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ABSTRACT

Using the dual laser-produced plasma technique photoabsorption studies of 

Mg, A1 and Si plasmas have been carried out. The objective was to measure the 

2p-subshell absoiption in neutral and ionised species of the Na I, Mg I, Al I and 

Si I sequences prepared both in ground and valence-excited states. The spectra 

were recorded on a grazing incidence 2m Hilger stigmatic spectrograph and a 2.2m 

McPherson spectrometer equipped with MCP/PDA multichannel detection.

In an attempt to distinguish the origin of the various absorption features 

observed, and to record almost pure spectra of the species of interest, a number of 

time and space-resolved studies were carried out. These studies which exploit the 

temporal and spatial evolution of absorbing species in a laser-generated plasma 

plume were very successful, particularly, for neutral and singly ionised species. To 

facilitate the analyses of the spectra a range of ab initio atomic structure 

configuration-interaction Hartree-Fock (CIHF) calculations were carried out.

The Mg sequence in ground state absorption has been studied for atomic 

Mg and Mg-like ions Al+ and Si2+. The effects of configuration-interaction in the

ground and excited states have been examined in detail. Interpretation has been 

provided for the distribution of oscillator strength and the relative positions of 

observed transitions. The Mg sequence in excited state absorption is reported for 

Mg, Al+ and Si2+. In order to provide insight into the dynamics of excited levels a 

comparison is made with the ejected-electron spectra of the corresponding atomic 

and ionic species arising from the autoionising and Auger transitions following 

electron- and photon-impact excitation/ionization.

The 2p-subshell photoabsorption study along the A1 sequence in ground

state has been carried out for atomic A1 and Al-like ionic Si+. In this work a 

complete analysis of these three electron systems is reported. The 2p absorption 

study of Al-like Si+ in their excited states has also been carried out.

The 2p-subshell photoabsorption spectrum of ground state atomic Si has 

been investigated. In addition to providing interpretation for the observed
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spectrum, a comparison is made with molecular spectra.

Photoabsorption spectra of the isoelectronic species Mgr1-, A l2+ and Si3+ 

both in ground and valence-excited states are presented and await analysis.

The overall results show that 2p photoabsorption of atoms and ions along 

the Mg I, Al I and Si I sequences in ground and excited states is dominated by the 

2p63sa3pb -» 2p53sa3pb[(n+l)s + nd] + 2p53sa_13pb+1np, for n > 3, and 

2p63sa*13pb+1 -» 2p53sa3pb+1 transitions respectively. In ground state absorption 

spectra the 2p53sa3pb[(n+l)s + nd] Rydberg series members are strongly 

perturbed by the 2p53sa_13pb+1np doubly-excited states. In moving from neutral to 

ionic absorption along the sequences dramatic changes are observed. However, in 

the valence-excited spectra the absorption structures corresponding to the

2p53sa3pb+1 type configurations are observed to be unperturbed and same in 

appearance along the sequences.



Chapter i

INNER-SHELL PHOTOIONIZATION 

STUDIES IN FREE IONS

The 2p-subshell photoabsorption spectra for a number of free many-electron systems, 

mostly ions, in ground and valence-excited states are reported in this thesis for the first time. The 

measurements and analyses of the observed spectra are given in the succeeding chapters. This 

chapter reviews recent experimental developments in the inner-shell photoabsorption and 

photoionization studies of free ions in ground and excited states.

1.1 Introduction

Even though highly ionised ions vastly predominate in the universe, very 
little is known experimentally on photoexcitation or photoionization of ions, 
because ionic species do not exist naturally on the earth. Experimental data on 

inner-shell photoexcitation/photoionization in neutral, singly or multiply ionised 
atoms are required in many areas. A knowledge of the cross section for 
photoionization of positively charged atomic ions is necessary in connection with 
plasma physics and controlled thermonuclear fusion; is relevant to upper 

atmospheric physics where solar radiation is absorbed by positive ions as well as 
neutral atoms and molecules; and finds applications in space and astrophysics to 
the transport of radiation through stellar atmospheres and planetary nebulae 

(Missavage et al. 1977). The calculated ionic photoionization cross sections, 
usually based upon simple models, are largely untested (Nasreen et al. 1989, 
Deshmukh et al. 1988, Daum and Kelly 1976) because very little is known about 

ionic photoabsorption due to the technical difficulties in producing high densities 
of ions suitable for photoabsorption measurements. The measured energy levels 
are required in connection with plasma diagnostics, XUV laser research and the 
identification of solar and stellar spectra. Photoabsorption studies complement 

many other studies carried out using ejected-electron spectroscopy following 
photon, electron and ion-impact excitation/ionisation, and beam-foil spectroscopy.
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The studies of the ejected-electron spectra following low energy electron or ion- 
impact excitation/ionisation which exhibit resonances arising from the dipole 

allowed and optically inaccessible states often end with a number of unidentified 
structures (see for example Pejcev etal. 1977). Therefore, photoabsorption studies 
from ground and excited states achieved by optimising in either ground (see 
chapters 4, 5 and 6) or excited states (see chapter 7) are of great help for the 

identification of such spectra. The study of the decay dynamics of individual levels 
(Whitfield et al. 1991) following photon excitation allows the identification of 
transitions involving spectator decay, participator decay, shakeup or shakedown 

processes. These studies provide experimental evidence of the presence of various 
electron-interactions in a multi-electron system. Without the exact knowledge of 
the energy levels of the systems under consideration these studies are not possible; 
therefore, the measured level energies obtained through photoabsorption studies 
can stimulate these studies. Systematic investigations along isoelectronic or 
isonuclear sequences are of particular value as they provide insight into 
fundamental aspects of the photoionization process such as relativistic effects, 

correlation effects, orbital collapse ( see e.g. Lucatorto et al. 1981, Lahiri and 
Manson 1988).

To date photoabsorption spectroscopy has been applied mostly to neutral 

species, particularly easily evaporable elements such as alkali and alkaline earth 
metal atoms. However, very little absorption spectroscopy has been performed for 
the refractory metals and ionised species in either ground or excited states. The 

reason is mainly due to the difficulty of producing a suitable and reproducible 
column of absorbing species with enough density to allow absorption 
measurements. These conditions can be met, however, in a pulsed regime and it is 
possible to perform absorption experiments of neutral and ionised species by using 

a pulsed background continuum source time synchronised with the transient 
absorbing species. For this reason the laser produced plasma (LPP) is very 
suitable for absorption experiments of both refractory metals and ionised species. 

In fact, it can be used to generate in pulsed regime, both the background 
continuum and the absorbing medium. Exploiting these properties of LPPs Carroll 
and Kennedy (1977) performed successfully an absorption experiment on the ionic 

species Li+.This technique, known as dual laser-produced plasma (DLPP), is 

relatively well established now and has been successfully applied to atoms and 
ions both in ground and excited states (see chapter 3).

Fortunately, the developments in instrumentation and atomic structure
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theory have gone hand in hand with the development of experimental techniques. 
The rapid technological developments, leading to more efficient spectrometers 

(Tondello 1979, Jannitti et al. 1979, Hopkins 1992) equipped with photoelectronic 
detectors (Cromer et al. 1985, Schwob et al. 1987, Jannitti et al. 1990, Kieman 
1994a), computer aided control, data acquisition and analysis (Shaw 1994), have 
opened up remarkable possibilities - it is possible now to obtain and measure 

absorption spectra of atoms and ions in ground and excited states for a wide 
variety of species. Atomic structure theory has entered a new era with the 
widespread availability of super computers and high performance workstations. 

Experimental investigations of the observed features are greatly facilitated by the 
theoretical results, based on ab initio configuration-interaction atomic structure 
calculations (see chapter 2). Although some theoretical approaches enable one to 

investigate fairly complicated mathematical models of the systems under 
consideration and to obtain in this way results which are in quite good agreement 
with the experimental measurements even then the study of some systems poses 
many challenging problems both for theorists and experimenters. The absorption 

transitions arising from the different initial states or different ionisation stages 
which fall in the same spectral region are very difficult to distinguish. Short-lived 
dipole allowed states hardly get populated (see chapter 7), therefore, it is very 

difficult to carry out their photoabsorption measurements. Some multiply-excited 
states though of great interest usually have very low cross sections and are, 
therefore, very difficult to observe (Kiernan et al. 1994b) in photoabsorption 

experiments. Furthermore, a reliable calculation of term energies, together with a 
clear physical interpretation of the oscillator strength distributions between various 
transitions of a many-electron atom is an extremely difficult task for any theoretical 
approach when more than one electron is involved in the photoexcitation process 

(see chapters 4, 5 and 6).

1.2 Photoionization measurements in free ions

Photoabsorption or photoionization of free atoms have long been areas of 

fundamental interest in atomic physics.The interaction of a photon with an atomic 
or ionic species (see figure 1.1) can result in valence-shell, inner-shell, one- 
electron or multi-electron excitations. The decay of these excited states can lead to 

the creation of a single or multiply charged ion and one or more ejected electrons.
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Fluorescence can also be a part of the decay cascade. Hence, absorption, ion, 
electron, and fluorescence spectroscopies are complementry experimental methods 

which can be used to investigate various aspects of atomic dynamics. Because of 
the difficulties in producing the sufficient density of absorbing species the studies 
have mainly been carried out in rare gases and easily evaporable alkali and alkaline 
earth metals. A comprehensive review of the photoionization of rare gases by 

synchrotron radiation has been provided recently by Schmidt (1992). The XUV 
photoabsorption spectroscopy of metal atoms has been reviewed in detail by 
Sonntag and Zimmermann (1992).

charge and mass resolved energy distribution
angular distribution 
spin polarization 
electron-electron coincidence

electron-Ion coincidence spectroscopy

Figure 1.1
Representation of the processes which provide information about various aspects of atomic 

dynamics following the interaction between VUV radiation and free atomic spccies (from 

Richter 1993).

The photoabsorption in ions has been mainly studied using the resonant 
laser driven ionization (RLDI) and the dual laser-produced plasma (DLPP) 
methods. The recent experimental developments in resonant laser-driven ionization 

and dual laser plasma setups have been reviewed by Costello et al. (1991a). For 
the measurements of absolute photoionization cross sections the technique of 
merged photon-ion beam (Lyon etal. 1986) has been developed. More recently the 

first observation of the photoelectron spectra emitted in the photoionization of a 
singly charged beam with undulator radiation has been successfully achieved 
(Bizau etal. 1991). The various developments in the photoionization studies of 
ions have been described in a number of review articles by Wuilleumier (1992), 

Wuilleumier et al. (1991 and 1994) and Bizau etal. (1993). For the sake of



completeness a brief introduction to the various experimental techniques developed 
for the photoabsorption, photoion and photoelectron spectroscopy will be given.

1.2.1 Photoion spectroscopy

During the last fifteen years photoion spectrometery has been extensively 
applied to neutral species (Sonntag and Zimmermann 1992). Using this technique 

one can measure photoion yield spectra, resonance structures arising from inner- 
shell excitations and absolute photoionization cross sections. Its suitability for 
absolute photoionization ionic cross section measurements was demonstrated by 

Lyon et al. (1986) in a photon-ion merged beam experiment. The species studied 
in these experiments since then are shown in table 1.1.

Table 1.1. A summary of the photoionization studies in ground state ions carried 
out in photon-ion merged beam experiments.

Species Regions References

Ba+ 5p Lyon etal. (1986)

Si+ 4p Lyon etal. (1987a)

Ca+ 3p Lyon etal. (1987b)

Ga+ 3d Peart etal. (1987)

Zn+ 3d Peart etal. (1987)

K+ 3s Peart and Lyon (1987)

The apparatus used in the first successful photon-ion merged beam 

experiment involving synchrotron radiation is shown in figure 1.2. A 0.1 pA 2 keV 

singly-charged ion beam, produced in the surface ionization source S, is deflected
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by the magnet Mj into the interaction region (I) after focussing through the 
differential pumping region (DP). The monochromatized synchrotron radiation 

beam from a McPherson monochromator interacts with the ion beam along a path 

of about 12 cm length, photoionizing some of the ions (A+) into doubly charged 

ions (A2+), after separation by the second magnet M2.

Figure 1.2
Schematic of the experimental set up for photoion spectrometry at Daresbury (from Lyon 

e ta l .  1986).

1.2.2 Photoelectron spectroscopy

Photoion spectrometry (Lyon etal. 1986, 1987a, 1987b, Peart and Lyon 

1987, Peart etal. 1987) allows the measurement of absolute photoionization cross 
sections in merged photon-ion-beam experiments; however, when several channels 
are open into the continuum, only photoelectron spectrometry provides the detailed 
insight into the photoionization process by providing partial photoionization cross 

sections and measurement of branching ratios for the various subshells of a 
multielectron atom (Wuilleumier and Crause 1974, Wuilleumier 1989).

Very recently, the experimental setup shown in figure 1.3 has been 

developed by Bizau etal. (1991) for the photoelectron studies of ions. Here, a 

plasma discharge ion source delivers singly charged A+ ion beams of about 20-30

fiA at 10 to 20 keV kinetic energy. After magnetic and electrostatic deflections, the
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ion beam is focussed into the source volume of an electron cylindrical mirror 
analyser (CMA), where the monochromatized photon beam from an undulator is 

also focussed. The electrons emitted in the interaction zone are detected with an 
array of channeltrons placed between the two inner cylinders around the axis of the

CMA. After passing through the CMA, the A+ and A 2+ ions are separated by a 

second magnet and detected with Faraday cups. The capabilities of this technique 

were demonstrated by measuring the photoelectron spectra resulting from the 
photoionization of an ion-beam of singly ionised calcium.

Figure 1.3
Experimental set up for the photoionization of ions with Super ACO (PISA) (from Bizau 

et al. 1991).

By combining high-power tunable lasers with synchrotron radiation, 

photoelectron studies have been successfully extended to optically inaccessible 
states in theXUV regime (Bizau etal. 1982, 1985, 1986, Nunnemann etal. 1985, 
Ferray et al. 1987, Cubaynes eta l. 1989, Carre e ta l. 1990). The species 
investigated in various experiments are listed in table 1.2. The experimental 

arrangement used in the pioneering experiments (Bizau etal. 1982) is illustrated in 
figure 1.4. This technique was further developed by Meyer etal. (1987, 1990) and 
Baier et al. (1992) who took the advantage of the well defined polarisation of 

both radiation fields by preparing the atoms in aligned or oriented states via laser 
pumping and studying the dependence of the photoelectron signals on the angle 
between the polarisation axes of laser and synchrotron radiation.

In order to fully exploit this method a rotatable electron analyser was used 
for measurements of the angular distribution of photoelectrons from laser-excited 
aligned Li atoms by Pahler et al. (1992). In contrast to experiments with 
unpoiarised atoms the study of the angular distribution of photoelectrons from
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T O RO ID A L

Figure 1.4
Layout of the experimental set up for the photoionization cross section studies on laser 

excited atoms (from Bizau el al. 1982).

Table 1.2. A summary of the photoelectron studies in valence-excited species 
carried out in combined laser-synchrotron experiments.

Species Regions References

Na*(3p) 2p Bizau etal. (1985)

Ba*(6s5d) 5p, 4d and 5s Bizau etal. (1986)

Na*(4p) 2p Ferray etal. (1987)

Na*(4d) 99 99

Na*(5s) 99 99

Na*(3p) 2p Cubaynes etal. (1989)
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aligned or polarised atoms offers the possibility of getting additional information 
for the description of the photoionization process and the corresponding atomic 

states. As the angular distribution of the outgoing electrons critically depends on 
the symmetry of the core-excited state, on the alignment of the intermediate state 
prepared by the laser, and on the relative orientation of the polarisation vectors of 
the two radiation fields, one can therefore, distinguish between states of different 

symmetry. In the pioneering experiment (see figure 1.5) of Pahler et al. (1992), by 
measuring the angular distributions of photoelectrons, they were able to 

distinguish between the different symmetry character of the autoionizing 2S- and 

2D-resonances of even parity configurations Li lsnl n V which were reached by 

the two-step excitation Li Is2 2s 2S (laser) —> Is2 2p 2P (SR) —» Is nl nV  2S, 2D.

In the case of Li the spin-orbit interaction is very small; fine structure splitting and 
doublet-quartet transitions, therefore, can be neglected and only these two types of 

transitions have to be considered.

Figure 1.5
Schematic representation of the experimental set up for the two photon experiments (from 

Pahler el al. 1992).

Most recently, using this angle resolved photoelectron spectroscopy of 

laser aligned sodium atoms Baier etal. (1994) studied the 2p5 3s3p resonances.

S y n c h r  o l r o n
Cold t r ap  '  Elect ron t rajectory
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1.2.3 Photoabsorption spectroscopy

Photoabsorption measurements made on the radiation transmitted through 
the absorbing species can provide (i) total relative or absolute absorption cross 
sections, and (ii) energy level data of the resonance structures.

Progress in the field of VUV and XUV photoabsorption studies of ionic 
and some neutral species, other than gases and easily evaporable metallic atoms, 
has been hampered for many years by the lack of “small-scale” continuum sources 
to act as alternatives to synchrotron facilities. In addition the lack of suitable 

techniques for the generation of the absorbing species was a major barrier.
Esteva and Mehlman (1974) demonstrated such an experiment in which 

ionic absorption was measured using two synchronised electrode vacuum sparks 

(Mehlman-Ballofet and Esteva 1969, Esteva et al. 1972). One spark served as a 
transient source of absorbing species and the other one, termed a BRV source 
(Ballofet, Romand and Vodar 1961), was used to provide the background 

continuum. Using this technique, time-resolved photoabsorption spectra were 

measured for Mg, Mg+ and Mg2+ (Esteva and Mehlman 1974) and for Be2+ and 

Be3+ (Mehlman and Esteva 1973). This technique has not been extended to other 

ions.

The technique of flash-pyrolysis has been used in the photoabsorption 

studies of ionic Ba+ (Roig 1976), Li+ (Cantu et al. 1977) and neutral aluminium 

(Cantu et al. 1982). In this technique the absorbing metal is introduced in a quartz 

or glass tube which is surrounded by a helical flash lamp. The material in the tube 
is vaporised and ionised by the strong luminous flux emitted by the flash lamp. A 
BRV source synchronised with the flash lamp was used to provide background 
continuum.

This technique was only applicable to easily evaporable materials and, at 
most, to singly ionised species. The other drawbacks of this set up were associated 
with the BRV spark which has a limited repetition rate, electrode life time and 

operates under high vacuum environment. It provided a relatively linefree 
continuum but was limited to between 100-600 A and also the pulse duration was 
relatively long (~ 60 n s ) .

The techniques of synchronised dual vacuum spark and flash-pyrolysis 
were successfully employed in the time-resolved photoabsorption studies of atoms 
and ions but were restricted to ground state absorption studies only. Using these 
techniques it was not possible to selectively populate the absorbing species in
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excited states.

Table 1.3. A summary of photoabsorption studies of species carried out using 
the technique of resonant laser-driven excitation/ionization.

Species Regions Detection References

Ground state

Na+ 2p PG Lucatorto and Mcllrath (1976)

Ii+ Is PG Mcllrath and Lucatorto (1977)

Ba 4d PE Lucatorto etal. (1981)

Ba+ // n //

Ba2+ // // //

Ba+ 5p PG Hill in  et al. (1982)

Cs+ 4d Mcllrath etal. (1986)

Ca+ 3p Sonntag etal. (1986)

Ba+ 5p PG Hill HI et al. (1987)

Mn+ 3p PE Cooper et al. (1989).

Cr // // //

Excited state

Ii*(2p) Is & 2s PG Mcllrath and Lucatorto (1977)

Na*(3p) 2p PG Sugar etal. (1979)

Ca*(4s4p) 3p PE Sonntag etal. (1986)

PG = Photographic detection, PE = Photoelectric detection.

The technique of resonant laser-driven excitation/ionization, based on the 

pioneering work of Bradley etal. (1973) and of Mcllrath (1969), Mcllrath and 
Carlsten (1973), has been used in the photoabsorption studies of the neutral, 
singly and doubly ionized species shown in table 1.3. In these experiments, the 

output of a tunable dye laser was used to ionize or selectively excite an atomic
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vapour column produced in a heat pipe. To produce doubly charged species two 
time-synchronized tunable lasers were employed Lucatorto et al. (1981). One was 

used to convert atomic vapour in a heat pipe to a singly ionized plasma and the 
second to ionize it into a doubly ionized plasma. To do photoabsorption 
measurements a time-synchronized BRV spark or laser plasma was used as the 
source of background continuum.

The application of this technique, requires sufficiently high vapour 
densities, therefore, it is mostly suitable for easily evaporable atomic systems. 
Because of the lack of laser technology at shorter wavelengths this technique does 

not allow an extension to absorption measurements for the higher members of 
isoelectronic sequences although it does have the potential for selective excitation 
and ionization.

The technique which has enabled us to carry out absorption studies of 
atoms (including easily evaporable and refractory metal vapours) and ions in 
ground and excited states and to extend them along isoelectronic as well as 
isonuclear sequences is based on the pioneering works of Carillon etal. (1970) 

and Carroll and Kennedy (1977). Using the experimental set up shown in figure 
1.6a, Carillon etal. (1970) were able to do time and space-resolved absorption 
studies of laser-produced plasmas. In this experiment the output of a Nd glass 

laser (1J, 30ns) was split into two parts. One part of this beam was utilised in 
producing the absorbing Al plasma and the other after an optical delay was also 
focused on Al to generate the probing plasma. The predominantly line radiation 

emitted from the probing plasma was passed through the absorbing Al plasma.
Later on Carroll and Kennedy (1977) used the XUV/VUV continuum 

emission from a laser generated tungsten plasma to study the photoabsorption of a 
lithium plasma. In this experiment (figure 1.6b) the absorbing and continuum 

plasmas were both generated by a single ruby laser (1.5J, 30ns). The output of 
this laser was split into two parts: one was focused onto the Li target to generate 
the absorbing plasma while the other focused on the tungsten target induced a 

small hot plasma which provided the background continuum. Since then, this 
technique, now known as dual laser-produced plasma (DLPP) where one plasma 
serves as a transient source of multiply ionised species and the other generates the 

background continuum, has been extensively applied to ionic photoabsorption 
studies. The species studied to date in various dual laser-produced plasma 
experiments are listed in table 1.4. In these experiments the two laser pulses 
required for generating absorbing species and background continuum were
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Figure 1.6(a)
The experimental setup of the dual laser-produced plasma experiment in which the radiation 

emitted from one aluminium plasma was used to probe the other aluminium plasma (from 

Carillon el al. 1970).

Figure 1.6(b)
Schematic of the experimental arrangement used in the first dual laser-produced plasma 

photoabsorption experiment in which one plasma served as a source of absorbing species

and the other generated background continuum (from Carroll and Kennedy 1977).
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Table 1.4. A summary of the previous photoabsorption studies in atoms and ions 
carried out with the dual laser-produced plasma method.

Species Regions Detection References

Ground state

Ii+ Is PG Carroll and Kennedy (1977)

Be2+ Is P G & P E Jannitti etal. (1984a)

Be2+ Is PG & PE Jannitti etal. (1984b)

Be3+ Is P G & P E Jannitti etal. (1984a)

Be+ Is PE Jannitti etal. (1985)

Be+ Is PE Jannitti etal. (1986)

Th 5d PG Carroll and Costello (1986)
U 5d PG Carroll and Costello (1987)
Be Is PE Jannitti etal. (1987)

Be+ n t f //

Be2+ / / / / n

Be3+ t r / /

Si3+ 2p PG Mosnier et al. (1987)

c4+ Is PE Jannitti etal. (1988)

Al2+ 2p PG Brilly e ta l  (1988)

La3+ 4d PG Hansen etal. (1989)
C Is PE Jannitti etal. (1990)

C+ / / / / / /

C2+ / / / / / /

C3+ / / t r //

Cr 3p PE Costello etal. (1991b)

Cr+ 3p / / //

Continued.
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Table 1.4. Continued.

Species Regions Detection References

Mn 3p PE Costello et al. (1991b)

Mn+ 3p
// //

W 4f and 5p // Costello et al. (1991c)

Pt 4f and 5p PE //

B Is PG Lynam et al. (1992)

B+ Is PG //

Ga+ 3p and 3d PG Dunne et al. (1993)

Excited state

Al2+*(3p) 2p PG Brilly et al. (1990)

Al2+*(3d) f f // /r

Si3+*(3p) // // //

Si3+*(3d) f f // ✓/

obtained either by splitting the output of a one laser into two parts delayed optically 
(Brilly et al. 1988) or from two separate time-synchronised lasers (Carroll and 

Costello 1986). Exploiting the temporal and spatial evolution of the absorbing 
plasma plume the spectra of the species of interest in either ground or valence- 
excited states were recorded photographically or photoelectrically.

As can be seen from table 1.4, most of the previous studies were carried 
out along either isonuclear sequences or for individual species. In the present 
work, with the exception of atomic silicon, photoabsorption investigations have 

been carried out along the isoelectronic sequences. The details of the various 
absorption transitions and the corresponding isoelectronic members studied are 
listed in table 1.5. Members of these sequences in ground state absorption have 

been of recent interest in theoretical photoionization studies including resonance 
structures. In most of these type of calculations reported so far (see, for example,
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Daum and Kelly 1976, Isenberg etal. 1985, Altun 1989 and Ivanov etal. 1994) 
only one-electron resonances have been included. As listed in table 1.5, the 

members of these sequences in ground state absorption are found to exhibit strong 
double-electron resonances mixed with the one-electron resonances (for details see 
chapters 4, 5 and 6). Therefore, the data reported in this work will help in 
improving the theory.

Table 1.5. Details of the photoabsorption studies undertaken in this work.

Sequence 
studied in

Members Transitions studied

G round state

• Na I Mg+, Al2+, and Si3+ 2p63s —» 2p53snl

-> 2p53pnp

• Mg I Mg, Al+a, and Si2+ 2p63s2 2p53s2nl

—» 2p53s3pnp

•A ll A1 and Si+ 2p63s23p —> 2p53s23pnl

—» 2p53s3p2np

• Si I Si 2p63s23p2 —» 2p53s^3p2nl

2p53s3p3np
Excited state

• N a l Mg+, Al2+ and Si3+ 2p63p 2p53s3p

•M g Ib Mg, Al+, and Si2+ 2p63s3p —> 2p53s23p

• A ll Si+ 2p63s3p2 —> 2p53s23p2

Costello etal. (1992). 

^Mosnier et al. (1994).
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1.3 Conclusions

As can be seen from section 1.2, photoabsorption and photoionization has 
been studied only in few ions. Although various experimental setups have been 
developed, some are facing technical limitations and the remainder are passing 

through their testing phase. At present, only the dual laser-produced plasma 
technique can be applied to a wide variety of species. Although it is suitable mostly 
for the measurements of relative ionic cross-sections even then it can provide a 
testing ground for theory. The inner-shell photoabsorption technique provides 

measurements of descrete and continuum structures which can be compared with 
those predicted by theory. To date although a few calculations including resonance 
structures have been carried out this trend is expected to increase in the near future. 
It is hoped that the photoabsorption data reported in this thesis will play an 
important role in stimulating further theoretical studies.
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SUMMARY OF ATOMIC STRUCTURE 
THEORY

To facilitate the analysis of measured spectra extensive atomic structure calculations 

have been performed with the help of a suite of atomic structure computer programs. Computed 

transition energies and energy level compositions were needed as an aid to identification of the 

observed spectral lines. To interpret line intensities, oscillator strengths were required. This 

chapter provides an introduction to the theory of atomic structure and an outline of the programs.

2.1 Introduction

Using the Slater-Condon theory of atomic structure (Slater 1929, 1960; 
Condon and Shortley 1935) ab initio or scaled calculations (for explanation see 
section 2.7.2) can be made of atomic energy levels and spectra, either in the 
single configuration or including configuration-interaction effects. For this 
purpose there are required theoretical values of: (1) the total binding energy of 
the spherically-averaged atom in each configuration of interest (corresponding to 
the centre-of-gravity energy E,v of all possible states of the configuration); (2) 

the electrostatic and spin-orbit radial integrals Fk, Gk, and in terms of which 
the energy splittings from EIV are expressible; (3) the more general

Slater integrals Rk, if configuration-interaction effects are to be included; and 
(4) the dipole matrix elements for the transitions in question, if gf-values are to 
be calculated.

All of these quantities are given by familiar expressions involving various 
integrals of the one-electron radial wavefunction which can be obtained from the 
solution of the Schrodinger wave equation. The treatment provided in the 
following sections follows closely that given in the famous book "The Theory of 
Atomic Structure and Spectra" by R. D. Cowan (Cowan 1981).
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2.2 The Schrödinger equation for a multi-electron
system

The theoretical treatment of a multi-electron atom starts with the 
selection of a suitable Hamiltonian operator. An appropriate form may be 
obtained by summing the one-electron operator over all N electrons, and adding 
a term for the electrostatic Coulomb interactions among the electrons:

H = Hy,, + Helec_nucl + H elec_dec + Hs_0, (2.1)

or h  = - Y , V ’ - ' L —  + Z £ -  + E 6 < riX M ,), (2-2)
1 1 i  i

where r; = I I is the distance of the ith electron from the nucleus, ijj = I rj - rj I 

is the distance between the ith and jth electrons and summation over i > j is over 
all pairs of electrons. Distances are measured in Bohr units (ao= 0.529177 A) 
and energy in rydbergs (13.6058 eV).

The mass-velocity and Darwin terms have not been included in the 
Hamiltonian (2.2). These terms depend only on I i*, I and have the effect only of 
shifting the absolute energies of a group of related levels, without affecting the 
energy difference among the levels. The final term of the Hamiltonian represents 
the sum over all electrons of the magnetic interaction energy between the spin of 
an electron and its own orbital motion. Unlike the mass-velocity and Darwin 
terms, the spin-orbit interaction involves the angular portion of the wavefunction 
through the operators 1 and s, and has a pronounced effect on energy-level 
structures; it is therefore necessary to retain it explicitly in the Hamiltonian. The 
proportionality factor in this term is measured in rydbergs and is given by

. . .  a 2 1 f  dV
(2.3)

i y

where V(r) is an appropriate potential energy function for an electron in a multi- 
electron atom and a  is the fine structure constant.

The Schrödinger equation for the Hamiltonian (2.1) can be written as

HvFk = E kvFk- (2.4)
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Solving this equation one can obtain the wavefunction 4/k and the energy Ek of 
the atom for every stationary state k of interest. The total wavefunction is a 
function of 4N variables: three space and one spin co-ordinate for each electron. 
For N > 1, exact solutions cannot be obtained at all and approximations of one 
sort or another are required. The method to be described here was first developed 
by Slater (1929), and later extended by Condon and Shortley (1935). The basic 
procedure consists of expanding the unknown wavefunction vF k in terms of a set 
of known orthonormal basis functions vi 'b :

<2 - 5 >
b

This basis set has an infinite number of members. In practice, it is necessary to 
truncate the series to a finite number of terms. Substitution of (2.5) into (2.4) 
gives

¿ H y i . ¥ l. = E‘ £y5.>Pb.. (2.6)
b '= l b '= l

Multiplying this from the left by Yb and integrating over all 3N space co­
ordinates, we have

b '= l b '= l

= Ek ykb, 1 < b < M, (2.7)

where
Hls,=(>PbIHI>Pb.>. (2.8)

The relations (2.7) represent a set of M simultaneous linear equations in the M 
unknowns yb,. This set of equations has a non-trivial solution only if the 
determinant of the matrix (Hy,, -  E 1̂ , )  is zero:

|H - E kl| = 0. (2.9)

where I is the identity matrix. When this determinant is expanded into a 
polynomial of degree M in Ek, its zeroes represent M different possible energy
levels of the atom. Each of these values of Ek, substituted back into (2.7), gives
M - 1 independent equations for the M - 1 ratios
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y£/yf.

i i y £ i J= i .  (2.io)

the value of yj* is chosen such that

b=1

so that vFk is normalized:

b ' b b '

For M no greater than 2 or 3, the above procedure is feasible, either numerically 
or analytically. For appreciably larger M, the Hamiltonian matrix H = (Hy,,) is

diagonalized numerically. If the set of expansion coefficients is written in the 
form of a column vector

yk2
y*

Yk = (2 .11)

then equations (2.7) may be written as the single matrix equation

HYk = EkYk , (2.12)

and the problem is to find the M eigenvalues Ek of the matrix H, together with 
the corresponding eigenvectors Yk. To achieve this numerical values of the
matrix elements Hbb, are supplied to a computer, and a matrix T is found that can

diagonalize H. The kth diagonal element of the diagonalized Hamiltonian matrix 
is the eigenvalue Ek,

T-1HT = (Ek5kb). (2.13)

In summary, once the Hamiltonian matrix elements Hbb, are computed, 

the energy levels of an atom can be calculated. The computing of H is the most
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difficult task. It involves setting up suitable basis functions required to evaluate 
the matrix elements.

