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    ABSTRACT 
Electrospun three dimensional scaffolds for bone tissue regeneration 

Elena Irina Paşcu, MEng, BSc 
 
 Bone is a complex and highly specialized form of connective tissue which acts 

as the main supporting organ of the body. It is hard and dynamic by its nature, with a 

unique combination of organic and inorganic elements embedded in a fibrous 

extracellular matrix (ECM), onto which cells attach, proliferate and differentiate. When 

bone repair mechanisms fail, due to infection or defect magnitude, bone formation can 

be stimulated with the use of autologous bone grafts or donor allografts. However, 

autografts are associated with limitations such as donor site morbidity and limited 

availability, while allografts have the potential to cause an immune response and also 

carry the risk of pathogen transfer. Bone tissue engineering has emerged as an 

alternative to these approaches by attempting to mimic the architecture of the bone 

tissue while providing appropriate cues for cellular attachment, growth and 

proliferation, as well as the mechanical strength necessary to maintain their structural 

integrity during remodelling. 

 The present study aims to create three dimensional fibrous scaffolds containing 

nano-hydroxyapatite (nHAp) embedded in a matrix of functional biomacromolecules, 

polyhydroxybutyrate/hydroxyvalerate (PHB/PHV) and Bombyx mori silk fibroin (SF) 

with the use of the simple and versatile technique of electrospinning. This approach will 

offer an attractive route to mimicking the natural bone tissue architecture through 

electrospinng of the ceramic phase within the polymeric one. The created functional 

fibrous substrates could be used for in vitro or in vivo tissue regeneration. For these 

reasons they are intended to support cell attachment, proliferation and differentiation, 

while the role of nHAp would be to induce cells to secrete ECM for mineralization to 
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form bone. After choosing the materials, screening tests were conducted to determine a 

suitable composite solution and its electrospinning parameters, followed by a Design of 

Experiments analysis in order to explore and understand the relationship between 

process factors: feed rate, voltage, collection distance and solution composition.  

 Physico-chemical and in vitro biological tests were performed on produced 

constructs in order to study the suitability of the proposed material combination for such 

an application. Simultaneous  electrospinning of composites of 2% valerate fraction 

PHB/PHV , nano hydroxyapatite (nHAp), and Bombyx mori silk fibroin (SF) has been 

achieved for nHAp and SF solution concentrations of 2 (w/vol) % each and 5 (w/vol) % 

each and three dimensional fibrous scaffolds were constructed. Further findings of this 

work supported the hypothesis that the proposed composite scaffolds have appropiate 

fibrous morphology of the ECM showing continuous fibres deposition and no bead 

defect formation. Furthermore the structures support apatite formation on their surface, 

thus being bioactive while exhibiting a low degradation rate that is adequate for bone 

regeneration. The 2% composite constructs (2% nHAp and 2% SF content) possess 

appropriate compressive properties for bone tissue regeneration while the Young’s 

modulus varies with the ceramic/ proteic content. Additionally when placed in culture 

the 3D structures enhance the osteoblast phenotype with cells travelling in the depth of 

the construct after only 3 days after seeding. All these resultssuggest that these scaffolds 

are appropriate cell carriers for osseous tissue engineering, offering an alternative in the 

biomaterials area of study 
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CHAPTER 1   INTRODUCTION 
 

When Gloria Causen, a middle school teacher from Mendham, N.J., was told by 

her doctor that she had a rare, cancerous tumour in her left leg, she was presented with 

two options: have the leg amputated below the knee or have a bone transplant that 

would save her leg. Like many patients faced with similar situations one of her first 

questions was: ‘Where will you get the bone?’ [1]. 

 

1.1 Bone defects 
 

Bone defects can be caused by injury, disease, or surgical interventions. Defects 

up to about 1/3 of an inch in a large bone can heal by themselves in a healthy non-

smoker, but bone defects larger than this, or even smaller in small bones never heal 

completely.  

 In order to facilitate more complete and faster bone healing, alternatives such as 

bone replacement or bone enhancement materials are needed to fill the defect. These 

alternatives provide mechanical and structural support, fill defect gaps and enhance 

bone tissue formation. They are widely used on orthopaedic surgery, plastic surgery, 

oral and maxillofacial surgery, and dental surgery. This makes bone the second most 

transplanted tissue in humans. 
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1.2. The need for bone regeneration 
 

Bone is a connective tissue largely composed of an organic protein; collagen 

and the inorganic mineral hydroxyapatite, which combine to provide a mechanical and 

support role in the body. Bone is a hard but relatively lightweight tissue, able to 

withstand considerable pressure while being sufficiently elastic to withstand moderate 

torsion. Inside the hard, mineralized tissue is a matrix in which bone cells can 

proliferate and adhere.  

Bone is known as a dynamic, highly vascularised tissue with a unique capacity 

to heal and remodel without leaving a scar [2]. These properties, together with its 

capacity to rapidly mobilize mineral stores on metabolic demand, define bone as a 

smart material. Its main role is to provide structural support for the body. Furthermore 

the skeleton also serves as a mineral reservoir, supports muscular contraction resulting 

in motion, withstands load bearing and protects internal organs [2, 3].  

Bone loss and failure from injuries or diseases remain frequent and serious 

health problems despite great advances in medical technologies and life sciences. 

Currently, bone grafting procedures are used to promote the healing of fracture non-

union and the repairing of other bone defects. The traditional biological methods of 

bone-defect management include autografting and allografting cancellous bone, 

applying vascular grafts of the fibula and iliac crest, and using other bone transport 

techniques [4]. Although major progress has been achieved in the field of regenerative 
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medicine over the years, current therapies still have several limitations. Autologous 

grafts mean putting the patient through additional surgery and therefore the supply of 

self-donated tissue is, obviously, limited. Donor grafts pose risks of disease, graft 

rejection and other long-term complications. Furthermore, the new bone volume 

maintenance can be problematic due to unpredictable bone resorption. In large defects, 

the grafts can be resorbed by the body before osteogenesis is complete leaving no 

template for the new bone formation which may lead to further bone defects [4]. 

Vascularized grafts require a major microsurgical operative procedure requiring 

sophisticated infrastructure. Distraction osteogenesis techniques are often laborious and 

lengthy processes that are reserved for the most motivated patients. Another method of 

bone defect repair is via bone cement fillers. Bone cements are prepared in the 

operating room and therefore can be susceptible to infection.  

The efforts to address these clinical problems and limitations have led to the 

development of new biomaterials and alternatives therapies, among which the bone 

tissue engineering approach appears to be of great promise. Bone tissue engineering 

may provide alternative solutions. Bone tissue engineering can be classified into two 

main areas: in vivo and in vitro. The in vitro approach requires a specifically designed 

environment for regeneration, while an in vivo approach tries to achieve natural 

regeneration of bone by stimulating the natural healing process and using the body’s 

microenvironment [5]. Neotissues are constructed using biodegradable three-

dimensional porous scaffolds which act as a templates mimicking the extracellular 

matrix  (ECM) of the body, followed by in vitro culture and in vivo implantation to the 

desired sites. The scaffold may be used with or without seeded cells prior to 

implantation. Bone tissue regeneration is dependent on the in - growth of the 
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surrounding tissue in a process called tissue induction, or more precisely osteoinduction 

[6].  

Bone regeneration requires four components: a morphogenetic signal, 

responsive host cells that will respond to the signal, a suitable carrier of this signal that 

can deliver it to the specific sites then serve as scaffolding for growth of the responsive 

cells, and a viable, well vascularised host bed. For bone tissue engineering, major issues 

include: 

• the use of appropriate matrix materials for scaffolds 

•  control of porosity and pore characteristics 

•  mechanical properties 

•  bioactivity. 

 

 

1.3 Polyhydroxybutyrate/polyhydroxyvalerate 

(PHB/PHV) 3D porous scaffolds 
 

The microenvironment in which cells reside in vivo exhibits a multitude of 

signals which play an essential role in a diverse set of cellular processes [7]. Many of 

these cues are offered by the extracellular matrix (ECM), which plays the role of the 

cellular scaffold and is the primary extracellular component of tissues [8]. 
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Since most primary organ cells, are known to be anchorage-dependent and 

require specific environments for growth, the success of tissue engineering depends of 

the development of suitable scaffolds for in vitro tissue culture and in vivo neotissue 

formation [5]. 

Biologically active scaffolds are highly porous materials based on simple 

analogues of the extracellular matrix (ECM) that can induce tissue  regeneration and are 

the strategic choice in several pathological situation that are currently treated with organ 

transplantation.  

The challenge of orthopaedic tissue engineering is to develop a suitable scaffold 

that will present sufficient porosity and mechanical strength to allow cell adhesion, 

migration, growth and proliferation thus adequate integration with the surrounding 

tissue [9].  One of the most important factors when tailoring the artificial graft for the 

specific tissue is the chosen material. Several factors such as mechanical properties, 

degradation rate and cell proliferation, and adhesion on the material must be considered 

when selecting one for specific atissue or organ scaffold [10].  

 Polyhydroxybutyrate/ polyhydroxyvalerate (PHB/PHV) is a natural polymer,  

from the class of poly(hydroxyalkanoate)s (PHAs). It has attracted attention as  a 

potential biomaterial for tissue regeneration because of its non-cytotoxicity, 

biocompatibility, biodegradability and thermoprocesability. It was demonstrated to  

produce a consistent favourable bone tissue adaptation response with no evidence of an 

undesirable chronic inflammatory response after implantation periods up to 12 months  

while particulate hydroxyapatite (HAp) incorporated into PHA forms a bioactive and 

biodegradable composite for applications in hard tissue replacement and regeneration 



6 

 

[11, 12]. In addition, PHA/HAp composites have similar mechanical strength in 

compression to that of  human bone, thus it is an interesting biomaterial when used in 

fracture fixation [13]. Depending on the property requirements for different 

applications, PHA can be either blended, surface modified or composited with other 

polymers, enzymes, or even inorganic materials to further adjust their mechanical 

properties or biocompatibility.  

 

1.4 Research, objectives and methodology 
 

The natural extracellular matrix (ECM) is a complex structure that is built to 

meet the specific requirements of the tissue and organ. Primarily consisting of small 

diameter fibrils, ECM may contain other vital substances such as proteoglycans, 

glycosaminoglycan and various minerals [14]. The ECM in particular is able to 

influence the cells by both chemical cues and the physical arrangement of fibres [10]. 

The major solid components of human bone are collagen (type I) and a biological 

apatite that differs in composition from the stoichiometric hydroxyapatite [HA, 

Ca10(PO4)6(OH)2] by the presence of other ions, of which carbonate is the most 

abundant species (∼8 wt%) [15].  

Structural biocompatibility is affected by the physical morphology of a scaffold, 

primarily by its architecture and the dimensions of its components. The dimensions of 

the building components of a scaffold are important factors in regulating cell activities. 

Cell behaviour is known to be regulated by the physical properties of an engineered 

scaffold, such as the architecture and topography. Previous studies have shown that cell 
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proliferation is influenced by the architectural scale of the structure and that adhesion is 

affected by the topography of the material [16, 17]. Current research in tissue 

engineering involves trying to replicate the ECM to provide the environment for tissue 

regeneration.  In order to mimic bone structure and composition, researchers have 

prepared polymer/ceramic bone analogue composites using a variety of conventional 

methods such as direct mineralization or chemical precipitation. The physical structure, 

composition and arrangement of the ECM are often tissue specific, thus an appropiate 

technique should be used to fabricate three-dimensional scaffolds that would mimic the 

fibrous structure of the natural ECM.  

The electrospinning process has frequently been applied to the search of 

biomimetic bone tissue engineering scaffolds. Various composite fibres, such as 

PCL/CaCO3 [18], HAp/gelatin [19], PLA/HAp [20-22], PLA and triphasic 

HAp/collagen/PCL  [23, 24]  have been explored, with the intention of achieving better 

cellular adhesion, mineral formation and growth  suitable for bone regeneration. Even 

though synthetic polymers and their blends exhibit biocompatibility and good 

mechanical properties, novel biopolymer composites (biocomposites) based on 

biodegradable and bioresorbable materials have received an increasing interest over the 

last decades. The co-precipitation of HAp nanocrystals in soluble collagen has met with 

partial success in the fabrication of electrospun HAp–collagen nanocomposites similar 

to the nanostructure of real bone, though with weaker mechanical properties  [25]. On 

the other hand, carbonate-substituted HAp–chitosan/silk fibroin composites prepared 

using a co-precipitation method exhibited better compressive strength and cellular 

response, mimicking the real bone  [26]. Simultaneous gas-jet and electrospinning of 

composite solution containing hydroxyyapatite have been used to manufacture porous 
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scaffolds suitable for bone regeneration [27, 28]. Other attempts of adding 

hydroxyapatite to the electrospun fibres have been made, either by soaking the fibrous 

polymeric matrix in simulated body fluid (SBF) [29] or by co-precipitation and 

nucleation  [30, 31]. PLGA/HAp fibrous composite scaffolds were also prepared, 

mainly used for drug delivery instead of bone repair [32-34].  

