E S T  [27] T h e  

problem s we chose, were those that C arro ll’s [18] im plem entation found difficult and  

those solved by A lexan der [1 ] W e dem onstrated th at our D IR K (2 ,2 )  code, proved  

as efficient as A lexan d er’s, on all problems except B 5  O ur code proved considerably  

more efficient m term s of Ja co b ian  evaluations, while it was less efficient w r t  the 

number of function evaluations required

T h e  Com posite Integration scheme was least com petitive m term s of the statistics  

m easured, but again was efficient in term s of Ja co b ian  evaluations w ith  reasonably  
good overall error behaviour Com pared to C arro ll’s [18] results quoted in C h ap ter 3, 

we found our im plem entation to be slightly more efficient on the problem s considered 

Based on our num erical results of C h ap ter 3 , it is clear th at the one-step schemes 

meet the standards set out in our objectives in th at they provide an efficient alterna

tive to B D F  m ethods, when solving stiff O D E s at low or m oderate tolerances

In C h ap ter 4 we turned our attention to the second m ajor topic o f this study, 

D A E s  W e spent considerable tim e introducing the concept of index T h e  connection  

between stiff O D E s and in dex-1 D A E s  w as dem onstrated T h is  w as the reason we 

gave for applying stiff O D E  numerical m ethods to the index- 1  problem  W e then went 

on to review  the literature on D A E s  and outlined the transform ation to Kronecker
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canonical form  for the linear constant coefficient D A E  T h is transform ation allowed 

us to define the concept of index, as the dimension of the nullspace o f the differential 

operator for a  D A E . T h e  transform ation was further generalized to the non-constant 

coefficient problem  and the notion of global index was defined. F in a lly  the index 

of a  general D A E  w as defined in term s o f the num ber of differentations required to 

generate an equivalent O D E  system .
Initial conditions for D A E s  were then considered W e gave an exam ple of Pan- 

telide’ s algorithm  [54] for generating consistent sets of 1 c ’ s. T h e  chapter closed w ith  a  

look at possible m ethods for determ ining the index of a  D A E  system  R ecall th at the 

only p ractical m ethods were graph-theoretic and these could have exponential run

ning time. Consequently it is very difficult to estim ate the index unless the problem  

possesses some structure. T h e  reason w h y the index is so vital is th at it determ ines 

the behaviour o f a  num erical m ethod on a  particular D A E

N um erical aspects were dealt w ith in C h ap ter 5 . A g a in  we were interested in 

num erical accu racy and stability. For in d ex-1 D A E  system s the behaviour is similar 

to the stiff O D E  case, as we dem onstrated by an alyzing the B ackw ard  Eu ler on 

this problem  However, the results of Petzold [55] for the linear constant coefficient 

problem  show th at errors m ay not decrease as the stepsize h —» 0 , for higher index  

D A E s  T h is, coupled w ith the fact that stability for num erical m ethods is not well 

understood for higher index D A E s , makes them  unsuitable for solution b y numerical 
O D E  m ethods

T h e  problem  of error control can be overcom e if a  suitable error estim ate is avail

able. W e recom m ended the use of the estim ate introduced b y Petzold [55] T h is  

estim ate had the property th at it only included sta te  variables in the calculation of 

error Petzold [55] also showed that the estim ate accu rately reflects the local contri

bution to global error for B D F  m ethods on index-2 problem s

T h e  m ost significant problem s to overcom e in solving D A E s  are keeping the iter

ation m atrix  nonsm gular and generating consistent initial conditions T h e  B ackw ard  

Eu ler m ethod can be used for the purpose of finding i .c ’s for linear D A E s . However 

no effective num erical techniques are available to handle this difficulty m general In 

order to ensure th at O D E  codes will be robust enough to handle D A E s , the question  

of singularity in the iteration scheme for the nonlinear equations m ust be addressed  

To date, no adequate techniques have been developed to  overcom e this problem  T en 

sor m ethods, to be discussed in the next section, m ay provide a useful alternative to 

standard N ew ton schemes for this difficulty
W ith o u t an understanding of the theory o f C hapters 4 and 5 , it would be fruitless 

to attem pt to solve D A E s  H aving considered the difficulties raised, we are aware  

that failure of an O D E  code on D A E s  is prim arily due to tw o factors inadequate  

error estim ates and poor conditioning of the iteration schem e T h ese difficulties can  

be m anaged by the techniques outlined if th ey are understood H owever, since the  
tools to com pletely deal w ith  these problems have not been perfected, it appears that 

a robust general D A E  solver will take considerable effort to develop O ur codes take 

into account the difficulties mentioned and attem pt to m anage them  in as sim ple a  

m anner as possible.