2.3 Choosing the basis functions

In a multi-electron atom any given electron i can be assumed to move 
independently of the others in the electrostatic field of the nucleus and the other 
N-l electrons (Independent particle model). This field is assumed to be time- 
averaged over the motion of the N-l electrons, and therefore to be spherical 
symmetric. In this central field, the probability distribution of electron i can be 
described by a one-electron wavefunction (also called spin-orbital):

where rj denotes position (r,0,0)w ith respect to the nucleus and also the spin 

orientation s. This function differs from the hydrogenic one only in the radial 
part Pni. As the potential energy V(r) in a multi-electron atom is no longer a 
simple Coulomb function; exact analytical solution of the differential equation is 
therefore not possible. Numerical procedures are required for the calculation of 
Pni. The orthonormality of the spin-orbital yields

From the one-electron spin-orbitals one can construct the basis function 
for the entire atom. The probability that an electron lies at rj from the nucleus is 
I (ri )l2 so the probability distribution of all the N electrons is n ^ lp jir .) !2. 
This shows that for a multi-electron atom the basis function can be written as a 
product of spin-orbitals

(2.14)

or
(2.15)

(2.16)

Y = ( p l(Tl)<p2(T2)(p3(T2) - ’<ps (Tii) . (2.17)

The drawback of this product function is that it does not obey the Pauli exclusion 
principle. However, this can be rectified by using a wavefunction that is 
antisymmetric upon interchange of any two electron co-ordinates. Such a



wavefunction can be formed by taking the following linear combination of 

product functions:

'F = (N!)-,/2X ( - l ) P<P1(r1)<p2(r2)<p3(r3)-” 'PN(rN)- (2.18)

This antisymmetrized function may be written in the form of a determinant

VP =
N!1/2

<pM <Pi(r2) <Pi(r3) • ■ <Pi(rN)
<P2(t i) <P2(r2) <p2(r3) • ' <P2(rN)
<p3(ri) <P3(r2) <P3(r3) * • <P3(r n)

<pM <PN(r2) <PN(r3) ' • PnO-n)

(2.19)

and is therefore referred to as a determinantal function or a Slater determinant 
(Slater 1929). The physical significance of this choice is clear from the well 
known properties of determinants. The interchanging of two columns in this 
determinant is equivalent to changing the co-ordinates of any two electrons. A 
determinant is zero if its two rows or columns are identical. Two orbitals having 
the same quantum numbers are reflected by two identical rows while the two 
electrons being in the same location are shown by two identical columns.

This determinantal form of a basis function Y exhibits almost all the 
required features for a basis vector. Although the basis functions can be chosen 
arbitrarily it is convenient to chose them to be as close as possible to the 
eigenfunctions of the Hamiltonian. Such a choice is important to have desired 
accuracy from ab initio calculations.

2.4 Matrix elements for determinantal basis functions

In the Hamiltonian operator given by

. r i i> j r ij
(2.20)

the first three terms are one-electron operators of the form

30



i=l i
(2.21)

symmetric in the spatial-plus-spin co-ordinates r* of all N electrons, and the last 
term is a two-electron operator of the form

i s U ,  *  . <2-22>i=2 j=l i> j

symmetric in all N(N - l)/2 pairs of co-ordinates. For a determinantal basis 
function it can be shown that

O Fl£f.l'F>  = £ < i l f ili>, (2.23)
i  i

('i' lX X 8 . l'I'> = E E [ < y |8lii>-< ijlglji>- (2.24)
i> j i> j

In equation (2.24), the first terms on the right are the direct terms and they 
represent the energy due to mutual electrostatic repulsion for an uncorrelated 
spatial distribution of electrons. The second terms are the exchange terms and 
they represent the decrease in the repulsion energy that results when one 
includes the positional correlation of parallel-spin electrons.

2.5 One-electron and total atom binding energies

With the aid of the above results for determinantal basis functions, we 
can derive expressions for the centre-of-gravity energy of atomic states 
corresponding to an arbitrary electron configuration. It represents the energy of 
the spherically averaged atom, and is given by

E1V = (blHlb>tv, (2.25)

where the average is to be carried out over all basis functions b belonging to the 
configuration in question. The simple form of this average is when all basis 
functions are given equal weight:
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y  ( b I H I b )
E = ----------^ ------- ---------- . (2.26)

number of basis functions

Since the trace of a matrix is invariant under all orthogonal transformations 
(2.13) which diagonalizes H, (2.26) may also be written in the form

E = -------^ ------------. (2.27)
number of states

where the summation is over all eigen states k of the configuration, having 
corresponding eigen value Ek. Since each energy level has a (2J + l)-fold 
degeneracy, we may also write

£ ( 2 J  + 1)Ej

E =  . (2.28)
*v X (2 J  + D

levels

From this expression one may calculate an experimental value of Eav, using the 
observed energies of the levels belonging to the configuration in question. For 
example, for the configuration p2 having LS terms 3P, 'D and 'S,

E,v = ¿ [ E(3po) + 3E(3P, ) + 5E(3P2) + 5E(3D2) + E(’ S0)].

The value of the centre-of-gravity energy given by the above expression is 
significant only to the extent that configuration-interaction perturbations are 
small.

The theoretical expressions for Eav can be obtained by substituting (2.23) 
and (2.24) in (2.25):

9 7 9 9
B„ = £ < i|- V!|i>.. + £ < il------li> .,+ X X [< ijl— !« > „-< « — (2.29)

i i  r i i> j r i2  r i2

For the spin-orbit term the matrix elements cancel out (see Cowan 1981); thus 
the spin-orbit contribution to Eav is zero.

In expression (2.29), the first and second terms represent the kinetic (E k) 
and electron-nuclear (E n) energies while the last terms represent the electron-
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electron Coulomb energies. The configuration-average binding energy of an 
electron in an orbital n ^ is

E‘ = E k‘ + En‘ + ] ^ E iJ. (2.30)
j«“

and the configuration-average total binding energy of all N electrons may be 
written in any of the equivalent forms

E „ = 5 X 1 + X E,,l + I £ E‘i - (2.31)

or
(  1  ̂

E.v = £  Eki + E ni + - 2 E ij 
> V )*' y

(2.32)

or

or

E» = X
i V z  y

e . . = 5 Z ( e > e „, + e ‘)-

(2.33)

(2.34)

Making use of the spin-orbitals (2.14) the values of the different terms - involved 
in the expressions for one-electron and total-atom binding energies - can be 
evaluated using the following expressions:

E k* =  ( i l - V 2li>tv =  r*P*n,i,(r) d2 , 1,(1,+1)
dr2 r2

Pn,i. (r)dr, (2.35)

E n‘ =  < i l - — li> =  [ " ( - —  mrtfdr, 
Tj Jo r

(2.36)

The general expression for the matrix elements of ( l / r 12) between the two- 
electron product functions is given by

( ij l2 /r12ltu>= 8 8 ¿ R k(ij,tu)
“ k=0

x  >c ‘  < > i " \ . * . " ' 1 . ) .  (2-3 7 >
q=-k

where
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Rl (ij,.u) = J " £ - ^ ^ ( r , ) P ; ( r J )P ,(r,)P ,(rI )dr1drJ . (2.38)

The electron-electron matrix elements involved in the expression (2.29) for E iV 

are the special cases of (2.32). For the direct contribution we obtain

(ij!2 /  r12lij) = ¿ F k(ij)ck (limli,limli)ck(ljmli,ljmlj), (2.39)
k=0

where

F k(ij) = Rk(ij,ij) = Jo" J “ - ^ P i(rI)l2IPJ(r2)ll dr1dr2f (2.40)

the contribution due to the exchange term is given by

- < i j2 / r u lji) = - i  f ,  Gk(ij)[c‘ (l1mIi, l1mlj)]! , (2.41)
■J 'v=o

where
r- f- 2r kI I < DGk (ij) = R*(ij,ji) = j~  -¡S l-P , ‘ (r, )P ; (fl )Pj (r, )P, (r2 )dr,dr2. (2.42)

The radial integrals Fkand Gk (or more generally, Rk) are called the Slater 
integrals . The ckl s are the angular co-efficients and can be represented by 
analytical expressions (see Cowan 1981).

2.6 Calculation of level structure

The calculation of the level structure of an atom or ion involves the (i) 
determination of the detailed shape of the functions P ^ r )  that form the radial

factors of the one-electron spin-orbitals (2.14), and (ii) calculation of the energy 
matrix elements H bb, s  <blHlb')[using as basis functions ^  either the

uncoupled determinental functions (2.14) or functions constructed according to 
any desired coupling scheme (see Cowan 1981)] and diagonalization of the 
energy matrix as described in section 2.2.
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2.6.1 Determination of radial functions

The radial wavefunctions are the solutions of the radial part of the 
Schrodinger wave equation. For a multi-electron system no analytical solution is 
possible for this equation, however, this many body problem can be solved 
through approximations. As already stated, each electron can be assumed to be 
moving independently in an average potential formed by the Coulomb forces of 
the nucleus and other electrons (Independent Particle Model). Within the 
framework of this approximation, similar to hydrogen atom, each electron can be 
described by a spin-orbital

<pi(ri) = -PYc7. (2.43)
r

The state wavefunction can be obtained from an antisymmetric linear 
combination of these spin-orbital products.

Each spin-orbital must satisfy the eigenvalue equation. Thus we get a set 
of N equations of the form,

n i(pi(ri) = ei(pi(ri) ,  (2.44)

called the Hartree equations. The radial part of these equations to be solved is of 
the form

_ i l  + M !i± I> + V ‘(r)
dr r

^ ( 0  = ^ ( 0 ,  (2.45)

where V‘(r) is the potential-energy function for the field in which the ith 
electron moves. Once the P;(r) are found for each configuration, the centre-of- 
gravity energy E,v and Fk, Gk, ^ and Rk can easily be calculated. These

quantities when combined with the angular coefficients give the energies of the 
various levels in the configuration.

The differential equations (2.45) each have exactly the same form as the 
hydrogenic Schrodinger equation but V '(r) is different. In these equations the 
Vl(r) depends on the radial functions P ^ r), therefore, they are solved 
numerically by the self-consistent field (SCF) method. The net potential V‘(r) 

experienced by the ith electron - initially unknown - can be found by going 
through a self-consistent treatment.

The calculation is started with the aid of an appropriate potential-energy 
function VQ(r), scaled to -2 Z /r  at small radii and to -2 (Z  -  N + l)/r at large 

radii. This provides an initial potential V’(r) in which to calculate trial functions
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Pj^O") for all orbitals n|lj on the first cycle of the SCF iteration (m = 1). 
Therefore, the potential-energy function Vl(r) for cycle m is computed for the

desired method (H, HFS, HX, or HS) (see section 2.7.1), using the functions 
Pj(r) from cycle m -1 .  The value of e; is adjusted so that P ^ i r ) )  satisfy the

boundary conditions

Pj(0) = 0, and 

lim P;(r) = 0.

(2.46)

(2.47)

The condition (2.46) is required to keep the electron density finite at r  = 0 and 
the condition (2.47) is required for the wavefunction of a bound electron. The 
P;(m)(r) obtained is normalized and used to calculate V '(r) which in the next 
cycle yield P;tm)(r). This procedure is repeated until the Piiq>(r) found at the end 

of a cycle is essentially the same as that used at the beginning.

2.6.2 Calculation of energy levels

The energy levels of an atom or ion can be computed using a single or 
multi-configuration basis set.

In the single-configuration approximation of the Slater-Condon theory of 
atomic structure the energies of the various states of the field free atom are given 
by the eigenvalues of the matrix

h 12 H 13 • • \

h 21 H * • • •

H31 ^ 3 2 h 33 • • •

(2.48)

(one matrix for each possible value of total angular momentum) of the 
Hamiltonian operator. The matrix elements of the Hamiltonian

i> j r ij
(2.49)

36



connecting states b and b' may be written in the form

ijk

if only the most important interactions are included and are evaluated using the 
coupled, antisymmetric basis functions (see Cowan 1981). Here lj and lj are

orbital angular-momentum quantum numbers of electrons of a configuration

of incompletely filled subshells. EIvis the average energy of all states (not 

levels) of the configuration. The parameters Fk and Gk are the same as defined 
by equations (2.40) and (2.42). The term d ^  is defined by

The parameter coefficients f k> gk, dj in equation (2.50) depend on the angular 

quantum numbers of the basis sates b and b 'o f the configuration (2.51) in the 
chosen representation, but are independent of the radial wavefunctions and 
therefore of the particular atom or ion which exhibits this configuration. Their 
values can be computed with the help of general analytical formulas (see Cowan

In the case of interacting configurations, accurate calculations cannot be 
made within the limitations of a single-configuration basis set. It is then 
necessary to use a multi-configuration approximation, in which the basis set 
includes wavefunctions from two or more configurations. Each computed 
eigenfunction 'P  will in general then be a mixture of basis functions from all 
configurations included in the calculation - a result referred to as configuration 
mixing. Correspondingly, the computed energies will be different from the values 
that would have been given by a set a single-configuration calculations - a result 
referred to as configuration-interaction perturbations. The wavefunction-mixing 
and energy-level and energy-level-perturbation aspects jointly are referred to 
simply as configuration-interaction.

(2.51)

where

(2.53)

1968).
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Similar to the calculations performed for a single configuration, the Cl 
calculations involve the setting up the matrix the of Hamiltonian operator. For 
two configurations (c, and c2) the Hamiltonian matrix can be written in the 

form:

It is made up of four different submatrix blocks. The two diagonal blocks ( q  and 
c2) are always square, and are identical with the energy matrices that we would 
have had for the two configurations Cj and c2 when considered separately. In 
either block, each matrix consists of sums of terms EIV, f kFk(ij), gkGk(ij), and 
d ;^ . However, the numerical value of E1V that appears in the diagonal elements 
of the block q  will be different from that in c2. Likewise, the radial integrals 
Fk(ij), etc., for the block q  will normally be computed from radial 
wavefunctions P;(r) and Pj(r) obtained from a Hartree-Fock (or HX, HFS, etc.)

calculation for the configuration Cj whereas the radial integrals appearing within 
c2 will be computed via a HF calculation for c2.

The off-diagonal blocks (blocks C j- c 2 and c2-C j)  represent 
configuration-interaction elements, They are in general rectangular rather than 
square, and one block is just the transpose of the other because the total matrix is 
symmetric. The configuration-interaction (Cl) matrix elements are calculated 
exactly as were the single-configuration matrix elements [H ^, =(blH lb ')] but

(b and b') now belong to different configurations. In place of the single-

configuration direct and exchange radial integrals Fk and Gk, the electron- 
electron Coulomb operator gives Cl radial integrals Rk and Rk. The general

forms of these integrals are given by

(2.54)

and
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Note that unlike Fk and Gk, Rkis not necessarily positive. Analogous to the 
single-configuration direct and exchange angular coefficients fk and gk, Cl 
integrals have their own coefficients rk and r k, respectively, and are defined by 

general analytical formulas (see Cowan 1981). There are also configuration- 
interaction spin-orbit matrix elements but their contribution is usually very 
small.

Requirements and consequences of configuration-interactions.
1. The Hamiltonian operator has even parity, and so the Cl matrix 

elements are zero unless the bra and ket functions have a common parity. Thus 
the configurations included in the calculations should have the same parity.

2. The Hamiltonian involves only one- and two-electron operators, so 
that interactions can occur only between two configurations that differ in at most 
two orbitals. For example, interactions may occur between any two of the 
configurations d3s2, d4s, d5, d3p2 and d2sp2, except for d5-d2sp2.

3. The matrix of the Coulomb operator in an LS representation is (just in 
the single-configuration case) diagonal in the quantum numbers LSJM. 
Therefore, non-zero Coulomb Cl matrix elements exist only if each 
configuration contains a basis state with some common value of LS. For 
example, sp and sf do not interact, because the former contains only 1-3P° terms 
whereas the latter contains only 1-3F°.

4. The non-zero Coulomb matrix element that connects basis functions 
lb) and lb ')of two configurations c and c ' causes each eigenstate to be a 

mixture of the two basis states. Because of the spin-orbit mixing present within 
each configuration separately, each eigenstate of the two-configuration 
calculation indirectly becomes a mixture of all basis states (of given J) of both 
configurations. Similarly, a three-configuration calculation for d5 + d3s2 + d2sp2 
will give eigenstates each of which is a mixture of basis functions of all three 
configurations, even though d5 and d2sp2 do not interact directly.

5. Configuration-interaction effects tend to be largest between 
configurations whose centre-of-gravity energies E1V are not greatly different, 

and/or for cases in which the Coulomb matrix elements rkRk(ij,i'j') are large in 

magnitude. Large values of IRkl tend to occur when the two configurations 
belong to the same complex (i.e. configurations having the same n values such as 
configurations 2p63s3p, 2p53s23d, 2p53s3p2, 2p53d3p2 belong to the same 
complex) because the various radial wavefunctions then tend to have maximum 
overlap. Thus, particularly in high ionisation stages where Eav depends primarily
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on the principal quantum numbers and relatively weakly on the orbital angular 
momenta, the largest interactions tend to occur among the configurations within 
a complex, such as 3s23pw-3pw+2 or 3s3pw+1 -3s23pw l3d interaction remains 
strong throughout the isoelectronic sequence. However, the interaction 3s3pw+1 - 
3s23pw_1nd is notoriously strong in neutral atoms for all values of n. 
Consequently, it results in the strong perturbation of all nd Rydberg states.

2.6.3 Calculation of statistically-weighted oscillator strength
(gf-value)

When XUV radiation is passed through an atomic or ionic vapour its 
absorption due to various excitation and ionization processes results in the 
attenuation of the incident beam. The relation between the transmitted and 
incident radiation at some discrete frequency v is given by the expression

I =  I0e-kvL, (2.57)

which is also known as the Lambert-Beer law and kv is termed as the absorption 

co-efficient. I and I0 are the initial and final intensities of radiation of frequency 
V passed through the absorbing column of length L.

In the case of discrete atomic absorption the oscillator strength (f) is often
used to quantify the strength of an observed transition and it can be shown
(Kirkbright and Sargent 1974) that

, (2.58)
n Jte J

where m, e, c and n are the electron mass, electron charge, velocity of light and 
the number of absorbing species per unit volume. The integral J  k vdv is the

integrated absorption co-efficient.
The photoabsorption spectra reported in this work are obtained by 

plotting ln(Io/I) versus energy. I0 represents the intensity of the backlighting 
continuum and I the intensity transmitted through the absorbing column (see 
chapter 3 for further details). It has been shown (Kieman 1994) that for optically 
thin cases this provides a good representation of the relative absorption co­
efficient as a function of energy. To facilitate the analysis visual comparisons are 
made between the relative absorption spectra and stick diagrams based on
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calculated gf-values for the atomic or ionic transitions (for example, see 
chapter 4).

The oscillator strength (f) of a transition can be written in terms of its gf- 
value by the expression

f . f = . (2.59)
,_>f 2J; + 1

The theoretical expression for the gf-value for a transition from some
lower level "i" to a higher level "j" is given by

gf = ~(Ej —E;)S, (2.60)

where E 3 -  E ; is the transition energy in rydbergs. The quantity S is called the

line strength and its square root is defined by the expression

S1/2=<vPiIIP(1)ll'Pf>, (2.61)

' k  1 ^or S1/2 = (~ \)h (2lj + l)1/2(2lf + 1)1/2
0 0 0

x J p n if (r) e r  p n i, (r)d r, (2.62)

where P (1) = e r , is the electric dipole operator.
The above expressions show that calculation of the gf-value for a

transition involves the computation of the corresponding line strength or that of
its square root

S1/2 = ('PiIIP(1)ll4/f> = (yJj IIP(1)II yJf >. (2.63)

In real calculations the wavefunctions I yJj) and lyJf) usually do not involve 

only the single terms, therefore, they are expanded in terms of their suitable basis 
functions of the form

= and (2.64)

lV ,> = X y { ;J,iP,J,>- (2.65)
Pr

Substitution of (2.64) and (2.65) in (2.63) gives
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p. p ,
(2.66)

In the case of neutral atoms having complex configurations errors in the 
computed gf-values - ranging from 50 or 100 percent to one or more orders of 
magnitude - can be observed. The deviations between observed and calculated 
values usually arise as a result of cancellation effects of one sort or another. 
Some of these effects described below can be explained on the basis of 
expressions (2.61) and (2.66).

Intermediate coupling. The line strengths are generally computed in 
terms of single-configuration, pure-coupling basis functions. The quantum states 
in real atoms (especially with Z and N greater than 5) do not usually closely 
approximate pure basis functions. Therefore, computed line strengths usually 
involve evaluating the sum of several terms, because of intermediate-coupling 
and configuration-interaction mixing of basis states. As is clear from expression 
(2.64) this sum represents a mixing of amplitudes rather than of line strengths 
themselves. Consequently, the effect of mixing is not necessarily a tendency to 
average out the various line strengths. The destructive effects could occur 
frequently and cause a weak line to become still weaker, or even cause an 
otherwise strong line to essentially disappear - a situation observed in the 
2p-subshell photoabsorption spectra of neutral A1 and Si.

Radial-integral cancellation. Another type of cancellation may occur 
which is completely different from the angular effects produced by intermediate- 
coupling mixing of basis states. Such a situation arises from the destructive- 
interference effect in the radial portion (rather than the angular portion) of Sl/1. 
In extreme cases, the cancellation effect may be almost 100%. This more or less 
completely wipes out an entire transition array (Cowan 1981).

Configuration-interaction effects. The computed line strengths are very 
sensitive to the composition of a level, so configuration-interaction while not 
affecting greatly the energy of a level may have a considerable effect on the line 
strengths. This situation is very common in the case of core-valence interactions 
(see chapters 4). As the total line strength is always conserved: cancellation 
effects in one line are always counterbalanced by increased line strengths 
elsewhere. In this way, configuration-interaction effects quite commonly result in 
the net transfer of line strength from one transition array to another (also see 
chapter 4).
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2.7 Ab initio calculations with Cowan's code

In order to analyse the measured spectra reported in this work a range of 
ab initio scaled as well as unsealed Configuration-Interaction Hartree-Fock 
(CIHF) atomic structure calculations were carried out with the help of a suite of 
computer programs (Cowan 1981) based on the preceeding theory. The 
calculations requiring limited basis states were performed on the DCU VAX 
while the ones involving large expansions were performed on the Cray XMP/48 
at the Rutherford Appleton Laboratory (UK). The results obtained from these 
calculations, particularly the computed transition energies are highly accurate 
with the exception of a few multi-electron transitions and is clearly evident from 
the comparison made between the computed and measured transition energies 
(see chapters 4, 5 and 6). For the study of photoabsorption spectra from excited 
states (see chapter 7) the ab initio unsealed calculations were found in agreement 
with the measured spectra, therefore, the assignment of the spectra were 
straightforward (for discussion see section 2.7.2). In the case of absorption from 
ground states (see chapters 4, 5 and 6) the desired accuracy was achieved partly 
by suitably scaling the various radial integrals (for discussion see section 2.7.2). 
This suite consisted of the programs RCN35, RCN2, and RCG10. The roles 
played by each of these programs are given in the flow diagrams shown in 
figures 2.1 and 2.2. The primary information is always to RCN, and each 
program automatically provides information to the succeeding program of the 
chain.

2.7.1 RCN35

Program RCN35 calculates the single-configuration wavefunctions P ^ r )  

for a spherically symmetrized atom via any one of the following methods - each 
is an approximation to the true Hartree-Fock Method (Cowan 1981) -

1. Hartree (H),
2. Hartree-Fock-Slater (HFS),
3. Hartree-plus-statistical-exchange (HX), and
4. Hartree-Slater.
The difference in these approaches lies in the form of assumed central 

field potential (for details see Cowan 1981). Nonnally the HX method is used 
since it is computationally the most efficient. It also serves as a starting point for
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the other methods. The calculations can be made either within the framework of 
centre-of-gravity energy of the configuration or for the energy of a specific LS 
term of the configuration (LSD-HF) provided there exists only one term having 
that value of LS.

Figure 2.1
Sim plified flow  diagram  o f  com p u ter program  R C N  for the calcu lation  o f  radial 

w avefunctions and radial integrals for an electron  configuration  v ia  the H , H F S , 

H F S L , H X  or HS method (from  C ow an 1 9 8 1 ).
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Figure 2.2
S im p lified  flow  d iagram  o f  co m p u te r p rog ram  R C G . T h e left-h and  colu m n  

represents the calculation  o f  angular co e fficien t m atrices; the right-hand colum n  

represents the calculation  o f  a to m ic  en ergy levels and spectra for given  values o f  

variou s radial in tegrals. K  = 1  and 2  rep resen ts the first and seco n d  p arities, 

respectively (from  Cow an 1 9 8 1 ).

The computed radial wavefunctions are used to calculate the single- 
configuration radial integrals <rm), F \  Gk, £ and E1V of the system for each



electron configuration involved in the calculation. Relativistic effects on the total 
binding energies and radial wavefunctions become appreciable for Z as small as 
10 and 30, respectively. In this program these effects are incorporated as 
perturbations to the Hartree Method (see Cowan 1981). Proper treatment of 
relativistic effects leads to what may be called the Dirac-Fock (DF) or Dirac - 
Hartree-Fock (DHF) equations (Grant 1970, Desclaux 1975). However, these are 
considerably more complex than the HF equations. Also the achievement of 
convergence of the SCF (Self-Consistent-Field) procedure becomes more 
difficult when Dirac-Fock equations are used.

It has been found (Cowan 1981 and references therein) that theoretical 
values of E1V agree well with the experiment (at least in simple cases), provided

that relativistic and correlation corrections are included. Spin-orbit effects are 
usually predicted with good accuracy, provided that values of Ç are computed 
via the Blume-Watson theory (see Cowan 1981) using HF radial functions. 
Within the framework of the configuration-average approach, the computed 
energy-level splitting resulting from electron-electron Coulomb interactions are 
generally larger than observed by ten to fifty percent. This is a consequence of 
the neglect of the LS-term dependence of electron correlation.

2.7.2 RCN2

Program RCN2 accepts radial wavefunctions from the RCN program and 
calculates various multiple-configuration radial integrals: overlap integrals 
(PIP'), configuration-interaction Coulomb integrals Rk and spin-orbit integrals 
£u, and radial electric-dipole integrals. At this stage, it is also possible to scale 

down the various radial integrals, if desired.
In the ab initio HF method (or any of the approximations thereto), 

electrons are considered to move independently of each other. In reality, the 
electron movements are spatially correlated, primarily by virtue of the simple 
Coulomb repulsion between them. The effects of these corrections can only be 
taken into account approximately, because exact analytical solutions are not 
known for non-hydrogenic systems. The single-configuration ab initio methods 
such as Hartree-X and and Hartree-Fock do contain approximate allowances for 
correllations; and by specifically including configuration mixings, better 
approximations to reality are obtained. However, in any practicable calculation 
of atomic structure, relatively few configurations can be included directly. 
Beyond about 40 simple configurations or 2 or 3 very complex ones, the
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combination of computer time and storage requirements soon become prohibitive 
on even the largest computers.

In situations, where configurations are widely separated in energy or else 
are only linked by very small Rk, it is found that good agreement with the 
observed energy level separations can be obtained by direct inclusion of only a 
few of the most significant interactions (see chapter 7). In some cases, even the 
single configuration approximation is good enough. However, as fewer and 
fewer mixings are directly treated, so it becomes more and more important to 
allow for omitted weak mixings in some way. Even if as many as 40 or more 
configurations are explicitly in the calculation, it is still very often necessary to 
allow for the infinity of mixings with far-off configurations, and indeed for 
mixing with the continuum of unbound states. In short, the spatial correlation 
between electrons may be fairly well represented by the inclusion of some 
nearby configurations, but it is not completely so.

However, with calculations performed including only the most significant 
interactions better agreement with experiment can be obtained by decreasing the 
ab initio values of various radial integrals by suitable amounts (see chapters 4, 5 
and 6). This scaling is used to account for the electron-electron correlation 
effects not properly modelled in the ab initio calculations (Cowan and Wilson 
1988). The required values of scale factors depend on the system under 
investigation. For the systems which exhibit very small electron-correlation 
effects - a situation observed in energy levels closest to being hydrogenic (e.g., in 
highly ionised atoms, configurations involving highly excited states or excited 
configurations arising from the valence-excited states) scaling factors have been 
observed as almost unity (see chapter 7).

2.7.3 RCG10

This program employing Racah-algebra techniques generates the 
coefficients of fractional parentage required to remove ambiguity in the similarly 
labelled LS levels and the various angular coefficients needed to construct the 
Hamiltonian energy matrices from the radial integrals supplied by the 
RCN35/RCN2 programs. By diagonalizing the energy matrices it yields energy 
levels and eigenvector compositions. From these energy levels and eigenvector 
compositions data, and the supplied electric-dipole integrals it computes the 
statistically weighted transition rates (gA) and oscillator strengths (gf).
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C & a p t t r  3

EXPERIMENTAL METHOD AND 
RESULTS

In order to record photoabsorption spectra of the species of interest and distinguish the 

features arising from different ionization stages or from different initial states belonging to the 

same species, a range of time and space-resolved studies were carried out. The purpose of this 

chapter is to (i) describe the experimental method used in the photoabsorption measurements and 

the experimental systems employed for this purpose, and (ii) exhibit some of the results obtained. 

Detailed interpretation is provided in succeeding chapters.

3.1 Experimental method

Figure 3.1 shows the schematic diagram of the experimental method used 

for carrying out the time and space-resolved photoabsorption measurements of 
laser-produced plasmas. Two plasmas were generated in an evacuated target 
chamber in front of the slit of a grazing incidence spectrograph and on the optical 

axis of the spectrograph. One generated at t = 0, called the absorbing plasma, was 
used to provide the absorbing species. The second plasma generated after a time

delay At, called the probing plasma, was used for providing the background 

continuum. The transmitted radiation was collected by the toroidal mirror and 

focused on the slit of a grazing incidence spectrograph/spectrometer.
When a laser pulse is focused onto a solid target in vacuo the leading edge 

of the pulse causes vaporisation and ionization of the target surface and creates a 
low temperature plasma expanding away from the target surface with velocities up

to 107 cm s '1. The expanding plasma thus produced strongly absorbs the 

remainder of the laser pulse and results in the rise of plasma temperature as well as 
the degree of ionization of the absorbing plasma. To conserve momentum, a shock 

wave moves into the solid. Heat transported through the plasma vaporises more 
target material thus replenishing the plasma lost from the focal volume due to
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Figure 3.1
Schematic of the dual laser-produced plasma technique used to carry out the time and 

space-resolved photoabsorption studies of laser-produced plasmas.

hydrodynamic expansion. At the end of the laser pulse, the plasma temperature 
rises to its maximum value and leaves the plasma in different ionization stages 
having temporal and spatial distributions in the plasma plume.The most highly 
ionised atoms appear at the front of the plasma expanding away from the target and 
the highest degree of ionization can be controlled by laser irradiance on the target 
surface.

In time-resolved studies, which exploit the temporal evolution of absorbing 
species in the laser generated plasma, a particular region of the absorbing plasma

plume, at a fixed distance Ax from the target surface as shown in figure 3.1, was 

probed after different inter-plasma time delays. Because of the limitations of the 

experimental system used, measurements were made only during the cooling phase 
of the laser plasma. In space-resolved studies, which exploit the spatial evolution 
of absorbing species, different regions of the plasma plume, almost normal to the 

target surface, were probed at a fixed time delay.

3.2 Experimental systems

The results of the photoabsorption experiments presented in the following sections 
were obtained using both photographic and photoelectric systems. The different 

parts of the systems used in the photoabsorption studies carried out can be divided
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into three main blocks:
(a) photographic system,

(b) photoelectric system, and
(c) synchronised lasers.
The details of the development and assessment of the photographic system 

including a stigmatic 2m grazing incidence spectrograph, toroidal optics, target 

chamber, target holders, focusing optics, vacuum system and the system 
alignment has been described by Hopkins (1992).

The development, characterisation and assessment of the photoelectric 
system, using a 2.2m McPherson grazing incidence spectrometer equipped with 
MCP/PDA type multichannel detection, has been the subject of the Ph.D. thesis of 
Kieman (1994). The synchronisation of the lasers used was achieved as part of the 

M.Sc. work of Evans (1991). In the photoelectric system the firing of the lasers 
and data acquisition was conducted through an IBM PC based OMA system. The 
software used and various details of the data capturing and processing have been 
described by Shaw (1994). For the sake of completeness, the systems will be very 

briefly introduced in this section.

3.2.1 Photographic system

Figure 3.2 shows the layout of the photographic system which employed 

the dual laser-produced plasma technique (Carroll and Kennedy 1977, Carroll and 
Costello 1986) and a stigmatic grazing incidence spectrograph (Tondello 1979, 
Hopkins 1992). The absorbing plasma was produced using the output of either a 

Q-switched ruby laser (1.5J, 30ns) or a dye laser (2J, 800ns). The focusing was 
via either a spherical lens or a cylindrical lens. The probing plasma was generated 
by tightly focusing the output of a time synchronised Q-switched Nd:YAG laser 
(1J, 10ns) on the cylindrical surface of a tantalum or tungsten target. A

multichannel digital delay system providing delays in the range 0-999.99 [is was

used for the synchronisation of the lasers. Firing of the lasers was either through 
an IBM PC or manually. The jitter between the two laser pulses was about 
± 30ns.

The spectra were recorded on KODAK-SWR (Short Wavelength 
Radiation) plates by means of a 2m stigmatic grazing incidence Rank and Hilger 
spectrograph equipped with a 1200 lines/mm concave grating; the entrance slit of
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at 120 A. The theory and construction of the spectrograph can be found in an 
excellent book by Samson (1967). The various details of the spectrograph used 

and development of the plates has been described by Brilly (1990a).
In a typical photoabsorption experiment carried out using this system 

10 - 20 shots were enough to produce adequate plate blackening; this is much less 

than required in earlier experiments employing astigmatic spectrographs (Brilly et 
al. 1988). In measuring the plates well known emission lines of A1 and O ions 
listed by Kelly (1987) were used as external wavelength standards in addition to

the internal absorption lines of Al2+ reported by Brilly et al. (1988, 1990) and Al 

and A1+ listed by Cantu et al. (1982). The external references were obtained by 

recording emission spectra of point plasmas formed on aluminium and aluminium 
oxide targets with tightly focused laser beams. The plates were measured on a 

photoelectric comparator in the Physics Department at University College Dublin.

spectrograph was kept at 10 |xm. The dispersion of the spectrograph was 1 A/mm

Ruby or Dye Laser Pulse Used 
to Ge.neratp. Absorbing Soe.cies

Nd: YAG Laser Pulse Used 
to Generate Background continuum

Target Chamber

Figure 3.2
Layout of the photographic system used in the XUV photoabsorption studies of atoms and 

ions.

