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Abstract

This thesis addresses the problem of finding numerical solutions to ordinary and
algebraic differential equation systems QOur primary focus 1s the application of one-
step numerical schemes to these problem classes

Firstly we concentrate on the narrower class of explicit Ordinary Differential Equa-
tion (ODE) systems We analyse the theory necessary develop efficient algorithms
based on our chosen one-step numerical schemes These algorithms are then applied
to the solution of a standard test set of ODE systems The results are then compared
with those obtaned using standard software packages on the same problem test set

Our theory 1s then extended to include the wider class of Algebraic Differential
Equation (more commonly called Differential Algebraic Equation (DAE)) systems
Based on this theory, we are able to adapt our one-step schemes to solve this harder
class of problem Once again the resulting algorithms are tested on a selection of
problems and results are compared with those obtained from standard software pack-
ages On all problems considered, we demonstrate that our techniques can often
provide efficient alternatives to the more complex methods adopted 1n the standard
software packages designed for these problem classes
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Chapter 1

Introduction.

1.1 Systems of differential equations.

The time behaviour of many natural and technical processes, can be described by
systems of Ordmary Differential Equations (ODEs) In general, two types of systems
anise. The expliait first order system

y'(t) =£(t,¥(?), t € [a,] (11)

with y(a) given For this system, y(t), y'(¢) and f( ) are n — dimensional vectors
The second system 1s the general implicit ODE given by

F(t,y(1),y'(t)) =0 t € [a,] (12)

with both y(a) and y’'(a) given. Once again y(t),y’(¢t) and F( ) are n — dvmensional
vectors

Typically exphcit systems (1 1) and imphat systems (1.2) anse in similar ar-
eas For example, electronic circuits can be modelled by systems of ODEs Dynamic
elements such as capacitors and inductors generate differential equations while the 1n-
clusion of static elements 1n the circuit give rise to algebraic equations The algebraic
equations are coupled to the differential equations forrung a Differential Algebraic
Equation (DAE) system, see Campbell [12]

Control problems, solved by variational techniques, provide us with another exam-
ple of ordinary differential systems In some cases, the Euler-Lagrange equations lead
to explicit systems However, the best known control problem, 1s the hinear quadratic
regulator !

x' = Ax — Bu x(a) = X,

with the associated cost functional
b
J(u) = / {xtHx-i- thu} dt

The matrices H and Q are symmetric and positive defimte Using the theory of
Lagrange multipliers, the necessary conditions for a minimum, see Campbell & Meyer

1We drop the dependence of x and u on t for clarity



(11}, are

x = Ax+ Bu x(a) = X,
N = —AA-Hx A(b) =0
0 = B'A+Qu

Once again, we obtain a system of differential algebraic eqautions

When a system of time dependent Partial Differential Equations (PDEs), are
solved using an approximate technique, such as fimite differences or fimite elements
[59], a system of differential equations arises If the system 1s a coupled system of el-
liptic and parabolic PDEs, then the resulting equations generated by the approximate
technique are differential algebraic, see Petzold & Lotstedt [59]

The final example we introduce 1s the singularly perturbed scalar differential sys-
tem

!

¥ = g(ty,z¢)
ez = h(t,y,z2,¢) t € [a,b] (13)

with both y(a) and z(a) given Usually, € 1s a small parameter with |¢] < 1 Systems
of this form prove to be unsuitable for numerical solution The reason for this 1s that
the perturbation parameter, ¢ may take a value smaller than the smallest machine
representable number Then the quahtative assessment of the solution becomes 1m-
portant The limiting case € = 0 must be understood and the resulting DAE system
solved numerically

1.2 Objectives and review.

In this thesis, we concern ourselves with the solution of exphcit ODE systems 2 (1 1)
and DAE systems, which can be written in the form

Ey' =1(t,y(t)) t € [a,b] (14)

with y(a) and y'(a) given In general the matrix E 1s singular To this end, we will
draw on theoretical results for the analytic solution of both (1 1) and (1.4), where
necessary QOur main objective 1s to use the theory given in this work to develop
numerical methods for the solution of ODE and DAE systems We evaluate the
performance of the techniques we propose against some standard algorithms available
for the numerical solution of these problems

In Chapter 2, we study explicit ODEs and their numerical solution We concen-
trate on 'stiff’ ODE systems These problems are similar to the singularly perturbed
systems, but they are suitable for numerical solution Concepts of convergence, order
of accuracy and stability will be discussed for numerical methods apphed to ODEs
We show how numerical methods can be implemented to solve explicit ODE systems

Chapter 3 develops the one step numerical methods that form the core of this
thesis Again, we analyze the accuracy and stability of these schemes We give two
algorithms based on the one-step formula proposed Finally, we test them on some
well known problems that have appeared in the literature

2We sumply call these ODEs for the remainder of this thesis
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The emphasis changes in Chapter 4, where we consider theoretical aspects of
DAEs Two important topics are addressed in Chapter 4. the index, or degree
of complexity of a DAE and the difficulties associated with imitial conditions We
outline a selection of techmques that have appeared in the literature for dealing with
these problems

Once again 1n Chapter 5 we return to numerical methods. We explain why some
DAEs are solvable by numerical methods suitable for explicit ODEs and others are
not We show that the index or degree of complexity of a DAE, determines both the
accuracy and stabilhity of a particular numerical scheme.

Chapter 6 parallels Chapter 3 We extend our one step schemes to the solution
of systems of the form (1.4). Again, we study the accuracy of these schemes, using
the theory developed in Chapter 5. We outline how we intend to change our one step
schemes so that they can be used to solve DAEs We then consider two well known
algorithms, which are available as Fortran routines for the numerical solution of DAE
systems These algorithms are called DASSL (Differential Algebraic System Solver)
and LSODI (Livermore Solver for Implicit ODEs) Finally, a wide selection of test
problems are proposed and solved using all algorithms outlined 1n this thesis

The last Chapter, discusses how successful we feel our software has been 1n solving
the problems considered We discuss where we feel progress can be made 1n the future
in solving DAE systems and close with a discussion of possible extensions of DAE
type problems which to our knowledge have not appeared 1n the literature



Chapter 2

The numerical solution of
Ordinary Differential Equations
(ODEs).

2.1 The theory of ODEs.

In this Chapter 1t 1s our intention to examine the theory of ODEs along with some
numerical methods for their solution In particular we are concerned with solving the
general first order nonlinear vector ODE of the form,

y'(t) = £(t, y(t)) (21)

where

y(t) R—-R" and f(t,y(t)) RxR"—R"

subject to the conditions
y(a) = y. and tE€ [a,b]

The first question we ask ourselves regarding (2 1) 1s, does a solution y(t) exist
and, if so, 1s 1t unique In section 2 we outline the conditions that we need to
mmpose on (2 1) for a unique well-posed stable solution to exist We also examine
the concept of stiffness which 1s very important for the numerical solution of ODEs
Section 3 introduces discrete variable (numerical) methods for the solution of (2 1)
In particular we introduce two well known classes of methods, the Runge Kutta (RK)
methods and the Linear Multistep Methods (LMM) Section 4 discusses the error,
order and convergence of numerical methods when applied to (21) Stability of
numerical methods 1s introduced 1n section 5. We give several definitions of stability
and demonstrate their usefulness through relevant examples Section 6 deals with
the implementation of numerical methods. Finally in Section 7, we look at some well
documented techniques for estimating the error in the numerical integration of (2 1)
and the associated problem of stepsize adjustment.



2.2 Existence and uniqueness.

We assume that f(¢, y(¢)) 1s Lipshitz continuous on [a, b], that 1s there exists a
constant L such that

£ y(1) — £ z(®)lleo < L lly(2) — 2(2) lloo (22)

for allt € [a,b] andall y(t), z(t) € R".
More speaifically if we require the first partial derivatives of f(-) be bounded by
a constant K that 1s,
‘ of,
dy,

for all t € [a,b] and all y(¢) € R", then (22) and (2 3) guarantee a umque, well
posed (in the sense that the solution can be made as accurate as possible by keeping
perturbations small) solution to problem (2 1), see Gear [31]

The most important attribute of (2 1) we are concerned with 1s stiffness When
solving ODEs numerically, stiffness will dictate how well a numerical method will
perform on the ODE To determine whether or not (2 1) 1s stiff, we need to know
something about the nature of 1ts solutions in the neighbourhood of a particular
solution y(t) Hall & Watt [38] consider such a neighbourhood where (2 1) can be
closely approximated by the hinearized varnational equations

Y'(#) - J@O) y(t) -yl - f(t,y) =0 (24)

where J(t) 1s the Jacobian matnx of partial derivatives ? , evaluated at (¢,y)

Remark 21 We deal only with stiff problems in this thesis Non-stiff ODEs are
better solved by numerical methods such as Adams formulae, see [31]

If the variation of J(t) in an interval of ¢ 1s sufficiently small, the localized eigenso-
lutions of (2 4) are approximately exponentials e*! |, where the A's are the localized
eigenvalues of the Jacobian matrix, assumed without loss of generality to be distinct
Thus the solution y of (2 1) in a neighbourhood of the exact solution y(¢) at ¢ are
of the form

<K 1<t43<n (23)

y=y@#)+> aettv,
1=1

where the ¢, are constants and the v, are the eigenvectors of J(t) If we assume
that Re(},), < 0 V2 = 1(1)n, then clearly the components of the solution y will
decay at different rates, given by | 1/Re(,) |, these are called the time constants of
the system The ODE (2 1) 1s stoff , if we have widely differing local time constants
It 1s the range 1n the local values of the "time constants” of a problem that provides
a measure of stiffness

Definition 2 1 (Lambert [46]) The ODE (2.1) 1s said to be stiff in an interval I
of [a,b] if, for t € I, we have

Re(A) <0 :=1(1)n

1The Maximum norm 1s sufficient for the type of functions we consider, however the Supremum
norm may be more appropriate 1n certain situations



d
. max,=1,, Re()\,)

5() = min,—;, Re(},)
where the \,’s are the eigenvalues of the Jacobian matrix of f(¢,y(t)) , evaluated on
the solution y(t) at ¢ Theratio S(t) 1s called the local stiffness ratio of the problem,
see Lambert [46] Problems may be marginally stiff 1f S(2) 1s O(10) while stiffness
ratios of O(10°) are not uncommon 1 practical problems Sometimes a problem
which 1s stiff 1s referred to as a problem with ”widely differing time constants”, or as
a system with a ”large Lipshitz constant”, since

ﬁ of
?\ay

where p( ) 1s the spectral radius of the Jacobian of f(-)

> 0

= L

By

2.3 Discrete variable methods.

Without loss of generahity we consider the scalar version of (2 1)
y' = f(t,y(1) t € [a,b] (25)
with y(a) =y, The exact solution of (2 5) 1s approximated on set of discrete points
a = tht11t2, * 7tf =b

If the discrete variable method ? approximates the true solution y(¢,) at the point
t. by Y., then we shall consider the class of discrete variable methods given by

¥, = s,(h), 0<:< k-1, starting values
and

k
Z A, Yt = h Qf (tm Yntkry® 21 Yn, h) (26)

1=0
0<n<N-—k,
where h = t,41 —t, and Nh=1t,~1t If y.4x does not appear n ®;( )> then (2 6)
1s said to be explicit otherwise 1t 1s imphait. The above class of methods contains a

reasonably wide selection of the most popular discrete variable methods, (see Hall &

Watt [38]) For example the general implicit one-step method, commonly known as
the Backward Euler (BE) method, 1s defined by

Ynt1 =Yn + b f(tag1, Ynt1) (27)

We consider two important subclasses of (2 6). The first of these 1s the Runge
Kutta (RK) methods The idea behind the RK methods 1s to integrate from t, to
tn41 = t, + h, by approximating the integral in

Wltwsr) = y(t)+ [ S(ry(r))dr 28)

2Discrete variable methods are commonly called numerical methods, or numerical schemes when
discussing ODEs We adopt this convention throughout the thesis
3The function & 7() 15 often referred to as the increment function

8



by a quadrature rule The classical RK formulae used well known quadrature rules
such as Simpson’s rule and were all exphcit
To approximate (2 8) we choose quadrature points

C1,C2,y" »Cq

and weights
b17 b‘Z) ’ bq'

We then use the quadrature formula
g
Y(tns1) = y(tn) + Y bk, + Error (29)
=1
with the derivatives approximated by
g
k,=nhf (t,, +ch,yn + Z a,, kJ)
=1

For RK methods therefore, we have that

In general this 1s a set of imphcit equations which we solve for the k,’s and use a
discrete version of (2 9) for our next value of y(¢,4,) thus

q
Ynt+1 = Yn +Z b: kz

1=1

These implicit Runge Kutta (IRK) methods were first introduced by Butcher [8] It
has become standard to follow Butcher and display the coefficients as an array thus

€| a1 G2, y Qg
C2 | Q21 Q22,° , Ay
C3 | @31 as2, y Q3q
(2 10)
Cq | Qq1 Qq2, 5 Qqq
bl b2) Tty bq

It 1s common to adopt the following shorthand notation

i{% 211)

where A represents the matrix of coefficients a,,, b 1s 1s the vector of weights and ¢ 1s
the vector of quadrature points The quadrature points are usually called abscissae,
while 1n the literature they are sometimes called the integration stages We point out
that this representation includes the classical exphcit formulae if a,, = 0, whenever
¢ <) Then each k; 1s given explicitly in terms of the previous ones



It turns out however that the nonlinear equations which arise from the application
of the IRK method to (2 5) are very expensive to solve One way to circumvent
this difficulty 1s to use a lower triangular array of coefficients a,, n (2.10), such
methods have been called semi-ezplicst RK methods in the hterature, see Alexander
[1] If, in addition, all the a, are equal, we have a Diagonally Imphat RK (DIRK)
formula These formula have been extensively studied by Norsett [52], Alexander [1]
and Crouziex [23] and have the general form

G|«
Cy jan «

C3 | a3 as; « (212)

g | Qg1 %q2 - o

by, b, -- b,

Once again, we adopt the shorthand notation

i{% (2.13)

but 1n this case, A 1s a diagonal matrix, with equal diagonal elements

The second class of methods we consider are called Linear Multistep Methods
(LMM), (usually called multistep methods) These methods use previously calculated
information to generate an approximation to y(t,4+x) by yn+x The coeflicients for these
methods are generated by fitting an interpolating polynomal through the points

Yn, Yn+1, y Yntk

An alternative formulation 1s to fit a Taylor series to the linear combination

k k
Z O Ynyy — B Z B; fat; =0 (214)
=0

=0
J = 0) 1,2’ b k
up to a certain order of accuracy, by undetermined coefficients, using the previously

calculated values.

Several well known sets of LMMs have been derived based on this formula, such
as the Adams/Bashforth, Adams/Moulton and Backward Differentiation Formulae
(BDF) due to Gear [31] These formulae form the basis of the most highly successful
algorithm for the numerical solution of ODEs implemented to date, the LSODE
package of Hindmarsh [43]

2.4 Order and convergence.
Consider the ODE (2 5) and assume that the approximate solution y, 1s obtaned by
(2 6) then,
Defination 2.2- The global error at t,,, 1s defined as
€n = Yn — Y(tn)- (215)

10



A natural requirement for any numerical method of the form (2.6) is that en can
be made as small as possible by making h sufficiently small, this is the concept of
convergence.

Definition 2.3: A method of the class (2.6) is said to be convergent if, when
applied to (2.5) we have,

H_m yn = y(tn)

where nh = tn—a for any tn € [a, 6].
As an attempt at accessing the global error we introduce the following concept.
Definition 2-4: The local truncation error (Ite) of (2.6) at tn+k is given by,
k
Tn+k —y ! aty{tn+k) h ~/(*nj J(*n+fc)j S2/¢~n)j ~)* (2.16)
=
The quantity rn+jt is the amount by which the true solution of (2.1) fails to satisfy
(2.6) and may be regarded as the first measure of accuracy. If we consider differential
equations whose solutions are sufficiently differentiable, then it is possible to obtain
an expression for the Ite in terms of higher derivatives of y(t). In this situation we
may write
r, = C(i,, V+1+ 0(V*2)

where C(-) is called the principal error function.
Definition 2.5: The method (2.6) is said to of order p, if p is the largest integer
such that
rn= 0(hp+l), as h—o.

The appropriate minimal level of local accuracy can now be defined.
Definition 2.6: A method of the class (2.6) is said to be consistent if,

max ||r.]] &0 as h —0.
It is consistent of order p, if
max [[r] = 0{hp)

Remark 2.2: Hall & Watt [38] deal with a normalised version of the local trun-
cation error called the local discretization error. Under the assumption that h — o,
they show that by controlling the local discretization error we also control the global
error.

Definition 2.7: The local error (le) of a numerical method is given by
le = u(tn) - yn
where the local solution u(t) is the solution to the ODE,
u'(t) = f(t,u(t)), tx(n_x) = an_1.

Thus in contrast to the Ite where exact back values are assumed, the local error
takes the solution through the last computed point (f,-i,y,_i). The local error is
a very useful concept for test purposes. Usually we think of the the solution un as
being a very accurate numerical approximation to the true solution obtained with a
small step size. Using the concept of local error we are able to include in our test set
problems which do not have closed form analytic solutions. We thendemand that
our estimate of the error behaves like the local error on allproblems in ourtest set
to ensure reliability of the integration method.

u



2.5 Stability of numerical methods.

The stability of a numencal method 1s related to the propagation of perturbations
throughout the solution trajectory These perturbations arise from several sources
including the local truncation error of the method, errors 1n imtial values, round-off
errors 1n the computed solution values and the presence of extraneous eigenvalues
in the solution The numernical method used must be capable of controlling these
errors throughout the solution trajectory A numerical method 1s stable if these
perturbations remain bounded

Definition 2 8 (A-stability) A numerical method 1s absolutely stable for a given
fixed steplength and for a given ODE; if the global error remains bounded as n — oo,
(see Hall & Watt [38] page 34)

The problem with this condition is that it depends on the particular initial value
problem. This has led most workers to consider spealfic test equations Then the
general procedure for exarmmning the stability characteristics of a particular numerical
method 1s to apply the method to the test equation and determine the region of
stability which results.

If the procedure 1s apphied to multistep methods we get a stability polynomal,
while a stability function results when we apply 1t to one step methods, see Lambert
[46] We mention that in this thesis we only implement one step methods and hence
the stability analysis with which we are concerned 1s mainly that associated with this
type of method

2.5.1 Stability properties of the linear test equation.

The hnear test equation 1s given by

"=y y(a) =y, (217)

where A 1s a complex constant with Re(A) < 0 Let us denote the stabihity function
that results when we apply a particular one step method to the solution of (2 17) by
R(z), where z = Ak and h 1s the stepsize We can then formulate several stability
concepts

Definition 2 9 A numerical method 1s A-stable if
|B(2)| < 1

for all z with Re(z) < 0.
Definition 2 10 If further we have that

R(z) -0 as z—> —o0

the method 1s said to be L-stable

Remark 2 3 The importance of the A-stability concept lies 1n the fact that meth-
ods which are A-stable do not restrict the step size on stiff problems The Euler
method, for example, fails to be A-stable A simple calculation yields

R(z)=1+=z.

12



Thus for A-stability we would require k < 1/]A] This 1s a severe restriction on the
step length if A € 0 In fact all exphcit methods fail to be A-stable, see Hall & Watt
[38]

Remark 2 4 L-stability ensures that the numerical approximations to rapidly
decaying solutions with very small time constants will decay quickly These concepts
were 1mntroduced by Dahlquist [24] and Ehle [26] respectively.

Remark 2 5 A-stability proves too restrictive for multistep methods, (the stabihty
of these methods 1s dealt with in Gear [31] and Lambert [46]) Dahlquist [24] proved
that a multistep method fails to be A-stable if the order 1s greater than two Gear
[31] introduced a weaker form of stabihity called stiff stability, which ensures that a
multistep method 1s A-stable in a region D and accurate in a region A of the complex
plane The following diagram illustrates the concept

Im(z)

° A Re(z)

fig21
Gear [31] showed that k step methods of order k are stiffly stable for k¥ < 6

It 15 useful to consider RK methods applied to the linear test equation (2 17) It

1s easy to verify the relation (¢ f Hall & Watt [38])
Ynt1 = R(Z) Yn
with
R(z)=1+ zb'(I—zA)'e (2.18)
where e = (1,1,-- ,1)!, b and A have meanings given i (210) and I 1s a g-
dimensional 1dentity matrix We then have A-stabihity if
l+zb'(I—-2A4)"e| < 1

Writing R(z) as 1 + b*[1/z(] — 2z A)]™" e and taking the limit as z — —oco we get
L-stability if

b'A™le = 1 (219)

13



Solving the model problem (2 17) exactly over one step of length h , we have

Y(tns1) = ezp(z) y(tn)

while the numerical solution 1s

Yn+1 = R(2) y(ta)

thus
exp(z) = R(z) + O(z"*)

The stability function R(z) 1s thus a rational approximation to the exponential of
order p.
Ezxample 2 1. Consider the 6-method given in RK form by

of 0 O
1{1—-6 0
1-06 6

The stability function R(z), that results from the application of the 6-method to the
model problem (2.17), 1s from (2.18)

1+2—20
R(z) = 1—-26

For A-stability we require |R(2)| < 1, this gives the following inequality for z with
Re(z) <0
|z]2(1—26) +2Re(z) < 0

We can ensure this mnequahty holds with Re(z) < 0, if we choose 8 > 05 Since the
coefficient matrix A for the method 1s not invertible, the method cannot be L-stable
by (2 19) However if § = 1, no function evaluation is required at ¢, and the method

reduces to
1 1
1

which 1s the Backward Euler method 1n RK formulation.

Several integration routines used the #-method as the core integrator These
include the STINT integrator of Hall & Watt [38], Prothero & Robinson [60] used
it for the solution of stiff chemucal kinetics problems and Chua & Dew [22] used
this scheme 1n gas dynamics simulations Berzins et al (3] provide a #-scheme 1n

their SPRINT package and Carroll [18] has also used 1t 1n his Composite Integration
Scheme

2.5.2 S-stability.

In their work on large nonlinear systems, Prothero & Robinson [60] found that
1 Some A-stable methods could give highly unstable solutions.

2 The accuracy of the solution obtained 1s sometimes unrelated to the order of the
method used

14



To overcome these difficulties they ihtroduced the concept of S-stability, which
1s concerned with both stability and accuracy of numerical approximations to the
solution of the stiff equation

vV =X{y—g(t)}+4() (2 20)

which has solution
y(t) = exp(At){y(0) — g(0)} + g(t)

Note. g(t) and ¢'(t) are bounded functions over a suitable interval of interest [0,T]
In the limut as t — oo we have

y(t) — g(t)
regardless of the imtial conditions
Let us assume that the one step method IRK method (2 10) 1s applied to (2 20),
we then have the following definition of S-stability due to Prothero & Robinson [60]
Definition 2 11- A one step method 1s S-stable if when apphed to the test equation

(2 20) over one step from t, to t,41, there exist real positive constants Ao and kg
such that
Iyn+1 - gn+1|
Iyn - gnl
provided that y, # g, for all 0 < h < hg and for all complex A with Re(—A) > Ao,
with ¢, and t,4; € [0,T] If we also have

<1

llm Ynt+1l — Gn41 -0
Re(A)—=—o00 Yn — Gn

for all positive b the method 1s Strongly S-stable . Note S-stability = A-stabihity
and Strong S-stabihty => L-stabihty (trivially take ¢ = 0) The converse however 1s
not true

Roughly speaking, S-stabihty means that for a given A with Re(\) < 0, the
upper bound on admissible stepsizes to ensure y, — ¢(t,), does not tend to zero as
Re(—)\) — oo The following example 1llustrates the concept of S-stability in practice
It 15 simular to an example given 1n Carroll [19] but uses a different function g(¢)

Ezample 2 2 The apphcation of the Backward Euler method to (2 20) yields

Yn — Gn + (9n — gn41) + R gl
1—-2

Ynt+1 — Gn41 =

We consider the specific case g(z) = 22 + 1, with z, = nh and denoting 1 — z by ¢,
we have

n—0n 1+A?
¥ g +
q q
Using this relation we can an expression for y, — g, 1n terms of yy — gy, we then have

Ynt1 — Gn41 =

Yn41 — Gnt1 -1 {yo — g0
Intl = Intl
Yn — Gn /q+q 1 +h2

After some manipulation and noting that ¢ > 1 we get the following inequality which
must be satisfied for the method to be S-stable on this problem

+(1+q+- +q"“)}_1

14+ h*+ (30 — 90) < q (30 — 90)
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since ¢ = 1 —z =1 — Ak we can rewnite the above inequalty as

h? + Ak (yo —go) +1 < 0

If yo — go = 0 then the above inequality will never be satisfied as the discriminant of
the quadratic 1s imaginary While if yo—go > 0, the the roots are 0 and —X {yo — go)
With A < 0 we therefore have S-stability for nearly all positive h.

