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Abstract

ALGORITHMS FOR THE 
RESOURCE LEVELLING 

PROBLEM

The Resource Levelling Problem (RLP) is a variation of resource-constrained 
scheduling problems with major applications in manufacturing. A critical path 
is determined for a set o f jobs/items that needs to be manufactured or 
assembled to form a final product. In capacity planning, each of these jobs is 
associated with a predetermined load or 'hassle' factor (resource level). When 
these jobs are scheduled together in a planning horizon, different profiles with 
respect to the resource levels are developed. The objective of the RLP is to 
minimise the maximum resource peaks by moving jobs within their slack times.

RLP is an NP-Hard combinatorial optimisation problem and therefore, no 
optimal algorithm is known. A few studies have been done on this problem 
during 1960's and early 1970's and various heuristics suggested (see [W64], 
[D66], [BFC62], [D73]). However, no recent studies have been done despite 
recent developments in algorithmic techniques.

The objective of this project is to develop new algorithmic approaches to the 
RLP. In Chapter 1 we provide a definition o f the problem using an example 
from the manufacturing industry. Chapter 2 presents a review of pre
processing techniques, which are useful in improving the performance of 
Integer Programming methods. In Chapter 3 we develop four Mixed Integer 
Programming (MIP) formulations. Our analysis shows that time-indexed 
formulations perform better for the RLP.

In Chapters 4 and 5 we present three global heuristic methods; Simulated 
Annealing, Tabu Search and a Perturbation algorithm. We conclude that, these 
algorithms are feasible and good approaches to the RLP. The perturbation 
algorithm was found to perform better than the rest. Chapter 6 provides a 
discussion on how the theory o f Human-Computer Interaction can be used to 
improve the solution of the RLP by providing a good Interface design. Lastly 
we summarise our project in Chapter 7 and suggest areas o f further research.
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C h a p t e r  1

RESOURCE LEVELLING PROBLEM (RLP) - PROBLEM DEFIN ITIO N

Introduction

Scheduling a project consists of determining a set of starting times for the 

activities o f the project in such a way that the precedence constraints between 

them are satisfied and the total completion time is minimised. If there are no 

resource constraints, problems of realistic size can be solved by the critical 

path and network flow techniques. The activity start times developed from 

these techniques imply specified patterns or ‘profiles’ of resource usage over 

time. When resource availability levels are checked against the required levels 

of demand, the problem of resource allocation arises. It may be that demands 

exceeds availability levels in certain time periods or that the variation in 

resource profiles is considered excessive, and there is a reason to reduce 

excessive peaks and ‘smooth* the profiles of usage.

The objective o f  the resource levelling process is to ‘smooth’ as much as 

possible the profiles of usage over time, within the given project duration. 

This is accomplished by judicious rescheduling o f activities within their 

available slack (floating time) to give the most acceptable profile.

Clearly, there is an exponential number of combinations of starting times 

(feasible solutions) to be considered in the search for this optimal profile. 

This is a NP-Hard combinatorial optimisation problem and thus no exact 

algorithm is currendy known for its solution.

We illustrate the problem by an application, which appears in the operations 

of manufacturing industries.
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Resource levelling in manufacturing industries

In manufacturing industry, the scheduling process involves the allocation of 

the available capacity or resources (equipment, labour, and space) to jobs, 

activities, tasks, or customers through time [R93]. Important documents 

required in this process include the Bill o f Material (BOM) and the Master 

Production Schedule (MPS).

Bill of Material

A structured list of all the materials or parts needed to produce a particular 

finished product, assembly, subassembly, manufactured part, or purchased 

part Q89].

An example o f BOM is shown in Figure 1 for the assembly o f a Motor bike.

Figure 1: A n  Example of a BOM.
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The BOM shows the relationships between various activities, which are used 

to assemble a specified product. For example, a frame cannot be assembled 

before a suspension. The notations used in the example are defined as 

follows;

♦ [ ] ,  e.g. [1000] : Stock number, i.e. die task identifier,

♦ () , e.g. (1 0 ) : Simple lead time if all subassemblies are available,

and purchase lead time for bought in components ( duration).

♦ CD , e.g. [T] : Load (resource) level on production department.

♦ { }, e.g. {1} : Assembly time for an activity i.e. time required

to fix an item into its parent.

Wc note that, this BOM can be converted to an activity network and solved

by the Critical Path Methods (CPM) to obtain all the time-oriented parameters

of each activity such as ‘Earliest Starting Time’ (EST), ‘la test Starting Time’ 

(LST), ‘Total Floating Time’ (TFloat) and the critical path duration.

9



Table 1 shows a summary of these parameters as solved by the critical path 

methods for the BOM example of Figure 1 using TORA package [H92].

Activity Durtn Earliest

Start

Latest

Complete

Total Free

FloatStart Complete Float

Front Wheel 4 0 4 13 17 13 13

Front 10 0 10 7 17 7

Absorber

Rear Wheel 17 0 17 0 17 0 0

Rear 10 0 10 7 17 7 7

Absorber
\tr< • -- 1+fXterr -' "|

¡8
5*Bolts 1 0 1 17 18 17 17

Body 3 0 3 15 18 15 15

Steering 5 0 5 13 18 13 13

Suspension 1 17 18 17 18 0 0

Gear. Box 15 0 15 8 23 8 1

Motor 16 0 16 7 23 7 0

Casing 12 0 12 11 23 i i 4

4* Bo Its 1 0 1 22 23 22 15

Frame 10 18 28 18 28 0 0

10* Bolts 1 0 1 27 28 27 27

Engine 5 16 21 23 28 7 7

Motor Bike 4 28 32 28 32 0 0

Table 1: Results from the Critical "Path Method.
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Master Production Schedule ( MPS )

A statement of requirements for ‘end - items’ by date and quantity. For a 

particular component, an end - item is the highest level item recognised in its 

bill o f materials.

MASTER PRODUCTION SCHEDULE

Job Subassembly name Period required 

(days)

N um ber

required

1 M otor bike 45 5

2 Engine 40 8

3 Motor bike 50 6

4 Frame 42 4

Table 2:^4« example of an MPS.

One of die applications of both these documents (BOM and MPS) is to 

develop a resource profile by the work centre (or facility). This is used to 

obtain an idea of whether the given orders can be delivered within the given 

time scale (Planning horizon) without exceeding the available resources.

Using the above examples o f BOM and MPS we apply a scheduling process 

called backward loading [R93] to develop a resource profile. In this process, 

the loading begins with the due dates for each activity and loads the processing 

time requirements (duration) against the facility by proceeding backward in 

time.

As an illustration, we use the latest starting times and the precedence of each 

task to construct a resource profile for job 3 (6 Motor Bikes) on the planning 

horizon. This looks as shown in Figure 2.
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Job 3 (6 Motor Bikes)
90

<D
isio
hJ

60

42-

30

Engine

co• i-Hcn¡3uDhinZ>on

Frame Motor
Bike

30 35 36 41 46 50

Time (in days)

Figure 2: Loadprofile forjob 3 (6 Motor Bikes ).

The due date for job 3 is day 50 and the lead-time (duration) for a Motor bike 

is 4 days. From the CPM results in Table 1, the latest start and completion 

times of Motor Bike without considering the due date are 28 and 32 

respectively. Since the due date is day 50, we have an extra time of 18 days 

(50 - 32) in which the activities can be scheduled. Thus the latest starting time 

for the assembly o f a Motor bike is day 46 (28 + 18). Each assembly of the 

Motor bike is associated with the resource level of 10 units, and thus the 

resource level for the assembly o f 6 Motor bikes is 60 units.

The lead-time for a frame is 10 days and it has to be completed before the 

assembly of the Motor bike. From CPM (table 1), the latest starting time for 

the assembly of frame is day 18. If we take into account the effect of the due 

date, the latest starting time for frame assembly is day 36 (18 + 18) with the 

resource level o f 42 (6x7).
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For the same reasons, the latest starting time for the assembly o f the 

suspension is day 35 with the resource level of 30 (6x5), and that of the engine 

is day 41 with the resource level o f 48 units (6x8).

The same is done to generate the resource profiles o f the remaining jobs. 

Since we are dealing with one facility, the resource profiles o f all jobs have to 

be put together. This leads to the total resource profile shown in Figure 3.

I4ir

«II -

65 .  

fitt -

42-

35-

Job 3 (Franc)

Jot» 4 (Franc)

Job 3 (Engine)

Join 2 (Engine)

Job 3£Momr Bike)

Job I (Engine)

lob 1 (Frame)

M 2fi 31 ' 3*11ine (days)

Job 1
(Motor
Bike)

45 46 50

Figure 3: Total loadprofile

This resource profile is rather uneven. We have a very high resource level in 

day 41 (140 units, which may exceed the available resources), compared to 

only 25 units in day 25. No activity has been assigned between days 18 and 24 

although it is also a part o f the feasible region.
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Since the times allocated for each activity are the latest starting times, it is 

possible to distribute activities within the planning horizon without violating 

the precedence relations in order to decrease the maximum production 

resource level. Note that, an activity can not be subdivided.

By visual inspection, the optimal schedule for the example above is shown in 

Figure 4 with the minimum resource level of 106 units.

65 .  

60 ~

42“
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Job 4 (Frame)

Job 3 (Frame)

—t—r~
25 26

Job 2 
(Engine)

Job 3 (Engine)

Job 1 (Frame)

-------- 1—r~
31 36

Time (days)

Job 3(Molor Bike)

Job 1 (Engine)

Job 1
(Motor
Bike)

20 21 41 45 46 50

Figure 4: Optimal load level

It was possible to get an optimal solution to this example because of its small 

size. A real BOM usually consists of hundreds or even thousands of 

components (e.g. in the manufacture of an Aircraft). Since the solution space 

is exponential in size, this requires an enormous amount o f searching.

Few studies have been done on this problem, all during 1960's and early 70's 

with suggested heuristics (see [BK62], [W64], [D66] and [D73]).
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C h a  p t e r  2

A SURVEY ON PRE-PROCESSING AND THE GENERAL VALID 
INEQUALITIES OF THE MIXED INTEGER PROGRAMS

Introduction

The term Operations Research was coined to describe an area of applied 

mathematics in which algorithms were sought to solve practical industrial and 

military management problems. Initial successes in this domain included the 

development of Dynamic Programming (DP) and Linear Programming (LP). 

Subsequently, the domain of applications was enlarged to include 

mathematical programming problems involving only integral variables i.e. 

Integer Programming (IP) or a mixture of real and integral variables i.e. Mixed 

Integer Programming (MIP).

Integer programming problems are characterised by the property o f having a 

large number of feasible solutions. As many of the algorithms used to try to 

solve these problems involved counting or searching procedures in a high 

dimensional space, the area of study became known as combinatorial 

optimisation. By the same token, the successful techniques developed within 

the framework o f operations research were subsumed into accountancy and 

other management functional areas, thus de-emphasising its core theme.

Algorithms for integer programming problems can be classified into two 

categories: Heuristics, which seek (quick) approximate solutions and Exact 

Methods. Heuristic algorithms, which generate solutions, that can be proven 

to be within a tight bound of optimal solutions, have an important role to play 

in providing stopping rules for exact methods.
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Recent advances in mathematical programming include the improved 

performance of Integer Programming (IP) using strong Linear Programming 

formulations. One focus is on the area of reformulation and preprocessing of the 

LP relaxation.

Preprocessing refers to elementary operations that can be performed 

automatically to tighten a given formulated model. These strategies can lead 

to a vast improvement in solution times of IP programs.

Thus, exact solution algorithms typically consist of three stages. In the first 

stage, attempts are made to reformulate and preprocess the problem, by 

reducing the size of constants and removing redundant variables and 

constraints. The ideas employed are independent of the algebraic structure of 

the formulation. In the second stage, the theory of cutting planes is used to 

generate valid inequalities to add to the set of constraints, thus reducing the 

size of the solution space. No global procedure is known for generating 

cutting planes and facets, so that valid inequalities have to be hand crafted to 

suit particular problem areas within the IP and MIP world. In the final stage of 

the solution process, the branch and bound process is used, as a final recourse, 

to try to find the optimal solution.

The Branch and Bound process is not a panacea for combinatorial 

optimisation problems. As a tree search procedure, it is critically dependent 

on the size of the search space it has to explore. The quality of work in the 

initial stages o f the solution process largely determine whether the overall 

approach can be used to solve practical problems within the time frame 

allowed by industry.

In this chapter we discuss the idea o f general valid inequalities and then 

concentrate on automatic procedures for reformulating and preprocessing 

MIP formulations. These procedures together with branch and bound are 

implemented in an augmented Simplex algorithm and computational results 

are reported.
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Mathematical background

For the sake of completeness, the following definitions are included here.

• Volyhedron : Solution set of a finite system of linear inequalities and

equations.

• Volylope : Bounded polyhedron.

• Face : Either an empty set or a subset F of a polyhedron P, obtained 

by replacing some of the inequalities defining P by equations. If F ^  P 

then F is called a proper face. Each face is itself a polyhedron.

• Facet : Non empty proper face of a polyhedron P which is not 

contained in any other proper face of P ( i.e. maximal).

• Let X ={xj, x2,.--,xr} be a finite subset of 9t", r > 0. Then X is linearly 

independent if = 0, 3 X e  =i> \  = 0, V /' = l,2,...,r. Similarly X is

said to be affinely independent if

E.A.jXj = 0, = 0 => \  -  0, V i = l ,2,...,r.

Note that if a set of vectors X is affinely independent, then a new set of 

vectors X’ obtained by the addition of a new component having value one to 

each row is linearly independent. For polyhedral combinatorics, affine 

independence is more important than linear independence because it is 

invariant under translations of the origin.

For example in Si2 the vectors (”) and (2) are both linearly and affinely 

independent, but the vectors (¡), are affinely independent but not linearly 

independent.

However the vectors (¡), have been obtained by the translation of ("), (2) by 

£)■

• A vector x  s  5K is said to be a linear combination o f the vectors x 1,x2,...,xm

e 9 T if

x  = X;, 3 X e 9tm.

Additionally,
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• If \  > 0, i = l,2,...,m then we call x  a conic combination.

• If X is not restricted to nonnegative values but E \  = 1, then x  is said to

be an affine combination.

• If  E;A,; = 1 and \  > 0, i  = 1,2,...,m then x is said to be a convex combination .

For a non empty subset X e  91" we denote by lin(X) the linear hull of

elements of X or space generated by X; lin(X) is the set of all vectors which 

are linear combinations of finitely many vectors of X. Conic ( con(X) ), affine 

( aff(X)), convex ( conv(X)) hulls are defined in the same way.

If X  = lin(X) (respectively X = aff(X) ) then X is called a linear (respectively 

affine) space.

The linear and affine ranks of X e  9tn are the cardinalities o f the largest 

linearly and affinely independent subsets of X respectively, and are denoted by

rank(X) and arank(X) respectively.

Lemma 1 [P89] If  { 0 } e  aff(X), then arank(X) = rank(X) + 1.

If  { 0} £ aff(X), then arank(X) = rank(X).

The dimension of a set S c  91" is defined as dimS = arank(S) - 1. The empty 

set has dimension = -1.

Theorem 1 [R85] P e  9t" is a polyhedron if and only if there exists finite sets 

V e  9t" and E  £ 91" such that P = conv( V ) + cone( E ).

In particular, P is a polytope if it is the convex hull of a finite set of vectors. 

The unique minimal such set, is the set of its vertices. This means if we can 

find a unique minimal set of vectors P such that each vector in P is a convex 

combination of the rest o f vectors in P ( i.e. P = conv(P)), then that set 

defines the vertices of polytope P. For a polytope representing integral 

solutions, every vertex is called a lattice point.

Let P c  9^n be a polyhedron.
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An inequality crx  < c0 is called a valid inequality with respect to P if 

c x  < cQ, V x  e  P.

A constraint is said to be redundant if it is implied by other constraints in the 

system.

The system of constraints is said to be nonredundant if it has no redundant 

constraints.

An inequality ax < ß  from A x  < b is called an impliat equality (in A x  < b ) if 

ax- = /? for all x  satisfying A x  < b.

We use the following notation;

A x < b  is a system of implicit equalities in A x  < b 

A+x  < b+ is the set o f all other inequalities in A x  < b.

A system of equalities A x  < b is minimal (i.e. nonredundant) if its rows are 

linearly independent.

Theorem  2 [S86] If no inequality A +x  < b + is redundant in A x  < b, then 

there exists a one-to-one correspondence between the facets o f P 

and the inequalities in A +x  < b+, given by F = {x  e P  | z^x = ß  ¡} 

for any facet F of P and any inequality atx <  b; from A +x  < b+. 

In this case we say that 2ix  = ß  { defines or determines the facets of P.

Therefore, if we can find the minimal equation system and all facets of the 

inequality system, the polytope described contains all the vertices of the 

problem involved and the Simplex algorithm can be applied with a guarantee 

o f an optimal solution as one of the vertices o f this polytope. If the problem 

involved has no equation system, then it clearly suffices to find all the facets of 

the inequality system.

The following theorem gives the characterisation of those valid inequalities, 

which determine facets.

19



Theorem 3: [BG82] Let P c  Si be a Polyhedron and b c: 9t \  {0}, b e  91

T
such that F = {x e  P | b x = b )  is a proper face o f P. Then 

the following statements are equivalent:

(i.) F is a facet o f P.

(ii.) dimF = dimP - 1.

(iii.) If aff(P) = {x  c  9t" | A x  = a}, where Ax' = a is minimal equation

system, (i.e. the rows of A are linearly independent) and
T T

F c  { x e  P | c x  = c } where c x  < ĉ  is a valid inequality for P, then 

3 X 6 9v and (I > 0 such that c =  X A + |.lb .
T

(iv.) If P is o f full dimension and F c  {x e P | c x  = c j  for some valid

T T T
inequality c x  < c , then 3 (J. > 0 such that c = |lb .

T
We call an inequality b x <  b  ̂ facet defining for a polyhedron P if 

F= {x€  P | b x =  b } is a facet of P.
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General valid inequalities

Early efforts in the search for the solution were concentrated on the general 

procedures. One o f these general approaches involved the idea of cutting 

planes. This entailed finding the set of general valid inequalities, which cut off 

infeasible points from the Polytope of the problem’s LP relaxation. We 

present a brief survey of these inequalities and the ideas behind them.

Gomory cuts

Gomory ( 1958 ) developed the first finite algorithm for the general solution 

of the pure IP and later MIP problem, called the cutting plane method. The 

idea was to define the valid inequalities, which trim off the infeasible points 

from the LP relaxation of the IP or MIP problem. In spite of this theoretical 

success, the computational efficacy of the algorithm has been rather 

disappointing. However, ideas may be, and indeed have been borrowed from 

this method to enhance the effectiveness of other types of solution techniques

[175] ( pl60-161).

The IP case;

Suppose we want to optimise an objective function f(x) subject to A x  < b, 

x  >0, where x  must be a vector of integral values and A is an mxji matrix 

whose values are integral.

We consider the optimal solution of the LP relaxation with at least one 

nonintegral solution. Let x{ be the basic variable corresponding to the /h row 

which assumes a nonintegral value /? ¡. The rest o f the variables ivp j = 1,2,...,n 

are nonbasic in that row.

Then we have;

X; + XjOCi’flf = ¡3 ¡; or 

x, = /3 XjOCj*»̂

Where Oij J  -  1,2,...,n are the coefficients corresponding to the nonbasic 

variables in row i .
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We define ¡5 , =  L/? J  + / ,

a  „ = La yJ + / j5

where N = \_a] is the largest integer such that N < a.

Thus we have

/ - -  L/? J  + IjLoci'Jtt'j.

Since x{, n\ are supposed to be integral, then the right hand side must be 

integral which in turn implies that the left hand side must be integral.

Clearly

0 < /  < 1 (since /? , is nonintegral by assumption) and n\, x, > 0.

Thus

%  > 0, which implies that 

</„ or

/ - % <  1, ( s i n c e / < 1 ).

But the left hand side must be integral and hence

This is called the fractional cut or Gomoiy cut- for the general IP problem ['T89J. 

Gomory proved that an integral solution could be obtained after a finite 

number o f cut generations in a systematic fashion [S86J (p351).

22



The MIP case;

Again we consider x k to lie an integral basic variable of the MIP problem, 

where the k'h equation is given by

*k - Lf3 J  = /k - XjOCk'fli. (a-l)
In this case the variables //' may not necessarily be restricted to integral values. 

It is noted that, for x k to be integral, either >;k < L/? J  or x k > \_J3 J  + 1 must 

be satisfied.

From (a.l), these two conditions are equivalent to either 

XjOCk1»} ^ / k or 

IjOtkS - 1-

We define J+ and J. to be sets of subscripts o f j  such that a  /  > 0 and 

a  I  < 0 respectively.

Then either a  k’ >fk (a.2)

Or I  a { w j * f k (a.3)
J k 1j e y_

The inequalities (a.2) and (a.3) can not be satisfied simultaneously and can thus 

be combined into one constraint given as;

1  a l wi +~ T Z [ . S  a i wj ~ f k
j e j + J k  ' ; e ; _

This is the mixed cut inequality [T89].
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Chvatal inequalities [C73]

IP Case;

Chvatal developed a procedure using the elementary closure operation and proved 

that all inequalities corresponding to a general IP problem can be obtained 

from that procedure. Consider a feasible region of an IP problem given by 

F = { x  e  Z+" | A x  < b }, where Z+n is the set of nonnegative integral n- 

vectors and ( A, b ) is an mx(n+l) rational matrix.

If  we relax the integrality condition and note that the resulting polyhedron is 

bounded then this defines a polytope P = { x  e | Ax < b }. F is then a 

set of finite lattice points inside P and conv(P) is again a polytope. Now the 

problem of optimising an objective function cx  over F is equivalent to its 

optimisation over

conv(P): max.{ cx | x e  F } = max{ cx  | conv(P) }.

F is a subset of conv(P) and the extremum points of conv(P) come from F. 

The problem defined as

Max.{cx | x  6 conv(P) } is an ordinary (continuous) linear programming 

problem which can be solved by the LP methods.

Closure inequalities

Let S be a set o f linear inequalities A x  < b that determine a polytope P , the 

closure of S is the smallest set of inequalities that contains S and is closed 

under the following two operations called the elementary cbsure operations',

(i) Taking the linear combinations of inequalities

(ii) Replacing an inequality < aD where al5a2,..,an are integral by

< a, where a > La0 J .
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Chvatal proved the following theorem, which is the main idea of his 

procedure:

Theorem 4: [C73]

Let the inequalities

5 ^  < bh i = (b.l)

(where a:j, b, are real numbers) determine a bounded polyhedron 

in 9T •

Let cOJc,,..,cn be integers such that

XiCi*; < c„ (b-2)

holds for any choice of integers x vx v..,xn satisfying (b.l).