This instrument is operated by hand and essentially allows the accurate

52



determination of the position of spectral lines along the photographic plate. To 
compute final wavelength values for the unknown features a third order 

polynomial fitting was applied to the known reference lines. The measured errors 
were within ± 0.02 eV.

This system was employed only in photoabsorption studies of A1 plasmas.

In an attempt to measure the 2p- absorption spectrum of A1+ a time-resolved study 

of A1 plasma was carried out and time-resolved absorption spectra of Al2+, Al+ and 

A1 were recorded on a single plate (see Costello et al. 1992). All other 
photoabsorption studies were carried out photoelectrically.

3.2.2 Photoelectric system

The photoelectric system employed is shown in figure 3.3. The spectra 
were recorded on a 2.2m McPherson grazing incidence spectrometer equipped 

with a 1200 lines/mm grating, operated with a slit width of 10 fim and MCP/PDA 
multichannel detection. The technology behind this method of detection and the 
various applications together with examples of spectra obtained have been given by 
Wiza (1979), Cromer etal. (1985), Schwob etal. (1987), Colcott etal. (1988) and 

Kieman etal. (1994).
In a photoabsorption experiment, the background continuum (I0) and 

transmitted (I) radiations were captured with the help of OMA system using a 1024 

pixels photodiode array (PDA). To obtain I0, the YAG laser was fired on the 
continuum generating target and to obtain I both the lasers were fired. Typically 20 
such single shot spectra were acquired both for I and I0 and numerically averaged 

to improve the signal to noise ratio. The relative cross section was obtained by 
computing the quantity -ln(I/I0). For each setting of the array detector, a 
wavelength reference emission spectrum of Al and O ions was also taken. A 
standard third order polynomial fitting procedure was applied to the reference 

spectrum in order to provide calibrated energy scales for the photoabsorption 
data.The spectral resolution of the system is ~ 1500 and measurements obtained 
from this instrument carry a typical error of ± 0.05 eY.

The synchronised lasers were the same as used in the photographic system. 
The firing of the lasers and data acquisition was through an OMA system. In order 
to monitor on a single shot basis the video output of the photodiode array 

was connected to a digital Hewlett Packard oscilloscope. In order to monitor the
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Figure 3.3
L ayo u t o f  the m ulti-laser, m ultichannel spectrom eter used in the tim e and space-resolved  

photoabsorption studies o f  laser plasm as.

shot to shot delay of the lasers, scattered light from the targets was detected with a 
photodiode the output of which was sent to a second digital HP oscilloscope.

3.3 Photoabsorption of Mg laser plasmas

Photoabsorption studies of Mg plasmas were carried out in the 2p-subshell 

regions of (i) atomic Mg in ground and excited states, and (ii) Na-like ionic Mg+ in 

excited states.

3.3.1 Atomic magnesium in ground state absorption

Figure 3.4 shows the time-resolved photoabsorption spectra of atomic
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magnesium in the ground state. The absorption measurements of dye laser 
generated line plasmas were made after inter-plasma time delays of 200 ns, 250 ns, 

350 ns and 450 ns at a distance of 0.1 mm from the target surface.

Photon Energy (eV)

Figure 3.4
T im e-resolved photoabsorption spectra o f  dye laser generated  M g line plasm as recorded in 

the 2p-subshell region o f  atom ic M g in the ground state. T h e  plasm as w ere probed 0 .1  mm  

from the target surface after inter-plasm a lime delays o f  2 0 0  ns, 2 5 0  ns, 3 5 0  ns and 4 5 0  ns.

Fortunately, the spectral identification of neutral Mg does not pose any 

serious problem as its features are observed well separated from Na-like ionic Mg+ 

absorption. The 2p absorption due to Mg+ is observed above the 2p limits of 

neutral Mg (see figure 3.4) except for 2p63s 2S —» 2p53s2 2P resonances which 

appear at 49.90 eV and 50.17 eV and also do not fall in the region of 2p absorption 

of ground state Mg.

3.3.2 Atomic magnesium in excited state absorption

Figure 3.5 exhibits the results of photoabsorption measurements of ruby 
laser generated line plasmas probed at a fixed distance of 0.1 mm from the target
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surface under two different laser irradiances. At the lower laser power density 
corresponding to a flash lamp voltage of 1.9 kV the measurements were made at 

time delays of 105 ns (Figure 2.5a) and 130 ns (Figure 2.5b). At a higher flash 
lamp voltage of 2 kV, the time delays were 105 ns (Figure 2.5c) and 150 ns

(Figure 2.5d). In both cases significant absorption is observed from the 2p63s3p

3P metastable states but absorption from the 2p63s3p !P states is very weak.

Photon Energy (eV)

F igure  3.5.
Tim e-resolved phoioabsorpiion spectra o f  ruby laser generated M g line plasm as recorded in 

the 2p-subshell region o f  atom ic M g in excited  slates using tw o different laser irradiances 

but probed at a  fixed distance from  o f  0 .1  m m  from  the target surface. In the cases o f (a) 

and (b) the ruby flash lamp voltage w as 1 .9  kV. F o r (c ) and (d) it was increased to 2  kV.

3.3.3 Na-Iike magnesium in excited state absorption

In order to make absorption measurements for Na-like Mg+ in excited 

states a time-resolved study of ruby generated Mg line plasmas was carried out. 
The results are shown in figure 3.6. The absorbing plasma was probed 0.1 mm
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from the target surface after inter-plasma time delays of 60 ns, 80 ns, 100 ns and 

125 ns.

Photon Energy (eV )

Figure 3.6
Time-resolved photoabsorption spectra of ruby laser generated Mg line plasmas recorded in 

the 2p-subshcl! region of Na-like Mg+ in excited states. The plasmas were probed 0.1 mm 

from the target surface after inter-plasma time delays of 60 ns, 80 ns, 100 ns and 125 ns.

It is clearly evident from the photoabsorption study shown in figure 3.6 

that when the plasma conditions are optimised for Mg, Mg+ and Mg2+ the 

abundance of the Mg+ ions in ground states almost remains the same whether the 

absorption is dominated by Mg (observed at 125 ns) or Mg2+ (observed at 60 ns). 

A similar situation has been observed in the case of the A1 and Si plasmas reported 

in sections 5 and 6 of this chapter. In general, when the plasma conditions are 
optimised for three different ionization stages the abundance of the intermediate 
ions in ground states almost remains the same whether the absorption is dominated 
by higher or lower ionization stages and is in agreement with the results of the 

collisional radiative equilibrium model (Colombant and Tonon 1973). Therefore, 
in order to record a pure spectrum of some intermediate ionic species in ground 
state the optimisation of laser plasma for that particular ion stage is essential.
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However, in the photoabsorption measurements of species in excited states the 
situation is different. The strong absorption from absorbing species of interest in 

excited states is observed only when the plasma conditions are optimised for the 
absorbing species of interest and its higher ionization stage. In the case of excited

state absorption from Na-like Mg+ this is evident from the time-resolved spectra 

shown in figure 3.6. At 60 ns delay where the Mg+ and Mg2+ ions dominate in the 

absorbing plasma strong absorption is observed from the valence-excited states of 

Mg+. With increasing delay as the relative abundance of Mg2+ ions decreases the

absorption from the valence-excited states of Mg+ also decreases.

3.4 Photoabsorption of A1 laser plasmas

Photoabsorption measurements of aluminium plasmas were made for (i) 

atomic A1 in ground and excited states, (ii) Mg-like Al+ in ground and excited

states, and (iii) Na-like Al2+ in excited states. The absorbing plasmas were 

generated using both dye and ruby lasers.

3.4.1 Atomic A1 in ground state absorption

In order to record the 2p-subshell absorption spectrum of atomic 

aluminium in the ground states a time-resolved study of ruby laser generated A1 
plasmas was carried out. The plasma was probed 0.2 mm from the target surface 
after inter-plasma time delays of 150 ns, 200 ns and 250 ns. The results of this

time-resolved study are shown in figure 3.7. At 150 ns, absorption is due to Al2+ 

in the ground state and A1+ in both ground and excited states. At 200 ns, the 

absorption is mainly due to A1+ in ground state. At a time delay of 250 ns strong 

absorption takes place due to neutral A1 along with relatively weak absorption due 

to Al+. As the absorption due to Al+ does not overlap with that of neutral A1 its 

presence does not cause any serious problem for the spectral analysis of the 
neutral.

The abundance of Al+, an intermediate stage between neutral A1 and Al2+, 

remains very significant whether the plasma conditions are favourable for the

58



absorption of Al2+ or neutral Al. This is similar to the photoabsorption spectra of 
Mg plasma shown in figure 2.6. Furthermore, similar to figure 2.6, the spectra 

shown in figure 2.7 clearly demonstrate that significant absorption from valence

-JU —1---------J-------- JL_ _l I I 1 I _JL_

Al Al+

(c) At = 250 ns

(b) At = 200 ns

(a) At = 150 ns

70
T

75
-f |--  I |------1------!------1------1------ [“

80 85
Photon Energy (eV)

90

Figure 3.7
Tim e-resolved photoabsorption spectra o f  ruby laser generated A1 point plasm as measured  

in the 2p-subshell regions o f  atom ic A l. The plasm as w ere probed 0 .2  mm from the target 

surface after inter plasm a lim e delays 1 5 0  ns, 2 0 0  ns and 2 5 0  ns.

excited states takes place only when the plasma conditions are optimised for that 
particular stage and the corresponding higher ionization stage in ground states.

3.4.2 M g-like Al+ in ground state absorption

To distinguish the 2p absorption of Al+ from the other observed spectral

features (particularly due to Al2+) and record its pure spectrum a number of time 

and space-resolved studies were carried out. Figure 3.8 shows a time-resolved 
photoabsorption spectra of ruby laser generated Al plasmas. The absorption
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measurements were made at inter-plasma time delays of 80 ns, 110 ns, 150 ns, 
180 ns and 220 ns, and the plasma was probed 1.2 mm from the target surface.

(0  At = 200 ns

(e) At = 220 ns

(d) At = 180 ns

(c) At = 150 ns

(b) At = 110 ns

(a) At = 80 ns

80 85 90
Photon Energy (eV)

95 100

Figure 3.8
Tim e-resolved photoabsorption spectra o f  ruby laser generated  Al plasm as recorded  in the 

2p-subshell region o f M g-like A l+  in ground state. In figures (a ) - (e ) the plasm as w ere  

probed 1.2 mm from the target surface after inter plasm a delays o f  8 0  ns, 1 1 0  ns, 150  ns,

180  ns and 2 2 0  ns. In figure ( 0  it w as probed at 0 .1 5  m m  from the target su rface after 

inter-plasma delay o f 2 0 0  ns.

At a time delay of 80 ns, the absorption is due to Al+ and Al2+ but is 

dominated by Al2+ absorption. In moving from 80 ns to 220 ns as the relatively 

fast moving Al2+ ions leave the region probed by XUV radiation and more slowly 

moving Al+ ions arrive in this region the relative absorption due to Al+ increases. 

Consequently, at higher delays these ions become almost time-resolved in this 

region. At 220 ns only the strongest features of Al2+ are observed. In an other 

experiment (figure 3.8f) where the Al plasma, generated under the same conditions 

of laser-irradiance and focusing, was probed at a distance of 0.15 mm from the 

target surface after an inter-plasma time delay of 200 ns the Al+ and Al2+ ions

60



were found to be relatively more time-resolved. This enabled the relatively weak 

higher Rydbergs which overlap with the strongest features of Al2+ to be 

unambiguously identified.

3.4.3 Neutral A1 in excited state absorption

Unfortunately, no specific time or space-resolved study was carried out 
with the intention to obtain an absorption spectrum from the valence excited states 

of Al. However, in a photoabsorption experiment carried out to measure the 

absorption spectrum of valence excited Al+, the absorption from the valence 

excited states of neutral Al was also observed. The results of this experiment in 

which the absorbing plasma was probed 0.1 mm from the target surface after a 
delay of 50 ns seconds are shown in figure 3.9. The absorption from the valence 

excited neutral Al is relatively weak as the absorbing plasma was dominated by Al+ 

and Al2+.

■ i  i  t i * ■ i i  i i i i i i— i— i— i— i— i— i— i — i— i— i— *— »— i— i— i— i— i— i— i— i — *— i— i 1— i — i— 1

t—i—r—i—|—i 1 -|—i—<-. i I ' ' i ■ I i
7 1

t—i—|—i—r

6 5 6 7 6 9 7 3 75
Photon Energy (eV)

Figure 3.9
The 2p-subshell photoabsorption spectrum  o f  neutral A l in valen ce excited  state.

61



3.4.4 Mg-like Al+ excited state absorption

Figure 3.10 shows the results of a time-resolved study in which the ruby 
laser generated A1 point plasmas were probed 0.1 mm from the target surface after 

inter-plasma time delays of 20 ns and 50 ns. At 20 ns strong absorption is 

observed due to Al2+*. However, at a longer delay of 50 ns, as the plasma cools

the relative absorption due to the valence-excited states of Al+ is increased.

Photon Energy (eV)

Figure 3.10
Tim e-resolved photoabsorplion spectra o f  a ruby laser generated A1 plasm as recorded in the 

2p-subshell region o f  M g-like A l+  in excited  states. T h e plasm as w ere probed 0 .1  mm  

from the target surface after an inter plasm a delays o f  2 0  ns and 5 0  ns.

3.4.3 Na-like Al2+ excited state absorption

The photoabsorption spectrum of Al2+ in valence-excited states was 

recorded in an experiment where the absorbing plasma was probed 0.3 mm from
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the target surface after an inter-plasma time delay of 50 ns. The results are shown 

in figure 3.11. The absorbing plasma was optimised for Al2+ and Al3+.

Photon Energy (eV)

Figure 3.11
Photoabsorption spectra o f  ruby laser generated  A1 p lasm as recorded  in the 2p-subshell 

region o f  A l2 +  in excited  states. T he plasm as w ere probed at a distance o f 0 .3  mm from the 

target surface after a  delay o f  5 0  ns.

3.5 Photoabsorption of Si laser plasmas

Photoabsorption measurements of Si plasmas were made for (i) atomic 

silicon in ground state, (ii) Al-like Si+ in ground and excited states, (iii) Mg-like 

Si2+ in ground and excited states, and (iv) Na-like Si in ground and excited states. 

The absorbing plasmas were generated with the ruby laser.
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3.5.1 Neutral and singly ionised silicon ground state

absorption

The absorption measurements of neutral and singly ionised species did not 
pose any serious problems. By controlling the laser irradiance one can produce 

laser plasma containing at the highest only singly ionised species. Such a plasma 
when probed close to the target surface at relatively shorter delays yielded 
absorption due to only the singly ionised species. The measurements made after 

longer delays should exhibit absorption due to neutrals. Also, the 2p absorption 
spectra of neutrals and singly ionised species, often, do not overlap as was the 
case in Mg and Al. Therefore, one can easily distinguish among the absorption 
structures arising from neutrals and singly ionised species.

Photon Energy (eV)

Figure 3.12

Tim e-resolved photoabsorption spectra o f  a ruby laser generated Si plasm as recorded in the 

2p-subshell regions o f Si neutral and Si+  in ground slates.

In order to record the 2p absorption of neutral and singly ionised silicon in

64



ground states the silicon plasmas were generated in such a way that Si+ was the 

highest ionization stage. Time-resolved measurements were made in order to 

record the spectra of Si+ and neutral Si. The results of these measurements are 

shown in figure 3.12. The absorbing plasma was probed 0.1 mm from the target 
surface after inter-plasma time delays of 50 ns, 100 ns, 150 ns and 200 ns.

At 50 ns delay absorption is only due to Si+. At 100 ns, as the plasma 

cools relatively weak absorption from neutrals also takes place. Along with the 

increasing time delay the absorption due to Si+ gradually falls. At 200 ns, only the

strongest features of Si+ are observed and the absorption is dominated by the 

neutral silicon features.

3.5.2 Mg-like Si2+ in ground state absorption

As the degree of ionization increases absorption measurements for the 
Mg-like ion stage become more difficult because of overlapping of spectral features 

with lower and higher ionization stages. In Si2+ the features on the lower energy 

side overlap with ground state absorption of Si+ and excited state absorption of 

Si2+ arising from the 2p63s3p —> 2p53s3p3d transition array. The higher energy 

region overlaps with that of Na-like silicon. In contrast to Na-like Al2+ the 

strongest features of Si3+ which arise from 2p —» 3d transitions are well separated 

from the absorption features due to Si2+, therefore, their weak presence, which 

could be observed even when the plasma conditions are optimised for Si2+, does 

not cause any serious problem for the spectral analysis of higher Rydbergs. The 

absorption structures on the lower energy region can be separated from Si+ 

absorption in a photoabsorption experiment in which the highest degree of 

ionization of the laser plasma is optimised for Si2+.

In figure 3.13, a space-resolved absorption study of Si plasma is shown in 

which the plasma was optimised for Si2+ as the highest degree of ionization. The 

plasma was probed at 0.5 mm, 1.5 mm, 2.5 mm, 3.5 mm and 4.5 mm positions 
from the target surface after a fixed inter-plasma delay of 200 ns. At 0.5 mm, the

spectrum exhibits strong absorption due to Si+ and very weak absorption due to
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Si2+. With increasing distance from the target surface, the relatively slow Si+ ions 

lag behind Si2+; consequently, the relative absorption due to Si2+ increases. The 

plasma probed at 4.5 mm exhibits absorption only due to Si2+.

Photon Energy (eV)

Figure 3.13
Space-resolved photoabsorption spectra o f  a  ruby laser generated Si plasm a m easured in the 

2p-subshell region o f  ground state Si2 + .

3.5.4 Si3+, Si2+ and Si+ in excited state absorption

In order to record the 2p absorption of Si3+, Si2+ and Si+ a time-resolved 

study of ruby laser generated Si plasmas, with Si4+ as the highest degree of 

ionization was carried out. The absorbing plasma was probed at a fixed distance of 
0.3 mm from the target surface after inter-plasma time delays of 30 ns, 40 ns, 60 
ns and 80 ns. The results of this study are shown in figure 3.14. The temporal 
evolution and expansion geometry of the ions is well exhibited.

At a delay of 30 ns the absorption is due to Si4+, Si3+ and Si2+ in ground
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states and Si3+ in excited states as the ground state absorption is dominated by Ne- 

like Si4+ absorption.

At 40 ns, the absorption is still due to Si4+, Si3+, Si2+ and Si+ in ground 

states, however, it is dominated by Na-like Si3+. The relative absorption due to the 

fast moving Si4+ ions decreases as the majority of them leave the region probed by 

the XUV continuum. The absorption in excited states is observed only due Si3+ 

and Si2+ and is dominated by Si3+ absorption.
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Figure 3.14
Time-resolved pholoabsorption spectra of a ruby laser generated Si plasma measured in the 

2p-subshell region of Si3“*', Si2+ and Si+ in excited states.

At 60 ns, all the Si4+ ions have left this region and absorption is only

observed due to Si3+, Si2+ and Si+ in ground states. It is dominated by Mg-like

Si2+ and Si3+, Si2+ and Si+ in excited states. The excited state absorption is

dominated by the 2p63s3p 3P -> 2p53s23p li3L transitions of Si2+. The absorption

from the valence excited 2p63s3p !P dipole allowed states remains relatively very 

weak.
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At 80 ns, the absorption is due to Si3+, Si2+ and Si+ in ground states and is 

dominated by Si2+ and Si+. The weak absorption observed due to Si3+ shows that 

they are slower than Si4+. The valence excited absorption is observed in Si2+ and 

Si+.

3.6 Conclusions

The way time- and space-resolved studies of laser plasmas help us to 
distinguish the absorption features arising from different species is demonstrated. 
These studies show that in the case of ground state absorption by probing the 

plasma close to the target surface just after the end of the laser pulse almost pure 
spectra of the ion stage of interest can be obtained when the highest degree of 
ionization in the plasma is equal to the ion stage of interest. If the degree of 
ionization is higher a relatively longer delay is required. However, in the case of 
excited states the strong absorption from species of interest can be obtained only 
when the plasma conditions are optimised for the absorbing species of interest and 
its higher ionization stage.
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Chapter 4

MAGNESIUM ISO ELECTRO N IC SEQUENCE 
IN GROUND STATE ABSORPTION

Photoabsorption  in vestigation s o f  isoelectron ic  sp ecies M g , A l+  and S i2 +  in their 

ground states have been carried  out in their 2p-subshell reg ion s. T h e effects  o f  configuration- 

interactions on the relative distribution o f  g f-valu es and term  en ergies both  in the ground and  

excited  states have been exam ined in detail for A l+  and Si2 + . A  revised  term analysis is given for 

Al+  and a  com plete assignm ent o f  the S i2 +  spectrum  is given for the first tim e. General features 

o f the spectra are discussed and a com parison is m ade with the corresponding valence-shell spectra.

4.1 Previous work

2p-subshell excitation/ionization along the Mg isoelectronic sequence in the 
ground state continues to be the subject of both theoretical and experimental 
studies. Atomic magnesium, because of its rather simple structure (Kämmerling et 
al. 1992) and dynamics (Hausmann et al. 1988, Whitfield et al. 1991), has been an 
ideal candidate for 2p photoionization studies. The 2p-subshell 
excitation/ionization of neutral magnesium has been studied experimentally using a 

variety of techniques. The resonance structures were measured in photoabsorption 
experiments by Newsom (1971), Esteva and Mehlman (1974) and Ederer etal. 
(1979). Detailed term analyses have been made on the basis of quantum defect 

(Newsom 1971) and multiconfiguration atomic structure calculations (Mansfield 
and Connerade 1972, Esteva and Mehlman 1974). Experimental photoionization 
studies were carried out by Hausmann et al. (1988) and Kämmerling et al. (1992). 
Decay of the autoionizing states has been the subject of ejected-electron (Pegg et 
al. 1975, Pejcev et al. 1977), electron-impact (Breuckmann et al. 1976) and 
photoemission (Whitfield etal. 1991) studies.

Photoionization of atomic Mg has been studied using different theoretical 

approaches. Using the relativistic random-phase approximation (RRPA),
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Deshmukh and Manson (1983) performed cross section calculations covering the 
energy region from the 3s threshold to 270 eV but included only the

single-electron resonances due to the 2s -> np ( n > 6) and 2p -> nd (ms) (n > 8, m

> 10) excitations. Using the many-body perturbation theory (MBPT), Altun 
(1989) carried out detailed calculations of the photoionization cross section of 
magnesium for photon energies ranging from the 3s threshold to 300 eV. In these

calculations he included both 2s -> np (n > 3), 2p -> nd (ms) (n ^  3, m > 4)

single-electron resonances and 3s2 -> 3pnd (ms) (n > 3, m > 4) double-electron 

resonances.
Inner-shell ionization studies of Mg-like ions have been carried out in 

connection with their importance in laboratory and astrophysical plasmas where 

ionization takes place through direct and indirect processes. In the direct-ionization 
process either a valence electron or any of the inner-shell electrons are knocked out 
from the ion by photon or electron-impact. The indirect-ionization proceeds 
through the excitation of an inner-shell electron followed by autoionization. These 
excitation-autoionization processes have recently been of great interest both in 
photoionization (Peart et al. 1989) and electron-impact (Howald et al. 1986) 
studies as they result in the dramatic enhancement of ionization cross sections.

Absolute electron-impact ionization cross sections for the Mg-like ions S4+, Cl5+, 

and Ar6* were measured in a crossed-beam experiment from threshold to 1500 eV 

by Howald et al. (1986). The relative magnitude of the indirect ionization process 

was found to be increased dramatically in comparison with the direct process along 
the sequence. Excitation-autoionization contributions to the electron-impact 

ionization of the Mg-like ions S4+, Cl5+, and Ar6* were calculated in the distorted- 
wave approximation by Pindzola et al. (1986). The calculated cross sections were 

in very good agreement with the experimental measurements of Howald et al.
(1986). Using the R-matrix method Tayyal and Henry (1986) carried out

calculations for Mg-like ions A1+, S4+, Cl5+ and Ar6+. The ground 3s2 JS state 

together with the autoionizing states arising from the 2p53s23p, 2p53s23d, 

2p53s24s, 2s2p63s23p, 2s2p63s23d, and 2s2p63s24s configurations were included

in the R-matrix expansion. In the case of A1+ a comparison was made with the 

experimental data of Montague and Harrison (1983). The calculated cross sections 

for S4+, Cl5+ and Ar6* were compared with the crossed-beam experimental data of
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Howald et al. (1986). Although the 2p53s3p2 configuration, which is strongly

mixed with the 2p53s23d configuration, was not included in the calculations even 

then the calculated and measured cross sections were in excellent agreement. In 

both calculations the largest contributions predicted were due to the 2p -> 3p

monopole and 2p -> 3d dipole excitations.

Theoretical investigations of the electron-correlations involving the valence 
shells in the magnesium sequence are numerous. The two-electron excitations, 

both below and above the first ionization limits, which lead to resonances and 
series perturbers are of great interest in computation (Chang 1986a, 1986b, 1987). 

A theoretical study of the 2p63s2 *S 2p6[3p(n+l)s + 3pnd, n > 3] *P doubly 

excited states, which lie above the first-ionization threshold of magnesium, has 

been reported by Chang (1986b). Good agreement was found between the 
experimental and calculated energy values of these doubly excited states. The 
importance of the configuration-interaction between the doubly excited perturber 

and the singly excited 2p63snl series has been examined quantitatively using 

superposition of configuration calculations (Chang 1986a). The entire 3snd series 
was found perturbed by the 3pn(>3)p configuration series. In particular the entire

3snd series was shifted due to the strong interaction with the 3p2 configuration. 

The effects of configuration-interaction on the term values and oscillator strengths 

of the 2p63snl !L singly excited states of the Mg atom below the first-ionization 

threshold have also been examined in detail by Chang (1987). A theoretical study 

of configuration-interaction between bound singly excited (3snl) li3L and doubly 

excited (n1l1, n2l2)1,3L states below the first ionization threshold of the Mg-like

ions A1+ and Si2+ has been published by Chang and Wang (1987). The study 

viewed the problem from the perspective of the doubly excited state as the 

perturber of each one electron Rydberg series 3s2 -* 3snl. The effect of each 

doubly excited state on term energies and gf values for each Rydberg member was 
examined in detail. Recently Chang and Wang (1991) have extended their study on 
the effect of configuration-interaction to the energy levels, the oscillator strengths 

and the radiative lifetimes of the bound excited states to the Mg-like ions P3+ and

S4+. The Al+ and Si2+ ions were also included in this study. O ’Mahony (1985) 

using a combination of R-matrix and hyperspherical coordinate techniques studied 

the effects of electron correlation in atomic valence-shells. The 2p63snd-2p63p2
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mixing in Mg was analysed in detail and its relevance to the s2pnd-spn+2 

interactions throughout the row was indicated by a study of the 2p63s2nd- 

2p63s3p2 mixing in Al. The 2p63s3p2 configuration was found strongly mixed 

throughout the 2p63s2nd Rydberg series and into the 3s2ed continuum. The

2p63s2ns Rydberg were not perturbed to any great extent by the 2p63s3p2 

configuration.

4.2 Present work

The spectrum of Mg has previously been studied in some detail (Ederer et 
al. 1979) while we have published recently measurements and analysis of the 

2p photoabsorption spectrum of A1+ (Costello et al. 1992). More recently we have 

extended these studies to Si2+. The 2p subshell photoabsorption spectra of atomic 

magnesium, singly ionised aluminium and doubly ionised silicon going to the 

2p53s2 (2P3/2,i/2) limits are shown in figure 4.1. The limits indicated in this 
figure were obtained by adding the first ionization potential of each species as 

given by Martin and Zalubas (1979, 1980, 1983) to the 2p63s (2S1/2) -» 2p53s2 

(2P3/2 . 1/2) transition energies of Mg+ (Esteva and Mehlman 1974), Al2+ (Brilly et 

al. 1988) and Si3+ (Mosnier et al. 1987). The spectra along this sequence are 

dominated by the2p63s2 JS -> 2p53s2nl 1-3L one-electron excitations and 2p63s2 

XS -> 2p53s3pnp two-electron excitations.

In order to provide interpretation for the observed spectra of Si2+ and gain 

a more complete understanding of the level structure of this sequence, atomic 

structure configuration-interaction calculations have been performed for Al+ and 

Si2+.
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P h o to n  E n e r g y  ( c V )

Photon E nergy (eV )

Photon  E nergy  (eV )

Figure 4.1

T he 2p-subshell ground state photoabsorption spectra o f  (a ) M g , (b) A l+  and (c )  S i2 +  obtained 

using the D L P P  technique. T he labelling shown for M g is from E d erer et al. (1 9 7 9 )  while for Al+  

and Si2 +  is based on the present investigations (see  tables 4 .1  and 4 .2 ) .  T h e  p osition s o f  the 

2 P 3 / 2  and 2 P i / 2  thresholds indicated in the figure are at 5 7 .5 5  and 5 7 .8 1  eV  foe M g, 9 1 .7 6  and 

9 2 .1 8  eV  for A l+ , and 1 3 3 .3 2  and 1 3 3 .8 4  eV  for Si2 +  respectively.
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4.3 Effects of Cl on the ground and excited states

The effects of configuration-interaction (Cl) both on the ground and excited 

states have been examined in detail for A1+ and Si2+. A qualitative comparison with 

the experimental results is also provided. The effects of configuration-interaction 

on the term energies and oscillator strength of excited states will be discussed in 
section 4.3.1 while the role of electron correlations in the ground state will be 
assessed in section 4.3.2.

4.3.1 C l effects on the excited states

In order to investigate the configuration-interaction (Cl) effects on the 
excited states a series of scaled atomic structure calculations were performed with 
a fixed basis states expansion for the ground states while adding successively the 

odd parity configurations to the excited states expansion including only the 
Rydberg series members. Throughout this study the computed and observed 
relative transition energies and oscillator strengths were compared as each new 

configuration was added
First of all, the calculated level structure obtained for the unperturbed 

Rydberg series members, referred to as SA, is discussed then the effects of the

2p53s3p2 and 2p53s3p4p the doubly excited perturbers are investigated. Finally 

the effects of the 2s2p63s23p, 2p63s3p and 2p63p3d configurations, which 

account for the core-valence interactions, are examined on the energies and 

oscillator strengths of both the Rydberg series members and the doubly excited 
states. The results of these scaled calculations, where the direct and exchange 
integrals were reduced by 20%, configuration-interaction integrals by 30% and 

spin orbit integrals by 10%, are shown in figure 4.2 both for A1+ and Si2+. In this 

figure the gf-values have been plotted against the calculated term energies for each 
expansion.

SA = 2p6(3s2+3p2) —» 2ps 3 s2(n+l)s + 2ps 3 s2nd, [n = 3,..10]

Apart from overestimating the transition energies by < 0.3 eV, this
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expansion provides a reasonable fit to the 2p -> nl, ( n > 4) Rydberg series. It also 
clearly demonstrates that some of the strongest features in this spectrum must arise 

from multiply excited transitions and hence correlation effects play a major role in 

Al+ and Si2+ just as they do in Mg.

The relative positions and intensities of *P and 3D terms, belonging to the 

3d (lines 4 and 5), 4d (lines 7 and 8) and 5d (lines 9 and 10) configurations in A1+, 

predicted by these calculations are in accordance with the observed spectra (Figure 

4.2a). In Si2+, the calculated positions of !P and 3D in 3d configuration (lines 3 

and 4) are not in agreement with experiment (Figure 4.2b).

SB =  SA +  2ps 3 s 3 p 2

The origin of the three prominent features, in the A1+ spectrum, in the 

81.5 -> 83.0 eV range becomes clear as oscillator strength is transferred from the 

2p -> 3d array to 2p -> 3s3p2 transitions leading to a substantial redistribution of 

oscillator strength between these two arrays. Compared to the 3d ]P term more 

oscillator strength is sucked from the 3d 3D term.

The inversion of !p  and 3D (lines 3 and 4 respectively) as observed in the 

Si2+ spectrum is also evident from expansion SB when compared with expansion 

SA (Figure 4.2b). In the Si2+ spectrum the 3D term of the 3d configuration is 

strongly perturbed by the 2p53s3p2 configuration and is pushed to higher 

energy region while the TP term remains unperturbed in energy. In the case of

A1+, both the 'P  and 3D are strongly perturbed in energy (Figure 4.2a SA and SB) 

but their relative positions remain the same.

The 2p53s23d and 2p53s3p2 configurations were found strongly mixed

with each other both in A1+ and Si2+. On the other hand, no significant effect has 

been seen on the higher Rydberg series members belonging to the nd series as well 
as the entire ns series.
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SC = SB + 2p53s3p4p

The inclusion of 2p53s3p4p, which mixes with higher nd states, leads to 
slight energy and oscillator strength corrections to the 2p -> nd transitions both in 

Al+ and Si2+.