Remark 26 Carroll [19) points out that S-stabihity 1s only meaningful when a
transient component 1s present in the true solution Thus S-stable methods are only
appropnate for very stiff systems, that 1s when yo — go 1s very different from zero

Remark 27 Writing e, = y, — g, Verwer [70] considers the condition for S-
stability 1n the following equivalent form

|en+1| < Ien|

and states that the requirement 1s unnatural since e, — 0 as n — oo unless the local
truncation error does He proposed an alternative version of S-stability called S°-
stability, which ensures that e, 1s uniformly bounded with n, for all A with Re(A) < 0

2.6 Implementation of numerical methods.

In order for a classical Linear Multistep Method or one-step method to be A-stable
1t 1s necessary for the method to be imphat, Hall & Watt [38] Recall the general
Imphicit LMM given 1n section 3, reproduced here for completeness

k k
Z QYnyy — h Z ﬂ] fn+.1 = 0, Q= 1, ﬂk >0 (2 21)
=0

1=0

The mmphat LMM (2 21) above, applied to the non-linear system (2 1) results 1n
the following system of non-lhinear equations

Yotk — B Bk f(tatk, Ynik) —8 = 0 (222)

with g a known vector of past information, to be solved at each integration step
for yn+r The stability properties of (2.21) may only be retained by solving (2 22)

accurately using a convergent iterative method. A simple 1terative method of the

form
ys:-tl:) =h ﬂkf(tn+ka y:;-{-k) + g = 1’27

1s impractical, since for convergence we would require
lhBL] < 1

where L 1s the Lipshitz constant of f( ), (see Defimtion 2 1, section 2) For stiff
systems this convergence condition 1mposes just the type of severe restriction on the
step size that we are trying to avoid

To overcome this difficulty, we use a Newton Raphson procedure, which gives the
following linear system to be solved at each Newton iteration step

[I —h B J'] Ay = Vi B (gr, Yiph) + 8 (223)
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with

+1 _ i+l _ .
AY e = Yok — Ynge t=12,- ,imaz

where I 1s the identity matrix and J* 1s the Jacobian of f(t, 4k, ¥y x), With an upper
bound imaz placed on the number of Newton iterations In practice, with a good
mitial guess for y,4x, convergence occurs 1n two or three iteration steps

In general 1t 1s not necessary to re-form the iteration matrix B at each iteration
step. Since we generally have a good 1mitial guess for y, i, J* 1s usually close to
J% =J and we can replace

B'=1I—hpBJ"

by
B=1-hpJ

and a single LU-decomposition suffices for the 1-iteration steps, this 1s called the
modified Newton method It enhances the efficiency of imphcit methods as frequent
re-factorisations of the iteration matrix are avoided

The IRK methods are solved in exactly the same way for the unknowns k, We
have from (2 9) that

q
kJ =hf (tn +c h,yn + Z a, kl) (2.24)
=1

Applying Newton 1iteration we get the following linear system to be solved at each
iteration step

=1

q
BA@ﬁU=hf&n+qmyf+z)mkp)—kp (2 25)

with
Akg'“’ = kg'“) - kg') 1=1,2, ,imaz

and the iteration matrix has the form
B=I—-hAJ

where A 1s an ng X ng matrix for (21) and J 1s the Jacobian of f(-) at each internal
stage ki, 1 = 1(1)q

As mentioned 1n section 3, an enormous gamn can be obtained in computational
efficiency in these iterations 1f we use DIRK formula, that 1s an IRK scheme with a,, =
0 for 2 < 7 and all the a,, = a, (2 12) The reason for this 1s that the implementation
of IRK formula involves the solution via an LU-decomposition of a system of linear
equations of dimension nq for (2 1) at each time step The implementation of DIRK
methods 1s much simpler as each stage only depends on previous ones

Consider the DIRK(2,2) version of (2.12) given by the formula (we drop the de-
pendence on t for clarity ),

0 = kl—hf(yn+ak1)
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k; can be generated imphatly from the first equation using Newton’s method as
follows

B {k - ki} = hf (yo + aky) =k
letting z = yn(1 — a) k; we get a similar 1teration for k,
B {5 — K} = hf (z +aky) — K
both iteration schemes have an 1dentical iteration matrix *
B=I1-had

with J the Jacobian of f( ) at y, This procedure can be extended to DIRK(p,q)
methods, 1n such situations we have only one LU-decomposition of a system of equa-
tions of dimension n We then have q successive stages where the 1terative process 1s
apphed

For Parabolic PDEs, where n 1s typically large, due to discretization via the
method of lines, the DIRK implementation just outlined provides a considerable sav-
ing 1n computational expense over the full IRK implementation

The implementation of the DIRK(2,2) method used 1n this thesis 1s via the Rosen-
brock [69] techmique Essentially this 1s just one iteration of the modified Newton
scheme for the DIRK methods We can implement the Rosenbrock technique directly
by hneanizing (2 26) about y,, and z as follows

ki = hf(ya)+ahk,J

and agamn J 1s the Jacobian of f( ) at y, This form of implementation has been
widely used by engineers, see Hall & Watt [38]

Two other well known features can be included to improve overall efficiency. Stiff
systems of ODEs generally change very lhttle over long periods of the integration
interval Thus 1t 1s not unreasonable to use the iteration matrix for several steps of
the solution trajectory Most codes include this feature and only update the Jacobian
when 1t 1s really desirable to do so, usually after a step faillure or when the iteration
matrix has been used for a fixed number of successive steps

The final 1mprovement 1s more cosmetic in nature as 1t 1s an aid to the user
Generally the Jacobian must be evaluated by hand For large systems of ODEs, this
may be difficult if not impossible without the aid of a symbolic manipulator However
forward differencing can be used to estimate the partial derivatives thus

_a_ﬁ _ fi (t,yJ + 636) - fi (tayJ)
dy, e,

where e, 1s the normalized j** coordinate vector and £ 1s a scalar increment which 1s
small compared to the magnitude of f, The choice of ¢ can cause difficulty, 1n general
1t should be chosen to prevent scaling difficulties 1n evaluating the partial derivatives

of f,

‘While this 1s technically ncorrect, 1t suffices, since 1t can be assumed that the Jacobians for
each 1teration scheme are virtually 1dentical This assumption 1s valid because f (') 1s assumed to be
a reasonably smooth function

(2 28)
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2.7 Error measurement and Stepsize Strategies.

We outline three methods for estimating the lte during the integration of (21) It 1s
usual to require this quantity to lie within some user defined tolerance so that the
local error remains bounded on the current step Based on the result of this test,
the code may decide to automatically change the steplength, increase or decrease the
order or re-evaluate the Jacobian of the system.

In multistep methods the approach to error estimation 1s to use Milne’s device
[38]. Here a k™ order predictor and a k** order corrector pair 1s used to estimate the
error 1n the latter. The simplest example of this 1s the Euler and Backward Euler
pair, for the scalar system (2 5) this 1s

Yoy = yn+hfn+Clh2
y;+1 = I‘l:«.‘}'hﬂ:+1'*‘Czh2

where p and ¢ mean predict and correct respectively A full description of these
methods may be found in Hall & Watt [38] The difference between these two solutions

(Cy —Cy) h? = y§+1 - ?/fz+1 —h(fa— f:+1)

1s a constant multiple of the principal error C; h? 1n the Backward Euler method

The general approach for RK methods 1s to generate two solutions and use their
difference as an estimate of the local truncation error Two techniques are usually
employed to obtain the estimate The first 1s the embedded methods originally intro-
duced by Fehlberg [28] The 1dea 1s to generate two solutions of the form

Zn41 = y(tn+l) + Cl h?
Yn+1 = Y(tnt1) + Co BP

using the current solution y, The difference between these |yni1 — zu41] = Cy AP
The p** order method for z,,; 1s embedded 1n a method of order p+1 for yn4;
The following example, see Cash [21] demonstrates the technique in practice He
proposed an embedded version of the Strongly S-stable DIRK(3,3) method introduced
by Alexander [1] for the unknown y,,4,

« a
TIT—Q «

1l b by b
& b b

The first two stages of the method are then used as the basis of a second order method

for Zn41
[}
« «Q
TIT—O «

(4] Co
The coefficients ¢; and ¢; are then chosen so that this method 1s of order two

Richardson extrapolation 1s the second method used to estimate the error in the

RK methods We integrate from t,, to ¢,4; twice A full step of length k 1s taken to
give

yn+1,h = y(tn+1) = hp+1 C(tn) + O(hp+2)
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and two steps of length /2 to give the more accurate solution

Ynsihsz = Y(tas1) + 2(R/2)PH C(t,) + O(K™H?)

subtracting these we have

K1 C(t,) = y"“v{' _’;’1‘:1"‘/2. (2.29)

This can be added to the more accurate solution to give an extrapolated value

Yntl,hf2 — yn+l,h}

- (2.30)

Ynt1 = Ynsrp2 + 277 {

Using a numerical method that possesses the appropriate stability properties,
the stepsize h should not be restricted on account of stability or, hopefully, by any
convergence requirements 1n the iterative solution of the nonlinear system Usually
two stepsize strategies are commonly adopted.

1. When the effects on the solution of the transient components with small time-
constants are not of interest, an mtial step-size that 1s large relative to these time-
constants can be used No attempt 1s made to approximate the short term effects
accurately We rely on the stability of the method to damp out transient solutions
when calculating long range behaviour

2 When an accurate representation of the rapidly varying transients in the so-
lution 1s required, the mtial stepsize must be comparable with the smallest time-
constants. )

Methods for estimating the initial step-size will be dealt with in Chapter 3 where
we discuss our methods in more detail When a method leaves the transient (non-
stiff) region of integration 1t 1s desirable to increase the stepsize quickly, to take full
advantage of the stability properties of the method QOur implementation of step
adjustment and local error estimation will also be discussed 1n the next Chapter
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Chapter 3

Variable step integrators for the
solution of stiff ODEs.

3.1 Introduction.

In this chapter, we will consider two specific methods for the numerical solution of stiff
ODEs The first method we consider is the DIRK(2,2) scheme introduced in Chapter
2 The second method we consider 1s the second order Composite Integration scheme
of Carroll [18]

In sections 2 and 3, we discuss the accuracy and stability of both methods re-
spectively Section 4 deals with error estimation, while in section 5 we develop their
iteration schemes The remaining sections implement these methods as variable step
algorithms and discuss respective performances on test problems taken from the lit-
erature

3.2 The Strongly S-stable DIRK(2,2) scheme.

Recall the general matrix representation of a g-stage IRK method of order p 1s, (¢ f

equation (2 10), Chapter 2)
c|A
% (31)

where A 15 a ¢ X ¢ matrix of coefficients a,,, ¢, a g-dimensional vector of stages or
quadrature points and b, a g-dimensional vector of weights

The traditional problem of choosing ¢* + 2¢ coefficients 1n a g-stage method,
so as to obtain the highest possible order of accuracy, subject to stability or other
constraints, leads to a nonhnear algebraic jungle, to which civilization and order was
brought by J C Butcher [7], [8] and M Crouziex [23] These methods proved very
nefficient for reasons we mentioned in Chapter 2. In fact Ennight, Hull and Lindberg
[27] showed that their 2-stage 4**-order method produced poorer results than other
implicit methods. We introduced the DIRK methods in Chapter 2 to overcome these
difficulties Some well known examples of DIRK methods include
1 The imphct midpoint rule, a single stage 2"¢-order method which 1s A-stable

1/2*11£
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2 The 2-stage 3"%-order Gaussian quadrature rule, which 1s also A-stable

1/2+ 5= 11/24 755

2= = 12+5
| 1/2 1/2

Following Alexander [1], we refer to the general presentation (3 1) and make the
following conventions
C is the ¢ x ¢ diagonal matrix

dzag(clac%' ,CQ)

and e 1s a g-dimensional vector
(la 1a T 1)

Theorem 8 1 (Alezander [1]) Let p < 5 To ensure that a DIRK method to be
of order p, for every sufficiently regular function f(,y(t)), 1t 1s necessary that the
relations (3,2) 2= 1(1)p be satisfied !

31. bte=1
32 biCe=1/2, bide=1/2

Theorem 3 2 (Alezander [1]) An A-stable semu-implicit RK formula with positive

diagonal elements 1s S-stable 1ff

|[Ro|]=]1 —btA el < 1

An A-stable formula of this kind 1s Strongly S-stable if 1t 1s L-stable
We now can state the main result of this section
Theorem 3 3 The DIRK(2,2) formula given by

o «
lll—-a «
l—-a o

or

kh = hf(tn+ah)yn+ak1)
ka = hf(ta+ hyyn+ (1 — )by +ak,) (32)
Yny1 = Yn + (1 el a) kl + ak2 (3 3)

with @ = 1 +1/v/2 1s second order accurate, A-, L-, S- and Strongly S-stable
Proof

Accuracy Using Theorem 3 1 part 2, the following relations are satisfied
b'‘Ce=b'Ae=a(l —a)+a=1/2
Thus we get second order accuracy 1f

20  ~4a+1=0

1We only supply conditions for p < 2 the interested reader 1s referred to Alexander [1] for the
full statement which we shall not require
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giving a =1 £1//2
A-stabihity Recall the stability function for R-K methods from Chapter 2, equation
(2 16),

R(2) =14 zb"(I -z A) e

Substituting the DIRK(2,2) formula (3 2) into this relation we get

z(1 — a?z2)

R(z)=1+ ————————(1 o)’

(34)
Therefore we require
1 —2az + z)? < |(1 — az)?}?

to be satisfied, with Re(2) < 0 for A-stability
Writing 2z = Re(2) + 1 Im(z) the LHS of this inequality becomes

LHS =1+42(1 — 2a)Re(2) + (1 — 22)]z|?
While the RHS becomes after some manipulation,

RHS = LHS — Re(z) — {20 — 4a + 1}|2]* — 40®Re(2)Im?*(2)
+40Im*(2) + 4aIm?(2)|z|* + 4a* Re?(2)Im?(z) + 4a*Im?(z)

From the accuracy requirements above, the term {2a®—4a+1} 1s zero1ff a = 1£1//2
and the stability requirement reduces to

0 < —Re(z) —40®Re(2)Im?*(2) + 4a*Im?(2) 4 4a* Im?(2)|2|?
+4a* Re?(2)Im?(z) + 40’ Im?(2).

With Re(z) < 0 this mequalty 1s satisfied
L-stability- From Chapter 2, equation (2.17) we have L-stability if

btAle=1

This relation trivially holds for the DIRK(2,2) scheme (3 2)

S- & Strong S-stability: Since the DIRK scheme (3 2) has positive diagonal elements
if @ = 1+ 1/v/2, both S- and Strong S-stability follow from Theorem 3 2, as the
method 1s A and L-stable, with |Rp| = 0

Finally Expanding R(z) as a polynomal 1n z we get

R(z) =14z + (2a — a?)2* + O(2?)
With a = 1 — 1/+/2 we have

|R(z) — €] s O(2%) O

3.3 The Composite Integration §-BDF2 scheme.

R E Bank et al [2), introduced a Composite Linear Mulitistep Method as the time
integration scheme in the numerical solution of coupled systems of nonlinear partial
differential equations Their technique was to use a two stage process to integrate
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over one step The first stage used a Trapezoidal Rule to integrate to an intermediate
pomnt The second stage comprised a second order BDF-type scheme The method
had important features of second order accuracy, A- and L-stability Bank et al
implemented the Trapezoidal Rule and the BDF stages as a fully imphcit independant
steps solved via Newton 1iteration. Carroll [18] generalized their scheme so that it
retained the important features of second order accuracy, A- and L-stability He
replaced the Trapezoidal Rule with the one-step §-scheme

Ynty = Yo + TR[(1 = 0)fo + 0fass] (35)

appled over the interval t, =nh to t,p, =(n+y)h with0 <y <1
The second stage of the integration uses a 2-step backward differentiation type
formula which interpolates the three ponts ¢, ¢4+, a1, with the formula

QoYn + C1Ynty + @2Yns1 = Afnpr (36)

To find the coefficients ap, a;,a2 and v two conditions are imposed on the com-
posite pair of formulae

1 that 1t retains second order local accuracy, A- and L-stabilhity

2. that both stages have a common Newton 1teration matrix
This requirement 1s for computational efficiency, as only one LU-decomposition of the
iteration matrix 1s required

The accuracy requirements of the scheme are obtained by combining both formulae
and comparing the coefficients of the resulting expression with a Taylor series The
following relationships for the unknown coefficients can be easily derived for second
order accuracy, see Carroll 18]

1 ¥=1-1/V2

2 oy = !:,Y—az'
2(1—~6)
3 =5
4 Qg = —Q1 — Qg
5 Both (3 5) and (3 6) have a common 1teration matrix if a,v6 =1

Remark 3 1. 1t 1s mteresting to note that v = 1 — 1/1/2, 1s one of the values of
a m the DIRK(2,2) method of section 2. In fact 1t 1t not difficult to show that the
DIRK(2,2) scheme 1s a special case of the Composite Integration scheme, simply set
6 =1 This fact 1s demonstrated mn Appendix 1, where we show how the Composite
Integration scheme can be put into RK matrix formulation However our implementa-
tions are quite different, we therefore expect some difference 1n the numerical results
which are presented 1n Appendix 2

Carroll {18] also verifies A- and L-stability for this scheme We remund the reader

that on expanding the stability function R(z) in powers of z and recalling that v0 =
1-— 1/\/5, we have

|R(z) — |

= 3;/—_26;4 23 + 0(24)

where the coefficient of 2> compares directly with the coefficient of the principal error
function for the method given 1n the next section
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3.4 Error estimation.

3.4.1 Error estimate for the DIRK(2,2) scheme.

For the DIRK(2,2) scheme, Richardson extrapolation 1s used to estimate the local
truncation error Recall the approach outhined for RK methods in Chapter 2, section
6 We mtegrate from ¢, to t,;, with one step of length h and then integrate it
twice using two steps of length h/2 The difference 1n the two solutions 1s a constant
multiple of the local error (c f equation (2.28) reproduced here for completeness)

hp+lcr(tn+1) — Yntih — yj+l'h/2 (3 7)
1-2-7

As in Chapter 2, we add this to the more accurate solution to give the extrapolated

solution

Yn+1,h — yn+1,h/2}

= (38)

Yn+1 = Ynsr,h2 +27° {

3.4.2 Error estimate for the Composite Integration scheme.

Carroll [18] g1ves the following expression as an estimate of the principal error function
in the Composite Integration scheme

errest—{ 1201 = 10) }hyn (£) (39)

Bank et al [2] and Carroll [18] suggest estimating y(*)(¢) by the following hnear
combination of function values

ey= 24y 1 1
y,(—,,3 (6) - h2 7fn 7(1 _7)fn+'y + 1 _ 7fn+1 (3 10)

3.5 Solving the nonlinear equations.

3.5.1 The nonlinear equations arising from the DIRK(2,2)
scheme.

The Rosenbrock technique [69] outhned in Chapter 2, section 5, 1s employed for solving
the nonhnear system that arises from applying the method to (21) The resulting
equations (2 26) for the DIRK(2,2) scheme (3 2) (reproduced here for completeness)
are
[I — ahJ]ky = hf(t, + ah,yn) (311)
and
[I — ahJdlky = Rf(t, + h,y,. + (1 — a)k;) (312)
where J 1s the Jacobian of f(t,,y,)

Remark 3 2 As mentioned 1n Chapter 2 we are only applying one step of a Newton
method 1 this case We therefore have no need to worry about convergence critena
The error estimate on time integration 1s the only form of control required However,
as we have only one 1teration step of a Newton scheme, the technique 1s only accurate
for hinear differential equations, but 1t performs well in practice when used in the
variable step integrator which we develop later in this Chapter
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3.5.2 Solving the nonlinear equations of the Composite In-
tegration scheme.

To retain the stability of the Composite Integration scheme, a modified Newton
method 1s employed to iteratively solve the nonlinear equations arising in both stages
of the scheme

An application of Newton’s method to the first stage §-scheme (3 5) yields the
nonlinear system (3 13) below. This system 1s solved 1iteratively for a fixed number
of iterations : = 1,2, -,zmaz or until convergence 1s achieved, giving

[I = ¥0RJ] A(Ys4r) = Yn — Yngy F YR [(1 = 0) fro + 0 fnyy] (313)
where
Ay:t.+‘y = (y:::y - y:z-{-’y)) y2+-y = Yn, and 1(1.)+‘)' = f"-

Also from (2 22) the BDF scheme (3 6) can be solved iteratively, using the Newton
scheme (3 14) for y,4; Again we impose an upper bound on the number of 1terations
employed, as we did for (3.13) We obtain

1 1 £
(= 10RT) Ayrs) = — {fass = (0¥ + catns + catpa)} (314)
with
Ay;;+1 = (y::-ll - y;;+1)» yg+1 = Ynty and f 1?+1 = fn+‘7

The choice of 1/ay = 48 gives an 1dentical iteration matrix on each stage and we
adopt this strategy m our code, while J 1s the Jacobian of f( ) at y, 2.

Remark 3 3 We pont out that the use of y° +y =Ynand y2 | = Yoy, 15 equivalent
to using a zero' order predictor formula on each stage A simple Euler predictor for-
mula could equally well be used on both steps, without effecting the step adjustment
mechanism 1n the algorithm outhined in section 6 However such a mechanism might
effect the stability of the scheme.

To terminate the iteration we follow Shampine [65] and measure the rate of con-

vergence
141

_ ls™” -yl

lly; — vl
where 1 15 the ¢** 1teration step and ! 1s stage n + 7 or stage n + 1 of the Composite
scheme®. We compare this with a tolerance 7, 1n the formula

T

Ps t
l—zny?“ -yli<r

According to Shampine [65] this guarantees, (with an appropriate p, < 1/2), that we
are converging at an acceptable rate to the solution y;, with the demand that y}*' be

20Once again using this Jacobian 1s techmcally incorrect but 1t suffices 1n practice

37To measure the rate of convergence m this way requires at least 2 iteration steps Because linear
problems only require one Newton step this technique is expensive To overcome this difficulty we
also terminate the Newton 1teration if ||y} +! — y}|| < 72
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sufficiently close to the actual solution y; Most current codes (such as LSODI and
the Variable Step Integrator of Chua & Dew [22] use the condition that p < 1/2 while
DASSL [56] uses a condition simular to the one we have adopted.

Remark 8 / Shampine [65] points out that the convergence condition p < 1/2,1s
correct, if p, — A, the largest eigenvalue of the system, with A real However if A 1s
complex, then p, will oscillate and the convergence rate |p,|, will assume larger values
than Re(p,) In general, most codes allow for this and take the largest observed value
of p, as theirr estimate of the rate of convergence. We have also adopted this policy
on the second and subsequent iteration steps.

3.5.3 Other aspects of solving the nonlinear systems.

Two other 1tems we have to consider 1n relation to the linear systems (3.9a,b) and
(3 10a,b), are the formation of the Jacobian matrix of f(t, y(t)) and the subsequent
method of solution of the hinear system. The Jacobian can be provided in two separate
ways, the first 1s for the user of the method to exphaitly supply 1t, while the second 1s
to estimate 1t with fimite differences, as outlined in Chapter 2, section 5 Referring to
equation (2 27), the scaling of the increment can lead to significant errors in Jacobian
elements, 1f not properly chosen Our choice has been £ = 10™* and we have had
no apparent problems, working 1n double precision Fortran77 on VAX-11/785 and
VAX-6230 computers Our original choice { = 10~° worked equally well on all test
problems considered We however have endeavored to make ¢ as large as possible,
while at the same time keeping 1t within the tolerance band, where we expect our
methods will perform efficiently Standard software packages such as LSODI [43] and
DASSL [56] use a more complicated algorithm to choose the increments

The linear system which anses from (3 9a,b) and (3 10a,b), 1s solved using a
standard LU-decomposition of the iteration matrix and subsequent back substitution
This has the advantage that the LU-decomposed matrix can be stored for several
iterations and/or time 1integration steps, leading to a considerable improvement 1n
the overall efficiency of the solution method

3.6 Variable step algorithms for the solution of
ODEs.

3.6.1 Algorithm DIRK(2,2).

Recall the DIRK(2,2) scheme (3 2) used the full-step half-step technique to estimate
the error, thus,

g
ALGORITHM DIRK(2,2);

BEGIN
Given a tolerance Tol
SET a =1- /2,

WHILE t, > FinalTime
IF the Jacobian has been used for the previous 10 steps
or the stepsize has changed THEN
COMPUTE the Jacobian;
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COMPUTE the full step solution y,41 p, from y, using a
step-size h,,, by making one CALL to the Integrator,
COMPUTE the half step solution g4 4,/2 from y, using
two steps of size h,/2, by making two successive CALLs
to the Integrator,
COMPUTE an error estimate Epjrk from (3.7) using the
weighted mean square norm,
COMPUTE the extrapolated solution call 1t y,4; from (3 8),
IF Eprrx > tol THEN
BEGIN (regect the step)
RE-COMPUTE the solution from y, with hpyq = hy/2
RETAIN this step for at least 3 subsequent steps
unless there 1s another step failure,
END,
IF Epiri < tol THEN
BEGIN (accept the step)
SET yn = Yn41,
COMPUTE the factor by which the step length 1s to be
multiphied on the next step (hfactor);

hfactor = (tol/ Eprrx )2,

IF hfactor > 10 hfactor = 10,
IF 4 < hfactor <10 hfactor = 4,
IF 2 < hfactor <4 hfactor = 2,

Otherwise hfactor =1,
SET hynyq = h, X hfactor;
RETAIN this step size for at least two steps,
END;
END,
END { (DIRK(2,2).}

INTEGRATOR advances the solution one step of length h,,
BEGIN
Solve the linear systems (3 9a) and (3 9b) respectively,
Advance the solution using the formula

Ynt1 = Yn + (1 — @)k + aky;
END { INTEGRATOR }

Remark 3 5 Hfactor 1s the amount by which A, can be reasonably multiplied so
that estimated error on the next step stays with the specified tolerance With

h:e,,, = hfactor x h

we attempt to keep the error on the next step, for a method of order p, within the
bound

|C (tus1)RZHL| < tol

new

equivalently
hfactor®|C(t,41)| < tol
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giving
hfactor = (tol/EDmK)l/p+1 .

