
A Framework for Acquisition and Application of Software
Architecture Evolution Knowledge

Aakash Ahmad
Lero – the Irish Software Engineering

Research Centre
School of Computing, Dublin City

University, Ireland.
ahmad.aakash@computing.dcu.ie

Pooyan Jamshidi
Lero – the Irish Software Engineering

Research Centre
School of Computing, Dublin City

University, Ireland.
pooyan.jamshidi@computing.dcu.ie

Claus Pahl
Lero – the Irish Software Engineering

Research Centre
School of Computing, Dublin City

University, Ireland.
claus.pahl@computing.dcu.ie

ABSTRACT
Software systems continuously evolve as a consequence of frequent

changes in their functional requirements and the environment

surrounding them. Architecture-centric software evolution (ACSE)

enables changes in software structure and behaviour while abstracting

the complex implementation-specific details. However, due to recurring

evolution there is a need for solutions that enable a systematic reuse of

frequent changes in software architectures. In recent years, architecture

change patterns and evolution styles proved successful in promoting

reuse expertise to tackle architecture evolution. However, there do not

exist any solutions that enable a continuous acquisition and application

of architecture evolution knowledge to systematically address frequent

changes in software architectures. In this paper, we propose a

framework PatEvol that aims to unify the concepts of i) software

repository mining and ii) software evolution to enable acquisition and

application of architecture evolution knowledge. In the proposed

PatEvol framework, we present knowledge acquisition (architecture

evolution mining) to enable post-mortem analysis of evolution histories

to empirically discover evolution-centric knowledge. Furthermore, we

support reuse of discovered knowledge to enable knowledge application

(architecture evolution execution) that enables evolution-off-the-shelf in

software architectures. Tool support facilitates the knowledge

acquisition and knowledge application processes in the PatEvol
framework.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures

General Terms

Design, Theory.

Keywords

Software Architecture, Software Evolution, Architecture Evolution

Knowledge, Evolution Patterns.

1. INTRODUCTION

Modern software continuously evolves as a consequence of frequent

changes in business and technical requirements and operating

environments [1, 2]. Lehman’s law of continuing change [2] states that

“systems must be continually adapted or they become progressively less

satisfactory.” The primary challenges while addressing continuous

change [2] lie with i) acquisition and application of reusable solutions to

address recurring evolution problems and ii) selection of appropriate

abstractions for software change implementations [3, 4]. To address

these challenges, we focus on acquisition of evolution knowledge that

can be empirically discovered, shared and reused to promote evolution-

off-the-shelf in software architectures.

Architectural models have proved successful in representing modules-

of-code and their interconnections as high-level components and

connectors to facilitate planning, modeling and executing software

design and evolution at higher levels of abstraction [5, 6]. Our

systematic reviews [3, 4] to analyse the state-of-research on ACSE

suggest that solutions must rely on continuous acquisition of evolution-

centric knowledge and expertise to guide architecture change

management. In particular, architecture evolution knowledge (AEK) is

defined as [3]: “a collection and integrated representation (problem-

solution map) of analytically discovered, generic and repeatable

change implementation expertise that can be shared and reused as a

solution to frequent (architecture) evolution problems.”

Change patterns [7, 8] and evolution styles [5, 6] promote the ‘build-

once, use-often’ philosophy to address a continuous evolution in

software architectures. However, a systematic analysis of existing

research [3, 4] highlights the need for solutions that enable integration

of evolution-centric knowledge acquisition [9] that guides knowledge

application [10] to evolve software architectures. We propose to unify

the concepts of a) software repository mining [11, 12] (for knowledge

acquisition) and b) software evolution [1, 2] (for knowledge

application) to address the problems of frequent changes in ACSE -

presented in Figure 1. We propose a framework PatEvol that provides

an integration of knowledge acquisition and knowledge application

processes to facilitate reuse of evolution knowledge. By process

integration, we mean that the architecture evolution mining process

enables a continuous acquisition of evolution-centric knowledge by

analysing architecture evolution histories, and then discovered

knowledge can be applied to support architecture evolution execution.