The expansion SC yields good values for the Rydberg transition energies 

and oscillator strengths and is almost sufficient for the purposes of spectral 

identification. The calculated term energies of the 2p53s3p2 and 2p53s23d 

configurations are found to be in quite good agreement with the observed energies, 

except for a few doubly excited terms. However, the higher Rydberg series 
members although they have a good distribution of the oscillator strength their 
energies need a constant shifting of ~ 0.2 eV towards the lower energy region.

Hence, as far as the distribution of oscillator strength and term energies are

concerned this expansion is very satisfactory both for Al+ and Si2+ ions. In 

particular the predicted relative strengths of the nd Rydberg series members seems 
in reasonable agreement with the measurements. The relative distribution of gf- 

values within the doubly excited states however is not justified by the calculations. 
In order to better reconcile the calculated and observed spectra an attempt was 
made to include the extra effects due to (i) penetration of the core region by outer 

shell electrons via inclusion of valence excited configurations, (ii) core polarisation 
in the ground state by opening up the 2p-subshell and (iii) core polarisation in the 
excited state by opening up the 2s-subshell.

SD =  SC + 2s2p6 3 s 23 p

The inclusion of the 2s2p63s23p configuration in the Cl calculations leads 

to a better oscillator strength division between the lowest two doubly excited 

transitions, 2p63s2(1S0) 2p53s(3P)3p2(1D)3D1 and 2p53s(1P)3p2(1D)iP1

(Lines 1 and 2, respectively, in figure 4 .2b). Particularly, in Si2+, the inclusion of 

this configuration leads to changes in the compositions of the ^ D ^ P  and ( !D)3D 

terms which in turn brings the results in better visual agreement with the 
experiment (Figure 4.2b SD).

78



1 1 0  1 1 5  1 2 0  1 2 5  1 3 0
Photon Energy (eV)

1 3 5 1 4 0

Photon Energy (eV)

Figure 4.2

Configuration-interaction effects on the excited  states in the 2p  photoabsorption spectra o f  (a ) A l+  

and (b ) Si2 + .
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4.3.2 Cl effects on the ground state

The ground state of the magnesium sequence shows strong electron- 
correlation effects (Robb 1974). Recently the electron-correlations in the ground

state of Mg-like ions Al+ and Si2+ have been investigated in detail by Serrao (1991, 

1991). In this study which used the configuration interaction method where the 
electronic orbitals were generated by means of Thomas-Fermi-Dirac-Amaldi 
(TFDA) potentials, the most important contribution to the ground state

wavefunction was reported to be made by the doubly excited states (2p63pnp 1S).

In order to assess the effect of electron-correlations in the ground state, a 
series of calculations were carried out with a fixed configuration expansion for the

excited states (which includes the 2p53s2(n+l)s + 2p53s2nd, [n = 3,4...10] +

2p53s3p2 + 2p53s3p4p + 2s2p63s23p + 2p63s3p + 2p63d3p basis states) while 

adding successively even parity configurations to the ground state. The results of 

the first set of calculations, named as SG, carried out for the 2p63s2 -> 

2p53s2(n+l)s + 2p53s2nd, [n = 3,4... 10] + 2p53s3p2 + 2p53s3p4p + 2s2p63s23p 

+ 2p6(3s3p + 3d3p) are shown in figure 4.3a.

SH = SG + 2p63 p 2

The addition of the 2p63p2 configuration which is known to mix strongly 

with the 2p63s2 ground state (Serrao, 1991, 1991) leads to an overall weakening 

of most of the 2p63s2 -> 2p53s3p2 1>3L array with the exception of 2p63s2

-> 2p53s(1P)3p2 (1S)1P 1 (line 3 both in Al+ and Si2+, figure 4.3) which is

strengthened. The effect of 2p63p2 configuration on the term energies is evident 

from the comparison of expansions SG and SH (Figure 4.3).
In the magnesium 2p absorption spectrum the strongest asymmetric

resonance at 58.07 eV has been identified as the 2p63s2(1S0) -» 

2p53s(1P)3p2(1S)1P 1 transition (Ederer etal. 1979). The reason for this feature to 

be the strongest was described as the mixing of the !S term of the 2p63p2 

configuration with the normal 2p63s2 l S0 ground state. The present results along
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the Mg-like ions agree with this proposition (see figure 4.3), the predicted 
enhancement is by no means as great. Also, this term (line 3) is not among the 

strongest features in the Al+ and Si2+ spectra. One other interesting point about this 

particular resonance is that it is surprisingly not observed in the ejected-electron 
data of Pejcev et al. (1977). The following explanation is proposed for this. It

should be noted that the Mg feature at 58.07 eV is observed above the 2P3/2, 1/2 
limits thereby opening up the possibility both for direct and resonant 2p 

photoionization via the process 2p63s2+hv -»2p53s3p2(1S)1P ->2p5 (2P3/2)3s2el.

Such a process can both lead to an enhancement in the strength of this feature in 
phoexcitation and will also result in an Auger electron of an energy of less than 

1 eV compared to the 41.5 -> 50.4 eV expected by Pejcev and co-workers who 

searched for its decay into the 2p63s, 3p or 3d + el channels.

SI = SH + 2p53 s23p

The 2p53s23p configuration has been included in order to account for core 

polarisation in the ground state. Although not affecting the energy distribution of 
the computed spectrum it certainly does lead to a significant enhancement in the 

strength of the singly excited 2p -» nl transitions while leaving transitions to doubly 

excited states largely unaffected with the exception of the 2p53s3p2(3P)1P term 

(Line 6 both in A1+ and Si2+, figure 4.3). The strength of this term was enhanced 

in Si2+ and decreased in A1+.
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Figure 4.3

Configuration-interaction effects on the ground slate in the 2p  photoabsorption spectra o f  (a ) A l+  

and (b) Si2 + .

83



4.4 Term analyses

The analyses of measured level structure becomes extremely difficult when 
more than one electron is involved in the photoexcitation process. The unsealed 
and scaled atomic structure calculations performed using the same set of basis 

states including extensive interactions differ widely in the calculated term energies 
and gf-values and make the line identification more complicated and confusing. 
The different approximations give the same term energies but differ in the 
distribution of oscillator strengths in a very dramatic way such as a feature 

predicted as strongest by one approximation is shown with negligible gf-values 
using some other approximation.

In the approach adopted, with only the most significant interactions 

included in both the ground and excited states, the different expansions give almost 
the same term energies but slightly differ in the distribution of gf-values. A 
comparison of figures 4.2 and 4.3 shows that the calculated positions of the 
energy levels obtained using expansions SC, SD, SE, SF, SG = SE, SH and SI 
are almost the same. However, in going from one expansion to other slight 
changes in the distribution of oscillator strength are observed. The expansion SE 
which includes only the most significant interactions in the initial and final state 

expansions gives a better qualitative as well as quantitative agreement with the 

experiment. The level energies and gf-values of both the Al+ and Si2+ computed 

using expansion SE are listed in tables 4.1 and 4.2. In table 4.1 a comparison of 

the levels belonging to the 2p53s3p2 and 2p53s23d configurations is made with the 

calculated energies. The experimental and theoretical level energies of the higher 
Rydberg series members are compared in table 2. With the exception of a few 

doubly excited states, the results are in reasonable agreement with the measured 
spectra.

The assignments for A1+ have already been reported by our group (Costello 

etal. 1991). In that work along with the basis states included in expansion SE 

although basis states 2p63d2 for ground state expansion and 2p53p23d, 2p53s3d2 

and 2p53p24s for the excited state expansion were also included.

In the assignment of the observed features at 84.78 eV, 84.99 eV and 

85.36 eV the present investigation differs from the earlier study of Al+ (Costello 

etal. 1991) where they were assigned to the 3d 3P, 3D and ’P levels. According to 

the present study 3P terms in the whole nd series both in Al+ and Si2+ show
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negligible gf-values and, therefore, should not be observed. The ]P and 3D terms 

are predicted strong and weak, respectively, throughout the nd series both in Al+ 

and Si2+ which is in agreement with the experiment. In the earlier assignment the 

strong and weak levels of the 3d configuration were assigned to the 3D and !P 

terms respectively. The present assignment is more reliable because calculated term 
energies of these resonances along with the distribution of gf-values are in 

agreement with the experiment which was not the case in earlier studies.

In the case of Si2+, the lines predicted at 115.32 eV and 116.01 eV which 

are assigned to the features at 115.81 eV and 116.07 eV could only be identified 

tentatively because they do not follow the rules, adopted in the assignments given, 
which are: (i) a strong line should be predicted as a strong line and vice versa, (ii) 
the splitting of the predicted term energies -at least- within a configuration should 
be equal to the measured splitting of the corresponding terms, and (iii) measured 

and calculated energies should fall in the same energy region. Also we are not sure 
about the origin of the features measured at 115.81 eV and 116.07 eV. These 

features could be due to the 2p63s3p 2p53s3p3d transitions which are predicted

in this region by our calculations, performed during the study of 2p63s3p -> 

2p53s23p + 2p63s3p3d transitions (Mosnier et al. 1994). In atomic Mg the 

2p63s3p -> 2p53s3p3d transitions have not been observed. In Al+, the 2p53s3p3d 

transition array has been observed but features were very weak and unresolvable. 

In moving from atomic Mg to Si2+, with the increase in the overlap of 2p and 3d 

orbitals, which is evident from the increase in the relative strength of 2p -> 3d 

transitions (Figure 4.1), the 2p63s3p 2p53s3p3d transitions should be stronger

than in A1+. There is another possibility that these features could be due to some 

impurities which we were not able to identify in this spectrum. By extending 
photoabsorption studies to the higher isoelectronic species the identification of 
these features could be solved. With continuous increase in the overlap of 2p and 

3d orbitals along this sequence if they are associated with the 2p63s3p 

2p53s3p3d transitions they should appear stronger.
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Table 4.1. Comparison of calculated and observed term energies (in eV) for 2p63s2 JS —» 2p5(3s23d+3s3p2) li3L transitions of AI+ and

Si2+. The F and G integrals were reduced by 20%, the configuration interaction integrals by 30% and the spin-orbit integrals by 10%.

Config./term Ecal.

Al+

^obs. gf Config./term Ecal.

Si2+

Eobs. gf

2p53s(3P)3p2 (1D)3D1 81.92 82.15 0.0396 2p53s(3P)3p2 (iD^Dj 112.23 112.30 0.0542

2p53s(1P)3p2 0D)]1P, 82.91 82.45 0.0607 2p53s(1P)3p2 ODMiPj 112.62 112.80 0.0502

2p53s(3P)3p2 (iD)3?! 82.58 82.77 0.0052 2p53s(3P)3p2 (iD)3?! 113.27 0.0037

2p53s(3P)3p2 i ^ ) 3?! 83.98 84.50 0.0054 2p53s(3P)3p2 (1S)3P! 114.74 0.0066

2p53s(1P)3p2 O S^Pj 84.40 84.78 0.0455 2p53s(1P)3p2 (iS)1?! 115.32 115.81 0.0348

2p53s2(2P)3d 3P! 84.77 0.0009 2p53s(3P)3p2 (3P)3Pj 116.01 116.07 0.0001

2p53s2(2P)3d iPi 84.98 84.99 0.0967 2p53s(3P)3p2 (3P)3D! 116.46 0.0009

2p53s(3P)3p2 (3P)3Pî 85.17 85.26 0.0172 2p53s(3P)3p2 (3P)3S j 116.93 0.0124

2p53s2(2P)3d 3Dj 85.34 85.36 0.0362 2p53s2(2P)3d 3Pj 117.14 ---------- 0.0018

2p53s(3P)3p2 (3P)3Di 85.40 85.36 0.0055 2p53s2(2P)3d iPj 117.37 117.34 0.3679

2p53s(3P)3p2 (3P)3S! 85.74 0.0001 2p53s2(2P)3d 3Dj 117.83 117.88 0.1761

2p53s3p2 (3P)lP! 87.14 87.65 0.0132 2p53s3p2 ^ P ) ^ 119.22 119.12 0.0195



Table 4.2. Comparison of calculated and observed term energies (in eV) for 2p63s2 !S —> nd, (n+l)s [n>4] transitions of Al+ and

Si2+.The F and G integrals were reduced by 20%, the R integrals by 30% and the spin-orbit integrals by 10%.

Config./term ECal.
Al+

Eobs. g f Ecal.
Si2+
Eobs. g f

4s[3/2,l/2] P) 83.78 83.77 0.0156 4s[3/2,l/2]1/(1P) 118.19 118.09 0.0058

4s[1/2,1/2]1/(3P) 84.14 84.17 0.0135 4s[l/2 ,l/2]1/(3P) 118.71 118.63 0.0115
5s[3/2,l/2] P) 87.78 87.80 0.0066 Sstf/^lÆ lj/O P) 125.33 0.0006

5s[l/2,l/2] P) 88.15 88.05 0.0014 5s[1/2,1/2]!/(3P) 125.87 0.0026
6s[3/2,l/2] P) 89.36 89.26 0.0029 6s [ i l 2 M 2 y m 128.35 0.0028

6s[l/2,l/2] P) 89.74 89.62 0.0011 ô s t l Æ . l / ^ P ) 128.88
4d[3/2,5/2] P) 88.04 87.93 0.0616 4d[l/2,3/2]1/(3D) 124.72 124.47 0.1355

4d[l/2,3/2] D) 88.39 88.31 0.0475 4d[3/2,5/2]1/(1P) 125.34 125.02 0.1493

5d[3/2,5/2] P) 89.46 89.33 0.0383 5d[3/2,5/2]!/(iP) 128.02 127.78 0.0411
5d[l/2,3/2] D) 89.82 89.73 0.0230 5d[3/2,5/2]0l/(iP) 128.53 128.35 0.0534

6d[3/2,5/2] P) 90.22 90.10 0.0242 6d[3/2,5/2]1/(iP) 129.72 129.53 0.0409

6d[l/2,3/2] D) 90.60 90.52 0.0068 6d[l/2,3/2]1/(3D) 130.24 130.10 0.0038
7d[3/2,5/2] P) 90.67 90.52 0.0149 7d[3/2,5/2]1/(1P) 130.83 130.62 0.0420

7d[ 1/2.3/2] D) 91.04 90.95 0.0075 7d[l/2,3/2]1/(3D) 131.34 131.24 0.0126

8d[3/2,5/2] P) 90.96 90.83 0.0086 8d[3/2,5/2]!/(iP) 131.47 131.24 0.0336
8d[l/2,3/2] D) 91.33 91.25 0.0080 8d[l/2,3/2]!/(3D) 132.00 131.73 0.0174
9d[3/2,5/2] P) 91.15 91.05 0.0036 9d[3/2,5/2]1/(1P) 131.90 0.0143
9d[l/2,3/2] D) 91.56 91.46 0.0012 9d[l/2,3/2]1/(3D) 132.43 0.0111



4.5 Conclusions regarding the general behaviour along 
the isoelectronic sequence

On the basis of the assignments given in section 4.4 and a study of the 
eigenvector compositions of the observed transitions a number of general remarks 

may be made.
With the increase in Z along the isoelectronic sequence the spectrum 

restructures itself and shows changes in the distribution of oscillator strength and 

the relative positions of singlets and triplets. As we move along the sequence to 

Si2+ the transitions to 2p53s3p2 (which are the strongest features in the Mg and Al+ 

spectra) weaken considerably as the 3d orbital contracts and 2p -> 3d transitions 

become the dominant features of the Si2+ 2p - subshell absorption spectra. In Al+ 

the TP terms belonging to the 3d, 4d and 5d configurations are observed lower in 

energy than the corresponding 3D terms (Figure 4.1b). In the case of Si2+ such a 

situation is observed only in 3d configuration (Figure 4.1c).

In Al+ and Si2+ the centres of gravity of the 2p53s3p2 and 2p53s3p4p 

configurations shift downwards in energy with respect to the Eav of the 2p53s2nl 

Rydberg series members. All terms of the 2p53s3p2 configuration drop below the 

limit for A1+ and Si2+ and are strongly mixed with the 2p53s23d configuration. 

Some features belonging to the 2p53s3p4p configuration are also observed below 

the series limit where they are mixed with higher Rydberg series members.

Level crossing within the 2p53s2ns and 2p53s2nd Rydberg series is evident 

from these spectra. In particular the 3d drops below the 4s on going from Al+ to 

Si2+. Clearly 3d contraction is also responsible for this 3d/4s level crossing 

observed in Si2+. The 4d and 5s energies become almost degenerate.

Level crossing within the 2p53s2nl and 2p53s3pnp configurations is also 

observed along this sequence. This occurs in an isoelectronic sequence whenever 
“plunging” configurations are present (Froese Fisher, 1980). These are the 

configurations whose energies lie above the ionization limit in neutral atoms and 
are present both in the valence and inner-shell spectra. In the valence-shell spectra

they could be the doubly excited states (such as, 3s2 -> 3pn(>3)d or 3s2 -> 

3pm(>4)s transitions in magnesium) or the singly-excited states where the inner-
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valence electron is excited (such as, 3s23p -> 3s3pn(>3)p, transitions in 

aluminium). In the inner-shell spectra these are the multi-electron excitations, such 

as the doubly excited states belonging to the 2p53s3p2 configuration in the ground 

state 2p absorption in magnesium. As the nuclear charge increases, the energy 
levels of the plunging configurations drop below the limit where they appear as 
discrete features mixed with the Rydberg series members in the case of valence- 

shell spectra while in the inner-shell spectra, in addition to the strong mixing with 
the Rydberg series members, they are also coupled to the background continuum 
channel (Conneely et al. 1992).

In neutral Mg the 2p53s3p2 configuration acts as a strong perturber for the 

whole 2p53s2nd Rydberg series. However, along the magnesium isoelectronic 

sequence the 2p53s2n(>4)d-2p53s3p2 interaction is “short-range” in nature (Froese 

Fisher 1980) as in proceeding from neutral magnesium to the Mg-like ions Al+ and 

Si2+ it is not observed. The reason is that in magnesium the 2p53s3p2 

configuration is smeared out over the entire Rydberg series including the 2p53s2el 

continuum while in going from the neutral to ions all its levels lie below the 4cL On 

the other hand, 2p53s23d-2p53s3p2 interaction acts as a “long-range” interaction 

along the magnesium sequence as it remains strong throughout the sequence. This 
is because the two configurations belong to the same complex. It is due to this

long-range interaction that the 1’3L terms of the 2p53s23d configuration remain 

strongly perturbed in the magnesium sequence.

The 2p53s2nd-2p53s3p2 interaction among the core-excited configurations 

of neutral magnesium is analogous to that of the 2p63s23pn3d-2p63s3pn+2 

interaction along the period which could be seen from the 2p63s2nd-2p63s3p2 and 

2p63s23pnd-2p63s3p3 interactions described for atomic aluminium (Weiss 1974, 

Lin 1974, O ’Mahony 1985) and silicon (Tatewaki 1978) respectively. The core­
excited states in Mg sequence are perturbed by the doubly excited states while the 
perturbers in the outer-shell spectra of neutral Al and Si are singly excited states. 

The doubly excited states belonging to the 2p53s3p4p configuration in neutral 

magnesium all are observed above the 2p-limit which is again similar to the 

2p63s3p4p and 2p63s3p24p configurations along the period in Al ( Martin and 

Zalubas 1979) and Si (Martin and Zalubas 1983) respectively.
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Chapter 5

ALUMINIUM ISO ELECTRO N IC SEQUENCE 

IN GROUND STATE ABSORPTION

Photoabsorption investigations o f  a tom ic A1 and Si+  in ground states have been carried  

ou t in th eir 2p  sub sh ell re g io n s . To p rov id e in terp retation  fo r the ob served  sp e ctra  a  

co m p reh en siv e  an alysis  o f  this th re e -e le ctro n  sy stem , b ased  on  con figu ration  in teractio n  

calcu lation s, has been carried  out. T he ob jective o f  this chap ter is to  describe the previous w ork  

done along the A1 sequence in ground state absorption and report the present investigations carried

5.1 Previous work

Aluminium is placed among the 15 most abundant cosmic elements 
(Martinson, 1989). A large number of aluminium lines are present in the solar 
spectrum. For a long time its atomic properties have been measured and calculated 
whenever new techniques promised improved results.

The transitions that involve the excitation of the outer shell 3p or 3s 
electrons have been extensively studied both theoretically and experimentally; a 
summary of this work has been published by Cantu et al. (1982), and Tayal and 

Burke (1987). Only a few investigations have been carried out on the transitions 
involving the excitation of an inner-shell 2p-electron. Among them the Auger 
decay following 2p ionisation/excitation processes by electron impact, as studied 
by Aksela (1984) and Messmer (1984), has been mentioned by Malutzki etal.

(1987) as part of their private communication. Ejected-electron spectra of atomic Al 
following 2p excitation/photoionization have been measured at selected photon 
energies by Malutzki et al. (1987). At photon energies higher than the 2p ionisation 

of Al, they have observed decay due to the 2p53s23p configuration of A1+. At 

79 eY photon energy - below the 2p limit of Al - autoionization decay due to the 

levels of 2p53s23pnl configurations of atomic Al has been reported. In their work 

the authors have provided almost complete interpretation for the observed Auger
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spectra of Al+. However, in their experiment because of the broad bandpass of the 
exciting photons (Malutzki et al. 1987) a detailed discussion of the structures 

arising from the autoionising decay of atomic Al was not possible. The 2p 
absorption spectrum of neutral aluminium, obtained with a flash-pyrolysis 
technique combined with a BRV source, has been reported by Cantu et al. (1982).

Like aluminium, silicon is also among the 15 most abundant cosmic 

elements (Martinson, 1989). The astrophysical importance of silicon is well 
known (Dufton et al. 1992 and references therein). Knowledge of oscillator 
strength and photoionization cross sections of astrophysical important elements 

such as silicon are necessary for calculations of stellar abundances, opacity, 
electron density and other properties (Daum and Kelly 1976). Experimental 
measurement of the photoionization cross section of ionic silicon is quite difficult 
because of the recombination effects (Daum and Kelly 1976) as well as the 
difficulties associated with the production of enough ionic silicon. As far as we

know no experimental study of ionic Si+, involving the excitation of a 2p electron, 

has been carried out. However, on the theoretical side, photoionization cross 

section calculations of Si+ have been reported (Daum and Kelly 1976) from 

threshold to 1 KeV. In their calculations, which were performed using the 
technique of many body perturbation theory, resonances from the 3s3pnp, 

2p53s23pns, 2p53s23pnd, and 2s2p63s23pnp configurations were also included. 

Correlations among the 2p, 3s, and 3p electrons were shown to have a large effect 
on the cross section.

5.2 Present work

We have undertaken a comprehensive new analysis of the aluminium 2p 
photoabsorption spectrum which we have recorded using the dual laser plasma 
technique. Furthermore, we have extended this photoabsorption study to the 
aluminium like silicon spectrum which we have recorded for the first time. To 
elucidate the observed features, configuration-interaction calculations were 
performed with Cowan’s code (see chapter 2).

In the photoinduced 2p Auger spectra of atomic Al (Malutzki etal. 1987) 
some difficulties associated with the production of an atomic Al vapour were 
mentioned. In particular, the aluminium oxide layer, which is always present, and 
the high reactivity of the hot Al liquid, made the production of an atomic Al vapour
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very difficult. After a number of failures they were able to produce almost pure 
aluminium vapour. Fortunately, we have not faced any such failure; by firing a few 

shots on the target surface before making absorption measurements one can 
eliminate the effects of any oxide layer.

Atomic aluminium demonstrates strong configuration interaction effects 
among the excited states arising both from L and M-shell excitations. A number of 

studies have been carried out of the electron-correlations among the excited states 
involving the M-shell electrons. However, as far as we know, no investigation has 
been carried out of the electron-correlations among the excited states involving 2p 

excitation. Compared to the relatively simple two electron case (Costello et al. 
1992, chapter 4) this system with three electrons outside the 2p-core not only 
yields an extensive number of terms but also makes the accurate calculations of the 

term structures significantly more difficult. Some of the observed features in the 2p 
absorption spectrum of neutral aluminium (Cantu etal. 1982) were explained using 
the semi-empirical Racah-Slater method. The calculations were carried out only for 
the 2p -» 4s transitions and almost all of the strongest features were assigned to 

these transitions.

5.3 Results and analysis

The 2p-subshell photoabsorption spectra of neutral aluminium and singly 

ionised silicon going to the 2p53s23p (3L) limits are shown in figure 5.1. The 

energies of the 2p53s23p (3L) terms have been taken from chapter 7. The relevant 

optical energies have been taken from Martin and Zalubas (1979, 1983). In these 

spectra the absorption structures exhibit the 2p63s23p 2P -> 2p53s23pnl 2-4L and 

2p63s23p -> 2p53s3p3 2*4L one and two-electron excitations respectively. 

Transitions to the doublet terms are expected to appear strongly; however, 
departures from LS-coupling will also allow transitions to the quartet terms.

In the 2p-subshell photoabsorption study along the magnesium sequence in 
the ground state, as presented in chapter 4, the magnesium spectrum was found to

be more complicated than the corresponding ionic spectra of Al+ and Si2+. This 

was because of the strong perturbation caused by the doubly excited configuration 

2p53s3p2 which in the case of neutral magnesium was very strong throughout the 

Rydberg series members. However, in the case of ions the perturbing doubly
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E n e rg y  (e V )

E n e rg y  (e V )

Figure 5.1

T h e 2p -subshell absorption in (a ) a to m ic  A l, and (b ) Si+ . The sp ectra  exh ib it the  

2 p ^ 3 s2 3p - »  2p ^ 3 s2 3 p [(n + l)s  +  nd] +  2 p ^ 3 s3 p ~  transitions.
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excited states were only found mixed with the 2p53s23d configuration. In the 2p 

absorption along the aluminium sequence the situation looks quite the opposite. 

The spectrum of ionic Si+ seems to be more perturbed than the corresponding 

spectrum of atomic aluminium. We believe that in Al I most of the doubly excited 

states belonging to the 2p53s3p3 configuration are above the 2p threshold which is

at 80.84 eV for the 2p53s23pnl resonances and only a few are present below this 

threshold. When we move to Si+ more members of the doubly excited states drop 

below the limit which is at 118.88 eV in Si+ and mix with the 2p53s23pnl Rydberg 

series members resulting in strong perturbation.
To provide an interpretation for the measured spectra we have performed 

scaled atomic structure calculations. The calculations, performed with the Cowan’s 

code (chapter 2), include the 2p63s23p and 2p63p3 basis states for the ground state

expansion while the 2p53s23p[ms+nd, m = 4, 5; n = 3, 4, 5.], 2p53s3p3, 

2p63s23d, 2p63s3p2 and 2s2p63s23p2 basis states are included for the excited state 

expansion. To give reasonable agreement with the measured level energies the HF 

radial integrals Fk(i, i), Fk(i, j), Gk(i, j), Rk(i, j) and ^  were scaled down by 15%, 

15%, 15%, 25% and 10% respectively. The results of these calculations are listed 

in tables 5.1-5.6.

5.3.1 The 2p53s23pns series

The configurations of the type 2p53s23pns give rise to 30 possible 

transitions (see table 5.1). In most of the transitions the same upper level is 

connected to the two lower 2P i/2 ,3/2 levels. Due to the small splitting between the 

2P 1/2 and 2P3/2 levels, the transitions connecting the two 2P levels to the same 

upper level are not resolvable. Out of the 30 possible transitions 26 constitute such 

unresolvable double transitions and the remaining four are of the type 2P3/2  -> 

2'4Ls/2 single transitions.

In the 2p53s23p4s array, out of the 13 doubles the two doubles associated 

with the (3S) 4S3/2 and (3D) 4D1/2 terms are not allowed as they are almost pure 

LS-coupled both in A1 and Si+. Among the remaining 11 doubles, in aluminium
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the 4 doubles associated with the (*P) 2P i/2, (3P) 4P i/2> (3P) 2P i /2  and ( 1S) 2S1/2

terms show negligible gf-values. Also there is a single 2P3/2 -> (3P) 4Ps/2 
transition which shows a negligible gf-value. Therefore, we are left with 7 doubles 
and 3 single transitions having non-negligible gf-values. A comparison of the 
predicted and measured spectra are listed in table 5.1.

Almost all the features associated with the 2p53s23p4s array in A1 are well 

resolved from the features associated with the 2p53s23p3d and 2p53s3p3 

configurations. However, a double and a single transition assigned to a shoulder at 

78.91 eV are not resolvable. In the doubles assigned to the (3D) 4I>3/2, (3P) 4P3/2 

and (3P) 2P3/2 terms at 78.47 eV, 79.02 eV and 79.13 eV, respectively, the upper 

terms could be assigned to the lower level 2P3/2  only as the gf-values associated 

with the transitions arising from the 2P i /2  level are negligible (table 5.1).

In the 5s array in Al, only the 2P i /2  -» (3D) 4D3/2 and 2P i /2 (!P) 2P3/2
transitions show non-negligible gf-values. The features predicted by these 
transitions (table 5.2) are observed at 80.23 eV and 80.70 eV.

In Si+, where the 2p absorption is dominated by the strong and broad 

features arising from the 2p63s23p -> 2p5[3s23pnd + 3s3p2np] transitions, the ns 

series members are predicted very weak compared to and degenerate with the 

strong members of the 2p53s23p3d and 2p53s3p3 configurations. Only a shoulder

measured at 111.34 eV could be assigned to the 2P3/2 -> 4s(3D) 2D5/2 transition. 

This transition has also been observed as strongest in the 4s array of Al. The 
predicted energy of this transition is 111.38 eV and the corresponding gf-value is 
0.0426. The gf-value of the remaining members are negligible (table 5.1).

The terms belonging to the 2p53s23p4s array exhibit strong mixing among 

themselves. However, no significant mixing was observed with the terms 

belonging to the 2p53s23pnd Rydberg series members or the 2p53s3p2np

configuration which is analogous to the 2p53s2ns interaction with the 2p53s2nd 

and 2p53s3pnp series along the Mg-sequence in ground state absorption (see 

chapter 4). In the Mg-sequence, only the 2p53s2nd and 2p53s3pnp channels 

interact strongly. The same is observed here in the aluminium sequence where the 
ns series remains unperturbed. The LS-compositions of the dominant terms remain

dominant in moving along the sequence with the exception of the (*P) 2P3/2  and
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(3D) 2E>3/2 terms. In Si+, these terms appear twice as they become dominant over 

the (3P) 4P3 /2  and (3P) 2P3/2 terms respectively. The inclusion of the 2p63s23d, 

2p63s3p2 and 2s2p63s23p2 configurations, which account for the core-polarisation 

effect (Hibbert, 1989) in our configuration-interaction (Cl) approach, have shown 

no significant effect on the term energies of the 2p53s23pns series. Even the gf- 

values are not affected to any great extent by the addition of these configurations.
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Table 5.1. Measured energies (eV), calculated energies (eV) and gf-values for the

2p63s23p 2P —> 2p53s23p4s 2>4L transitions in A1 and Si+.

Term J; J/

A1

^calc. Emeas. gf Term h J/

Si+

ECalc. E,Tieas. gf

(3S) 4S 1.5 1.5 77.82 0.0001 (3S) 4S 1.5 1.5 110.38 0.0001
(3S) 4S 0.5 1.5 77.83 0.0000 (3S) 4S 0.5 1.5 110.40 0.0000
(3S) 2S 1.5 0.5 77.97 77.85 0.0048 (3S) 2S 1.5 0.5 110.63 110.49 0.0202
(3S) 2S 0.5 0.5 77.98 0.0028 (3S )2S 0.5 0.5 110.66 0.0108
(3D )4D 1.5 2.5 78.38 78.40 0.0042 (3D ) 4D 1.5 2.5 111.15 0.0094

(3D) 4d 1.5 1.5 78.43 0.0008 (3D) 4d 1.5 1.5 111.24 0.0004

(3D) 4d 0.5 1.5 78.44 78.47 0.0046 (3D )4D 0.5 1.5 111.26 0.0103
(3D) 2d 1.5 2.5 78.50 78.53 0.0126 (3D ) 2D 1.5 2.5 111.38 111.34 0.0426

(3D) 4d 1.5 0.5 78.53 0.0002 (3D )4D 1.5 0.5 111.39 0.0007
(3D) 4d 0.5 0.5 78.54 0.0004 (3D) 4d 0.5 0.5 111.42 0.0011
(3D) 2d 1.5 1.5 78.59 0.0031 (3D ) 2D 1.5 1.5 111.48 0.0092

(3D) 2d 0.5 1.5 78.60 78.65 0.0061 (3D) 2d 0.5 1.5 111.51 0.0152

(3P) 4P 1.5 2.5 78.69 0.0013 (3P) 4P 1.5 2.5 111.61 0.0002
(3P) 2P 1.5 1.5 78.78 0.0017 (3P) 2P 1.5 1.5 111.76 0.0002

(3P) 2P 0.5 1.5 78.79 78.76 0.0020 (3P) 2P 0.5 1.5 111.79 0.0157
(!p ) 2P 1.5 0.5 78.85 0.0001 (ip ) 2p 1.5 0.5 111.85 0.0017
(lp ) 2p 0.5 0.5 78.86 0.0002 (!p ) 2P 0.5 0.5 111.88 0.0032

(!p ) 2P 1.5 1.5 78.88 0.0020 (ip ) 2p 1.5 1.5 111.88 0.0005
(ip ) 2p 0.5 1.5 78.89 78.91 0.0044 (lP) 2P 0.5 1.5 111.91 0.0049
(!D )2 D 1.5 2.5 78.93 78.91 0.0034 (3P) 4P 1.5 0.5 111.98 0.0005

(3P) 4P 1.5 0.5 78.95 0.0009 (1D ) 2D 1.5 2.5 111.98 0.0000
(3P) 4P 0.5 0.5 78.96 0.0019 (3P) 4P 0.5 0.5 112.00 0.0018
(3P) 4P 1.5 1.5 78.99 79.02 0.0053 (1P) 2p 1.5 1.5 112.05 0.0015

(3P) 4P 0.5 1.5 79.00 0.0016 (tp ) 2p 0.5 1.5 112.08 0.0143
(3P) 2P 1.5 1.5 79.06 79.13 0.0054 (3D) 2d 1.5 1.5 112.22 0.0102
(3P) 2P 0.5 1.5 79.07 0.0000 (3D ) 2D 0.5 1.5 112.25 0.0894

(3P )2P 1.5 0.5 79.13 0.0007 (3P) 2P 1.5 0.5 112.28 0.0009
(3P) 2P 0.5 0.5 79.14 0.0001 (3p )2p 0.5 0.5 112.31 0.0000
(1S )2S 1.5 0.5 81.72 0.0006 (iS) 2S 1.5 0.5 115.98 0.0003

(XS) 2S 0.5 0.5 81.73 0.0006 (lS) 2S 0.5 0.5 116.01 0.0001
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Table 5.2. Measured energies (eV), calculated energies (eV) and gf-values for the

2p63s23p 2P —> 2p53s23p5s 2<4L transitions in A1 and Si+.