It is known that structurally the bone is hierarchically organized from macro to 

micro to nano-scale, using basic building blocks such as the platelike HAp nanocrystals 

incorporated within biomacromolecular nanofibres [2]. Previous research work has 

been shown to contribute to the field of bone tissue regeneration with interesting 

concepts of manufacturing bone-like scaffolds and unique experimental results on their 

properties. However, in most of the studies mentioned above, the produced composite 

fibres were prepared by combining electrospinning with additional techniques, such as 

co-precipitation and nucleation, or gas-jet spraying resulting in structures with very 

limited bonelike characteristics. Furthermore combining two or more techniques in 

order to produce the composite fibres can be a time consuming approach. Another 

challenge was to develop formulations with sufficient electrospinnability while ensuring 

chemical and physical intactness of both the ceramic nanoparticles and polymer matrix. 

The present research work tries to answer the following question : 

Can 3D electrospun scaffolds composed of nHAp encapsulated in PHBV 

provide thick fibrous structures which meet the major requirements for 

bone tissue engineering scaffolds such as promoting apatite formation 

and supporting osteoblast attachment and proliferation, while also 

providing adequate resistance to mechanical compression?  
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Furthermore based on the previous work on PHAs/HAp composites and the 

concept of mimicking the extracellular matrix of the bone, the aim of this research was 

to combine the biocompatibilty, non-toxicity and biodegradabality of the 

polyhydroxybutyrate/ polyhydroxyvalerate and silk fibroin with the bioactivity of nHAp 

in a one step process. The PHB/PHV was chosen as an alternative to other studied 

natural polymers, such as collagen, gelatine or chitosan from animal or crustacean 

sources. Advantages include its suitability for industrial scale production. Furthermore 

its degradation products do not cause an immune response or inflammation, do not alter 

the pH value of surrounding tissues, and have no adverse influences on bone formation 

 [163]. Its degradation product β-hydroxybutyric acid is finally metabolized into CO2 

and H2O, not resulting in physiological reaction with the organism [162]. Additionally 

nHAp particles are similar to the mineral component of natural bone and they show 

good osteoconductivity, while mimicking its inorganic chemical composition.  

In this thesis, the electrospinning technique was used to construct a three-

dimensional fibrous matrix using this unique combination of materials that to, the best 

of our knowledge, are being used together in electrospinning for bone tissue 

engineering applications for the first time. Silk fibroin, a biocompatible and 

cytocompatible biomaterial, was found to improve the electrospinning deposition while 

balancing the change in solution electrospinning dynamic produced by the addition of 

nHAp particles. 

The specific aim of the study therefore was the development of PHB/PHV/ 

nHAp ( coded P/H) fibrous composites for bone regeneration scaffolds. The influence 

of the polymer matrix materials, HAp particles and the fabrication conditions on the 
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physical and biological properties is considered critical to successful scaffold 

development.  

To accomplish this design of bone graft, the following objectives are listed 

below: 

1. To simultaneously electrospin the nano-hydroxyapatite phase and the 

PHB/PHV in order to obtain continuous deposition of fibres.  

2. To fabricate a three-dimensional structure using the resultant material ( 

electrospun flat membrane). 

3. To investigate whether the final construct would support bone-like cells 

attachment, proliferation and matrix deposition, thus inducing the cells to 

function normally while maintaining their phenotype. 
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CHAPTER 2 LITERATURE REVIEW 
 

2.1 Introduction 
 

This literature review is structured into four main sections as shown in Figure 1. 

These are: (i) bone structure and function, (ii) bone repair, (iii) bone substitutes and (iv) 

electrospinning. 

 

Figure 1 Structure of literature review 
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2.2 Bone architecture and function 
 

An adult human has 206 bones, which account for 14 percent of the body’s total 

weight. Bone is the major component of almost all skeletal systems in adult vertebrates. 

Mimicking the bone structure as much as possible is one of the common strategies of 

bone tissue engineering.  

Bone appears to be nonliving - in fact, the word skeleton is derived from a Greek 

word meaning dried up. However, bone actually is a dynamic structure composed of 

both living tissues, such as bone cells, fat cells, and blood vessels, and nonliving 

materials, including water and minerals [35]. Bone is a unique combination of minerals 

and tissue that can provide excellent tensile and compressive strength. It is made up of 

an organic phase: tissue and cells that are responsible for ductility and maintenance, and 

the inorganic, mineral phase, responsible for its stiffness.The components of the bone 

include approximately: 60wt% mineral, 30wt% matrix and cells  and 10wt% water.The 

matrix includes around 15wt% cells , namely osteocytes (bone cells), osteoclasts (bone 

resorbing cells), osteoblasts (bone building cells) and bone lining cells, known as 

inactive osteoblasts [35, 36]. The mineral components are mainly crystalline mineral 

salts and calcium, present in the form of hydroxyapatite Ca10(PO4)6(OH)2 containing 

many other substitutions, such as: magnesium, sodium, potassium, fluorine, chlorine, 

and carbonate ions. The characteristic bone cell is the osteocyte, that resides in a little 

chamber (lacunae), surrounded by mineralized bone matrix. This mineralized bone 

matrix is deposited as a non-mineralized matrix by the osteoblasts, and is calcified by 

the deposition of calcium salt minerals. The osteoblasts are cells that are found in new-



13 

 

bone areas and border them with so-called osteoblast zones. The osteoblasts that enter 

the lacunae become osteocytes and those entering a resting state are called flat-bone-

lining cells. In addition to the supportive role, bone has an important function in the 

regulation of calcium and phosphate blood level regulation. It is believed that all bone 

cells (osteoclast, osteoblast, and osteocytes) play a role in this process. In addition, bone 

harbours the bone marrow, the main place where white and red blood cells are being 

produced [37, 38].  

 Bones in human and other mammal bodies are generally classified into two 

types: (i) cortical bone, also known as compact bone and (ii) trabecular bone, also 

known as cancellous or spongy bone. A schematic of bone structure it is shown in 

Figure 3. Microscopically, two major forms of bone can be identified: woven and 

lamellar bone. The first is the immature unorganized type of bone and is present in 

newborns and in locations where fast bone formation takes place (growth plates- 

physes, fracture repair). After this type of bone is laid down, it is organized into 

lamellar, via remodelling. 

  

2.2.1. Cortical bone 
 

Cortical bone represents nearly 80% of the skeletal mass. It is also called compact 

bone, because it forms a protective outer shell around every other bone in the body. It is 

the stronger than the cancellous type. Cortical bone has a slow turnover rate and a high 

resistance to bending and torsion. It provides strength where bending would be 

undesirable as in the middle of long bones. Cortical bone is dense with a porosity 



14 

 

ranging between 5% and 10%. Cortical bone is found primarily in the shaft of long 

bones and forms the outer shell around cancellous bone at the end of joints and the 

vertebrae. The basic first level structures of cortical bone are osteons. Cortical bone 

osteons are also known as Haversian systems. Each osteon is composed of a central 

vascular channel surrounded by a kind of tunnel, called the Haversian canal. The canal 

can contain capillaries, arterioles, venules, nerves and possibly lymphatics. Between 

each osteon are interstitial lamellae (concentric layers of mineralized bone). 

 

Figure 2 Hierarchical organization of bone over different length scales. Bone has a 
strong calcified outer compact layer (a), which comprises many 
cylindrical Haversian systems, or osteons (fundamental unit of the bone) 
(b). The resident cells are coated in a forest of cell membrane receptors 
that respond to specific binding sites (c) and the well-defined 
nanoarchitecture of the surrounding extracellular matrix (d). 
(Reproducedwith permission of Elsevier Limited) [38]   
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2.2.2 Trabecular or Cancellous Bone 
 

 Trabecular bone is much more porous with porosity ranging anywhere from 

50% to 90 % [36]. It is the most dynamic part. It is active in growth, calcium 

homeostasis and hematopoiesis, and its supportive function is mainly in locations with a 

predominantly compressive type of loading, such as vertebral bodies and adjacent to 

articular joints (e.g. knee joint) [37]. It is believed that it can dissipate energy from 

cortical contact loads, due to its spongy nature. It is less dense, more compliant and has 

a higher turnover rate than cortical bone. It is found in the epipheseal and metaphysal 

regions of long bones and throughout the interior of short bones. It constitutes most of 

the bone tissue of the axial skeleton; bones of the skull, ribs and spine. It is formed in an 

intricate and structural mesh. It forms the interior scaffolding, which helps bones to 

maintain their shape despite compressive forces. The middle the bone contains red, 

yellow marrow, bone cells and other tissues. Its basic first level structure is the 

trabecula. 

 

2.2.3 Bone as a nanocomposite. Physical properties 
 

 The extracellular matrix (ECM) of bone has a unique composition that enables 

the bone’s special function as a mechanical support for the skeleton. However, bone 

matrix can also regulate the activities of cells that are in contact with it. The ECM 

constituents are known to be important regulators for cellular processes such as 
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chemoattraction, migration, proliferation and phenotypic expression. In each 

microenvironment, the ECM acts as a specialized coordinator [39]. 

 The bone matrix is precisely composed of two phases at a nanoscale level, 

organic (protein) and inorganic (mineral), and this makes nanocomposites a good 

candidate for bone replacement.  Inorganic and organic phases have several 

components: minerals, collagen, water, non-collagenous protein, lipids, vascular 

elements and cells [40]. The chemical composition and physical properties of the 

natural bone depend on species, age and the type of bone. The mineral phase of the 

bone is mainly composed of hydroxyapatite (HAp) and the bone protein is mainly 

composed of collagen, which acts as a structural framework in which plate-like tiny 

crystals of HAp are embedded to strengthen the bone.  

 The mechanical properties of human cortical bone from the tibia, femur, and 

humerus have been found to vary between subjects, although the density remains 

similar. In human cancellous bone, by contrast, there is no difference in the mechanical 

properties of the humerus, the proximal tibia, and the lumbar spine [41]. The 

mechanical properties of cortical bone are much higher than those of spongy bone. A 

number of factors influence the mechanical properties of cortical bone such as the 

porosity, the mineralization level and the organization of the solid matrix. Typical 

mechanical properties of human cortical and spongy bone properties are shown in Table 

1. 

The orientation of bone specimen, which can be defined as longitudinal (parallel to 

the predominant osteon ligaments), or transverse (through the osteon section), affects 

the mechanical properties. Compact bone has a compressive strength in the longitudinal 
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direction (parallel to the axis) twice that of the transverse direction. It exhibits also good 

fracture toughness, which is much higher in the transverse direction than in the 

longitudinal one. The mechanical properties of the trabecular bone are highly dependent 

on its density. It may appear that the trabeculae are arranged in a random manner, but 

they are organised to provide enhanced strength, similar to braces that are used to 

support a building [41]. 

Table 1  Mechanical properties of human femoral (cortical) bone tissue [42] 
 

Mechanical properties Test direction related to 
bone 

axis for cortical bone 

 
Cancellous 

bone 
Parallel Normal - 

Tensile Strength (MPa) 124-174 49 1.5-20 
Compressive Strength (MPa) 170-193 133 2-12 
Young’s Modulus (GPa) 17-18.9 11.5 7-30 
Fracture Toughness 
(MPa m1/2) 

2-12 8 2 

Bending Strength (MPa) 160 - 10 
Yield Tensile Strain 0.007 0.004 - 
Yield Compressive Strain 0.010 0.011 - 
 

It is believed that the strength of the bone comes from its structural hierarchy into 

which it is organised in a self-assembling process. The minerals are not directly bound 

to the collagen, but bound through non-collagenous proteins.Noncollagenous proteins 

compose 10 to 15% of total bone protein and make up approximately 3-5 % of the bone, 

which provide active sites for biomineralization and for cellular attachment. 

Approximately 25% of noncollagenous protein is exogenously derived, including serum 

albumin and α2-HS-glycoprotein, which bind to hydroxyapatite because of their acidic 

properties. Other exogenously derived noncollagenous proteins are growth factors and a 

large variety of other molecules in trace amounts that may affect bone cell activity. The 

degree of biomineralization is the most important one to determine the biomechanical 
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properties of the bone [37]. Furthermore bone strength can be affected by osteomalacia, 

fluoride therapy, or hypermineralization states. Bone microstructure affects bone 

strength also. Low bone turnover leads to accumulation of microfractures. High bone 

turnover, with bone resorption greater than bone formation, is the main cause of 

microarchitectural deterioration [43]. 