Figure 1. Overview of Architecture Evolution Knowledge

Acquisition and Application Processes

The PatEvol framework comprises a set of processes and activities to

enable acquisition and application of evolution knowledge. The

outcome of this paper is a novel framework that aims to support:

A. Acquisition of Architecture Evolution Knowledge – also referred to as

architecture evolution mining and detailed in Section 3. It enables the

post-mortem analysis of architecture evolution histories to discover

evolution-centric knowledge. In Figure 1, an architecture evolution

history is represented as a source of knowledge that consists of traces of

architecture-centric changes maintained during evolution of software

architectures. Knowledge Source represents a transparent and centrally

mailto:ahmad.aakash@computing.dcu.ie

manageable repository [11, 12] as a recorded collection of architecture

change representations [9, 13]. It provides a foundation and fine-grained

change representations for experimental analysis of real data concerning

architecture evolution. The establishment and existence of a knowledge

base is a fundamental requirement in capturing architectural changes as

an experimental foundation for knowledge discovery.

B. Application of Architecture Evolution Knowledge – is also referred to

as architecture evolution execution and detailed in Section 3. It enables

the utilisation of knowledge discovered during the evolution mining

process to enable reuse of generic expertise to enable architecture

evolution. In Figure 1, evolution execution is characterised by changes

in source architecture – application of addition, removal and

modification operations – to enable its evolution [5]. However,

evolution is not just the addition or removal of architecture elements;

among other tasks, it also requires evolution plans and tradeoff analyses

[5], preserving the structural integrity of architecture elements and

exploiting architecture change composition [6]. An Evolution

Knowledge Collection represents a knowledge base as an active

repository that contains a collection of empirically discovered evolution

knowledge. Knowledge collection is therefore vital in order to absorb

the evolution-centric knowledge that could be shared and reused across

multiple evolution problems to guide architecture evolution. In Figure

1, traces of architecture evolution are captured in the knowledge source

enabling knowledge discovery and application as a continuous process.

The rest of this paper is organised as follows. In Section 2, we provide

an overview of some existing reference frameworks for architecture-

driven modernisation and evolution to justify the novelty and

contribution of the proposed PatEvol framework. We discuss the

processes, activities and repositories for acquisition and application of

architecture evolution knowledge in Section 3 and present our

conclusions in Section 4.

2. FRAMEWORKS FOR ARCHITECTURE

MODERNISATION AND EVOLUTION

In software engineering and software evolution literature, the terms

modernisation and evolution are virtually synonymous and often used

interchangeably – referring to architecture-based change

implementation [1, 13]. In this section, we explain some existing

frameworks that are used as reference models to guide the architecture

evolution process. We specifically discuss the Architecture Driven

Modernisation (ADM) framework [14] and the SOA Migration

Horseshoe Model [15] for architectural migration and evolution. A brief

explanation of these frameworks is vital to highlight the contributions of

our proposed Pattern-Driven Architecture Evolution (PatEvol)

framework. Both the ADM framework and the SOA migration

Horseshoe model are conceptual extensions of the famous Horseshoe

model for architecture-based reverse engineering [16] proposed by the

Software Engineering Institute (SEI).

The selection of the two above-mentioned frameworks also helps with a

high-level assessment of the PatEvol framework and its underlying

activities to support architecture evolution. For comparative analysis,

we selected the ADM and SOA Migration Horseshoe models because

both of them represent research with appropriate citations, availability

of documentation and details about a structured set of activities for

architecture migration and evolution. The concepts and methods used in

these reference models can be reused or possibly extended to develop

the processes and activities in the PatEvol framework. More

specifically, method engineering [17] enables us to reuse the existing

concepts from existing methods (frameworks, models or solutions) to

develop new methods by reusing existing methodologies with reduced

effort and time. In the following, we highlight the role of ADM [14] and

SOA migration Horseshoe [15] in architecture evolution, which

provides us a foundation to discuss the technical details of the PatEvol

framework in Section 3.