Term h  Jf

A1

ECalc. Emcas. gf Term J, Jf

Si+

ECalc. Efneas gf

(3S) 4S 1.5 1.5 79.62 0.0002 (3S) 4S 1.5 1.5 114.82 0.0000
(3S) 4S 0.5 1.5 79.63 0.0000 (3S) 4S 0.5 1.5 114.85 0.0000
(3D) 4d 1.5 2.5 80.16 0.0006 (3S) 2S 1.5 0.5 114.91 0.0017
(3D) 4d 1.5 1.5 80.22 0.0002 (3S) 2S 0.5 0.5 114.94 0.0013
(3D) 4d 1.5 2.5 80.23 0.0001 (3D) 4d 1.5 2.5 115.58 0.0057
(3D) 4d 0.5 1.5 80.24 80.23 0.0020 (3D) 4d 1.5 1.5 115.66 0.0011
(3D) 4d 1.5 0.5 80.34 0.0003 (3D )2D 1.5 2.5 115.68 0.0047
(3D) 4d 0.5 0.5 80.35 0.0003 (3D) 4d 0.5 1.5 115.69 0.0036
(3D) 2d 1.5 1.5 80.36 0.0012 (3D )4D 1.5 0.5 115.83 0.0003
(3D) 2d 0.5 1.5 80.37 0.0013 (3D )4D 0.5 0.5 115.86 0.0008
(3P) 4P 1.5 2.5 80.49 0.0002 (3D) 2d 1.5 1.5 115.87 0.0004
(iD) 2D 1.5 1.5 80.51 0.0000 (3D )2D 0.5 1.5 115.90 0.0052
(*D)2D 0.5 1.5 80.52 0.0000 (3P) 4P 1.5 2.5 116.05 0.0013
(ip) 2p 1.5 0.5 80.66 0.0003 (3P) 2P 1.5 1.5 116.10 0.0035
(iP) 2p 0.5 0.5 80.67 0.0007 (3P) 2P 0.5 1.5 116.13 0.0011
( iP) 2p 1.5 1.5 80.67 0.0000 ( iP) 2p 1.5 0.5 116.28 0.0015
(1P) 2p 0.5 1.5 80.68 80.70 0.0035 (!P) 2P 1.5 1.5 116.31 0.0000
(3P) 4P 1.5 2.5 80.74 0.0013 (ip) 2p 0.5 0.5 116.31 0.0020
(3P) 4P 1.5 0.5 80.75 0.0000 (ip) 2p 0.5 1.5 116.34 0.0002
(3P) 4P 0.5 0.5 80.76 0.0018 (^D) 2D 1.5 2.5 116.42 0.0023
(3P) 4P 1.5 0.5 80.77 0.0001 (3P) 4P 1.5 0.5 116.43 0.0013
(3P) 2P 1.5 1.5 80.77 0.0014 (3P) 4P 0.5 0.5 116.46 0.0028
(3P) 4P 0.5 0.5 80.78 0.0001 (iD) 2D 1.5 1.5 116.48 0.0000
(3P) 2P 0.5 1.5 80.79 0.0001 (3P) 2p 1.5 1.5 116.51 0.0031
(3P) 4P 1.5 1.5 80.80 0.0013 (!D )2D 0.5 1.5 116.51 0.0015
(3P) 4P 0.5 1.5 80.81 0.0006 (3P) 2P 0.5 1.5 116.53 0.0000
(3p) 2p 1.5 0.5 80.84 0.0004 (3P) 2P 1.5 0.5 116.57 0.0006
(3P) 2P 0.5 0.5 80.85 0.0003 (3P) 2P 0.5 0.5 116.60 0.0001
(!S) 2S 1.5 0.5 83.53 0.0003 (!S) 2S 1.5 0.5 120.40 0.0005
(!S) 2S 0.5 0.5 83.54 0.0002 Os) 2s 0.5 0.5 120.43 0.0004
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5.3.2 Transitions to the 2p53s3p3 array

In Al I the terms of the 2p53s3p3 array are smeared out over the entire 

Rydberg series members and throughout the continuum. Among the 73 possible 
transitions (table 5.3) associated with this array the energies of 46 transitions are

predicted above the 2p53s23p (3S) edge. Out of these 46 transitions in 32 

transitions the upper term is 2L. However, out of the remaining 27 transitions 

which are predicted below the 2p-limit only 5 transitions have the upper terms of 

the type 2L.

The 27 transitions predicted below the 2p53s23p (3S) edge include 11 

unresolvable doubles and 5 single transitions. The 7 doubles with upper terms 

(4S) 4Pi/2,3/2> (2D) 4D1/2,312, (2D) 4F3/2> (2P) 4S3/2, (2P) 4Pi/2 and (2D) 4D3/2 

show negligible gf-values. The 4 single transitions having the upper terms (4S) 

4Pg/2, (2D) 4D5/2, (2D) 4F5/2 and (2D) 4F5y2 also show negligible gf-values. Thus 

in A1 we are left with 3 doubles and one single transition having non-negligible gf- 

values. These transitions are associated with the (2D) 2P3/2, (2D) 2P i/2, (2P) 4Di/2

and (2D) 4P5/2 upper terms. In our absorption measurements all of these four 

predicted structures are observed (Figure 6.1). Their assignment is listed in table 

5.3. The two doubles assigned to the (2D) 2P3/2 and (2D) 2P i/2 terms, are not 

resolvable. The same is observed for a feature assigned to the (2D) 4D1/2 term 

which is degenerate with a very strong and broad structure measured at 79.58 eV. 

However, a very strong feature measured at 79.37 eV assigned to the (2D) 4P5/2 

term is well resolved.

The Si+ spectrum looks quite different from its isoelectronic partner Al I. It 

exhibits relatively much more strong features which are divided into sharp and 

broad structures. The reason is that in Si+ the whole 2p53s3p3 array drops below 

the 2p-threshold and gives rise to a number of strong and sharp absorption 
structures.

In Si+ there are 12 transitions connected with the upper terms of the type 

4L1/2, 16 transitions connected with the 4I-3/2 terms and 7 transitions connected 

with the 4L5/2 terms. Thus we are left with 38 transitions connected with the upper 

terms of the type 2L. In Si+, all these 38 transitions are predicted below the 2p-
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threshold. The 4L1/2,3/2 terms in Si+ are not mixed with 2L terms to any great 

extent. Consequently, all the doubles connected with upper quartet terms show 

negligible gf-values. Among the 7 single transitions only the 2 transitions 

connected with the (2P) 4D5/2 and (2P) 4Ps/2 terms show non-negligible gf- 

values.The 38 transitions which are connected with the upper terms of the type 2L 

include 16 unresolvable doubles and 6 single transitions.

In table 5.3 we show a comparison of calculated and measured spectra both 

for A1 and Si+. The inspection of LS-compositions showed that, in moving from

A1 to ionic Si+, most of the dominant terms remained dominant in their LS- 

compositions along the sequence. But the strong transitions in A1 are no longer 

strong in Si+ (see table 5.3).

In A1 the lower energy region is dominated by the 2p53s23p4s array. 

However, in Si+ it is dominated by the members of the 2p53s3p3 configuration. In 

moving from A1 to Si+ level crossing of the 2p53s3p3 array takes place with 

respect to the ns and nd series. Also the level crossing of the nd series occurs with 
respect to the ns series. Consequently, most of the weak members of the 3s array 
become degenerate with the strong members of the 3d array. The level crossing of

the 2p53s3p3 configuration and the 2p53s23pnd series with respect to the 

2p53s23pns series has no significant effect on the level structure. However, the 

level crossing of the members of the 2p53s3p3 array with respect to the 

2p53s3p3nd series gives rise to a number of irregularities along the sequence. The 

strong features exhibited by the 2p53s3p3 array in Si+ are associated with the terms 

which were above the 2p53s23p (3S) edge in Al.
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Table 5.3. Measured energies (eV), calculated energies (eV) and gf-values for the

2p63s2 2P —» 2p53s3p3 2>4L transitions in A1 and Si+.

Term h J/

A1

Ecalc. Em eas. g f Term h if

S i+

Ecalc. Emeas. g f

(4S) 4p 1.5 0.5 76.83 0.0000 (4S) 4P 1.5 0.5 105.38 0.0000
(4S) 4p 0.5 0.5 76.84 0.0000 (4S) 4P 0.5 0.5 105.41 0.0000

(4S) 4P 1.5 1.5 76.93 0.0000 (4S) 4P 1.5 1.5 105.53 0.0000

(4S) 4P 0.5 1.5 76.94 0.0000 (4S) 4P 0.5 1.5 105.56 0.0000

(4S) 4P 1.5 2.5 77.05 0.0000 (4S) 4P 1.5 2.5 105.71 0.0000

(2D) 4d 1.5 2.5 78.35 0.0013 (2D) 4d 1.5 2.5 107.28 0.0002

(2D) 4d 1.5 1.5 78.38 0.0008 (2D) 4d 1.5 1.5 107.32 0.0039

(2D) 4d 0.5 1.5 78.40 0.0007 (2D) 4d 1.5 0.5 107.34 0.0012

(2D) 4d 1.5 0.5 78.40 0.0004 (2D )4D 0.5 1.5 107.35 0.0004

^D ) 4D 0.5 0.5 78.41 0.0008 (2D) 4d 0.5 0.5 107.37 0.0028

(2D) 4f 1.5 2.5 78.67 0.0002 (2D) 4f 1.5 2.5 107.66 0.0001

(2D) 4f 1.5 1.5 78.75 0.0004 ^D ) 4F 1.5 1.5 107.79 107.77 0.0104

(2D) 4f 0.5 1.5 78.76 0.0010 (2D) 4f 0.5 1.5 107.81 0.0068

(2D) 2P 1.5 1.5 78.83 78.84 0.0131 (2D) 2p 1.5 1.5 107.88 107.89 0.0248

(2D) 2p 0.5 1.5 78.84 0.0017 ^D ) 2P 0.5 1.5 107.90 0.0044

(2D) 2p 1.5 0.5 78.90 0.0033 (2D) 2p 1.5 0.5 107.96 0.0058

(2D) 2p 0.5 0.5 78.91 78.91 0.0076 ^D ) 2P 0.5 0.5 107.98 108.01 0.0135

(2D) 2f 1.5 2.5 78.99 0.0002 (2D) 2f 1.5 2.5 108.14 0.0010

(2P) 4S 1.5 1.5 79.24 0.0000 ^ P ^ S 1.5 1.5 108.65 0.0001

(2P) 4S 0.5 1.5 79.25 0.0000 (2P )4S 0.5 1.5 108.68 0.0000

(2D) 4P 1.5 2.5 79.32 79.37 0.0082 (2D) 4p 1.5 0.5 108.76 0.0000

(2P) 4d 1.5 0.5 79.63 79.58 0.0077 ^D ) 4P 0.5 0.5 108.79 0.0001

(2P) 4d 0.5 0.5 79.64 0.0027 (2P)4D 1.5 2.5 108.86 108.79 0.0142

(2P) 4P 1.5 0.5 79.66 0.0012 ^D ) 4P 1.5 1.5 108.86 0.0003
(2p)4p 0.5 0.5 79.68 0.0002 ^D ) 4P 0.5 1.5 108.89 0.0036

(2D) 4d 1.5 1.5 80.48 0.0002 (2P) 4D 1.5 2.5 108.89 0.0033

(2D) 4d 0.5 1.5 80.49 0.0003 (2P) 4D 1.5 1.5 108.99 0.0016
(2p) 4p 1.5 2.5 81.33 0.0004 (2P )4D 0.5 1.5 109.02 0.0052

(2P) 4P 1.5 0.5 81.36 0.0002 (2P) 4D 1.5 0.5 109.13 0.0000

(2P) 4P 0.5 0.5 81.37 0.0002 (2D) 2d 1.5 1.5 109.13 0.0134

(2P) 4P 1.5 1.5 81.37 0.0002 (2P) 4D 0.5 0.5 109.15 0.0001

(2P) 4P 0.5 1.5 81.38 0.0002 (2D) 2d 1.5 2.5 109.15 109.02 0.0228

(2D) 4P 1.5 1.5 81.70 81.65 0.0034 (2D) 2d 0.5 1.5 109.16 0.0124

(2D) 4p 0.5 1.5 81.71 0.0000 (2P) 4P 1.5 2.5 109.46 0.0038
(2P) 2d 1.5 2.5 81.73 0.0000 (2p) 4p 1.5 1.5 109.51 0.0004

104

Continued



Table 5.3. Continued

Term Jf

A1

E calc. Emeas. g f Term

Si+

Ecalc. Emeas. g f

(2D) 4p 1.5 2.5 81.75 0.0002 (2p) 4P 0.5 1.5 109.53 0.0030
(2p) 2p 1.5 0.5 81.76 0.0001 (2p) 4P 1.5 0.5 109.66 0.0005
(2p) 2p 0.5 0.5 81.77 0.0006 (2p) 4P 0.5 0.5 109.69 0.0006
(2P) 2p 1.5 1.5 81.77 0.0004 (2p) 2d 1.5 1.5 109.70 0.0017
(2p) 2p 0.5 1.5 81.78 0.0002 (2p) 2d 0.5 1.5 109.73 109.68 0.0119
(2P) 2S 1.5 0.5 82.26 0.0014 (2P) 4P 1.5 0.5 109.74 0.0045
(2P) 2S 0.5 0.5 82.27 0.0010 (2P) 4P 1.5 2.5 109.77 0.0230

(4S) 2P 1.5 0.5 83.02 0.0001 (2 p )4p 0.5 0.5 109.77 0.0023
(4S) 2P 0.5 0.5 83.03 0.0001 (2p) 4P 1.5 1.5 109.86 0.0002
(4S) 2P 1.5 1.5 83.10 0.0007 (2p) 4P 0.5 1.5 109.89 0.0001

(4S) 2p 0.5 1.5 83.11 0.0000 (2p) 2S 1.5 0.5 110.89 110.96 0.1001
(4S) 4P 1.5 2.5 83.22 0.0000 (2P) 2S 0.5 0.5 110.92 0.0470
(2D) 2f 1.5 2.5 83.40 0.0009 (4S) 4P 1.5 2.5 113.47 0.0010

(4S) 4P 1.5 1.5 83.46 0.0000 (4S) 4P 1.5 1.5 113.64 0.0061
(4S) 4P 0.5 1.5 83.47 0.0002 (4S) 4P 0.5 1.5 113.67 0.0008
(4S) 4P 1.5 0.5 83.56 0.0000 (2d ) 2P 1.5 0.5 113.68 0.0000

(4S) 4P 0.5 0.5 83.57 0.0000 (2D) 2P 0.5 0.5 113.70 113.73 0.0064
(2D) 2d 1.5 2.5 83.68 0.0032 (4S) 4P 1.5 1.5 113.99 114.00 0.0074

(2D) 2d 1.5 1.5 83.68 0.0001 (4S) 4P 1.5 0.5 114.01 0.0001

(2D) 2d 0.5 1.5 83.69 0.0024 (4S) 4P 0.5 1.5 114.02 0.0003
(2P) 2d 1.5 2.5 83.95 0.0000 (4 S) 4P 0.5 0.5 114.04 0.0009
(2D) 2d 1.5 1.5 84.03 0.0000 (2D) 2d 1.5 1.5 114.50 0.0000

(2D) 2d 0.5 1.5 84.04 0.0019 (2d ) 2d 0.5 1.5 114.53 114.47 0.0110
(2P) 2d 1.5 2.5 84.13 0.0064 (2D )2D 1.5 2.5 114.65 0.0115
(2p)2p 1.5 1.5 84.21 0.0001 (2P) 2D 1.5 2.5 114.94 114.94 0.0302
(2P) 2p 0.5 1.5 84.22 0.0012 (2p)2p 1.5 1.5 115.14 0.0059
(2P) 2P 1.5 0.5 84.30 0.0025 (2p) 2P 0.5 1.5 115.17 0.0021
(2P) 2p 1.5 1.5 84.31 0.0005 (2P) 2S 1.5 0.5 115.26 0.0000

(2P) 2p 0.5 0.5 84.31 0.0005 (2P) 2S 0.5 0.5 115.28 0.0004
(2P) 2p 0.5 1.5 84.32 0.0004 (2P) 2D 1.5 1.5 115.42 0.0025
(2P) 2D 1.5 1.5 84.54 0.0032 (2p) 2d 0.5 1.5 115.45 0.0059
(2p) 2d 0.5 1.5 84.55 0.0044 (4S) 2P 1.5 0.5 115.50 0.0066
(2p) 2S 1.5 0.5 84.67 0.0009 (4S) 2P 0.5 0.5 115.53 115.43 0.0133
(2p) 2 s 0.5 0.5 84.69 0.0075 (4 S) 2P 1.5 1.5 115.79 115.75 0.0749

(4S) 2P 1.5 0.5 85.00 0.0058 (4S) 2P 0.5 1.5 115.82 0.0045
(4S) 2P 0.5 0.5 85.01 0.0034 (2D) 2d 1.5 2.5 116.11 116.05 0.0384
(4S) 2P 1.5 1.5 85.03 0.0202 (4S) 2P 1.5 0.5 116.52 0.0005

(4S) 2P 0.5 1.5 85.04 0.0041 (4 S) 2P 0.5 0.5 116.55 0.0010
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5.3.3 The 2p53 s23pnd series

The 2p53s23pnd Rydberg series members are mixed with the 2p53s3p3 

2’4L doubly excited states. In A1 because of the spreading nature of the 2p53s3p3 

configuration the 2p53s3p3 and 2p53s23pnd mixing is relatively dilute. In Si+, as 

the whole 2p53s3p3 array drops below the 2p-threshold a number of its terms 

become degenerate with the 2p53s23pnd Rydberg series members and result in 

relatively more interaction with the Rydberg series members. Consequently, it 

makes the calculations more difficult for the Si+ than the less perturbed Al I 

spectrum. In particular, the interaction between the 2p53s23p3d and 2p53s3p3 

configurations is found to be very strong.
Among the 76 predicted possible transitions associated with arrays of the 

type 2p53s23pnd 2>4L, 58 transitions constitute 29 unresolvable doubles and the 

remaining 18 single transitions. In the 2p absorption spectrum of Al I all the 

strongest features exhibit the transitions to the strongly mixed 2p53s3p3 and 

2p53s23p3d configurations. Out of the 29 doubles only 13 doubles, assigned to 

the (3D) 4P3/2, (3D) 2P 1/2, (ID) 2D3/2, (3D) 2P3/2, (3D) 4P 1/2, (3D) 2P3/2, (3D) 

4P3/2, (ID) 2D3/2, (3D) 2S1/2, (ID) 2P3/2, (ID) 2S1/2, (ID) 2P3/2 and (3P) 4D3/2 

terms, exhibit transitions having non-negligible gf-values. Among the remaining 
18 are single transitions in which the upper term is associated with J values 5/2

only the 7 transitions, assigned to the (3S) 2D, (3P) 4D, (3P) 4P, (3D) 4P, (3P) 4D, 

(*P) 2D and (3P) 4P terms, show non-negligible gf-values. A strong feature 

observed at 79.47 eV could be assigned to the two doubles and one single 

transition associated with the (3D) 2P 1/2, (*D) 2P3/2 and (3P) 4D5/2 terms as the 

predicted values for these terms are 79.47±0.1 eV. A double and a single transition 

assigned to a strong feature at 79.58 eV is also not resolvable.

In moving from neutral A1 to ionic Si+ dramatic changes occur both in the 

measured and computed spectra. With the exception of a few terms, having 

negligible gf-values both in A1 and Si+, almost all the terms change their relative 

positions (table 5.4). We believe that in Si+, the whole 2p53s23p3d 2-4L array is

strongly perturbed by the doubly excited 2p53s3p3 states. Also in Si+ the change 

in LS-composition results in the flipping of most of the terms. The unique
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assignment of such a strongly perturbed Rydberg series is meaningless, therefore, 
here we can provide only tentative assignments.

In Si+, for the 2p -» 3d transitions, there are 19 unresolvable doubles and 7 

single transitions which show negligible values. These doubles and single 

transitions are associated with the (3P) 2P 1/2, (3S) 4D1/2, (3S) 4E^/2> C1?) 2D3/2,

(3P) 4F3/2, (3D )2 D 3 /2, (3D )4S3/2, (1D)2Si/2, (3D) 2P3/2, (3D) 4D3/2, (3D )4D1/2,

(3D) 4P1/2, (3D) 4P 1/2, (3D) 4P3/2, CD) 2p3/2, (3D) 4D1/2, (5D) 4D3/2, (ID) 2D3/2,

(ip) 2P1/2, (ip) 2p3/2, (3D) 2S1/2, (IS) 2D3/2, (ip) 2D5/2, (3P) 4F5/2, (3D) 2d 5/2,

(3D) 4D5/2, (5p) 2D5/2, (3S) 2d5/2, (ID) 2D5/2, (ID) 2D5/2 and (5p) 2F5/2 upper 

terms. Their measured energies, calculated energies and gf-values are listed in 

table 6.4.
The absorption structures observed above 80.00 eV and 115.00 eV are 

dominated by the 2p63s23p -> 2p53s23pn(= 4 and 5)d + 2p53s3p3 transitions both 
in A1 and Si+. The features assigned to the 4d and 5d Rydberg series members are 
listed in tables 5.5 and 5.6 respectively.

The inclusion of the 2p63s23d and 2p63s3p2 configurations in the excited 

state expansion was found to enhance the gf-values of some members of the 

2p53s3p3 configuration and the 2p53s23pnd series very prominently. While the 

inclusion of 2s2p63s23p2 configuration leads to redistribution of oscillator 

strength. Consequently, brings the calculated gf-values in a better visual agreement 
with the measured spectra.
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Table 5.4. Measured energies (eV), calculated energies (eV) and gf-values for the
2p63s23p 2P —» 2p53s23p3d 2-4L transitions in A1 and Si+.

Term J i Jf

A1

^calc. Emeas. g f Term J,- Jf

Si+

^calc. E,neas. g f

(3S) 2D 1.5 2.5 78.93 78.91 0.0033 (3P) 2P 1.5 0.5 110.05 0.0250
(3S) 2d 1.5 1.5 79.00 0.0005 (3P) 2P 0.5 0.5 110.08 0.0536

(3S) 2d 0.5 1.5 79.01 0.0002 (3D) 2f 1.5 2.5 110.16 0.0001
(3S) 4d 1.5 1.5 79.13 0.0003 (3S) 4d 1.5 0.5 110.25 0.0001
(3S) 4d 1.5 2.5 79.13 0.0003 (3P) 2P 1.5 1.5 110.27 109.98 0.0591

(3S) 4d 1.5 0.5 79.14 0.0000 (3S) 4d 0.5 0.5 110.28 0.0002

(3S) 4 d 0.5 1.5 79.14 0.0000 (3S) 4 d 1.5 1.5 110.30 0.0158
(3S) 4 d 0.5 0.5 79.15 0.0002 (3P) 2P 0.5 1.5 110.30 0.0270

(3P) 4P 1.5 0.5 79.22 0.0002 (3S) 4 D 0.5 1.5 110.32 0.0173
(3P) 4P 0.5 0.5 79.23 0.0002 (3S) 4d 1.5 2.5 110.36 0.0029
(3D) 4p 1.5 1.5 79.28 0.0005 (ÏP) 2D 1.5 2.5 110.61 110.49 0.0702

(3D) 4p 0.5 1.5 79.29 79.21 0.0021 ^P) 2D 1.5 1.5 110.66 0.0645
(3D) 2p 1.5 0.5 79.46 0.0061 C1 P) 2D 0.5 1.5 110.69 0.0173
(3D) 2p 0.5 0.5 79.47 79.47 0.0116 (3D )4G 1.5 2.5 110.81 0.0001
(iD ) 2D 1.5 1.5 79.47 0.0034 (3P) 4f 1.5 1.5 111.27 0.0006
(3P) 4d 1.5 2.5 79.47 79.47 0.0082 (3P) 4F 0.5 1.5 111.30 0.0112

(iD ) 2D 0.5 1.5 79.48 79.47 0.0166 (3P) 4p 1.5 2.5 111.31 111.19 0.0339
(3p) 4p 1.5 2.5 79.53 79.47 0.0080 (JP) 2F 1.5 2.5 111.42 0.0003
(3D) 4g 1.5 2.5 79.56 0.0000 (3D) 2d 1.5 2.5 112.02 111.80 0.3782
(3D) 2p 1.5 1.5 79.56 0.0013 (3D) 2d 1.5 1.5 112.12 0.0493

(3D) 2p 0.5 1.5 79.57 0.0059 (3D) 2 d 0.5 1.5 112.15 111.91 0.1279
(3D) 4p 1.5 0.5 79.58 0.0013 (3D )4 S 1.5 1.5 112.46 0.0079
(3D) 4p 0.5 0.5 79.60 0.0034 (3D) 4S 0.5 1.5 112.49 0.0029

(3D) 4g 1.5 2.5 79.60 0.0005 (1D )2S 1.5 0.5 112.60 0.0017
(3D) 2p 1.5 1.5 79.61 79.58 0.0248 (! D )2S 0.5 0.5 112.63 0.0115
(3D) 2p 0.5 1.5 79.62 0.0003 (3P) 4D 1.5 2.5 112.64 0.0030

(3D) 4p 1.5 2.5 79.64 0.0304 (3D) 2P 1.5 1.5 112.68 112.43 0.0287
(3D) 4p 1.5 1.5 79.68 0.0009 (3P) 4D 1.5 1.5 112.70 0.0183

(3D) 4p 0.5 1.5 79.69 0.0068 (3D) 2p 0.5 1.5 112.71 112.53 0.0355
(3D) 4f 1.5 1.5 79.79 0.0000 (3D )4P 1.5 2.5 112.72 0.0000
(ip) 2p 1.5 0.5 79.80 0.0008 (3P) 4D 0.5 1.5 112.73 0.0043

(3D) 4f 0.5 1.5 79.80 0.0001 (3D )4D 1.5 0.5 112.74 0.0085
(3D) 2d 1.5 2.5 79.81 79.75 0.0003 (3D )4D 0.5 0.5 112.76 0.0144
(!p) 2P 0.5 0.5 79.81 0.0005 (3D) 4P 1.5 0.5 112.79 0.0104

(3D) 4f 1.5 2.5 79.82 0.0000 (3D) 4p 0.5 0.5 112.82 0.0126
(*D) 2D 1.5 1.5 79.85 0.0051 (3D )4D 1.5 2.5 112.83 112.65 0.0202
(iD ) 2D 0.5 1.5 79.86 0.0011 (3D) 4p 1.5 1.5 112.83 0.0019

Continued
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Table 5.4. Continued

Term

Al

Ecalc. Emcas. g f Term h J/

S i+

Ecalc. Ejneas g f

(3D) 4p 1.5 1.5 79.87 0.0000 (3D )4P 0.5 1.5 112.86 0.0038

(3D) 4p 0.5 1.5 79.89 0.0005 (!P) 2D 1.5 1.5 112.92 0.0024

(3D) 4G 1.5 2.5 79.94 0.0005 (3D )4P 1.5 0.5 112.95 0.0066

(3P) 4d 1.5 2.5 79.96 79.97 0.0030 (!p) 2d 0.5 1.5 112.95 0.0002

(3D) 2S 1.5 0.5 79.96 80.01 0.0091 (3P) 2D 1.5 2.5 112.97 0.0491

(3D) 2s 0.5 0.5 79.98 80.01 0.0034 (3D )4P 0.5 0.5 112.98 0.0255

(!p) 2D 1.5 1.5 80.00 80.01 0.0033 (3D) 4P 1.5 1.5 113.04 112.84 0.0640

(!P) 2D 0.5 1.5 80.01 80.01 0.0055 (3D )4F 1.5 2.5 113.07 0.0051

(!P) 2D 1.5 2.5 80.01 80.01 0.0020 (3D )4P 0.5 1.5 113.07 0.0026

^D ) 2S 1.5 0.5 80.13 0.0019 (! D) 2P 1.5 1.5 113.09 112.94 0.0539

^ D ) 2S 0.5 0.5 80.15 0.0023 ^ D ) 2P 0.5 1.5 113.12 0.0205

(3D) 2P 1.5 1.5 80.16 0.0003 (3D) 2P 1.5 0.5 113.16 0.0027

(3d ) 2P 0.5 1.5 80.18 0.0014 (3D) 2P 0.5 0.5 113.18 0.0010

(3D) 4D 1.5 2.5 80.19 0.0003 (3S) 2D 1.5 2.5 113.24 0.0148

(3D) 4D 1.5 0.5 80.20 0.0010 (3D ) 4D 1.5 0.5 113.32 0.0073

(3D) 4D 1.5 1.5 80.21 0.0000 (3D) 4D 1.5 1.5 113.33 0.0168

QQ

0.5 0.5 80.21 0.0000 (3D )4D 0.5 0.5 113.35 0.0186

(3D) 4D 0.5 1.5 80.22 0.0000 (3D )4D 0.5 1.5 113.35 0.0051

(3D) 4s 1.5 1.5 80.25 0.0001 (3P) 4P 1.5 0.5 113.42 0.0039

(3D) 4s 0.5 1.5 80.26 0.0001 (3P) 2d 1.5 1.5 113.43 0.0000

(3P) 4f 1.5 2.5 80.29 0.0000 (jd ) 2d 1.5 2.5 113.44 0.0101

^D ) 2P 1.5 1.5 80.42 80.38 0.0019 (3P) 4P 0.5 0.5 113.44 0.0019

(io ) 2P 0.5 1.5 80.43 0.0002 (3P) 2d 0.5 1.5 113.46 0.0029

(3D) 2P 1.5 0.5 80.45 0.0000 ( !D )2D 1.5 1.5 113.53 0.0056

(3D) 2P 0.5 0.5 80.46 0.0002 (3P) 4P 1.5 1.5 113.55 0.0059

(3P) 2D 1.5 2.5 80.52 0.0000 (1D ) 2D 1.5 2.5 113.55 0.0123

(!D) 2P 1.5 0.5 80.55 0.0001 (1D ) 2D 0.5 1.5 113.55 113.30 0.0195

(3P) 4D 1.5 1.5 80.55 0.0014 (3P) 4P 0.5 1.5 113.57 0.0000

(!D) 2P 0.5 0.5 80.56 0.0010 (3p) 4p 1.5 2.5 113.70 0.0086

(3P) 4D 0.5 1.5 80.56 80.49 0.0024 (!P) 2P 1.5 1.5 113.72 113.45 0.0459

(3P) 2D 1.5 1.5 80.60 0.0014 (lp) 2p 1.5 0.5 113.72 0.0292

(3P) 2D 0.5 1.5 80.61 0.0004 (ip) 2p 0.5 1.5 113.74 0.0016

(3p) 2F 1.5 2.5 80.67 0.0000 (1P) 2P 0.5 0.5 113.75 0.0110

(*D) 2P 1.5 0.5 80.69 0.0000 (3D) 2S 1.5 0.5 113.86 0.0171

(3P) 4P 1.5 2.5 80.69 80.71 0.0022 (3D) 2S 0.5 0.5 113.89 113.57 0.0178

(!D) 2P 0.5 0.5 80.70 0.0000 (3D ) 2F 1.5 2.5 114.10 0.0019

(]S) 2D 1.5 2.5 82.92 0.0006 (3P) 2F 1.5 2.5 114.45 0.0062

^S) 2D 1.5 1.5 82.92 0.0000 (1S )2D 1.5 1.5 117.16 0.0023

C1 S) 2D 0.5 1.5 82.93 0.0000 (iS) 2D 0.5 1.5 117.19 117.19 0.0094
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Table 5.5. Measured energies (eV), calculated energies (eV) and gf-values for the

2p63s23p 2P —» 2p53s23p4d 2>4L transitions in A1 and Si+.