 

2.3. Bone repair 
 

Bone healing or fracture healing is a proliferative physiological process, influenced 

by a variety of systemic and local factors, in which the body facilitates repair of bone 

fractures. The bone healing process includes three major phases of fracture healing, two 

of which can be further sub-divided to make a total of five phases [37]: 

a. Reactive phase 

1.1 Fracture and inflammatory phase 

1.2 Granulation tissue formation 

b. Reparative (modeling) phase 

2.1.      Callus formation 

2.2.      Lamellar bone deposition 

c. Remodelling phase 

3.1  Remodelling to original bone contour 

 

The modelling and the remodelling phases are based on the separate actions of bone 

resorbing cells, called osteoclasts (multinucleated cells that form by fusion of 
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mononuclear precursors of haematopoetic origin), and bone forming cells, called 

osteoblasts (that derive from mesenchymal stem cells found in the bone marrow, 

periosteum and soft tissues). In the inflammatory stage, a hematoma develops within 

the fracture site during the first few hours and days. Inflammatory cells (macrophages, 

monocytes, lymphocytes and polymorphonuclear cells) and fibroblasts infiltrate the 

bone, under prostaglandin regulation. This results in the formation of granulated tissue, 

ingrowth of vascular tissue and migration of mesenchymal cells. Oxygen, needed for 

the healing process is provided by the exposed muscle and cancellous bone. During the 

repair stage, fibroblasts begin to lay down a stroma (part of the blood vessels), that 

supports vascular ingrowth. As vascular ingrowth progresses, a collagen matrix is 

produced and laid down while osteoid is secreted and mineralized, forming a soft callus 

around the repair site. This callus is very weak in the first 4-6 weeks and requires 

adequate protection in the form of bracing or internal fixation. When the callus ossifies 

it will form a bridge of woven bone between the fracture fragments. If proper 

immobilization is not used, the callus may not occur and instead a fibrous union may 

develop. 

The last step in bone repair is the remodelling stage, in which the healing bone is 

restored to its original shape, structure and mechanical strength. This stage occurs over 

a long period of time and mechanical stress plays an important role. As the fracture site 

is exposed to an axial loading force, bone is generally laid down where it is needed and 

resorbed from where it is not needed. Adequate strength is typically achieved in 3-6 

months. A schematic of fracture repair is shown in Figure 3. 

Depending on the site of the bone defect, there are some differences in terms of the 

healing process.  One example can be the case of spinal fusion versus bone repair in 

long bone fractures [44]. Unlike long bone fractures, bone substitutes are used in spinal 
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fusion procedures. Bone substitutes are incorporated by an integrated process in which 

old necrotic bone is slowly resorbed and simultaneously replaced with new viable bone. 

This process is called “creeping substitution” and this remodelling result in the 

replacement of necrotic bone within the substitute. The most critical period of bone 

repair is the first 1 to 2 weeks in which inflammation and revascularization occur. There 

are a variety of systemic factors that can inhibit bone healing: cigarette smoking, 

malnutrition, diabetes, steroid medication. Bone substitutes are also strongly influenced 

by local mechanical forces. The density, geometry, thickness and trabecular orientation 

of bone can change depending on the mechanical demands of the substitute [44]. 

 

 

Figure 3 A schematic of bone fracture repair (Reproduced with permission of 

Elsevier Limited)[45] 
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2.4 Tissue Engineering Approach 
 

 Since its birth in mid-1980s, tissue engineering continues to evolve as an 

exciting and multidisciplinary field which aims to develop biological substitutes to 

restore, replace or regenerate defective tissues. Cells, scaffolds and growth-stimulating 

signals are generally known as the tissue engineering triad, the key components of 

engineered tissues. Scaffolds, typically made of polymeric biomaterials, provide the 

structural support for cell attachment and subsequent tissue development [46]. 

 Apart from blood cells, most, if not all, other normal cells in human tissues are 

anchorage-dependent residing in a solid matrix called the extracellular matrix (ECM). 

Intuitively, the best scaffold for an engineered tissue should be the ECM of the target 

tissue in its native state. Nevertheless, the multiple functions, the complex composition 

and the dynamic nature of ECM in native tissues make it difficult to mimic exactly. 

Over the last two decades, four major scaffolding approaches for tissue engineering 

have evolved (Figure 4) [46]. 
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Figure 4 Schematic diagram showing different scaffolding approaches in tissue 

engineering (Reproduced with permission of Springer-Verlag, Berlin-

Heidelberg ) [46] 

 

One of the most commonly used and well-established scaffolding approaches is 

seeding therapeutic cells in pre-made porous scaffolds made of degradable biomaterials. 

Many types of biomaterials can be used to make porous scaffolds for tissue engineering 

provided that a fabrication technology compatible with the biomaterial properties is 

available [47-49]. In general, biomaterials used for making porous scaffolds for tissue 

engineering can be classified into two categories according to their sources, namely 

natural and synthetic biomaterials. Furthermore acellular ECM processed from 

allogenic or xenogenic tissues is one scaffolding approach whereby the allogenic or 
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xenogenic cellular antigens are removed from the tissues  and specialized 

decellularization techniques are developed to remove cellular components. This is 

usually achieved by a combination of physical, chemical and enzymatic methods [50, 

51]. Other scaffolding approaches are cell sheet engineering and cell encapsulation in 

self-assembled hydrogel matrix. The first represents an approach where cells secrete 

their own ECM upon confluence and are harvested without the use of enzymatic 

methods, while the latter is a process entrapping living cells within the confines of a 

semi-permeable membrane or within a homogenous solid mass [52, 53].  

 Over the last decade, the development of fabrication technologies for porous 

scaffolds has been an intensive area of research.In general these technologies can be 

classified into (1) processes using porogens in biomaterials, (2) solid free-form or rapid 

prototyping technologies and (3) techniques using woven or non-woven fibres. 

 In the first category solid or viscous phase materials are incorporated with 

porogens, which could be gases such as carbon dioxide, liquids such as water or solids 

such as paraffin [54], followed by porogens removal after fabrication using methods 

such as sublimation, evaporation and melting to leave behind a porous structure in the 

scaffold.  In the second category, hierarchical porous structures are manufactured by 

sequential delivery of material and/or energy needed to bond the materials to preset 

points in space [55].  In the third category, woven and non-woven fibre structures can 

be piled together and bonded using thermal energy or adhesives to give a porous 

meshwork using techniques such as fibre bonding [55], or fibres can be generated by 

the electrospinning technique,  in which a high voltage is injected to a polymer solution 

where the electrostatic forces are built up to overcome the surface tension of the 

polymer solution and therefore form a spinning fibre jet. 
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2.5 Bone substitutes 

2.5.1 Polymeric substitutes 
 

 Polymeric materials are widely applied in the biomedical field to mimic the 

extracellular matrix. Polymers can serve as a matrix having various properties including 

biodegradation, non-toxicity and biocompatibility [56]. There are two types of 

biodegradable polymers namely natural polymers and synthetic polymers [57]. 

  Recently, natural polymer-based composites have been the focus of more 

attention than synthetic polymer composites for bone tissue engineering applications. 

This is often because of the biocompatible and biodegradable behavior of natural 

polymers. The natural-based materials are biopolymers which include polysaccharides 

(starch, alginate, chitin/chitosan, hylauronic acid derivatives) or proteins (soy, collagen, 

fibrin gels, silk) and a variety of biofibres, such as lignocelluloses [58]. Natural 

polymers often possess highly organized structures and may contain an extracellular 

substance, called ligand, which is necessary to bind with cell receptors. Natural 

polymers often possess highly organized structures which can guide cells to grow at 

various stages of development; they may stimulate an immune response at the same 

time [59] and for these reasons several natural polymers have been reported for their 

applications in bone tissue engineering [60-62]. 

Collagen 

 

Collagen is the main protein of the connective tissue in animals and the most 

abundant protein in mammals, making up about 25% to 35% of the whole-body protein 
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content. It is naturally found only in metazoa including sponges [63]. The collagen in 

the tissues of a vertebrate occurs in at least 10 different forms, each predominant in a 

specific tissue. All the forms share the triple helix structure and variations are restricted 

to the length of the molecule. Collagen constitutes 1% to 2% of muscle tissue, and 

accounts for 6% of the weight of strong, tendinous muscles. The drawbacks with using 

this material for tissue engineering regeneration include its relatively poor mechanical 

properties [64], the need for cross-linking, the risk of infectious disease being 

transmitted (viral infections), increase antigenicity and fast biodegradation  rate. Further 

since collagen is a protein, it remains difficult to sterilize without alterations to its 

structure [65]. 

 

 Chitosan 

 

 Chitosan is a cationic polysaccharide, produced by deacetylation of chitin, 

which is the structural element in the exoskeleton of crustaceans, like crabs or shrimps. 

Chitosan purified from shrimp shells is used in a granular hemostatic product, Celox. 

Over the past two decades, chitosan has been developed considerably in biomedical 

applications due to its high biocompatibility, biodegradability, porous structure, 

suitability for cell ingrowth, osteoconduction and intrinsic antibacterial nature [66]. 

Scaffolds with various pore sizes and porosities were produced by selecting the 

appropriate solvent and optimizing processing conditions. Despite their flexibility, 

chitosan scaffolds mechanical properties are inferior to those of normal bone. 
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Moreover, chitosan itself is not osteoconductive, although addition of ceramic materials 

improves its osteoconductivity and mechanical strength [67]. 

 

Silk fibroin 

 

  Silk, popularly known in the textile industry for its lustre and mechanical 

properties, is produced by culture silkworms and spiders. Silk-based biomaterials have 

demonstrated excellent biocompatibility in different materials formats for various tissue 

applications. Silks represent a unique family of structural proteins that are; 

biocompatible, degradable, mechanically superior, and non-cytotoxic, offer a wide 

range of properties, are amenable to aqueous or organic solvent processing and can be 

chemically modified to suit a wide range of biomedical applications [68]. Its unique 

structural assembly and its notable mechanical properties, when compared to other 

biopolymers-based biomaterials, make this material a promising candidate for bone 

tissue engineering. At the same time, silk is a thermally stable material, allowing 

processing over a wide range of temperatures (up to about 250°C), which makes it a 

good candidate for autoclave systems without loss of functional integrity [69].  Silk are 

fibrous proteins synthetized in specialized epithelial cells that line glands in these 

organisms. These properties of silk  and their benefits have generated a high interest in 

electrospinning silk from several sources, like spider, silk worm cocoon and 

recombinant hybrid silk-like polymers. 

Silk fibroin polymers consist of repetitive protein sequences and provide structural 

roles in cocoon formation, nest building, traps, web formation, safety lines and egg 
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protection. Silk is formed of β-sheet structures, dominated by hydrophobic domains 

consisting of short chain amino acids in the primary sequence. These short sequences 

permit tight packing of stacked sheets of hydrogen bonded anti-parallel chains of the 

protein. Large hydrophobic domains interspaced with smaller hydrophilic domains 

foster the assembly of silk and the strength and resiliency of silk fibres. 

 Silk from silkworms (Bombyx mori) and orb-weaving spiders (Nephila clavipes) 

have been explored to understand the processing mechanisms and to exploit the 

properties of these proteins for use as biomaterials. Functional differences among silks 

of different species and within a species are a result of structural differences, which 

emerge from differences in primary amino acid sequence. Blends of silk fibroin-PEO 

have been electrospun into nanoscale diameter fibres for the delivery of cell 

morphogens like bone morphogenetic protein-2 (BMP-2) [70]. Silk fibroin films have 

been cast from aqueous or organis colvents systems, and after blending with other 

polymers. Nanoscale silk fibroin film was produced using a layer-by-leyer technique. 

Due to their stability and topography hMSC adhesion and proliferation was supported 

[71]. Also silk fibroin film showed fibroblast attachment as high as for collagen films 

[72]. Since the exploration of biomaterial applications for silk, aside from sutures, is 

only a relative recent advance, the use of structural proteins for clinical applications 

needs to be investigated. 

  

Polyhydroxybutyrate/Polyhydroxyvalerate (PHB/PHV) 

 

Polyhydroxyalkanoates (PHAs) are emerging as a class of biodegradable polymers. 