2.1 Architecture-Driven Modernisation Framework
The ADM framework [14] is a conceptual extension of the Horseshoe

model for architecture-based reverse engineering [16] proposed by SEI,

illustrated in Figure 2. The ADM model transforms the existing

architecture towards the target architecture by maintaining a layered

view of three different levels of architectural abstractions. The three

architectural layers in ADM are called Technical Architecture layer,

Application and Data Architecture layer and Business Architecture

layer. The existing architecture is represented on the left while the

evolved or the target architecture across all three layers is represented

on the right. The horizontal arrow from existing to target architecture

represents transformation-driven architectural evolution.

Transformations in the ADM framework involve an incremental

evolution from existing to target architecture at any layer. For example,

evolution at the technical architectural level involves source code

transformation (e.g. procedural to object oriented transformation) of

legacy code. In summary, transformation at any architectural layer

relies on three elements:

 1. Knowledge discovery of the legacy system,

 2. Definition of target architecture, and

 3. Transformation steps for source to target evolution.

The ADM framework provides a comprehensive reference model for

architectural transformation and modernisation at three different layers

of abstraction. The evolution can be at any architectural abstraction

level: from the code level transformation (e.g. source code refactoring

for migration) to more abstract and conceptual levels (e.g. software

design, evolution, and business-rule transformation etc.). An inherent

limitation with such a comprehensive framework lies with the diverse

scope of evolution activities (source code refactoring, software

architecture evolution, business model transformations). In addition, the

framework does not consider the frequency of architecture evolution.

Due to the complexities involved with different architectural

abstractions, it is difficult to reuse transformations across different

layers of the ADM framework to tackle frequent architecture evolution.

2.2 SOA Migration Horseshoe Model
The SOA Migration Horseshoe model [15] is also a specialised

derivation of a general Horseshoe model for architectural reverse

engineering [16]. The model integrates software reengineering and

business process modeling and aims to:

 1. Exploit reverse engineering techniques to extract the Legacy

Enterprise Model from the Legacy Source Code.

 2. Apply enterprise modeling techniques to create a Consolidated

Enterprise Model and to identify Services using forward engineering

techniques.

 3. Map the Legacy Code to Services via wrapping or transformation of

Components.

In the context of software architecture models and their evolution, the

SOA migration horseshoe model is of a less technical nature; it focuses

more on business engineering aspects of enterprise software and its

architecture. The underlying question it tries to ask is how can a sub-

functionality be identified as a potential service, or how can business

process models be derived from a legacy system.

Figure 2. Overview of the ADM Framework and the SOA Migration Horseshoe Model

In contrast to the reengineering Horseshoe [16], ADM [14] and SOA

migration models [15], the proposed PatEvol framework (detailed in

Section 3) is limited to addressing evolution only at the architectural

level of abstraction. PatEvol only considers reuse of evolution-centric

knowledge that is not addressed in any of the existing frameworks.

More specifically, in the context of architecture change analysis and

management, the PatEvol framework lies at the intersection of two

distinct research areas: i) software repository mining [11, 12] to

discover evolution knowledge from architecture evolution histories [13]

and ii) software evolution [1, 2] that relies on the discovered knowledge

to support architectural evolution [10]. In conceptual terms, the PatEvol

framework adapts the basic ideas from the SOA migration horseshoe

[15]. However, in contrast to legacy migration towards service-based

software, it is focused on systematically accommodating the new

requirements in existing architectures that support a reuse-centered

approach to achieve ACSE.