Remark 3.6 The reason we keep the stepsize fixed, for 2 or 3 successive steps after
the stepsize has changed, 1s to avoid chattering 1n the step changing mechanism and
to introduce greater stabihity into the algorithm This constraint on the algorithm
tends to make 1t biased toward using a constant stepsize Consequently, the number
of Jacobian evaluations required to integrate an ODE over the specified time interval,
1s considerably reduced

Remark 37 The fimte values we have chosen for hfactor are based on the fol-
lowing reasoning For example when 2 < hfactor < 4 we reduce hfactor to 2 The
reason for this 1s twofold, firstly if we allowed hfactor to take arbitrary values our
stepsize would be changing too often, leading to chattering. Secondly, by reducing
hfactor to 2, we take stepsizes which are more conservative giving a more stable algo-
nthm This is necessary because we lack perfect information, having only an estimate
of the error to mncrease or decrease the stepsize, instead of the true local error The
value 2 has been chosen to reflect the fact that we allow an increase in stepsize, if
Epirk < tol/8 This choice, along with hfactor = 10 were suggested by Alexander
[1]* We have also included the value hfactor = 4 The choices hfactor = 2 or 10
force Eprrg < tol/8 or tol/ 1000, respectively. Our reason for including the value

“hfactor = 4, 1s that the gap between 8 and 1000 1s large and an intermediate value
may 1mprove overall efficiency 1n the algorithm

Remark 38 The error test in this algorithm 1s constructed as follows If the
magmtude, 1n maximum norm of the solution yy+1maz, 1s greater than 1, we use the
relative comparison

EDIRK < Yn+1,maz X t0l7

otherwise ¥,,,- <1 and we use the absolute comparison
Epirk < tol

This 1s a very simple form of error control, only one tolerance value need be specified
We have found 1t very effective on all problems considered in this thesis

3.6.2 Algorithm Composite Integration scheme.

We give the variable step algorithm based on the theory developed so far for this
method

ALGORITHM COMPOSITE INTEGRATION SCHEME;
BEGIN

Given an absolute (atol) and or relative (rtol) tolerance,

SET t, = a, the starting time,

COMPUTE the Jacobian at the starting time,

WHILE t, < finaltime

“In fact Alexander demands that Eprry < tol/10, our choice 15 22 reflecting the possibility of
doubling the stepsize on the next step
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BEGIN
IF (hny1 =2 x h,) OR (r > 085) OR
(the Jacobian has not been updated for the previous 15 steps) THEN
RE-COMPUTE the Jacobian and the iteration matrix,
SET the iteration counter 1 to 0,
SET maximum iteration limit :maz,
WHILE NOT(converged) AND (: < umarz)
COMPUTE y,4, using (3.13),
IF converged
RE-SET the 1iteration counter 1 to 0,
WHILE NOT(converged) and (2 < tmaxz)
COMPUTE yn41 using (3 14),
IF converged
COMPUTE the error estimate E, 4,
using (3 9) and (3 10),
COMPUTE e, = rtol|y,41| + atol;
COMPUTE the mean square norm

1‘2 = l/N {Zfil (En+l,t/eﬂ+l,t)2} )
IF r > 1 THEN (reject the step)

hn+1 = hn/2a
ELSE (accept the step)
Yn = Yns1
IF » >1/2 THEN
SET hn+1 = hru
ELSE
SET hn+1 = Tl/3 X hn
ENDIF,
{Remark 3 6 also apples here also }
ENDIF,
ENDIF,

ENDIF,
IF NOT/(converged) (reject the step)
SET h,yy = h, /4
END { WHILE}
END {Algorithm Composite Integration scheme }

Note We follow Carroll (18], and set the iteration hmit imax to 5 We also point
out that remarks 3 6 and 3 7 also apply to the Composite Integration scheme for
exactly the same reasons as the DIRK(2,2) scheme.

Remark 3 9 The convergence criteria are those given 1n subsection 3 5 1
Remark 3 10 This algorithm 1s very similar to the algorithm given by Carroll (18]
There 1s one significant difference, (: e ) we reject the step if the Newton iteration

falls This alteration 1s essential for solving Differential Algebraic Equations (DAEs),
which we consider 1n later Chapters.
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3.6.3 Estimating the initial steplength.

To complete both algorithms we provide a means of estimating the initial steplength
We follow Shampme & Watt [67] and suppose the error 1n a first order method 1s h
times the error m a zero'* order method

We place an upper bound k., (g1ven below) on the size of the imitial step, which
indicates the general scale of the problem, along with preventing any difficulty due
to f(0,y(0)) =0 We use their estimate of the imitial step size as

1 tol i
h P hm uty
0 mmn ( put 4 {ma,x:"___l ft(07 y(o))} )

and set hyppy = tol/10

3.7 Numerical experiments.

The performance of the two variable step algorithms outlined in previous sections are
evaluated against several test problems that have arisen 1n the hiterature Speafically
we test our methods on problems B1, B5, C1, C5, D1, D2 and E3 of the well known
stiff ODE test problems of Enright et al [27] We reproduce these problems here for
completeness Also considered are two other problems which we refer to as P1 and P2
respectively In this section our approach will be to define each problem and discuss
1ts performance before moving to the next problem 1n our test set

We feel our choice of test problems 1s representative of those that have appeared
in the literature. In particular problems Bl, B5, C1 and C5 have also been solved
Alexander {1}, Ennight et al [27] and Carroll [18] We have also included D1, D2 and
E3, as Carroll [18] observed that his code found 1t difficult to solve these problems
It 1s our intention to discuss the problems encountered more fully as each problem 1s
dealt with

In our implementation of the Composite Integration scheme, we have followed
Carroll [18] and taken 8 = 0 55 He suggests that this value 1s close to optimal for the
problems arising 1n the literature In fact, this value was originally suggested by Hall
& Watt [38] It provides a compromise between second order accuracy and stability
in the §—scheme (3 5) (

In the numerical experiments to follow, we measure the statistics given 1n the Key
Table below at different tolerance values for both methods The methods are then

evaJuated w rt these statistics This method of testing and evaluation 1s analogous
to Ennight et al [27]

NSTEP | No. of Integration Steps
NFE No of Function Fvaluations
NJE No of Jacobian Evaluations
GERR | Global Error

Key Table

We also provide results for the problems using two other polyalgorithms based
on BDT formulae, the LSODI package of Hindmarsh & Panter [43] and the DASSL
solver of Petzold {56]. The reason for including these results are twofold (a) they are
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used for comparison purposes,

(b) they are two of the DAE solvers which we describe and whose performance we
evaluate 1n Chapter 6

We point out that error control for both LSODI and DASSL 1s accomplished by as-
signing the absolute (atol) and relative (rtol) tolerances to scalar values and adopting
a mixed form of error control.

In our implementation of the DIRK(2,2) scheme we remark that two iteration
matrices are used on every step However only one Jacobian of the system of ODEs
1s evaluated In the figures we quote for the DIRK(2,2) scheme we have adopted the
convention of supplying only the actual number of Jacobians evaluated during the
integration of a particular problem. The number of LU-decompositions 1s therefore
twice the NJE value

We finally mention that the exact solution for the one-step methods was generated
using the NAG routine DO2EAF with a tolerance of 1078, While the exact solution
for both routines LSODI and DASSL, was generated by calling these routines with
absolute and relative tolerances set to 1078. Also we point out that in the succeeding
discussions, the following notation is used

DIRK(2,2): The DIRK(2,2) scheme outlined in Algorithm 3 6 1

Comp Int The Composite scheme given 1n Algotithm 3 6 2

LSODI BDF-based code by Hindmarsh [43], described more fully in Chapter 6

DASSL BDF-based code by Petzold [56], described in Chapter 6

Carr Carrolls version of the Composite scheme {18]

TRAPEX Trapezoidal Rule with extrapolation based error control, implemented
by Ennight et al [27)

IMPRK A two-stage fourth-order Imphcat RK method implemented by Enright
et al This code also uses extrapolation based error control

Alex Alexanders DIRK(2,2) scheme with extrapolation based error control This
code uses full Newton iteration to solve the nonlinear equations Alexander also
measures error iIn RMS norm Al other references to error quoted are in maximum
norm

Problem B1.
Vi = -ty
v, = —100y -y,
yz = —100ys + yq
ys = —10000y; — 100y,

with mmitial values
n=119=0 y3=1 y4=0
and ¢t € [0,20]
This problem 1s linear with non real eigenvalues —1 + 10z, —100 + 100:. We
mention that Ennight et al [27] comment that most methods require a large number
of step changes, both increases and decreases on this problem Therefore we expect

that most methods will use a large number of Jacobian evaluations In Table 31 to
follow, we give our test results for this problem.

N B The Composite Integration scheme does not compute a solution to the same
accuracy as the other methods
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Problem Bl

Tol = 1072 | DIRK(2,2) | Comp Int LSODE | DASSL
NSTEP 127 151 227 159
NFE 822 880 478 334
NJE 26 21 36 25
GERR 30x1072] 10x10"'|30x10"® 10~8
Tol =10"* | DIRK(2,2) | Comp Int LSODI | DASSL
NSTEP 265 619 393 1391
NFFE 1710 3690 716 802
NJE 53 85 45 24
GERR 10x107*| 1.1x10?|50x10"% 10~°
Table 3.1

The DIRK(2,2) scheme performs moderately well on this problem with a reason-
able level of accuracy In Table 3 2 we reproduce Alexander’s results for this problem
along with those for Ennght’s IMPRK scheme We mention that Alexander only
published statistics for this method at a tolerance of 1072

Problem B1 Tol =10"*] Alex| IMPRK
Tol = 1072 Alez| IMPRK || NSTEP 142
NSTEP 67 37 || NFE 1751
NFE 435 443 || NJE 26
NJE 28 12 {| GERR 20x 1077
GERR 84x1073[1.8x1072 Table 3 2

As can be seen from Table 3 2 the IMPRK scheme 1s least expensive However the
error n all Ennight’s codes [27] 1s the maximum error/unit-step encountered over the
mtegration interval It may therefore be less stringent than the other forms of control
on this problem Enrnght et al comment that error/unit-step control 1s usually less
problem dependant than other forms and therefore more suitable for test comparisons

The performance of the Composite Integration scheme can be directly compared
with the results published by Carroll [18] He also compares his algorithm with
SDBASIC and TRAPEX given 1n Enright et al SDBASIC 1s a variable step variable
order (VSVO) multistep code using methods of orders four to nine We feel therefore
that 1t 1s unreasonable to compare SDBASIC with our second order schemes However
the TRAPEX algonithm does provide a reasonable level of comparision. Before we
reproduce the statistics for Carroll’s code and TRAPEX we mention that Carroll does
not provide global error values on some problems Where this statistic 1s unavailable
we have ommutted 1t
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Problem Bl Tol = 10~% | Carr | TRAPEX
Tol = 1072 | Carr | TRAPEX || NSTEP 409 204
NSTEP 98 69 || NFE 1814 1502
NFE 464 511 || NJE 67 29
NJE 19 20 (| GERR 20x 101
GERR 26 x 1072 Table 3 3

Table 3 3 duplicates the figures pubhished by Carroll [18] and Enright et al [27] for
this problem It can be seen from Table 3 1 that our implementation of the Composite
scheme 1s more expensive than the methods quoted in Table 3 3. We expect that the
TRAPEX code will be less expensive as 1t requires less function evaluations/step
All methods require roughly the same number of Jacobian evaluations with both our
algonthm and Carroll’s requiring about five function evaluations/step

Before moving on to the next problem we mention the performance of LSODI and
DASSL on this problem Both methods perform quite well at the tolerance values
considered with moderately more Jacobian evaluations

Problem B5
yi = —10y; + ay,
y, = —ay; — 10y,
y3 = —4ys
yi = —Y
yg = —05ys
yels —0 1ys
with mitial values
=1 1=1(:)6,

a=100and t € [0,20]

This problem 1s linear and has non real eigenvalues This problem 1s known to
cause severe difficulties for BDF-based codes as the transient eigenvalues he 1n an un-
stable region for higher order BDF formulae Indeed we can see that the performance
of both LSODI and DASSL 1s very poor as Table 3 4 demonstrates at the higher
tolerance value

For the DIRK(2,2) scheme we agamn compare the performance of this algorithm
with the Alex and IMPRK codes in Table 3 5

The performance of both codes listed in Table 3 5 1s very reasonable on this prob-
lem They both use a moderate number of steps, function evaluations and Jacobian
evaluations, with reasonable levels of global error Compared to these results the per-
formance of the DIRK(2,2) scheme 1n Table 3 4 1s very poor. We have noticed that
our DIRK(2,2) scheme appears to behave poorly in the presence of wildly oscillating
solutions That 1s, solutions with large imaginary eigenvalues which are not rapidly
damped out This observation 1s born out by the statistics given in Table 3 6 for
problems B3 and B4 These problems are 1dentical to B5 except that the parameter
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Problem B5

Tol = 10~ | DIRK(2,2) | Comp Int LSODI DASSL
NSTEP 761 69 125 235
NFE 4626 370 253 434
NJE 81 11 16 12
GERR 37x1073| 12x1072|10x10"3|[80x10!
Tol =10~ | DIRK(2,2) | Comp Int LSODI| DASSL
NSTEP 1046 278 2379 500
NFE 6330 1326 3762 1008
NJE 106 31 145 7
GERR 98x10°| 10x103|10x10"5[50x%x10~°
Table 3 4
Problem B5 Tol =10 | Alezx| IMPRK
Tol = 1072 Alez | IMPRK || NSTEP 88
NSTEP 52 30 || NFE 1057
NFE 342 361 || NJE 13
NJE 15 12 |{ GERR 70 x10°°
GERR 27%x10°2|{50x 1073 Table 3 5

« 1s set to 8 and 25 for B3 and B4 respectively Thus the solutions to these problems
do not oscillate as wildly as the solutions to BS

It 1s apparent from Table 3 6 that the performance of our code on problems B3
and B4 1s similar to both Alexander’s [1] and Ennght et al [27] on problem B5
It therefore appears that our code 1s unsuitable for problems with extremely large
imaginary eigenvalues We comment that similar behaviuor 1s observed at the higher
tolerance value

Again we compare the Composite scheme with Carroll’s code and TRAPEX n
Table 3 7

Both TRAPEX and Carroll’s algorithm (¢ f Table 3 7) once again prove much
more efficient than our Composite scheme. We mainly attribute this discrepency to
the conservative approach we have adopted to handling a failed Newton iteration
step. Our code 1s on average least expensive on Jacobian evaluations/step, but as the
global error 1s larger the method 1s the least successful at integrating this problem

Problem C1-

¥ = —h+yE 4yl
yp = —10y; +10(y2 + y2)
s = —40ys +40y;

yi = —100ys+2
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Tol = 10~3 B3 B4

NSTEP 58 68

NFE 354 414

NJE 11 12

GERR 5.1 x 10~3 5.0 x 10~3

Table 3.6
Problem B5 To =1 Carr TRAPEX
Tol = 10"2 Carr TRAPEX NSTEP 199 178
NSTEP 49 41 NFE 852 1265
NFE 261 297 NJE 20 17
NJE 9 14 GERR 2.0 x 10-5
GERR 2.0 x 10"2 Table 3.7
with initial values
w=1 i=1(04

and t € [0,20].

This problem exhibits nonlinear coupling from the transient to the smooth com-
ponents. The stiffness ratio is 100 and all eigenvalues are real. Once again the BDF
based codes behave very well on this problem in terms of the statistics we give in
Table 3.8.

For this problem, as with problem C5 to be considered later, we compare our re-
sults for the DIRK(2,2) scheme with those of Alexander [1] and Cash [21]. The results
reproduced here from Cash [21] are for a fourth order Strongly S-stable scheme with
a third order embedded scheme to estimate the error. The results are summarisied in
Table 3.9, where we use Cash to denote Cash’s scheme and only give figures for the
10-2 tolerance value.

Both second order schemes DIRK(2,2) (c./ Table 3.8) and Alexander’s produce
comparable statistics at the low tolerance value. The fourth order method of Cash
produces a greater number of function evaluations/step. We would expect this be-
haviour from this method. Our scheme uses half the number of Jacobian evaluations
reflecting our design criteria that the method should be cheap W.r.t. this statistic.
It is therefore about twice as efficient as the other two methods on this problem.
Statistics are unavailable from Alexander [1] at the 10-4 tolerance, we therefore do
not include any further comparisions.

The Composite scheme has also produced very good results for this problem.
Analysis of the statistics reveals our code to be more expensive than Carroll's (see
Table 3.10). The TRAPEX code gives rise to similar behaviour as the statistics given
in Table 3.10 demonstrate. The difference between the figures for the Composite

scheme and Carroll's code is again due to our conservative approach to dealing with
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Problem CI

Tol = 10" DIRK(2,2) Comp. Int. LSODI DASSL
NSTEP 22 32 44 46
NFE 132 128 132 97
NJE 5 9 15 13
GERR 3.0 x 10'4 3.6 x IO"5 3.0x 10"6 4.0 x 10~5
Tol = 10"4 DIRK(2,2) Comp. Int. LSODI DASSL
NSTEP 56 85 98 107
NFE 342 538 210 224
NJE 12 10 19 19
GERR 20 x 10"9 7.5 x 105 3.0 x 10"7 2.0 x 10"6
Table 3.8
Problem CI
Tol = 10"2 Alex Cash
NSTEP 20 27
NFE 139 526
NJE 11 11
GERR 2.3 x 10”3 4.7 x 10“3
Table 3.9

failed Newton iteration steps. This fact may also account for the poor performance
of TRAPEX on this problem as compared to Carroll’'s implementation.

We note that the TRAPEX uses about two Jacobian evaluations/step, making it
very uncompetitive overall.

Problem C5:
YW —2 42
y2 =-10y2+ Pyl
23 = ~ 4023+ 4/2(yl + y\)

e  =-100t/4 + 10p(y\ + y] + yI)

with initial values
»=1 1= I1(t)4

P =100 and t G [0,20],

This problem exhibits nonlinear coupling from the smooth to the transient com-
ponents. The remaining characteristics are similar to those of problem Cl. The
BDF-based codes again perform very well on this problem as Table 3.11 shows.

We make the same comparisions for this problem as we made the previous problem.
Table 3.12 summerises the results of both Alexander’s and Cash’s codes. Once again
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Problem Cl1 Tol =107% | Carr | TRAPEX
Tol =1072% | Carr | TRAPEX || NSTEP 68 20
NSTEP 22 9 (| NFE 336 261
NFE 73 101 {{ NJE 11 16
NJE 8 16 || GERR 20x10°°
GERR 10x1073 Table 3 10
Problem C5
Tol =10"% | DIRK(2,2) | Comp Int. LSODI DASSL
NSTEP 73 43 42 48
NFE 438 273 103 107
NJE 12 10 10 14
GERR 60x107% ] 67x102|10x10"*|20x10"*
Tol =10~* | DIRK(2,2) | Comp Int LSODI DASSL
NSTEP 210 153 99 103
NFE 1290 1064 228 208
NJE 32 30 20 21
GERR 10x107°%} 15x107*[40x%x10°%[20x 10°°
Table 3 11

the lower tolerance value 1s quoted because Alexander only gives results at this value
and Cash uses a fourth order code. Comparisions with Cash’s scheme are therefore a
little unrealistic as the tolerance 1s reduced

Again all methods behave reasonably well on this problem as can be inferred from
Tables 3 11 and 3 12 Based on the statistics it appears that this type of problem 1s
quite amenable to solution by most stiff solvers

The Composite scheme 1s also cheap on this problem Comparsion with Carroll’s
code and TRAPEX whose performance figures are reproduced in Table 3 13, reveal
our code to be significantly cheaper.

The reason our code 1s significantly cheaper on this problem 1s that when our code
fails the Newton 1iteration step we reduce the stepsize by a factor of four, re-evaluate
the Jacobian and re-take the step This feature enhances behaviour on some nonlinear

problems
Problem D1

I

y; 0 2(3/2 - yl)
yy = 10y; — (60 — 0 125y3)y, + 0 125y,
y3 = 1
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with 1mtial values
V1= 0,y2 = an3 =0
and t € {0,400]

This problem is nonlinear with real eigenvalues Specifically we compare our re-
sults given 1n Table 3 14 with Carroll’s code and Enright et al IMPRK and TRAPEX
codes given 1n Table 3 15

On this problem the Composite scheme proves more expensive than the methods
listed in Table 3 15 At the higher tolerance similar behaviour is observed, the prob-
lem proving difficult for the Composite scheme and those methods given in Table
3.15 Once again the reason for the large number of Jacobians required by the Com-
posite scheme 1s primarily due to the conservative approach adopted to failed Newton
iteration steps. The Composite scheme once again fails to compute a solution to the
same accuracy as the other methods.

Comparing the DIRK(2,2) scheme with the IMPRK method, we see that the
former 1s considerably more efficient This fact, once again adds weight to our claim
that the DIRK(2,2) algonithm seems quite cheap on problems with real eigenvalues
Indeed the DIRK(2,2) scheme compares favourably with both LSODI and DASSL,

whose performance 1s once again excellent at both tolerances
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Problem C5

Tol =102 Alex Cash
NSTEP 27 78
NFFE 188 1333
NJE 13 26
GERR 50x 1075 |77x1073
Table 3 12
Problem C5 Tol =10~* | Carr| TRAPEX
Tol =102 | Carr | TRAPEX || NSTEP 1029 298
NSTEP 234 56 || NFE 5471 9257
NFE 1792 1598 || NJE 164 163
NJE 19 35 (| GERR 19 x10-4
GERR 12x1072 Table 3 13
Problem D1
Tol = 102 | DIRK(2,2) | Comp. Int | LSODI| DASSL
NSTEP 29 212 23 52
NFFE 154 1036 97 107
NJE 6 56 9 19
GERR 20x107*| 39x103[10x103[10x10"°
Tol = 10-* | DIRK(2,2) | Comp Int.| LSODI| DASSL
NSTEP 50 369 55 114
NFE 318 2420 164 231
NJE 11 121 13 23
GERR 20x107%] 25x10°{20x10"°|1.0x10°°
Table 3 14
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Problem D1

Tol =102 | Carr| TRAPEX IMPRK
NSTEP 130 19 20
NFE 806 785 659
NJE 23 36 65
GERR 30x103124x10"*
Tol =10* | Carr| TRAPEX IMPRK
NSTEP 567 46 67
NFE 3287 1983 2009
NJE 99 152 55
GERR 7T0x107° |63 x10"3
Table 3 15
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Problem D2

1. = —004y, +001y,ys
! 400y; — 100y,ys — 3000y;
¥, = 3000y}

o
N
i

with mitial values

=1, y2=0, y3=0

and t € [0,40]

Again this problem 1s similar to D1 1n that 1t 1s nonlinear with real eigenvalues We
make comparisions similar to those made for problem D1. Table 3 16 lists the statistics
generated by our methods apphed to this problem while Table 3 17 reproduces the
statistics taken from the hterature.

Problem D2

Tol =102 | DIRK(2,2) | Comp Int. LSODI DASSL
NSTEP 41 145 36 43
NFE 246 646 103 86
NJE 9 43 13 16
GERR 10x1072] 23x103[70x10"3[90x%x 1073
Tol =10"* | DIRK(2,2) | Comp Int LSODI DASSL
NSTEP 79 711 92 94
NFE 474 3505 209 191
NJE 13 239 19 23
GERR 60x1073| 55x107°[30x107*[10x10"*

Table 3.16

On this problem our Composite scheme (¢ f Table 3.16) produces figures sim-
ilar to those histed 1n Table 3 17 for Carroll’s code at both tolerance values listed
The other methods listed perform much better, so we conclude that this problem 1s
unsuitable for solution by the Composite scheme.

The DIRK(2,2) scheme employed solves the problem reasonably efficiently Again
the method 1s proving suitable for this problem which does not oscillate wildly We
comment also that the BDF based methods perform extremely well on this problem

indicating their appropriateness for solving mildly oscillatory systems of ODEs
Problem E3

y1 = —(55+ y3)y; + 65y,
yo = 00785(y1 — y2)
y3 = 01y
with 1nitial values
y1=1, y2=1, y3=0
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Problem D2

Tol = 102 Carr TRAPEX IMPRK
NSTEP 130 11 11
NFE 622 237 387
NJE 22 29 89
GERR 0.0 x 10"° 1.0 x 10"3
Tol = 10"4 Carr TRAPEX IMPRK
NSTEP 561 21 16
NFE 2692 593 385
NJE 80 40 25
GERR 1.0 x 10"5 4.3 x 10"4
Table 3.17

and f G [0,500].

This is the last problem from the Enright et al test set. It is nonlinear with non-
real eigenvalues. In particular the eigenvalues values stay close to the real axis and
therefore the problem does not possess highly oscillatory solutions. We endeavour to

make the same comparisions as we did for the previous problem.

Problem E3

Tol = 10"2 DIRK(2,2) Comp. Int. LSODI DASSL
NSTEP 31 148 39 34
NFE 186 647 118 78
NJE 7 41 16 14
GERR 3.0 x 10~2 8.8x l0O"4 2.0 x 10"3 2.0 x 10"3
Tol = 10"4 DIRK(2,2) Comp. Int. LSODI DASSL
NSTEP 57 287 85 88
NFE 342 1585 177 195
NJE 11 85 17 15
GERR 2.0 x 10~3 50 x 10~5 1.0 x 10"4 1.0 x 10“4

Table 3.18

Comparing our results in Table 3.18 with those published by Carroll and replicated
in Table 3.19, similar behaviour is observed at both tolerance values. Both algorithms
are however less efficient than IMPRK and TRAPEX. Based on our results we again
conclude that this scheme is unsuitable for this problem.

Looking at the DIRK(2,2) scheme we see that it compares favourably with all
other results quoted, espcially in terms of function evaluations. Again the nature of

this problem proves amenable to to solution by our DIRK(2,2) scheme. Finally we
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Problem E3

Tol =102 | Carr | TRAPEX IMPRK
NSTEP 129 12 9
NFE 407 247 217
NJE 31 26 40
GERR 1.0x10°[3.0x10~°
Tol =10"* | Carr | TRAPEX IMPRK
NSTEP 396 21 18
NFFE 1412 555 427
NJE 130 38 18
GERR 40%x10°°{18x10"3
Table 3 19

mention LSODI and DASSL on this problem We can see from Table 3 18 that both
methods perform very well once again
Problem P1

with
B = —1000, B, =—800, B3 =—10 and By=-01

with mitial values
p=—1 1=1()4

and t € [0,20] The exact solution of this problem 1s

A,
vl = Ty gy

This problem 1s a Ricatt: type equation. Our results are displayed in Table 3 20
while Table 3 21 shows the performance of Carroll’s version of the Composite scheme
on this problem

The results from both tables demonstrate that all methods applied to this prob-
lem behave similarly The problem 1s solved by all methods quite efficiently with

reasonable values for global error.
Problem P2

y1 = —004y; +10%y,y;
y2 = 004y; — 10%y,y3 —3 x 10711%
ys = 3x107y;

with 1nitial values
n=14,y2=0,y43=0
and t € [0,40]
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Problem PI

Tol = 10"2 DIRK(2,2) Comp. Int. LSODI DASSL
NSTEP 26 32 85 50
NFE 156 150 177 110
NJE 6 8 17 20
GERR 5.0 x 10~3 5.0 x 10"3 1.0 x 10"3 6.0 x 10"3
éd =%~ DIRK(2,2) Comp. Int. LSODI DASSL
NSTEP 60 95 131 110
NFE 366 594 300 234
NJE 12 11 27 19
GERR 1.0 x 10~3 3.0 x 10~4 2.0 x 10"5 2.0 x 10"5
Table 3.20
Carr
Tol 10~2 0“4
NSTEP 37 115
NFE 174 672
NJE 10 13
GERR 1.6 x 10"2 4.4 x 104
Table 3.21

This problem has been considered by many authors including Hall & Watt [38],
Prothero & Robinson [60] and Carroll [18].
We also quote Carroll's results in Table 3.23.

Our results are presented in Table 3.22.

The figures quoted in both Tables 3.22 and 3.23 indicate that our codes produce
similar results to those of Carroll. All codes solve the problem efficiently. We therefore
conclude that this problem is suitable for solution by the stiff ODE codes considered
here.