These are polyesters composed of hydrocarboxylic acids, accumulated as energy/carbon 
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storage or reducing power material by numerous microorganisms under unfavourable 

growth conditions, in the presence of excess carbon sources. They are completely 

degradable, possessing similar properties as the synthetic polymers, which makes them 

suitable for use as biodegradable substitutes for polymer applications. PHAs can be 

classified into 2 groups: short-chain-length (SCL) PHAs, exhibiting 3-5 carbon atoms, 

and medium-chain-length (MCL) PHAs, consisting of 6-14 carbon atoms [73]. A recent 

study [74] identified in several bacteria, PHAs containing both SCL- and MCL- 

monomer units. These SCL-MCL-PHAs copolymers were shown to possess superior 

material properties compared to those containing just SCL-   or MCL- monomers. Due 

to the variable composition of PHAs, implant made of these materials can have 

different physiochemical properties and degrade at a tailored rate in biological media, 

retaining their mechanical strength for a shorter or a longer period of time. Various in 

vivo and in vitro experiments have shown that polymers from PHA family are 

compatible with bone and cartilage tissue [75-80]. Table 2 details the properties of 

polyhydroxybutyrate, a member of the PHAs family. 
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Table 2  Properties of poly (3- hydroxybutyrate adapted from Qiang et al [81] 

Properties Measurements 
Melting temperature (ᴼC) 
Glass transition temperature (ᴼC) 
Tensile strength (MPa) 
Tensile modulus (GPa) 
Crystallinity (%) 
Elongation at break (%) 
Density(gcm-3) 
Polydispersity index 
Degradation period 
Mode of degradation 
Contact angle (ᴼ) 

160-177 
-4 to +15 
15-40 
1.1-3.5 
55-80 
1-6 
1.243 
1.9-2.1 
>52 weeks 
Hydrolytic, bacterial depolymerize 
66 
 

 

There are more than 100 different reported PHAs, however only a few have been 

studied, and no research has been conducted on the combination of SCL- MCL-PHAs 

has been conducted yet to use them as biomaterials for tissue engineering purposes [81, 

82]. It would however be important to understand the effect of these combinations on 

the mechanical and structural properties of PHAs for possible future use for different 

tissue engineering applications. 

The most common polymer from the group of PHAs is poly (3-hydroxybutyrate) 

(PHB). PHB is a semi-crystalline isotactic polymer, having a melting temperature in the 

range of 160-180oC [83] and a crystallinity ranging from 60 to 90% [84]. In addition to 

a bacterial synthetic route, several chemical synthetic routes have been developed for 

PHB synthesis. The main disadvantages of PHB use are due to its tendency to be brittle. 

This problem can be solved by the synthesis of copolymers of 3- hydroxybutyrate and 

other hydroxyalkanoates with a relatively low molecular weight and melting point [85]. 

Polyhydroxy valerate (PHV) is one of the copolymers used for that matter. The major 

advantage of the PHB/PHV copolymer over the PHB homopolymer is that the 

copolymer has a lower flexural modulus or level of crystallinity, which makes it 
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tougher and more flexible. The copolymers of PHB and PHB/PHV have similar semi-

crystalline properties as PHB, however the melting temperature is lower depending on 

the HV content [86]. The crystallinity and mechanical properties of PHB/PHV can 

change with respect to the variation of the percentage ratio of the respective monomers. 

This type of polymers experiences surface erosion by hydrolytic cleavage of the ester 

bonds. Copolymers degrade by a multistage process where the greater part of the 

molecular weight loss occurs before the considerable mass loss [87]. Even though no 

correlation has been found between the degradation rate and the amount of PHV in the 

copolymer, PHB/PHV being less crystalline than PHB undergoes degradation at a much 

faster rate [86]. This could be explained by the fact that an attack by degrading enzymes 

is more difficult with highly crystalline polymers [88].2.5.2 Bioceramics  

  

 Bioceramics have been widely used in the biomedical engineering and bone 

substitution/regeneration field due to their resemblance, chemically and mechanically to 

the mineral phase of bone and their biocompatibility, bioactivity and osteoconductivity 

[89], [90].  They can also be natural (e.g. coralline hydroxyapatite (HAp)) in origin or 

can be synthetic, such as synthetic HAp or b-tricalcium phosphate (b-TCP) [91]. 

 For tissue engineering use, classical ceramic production techniques are being 

used. Basic substitutes are prepared by chemical synthesis and used as powders. After 

calcinations at 900ᴼC, the powder is sintered (heated and compacted) at around 1100ᴼC-

1300ᴼC. This treatment increases and consolidates the density of the powders. For 

biological purposes a specific porosity must be kept as to preserve the bioactive and 

osteocondutive properties of the implant [92]. Research has shown that by using 

ceramics with or without bone marrow cells, good results regarding bone regeneration 
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can be obtained [93-96]. However, these materials have some major drawbacks, such as 

brittleness and low mechanical stability. Furthermore, due to factors that appear in vivo, 

such as osteoclastic activity, their degradation/dissolution rates are difficult to predict. 

This could present a problem because if a scaffold degrades too fast it will compromise 

the mechanical stability of the construct, which is low by itself. At the same time as 

demonstrated by Adams et al [97], this would dramatically increase the extracellular 

concentrations of Ca and P, which can cause cellular death. 

    

Hydroxyapatite   

 

Unlike the other calcium phosphates, hydroxyapatite (HAp) ([Ca5 (PO4) 3OH], main 

crystalline component of bone, does not break down under physiological conditions. 

HAp has a similar chemical and phase composition to the living bone, and its bioactive 

behaviour has proven to accelerate the integration of prostheses in vivo [98]. HAp has 

been clinically applied in many areas of dentistry and orthopaedics due to its excellent 

osteoconductivity and bioactivity, which are due to its similarity with the mineral 

portion of the hard tissue [99-101]. In fact, it is thermodynamically stable at 

physiological pH and actively takes part in bone bonding, forming strong chemical 

bonds with surrounding bone. This property has been exploited for rapid bone repair 

after major trauma or surgery. While its mechanical properties have been found to be 

unsuitable for load-bearing applications such as orthopaedics, it is used as a coating on 

materials such as titanium and titanium alloys, where it can contribute its 'bioactive' 

properties, while the metallic component supports the load applied by the body or as 

fillers in the composite formulation [102]. 
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2.5.3. Biocomposites 
 

The scaffolds containing polymers and ceramic materials can exhibit excellent 

properties such as biodegradation, biocompatibility and mechanical strength. Polymers 

are classified as biodegradable, versus non-degradable (permanent) depending on their 

in vivo clearance.  Biodegradable polymers are polymers which are decomposed in a 

living body by hydrolitic or enzymatic activity [103]. Factors controlling the rate of 

degradation include: the crystallinity percent, the molecular weight and the 

hydrophobicity. Further the degradation rate varies, depending on the location in the 

body as the environment surrounding the polymer is different depending on its place in 

the body. Polymers (ionic and nonionic) with molecular mass below renal threshold 

barrier are usually cleared quickly from the blood and eliminated from the body via the 

renal system [104]. Biodegradation can be obtained by using polymers that have 

hydrolytically unstable linkages in the back bone. An implant prepared from 

biodegradable polymers can be engineered to degrade at a rate that will slowly transfer 

load to the healing back bone. These should possess some other requirements such as: 

(i) polymers and their decomposition products should be free from immunogenicity or 

any toxicity; (ii) degradation and absorption rates should be adequate for the formation 

of the novel tissue; and (iii) these products should have good processability and 

excellent mechanical properties to be compatible with human tissues [103]. 

 Polymers are easily processed to form complex shapes and structures, yet they 

lack strong interfacial bonding of the implant to living bone tissue, thus they do not 

have the ability to form the active apatite layer on the implant surface (known as the 

bioactivity feature). At the same time they are flexible and possess low mechanical 

properties, which make them poor candidates to be used in surgery and in the 
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physiological environment on their own [105]. These are reasons to try and combine the 

biodegradability of the polymers with the bioactivity of the ceramics, to achieve a 

composite material suitable for load bearing applications, such as bone tissue 

engineering. 

Composites are mainly being used for their improved physiological, biological and 

mechanical features. While a scaffold is a porous structure, providing space for cell 

attachment and proliferation, which enables tissue regeneration, it should also exhibit 

adequate mechanical properties, to properly substitute the missing bone, while the new 

bone is being generated. The original concept of using a bioceramic to reinforce a 

polymer for biomedical applications was introduced by Bonfield et al. in the early 

1980s [106]. 

 Hydroxyapatite provides the bone’s compression strength and is one of the most 

extensively used bioactive ceramics to form composites with polyhydroxyalkanoates 

(PHAs) [81]. The research conducted by Ni and Wang [107] showed that addition of 

hydroxyapatite to polyhydroxybutyrate (PHB - part of PHA class of natural polymers) 

increased the storage modulus of the composite, by inducing the formation of apatite 

layer, acting as a barrier and delaying the degradation of the polymer.  Hu et al. [108] 

found that the amount of hydroxyapatite had a direct influence on the rate of 

deterioration of the composite’s properties after being immersed in simulated body fluid 

(SBF). At the same time, a large amount of hydroxyapatite can have a detrimental effect 

on the stiffness and strength of the composite, meaning there is an optimal amount of 

ceramic that may be added [81]. Since bone, particularly, is a natural composite made 

of collagen and calcium phosphate mineral, whose mineral phase accounts for 60–70% 

of the total dry bone weight it seems reasonable to consider biocomposites as potential 

artificial substitutes in bone tissue engineering, as a biomimetic approach. 
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2.6. Electrospinning 
 

Electrospinning is a process of making continuous fibres with diameters ranging 

from nanometers to a few micrometers. Using this technique one can create fibres with 

different morphologies and orientation [109]. This technique offers unique capabilities 

in fabrics and fibres with controllable pore structure [70]. 

 

2.6.1 Electrospinning background 
  

The technique was invented in early 1930’s, but the true biomedical interest in the 

1990s revived it. With smaller pores and higher surface area than regular fibres, 

electrospun fibres have been used in drug delivery systems, wound dressing materials, 

tissue scaffolds, textiles and composites. The electrospinning process is relatively 

simple and requires simple equipment, mainly a high voltage power supply, a solution 

feeder (capillary tube/syringe called spinneret) and a collector. A schematic of this 

equipment is shown in Figure 5. 

Currently there are two standard electrospinning setups: one vertical and one 

horizontal. The electrospinning process can be conducted at room temperature with 

atmospheric conditions. Electrospun materials include polymers, glasses and ceramics. 

After the material is placed in the capillary tube exhibiting a needle like tip, a high 

voltage is applied. This charges the polymer, creating a repulsive force (a charge is 

induced on the surface of the solution, as result of free charges moving opposite to the 
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charged electrode). This repulsive force acts as a tensile force and as the voltage 

increases, it overcomes the surface tension of the solution and once the voltage is 

increased even more, a charged jet is released from the capillary tube heading towards 

the collector. On its way to the collector, the jet bends in a whipping motion, due to the 

instability of the electrical field, and it elongates into a fibre-like form. As the jet is 

charged it can be controlled by the electric field.  

 

 

Figure 5 Schematic of electrospinning equipment: a) vertical set up b) horizontal 

set up (Reproduced with permission of Elsevier Limited) [110] 

  

Research has been conducted to highlight  the important factors of the 

electrospinning process,  factors that can help control the morphology and alignment of 
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fibres. Control of the structure is a very important feature, especially in tissue 

engineering applications, because the scaffolds structures must attempt and replicate as 

much as possible the human body’s own scaffolding architecture..  

 

2.6.2 Electrospinning conditions 
 

The electrospinning process is subject to the influence of several parameters, and 

Tan et al. [111] classified these into three categories: polymer solution parameters, 

processing parameters and ambient parameters as shown in Table 3. 

 

Table 3  Parameters that affect the electrospinning process [111] 

Polymer solution 
parameters 

Processing parameters Ambient parameters 

Molecular  weight 
Viscosity 
Surface tension 
Solution conductivity 

Applied voltage 
Feed rate 
Temperature 
Effect of collector 
Diameter of needle 
Distance between tip and 
collector 

Humidity 
Type of atmosphere 
Pressure 
 

  

Electrospun fibre diameter has been found [112] to depend mainly on the electrical 

force and the mass of the polymer. The parameters affecting electrical force and 

polymer mass were subsequently divided into two groups and were found that when the 

fibre morphology is dominated by the mass of the polymer, fibres with smaller 

diameters are produced if low polymer concentration, feed rate and applied voltage are 

being used. On the other hand, when the electrical force dominates the process, smaller 

diameters result if a higher voltage and solution conductivity are used. 
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2.6.3 Requirement of fibrous scaffolds  
 

A scaffolding structure to support cell growth should mimic the natural extracellular 

matrix (ECM). Its features should match the nanofibrous scaffold to the tissue structure 

at the specific location. In the case of hard tissue engineering, bone is formed where 

stresses require its presence and resorbed where stresses do not require it. 

The ECM is a complex combination of protein (collagen, fibronectin) and growth 

promoting proteins, that together support cell growth and adhesion [113].   

Scaffolding matrix for tissue engineering applications should present: 

• the correct composition of materials 

• large surface area 

• adequate fibre size 

• open, porous structure 

• high degree of interconnectivity between pores 

• degradability in time 

• matching mechanical properties  

Currently, through engineering material properties manipulation and the variation of    

synthetic polymers surfaces, they can be made more conducive for cell attachment and 

function. At the same time, natural polymers may already present/contain signaling 

capabilities. On the other hand synthetic polymers provide the strength and durability to 

the structure, while the natural material is used to promote cell adhesion [114]. A large 

surface area to volume ratio can result in small diameter fibres and can be very 
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important parameter, giving space to a large number of cells to attach to the matrix. 