Then (b.2) belongs to the closure of (b.l).

He then proved that if (b.l) defines a Polytope P, then the closure of (b.l) 

determines conv(P).

Thus if we can get all the closure inequalities of S we can solve the LP over the 

corresponding polytope ( conv(P) ) by LP methods with a guarantee o f an 

integral optimal solution.

Example: 1 (Moser’s cube problem)

This can be represented by the following LP problem;

Maximise X,.x;

Subject to x- + .*■ + xk < 2, i, j, k = 1,2,...27, i < j < k, (c.l)

0 <  * ¡< 1 ,1  = 1,...,27, (c.2)

Xj = integer, i -  1,...,27. (c.3)

The relaxed formulation is got by dropping the constraint set (c.3). In this 

case, if we set

2 . . . .  .Xj = — ( i = 1,2,...,27) we satisfy all the inequalities of the relaxed formulation

27
and obtain X*/ = 18, but violate integrality constraint.

i = l
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We show below that the inequality however, belongs to the closure o f (c.l) 

and (c.2). If this closure inequality is applied, then

Xi = L  ( i -  1,2,...,27) is no longer feasible and the solution is constrained to

integral values. The closure inequality <16 is derived by the elementary

closure operations as follows;

(operation (t) on some of the constraints of c.2).

— (*-, +  x 2 +  x 3) <  1  , L  (x , +  X., +  Xj) <  I ,
6 3 6 3

1 _ (x 3 +  X 6 +  X 9) <  L  , L  (-v7 +  X» +  X f)  <  ;
6 3 6 3

— (-̂ l + * S  +  X b ) ^  \  > -  (X 3 +  x 5 + x 7)  <  ^  ,3 3 3 3

J_ ( x 2 + x5 + x8) < 1 ,  1  (x, + x5 + x6) < 1 .
6 3 6 3

Adding these inequalities we get

2(x, + x3 + x7 + x9) + (x2 + x4 + x6 + x8) + 2x5 < 83_

but since we require x  to be integral and the coefficients on the left hand side 

are integral, it follows that the right hand side must also be integral.

Rounding the right hand side (operation (it) )  we conclude that 

2(x, + x3 + x7 + x9) + (x2 + x,, + x6 + x8) + 2xs < 8 (c.4)

belongs to the closure o f (c.l) and (c.2). Adding (c.4) to the relaxation and 

repeating the same elementary operations, it has been shown [C73] that
n
Z x  ^ 16 belongs to the closure of (c.l) and (c.2).

In general, the closure inequalities can be generated from the following three 

step procedure recursively [N84]:
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1. X u \x{ < ub is valid for F for any u e  9t+m
i

2. X L * a J  ^  uh is valid for F as x  e 9t+n

3. X. L^aJ < \_ub\ is valid for F as Yua^ 6 l l  for all i and x  e  Z".

The rank of an IP is the maximum number of elementary closure operations 

that are necessary to eliminate the integrality constraint. It was also proved 

that there is no upper bound on the rank [C73].

The closure inequalities are related to the Gomory’s cutting plane inequalities. 

In fact Hu [C73](p 336) showed that given a system of inequalities S the 

Gomory cuts belong to the closure of S. Thus the closure inequalities are a 

formalisation of the Gomory’s cutting plane method.

Chvatal’s closure inequalities assume a bounded polyhedron on the real space. 

Theorem 5 by Schrivjer [S80] working on a rational space, showed that the 

Chvatal closure inequalities are valid for a general polyhedron.

Theorem 5 [S80]:

For any polyhedron P there exists a number t  such that P(t) = P:. 

Where P: denote the convex hull of the lattice points contained in 

P and P(t) stands for intersection of t half-spaces H  such that 

P cH .
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MiP case;

Chvatal inequalities for a general MIP problem were described by Nemhauser 

and Wolsey [N84]. Their procedure called Mixed Integer Rounding (MIR) is 

summarised as follows:

Suppose T = { x  6 Z+" y  e  9t,p, A x  +  Gy < b } where (A, G, b ) is an 

mx(n + p + 1) matrix with rational coefficients. Let N = { l,...,n }, 

J = { } ,then

X ( u a , )  x j + Z  u g Jy j < ub  for all u e  9V"; (d.'l)

Given two inequalities,

X ft / x / + X m i y , s f t «I.M 1.1

X f t ) x , + X i i \ y , s j t iI'H 1*1

They constructed the third valid inequality 

X [ft ' - ft\x ,J♦ f ■<£ ft\x ,+ X !> y , - ft [ft o ’  ft 1J
J u  *C *

Where ftl-ft'tt = \ftl-ft'n\ + fu and f B = b-[b\.

(d.2)

Theorem 6 [N84]:

Given the two valid inequalities for T, then (d.2) is valid forT . 

This can be used recursively to generate all valid inequalities for T  from those 

available.

Example: 2

Let T  = { x e z l  | X; < 1, i = 1,2 e  | y t +y2 < 7 ,j; < 5^, i = 1,2 }

Applying case (d.l) o f the MIR procedure ( which is the same as operation (i) 

o f the elementary closure operations ) we have;

(e-1)
3 3

-  +. Jz) ^  -  (*i + *s) or - -  (*i + x )  ^  0. (e.2)
3 3 3
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We take (e.l) as the i = 1 inequality and (e.2) as the i = 2 inequality and apply 

case (d.2) to g e t;

Repeating the MIR procedure for any two inequalities ( including e.3 ) 

recursively, [N84| have shown that all valid inequalities for MIP problems can 

be generated.

Instead of this lengthy MIP procedure it can be shown that the same 

inequalities can be described in terms of functions called superadditive 

functions as, explained in the next section;

Superadditive valid inequalities

We would like to consider the description of the valid inequalities for the MIP 

problem of the form

T = { x  e  Z" , y  e  | Ax’ + Gy < b} in terms of functions , where (A,b) is 

an mx(n+l) rational matrix and G is an mxp rational matrix.

Definition 2 [N84]

F is called nondecreasing if u < v implies F(a) < F( )̂ .

It has been proved by Jeroslow and Johnson [N84](pll) that if F is

L -  J  J  (*i + X2) + ( 1  (yt + y 2) - j )  < [-1. J  or

-2(x1 + x 2) + (yt + Jj) < 4. (e.3)

A function F : 9tm —> is called superadditive if F(0) = 0, and F(a)

+ F(y) < F(u+v) V u, v g 9tm

superadditive and nondecreasing and F  ( defined by f  (d) = um exists
'-o , X

and is finite for all d& 9̂ ™), then

(f.l)

is valid for T.

(f.l) is called a superadditive valid inequality determined by F.
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Example: 3

Suppose T =  { x e  e  9?+ : x  + j  < 4.5 }

From pP89]( p468), F(d) = [dj is one of the families o f the superadditive 

nondecreasing functions. Clearly F(d) = limW) [XdJ / x exist and is equal to 

zero.

From (f.l);

F(l)x + F(l)^ < F [4.5J

is a valid inequality for T. That is ;

x  + 0 < |_4.5J or,

x < 4  is a valid inequality for T, which gives the cut shown on Figure 5.

Figure 5: Superadditive valid inequality
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Any inequality Ttx + \iy < H0 is said to be a superadditive valid inequality for T 

if it is equal to or dominated by a superadditive valid inequality for some F. 

Nemhauser and Wolsey [N84] proved that every valid inequality for T  ^  0  is 

equal to or dominated by a superadditive valid inequality.

Theorem 7 [N84]:

Let T = { x  e Z +, j  e  9t+P : A x  + Gy < b } ^  0 .

If [ x  e  9Î+ : {y  e  9Î+ : Gy < b - A x  } =£ 0  ] is bounded, then 

every valid inequality < 7t;o for T is equal to or dominated

by some superadditive valid inequality

2„NF(a,)^ + Ij.jFCgjljj < F(b).

Proposition 1 [N84]

Let Fa : 9Î1 —> 9?1 for 0 < (X < 1 be defined by

( /  n~«)

w h e re / = d - LdJ and (x)+ = min {x, 0).

Then

a) Fa is superadditive and nondecreasing,

b) Fo, exists, and F.(d) = min{—̂  ,0}.1 — a

Proposition 2;[N84]

Let -» 9î1 f o r  o < a  < i be defined by

F a(d\,di)  = 7 d\ + F *(di~ d .)•1 -  a

Then F» is nondecreasing and superadditive and,

T A d , , d i )  = —  min [d,,d,]-l -  a

This function can be used to generate valid inequalities recursively like the 

MIR procedure. That is, given two valid inequalities for T we can apply F a in 

(f.l) above to generate another valid inequality.
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Proposition 3; [N84]

If H — { X  € Z . yj! S 9Î. + X ^n ‘¡y\ ~ 7l„>

for i -  1,2},

then the superadditive valid inequality generated by 

p  _ wiiii a ■ is equal to or dominates the

MIR inequality (d.2).

Example 4.

We consider the two constraints from example 2.

i  fo + Jz) ^  1
3 3

- ! ( * • ,  + X 2) + i ( / 1 + j J  < 0 .
3 3

■* 7 2« = TTn- Trl-I/T^ -  ^rll= - J + 3 = j ’

Then the following is a valid inequality for T;

n F  n  r 7 t  , ) x ' *  ^  <’ y  > s  F  X <;r ' , n  •*

i.e. F y,■(o.- f ix,- F F

° r F x l0' -7Hx> (g-1)

N o w  F ^ ( O - f )  = 0 +  j )  = - 2  + min(-I .O) = -2 .  (g.2)

And T V  I -  J> = TT2̂ min«T- “ 1, (g.3)

And Fy S~.o) = 7 + = 7-3 = 4 (g.4)

Applying (g.2), (g.3) and (g.4) in (g.l) we have;

2(x, + Xj) + (>, + j j )  < 4

Which is the inequality generated in example 4.
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These functions can be turned into finite algorithms that produce successively 

tighter linear programming relaxation for solving MIP problems. 

Unfortunately, finite usually means extremely large for these general 

procedures, so the algorithms are not practical. However, this basic idea 

works well for some classes of IP or MIP problems where valid inequalities 

that define facets o f conv(T) are known e.g. the transportation problem.

i
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Preprocessing

There are many ways of representing an IP or MIP problem by linear 

inequalities and for which the underlying set o f feasible integral solutions is 

essentially unchanged. The computational time of an IP or MIP largely

depends on how close (tighter) the LP relaxation formulated is to the integral 

Polytope.

Preprocessing refers to the elementary operations that can be performed 

automatically to tighten a given formulation. Thus we present procedures that 

transform a ‘user supplied’ formulation automatically into a tighter equivalent 

representation. The techniques described, permanently fix variables, check 

and remove redundant constraints and reduce the size of certain coefficients 

within the coefficient matrix.

Variable fixing.

By fixing some variables at their bounds, the corresponding LP may be 

tightened, resulting in the optimal LP being closer to the optimal IP solution. 

We illustrate this by an example.

Example 5:

Minimise 5 x i + 7 x 2 + 10 x3 + 3 x4 + x 5

Subject to x t - 3 x 2 + 5 x 3 + x 4 - x 5 > 2 , (h.l)

2 x t + 6 x 2 - 3 x 3 - 2 - 2 x 5 >0, (h.2)

-x2 + 2 x3 - x 4 - x s 1, (h.3)

Where x{ are 0-1 variables.

By constraint (h.3), 2x3 > 1 + x 2 + xA + x5 > 1, hence xh > 1/ 2.

Since x3 is an integer, this implies that the lower bound may be tightened by 

fixing X3 at 1 and removing it from the problem.
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By constraint (h.2), 6x2 > 3 + 2xt + 2x4 - 2x5 > 1, hence x 2 ^  V 6- By a similar 

argument, x2 is fixed at 1 and removed from the problem.

By constraint (h.3), x4 < -x5 < 0, hence x4 < 0. Therefore x 4 can be fixed at 0. 

The reduced problem is now;

Minimise 5xt + x5 

Subject to x -l - x5 > 0 

-2xx + 2^5 < 3

x 5< 2 ,and x { are 0-1 variables.

Again x5 can be fixed at 0. The only remaining variable is x u which is 

obviously 0 in this case.

Tightening of the LP by fixing variables as above, reduces the problem feasible 

space to a greater extent and sometimes even solves the problem completely. 

We can generalise Example 5 as follows;

Variable fixing algorithm; [C82]

Consider an arbitrary constraint, written for notational simplicity as

H a j X j +  H c i j X j ^ a  0 (h.4)

Where N + denotes the index set of coefficients a, with positive value and N. 

the index set of coefficients a, with negative value. Now we let j e N + and

suppose that a , > a 0 — a * ; then xy;■ = 0 in any feasible 0-1 solution, we

can fix Xj at 0 and drop it from the problem. Likewise, if for some j e  N_ we

have —a, > a«~  X at  , then x, = 1 in every feasible 0-1 solution, we can fix
N. J

Xj at 1 and remove it from the problem.
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Detecting infeasible and inactive constraints

Consider a general constraint, which has been formulated as (h.4).

Clearly if ZJsN aj > aQ , then (h.4) has no feasible solution and the overall 

problem is therefore infeasible.

On the other hand, if £jeN+aj — ao > then every possible 0-1 vector satisfies

constraint (h.4). In this case the constraint is inactive and can be dropped 

from the problem without excluding any feasible solution.

We also check for redundant constraints, where each row is compared with 

the rest, as follows;

Starting from the first column of each two rows, the coefficients of the same 

column are compared. If they are equal, we move to the next column, 

otherwise the algorithm moves to the next row. If  all the left-hand 

coefficients of two compared rows are equal then the following are possible;

• The two inequalities are exactly the same and the first is removed

• One inequality dominates the other and the dominated row is removed

• The two inequalities form an equation and we leave them

• Otherwise, problem is infeasible.

We note that a row cannot be a multiple o f another row because Euclidean 

reduction(see page 33) is performed before this process. Also we can not 

have equations, since all rows have previously been transformed into the form 

shown in (h.4)
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Coefficient reduction.

This refers to the process of tightening the LP relaxation by reducing the size 

of the coefficients o f the individual constraints o f the problem where possible. 

Geometrically, this corresponds to a rotation of die constraints so as to 

increase the number of 0-1 solutions that satisfy them at equality.

To motivate the ideas, consider an example o f a 2-dimensional integral 

constraint,

Example 6;

4 x , + 10  x 2 > 7, (k.l)

Where Xj, x 2 are 0-1 variables.

It can be observed in Figure 6 that the constraint 

4 x, + 7 x2 > 7, (k.2)

obtained by replacing the x2 coefficient (10) by the right hand side constant (7) 

gives a tighter constraint. It is clearly better to use constraint (k.2) than (k.l) 

since the feasible region of the corresponding LP will be reduced by (k.2), 

without excluding any integral solution (as shown by the cut off region in 

Figure 6).
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Figure 6: The effect o f  coefficient reduction on the feasible region.

We note that if we replace x, coefficient (4) by 7, the resulting region will 

infeasible as shown in Figure 7.
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One of the ways of performing this process of coefficient reduction is 

described by the following algorithm;

Coefficient reduction algorithm [C82]

We consider an inequality in the form

X,a,-xi > a,, (k.3)

Where all the at are positive and all variables are 0-1. This is called a Knapsack 

inequality.

Note that if any of the coefficients a] are negative, we can use the substitution 

x- =  1 - x- to bring them to the form above.

If for some k e  { 1,2,...,n} we have ak > a0 we can replace ak by aD and the 

inequality

V<k + Xl#kar\] > aQ (k.4)

has the same solution set as (k.3) but with more integral solutions in the 

feasible region.

Eucledian Reduction

This is another way o f tightening the LP relaxation by reducing the size of 

coefficients. In this case we aim at reducing the size o f the set o f coefficients 

o f a constraint such that the Greatest Common Divisor (GCD) of the 

resulting set is equal to one.
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Eucledian reduction algorithm [H90]

We convert a constraint into the form EftX; ~ b. Where ~  is either <, >, or = 

and all are integral.

Both sides o f the constraint are then divided by the GCD (of aj’s).

If an equation (‘= ‘ type) has a nonintegral right hand side after division, the 

problem is clearly infeasible.

Otherwise, if a constraint is of the ‘<‘ type ( *>* type ) we truncate the 

remainder (Truncate the remainder and add one).

This truncation does not eliminate any integral solution, but makes the set of 

nonintegral solutions to the relaxed problem smaller i.e. tightens the LP 

relaxation.

Example 7

Consider a constraint 4Xj + 2x2 < 9 

The GCD of {4,2} is 2.

Dividing the original constraint by the GCD we have; 

2*i + x 2 ^  4.5

Truncating the right hand side we have 

2x', + x 2 5= 4 .

This is demonstrated by Figure 8 .
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The cut off region does not include any integral solution. It’s elimination led 

to a polytope, which is defined by only feasible solutions. For a zero-one 

problem this polytope still needs to be reduced, but the cut off region may 

lead to a vast improvement in the solution time of an IP algorithm.

Implementation

We present our automatic preprocessing procedure as implemented using a 

C++ compiler and run on a 486, 50 MHz PC. The input is a formulated 

problem and the output is a preprocessed version of the problem and stored 

in MPS format. MPS format is a standard format commonly used by many 

LP solvers such as the one included in SCICONIC (a mathematical 

programming package). This package includes a simplex procedure called 

PRIMAL and Branch and Bound procedure called GLOBAL. We use the 

SCICONIC package on a VAX machine under the VMS operating system to 

solve our MPS format problem before and after preprocessing.
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Procedure Preprocessing ()

{ Input_Problem  ( CoeffsMatrix, RowNumb, ColNumb, RowStatus );

Eucledian_Reduction ( CoeffsMatrix, RowNumb, ColNumb, RowStatus, Feasible); 

if( N O T  Feasible) return (“Problem infeasible”);

/  /  remove inactive and redundant rows and check infeasibilities /  /

NewRowNumb = RowNumb; Row =  0;

w hile (Row <  NewRowNumb A N D  Feasible)

{ Increm ent ( Row);
if( Inactive ( Row, CoeffsMatrix, RowNumb, ColNumb)

O R Redundant (Row)) A N D  Feasible)
Remove ( Row, CoeffsMatrix, NewRowNumb, ColNumb);
} / /  endivhile / /

if(N O T  Feasible) return (“Problem infeasible”);

RowNumb = NewRowNumb; / /new number of rows /  /

/  /  Variable fixing process /  /

Found = true;

while ( Found)

{ Found =  false;
Find_Fixable_Var ( CoeffsMatrix, RowNumb, NewColNumb, ColNumb ); 
if( Found)
FixVariable( CoeffsMatrix, RowNumb, NewColNumb, VarPosition, Value)

} / /  endivhile /  /

ColNumb =  NewColNumb; /  /  new number o f columns /  /

/  /  coefficient reduction /  /

Reduce_CoefficientS ( CoeffsMatrix, RowNumb, ColNumb, RowStatus);

/  /  Repeat the inactive and redundant rows and infeasibility checking process /  /

/  /  Store the preprocessed problem in MPS format /  /

Write_MPS_File ( CoeffsMatrix, RowNumb, ColNumb, RowStatus);

} /  /  end preprocess /  /

We start with the Euclidean reduction process where all the coefficients are 

transformed into integral values by the following procedure: for any row with 

rational coefficients denote by EXPON the smallest number such that 

a* ;l ()EXPON is an integer for all j. (Thus if all ^ are integral, EXPON = 0).
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All coefficients o f the row are multiplied by a*10l'x|,ON and thereby 

transformed to integral values. The resulting integral row is then divided by 

the GCD.

The next process removes all inactive and redundant rows and check for 

infeasibility. The procedure stops in case o f any infeasibility.

The variable fixing process has two routines. The first routine finds a variable, 

which can be fixed from the tableau and returns the variable position and 

fixing value (0 orl). The second routine fixes the variable if found and adjust 

the tableau to reflect the new problem.

The coefficient reduction routine is then called, where all coefficients are 

firstly transformed into the form explained in the algorithm. After this 

process we again check for inactive and redundant rows as these might have 

been introduced by the previous routines.

The resulting MPS format file is then transferred to the SCICONIC package. 

Firstly the simplex procedure (PRIMAL) is applied to develop an initial 

optimal basis. Then we apply the Branch and Bound procedure (GLOBAL) 

to find an optimal integral solution. The number of iterations and CPU time 

is compared with those taken when the problem was solved without 

preprocessing.
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Computational results.

Problem

Without preprocessing With preprocessing

Total time 

(sec.)

Number of 

iterations

Total time 

(sec.)

Number of 

iterations

r3c5.dat 0.3300 6 0.2443 1

r l 0c6a.dat 0.4800 11 0.4543 10

r7c3.dat 0.2999 2 0.0043 0

r21c l6.dat 0.4600 60 0.0054 0

r l 0c l0.dat 0.4699 11 0.2064 6

r l 0c6b.dat 0.4800 16 0.4699 14

r20c25.dat 0.4699 8 0.0064 0

Table 3: Effect of Preprocessing on the computational time and the number of iterations.

Problem

Variables Rows

Original Fixed Original Fixed

r3c5.dat 5 4 3 2

r l 0c6a.dat 6 0 10 3

r7c3.dat 3 3 7 7

r21c l6.dat 16 16 21 21

r l 0c l0.dat 10 2 10 3

r l 0c6b.dat 6 0 10 3

r20c25.dat 25 25 20 20

Table 4: Effect of preprocessing on the number of variables and constraints.
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Original LP

values

LP value after 

preprocessing

True IP

value

Preprocessing 

time (sec.)

r3c5.dat 23.80 22.00 22 0.0043

r l 0c6a.dat 41.34 41.34 38 0.0043

r7c3.dat 1.30 0.00 0 0.0043

r21c l6.dat 5.50 0.00 0 0.0054

r l 0c l0.dat 44.42 41.00 41 0.0064

r l 0c6b.dat 41.57 41.57 38 0.0064

r20c25.dat 2.61 0.00 0 0.0064

Table 5: Effect of preprocessing on the LP value.

Our test problems were generated just for the sake of demonstration. The 

first part o f the problem name stands for the number of rows and the second 

part represents the number of columns, e.g. the name r3c5.dat means 3 rows 

(r3) and 5 columns (c5). All problems are maximisation problems.

Table 3- Table 5 summarise the results.