3. PatEvol – A FRAMEWORK FOR ACQUISITION

AND APPLICATION OF ARCHITECTURE

EVOLUTION KNOWLEDGE

In the PatEvol framework, we propose acquisition of architecture

evolution knowledge as a complementary and integrated process to

knowledge application, as illustrated in Figure 3. In the remainder of

this section, we discuss the processes, activities and repositories as the

building blocks of the PatEvol framework. We primarily focus on:

 – Knowledge Acquisition is achieved with architecture evolution

mining that represents a sub-domain of software repository mining and

enables an (automated) extraction of hidden and predictive information

from large data sets regarded as software evolution histories [11].

Evolution mining is particularly beneficial for establishing and utilising

an experimental foundation for the ‘post-mortem’ analysis of evolution

histories to discover reusable operations and patterns of evolution.

– Knowledge Application is achieved with architecture evolution

execution, which refers to a systematic mapping among the problem-

solution views and the application of the discovered solutions to

recurring problems of architecture evolution [5, 6].

3.1 Processes, Activities and Repositories in the

PatEvol Framework
In this section, we provide details about the main building blocks of the

PatEvol framework. Each conceptual element is presented along with

its role in the framework as summarised in Table 1 and illustrated in

Figure 3. We propose PatEvol as a conceptual framework that outlines a

set of processes and activities to enable discovering and reusing

evolution knowledge. The processes in the framework define what

needs to be done and the activities in a process demonstrate how it is

done [26]. A top-down view of the framework is presented in Figure 3

with a summary of processes and activities in Table 1. In the following,

we discuss the underlying concepts in terms of framework processes,

activities and collections along with the transitional steps among the

activities and processes.

Table 1. Processes, Activities and Repositories in the PatEvol

Framework

Processes Process Activities Repositories

Knowledge

Acquisition

Classification of Architecture Changes
Architecture

Change Logs
Discovery of Architecture Evolution Patterns

Specification of Evolution Patterns

Knowledge

Execution

Specification of Architecture Evolution
Evolution
Patterns

Catalogue

Selection of Architecture Evolution Patterns

Pattern-based Reuse of Architecture
Evolution

– Processes in the Framework: The processes (indicated as a white

square) represent two distinct parts of the framework as a) knowledge

acquisition (enabled through evolution mining) and b) knowledge

application (enabled through evolution execution) as in Table 1.

– Activities inside Processes: Each process comprises a set of

underlying activities (indicated by a blue rectangle) that highlight the

distinction between knowledge discovery and its application in

evolution. Both of the knowledge acquisition and knowledge

application processes are comprised of three activities as in Table 1.

– Role of Repositories in the Framework: In addition to the core

processes and activities, the role of repositories or knowledge

collections is vital as the source and sink of evolution knowledge. More

specifically, the knowledge source or architecture change logs [9, 13]

represent a central repository that contains fine-grained instances of

architecture change and provides a foundation for evolution mining. We

propose a catalogue of architecture evolution patterns that promotes an

empirically discovered collection of patterns as reusable solutions to

recurring problems of software architecture evolution.

Figure 3. The PatEvol Framework – An Integrated View of Knowledge Acquisition and Knowledge Application Processes

Finally, the transitions among the processes and activities are

represented as the activity and process transitions arrows that reflect

stepwise and incremental approaches to extracting, representing and

utilising architecture evolution knowledge. In the following, we

summarise the overall objective of the PatEvol framework [25] that

aims to consolidate the corresponding activities that complement

discovering and reusing evolution-centric knowledge as presented in

Figure 3.

3.2 Framework Processes and Activities
The framework consists of two main processes. A set of activities

defines the atomic production steps of a process that aim to achieve the

objectives of the process in an incremental and stepwise manner [26]. In

addition, a brief discussion of processes and activities allows us to

highlight the contributions of the PatEvol framework.