These cells help restore the natural tissue and its functions.  

Depending on the application, pore size is an important feature of the scaffold. 

Pores that are too small make cell penetration impossible, thus do not promote further 

growth [115]. On the other hand, pores that are too large reduce the surface area. A 

balance must be kept between pore size and surface area requirements. In vitro tests for 

bone tissue indicated that pore size of 200-500 µm are suitable for scaffold structures  

[116, 117] while for liver or skin, smaller ones are required [118, 119].  At the same 

time a closed porous structure would not help cell penetration, which would make tissue 

regeneration and regrowth, impossible. A high degree of interconnectivity between 

pores is important for a number of reasons [115] – uniform cells distribution, cell 

survival, cell penetration into the structure and nutrients and waste regulation. 

The scaffolding structure must mimic the ECM, as mentioned before, and provide a 

temporary 3D host structure for cell activity in the early stages of tissue development. 

Due to the matrix deposition over time by the cells the scaffold must have the ability to 

degrade over time, so the risk of rejecting is reduced. 

 One important factor when choosing the biomaterials is that of the scaffold 

degradation rate. Degrading too early could result in the loss of support of the cells with 

the natural matrix not being restored. Degrading too late may inhibit natural matrix 

growth and alsocell proliferation. The biodegradability feature is related to the materials 

being used for the production of the scaffold.  

Furthermore another important factor is biocompatibility, referring to whether the 

material is suitable for human body use, and the cell interactions due to the chemical 

composition of the materials [120]. 
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The mechanical properties are also important for the structural stability during tissue 

regeneration or any other load bearing requirements. Bone substitutes are also strongly 

influenced by local mechanical forces during the remodelling stage. The density, 

geometry, thickness, and trabecular orientation of bone can change depending on the 

mechanical demands of the substitute. In 1892, Wolff first popularized the concept of 

structural adaptation of bone, noting that bone placed under compressive or tensile 

stress is remodeled. Bone is constantly remodelled [121, 122] and this serves to regulate 

the structural strength of the substitute. For example, if the substitute is significantly 

shielded from mechanical stresses, as in the case of rigid spinal implants, excessive 

bone resorption can potentially occur and result in a weakening of the substitute. 

 

2.6.4 Electrospun fibres as bone tissue scaffolds 
 

Natural bone is a complex nano-fibril system with an intricate hierarchical structure 

with an orderly deposition of hydroxyapatite crystals within the polymer matrix. The 

crystallographic c-axis of hydroxyapatite is oriented parallel to the longitudinal axis of 

the polymer (collagen) fibril [123]. The alignment of electrospun fibres could be preset 

as to match the orientation in the natural bone. An innovative method of forming 

electrospun fibrous mats, with nHAp crystals could help in future approaches in bone 

tissue regeneration. 

Even though synthetic polymers and their blends exhibit biocompatibility and good 

mechanical properties, novel biopolymer composites (biocomposites) based on 

biodegradable and bioresorbable materials have received an increasing interest over the 

last decades. The co-precipitation of HAp nanocrystals in soluble collagen has met with 
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partial success in the fabrication of electrospun HAp–collagen nanocomposites similar 

to the nanostructure of real bone, though with weaker mechanical properties [124]. On 

the other hand, carbonate-substituted HAp–chitosan/silk fibroin composites prepared 

using a co-precipitation method exhibited better compressive strength and cellular 

response, mimicking the real bone [125]. Simultaneous gas-jet and electrospinning of 

composite solution containing hydroxyyapatite have been used to manufacture porous 

scaffolds suitable for bone regeneration [28, 126]. Other attempts of adding 

hydroxyapatite to the electrospun fibres have been made, either by soaking the fibrous 

polymeric matrix in simulated body fluid (SBF) [29] or by co-precipitation and 

nucleation [30, 31]. PLGA/HAp fibrous composite scaffolds were also prepared, mainly 

used for drug delivery instead of a single repair [32-34]. 

  

2.6.5 Challenges and approaches 
 

A major challenge for reconstructive and orthopedic surgery involves the repair of 

bone defects arising from tumor, trauma or bone diseases. Autogenic and allogenic 

bone functions better in terms of biocompatibility, but requires a second surgery to 

procure donor bone from the patient’s own body. At the same time, a lot of work still 

needs to be conducted in order to mimic the natural bone [127]. However, with the 

development of the electrospinning process, electrospun fibrous scaffolds with large 

surface area-to-volume ratio, high porosity, and mechanical properties and morphology 

similar to the extracellular matrix (ECM) of natural tissue can be fabricated to serve as 

ideal bone substitutes [128, 129]. 



41 

 

An understanding of the effect of process variables will help to control the 

morphology of the produced fibre structure. One big issue is the low productivity of the 

system which can be attributed to the low polymer ratios through the capillary.  Some 

solutions have been proposed (multiple spinnerets, porous cylindrical tubes) but all 

these come with disadvantages, like interference between jets, large variation of fibre 

diameter. There are still shortcomings in producing highly aligned gradient structures of 

required thickness [130].   

Also an understanding of the materials components interaction will help to control 

the final fibrous structure, and also predict cellular behavior in terms of bone 

regeneration.  

This research study aims to address some of the challenges presented above and 

produce a three-dimensional scaffold intended for bone-tissue regeneration using a 

composite formulation not studied before. The main aim is to electrospin nano-

hydroxyapatite within the chosen polymeric matrix, thus formulating a novel composite 

solution and avoiding using a two-step process for ceramic phase incorporation. Further 

physical and chemical analysis of the manufactured structures and continuous 

improvement of them is required. The final step will be the biological in vitro testing of 

the scaffolds, that aims to prove that the novel structures enhance cellular attachment, 

proliferation and maintain phenotype expression of bone cells, while offering a physical 

support over time for bone reconstruction. The three-dimensional structures produced 

should exhibit characteristics that would enable them to be used either as cell carrier 

systems for neo tissue formation in vitro or/and as a scaffold structure for in vivo tissue 

regeneration. 
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CHAPTER 3 MATERIALS AND METHODS 
 

This chapter outlines the equipment, the materials and the experimental methods 

used in the current research.  

3.1 Materials and equipment 
 

Several requirements were imposed before choosing the materials. The selected 

materials would have to be biocompatible, biodegradable/absorbable by the body, have 

no toxic effects in the body, and that any degradation products could be further used by 

the human body (such as aminoacids). All materials used were of the highest 

commercially available purity. Appendix A presents the materials used in this research, 

while appendix B presents the list of equipments. 

3.2 Methods 
 Figure 6 presents the experimental sequences and the associated tests. 
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Figure 6 Schematic representation of the research work. 
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3.2.1. Solutions preparation 
 

Pure polymeric solution preparation 

 After the physical characterization of the raw materials, solutions were prepared 

for further study. Firstly, pure polymer solutions (7%, 10%, and 15% PHB/PHV in 

chloroform) were prepared for the screening step. In order for the polymer to dissolve 

the solution was heated to 60ºC - 70ºC and stirred continuously for 15 minutes, until 

complete dissolution (15%PHB/PHV, t =15 min). Before attempting electrospinning the 

solution was left to cool down at room temperature (T= 21 ºC ± 1°). 

 Composite solution preparation 

 The solution used during the research process was continuously improved from 

an initial bi-phasic composite solution (polymer and ceramic) to a final tri-phasic 

composite solution (polymer + nano-ceramic + fibroin). The polymer matrix was 

formed by the polyhydroxybutyrate 98%- polyhydroxyvalerate 2% polymer (Good 

Fellow, UK), while the ceramic phase was formed by the nHAp particles ( Sigma 

Aldrich, Ireland). As mentioned earlier to balance the change in the solution’s 

electrospinning dynamic, silk fibroin essence ( Huzhou Sunergy World Trade Co. Ltd, 

China). 

 Firstly, a pure 15% PHB/PHV solution was chosen as the most suitable for 

future studies, named solution P. One novel aspect of the research project was to 

attempt electrospinning of the ceramic phase while incorporated in the polymeric 

material. For this purpose a preliminary composite solution of 15%PHB/PHV – 2% 
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nHAp (named solution P-HAp)  was formed by mixing nHAp to the 15%PHB/PHV 

solution for t = 5 min. After the composite solution was left to cool down (t = 30 min), 

the solution was used on the same day. The preliminary solution P-nHAp could not be 

used from one day to another, as after 24 hours the ceramic phase was not fully 

dispersed; rather it was visible on the bottom of the container and mixing the solution 

again did not disperse the nHAp phase. 

 In order to achieve a good dispersion of the nano-ceramic particles the solution-

HAp preparation protocol was changed, as follows: 

1. nHAp was added to chloroform in a glass reagent and immersed in the 

ultrasonic bath for t = 10 min. 

2. PHB/PHV was added to the sonicated nHAp- chloroform solution. 

3. The composite solution was mixed at T = 60ºC - 70ºC, using a hot plate for t= 

15 min 

4. The composite solution was left to cool down, t = 30min. 

The following day the P-nHAp solution, prepared as described above, did not 

show any deposit of ceramic particles on the bottom of the container and this allowed it 

to be reused for several days. Further to this the P-nHAp solution was difficult to 

electrospin, with no continuous deposition observed. Also a change in the fluidity of the 

solution was observed. 

 In order to change the conductivity of the solution and make the fibre deposition 

easier and continuous, silk fibroin was added (solution P- nHAp-SF). Silk fibroin is 

known to be biocompatible and also as an amino acid it can be used by the human body 

for its metabolic processes. 
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 The final protocol for the composite preparation is presented as follows while 

Table 4 highlights the solutions’ formulation codes:nHAp and chloroform were 

sonicated for 15 minutes, in order to disperse the ceramic particles. 

1. PHB/PHV was added, heated (T= 60-70ºC) and continuously mixed until 

complete dissolution (t = 15min). A viscous solution of desired concentration 

was obtained. 

2. Silk fibroin (SF) was added to the P-nHAp solution and mixed for10min. 

3. The tri-phasic solution (P-nHAp-SF) was left to cool down, t = 30 min. 

 

Table 4 Naming coding to indicate the relative amount of their components mixed 
or dissolved in chloroform 

Powder or solution Code Amount in the 
solution (wt %) 

Polyhydroxybuutyrate-co-hydroxyvalerate 
2% solution (15% polymer in chloroform) 

P15 15 

Polyhydroxybuutyrate-co-hydroxyvalerate 
2%- x % hydroxyapatite solution 

P15HX x= 1-30  

Polyhydroxybuutyrate-co-hydroxyvalerate 
2%- x%  hydroxyapatite solution- y% silk 
fibroin 

P15HxSFY x=1-30 
y=1-30 

 

Manufacturing of 3D constructs 

Various techniques for generating 3D porous structures (hydrospinning, 

stacking, laser welding, sintering) were attempted using the same composite solution 

and the viable ones were further investigated according to the research plan.   
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Previous research has shown that 3D electrospun structures have been created 

using the hydrospinning method [211]. Using roughly the same electrospinning set-up 

as for a 2D sample collection (Figure 7), 3D porous constructs have been produced in 

our laboratory. The fibres were collected on the surface of the liquid (deionised water), 

where a thin layer was rapidly formed, and was kept afloat. This thin layer was picked 

from the surface of the liquid on a glass at certain time intervals, eventually creating a 

hydrospun scaffold composed of many fibrous layers. Despite their 3D structure, the 

scaffolds were very delicate when manipulated and were time consuming to produce. 

Each layer was spun for 20 minutes and each 3D construct was composed of 5-10 

hydrospun layers. 

 

Figure 7  Hydrospinning technique schematic 

 Another method employed to produce prototype 3D structures used laser 

welding. The laser welding trials were performed by Blueacre Technology (Dundalk, 

Co. Louth, Ireland). The laser used to weld the sample was a Synrad CO2 laser 

operating at 10.6µm wavelength. The laser power was modulated to 4W at 5kHz. The 
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laser spot size was approximately 300um at the 1/(e^2) point, and the laser was scanned 

across samples using galvanometer moving at 200mm/s, with 3 passes being made in 

total. 

 

3.2.2 Surface Morphology 
 

 

The surface morphology of the powders and the composites was assessed by 

Scanning Electron Microscope (EVO LS15 SEM/EDX from Zeiss) with image analysis 

and qualitative EDX capabilities. Using detectors, the microscope can detect 3 signals, 

such as secondary electron backscattered and characteristic x-rays. 

 The SEM works by scanning a high-energy beam of electrons, which interacts 

with the sample’s atoms. These interactions produce signals which provide information 

about the samples’ surface: topography, composition, etc. The SEM includes special 

detectors which interpret important signals, thus lending their name to the different 

SEM working modes. 