The total times after preprocessing include the preprocessing and Branch and 

Bound times.

Table 3 reports the computational time and number of Branch and Bound 

iterations, before and after preprocessing. It is clear from Table 3 that there is 

a significant improvement in the number o f iterations and computational time 

after preprocessing.

Table 4 shows the effect of preprocessing on the number o f rows and 

variables.
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Problems r7c3.dat, r21cl6.dat and r20c25.dat were solved completely by the 

variable fixing procedure. For problems r3c5.dat and rl0cl0.dat, not all 

variables were fixed, but the preprocessed LP turned out to be integral. Thus 

the Branch and Bound procedure was no longer necessary. This is shown in 

Table 5 whenever the LP value of the preprocessed problem and the true IP 

value are equal.

The effect of the preprocessing on the relaxed formulation can also be 

measured by the difference in the objective values between the original and 

the preprocessed LP. We expect the preprocessed LP value to be closer to 

the true IP value sought. Table 5 reports the objective function values of the 

relaxed formulation and the objective function values of the problem after 

preprocessing.

For problems rl0c6a.dat and rl0c6b.dat, the LP value did not change. 

However, the preprocessing procedure removed 3 rows in each, in addition to 

die effect of the coefficient reduction routines. Thus the total computational 

time was improved as shown in Table 3.

The times shown are CPU times in seconds on an IBM 486 PC. In all cases, 

preprocessing took fractions of seconds. For example, the largest problems 

tested were r20c25.dat and r21cl6.dat, where preprocessing took only 0.0064 

and 0.0054 seconds respectively.
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Summary and concluding Comments

• Our first aim was to describe the general valid inequalities to be applied in 

a cutting plane procedure as one of the approaches to the solution of a 

general IP or MIP problem. Although many inequalities were developed 

and proved to give a solution in a finite procedure, computational efficacy 

of their algorithms proved to be a problem. Branch and Bound methods 

are thus preferred.

However, many IP or MIP problems are very large and Branch and Bound 

methods alone are not sufficient. Improvements to these types of 

problems before applying Branch and Bound are therefore essential and 

can lead to very successful results. One of these improvements is the 

reformulation and preprocessing of the original problems.

• Our second aim was to describe and implement an algorithm for 

preprocessing. We presented computational results, which demonstrates 

how successful this improvement can be on the large IP or MIP problem.

All o f our test problems were on the class of knapsack problems where 

the coefficients are not restricted to 0, 1 and -1 only. However, there are a 

large number o f real life problems, which fall into this category. There are 

two types o f these constraints, which are o f special interest due to 

availability o f special techniques to their solutions. These are special 

Ordered Sets or SOS of type 1 and type 2 [W78] (pl73). These can be 

included in the preprocessing algorithm.

For very large IP problems, preprocessing may not be sufficient to define 

a problem, which can be applied directly to a Branch and Bound 

procedure. Problem specific methods may be needed to generate facets of 

the underlying polytope (cut generation). However, preprocessing may 

vastly improve the computational time o f these problems as demonstrated 

by our computational results.
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C h a p t e r  3

MIXED INTEGER PROGRAMMING FORMULATIONS FOR RLP

In this Chapter, we present four different Mixed Integer Programming 

formulations of the RLP. We conclude that the time indexed formulations 

give a better lower bound on die linear programming relaxation and hence a 

better starting point for the Integer Programming algorithms.

Assumptions

• No pre-emption i.e. the processing o f an activity must be completed 

without interruption once started.

• Integral stating time i.e. an activity can start only on integral time units.

• The resource requirement of an activity is known and constant throughout 

the planning horizon,

• There is an unlimited amount of resources and our task is to determine die 

minimum amount required to complete the project.

• There is a pre-specified planning horizon within which all activities must be 

scheduled without violating the given precedence constraints.
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Model 1: Start-time variables and time-indexed resource determining

variables.

Let Xj = Start time of activity /.

r, = Resource level corresponding to activity /. ( the amount o f work units 

required to be performed on an activity per unit time )

pt = Processing time o f activity i.

S, = |x;, Xj+pJ. A set o f points covered by activity i on the planning horizon, 

given that it starts at x ,.

N = {1,2,...,T}. A set of all points on the planning horizon

hx -  Total resource level in the resource profile at time t. (Height o f the 

resource profile at time t)

i.e. A, = X r j>e< for ^  activities i such that t lies in the interval
VijlaSi 1

[X„ Xi+pJ . 

n = Total number of activities

T  = The length o f the planning horizon (Project duration) = | N |

H = A set o f  all arcs (y) in the network such that i precedes j .

Then the RLP is;

Min.( Max. {h,} )
VleN

S.t. Xj - x; > p; V (v) 6 H

x e  Z+
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Or,

(la)

Let,
"
lif XiZt£Xl+Pi-l /1T x

v =< (Ila)
'  it 0 Otherwise

Then h = X r y / =  1, 2, ..T. (Ilia)t i i*' It

Condition (Ila) means that;

Xi + P -I
(1) 2  yit = Pi i = 1 ,2 ,.. n

t=Xi

and

(2) y„ = 0 V( g [x , x. + p ~ i — 1 ,2 ,.., ».
i i i

We need to define this condition without variable bounds.

We change the bounds in condition (1) and sum for all values of t in the

planning horizon and then reinforce condition (2).
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(3) I  yit = Pi i = 1,2,. . n
t

(4) yit = 0 V t > + p; -1 , / = 1, 2, n

(5) yit = 0 V t < .x;, ¿ = 1 , 2 , n

'I'he following constraint reinforces (4);

tyit <>£•-+* Pi -1 i = 1 ,2 , fi. (IVa)

Noting that the symbol T  stands for the length of the planning horizon, the 

following condition reinforces (5);

( * i - t ) - r ( l - y it) < 0  

or x- + Tyit < (t + T) i = 1, 2, n (Va)

This gives us the following MIP formulation:

Min.  w

s . t .

( 0  £  r ¡ y it<w
i

i = l , 2 .....T

( ' 0  I y il= P ,
i

i=l , 2, . . . , n

( h i )  t y n ^ X j + P i —1 / =1, 2 . V/ e N

( i v)  X j + T y U<(t  + T ) i = l , 2 ..... n;  V/e/V

(V) Xj  + Xj Zp j

( v i ) x i< T - p i i = l , 2,

( VX) y e { 0 , l } , , ; r ; j t e Z "  , ive9? +

(Via)
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where Z+ is the set of all nonnegative integral numbers. This formulation has 

n (T + l)+ l variables and T (2n+ l)+ 2n+ |H | constraints, where |H | is the

cardinality of H.

Example

Example problems were generated randomly [AM96] and tested for all types 

o f formulations. The problem (C3_02b) has 10 activities and a planning 

horizon of length 42.

We used the SCICONIC package [S91] (running on a VAX/VMS) to solve 

the test problems. The Matrix Generator Generator was used to generate the 

initial problem in MPS format using the two files - MGG problem and MG 

Data Input, as presented in the appendix A. These files were compiled, linked 

and run to produce an MPS matrix. The generated matrix was then solved by 

the SCICONIC programs called PRIMAL (for Linear Programming) and 

GLOBAL (for Integer Programming - Branch and Bound) [S93].

The MPS matrix generated for this model had 431 variables, 916 constraints 

with sparsity of 0.64%. The LP value (Lower Bound) which was obtained 

from the Primal procedure was 13.02.

The Integral solution was obtained after 2778 iterations as shown in the part 

of the report file presented in Figure 9 which shows only the values of x  (start 

times),
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@@@@@@@@
PAGE 1

PROBLEM @@@@@@@@ - SOLUTION NUMBER 2 - OPTIMAL

CREATED ON 28-AUG-1996 11:44:52, AFTER 2778 ITERATIONS

PRINTED ON 28-AUG-1996 11:45:50

...NAME ACTIVITY.... DEFINED AS

FUNCTIONAL 19.000000 OBJ....
RESTRAINTS RHSSET01
BOUNDS.... BOUNDOl

1
@@@@@@@@

PAGE 2

.NUMBER. ..ROW... AT „A C TIV ITY ... .SLACK ACTIVITY. ..LOWERBOUND.. ..UPPER. BOUND... .DUAL ACTIVITY..

1
@@@@@@@@

PAGE 3

NUMBER. .COLUMN AT ... ACTIVITY...

917 W.... BS 19.000000

918 X01 , BS 1.000000

919 X02 BS 6.000000

920 X03 .. BS 12.000000

921 X04 BS 1.000000

922 X05... .. BS 2.000000
923 X06... .. BS 19.000000
924 X07... .. BS 19.000000
925 X08... .. BS 17.000000
926 X09... .. BS 32.000000
927 X10... .. BS 42.000000

..INPUTCOST.-, -LOW ERBOUND UPPERBOUND... . REDUCED COST..

1.000000 . NONE

NONE

NONE

NONE

NONE

NONE
NONE
NONE
NONE
NONE
NONE

Figure 9: Part of the report file for model 1.

The value W = 19 is the optimal highest level in the resource profile and xOl, . 

. xlO are starting times of activities 1, . . 10 respectively, on the planning 

horizon.

The corresponding resource profile is shown in Figure 10.
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Figure 10: Resource Profile associated with the solution o f  model 1

Model 2 : Pure time-indexed formulation

Let x, r ,p , h, n, S, N, T, H be as defined in the previous formulation, 

and the RLP;

Now;

(lb)
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I 1, i f  activity i starts at time I 
Let y>i = <

L 0, otherwise.

Since an activity can start only once, then 

I j .  = 1 /=  1 , . .  nI It

The starting time of an activity i is then given by 

X = I t j . ( / =  1, 2, n

and the precedence relations changes to 

£  t{y jt - ¡ ’it) > Pi V(f. j )  e H
i

We can reinforce the resource constraint by noting that

t
£  y ik = I only if / lies in the processing time interval o f activity 

k=i- Pi+l

i.e. / e  [>.•;, 1J and zero otherwise. [CA87]

Thus h,  = L  r  ( I  y/Jk) V t e  N
/ 1 k=t~Pj+1

This gives the formulation:



This formulation has nT+1 variables, which is less than the previous model 

( n(T+1)+1 ). It also have n + \H \+ T  constraints which is far less dian the 

previous model ( T(2ti+1)+n+\H\ ). The same example was used to test this 

model, where the corresponding MGG and MG Data Input files were used to 

generate the MPS format matrix (see Appendix A).

The matrix generated for this case had 421 variables, only 66 constraints and 

sparsity o f 17.99%. The LP value (Lower Bound) obtained after PRIMAL 

agenda was 11.50.

Figure 11 shows parts o f the Report file, which represent die optimal starting 

times.

56



PAGE 1

PROBLEM - SOLUTION NUMBER 4 - OPTIMAL

CREATED O N  29-AUG-1996 10:49:14, AFTER 4237 ITERATIONS

PRIN TED  O N  29-AUG-1996 10:56:53
...NAME ACTIVITY.... D E FIN ED  AS
FUNCTIONAL 19.000000 OBJ....
RESTRAINTS RHSSET01
BOUNDS.... BOUNDOl

PA G E 2

.NUMBER. ROW .. AT ....ACTIVITY... .SLACK ACTIVITY. ..LOWERBOUND.. ..UPPERBOUND... D U A L ACTIVITY..

PAGE 3

NUM BER .COLUMN. AT
COST.

67 W.  BS
68 Y01.01.. LL
69 Y02.01.. BS
70 Y03.01.. BS
71 Y04.01.. LL
72 Y05.01.. BS 

213 Y06.15.. LL 
235 Y08.17.. LL 
254 Y07.19.. LL 
386 Y09.32..
487 Y10.42..

„ACTIVITY.............. INPUT COST... .LOW BRBOUND.. ..UPPER BOUND..........REDUCED

LL
BS

19.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

1.000000
1.000000

1.000000

1.000000
1.000000
1.000000
1.000000

NONE
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

4.000000
4.000000

Figure 11: Part of the report file for model 2.

As defined in the formulation of the model, stand for activity % which starts 

at point j  on the planning horizon. For example Y06.15 means that, activity 6 

should start at point 15 on the horizon.

Again the highest resource level is W = 19 and the resource profile is as shown 

in Figure 12.

57



Time

Figure 12: Resource profile representing the solution o f  model 2.
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Model 3 : Reformulation of model 2.

The precedence constraints o f model 2 can be replaced by a set of inequalities:

‘-Pi  t
£  yik — ^  yjk > 0 , V(/, j )  e H, Vr

¿=1 k=1

Although this set o f inequalities contains more rows (T * |H |) than the 

previous formulation (| I I |), it is totally mimodulai|W85].

Model 3 is then

This model has the same number o f variables as the previous case i.e. rtT+1, 

but more constraints (T( \ H\+1 )+n). However, the number of constraints 

is still far less than the first model (which is T(2n+1)+n+ |H |)

The model was tested on the same example. The size of the problem in terms 

o f non-zeros was so large (23941) that the Matrix Generator (MG) could not 

generate the MPS format problem file. Fortunately we managed to generate 

the MPS matrix by another mathematical programming package called 

XPRESS. The MPS problem was then solved by SCICONIC and the solution 

is presented in Figure 13.
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PROBLEM RLPS3 - SOLUTION NUMBER 2 - OPTIMAL

RLPS3 P A G E  1

CREATED ON 29-AUG-1996 18:12:55, AFTER 615 ITERATIONS 

PRINTED ON 29-AUG-1996 18:15:06 

...NAME ACTIVITY.... DEFINED AS

FUNCTIONAL
RESTRAINTS

19.000000 Obj 
RHS00001

BOUNDS.... 

NUMBHR. .COLUMN AT ..

BOUNDOOl

..ACTIVITY... ..INPUT COST... ..I.OWER BOUND -UPPER BOUND...
•OST.
I 600 Y 0101 LL 1.000000 1.000000 1.000000 -1
I 601 Y 0201 BS 1.000000 . 1.000000
I 603 Y 0401 LL 1.000000 1.000000 1.000000
1 644 Y 0505 BS 1.000000 1.0000C0
I 712 Y 0312 BS 1.000000 . 1.000000
I 767 Y 0817 BS 1.000000 1.000000 1.000000
I 786 Y 0719 LL 1.000000 1.000000 1.000000
1 805 Y 0621 BS 1.000000 . 1.000000
I 918 Y 0932 BS 1.000000 1.000000 1.000000
I 1019 Y 1042 BS 1.000000 1.000000 1.000000

1020 Z BS 19.000000 1.000000 . NONE

-1.000000

Figure 13: Part o f the Report File for model 3.

The LP lower bound was 14.5, which is higher than the previous tested 

models. The optimal solution was obtained after only 615 iterations. The 

solution profile is as presented in Figure 14.
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Figure 14 : Resource profile representing the solution of model 3.
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Model 4: Start-time and sequence determining variables

Let p, w, H, T be as defined in the previous models.

Let = Start time of activity i

We observe that the interval [xi} x i + 1] for each i is sufficient to define all the 

necessary high points of the resource profile. Figure 15 illustrates this idea.

Figure 15: An example showing the necessary highest points for a given set of five activities.

The height h2 is the highest peak that we intend to minimise and is a member 

of { hl5 h2, h3, h4, h5}.

If  we sum the resource levels of all activities that falls into these intervals for 

each i (height at point i) we are guaranteed that the highest point will be one 

of these heights. The advantage of this model is that we only have to 

investigate n high points instead of all T points of the planning horizon.
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i, if x> ^ Xi a x> + pi -  1

Let j„

0 , O therw ise.

Then for each t, the height is given by X. r ^  . We note that the number of 

binary variables in this case is n2 instead of nT  as in the previous models.

The MIP model 4 is therefore;

Min w

s.t. (i) Xj - Xj V (ij) e  H

(ii) I  rjij < w V i

(iii)ji( reinforcement constraints.

yi(- reinforcements.

We need to define the condition < Xj < + p] - 1 => jfy = 1

or (x; - ^  > 0 ) a  (xj + ps - 1 - x; > 0 ) => jjj = 1 .

We define two binary variables u and v such that;

Xj - Xj ^  0 => //¡i = 1, and (Id)
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Then

(x; - *i > 0 ) A (*j +/>, - 1 - *■ > 0 ) =>j,j = != ( //„  + t>X) = 2 ) =>j„ = 1 (3d)

The following constraint reinforces (Id)

(*■-*;) + e - T « ij<0, where £ is a sufficiently small value ( 8 = 1  suffices our

case) [W85].

i.e. Xi~ X:- T//y < -1 (4d)

The following inequality reinforces (2d);

(x + p: - 1 - x; ) + £ - T^j < 0 for a sufficiently small value of £ (E = 1)

i.e. x  -Xj - rTvt> < -pt . (5d)

Similarly, (3d) is defined as

O.Ì+ V 2 ) +

or "¡i +  *,j -  Jij ^  1 (6d)
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MIP model 4 is then,

Min w

s.t.

Al1JT V ( ij)e  H

(ii) V /

(iii) T/ ĵ < -1 V i ,j

(iv) - T ^  < -/>, V i ,j

(y) «„ + ^  - J,, < i \ f  i , j

y>u>vg {0,1} "x\  w e x e  Z +",

This model contains 3i? + /i + 1 variables and 3 if + n + |H | constraints. 

Thus the problem matrix for our example is made up o f 311 columns and 324 

constraints with 997 non-zeros (sparsity of 0.99). The LP lower bound was 

very poor (zero) and the optimal solution is as shown in Figure 16.
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@@@@@@@@ PAGE 1

PROBLEM - SOLUTION NUMBER 7 - OPTIMAL

CREATED ON 23-AUG-1OT6 15 54:59, AFTER 6654 ITERATIONS

PRINTED ON 23-AUG-1996 1559:50

..n a m e , i......... a c tiv ity .... d e f in e d  a s

FUNCI’IONAL 19.000000 OBJ...

RESTRAINTS R11SSET01

BOUNDS... BQUND01

PAGE 2

NUMBER. ..ROW.. AT ...ACTIVITY-.. .SLACK ACTIVITY. .LOWER BOUND- .UPPER BOUND.. DUAL ACTIVITY-

PAGE 3

.NUMBER .COLUMN. AT ..ACTT/nY... .INPUT COST.. LOWER BOUND... .UPPERBOUND... -REDUCED COST.

325 W„ BS 19.000000 1.000000 NONE

326 X01...  BS . NONE

527 X02 BS 1,000000 NONE

328 X03 BS 2.000000 NONE

329 X04 LL ■ NONE

330 X05 BS 3.000000 NONE

331 X06...  BS 20.000000 NONE

332 X07.„. BS 18.000000 NONE

333 X08 BS 16.000000 NONE

334 X0S>.,.„ BS 31.000000 NONE

335 X10 BS 41.000000 NONE

Figure 16 ; The solution file for model 4.

The corresponding resource profile is shown on Figure 17.
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Figure 17 : Resource profile corresponding to  model 4,

The size of all four developed models are:

Model 1 Model 2 Model 3 Model 4

Rows 2n(T+l)+T+ | H | n+T+ | H  | n + T + T |H | 3n2+n+ | H  |

Columns n (T + l)+ l nT+1 nT+1 3n2+ n+ l

The experimental results for the tested cases are presented in the summary of 

results. We define the deviation of the LP lower bound (LP) from the optimal 

integral solution (IP) as ;

( IP-LP)
Dev =  ■ ttj  *  100
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The smaller the value o f Dev, the better is the lower bound. If Dev = 0, then 

IP = LP and in this case the LP relaxation defines an integral polytope which 

gives the IP optimal solution just by solving the LP problem. The worst case 

is when Dev = 100, because that means LP = 0 which is the least lower 

bound.

Summary of Results

Model Rows Cols non

zeros

%

Sparsity

LP

Solutn

Iters

(MIP)

%

Dev.

Time

(Sec.)

1 916 431 2515 0.64 13.02 2778 31.47 15855

2 66 421 5000 17.99 11.50 4237 39.47 611

3 599 421 23941 9.49 14.50 615 23.68 67

4 324 311 997 0.99 0.00 6654 100.0 3651

Table 6: Problem: c302b; n  = 10; T  = 42; Optimal Solution (TP) = 19

Model Rows Cols non

zeros

%

Sparsity

LP

Solutn

Iters

(MIP)

%

Dev.

Time

(Sec.)

1 827 391 2281 0.71 18.14 194667 24.42 24008

2 60 378 3814 16.82 14.64 2205 39.00 1665

3 536 378 15197 7.50 18.79 1266 21.71 44

4 538 521 1686 0.60 0.00 72059 100.0 24615

Table 7: Problem: c302a; n  = 13; T  = 29; Optimal solution (IP) = 24
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M odel Rows Cols non

zeros

%

Sparsity

LP

Solutn

Iters

(M IP)

%

Dev.

Time

(Sec.)

1 1117 529 3100 0.52 18.19 8266 41.32 3737.0

2 73 517 6445 17.08 15.03 3285 51.52 621.41

3 787 517 32724 8.04 18.68 2306 39.74 2935.97

4 462 445 1439 0.70 0.00 1413 100.0 36552.06

Table 8: Problem: c204b; n  = 12; T  = 43; Optimal Solution (IP) = 31

M odel Rows Cols non

zeros

%

Sparsity

LP

Solutn

Iters

(M IP)

%

Dev.

Tim e

(Sec.)

1 1125 534 3130 0.52 20 671 39.39 80064.83

2 72 521 6229 16.61 15.67 3237 52.52 481.64

3 774 521 30081 7.46 21.90 1171 33.64 80.82

4 539 521 1688 0.60 0.00 8841 100 75297.80

Table 9: Problem: c304a; n  = 13; T  = 40; Optimal Solution (IP) — 33
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Model Rows Cols non

zeros

%

Sparsity

LP

Soln

Iters

(MIP)

%

Dev.

Time

(Sec.)

1 1474 703 4127 0.40 14.81 3269 25.95 6115.00

2 83 690 7244 12.65 14.37 5510 28.14 2032.86

3 915 690 46535 7.37 19.5 1893 2.50 713.00

4 537 512 1684 0.61 0.00 13409 100 72779.71

Table 10: Problem: c402a; n  = 13; T  = 53; Optimal Solution (IP) -  20

In all cases the least deviation from the optimal solution (IP) is given by model 

3. Due to its higher lower bound, model 3 took fewer iterations and less time 

to find an IP optimal solution than the rest of the cases (except problem 

c204b) . This is so despite of the fact that, model 3 involves a larger number 

o f non-zeros, which results into a larger MPS problem.