Process I – Acquisition of Evolution Knowledge
The role of knowledge acquisition is fundamental in enabling a

systematic investigation into the history of sequential architecture

evolution for analysing recurring changes. Acquisition of evolution

knowledge is achieved with architecture evolution mining. Our

objective for evolution mining is identical to that of software evolution

analysis [12, 11], which exploits the history of a software system to

analyse its present state and to predict its future. In the context of

software repository mining, architecture evolution mining is aimed at

employing a set of (automated) techniques for extraction of architecture

change instances from change logs [9, 13]. Therefore, we exploit

architecture change logs that provide fine-grained details about

architecture change instances. The change instances may vary from a

simple change like adding a port into a component to a complex change

like integrating, replacing or decomposing components in an existing

architecture. In a collaborative environment for architectural

development and evolution, the change log represents a knowledge

source to facilitate post-mortem analysis for architectural evolution

[13].

Modeling Architecture Change Instances from Logs

In order to systematically investigate change logs, we need to formalise

individual change instances captured in the log. The need for a formal

and structured representation is driven by the fact that raw

representation of log data is complex, and therefore its analysis is time

consuming and error prone. We exploit a graph-based notation to

formalise change instances in the log as graphs [11] with nodes and

edges capturing change operations on architecture elements. A graph-

based representation of the log data is beneficial for a formal (semi-)

automated and efficient analysis of fine granular change instances in the

logs. In addition, when modeling architecture changes as graphs, a

significant benefit lies in utilising sub-graph mining [18] techniques. By

applying graph mining to architectural changes, we can discover

recurring sub-graphs (sequences of change operations) that represent

frequent evolution patterns in a formal and automated way. The goal of

this activity is to formalise the change log data that is represented as an

architecture change graph.

In the following, we discuss the activities of the framework that are

focused on log-based taxonomical classification of architecture change

operations and operational dependencies. The ultimate outcome of the

evolution mining is discovery of architecture evolution patterns and

their specifications, which provide the foundations to develop an

evolution pattern catalogue to promote reuse of recurring architectural

evolution tasks.

Activity I –Taxonomical Classification of Architecture Change

and Operational Dependencies
Once log data is formalised as a graph [9], a more intuitive approach to

gain a systematic insight into architectural changes is to analyse how

changes are represented over a period. The graph-based formalism

provides us with an option to exploit graph-matching – comparing

change instances – to analyse the operational composition and

characterisation of changes [18]. Such an analysis requires details

about the composition of architecture changes and the possible

operational representations of change instances. This is beneficial to

recover and taxonomically classify changes based on their complexity

as either atomic or composite [13]. The dependencies among change

operations are classified as commutative and dependent change

operations [13]. Change dependency analysis helps us to analyse the

extent to which architectural change operations are dependent or

independent of each other (whether architecture change operations

could be parallelised). The outcome of this activity is a taxonomical

classification of change instances as either atomic or composite change

operations. In addition, a fine-grained change operational classification

is vital to distinguish between commutative and dependent changes in

architecture evolution.

Activity II – Discovery of Architecture Evolution Patterns
The outcome of activity I is a taxonomical classification of architecture

change operationalisations that provides a foundation to discover the

frequency of change operation sequences in the log. The frequency of

change determines whether a certain type of change occurs repeatedly.

This motivates us to exploit change sequence abstraction to determine

frequently occurring changes that represent potential evolution patterns

discovered from change logs [9]. An evolution pattern represents a

generic and potentially reusable operationalisation that could be i)

identified as a recurrent solution, could be ii) specified once and iii)

instantiated multiple times to support potential reuse in architecture

evolution [10]. The outcome of the pattern discovery activity is a

collection of discovered patterns from logs that allow us to develop a

catalogue of architecture evolution patterns.