Finally, to sum up we adopt the approach of Carroll [18] providing totals for each
statistic in Table 3.24. This table summarises the results given in a convenient form
for general discussion. We have not included a summary of the global error. In all,
statistics for five methods are diplayed, the four codes we have tested, DIRK(2,2),
Comp. Int.,, LSODI and DASSL, along with Carroll’s version of the Composite scheme
denoted by Carr.

Table 3.24 clearly shows that our fixed order schemes are uncompetitive when
The
However we point

compared to the BDF based codes in terms of steps and function evaluations.
Composite scheme performs worst on the problems considered.
out that the problems chosen were those those distinguished by Carroll [18] to be
the 'worst case’ set available from Enright et al stiff ODE test set. It is therefore

reasonable for us to observe poorest performance on these problems. We mention
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Problem P2

Tol =10"% | DIRK(2,2) | Comp. Int LSODI DASSL
NSTEP 24 35 46 14
NFFE 144 116 114 86
NJE 5 10 36 7
GERR 10x107%2] 1.2x103|{50x10"2}60x 10~
Tol =10~* | DIRK(2,2) | Comp Int LSODE DASSL
NSTEP 45 60 37 24
NFE 270 266 56 50
NJE 7 16 15 7
GERR 30x103| 89x10°|30x10°|10x10"*
Table 3 22
Carr
Tol 102 10~
NSTEP 35 54
NFFE 99 230
NJE 8 12
GERR [36x1073|11x10*
Table 3 23

that the figures quoted for Carroll’s code should in fact be NSTEP-1 less than those
quoted here His code uses three function evaluations on every step However two
will suffice as the function call on the previous step at time t,_, + & will be very
close to the value of the function at i, on the current step Ofcourse the former
implementation 1s effectively PECE which 1s more stable (¢ f Hall & Watt [38])
than the latter PEC implementation In fact we would recommend the former when
solving DAEs which we consider in subsequent chapters

The DIRK(2,2) algorithm also fairs badly overall But most of the fault Les with
problem B5 In fact this problem accounts for over half of the total figures quoted for
this method 1n table 3.24 As we have already stated, the highly oscillatory nature
of the solutions proves to be a problem for our code. Recall we demonstrated that
problems B3 and B4 which were simular to B5, but the smaller imaginary eigenvalues
proved easy for our code to handle.

In conclusion, the fixed order algorithms we have discussed can provide a compet-
itive alternative to the polyalgorithms LSODE and DASSL based on BDF formulae
n certain mnstances In particular the number of Jacobian evaluations required by the
fixed order algorithms 1s low, at low tolerance This 1s particularly important since a
Jacobian evaluation requires N? function evaluations by finite differences This 1s a
crucial factor in the efficiency of these methods when applied to the systems of time
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Totals for all problems

Tol=10"* | DIRK(2,2) | Comp Int. | LSODE | DASSL | Carr
NSTEP 1134 1244 667 681 | 864
NFE 6904 4278 1575 1467 | 4698
NJE 157 210 168 140 | 149
Tol =10~* | DIRK(2,2) | Comp Int | LSODE | DASSL | Carr
NSTEP 1864 2665 3369 1531 | 3398
NFE 11400 15024 5882 3123 | 16766
NJE 259 630 320 158 596
Table 3 24

dependant Partial Differential Equations (PDEs).
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Chapter 4

Differential Algebraic Equations
(DAEs).

4.1 Introduction

The general first order differential system described by

F(t,y(1),y'(t)) =0 t € [a,b] (41)

1s called a vector implicit system of ODEs or simply an impliait system of ODEs !
These systems look similar to standard exphat first order ODE systems, which we
have dealt with in earher Chapters and of course include explicit first order systems
as a special case

If we assume F( ), has continuous first partial derivatives, we can differentiate

(41) wr.t t as follows

F , OF , é?F~
a—y,y +0yy+c’)t =0 (42)

Letting y =y; and y' =y,, we have

Yi = ¥
oF , OF n OF
2)’ 2 ayl y2 at
Since F() has continuous first partial derivatives, we can assume (59—52—) ™ exists and

1s bounded Therefore we can rewnite the above system in explhicit form ?

y'l = Yy

‘. yl — _(G_F)-l {_a_F_ +QE}
2 dy, ajhyz ot

Implicit ODE systems where (gl) 1s singular are called Differential Algebraic Equa-

yl
tions (DAEs).

1We assume that y and y’ are mappmngs from R — R”
2This follows from the Imphcit Function Theorem of Vector Calculus, see Marsden & Tromba

48]
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In this thests we concern ourselves with the study and development of numerical
ODE methods for DAEs of the form

E(t,y)y =1(t,y) (43)

where E 1s a square matrix usually singular Systems of this form are called Linearly
Imphicit DAEs, because of their linear dependence on y’

There are two special cases of the Linearly Implicit DAE (4 3) that have been
studied 1n the hiterature.
(a) The Linear Constant Coefficient DAE

Ey' = Ay +g(t) g (44)
and
(b). The Linear Non-Constant Coefficient DAE
E(t)y' = A(t)y +g(t) (45)

We devote sections 3 & 4 respectively, of this Chapter, to reviewing the hiterature on
these forms

Other forms have also appeared 1n the hiterature, Gear [33] and Petzold & Lotstedt
[58], [59] considered Semu-explicit DAEs which have the following structure

y, = f(t,y’z)
0 = g(ty,z) (46)

Brenan & Engquist [4] have considered a special form of the Semi-explicit DAE, called
the Triangular (Hessenberg) form given by

y = f(t,y,z)
0 = g(ty) (47)

Note All the above forms have been studied both analytically and numerically
1n the hterature, however we intend to primarily concern ourselves with their analytic
aspects 1n this Chapter

Returning to the Linearly Implicit equation (4 3), we point out that there 1s no
loss of generality in considering systems of this form, since we can easily transform the
general Imphcit ODE into a DAE by letting z =y’ The Implicit ODE then becomes

y = z
0 = F(t,y,z) (4 8)

and the equation 1s now hinear 1n y’, the equation 1s also in Semi-explicit form
Ezample 4 1. Consider the following Imphat ODE

) +y'y=0, t €[0,00] (49)
with y(0) =1 Letting y' = z, we get
y = z
0 = 2242y (4 10)
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The first point to notice about (4.9) is that only one initial condition is supplied.
This would seem reasonable from our knowledge of ODEs, since the equation is first
order. However the equation has two solutions, the first is y(t) = e~l and the second
is the constant function y(t) = 1. Therefore our example problem will not possess a
unique solution unless further constraints are imposed. The following definitions, see
Campbell [13], help us to characterize the set of conditions, which must be inmposed
in order for a DAE to possess a unique solution.

Definition ~.I: An initial vector ya is said to be a consistent initial vector for
(4.11) at a point t(a), if (4.1) possesses at least one solution.

Definition 4-2: The equation (4.1) is said to be solvable at a point t(a), if a unique
solution exists for each consistent initial vector.

Thus in (4.9), j/(0) is a consistent initial value, but the equation is not solvable
from this point. However in (4.10), it is a trivial task to generate consistent initial
values. We substitute the initial t/(0) into the algebraic equation and solve the
resulting quadratic equation for z, giving two possible initial values, z = 1 and —1.

The purpose of this Chapter then, is the study of DAEs. Our discussion centres
on two important issues, namely the concept of an index or degree of complexity
of a DAE and the characterization of consistent initial conditions. We therefore are
primarily concerned with analytic solutions of DAEs, where they can be obtained.
However certain numerical aspects will be considered where we feel they are appro-
priate. A fuller treatment of the issues involved in the solution of D AE systems will
be given in the next Chapter. We begin by considering what are regarded as the
simplest DAE systems, in the sense that they can be solved by ODE methods and
are also completely understood analytically.

4.2 Infinitely Stiff ODEs.

We begin this section by considering a special case of the stiff ODE systems discussed
in earlier Chapters. In particular we examine the pair of scalar ODEs:3

Y = te [<&
ez'(f) = g{t,y(1),z(1)) (4.11)

with y(a) and z(a) given at the initial point t = a. In the above equations we assume
that /(+), <(-), y(-) and z(-) are 0(1), while e is a small parameter different from
Zero. We also assume that these functions are continuous throughout the interval
and satisfy the conditions laid down for (2.1). Under these conditions, the stiffness
of (4.11) is determined by t and the stiffness ratio is of order (1/e).

The scalar Infinitely Stiff ODE, is a generalization of the stiff system (4.11), ob-
tained by considering the limiting case € = 0, giving the semi-explicit D AE system

y' = f(ty(t),z(1)) te [ahb
o = 9{i,y{i).z{i))

with y(a) and z(a) given.

3Recall, this is the scalar singular perturbation problem, introduced in Chapter 1
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Remark 4 1. It was this relatlonship between Infinitely Stiff ODEs and semi-
ezphicit DAEs, that prompted Gear [32] to propose solving these problems using
standard stiff ODE integration schemes, based on the implicit numerical methods of
Chapter 2

We complete the characterization of Infinitely Styff ODEs, by giving a formal
defimtion. We denote the differential "state” vamables by the vector y(t) and the
algebraic "non-state” variables by the vector z(t)

Note We shall often refer to the algebraic subsystem 1n the definition, as the con-
straints of the system.

Definition 4 3 (Infinutely St1ff ODE systems) The Dafferential Algebraic System

Y(®) = f(t,y(t),=(t)) t € [a,b]
0 = g(t7Y(t)az(t)) (4'12)

where
y(t)and z(t) R — R" and R™, respectively

and
f(-) and g(-) R™™* — R" and R™, respectively ‘

possess a unique solution for consistent initial conditions on y(a) and z(a), provided
f() and g( ) satisfy the Lipshitz conditions *

”f(t’ yl?z) - f(taYZ’ z)” < Ll”)’l - Y2”

lg(t,y,z1) — g(t,y,22)|| < L2l|Zy — 22|

for all t € [a, b]

Remark 4 2 These conditions are minimal and also require that the Jacobian of
the non-state variables %§ be non-singular, (see Cameron [9])

Since the Jacobian of the non-state variables exists and 1s bounded V ¢t € [a, b], we
can differentiate the constraint and apply the Implicit Function Theorem. [48] This
transforms the constraint equations into a differential system, as follows®

_ 8

0=y +
oy Y

‘- (2 )

This differential system can now be solved by the techniques used 1n earlier Chapters

Using the Implicit Function Theorem 1n this way appears to answer all our needs
for this problem, but 1t does have serious drawbacks. Firstly, the transformation 1s
analytic and tedious to compute This can be overcome, to some extent, by decoupling
the differential and algebraic subsystems in (4 12). The individual state and non-state
subsystems are then solved independently, at each step of the time interval, using a
switable numerical integration scheme for the state components and an inner Newton

9g
EEZ

giving

*We drop the dependence y(t) and z(t) on t for clarity

5This transformation 1s 1dentical to that used in (4 2) Once again we drop the dependance on t
for clanty
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iteration for the non-state components Cameron [10], mn his thesis solved chemical
systems n this way using functional iteration for the differential subsystem of (4 12)
The approach seems reasonable since the state equations are non-stiff However, for
tightly coupled state and non-state subsystems the performance of this approach was
poor We note, that the effect of increased coupling between the two subsystems,
1s equivalent to a virtual instantaneous change from a non-stiff to an wnfinitely stiff
ODE system This to some extent explains the existence of Dirac § functions 1 the
solution of DAEs We will return to this topic later in this Chapter.

The second major drawback associated with the Implicit Function Theorem 1s
sparsity If the original DAE system 1s sparse, then the transformation outlined will
not, 1n general, preserve the original system structure. The resulting ODE system
may be dense and therefore the storage and calculation of Jacobian matrices required
for numerical solution 1s greatly increased

The last question we address regarding (4 12) 1s the existence of a consistent
set of imitial conditions® which guarantee a umque solution. In general this is a
non trivial task However the question can be satisfactorily answered for (4.12)
It 1s reasonable to assume that the imitial conditions for the state equations are
automatically consistent in (4 12) The non-state 1nitial values can be easily computed
by substituting the state values into the algebraic equations and using a Newton
iterative scheme on these equations only This automatically generates consistent
non-state mitial values It 1s also expedient to use a damped Newton iteration for
this purpose, as conditions for a descent direction may not be automatically satisfied
for a full Newton iteration scheme In this situation the full Newton scheme may
diverge or possibly "hunt” around a saddle point

4.3 Linear Constant Coefficient DAEs

In this section we review the structure of the linear constant coefficient DAE given
by
AY'(t) + By(t) = g(t) t € [a,b] (413)

with y(a) and y’(a) given A and B are assumed to be n x n dimensional matrices,
both possibly singular and y(t) and y’(t) are mappings from R — R™

In particular we define the concept of index for (4 13) and derive the general
solution In the hiterature, (4 13) has been referred to by different names Sincovec
et al [68] follow Luenberger [47] and call (4 13) a Descriptor System, while Campbell
[13] and Newcomb [51] call (4 13) a Singular System and a set of semi-state equations
respectively We shall use the title linear constant coefficient DAE, which 1s now
common 1n the hiterature

When the matrices A or B are singular, the structure of (4 13) can be completely
understood via a canonical form, called the Kronecker Canonical Form (KCF) for the
matrix pencil (A 4+ A B), with A a scalar. In fact if the matrix (A + A B)™! exists
and 1s bounded, then (4 13) will have a solution. We formalize this statement with a
definition of solvability, see Campbell [13].

Defination 4 4. The hnear constant coefficient DAE (4 13) 1s solvable uff

det(A+ A B) #£0

6We have assumed consistent 1nitial conditions
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Remark 4 3 When (A+ ) B) 1s singular for all values of A in (4 13), then erther no
solutions or infinitely many solutions exist Fortunately the numerical ODE methods
we propose 1n this work reject these problems automatically Our methods factorize
a linear system of the form (A+ hSB), where h1s the stepsize and 8 1s a scalar which
depends on the method. This matrix 1s singular for all values of A

Sincovec et al [68] apply a non-singular row scaling matrix P and non-singular
change of variables matrix Q to (4.13) as follows

PAQ Q7'y'+ PBQ Q'y = Pg(t) (4 14)

To gain further insight into equation (4.14), 1t 1s necessary to define the concept of
nilpotency for an n X n matrx.

Definttion 4 5 An arbitrary square matrix A 1s mlpotent, if there exists an integer
m > 0, such that A™™! # 0, but A™ = 0. The mteger m 1s defined as the indez of
nilpotency, or simply the indez, for the matrix A.

Remark {.4. In the case where A is empty, (the zero by zero matriz,) we assume
0° = I, the 1dentity matrix

The transformations outlined in (4 14) reduces the DAE (4 13) to the following
equivalent system.

x1+Cx1 = fi(t) (o) = x10
EX; + X5 f2(t) Xz(to) = X2, (4 15)

with
Q7'y = [x1,%]” and Pg = [fi,fs]"

and E 1s a mlpotent matrix of index m > 0 In general, the matrix E 1s composed
of Jordan blocks of the form

0

—_—o
|l =]

10

L o

and m 1s the size of the largest of these blocks If m = 0, the system 1s transformed
into an explicit first order ODE system

Remark 4 5 The transformation just outhned completely de-coupled (4 13) into
a purely differential part and a purely differential algebraic part We follow the liter-

ature and consider the latter case only, as differential systems have been completely
dealt with earher

Ezample 4 2 (An m = 2 system)

o o)+ o 1] x=(anto)

We can easily solve systems of this form by starting with the last equation to obtain
z9(t) = sin(t) and z,(t) = z5(t) = — cos(t)
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Remark 4 6 Luenberger [47] calls systems of this form Pure predictors, as the
solution 1s independent of imtial conditions Clearly this system 1s very different from
a traditional ODE system, where the constants of integration are uniquely specified
by the mitial conditions For Pure Predictor systems, like the m = 2 system above,
no constants of integration arise so that the system 1s independent of nitial values

We say the solvability of (4 13) 1s equivalent to the existence of non-singular
matrices P and Q, which transform (4.13) into (4 15) The solution of (4 15), (see
Sincovec et al), 1s

t
Xy = etc X1,0 +/ e(t—s)C fl(S) ds
to

m-—1
x; = =Y. E'fI()

1=0

with ff_f') the ¢ derivative of f, The solution x; is well the known mtegral solution
of a differential system For the differential/algebraic subsystem, we verify that x, 1s
correct for the m =2 DAE system considered An easy calculation for this example

yrelds d
x=(—$m)+(-ﬁ?m)

which agrees with the solution given earher

Another nteresting, albeit similar characterization has been suggested by Camp-
bell & Meyer [11]. They introduce the notion of a Drazin generahzed inverse of a
singular matrix and use the concept to generate a solution of (4 13)

Definition 4 6 For any singular matrix A with index m > 0 there exists a
non-singular matrix P such that

_p|C 0| b
amr[C 8] 5

where C 1s non-singular and N 1s nilpotent of index m The Drazin Pseudo Inverse
of A (written AP)" 15 then

-1
AD=P[% glpﬂ

Campbell & Meyer [11] consider the following commutative matrices
A=(A+AB)'A and B=(A+AB)'B

Remark { 7 The commutativity of A and B 1s easily verified By considering the
equation

AB=BA

and pre-multiplying both sides by A~! on the left and (A + B) on the right Then,
by taking inverses of both sides, equality holds trivially

7If A 1s non-singular, then both the Drazin and ordinary 1nverses are 1dentical and A AP = |
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Campbell & Meyer [11] define a general solution to (4 13) in terms of the matrix
exponential based on the Drazin inverse of A For the homogeneous problem

Ax'+ Bx=0

the solution 1s
x(t) = e A7 Bl=0) 4 AP q

where q € R™ 1s a vector of initial values.
Ezample 4.3 Consider the homogeneous linear constant coefficient DAE with

1 0 —2 0o 1 2
A=|-10 . B=|-21 —22 17
3

2
2 18 14 10

A is singular, but (A + B) 1s invertible, thus A =1 and
3 —5 —4
A=1/3| 6 5 -2
-3 2 10

The eigenvalues of A are { 0, 1, 3 }, so that A” may be computed from the
eigenvectors of 4 via a similanty transformation as

—27 —41 —28
AP =1/27 | 54 77 46
—27 —34 -14

and the general solution follows from above Campbell & Meyer [11] also generahze
these results to the inhomogeneous case.

In this section, we have developed two useful characterizations of (4 13) that have
appeared 1n the hiterature The theory given in Sincovec et al 1s useful in demon-
strating how (4 13) naturally de-couples into differential and differential algebraic
subsystems This will be our take off point for dealing with these systems later. It 1s
also useful mn defining the concept of indez . Campbell & Meyer [11] and Campbell
[13], introduce the i1dea of a generalized inverse as a generalization of the ordinary
inverse of a matrix This proved useful in defining a solution to (4 13) 1n the classical
ezponential sense and will prove to be useful later when we discuss 1nitial conditions
for this problem In the next section, we shall attempt to generalize the ideas intro-
duced here to the non-constant coefficient DAE, where we shall see that these notions
will be carnied over 1in a imited sense

4.4 Linear non constant coefficient DAE systems

We explore the linear non constant coefficient DAE system
A(t)y'(t) + B(t) y(t) = g(t) t € [a, ] (4 16)

with y(a) and y’(a) given, by making a brief review of the important contributions
that have appeared in the literature, to understanding the structure of this problem
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It 1s our intention to summarize the combined works of Campbell, Gear and Petzold,
[13], [14], [16], [17] and [35], in an effort to generahze the results of the previous
section to (4 16), we begin with a definition of solvability for this problem.

Definition 4 7. (Campbell & Petzold [L7]) We shall say (4.16) 1s analytically solv-
able on the nterval [a,b] if for any sufficiently smooth input function g(t), there
exist solutions to (4 16) and these solutions are defined V ¢ € [a,b] and are umquely
determined at any time t € |a, b).

Remark 4 8 Campbell & Petzold point out that (4.16) fails to be analytically
solvable if 1t has a turning pont, that is, a point 1n time where the dimension of the
manifold of solutions changes, since at these points solutions may fail to exist or be
unmique (¢ f ezample 4 1 at t = 0)

When the coefficient matrices are not constant as in (4.16), we can define two
forms of index The simplest 1s the local index This 1s the index of the corresponding
constant coefficient problem obtained by considering (4 16) at some fixed pomnt 1n
time We can also define the global index of (4 16) when 1t exists in terms of a
semi-canonical form, see Gear & Petzold {35]

Once again we consider a change of variables y = Q(t)x and a row scaling P(t),
where @Q(t) and P(t) are non-singularV t € [a,b] Applying P(t) and Q(t) to (4 16)

gives

P(t) A(t) Q(t)x"+ {P(t) B(t) Q(t) + P(t) A(t) Q'(1)} x = P(t) g(t)
and transforms (4 16) to the semi-canonical form

X1+ 00)x = fi(t)
N(t) X’g + X, = fg(t) (4 17)

where C(t) 1s non-singular, N(t) 1s nilpotent and lower triangular, as in the time
mnvariant case considered in the last section. Following Campbell & Petzold [17], we
say the system is in Standard Canonical Form (SCF) and the index-m of (4 16) 1s
the index of mlpotency of N(t) In particular, if N(t) 1s time invaniant we say the
system has global index m and (4 17) 1s 1n Strong Standard Canonical Form (SSCF)

Note that the global indez 1s the local indez of the semi-canonical form above, when
N(t) 1s time nvarant

We also point out that the SSCF 1s the canonical form considered in Sincovec et al
[68], Petzold [55] and Gear & Petzold [35] We mention in passing that Campbell &
Petzold [17] provide examples to demonstrate that analytic solvability does not imply
the existence of a SSCF as had been originally thought It does however imply the
existence of an SCF When the SSCF does not exist, 1t therefore 1s not possible to
define the concept of global index When the SSCF exists, the global index determines
the behaviour of the solution In this case, we know that n, independent 1mtial values
can be chosen, where n, 1s the dimension of the differential part of the system and
the driving term can be subject to m — 1 differentiations

Remark 4 9. The local index in some sense governs the behaviour of numerical
ODE methods applied to (4 16) For example, if the local matrix pencil 1s singular,
then numerical ODE methods cannot solve the problem, because they will be faced
with the solution of a singular linear system In understanding why ODE methods
break down, 1t is natural to ask how the local and global indices are related Gear &
Petzold [35] provide the following theorem which answers this question
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Theorem 4 1 1If the local index 1s not greater than 1, then 1t 1s not changed by
a smooth transformation If the local index 1s greater than 1, then a smooth non-
constant transformation of variables in (4 16) will yield a system whose local index 1s
2, unless additional constraints are satisfied by the transformation. A restricted set of
transformations will cause the index to be greater than 2 or the pencil to be singular
When the transformation to semi-canonical form 1s used, this shows the relationship
between the local and global indices.

In this section, we have tried to show how the concepts we introduced earlier
can be generahized m a useful way to the non-constant coefficient problem We have
demonstrated that the concept of index can be generalized via a suitable canonical
form, but the characterization 1s more restricted for (4 16). However, if a global index

exists then the non-constant coefficient problem will 1n a certain sense have a linear
DAE subsystem embedded within 1t

4.5 The general Implicit Differential Equation

We return 1n this section to the general Imphcit ODE introduced 1n section 4 1,
F(t,y(t),y'(t)) =0, t €a,b], \ (418)

with y(t) and y'(t) bemng vector mappings from R — R™ and F( ) a mapping from
R2n+l — R*

It 1s our intention to tie together the theory of the previous three sections 1n a
more meaningful and appropriate way for this work We intend to develop what
1s perhaps the best known and simplest defimition of index of milpotency for (4 18),
which has appeared 1n the hiterature This defimition also applies to all other forms
of DAE considered earlier. The general 1dea, 1s to take the constraint equations and
differentiate them to generate an equivalent ODE system via suitable manipulations
We give an example to illustrate the technique on a set of Euler-Lagrange equations
for the Simple Pendulum This example has appeared 1n several papers including
Gear [33], Petzold & Lotstedt [59] and Pantelides [54]

Ezample 4 4 In the following second order system (z,y) represents the position
of the Pendulum, g the acceleration due to gramty and T 1s a Lagrange Multiplier

(representing the tension in the string) The equations of motion are
' = -Tz
"

= —Ty—g
0 = :v2+y2—1

and the 1mtial values are chosen to satisfy the constraint, (z e. any position on the
umit circle) We can easily put this in first order form (4 18) by letting z' = u and
y' = v giving the following system of semi-explicit DAEs

!
= u

’ —

! ~Tz (4 19)
~Ty-g

0 = z224y°—1

e 8 @ 8
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To transform (4 19) mto a differential system, we repeatedly differentiate the con-
stramnt w r ¢ time, as follows

2z +2yy' =0
Substituting for ' and y’, with v and v, respectively gives
zut+yv=0
Differentiating this equation and using suitable substitutions we get
w4+ —T—yg=0

One further differentiation of this equation yields the following differential equation
for T
T'+3vg+2T (uz+vy)=0

giving
T =-3vg

simnce uz +vy =0, from above We can replace the constraint equation mn (4.19), by
the ODE for T' and a full ODE system results This example prompts the following
defimition of index for the imphat differential equation and it holds in general It 1s
due to Rhemboldt [61]

Definition 4 8 The imndex of (4 18) 1s the munimum number of differentiations of
the constraint equations, required to reduce (4 18) to an ODE system

From this definition, 1t 1s clear that the index of a DAE represents 1ts degree of
complexity, as each extra differentiation increases the number of degrees of freedom
of the resulting system by one, eventually reducing the index of the system to zero In
this case, a degree of freedom 1s the introduction of an extra constant of integration,
as the requirement for the constraints to be satisfied at the initial point 1s hfted from
the DAE system

The method outlined for finding the index of (4 18) and generating a reduced
index-0 problem has been proposed as an algorithm Gear & Petzold [35], Petzold
& Lotstedt [58], [59], Gear [33] and Pantehdes [54] However this technique has the
disadvantage that 1t may introduce additional instabilities into the problem This can
be overcome by stabilizing the problem, that 1s, by taking a linear combination of the
constraint equations with their first and second deriavatives This 1s called Baumgarte
stabilization [30] For the Simple Pendulum equations above, the constraints are
(1) Index-3 position constraint

2 +y? —1=cs(z,y) =0
(2) Index-2 velocity constraint
zu+yv=cz,y,u,v)=0
(3) Index-1 force constraint (Tension)

W +v'-T—yg=cz,y,u,v,T) =0
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The constrant equation in the original system 1s now replaced by the stabihized Index-
1 constraint
Cl(z, Yy,u,v, T) + a 62(27, Y, u, v) + IB Cl(z') y) =0

Fuhrer [30] suggest that for imtial values z = 1,y = u = v = T = 0, the system
will have a period of exactly 2 seconds In this case he proposes that the stabilizing
factors are a = 50, and 8 = 625. The constants ¢, ¢z, c3, are then chosen to satisfy
the constrant at the imitial point

Gear [33] has adopted a similar approach. He reintroducs the algebraic equations
generated by differentiation into the derived ODE system, making the resulting sys-
tem overdetermined His method removes the constants of integration introduced by
earlier differentiation and simultaneously lowers the index. An example based on the
Euler-Lagrange equations for the Simple Pendulum equations 1s given in Gear [33].