Problem c204b is an exception because the LP lower bound was too far from 

the optimal IP value (39.74%). Although this lower bound (18.68) was better 

than other models, the optimal value was 31 which means that much iteration 

had to be performed before reaching optimality. Each iteration took more 

time due to the large size of the problem and hence more time was spent on 

the branch and bound procedure.
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Conclusion

• Although model 3 has more non-zeros and therefore a larger MPS matrix 

than the rest of the models, the LP lower bound was better in both cases. 

The optimal solution was obtained after fewer iterations than the other 

models (except for problem c204b).

•  The only model which did not involve the time-indexed variables was 

model 4, and the lower bounds obtained from this case were the worst.

The time-indexed formulations are therefore better than start-time variable 

formulations.

Future work

• The best LP lower bounds are still not very close to the IP optimal value. 

Further research on other formulation techniques may lead to a better 

lower bound.

• Development of strong valid inequalities, which would trim off 

infeasibilities from the LP relaxation. This would increase the value of the 

lower bound or (hopefully) result in an integral polytope.

• Although all cases produced the same optimal solution, the corresponding 

resource profiles differ considerably. This indicates that there may be many 

optimal solutions for each problem. It may be possible to find another 

objective function, which would not only give us the minimum height but 

also, the most evenly distributed amongst those minimum height profiles.
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C h a p t e r  4

SIMULATED ANNEALING HEURISTIC TECHNIQUE

Simulated Annealing is an optimisation algorithm, which originates from the 

physical simulation of a gaseous state being slowly heated and cooled into a 

solid state.

Traditional forms of local search for minimisation problems employ a 

‘descent’ strategy, whereby the search for a better solution always moves in the 

direction of improvement. However, employing such a strategy often results 

in convergence to local optima rather than to a global optimum.

Simulated annealing tries to overcome this drawback by using a random 

element in conjunction with the temperature parameter to generate a 

probability curve which determines when to accept a bad move in anticipation 

of a better convergence afterwards.

Simulated Annealing has been successfully applied to a variety of optimisation 

problems, spreading over many disciplines. These include combinatorial 

problems such as Travelling Salesman Problem, Circuit design, Data analysis 

problems, Imaging and Neural networks [193].

The pseudo-code below (based around C++) represents the general 

Simulated-annealing algorithm: We assume that we have a minimisation 

problem with solution space S, objective function/and neighbouring structure 

N
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Simulaled_A nnealing ()
{ Select an initial solution sD;

Select an initial temperature 4 > 0;

Select a temperature reduction function a;

While ( N ot Freezing_Condition)

{ Initialise( Iteration_Count);

While( Iteration_Count <= Number_of_Repetitions )

{ Randomly select s e N (sD);

°  = A s) - A so ) ;

If( CT < 0 )

s0 = s;
else

{ generate random x  uniformly in the range (0, 1)

if( x  < exp( - o / t )  s0 = s;

}
Increment( Iteration_Count);

}

Set t  = a( t ) ;

Check_Freezing_Condition;

}
sD is the approximate solution.

} / /  End Algorithm / /

Figure 18: Simulated A  nnealing Heuristic

In adapting this general algorithm to our problem, a number of general and 

specific decisions need to be made. The general decisions are concerned with 

the parameters of the algorithm itself - the initial temperature and the cooling 

schedule. Problem specific decisions include the choice of the space of 

feasible solutions, the neighbourhood structure and the form of the cost 

function.
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General decisions

Selection of the initial temperature (T0)

In order for the final solution to be independent of the initial solution, T0 

must be ‘hot’ enough to allow a free exchange of neighbouring solutions. 

Definition

The acceptance ratio % ¡s the ratio between the number of moves accepted by 

the algorithm and the total number o f moves generated by the algorithm for a 

given temperature.

Initially, the value of X should be close to one. That is, T0 must be high 

enough such that virtually all generated moves are accepted.

Laarhoven & Aarts [HB91] suggested the following procedure for the 

determination o f Tc.

The algorithm is run for a selected number of iterations (M). T0 is calculated 

from the following formula;

m* = the number of moves which showed an increase in cost ( (J > 0 ) 

u> — the average cost increase over the generated moves with o  > 0.

However, this procedure can be done reliably in those cases where the values 

o f the cost function for different moves are sufficiently uniformly distributed. 

In our experience, we have found that the cost function values for RLP are 

not uniformly distributed.

Where,
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A more natural procedure could be the following [C93];

The value o f % is fixed to a high value and then the system is heated 

(increase temperature) until the probability o f acceptance (x  = e'0/l ) 

reaches %. At this point, T  can be taken as the initial temperature for 

the tested problem. This is analogous to the physical cooling process 

where a substance is heated quite rapidly to its liquid state before being 

cooled slowly to its ground state (thermal equilibrium).

However, we found that this procedure was too time consuming as it entails 

the repetition of the stated process for each problem before cooling can 

commence.

We applied the formula below, which showed better results than the 

previously stated methods.

\n(X0)

Where;

C0 = Initial cost value of the problem (Sum of the squares o f the initial 

resource profile)

Tf — The final value o f temperature i.e. freezing point (0.01 in our 

case).

The formula was derived as follows;

Since the probability o f acceptance is given by the formula, 

x  = e'0/1 , then,

T =  -a/!n(x);

If we assume that the probability of acceptance at the initial stage of the 

algorithm is %Q we have,
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T0 = -CT/lnOO;

We want to substitute a  with the maximum value of cost difference in the 

problem i.e. the difference between the maximum and minimum values of 

cost. Since this value is not known, we estimate it by multiplying the initial 

cost ( Ca ) by a factor greater than one, which we have chosen to be 1/T f

i.e. a  = C0/T f.

The cooling schedule

The rate at which temperature is reduced is vital to the success of the 

algorithm. This is dependent on the number o f iterations at each 

temperature (nrep) and the temperature reduction function a(t).

Theory suggests that the system should be allowed to move very close 

to its stationary distribution at the current temperature before 

temperature reduction. However, the theory also suggests that this 

requires an exponential number of repetitions [C93], and therefore it is 

necessary to find a way of reducing the number of iterations. This 

may be achieved by applying a large number of iterations at few 

temperatures or a small number of iterations at many temperatures.

=> One o f the most widely used schedules [C93] involves a geometric 

reduction function;

a ( t )  = at, where a < 1

From experience, the most successful values o f a are between 0.8 and

0.99 with a bias to the higher end of the range. The algorithm stops 

when the change in temperature is less than a given value (0.01 in our 

case).
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However this purely theoretical condition is often tempered with more 

pragmatic factors such as the amount of time spent by the algorithm, 

or the amount of time since the last most optimum solution was 

discovered. The reason for taking this approach is that, the algorithm 

may continue searching for a long time after the stable optima has 

been achieved. Counting the number o f times which the solution is 

repeated without any change we can check if this number exceeds a 

selected value ini’ in our case, where m is the length of the planning 

horizon) and stop the algorithm.

Number of repetitions at each temperature (nrep)

It is important to spend more time at lower temperatures so as to 

ensure that a local optimum has been fully explored. This can be done 

in various ways including the following two;

i) Starting with a small value of nrep at high temperature, we increase this 

value arithmetically by a small factor (0.05 in our case ) at each new 

temperature.

ii) The feedback from the annealing process is used by accepting a fixed 

number of moves before decreasing the temperature. This implies 

that a short time will be spent at high temperatures when the rate of 

acceptance is high. Because the number of acceptances at very low 

temperatures will be low, it may take an infeasible amount of time to 

reach the required total, and it is therefore necessary to impose a 

maximum number of iterations per temperature as well (m3).

=> Another commonly used temperature reduction function suggested by 

Lundy and Mees [LM86], executes just one iteration at each 

temperature, but reduces temperature very slowly according to the 

formula,
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a ( t )  = t /  ( 1+ p t) 

where (3 is a suitably small value (in our case |3 = 0.01)

We collected data for both functions and compared the results.

Problem Specific decisions 

Solution space

Our solution is a vector of starting times of each activity, which 

corresponds, to the near optimal even distribution of resource levels in 

the resource profile. The initial solution is a vector of the Earliest 

starting times of each activity. Since each activity can be scheduled 

anywhere within its ‘total floating time’ without affecting the 

completion time of the schedule, then the ‘total solution space’ is the 

set o f all feasible combinations of these activity starting times over 

their total floats.

‘Free floating time’ (FreeF) of an activity is a part of its total floating 

time in which an activity can be scheduled without affecting the 

schedule o f other activities in the activity network. The role of the 

total and free float in determining a feasible solution can be explained in 

terms of two general rules [H92]:

i) If  the total float equals the free float, the noncritical activity can be 

scheduled anywhere between its earliest starting and latest 

completion times.

ii) If  the free float is less than the total float, the starting o f the 

noncritical activity can be delayed relative to its earliest start time by 

no more than the amount of its free float without affecting the 

schedule o f its immediately succeeding activities.
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Thus if an activity’s starting time does not fall into a free float range, 

the immediately succeeding activities must be pushed forward by at 

least the amount of deviation of this activity from the free float region 

(i.e. V as shown in Figure 19).

Figure 19: The effect of activity i on its immediate successors j and k.

In Figure 19, activities j  and k  are immediate successors of activity i i.e./' and k  

can start as earlier as i is completed. If  i starts anywhere within the FreeF 

region, then it will always be completed before ESTj and ESTk which are the 

earliest starting times of activities j  and k  respectively. Figure 19 shows that 

activity i deviates from the FreeF by an amount V and thus activity j  must be 

pushed forward by at least the same amount V. It is noted that, we only push 

those activities that will otherwise violate the precedence relations.

For example, activity k  does not need to be pushed forward because it starts at 

a point beyond the completion of activity i.
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Neighbourhood structure

Three strategies were used:

I. Fixed Neighbourhood.

Since the aim is to minimise the highest resource level in the resource 

profile, it seems reasonable to concentrate our search on the 

neighbourhood of this highest point. At each iteration, we find the 

highest point and search for the next solution by selecting random 

starting times for the activities which lies in the neighbourhood o f its

corresponding time {High) by a predetermined distance NbrHood).

That is those activities which lie in the interval

[High-Nbrllood, High+NbrHood] as shown in Fig. 20 provided that this

range is feasible. This range is not feasible i f ;

• (High - NbrHood) < 0 in which case 0 is elected as the lower 

bound o f the range.

•  (High + NbrHood) > m, in which case m is selected as the upper 

bound o f the range.
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—  Highest Level

•?

Q3a:

Neighbourhood of High

NbrHood NbrHood

High Time

Figure 20: Neighbourhood structure.

This structure was found to work well only on the cases where there was a 

guarantee that one High point will not dominate the search. That is, if the 

algorithm could move freely through the planning horizon. However this is 

not always the case. If at the beginning, a certain selected neighbourhood fails 

to drop below the next highest point which is not in its neighbourhood, then 

the algorithm will be stuck on this neighbourhood (see Figure 21).
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Figure 21: Limitations of the fixed  neighbourhood structure.

Surely, the movements of activities in region II and I may result in more 

freedom of movements for activities in the current neighbourhood and 

lead to a better solution. To overcome this drawback, we implement a 

second strategy as explained below.

2. Increasing Neighbourhood.

We start with a small neighbourhood interval and slowly increase its value 

with temperature to a maximum value of m. Clearly, this is a more 

expensive strategy in terms of time, but it enables the algorithm to search 

in a wider space when the highest point is about to reach its stable position. 

That is, at each new temperature, we increase the searching space so as to 

increase the chances o f an improvement in the solution at hand.
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3. Decreasing Neighbourhood.

In [HB91](p 16), it is suggested that Large moves should be made at high 

temperatures so as to allow the algorithm to avoid local minimum, but as 

the temperature is lowered, smaller moves should be made to support the 

convergence to an equilibrium point. We implement this case by varying 

the neighbourhood interval from m to a minimum chosen value (2.0 in our 

case). This allows the algorithm to start by examining all activities within 

the planning horizon and then narrow the search as High moves to a more 

stable position. In this way, we minimise the possibility of being 

prematurely stuck on a fixed neighbourhood structure

The cost function

One of the ways of detecting the most even distribution is to minimise 

the sum of the squares of the activity levels in the resource profile 

[BK62]. We divide our resource level profile into unit intervals, and 

find the sum of squares of the resource levels over all units. The 

approximate solution corresponds to the minimum of these sums.

Simulated annealing for the Resource Levelling Problem then looks as shown 

in Figure 22;
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~R.esource_Levelling_S__Annealing_1 ()

{ Input_Problem( Activities, s0);

Current_Sum = Sum_Of_Squares( Activities , s0);

Calculate initial temperature t0 = g(Currcnt_Sum);/ /g - initial temperature function 

Initialise (nrep_Criteria); /  /  either nrep or number of acceptances /  /  

Initialise_Neighbourhood(N, s0);

While ( t >  Freezing_Point) / /  where Freeing point is a sufficiently small value 

{ Initialise( Iteration_Count);

Change (nrep_Criteria); I I  increase if  not fixed 

Change_Neighbourhood(N, s0); / / increase or decrease if notfixed 

While( Iteration_Count <= nrep_Criteria)

{ Randomly select s e  N { s0);

New_Sum = Sum_Of_Squares( Activities, s );

<3 = New_Sum - Current_Sum;

If( C < 0 )

{ s0 = s; Current_Sum = New_Sum; } 

else

{ generate random x  uniformly in the range (0, 1)

I f (x  < exp( -G/t)  { sD = s; Current_Sum - New_Sum;}

}
Increment( Iteration_Count);

}

t  = a(t); / /  where a  (t) = at 0.8 < a < 0.99 or a  (t) = t / (1 +f3 t) / /

}
sD is the approximate solution.

} I  /  End Algorithm 11

Figure 22: Simulated annealing heuristic for the Resource Levellingproblem.
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Generation of the resource levelling problems

In order to test our algorithm, problems with varying features are needed and 

these are described in this section. The input to our heuristic is the output of 

the Critical Path Methods (CPM) which in turn uses the BOM as input. That 

is, the BOM tree is converted into an activity network and then solved by the 

CPM. We firstly describe how the BOM tree is generated, then a description 

of how the BOM is to be converted into an activity network is given.

Generating BOM.

We generate random BOM trees o f varying distributions, which are governed 

by the following features;

• Branching Factor (BF): This factor represents the number of branches 

emanating from each new parent node. In order to avoid the uniformity of 

branches on each parent node, we represent BF in terms of a range of 

values in which the number of branches for a particular parent node can 

fall. Thus different ranges of BF correspond to different distributions of 

nodes in the BOM tree.

• Number of Levels: This determines the height o f the BOM tree and its 

variation will result in different distributions of BOM nodes.

• Duration and Resource Levels of each node are also generated at random at 

specified upper and lower bounds.
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Figure 23 shows a generated example o f two different representations of a tree 

with the same number of nodes.

5
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( n )

1 1
v O  o o \ I ©

Problem: c5_02
BF : [0-2]
Levels : 5
Nodes : 16

Figure 23: 'Examples o f trees generatedfrom different BF and number o f levels.
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The algorithm then looks as shown in Figure 24.

Generate_Random_BOM ( )

{
Get_Number_Of_Levels ( Numb_Of_Levels ); 

Get_13ranching_Factor_Range ( MinBF, MaxBF) ;

Previous_Level_End = 0; 

arc_i = 0;

Level = 0;

Current_Node = 0;

Next_Level_Nodes = 0; 

while( Level < Numb_Of_Levels )

{
Current_I ,evel_Nodes = Next_Level_Nodes;

Next_Level_Nodes = 0;

while( arc_i <= (Previous_Level_End + Current_Level_Nodes) )

{
BFactor = Random( MinBF, MaxBF );

for(at'c_j=Current_Node+1; arc_j<=(Current_Node+BFactor); arc_j++ )

{ Generate_Random ( Duration, Resource_Level );

Store_Arc ( arc_i, arc_j, Duration, Resource_Level, BOM ); } 

Current_Node +=  Bfactor;

Next_Level_Nodes += BFactor; 

arc_i++;

}
Level++;

Previous_Level_End += Current_Level_Nodes;

}
} / /  End Algorithm /  /

Figure 24: Generating the ROM tree.
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Converting BOM to activity network

Our CPM algorithm applies the Activity-o?i-Node model of an activity network. 

From BOM, we add two dummy nodes, the starting ( S ) and the end nodes 

( T ) respectively. Node S connects to all leaf nodes of BOM and assigned the 

duration of zero. Node T is assigned to the first node in BOM i.e. the final 

product of the assembly, also with zero duration. All arcs then point from S 

to T  i.e. all arcs are reversed. We use an example o f BOM in Fig. 1 for 

illustration as shown in Figure 25 below.

Figure 25: Activity Network extractedfrom BOM in Fig 1.

The rounded square boxes represent resource levels and the brackets 

represent activity duration. The activity network is then input to the CPM 

procedure where all time-oriented parameters as shown in table 1 are 

calculated.
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Now, there are different orders o f these assembly products from the Master 

Production Schedule, each with a different due date and quantity o f the 

product required. Therefore, the BOMs for different orders have different 

load levels and time parameters. In this project we assume that all orders are 

o f the same assembly product, i.e. no order requires the extraction o f a subtree 

from the original BOM tree.

A data structure is needed to store the different trees for each order. These 

trees are used to create a single resource profile. We use an array o f adjacency 

lists, where each array element represents the tree of a single order. To 

minimise the amount of memory required by the data structure, dynamic 

memory is implemented by using linked lists.

Since the MPS is generated at random, we make sure that all the due dates 

generated are not less than the critical path duration of the BOM tree. The 

BOM tree o f each order is modified as follows;

• The load level o f each activity in the BOM tree is multiplied by the number 

required for that order from MPS table.

• If  the due date from MPS table for a given order is greater than the critical 

path duration, this due date becomes the new LCT for that tree. In this 

case, the difference between the two times has to be added to the latest 

starting (LST), free float and total floating times o f each activity.

All trees generated i.e. one tree for each order, are used to build an initial 

resource profile.

The solution is stored in a 2-dimensional array, where each row stores the 

starting times o f activities o f a single order.

A more detailed version o f the simulated annealing algorithm as was applied to 

the Resource Levelling Problem is now presented (Figure 26).
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ResourceJLevelling_S_Annealingr_2 ()
{

Input_BOM_Tree( B O M );
Create_MPS_Table( MPS, Number_Of_Orders);

/  /  for each order, modify the corresponding activity tree and Initialise the resource profile. 
for (order = 1; order <= Number_Of_Orders; order++ )
{ Copy_BOM( BOM, Activityforder] ); / /  copy BOM to activity tree of that order 

Modify_Tree( MPS, Activity [order], sQ[order]); 
Initialize_Resource_Profile( Res_Profile, Activity[order]);
}

Current_Sum = Sum_Of_Squares( Res_Profile, s0);
Initialise (nrep_Criteria); / /  either nrep or number of acceptances /  /  
Initialise_Neighbourhood(N, sD);

Calculate initial temperature t0 = g(Current_Sum); /  /g  — initial temperature function
II
While ( t  > Freezing_Point) / /  where Free^ingpoint is a sufficiently small value / /

Initialise( Iteration_Count);
Change(nrep_Criteria); / / i f  notfixed / /
Change_Neighbourhood(N, s0); I / i f  not fixed 11 
While( Iteration_Count <= nrep_Criteria)
{

Randomly select s e  N ( s0);
New_Sum = Sum_Of_Squares( Res_Profile, s ); 
a  = New_Sum - Current_Sum;
If( a  < 0 )
{ sQ = s; Current_Sum = New_Sum; } 
else
{ generate random x  uniformly in the range (0, 1)

if( x  < exp( - o / l )  { sD = s; Current_Sum = New_Sum;}
}

Increment( Iteration_Count);
}
t = a ( t ) ;  I  l a  (t) = at, 0.8 < a <  0.99 or a  (t) = t/(1+P t) /  /

}
sQ is the approximate solution.
} / /  End Algorithm /  /

Figure 26: Simulated annealing heuristic for the Resource Levelling problem (detailed).
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Experimental Results

We implemented our algorithm and ran it on a 486 PC 50Mhz, under DOS 

operating system version 6.2. The first digit in each o f the names of problems 

listed stands for the number of levels and the last two digits stands for the 

branching factor. For example the problem C3_04 has 3 levels and a 

branching factor range o f 0 - 4. Two problems were generated for each set of 

parameters e.g. problems C3_04A and C3_04B.

We tested 9 cases as explained in table 11 with the abbreviations used for each 

case.

Case Reduction

function

Iterations

(nrep)

Neighbourhood Abbreviation

1 Geometric (G) Variable (V) Fixed (F) GVF

2 Geometric Variable Increasing (I) GVI

3 Geometric Variable Decreasing (D) GVD

4 Geometric Fixed Fixed GFF

5 Geometric Fixed Increasing G FI

6 Geometric Fixed Decreasing GFD

7 Lundy & Mees (L) 1 Fixed L1F

8 Lundy & Mees 1 Increasing LI I

9 Lundy & Mees 1 Decreasing LID

Table 11: The tested cases with their abbreviations.

Figure 27 shows graphical representations of one of the problems and solution 

as generated by the algorithm. The example presented (C3_04B) is generated 

from the GVI case. There were 3 orders in its corresponding Master 

Production Schedule. Each order is a BOM tree with 18 nodes, and thus the 

profiles presented in Figure 27 and Figure 28 were made from 54 nodes of the 

3 orders.
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Figure 27 shows the initial profile and Figure 28 shows the generated final 

profile, which represent an approximate solution. Clearly, Figure 28 is more 

evenly distributed compared to Figure 27. It is also noted that the height of 

the profile has been reduced considerably. The difference between the initial 

and the final cost is 412468, which is an improvement o f 14%. The highest 

peak of this initial profile is 427 units. The highest peak of the final profile 

represented in Figure 28 is 328 units.

Figure 27:: The initial Resource Profile for problem c3_04B. Sum o f squares (cost): 2961511.
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Figure 28: Final Resource Profile for the problem c3_04B. Sum o f Squares (cost): 2549043.

Table 12 presents the generated summary of results for problem c3_04B.