Activity III – Template-based Specification of Evolution Patterns
After pattern discovery, we need to provide a consistent and once-off

specification of architecture evolution patterns in the catalogue. Pattern

specification allows us to share and reuse the discovered patterns. We

follow the guidelines for pattern documentation in [19] for a template-

based specification of architecture evolution patterns. A pattern

template provides a structured document to capture the intent and

consequences of pattern application. A template-based pattern

specification provides a collection of change patterns that support

reusable solutions to recurring evolution problems. We believe that by

exploiting the patterns in change catalogues, individual patterns can be

formalised and interconnected to support reusable, off-the-shelf

evolution. Evolution knowledge in the catalogue is expressed as a

collection of evolution patterns. It is vital to mention that, patterns as a

generic and solution-specific knowledge to resolve recurring evolution

problems could not be invented. Instead, patterns along with their

possible variants must be discovered by analysing the problem space

and the solution context [13]. We summarise the outcome architecture

evolution mining process as:

– Enabling ‘post-mortem’ analysis of architecture evolution histories to

discover patterns that could be shared and reused to guide architecture

change management.

– Template-based specification [19] of discovered patterns enable

problem-solution mapping to reuse generic operationalisation. The role

of the pattern catalogue is central in promoting patterns to achieve reuse

and consistency in architecture evolution.

Process II – Application of Evolution Knowledge
In the context of software evolution [1, 2, 3], architecture evolution

execution refers to a systematic implementation of architectural changes

as an addition, removal, and modification of elements to modify an

existing architecture [5, 6]. Because of frequent business and technical

change cycles, software systems and ultimately their architectures tend

to require continuous maintenance and evolution. This motivates the

need to unify the concepts of data mining or more specifically software

repository mining and software evolution in a way that evolution

mining provides discovered knowledge used to complement and guide

evolution execution. Such an integrated approach is missing in the

existing solutions [5, 7, 14, 15] and enabling it relieves an architect of

routine evolution tasks by fostering their reuse to support a systematic

change execution whenever needs for architectural evolution arise [2].

In the context of evolution execution in Figure 3, evolution patterns

provide a knowledge base for pattern-driven architecture evolution.

During evolution, change instances are captured for an incremental

update of evolution history to establish the loop for knowledge

acquisition and knowledge application [3]. In the following, we discuss

the activities of the knowledge application process that represent: i) a

declarative specification of architecture evolution to select ii) a list of

appropriate patterns from the catalogue and to enable iii) pattern-driven

reuse in architecture evolution.

Activity I – Specification of Architecture Evolution
Evolution specification allows representing the changes to a source

architecture that leads to its evolution [10]. In this context, a declarative

specification enables an architect to represent the syntactical context of

architectural evolution that contains the i) source architecture ii) any

constraints on the architecture model and iii) specific architecture

elements that need to be added, removed or modified to achieve

architecture evolution. In addition to a syntactical context, evolution

specification allows us to represent the intent and scope of individual

changes explicitly in the source architecture model. During evolution

specification an architect may want to specify architectural constraints

to preserve the specific architectural elements from consequences of

change before and after evolution. In order to enable evolution, a

specification of architectural changes is the first step to represent a

transition of source architecture towards an evolved architecture.

Activity II - Selection of Architecture Change Patterns
Once architectural changes are specified, the pattern catalogue provides

a collection of patterns as problem-solution mapping based on a given

evolution context. However, pattern selection is a complex problem

[20] and in order to query the catalogue the user must know the internal

structure of the pattern catalogue as well as a detailed knowledge about

existing patterns in the catalogue collection. We adopt the design space

analysis [21] for a systematic pattern selection from the catalogue.

Design space analysis is a methodology to address design-related

problems in Human Computer Interaction (HCI). Following design-

space analysis, change specification enables querying the catalogue

using the Question-Option-Criteria (QOC) methodology [21] to retrieve

the appropriate pattern(s) that provides the potential reuse of

architectural evolution. More specifically, in QOC Question refers to

declarative specification of architectural changes, Option represents the

available patterns in a given evolution scenario, and Criteria represent

the consequences and impacts of the given pattern.