C h a p ter 6  returned to the one step schemes and outlined som e m odifications 

th at would allow O D E  based codes to handle index- 1  and -2  D A E  system s Recall 

that the m odifications we suggested were simple in structure and interfered w ith the
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original construction of the algorithm s, given m C h ap ter 3 , as little as possible In this 
C h ap ter we also outlined the L S O D I [43] and D A S S L  [56] polyalgorithm s. T hese were 

B D F -b a se d  variable order integration routines for solving D A E  and Im plicit O D E  

system s T h e  prim ary difference between these m ethods and the one-step schemes 

was th at we used the D irect formulation of the problem , while the polyalgorithm s 

opted for the Residual formulation given in C h ap ter 5 .
A fte r discussing the m ethods, we gave a selection o f test problem s. Several of 

these were O D E s from  D E T E S T  [27], recast as D A E s  O ur results for these in dex-1 

D A E  system s dem onstrated th at the one step m ethods are efficient alternatives to 

B D F -b a se d  codes on most problem s. A ll problems except B 5  produced efficient and  

consistent results W e also considered some other m d ex-1 system s that have appeared  

in the literature. A gain  our one-step schemes proved as reliable and efficient as the 

polyalgonthm s O nly Fuher’ s problem  [30] posed an y real problem s for the one step  

schemes It must also be stated th at the B D F  based codes also found difficulty 

w ith this particular problem For this reason we suggested th at our schemes are an  

adequate alternative to the B D F -b ased  codes and m et w ith  the objectives set out 

initially
On index-2 problems however the perform ance was quite good In fact our m eth

ods were able to solve the problems given at the lower tolerance T a b le ’ s 6 .1 5  and  

6  1 7  dem onstrated th at the one step schemes produced levels of global accu racy con

sistent w ith  theory, as predicted by Brenan &  Petzold [5]. T h e  L S O D I algorithm  was 

com pletely unable to handle the problem s given In contrast, the D A S S L  routine was 

able to integrate the index-2 system s at both tolerance values efficiently B ased  on 

our observations therefore, we recomm end this routine in preference to the one step  

schemes developed m this thesis It m ust be said, how ever, th at the one step m ethods 

still prove useful for m dex-2 D A E  system s T h eir sim plicity allows easy m odification  

T h u s th ey can be included as integration routines m  P D E  solvers using the M ethod  

of Lines. W e therefore feel th at they should not be com pletely discounted as higher 

index D A E  solvers

7.3 Tensor m ethods for solving N onlinear Sys
tem s.

Tensor m ethods are a class of general purpose m ethods for solving system s of non
linear equations T h e y  are intended to efficiently solve problem s where the Jaco b ian  

m atrix o f the system  at the solution is singular or ill-conditioned T h eir distinguishing 

feature, is that th ey base each iteration on a  quadratic m odel of the nonlinear func

tion In this section we sum m arize the work of Schnabel &  Fran k  [64], m  developing 

Tensor m ethods th at are com putationally efficient m space and tim e
Consider the general nonlinear system

f ( x ^ )  =  0 ( 7 .1 )

where it is assum ed th at f  ( ) is tw ice continuously differentiable and is th e solution  

to (7  1 )  In order to approxim ate the solution of (7  1 ) ,  the standard approach is to  

base each iterate upon a linear model o f f (  ) around the current iterate x ^ ,  thus

f ( x (,) +  h) =  f(x < ‘ >) +  J (,)h ( 7  2 )
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where h  G R n, is the correction vector and G R.nX" ,  is the Ja co b ia n  m atrix  of 
f (  ) at x ^  N ew to n ’s m ethod sets the next iterate x^‘+ 1  ̂ to the value of x ^  +  h , that 

solves (7 .2 )  giving

X(.+1)= X W f(x M.