4.6 Initial conditions for DAE systems

In the introduction, we indicated that mitial conditions (ic’s) for a DAE system may
be inconsistent, that 1s they may fail to satisfy the system at the initial time with
the possibility of non-unique solutions at the initial point. We propose to examine
this question more fully 1n this section, reviewing those contributions to the hiterature

that have increased our understanding 1n this area Our primary sources of reference
are Campbell [13], Smcovec et al [68] and Pantehdes [54]

4.6.1 Initial conditions for the linear constant coefficient
problem
We begin by introducing the following index-1 one DAE system which 1s taken from

Smcovec et al [68]
Ezample 4 5

Ty +zy = T4+ T, z1(0) =2
0 = 1171—1,‘2—-5 .’1:2(0):1

Letting y1 = 21 + o and y; = 21 — 2, this system 1s equivalent to

B o= h y1(0) =3
= ¥2-35 y2(0) =1
We can see from this system, that the 1.c on y2 1s not consistent and 1t appears
that no solution exists with this 1 ¢  However, if we choose to neglect the 1 ¢ on the
algebraic equation we can obtain the following solutions 8
_3et—5 _3e'+5
2 2

It 1s therefore reasonable to think of this system as having lost one degree of freedom
associated with 1ts 1 ¢ ’s, due to the presence of the constraint

T

x;

3These solutions are the differentiable or smooth solutions, as they can also be obtained by
differentiating the constraints
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Sincovec et al, apply the Backward Euler to this problem and show that the
approximate solution obtained 1s 1dentical to the solution of this problem specified
with consistent ic’s on all but the first step, where a sudden jump occurs in the
behaviour of the solution. They also comment that a jump at the mitial step gives
an mndication of inconsistent 1.c.’s and point out that this situation holds in general
for the linear constant coefficient DAE.

Campbell {13] gives a complete analysis of the linear constant coefficient problem
Recall from section 3 that we can put this problem into a canonical form and 1t 1s
sufficient for us to consider the nilpotent equation®

EZ +z=f, t € [0,00] (4 20)

where E is the nilpotent operator. Campbell [13] investigates necessary conditions
on z, so that a solution (4 20) can be obtamed for inconsistent 1¢’s He apphed
Laplace transforms to (4.20) assuming z and f; to be sufficiently smooth Vi > 0
We will denote the Laplace transform of a function f(t) by f(s) Applying Laplace
transforms to (4 20), gives

3(s) = (s E—I)"' Ez(0) + (s E — I)"* f5(s)

since the index of E 1s m, we have

m-—1 m-—1

2(s)=— > sSEzZ0)+ ) sE £(s)

=0 1=0

Taking inverse Laplace transforms and denoting the :** distributional derivative of
the Dirac delta function by 81 we can write the solution of (4 20) as

1=0 r=0 =0

z(t) = —mf E0@) - Z st gret {z(0)+m_f E f(’)(O)} (4.21)

Therefore, 1if z(t) 1s continuous on t > 0, we get

z(0) = Z E'£9(0) (4 22)
=0
and the solution 1s simply
m—1
-y B (4 23)

If however z(0) does not satisfy (4 22), then (4 21) provides a solution to (4 20) This
solution 1s impulsive at the origin It explains why a numerical method ODE method
will generate the exact solution (4 23) on all steps except the first. In some sense
then, these problems admut an infimte boundary layer at the origin, of neghgible
duration. Sincovec et al have shown that this impulse 1s smoothed out using a k-step
BDF method in (m-1)k+1 steps, for an indez m linear constant coefficient problem
For numerical work, where we are primarnly concerned with smooth differentiable
solutions, the 1c’s we specify are unimportant, since their distributional nature will

SWe change the nterval because we wish to itroduce Laplace transforms
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not be exhibited by the numerical method Thus we can say the solution 1s unique
for the problem being solved numerically when the solution exists

Remark 4.10 Campbell [13] discusses the use of linear state and non-state feed-
back to eliminate impulsive behaviour by choosing a control u = K z+ v for (4 20),
so that the resulting system 1s index-1. The solution of this new system 1s then unique
in the ordinary sense

4.6.2 Initial values for the general problem

Pantelides [54], 1n a recent paper discussed the consistent imitialization of the general
problem

F(t,u,u’,v) =0 (4.24)

where the state variables are labelled by u and non-state variables by v A set of 1¢’s
(ug,u’s,vo) are consistent for (4.24), if they satisfy the system at the initial point,
that 1s, 1f

F(t) U, u,07 VO) =0

This condition is necessary but not always sufficient Differentiating some or even all
of the original constraints produces new equations which must also be satisfied by
the 1c’s However this need not constrain the imtial vector further The index-1 case
1s an obvious example of this

Pantelides [54] proposes a graph theoretical algorithm for analyzing the structure
of (4 24), to determune the minimal subset of equations whose differentiation may yield
useful information, 1n the sense that they impose further constraints on the vector
of 1c’s The algorithm generates a bi-partite matching between the equations of the
system (both original equations and those derived by differentiation) and variables of
(4 24). This assignment umquely determines the set of consistent 1 ¢ ’s if they exist
We give an example of the application of this technique but the full algorithm can be
found in Pantelides [54]. We assume the reader 1s farmliar with the basic notions of
graph theory such as nodes, edges, colourings, matchings and augmenting paths

Ezample 4 6 Consider the following DAE system

’

r = —y
y = z (4 25)
0 = z—y-—-1

which 1s index-2 An exact solution which satisfies these equations 1s
z(t)=1+et, yt)=e* 2(t)=—e*

We intend to generate an extended system by differentiating the constraints, whose
solution 1s 1dentical to the solution of (4 25) Pantehides graph colouring algorithm
proceeds as follows for this problem, we denote the equation nodes 1n our graph by
f. and the vaniables by v, .

1 Construct a graph relating the equations to variables in the problem Only include
variables whose derivatives do not appear, the following graph fig 3 1(a) results
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fig 3.1(a).

2. Apply a depth first search procedure to the above graph to see if it has an aug-
menting path. For the above graph no augmenting path can be found.
3. We differentiate /3, giving

/4= X' -y =0
and introduce it into our graph as a new node. The resulting graph is given in fig
3.1(b).

4. Applying a depth first search to this graph yields an augmenting path with maximal
matching

(/i...x>...fA...y' ... 2... 2).

Node /3 is left exposed giving four equations in the five variables (X,y,x',y\z).
Thus one initial variable can be chosen arbitrarily, subject to the constraint that the
four equations are non singular w.r.t. to the remaining four initial values.

Remark 4-11: This method is completely general. Once again however it is neces-
sary to explicitly differentiate the equations. As we have previously pointed out, this
is unreasonable in practice.

4.7 Finding the index of DAE systems
Previous sections of this Chapter have outlined the importance of the concept of

index for a DAE. In the next Chapter we shall see how the index also determines the
numerical behaviour of an ODE method for solving DAEs. We have also identified one
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method for finding the index for the general problem by differentiating the constraint
equations This method 1s of hittle use in the numerical context, as 1t 1s virtually an
impossible task to generate a set of ODEs for a large system of constraints Because
the index 1s 1important numerically, a number of contributions have appeared in the
Iiterature which attempt to find or estimate 1t for a specific type of DAE It 1s our
mtention mn this section to discuss the devices that have been proposed for this purpose
and to outline some of the difficulties associated with finding the index using these
devices

We return again to the linear constant coefficient problem (4 13) The index of
this problem 1s the index of the matrnix pencil (A + AB) and can be found via a
Generalized Singular Value Decomposition (GSVD) or more precisely Cosine-Sine
decompositions of partitioned orthonormal matrices, see Moler & Stewart [50] Since
the singular values are the square roots of the eigenvalues, the number of zero singular
values determines the dimension of the nullspace of a general matrix Generating a
Singular Value Decomposition (SVD) involves the determination of the rank of a
matrix The dimension of the nullspace of the associated matrix pencil is therefore
the index of the system

More recently Kangstrom [44] has further improved the GSVD to include the
computation of the Kronecker structure of (4 13) His algorithm, the Re-iterating
GSVD or (RGSVD), generates the KCF of (4 13) Thus the understanding of (4 13)
1s complete as the index can be found using a finite algorithm However GSVD
algorithm 1s O(N3) where N 1s the dimension of (4 13) This would seem a reasonable
amount of computation, but for large problems, such as a system of coupled PDEs,
1t 1s not computable within a reasonable amount of time In fact, this 1s equivalent
to or greater than the amount of computation that 1s associated with numerically
integrating the system over a reasonably finite time horizon Thus, in all but the
smallest of problems, it 1s quite mefficient to use a GSVD to find the index The
GSVD 1s completely 1nefficient for the nonlinear problem, as the index may change
over the time interval It therefore does not seem a reasonable alternative in practice

Sincovec et al [68] proposed a method for computing the :ndex m of (4 13) using
a backtracking function Recall from the previous section that we stated that a k
step BDF method converged to the solution of (4 13) in (m-1)k + 1 steps. They
proposed the following technique for finding m

Create two problem stances of (4 13) having two different sets of imitial conds-
tions Integrate both problem instances with a k step BDF method, using a fixed
stepsize, until both solutions agree to within round-off level Let the number of steps

required be NSTEP We then have
m=(NSTEP -1)/k+1

The motivation behind this technique 1s that (4 13) admuts distributional solutions
which will be smoothed out by the integration method

While this technique 1s very appealing, our experience has shown us that the device
1s very unreliable We know of no integration routine which employs this technique
for estimating the index of a problem and therefore discount 1t

Because the problem of rank (1ndex) determmnation is 1ll-conditioned, other meth-
ods have been sought to find the index which avoid computing the rank of a system
Duff & Gear [25] proposed a graph theoretical algorithm for finding the structural
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indez of a system Their motivation for doing this 1s that the index 1s often deter-

mined by the pattern of non zero entries 1n the Jacobians of a DAE system (g)%) and

(%) Since systems of index-2 or less can be solved by ODE methods, 1t 1s valuable
to know if the index of a system 1s greater than two Duff & Gear [25] provide an

algonthm for answering this question for systems of the form

y = f(t,y)+Gz
Hy = Az

If the dimension of the differential part 1s n and the algebraic part 1s m, then a
necessary and sufficient condition for the index to be less than three is

k A =
rank| g l=m

where N 1s an r by r matnix for which N A = 0. In other words, the rows of A span

the left null space of A While we are not concerned with the details of the algorithm

here, we provide an example to show how the notion of structural index 1s useful.
Ezample 4 7- Assume

HG=[a B] [g] = By

and

A =]0]
Choose N such that N A = 0, a suitable N 1s [1]. We then have

A 0
rank[NHG]=[,B'y]=1

and the structural index of the problem 1s two. We point out that this 1s example 4 6
considered earlier, with the coefficients of the variables chosen arbitrarily

While 1t may be useful to obtain the structural index using this algorithm, Duff
& Gear [25] mention that 1t may take exponential time on some problems

The importance of this Chapter les 1n finding solutions of DAE systems We have
reviewed what we feel are the main approaches to generating analytic solutions that
have appeared 1n the hiterature Our whole understanding can be encapsulated in
the concept of index or degree of complexity of a DAE, which 1s also vital for later
numerical work The inadequacy of the tools we have outlined for finding the index
leads us to rely completely on analytic techmiques, 1n particular differentiation, which
1s unreasonable 1n practice, unless the system possess some simple structure Since
the index 1s vital both for numerical work and for an analytic understanding of these
problems, 1t 1s the central non-numeric concept which will pervade the remainder
of this work We however, have not included methods for 1ts computation in DAE
solvers which will be developed later, as 1t does not fall directly within the objec-
tives of this work It does however remain an outstanding research question, which
must be satisfactonly addressed in order for DAEs to be efficiently solved by current
techniques.
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Chapter 5

Numerical Aspects of Solving
DAEs.

5.1 Introduction

Having considered DAEs from an analytic point of view, we return 1n this Chapter to
pertinent questions regarding their numerical solution Perhaps the most intriguing
aspect of DAEs 1s that numerical ODE methods can be successfully used to solve these
problems, which are very different to ODEs. In the early sections of this Chapter, we
will discuss why 1t 15 possible to solve some types of DAE with numerical methods ?
and not others Once again the index or degree of complexity of a DAE determines
this In solving ODEs, the error and stability of the numerical scheme give us a
complete picture of the behaviour of the scheme on a specific problem We intend
to see how effective these concepts are when we solve DAEs using ODE methods by
looking at specific examples

The other vital question 1nvolved 1n applying implicit numerical methods to the
solution of DAEs, 1s the stabihity of the iteration scheme In fact we shall see that
an effective iteration scheme 1s the primary key to obtamning solutions. While we
propose standard methods based on Newton iteration, a technique 1s outlined in the
final Chapter based on a second order tensor approximation which we feel could be
of considerable value 1n this context

The type of problem we consider in this Chapter for numerical analysis has the
form 2

Ey'(t) =1 y(1)) t €la,b] (61

subject to given 1mtial conditions y(a) = y, We assume that f( ) and y(t) are
n-dimensional vector mappings with f( ) having continuous first partial derivatives
The index of (5 1) 1s determined only by the index of nilpotency of E, which we denote
by m > 1 This equation 1s our starting point for analysis of local error In the next
section, we follow Petzold [55] and consider the application of the Backward Euler
(BE) method introduced in Chapter 2, to the solution of this problem

1'We use the term numerical method to mean numerical ODE method
2Qur numenical integration routines have been coded to handle problems of the form

E(t,y(y))y'(t) = f(t,y(t)) These problems are difficult to analyze theoretically We therefore
have restricted our analysis to the case where the L H S 1s linear
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5.2 Errors in Solving DAEs numerically

Suppose we start with exact solution values for our numerical scheme at time ¢,.
What then 1s the error after one step 1n solving (5 1) with the BE method ?

Taking one step of size h, we obtain the numerical solution by replacing the derivative
¥'(tn41) by the linear combination ¥==¥» ' g1ving

E (yn+l - Yn) =h f(tﬂ+17yn+1) (5 2)

The exact solution at time ¢,, expanded about ¢,4; 1s

(L) = Y{tan) = b ¥ (taa) + 5 ¥(6)

where t,, < ¢ <t,41 Thus

Y (tnt) = % {Y(tn+1) —y(ta) + %Y"(ﬁ)} .

Substituting this expression 1 (5 1) we get

2

h !
B {3 (tun) = ¥(0) + 5 Y] = B Hltn, Y ) 63)
Let us denote the error at the pomnt ¢, by e,, therefore

Y(tn+1) = ¥Ynt+1 + €n41,

giving
f(tns1, ¥(tns1)) = £(tns1, Ynss + €np1)
Expanding the RHS of this equation about y,4;, we get

f(tns1, ¥(tat1)) = f(tat1, Ynsa) + ( ) ep1t+hot

6)’n+1

Denoting the matrix of partial derivatives (3 £/0 yn41) by A, substituting the above
expression mto (5 3) and subtracting the result from (5 2), we get the following error
equation

(E—hA)en = Ee, —hJ2Ey"(€)+ hot (5 4)

To gain further insight into (5 4) we assume f( ) 1s locally linear In this situation
(5.4) contams no higher order terms and we can generate the following closed form
expression for e,

eny1=(E—hA) ' Ee, — %2- (E —h A Ey"(€) (5 5)

3In earlier chapters we used J to denote the Jacobian matrix of partial derivatives We have

decided to use A n this chapter to keep our theory consistent with previously pubhshed hiterature
on DAEs

66



Thus 1if we start our integration scheme off with exact initial values, the error after
one step 1s

e =~ (E~h Ay Ey'(6) 56)

Petzold [55] pOlI;tS out that there are several consequences of (5 6) and we briefly
review them here to demonstrate the difficulties which may arise 1n solving some
problems It 1s these difficulties which set imitations on the use of ODE schemes for
solving DAEs

Consider the m = 2 linear constant coefficient problem

oo]rev=(o)
vio= (49

(E—hA)'E = [g ‘t/hl

we have

and

so that the error after one step 1s

o = ( %g;)'(f) )

The first thing to note about this result, 1s that the algebraic equation 1s solved
exactly We expect this as an Implicit method will be exact for an algebraic equation
if 1t employs a Newton iterative scheme. The important point here however, is that the
error in state variables 1s O(h) and not O(h?), as predicted for the BE method applied
to ODEs Thus an error estimate of the usual form based on (h%/2) y”(£¢) would be
asymptotically a gross underestimate This situation can obviously wreak havoc with
any step selection algorithm which assumes errors are O(h**!) for a method of
O(R*) 1t 1s possible to reduce the error y,4; by decreasing h, 1 this case, provided
a suitable error estimate 1s available to accomplish this task.

Unfortunately, there are several even more severe problems 1n solving systems of
nmilpotency m > 3. For the linear constant coefficient problem

Y2=Uh 3/:’3 =Y2 Y3 =g(t)

we have

0 —1/h —1/h?

(E-RA)'E=]|0 0 —1/h

0 0 0

and the error after one step 1s
g”(f)/h? + _Izlgm(é-)
eny1 = 29"(6)
0

Once again the algebraic equation 1s solved exactly but the state variables cause
difficulties The error 1n y, 1s O(h), which can be controlled as 1n the m = 2 case

67



But the error in y; depends on terms independent of A Thus we cannot choose A
small enough, so that the error in the solution after one step, starting with exact
solution values 1s small

The results for these two problems appear to conflict with those of Sincovec et
al [68] They show that when a k step constant stepsize BDF method 1s appled to
the linear constant coefficient problem with k < 7, the solution 1s O(h*) accurate
globally after a maximum of (m — 1)k + 1 steps, regardless of mitial conditions For
the m = 3 system just considered, a simple calculation yields the following solution

for y1,n41 .
Yinte = 5 (gn+2 — 2 9nt1 + 9n), (57)

which 15 a second order approximation for the exact solution

Y1(tns2) = 9" (tny2)-

Petzold [55] ponts to a quahfication on the theorem given 1n Sincovec et al [68] That
18, the convergence of the solution only apples to the end point of some fixed interval
of integration This 1s because the first m — 1 solution values, contain impulsive
components which do not become arbitrarily small when h 1s decreased. The results
for later steps depend only on the function g(t) at past steps and not on the starting
values, so that the solution converges 1n any interval bounded away from the starting
point

A second constraint on the result of Sincovec et al, 1s that it only apples to
constant stepsizes Gear & Petzold [35] show that when the ratio of adjacent stepsizes
1s not bounded, the BE method fails to pick up the divided difference (5 7) correctly
and the error in the m =3 case has the form

€nt1 = 1/2 (1 - hn/hn+1) g"(f) + O(hn+1) (5 8)

With ODE codes the stepsize taken on the current accepted step 1s fixed and the
stepsize required for the next step, 1s chosen to achieve the desired level of local
accuracy In this model, the error in the m = 2 case does not go to zero as h
1s reduced, while 1n the m = 3 case, the error diverges as shown by (5 8), where
the error behaves ike O(h;},) Gear & Petzold provide the following theorem which
shows that even under the assumption of adjacent stepsizes remaining bounded, order
reduction can occur for BDF methods

Theorem 5 1 If the k-step BDF method 1s applied to the linear constant coefficient
DAE with k < 7 and the ratio of adjacent stepsizes 1s bounded, then the global error
1s O(h?) where ¢ = man(k,k —m +2) .

We remark that for second order methods on index-1 and -2 DAEs, no order
reduction occurs by this theorem

From the examples, 1t can be inferred (see Gear & Petzold [35]) that a problem
of index no greater than k + 1 can be solved by a k-step BDF method However
the above discussion shows that this 1s not the case and variable step BDF formulae
are not suitable for DAEs with arbitrary index In [35], it 15 also shown, that the
asymptotic expansion of the global error in the BDF formulae make it possible for
the linear constant coefficient problem to be solved by extrapolation methods applied
to fixed step BDF methods.
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Our discussion so far has only considered the BE and BDF methods In fact
Marz [49] has studied the general linear multistep methods applied to index-1 DAE
systems. She has shown that the coefficients of the LMM must satisfy an extra set of
conditions, (which happen to be satisfied by the BDF formulae), for the method to
be convergent with the expected order of accuracy. Hence, 1t 1s not entirely surprising
that Imphcit RK methods should suffer some order reduction on DAEs. Petzold [57]
gives a set of necessary and sufficient conditions to ensure the the local truncation
error of an RK method attains a given order for the index-1 problem It 1s fortunate
that the DIRK(2,2) method of Chapter 2 attains the expected order of local accuracy
O(h*), as these conditions are effectively the order conditions of Crouziex [23] coupled
with L-stability. Recently Brenan & Petzold [5] have studied IRK methods applied
to nonlinear semi-exphat index-2 system. By examining the accuracy and stability
of a method they derive a set of necessary and sufficient conditions to ensure that a
method 1s accurate to a given order on these systems

5.3 Error Estimates for DAEs.

In this section we shall examine several potential error estimates for DAE systems
Our aim 1s to find an estimate which accurately reflects the behaviour of the error for
index-1 and -2 DAEs Gear [31] and Gear & Brown [34] proposed solving systems of
the form

fit,y,y)+Pv=0 t €la,b (5.9)

where y and y’ are vectors of length p;, P 1san n X (n —p;) matnx and f1s a
vector function of length n In (59) the algebraic vanables v appear hinearly Both
[32] and [34] make no attempt to estimate errors iIn v This make sense, since v on
every step 1s completely determined by y, thus errors in v do not cause errors in y
Petzold [55] shows that the index-3 linear constant coefficient problem can be put 1n
this form In this case error control is not attempted on y;, which 1s the component
with largest error after a stepsize decrease She also points out, that an ODE code
may behave very differently if the algebraic variables do not appear linearly. For these
reasons we are led to discount this technique in favour of estimates to be discussed
1in the remainder of this section

Sincovec et al [68] observed, for the linear constant coefficient problem, that the
error 1n the non-state components has a different asymptotic behaviour to that of
the state components In addition, errors in non-state components only affect the
solution locally and are not propagated globally to the state components Let us
denote the ordinary ODE error estimate by e, and the DAE estimate by e* The
estimate proposed 1n [68] has the form

e, =Me, (5 10)

M 1s called the state varable projection matrmz and 1its purpose 1s to filter out the
non-state values from the ODE error estimate M has the form

M = lm M(h,;) (5 11)

with
M(h,3) = ((E - hA)™) By
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and j > m, the mlpotency of the DAE system

Remark 5 1 This estimate 1s easily computed, as the LU-decomposition of E—h A
1s already available from the iterative scheme for solving the nonlinear equation,
( ¢ f section 5). However implementing the estimate has a serious drawback, n that
1t requires a knowledge of the index of the DAE system which, as we have seen 1n
Chapter 4, can be difficult to compute

Petzold [55] proposed an error estimate similar to (5 10). In her paper, she quoted
results from Sachs-Davies [63], that error estimates for second derivative ODE meth-
ods (see Hall & Watt [38]) are asymptotically correct as h — 0 and are rehable and
efficient for very stiff ODEs The estimates have the form

€ =Wle, (5.12)

where W 1s the iteration matrix for the second derivative method Petzold [55]
suggests using the iteration matrix for the Implicit numerical scheme, 1n place of W,
based on the fact, that the local contribution to the global error for the BE scheme
on the linear constant coefficient DAE is

(E—h A E (h*/2) y"(€).
The error estimate (5 12) then becomes
e&*=(E-~hA)'Ee, (513)

This 1s precisely the estimate (5 10), (5 11) proposed by Sincovec for use on the
index-1 problem. Petzold [55] also shows that (5 13) accurately reflects the behaviour
of errors for all k-step BDF formulae, with £k < 6 and m < 2 Based on this
observation, Petzold suggests that, by using this error estimate, DAEs with m < 2
can be adequately handled by ODE integration methods with only slight modification
This 1s also our primary reason for restricting the one step schemes of Chapter 3 to

solving m < 2 DAEs In the next Chapter we incorporate this estimate into our
schemes.

Recently Petzold & Lotstedt [59] have proposed a generalization of this estimate
for the semi-exphcit system

= f(tz,y) (514)
0 = g(tz,y)
with iteration matrix of 5
po [P0 e
h8% —hp3E
They observe that part of the error e n z and y, due to the truncation error A7, 1s

e=—B"' (3f/0z) ha

They propose the following estimate

kK -1 10
€, =-—B [0 0| &

which 15 1dentical to the estimate (5 12) (with W = B))
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5.4 Linear Stability for DAEs

In this section we apply classical linear stability to DAE systems, we consider the
linear version of (5 1) that 1s

Ey =Dy t € a,b] (5 15)

where D 1s a matrix of eigenvalues \,,1 < < n . If we apply the BE to this system
we obtain

(E_hD)yn+1=Eyn

and we once again keep the ratio

IRD)| = [1Yn+sll/llynll
bounded by 1. For the BE method, we have

Bl _ g —n 0y (516)
liyll
as amplification factor measured in some norm We have adopted the l; norm which
measures the spectral radius 4. For a matrix 4, the l; norm 1s defined as (see Butcher
[6])
4]l = p((A AT)?)

where p( ) 1s the spectral radius. While any matrix norm would be suitable, the true
amplification factor of a matrix 1s directly related to the size of the spectral radius
and this 1s precisely the quantity we wish to measure. We 1ntend to look at some
simple examples to gain some further insight

Consider the index-1 problem

?/’1 = My
= /\2?/2
with
10
5=y o)

In order to consider stability, we introduce a parameter ¢ > 0 and analyze the fol-
lowing system

B = /\1y1
€Y, = A2 Y2

A=(E—hD)-1E=[T-1_zx 0 ]

with

From (5 16), we compute

0 —£

€—22

“Recall that the spectral radius 1s the magmtude of the largest eigenvalue 1n modulus, (see Krysig
[45], page 350)

71



and denote kA, by z, Taking the imit as ¢ — 0, we get

1 90
—_— 1—7.1
a7 0]

The I; norm of this matrix is easily computed as

pla) = 1/(1 - 21)

This 1s the ordinary stabihty function for the differential equation in y; and 1s bounded
by 1,Vz < 0, with Re(z;) < 0. In this case no difficulties arise, as the algebraic
components do not affect the stability of the system Therefore we expect the same
behaviour on this problem as we would for an ODE system.