Term h  if

A1

^calc. Emcas. gf Term Ji Jf

Si+

ECalc. ^meas. gf

(3S) 4D 1.5 0.5 79.94 79.97 0.0032 (3S) 4d 1.5 0.5 115.00 0.0000
(3S) 4D 1.5 1.5 79.95 0.0001 (3S) 4d 1.5 1.5 115.01 0.0002
(3S) 4D 0.5 0.5 79.95 0.0018 (3S) 4d 0.5 0.5 115.03 0.0000
(3S) 4d 0.5 1.5 79.96 0.0000 (3S) 4d 1.5 2.5 115.03 0.0012
(3S) 2d 1.5 2.5 80.07 80.11 0.0203 (3S) 4d 0.5 1.5 115.04 0.0003
(3S) 2d 1.5 1.5 80.11 0.0004 (3S) 2d 1.5 2.5 115.31 115.33 0.0244
(3S) 2d 0.5 1.5 80.12 0.0116 (3S) 2d 1.5 1.5 115.33 0.0003
(3D) 4p 1.5 0.5 80.39 0.0011 (3S) 2d 0.5 1.5 115.35 115.33 0.0283
(3D) 4p 1.5 2.5 80.40 0.0001 (3 D )4G 1.5 2.5 115.76 0.0010
(3D) 4p 0.5 0.5 80.40 0.0000 (3D) 2p 1.5 0.5 115.77 0.0055
(3D) 2d 1.5 2.5 80.53 80.59 0.0085 (3D) 2p 0.5 0.5 115.80 115.72 0.0120
(3D) 2d 1.5 2.5 80.58 80.59 0.0076 (3 D) 4s 1.5 1.5 115.84 0.0000
(3D) 2s 1.5 0.5 80.60 80.59 0.0071 (3D )4P 1.5 2.5 115.87 0.0000
(3D) 2s 0.5 0.5 80.61 0.0005 (3D) 4s 0.5 1.5 115.87 0.0001
(3D) 4g 1.5 2.5 80.62 0.0013 (3D )4F 1.5 1.5 115.90 0.0016
(3D) 2p 1.5 0.5 80.63 0.0007 (3D) 4p 1.5 2.5 115.92 116.06 0.0255
(3D) 2p 0.5 0.5 80.64 0.0050 (3D) 4f 0.5 1.5 115.93 0.0166
(3D) 2p 1.5 1.5 80.64 0.0052 (3D) 4p 1.5 0.5 115.94 0.0068
(3D) 2p 0.5 1.5 80.65 0.0000 (3D )4P 0.5 0.5 115.97 0.0004
(3D) 2p 1.5 1.5 80.71 0.0015 (3D )4D 1.5 1.5 115.97 0.0001
(3D) 2p 0.5 1.5 80.72 0.0022 (3D) 4d 0.5 1.5 116.00 0.0150
(3P) 4P 1.5 1.5 80.73 0.0008 (3D )4D 1.5 0.5 116.03 0.0001
(3D) 4d 1.5 2.5 80.73 0.0001 (3D )4D 0.5 0.5 116.06 0.0115
(3P) 4P 0.5 1.5 80.74 0.0002 (3 D )4D 1.5 2.5 116.08 0.0166
(3D) 4f 1.5 1.5 80.74 0.0001 (3D) 4p 1.5 1.5 116.12 0.0000
(3D) 4f 0.5 1.5 80.76 0.0000 (3D) 4p 0.5 1.5 116.15 0.0020
(3D) 4s 1.5 1.5 80.76 0.0000 (3D) 2f 1.5 2.5 116.16 0.0525
(3D) 4s 0.5 1.5 80.77 0.0008 (3D) 2d 1.5 1.5 116.17 0.0006
(3D) 2f 1.5 2.5 80.79 0.0007 (3D) 2d 0.5 1.5 116.20 116.06 0.0484
(3D) 4d 1.5 0.5 80.79 0.0000 (}D)2P 1.5 0.5 116.31 0.0005
(3D) 4d 0.5 0.5 80.80 0.0002 (3P) 4d 1.5 2.5 116.33 0.0000
(!D) 2d 1.5 1.5 80.81 0.0000 (*D) 2P 0.5 0.5 116.34 0.0165
(3D) 4d 1.5 2.5 80.81 0.0005 (! D) 2P 1.5 1.5 116.35 0.0271
(iD ) 2D 0.5 1.5 80.82 0.0003 (3P) 4P 1.5 0.5 116.38 0.0349
(3p) 2p 1.5 0.5 80.83 0.0005 C1 D) 2P 0.5 1.5 116.38 0.0023
(3D) 2f 1.5 2.5 80.83 0.0008 (lp) 2F 1.5 2.5 116.40 0.0000
(3P) 2P 0.5 0.5 80.84 0.0001 (3P) 4P 0.5 0.5 116.40 0.0022
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Table 5.5. Continued

Term 1 / Jy Ecajc Em eas. g f  Term J(' Jy Ecajc E^gas g f

A1 Si+

(3D) 2p 1.5 1.5 80.84 0.0007 0 ? )  2 d 1.5 1.5 116.42 0.0097
(3D) 2p 0.5 1.5 80.85 0.0002 (!p) 2D 0.5 1.5 116.44 0.0260
(ip) 2p 1.5 1.5 80.88 0.0002 (1D )2D 1.5 1.5 116.45 0.0170
(1P) 2p 0.5 1.5 80.89 0.0007 (!p) 2D 1.5 2.5 116.46 0.0171
i 1 D) 2S 1.5 0.5 80.94 80.91 0.0041 (iD ) 2D 0.5 1.5 116.47 0.0017

( l P) 2D 1.5 2.5 80.95 0.0008 (*D) 2f 1.5 2.5 116.58 0.0012
^ D ) 2S 0.5 0.5 80.95 0.0010 (3P) 4F 1.5 1.5 116.62 0.0025
(3D) 4f 1.5 1.5 80.97 0.0005 (3P) 4F 0.5 1.5 116.65 0.0008

(3D) 4f 0.5 1.5 80.98 0.0031 (!P) 2P 1.5 1.5 116.67 0.0057
(*P) 2f 1.5 2.5 80.99 0.0020 (3P) 4P 1.5 2.5 116.70 0.0028
(iD ) 2S 1.5 0.5 81.00 0.0001 ( ip )2? 0.5 1.5 116.70 0.0000

(3P) 4D 1.5 2.5 81.01 0.0005 (3P) 4 D 1.5 0.5 116.71 0.0002
(iD ) 2S 0.5 0.5 81.01 0.0014 ( i D ) ^ 1.5 2.5 116.71 0.0003
(!D) 2D 1.5 1.5 81.03 81.03 0.0027 (3P)4P 1.5 0.5 116.72 0.0165
(iD ) 2D 0.5 1.5 81.04 0.0002 (3P) 4D 0.5 0.5 116.74 0.0175
(3P) 2p 1.5 2.5 81.04 0.0025 (3D) 2P 1.5 1.5 116.75 0.0098
(iD ) 2P 1.5 1.5 81.05 0.0009 (3p) 4P 0.5 0.5 116.75 0.0002

(iD ) 2P 0.5 1.5 81.06 0.0000 (3D) 2P 0.5 1.5 116.77 0.0026
(3P) 2P 1.5 1.5 81.07 0.0003 (3P) 2P 1.5 1.5 116.78 0.0010
(3P) 2P 0.5 1.5 81.08 0.0001 ( ! D ) 2D 1.5 2.5 116.79 0.0015

(3P) 2D 1.5 2.5 81.08 0.0003 (3P) 2P 0.5 1.5 116.81 0.0007
(3P )4D 1.5 2.5 81.11 0.0002 (3P) 4 P 1.5 1.5 116.81 116.89 0.0133
(3p)4p 1.5 2.5 81.21 0.0008 (3P) 4P 0.5 1.5 116.84 0.0007

(3D) 2P 1.5 0.5 81.24 0.0005 (3P) 4p 1.5 2.5 116.86 0.0000
(3D) 2P 0.5 0.5 81.25 0.0008 (1P) 2P 1.5 0.5 116.87 0.0034
(!P) 2D 1.5 1.5 81.25 0.0005 ( iP) 2p 1.5 1.5 116.88 0.0008

(3P) 4F 1.5 1.5 81.26 0.0001 (! P) 2P 0.5 0.5 116.89 116.96 0.0115
(!p) 2D 0.5 1.5 81.26 0.0000 c1 P) 2P 0.5 1.5 116.91 0.0088
(3P) 4F 0.5 1.5 81.27 0.0000 ( !D )2S 1.5 0.5 116.91 0.0087

(3P) 4F 1.5 2.5 81.27 0.0000 (3P) 2D 1.5 2.5 116.92 116.96 0.0295
(3P) 4 D 1.5 0.5 81.28 0.0000 (1D )2S 0.5 0.5 116.94 0.0010
(3P) 4 D 0.5 0.5 81.29 0.0002 (3P) 2P 1.5 1.5 117.00 0.0154
( iD )2? 1.5 0.5 81.31 0.0007 (3P) 2P 0.5 1.5 117.03 117.03 0.0052
(3P) 2D 1.5 1.5 81.31 0.0001 (3P) 2D 1.5 2.5 117.27 117.26 0.0349
^ D ) 2P 0.5 0.5 81.32 0.0009 (3P) 2P 1.5 0.5 117.36 0.0034

(3P) 2D 0.5 1.5 81.32 0.0001 (3P) 2P 0.5 0.5 117.38 0.0010
(3P) 4P 1.5 1.5 81.34 0.0011 ^ S ) 2D 1.5 1.5 120.64 0.0002
(3P) 2D 1.5 2.5 81.35 81.37 0.0021 C1 S) 2D 1.5 2.5 120.65 0.0015
(3P) 4P 0.5 1.5 81.35 0.0001 (}S )  2d 0.5 1.5 120.67 0.0019
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Table 5.6 Measured energies (eV), calculated energies (eV) and gf-values for the

2p63s23p 2P —» 2p53s23p5d 2>4L transitions in A1 and Si+.

Term h J/

A1

locale. Em eas. gf Term J;

Si+

locale. Emeas. g f

(3S) 2D 1.5 2.5 80.33 0.0019 (3S) 4D 1.5 0.5 116.63 0.0001
(3S) 2D 1.5 1.5 80.34 0.0007 (3S) 4D 1.5 1.5 116.65 0.0037
(3S) 4d 1.5 2.5 80.35 0.0000 (3S) 4D 1.5 2.5 116.66 0.0030
(3S) 2d 0.5 1.5 80.35 0.0000 (3S )4D 0.5 0.5 116.66 0.0008
(3S) 4d 1.5 0.5 80.35 0.0002 (3S) 4D 0.5 1.5 116.68 0.0000
(3S) 4d 1.5 1.5 80.36 0.0000 (3D) 2d 1.5 2.5 117.14 0.0034
(3S) 4d 0.5 0.5 80.36 0.0000 (3D) 4P 1.5 1.5 117.39 0.0000
(3S) 4d 0.5 1.5 80.37 0.0001 (3D) 2d 1.5 1.5 117.39 0.0022
(3S) 2d 1.5 2.5 80.39 0.0025 (3D )4P 1.5 2.5 117.40 0.0000
(3S) 2d 1.5 1.5 80.42 0.0001 (3D )4P 0.5 1.5 117.42 0.0001
(3S) 2d 0.5 1.5 80.43 0.0029 (3D) 2d 0.5 1.5 117.42 117.47 0.0180
(3D) 2d 1.5 2.5 80.88 0.0020 (3D) 4f 1.5 2.5 117.44 0.0033
(3D) 4p 1.5 0.5 80.89 0.0007 (3D) 4p 1.5 0.5 117.47 0.0062
(3D) 4p 0.5 0.5 80.90 0.0000 (3D) 4d 1.5 1.5 117.47 0.0093
(3D) 2d 1.5 1.5 80.91 80.91 0.0048 (3D )4P 0.5 0.5 117.50 0.0001
(3D) 2d 0.5 1.5 80.92 0.0006 (3D )4D 0.5 1.5 117.50 0.0001
(3D) 2d 1.5 2.5 80.92 0.0009 (3D) 4p 1.5 2.5 117.51 0.0046
(3D) 4p 1.5 1.5 80.95 0.0029 (3D) 4f 1.5 1.5 117.56 0.0004
(3D) 4p 0.5 1.5 80.96 0.0030 (3D) 4d 1.5 0.5 117.57 0.0001
(3D) 2s 1.5 0.5 81.03 0.0019 (3D) 4f 0.5 1.5 117.59 0.0087
(3D) 2s 0.5 0.5 81.04 0.0000 (3D) 4d 0.5 0.5 117.60 0.0160
(3D) 4g 1.5 2.5 81.06 0.0005 (3D) 2d 1.5 2.5 117.62 117.54 0.0201
(3D) 4s 1.5 1.5 81.08 0.0021 (3D )4F 1.5 2.5 117.65 0.0001
(3D) 4d 1.5 0.5 81.09 0.0007 (3D) 2d 1.5 1.5 117.68 117.74 0.0208
(3D) 4s 0.5 1.5 81.09 0.0014 (3D )4D 1.5 1.5 117.69 0.0033
(3D) 4d 0.5 0.5 81.10 81.16 0.0060 (3D) 2d 0.5 1.5 117.70 0.0047
(3D) 4f 1.5 1.5 81.10 0.0000 (3D )4D 0.5 1.5 117.72 0.0092
(3D) 4f 0.5 1.5 81.11 0.0004 (3D) 2p 1.5 0.5 117.73 0.0123
(3D) 4d 1.5 0.5 81.13 0.0004 (3D) 2p 0.5 0.5 117.76 0.0101
(3D) 4d 1.5 1.5 81.13 0.0018 (3D) 2d 1.5 2.5 117.77 117.95 0.0367
(3D) 4d 0.5 0.5 81.14 0.0000 (3 D )2S 1.5 0.5 117.82 0.0325
(3D) 4d 0.5 1.5 81.14 0.0007 (3D) 2p 1.5 1.5 117.83 118.08 0.0472
(3D) 4d 1.5 2.5 81.14 0.0001 (3D )2S 0.5 0.5 117.85 0.0150
(3D) 2p 1.5 1.5 81.20 0.0013 (3D) 2p 0.5 1.5 117.86 0.0174
(3D) 2p 0.5 1.5 81.21 81.21 0.0024 (iD )2? 1.5 0.5 117.89 0.0049
(tD) 2S 1.5 0.5 81.21 0.0002 (3P) 4d 1.5 2.5 117.90 0.0016
(*D) 2S 0.5 0.5 81.22 0.0000 (3P) 4d 1.5 1.5 117.91 0.0030
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Table 5.6. Continued

Term h h

A1

Ecalc. Etneas. g f Term h J/

Si+

Ecalc. E,neas. g f

(3D) 2f 1.5 2.5 81.24 0.0002 (! D) 2P 0.5 0.5 117.92 0.0000
(3P) 2D 1.5 1.5 81.30 0.0014 (3P) 4D 0.5 1.5 117.93 0.0005

(! D) 2f 1.5 2.5 81.30 0.0006 (1D )2S 1.5 0.5 118.04 0.0039
(3P) 2D 0.5 1.5 81.31 0.0001 (1P) 2p 1.5 2.5 118.05 0.0013
(3P) 4P 1.5 2.5 81.37 0.0002 (1D ) 2S 0.5 0.5 118.07 0.0034

(iD ) 2S 1.5 0.5 81.39 0.0006 (iP) 2F 1.5 2.5 118.09 0.0081
(! D ) 2P 1.5 1.5 81.39 0.0019 (3D) 2P 1.5 1.5 118.10 0.0002
( i D ) ^ 0.5 0.5 81.40 0.0001 (3D) 2P 0.5 1.5 118.12 0.0163

(*D) 2P 0.5 1.5 81.40 0.0001 (!p) 2D 1.5 1.5 118.15 0.0009
(3P) 2p 1.5 1.5 81.40 81.44 0.0026 (! P) 2D 0.5 1.5 118.18 0.0223
(3P) 2P 0.5 1.5 81.42 0.0003 (iD ) 2F 1.5 2.5 118.20 0.0027
(tP) 2p 1.5 2.5 81.43 0.0000 (3P) 4D 1.5 1.5 118.21 0.0080
( iP) 2p 1.5 0.5 81.44 0.0002 (3P) 4D 1.5 0.5 118.21 0.0020
(*P) 2F 1.5 2.5 81.44 0.0000 (3P) 4 D 0.5 1.5 118.24 0.0001
(3P) 4D 1.5 2.5 81.44 0.0016 (3P) 4D 0.5 0.5 118.24 0.0166

(3P) 4D 1.5 1.5 81.45 0.0000 (3P) 4F 1.5 1.5 118.25 0.0000
(tp) 2p 0.5 0.5 81.45 0.0007 (3P) 4p 1.5 2.5 118.25 0.0028

(3P) 4D 0.5 1.5 81.46 0.0000 (3P) 4F 0.5 1.5 118.28 0.0057
(3P) 2P 1.5 1.5 81.48 0.0000 (! D ) 2P 1.5 1.5 118.29 0.0029
(3P) 2F 1.5 2.5 81.49 0.0007 ^ D ) 2D 1.5 2.5 118.30 0.0000
(3P) 2P 0.5 1.5 81.49 0.0002 (3P) 2F 1.5 2.5 118.31 118.44 0.0191
(3P) 4D 1.5 0.5 81.55 0.0001 (! D )2P 0.5 1.5 118.32 0.0002
(3P) 4D 1.5 2.5 81.55 81.48 0.0027 (!D )2S 1.5 0.5 118.33 0.0068

(3P) 4D 0.5 0.5 81.56 0.0003 (3p) 2P 1.5 1.5 118.35 0.0046
(!P) 2D 1.5 1.5 81.56 0.0003 (3p) 4P 1.5 2.5 118.35 118.51 0.0214

(!P) 2D 0.5 1.5 81.57 81.57 0.0020 (!D )2S 0.5 0.5 118.36 0.0001
(3P) 4F 1.5 1.5 81.57 0.0003 (3P) 4P 1.5 1.5 118.36 0.0210
(3P) 4F 0.5 1.5 81.58 0.0000 (! P) 2P 1.5 0.5 118.37 0.0041
(3P) 4D 1.5 0.5 81.61 0.0000 (3P) 2P 0.5 1.5 118.37 0.0000
(3p ) 4f 1.5 2.5 81.62 0.0006 (3P) 4P 0.5 1.5 118.39 0.0000
(3P )4D 0.5 0.5 81.62 0.0009 ^ P ) 2P 0.5 0.5 118.40 0.0054
(3P) 4P 1.5 0.5 81.63 0.0017 (3P) 2F 1.5 2.5 118.62 118.90 0.0299

(3P) 4P 0.5 0.5 81.64 0.0002 (3P) 2P 1.5 0.5 118.66 0.0012
(3P) 2D 1.5 1.5 81.64 0.0002 (3P) 2P 0.5 0.5 118.69 0.0048
(3P) 2D 0.5 1.5 81.65 0.0019 (3P) 2D 1.5 1.5 118.70 0.0044

(3P) 2f 1.5 2.5 81.68 81.68 0.0037 (3P) 2d 0.5 1.5 118.73 0.0050
(iD ) 2D 1.5 1.5 81.68 0.0000 (1S ) 2D 1.5 1.5 122.24 0.0003
(*D) 2D 0.5 1.5 81.69 0.0002 (JS) 2D 1.5 2.5 122.24 0.0021

(!S) 2D 1.5 2.5 84.40 0.0066 (1S ) 2D 0.5 1.5 122.26 0.0019
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5.4 Conclusions

In this work a comprehensive investigation of the 2p absorption spectra of 

A1 and Si+, recorded using the dual laser-produced plasma technique, have been 

carried o u t . A combination of photoabsorption and theoretical studies along the 

isoelectronic sequence have been successfully employed for explaining the 
measured spectra.

The investigations presented in this work are not in agreement with those 

of Cantu et al. (1982) and Daum and Kelly (1976) reported for A1 and Si+ 
respectively. In the case of A1 all the strong features were assigned to the 

2p53s23p4s array by Cantu etal. (1982). Though the calculated term energies and 

relative intensities were in reasonable agreement with the observed features we 

believe the analysis presented by Cantu and co-workers is not reliable for the 
following reasons: i) the contribution of 2p -> 3d transitions was seriously 
underestimated, and (ii) no configuration-interaction effects were taken into 

account in the semi-empirical approach used. In the photoionization calculations of 

Si+ (Daum and Kelly 1976), the resonances belonging to the 2p53s3p3 

configuration were not included. Our calculations, where almost all significant 
interactions have been included, predict that the 2p absorption spectra for both A1

and Si+ are dominated by the 2p63s23p -» 2p53s3p3 + 2p53s23pnd transitions and 

the 2p63s23p -> 2p53s23pns transitions are relatively very weak which has also 

been found to be in agreement with the experiment.
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Cfmpttr 6

THE GROUND STATE ABSORPTION IN 
ATOMIC SILICON

The photoabsorption spectrum  o f  atom ic Si is reported  in the 1 0 3  eV  to 113  eV  region. 

The absorption features in this region arise  from  the excitation  o f  2p  electron s. Interpretation for 

the m easured spectrum  is provided  on the basis o f  con figu ratio n -in teraction  atom ic structure  

calculations. Com parison is m ade with the 2p  absorption in gas  p hase SiH 4.

6.1 Introduction

The study of the spectrum involving inner-shell excitations is a valuable 

tool to establish connections between the behaviour of free atoms and those in 
molecules, clusters and solids, currently an important thrust of research (see e.g. 
Connerade et al. 1987, Connerade andKamatak 1990, Costello et al. 1991). Most 

frequently inner-shell excitation in molecules and solids exhibit spectra similar to 
those of the constituent atoms. For example, inner-shell excitations in molecules 
and solids exhibit giant resonances if the constituent atoms do so. The persistence 
of these resonances indicate that the effect originates inside the constituent atoms, 

where the initial- and final state wavefunctions are only slightly perturbed by the 
external environment (Bnechignac et al. 1991). Considerable attention has been 
paid to the phenomenon of giant resonances and its consequences (Connerade et 

al. 1987 and references therein). The basic mechanism of giant-resonance 
formation has been explained in terms of a collective oscillation of an electron shell 
as well as within the framework of an independent particle model (Clark 1987 and 

references therein). Their formation involves one-electron excitations which have 
very significant probability in molecules as well as solids. Therefore, they have 
been observed in the inner-shell spectra of metals and molecules. Close similarities 
have been observed between the inner-shell spectra of metals, molecules and their 

constituent atoms exhibiting giant resonances (see e.g. Costello et al. 1991) 
because the transitions take place between the orbits which are deep within the
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atom and, therefore, are not influenced by the environment. The 4d and 3p 
photoabsorption studies in rare-earths (see e.g. Richter et al. 1989) and 3d 

elements (see e.g. Sonntag and Zimmermann 1992), respectively, and their 
molecules has played a major role not only in establishing relations between the 
behaviour of these atoms and their molecules but also proved of great value in 
understanding the various aspects of giant resonances (Connerade et al. 1987 and 

references therein).
For more than two decades second row atoms and their molecules have 

been the subject of 2p-subshell photoabsorption/photoionization investigations. 

However, in spite of intense efforts their spectra have not been thoroughly 
investigated. The 2p-subshell photoabsorption/photoionization measurements have 
been made in Na (Connerade et al. 1971, Wolff et al. 1972), Mg (see chapter 4 and 
references therein) and Al (see chapter 5 and references therein) atoms but to our 
knowledge corresponding spectra of their molecules have not been reported. On 
the other hand the 2p-subshell photoabsorption have been studied extensively in 
the molecules of Si (Hayes etal. 1971, Hayes and Brown 1972, de Souza etal. 
1986, Sutherland etal. 1994), P (Hayes and Brown 1972, Ishiguro etal. 1987), 
S (Hayes and Brown 1972, Hudson etal. 1993, 1994) and Cl (Hayes and Brown 
1972, Aksela et al. 1990) but the corresponding spectra of these atoms have not 

been reported. Therefore, it was not possible to study the behaviour of second row 
atoms and their molecules in their 2p photoabsorption spectra . With this in mind, 
the photoabsorption investigations of the 2p-subshell spectrum of atomic Si has 

been carried out and comparison is made with the gas phase 2p absorption 
spectrum of SiH4 reported by Hayes etal. (1971, 1972).

The investigations and identification of the 2p photoabsorption spectra of 
atomic Si will be reported first. Then, comparison will be made with the 

corresponding photoabsorption spectrum of gas phase SiH4.

6.2 Results and analysis

The ground configuration 2p63s23p2 of Si neutral includes the 3P0 ,1,2» ^  

and iSo levels. The 3P 1? 3P2, !D2 and levels lie 77.115 cm '1, 223.157 cm-1, 
6298.850 cm"1, 15394.370 cm-1, respectively, above the ground state 3P0 and lie 
lower than the levels of the excited configurations (Martin and Zalubas 1983). 

Therefore, in the dual laser plasma experiment, optimised for Si neutral, all of
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these levels could get populated and significant absorption can result from these 
levels. The transitions can take place to the Rydberg series 2p53s23p2(n+l)s, 

2p53s23p2nd and the doubly excited configuration 2p53s3p4. The various excited 
levels could fall in the same spectral region and yield a complicated spectrum. In 
such an overlapped spectrum, without knowing the population of the different 
levels of the ground configuration, it could be very difficult to distinguish the 
absorption taking place from different lower levels. The atomic structure 
calculations could predict everything in agreement with the measurements but 
assignment of the observed features to some particular configuration seems to be 

very difficult in this case. If absorption takes place only from 3P levels then at least 
it is possible to associate some unique upper level with the lower levels and 
provide a comparison with the measured and computed spectrum.

The photoabsorption spectrum of atomic Si going to the 2p limit at 107.96 
eV is shown in figure 6.1. The energy of the limit has been obtained from the 
2p63s3p2 -» 2p53s23p2 transition measured at 94.46 eV in the 2p absorption from 
Si+ (see chapter 7). The relevant optical energies have been taken from Martin and 

Zalubas (1983).

Photon Energy (eV )

Figure 6.1
The 2p-subshell photoabsorption spectrum  o f  atom ic silicon  in ground states. T h e features  

labelled as 31  and 3 2  exhibit the strongest transitions o f  Si+  (see chapter 5 ).
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The observed Si I energies and their assignments are listed in tables 6.1, 
6.2 and 6.3. The assignments are given on the basis of scaled atomic structure 

calculations (see chapter 2) carried out for the 2p63s23p2 + 2p63p4 -» 2p5[3s23p2(4s 
+ 5s + 6s) + 3s23p2(3d + 4d) + 3s3p4] transitions. The HF integrals I* (i, i), Fk (i,

j), Gk (i, j), Rk (i, j) and Ç (i) have been scaled by 15%, 15%, 15%, 25% and 10% 

respectively. The 2p63p4 configuration has been included to provide configuration- 

interaction effects in the ground states. No extra configuration-interaction effects 
have been included in the core-excited states. The core-excited 2p53s23p2nd series 
has been found mixed with the doubly excited 2p53s3p4 configuration, however, 
the mixing is not severe. On the other hand, the 2p53s23p2(n+l)s series have been 

observed not to mix with the 2p53s23p2nd series and the 2p53s3p4 configuration.

6.2.1 Transitions from 2p63s23p2 3P0? ^ 2 lev e ls

From 3P0 j 2 levels transitions to the 3L terms are expected to appear 
strongly. Departures from LS coupling will allow transitions to the 5L and ’L 

terms. In the case of the 2p53s23p2(n+l)s series significant mixing has been 
observed between the 3L and 5L terms, therefore, strong transitions have been 
predicted to only the 3L and 5L terms (see table 6.1). Transitions to the !L terms 

have been predicted with negligible gf-values and along with the other transitions 
predicted with negligible gf-values have been deleted in table 6.1. With the 
exception of the two lowest terms there is excellent agreement between the 
computed and measured term energies. Analogous to the 2p absorption in atomic 

Mg (see chapter 4) and atomic A1 (see chapter 5) the whole lower energy region is 
dominated by the 2p -* 4s transition airay. The 2p -» 5s and 6s transitions are 
predicted very weak and degenerate with the very strong transitions resulting from 
the 2p -> 3d transitions, therefore, their identification here is not possible.

In the case of transitions to 2p53s23p23d and 2p53s23p24d configurations, 
out of the total 470 possible transitions (see Appendix C) only 50 transitions have 

been predicted with non-negligible gf-values and their assignment is given in table
6.2. In the region from 106.44 eV to 106.81 eV, a number of transitions have been 
predicted. But in this region only the peaks 17 and 18 (Figure 6.1) appear as 
resolved. These two peaks appear as strongest in the 2p absorption spectrum of 

atomic Si. The computed energy of the (3P) 3P2 -» (!D) !F3 transition predicted as 
strongest is in agreement with the measured energy of peak 18, therefore, this
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transition can be assigned to peak 18. The gf-value of the transition having energy 
corresponding to the measured energy of the strongest feature (peak 17) has been 

predicted almost zero and analogous to the 2p absorption in atomic A1 (see chapter 
5). The gf-value of the transition corresponding to the strongest observed feature 
in atomic AI was predicted almost zero. In the calculations carried out for the 
isoelectronic ion Si+ the same transition was predicted as the strongest and was in 

agreement with the experiment. Therefore, assignment was given on the basis of 
isoelectronic comparison of measured and computed spectra. In the present case 
the calculations carried out for P+ which is isoelectronic to atomic Si predict the 

same transition as the strongest. Therefore, we believe the computed gf-values for 
neutrals are not reliable. The zero gf predicted for the strongest transition in atomic 
Si could be due to cancellation effects which have been observed frequently (see 

chapter 2).
The doubly excited 2p53s3p4 configuration has 40 terms (see Appendix C). 

The transitions to the 3L terms expected to appear as strong have been predicted far 
above the 2p threshold. On the other hand, transitions to the 5L terms which are 

dipole forbidden in pure LS coupling have been predicted all below the 2p 
threshold with the exception of transitions to the (3P) 5St term. No significant 
mixing has been observed between the 5L terms of the 2p53s3p4 configuration with 

the terms of 2p53s23p2nd series. As the transitions to the doubly excited states 
borrow strength mainly through mixing with the most favourable transitions to the 
nd series, therefore, transitions to the doubly excited states have been predicted 

with negligible gf-values. However, analogous to the Al isoelectronic sequence 
(see chapter 5), the 3L terms of the doubly excited configuration in P+ isoelectronic 
to Si I will drop below the the 2p threshold. Their mixing with the terms of the 
2p53s23p2nd series could give rise to some strong transitions to the doubly excited 

states. Furthermore, the strong interaction between the doubly and singly excited 
states in P+ could yield relatively complicated spectrum and make the identification 
difficult.
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Table 6.1. Measured energies (eV), calculated energies (eV) and gf-values for

the 2p63s23p2 3P —» 2p53s23p2[4s + 5s + 6s] 1-3>5L transitions in atomic Si.

Transition Ecalc. gf ^meas. Peak

3P2 - 4s C»P) 3P2 104.83 0.0049 106.68 2

3P X - 4s (3P) 3P2 104.85 0.0035 104.75 3

3P2 - 4s ^P) 3Pi 104.94 0.0021 104.87 4

3P0 - 4s (3P) 3Pl 104.97 0.0026 104.87 4

3Pi - 4s (SP) 3P0 105.00 0.0021 104.98 5

3P 2 - 4s (3P) 5D3 105.12 0.0038 105.12 6

3Pi - 4s (SP) 5D2 105.23 0.0027 105.24 7

3Pi - 4s (3P) 3DX 105.37 0.0024 105.33

3P2 - 4s (3P) 3D3 105.38 0.0083 105.33 8

3P2 - 4s (3P) 3P2 105.43 0.0043 105.46 9

3Pi - 4s ^P) 3D2 105.56 0.0026 105.52 10

3P0 - 4s (5P) 5Di 105.68 0.0024 105.65 11

3Pi - 4s (5P) 3D2 105.83 0.0041 105.80 12

3P2 - 4s (3P) 3E>3 105.93 0.0084 105.94 13

3P2 - 4s (SP) 3SX 106.15 0.0024 106.06 14

3P X - 4s (3P) 3Sj 106.16 0.0020 106.21 15

3P2 - 4s (3P ) 3S! 106.44 0.0023

3P2 - 5s (3P) 3P2 106.60 0.0012

3P l - 5s (3P) 3P0 106.85 0.0006

3P2 - 5s (3p) 3D3 107.12 0.0029

3P2 - 5s (3P) 5D2 107.23 0.0013

3Pj - 5s (3P) 3Di 107.34 0.0009

3P0 - 5s (SP) 5Dl 107.67 0.0006

3P2 - 5s (5P) 3D3 107.96 0.0021

3Pi - 6s (3P) 3P2 107.24 0.0011

3P2 - 6s (3P) 3D3 107.74 0.0016
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Table 6.2. Measured energies (eV), calculated energies (eV) and gf-values for

the 2p63s23p2 3P —» 2p53s23p2[3d +4d] li3-5L transitions in atomic Si.