 The materials used in this research are non-conductive, so they need special 

preparation to prevent electrical charging during SEM examination. The powders/ 

composite were first fixed to an aluminium stub especially designed to fit into the SEM 

stage holes, using conductive double‐sided tape. The samples were then placed into the 

chamber of an Edwards Pirani 501 Scancoat sputtering coater in which a gold 

nanometric layer (3-5nm) was deposited onto the powders for over 120 seconds. This 
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layer ensured the electrical conductivity of the samples, thus improving the imaging of 

the sample morphology. For the composite characterization the SEM back-scattered 

electrons signal (BSE) at an accelerated voltage of 10-20kV (samples without cells) and 

5kV (samples with cells) and the EDX were used in order to study any possible 

chemical reaction between the polymer and the powders.3.3.3 Fibre diameter and 

thickness measurements The images captured by the SEM while analysing the samples 

morphology were used to determine the fibre diameter. The measurements were 

performed using the Image J image processor and the Appendix A shows the protocol 

that was followed. An average value of 20 measurements was used as the result. 

Samples thickness was assessed using an optical microscope. Samples were 

mounted on glass slides for a better visualisation and 3 measurements were taken for 

each sample (left end, middle of the sample, right end) and the average value calculated.  

A set of 5 samples of each type was used for measurements. 

 

3.3.4 Thermal Behaviour 
 

 It is important to determine the thermal characteristics of the powders and 

composites, specially the polymeric types, as their mechanical behaviour can depend on 

their thermal characteristics. The chosen polymers are natural ones and may have 

distinct thermal behaviour, depending on the way they were synthesized. The thermal 

techniques used are reviewed in this section. 

 Differential thermal and thermogravimetric analysis were used to thermally 

characterise the powders/composites used in this research. For this a DTA/TGA- 
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Simultaneous Thermal Analysis (STA), PL Thermal Sciences Ltd., UK was used. The 

analysis was carried out by linearly increasing the temperature by 20oC/min from 20oC 

to 600°C in a nitrogen atmosphere. The total weight of the specimen for each thermal 

analysis was 20 mg. 

  

 • Differential Thermal Analysis (DTA) 

 

 During DTA, the material to be analyzed and an inert reference material 

experience identical thermal cycles, and measurements are conducted to identify any 

temperature difference between the sample and the reference. The results are plotted 

against time or against temperature and this is called a ‘DTA curve’ or thermogram. 

Either exothermic or endothermic changes can be detected relative to the inert 

reference. Thus, a DTA curve provides data on the transformations that have occurred, 

such as glass transitions, crystallization, melting and sublimation. The area under a 

DTA peak shows the enthalpy change and is not affected by the heat capacity of the 

sample. Nowadays, DTA technology is incorporated into the TGA equipment, which 

provides both mass loss and thermal information. 

 

 • Thermo Gravimetric Analysis (TGA) 

 

 This test is based on the weight change of materials with temperature. Twenty 

milligrams of a sample areplaced inside a ceramic pan in a high precision balance. The 

content of the balance is placed in an electrically heated oven. Three measurements are 

conducted during the test: weight, temperature (using a built in thermocouple) and 

temperature variation. The analysis was carried out by linearly increasing the 
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temperature resulting in a weight loss curve that gives information about degradation 

temperature, absorbed moisture content of samples, solvent residues, etc. 

 

3.3.5 Chemical composition 
 

 Further Fourier Transform Infrared (FTIR) spectroscopy assessed the chemical 

composition of the powders and the composite samples. FTIR is a chemically- specific 

analysis technique that can be used to identify chemical compounds and substituent 

groups, measuring the infrared intensity versus wavelength (wavenumber) of light. A 

Fourier Transform Infrared (FTIR) spectrometer obtains infrared spectra by first 

collecting an interferogram of a sample signal with an interferometer, which measures 

all the infrared frequencies simultaneously. An FTIR spectrometer acquires and 

digitizes an interferogram, performs the Fourier transform function, and outputs the 

spectrum. 

 The FTIR equipment used in this research was a FTIR Spectrum GX from 

Perkin-Elmer. A mixture of the powder to be tested (2 mg) and potassium bromide salt 

(200 mg) was ground in a marble mortar for 10 minutes, to avoid scattering from large 

crystals [131]. The ground powder was then added into a die and pressed at 12 kPa for 

15 minutes to form a translucent pellet, which allows the IR beam to pass through it. 

Following this, the results are recorded and analysed. 

A complementary technique to FT-IR is Raman spectroscopy. Raman spectroscopy 

provides information about molecular vibrations that can be used for sample 

identification and quantitation. The technique involves shining a monochromatic light 

source (i.e. laser) on a sample and detecting the scattered light. Raman scattering 
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measurements were used to determine the presence of apatite layer formed on the 

surface of the fibrous samples after one month in SBF. Measurements were performed 

using a HoribaYvon LabRAM 800 HR. The parameters used for the spectra were as 

follows: Excitation laser - 784.7 nm diode laser, Grating 600 g/mm, Objective 50x 

Fluortar, 6 accumulations at an exposure time of 4 seconds. 

 

3.3.6 Roughness measurements 
 

 Surface roughness is a measure of the texture of the surface. It plays an 

important role in determing how a material interacts with its surrounding environment. 

Rough surfaces will wear more than smooth surfaces and have higher friction 

coefficients. Also having information on roughness can indicate the mechanical 

performances of the material, since surface irregularities may form nucleation sites for 

cracks and corrosion. Further the degree of roughness has also an impact on the 

attachment of the cells.  Roughness can be measured using contact or non- contact 

methods. Non-contact methods include interferometry, confocal microscopy, electrical 

capacitance and electron microscopy. 

  A Surftest‐402 profiler from Mitutoyo was used to determine the average 

surface roughness (Ra) of the samples. The profilometer was first calibrated with a 

surface with known roughness (1 μm), before the flat samples were placed in contact 

with the tip of the profilometer. The average Ra value for each deposit was calculated 

as the average of 10 measurements. 

 



53 

 

3.3.7. Surface hydrophilicity 
 

A hydrophilic material is a material that can transiently bond to water through 

hydrogen bonding. This property makes the material dissolve more readily in water than 

in oil or other hydrophobic solvents. The degradation profiles of polymers are related to 

many factors, in which hydrophilicity plays an important role. Hydrophobicity is also 

linked with surface energy. Whereas surface energy describes interactions with a range 

of materials, surface hydrophobicity describes these interactions with water only. As 

water has a huge capacity for bonding, a material with high surface energy (high 

bonding potential) can enter into more interactions with water and consequently will be 

more hydrophilic. Therefore hydropobicity generally decreases as surface energy 

increases. 

A simple method that it is used to measure the surface energy and tension is the 

contact angle measurement. This technique is surface sensitive, with the ability to detect 

properties on monolayers. If a liquid with well – known properties is used, the resulting 

interfacial tension can be used to identify the nature of the solid. When a droplet of 

liquid rests on the surface of a solid, the shape of the droplet is determined by the 

balance of the interfacial liquid/vapour/solid forces. When a droplet of high surface 

tension liquid is placed on a solid of low surface energy, the liquid surface tension will 

determine the droplet ability to form a spherical shape (lowest energy shape). The 

measurement provides information regarding the bonding energy of the solid surface 

and the surface tension of the droplet. Due to the fact that this method is a very simple 

one, yields excellent material surface analysis results when assessing wetting, adhesion 

and absorption. 
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The method used in this research was the sessile drop technique, which is shown 

in Figure 8, using ArtCAM 130 MI BW monochrome camera, and FTA200 contact 

angle analyzer software. Contact angle evolution was analyzed after 1 and 5 seconds, 

for samples of pure polymer and composites. For each sample 10 measurements were 

performed, across 10 different points on the sample surface. Before conducting the 

measurements the flat samples were cut and cleaned with an air pistol, in order to 

remove any loose particles.  

 

 

Figure 8 Contact angle measurement using sessile drop method  (15%PHB/PHV) 
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3.3.8 In-situ degradation (pH, conductivity and weight loss 

measurements) 
 

 It is widely assumed that the materials used for tissue, and bone regeneration 

particularly should degrade over time in the body to provide new space for the 

extracellular matrix deposition [132]. It is desirable for the produced scaffold matrix, to 

degrade at a rate that will slowly transfer load to the healing tissue.  The scaffold offers 

support to the polymer/cell/tissue construct from the cell seeding start point up to when 

the hard tissue transplant is remodelled by the host tissue and can assume its structural 

role. 

 

Degradation measurements 

 

The degradation process takes place in 4 steps: water sorption, reduction of 

mechanical properties (strength and modulus), reduction of molar mass and weight loss. 

There are two types of degradation: bulk erosion and surface erosion. As defined by 

Gopferich, “polymer degradation is defined as the chemical reaction resulting in a 

cleavage of main-chain bonds producing shorter oligomers, monomers, and/or other 

low molecular degradation products” [133]. Both in vivo and in vitro degradation occur 

at the same rate which shows initially no significant enzymatic contribution [134]. This 

is explained since the main mode of degradation for high-molecular-weight aliphatic 

polyesters can be hydrolytic random scission, and biodegradation is supposed to 

involved just low-molecular weight by-products (Mn< 5000) or sub-micron sized 
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particles that were recognized and ingested by phagocytes [135]. Degradation tests were 

conducted over a period of 90 days in order to investigate if the produced composite 

scaffolds varied the degradation rate and dynamics. In the in vivo results the pH changes 

can affect the tissue regeneration dynamic. For biological research the solution 

generally used for degradation tests is phosphate buffer solution (PBS). This is a 

solution resembling the osmolarity and ion strength of the human body, which helps 

maintain a constant pH.  For this research deionised water was used instead of PBS, in 

order to follow the pH changes which indicated the degradation steps taking place. 

Specimens of polymeric and composite samples were cut to 1x1 cm2  and weighed. 

Each was immersed in 50 ml deionised water and kept for 3 months. Every 30 days one 

sample was removed from the plastic jar, dried in the fume hood for 24h  and weighed. 

Degradation was reported as % weight loss. Tests were conducted in triplicate and 

results were expressed in terms of mean average. The effect of degradation was also 

observed with SEM imaging. 

 

Conductivity and pH change 

 

For normal cell formation pH is a very important factor, due to the fact that cells are 

very sensitive to it. Cells are suited to a neutral pH level of 7.3-7.4. Even the slightest 

change in a pH level can cause severe consequences such as the destruction of the cell 

or even death of the organism. Every organism takes part in various chemical reactions 

that give or use up H+. For this level to stay constant, a buffer comes into play to 

maintain the cells normal pH level. It does this by accepting or releasing H+. This 

mechanism of maintaining a proper balance between acids and bases is called acid-base 
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homeostasis. Outside the range of pH which is compatible with life, proteins are 

denatured and digested, enzymes lose their ability to function, and the body is unable to 

sustain itself.  

The conductivity of a solution refers to its ability to conduct an electrical current, 

and is the reciprocal of its electrical resistance. It is an indicator of the ionic strength of 

a solution and can be determined at the same time as the pH determination. Also the 

electrospinning technique relies on conductivity, as being one the parameters that 

influences fibre formation. 

 Conductivity and pH measurements were recorded via a Hanna HI 9813 

Handheld pH, EC and TCS Meter with Probe (Hanna Instruments, Inc.) with accuracy 

of pH: ± 0.2 pH at ambient temperature, in order to monitor the degradation process 

[136]. 

 

3.3.9 Mechanical properties 
 

Uniaxial tensile strength tests 

 

Experience shows that polymeric materials display a wide range of mechanical 

behaviour, from brittle solids to rubber to plastic to strong fibres. Also it is widely 

known that the mechanical characteristics of a polymer alters with changes in 

temperature as small as a few degrees, and also if it is used to form a composite 

material. 
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For mechanical characterization purposes, flat samples (40 mm × 1mm) were 

manufactured, tensile strength and elastic modulus of the  porous fibrous polymeric and 

composites samples were determined, using a Zwick/Roell Z500 N universal testing 

machine equipped with a 20N load cell (Zwick GmbH, Ulm, Germany). The results 

were plotted with Test Xpert II (Zwick GmbH, Ulm, Germany). Samples were tested up 

to failure. For each composition 6 samples were tested and results were expressed in 

terms of mean average and standard deviation. 

 

Compressive tests 

 

For mechanical evaluation under compression, sets of 6 electrospun fibrous 

cubes were tested for each composite type using a Zwick/Roell Z500 N universal 

testing machine equipped with a 5kN load cell (Zwick GmbH, Ulm, Germany). 