Order 1 Order 2 Order 3
Activity Duration Initial

Start
Resource

Level
Final
Start

Resource
Level

Final
Start

Resource
Level

Final
Start

1 0 0 0 11 0 11 0 11
2 10 0 7 7 21 7 21 7
3 5 0 0 12 0 12 0 12
4 5 0 7 12 21 12 21 12
5 16 0 4 8 12 8 12 8
6 18 0 11 2 33 3 33 1
7 5 0 4 7 12 7 12 12
8 11 0 14 3 42 9 42 4
9 14 10 19 17 57 17 57 17
10 9 0 5 22 15 22 15 22
11 7 16 9 24 27 24 27 24
12 11 0 2 14 6 3 6 1
13 9 0 14 15 42 3 42 24
14 16 18 11 21 33 19 33 19
15 14 11 0 13 0 20 0 17
16 11 24 3 30 9 32 9 29
17 8 34 17 34 51 36 51 35
18 0 42 0 45 0 43 0 44

The Starting Cost: 2961511 
The Final Cost : 2549043 
Planning Horizon: 45 
CPU Time (Sec) : 21

Table 12: Summary o f results for problem c3_04B.
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For brevity, tables of results for both cases are listed in appendix B. It should 

be noted that, solutions obtained by applying the same set of parameters 

(same case) to the same problem might differ slightly due to the random 

selection o f possible solutions.

The peifomiance of a solution is the percentage o f improvement in cost value 

associated with that solution in relation to the cost value associated with the 

initial solution.

_ ,  /Initial cost - Final cost \
i.e. Perform ance= \------------------------------  1x100

\  Initial cost /

Cases LI I and GVI showed significantly better results (performance)

compared to the other cases as shown in Figure 29. We have only shown the

graphs o f GVI, L1I, LID and GFI for clarity. The graph of the performances

of all cases is presented in appendix B.
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Performance by cases

Problems

□  GVI •  GFI ®L1D ML1I

Figure 29: Performance of the algorithm by cases

For most cases, the time complexity of the algorithm shows an increase with 

the number of activities (nodes) involved (Figure 30).
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Time Vs Number of Nodes (L1I case)

o i n ^ O C ^ t O C O N O l O D T - t D O O T j - T - OT - c M c o T O C ' i m i o t o r ^ o o c n c N j - ' T O o o
i— i— CM TO

Number of Nodes

Figure 30: CPU Time by number o f Nodes forL .1l case.

However, this increase is not gradual because the CPU time can also be 

affected by other factors such as the magnitude of the cost value. Higher 

values o f the initial cost means higher values of the initial temperature and 

hence more iterations of the algorithm. The dependency o f CPU time on the 

magnitude of the cost value can be seen from Figure 31, where a considerable 

number o f problems shows an increase with the cost value. It is important to 

note that, the CPU time does not necessarily increase with the magnitude of 

the cost value, the cost value is just one of the factors which can cause this 

variation.
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Dependency of Time on Cost value

Starting Cost

Figure 31: Time V s Starting Cost for L11 case

The time complexity was also found to increase with the concentration of the 

nodes on the planning horizon i.e. the ratio of the number o f nodes in the 

project to the length of the planning horizon as shown in Figure 32.
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CPU Time Vs Node ratio

Node Ratio

Figure 32: Dependency o f Time on node ratio (case U I)

In general, given that the best set o f parameters has been selected, the

efficiency of the algorithm depends on a number of factors. These include the

following;

• Initial solution: The closer the initial solution is to the final solution, the 

faster the algorithm will converge. That is, the algorithm stops before 

completion of all iterations if there is no improvement in the solution after 

m number o f iterations (Convergence test).

• Slack (Floating time): The amount o f slack available in each activity 

determines the size o f the searching space.

• N ode ratio: The ratio between the number of activities (N) and the length 

o f the planning horizon (H) i.e. N/ H. The higher the ratio the higher the 

concentration o f activities in the planning horizon and hence the trend 

shown in Figure 32.

• Resource Levels: The magnitude o f the cost value can affect the number 

o f iterations as explained previously.
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Conclusion

• Simulated annealing technique has shown promising results with 

considerable improvement in the solution within a reasonable time scale.

• The time complexity o f the algorithm depends on the structure o f the 

problem i.e. the number of nodes and length of the planning horizon. 

Also, (in a considerable number of cases) it depends on the magnitude of 

the cost values (resource levels) involved.

• Careful selection of the heuristic parameters is necessary for the success of 

the algorithm. Cases LI I and GVI were found to yield close and 

significantly better results.

Further Research

• Application of other heuristic techniques such as Tabu search may lead to 

better results. Since the problem is NP-Hard, we could not get optimal 

solutions to problems of realistic size for comparisons. However, the use 

of the Integer Programming (IP) formulation on small sized samples, may 

help to give us an idea o f the efficiency of our heuristic.

• We tested a total of 44 problems, which were generated randomly. More 

problems and specifically real life ones may lead to a better and clearer 

picture about the characteristics of the problem.

• In the extraction of orders from the MPS table, we assumed that each 

order involved the whole BOM tree. This is not always the case as is 

shown in the MPS table (Table 2), where some of orders are placed for 

only parts of the BOM tree (such as Engine or Frame). We need to 

incorporate this fact into our algorithm in order to get a more realistic view 

of the problem.
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• Despite the current promising results, there are still some improvements to 

be made to our program code. At present, a considerable amount of time 

is used in storing and retrieving data from their structures. More 

optimisation o f the structures in terms o f storage and time are bound to 

provide an improvement in the general performance of the heuristic.

• Search for the exact algorithm for this problem by applying the theory of 

polyhedral combinatorics. This technique has been successfully applied to some 

NP-Hard combinatorial problems such as the Travelling Salesman and 

Linear Ordering problems [KC95] .
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C h a p t e r  5

TABU SEARCH AND THE STOCHASTIC HEURISTIC TECHNIQUES
FORRLP

Tabu search (TS) has its antecedents in methods designed to cross boundaries 

o f feasibility or local optimality normally treated as barriers and systematically 

to impose and release constraints to permit exploration o f otherwise 

forbidden regions. The algorithm is named after a table used to record the 

states visited by the algorithm and which is used to prevent the algorithm 

from cycling through the previous states.

Notations:

• X  : A set of all feasible solutions

• c(v): The cost associated with the solution x  e  X

• TABU: A set o f history records of solutions processed with respect to a 

particular attribute. This attribute can be recency, frequency, quality, 

influence or a mixture of some of them.

• N(TABU, x): A set of solutions that can be selected from X given that the 

current solution is x.

• History (TABU) determines which solutions can be reached by a move 

from the current solution i.e. selecting xpext from N(TABU, j / mv).

• N (y ow): A subset of N(TABU, y 10™) which determines a neighbourhood of 

.xflow where a selection of the next move is to be made.

• MAXITER: Fixed number of iterations that the algorithm is set to be 

repeated.

The pseudo-code given in Figure 33 shows how the TS algorithm operates 

[C93]
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/ /  Initialisation

i) Select a starting solution xpow e  X.

ii) Record the current best solution by setting x,JCsL — xpow.

iii) Define best_cost = c ^ 651).

iv) Initialise a history record TABU to empty

/  /  Choice and termination 
while( not termination criteria)
{ i) Determine a neighbourhood N(x'10"') e  N(TABU, xpow).

ii)Select r t N ^ 0*) to minimise c(TABU,x) over this set of neighbours 
/ /  Update

i) Re-set ^ low = ^ cxt
ii) if( c (y ow) < best_cost)

a) S e t^ est = ^ ow
b) Define best_cost = c ^ “1)

iii) Terminate by a chosen iteration cut-off rule.
1   ____

Figure 33. General Tabu Search Algorithm.

Tabu Search approach to RLP 

Choice of a move

Many of the TS heuristics employ swap/insert moves, such as Lin’s 2-Opt 

Swaps. Normally, swap/insert moves would require us to change the 

sequence of the jobs. However as we have a structured list of jobs (BOM) 

for each order, as defined by the precedence relationships, there is no 

possibility of carrying out sequence changes within orders.

The neighbourhood definition, below, allows the following moves.

• Increase the starting time of a job by one, i.e. move the starting time one 

step forward. This is only possible if the job is not currently at the end of 

the feasible starting time interval. A job can be scheduled to start between 

the earliest starting time (EST) and EST+TFloat, where TFloat is the total 

floating time o f the job as calculated from the critical path method.
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• Move the starting time of a job one step backward in time. This is only 

possible if the job is not currently at the beginning of its feasible starting 

interval.

Neighbourhood structure

Suppose that we have n jobs and x{ stands for the current starting time of 

job i.

Then y low = {xu x 2, ..., xn} and the change in starting time of one of these 

jobs (one step) constitute a move. The neighbourhood is chosen to be the set 

of all separate single step moves of each job that are not restricted (not ‘tabu’). 

Suppose we denote a single step move of job i from the current solution by 

x*, then xnext e  { (x^, x 2, x „), (xl5 x¿,...,x^), ..., (xl5 x2, ..., xn*) } provided that 

the attribute of the selected solution is not in the TABU list. The 

neighbourhood therefore consists o f at most n moves.

Solution attribute

We use the “recency” criteria by restricting the solution to avoid points that 

have been recently selected. This is done by maintaining a queue structure of 

a fixed length (TL) and a move can only be selected if it is not in the queue. 

The selected move is then placed in the queue and the last element deleted 

(released) if the queue is full. Our input consists of jobs from different 

orders [AM96]. Therefore an entry in the TABU list consists of three values;

• The number of the order in process

• The number of a job in that order that has moved

• The new starting time of the moved job.

These three values are unique for each move and therefore sufficient to 

identify any move.
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This attribute is not absolute as we allow a special type of move to violate the 

‘tabu’ rule (aspiration criterion). We keep track of the best move i.e. a move 

that has produced the best-cost reduction so far (great_change). If the next 

move results into a cost reduction that is better than great_change, we select 

this move even if it is in the TABU list.

Cost criteria

We minimise the sum of squares of the resource levels at each time unit in the 

planning horizon [BK62].

Each move must correspond to a decrease in cost from the current resource 

in order to be considered for selection. The cost change from the current 

solution is the value;

c( > 0  -

The best move in the neighbourhood is the one that corresponds to the most 

negative cost change.

Termination rule

Since the move selection process is deterministic, if no move in the 

neighbourhood results in an improvement in solution from the current 

profile, the algorithm would repeat exactly the same move selection process 

with no improvement. If this happens then the algorithm is terminated to 

avoid wasting time unnecessarily on this cycling process. If  no cycling occurs, 

the algorithm stops after a fixed number of iterations MAXITER.

The use of Long Term Memory technique

Early cycling can result in a very poor solution, due to premature termination 

of the algorithm. Furthermore we found, in practical data sets, that most of 

the solutions were obtained from the first few iterations of the algorithm (see 

Table 13).
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This triggered us to improve the algorithm by repeating the procedure at 

different starting points called stages. A new starting point is selected at each 

stage depending on the current structure of the resource profile and is 

generated by the Perturbation Process’ described below. We keep a second list 

of starting points so as to avoid the repetition o f the same stating points at 

different stages. We call this procedure a perturbation process because it helps 

to shake up the resource structure of the current stage and therefore avoid 

cycling through the same series of feasible solutions.

The Perturbation Process.

We identify the point in time on the planning horizon that corresponds to the 

highest resource level o f the current profile (HighPos). We then define an 

interval o f time (Nbr) to the left and right of this point and process the set of 

jobs that falls within this interval of time (see Figure 34). To avoid spending 

too much time on this procedure we do not explore all possible moves on this 

interval but rather stop after the first good move (a move with negative cost 

change). This move is sufficient to jump out of the cycling process.

This long-term memory process is repeated LT times, i.e. LT stages.

Figure 34: ‘Shake up’ o f  the jobs around the highest point
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Implementation

Tabu-Search_RLP()

{ / /  Initialisation

i) Select a starting solution xilow e  X.
ii) Record the current best solution by setting xi>est = xpow.
iii) Define best_cost = c(j^icst).
iv) Initialise a history record TABU to empty

/  /  Choice and termination
Terminate = False; Iterations = 0; cost_change = 0; great_change = 0;

while( iterations <= MAKITER and not Termination)

{ Move = False; iterations++;
/  /  Get all possible one step moves from the current solution (x?ow) and peek the best /  /  
For each order

For all jobs in the order 
{cost_change = Get_A_Move( order, job, newStart);// c(^ext)-c(>T“') 

/  /  Move ajob by one step (yfext)and return the resulting cost change. /  /  
if( cost_change < best_change) /  /  Find Minimum £ N ^ 0") 

{if(not Taboo(TABU,order,job, newStart) or cost_change<great_change)
{ / /  Collect the best move yF0" on the neighbourhood /  /  

best_change = cost_change;
best_moveJob = job;
best_moveOrder = order;
best_jobStart = newStart;
Move - True;
}

}
}

/ /  Update / /

11 if  a move with cost improvement was made i.e. >̂ °w = m in ^ ^ te  N(V°w) and c(^’°w)< best_cost /  /  

if( Move)

{ best_cost = best_cost + best_change;
Re-set J est = xpow;
if( best_change < great_change) great_change = best_change; 
best_change = 0;
Push(TABU, best_orderJob, best_jobStart, best_moveJob);
}
else Terminate = True;

Figure 35: Tabu Search procedure for the RLP.
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Implementation of the Long Term Memory Technique

This is done by repeating the Tabu procedure TL times as shown in Figure 36.

Tabu_Search_RLP_LT ()

{
Best_Height = Big_Value;

for stage = 1 to TL do 

{ Tabu_Search_RLP ( Profile, Height ); 

if( Height < Best_Height)

Best_Height = Height;

ShakeUp ( Profile ); / /  New starting point /  /

}

}

Figure 36: Long term memory TS

Get_A_Move function

Before moving a job forward we must check the successors of the job. We 

must push the successors forward if necessary in order to maintain the 

feasibility o f the resulting solution. These moves might involve a recursive 

procedure (we employ Depth First Search) to explore all the successors that 

need to be pushed forward before making a move on the job. Likewise the 

backward move must first be preceded by the exploration of the predecessors 

that need to be pushed back before making a move. Thus a single move may 

sometimes result in propagating large changes in the whole structure o f the 

resource profile.

This function calculates the result of the change and returns the associated 

value o f cost_change.
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Perturbation Function

Boolean Perturbation (Profile)

{ Set >Pow to the cycling solution;

Set cost_change = 0;

Determine the width of the interval (Nbr);

Find the highest point ( Profile, HighPos);

while( More orders and cost_change > 0 | | LT_Tabu)

{ while( More jobs in the order and cost_change > 0 | | LT_Tabu)

{ if( I-IighPos-Nbr < job.start < I-IighPos+Nbr)

{ start = job.EST; 

while( start <= job.start+job.TFIoat and cost_change > 0)

{ H g e t ^ e  N(>T); / /

cost_change = Get_A_Move( Profile, order, job, start); 

start++;

Re-set Jc'1“1 = y ,ow;

Push( TABU, order, job, start);

}

}

}

}

}
if( cost_change < 0 ) return Taie; 

else return False;

}____________________________________________________________________
Figure 37: Perturbation Function. Helps to jump out o f the cycling process.
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Summary of Results

The test problems were generated randomly as described in [AM96]. The 

name o f each problem denotes the number o f levels of the BOM tree, the 

branching factor (number o f children) on each node and the number of jobs in 

the problem. For example, the problem A312al4 denotes a BOM tree with 3 

levels, a branching factor in the range from 1 to 2 and having 14 jobs. The 

algorithms were implemented on a Borland C++ compiler and run on a 

Pentium 120Mhz machine. We comparc the results with the optimal solutions 

obtained by the MIP formulation [AM96b] where the model was generated 

and solved by the XPRESS-MP package [D94| . We assumed that all tested 

problems are generated from one order so as to decrease the size of the 

Linear Programming formulation and hence be able to get an optimal solution 

from the MIP procedure.

The following table shows the solutions o f different problems and the 

iteration at which each solution was found. The value of MAXITER used in 

this case was 1000 and Nbr = 1 and the number o f stages LT = n.
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Problem Tabu Solution Optimal solution Iteration count.

A213al0 67 67 1

a213bl2 62 62 7

a214al3 56 56 1

a214b20 108 108 3

a215a20 97 87 19

a215b20 104 88 3

a216a21 137 116 10

a216bl5 72 63 3

a217a22 154 125 10

a217bl3 87 81 2

a218a22 136 109 1

a218bl6 137 129 3

a312al4 72 61 1

a312bl0 59 53 1

a313al5 67 66 1

a315bll 48 48 18

Table 13: Iteration at which the solution was found.

The maximum number of iterations at which a solution was found is 19 and 

most of the solutions were found in the first few iterations. Consequently, the 

value o f MAXITER was chosen to be 30. Increasing the LT beyond n did not 

seem to yield better results and therefore LT was fixed at n.
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Further Improvement

It was also noteworthy that, the solution improvement depended considerably 

on the value of Nbr. After several tests on different problems, it was found 

that these values o f Nbr vary between 0.5 and 5 with a bias to the lower end. 

We decided to repeat the procedure for values o f N br in that interval in an 

increment of 0.5 and pick the best solution.

Problem Number 

of jobs

Approx. 

Minimum  

height 

(from TS)

Optimal 

Height 

(from MIP)

Time taken 

by MIP

(Sec)

Time 

taken 

by TS

(Sec)

a213al0 10 67 67 0.5 0.06

a213bl2 12 62 62 14 0.11

a214al3 13 56 56 1 0.10

a214b20 20 108 108 2 0.33

a215a20 20 97 87 474 0.27

a215b20 20 104 88 522 0.65

a216a21 21 119 116 25 0.44

a216bl5 15 72 63 6 0.16

a217a22 22 146 125 84 0.44

a217bl3 13 87 81 27 0.05

a218a22 22 119 109 3191 0.44

a218bl6 16 137 129 29 0.11

a312al4 14 61 61 7 0.11

a312bl0 10 53 53 1 0.06

a313al5 15 67 66 24 0.22

a315bll 11 48 48 10 0.11

Table 14: Comparison of TS to optimal results.
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Problems a216a21, a217a22, a218bl6, a312al4 and a312bl0 were considerably 

reduced. Figure 38 summarises the performance of the two sets of results in 

comparison with the optimal solutions.
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Figure 38: Comparison o f solution performances 
between TS and Improved TS

Improved Tabu Search is clearly better than the Tabu Search as shown by the 

heights of their corresponding histograms in Figure 38.
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Stochastic algorithm

When the deterministic algorithm stops at a local optimum, we select a set of 

objects at random, multiply their weightings by a factor (M) and reapply the 

deterministic algorithm. This may completely change the structure o f the 

current solution and lead to a different starting point in the searching space. 

The concept o f stochastic perturbations can be applied to a wide range of 

global optimisation problems such as the crossing number problem [GM93]. 

We can convert a deterministic heuristic into a stochastic algorithm as follows;

• Select a set of solution attributes say jobs, from the current solution and 

give them weighting o f M (where M is a sufficiently large number).

•  Find a local optimum, set M = 0 and re-optimise to get a candidate 

solution.

• Repeat the procedure until a CPU time bound is reached and print the 

best candidate solution found.

Stochastic algorithm applied to RLP

Improved Tabu Search (ITS) was selected as the deterministic algorithm. We 

applied the perturbation by selecting jobs at random and adding a big M value 

(Initial height on the profile) to the resource levels of the selected jobs. We 

re-optimised the problem and restored the resource levels to their correct 

values. This new profile was then re-optimised to find a new solution. We 

repeated the procedure a fixed number of times (steps), say S and recorded 

the best solution.
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Stochastic_RLP ( )

{ Improved_Tabu_Search( Profile, High); / /  Perform the Tabu search / /  

Best_Profile = Profile; 

for step = 1 to S do

{
Select_random( Profile, jobs);

Add_weights ( Profile, jobs, 1 nitial Height);

Improved_Tabu_Search( Profile, High); / / re-optimise with weights//  

Remove_Weights( Profile, jobs, InitialJHeight); 

Improved_Tabu_Search ( Profile, High); / /  optimise / /  

if( High < Best_JIeight)

{ Best_Height = High; / /  collect the best height / /

Bcst_Profile = Profile; / /  collect best solution / /

}

}

J ____________________________________________________________________
Figure 39: Stochastic RLP.
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Summary of results (Stochastic case)

The following tables show the effect of perturbations on each step of the 

stochastic algorithm for the problem a217a22 with the planning horizon of 18. 

The last column of both tables shows the percentage improvement of the 

solutions vis-à-vis the initial heights.

Step Perturbed job Resulting Height %Improvement
Initial ( 0 ) 0 146 0%

1 15 188 -29%
2 2 146 0%
3 3 146 0%
4 7 170 -16%
5 10 150 -3%
6 14 150 -3%
7 19 155 -6%
8 11 142 3%
9 10 136 7%
10 14 146 0%

Best Height 136
Optimal Height 125

Table 15: Steps in a 1-job stochastic perturbation process

The best height in this case (136) was obtained on the 9th step, which is the 

penultimate step. More steps might have produced a better solution. The 

best height found (136) is still significantly far from the optimal value (125) but 

it is a good improvement from the ITS value which was 146.
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Step Perturbed
job

Resulting H eight % Improvem ent

Initial ( 0 ) 0 146 0%
1 10,8 153 1%
2 19,4 149 3%
3 20,17 168 -9%
4 16,4 156 -1%
5 3,6 172 -12%
6 15,2 153 1%
7 3, 14 149 3%
8 20,19 157 -2%
9 2,4 146 5%
10 14,15 155 -1%

Best Height 146 Total time
Optimal
Height

125

Table 16: Steps in a 2-jobs stochastic perturbation process.

Two-job perturbations (Table 16) did not produce any improvement in the 

solution values after 10 steps. This means that all the selected jobs for 

perturbation so far only succeeded in changing the structure o f the initial 

profile to a worse starting point. However, we have only presented 10 steps 

o f the algorithm and more steps might result in a better solution.

Iterations Perturbed job Resulting H eight % Im provem ent
Initial ( 0 ) 0 146 0%

1 9,1, 4 131 15%
2 3,10, 19 144 6%
3 11,7,5 150 3%
4 1,17, 5 162 -5%
5 4, 5,6 177 -15%
6 19, 4, 16 204 -32%
7 10, 11,8 159 -3%
8 4 ,9 ,2 149 3%
9 12,15, 6 150 3%
10 17, 2,14 149 3%

Best Height 131 Total time
Optimal Height 125

Table 17: Steps in  3-jobs stochastic perturbation process.
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The best height found in this case was better than the rest of the tables above 

(131) and was found at the 1st step.

The question arises as to what number of steps and perturbations should the 

algorithm perform in order to guarantee the best solution. Obviously, the 

larger the number o f steps, the better is the chance of improving the solution, 

albeit at the expense of higher CPU times. Table 15, Table 16 and Table 17 

indicate that some of the “number of perturbations per job” are better than 

others (3 jobs perturbations gave a better solution in this case). We are not 

only interested in the best solution but also in the number o f perturbations 

that will give us the best solution using the least number of steps. Since this is 

a stochastic process, we need to look at the set of parameters (number of 

steps and perturbations) which will result in a more stable solution i.e. a 

solution with more repetitions of the best value than others.