Activity III – Pattern-based Evolution of Architectures
The retrieved pattern(s) could be applied to abstract the operational

execution thus supporting reuse in architectural change execution. In

addition to pattern retrieval, pattern application or instantiation involves

labeling of generic elements in the specification with labels of concrete

architecture elements presented in change specification. With a pattern-

driven architecture evolution approach, we claim that if an architectural

evolution problem can be specified declaratively, then its solution is

executed in an automated way by instantiating change

operationalisations that exists in the pattern catalogue. The ultimate

outcome of the change execution process is:

– A declarative specification of change requests that enables selection

of appropriate pattern sequences to derive reusable evolution strategies

based on given evolution scenarios.

– The pattern catalogue provides a method of systematic reuse based on

an incremental application of patterns from the collection.

3.3 Collection Types in the PatEvol Framework
We discuss the processes and their underlying activities that enable

integration among architecture evolution mining and architecture

evolution execution processes. In this integration the role of repositories

in the framework as an architecture evolution history and evolution

patterns collection could not be overlooked. In the PatEvol framework,

the role of these repositories is central as the knowledge source in terms

of extracting change instances in evolution mining and fostering

reusable operationalisations during evolution execution.

Repository I - Change Log as a Source of Architecture-

Centric Evolution Knowledge
In order to ensure an incremental discovery of evolution knowledge, it

is required to capture and maintain the traces of evolution by means of a

transparent and centrally manageable collection of change instances

[13, 9]. In a conventional context, change related data is extracted from

versioning systems [11], as their repositories contain the artifacts that

designers and developers produce and modify. The granularity of

information contained in versioning systems is not complete enough to

perform higher quality evolution research. Since the past evolution of a

software system is not a primary concern for most developers, it is not

an important requirement when designing versioning systems [11, 12].

On the contrary, the details of information stored in a change log [13, 9]

can be exploited to capture fine-grained instances of change operations

on individual architecture elements. In order to provide an experimental

foundation for evolution analysis, the architecture change log provides a

source of evolution knowledge that can be shared and reused.

Collection II – Catalogue as a Collection of Architecture

Evolution Patterns
An evolution pattern [9] is a recurring solution to common problems in

a given evolution context, resolving a set of consequences and forces.

The potential beyond individual patterns is realised as a collection of

change patterns that represent a generic and potentially reusable

solution to a set of evolution problems [10]. In this context, an evolution

pattern catalogue is collection of patterns to solve the prevalent

problems in the architecture evolution context. As an integrated

solution, in Figure 3, we propose evolution mining to empirically

discover explicit evolution knowledge as patterns that can be

maintained in the catalogue for reuse whenever needs for architecture

evolution arise. As a contrary to pattern invention in [7, 8], we

investigate architecture change logs [13] to empirically discover a

classified composition of evolution patterns and possible variants.

4. CONCLUSIONS AND OUTLOOK

In this paper, we presented a framework for a continuous acquisition of

architecture evolution knowledge and its application to support

architectural maintenance and evolution. In order to realise the research

potential, we proposed PatEvol as a framework that focuses on enabling

pattern-driven reuse in architecture-centric software evolution. The

framework aims to unify the concepts of architecture evolution mining

as a complementary and integrated phase to architecture evolution

execution. We summarise the ultimate benefits of using the PatEvol as:

- Exploiting architecture change logs (histories of sequential

changes) to continuously identify architecture evolution patterns

that provide generic solutions to recurring architecture evolution

problems.

- Support for pattern specification and instantiation through a

pattern catalogue that consists of a continuously validated and

updated collection of patterns as reusable solutions to architecture

evolution problems.

- An evolution application framework to enable pattern-based reuse

during change execution to support the notion of off-the-shelf

evolution in software architectures.

- At the core of the PatEvol framework is a discovery of evolution

patterns to continuously feed the catalogue.

5. REFERENCES

[1] T. Mens and S. Demeyer. Software Evolution. Springer, 1st

Edition, 2008.