Electrospun flat membranes collected over a period of 20 min were folded and cubes of 

1cm x 1cm were cut. Constructs thickness varied from 0.3mm for the P0 to 0.4 mm for 

P2 and P5 composites. The cubes were compressed at a rate of 2mm min−1 until 80% 

strain was reached. Results are expressed in terms of the secant modulus for a stress of 

0.4 MPa. 

 

3.3.10 Porosity, pore size and fibre diameter 
 

Interconnecting macroporosity and appropriate microporosity play a fundamental 

role for optimum biological performance, such as scaffold-cell interaction. Appropiate 
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pore size and porosity are necessary for cells to interact and develop (spread, migrate), 

as well as for proper exchange of nutrients and metabolic products between the scaffold 

and the surrounding environment [137]. 

 The porosity (ε) of the scaffolds was measured at room temperature, using the 

liquid intrusion method. The electrospun scaffolds were weighed and subsequently 

immersed in ethanol on a mechanical shaker to allow the liquid to penetrate into the 

scaffold voids. The surface of the samples was then blotted dry and weighed once more 

to determine the mass of ethanol present within the scaffold. Measurements were made 

on five samples of each type of scaffold. Knowing the density of the ethanol and that of 

each composite the porosity was calculated using [138]: 

 

 Ф = VETH/ ( VETH+ Vcomposite)                                    (Eqn. 1)  

 

VETH is the volume of intruded ethanol and was calculated as the ratio between the 

observed mass change after intrusion and its density (ρETH). Vcomposite is the volume of 

the composite fibres and was calculated as the ratio between the dry scaffold mass 

before intrusion and the dry scaffolds density (ρcomposite). 

 

3.3.11 Bioactivity Test in Simulated Body Fluid (SBF) 
 

Simulated Body Fluid (SBF) it is an acellular solution that has inorganic ion 

concentrations similar to those of human extracellular fluid. It is often used to 
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reproduce the formation of apatite on bioactive materials in vitro. It was first developed 

by Kokubo and his colleagues and is since known as SBF or Kokubo solution [139]. 

SBF has demonstrated its effectiveness via the surface modification of various 

materials [139]. Initially it was applied as a test to bio-ceramics which were part of 

bone implants. There are ceramics that bond to the bone through a bone-like apatite 

layer which forms on ceramics or modified polymers surfaces. Currently the formation 

of the apatite-layer is not fully understood. It is known that the biomaterial surface must 

express OH groups, in order to attract the positive ions from the solution and create 

nucleation sites. On the surface of organic polymer the apatite layer formation takes 

place in a two-step biomimetic process [140]. 

Square samples of 10mm2 and 50g were cut from the prepared composite 

membranes, with at least 4 for each HA concentration. The SBF was prepared in the 

laboratory following Kokubo’s recipe [136]. Table 5 shows the concentrations of body 

plasma and SBF [141]. 

The samples were immersed in SBF, within plastic containers kept in a water 

bath (Clifton, Nickel Electro LTD, UK) at 37°C, for 4 weeks. Every week a sample for 

each HAp concentration was taken out, dried and analyzed using SEM/EDX and FTIR. 

Table 5 Ion concentrations (mM) of SBF and human blood plasma [141] 

Ion Simulate Body Fluid (mM) Blood plasma (mM) 
Na+ 142.0  142.0  
K+ 5.0  5.0  
Mg2+ 1.5  1.5  
Ca2+ 2.5  2.5  
Cl- 148.8  103.0  
HCO3- 4.2  27.0  
HPO4

2- 1.0  1.0  

SO4
2- 0.5  0.5  
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3.3.12 Design of Experiments (DOE) 
 

 In order for a scaffold to best fit the application it is design for, it should exhibit 

adequate properties, resembling as much as possible the ones of the native tissue. 

Studies on electrospun scaffold with orthopaedic application mainly followed the 

classical experiment model, varying one electropinning parameter at a time in order to 

gain a greater understanding of the process [142, 143].  High quality scaffolds require a 

better understanding of the scientific phenomena involved in their production and this 

brings the need for more sophisticated and powerful statistical experimental methods. 

 The Handbook of Statistical Methods defines Design of Experiments (DOE) as 

follows: “DOE is a systematic, rigorous approach to engineering problem‐solving that 

applies principles and techniques at the data collection stage to ensure the generation of 

valid, defensible, and supportable engineering conclusions. In addition, all of this is 

carried out under the constraint of a minimal expenditure of runs, time, and money” 

[144]. 

 Statistically designed experiments were used to carry out the optimisation stage; 

using the software Design Expert 8.0 by Stat‐Ease Inc. This method is advantageous 

from an economic perspective as a large amount of information can be obtained from a 

minimal number of experiments. In the DoE technique, the parameters that affect the 

experiment are termed “factors” or “variables”. The different possibilities for a factor 

are called “levels”. Levels can be either qualitative or quantitative. The measured output 

from the experiment is termed “the response”. Once the experiment has been run, the 

effect of each factor can be evaluated by contrasting the average response when the 
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factor was not changed with the average result when it was changed. Responses can 

then be represented as a polynomial regression equation of the following form:  

 

  Y = b0+ ΣbiXj+ΣbijXiXj+ ΣbijkXiXjXk   (Eqn. 2) 

 where i, j and k vary from 1 to the number of variables; coefficient b0 is the 

mean of the responses of all the experiment; bi coefficient represents the effect of the 

variable Xi and bij and bijk are the coefficients of regression which represent the effects 

of interactions of the variable XiXj and XiXjXk respectively and bijk are the coefficients 

of regression which represent the effects of interactions of the variable XiXj and XiXjXk 

respectively. 

 The method selected for a particular experiment depends on considerations such 

as the objectives of the experiment, the number of factors being investigated and the 

resources available. For this research work Full Factorial screening design and 

Response Surface Methodology designs were used. 

 

 Factorial design 

 

 A factorial experiment is an experiment in which several factors are controlled 

and their effects at each of two or more levels are investigate [145]. Analysis of a 

factorial experiment allows the users identify the main effects and also interaction 

effects between the factors. In a full factorial experiment all possible combinations of 

the levels of the factors are investigated. Two-level full factorial experiments are the 

most common. In this type of experiment, factors are set at a low level (coded -1) and a 

high level (coded +1). A two level experiment with k factors is referred to as a 2k 
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experiment. For example, a 22 experiment is used to study two factors at two levels and 

would consist of 4 experiments. The design for this experiment is shown in Table 6. 

 

Table 6 2-factor, 2-level Factorial Experiment 

 

 

 

  

 

 

 When carrying out experiments, factors may exist that are not of primary 

interest but still affect the results. Examples of such factors include specific operator 

methods, different batches of materials and so on. It is necessary to eliminate the effect 

of these factors from the overall results experiments. This can be achieved by 

organizing the experiment into blocks. Experiments should also be run in random order 

to eliminate the effects of any factors that cannot be controlled and cannot be blocked.  

 Centrepoints are also usually added to factorial designs. These points are the 

centre value between the high (+1) and low (-1) values selected for each factor and are 

coded 0. The purpose of centre points is to allow process stability to be determined. 

Generally between 3 and 6 centrepoints are added to an experiment design.  

 If a large number of factors are being investigated, full factorial experiments are 

not very efficient and thus a fractional factorial experiment can be used. Fractional 

factorial experiments involve fewer than the full 2k  run of experiments [145]. The aim 

of a fractional factorial experiment is to reduce the number of experimental runs 

RUN Factors 
A B 

1 -1 -1 
2 +1 -1 
3 -1 +1 
4  +1 +1 
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required by extracting the part of a full factorial experiment which enables the main 

factors and some first order interactions to be obtained [146]. This is achieved by 

confounding of the effects of some of the factors and as a result, high order interactions 

between factors cannot be estimated. This type of experiment can be used to obtain 

information on the main effects and low-order interactions and is often used for 

screening designs. 

 Screening tests 

 

 Screening designs are used in the early stages of investigations to allow more 

information to be obtained about a process. They are generally carried out prior to 

carrying out a Response Surface Methodology experiment. Screening designs usually 

have a small number of experimental runs. These studies can identify the factors which 

have the greatest effect on the process and thus allow the factors under investigation to 

be reduced. Information can also be obtained about the parameter space under 

investigation and allow the correct range to be selected for each parameter. This 

preliminary information can be used to develop a Response Surface Methodology 

experiment (final optimisation). 

 

 Response Surface Methodology (RSM) 

 

 Response surface methodology (RSM) can be used to maximize or minimize a 

response, reduce variation by locating a region where the process is easier to manage or 

to optimize a response. The two most popular Response Surface Methodology 
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techniques are the Box-Behnken Design (BBD) and the Central Composite Design 

(CCD).  

The Box‐Behnken design is sufficient to fit a quadratic model, which contains 

squared terms and products of two factors. This design consists of a fraction of the 

experiments required for a 3‐level factorial design (3k runs). It combines 2‐level 

factorial designs with incomplete block designs [147]. As an example, the Box –

Behnken design for 3 factors involves three blocks, each with 2 factors to be varied 

trough 4 possible combinations of high and low. The results of experiments are 

graphically shown in Figure 9, which include the middle points of the edges of the cube 

that represent the experimental space.  

 

 

Figure 9 Graphical representation for Box Behnken design for 3 factors [147] 
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3.3.13 Analysis of Variance (ANOVA) 
 

 Analysis of variance was used to study the statistical models results. There are 

number of statistical terms which aid to evaluate the statistical significance of the 

models. Basically, a model is adequate if the series of hypothesis shown in Table 7 are 

true. It is also advisable to achieve Predicted R2 and Adjusted R2 values from the model 

as high towards 1 as possible ensuring good model fitting. The best scenario is achieved 

when all the three values are close to 1. 

 

Table 7  Hypothesis for a valid model in DOE 

Term Hyphotesis 
Model Prob>F < 0.05 

 
Lack of fit (LOF) Prob> F >0.1 

 
R2 0.6<R2≤1 

 
Predicted R2 – Adjusted R2 ≤ 0.2 

Adequate Precision > 4 
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3.3.14 Biological Response of Composite Scaffolds 

 

Qualitative preliminary biological evaluation of the preliminary obtained 

scaffolds 
 
 

Cell culture 

Human osteoblasts (HOB) (PromoCell, Germany) were used for preliminary 

evaluation of cell behaviour on the obtained scaffolds. The cells were cultured in 

PromoCell growth medium, supplemented with 10% heat inactivated foetal calf serum 

(FCS, PromoCell, Germany), penicillin-streptomycin 10ml/L (Sigma Aldrich, Ireland) 

and amphotericin 320 µl/L (Sigma Aldrich, Ireland)  under standard cell culture 

conditions (37oC, 5% CO2). The medium was changed every day. For the biological 

study cells attached to the culture flask were washed with HEPES-BSS (PromoCell, 

Germany), trypsinized (trypsin-EDTA; PromoCell, Germany), centrifuged at 

300rpm/3min, and resuspended in the growth medium. Cells were counted with a 

haemocytometer and seeded on the scaffolds at a density of 50 000 viable cells per 

sample. Passage number 4 was used in this experiment. Cells on tested materials were 

incubated in standard cell culture conditions for 1 and 3 days. For the initial testing the 

material with the highest content of the additives was chosen (P15H5S5) and 

unmodified material (P15) served as a reference sample.  
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Cell morphology 

 

To assess cell morphology, the Scanning Electron Microscopy (SEM) was used. 

At the evaluation periods (1 or 3 days), osteoblasts on the scaffolds were fixed using a 

solution containing 2%vol glutaraldehyde in PBS (both from Sigma Aldrich, Ireland) 

dehydrated in ethanol with sequential concentration, treated with hexamethyldisilazane 

(Fluka, Ireland) and dried in the air. Samples were then sputtered with a 3-5nm thick 

gold layer and observed, using  Scanning Electron Microscope (Leo 440, Stereo Scan), 

operated at 5.0 kV. 

 

Cell viability and spatial distribution  

 

The cell viability and spatial distribution within the obtained scaffolds were 

evaluated in cells stained with LIVE/DEAD Kit (Invitrogen, USA). Briefly, on the day 

of experiment HOB were washed twice in PBS and stained using 2 μMcalcein and 4 μM 

Ethid-1 in PBS to observe live and dead cells respectively. Images were captured by 

a Nikon DS-U2 camera attached to the Nikon Ti-E epifluorescent microscope, at 10× 

magnification, using the associated Nikon NIS-Elements software.  
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Qualitative and quantitative evaluation of the three-dimensional 

scaffolds 
 

Osteoblasts cells 

 

MC3T3-E1 osteoblasts represent a suitable model for studying osteogenic 

development in vitro.The osteoblastic cell line MC3T3-E1 had been established from 

C57BL/6 mouse calvaria. Cells have the capacity to differentiate into osteoblasts and 

osteocytes and have been demonstrated to form calcified bone tissue in vitro. Mineral 

deposits were identified as hydroxyapatite. 