Figure 40 and Figure 41 present the distribution of problem a414b22 for 1-job 

and 4-jobs perturbations respectively. Figures for the rest of perturbations are 

presented in the appendix C. The heights at each step have been sorted in 

increasing order and 20 steps were performed on each set of perturbations.

In Figure 40 the best solution was found at step 2 with a solution value of 74. 

However, the distribution of solutions was uneven with a standard deviation 

(std) o f 11.13 and a mean of 87.2, which is far from the optimal value of 71. 

In Figure 41 the best solution was 73 which is better than in the previous 

Figure and was found at step 15. The heights are better distributed than 

Figure 40 as shown in the figure with the mean of 86 and std 7.62.
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Sorted Heights - One job perturbation

Figure 40: Heights at each step for Problem a414b22. Mean — 87.28, std — 11.13

Figure 41:: Heights at each step for problem a414b22. Mean — 86 and std — 7.62
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We experimented with different problems and with up to 10-jobs 

perturbations. (See figures in the appendix C). We did not find any 

relationship between the number of steps and the number of jobs perturbed. 

The search space was very uneven as shown in Figure 42.

Figure 42: Solution space for problem a414b22.

Since there are so many local minima (Figure 42), the solution value largely 

depends on the chosen starting point. There are many starting points, each of 

which can lead us to a completely different local optimum.

However, no good solution was found at a step count larger than the number 

of jobs in the problem. It was consequently decided that the number of steps 

for each problem should be set to the size of the problem (n).

For the sake o f comparison to the ITS case, we present the summary of 

results for 16 test problems. We show these results for 1-job and 2-job 

perturbations and a fixed number of steps (n).
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1 - job Perturbation
Problem Initial

Height
ST Height ST Time(Sec.) Optimal %

Improvement
a213al0 71 67 0.71 67 6
a213bl2 78 62 1.65 62 21
a214al3 81 56 2.36 56 31
a214b20 123 108 13 108 12
a215a20 150 92 16.1 87 39
a215b20 147 91 14 88 38
a216a21 231 119 12.57 116 48
a216bl5 112 63 4 63 44
a217a22 231 130 24 125 44
a217bl3 130 81 3 81 38
a218a22 177 118 27 109 33
a218bl6 204 136 11.9 129 33
a312al4 72 61 2.75 61 15
a312bl0 59 53 1 53 10
a313al5 98 66 6 66 33
a313bll 94 48 3.52 48 49

Table 18: Summary o f results for the ST algorithm, 1 - job perturbation.

2 - Job Perturbation
Problem Initial

Height
ST Height ST Time 

(Sec.)
Optimal %

Improvement
a213al0 71 67 0.71 67 6
a213bl2 78 62 2 62 21
a214al3 81 56 3 56 31
a214b20 123 108 12 108 12
a215a20 150 89 16 87 41
a215b20 147 93 13 88 37
a216a21 231 119 13.4 116 48
a216bl5 112 63 4.18 63 44
a217a22 231 131 22 125 43
a217bl3 130 81 2.69 81 38
a218a22 177 117 17.14 109 34
a218bl6 204 137 7 129 33
a312al4 72 61 2.64 61 15
a312bl0 59 53 1.5 53 10
a313al5 98 66 5.5 66 33
a313bll 94 48 1.92 48 49

Table 19: Summary o f results for the stochastic algorithm, 2 - jobs perturbation.
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The solution times were reasonable compared with the amount of 

improvement o f each case from the initial value (10 problems were solved to 

optimality in the first table and 7 in the second table). Figure 43 shows the 

comparison of ST to the TS case.

S olution  C om parisons
160 

140 

120 

100

X I

& 80 a>
X

60 

40 

20 

0

■  TS ■  One job □  T w o jobs &  Optimal

Figure 43: Solution comparisons on TS, 1 and 2 - job stochastic algorithms.

Both 1-job and 2-job perturbations are obviously better in terms of solution 

improvement than the general TS algorithm. The increase in CPU time of the 

ST case over the TS is clearly justified by the effect of the improvement in the 

solution values.
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The question that still remains to be answered is “How many jobs should be 

perturbed for a given problem so as to yield the best result? Intuitively, this 

should be proportional to the number of jobs (n) and the length of the 

planning horizon (T). The sparser the resource profile, the more jobs are 

expected to be perturbed to change the resource profile.

Since we have fixed the number of steps, the best number of perturbations 

should now correspond to the case that gives the best result earlier than the 

rest. Using data for problem a414b22 (see appendix C), at each step we 

record the best solution so far for all job perturbations (1 to 10 job 

perturbations). Figure 44 summarises the results of this experiment for each 

job-perturbation.

1 Job 2 3 4 5 6 7 8 9 10
Jobs Jobs Jobs Jobs Jobs Jobs Jobs Jobs Jobs

Figure 44: Summary of results for problem a414b22. Steps at each perturbation.
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Each block in Figure 44 represent all the steps involved in a specified 

perturbation case. The 10-jobs perturbations were the best. This is so 

because the best result (73) was found earlier than the rest of the cases as 

shown by the shape of its corresponding block.

The experiment above gave us the following set of data for problem a414a22;

• Number of jobs, n = 22

• Planning horizon, T = 35

• The best number of jobs to be perturbed, p = 10

Since we expect the value of p to decrease with the concentration of jobs on 

the resource profile, we estimated the value of p as follows;

Let 3S/ 22 -  <?, Then a constant q corresponds to the value o fp  = 10.

We can generally say that the ratio '/„  corresponds to the value of p  

perturbations.

Therefore, p =  (10x '/tl) / q = (3501/22n) or,

_  _  15.5T /
P ~  /n

After experimentation with different problems, the constant value of 15.9 was 

found to be a good approximation in calculating the value of p as shown in 

Table 20.

We present the summary of results for all 37 test problems for up to 8 job- 

perturbations (Table 20).
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Problem T Initial H TS ST1 ST2 ST3 ST4 STS ST6 ST7 ST8 Opt. P
a213a10 11 71 67 67 67 67 67 67 67 67 67 67 7
a213b12 15 78 56 52 54 56 54 52 56 54 54 52 8
a214a13 20 81 56 56 56 56 56 56 56 56 56 56 10
a214b20 20 123 108 108 108 108 108 108 108 108 108 108 6
a215a20 21 150 97 92 89 91 91 91 91 91 90 87 7
a215b20 16 147 104 91 93 93 93 91 90 89 89 88 5
a216a21 18 231 119 119 119 119 119 117 119 119 117 116 5
a216b15 14 112 72 o ; 0 3 63 03 G3 63 63 63 63 6
a217a22 18 231 146 130 131 128 131 130 128 128 129 125 5
a217b13 16 130 87 81 81 81 81 81 81 81 81 81 8
a218a22 20 177 119 118 117 117 115 117 115 115 118 109 6
a218b16 19 204 137 136 137 137 132 137 137 137 132 129 7
a312a14 18 72 61 61 61 61 61 61 61 61 61 61 8
a312b10 17 59 53 53 53 53 53 53 53 53 53 53 11
a313a15 24 98 67 66 66 66 66 66 66 66 66 66 10
a313b11 28 94 48 48 48 48 48 48 48 48 48 48 16
a313b21 20 160 125 119 119 119 121 121 120 119 121 118 6
a314a22 27 165 118 113 113 113 112 113 113 113 113 111 8
a314b20 24 234 151 1 50 150 150 150 150 150 150 150 150 8
a315a21 21 151 63 61 59 61 59 60 59 61 60 57 6
a412a22 34 105 74 71 71 71 71 71 71 71 71 63 10
a412b20 26 113 88 84 84 84 80 84 84 84 84 77 8
a413a22 32 134 76 73 72 72 72 74 74 73 74 69 9
a413b20 29 114 91 83 82 79 82 84 82 84 84 77 9
a414a20 30 126 86 86 83 86 86 86 86 86 86 83 9
a414b22 35 133 83 73 73 76 72 73 76 73 72 71 10
a415a21 34 136 107 104 104 105 104 104 1 04 104 104 101 10
a415b20 26 126 94 82 80 86 82 80 81 80 80 80 8
a512a22 33 129 97 88 82 82 88 88 88 88 82 80 9
a512b22 35 137 81 74 74 66 74 68 66 74 74 65 10
a513a26 42 129 100 95 95 98 98 98 98 98 98 90 10
a513b22 36 136 123 123 123 I 23 l 123 123 123 123 123 10
a612a21 51 79 72 72 72 72 63 72 72 72 62 62 15
a612b16 34 97 49 49 49 49 49 49 49 49 49 49 13
a712a20 52 87 66 59 59 59 59 59 59 59 59 59 16
a712b20 44 76 55 54 54 54 54 54 54 54 54 54 14

KEY:
Optimal
STx
Best H (Be 
TS

St h
Stochas 
eight) 
Tabu Se

:ic ca 

arch

se wi :h x-j<Db pe 1urbs tions

Table 20: Summary of results for up to 8 jobs perturbations.
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The last column shows the calculated values of the number of perturbations 

(p) for each problem. Apart from the cases which correspond to the value of 

p > 8, most o f the other cases had their best solutions at or close to p 

perturbations.

The dark colour represents cases and the positions in which optimal solutions 

were found.

The table below shows the summary o f results obtained by applying the 

formula for p.
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Problem TS Opt. P STp SA CPU secs, STp
a213a10 67 67 7 67 67 2
a213b12 56 52 8 52 52 3
a214a13 56 56 10 56 56 4
a214b20 108 108 6 108 115 18
a215a20 97 87 7 91 94 21
a215b20 104 88 5 90 93 22
a216a21 119 116 5 117 120 25
a216b15 72 63 6 63 69 5
a217a22 146 125 5 128 149 34
a217b13 87 81 8 81 83 4
a218a22 119 109 6 115 122 27
a218b16 137 129 7 137 137 12
a312a14 61 61 8 61 61 4
a312b10 53 53 11 53 53 1
a313a15 67 66 10 66 66 8
a313b11 48 48 16 48 48 3
a313b21 125 118 6 120 136 18
a314a22 118 111 8 113 120 39
a314b20 151 150 8 150 150 22
a315a21 63 57 6 59 70 21
a412a22 74 63 10 71 80 43
a412b20 88 77 8 84 113 26
a413a22 76 69 9 70 134 38
a413b20 91 77 9 80 114 26
a414a20 86 83 9 83 91 26
a414b22 83 71 10 72 85 57
a415a21 107 101 10 103 113 38
a415b20 94 80 8 80 80 19
a512a22 97 80 9 82 129 45
a512b22 81 65 10 66 76 40
a513a26 100 90 10 90 129 75
a513b22 123 123 10 123 123 77
a612a21 72 62 15 72 74 99
a612b16 49 49 13 49 49 12
a712a20 66 59 16 59 87 52
a712b20 55 54 14 54 76 23

KEY
Optimal
STp Stochastic case with p perturbations 
TS Tabu Search SA : Simulated Annealing

Figure 45: Summary o f results on stochastic case with variable p.
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There is clearly a considerable improvement in the solution value from the 

Tabu search case. Most of the problems took less than 1 minute of CPU 

time. We also presented the results as solved by the Simulated Annealing 

algorithm, clearly ST shows a considerable improvement of the other two 

approaches.

Conclusion and future work

• Tabu search generates reasonable solutions for the RLP. Careful selection 

o f the parameters is essential in determining a good solution.

•  Improved Tabu search has shown a good improvement over the general 

Tabu Search heuristic. Thus a perturbation process is a good strategy for 

improving the quality of the TS solutions.

• Stochastic algorithms show a good improvement over the TS deterministic 

case. Although the time spent on the stochastic case was higher than the 

TS algorithm, it was still reasonable as most of the problems were solved 

below 1 minute of CPU time.

• Real life problems normally do not involve a large planning horizon (e.g.

30 days of a month). However, they normally involve a large number of 

jobs (e.g. orders in a factory). A test for larger problem sets and 

specifically real life problems is therefore essential.
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C h a p t e r  6

HUMAN COMPUTER INTERACTION AND THE RLP 

Introduction

In chapter 3 we saw how mathematical programming based exact approaches 

can be used to tackle the Resource Levelling Problem. However, this 

approach could only solve small sized problems. We have presented heuristic 

approaches in chapters 4 and 5, which can solve problems of larger size and 

provide good approximate solutions. However, real life problems can be so 

large that even heuristic procedures may have to spend a large amount of CPU 

time. In addition, the output may not concur with the social needs of the 

organisation concerned.

In manufacturing, the output o f this process would be fed into a sophisticated 

editor to enable human schedulers to;

• Modify the work program to allow for last minute changes,

• Incorporate social constraints into the work profile.

In this chapter, we present a brief overview of how ideas in the theory of 

Human Computer Interaction (HCI) can be used to develop an interface for 

the RLP. We firstly present a general survey on the cognitive aspects o f HCI 

that supports the idea of incorporating human capabilities into the problem

solving process. We then present our suggestions of a suitable interface for 

the RLP.
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An overview of the literature

Various studies on the cognitive aspects of Human Computer Interaction have 

shown that human beings employ numerous problem-solving intuitive 

strategies that can sometimes outperform computers in terms of the quality of 

solution [Y89]. For instance, studies have shown that human beings employ, 

among others, a strategy known as 'Problem space reduction', a general 

technique o f eliminating potential solutions so as to reduce the number of 

alternatives [G83]. As such it is usually regarded as a part o f skilled human 

problem solving behaviour, and an aid to effective problem solution.

We are particularly interested in the human problem solving behaviour on 

problems that have been represented in a diagram form. Diagrams are 

important visual aids to reasoning because they provide readily interpretable 

information about problems to be solved. HCI Literature [BW97] suggests 

that a system to be used in support of problem solving process should provide 

such readily interpretable representations of problems.

Graphical displays

In applications ranging from statistical graphics to scientific visualisation, 

computers are used increasingly as tools for creating graphical displays of 

information. Most people have experienced the situation in which a good 

diagram can explain more than the prose one would use to describe it. A 

general observation is that perceptual codes in diagrams convey less 

information than symbolic ones. Symbolic representations elicit conscious 

cognitive processing, whereas analogic, pictorial ones are perceived more 

automatically [MJ90]. A map for example, provides specific locational 

information using grid co-ordinates, which for some people is more useful 

than analogic spatial arrangements.

Many studies have been done on the advantages of the use of graphical 

displays in mathematical problems. Douglas et al [D89] discuss the use of 

Graphical User Interfaces (GUI) on statistical graphs.
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They introduce an empirical investigation of the basic features of a data graph 

using multivariate statistical techniques. William Cole [WC89] shows how the 

understanding o f Bayesian reasoning can be enhanced via graphical displays. 

He concludes that graphical displays provide the 'mental model1 that was 

missing in understanding Bayesian reasoning as pointed out by cognitive 

Psychologists.

One of the challenges in creating good object-oriented direct manipulation 

interfaces is in creating effective and appropriate graphics. William Verplank 

[WV88] introduces six challenges or principles of GUI design that emerged 

during the design project of the Xerox Star user interface

1. Appropriate affect. Try to capture all the subjective and emotional impact 

that different graphics can convey

2. A  match with the medium. Create consistent quality graphics that is 

appropriate to the product and its market and make the most of the given 

medium

3. Consistent graphic vocabulary

4. Visual order and user focus on the screen. Contrast and animation when 

appropriately applied can draw users' attention to the most important 

features of the display

5. The illusion of manipulable objects and

6. Revealed structure

Principles 5 and 6 are considered to be new challenges because computers 

have now given us images that can be directly manipulated while they 

represent complex relationships, behaviours and structures that can be 

alternatively obscurc or apparent. They are problems of dynamic, manipulable 

graphics with complex behaviours.
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Halasz & Moran [HM82] and Rosenberg & Moran [RM84] have discussed the 

difficulties of creating appropriate user interface metaphors; the limit of the 

underlying metaphor should be obvious to the user. For example, the use of 

real names of the jobs such as 'frames' are more obvious to the user than 

names like 'job 1'. However for large problems, real names may be avoided in 

order to save space. Abbreviations should be used in this case; a consistent 

scheme should be adopted for developing them and a dictionary of 

abbreviations made available to the users [TT88].

In creating an illusion o f manipulable objects, care must be taken. It should 

be clear that they can be selected and how to select them. It should be 

obvious when they are selected arid that they will be the objects of the next 

action.

Since the RLP solution can be represented in a diagrammatic form (Resource 

Profile), we can employ the cognitive advantages o f human beings and 

different display strategies to improve the performance o f our heuristic 

solutions.
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Suggestions on the design of the RLP interface

As we have seen on the literature review, many suggestions are available on 

how to design good user interfaces. Most of the literature is based on the 

authors' own experience on the interface design projects. We present our 

suggestion on how the interface for the RLP could be developed.

• Each job is represented by a set of rectangles, scaled according to its 

resource level (Height) and duration (Width).

• The shape of a job's diagram changes with the position in which it is 

placed i.e. fill 'holes' or climb 'hills' depending on the shape of the new 

position. See the example below for the movement o f job A over B;

BEFORE 
Job B is to be moved to position k 
which overlaps job A

1V

^ ........
B

AFTER
Job B has been moved to position k

B

A

B  B

• Jobs from the same customer order are painted with the same colour, 

different from those of other orders. This will help to make the 

precedence relations visible, since precedence relations exist for jobs that 

belong to the same order. Any colour is influenced by its location, its 

placement and size and shape of the area it fills. Salomon [GS91] 

discusses on the effective use of colours in visualising large data sets. He 

assets that, the effectiveness of this use of colours relies more on human 

pattern recognition than on the ability to recognise specific colours.
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A certain degree of complexity is involved in the selection of colours to 

aid visualisation. In addition to the automatic selection of colours for each 

job, we also suggest the development of a customisation routine where 

users would be able to change colours to their own convenient patterns.

• Vertical scale (ruler) is important in visualising the height of the resource 

profile corresponding to any solution. Similarly a horizontal ruler should 

be maintained so as to make sure that no job is scheduled beyond the 

fixed planning horizon.

• We suggest the use of the mouse in moving objects (jobs) since it is much 

easier and natural for the user to be able to drag and drop an object. 

However, the mouse can move a job into a fractional position, in this case 

the new position should be selected to be the nearest integer. The use of 

keyboard cursors or function keys however can be programmed in such as 

way that a single move is always an integer. Both strategies may be used so 

as to give the user more flexibility and tools to work with.

• The RLP can be very large and it may not be possible to display all jobs 

into one single screen. Breaking the jobs into different windows may not 

be a very good option as visualisation of the whole resource profile is 

necessary for better understanding of the structure of the problem. The 

use of scroll bars is therefore a better suggestion where the user can be 

able to scroll through the whole resource profile in one piece. Zooming 

techniques are also important, the user should be able to view different 

portions o f the profile as part o f the problem solving strategy.

• Movement of a job involves a recursive movement of predecessor or 

successor jobs and may result into a major change in the resource profile. 

An example o f jobs A, B, C, D and E illustrates the point;
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Job A is
BEFORE 

to be placed on top o f C

A
E

D
C

B

AFTER
Job A has been placed on top of C

B

A E
D

C
.A B

Since jobs A and B belong to the same order, the precedence relations must 

be maintained. Thus if job A is moved in order to fill the 'hole' on top of C, 

then job B must be moved forward in order to maintain precedence relations. 

The resulting profile therefore shows worse height compared to the previous 

profile.

We suggest the use o f the 'undo' command so as to be able to reverse actions 

that does not provide a good solution (if the user wants to do so).

• If a movement does not result in a feasible solution, two strategies may be 

allowed

1. The job moves back to the original position and displays the error 

message on the status bar. This helps to make sure that the profile is 

always feasible during the problem solving process.

2. Allow infeasible moves but keep a log file, which shows all jobs that 

are infeasible, and the reason for their infeasibilities. This will provide 

more freedom of movement and therefore enhance creativity on the 

part of the user.

We suggest the use of both strategies and give the user a choice to decide 

between the two.
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• If the problem is very large, there is a possibility that the user may end up 

with a worse solution after a large number o f trials and may need to 

recover the original profile. Instead o f running the heuristic algorithm 

afresh, we may be able to preserve the original profile until the user is 

satisfied with the new changes. We suggest the use o f two modes; Display 

and Edit. The initial profile is shown on the display mode where editing is 

not allowed. In order to be able to play around with the profile, the user 

should enter the edit mode and a new copy (new window) be created for 

this. The original window is therefore preserved on the display mode with 

the original profile.
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Data structures

As every move involves recursive movements of successors or predecessors 

we need to be able to keep all necessary data in an efficient way. We need to 

keep the successors and predecessors of each job, the current starting time, 

the resource level and the slack times of each job. A list of the data set is kept, 

where each list element contains all the necessary information about the job 

and a pointer to the adjacency list of successors. The predecessors of each job 

can be searched directly from die successor list.

Data List for each order
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In addition to these structures, we keep a list o f resource levels at each point 

in the resource profile. Any move of a job must be checked for feasibility 

with these structures. If the move is feasible, the data structure has to be 

updated to reflect the change. All these structures were used in the previous 

algorithms and can be adapted to help in the graphics displays.

Concluding remark

We have suggested the use of visual display as an aid to improving the RLP 

output. Much has been said in the literature to support 'visual thinking' to 

creative problem solving. Although we have focused our attention on the 

objects' graphical displays, Tulli [TT88] suggest the use of what he calls 

'ambidextrous thinking1. That is, using a variety of representations and 

transformations (graphical and linguistic, concrete and abstract, analogic and 

symbolic) and moving flexibly from one to the other. Given different 

representations describing the same thing, very different insights may be 

gained, different errors committed, different things remembered or forgotten.

Other representations of the RLP, such as a precedence network of jobs and 

tables of resource levels, duration and start time, are therefore necessary. The 

important goal is to provide not just a balance, but an appropriate span of 

alternative modalities.
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C h a p t e r  7

SUMMARY AND CONCLUSIONS

Work done so far

E x a c t m eth ods

Four models were developed for the RLP and tested on small size problems 

that were randomly generated. We compared the performances of the 

developed models and present a summary of results.

• Model 1 consisted of both binary and continuos integer variables. 

Start times were presented by continuos integer variables. The 

resource level at each point on the planning horizon was represented 

by time-indexed binary variables. The model consisted of n(T+1)+1 

variables and T(2n+1)+2n+ |H | constraints, where n is the number of 

jobs, T is the length of the planning horizon and | H | is the cardinality 

of the set o f arcs forming the precedence network H.