T h e  m ain draw back of N ew to n ’s m ethod, is th at it fails to be q u ad ratically con
vergent if •/(') is ill-conditioned or singular. Schanbel &  Fran k [64] point out that 

under these circum stances N ew to n ’s m ethod is only linearly convergent w ith  constant 

converging to 1  / 2  For exam ple the behaviour of the sequence of iterates in the 

scalar problem  is, (see Schnabel &  Frank [64])

|I ( * + i ) _ x W | =  cW |x W _ a;(*)|

w ith  hmk-+oo< =  1 / 2  and being sufficiently sm all.

T h e  m am  aim  of Tensor m ethods is to  provide a  general purpose schem e th at will 
have rapid convergence on ill-conditioned and singular problem s T h e y  are based on 

expanding the linear model o f f  ( ) around x ^  to the quadratic model

f ( X W +  h ) =  fW  +  h  +  ^ T (*>hh (7  3)

where €  pnxnxn T h e  three dimensional object T ^  is called a Tensor and we 

follow Schnabel &  Frank [64] calling (7 .3 )  a  Tensor m odel T h e  term  T ^ h h  in (7  3) 

is defined by the quadratic form

( t (,> h h )^  =  h ^ h

where H} is the j th horizontal face of that is the Hessian m atrix  associated with  

the j th com ponent function of f (  )

T h is m odel has a  num ber of serious disadvantages

(a) n3  second partial derivatives would have to be com puted,

(b) n3 / 2 additional storage locations would be needed com pared to n 2 for the N ew ton  
model,

(c) to find a root of the model, each iteration would have to solve n  qu ad ratic equations 

m  n unknowns, which requires an iterative process when n >  1 ,
(d) finally, the m odel m ay not have real roots

Schnabel &  Frank [64] overcom e these problem s b y avoiding the explicit calcula
tion o f the Tensor term  in (7  3 ) , th ey construct b y asking the m odel to interpolate  

through previously com puted values of the function f (  ) In particular th ey require 
that

f ( x ("*>) =  f  ( x (*>) +  J (,)s (fc) +  i  T ( , ) ( 7 4) 

k =  1 , 2 , 3 ,  ,p

where

s<*> =  x<-*> -  x «

and x ( - 1 ),* ,x ( -p ) are p  past iterates th at need not be consecutive. T h e y  use a

modified G ram -Sch m id t algorithm  to select past iterates to include in the calculation  

of which requires about n 2 m ultiplications and additions. T h e  equations (7 .4 )
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are a set of n p  linear equations in n3 unknowns Schanbel &: Frank choose to be 
the solution to

m in im ize

subject to
Os (fc)s (fc) _  t (fc) =  2  ( f ( x (fc)) -  f  ( x (,)) -  J (,)x (fc)) 

where || • ||f  is the Frobenius norm  T h is has solution (see Schnabel &  Fran k [64])

r ( ‘ ) =  £ a < fc>s(fc> s «
k = l

w ith

and M  is a  positive definite m atrix defined by

M j,i =  {s] s ‘) 2 1 <  j J  <  P-

Su bstitu tin g this in (7  2 )  gives

f ( x (,) +  h ) =  f ( x (,)) +  J (,)h  +  1 / 2  £  a (fc) (h *s(fc)) 2 (7  5)
k = 1

Schnabel &  Frank [64] subsequently solve these equations by noting th at f ( x ^  +  h ) 

is quadratic m a p-dim ensional subspace spanned by and linear in its orthogonal 

com plem ent T h e y  ap p ly an orthogonal transform ation to partition the system  so that 

the first n  — p  com ponents are linear and the rem aining p  com ponents are quadratic  

T h en  th ey apply the Q R  algorithm  to solve the Tensor m odel
Schanbel &  Frank [64] give an algorithm  for this process and com m ent th at on 

singular system s the solution is usually well-posed T h e y  point out th at linear part 

of their model is usually well-conditioned, while the ill-conditioning of the standard  

model is moved into the quadratic equations in the Tensor approach outlined T h is  

is also well-posed due to the tensor term  Schnabel Sz Fran k [64] also provide test 

results to dem onstrate the efficiency of their approach T h e y  show th at on singular 

problems their m ethod is at least 30 %  more efficient than the standard m ethod  