The Index-2 case proves less amenable to the foregoing analysis Consider the
system

Y2 = W
€Yy = Y2

aitH

and this matrix has Index-2 However, the ODE system from which 1t 1s derived does
not naturally decouple into its constituient components, as in the Index-1 example
The resulting solutions have the form a sinh(t) 4 b cosh(t) and stability classical
analysis 1s useless We know from the previous section, that errors in Index-2 systems
may not decrease as h 1s decreased As our stabihty analysis 1s inadequate even on the
sumplest Index-2 system, 1t is therefore impossible to guarantee that an integration
method will perform satisfactorily on problems of Index-m> 1 However, if we are
mindful of these limitations, limited success can be obtained on Index-2 systems, as
our test results of the next Chapter demonstrate

The question of stability of DAEs has received httle attention 1n the hterature
To our knowledge, this question has only been addressed in the contributions of
Griepentrog & Marz [37], Gear & Petzold [35] and Petzold [57] In Gear & Petzold
[35], the BE 1s examuned on hnear non-constant coefficient DAEs, where 1t 1s shown
that error amphfication 1s not damped out They therefore reject this methods for
solving DAEs 1n general and suggest, for this reason, that higher order method should
also be rejected Petzold [57] considered stabihity for RK methods on the index-
1 problem We mentioned earlier, that she demonstrated that order reduction can
occur for some RK methods on these problems She arrives at this conclusion, by
accessing the stability and the contribution of local error to global error on each
step Petzold points out that her results are similar to those of Frank, Schneid &
Ueberhuber [29] for RK methods apphed to ODEs

In the hmit as ¢ — 0, we have

5.5 Implementation of Implicit Schemes for DAEs

In Chapter 2, we outlined how imphat numerical methods are applied to ODEs and
subsequently solved by a modified Newton 1iterative scheme In this section we intend
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to generalize this work to solve DAE systems. In contrast to Chapter 2, we propose
two different approaches to framing our problem, so that a solution can be found to
the resulting nonhinear equations.

The type of problem we have designed our methods to solve can be wrnitten in the
form (51)° Applying the LMM (2 20) to this problem yields the following nonhnear
system of equations, to be solved at time t,,; for the unknown y, 4«

k-1 k~1
E {yn+k + E auyn+]} - hﬂkfn+k —h E ﬂ]fn+k =0 (5 17)

=1 =1

Applying a modified Newton iteration to (517) gives the following system to be
applied 1iteratively

BAY::LIk =hBifoyk — EYnyr + 8 (518)
with
Yoide = AVHL + Yok
Once again, g 1s the vector of past information, but 1n this case has the form

k-1 k-1
g=nh Z Bifuy, — E Z Q;¥Yn4;,
=1

=1
while the iteration matrix 1s given by

p=5 -4, (52—

We will return to the iteration matrix later. We first point out an important difference
between (5 18) and (2 22) regarding the structure of g, the vector of past information
In (5 18), we have the linear combination E Y52} o, Y4, 1nstead of S48 o, Yy,
which arose in the ODE case This removes the state effect from the non-state
variables 1n the iterative scheme, we illustrate the idea with an example
Ezample 5 1 Consider the apphcation of §-scheme to the solution of the following
system

2 = f(t,91,92)
0 = g(tayl’y2) (5 19)

For this system using the 6-scheme, (5 17) becomes
E(yns1 —yn) =h[(1-0)f. + 01, ]
and the iteration scheme 1s
BAy i =h[(1-0)f +6f,,,] — E(Viys — ¥n)

For the system (5 19) the RH S of the iteration scheme 1s

( h{(1—0) fin+0 flnt1) = ¥ons1 T Y2 )
h{(1—0) fan 40 f3,44]

5In fact our codes can handle a hnearly imphcit RHS , as we previously remarked
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Thus, for the second equation, we are only applying an ordinary Newton scheme to
the nonlinear equation

0= f2(t7 Y1, y2)-

In this way, we are able to mix the differential and algebraic equations 1n one iterative
scheme, taking full advantage of the natural coupling that exist between the variables
in the system. This technique was first proposed by Gear [32] for the solution of
ODEs by BDF methods. This approach has been used 1n several DAE integration
routines including our own schemes (c.f. Chapter 6) and those of [9}, [22] and [18]

We call the formulation outlined above, the Direct formulation of the problem
Another means of treating DAEs numerically by ODE methods 1s to use Residual
formulation. Here we define a residual vector for (5.1) as

r(t,y,y)=Ey —f(t,y) =0 (5 20)

and approximate the derivative by a linear combination of back values. Using the
BE on (5.13), we get the following nonlinear system of equations to be solved at each
time step, for y,41

I (tat1,Yns1, (Yne1 —¥a)/h) = 0.

In this case the 1iterative scheme 1s

B Ay:l':-ll =-r (tn+1,)';+1, (y:w.-i-l - Yn)/h)

th
b of

0yn

The important point about this formulation of the problem, 1s that it 1s not
necessary expliatly generate E and J, the Jacobian of f, required by the iteration
matrix B and add them together It 1s the iteration matrix itself that 1s computed
by finite differencing, thereby halving the work involved Most production codes
designed to solve DAEs, such as DASSL [56] , LSODI [43] and SPRINT [3], use this
formulation They require the user to supply two routines, one to compute E, that
15, only those terms involving y’ and a second routine for the full residual

B=E—-h

5.6 The Iteration Matrix and Scaling

The iteration matrix that arises 1in solving ODEs, as we have seen in Chapter 2, has
the form

Bope =I1-hBJ

where B 1s a parameter that depends on the method and J 1s the Jacobian of f( )
m (21) When a numerical ODE method uses this iteration matrix to solve the
nonhnear equations (2 22), 1t 1s usual to decrease h if the resulting iteration fails to
converge reasonably quickly, or the error on the current step 1s outside the tolerance
Thus as & — 0, the condition number® X(B) — 1, since Bopg — I Therefore
the resulting LU-decomposition of Bopr, becomes more stable and we expect that

The condition number 1s the ratio in absolute value of the largest to the smallest eigenvalues of
a matrix, (see Krysig, (45])
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Yntk-1 = Yo,k to become a better approximation to yn+x  With ODEs we are
fortunate, since as h — 0, Boprg — I. However, for DAEs, this does not occur In
the DAE, case the iteration matrix 1s

Bpag = E—hpJ

If we apply the usual ODE arguments to Bpsg, we run into serious problems It is
the structure on F, that causes these problems in solving the nonlinear system In
particular we are concerned with what happens, when our error estimate fails to lie
within the tolerance or the Newton 1teration fails In this case, reducing h causes

E—hBJ—E

which 1s singular. Thus we may be faced with the LU-decomposition of a singular
system, causing the code to fail completely, without giving any indication of the
cause of failure. This can easily occur. For example, Petzold [55] has shown that
steep gradients 1n a solution can cause error estimates to be unbounded as A — 0
Thus the 1mitial guess may not improve as h — 0, causing the corrector iteration to
diverge A code faced with this situation has no way of deciding whether the problem
1s due to error estimates, or to poor conditioning of the iteration matrix One thing
1s clear, that 1s, if a code fails to converge on a Newton step or fails the error test
while attempting a time step, we should be careful about how we choose A to ensure
that the next integration step will be accepted Petzold [55] tries to overcome this
difficulty by using a more robust 1iteration scheme such as Damped Newton In her
code, DASSL [56], she simply multiplies the correction at each step of the Newton
iteration by 0 75 mstead of 1

Recently Petzold & Lotstedt [59] have suggested scaling the iteration matnix, so
that the iterative scheme 1s more stable Consider the application of a g-stage RK
method to the solution of (5 1) Recall with an RK method, we replace y'(t, + ¢, k)
by unknowns k, (1 <2 < q) and the solution y(t, + ¢, h), 1s obtained by writing
it as a hinear combination of y(¢,) and the derivatives k, The coeflicients of the
method are then chosen so that the scheme has the desired level of local accuracy
For example, the 1**-order RK method (the Backward Euler method) gives

Ek= hf(tn+17yn + k)
Lineanzing this equation gives (¢ f Rosenbrock technique Chapter 2)
(E —h J) k=h f(tn+1aYn)
Let us see how scaling can be apphed to this system If (5 1) is index-1, then E has
block form
I 0
00

where [, 1s an n — r X n — r 1dentity matrix Thus

I—hJy —hJ, }

(B-hd)= [ by —hiy

where J,;, is the Jacobian of the block of equations f, w.r.t. vanables y, This
system 1s easily scaled, we simply multiply the bottom r rows by 1/h. Since we are
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not scaling variables, but only equations, the effect of this scaling should improve
overall accuracy n solving the nonlinear system. However our experience on index-
1 DAEs has shown us that this scaling is unnecessary on the test problems which
we consider 1 the next Chapter. In fact we have had no apparent problems with
conditioning of the index-1 problems which were tackled by our one-step codes.

If our problem is index-2, then E will have a sub-block of the form

[0 ¢]

—hJy I—hJp, }

and

—hJy —hJy

Once again, 1t would seem appropriate to scale the algebraic system by 1/k, for the
index-2 case In [59], it 1s shown that round off errors proportional to 1/h and 1/A?
are mtroduced into the state and non-state variables respectively, without scaling
With this scaling, the errors are multiplied by a factor of A Thus in the index-2 case,
we still should be careful how we choose h, so that these errors will not domiate the
solution

Perhaps the most important feature of the proposed scaling 1s to control the size of
round off error in the state variables, while, at the same time, the algebraic vaniables
may contain errors proportional to 1/h. These may be tolerable, since the error in the
non-state components may not be propagated throughout the solution interval. In this
case, we must be careful to accurately solve the algebraic equations at the final time
Also, we must not include algebraic variables 1n error tests, as large errors 1n non-state
components may cause unnecessary faillure of the integration scheme The estimate
proposed earlier automatically takes care of this restriction In [59], 1t 18 mentioned
that Painter [53] used this scaling in solving the Nauvier-Stokes equations which, on
discretization, are index-2. Painter found the scaling to be valuable when the code
was starting with a small stepsize, or when 1t was integrating over a discontinuity in
a derivative

(E—hJ)=[

5.7 Initial conditions for Numerical Schemes

In this section we propose a strategy for the imtialization of DAE systems Recall
from Chapter 4, that we outlined the available analytic approaches to guarantee a
consistent set of imitial conditions for DAEs We pointed out, that consistency in
this context meant that initial values for the vanables and the derivatives should
satisfy the equations at the starting point This was only a necessary condition We
also required the derivatives to satisfy the derived ODE system for sufficiency and
mentioned the algorithm of Pantelides [54] as a tool for generating a set of consistent
mitial conditions However the real difficulty with the techniques which we proposed
were their analytic nature, which ruled out using them in a numerical context
Campbell [15] and Newcomb [51] considered a system of the form

AX' + B(x) = g(t) (5.21)
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which 1s virtually 1dentical to the type of system (5 1), given the assumption that
B(x) 1s sufficiently differentiable. Following on their work, we consider the following
Limit

}1}}3% {A(x —xp)+ 8§ B(x)—6g} =0.

Expanding B(x) about X, we have

(lsl_I’I(l)%{A(X—X())+5[B(x0)+Bl(x"x0)+B2+"'_g]}

where B 1s the Jacobian of B at xo and B, j > 2, is y-linear in (x —%o) Thus B,
1s a quadratic form 1n (x —~ xp) We can write this hmit as

lim(A + 6B1)/6 {(x — X0} + (A+6B1) " §[B(x0) + Ba +- - —gl} =0

or

hm(A+6B,)7" §{B(%0) + B.+ —g]=0

since, 1f the system 1s solvable, the KCF 1s invertible and continuity ensures that
X = Xq, as § — 0 If we neglect higher order terms in x — Xg, this limit suggests the
following possible iterative scheme

X1 =Xo— (A + 631(}(0))_16 [B(Xo) - f1]

which 1s, 1n, essence one step with the BE method We use precisely this techmque
with our DIRK(2,2) scheme mn the next Chapter Recall, this scheme has a BE first
stage which we solve using the Rosenbrock technique In the case of the Composite
Integration Scheme we additionally provide a simple Damped Newton iteration We
point out, that using our schemes 1n this way automatically generates the initial values
for the derivatives. Thus, with the Direct formulation outlined, 1t 1s not necessary to
explicitly provide mitial values for derivatives, as 1s the case in the Residual approach
This 1s our primary reason for adopting the Direct formulation

In closing this Chapter then, we remind the reader that, n solving DAEs nu-
merically, errors behave differently to the ODE case In particular the higher index
problems are virtually impossible to solve, even with constant stepsizes. While the
stability of the numerical scheme should guarantee hinear error growth, we may not
have this for simple linear problems It 1s the conditioning of the iteration matrix,
as h — 0 however, that 1s the real deficiency of numerical schemes 1 this context
Unless this problem can be overcome, ODE methods will always remain experimental
for general DAE systems It 1s our opinion that this question can be satisfactorily
addressed, by the tensor method which we outline n the final Chapter All things
considered, 1t 1s quite remarkable that ODE software 1s so successful 1n solving DAEs.
In the next Chapter we solve several DAE systems by the one-step and multistep
methods which were introduced in Chapter 3 We 1ntend, in so far as 1s possible, to
demonstrate the versatility of these methods for handling such complex systems
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Chapter 6

Numerical schemes for solving
DAEs.

6.1 Introduction

In Chapter 3, we developed and provided test results for one step numerical ODE
methods. We demonstrated that, at low tolerances, these simple schemes provided
efficient alternatives to BDF methods espcially in terms of Jacobian evaluations.
This Chapter parallels the work of Chapter 3. We extend our one-step methods to
the solution of D AE systems of the form

Ey' = f(f,y(f)) t € [ab] (6.2)

with y(a) = y (ta). We will evaluate the performance of the one-step methods against
two special purpose software packages designed for numerically solving D AE systems:
the LSODI package of Hindmarsh [43] and the DASSL integrator developed by L.
Petzold [56]. Both of these packages are based on BD F formulae and we will consider
them later in this Chapter.

In this Chapter, it is our intention to incorporate into the one-step methods,
some of the improvements suggested in the last Chapter. Recall that the difficulties
which arise are due to poor error estimation, preventing the iteration matrix from
becoming singular and providing a robust iteration scheme. We will compare the
performance of the one-step codes, with both LSODI and DASSL on a selection of
test problems. We mention here that the test set of Enright et. al. (DETEST) [27],
was choosen in solving ODEs. However no such test set is available for DAEs. We
solve a selection of problems that have appeared in the literature, along with some of
the ODEs solved in Chapter 3, recast as DAEs. We therefore have a benchmark for
measuring performance. That is, a method should solve an ODE re-cast as a DAE,
without any loss of overall efficiency or accuracy.

6.2 DIRK(2,2) scheme for DAEs.

The general technique of applying Runge-Kutta methods to (6.1), is to approximate
the unknown y n+i by a linear combination of YN and its derivatives, at intermediate
stages in the interval tN to in+l. The DIRK(2,2) scheme applied to (6.1) gives the
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following equations

Ek1 = hf(tn+ahayn+akl)
Ek; = hf(ta+h,yn+ (1 — a)ky + aks) (62)
yn+1 = y'n, + (1 -_— oz)k1 + ak‘)

Once again, we are concerned with the structure of the error and stability of these
schemes. We mentioned in Chapter 5 that Petzold [57] has considered order results
for the general IRK formula on index-1 DAEs We will not review her results here,
but analyze the solution of the linear constant coefficient problem

Ey' = Ay (63)

using the DIRK(2,2) scheme (6 2).
Applying the DIRK(2,2) scheme (6 2) to the linear problem (6 3) and denoting
the matrix £ — ahA by B, we have

k] = hB_lAyn

and

k, = hB~!' Ay, + h*(1 — a)B"'AB ' Ay,

giving
Yot = [[ +hB' A+ Ka(l - 0)B AB 4] y, (64)

Subtracting the exact solution
ltuin) = () + by () + oy (1) + 2y 0(g)
from (6 4), letting e, =y, — y(¢,) and multiplying through by B, we get
Beni1 = Be,+ hAy, + h*a(l — a)AB™ Ay,
~hBy(t) ~ 2 By(t,) - X Byoe).
Sphitting up the matrix B into E and —ahA we can write the above equation as
Be,,1 = Be, + hAy, + h*a(l — a)AB ' Ay,
~hEY(t2) + ah*AY (1) ~ ' By (1)
+al 4y"(t.) - 6By (¢)

Since
Ey'=Ay = Ey"=Ay = Ey® = Ay"

we have
Ben+1 = (B + hA)en

+2 {2a(l - ) AB By, - (1 - 20)4y'(t)} + O(F)
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Assuming that e, =0 we have
2
Be,,, = @2_ {2a(1 - Q)A(BT B}y, — (1 — 20) Ay'(t.) } + O(K?)

then setting B-'E = I 1n the r h.s of this expression, our error has the correct form
off
2a(l —a) =1 -2«
=>a=1+1/V2
Thus the error estimate suggested 1n (5 13), 1s reasonable 1n this case and we propose
using the following estimate for DAEs
epae = B~ Eeope. (6 5)

Returning to (6 4) and assuming that A = D, a diagonal matrix of eigenvalues,
we require for stability that

IR|| = |lI — hB™'D + k*a(1 — )B"'DB™'D|| < 1.

Once again 1n the index-1 case the stability 1s determined by the differential variables,

since 1f -
1o _ 1
E—[O 0] andD-[O )\2]

then we require

1

= 1- ol —a)7——— <1
| R 1—-h + h*a(l a)(l—azl)z <

- Qaz
which 1s the A-stability polynomial for the ODE case
Finally for the DIRK(2,2) integrator, we extend the Rosenbrook implementation

given 1n Chapter 2, to systems of the form (6 1) Again we linearize (6.2) about y,
as follows-

Ek; = hf(t, + ah,y, + ak,;)

giving
Ek; = hf(t, + ah,y,) + ahJk,
where J 1s the Jacobian of f(Z,,y,) The second stage 1s handled in the same way,
expanding about y, + (1 — a)k;, to give
Eky = hf(t, + h,y. + (1 — a)k;) + ahJk,

and we use the same Jacobian of f( ), for both stages We then compute

Ynt1 = Yn + (1 —a)k; + aky

as before The algorithm for the DAE case, 1s therefore 1dentical to the ODE algorithm
except for the following

1 The error estimate (6.5) replaces the ODE error estimate

2 We place a lowerbound on the stepsize to enhance the stability of the integration
scheme and prevent the iteration from becoming singular We propose the following

1
h =max | hpyp, ——
( |ft,maxl)

where f, .., represents the scale of the problem at any time and h,,,,, 1s a lower-
bound 1n the stepsize, supplied by the user

3 We use the implementation outlined above for solving DAE systems
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6.3 The Composite Integration Scheme for DAEs.

We return to the Composite Integration scheme introduced in Chapter 3 in this section
and apply 1t to the DAE system

Ey' = Ay +g(t) (6 6)

Recall from Chapter 5 the application of the #-scheme to a DAE system For the
system (6.6) the -stage of the integration using the Composite scheme 1s

Eynty = Eyn +7R[(1 — 0)(Ayn + 8n) + 0(AYnty + 8nty)]
Denoting the iteration matrix £ — v0hA by B we have

Yniy = BT'Ey, + vh(1 — 0)B™' Ay, + vh(1 — 6)B™'g, + 10hB™ g,y

With BDF methods we approximate the derivative by a linear combination of past
solution values, thus for the BDF stage of the Composite scheme we have

E{aoyn + a1Ynty + 0¥ 041} = hAYns1

Substituting the expression derived above for y,, 4, 1nto the above equation we obtain
By..1 = ——ZFEy,

——{EB7'EY. +7h(1 — 0)EB " (Ay, + gx) + 70hEB g}

which gives using (6 6)
Byn+1 = __Ey'n

_% {EBT'Ey. +7h(1 - 6)EB™'Ey', + 10hEB 'g,.,} (67)

+—gn+1-
(85)

It 1s not our intention to give a complete analysis of the error in this case, mstead
we look at the index-2 problem

o o]r=ot]ye ()

with y1(0) = y2(0) = 1 and exact solution y;(t) = y,(t) = ¢! For this problem we
have E? =0 so that (6 7) becomes

241

a _ h
Byn41 = —*a—:Eyn - a—270hEB ‘Gt + ‘&;gn+l

A simple calculation then yields that

__9o( Yo } _ o etk h 0
By11.+1 - as ( 0 ) az ( 0 ) 0—2 et”h
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The exact solution at t,, + A which we multiply by the matrix B for simplicity, 1s

6t"+h tnth 1- h/az
B ( etnth | =€ —h/ay
Subtracting this expression from the approximate solution and substituting e*~ for
Y2,n, We get

(6 8)

_o0 o vk _ (1_._h_ eh]
o ag .

BEn+l =¢ln [ a2 0

Expanding the exponentials in h in equation (6 8) and using the order conditions
from Chapter 3, we obtain

h? —ayy? — k(g _ g3 —
Beyyy = —— 2-a17’—ag)+ 383~ 17’ — ) ein
2(12 0

Thus

g[(2-—an?—az)+-§:(3—an‘°'—az)]etn (69)

€41 = —.2 0

We can see from equation (6 9) that the error 1s O(h) n the state component
while the algebraic equation 1s solved exactly This result 1s 1n keeping with analysis
given 1n section 5 2, where we showed that the Backward Euler does not attain the
expected order of accuracy on DAEs

Finally, by multiplying through by B-1E we have

- 0
B 1E9n+1=(0)=0

Therefore the use of Petzold’s error estimate (4 5) on this problem results in no error
control, even though the observed errors are O(h). Thus we recommend that index-2
problems are solved with constant stepsizes only

We do not consider stability for the Composite Integration scheme However we
expect that no stability problems will arise for the index-1 case, since in this case
stability 1s determined by differential vanables only.

The 1mplementation of the Composite scheme 1s similar to that outlined in Chap-
ter 2 In this case, the nonhnear equations to be solved on the - stage are

E(Ynty —¥n) = 7R[(1 — O)f, + O£, = 0

Applying Newton’s method to this system gives the following iterative scheme for the
unknown y, ¢

BAY:E = vh[(1 — 0)f, + 68,1 — E(¥iy, — Yn)
with

+1 il t
Ayn+'1 = Ynty " Ynivy

and starting values
ygh =y, and ) _ =1,
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While the BDF scheme gives the following nonlinear equations to be solved at each
stage

E(aoyn+ QliynPy+ C*2yn+l) —~An+1 = 0.

Once again Newtons method gives
£Ay;+\ = hfn+l - E(aoyn+ aiy,,+7 + azy|l+)

with
Ayn+l = yitfl - Yn+l
and starting values
y°+1 = yn+1l and fn+l = fn+7-

Also both stages have the common iteration matrix

B=E-'yeh ~ .
dyn

Based on the results outlined above, we propose the following changes to the algorithm
given in Chapter 3 for the Composite Integration scheme:

1. An error estimate of the form

£dae = (E - 76hJ)~1)EeoDE

where J is the Jacobian of f(-) aty,,

2. Place a lowerbound on the stepsize for the index-2 problems identical to the one
given earlier for the DIRK(2,2) scheme. Note this is reasonable since 70 = a, the
parameter of the DIRK(2,2) scheme.

3. Replace the original implementation with that outlined earlier in this section.

4. Provide a simple form of damping in the iterative process, similar to that given in
DASSL [56]. That is, add 0.75 times the correction vector on the 6- stage during the
first step, for integrating index-2 problems.

6.4 ODEPACK & LSODI.

ODEPACK is a ”systematized collection” of Fortran routines for the numerical so-
lution of differential systems. The philosophy behind the concept is to provide a set
general purpose routines with a standard user interface and common internal struc-
ture which make the routines more flexible, more portable and easier to install in
software libraries. The first routine developed to conform with this philosophy was a
package based on the GEAR [31] and GEARB [40] ODE codes, called LSODE (Liv-
ermore Solver for ODESs [43] written by A. C. Hindmarsh in 1975. LSODE combines
the capabilities both GEAR & GEARB in that it solves explicitly given non-stiff and
stiff ODEs of the form y' = f(t,y(t)). In the stiff case, it treats the Jacobian matrix
di/dy as either full or banded and as either user supplied or generated internally by
differencing. LSODE is therefore a direct decendent of the GEAR package and also
uses BDF formulae of orders 1 < k < 5. Other routines in the ODEPACK family
include LSODES, the general sparse Jacobian matrix solver written jointly with A.
H. Sherman. LSODA, written jointly with L. Petzold, switches automatically be-
tween stiff and non-stiff methods ( the suffix A stands for automatic). LSODAR, is
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a version of LSODA having a root finding capability for a set of functions g(t,y) of
independent and dependent variables in the ODE system This is sometimes called
the g-stop feature It can be helpful in particle tracking where 1t 1s desireable to know
when a particle reaches the walls of a container The last member of this family is the
LSODI package, the linearly implicit solver. We shall discuss this code 1n more detail
in the remainder of this section Before we go on to deal with LSODI, we mention
that all the routines in ODEPACK use basically the same stepsize and order changing
mechanmsm that 1s used 1n the GEAR package with shght modifications

LSODI [43] was written jointly by A. C. Hindmarsh & J F Painter at the Law-
erence Livermore National Lab in California, U.S A . LSODI treats systems of the
linearly imphait form A(t,y)y’ = g(t,y) , where A is a square matrix LSODI allows
A to be singular, but the user must then input consistent initial values for y and y’
In the singular case we have a DAE system Then the user must be cautious about
formulating a well posed problem, as LSODI is not designed to be robust 1n this case.
LSODI 1s based on and supersedes GEARIB [41] and is only suitable for index-1 DAE
systems

A numerical method for the Linearly imphat system

At y)y' = g(t,y) (6 10)
can be developed from the BDF formulae
k
Yo = hBy', + Z O, Yn—
= an+ haf () (611)

where the order of the method 1s k, with (1 < k£ < 5) and §, > 0 Multiplying both

sides by A(t,,yn), replacing A(t,,¥.)y’. by g(ts,y») and solving the resulting
implicit relation for y,, we obtain the following imphcit relation using (6 11)

S(y) = A(tn,y) {y — a’n} — hfBog(tn,y)

to be solved for y = y,, where a,, is a constant vector This system 1s solved using
a modified Newton 1teration LSODI introduces a residual vector

l‘(y) = g(tn’y) - A(tmy)s

of values which the user 1s to supply Here s represents an approximation y’, and s
1s specifically defined to be

© _
g=3n_—n

hBo
That 1s, s 15 the predicted value of y’, that corresponds to the prediction y(©®

n

through the origmmal formula y® = a, + hfs S(y) and r(y) are then related by

S(¥) = Altn, ¥)(y — y©) — hBor(y)

LSODI in fact solves this system the associated iteration matrix 1s
P =S'(y{?) = A(ta,y) — hfor'(y?)
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where r'(y®) denotes the Jacobian of r( ), that 1s, r'( ) = dr/dy Clearly in the case
A = I the 1dentity matrix, the matrix P reduces to the usual ODE iteration matrix

The LSODI package and interface provide the following useful features:
(a) The matrices mvolved can be either treated as either full or banded by use of a
method flag
(b) The dependence of A on y 1s automatically and mnexpensively accounted for
whether the partial derivatives are supphed or generated internally
(c) When A is singular the user need only supply the imitial value of y’ but no later
values. If A 1s nonsingular then LSODI can be used to compute the imitial value of
y' using a flag
(d) To the maximum extent possible, LSODI shares the same user interface as LSODE
and so reflects all the advantages over GEARIB that LSODE has over GEAR &
GEARB, n terms of flexibility, convenience and portability.