• Model 2 is a purely binary time-indexed formulation. The resulting 

model has n(T+1) variables and n+ \ H \+ T  constraints, which is far less 

in size than model 1. The lower bound in the LP-relaxation in this 

case was not as good as the previous case.

• Model 3 was a result of the reformulation o f model 2 by the 

replacement of the precedence constraints by a new set of inequalities, 

which is totally unimodular. The resulting model was larger than 

model 2; consisting of n(T+1) variables and T(\H \+1J+n constraints. 

However, the lower bound was better than rest of the developed 

models.
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• Model 4 was developed without the inclusion of the time-indexed 

variables. It consists o f continuos integer variables and binary 

variables which are not time-indexed. This resulted into a model with 

3n +n+1 variables and 3r?+n+ |H | constraints. The lower bound was 

very poor and the performance was consequently the worst.

Model 3 was found to be the best among the models developed. In general 

we found that time-indexed formulation approach provided better results. 

This is in concurrence with the findings of J, Sousa and L, Wolsey [SW92] on 

the single machine scheduling problems. Using this exact approach, we 

managed to solve to optimality problems of up to 30 jobs.

H euristic  m eth ods

Three algorithms were developed.

Simulated annealing (SA):

We presented our approach to SA with a range of general and specific 

decisions on the set of parameters required by the algorithm. We classified our 

parameters into 9 cases and present a summary of results. Cases GVI 

(Geometric reduction function, Variable number of iterations, Increasing 

neighbourhood structure) and LI I (Lundy & Mees reduction function, 1 

iteration at each temperature, Increasing neighbourhood structure) were found 

to provide better results than the rest of the tested cases. In addition to the 

selection of parameters, the success of the SA procedure was also found to 

depend on the structure of the problem. Density of jobs on the planning 

horizon (number of jobs per unit time of the planning horizon) and the 

amount of slack time in each job affected the performance. The amount of 

slack time for instance, determines the size of the searching space in which the 

SA algorithm needs to work on. With this approach, we managed to solve to 

optimality, problems of up 426 jobs.
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Tabu Search (TS):

From the experience of the SA algorithm, it was clear that using modern 

heuristic techniques, we could solve problems with large size. However, it 

appears that this is the only study in this approach (we could not find any 

other work) and we therefore had no other work to compare the effectiveness 

of our algorithm. Thus, our interest in this case was more inclined towards 

the quality of the solution rather than on the size of the problem to be solved. 

We therefore generated 44 random small size problems (10 - 26 jobs) and 

solve to optimality by the MIP methods. We used the optimal solutions as a 

benchmark of the performance of our TS methods. As in the SA case, a 

major challenge was in the selection of parameters, which could provide us 

with good and effective solutions. The summary of results and analysis shows 

that TS is good approaches to RLP as our results were close the optimal 

values.

Perturbation algorithm (ST):

This approach was motivated by a study by G, Lesson and M, O'hEigeartaigh 

[GM93]. They successfully applied the perturbation algorithm to the crossing 

number problem. The algorithm works by performing random perturbations 

on the structure o f the problem that is solved by a deterministic algorithm. 

We applied the TS procedure as a deterministic part o f the ST. Although the 

algorithm took longer than TS, the improvement in performance was good. 

Half of the problems tested were solved to optimality and the remaining 

solutions were close to optimum values (see Fig 46). We also presented an 

analysis of the results and proposed a set of parameters to be used.

The perturbation approach showed a considerable amount of improvement 

over the rest of the models (see Fig 46 for comparisons). This study shows 

that, both SA, TS and ST are feasible and good approaches for the RLP.
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H um an C om puter Interaction (H CI)

We presented a review on the literature to support the use of computer 

graphics to the RLP. This has been triggered by two major reasons;

1. In manufacturing, RLP can be so large that even powerful heuristic 

algorithms may require a very large amount of CPU time, which may not 

be acceptable by management. In this case, human beings can interrupt 

the process and finish up the remaining task. This has been supported by 

various studies on the cognitive aspects of HCI on the problem solving 

process (see Chapter 7). It is suggested that, given a well-designed 

interface, human beings can perform very well using their natural problem 

solving strategies.

2. In some cases, optimal or near optimal solutions presented by the 

computer algorithm may not concur with the social needs of the industry. 

In this case, human changes on the computer output are necessary.

We briefly presented a suggestion on how one could go about designing and 

implementing an interface for the RLP. We also suggested the possibility of 

using other representations apart from graphical profiles, which can enhance 

problem-solving process on the part of the user.
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Future work

Exact approach

• Preprocessing and probing techniques as reviewed in chapter 2 can help to 

increase the size o f problems that can be solved by the MIP models 

presented. Martin Savelsberg [MS93] provides a good framework for 

describing preprocessing and probing techniques for MIP and surveys 

some of the well-known basic techniques. He also extend his study to 

include some o f the more recently developed techniques that are currently 

employed by the state-of-art general purpose mixed integer optimisers. 

George, Nemhauser, Martin Savelsberg and Gabriele Sigismondi presents 

one of these optimisers known as MINTO (Mixed Integer Optimiser, see 

[NSS94] and [SN96]). These techniques have been successfully applied to 

various MIP such as Knapsack, Lot Sizing, Node Packing, Linear Ordering 

and Cutting Stock problems (see [SN95]).

• Description o f the RLP polytope by finding the associated facets is 

another approach that needs to be investigated. This approach has been 

applied to a number of combinatorial problems including Linear Ordering 

[H85], Travelling Salesman problems (see for instance [GP79a], [GP79b], 

[G80], [F91] and [CP80]). A branch and cut algorithm has been suggested 

as an efficient algorithmic approach to NP-Hard problems once the facets 

o f the problem are known. M. Junger et al QRT94] gives an introduction 

to cutting planes algorithms (branch and cut) with a list o f successful 

practical applications in the literature.

• Development of other models or reformulation of the developed MIP 

models may provide a better lower bound and hence better performance.
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Heuristic app roach

• As we have observed in our experimentation, careful selection of 

parameters is very important in the effectiveness of both heuristics. More 

fine tuning of the presented parameters are bound to provide better 

results.

• It is well understood that, real life problems provide characteristics that are 

special to the problem and cannot be incorporated from the random 

generation o f the problems. We decided to generate random problems 

because we could not get real life data during the time of the project. We 

therefore suggest that, more testing of the algorithms should be done 

using real life data. This might give us more insight into the behaviour of 

the RLP problem and hence better strategies for tackling the problem.

• Other modern heuristic techniques such as Gcnctic Algorithm and Neural 

Networks are worth investigating on their applicability to the RLP.

Human Computer interaction

We have suggested a way in which an interface for the RLP could be

developed. The design and development o f this interface is another area of

research.
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A P P E N D I X  A :  M I P  F O R M U L A T I O N S

C '1st FORMULATION OF THE RESOURCE LEVELLING PROBLEM
C
OPTIONS NOREPORT 
C
NOTATION
C
SUFFICES
C
I N 100

C
OPTION INTEGER 
C
J M 100
C
OPTION INTEGER 
C
T S 100
c
OPTION INTEGER
C
EXTERNAL VALUES 
C
R(l) [1X,F5.1]
P(I) [1X.F5.1]
H(IJ) [1X.13]
C
VARIABLES
C
W •*'
x(i) ■*ir
Y(I,T) ‘■•II I T  

C
BOUND BV 
C
PROBLEM
MINIMISE
C
•OBJ '***•
C

C
SUBJECT TO 
C
•RES ‘**TT
SUM(I) R(I)*Y(I,T) - W .LE. 0.0 
FOR ALL T 
C
- BIN '“ II'
SUMfi) Y(I,T) .EQ. P(I)
FOR ALL I
C
• ABV ***11 I T  
T‘Y(I,T)-X(1).LE.(P(I)-1)
FOR ALL I,T
C
•BELW •••IITT 
X(l) + S‘Y(I,T) -LE. (T+S)
FOR ALL I,T 
C
• PRD '*»11JJ' NOT IF(H(1J) LE. SMALL)
X(11)-X(I).GF..P(1)

FOR II .ST. (II .EQ J)
FOR ALL IJ 
C
• BND »*11’
X(I) ,LE.S-P(1)

FOR ALL I 
C
ENDATA

Figure 46: MGG file for the first formulation (model 1) [S91]
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TITLE TH E RESOURCE LEVELLING -DATA INPUT
*

*

MAXIMA N = 10 M = 10 S = 42
*

EXTERNAL VALUES
*

R 0.0 1.0 7.0 1.0 7.0 4.0 11.0 4.0 14.0 0.0
*

P 0.0 11.0 7.0 16.0 12.0 11.0 13.0 15.0 10.0 0.0
*

* 1 2 3 4 5 6 7 8 9  10

H 1 1 1 1 1  1

H 2 1

H 3 1

H 4 1

H 5 1

H 6 1

H 7 1

H 8 1

H 9 1

H 10
*

ENDATA

Figure 47: M G Input Data file for problem C302b.
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C ‘2nd FORMULATION OF THE RESOURCE LEVELLING PROBLEM
C
OPTIONS NOREPORT
C
C
NOTATION
C
SUFFICES
C
I N 100
c
OPTION INTEGER 
C
J M 100
C
OITION INTEGER 
C
T  S 100
C
OPTION INTEGER
C
c
EXTERNAL VALUES 
C
R<1) (1 X,FS 11
D(l) [1X.F51]
H(IJ) [1X.I3]
C

C
VARIABLES
C

W **'
C

Y(I,T) •»IITT
C
BOUND BV
C
C
PROBLEM
MINIMISE
C
* OBJ w *
C

c
SUBJECT TO 
C
•BIN '***11'
SUMfO V(I,'0 11Q 1.0 

FOR AI,L I 
C 
C
■ PRSD ’* Ml JJ' NOT IF(H(IJ) ,LE. SMALL)
SUMCI)T*Y(U,'0 
-SUM(T) T*Y(I,T) GE. D[l)

FOR Il.ST. (I1.EQ.J)
FOR ALL 1J
C
C
* RESR '“ *T r
SUM{I,T1) R(I)-Y(I,T1) - W LE. 0.0 

FORTl.ST.(T1 .GE.fl'-D(I)+1) -AND. Tl.LE.'P)
FOR ALL T  
C

C
ENDATA

Figure 48: MGG formulation for model 2
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C *3rd FORMULATION OF THE RESOURCE LEVELLING PROBLEM

C
OPTIONS NOREPORT
C
C
NOTATION
C
SUFFICES
C
I N 100
C
OPTION INTEGER 
C
J M 100
C
OPTION INTEGER 
C
T  S 100
C
OPTION INTEGER
C
C
EXTERNAL VALUES 
C
R(I) [1X,F5.1]
D ©  px,F5.1]
H 0 J )  [ t f y 3 ]
c
C
VARIABLES
C
C

Y(i,T) '*i i  r r
c
BOUND BV
C
C
PROBLEM
MINIMISE
C
* OBJ '***’
C
w

c
c
SUBJECT TO 
C
* b in

SUM00 Y(I,T) .EQ. 1.0 
FOR ALL I 
C
* r e s r  '* * rr

SUM(IjTl) R(I)*Y(I,T1) - W .LE. 0.0 
FORTl.ST.((Tl.GE.CT-D(I)+l)) .AND. (T1.LE.T)) 
C FOR ALL T 
C
* CUT '*IIJJTr NOT IF(H(IJ).LE.SMALL) 

SUM(T1) Y(I,T1)
- SUM(T2) Ygi,T2) .GE. 0.0 

FOR 11 .ST. (II .EQ. J)
FORT1 .ST. (T1 LE. (T-D(I)))
FORT2.ST. (T2.LE.1)
C
c
c
ENDATA

Figure 49: M G G  formulation for m odel 3
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C -4th FORMULATION OP THE RESOURCE LEVELLING PROBLEM 
C
OITIONS NOREPORT
NOTATION
C
SUFFICES 
I N 100

C
OPTION INTEGER 
C
J M 100
C
OPTION INTEGER 
T  S 100
C
OPTION INTEGER 
C
EXTERNAL VALUES 
C
RO) [1X,F5.1]
D(I) [1X.F5.1]
H(IJ) [IX,13]
C
VARIABLES
W
X(l) **11'
Y(IJ) ’*11 JJ'

C
BOUND BV 
C
U(IJ) - II  jj'

C
BOUND BV
C
V(IJ) '* n jj‘ 
c
BOUND BV 
C
PROBLEM 
MINIMISE 
*OBJ '***'
W

C
SUBJECT TO
* 1TVD '**11 JJ* NOT IP(H(IJ) 1-E. SMALL)

X(ll) -X(l) GE.D(I)
FOR 11 ST. (I! EQ.J)
FOR ALL IJ
C
* RES '*’ 11'

SUM(J) R0)*Y(IJ) - W .LE. 0.0 
FOR ALL 1 
C
* BELW '**11 JJ'
X(I) -X(Il)-S*U(tJ) .LE. -1.0 

FOR II ST. (II .EQ. I)
FOR ALL IJ 
C
* ABV -*11 JJ'
X(I1) - X(l) • S*V(IJ) XE. -AB1 

WHERE:!AB1=DUR(|)
FO R I15T .(ll .EQ.J)
FOR ALL IJ 
C
•BIN ‘*»11 JJ'

U(IJ) *■ V(IJ) - Y(IJ) .LE. 1.0 
FOR ALL IJ
C
FUNCTIONS

FUNCTION DUR(K)
DUR = D(K)
RETURN
END

ENDATA

Figure 50: MGG formulation for model 4.
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A P P E N D I X  B: S I M U L A T E D  A N N E A L I N G

Geometric Reduction (GVF)
nrep += 0.05, a Value : 0.95, Fixed NbrHood: Max{10, m/100}

Problem Nodes 

per tree

# Orders Total

#Nodes

Profile

Length

Starting

Cost

Final

Cost

Improvem
ent
in cost

Time

(Sec.)

c3 02A 12 3 36 37 1159702 1094758 6% 3.00
c3 02B 9 3 27 45 80586 69538 14% 6.00
c4 02A 12 2 24 52 65010 62498 4% 6.00
c4 02B 15 2 30 66 154464 147746 4% 8.00
c5 02A 16 2 32 57 420012 375292 11% 9.00
c5 02B 27 3 81 97 3133218 3066546 2% 19.00
c6 02A 15 1 15 79 245799 243783 1% 9.00
c6_02B 12 3 36 77 189912 185656 2% 8.00
c7 02A 22 3 66 82 12569818 10896152 13% 19.00
c7 02B 26 3 78 70 3789161 2997507 21% 19.00
c3 03A 19 2 38 37 275556 265490 4% 6.00
c3 03B 19 3 57 40 682507 604823 11% 10.00
c4 03A 16 2 32 68 1305763 1191903 9% 13.00
c4 03B 21 1 21 54 124030 120990 2% 8.00
c5 03A 11 3 33 77 96345 96345 0% 8.00
c5 03B 36 2 72 82 10415471 9882711 5% 20.00
c6 03A 50 3 150 89 29102440 28162900 3% 30.00
c6 03B 43 3 129 93 16307697 13989709 14% 31.00
c7 03A 26 3 78 102 6963516 6486772 7% 15.00
c7 03B 64 2 128 105 11579453 8497259 27% 33.00
c2 04A 16 2 32 31 633273 540213 15% 9.00
c2 04B 11 2 22 44 84264 75576 10% 1.00
c3_04A 12 3 36 43 1779023 1679373 6% 8.00
c3 04B 18 3 54 45 4239064 3523748 17% 11.00
c4 04A 40 2 80 68 19465500 19465500 0% 292.00
c4 04B 77 2 144 66 81642620 59957131 27% 42.00
c5 04A 67 2 134 89 6998204 6865116 2% 36.00
c5 04B 76 1 76 85 1268567 1270773 0% 18.00
c6 04A 15 2 30 59 72040 72386 0% 6.00
c6 04B 178 2 356 100 62202010 38377430 38% 52.00
c7 04A 213 2 426 114 1.26E+08 1.26E+08 0% 108.00
c7 04B 190 2 380 124 39058380 36566440 6% 76.00
c3 05A 29 3 87 44 3508433 2850861 19% 12.00
c3 05B 37 3 111 58 4845554 4368358 10% 18.00
c4 05A 24 2 48 66 5999009 5163137 14% 8.00
c4 05B 35 3 105 81 20374440 17906042 12% 25.00
c5 05A 105 2 210 68 54630330 48388010 11% 45.00
c5 05 B 96 1 96 88 35330710 31735210 10% 35.00
c3 06A 67 3 201 47 1.06E+08 95525760 10% 56.00
c3 06B 69 1 69 60 8557608 8450968 1% 25.00
c4 06A 68 1 68 84 20322800 18783480 8% 21.00
c4 06B 91 2 182 59 60404140 48842880 19% 43.00
c5 06A 34 1 34 90 441483 379329 14% 12.00
c5 06B 95 1 95 102 34268280 32469330 5% 30

Table 21: Sum mary o f results for the GVF simulated annealing
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Geometric Reduction (GVI) 
nrep + = 0.05,
a Value : 0.95, Increasing NbrHood: Max{2.0, NbrHood += 0.15} <= m

Problem Nodes 
per tree

# Orders Total
#Nodes

Profile
Length

Starting
Cost

Final
Cost

Improvement 
in cost

Time
(Sec.)

c3 02A 12 3 36 37 1159702 744884 36% 14.00
c3 02B 9 3 27 45 80586 67086 17% 9.00
c4 02A 12 2 24 52 65010 55142 15% 8.00
c4 02B 15 2 30 66 154464 152464 1% 11.00
c5 02A 16 2 32 57 420012 315340 25% 14.00
c5 02B 27 3 81 97 3133218 2402086 23% 30.00
c6 02A 15 1 15 79 245799 232659 5% 11.00
c6_02B 12 3 36 77 189912 161304 15% 12.00
c7 02A 22 3 66 82 12569818 9409486 25% 34.00
c7 02B 26 3 78 70 3789161 3034721 20% 25.00
c3 03A 19 2 38 37 275556 259038 6% 10.00
c3 03B 19 3 57 40 682507 599751 12% 19.00
c4 03A 16 2 32 68 1305763 1109231 15% 17.00
c4 03B 21 1 21 54 124030 105072 15% 9.00
c5 03A 11 3 33 77 96345 91445 5% 10.00
c5 03B 36 2 72 82 10415471 8728131 16% 31.00
c6 03A 50 3 150 89 29102440 21469670 26% 63.00
c6 03B 43 3 129 93 16307697 10869813 33% 49.00
c7 03A 26 3 78 102 6963516 5049284 27% 33.00
c7 03B 64 2 128 105 11579453 7494625 35% 54.00
c2 04A 16 2 32 31 633273 493847 22% 13.00
c2 04B 11 2 22 44 84264 64354 24% 8.00
c3 .04A 12 3 36 43 1779023 1100355 38% 15.00
c3 04B 18 3 54 45 4239064 3445912 19% 23.00
c4 04A 40 2 80 68 19465500 14189841 27% 35.00
c4 04B 77 2 144 66 81642620 53114380 35% 68.00
c5 04A 67 2 134 89 6998204 4509264 36% 56.00
c5 04B 76 1 76 85 1268567 1030293 19% 26.00
c6 04A 15 2 30 59 72040 69112 4% 9.00
c6 04B 178 2 356 100 62202010 42339650 32% 148.00
c7 04A 213 2 426 114 1.26E+08 79355940 37% 200.00
c7 04B 190 2 380 124 39058380 23931840 39% 144.00
c3 05A 29 3 87 44 3508433 2588473 26% 27.00
c3 05B 37 3 111 58 4845554 4366546 10% 37.00
c4 05A 24 2 48 66 5999009 4116753 31% 22.00
c4 05B 35 3 105 81 20374440 15166405 26% 45.00
c5 05A 105 2 210 68 54630330 40148070 27% 89.00
c5 05B 96 1 96 88 35330710 19903120 44% 48.00
c3 06A 67 3 201 47 1.06E+08 78708560 26% 89.00
c3 06B 69 1 69 60 8557608 6941120 19% 34.00
c4 06A 68 1 68 84 20322800 12968694 36% 35.00
c4 06B 91 2 182 59 60404140 43537740 28% 79.00
c5 06A 34 1 34 90 441483 325577 26% 15.00
c5 06B 95 1 95 102 34268280 19240730 44% 49

Table 23: Summary o f results for the GVI simulated annealing
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Geometric Reduction: GFF
Fixed accepted moves:
a Value : 0.95, Fixed NbrHood: Max{10, m/100}

Problem Nodes 

per tree

#
Orders

Total

#Nodes

Profile

Length

Starting

Cost

Final

Cost

Improve 
ment 
in cost

Time

(Sec.)
c3 02A 12 3 36 37 1159702 943542 19% 2.00
c3_02B 9 3 27 45 80586 68880 15% 1.00
c4 02A 12 2 24 52 65010 64270 1% 44.00
c4 02B 15 2 30 66 154464 154464 0% 3.00
c5 02A 16 2 32 57 420012 372024 11% 5.00
c5 02 B 27 3 81 97 3133218 3066546 2% 69.00
c6 02A 15 1 15 79 245799 232515 5% 13.00
c6_02B 12 3 36 77 189912 185656 2% 22.00
c7 02A 22 3 66 82 12569818 11305854 10% 3.00
c7 02B 26 3 78 70 3789161 3626143 4% 1.00
c3 03A 19 2 38 37 275556 265580 4% 24.00
c3 03B 19 3 57 40 682507 620453 9% 4.00
C4 03A 16 2 32 68 1305763 1191943 9% 2.00
c4 03B 21 1 21 54 124030 120990 2% 42.00
c5 03A 11 3 33 77 96345 96345 0% 5.00
c5 03B 36 2 72 82 10415471 9659899 7% 51.00
c6 03A 50 3 150 89 29102440 27717360 5% 157.00
c6 03B 43 3 129 93 16307697 14539705 11% 2.00
c7 03A 26 3 78 102 6963516 6424532 8% 12.00
c7 03B 64 2 128 105 11579453 10079257 13% 3.00
c2 04A 16 2 32 31 633273 595809 6% 8.00
c2 04B 11 2 22 44 84264 75838 10% 1.00
c3 04A 12 3 36 43 1779023 1458375 18% 52.00
c3 04B 18 3 54 45 4239064 3673474 13% 25.00
c4 04A 40 2 80 68 19465500 18572860 5% 88.00
c4 04B 77 2 144 66 81642620 65487670 20% 5.00
c5 04A 67 2 134 89 6998204 6865116 2% 114.00
c5 04B 76 1 76 85 1268567 1270773 0% 12.00
c6 04A 15 2 30 59 72040 64962 10% 3.00
c6 04B 178 2 356 100 62202010 60712100 2% 58.00
c7 04A 213 2 426 114 1.26E+08 1.24E+08 2% 5.00
c7 04B 190 2 380 124 39058380 38182420 2% 3.00
c3 05A 29 3 87 44 3508433 2929609 16% 3.00
c3 05B 37 3 111 58 4845554 4443734 8% 1.00
c4 05A 24 2 48 66 5999009 5103161 15% 1.00
c4 05B 35 3 105 81 20374440 18783510 8% 3.00
C5 05A 105 2 210 68 54630330 48410100 11% 2.00
C5 05B 96 1 96 88 35330710 30707150 13% 2.00
c3 06A 67 3 201 47 1.06E+08 98592070 7% 3.00
c3 06B 69 1 69 60 8557608 8450968 1% 29.00
c4 06A 68 1 68 84 20322800 18130660 11% 49.00
c4 06B 91 2 182 59 60404140 53120880 12% 2.00
c5 06A 34 1 34 90 441483 393387 11% 22.00
c5 06B 95 1 95 102 34268280 32821950 4% 2