Transition ^calc. gf Emcas. Peak

3P2 - 3d (3P) 3D3 106.10 0.0055 106.06 14

3P ! - 3d (3P) 3D2 106.20 0.0038 106.21 15

3Pi - 3d (3P) 3Dt 106.35 0.0026 106.28

3P2 - 3d (3P) 5P2 106.36 0.0048 106.28 16

3P0 - 3d (3P) 3Di 106.36 0.0008 106.57 17

3P2 - 3d(3P ) 3S1 106.43 0.0029

3Pj - 3 d (3P ) 3Si 106.44 0.0028

3P0 - 3d (3P) 3Si 106.45 0.0036

3P2 - 3d (3P) 3Si 106.63 0.0038

3P! - 3d(3P ) 3S1 106.65 0.0026

3P2 - 3d (3p) 5 f3 106.66 0.0033

3Pi - 3d (?P) 5F2 106.67 0.0057

3P t - 3d (5P) 5Fl 106.71 0.0024

3P0 - 3d (SP) 5Fj 106.71 0.0047

3P2 - 3d (3P) 3D3 106.74 0.0106

3P2 - 3d (SP) 3Pj 106.74 0.0085

3Pi - 3d (3P) 3P0 106.74 0.0044

3Pi - 3d (3P) 5G2 106.75 0.0096

3Pt - 3d (3P) 3P X 106.75 0.0025

3P2 - 3d (ID) !D2 106.78 0.0040

3P i - 3d (ID) iDz 106.80 0.0047

3P2 - 3d (ID) !F3 106.80 0.0120

3P2 - 3 d m  3P2 106.81 0.0192 106.84 18

3P2 - 3d (3P) 3D, 106.98 0.0042

Continued.
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Table 6.2. Continued.

Transition ^calc. gf ^meas. Peak

3P2 - 3d(3p)3p2 107.00 0.0055 107.03 19

3Pj - 3d (3p) 5Fi 107.03 0.0031

3p2 - 3d (3p) 3F3 107.22 0.0035 107.20 20

3?2 - 3d(3P)5D! 107.28 0.0033

3Pj - 3d (3p) SDi 107.30 0.0042 107.35 21

3p0 - 3d (3P) 3Dt 107.44 0.0042 107.44 22

3Pi - 3d (3P) 5D2 107.47 0.0034

3Pj - 3d (3P) 3F2 107.57 0.0037 107.57 23

3p2 - 3d (3P ) 3S1 107.79 0.0033 107.78 25

3Pi - 3d(3P )iD 2 107.83 0.0031 107.86 26

3P2 - 4d (3p) 3D3 107.19 0.0102 107.20

3p2 - 4d (3P) 3p2 107.28 0.0038 107.35 21

3P2 - 4d (3p) 3pL 107.57 0.0057

3P2 - 4d (3p) 5 f3 107.58 0.0168 107.57 23

3p2 - 4d (3p) 5G3 107.61 0.0100

3p2 - 4d (3p) 3P2 107.63 0.0159 107.69 24

3Pj - 4d (3p) 3Di 107.67 0.0058

3px - 4d (3p) 5G2 107.72 0.0039

3p2 - 4d (3p) 5d3 107.77 0.0082 107.78 25

3Pi - 4d (*D) 3F2 107.78 0.0029

3p2 - 4d (3P) 5p3 107.79 0.0028

3P! - 4d (3P) 3p2 107.80 0.0022

3P0 - 4d (3p) 5pi 107.95 0.0029

3p0 - 4d (3p) 5F! 108.08 0.0033

3Pi - 4d (3P) 3Pj 108.37 0.0020

3p2 - 4d (!D) !F3 108.48 0.0043

3p2 - 4d (3p) SDi 108.53 0.0032
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6.2.2 Transitions from the 2p63 s23p2 *D2 leve l

The assignments of the transitions resulting from the !D level are given in 

table 6.3. With the exception of transitions assigned to peaks 1 and 28 all other 
transitions from the *D level coincide with the transitions resulting from 3P levels. 
As the gf-values coiresponding to the transitions assigned to the peaks 1 and 28 

have been predicted in agreement with the experiment and no other transitions 
resulting from 3P or !S levels have been predicted coiTesponding to their measured 
energies. Therefore, in the present experiment significant populations of the 
levels are present in the absorbing plasma.

Table 6.3. Measured energies (eV), calculated energies (eV) and gf-values for 

the 2p63s23p2 -> 2p53s23p2[3d + 4d + 4s] 1*3-5L transitions in atomic Si.

Transition ^calc. gf Emeas. Peak

1D2 - 3d(3p)iD2 106.43 0.0031
*D2 - 3d (1D)1F3 106.47 0.0058 106.57 17
1D2 - 3d(iD )iP! 107.08 0.0052 107.03 19
1D2 - 3d (1D)3P2 107.18 0.0076 107.20 20

*D2 - 3 d (1D)3P2 107.31 0.0045
!D2 - 107.33 0.0066 107.35 21

1D2 - 3d (1D)1F3 107.39 0.0148 107.44 22

*D2 - 3d (1D)3G3 107.69 0.0102 107.69 24
*D2 - 3d (1S)1F3 108.66 0.0057
!D2 - S d ^ S ) ^ 108.76 0.0028
!D2 - 3 d (3P)1D2 108.88 0.0092
1D2 - 3d(iS )3D2 109.06 0.0039
lD2 - 3 d (1S)lD2 109.11 0.0101
!D2 - 4d (iD ^Pi 106.85 0.0035
!D2 - 4d (3P)3F3 106.87 0.0035
!D2 - 4d 106.87 0.0075 106.84 18
!D2 - 4d (3P)3F3 106.98 0.0112 107.03 19

Continued.
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Table 6.3. Continued.

Transition ^calc. gf Emeas. Peak

jD2 - 4 d (3P)3D3 107.02 0.0024
*D2 - 4 d (3P)1D2 107.44 0.0041 107.44 22
1D2 - 4d (1D)3D2 107.61 0.0033 107.57 23
*D2 - 4d (1D)1F3 107.62 0.0028
1D2 - 4d (1D)3P2 107.67 0.0036
*D2 - 4d 107.70 0.0045
!D2 - 4d (3P)1F3 107.82 0.0046
!D2 - 4 d (3P)3E>3 107.86 0.0081 107.86 26
!D2 - 4d (1D)1F3 108.51 0.0111 108.51 28
!D2 - 4s OD)1?! 104.51 0.0032 104.56 1
!D2 - 4s (1D)1F3 105.36 0.0107 105.33 8
!D2 - 4s (1D)1F3 105.69 0.0082 105.65 11
!D2 - 4s (1D)1D2 106.37 0.0099 106.28 16

6.2.3 Transitions from the 2p63s23p2 1Sq lev e l

In principle, from the ’Sq level transitions can take place to the !L and 3L 
terms. But in the present case most of the *L terms have been observed almost pure 

LS coupled, therefore, strong transitions are expected only to the !L terms. In 
calculations two strong transitions have been predicted to the (’S) 3d !P and (3P) 
3d !P terms at 107.92 eV and 108.93 eV respectively. The corresponding gf- 

values were 0.0153 and 0.0161 respectively. The identification of the ’S -> (!S) *P 
term is not possible as it falls in the region dominated by the strong 3P, ’D -> 4d 
transitions. However, the predicted position of the !S -> (3P) !P transition does not 
coincide with any other transition arising from 3P or !D levels, therefore, if 

absorption is present from level then the identification of this transition should 
not be a problem. But corresponding to this transition a very weak feature is 
present. Therefore, it is inferred that under the conditions of our experiment the !S 

population is very small relative to the populations of 3P and *D levels.
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6.3 Comparison between the 2p absorption in atomic 
silicon and gas phase silane

The results of 2p absorption in SiH4 (Hayes et al. 1971, Hayes and Brown 
1972) reveal two kinds of resonances. One type include a broad structure, 
observed in the lower energy region, assigned to the excitations of inner-shell 2p 
electrons into the first empty molecular orbital. This is a typical molecular effect 

and is not found in the 2p absorption spectrum of atomic Si. The second type of 
resonances include atomic-like Rydberg series converging to the 2p ionisation 
thresholds. In order to provide interpretation for the sharp features the united atom 
approach has frequently been used (Hayes etal. 1971, Hayes and Brown 1972, 

Nenner 1987). In this approach, the distance between the two nuclei is allowed to 
become zero so that the Hamiltonian for the molecule reduces to that of an atom 
whose nuclear charge is the sum of the nuclear charges of the atoms composing the 

molecule. Each molecular orbital then has been labelled by the united-atom orbital 
into which it degenerates when the nuclei are brought together. The united atom for 
the SiH4 is Ar, and the L shell spectrum of argon has been studied by Nakamura 
et al. (1968) and by Watson and Morgan (1969). The electron energy loss 
spectrum of argon has been reported by King et al. (1977).

Two groups of Rydberg series are found in argon, arising from the 
excitation of a single 2p electron to 4s and higher s levels and to 3d and higher d 

levels. Therefore, the sharp atomic-like features observed in the photoabsorption 
spectra of SiH4, analogous to argon, have been assigned to the (n+l)s and nd 
Rydberg series. The photoabsorption spectrum of SiH4 measured by Hayes and 
Brown (1972), along with the assignments given by them, are shown in figure 
6.3. According to Hayes and Brown (1972), the Lm n spectrum of SiH4 arises 
from transfer of a single silicon 2p electron to empty molecular-orbital states. The 

point symmetry of SiH4 in its ground electronic state is Td, and in this symmetry s 
orbitals transform like A, and p orbitals like F2; d orbitals split into a triply 
degenerate (F2) and a doubly degenerate (E). The ground configuration of SiH4 is 
la t2 2a^ lf26 3a!2 2f26 (!At) and allowed electric dipole transitions occur to the 

underlined F2 states in the excited configurations listed below: 
lf25na1(i.3F2) n > 4  (a),
lf2s nf2 (WE* i.3E, ^A j) n > 3 (f), (6.1)
lf25 ne (‘.3F2, i.3Fi) n > 1 (e).
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The index n represents the molecular orbital in order of occurrence as a function of 
energy. For example, n is one or greater in the excitation series (e) because the 

doublet type e occurs for the first time in the excited configuration (Hayes and 
Brown 1972). In equation (6.1) series (a) represents the transitions arising from 
the excitation of a 2p electron to the 4s and higher orbital. Series (f) and (e) 
correspond to the 2p to 3d and higher d transitions.

F igure 6.2

Com parison o f  the 2p  photoabsorption spectrum  o f silane (top ) with the electron  energy  

loss spectrum near the A r 2p  edge (bottom ) (from  N enner 1 9 8 7 ).

The comparison between the 2p photoabsorption spectrum of SiH4 and the 
electron energy loss spectrum of Ar has been made by Nenner (Figure 6.2). It was 
suggested by Nenner (1987) that the molecular field brought by the hydrogen 
atoms around silicon atom should be very weak. For the H2S molecule it has been 
suggested by Brechignac et al. (1991) that hydrogen atoms do not perturb 
appreciably the inner-shell spectra of sulphur. Therefore, the 2p photoabsorption 
spectrum of SiH4 may show some similarities with the corresponding spectrum of 

atomic Si. The comparison between their spectra are shown in figure 6.4. It can be

SiH4
Hay** « I  al (1971)

___ I ÎY----------- 1—
PHOTON ENERGY (*V)
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seen from this comparison that both spectra have a number of discrete transitions 
in the same energy region. While there is no simple one-to-one correspondence 

between the spectra the features joined by a sloping line 5 in series (a) of SiH4 and 
the peaks 7 and 13 are very similar in appearence and energy positions. In SiH4 
these peaks have been assigned to the 2p -> 5s transitions. Their measured energies

Photon E nergy  (eV )

Figure 6.3
Com parison o f  the 2p  photoabsorption spectrum  o f  a to m ic  silicon  (top : this w ork) with  

the gas phase 2p  photoabsorption spectrum o f  silanc (bottom : from  H ayes et al. 1 9 7 2 ).
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are 104.92 and 105.52 eV. The measured difference of 0.7 eV between these peaks 
has been associated with spin-orbit interaction produced due to 2p5 core of silicon 

(Hayes and Brown 1972). The energies of the peaks 7 and 13, assigned to the 
2p -> 4s transitions (this work), in the photoabsorption spectrum of atomic Si have 
been measured at 105.24 eV and 105.94 eV and have a splitting of 0.7 eV which is 
in agreement with the spin-orbit splitting produced by the 2p5 core of silicon in 

silane. This agreement is suggestive but may be no more than coincidental. It is 
very difficult to make an overall comparison of the photoabsorption spectra of 
atomic silicon and silane as the silicon atom in silane is not isoelectronic to the free 

silicon atom. In order to examine the effects of hydrogen bonding on the inner- 
shell spectra of second-row atoms more comparisons are required. These 
comparisons could help to know in which direction the shift in the 2p ionization 

energies takes place. As the 2p absorption spectra of second-row atoms Na, Mg 
and A1 exhibits strong multiply excited states, therefore, their comparisons with the 
corresponding spectra of hydrides can help in understanding the probability of 
multiply excited states in molecules.

6.4 Conclusions

Photoabsorption spectrum of atomic silicon arising from the 2p excitation 
has been interpreted with the help of configuration-interaction atomic structure

calculations. The ground configuration 2p63s23p2 includes the 3P, !D and *S

levels. Strong absorption has been observed from the lower 3P and ]D levels,

however, no significant absorption has been observed from the highest !S level.

The 2p absorption in atomic Si is found to exhibit the spectrum arising 
from the 2p63s23p2 -> 2p53s23p2 [nd + (n+l)s, n > 3] one-electron excitations 
only. Transitions to the 2p63s23p2 ->2p53s3p3np two-electron series have not been 
observed which is in contrast with the 2p absorption spectra of Mg and A1 

neutrals. The 2p53s23p2(n+l)s series has been found not to be significantly mixed 
with the 2p53s23p2nd and 2p53s3p3np series which is analogous to the 2p 
absorption in Mg and A1 neutrals. The interaction between the 2p53s23p2nd series 

and the doubly excited 2p53s3p4 configuration has been found to persist but weak 
as compared to the Mg and A1 cases (see chapters 4 and 5). The lower energy 
region in atomic Si, analogous to the 2p absorption spectra of the Mg and A1 
atoms, has been found to be dominated by the 2p -> 4s transition array.
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Comparison has been made between the 2p photoabsorption spectra of 
atomic silicon and gas phase silane. Some of the features observed in the 2p 

photoabsorption spectrum of SiH4 and atomic silicon have been found very similar 
in appearance and energy positions. However, on the whole the members of 
Ryberg series observed in SiH4 do not show strong resemblance with that of the 
atomic silicon spectrum. This is not surprising even if it is assumed that the 2p 

absorption spectrum of atomic silicon is not influenced to any great extent by the 
hydrogen atoms in silane. Atomic silicon is an open system and in the present 
experiment absorption is taking place from various levels of the ground 
configuration. On the other hand, in silane silicon atom is isoelectronic to argon 
and is behaving like a closed system. Also in silane absorption is taking from a 
single well-defined ground level.
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Cïmpttr T

PHOTO ABSORPTION IN VALENCE- 
EXCITED ISOELECTRONINC SPECIES

Photoabsorption investigations o f  species isoelectron ic to m agnesium  and alum inium , 

prepared in their v a len ce-excited  states, h ave been carried  out. Interpretation fo r the observed  

spectra is provided on the basis o f  configuration-interaction atom ic structure calcu lation s. In order 

to obtain insight into the d yn am ics o f  e x c ite d  states a  com p arison  is m ade w ith the ejected - 

electron spectra o f  the corresponding atom ic and ionic species arising from  the autoionising and 

A uger transitions follow ing electron - and p h oton -im p act excitation /ion isation  respectively . A  

qualitative interpretation for the population and depopulation o f  the v alen ce-excited  levels in the 

laser plasm a is given.

7.1 Introduction

The photoabsorption measurements in valence-excited species allow to 

study the core-excited states which do not connect to the ground state via the 
electric dipole operator. The experimental data on these states in atoms and ions are 
required for understanding the many-electron dynamics, laboratory plasmas and 
astrophysical phenomena (Mosnier et al. 1994). In photoabsorption measurements 

of these states the species of interest are prepared beforehand in a specific valence- 
excited state. Such experiments were carried out in the inner-shell regime first 
using photoabsorption spectroscopy (Lucatorto and Mcllrath 1977, Sugar et al. 
1979) and then using photoelectron spectroscopy (Bizau etal. 1985). Also, the 
controllable excitation of a valence electron into higher states offers the unique 
opportunity to produce gradual modifications in the effective potential of an inner- 

shell electron (Sonntag etal. 1986, Ferray etal. 1987). The specific properties of 
high intensity synchrotron light sources (wigglers, undulators) combined with 
highly selective excitation mechanisms and detection techniques have initiated 
measurements on excited atoms providing an ever more complete description of the 

photoionization process, e.g. resonant photoionization of excited aligned species 
(Meyer et al. 1987), direct photoionization cross-sections of excited atoms
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(Cubaynes et al. 1989), angular dependence of ejected electrons in the 
photoionization of excited aligned atoms (Pahler et al. 1992).

In all the experiments mentioned above, the excitation technique used was 

based on the pioneering works of Bradley (1969), Bradley etal. (1973), Mcllrath 

(1969), and Mcllrath and Carlsten (1973). In this technique a high power tunable 

dye laser selectively pumps ground state atoms into an excited state. The 

population density of the excited state thus obtained is large enough so as to make 

a photoabsorption or a photoelectron spectrum originating from it readily 

observable. The applicability of the technique to a wide range of atomic species is 

only limited by the tuning range of the high power dye laser. As the spectral range 

covered by currently available high power dye lasers is limited to the visible 

region, excited state studies have been restricted to only a few neutral species to 

date. The dual laser-produced plasma technique has enabled us (i) to study 

photoabsorption both in atoms and ions prepared in their valence-excited states, 

and to extend them along the sequences.

Very little is known about the kinetics of the valence-excited states in the 

laser-plasmas. The photoabsorption studies reported in this work though carried 

out from a spectroscopic point of view could be very stimulating for theoretical and 

experimental studies regarding the modelling of laser-plasmas.

7.2 Magnesium sequence in excited state absorption

As far as we know, no previous results exist for 2p photoabsorption of 
species isoelectronic to Mg in valence excited states. In the case of ions this may be 
due to the experimental difficulties in generating the sufficient densities of 
absorbing species and preparing them in selectively excited states beforehand for 

absorption measurements. An extensive study of the ejected-electron spectrum of 
magnesium autoionising levels excited by low-energy electron impact was 
published some years ago by Pejcev etal. (1977). At the low incident electron 

energies (62, 100 and 400 eV) used by these authors, the 2p53s23p autoionising 
levels are populated via quadrupole excitation of a 2p ground state electron. 
Although the presence of these levels was mentioned no assignments were given. 

Recently, a comprehensive study of the Auger spectra of atomic Al following 2p
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photoionization has been reported by Malutzki et al. (1987). The decay of the 
2p53s23p li3L levels to the 2p63s, 3p and 3d channels have been examined in detail.

7.2.1 Results and term analyses

The 2p-subshell absorption spectra of Mg, A l+ and Si2+ in their valence- 
excited states are shown in figure 7.1. The spectra are dominated by the 2p53s23p 

transition array. The absorption structures of this transition array appear as two 
groups of lines one originating from the 3P metastable levels and the other group 
from the short-lived 'P  level (Figure 7.1). The 3s3p lP (3P) levels (neglecting fine 
structure) in Mg, Al+ and Si2+ are located approximately 4.3 eV (2.7eV), 7.4 eV 

(4.6 eV) and 10.3 eV (6.5 eV) above the *S ground state (Martin and Zalubas, 
1979, 1980, 1983). We note that the higher energy lines associated with the 3P 
initial states are in each case more intense than the lower energy lines associated 

with the JP initial state (see Figure 7.1). We also note that in the experimental 
conditions of figure 7.1 the gross features of the three spectra remain similar, 
thereby indicating similar plasma dynamics and atomic physics for all three 

species. A strong pair of resonances is also present on the short wavelength side of 
each spectrum. These lines are easily recognised as the 2p63s 2S 1/2 ->

2p53s2 2Pi/2,3/2 transitions in the sodium-like structure (Esteva andMehlman, 1974; 

Mosnier et el. 1987) and indicate that in the conditions of figure 7.1a large fraction 

of ions exist in the ground state of the Na-like species.

Line measurements together with term assignments are listed in table 7.1. 
The computed transition energies and corresponding gf-values were obtained with 
the help of configuration-interaction atomic structure calculations (see chapter 2). 

The 2p63s3p and 2p63p3d configurations were included in the initial states 
expansion while 2p53s23p, 2p53s3p3d and 2p53p3d2 configurations were included 
in the final states expansion. With these expansions the predicted term energies 

were found almost in agreement with the measured ones. Therefore, no scaling of 
the various F, G and R integrals and spin-orbit parameters was necessary which is 
in contrast with our calculations carried out for the same sequence in ground state 

absorption (see Chapter 4). In the calculations carried out for the spectra from 
ground state absorption, it was not possible to include all the possible significant 
interactions. To provide an approximate allowance for the neglected weak
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Ene rgy  (eV)

E n e rg y  (eV)

Ene rgy  (eV)

Figure 7.1
T h e relativ e  photoabsorption  sp ectra  o f  M g (a ), A l+ (b ) and Si2+ (c )  in the region  o f  the 

2p 6 3 s3p  3>1P  - >  2 p 53s2 3p 3,1L  transition array as obtained with the D L P P  technique. T h e  

optim um  valu es for the position o f  the absorbing target (x )  and tim e delay (l)  betw een the two 

laser pulses are indicated on each  spectrum . The spectral intervals for the transitions having  

2p 63s3p  3P  o r  *P as initial state are delineated in each spectrum . A lso m arked in each  spectrum  

are the 2p53 s2  2P 1/2 3/2  resonances in the sodium -like ion.
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configuration-interaction effects the various Slater integrals were reduced by 
suitable amounts for which the calculated term energies and distribution of 

oscillator strength was found in very good agreement with the measured level 
structure. In the case of excited state absorption the interactions included were 
found sufficient enough to reproduce the observed structure, in particular for term 
energies; therefore, there was no need for scaling the Slater integrals.

In the case of transitions from 3P as initial states, line assignments are 
straightforward as the computed values are in very good agreement with the 
measured values. In the case of transitions having initial state, it was found that 
the ab initio computed transition energies differed from the measured values by a 
constant amount roughly equal to 0.5 eV in all three spectra. This is due to an 
overestimation of the G!(3s,3p) exchange integral. Although an abundant literature 

is available on the subject of the precise calculation of the optical levels in the 
magnesium series (see e.g. Martin and Zalubas, 1979, 1980, 1983 ), it was found 
sufficient for the purpose of assigning inner-shell transitions to apply a constant 
correction factor to the relevant transition energies. The value of the correction is 

equal to the amount that must be added to the ab initio energy value of 2p63s3p !P 
in order to make the 3P - ’P energy interval exactly equal to its tabulated value 
(Martin and Zalubas, 1979, 1980, 1983). This factor is equal to 5796 cm-1 (Mg), 

4845 cm-1 (A1+) and 4462 cm-1 (Si2+). This simple constant shifting procedure 
brings the calculated values in good agreement with the measured ones; the only 
exception being the !Pj - 'S0 transitions which are not present in our spectra . In 

view of the general good agreement previously observed for all levels except 
2p53s23p ïSo, we surmise that our ab initio unsealed calculations provide only a 
mediocre description of the wavefunction of the latter. Thus, the corresponding 
transition energies and strengths quoted in table 7.1 are only indicative. This view 
is supported by the interpretation of the photoinduced 2p Auger spectrum of 
atomic aluminium by Malutzki et al. (1987) in which similar difficulties are 
reported and discussed in the case of the calculation of the Auger decay rate of 

2p53s23 p 1S0.
In a pure LS coupling picture, the 2p63s3p -» 2p53s23p spectrum exhibits 

the characteristic 3>1P -> 3’1S, 3-1P,3-1D structure with cross-system transitions being 

forbidden. However, the observed spectra are more complex than suggested by 
this picture as a number of strong lines must be assigned to LS forbidden 
transitions (see Table 7.1). Comparison with the 2p valence excited 
photoabsorption spectra in the sodium sequence provides a straightforward 

explanation for this observation. In effect, it has been reported by several authors
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(Froese-Fisher, 1986; Brilly etal. 1990) that the structure of the 2p63p -> 2p53s3p 
spectrum is due mostly to large spin-orbit mixing of different terms of the upper 

configuration produced by the 2p5 open core. It is plain that the addition of an extra 
electron in the 3 s subshell should only be marginal in this respect and we therefore 
expect strong departure from LS coupling for some of the terms of the 2p53s23p 
configuration. Wavefunction composition of the relevant triplet and singlet states in

Mg, A1+ and Si2+ is given in table 7.2 in increasing order of energy. Correlation 

mixing with 2p53s3p3d amounts to 1.5% at most and therefore has a minor 

influence over the energy level structure of the 2p53s23p configuration. On the 
other hand, when one considers autoionization /Auger decay, it is well known that 
such configuration effects play an essential role in the understanding of the origin 

of satellite features attributed to electron correlations (see below for further 
discussion). The 3Sl5 3D3 and 'S 0 terms have been omitted from this table as they 
are all 95% or more pure LS. Complete breakdown of LS coupling is exemplified 
by the almost complete mixing between 3P2 and *D2. In view of the rather arbitrary 

nature of LS labelling in these cases, we simply designate a state by considering

only the leading eigenvector, hence the double appearance of the 3P2 state in table

7.2. Also, the 1P 1 state is placed below 3P, as a result of strong mixing between 

them.
Following our previous conclusions regarding the relative intensity 

patterns in figure 7.1, we infer from figure 7.1 and table 7.2 that on going from 
Mg to Si2+ , the dominant effect remains spin-orbit mixing due to the open core 
since the increase in nuclear charge has little influence on the restructuring of the

energy level system of the 2p53s23p configuration. This is in sharp contrast with 

the behaviour of the 2p53s23d configuration observed in photoabsorption along the 

same isoelectronic sequence (see chapter 4).
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Table 7.1. Measured energies, calculated energies and gf - values for the 2p63s3p

3>1P —» 2p53s23p 3ilL transitions in Mg, Al+ and Si2+.

Transition Meas.
(eV)

Mg
Calc.
(eV)

g f
Al+

Meas. Calc. 
(eV) (eV)

g f
Si2+ 

Meas. Calc.
(eV) (eV)

g f

1p 2-3S i 48.202 0.0324 70.21 70.211 0.0315 95.99 95.964 0.0298

3P r 3S i 48.38 48.406 0.0317 70.223 0.0314 95.993 0.0316

3P0-3S i 48.407 0.0132 70.231 0.0133 96.008 0.0138

3P2-3D3 48.79 48.752 0.191 70.86 70.812 0.206 96.80 96.803 0.2157

3p 2-3d 2 48.812 0.0110 70.905 0.0115 96.924 0.0105

3P i -3d 2 48.85 48.816 0.102 70.97 70.917 0.1155 96.95 96.954 0.1226

3P2-3D i 48.907 0.0004 71.052 0.0004 97.144 0.0007

3p 1-3d 1 48.911 0.0125 71.064 0.0152 97.175 0.0147

3P0-3D i 48.94 48.912 0.0547 71.12 71.072 0.0613 97.16 97.182 0.0651

3p 2-3p 2 49.02 48.993 0.0429 71.27 71.223 0.0542 97.36 97.388 0.0653

3P i -3P2 48.996 0.0358 71.235 0.0370 97.419 0.0391

3P2-1P i 49.129 0.0147 71.416 0.0182 97.664 0.0205

3P r 1P2 49.14 49.133 0.0290 71.44 71.428 0.0307 97.62 97.688 0.0340

49.135 0.0009 71.432 0.0001 97.703 0.0002

3p 2-3p 2 49.20 49.177 0.0879 71.54 71.498 0.0975 97.77 97.803 0.1016

3P i -3P2 49.180 0.0001 71.511 0.0000 97.826 0.0000

3P1-3P0 49.193 0.0286 71.527 0.0336 97.826 0.0369

3P2-3Pl 49.22 49.226 0.0340 71.60 71.577 0.0371 97.84 97.904 0.0400

3P1-3P1 49.229 0.0085 71.589 0.0104 97.927 0.0112

3P0-3P1 49.231 0.0141 71.593 0.0166 97.934 0.0176

3PlJ S0 50.973 0.0001 75.097 0.0001 102.349 0.0002

1P l -3S i 46.766 0.0005 67.415 0.0004 92.271 0.0004

47.20 47.175 0.0236 68.19 68.139 0.0229 93.20 93.229 0.0252

iP l^ D i 47.31 47.270 0.0133 68.44 68.440 0.0098 93.40 93.447 0.0095

47.39 47.355 0.0618 68.49 68.458 0.0726 93.65 93.694 0.0749

iP j - iP l 47.52 47.493 0.0348 68.67 68.648 0.0330 93.92 93.971 0.0294

^ 2 ^ 2 47.57 47.540 0.0525 68.77 68.732 0.0647 94.08 94.106 0.0741

l p r 3P0 47.553 0.0002 68.751 0.0002 94.106 0.0003

47.60 47.588 0.0254 68.81 68.812 0.0246 94.14 94.206 0.0237

49.333 0.0345 71.913 0.0554 98.628 0.0714
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Table 7.2. Calculated purity of some of the terms (in increasing order of energy ) of the 2p53s23p configuration in Mg, Al+ 

and Si2+. Term labeling (left -hand side column) is obtained by considering the leading component only.

3D . 3D, 3Po 3P ij2 \  12 M  2 1

M g

Term
M g  A l+ S i 2 +  M g  A l+ S i 2 +  M g  A l+ S i 2 +  M g  A l+ S i 2 +  M g  A l+ S i 2 +  M g  A l+ S i 2 +

3D2 78 79 78 17 14 14

3D1 70 74 73 10 8 10 18 14 15

3P2 51 51 54 44 44 41

1P1 27 22 24 25 27 27 46 47 46

3P2 17 16 17 43 42 39 37 39 41

3P, 62 59 59 33 35 36



7.2.2 Decay of the levels of 2p53s23p configuration

A detailed study of the decay of 2p53s23p configuration has been carried 
out in Al+ by Malutzki et al. (1987). In this study the levels of 2p53s23p 
configuration were populated following 2p photoionization of atomic Al and Auger

spectra were measured. The observed decay is mainly into the 2p63pel and the

2p63seT  continua, respectively. The decay to the final states 2p63s, 3p and 3d are

about 46%, 39% and 15% respectively. Decay to the 2p63d final states is through 
electron correlations (Mosnier et al. 1994). The autoionisation of the levels of 

2p53s23p configuration has been observed in the ejected-electron spectra of atomic 
Mg following electron-impact excitation.

In order to predict the kinetic energies of the electrons ejected upon 
autoionization and Auger decay, and compare our photoabsorption data, we have 

performed calculations for the 2p63p, 2p63s and 2p63d final states of the decay in 
Mg+ and Al2+. The values of the optical energy levels have been taken from Martin 
and Zalubas (Mg and Mg+: 1980; Al+ and Al2+: 1979). The results are summarised 

in tables 7.3 and 7.4 for Mg and Al+ respectively.
From table 7.3, we observe that there is an excellent agreement (within 

0.02 eV) between our predicted data and the ejected-electron lines numbered 26, 

27, 29, 30, 31 and 32 in Pejcev etal. (1977) (see Figures 7.2 and 7.3) (Mosnier 
etal. 1994). Also we note that the intensity of this group of lines is stronger at 
lower incident electron energy (see Figure 7.3). We therefore conclude that this 
group of lines is due to the autoionising decay of the 2p53s23p 3>1P,3>1D states into

the corresponding 2p63pel continua. In the case of the decay 2p53s23p 3Sj ->

2p63p, we predict an energy of 39.02 eV for the ejected electron. No such line is 
present in Pejcev et al. (1977). Therefore, assuming statistical population of the 
initial states by electron impact, the autoionization transition probability of the

2p53s23p 3Sj state into the 2p63pel continuum appears to be substantially smaller

than that of the 2p53s23p 3-1P,3-1D states into the corresponding 2p63p£l continua

and the ejected-electron line is therefore too weak to be observed in the 
experimental conditions of Pejcev etal. (1977). We note that the same situation is 

also encountered in the 2p Auger spectrum of atomic aluminium (Malutzki et al.
1987).

It was suggested in Pejcev etal. (1977) that the lines numbered 43,44 and
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45 (the intensities of which exhibit the same pattern of behaviour as lines 26, 27, 
29, 30, 31 and 32 when the energy of the incident electron beam is varied) appear 

to be due to the excitation of non-optical Mg I states which subsequently decay to 
2p63s. This is confirmed by our photoabsorption measurements, the agreement in 
energy being within 0.02 eV for the three lines.The corresponding decays are: 

2p53s23p 3D1i2i3 -* 2p63s.
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Figure 7.2
E je cte d -e le ctro n  spectrum  o f  m agnesium  vap ou r fo llow in g excitatio n  b y a  4 0 0  e V  in cid ent 

electron beam  (from  Pejcev et al. 19 7 7 )
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Figure 7.3
Ejected-electron  spectrum  o f  m agnesium  vapour follow ing excitation  by a  1 0 0  eV  incident 

electron beam  (from  P e jce v  et al. 1 9 7 7 )

The dependence of the intensity of the ejected-electron line numbered 40 

(43.41 eV) in Pejcev et al. (1977) upon the energy of the low-energy incident 
electron beam suggests the assignment 2p53s23p 3Sj -> 2p63s for the corresponding 
autoionizing decay (see table 7.3). The ejected-electron lines numbered 46 (44.17 

eV), 47 (44.25 eV) and 48 (44.32 eV) are possible candidates for the decay of the 
2p53s23p states having dominant 3P or 'P  character (table 7.3). The assignments 
are considered less definite in these cases for the dependence on incident energy 

differ appreciably for the three lines as discussed in Pejcev etal. (1977).
According to our data autoionisation decays of 2p53s23p to 2p63d (16.510 

eV) and 2p64p (17.643 eV) -entirely due to electron correlations- would give rise 
to ejected-electrons with kinetic energies in the 34.585-35.44 eV and 33.452- 

34.311 eV ranges respectively. In the first case the presence of the very intense



Auger lines at 34.86 eV and 35.13 eV make the identification of the 
corresponding ejected-electron lines impossible in the spectrum of Pejcev et al. 