The differences between LSODI and LSODE occur primarily in the user interface.
In LSODI 1t is necessary to supply a routine to compute the residual function r(y) =
g(t,y) — A(t,y)s and another routine to add the matrix A to a given array, while
the Jacobian of r() wr.t y can be optionally supplied The use of r as the basic
user-supplied quantity, as opposed to constructing r from g and A, 1s designed to
allow for both computational and storage economies Usually the user can construct
r without exphcitly forming A, thus saving considerably on storage

Later in this Chapter, we discuss the performance of LSODI on a selection of test
problems We have also considered 1t in Chapter 3 for solving ODEs, recall that the
method proved very reliable and efficient on all problems considered, except those
with eigenvalues close to the imaginary axis It 1s worth pointing out here, that
LSODI proves 1tself an efficient solver on all index-1 DAEs we consider later 1n this
Chapter and 1s equally efficient at solving these in ODE or DAE form

6.5 DASSL.

DASSL [56] 1s an acronymn for Differential/Algebraic System Solver, a Fortran code
designed by Linda Petzold for the numerical integration of general imphat systems
of differential equations of the form

F(t,y,y) = 0 (612)

with consitent 1mitial conditions

y(0)=yo ¥'(0)=y%

The underlying 1dea behind DASSL 1s to replace the derivative in (6 12) by 2a BDF
difference approximation and solve the resulting nonlinear equations at each time step
by Newtons method For the purpose of illustration, the first order BDF formula (
t e the Backward Euler) gives the following nonlinear system

F (t,,,y,,, z_;ty__) =0 (6 13)

to be solved at each time step by Newton’s method
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D ASSL obtains an initial guess for YN by evaluating a polynomial which interpo-
lates the solution at the last k + 1 points in_i, in_2,¢¢¢ i, (/t+i) at the current time
tn. An initial guess for Y' is obtained by evaluating the derivative of this polynomial
at tn. Newton’s method is then used to generate YN as in (6.13) and the derivative
is approximated by kth order BDF formula, instead of the backward difference of yn.
When the stepsize is not constant, DASSL uses the fixed leading coefficient form of
the BDF formulae. Petzold [56] comments that these formulae tend to be more sta-
ble than the fixed coefficient formulae used in LSOD1 and are more efficient than the
variable coefficient formulae used in EPISODE [40] in some cases. In DASSL these
polynomials are represented in terms of scaled divided differences and the details can
be found in Petzold [56].

The equation (6.13) can be rewritten as

F(t,y,ay +ft) =0 (6.14)

where a is a constant that changes whenever the stepsize or order changes, ft is a
vector which depends on the solution at past times and t,y, a, ft are evaluated at tn.
The nonlinear equation (6.14) is solved in DASSL by a modified Newton method as
follows:

y'+1 = y' - IflF(f,y\ay + D) (6.15)
with the iteration matrix B computed as (~7 + a and used for as many time
steps as possible. In general the value of & when B was lastcomputed is different

from a thevalue required at tn. If a is very different from a the(6.14) may not
converge. In DASSL the constant 7 is chosen to speed up convergence and is given

1+ ala

This relaxation process has also been used by Dew & Walsh [22] and by Berzins et.
al. [3] in their SPRINT solver.

The stepsize and order for the next step are determined using basically the same
strategies as in Shampine & Gordon [66]. DASSL estimates the error that would
have been made if the last few steps had been made with a constant stepsize at the
current order K and at orders k-2, k-1 and k+1 . If these estimates increase, then k
is increased; if they decrease, the order is lowered. The new stepsize is chosen so that
the error estimate based on taking constant stepsizes at order K satisfies the error
test.

DASSL also provides a damped Newton iteration in conjunction with a Back-
ward Euler step to compute the initial values of y'. Thus, in contrast to LSODI,
the approach is applicable even if dF/dy' is singular and the system is differen-
tial/algebraic. This capability is also available in the SPRINT solver of Berzins et.
al. [3]. Recall that our one step schemes automatically generate the derivatives at the
starting point because we have adopted the direct formulation outlined in Chapter 5.

The user-interface to DASSL is similar to that of LSODI in that it uses a residual
formulation. In using DASSL, it is necessary to define the residual vector A =
F(i,y,yr)) thus A is the amount by which F fails to be zero for the inputs t,y,y".
The interface is a little more straightforward than that of LSODI in that the user

can optionally supply the Jacobian of the full residual. Thus one routine is required
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instead of the two required in LSODI DASSL has most of the other features of the
ODEPACK codes. However 1t also includes a flag for dealing with discontinuities in
the solution if the user has knowledge of the position of these points in the indepentant
variable

The performance of DASSL along with the other integration schemes developed
in this thesis will be considered in the next section

6.6 DAE test problems and results.

Perhaps the most irritating feature about DAEs 1s the lack of published results in
the literature on the performance of ODE methods for solving this type of problem
Gear [32] and Cameron [9] have both published test results and problems in this area.
However the number of problems considered 1s small This contrasts completely with
the ODE case, where comparisions have been made for all types of method using
the stiff test set of Enright ef. al. [27] Because of the lack of problems, we have
constructed several of our own problems and taken a small number of others from the
hterature.

Our approach for constructing index-1 problems 1s simply to recast some of the staff
problems considered in Chapter 3 as DAEs In particular we have chosen Problems
B5, C5, D1, E3 and P2 Additionly we consider an eight dimensional example solved
by both Gear [32] and Cameron [9] We have also included a test problem given to us
by C Fuher [30], which displays peculiar behaviour when solved in ODE and DAE
form The final index-1 problem is taken from Roche [62] and 1s a modified version of
the Pendulum equations. We also mention that Problem P2 1s the example problem
provided with both the LSODI and DASSL packages. We also consider two index-2
problems, the first can be found 1n Brenan & Petzold [5] It 1s a linear non-constant
coefficient problem The second problem 1s also borrowed from [5], it 1n an index-2
version of the Pendulum equations.

We mention that the method of testing and the presentation of our results for the
recast ODEs 1s the same as that outlined in Chapter 3 However for some of the later

problems considered, we also supply tables illustrating accuracy achieved by the one
step methods

6.6.1 Recast Index-1 problems.

Problem B5
3/; = Y7
y; = Ys
yzla = —4y3
Yi = —Us
ys = —05ys
Yo = —01lye
0 = —10y1 +ay:+yr

0 = oay; +10y2 +ys
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with initial values

V,= 1 *= 1(1)6 y7= 90 ys= -110

and a = 100 as in Chapter 3.
Recall from Chapter 3 that Problem B5 is taken from Enright et. al.
is linear with non real eigenvalues.

[27]. 1t
In particular this problem is known to cause
difficulties for BD F based codes, as transient eigenvalues lie in an unstable region for
the higher order BDF formulae.

In the DAE version of Problem B5, given above, we have chosen to replace the
rhs’s of the first two equations of the system with two new variables Y7 and y¥8. In order
to make the system consistent again we introduce two new algebraic equations for
these new variables. Now variables 2i®J/272/7 and ¥8 will oscillate wildly. Therefore we

expect that this problem should be more difficult to solve than its ODE counterpart.

Problem B5
Tol = 10"2 DIRK(2,2) Comp. Int. LSODI DASSL
NSTEP 866 2766 1783 363
NFE 5256 13872 3117 734
NJE 93 1380 116 14
GERR 9.4 x 10-4 59 x 10'1 1.0 x lIO"2 2.0 x 10"3
of= TO° DIRK(2,2) Comp. Int. LSODI DASSL
NSTEP 1514 2176 2459 1015
NFE 9150 18524 4190 2054
NJE 148 1067 152 23
GERR 48 x 105 2.7 x lO"1 4.0 x 10~3 4.0 x 10"5
Table 6.1

The DIRK(2,2) scheme proves less efficient on the DAE version of B5 as the re-
In the ODE case, (c.f. Table 3.4), recall at both
tolerance values the method produced poor results and we attributed the difficulties
It must still be stated that the DAE per-
formance is considerably worse than that quoted in Alexander [t] for this problem.

sults in Table 6.1 demonstrate.

encountered to this particular problem.

Again we mention that we solved B5 as a DAE with ¢~ = 8 and 251. It is clear from
the results presented in Table 6.2., that the method is solving both versions of B5
efficiently when a is reduced. This is exactly the behaviour we observed in the ODE
case. We are therefore led to question the validity of Alexander’s results [t] on this
problem, as he uses the same scheme with a slightly modified implementation.

The Composite Integration scheme finds this problem particularly difficult. It
We
also computed the solution to this problem using the Composite scheme without

does not compute the solution to the same accuracy as the other methods.

the addition of Petzold’s error estimate (5.13). In this instance the the figures were
identical to those quoted in Table 6.1. It therefore appears that the structure of the

problem is causing the Newton iterative scheme to misbehave and we attribute the

1Recall that those are Problems B3 and B4 respectively from Enright et. al. [27].
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DIRK(2,2) on Problem B5 Tol =101 a=38 a=25
Tol =1072 a=38 a=25|| NSTEP 149 250
NSTEP 50 131 |} NFE 894 1500
NFE 300 792 || NJE 19 27
NJE 13 21 || GERR 9.0x107°[27x%x107°
GERR 10x103|50x10~* Table 6 2

poor performance to this fact While some deterioration 1s to be expected based on
the other figures in Table 6 1, we feel the figures quoted are excessive

Finally, comparing the figures given in Table 3 4 with those of Table 6 1 for both
LSODI and DASSL, the anticipated deterioration in performance 1s bourne out In
fact LSODI’s performance 1s a good deal poorer at both tolerance values DASSL
performs roughly twice as bad as 1t did 1n the ODE case, but still a good deal better
than LSODI We attribute this difference to the fact that DASSL uses the fixed
leading coefficient form of BDF formulaec Petzold [56] suggest that these formulae
may be more stable than other versions BDF formulae.

Problem C5
y{ = U¥s
yf». = Ys
ys = —40ys+4B(yi +v3)
ys = —100ys+ 108(y] +y3 + y2)
0 = y14+ys—2

0 = 10y, — By +ye

The mitial values are
. =1:=1(1)5 ys =10

and § = 20 once again

This problem 1s nonlhinear with real eigenvalues. The ODE version exhibits non-
linear coupling from the smooth to the transient components In the DAE version
above, we have chosen to replace the rhs’s of equations 1 and 2 with new varnables
ys and y¢ The rhs’s in turn are re-introduced as algebraic equations This retains
the coupling from smooth to transient components, except that now the coupling 1s
through the intermediate variables we have artificially introduced

Firstly, we consider the DIRK(2,2) scheme Comparing the results given 1n Table
3 11 with those of Table 6 3, we observe that the method is efficient at solving this
problem 1n either ODE or DAE form In either case, very similar statistics were
produced. The Composite Integration scheme also compares favourably as does both
LSODI and DASSL All methods considered found this problem easy to handle, pro-
ducing virtually 1dentical statistics in both ODE and DAE forms However we again
remark that the Composite scheme does not compute a solution to the same accuracy
as the other schemes

Problem D1.
y’1 =0 2(y2 - y1)
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Problem C5

Tol = 102 DIRK(2,2) Comp. Int. LSODI DASSL
NSTEP 73 40 42 49
NFE 438 234 132 107
NJE 12 11 11 14
GERR 2.0 x 10"5 1.1 X 10~2 4.0 x 10~5 2.0 X 10~5
Fo = IO DIRK(2,2) Comp. Int. LSODI DASSL
NSTEP 184 161 115 112
NFE 1128 1064 295 236
NJE 29 42 21 24
GERR 80 x 10"9 35x 10"4 2.0x l0"7 2.0 x 10"6
Table 6.3
y2 = IO - (60 - o0.12528) J2 + 0.125y3
0 = 213 -t

(6.16)

with

Vi=o0 i= 1(1)3.

This problem is nonlinear with real eigenvalues. The DAE is simply generated
from the ODE by replacing the 3rd differential equation y3 =

equation 23 —t = 0.

1, by the algebraic

Problem D1

Tol =102 DIRK(2,2) Comp. Int. LSODI DASSL
NSTEP 32 244 23 30
NFE 192 1421 97 79
NJE 7 75 9 15
GERR 4.0 x 10"2 3.4 x 10~3 1.0 x I0"3 7.0 x 10" 4
<o =1o"F DIRK(2,2) Comp. Int. LSODI DASSL
NSTEP 108 519 55 68
NFE 666 3553 164 147
NJE 15 168 13 19
GERR 1.0 x 10" 3 1.1 X 10~4 2.0 x 10~s 1.0 x l0O"5

Table 6.4

This problem caused particularly severe difficulties for the Composite Integration
scheme, as the figures in Table 3.14 show. Similar behaviour is observed for the
method solving the problem cast as a D AE, as the statistics in Table 6.4 indicate. The
method still requires a large number of steps and function evaluations demonstrating

that this problem is unsuitable for solution using the Composite scheme. In order to
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further explain the weakness of the Composite scheme on this problem, we set § = 1,
giving a DIRK(2,2) scheme We expected that performance of the resulting scheme
would be similar to the results quoted for the DIRK(2,2) scheme given i Table 6 4
While the results of Table 6 5 for this experiment show a good deal of improvement,
they still fall short of expected performance Therefore we are led to the conclusion
that the poor performance 1s due to the different implementations used.

Compositescheme 0 =1

Tol =1072 | Tol = 10~*

NSTEP 131 289

NFE 817 2096

NJE 21 79

GERR | 30x103| 1.9x10~*
Table 6.5

The DIRK(2,2) scheme does moderately better on this problem in ODE form at
the lower tolerance and proves 1tself twice as good at the higher tolerance value We
feel this deterioration 1s due primarily to the change in structure of the problem which
may affect the stability of the one step schemes Our reason for stating this 1s because
this behaviour also manifests 1tself for the Composite scheme on this problem

Finally the BDF based codes solved both forms of D1 without any difficulty and

with broadly similar statistics, indicating that these formulae have ideal stability
properties for this problem

Problem E3
y1 = —(55+ ys)y: + 65y,
y2 = 00785(y1 —y2)
yé = U
0 = y4—0.1y
with

=1 y.=1 y3=0, y,=01.

This problem 1s nonlinear with non real eigenvalues. The DAE version 1s derived
from the ODE form by coupling the 3"¢ differential equation to an algebraic equation
incorporating a new variable y,

The results we present 1n Table 6.6 show, that the DIRK(2,2) scheme solves the
problem efficiently at both tolerances. Comparisions with the ODE case, (¢ f Table
3 18), show that simlar statistics are reproduced 1n Table 6 6 The Composite scheme
also produced similar figures albeit requiring quite a lot more steps and function
evaluations than the other methods Lastly, both BDF codes solve the problem
efficiently in either ODE or DAE form

Problem P2

Yy = —004y; + 10%y, y3
0.043]1 — 104y2y3 -3 x 107y§

0 = py+ys+ys—1

@
)
Il
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with

Problem E3

Tol =102 | DIRK(2,2) | Comp. Int LSODI DASSL
NSTEP 31 157 33 33
NFE 186 707 106 76
NJE 7 39 12 12
GERR 1.0x 1071 [ 91x10°*|{70x10"*|2.0x 103
Tol =10~* | DIRK(2,2) | Comp. Int. LSODI DASSL
NSTEP 77 279 79 88
NFE 462 1558 195 190
NJE 15 7 17 15
GERR 10x1072] 14%x107*}160x 10| 50x107°
Table 6.6

y1=17 y2=y3=0

This 15 the well known chemical kinetics problem given 1n Chapter 3. Recall that
as an ODE this problem has been considered by several workers In DAE form it 1s
the original example problem supphed with both LSODI and DASSL. We have taken

this version of the problem directly from these codes

Problem P2

Tol =102 | DIRK(2,2) | Comp Int LSODI DASSL
NSTEP 35 35 46 22
NFE 210 114 114 45
NJE 11 10 36 17
GERR 25%x1072] 12x1073[48%x1073[2.0x 1073
Tol =10~* | DIRK(2,2) | Comp Int LSODI DASSL
NSTEP 87 60 37 41
NFE 522 267 56 90
NJE 14 16 15 17
GERR 48%x107%] 10x107*|30x10°[40x 103

Table 6 7

The DIRK(2,2) scheme proves shghtly more efficient on the ODE problem as a
comparision of figures in Tables 3 22 and 6 7 show It does however prove to be less
efficient than the other method’s. The reason for this 1s primarily due to the fact that
this method 1s using the extrapolation based error estimate which requires six function
evaluations per step. All other schemes integrated the problem efficiently, producing
similar results regardless of problem formulation The other point worth noting about
this problem 1s the improved performance of LSODI at the higher tolerance This we
attribute to the method of error control we use, specifically, setting ierror = 1, rtol
and atol as scalers set to 1072 and 10~ for the statistics quoted
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The totals for each statistic are summerizied here 1n Table 6 8 Table 6 8 also
mncludes the totals for each statistic, when these problems are cast in both ODE and
DAE form. These figures are based on the five problems considered above and the
ODE figures are taken from Chapter 3. The benchmark we have adopted to measure
the success of a numerical ODE based method on DAEs, 1s that the method should
perform equally well on any problem regardless of its formulation Specifically, we
require that any method will be efficient on any problem, cast in ODE or DAE form
in terms of the statistics measured and that simular levels of global accuracy are
obtamned

Firstly, the results given for the Dirk(2,2) scheme 1n Table 6.8 are poorer for the
DAE case. This again 1s primarily due to Problem B5 which 1n fact performs even
worse as a DAE Overall one thing is apparent, that 1s the economy of the method 1n
terms of Jacobian evaluations. Our implementation 1s bias toward a constant stepsize
in order to achieve stability in the integration process. This reduces the number of
step changes and consequently keeps the number of Jacobians required quite low

The Composite Integration scheme shows considerable change in performance on
these problems However the excessive difference 1s due solely to problem B5 In
fact this problem accounts for over 4/5% of the total work on all problems Recall
in Chapter 3 we stated that the selection of problems chosen included some of those
that Carroll [18] found most difficult to solve with his scheme Our implementation
has not improved on this situation

LSODI and DASSL both produce similar results regardless of problem formula-
tion Once again DASSL proves the most efficient solver of those considered Based
on these results 1t 1s apparent that these BDF based codes are excellent though 1t
must be said that the one step schemes compare favourably in terms of Jacobian
evaluations required Therefore these methods may be a worthwhile alternative to
the BDF codes in some application areas

A final point we remark on here, 1s that the use of Petzold’s error estimate (5 13)
proved of little value When the correction vectors of an algorithm are kept bounded,
both the ordinary estimate and Petzold’s estimate behave 1dentically on the index-1
problems considered above

6.6.2 Other Index-1 problems.
Problem P3 (Gear’s problem [32])

y, = s—(r—y?) Zbuy,

Ys — Nls

2 +ye—y1+yr—1—e’
Y7 —Ys + Y1Ye

y7 + yYs + Sy1y2

o O O ©

with
4

T—z_:lya/l 3=Z(1‘—-y]2)/2

i=1

t €(0,10%)
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Totals for all problems

Toi = 10"2 DIRK(2,2) Comp. Int. LSODI DASSL
NSTEP ODE 895 507 275 383
DAE 373 2986 476 497
NFE ODE 5770 2442 685 612
DAE 2296 16348 3556 1041
NJE ODE 176 128 87 76
D AE 61 1515 164 72
Toi= 10"4 DIRK(2,2) Comp. Int. LSODI DASSL
NSTEP ODE 1142 1147 2255 829
DAE 1422 2632 1019 1324
NFE ODE 7374 6661 4387 1692
DAE 8736 24966 4900 2717
NJE ODE 169 283 210 73
DAE 100 1370 218 98
Table 6.8
and initial conditions
y{= -1, i=1(1)4, y5=y6=1, y7=-2, y8= -3,
also

447.5+ e —4525+ € -47.5+ e -52.5- ¢

B -452.5 + e 4475+ e 525+ e 475 - e

bif = 475+ c 525+ e 4475-fe 4525 - c

-52.5- e 475- e 4525 - ¢ 4475+ e

with t = 0.00025.

Gear [32] originally constructed and proposed Problem P3. We applied the four
in Table 6.9 show, the
DIRK(2,2), Composite Integration scheme and LSODI algorithms all performed effi-

methods outlined to this problem. As the results given
ciently.

Originally we attempted to solve this problem with Carroll’'s version of the Com-
posite scheme. It failed to adequately solve the problem. His version does not always
reject the time step if the Newton scheme fails to converge. The resulting errors in
the correction vector are therefore not picked up on the current time step. These are
allowed to build up in the local error estimate until the local error estimate exceeds
the tolerance. On this problem, we found that the corrections were large and grew too
quickly for Carroll's version of the Composite scheme to control them. This caused
the numerical solution to become unbounded and eventually overflow. To overcome
this problem we decided to reject the step if the Newton iteration failed to converge.
We then asked the code to decrease the stepsize by a factor of 4 and evaluate a new
Jacobian and iteration matrix.

Cameron [9] also solved this problem using a fixed order DIRK (2,2) method iden-

tical to our scheme, but with a full Newton iterative scheme. A quick check on his

94



Problem P3

Tol =102 | DIRK(2,2) | Comp. Int LSODI | ADIRK(2,2)

NSTEP 52 64 57 27

NFE 318 311 304 294

NJE 11 19 29 17

GERR 30x103| 47%x103{40x%x107° 90x10°
Tol =10~* | DIRK(2,2) | Comp. Int. LSODI | ADIRK(2,2) Gear
NSTEP 135 139 92 165 168
NFE 834 925 383 1513 937
NJE 24 40 28 53 54
GERR 50x10~7| 35x107%|10x10~° 40x10°¢[30x103

Table 6.9

results (¢ f Table 6 9, ADIRK(2,2)) reveals that our results for all methods are bet-
ter than Cameron’s, 1n terms of function and Jacobian evaluations We also mention
that Cameron solved this problem with variable order embedded DIRK codes We
will not consider these results here, but remark that the variable order implementa-
tions were less efficient due to the greater overhead required to select the order and
stepsize

Gear [32] also solved this problem at tolerances ranging from 10~* to 10~® We have
reproduced his results at the 10~* tolerance value Clearly the fixed order schemes
perform equally well, but LSODI, which 1s a descendant of the Gear algorithm, proved
to be over twice as efficient as the fixed order schemes LSODI 1s however a more
finely tuned algorithm, 1n that 1t has improved error control capabilities over the Gear
algorithm. This accounts to some extent for the improved performance.

The last pont of interest we draw to the readers attention, 1s the performance
of DASSL on this problem This code does generate a solution, but we halted the
integration after the code reached t = 50 using 3000 integration steps at a tolerance
of 102 We therefore have not supplied statistics for this method on this problem
We also mention that the remarks we made above about Petzold’s estimate apply
here also

Problem P4 (see Fuher [30))

/

y1 = Y2 —ayl+ cos(t)

= Y2 — ayf

with ¢t € [0,107], ¢ =200 and y; =y, =0
This problem has solutions

y1 = sm(t)
y2 = 200sin’(t)

This problem was solved reasonably efficiently in DAE form as the statistics given 1n
Table 6 10 demonstrate The highly oscillatory nature of the solution is the major
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factor causing some numerical mstabihty and the values of Global error to be large
for one step schemes at the low tolerance.