Table 24: Sum mary of results for the GFF simulated annealing
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Geometric Reduction: GFD
Fixed accepted moves:
a Value : 0.95, Decreasing NbrHood: Min{m, NbrHood -=0.15} >= 2.0

Problem Nodes 
per tree

# Orders Total
#Nodes

Profile
Length

Starting
Cost

Final
Cost

Improvement 
in cost

Time
(Sec.)

c3 02A 12 3 36 37 1159702 909106 22% 1.00
c3 02B 9 3 27 45 80586 69964 13% 2.00
c4 02A 12 2 24 52 65010 61876 5% 5.00
c4 02B 15 2 30 66 154464 148006 4% 5.00
c5 02A 16 2 32 57 420012 359526 14% 4.00
c5 02B 27 3 81 97 3133218 2536646 19% 8.00
c6 02A 15 1 15 79 245799 223449 9% 77.00
c6 02B 12 3 36 77 189912 157624 17% 33.00
c7 02A 22 3 66 82 12569818 9408152 25% 52.00
c7 02B 26 3 78 70 3789161 3025143 20% 64.00
c3 03A 19 2 38 37 275556 262326 5% 4.00
c3 03B 19 3 57 40 682507 599391 12% 10.00
c4 03A 16 2 32 68 1305763 1109071 15% 14.00
c4 03B 21 1 21 54 124030 105622 15% 16.00
c5 03A 11 3 33 77 96345 91445 5% 10.00
c5 03B 36 2 72 82 10415471 8713163 16% 57.00
c6 03A 50 3 150 89 29102440 23490730 19% 10.00
c6 „03B 43 3 129 93 16307697 11672203 28% 5.00
c7 03A 26 3 78 102 6963516 5181644 26% 14.00
c7 03B 64 2 128 105 11579453 8400679 27% 9.00
c2 04A 16 2 32 31 633273 493989 22% 8.00
c2 04B 11 2 22 44 84264 66140 22% 4.00
c3 04A 12 3 36 43 1779023 1086643 39% 10.00
c3„04B 18 3 54 45 2961511 2549043 14% 23.00
c4 04A 40 2 80 68 19465500 14416533 26% 6.00
c4 04B 77 2 144 66 81642620 53387200 35% 34.00
c5 04A 67 2 134 89 6998204 4890402 30% 7.00
c5 04B 76 1 76 85 1268567 1027715 19% 40.00
c6 04A 15 2 30 59 72040 62844 13% 2.00
c6 04B 178 2 356 100 62202010 42690350 31% 35.00
c7 04A 213 2 426 114 1.26E+08 99232740 21% 28.00
c7 04B 190 2 380 124 39058380 30173610 23% 22.00
c3 05A 29 3 87 44 3508433 2588149 26% 15.00
c3 05B 37 3 111 58 4845554 4371012 10% 17.00
c4 05A 24 2 48 66 5999009 4106439 32% 48.00
c4 05B 35 3 105 81 20374440 16151189 21% 23.00
c5 05A 105 2 210 68 54630330 39754310 27% 361.00
c5 05B 96 1 96 88 35330710 20340850 42% 17.00
c3 06A 67 3 201 47 1.06E+08 78718660 26% 45.00
c3 06B 69 1 69 60 8557608 7033248 18% 3.00
c4 06A 68 1 68 84 20322800 13067316 36% 8.00
c4 06 B 91 2 182 59 60404140 44288320 27% 22.00
c5 06A 34 1 34 90 441483 343283 22% 4.00
c5 06B 95 1 95 102 34268280 21267630 38% 8

Table 25: Summary o f results for the GFD simulated annealing
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Geometric Reduction: GFI
Fixed accepted moves:
a Value : 0.95, Increasing NbrHood: Max{2.0, NbrHood += 0.15} <= m

Problem Nodes 
per tree

# Orders Total
#Nodes

Profile
Length

Starting
Cost

Final
Cost

Improvement 
in cost

Time
(Sec.)

c3 02A 12 3 36 37 1159702 775244 33% 5.00
c3 02B 9 3 27 45 80586 67484 16% 1.00
c4 02A 12 2 24 52 65010 61662 5% 6.00
c4 02B 15 2 30 66 154464 147030 5% 6.00
c5 02A 16 2 32 57 420012 349802 17% 11.00
c5 02B 27 3 81 97 3133218 2913180 7% 2.00
c6 02A 15 1 15 79 245799 232623 5% 7.00
c6 02B 12 3 36 77 189912 169076 11% 14.00
c7 02A 22 3 66 82 12569818 10384544 17% 6.00
c7 02B 26 3 78 70 3789161 3170047 16% 14.00
c3 03A 19 2 38 37 275556 254514 8% 3.00
c3 03B 19 3 57 40 682507 599819 12% 7.00
c4 03A 16 2 32 68 1305763 1191903 9% 15.00
c4 03B 21 1 21 54 124030 107446 13% 8.00
c5 03A 11 3 33 77 96345 96345 0% 4.00
c5 03B 36 2 72 82 10415471 9041915 13% 9.00
c6 03A 50 3 150 89 29102440 26598610 9% 8.00
c6 03B 43 3 129 93 16307697 13341417 18% 3.00
c7 03A 26 3 78 102 6963516 6054988 13% 38.00
c7 03B 64 2 128 105 11579453 9102361 21% 5.00
c2 04A 16 2 32 31 633273 496781 22% 5.00
c2 04B 11 2 22 44 84264 75436 10% 1.00
c3 04A 12 3 36 43 1779023 1303989 27% 12.00
c3 04B 18 3 54 45 2961511 2549043 14% 11.00
c4 04A 40 2 80 68 19465500 16544907 15% 3.00
c4 04B 77 2 144 66 81642620 55531580 32% 7.00
c5 04A 67 2 134 89 6998204 5799554 17% 4.00
c5 04B 76 1 76 85 1268567 1153777 9% 4.00
c6 04A 15 2 30 59 72040 72040 0% 2.00
c6 04B 178 2 356 100 62202010 50027870 20% 17.00
c7 04A 213 2 426 114 1.26E+08 1.11E+08 12% 20.00
c7 04B 190 2 380 124 39058380 35760720 8% 16.00
c3 05A 29 3 87 44 3508433 2598869 26% 3.00
c3 05B 37 3 111 58 4845554 4366926 10% 11.00
c4 05A 24 2 48 66 5999009 4264601 29% 2.00
c4 05B 35 3 105 81 20374440 16742123 18% 63.00
c5 05A 105 2 210 68 54630330 40741560 25% 17.00
c5 05B 96 1 96 88 35330710 34998370 1% 15.00
c3 06A 67 3 201 47 1.06E+08 83030900 21% 6.00
c3 06B 69 1 69 60 8557608 7152192 16% 3.00
c4 06A 68 1 68 84 20322800 14693850 28% 3.00
c4 06B 91 2 182 59 60404140 47243700 22% 18.00
c5 06A 34 1 34 90 441483 368887 16% 3.00
c5 06B i 95 1 95 102 34268280 26934260 21% 6

Table 26: Summary o f results for the G FI simulated annealing
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Lundy & Mees: L1F
One move:
a Value : 0.95, Fixed NbrHood: Max{10, m/100}<= m

Problem Nodes 
Der tree

# Orders Total
#Nodes

Profile
Length

Starting
Cost

Final
Cost

Improvement 
in cost

Time
(Sec.)

c3_02A 12 3 36 37 1159702 971726 16% 5.00
c3 02B 9 3 27 45 80586 70224 13% 4.00
c4_02A 12 2 24 52 65010 62328 4% 5.00
c4 02B 15 2 30 66 154464 147552 4% 7.00
c5 02A 16 2 32 57 420012 364382 13% 9.00
c5 02B 27 3 81 97 3133218 3066546 2% 14.00
c6 02A 15 1 15 79 245799 240291 2% 8.00
c6 02B 12 3 36 77 189912 185656 2% 8.00
c7 02A 22 3 66 82 12569818 11032565 12% 11.00
c7 02B 26 3 78 70 3789161 3306939 13% 9.00
c3 03A 19 2 38 37 275556 275490 0% 5.00
c3 03B 19 3 57 40 682507 624709 8% 6.00
c4 03A 16 2 32 68 1305763 1191903 9% 11.00
c4 03B 21 1 21 54 124030 120990 2% 7.00
c5_03A 11 3 33 77 96345 96345 0% 7.00
c5 03B 36 2 72 82 10415471 9519409 9% 15.00
c6 03A 50 3 150 89 29102440 27685360 5% 21.00
c6 03B 43 3 129 93 16307697 14574261 11% 24.00
c7 03A 26 3 78 102 6963516 6380140 8% 10.00
c7 03B 64 2 128 105 11579453 8489937 27% 20.00
c2 04A 16 2 32 31 633273 540233 15% 8.00
c2 04B 11 2 22 44 84264 76510 9% 4.00
c3 04A 12 3 36 43 1779023 1521671 14% 6.00
c3 04B 18 3 54 45 2961511 2549043 14% 6.00
c4 04A 40 2 80 68 19465500 19080120 2% 17.00
c4 04B 77 2 144 66 81642620 53140160 35% 24.00
c5 04A 67 2 134 89 6998204 6852414 2% 27.00
c5„04B 76 1 76 85 1268567 1248573 2% 15.00
c6 04A 15 2 30 59 72040 66980 7% 6.00
c6 04B 178 2 356 100 62202010 56807590 9% 40.00
c7 04A 213 2 426 114 1.26E+08 1.21E+08 4% 61.00
c7 04B 190 2 380 124 39058380 37680810 4% 49.00
c3 05A 29 3 87 44 3508433 3037031 13% 6.00
c3 05B 37 3 111 58 4845554 4610508 5% 12.00
c4 05A 24 2 48 66 5999009 4857961 19% 8.00
c4 05B 35 3 105 81 20374440 18704850 8% 16.00
c5 05A 105 2 210 68 54630330 47698830 13% 32.00
c5 05B 96 1 96 88 35330710 31472390 11% 23.00
c3 06A 67 3 201 47 1.06E+08 94355460 11% 37.00
c3 06B 69 1 69 60 8557608 8450968 1% 19.00
c4 06A 68 1 68 84 20322800 17815520 12% 15.00
c4 06B 91 2 182 59 60404140 49101380 19% 31.00
c5 06A 34 1 34 90 441483 390587 12% 10.00
c5 06B 95 1 95 102 34268280 32415980 5% 20.00

Table 27: Summary o f results for the L1F simulated annealing
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Lundy & Mees: L1D
One move:
a Value : 0.95, Decreasing NbrHood: Min{m, NbrHood -=0.15} >= 2.0

Problem Nodes 
per tree

# Orders Total
#Nodes

Profile
Length

Starting
Cost

Final
Cost

Improvement
in cost

Time
(Sec.)

c3 02A 12 3 36 37 1159702 955890 18% 5.00
c3 02B 9 3 27 45 80586 68286 15% 5.00
c4 02A 12 2 24 52 65010 61724 5% 5.00
c4 02B 15 2 30 66 154464 152464 1% 7.00
c5 02A 16 2 32 57 420012 336306 20% 6.00
c5 02B 27 3 81 97 3133218 2753664 12% 12.00
c6 02A 15 1 15 79 245799 240669 2% 7.00
c6 02B 12 3 36 77 189912 166292 12% 7.00
Cl 02A 22 3 66 82 12569818 10394870 17% 9.00
c7 02B 26 3 78 70 3789161 3226415 15% 8.00
c3 03A 19 2 38 37 275556 255878 7% 5.00
c3 03B 19 3 57 40 682507 616353 10% 4.00
c4 03A 16 2 32 68 1305763 1123025 14% 9.00
c4 03B 21 1 21 54 124030 117704 5% 6.00
c5 03A 11 3 33 77 96345 92817 4% 8.00
c5 03B 36 2 72 82 10415471 8995555 14% 10.00
c6 03A 50 3 150 89 29102440 25875380 11% 16.00
c6 03B 43 3 129 93 16307697 12870617 21% 16.00
c7 03A 26 3 78 102 6963516 6099548 12% 11.00
c7 03B 64 2 128 105 11579453 8971289 23% 17.00
c2 04A 16 2 32 31 633273 515965 19% 4.00
c2 04B 11 2 22 44 84264 73900 12% 5.00
c3 04A 12 3 36 43 1779023 1498337 16% 5.00
c3 04B 18 3 54 45 2961511 2549043 14% 7.00
c4_04A 40 2 80 68 19465500 16216983 17% 11.00
c4 04B 77 2 144 66 81642620 59414020 27% 12.00
c5 04A 67 2 134 89 6998204 5331760 24% 16.00
c5 04B 76 1 76 85 1268567 1145025 10% 11.00
c6 04A 15 2 30 59 72040 65488 9% 6.00
c6 04B 178 2 356 100 62202010 50600110 19% 29.00
c7 04A 213 2 426 114 1.26E+08 1.1E+08 12% 45.00
c7 04B 190 2 380 124 39058380 33358700 15% 34.00
c3 05A 29 3 87 44 3508433 2742163 22% 5.00
c3 05B 37 3 111 58 4845554 4398038 9% 9.00
c4 05A 24 2 48 66 5999009 4500491 25% 9.00
c4 05B 35 3 105 81 20374440 17521380 14% 11.00
c5 05A 105 2 210 68 54630330 44712960 18% 16.00
c5 05B 96 1 96 88 35330710 25789700 27% 14.00
c3 06A 67 3 201 47 1.06E+08 93521920 12% 18.00
c3 06B 69 1 69 60 8557608 7557120 12% 10.00
c4 06A 68 1 68 84 20322800 15215562 25% 11.00
c4 06B 91 2 182 59 60404140 51465840 15% 15.00
c5 06A 34 1 34 90 441483 380517 14% 9.00
c5 06B 95 1 95 102 34268280 26490540 23% 14.00

Table 28: Summary o f results for the L ID  simulated annealing
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Lundy & Mees: L1I
Fixed accepted moves:
a Value : 0.95, Increasing NbrHood: Max{2.0, NbrHood += 0.15} <= m

Problem Nodes 
per tree

# Orders Total
#Nodes

Profile
Length

Starting
Cost

Final
Cost

Improvement 
in cost

Time
(Sec.)

c3 02A 12 3 36 37 1159702 746453 36% 13.00
c3 02B 9 3 27 45 80586 67042 17% 8.00
c4 02A 12 2 24 52 65010 55098 15% 9.00
c4 02B 15 2 30 66 154464 146342 5% 11.00
c5 02A 16 2 32 57 420012 315046 25% 13.00
c5 02B 27 3 81 97 3133218 2417778 23% 27.00
c6 02A 15 1 15 79 245799 226359 8% 10.00
c6 02B 12 3 36 77 189912 158878 16% 12.00
c7 02A 22 3 66 82 12569818 9464762 25% 27.00
c7 02B 26 3 78 70 3789161 3015663 20% 21.00
c3 03A 19 2 38 37 275556 252552 8% 9.00
c3 03B 19 3 57 40 682507 598595 12% 17.00
c4 03A 16 2 32 68 1305763 1109035 15% 14.00
c4 03B 21 1 21 54 124030 105884 15% 9.00
c5 03A 11 3 33 77 96345 91445 5% 11.00
c5 03B 36 2 72 82 10415471 8708953 16% 26.00
c6 03A 50 3 150 89 29102440 21451580 26% 48.00
c6 03B 43 3 129 93 16307697 10902619 33% 39.00
c7 03A 26 3 78 102 6963516 5086676 27% 29.00
c7 03B 64 2 128 105 11579453 7487063 35% 44.00
c2 04A 16 2 32 31 633273 493735 22% 11.00
c2 04B 11 2 22 44 84264 65034 23% 8.00
c3 04A 12 3 36 43 1779023 1091855 39% 13.00
c3 04B 18 3 54 45 2961511 2549043 14% 19.00
c4 04A 40 2 80 68 19465500 14189877 27% 27.00
c4 04B 77 2 144 66 81642620 53030510 35% 47.00
c5 04A 67 2 134 89 6998204 4513248 36% 45.00
c5 04B 76 1 76 85 1268567 1030663 19% 22.00
c6 04A 15 2 30 59 72040 58752 18% 9.00
c6 04B 178 2 356 100 62202010 42377230 32% 107.00
c7 04A 213 2 426 114 1.26E+08 79077420 37% 138.00
c7 04B 190 2 380 124 39058380 23889850 39% 107.00
c3 05A 29 3 87 44 3508433 2589119 26% 23.00
c3 05B 37 3 111 58 4845554 4367028 10% 31.00
c4 05A 24 2 48 66 5999009 4121237 31% 17.00
c4 05B 35 3 105 81 20374440 14940109 27% 34.00
c5 05A 105 2 210 68 54630330 40028580 27% 65.00
c5 05B 96 1 96 88 35330710 19971790 43% 35.00
c3 06A 67 3 201 47 1.06E+08 78713870 26% 61.00
c3 06B 69 1 69 60 8557608 6940216 19% 25.00
c4 06A 68 1 68 84 20322800 12942018 36% 26.00
c4 06B 91 2 182 59 60404140 43535940 28% 55.00
c5 06A 34 1 34 90 441483 325481 26% 14.00
c5 06B 95 1 95 102 34268280 19189140 44% 36.00

Table 29: Sum m ary o f results for the L1I simulated annealing
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A P P E N D I X  C:  S T O C H A S T I C  A L G O R I T H M

Summary of results for Problem a414b22. The steps involved in each 
perturbation case.

Problem a414b22 Two jobs Pertubation
Planning Horizon =35 Mean = 85.61905 Stdev = 8.517489
step H
Initial ( 0 )  83

1 94
2 94
3 94
4 94
5 75
6 76
7 89
8 76
9 76
10 102
11 77
12 90
13 77
14 77
15 87
16 85
17 77
18 90
19 98
20 87 

Optimal = 71 
Best H = 75

Figure 51: Two-job perturbation.

Sorted Height vs Step

Step
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Step Mean= 80.38095 stdev = 5.817871
Initial ( 0 )  83

1 83
2 76
3 92
4 86
5 96
6 83
7 77
8 77
9 77
10 77
11 76
12 76
13 87
14 77
15 77
16 83
17 77
18 76
19 76
20 76 

Optimal = 71 
Best H =76

Three jobs Pertubation

Sorted Height vs Step

Figure 52: Three-job perturbation.

Five jobs Pertubation
Step H
Initial ( 0 ) 83

1 78
2 76
3 96
4 82
5 77
6 76
7 83
8 85
9 77
10 83
11 77
12 85
13 90
14 76
15 80
16 94
17 90
18 77
19 98
20 76

Best Height
Optimal Height

Mean = 82.80952  s tdev  = 7 .054212
% Im p rov. S tep  S o rted H ____

Sorted Height vs Step

O)'S

Step

tJy o -

76
71

Figure 53: Five-job perturbations
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S ix jobs P ertuba tion  Mean = 87.47619 stdev = 11.64311
Step H
In itia l ( 0 ) 83

1 94
2 94
3 94
4 94
5 83
6 80
7 84
8 126
9 101
10 89
11 77
12 77
13 76
14 75
15 90
16 83
17 87
18 80
19 94
20 76 

Best H eight 
O p tim a l H eight

S even jobs P ertuba tion  M ean = 79.90476 stdev = 4 .265029
S tep H
In itia l ( 0 ) 83

1 83
2 76
3 77
4 77
5 77
6 79
7 77
8 77
9 83
10 83
11 94
12 80
13 84
14 77
15 77
16 83
17 80
18 77
19 77
20 77 

Best H eight 
O p tim a l H e igh t

% Im prov. S tep Sorted H

Sorted Height vs Step

Step

76
71

% Im prov. S tep Sorted H

Sorted Height vs Step

Step

75
71

Figure 54: Six-job perturbations.

Figure 55: Seven-job perturbations 
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Eight jobs Pertubation
Iterations H
Initial ( 0 ) 83

1 94
2 90
3 80
4 88
5 88
6 94
7 76
8 77
9 79
10 92
11 79
12 77
13 88
14 77
15 82
16 98
17 88
18 90
19 83
20 76

Best Height

Mean = 
% Improv. Steps

84.71429 stdev = 
Sorted H

6.827466

Sorted Height vs Step

Step

76
71

Figure 56: Eight-job perturbations

Nine jobs Pertubation Mean = 85.19048 stdev =  8.133997
Iterations H
Initial ( 0 ) 83

1 94
2 94
3 77
4 94
5 83
6 94
7  75
8 98
9 77
10 77
11 88
12 79
13 79
14 87
15 77
16 94
17 87
18 98
19 77
20 77 

Best Height 
O ptim al Height

Figure 57: Nine-job perturbations.

% Im prov. Step Sorted H ___

Sorted Height vs Step

Step

75
71
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Ten jobs Pertubation
Iterations H
Initia l ( 0 ) 83

1 73
2 77
3 94
4 89
5 82
6 76
7 90
8 85
9 83
10 76
11 90
12 97
13 94
14 77
15 98
16 76
17 77
18 77
19 84
20 77

Best Height
O ptim al Height

Mean = 83.57143 stdev = 7.820303
% Im prov. S tep Sorted H

Sorted Height vs Step

Step

73
71

Figure 58: Ten-job perturbations.
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