(1977). A different experimental technique would be required in this case to clarify 
this important point, i.e. the strength of electron correlations which result in 2p63d 
as the final state of the autoionizing decay of 2p53s23p. There is no evidence in 
Pejcev et al. (1977) for the presence of ejected electrons with kinetic energies 

corresponding to the second type of decay (2p64p final state) for which a possible 
class of correlation effects would be 3p -> 4p shake up excitation. We note that in 
the case of the photoinduced 2p Auger spectrum of atomic aluminium (Malutzki 

etal. 1987), the 2p63d exit channel contributes about 15% of the overall intensity 
whereas 2p64p has a negligible contribution.

Finally, we point out that in the spectrum of Pejcev et al. (1977) the group 

of lines we assigned to the 2p53s23p -» 2p63p decay is stronger than the group of 
lines we assigned to the 2p53s23p -» 2p63s decay, with, however, the notable 
exception of the lines corresponding to the decay of 2p53s23p 3Sj in which case the 
opposite situation is observed. This seems to suggest that the 3p electron chiefly 

remains a spectator during the autoionizing decay of the 2p53s23p 3-1P,3>1D states 

resulting in 2p63pel as a preferential decay channel.
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Table 7.3. Energies of the electrons ejected upon autoionisation decay of the

2p53s23p 3ilL states in magnesium.

Ejected-electron energy (eV)

Ea (eV) Autoionising Transition Predicted15 Pejcevc

51.95 2p53s23p 3P i - 2p63 s 2S 44.31d
51.92 3Po 44.28
51.91 3p 2 44.27
51.86 'P i 44.21
51.73 3p 2 44.09
51.65 3D! 44.00 43.97 (45)

51.56 3d 2 43.92 43.90 (44)

51.50 3d 3 43.85 43.85 (43)
51.09 3S i 43.45 43.41 (40)

2p53s23p 3P ! - 2p63p 2P 39.88 39.86 (32)

3Po 39.85 39.86 (32)

3p 2 39.84 39.86 (32)

'P i 39.79 39.80 (31)

3p 2 39.66 39.67 (30)

3d 2 39.49 39.50 (27)

3D i 39.58 39.60 (29)

3D3 39.43

3S i 39.02
2p53s23p 3P i - 2p63d 2D 38.15

3Po 38.12

3p 2 38.11

'P i 38.06

3p 2 37.93

3d 2 37.76
3Di 37.85
3D3 37.70
3S i 37.29

a  E n ergy obtained from the m easurem ent o f  2p 63 s3 p  3P  - >  2p 53s2 3p 3)1L  transitions.

^  O btained from  the E x cite d  State E n ergy  colum n and the op tical energy levels o f  M g and M g + 
given in M artin and Z alubas (1 9 8 0 ) .

c  The num ber in brackets is the line num ber as labeled in P ejcev  et al. (1 9 7 7 ) .

^  Tentative assignm ent.
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Table 7.4. Energies of the electrons ejected upon autoionisation decay of the

2p53s23p 3>1L states in Al+.

Ejected-electron energy (eV)

Ea (eV) Autoionising Transition Predictedb Malutzki

71.60 2p53s23p 3Pj - 2p63 s 2S 57.41
71.54 3Po 57.35
71.54 3p 2 57.35 57.35
71.44 'P i 57.25
71.27 3p 2 57.08 57.05
71.12 3Di 56.93
70.97 3D2 56.78 56.75

70.86 3d 3. 56.67
70.21 3S i 56.02 56.05

2p53s23p 3Pj - 2p63p 2P 50.75

3Po 50.69

3p 2 50.69 50.68

'P i 50.59

3p 2 50.42 50.38

3d 2 50.27

3Di 50.12 50.08
3D3 50.01

3S i 49.36 49.38
2p53s23p 3Pj - 2p63d 2D 43.03

3Po 42.97

3p 2 42.97 42.98

'P i 42.87

3p 2 42.70 42.68

3Di 42.55
3D2 42.40 42.38
3d 3 42.29
3S i 41.64

a E n ergy obtained from the m easurem ent o f 2 p 6 3s3p  3 P  ->  2p 5 3 s2 3p  3 ,1 L  transitions.

^  O btained from  the E xcited  State E n ergy  colum n and the optical energy levels o f  A l+  and A l2 +  
given in M artin and Zalubas (1 9 7 9 ) .

The energies o f  2p 6 3s3 p , 2p 6 3s , 2 p 6 3p and 2p 6 3d from  2p 6 3s2  w ere taken as 4 .6 4  eV, 1 8 .8 3  eV, 
2 0 .8 5  eV  and 2 8 .5 7  eV  respectively.
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7.2.3 Absorption from metastable and dipole allowed

lev e ls

In a laser produced plasma, a complex combination of various collisional 
and recombination processes result in a spatial and temporal distribution of ions 

among the different ionisation stages in their ground state and various excitation 
states which include both optically accessible and inaccessible states from the 
ground state. Using the dual laser-produced plasma technique, by suitably 

regulating the laser power density on the absorbing target, the distance between the 
optical axis and the absorbing target, and the time delay between the absorbing 
plasma and the background continuum pulse one can optimise the absorbing 
species of one particular ionisation stage for absorption measurements. The 

versatility of this selective nature of the dual laser produced plasma technique, 
which exploits temporal and spatial evolution of laser plasmas, for the ground state 
absorption is evident from the space and time-resolved studies reported in chapter 
3. However, in the case of excited state absorption, the optimisation of some 
particular initial state belonging to some specific ionisation stage is an extremely 
difficult task and is well exhibited in the photoabsoiption measurements from the 

valence excited configuration 2p63s3p in Mg, Al+ and Si2+. In all these cases the 
absorption features associated with the 'P  levels are relatively very weak compared 
to the absorption features associated with the 3P levels. After a number of 
experiments we were hardly able to see the features associated with the lP levels 

although the calculated gf-values for the transitions arising both from the *P and 3P 
levels were predicted of the same order with a few exceptions. We believe that in 
our photoabsorption measurements, made always during the cooling phase of the 

laser plasma, the relative populations of the *P levels was much less than the 3P 
levels. A quantitative interpretation for the relative populations of !P and 3P would 
only be obtained with the help of extensive modelling of the laser plasma. 

However, a qualitative interpretation for the relative population of initial states in 
the laser plasma can be provided by examining the mechanisms of their 
population/depopulation. Experimentally some information about the mechanisms 
of population/depopulation of these levels can be obtained by looking at the optical 
emission spectra of the laser plasma or by examining the time and space history of 
the initial states and taking into account the plasma conditions. The time and space 
history can be obtained with the help of time and space-resolved photoabsorption 

measurements of the absorbing plasma. Both these studies can provide some clues
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regarding the relative population of 3P levels but the temporal resolution of our 
system (= 10-15 ns) as determined by the continuum pulse was not suitable for

investigating the time history of the dipole allowed *P levels which have life times 

less than 2 nano seconds. The time history of the nonmetastable as well as 
metastable levels can only be investigated together if the temporal resolution of the 
experimental system is at least less than the decay time of the nonmetastable levels.

Therefore, on the basis of our time and space-resolved studies for the 3P levels and 

space-resolved studies only for the !P levels, carried out during our 
photoabsorption measurements, we will examine the mechanisms of populations 

of these levels.
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7.2.3(a) Kinetics of ! P and 3P populations

The kinetics of 'P  and 3P levels are shown in Figure 7.2. In our absorption 
studies the plasma plume was probed during its cooling phase. Also the plasma 
plume was optimised for the Mg and Na-like absorbing species. No absorption 
from higher ion stages was present. Therefore, under such conditions, the 
collisional ionisation and excitation processes from the excited states should be 
negligible.

X X-i A X X-iSt X X l A X X-1 A

F igure  7.4
Energy - level diagram  show ing different atom ic processes that are involved in the population and 

depopulation of *P and 3P  levels.

X collisional excitation
X-1 collisional deexcitation
A spontaneous radiative decay

s, stimulated emission

a d dielectronic recombination

ttr emission from the higher excited states
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7.2.3(b) Population of 3P levels

A photoabsorption spectrum of a dye-laser produced aluminium plasma 

was recorded on a photographie plate with inter-plasma time delays of 0.8 |is, 1.0

(is, 1.4 [is and 1.8 (is (not shown in this work). In that spectrum, absorption

features associated with the 3P levels were observed at time delays of 0.8 [is and

1.0 (is only. These are delays at which absorption from the ground state of Al2+, in

addition to the ground state absorption of A1+, was also present. Although at a

longer time delay of 1.4 (is the ground state absorption in Al+ was present no

absorption from 3P levels was observed at this delay. A similar situation is 

exhibited in the absorption spectra of A1 plasma shown in figure 3.7.
Figure 7.5 shows a space-resolved photoabsorption spectra of ruby-laser 

produced aluminium plasma recorded 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 

mm, 0.6 mm, 0.7 mm, 0.8 mm and 0.9 mm from the target surface at a fixed rime 
delay of 50 ns. These spectra exhibit strong absorption both from the ground and

excited states of Al2+. As the plasma is scanned starting with Ax = 0.1 mm to Ax =

0.9 mm away from the target surface, the intensities of absorption both in A1+* and 

Al2+ decrease. However, the relative intensities of the features associated with the 

3P level of A1+* and those associated with the ground state absorption of Al2+ 

remain the same. These time and space-resolved studies suggest that the dominant

mechanism through which the 3P levels get populated could be the dielectronic 

recombination and radiative decay proceeding as follows:

<? + A1+2 (3s) Al+**(3pml) Al+(3snl) +hv

i

Al+*(3s3p) +hv

In general,

e + X+n (3s) X+<n-D**(3pml) X+(n-i)(3Snl) +hv

i

X+(n-i)(3s3p) +hv
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The process of dielectronic recombination (DR) in ions is often the 

dominant cooling path for hot plasmas (Duabau and Volonte, 1980). In a 

photoabsorption experiment (Bradley et al. 1973) from the laser-pumped 3s3p *P

level it was suggested that the selective pumping beam at X = 285.2 nm tuned to 

the 3s2 !S —» 3s3p ]P resonance line in atomic magnesium will also cause 

ionisation from the 3s3p !P state and recombination can leave the Mg atom in one 

of the excited 3s3p 3P levels. Experimentally, the dielectronic recombination in 

Mg+ has been observed by Belie et al. (1983) with the use of crossed beams of 

electrons and Mg+ ions.

The radiative decay could be confirmed from the photoabsorption 
experiment of Bradley et al. (1973) which shows very strong emission lines,

terminating in 3s3p 3P levels, from the 3sns 3S, 3snd 3D and 3p2 3P excited 

levels. These emission lines are superimposed on the strong absorption features 

arising from the laser-pumped 3s3p JP levels of atomic magnesium.

t i » -■ » I i i i i -1 i t  i ». . . i . . . .  i . . . .  i ' i ■ ■ ■ ■ i i
(0 Ax = 1.1 nini

(c) Ax = 0.9 mm

(d) Ax = 0.7 nun

— Â aaAvAâ .
(c) Ax = 0.5 nun

(b) Ax = 0.3 mm 

(a) Ax = 0.1 mm

Photon Energy (eV)

Figure  7.5
Space-resolved  photoabsorption spectra o f  ruby laser generated Al plasm as recorded in the 

2p-subshell region o f A l+ in excited  states. T he plasm as w ere probed 0 .1  m m , 0 .3  m m , 

0 .5  m m , 0 .7  mm and 0 .9  m m  from  the target surface after a  fixed inter-plasm a tim e delay  

o f  5 0  ns.
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In our assignment, the transitions from different 3P0ii,2 levels have been 
associated with a single core excited level. This is because of the negligible 

resolution of our system as far the separation of 3P levels is concerned. The 
photoabsorption studies from the laser-pumped excitation, tuned to the 
intercombination line 3s2 ^  -» 3s3p !P, can complement our studies and help us 
to some extent in assigning the upper state to some particular initial state which in 

turn tell us about the presence of different 3P levels in the laser plasmas. Also 
there is need to do more experiments with the dual laser plasma technique because 
they could also be of great help in assigning the upper state to some particular 

initial state. This is evident from the space-resolved photoabsorption spectra 
shown in figure 7.5. A feature at 70.21 eV associated with the 3Po,i^ -» 3Si

transition in Al+ is gone in the space-resolved spectra at Ax = 0.7 mm.

7.2.3(c) Population of *P levels

In our experiments (Figure 7.1) absorption from the JP levels has been 

observed close to the target surface at relatively shorter time delays where both the 
plasma temperature and electron density are relatively higher. In this region due to 
the high electron density the collisional processes should be more important than 

the radiative decay. On the other hand, away from the target surface the electron 
density as well as the density of absorbing species decreases. Consequently, the 
radiative decay should become the dominant process and should result in less 

population of the !P levels. This is evident from the space-resolved 

photoabsorption scans shown in figure 5.5. In going from Ax = 0.1 mm to Ax = 

0.4 mm away from the target surface the absorption strength of the features 

associated with the !P levels goes on decreasing and at Ax = 0.5 mm all these 

features are gone.
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7.3 Aluminium sequence in excited state absorption

As far as we know 2p photoabsorption from the valence-excited 
configuration of species isoelectronic to A1 sequence has not been reported before. 
The photoabsorption data reported here could be very useful for future 

complementary studies which are very difficult to carry out without the 
photoabsorption data available. The odd parity configuration 2p53s23p2 is the 
lowest core-excited configuration in Si+. Therefore, levels of the higher even parity 
2p53s23pnl configurations can decay radiatively to the levels of the 2p53s23p2 
configuration. The emission spectra arising from this decay can be studied in 
beam-foil spectroscopy similar to the studies carried out for Mg+ (Gaardsted et al.
1988) and Al2+ (Gaardsted et al. 1990), and the levels of the 2p53s23pnl type 

configurations in Si+ can be resolved which were not possible in our XUV 
photoabsorption study (see chapter 5).

Also our results from the valence-excited state of Si+ should be very 

helpful for the study of Auger spectra of atomic silicon vapour following 2p 
photoionization similar to the one carried out for atomic A1 vapour by Malutzki et 
al. (1987). This kind of study can provide deep insight into the dynamics of the 
states of the 2p53s23p2 configuration.

7.3.1 Results and discussion

The photoabsorption spectrum from the valence-excited states of Si+ is 
shown in figure 7.6. There is strong absorption present from the valence-excited 

states of Si2+ (section 7.2), showing that along with Si+ a large quantity of the 
higher ion stage Si2+ was also present in the absorbing plasma.

The absorption structures due to the valence-excited states of Si+ exhibit 

2p63s3p2 -> 2p53s23p2 transitions. The initial configuration 2p63s3p2 includes the 
4P, 2D, 2P and 2S levels. The metastable 4P levels are lower in energy than the 
dipole-allowed 2L levels (see Martin and Zalubas 1983) which is analogous to the 
levels of the valence-excited configuration 2p63s3p in the Mg sequence (see Martin 

and Zalubas 1980), Al+ (see Martin and Zalubas 1980) and Si2+ (see Martin and 
Zalubas 1983). In our photoabsorption measurements from the valence-excited 
species isoelectronic to Mg (see section 7.2) strong absorption was observed from 

the metastable 2p63s3p 3P levels, however, absorption from the short-lived dipole
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allowed 2p63s3p !P levels was observed to be very weak. The same situation is 
expected in the photoabsorption measurements made from the valence-excited 

states of the A1 isoelectronic sequence, with the exception of A1 neutral. Our 
photoabsorption studies of the laser plasmas, carried out during the cooling phase 
of the plasma, exhibit significant absorption only from the lowest valence-excited 
levels of the absorbing species. In atomic aluminium the lowest valence-excited 
configuration is 2p63s24s (see Martin and Zalubas 1979), therefore, it would be 
very difficult to measure the absorption from the valence-excited states of the 
higher 2p63s3p2 configuration.

Photon Energy (cV)

Figure 7.6
Photoabsorption m easu rem en ts 2p  absorption from  the v a le n ce -e x cite d  states o f  S i+ . 

A long with absorption from  the 2p 6 3 s3p 2 valen ce-excited  configuration o f  Si+ a  strong  

absorption from the valen ce-excited  configuration 2p 63 s3p  o f  Si2+ is also present.

The levels of the core-excited configuration 2p53s23p in Mg sequence have 
been reported unperturbed (see section 7.2) as no significant mixing was observed 
with levels of other core-excited configurations. For such a pure configuration, the 
ab initio calculated term energies were found in excellent agreement with the 
measured spectrum. As the levels of the 2p53s23p2 configuration do not overlap 

with the levels of any other odd parity core-excited configuration in Si+, therefore,
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their level structure should not be affected significantly by the other weakly 
interacting configurations. So the 2p53s23p2 configuration in Si+ should behave 

similar to the 2p53s23p configuration in the Mg sequence.
In order to investigate the origin of the absorption features, assess the role 

of electron-correlations and provide identification for the spectrum ab initio atomic 
structure calculations have been carried out. The calculations, performed with the 

Cowan’s Configuration-Interaction Hartree-Fock (CIHF) code (see chapter 2), 
include 2p63s3p2, 2p63d3p2, 2p53s23p2, 2p53s23d2 and 2p53s3p23d configurations. 
A comparison of the measured and computed energies is listed in table 7.5. The 

percent LS compositions of observed terms of the core-excited configuration 
2ps3s23p2 are given in table 7.6. In table 7.5 the calculated energies are given only 
for the observed transitions which according to the calculations are arising from the 

4P levels only. The transitions having negligible predicted gf-values are also 
deleted in table 7.5. The gf-values for the transitions arising both from 4L and 2L 
were predicted to be of the same order. In the experiment we have observed 
absorption only from the metastable 2p63s3p2 4P levels but not from the short-lived 

dipole allowed 2L levels. This is analogous to the 2p absorption observed from the 
valence-excited states in Mg sequence (see section 7.2). In order to provide 
interpretation for the mechanisms of population and depopulation of valence- 

excited states of species in laser plasmas there is need to study experimentally as 
well theoretically the temporal and spatial behaviour of these species during both 
heating and cooling phases of the laser plasmas.

Eigenvectors of the 2L and 4L levels (see table 7.6) show that the 4L levels 
of the 2p53s23p2 configuration are almost pure LS-coupled with the exception of 
the 4D5/2 j/l, i/2 terms. Unlike the 2p53s23p configuration observed in 
photoabsorption of Si2+ (Mosnier et al. 1994), the spectrum of 2p53s23p2 is 

simpler. In 2p53s23p configuration the mixing among the 'L and 3L levels was very 
significant. For a number of terms complete breakdown of the LS-coupling was 
exhibited, therefore, some strong features were assigned to LS forbidden 

transitions. Because of the strong mixing some of the terms were assigned twice. 
However, in the present case the mixing of the 2L and 4L levels is observed very 
dilute, therefore, the assignments presented in table 7.5 are unambiguous.
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Table 7.5. Measured energies (eV), calculated energies (eV) and gf-values for

the 2p63s3p2 4P —» 2p53s23p2 2’4L transitions in Si+.

Transition M eas. Calc. g f

^S) 4P5/2 - ( 3P ) 4P5/2 94.46 94.65 0.0778

(2S )4P3/2 -(3 p )4P5/2 94.67 0.0796

(2S)4P5/2 -(3 p )4P3/2 94.78 94.76 0.0244

(2S) 4P3/2 - (3p) 4P3/2 94.77 0.0090

( ^ P ^ P ) 4? ^ 94.78 0.0712

94.87 0.0353

(2S)4Pw -(3 P )4P 1/2 94.88 0.0146

^S) 4P5/2 - (3P) 4D7/2 95.05 95.09 0.2297

<?S) 4?5/2 - (3P) 4D5/2 95.19 95.20 0.0626

^S) 4P3/2 - (3P) 4D5/2 95.21 0.0774

^ s) 4p5/2 ' (3P) 4d 3/2 95.31 95.29 0.0050

^S) 4P3/2 ' (3P) 4D3/2 95.31 0.0542

^S) 4P !/2 - (3P) 4D3y2 95.32 0.0146

<?S) 4P3/2 - (3P) 4d î/2 95.58 95.59 0.0104

(2S)4P 1/2 -(3 p )4D1/2 95.60 0.0370

95.75 95.74 0.0065

(2S)4P3/2 - ( 3P )2D3Æ 95.75 0.0233

95.76 0.0126

95.86 0.0220

^S) 4P3/2 ■ (3P) 2D5/2 95.88 0.0115

(2S) 4P5/2 - ( 3P )4S3Æ 96.06 96.03 0.0832

96.05 0.0313

? S )  4P1/2 - (3P) 4S3/2 96.06 0.0113
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Table 7.6. LS compositions of the terms of the 2p53s23p2 configuration in Si+.

Term %LS - composition

(*P) 4P 5/2 3 s 23p 2  [9 1 .9 3 %  (3P ) 4P  - 3 .5 8 %  (3P ) 4D +  0 .6 8 %  ( 3P ) 2D ] +

3s3p 2 3 d  [- 0 .9 5 %  ( JD) 4P  +  0 .8 8 %  (*D ) 4P]

^ P )  4P 3/2 3 s 23p 2  [8 .4 6 %  (3P ) 4P  - 3 .6 5 %  (3P ) 4D - 1 .9 4 %  (*P ) 4S +  1 .2 4 %  (3P ) 2P ] +

3s3p 2 3d  [- 0 .9 1 %  ( ]D ) 4P]

(*P) 4P 1/2 3 s 23p 2  [8 9 .0 3 %  (3P ) 4P  - 3 .2 9 %  (3P ) 2S - 1 .7 3 %  (3P ) 4D  +  1 .1 9 %  (3P ) 2P ] +

3s3p 2 3d  [- 0 .9 2 %  ( ’ D) 4P ]

(?P) 4D7/2 3 s 23p2 [9 6 .0 6 %  (3P ) 4D ] +

3 s3p 2 3 d  [ - 1 .2 3 %  (*D ) 4D  +  0 .7 0 %  (lD)  4D  - 0 .7 0 %  (3P ) 4D]

(Sp) 4D5/2 3 s 23p 2  [7 7 .2 2 %  (3P ) 4D  +  1 6 .8 9 %  (3P ) 2D +  1 .9 1 %  (3P ) 4P] +

3 s3 p 2 3 d  [- 0 .8 8 %  ( ! D ) 4D]

(3p) 4D3y2 3 s23p2 [6 0 .4 6 %  (3P ) 4D  +  2 7 .0 6 %  ^ P )  2D - 2 .7 3 %  (3P ) 2P  +  2 .6 0 %  (3p ) 4P  +

2 .2 4 %  ( JD ) 2P]

(3p) 4D 1/2 3 s 23p 2  [7 6 .8 6 %  (3P ) 4D  - 1 1 .6 7 %  ( ! D ) 2P  +  7 .0 4 %  (3P ) 2P  +

3s3p 2 3d  [- 0 .9 8 %  (*D ) 4D  +  0 .5 6 %  (>D ) 4D]

^ P )  2 D3/2 3 s23p 2  [5 5 .3 0 %  (3P ) 2D  - 3 1 .5 8 %  (3P ) 4D  +  4 .3 9 %  (>D ) 2P  - 3 .1 9  (3 P ) 2P  -

1 .1 0 %  (3P ) 4P]

(3P) 2D5/2 3 s 23p 2  [7 7 .1 9 %  (3P) 2D  - 1 5 .2 4 %  (3P ) 4D - 2 .3 4 %  (3P ) 4P  +  1 .3 1 %  ( ! D ) 2D ] +

3 s3p 23 d  [- 0 .7 2 %  ( ] D) 2D]

^ P )  4S 3/2 3s13pz [8 7 .6 3 %  (3P ) 4S +  3 .3 2 %  ^ D )  2P  +  3 .0 0 %  (3P ) 4P  +  1 .4 4 %  (3P ) 2P ] +  

3s3p 2 3 d  [ - 1 .9 2 %  ( !D )  4S]

Correlation mixing with the 2p53s3p23d and 2p53p23d2 configurations 
amounts to less than 2% at most and therefore they have a minor influence over the 
energy level structure of the 2p53s23p2 configuration. This is analogous to the 
mixing of the 2p53s23p configuration with the 2p53s3p3d configuration in Mg 

sequence. In both cases the significant interaction is observed only within the 
complex. In contrast to the Mg sequence in ground state absorption which is 
observed strongly perturbed by the doubly excited states (see chapter 4, Costello 

etal. 1992), the absorption spectra of valence-excited states of Mg sequence are 
observed almost unperturbed (see section 7.2). In moving along the Mg sequence 
dramatic changes are observed in the ground state absorption spectra, however, 

no irregularities have been observed in the absorption from valence-excited states.
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In the 2p absorption along the A1 sequence in ground state, moving from A1 neutral 
to singly ionised Si a number of irregularities have been observed (see chapter 5). 

However, the levels of the core-excited configuration 2p53s23p2 have been 
observed unperturbed - analogous to the 2p53s23p configuration in Mg sequence 
(Mosnier etal. 1994) -, therefore, its structure and behaviour is expected same in 
the other isoelectronic species.

7.4 Conclusions

Inner-shell photoabsorption investigations of the core-excited states which 
do not connect to the ground state via the electric dipole operator are presented 

along the magnesium isoelectronic sequence for Mg, A1+ and Si2+, and for Si+. 
The results show the powerful potential of the DLP technique for the study of 
photoabsorption from the valence-excited states along an isoelectronic which has 

not been achieved before.
Photoabsorption spectra reported along the magnesium sequence exhibits 

the 2p63s3p -> 2p53s23p transitions. In moving along the sequence, spectra remain 
similar in appearance, with the exception of transition energy shifts, which rules 

out the presence of any perturbers. This is in contrast with the ground state 
absorption reported along this sequence. The behaviour of the core-excited 
configuration 2p53s23p2 in Si+ has been shown same to the 2p53s23p configuration 

in magnesium sequence.
In case of atomic magnesium the photoabsorption data has been used to 

interpret its ejected-electron spectrum (Pejcev et al. 1977) excited by low-energy 

electron impact corresponding to the autoionization decay of 2p53s23p states. In the 
case of Al+ the decay dynamics of this core-excited configuration has already been 
described in detail by Malutzki etal. (1987), therefore, only comparison is shown 
with their data.

As the measurements were made during cooling phase of the laser plasma, 
strong absorption has been observed only from the metastable states both in 
magnesium and aluminium sequences.
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APPENDIX A

THE SODIUM ISOELECTRONIC SEQUENCE IN 

GROUND STATE ABSORPTION

Photoabsorption spectrum of Na-like Si3+ has been recorded in the 

2p-subshell region. The results of the measurements made in the regions of 

2p63s 2S —» 2p53s2 2P and 2p63s 2S —» 2p5[3snd +3s(n+l)s + 3pnp, n > 3]

resonances are shown in figures A-1(a) and A-1(b) respectively. The Si3+

spectrum is dominated by the 2p —» 3d transitions and the remaining Rydbergs are

relatively very weak.

In order to do isoelectronic comparison, the photoabsorption spectra of

Na-like ions Mg+ and Al2+ have also been recorded. In figure A-2 the results are 

shown in the regions of 2p —> 3p2 + 3s3d and 3s4s transitions for the

isoelectronic species Mg+, Al2+ and Si3+. In moving from Mg+ to Si3+, the 3d 

contraction and level crossings result in dramatic changes in the spectra. In the case 

of Mg+, the spectrum shown is only due to the 2p —» 3p2 + 3s3d and 3s4s

transitions and in this region no significant absorption has been observed from its 

valence-excited states. In the cases of Al2+ and Si3+, relatively more absorption

features are observed which are arising from the 2p63p —> 2p53p3d transitions.
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Figure A -l

Photoabsorption spectrum of Na-like Si3+ recorded in the regions of (a) 2p63s 

-> 2p53s2, and (b) 2p63s —> 2p5[3snd +3s(n+l)s + 3pnp, n > 3] resonances.
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Figure A-2

Photoabsorption spectra of the isoelectronic species (a) Mg+, (b) Al2+ and (c) Si3+ 

in the regions of the 2p63s —> 2p5[3p2 + 3snd +3s(n+l)s, n > 3] resonances.
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APPENDIX B

THE SODIUM ISOELECTRONIC SEQUENCE IN 

EXCITED STATE ABSORPTION

Using the dual laser-produced plasma technique the 2p-subshell 

photoabsorption spectra have been measured for the Na-like ions Mg+, Al2+ and 

Si3+ prepared in valence-excited states. The results are shown in figure B-l. In 

these spectra, along with the absorption from Mg+, Al2+ and Si3+ in valence- 

excited states 2p63p 2Pi/2, 3/2 * the absorption structures which include the

resonances arising from the 2p63s 2S 1/2 —> 2p53s2 2P 3/2 ,i /2  (Na-like ground state

state absorption) and the transition arrays arising from the 2p63s3p —> 2p53s23p

(Mg-like excited state absorption) are also present.

In the 2p53s3p excited configuration the parent configuration 3s3p couples 

through the exchange interaction to form 1»3P terms. These two terms in turn 

couple with the 2p5 2P3/2ii /2 core to form terms of the type 2>4D, 2*4P, and 2>4S 

and form two groups of excitation states.

In moving along the sequence from Mg+ to Si3+, no significant change can 

be observed which rules out the presence of any perturbation. This is analogous to 

the photoabsorption spectra measured along Mg sequence prepared in the valence-

excited 2p63s3p configuration (see chapter 5).

B1



■ta 
a/i

.)

hVii _>i -*^\i , iA\|

2 6 0  Wave length (À)

Figure B -l

The relative photoabsorption spectra of (a) Mg+, (b) Al2+ and (c) Si3+ in the region 

of the 2p63p 2P —> 2p53s3p 2-4L transitions.



APPENDIX C

DETAILS OF THE TRANSITIONS IN ATOMIC SILICON

ABSORPTION

Possible terms of the 2p53s23p2s type configuration which could combine with the 

ground configuration.

J =  3 2 1 0

(3P) 5D (3P) 5D (3P) 5D (3P) 5D
(3P) 3D (2) (3P) 3D (2) (3P) 3D (2) (3P) 3P (2)
(3P) 5P (3P) 5P (3P) 5P (3P) !S
(*D) 3F (3P) 3P (2) (3P) 3P (2) OD) 3P
OD) !F (3P) 5S (3P) 3S (2) OS) 3P
OD) 3D (3P) !D (3P) !P

(ID) 3F (ID) 3D 6
7 (ID) 3D OD) 3P

OD) !D OD) !p
OD) 3P OS) 3P
OS) 3P OS) !P

13 14

Transitions from 3P0 level = 14

Transitions from 3Pj level = 33 

Transitions from 3P2 level = 34 

Total tamsitions from 3P0 12 levels = 111 

Transitions from ’D2 level = 34 

Transitions from level = 14

Cl



Possible terms o f  the 2p 53s23p2d  type configuration w h ic h  cou ld  com bine w ith  the

ground configuration.

J =  3 2 1 0

(3P) 5G (3P) 5G (3P) 5F (2) (3P) 5D (3)

(3P) 5F (2) (3P) 5F (2) (3P) 5D (3) (3P) 3P (4)
(3P) 5D (3) (3P) 5D (3) (3P) 5P (2) (3P) lS
(3P) sp (2) (3P) sp (2) (3P) 3D (6) OD) 3P (3)
(3P) 3G (2) (3P) 5S (3P) 3P (4) OD) !S
(3P) 3F (4) (3P) 3F (4) (3P) 3S (2) OS) 3P
(3P) 3D (6) (3P) 3D (6) (3P) IP (2)
(3P) IF (2) (3P) 3P (4) (ID) 3D (3) 13
OD) 3G (2) (3P) iD (3) 0 D )3P (3)
0 D )3F (3) 0 D )3F (3) OD) iP (3)
(ID) 3D (3) OD) 3D (3) (ID) 3S
m  IF (3) OD) 3P (3) OS) 3D
OS) 3F OD) ID (3) OS) 3P
OS) 3D OS) 3F OS) !P
OS) !F OS) 3P 

OS) !D 34
36

42

Transitions from 3P0 level = 34

Transitions from 3P t level = 89 

Transitions from 3P2 level =111 

Total tamsitions from 3P0 l 2 levels = 234 

Transitions from !D2 level =111 

Transitions from *S0 level = 34
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P o s s ib le  ternis o f  the 2 p 53s3p4 c o n fig u ra tio n  w h ic h  c o u ld  c o m b in e  w ith  the

ground con fig u ration.

J =  3 2 1 0

(3P) 5D (3P) 5D (3P) 5D (3P) 5D
(3P) 5P (3P) 5P (3P )  5 p (3P) 3P (2)
(3P) 3D (2) (3P) 5S (3P) 3D (2) OP) 'S
CD) 3F (3P)3D(2) (3P) 3P (2) 0 D )3P
OD) 3D (3P)3P (2) (3P ) 3S(2) OS) 3P
(ID) IF 0>P) !D (3P) !P

0 D )3F 0 D )3D 6
7 (ID) 3D OD) 3P

OD) 3P OS) 3P
OS) 3P (ID) IP
(ID) ID OS) !P

13 14

Transitions from 3P0 level = 14

Transitions from 3Pj level = 33 

Transitions from 3P2 level = 34 

Total tamsitions from 3P0 l 2 levels = 81 

Transitions from !D2 level = 34 

Transitions from level = 14
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