Problem P4 as a DAE

Tol =102 | DIRK(2,2) | Comp Int. LSODI DASSL
NSTEP 152 160 181 216
NFE 1068 1148 296 526
NJE 47 47 65 61
GERR 7.9 x 10° 48x10°{33x1073]60x 1072
Tol =10~* | DIRK(2,2) | Comp Int. LSODI DASSL
NSTEP 417 540 405 389
NFE 2754 4034 637 888
NJE 88 188 111 73
GERR 30x1071| 66x103{10x107*[10x10°°
Table 6.10

In Table 6 11 we supply results for this problem recast as the ODE

¥y = y2—ayi + cos(t)
¥y = 2ayy(y2— ayf + cos(t))

with ¢t € [0,107], a = 200 and y,(0) = y,(0) =0

Firstly, as a DAE both one-step methods produced large absolute global errors
with reasonably efficient performance statistics In the case of the DIRK(2,2) scheme,
the reasonable performance with poor error 1s explained by the fact that we used
Petzold’s error estimate (5 13) This n effect removes the algebraic component ys, in
the solution from the computation of error. It 1s this component which is oscillating
wildly, from 0 to 200 In ODE form this component 1s included in error control, giving
much 1mproved accuracy and poorer performance

The Composite scheme 1s behaving similarly to the DIRK(2,2) scheme 1n terms
of the statistics measured Global error however 1s still large for this scheme at the
lower tolerance, indicating that the method is finding the problem hard to integrate
In fact the nature of this problem resembles that of Problem B5, which also proved
difficult for this method

The performance of the two other routines LSODI and DASSL was very different
to that of the one step methods In DAE form they produced accurate solution
values with good performance characteristics However as ODEs both methods failed
to produce accurate solution values It must be said that the large values of error
quoted are again only 1n the y, component. Clearly both algorithms are unstable on
this problem considered as an ODE This can be partially explained by the fact that
the eigenvalues of the system are lying on the imaginary axis in the complex plane
This region 1s known (see Chapter 2) to be unstable for higher order BDF formula
In fact small perturbations in the numerical solution might drive the eigenvalues 1nto
the right hand half of the complex plane, causing the solution to become unbounded
This appears to be happening to the numerical ODE solution 1n this case.
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Problem P} as an ODE

Tol = 10-2 | DIRK(2,2) | Comp Int | LSODE| DASSL
NSTEP 1507 1920 124 178
NFE 9414 15359 522 589
NJE 212 685 90 210
GERR 25x10' | 4.7x107°]30x10° |80 x 107
Tol =10~* | DIRK(2,2) | Comp. Int | LSODE| DASSL
NSTEP 9965 4938 340 550
NFE 62334 40525 1394 2023
NJE 1380 863 340 550
GERR 9.0 x 1073 1.3x10° [ 20 x 10° | 4.6 x 10?
Table 6 11

Problem P5 (Roche [62], index-1 pendulum equations)

Y9 = Y3z —YNYe

3/; = Ya— Y2Ys

Y3 = —Y1¥s

Yo = —Yays—1

0 = y3+9:—v2—us

0 = y (617)

withy, =1, 2 =ys=ys=ys =ys=0and ¢t € [0,1]

This 1s the last index-1 problem we consider, it 1s a version of the Pendulum
Equations, introduced i Chapter 4, in modified index-1 form All methods solved
this problem with no apparent problems except for the DIRK(2,2) scheme at the
higher tolerance. The method requires about 6 function evaluations per step, this
coupled with the fact that the method 1s conservative accounts for this difference

Roche [62] solved this problem with a constant step method in order to access the
behaviour of the global error We repeated similar experiments for the Composite
scheme Our results shown in Table 6 13 indicate that we are nearly obtaining an
O(h?) level of global accuracy for the stepsizes considered We mention that this level
of accuracy falls off as h 1s further decreased and we attribute this to rounding error
It therefore appears that this scheme does not seem to suffer from the order reduction
effects that occur for some methods as pointed out by Roche [62]

6.6.3 Index-2 problems.

Problem P6 (linear)

This problem is taken from Brenan & Petzold [5], 1t 1s a inear non-constant coefficient
Index-2 DAE

t

¥, = — eyt tutys—e
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Problem P5

T4 = 38 DIRK(2,2) Comp. Int. LSODI DASSL
NSTEP 45 20 9 13
NFE 270 103 12 22
NJE 10 6 3 8
GERR 3.0 x 10"3 6.6 x 10"3 3.0 x 10"2 1.0 x 10"1
Tol = 10"4 DIRK(2,2) Comp. Int. LSODI DASSL
NSTEP 326 37 19 22
NFE 2004 298 30 40
NJE 40 17 4 10
GERR 3.0x 10"4 22x 104 10 x IO"3 2.0x 10"3
Table 6.12

Global errors of Composite Scheme

h error /i3

1.0-1 1.6 x 10"3 1.0 x 10"3

5.0-2 4.0 x 10"4 1.3 x 10'4

1.O"2 1.7 x 10"5 1.0 x 10"6

5.0-3 7.1 x 10"6 1.3 x 10"7

Table 6.13

y2 = -yi + 2 - sin(f)t/z + 25 - cos(i)
213 = sin(i)yi + y3 + sin(i)y4 - sin2(i) - e_<sin(i)
Y\ = cos(™t/2 + y3 + sin(i)y4 - e_t(l + sin(i)) - cos2(<) - e-<
0 = yisin2(t) + /2cos2(i) + (y3 —et)(sin(i) + 2 cos(i))

+ sin(i)(t/4 —e_i)(sin(i) + cosc¢ty —1) —sin3(i) — cos3(i)
with exact solution

2i = sin(i), 22 = cos(f), y3 = et yA= e~t y5= €*sin(i)

and i e [0,1].

We initially remark, that at the higher tolerance DIRK (2,2) failed to take a first
step with a singular iteration matrix. The difficulty here is that the error on the initial
step is large. The reason for this is that two solutions are being computed in the one-
step two-half-step error estimate. The discrepency between these is quite large when
h is small for this problem. It is therefore impossible for the method to take a step
once the tolerence is decreased. Petzold’s error estimate also proved useful here,
LSODI

to solve the problem at either tolerance, the corrector iteration failed repeatedly.

the method was unable to integrate the system without its use. was unable

However when a one-step method did succeed in integrating the equations, it did so
quite efficiently, finding no apparent problems with the higher index.
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Problem P6

Tol =102 DIRK(2,2) | Comp. Int LSODI DASSL

NSTEP 54 65 28

NFE 348 659 73

NJE 13 31 14

GERR 70x103| 79x103|10x1079|10x10°
Tol =10~* | DIRK(2,2) | Comp. Int LSODI | DASSL
NSTEP 544 634
NFE 5863 1297
NJE 258 336
GERR 10x10°| 24x10%{10x10°|10x10°

Table 6.14

We also conducted fixed step experiments similar to those of Brenan & Petzold [5]
for the one step schemes While the presentation of our results 1s different to their’s,
we point out that the results of Table 6.15 show that our methods are O(h) accurate
which 1s consistent with their results

Global errors of One Step schemes

h DIRK(2,2) Comp Int
13711 39x%x10? 75x 1072
6372| 16x102 27 x 1072
3172 12x10°? 11x10°?
1572 | 74%x103 51x10°3
78 3] 40x103 24x1073
3972 20x10"3 11x10°3
193] 11x10°3 58x 103
7971 53 %x10¢ 29 %104
Table 6 15

Problem P7 (Simple Pendulum Equations 1n index-2 form )
Once again these are taken from Brenan & Petzold [5] This 1s a nonlinear index-2
system of DAEs

1 = Ys—nYe

y; = Y1 — Y2Ye

3/;13 = ~UNYs

Yo = —Yays— 1
0 = (1-y-y3)/2
0 = y1y3+y2y4
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with mtial values y; =1, y2=ys=ys=ys =0and ¢t € [0,1]

Similar behaviour to the previous example 1s observed here, DIRK(2,2) failing at
the higher tolerance and unable to successfully integrate the system without Petzold’s
estimate. LSODI was unable to take a first step at any tolerance and both the
Composite scheme and DASSL integrated the problem efficiently at both tolerances
as the figures m Table 6.16 indicate.

Problem P7

Tol =102 | DIRK(2,2) | Comp. Int. LSODI DASSL
NSTEP 343 27 17
NFE 2118 173 47
NJE 44 9 13
GERR 2.7x107%2| 1.6 x1072 [ 1.0 x10° | 1.7 x 1072
Tol =10~* | DIRK(2,2) | Comp. Int LSODI DASSL
NSTEP 80 78
NFE 620 200
NJE 23 66
GERR 10x10°{ 9.0x102{10x10°{13x10~*

Table 3 16

Once again we conducted fixed step experiments similar to those conducted for the
previous problem As the figures given indicate the DIRK(2,2) scheme does not attain
O(h) accuracy. Thus 1t seem to be experiencing significant order reduction effects
The Composite scheme however 1s approaching the O(h) level of global accuracy
which 1s quite good considering the nature of the problem

Global errors of One Step schemes

h DIRK(2,2) Comp. Int
1371] 26 x 107! T7x1073
6372] 14x101 5.7 x 1073
3172 70x107? 32%x1073
1572 | 30x 102 1.7 x 1073
78 3| 1.8x 1072 11x1073
39°2| 76 x1073 50x 104
193 | 50x 1073 30x10*
797%| 2.0x1073 20x10°*
Table 6 17

The results discussed for the index-2 systems clearly indicate that the conditioning
of the iteration matrix 1s the key 1ssue in solving higher index DAE sytems Unless
this question can be successfully resolved, numerical ODE schemes will remain exper-
mmental for this type of problem A robust DAE solver therefore will probably have
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to avoid Newton based iterative schemes. The Tensor approach outhined 1n the next
Chapter, may help 1n overcoming this drawback in current DAE integration routines

Based on our results, we can also suggest that Petzold’s error estimate (5 13) and
1ts derivations given 1in Chapter 5 appear to be very useful Recall from above, that 1t
was an essential ingredient for the one step methods developed 1n this thesis to solve
the index-2 problems considered.

All the results quoted demonstrate that the one-step solvers are adequate and
reasonably efficient for solving DAEs. However 1t must be pointed out that the LSODI
and DASSL integration routines are more accurate and efficient at higher tolerances,
as was the case for ODEs. Clearly the preference for index-1 problems should be
the LSODI algorithm, because 1t 1s more reliable, although sometimes less efficient
than the other methods considered For index-2 problems there appears to be only
one choice 1n terms of reliability and accuracy, the DASSL algorithm. However the
simplicity of the one step schemes along with their efficiency at low tolerances, may
make them useful as Elliptic/Parabolic PDE integration routines using the Method
of Lines. We therefore feel justified in saying that the schemes researched n this
thesis provide an adequate alternative to BDF based codes for index-1 problems at
low tolerance values
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Chapter 7 )

Conclusions and Future
Directions.

7.1 Introduction.

This thesis has studied the numerical solution of Ordinary and Algebraic Differential
Equations In the first Chapter we set out the objectives of this study We identified
the primary objective as the developement of efficient one step numerical methods
for the solution of ODEs Associated with this, we pointed out our intention to study
the theory of numerical schemes for ODEs.

Having completed our study of ODEs, we extended our brief to include DAEs
Our objective was to extend the one step numerical schemes to handle DAEs In
order to accomphsh this task, we intended to cite recently published theory, which
might aid our understanding of DAEs and theirr numerical solution.

Our intention then 1n this Chapter, 1s to evaluate our work against the objectives
set out imtially In the next section we will review our work and try to draw some
conclusions Then 1n section 3, we will briefly consider the Tensor approach to solving
nonlinear systems of equations as an alternative to Newton’s method Finally we close
the thesis with a look at some possible extensions of DAE type problems It 1s our
belief that these problems have never been seen in the literature

7.2 Review and Conclusions.

In Chapter 2 we outlined the theory of stiff ODEs Concepts of convergence and
order of accuracy were defined for numerical schemes applied to ODEs In particular
we 1dentified two well known types of numerical method, the Runge-Kutta (RK)
methods and the Backward Differentiation Formulae (BDF), as special cases of the
general Linear Multistep Method (LMM) We concentrated heavily on RK methods,
defining stabihity concepts that have been well documented 1n the literature We gave
a number of reasons why 1t 1s desirable for a one-step method to possess one of the
many form of stability discussed But primanly we pointed out that stability would
ensure linear error growth when solving stiff ODEs Classical methods such as the
Euler method

Ynt1 = Yn + hf(tmyn)
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failed to be efficient for solving these problems The reason we gave for this was that
the stepsize had to be kept very small to ensure that the numerical solution converged
to the true solution of the problem with the expected order of accuracy

We also considered practical aspects of solving ODEs in Chapter 2 Newton’s
method was applied to solve the nonlinear equations that arise from the application
of an mmphat numerical method to an ODE Recall that we pointed out that the
size of the Lipshitz constant forced us to use a Modified Newton method rather than
functional iteration on stiff ODEs. Then we considered error estimation for numer-
1cal schemes. The purpose of any practical error estimate 1s to instruct a numerical
method to change the stepsize when conditions are desirable to do so. We considered
three possible estimates that have been widely implemented. The BDF methods usu-
ally use the difference between the predicted and corrected solutions, while embedded
and extrapolation techniques are used for RK methods. With any error estimate, the
amount of work involved 1n its implementation is the primary factor in its choice
However this must be measured against the simplicity of the estimate and its rehabil-
ity We adopted the one-step-two-half-step extrapolation estimate for the DIRK(2,2)
scheme for this reason That 1s because the techmque 1s easily understood, well doc-
umented 1n the literature and proved reliable for other workers, such as Alexander [1]
and Hall & Watt [38]

Chapter 3 introduced the one step schemes that are the backbone of this thesis
We proved accuracy, A-, L-; S- and Strong S-stabihty for the DIRK(2,2) method,
while we quoted Carroll {18] for accuracy requirements, A- and L-stability of the
Composite Integration scheme Based on this theory, we developed two algorithms
for the numerical solution of Stiff ODEs These algorithms were coded as variable
step integration routines in Fortran Recall that the DIRK(2,2) implementation used
an extrapolation based error estimate and Rosenbrock method for the solution of the
nonlinear system The Composite Integration scheme used a modified Newton method
for the nonhnear equations and an error estimate based upon a hnear combination of
available function values.

These algorithms were tested on a selection of problems from DETEST [27] The
problems we chose, were those that Carroll’s [18] implementation found difficult and
those solved by Alexander [1] We demonstrated that our DIRK(2,2) code, proved
as efficient as Alexander’s, on all problems except B5 Qur code proved considerably
more efficient 1n terms of Jacobian evaluations, while 1t was less efficient w rt the
number of function evaluations required

The Composite Integration scheme was least competitive in terms of the statistics
measured, but again was efficient 1n terms of Jacobian evaluations with reasonably
good overall error behaviour Compared to Carroll’s {18] results quoted in Chapter 3,
we found our 1mplementation to be shightly more efficient on the problems considered

Based on our numerical results of Chapter 3, 1t 1s clear that the one-step schemes
meet the standards set out 1n our objectives in that they provide an efficient alterna-
tive to BDF methods, when solving stiff ODEs at low or moderate tolerances

In Chapter 4 we turned our attention to the second major topic of this study,
DAEs We spent considerable time introducing the concept of index The connection
between stiff ODEs and index-1 DAEs was demonstrated This was the reason we
gave for applying stiff ODE numerical methods to the index-1 problem We then went
on to review the hiterature on DAEs and outlined the transformation to Kronecker

103



canonical form for the linear constant coefficient DAE This transformation allowed
us to define the concept of index, as the dimension of the nullspace of the differential
operator for a DAE. The transformation was further generalized to the non-constant
coefficient problem and the notion of global index was defined. Finally the index
of a general DAE was defined in terms of the number of differentations required to
generate an equivalent ODE system.

Initial conditions for DAEs were then considered We gave an example of Pan-
tehde’s algorithm [54] for generating consistent sets of 1 ¢’s. The chapter closed with a
look at possible methods for determining the index of a DAE system Recall that the
only practical methods were graph-theoretic and these could have exponential run-
ning time. Consequently it 1s very difficult to estimate the index unless the problem
possesses some structure. The reason why the index 1s so vital 1s that 1t determines
the behaviour of a numerical method on a particular DAE

Numerical aspects were dealt with in Chapter 5. Again we were interested 1n
numerical accuracy and stability. For index-1 DAE systems the behaviour is similar
to the stiff ODE case, as we demonstrated by analyzing the Backward Euler on
this problem However, the results of Petzold [55] for the hnear constant coefficient
problem show that errors may not decrease as the stepsize A — 0, for higher index
DAEs This, coupled with the fact that stability for numerical methods 1s not well
understood for higher index DAEs, makes them unsuitable for solution by numerical
ODE methods

The problem of error control can be overcome if a suitable error estimate 1s avail-
able. We recommended the use of the estimate introduced by Petzold [55] This
estimate had the property that it only included state variables in the calculation of
error Petzold [55] also showed that the estimate accurately reflects the local contri-
bution to global error for BDF methods on index-2 problems

The most significant problems to overcome 1 solving DAEs are keeping the iter-
ation matrix nonsigular and generating consistent mitial conditions The Backward
Euler method can be used for the purpose of finding 1.c ’s for linear DAEs. However
no effective numerical techniques are available to handle this difficulty in general In
order to ensure that ODE codes will be robust enough to handle DAEs, the question
of smngularity in the iteration scheme for the nonlinear equations must be addressed
To date, no adequate techniques have been developed to overcome this problem Ten-
sor methods, to be discussed 1n the next section, may provide a useful alternative to
standard Newton schemes for this difficulty

Without an understanding of the theory of Chapters 4 and 5, it would be fruitless
to attempt to solve DAEs Having considered the difficulties raised, we are aware
that failure of an ODE code on DAEs 1s primarily due to two factors inadequate
error estimates and poor conditioning of the iteration scheme These difficulties can
be managed by the techniques outlined if they are understood However, since the
tools to completely deal with these problems have not been perfected, it appears that
a robust general DAE solver will take considerable effort to develop Our codes take
into account the difficulties mentioned and attempt to manage them 1n as simple a
manner as possible.

Chapter 6 returned to the one step schemes and outlined some modifications
that would allow ODE based codes to handle index-1 and -2 DAE systems Recall
that the modifications we suggested were simple 1n structure and interfered with the
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original construction of the algorithms, given in Chapter 3, as little as possible In this
Chapter we also outlined the LSODI [43] and DASSL [56] polyalgorithms. These were
BDF-based variable order integration routines for solving DAE and Impliait ODE
systems The primary difference between these methods and the one-step schemes
was that we used the Direct formulation of the problem, while the polyalgorithms
opted for the Residual formulation given in Chapter 5.

After discussing the methods, we gave a selection of test problems. Several of
these were ODEs from DETEST [27], recast as DAEs Our results for these index-1
DAE systems demonstrated that the one step methods are efficient alternatives to
BDF-based codes on most problems. All problems except B5 produced efficient and
consistent results We also considered some other index-1 systems that have appeared
in the hiterature. Again our one-step schemes proved as rehable and efficient as the
polyalgonithms Only Fuher's problem [30] posed any real problems for the one step
schemes It must also be stated that the BDF based codes also found difficulty
with this particular problem For this reason we suggested that our schemes are an
adequate alternative to the BDF-based codes and met with the objectives set out
mitially

On index-2 problems however the performance was quite good In fact our meth-
ods were able to solve the problems given at the lower tolerance Table’s 6.15 and
6 17 demonstrated that the one step schemes produced levels of global accuracy con-
sistent with theory, as predicted by Brenan & Petzold [5]). The LSODI algorithm was
completely unable to handle the problems given In contrast, the DASSL routine was
able to integrate the index-2 systems at both tolerance values efficiently Based on
our observations therefore, we recommend this routine in preference to the one step
schemes developed 1n this thesis It must be said, however, that the one step methods
still prove useful for index-2 DAE systems Their ssmphaty allows easy modification
Thus they can be included as integration routines in PDE solvers using the Method
of Lines. We therefore feel that they should not be completely discounted as higher
index DAE solvers

7.3 Tensor methods for solving Nonlinear Sys-
tems.

Tensor methods are a class of general purpose methods for solving systems of non-
Linear equations They are intended to efficiently solve problems where the Jacobian
matrix of the system at the solution 1s singular or ill-conditioned Their distinguishing
feature, 1s that they base each 1teration on a quadratic model of the nonlinear func-
tion In this section we summarize the work of Schnabel & Frank [64], in developing
Tensor methods that are computationally efficient 1n space and time

Consider the general nonlinear system

f(x) =0 (7.1)

where 1t 1s assumed that f( ) 1s twice continuously differentiable and x*) 1s the solution
to (71) In order to approximate the solution of (7 1), the standard approach 1s to
base each 1terate upon a linear model of f( ) around the current iterate x), thus

f(x® + h) = f(x¥) + JOh (72)
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where h € R™, 1s the correction vector and J® € R™*", is the Jacobian matrix of
f( ) at x® Newton’s method sets the next iterate x**!) to the value of x) 4 h, that
solves (7.2) giving

X = X _ ( J('))—l £(x0).

The main drawback of Newton’s method, is that 1t fails to be quadratically con-
vergent if J®) is ill-conditioned or singular. Schanbel & Frank [64] point out that
under these circumstances Newton’s method is only linearly convergent with constant
converging to 1/2 For example the behaviour of the sequence of 1terates z(¥) in the

scalar problem is, (see Schnabel & Frank [64])

o®+1) _ 0] = (850 _ g

with limy_oo c® = 1/2 and |2(*) — (9] being sufficiently small.

The main aim of Tensor methods is to provide a general purpose scheme that will
have rapid convergence on ill-conditioned and singular problems They are based on
expanding the linear model of f( ) around x(*) to the quadratic model

f(x® + h) =0 4+ JOh 4 %T"’hh (73)

where T € R™"** The three dimensional object T 1s called a Tensor and we
follow Schnabel & Frank [64] calling (7.3) a Tensor model The term T™hh m (7 3)
1s defined by the quadratic form

(T(‘)hh)J =h'H,h

where H, 15 the 7** horizontal face of T, that 1s the Hessian matrix associated with
the 7** component function of f( )

This model has a number of serious disadvantages
(a) n® second partial derivatives would have to be computed,
(b) n®/2 additional storage locations would be needed compared to n? for the Newton
model,
(c) to find a root of the model, each iteration would have to solve n quadratic equations
in n unknowns, which requires an iterative process when n > 1,
(d) finally, the model may not have real roots

Schnabel & Frank [64] overcome these problems by avoiding the explicit calcula-
tion of the Tensor term 1n (7 3), they construct T*) by asking the model to interpolate

through previously computed values of the function f( ) In particular they require
that

1
f(x(R) = £(x®) + JOs® 4 5 T gk (k) (74)
k=123, ,p

where

and x-1 . x(-?) are p past iterates that need not be consecutive. They use a
modified Gram-Schmidt algorithm to select past iterates to mnclude in the calculation
of T®, which requires about n? multiplications and additions. The equations (7.4)
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are a set of n p linear equations 1n n3 unknowns Schanbel & Frank choose T to be
the solution to

minimazel|T®||F

subject to
TOSMSH = 10 = 2 (F(xM) — £(x) — JIxR)
where || - [|F is the Frobenius norm This has solution (see Schnabel & Frank {64])
P
T(') . Z a(k)s(k)s(k)
k=1
with

(a®, - a®) = M1 (£0, ., ¢®)'

] ?
and M is a positive definite matrix defined by

M, = (sjs;)2 1 <1<p.

Substituting this in (7 2) gives

P
f(x(z) + h) — f(x(‘)) + JOh + 1/2 E al® (hts(k))2 (7 5)

k=1

Schnabel & Frank [64] subsequently solve these equations by noting that f(x®*) + h)
1s quadratic 1n a p-dimensional subspace spanned by s*) and linear 1n 1ts orthogonal
complement They apply an orthogonal transformation to partition the system so that
the first n — p components are linear and the remaining p components are quadratic
Then they apply the QR algorithm to solve the Tensor model

Schanbel & Frank [64] give an algorithm for this process and comment that on
singular systems the solution 1s usually well-posed They point out that linear part
of their model 1s usually well-conditioned, while the ill-conditioning of the standard
model 1s moved 1nto the quadratic equations in the Tensor approach outhined This
1s also well-posed due to the tensor term Schnabel & Frank [64] also provide test
results to demonstrate the efficiency of their approach They show that on singular
problems their method 1s at least 30% more efficient than the standard method

Because this method appears to be very efficient on 1ll-conditioned problems, we
feel that 1t would considerably improve the robustness of currently available DAE
solvers We therefore think that it would be worth while to research this approach
further 1n the context of Differential Algebraic Equations

7.4 Extensions of DAE problems.

The last problem we mtroduce into this thesis which, to our knowledge, has never
appeared 1n the hterature, 1s mixed differential, linear and nonlinear programming
problems We present some possible versions of this problem which we feel could arise

although we have no justification for making this assmption The linear versions could
take the form

max F(t,y,y',z)=y'~f(tay,z) i’
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subject to
ay+ bz +g(t) <0

where a, b are constants The nonlinear problem may be just the linear constraint
replaced by one of the form

g(t,y,2) < 0.

Obviously more general versions of this problem can be constructed based on the
DAE problems mtroduced in Chapter 4. While we have not analyzed these problems
as they are outside the scope of the present work, certain questions can be immedi-
ately asked In particular existence and uniqueness need to be guaranteed for their
solution. What analytic techniques are available for this type of problem. Is our
knowledge of ODEs and DAE s useful 1n this context. Can our numerical methods
be adapted to handle such problems, by possibly introducing some kind of Penalty
Function technique to constrain the equations further, so that a solution can be found.
Finally we ask does this type of problem ever occur in practice or 1s it just some kind
of mathematical mutant that we have constructed We have not considered these
questions but simply pose the problem as an interesting generalization of Ordinary
and Algebraic Differential Equations considered n this work
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Appendix A
Equivalence of DIRK(2,2) and

Composite Integration schemes.

Recall the Composite Integration scheme The composite pair of formulae for the
scalar first order ODE are

Yniy = Yn +YR[(1 = 0) fu + 0 fas4] (A1)

and
CoYn + Yniy + QY1 = hfas (A2)

Consider the first stage (A 1), letting k; = h f(t,.,y,) this becomes
Ynty = Yn + (1 — 0) k1 +70R fry, (A3)
Now letting k2 = hf(t, + YR, Ynt~y), we have

f, = Ynty " Yn (1 = 8)k,
2 = .

r (A1)
Substituting the expression for y,,., 1 (A.3), into equation (A 4), we get
k2 = hf(tn + 1h,ya + 7(1 — O)ky + 70k,) (A 5)

Taking the second stage (A 2), letting z = oyyn4y + oy, and putting k; =
hf(ty + h,yns1), we obtain

Ynt1 = (1/02) {ks — 2}

giving
1
k3=hf(tn+h,a—{k3—z}). (A 6)
2

Now substituting successively for the unknown z in terms of y,,, ki, k; and using the
order relations from Chapter 3, we get

ks = hf (tn +hyyn — (%) (1= 0)ky — (‘a'—:) Ok, + (aiz) k3) . (AT

2
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The Coefficient matrix for this method 1s therefore

010
v |v(1-9) 70
1| 204(1-9) 290 1/ (A8)

| 2y(1=0) 290 1/ay

Note All rows sum to 1 including the row of weights
Fially letting § = 1 and recalling that ¥ = 1/a,, the above matrix becomes

0]0

710 v

110 1-7 ~ (A.9)
[0 1-7 7

Sice no information is required from the quadrature point t,, we can rewrite this
array as

7|7
11— « (A 10)
[1-7 «

This 15 the coefficient matrix of the DIRK(2,2) scheme of Chapter 3, since v =y =
1—1/4/2 Recall that this was the value choosen when we implemented the DIRK(2,2)
scheme
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