Because this m ethod appears to be very efficient on ill-conditioned problem s, we 
feel th at it would considerably im prove the robustness of currently available D A E  

solvers W e therefore think that it would be worth while to research this approach  

further m the context of Differential A lgebraic Equations

7.4 E xtensions o f DAE problem s.
T h e  last problem  we introduce into this thesis which, to our knowledge, has never 

appeared in the literature, is m ixed differential, linear and nonlinear program m ing  

problem s W e present some possible versions of this problem  which we feel could arise 

although we have no justification for m aking this assm ption T h e  linear versions could  
take the form

m ax F(t ,  y , y' , z)  =  y' -  f ( t , y , z) -
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ay + bz + g(t) < 0

where a, b are constants T h e  nonlinear problem  m ay be ju st the linear constraint 

replaced by one o f the form

g{ t , y , z )  < 0 .

O bviously more general versions of this problem  can be constructed based on the 

D A E  problem s introduced in C h ap ter 4. W h ile  we have not analyzed these problem s 

as th ey are outside the scope o f the present work, certain questions can be im m edi

ately  asked In particular existence and uniqueness need to be guaranteed for their 

solution. W h a t an alytic techniques are available for this typ e  of problem . Is our 

knowledge of O D E s and D A E  s useful in this context. C a n  our num erical m ethods 

be ad apted to handle such problem s, b y possibly introducing some kind of Pen alty  

Function technique to constrain the equations further, so th at a  solution can be found. 

F in a lly  w e ask does this ty p e  o f problem  ever occur in p ractice or is it ju st som e kind  

of m athem atical m utant th at we have constructed W e have not considered these 

questions but sim ply pose the problem  as an interesting generalization of O rdinary  

and A lgebraic Differential Equations considered in this work

subject to
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A ppendix  A

Equivalence o f D IR K (2,2) and  
C om posite Integration  schem es.

Recall the Composite Integration scheme The composite pair of formulae for the 
scalar first order ODE are

t/n + 7  =  yn + q/h [(1 -  9) fn +  0/«+7] (A. l)

and
a 02/n +  OCiyn+y +  C*2 i/n+l =  h fn+1  (A 2)

Consider the first stage (A 1 ), letting kx = h f ( t n, y n) this becomes

J/n+ 7  =  Vn +  7 ( 1  - 9 ) k x +  7 9h / n + 7  (A 3)

Now letting k2 =  h f ( t n +  7 h, yn+-y), we have

h  =  j (A 4 )

Substituting the expression for yn+7 in (A.3), into equation (A 4), we get

k2 = h f ( t n +  7 h, yn +  7 ( 1  -  9)kx +  7 0k2) (A 5)

Taking the second stage (A 2), letting z = a xyn + 1  +  a 0yn and putting k3 =
h f { t n +  h ,y n+1 ), we obtain

Vn+i =  ( l / « 2 ) { ^ 3  ~  z}

giving

h  = h f  ( t n + h, {fc3  -  z}^  . (A 6 )

Now substituting successively for the unknown 2  in terms of yn, kx, k2 and using the 
order relations from Chapter 3, we get

£ 3  =  h f  ( t n -f h , yn — 7 (1 — Q)h — 1 0 k2 +  . (A.7)
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T he Coefficient m a trix  for this m ethod is therefore

0 0

7 7 ( 1  -  9) 7  9
1 ^ 7 ( 1  -  9) =*“ ■7 9oco 1 l / a 2

^ • 7 ( 1  - ^ 7 0C*2 l / o :2

(A 8)

N ote A ll rows sum  to 1  including the row of weights

F in a lly  letting 9 =  1 and recalling that 7 9 =  l / o ^ ,  the above m atrix becom es

0 0

7 0 7
1 0 1 - 7 7

0 1 - 7 7

(A .9 )

Since no inform ation is required from  the quadrature point t n, we can rew rite this 

array as

( A  10 )
7 7
1 1 - 7 7

1 - 7 7

T h is is the coefficient m atrix of the D IR K (2 ,2 )  scheme of C h a p ter 3 , since j 9  = 7  =  

1  — 1 / y/2 R ecall th at this was the value choosen when we im plem ented the D IR K (2 ,2 )  

scheme
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