[2] M. Lehman. Laws of Software Evolution Revisited. In Software

Process Technology, LNCS 1996.

[3] A. Ahmad, P. Jamshidi and C. Pahl. Classification and Comparison

of Evolution Reuse Knowledge in Software Architectures - A

Systematic Review. In Technical Report, School of Computing,

Dublin City University, pages 1–30, 2013. Available from:

http://www.computing.dcu.ie/~pjamshidi/SLR/SLR-ERK.html.

[4] P. Jamshidi, M. Ghaffari, A. Ahmad, C. Pahl. A Framework for

Classifying and Comparing Architecture-Centric Software

Evolution Research. In 17th European Conference on Software

Maintenance and Reengineering, 2013.

[5] J. M. Barnes, D. Garlan and B. Schmerl. Evolution Styles:

Foundations and Models for Software Architecture Evolution. In

Journal of Software and Systems Modeling, 2012.

[6] O. L. Goaer. D. Tamzalit, M. Oussalah, A. D. Seriai. Evolution

Shelf: Reusing Evolution Expertise within Component-Based

Software Architectures. In IEEE International Computer Software

and Applications Conference, 2008.

[7] K. Yskout, R. Scandariato, W. Joosen. Change Patterns: Co-

evolving Requirements and Architecture. In Journal of Software

and Systems Modeling, 2008.

[8] I. Côté, M. Heisel, I. Wentzlaff. Pattern-Based Evolution of

Software Architectures. In European Conference on Software

Architecture, 2007.

[9] A. Ahmad. P. Jamshidi, C. Pahl. Graph-based Pattern

Identification from Architecture Change Logs. In 10th

International Workshop on System/Software Architectures, 2012.

[10] A. Ahmad, P. Jamshidi, and C. Pahl. Pattern-driven Reuse in

Architecture-centric Evolution for Service Software. In 7th

International Conference on Software Paradigm Trends, 2012.

[11] H. Kagdi, M. Collard and J. Maletic. A Survey and Taxonomy of

Approaches for Mining Software Repositories in the Context of

Software Evolution. Journal of Software Maintenance and

Evolution: Research and Practice, 2007.

[12] T. Zimmermann, A. Zeller, P. Weissgerber and S. Diehl. Mining

Version Histories to Guide Software Changes. In IEEE

Transactions on Software Engineering, 2005.

[13] A. Ahmad, P. Jamshidi, M. Arshad, C. Pahl. Graph-based Implicit

Knowledge Discovery from Architecture Change Logs. In 7th

Workshop on SHaring and Reusing Architectural Knowledge,

2012.

[14] W. M. Ulrich, P. Newcomb. Information Systems Transformation:

Architecture-Driven Modernization Case Studies, Morgan

Kaufmann Publishers Inc, 2010.

[15] A. Winter and J. Ziemann, “Model-based Migration to Service-

Oriented Architectures. In International Workshop on SOA

Maintenance and Evolution, 2007.

[16] R. Kazman, S.Woods, J. Carriere. Requirements for Integrating

Software Architecture and Reengineering Models: CORUM II. In

Working Conference on Reverse Engineering, 1998.

[17] S. Brinkkemper. Method Engineering: Engineering of Information

Systems Development Methods and Tools. In Information and

Software Technology, 1996.

[18] C. Jiang, F. Coenen, and M. Zito. A Survey of Frequent Subgraph

Mining Algorithms." Knowledge Engineering Review, 2012.

[19] N. B. Harrison, P. Avgeriou, U. Zdun. Using Patterns to Capture

Architectural Decisions. IEEE Software 24(4): 38-4, 2007.

http://www.computing.dcu.ie/~pjamshidi/SLR/SLR-ERK.html
http://www.informatik.uni-trier.de/~ley/pers/hd/h/Harrison:Neil_B=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/a/Avgeriou:Paris.html