 

Cell culture conditions 

 

For determination of cell attachment, MC3T3-E1 mouse calvarian osteoblast cells 

were cultured under standard tissue culture conditions (37°C, 5% CO2) in alpha-MEM 

medium (Gibco, USA) supplemented with 10% Fetal Bovine serum and 1% Antibiotic/ 

Antimycotic (Gibco, USA). All experiments were conducted with cells between 

passages 6-10. Each scaffold was cut into circular discs (~ 15mm diameter) and the 

sterilized disc specimens were placed in wells of a 24-well TCPS (Corning). The 

samples were sterilized by autoclaving in phosphate buffer solution at 121°C for 20 

minutes, and then the cells were stored in culture medium in a CO2
 incubator for 1 hour 

prior to cell seeding to promote protein absorbtion. The cells were trypsinized and the 

cell number was quantified and then seeded onto the samples, at a concentration of  
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30,000 cells/ml in 2ml of medium (for SEM observation and cell  proliferation) and 

50,000 cells/ml in 2ml of medium ( for qRT-PCR,  ELISA assay and ICC techniques). 

The medium was changed every 3 days and the culture stopped at day 1, 3, 5, 7, 14, 21 

and 28. P15 construct was used as the control scaffold, while P15H2S2 and P15H5S5 

were the construct of interest. 

 

Cell proliferation – DAPI staining  

 

To assess cell attachment and proliferation samples were seeded with 30,000 

cells/ml. At each time point samples were stained with DAPI (a DNA binding dye, to 

stain nuclei) and FITC- labeled Phalloidin (a fungal toxin with specific affinity for f –

actin fibrils, to visualize cell cytoskeleton). Samples were fixed with 4% formalin for 15 

minutes and then rinsed with PBS. Afterwards cells were permeabilized by treatment 

with 0.1% Triton X solution. After removal of Triton X, samples were incubated in 5% 

PBS-BSA solution for 1 hour at room temperature to decrease non-specific absorption 

of the dyes. Afterwards 1:200 dilution of FTIC-Phalloidin was applied to the samples 

for 40 minutes in the dark, followed 1:1000 dilution of DAPI for 15 minutes in the dark.  

Cell counting data were generated from counting total number of cells (DAPI 

stained) in three separate fibrous constructs per time point using Image J software 

(Appendix B). A minimum of 5 randomly selected visual fields (at 10× magnification in 

a fluorescent microscope (Olympus, Japan) were counted per fibre construct. The total 

number of DAPI stained cells was counted at four different time points (day 3, 7, 14 

and 28 of culture and differentiation) and was presented as number of cells per day of 
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co-culture. The results are presented as mean ± standard deviation. Data were analyzed 

using Student’s T-test. ∗p <0.05 was considered statistically significant. 

 

Cell morphology  

 

 Cell morphology was assessed using Scanning Electron Microscope (EVO LS15 

SEM/EDX from Zeiss, Germany). After removal from the culture medium, samples 

were washed with PBS and immersed in 2% glutaraldehyde for 30 minutes at 4°C, 

followed by serial dehydration in series of ethanol solution (50%- 10 minutes, 60% - 10 

minutes, 70% - 30 minutes, 80 % - 10 minutes, 90% - 10 minutes, 95% - 10 minutes, 

100% - minutes, 100% - minutes).  Dehydrated samples were immersed in 

hexamethydisilazane (HMDS) for 1 minute and dry in the air at room temperature. 

Samples were coated with gold for 80 seconds using an Edwards Pirani 501 Scancoat 

sputtering coater and observed under the scanning microscope.  

 

Osteopontin (OSPN) and Collagen type I expression (COL I) - mmunnocytochemistry 

(ICC) 

 

 Immunocytochemistry is used to visualize the presence of a specific protein or 

antigen in cells. For immunocytochemistry, sample preparation involves fixing the 

target cells to a slide, in our case the three- dimensional scaffold. To ensure access of 

the antibody to its antigen, cells must be fixed and permeabilized. In an ideal situation, 
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fixation would immobilize the antigens while retaining native cellular architecture and 

permitting unhindered access of antibodies to all cells and subcellular compartments. 

To assess osteoblastic differentiation and extracellular matrix deposition the expression 

of two of the three chosen bone markers (osteopontin (OSPN), collagen type I (COL I) 

and alkaline phosphatase (ALP)) was assessed for day 1, 3, 7, 14, 21 and 28 using this 

technique, while ELISA was used for BALP levels quantification. Each marker was 

assessed on a different set of samples and P15 was used as the control sample. 

 

 

Osteopontin (OSPN) 

 

 For osteopontin detection samples were stained with non-conjugated 

Monoclonal Anti-Osteopontin (OPN46, Sigma-Aldrich, a synthetic peptide, to bind 

osteopontin antigens. Samples were fixed with 4% formalin for 15 minutes and then 

rinsed with PBS. Afterwards cells were permeabilized by treatment with 0.1% Triton X. 

PBS for 10 minutes at room temperature. After removal of Triton X, cells were blocked 

with 5% BSA-PBS-1% Tween for 1 hour at room temperature or overnight at 4°C. 

Afterwards 1:100 dilution of Monoclonal Anti-Osteopontin was used for 1 hour 

followed by two washes with PBS-1% Tween for 5 minutes each, to wash away the 

non-specific binding.  Afterwards a 1:200 dilution of fluorescent secondary antibody 

containing 1%BSA was added for 1 hour in the dark, followed by a 1:1000 DAPI 

dilution for 15 minutes. 
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Collagen type I (Col I) 

 

 Collagen type I expression was assessed using the same immunocytochemistry 

protocol as for osteopontin detection. A dilution of 1:100 Collagen I antibody 

conjugated to FITC-phalloidin (Biorbyt, a synthetic peptide to bind collagen type I 

antigens), followed by a 1:1000 DAPI dilution to bind the nuclei. 

 

 

RNA Isolation and Quantification of gene expression (qRT- PCR) 

 

In order to quantify the osteopontin and collagen type I markers expression pre-

osteoblasts (MC3T3-E1) were seeded on the three composite type scaffolds and TCPS 

(Tissue culture Polystyrene) at a density of 5 x 104 cells/cm2, and the total RNA was 

isolated using the protocol for isolation of RNA using TRIsure at day 0 (prior to 

seeding), 1, 3, 7, 14, 21 and 28. The cells were lysed directly on the culture dish or 

scaffold by adding 1ml of TRIsure per well and pippetting the cell lysate several times 

to ensure sufficient cell disruption. Further, samples were incubated for 5 minutes at 

room temperature, followed by the addition of 0.2ml of chloroform per 1ml of TRIsure 

used and capped tubes were shaken vigorously by hand for 15 seconds. Afterwards 

samples were incubated for 2-3 minutes at room temperature and centrifugated at 

12,000g for 15 minutes at 2-8°C. During centrifugation samples would have separated 

into a pale green, phenol-chloroform phase, an interphase, and a colorless upper 

aqueous phase that contained RNA. The next step was RNA precipitation. This was 

done by transferring the aqueous phase to another tube without disturbing the 
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interphase. Further the RNA was precipitated by mixing with cold isopropyl alcohol 

(0.5 ml of isopropyl alcohol per 1ml TRIsure), followed by incubation for 10 minutes at 

room temperature and centrifugation at 12,000g for 10 minutes at 2-8°C. After 

removing the supernatant the pellet was washed with 75% ethanol, adding at least 1ml 

per TRIsure used, vortex the samples and centrifuge at 7500g at 2-8°C. After air-drying 

the pellet and dissolving in DEPC-treated water the samples were stored at -70°C 

before being analysed. Isolated RNA was quantified by measuring the absorbance at 

260 nm; theoretically an absorbance of 1 corresponds to 44 μg/ml of RNA. Ratio of 

absorbance at 260/280 to assess for the purity measurement and Nanodrop 

spectrophotometer was used for the measurement of the RNA samples (Figure 10). 

 Finally, mRNA levels were measured by realtime qRT-PCR when cDNA was 

analyzed by using Rotor-Gene SYBR Green RT-PCR Kit for two bone phenotype 

markers (osteopontin and collagen type I) and one house keeping gene (GADPH). 

Reaction was carried out by using 12.5 μl of 2 X Rotor-Gene SYBR Green RT-PCR 

Master Mix with 10X and the necessary amount of water to complete reaction mix to 50 

μl. Then the PCR reaction was carried out for 40 cycles with the following cycling 

conditions: Initial denaturation (94 °C): 2 min, then 40 cycles of denaturation (94 °C, 15 

s), annealing (60 °C, 1 min), extension (72 °C, 1min). Primer specificity was assessed 

beforehand. Final results are reported by 2-ΔΔCt method. 
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Figure 10 Representative measurement of mRNA and representative readings for 

Real-time RT-PCR amplification curve for COL I at day 3.  Pink line 

(negative control). Threshold values (Ct) were determined by an 

algorithm available within the analysis program R 2.2 

 

Bone Alkaline phosphatase (BALP) enzyme-linked immunosorbent assay (ELISA) 

 

Alkaline phosphatase is an enzyme expressed by cells and is an early marker of 

osteoblastic differentiation. Alkaline phosphatase enzyme activity of the constructs was 

measured using an Alkaline Phosphatase Assay Kit from Antibodies (Germany) 

according to the supplier instructions. This BALP enzyme linked immunosorbent assay 

applies a technique called a quantitative sandwich immunoassay. The microtiter plate 

provided in the kit has been pre-coated with a monoclonal antibody specific for BALP. 

Standards or samples were then added to the microtiter plate wells and BALP if present, 

binded to the antibody pre-coated wells. In order to quantitatively determine the amount 

of BALP present in the sample, a standardized preparation of horseradish peroxidase 

(HRP)-conjugated polyclonal antibody, specific for BALP was added to each well to 
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sandwich the BALP immobilized on the plate. The microtiter plate underwent 

incubation, and then the wells were thoroughly washed to remove all unbound 

components. Next, A and B substrate solution were added to each well. The enzyme 

(HRP) and substrate were allowed to react over a short incubation period. Only those 

wells that contain BALP and enzyme-conjugated antibody have exhibited a change in 

colour. The enzyme-substrate reaction was terminated by the addition of a sulphuric 

acid solution and the colour change was measured spectrophotometrically at a 

wavelength of 450 nm. Samples were run in triplicate and compared against the 

provided standards. The results are presented as mean ± standard deviation. Data were 

analyzed using Student’s t-test. ∗p <0.05 was considered statistically significant. 
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CHAPTER 4 RESULTS AND DISCUSSIONS 
 

4.1 Introduction 
 

Orthopaedic tissue engineering applies methods from materials engineering and 

life sciences to create artificial constructs for regeneration of new bone [58]. The human 

bone, like all the other tissues and organs, is a complex biological construct and for this 

reason the requirements of scaffold materials for bone tissue engineering are diverse 

and extremely challenging. A scaffold can be used either outside of the body  for cell 

culturing (in vitro), or implanted in the body (in vivo), offering a temporary replacement 

for the tissue, until the seeded cells produce the new structure. Firstly, biocompatibility 

of the substrate materials is imperative; the material must not elicit an unwanted 

inflammatory response or demonstrate immunogenicity or cytotoxicity. In addition, 

scaffolds may be required to provide initial mechanical strength and stiffness necessary 

for the mechanical function of the diseased or damaged tissue. However, scaffolds may 

not necessarily be required to provide complete mechanical equivalence to healthy 

tissue. Further as with all materials in contact with the human body, tissue scaffolds 

must be easily sterilizable to prevent infection [148, 149]. 

A further requirement for bone scaffolds in particularly is a controllable 

interconnected porosity in order todirect the cells to grow into the desired physical form 

and to support vascularization of the ingrown tissue. A typical porosity of 90% as well 

as a pore diameter of at least 100 µm is known to be required for cell penetration and a 

proper vascularization of the ingrown tissue [150-152]. Other highly desirable features 
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concerning scaffold processing are near-net-shape fabrication and scalability for cost-

effective industrial production [58]. 

The development of biocompatible scaffolds for tissue regeneration has become 

the focus of intense research interest. One of the many approaches to combining 

biomaterials in the form of biopolymers and/or bioceramics (either synthetic or natural) 

is to seek to achieve matrices that can induce or stimulate the appropriate cell response 

for successful tissue regeneration [153, 153]. Any such scaffold material selected for a 

tissue engineering application will be subjected to in vivo remodelling.The remodelling 

process is influenced by the microenvironment of each tissue including factors such as 

blood supply, pH, O2 and CO2 concentration, mechanical stressors and the host scaffold 

interface leading to destructive, inductive remodelling or scarring mechanisms [154]. 

The degree of remodelling depends on the tissue itself (e.g. skin 4–6 weeks, bone 4–6 

months), and its host anatomy and physiology. 

Various fabrication technologies have been applied to process biodegradable 

and bioresorbable materials into 3D polymeric scaffolds of high porosity and surface 

area in order to mimic the three-dimensional structure of the extracellular matrix [148]. 

From a scaffold perspective, all techniques present advantages and disadvantages as the 

native tissue ECMs comprise highly specialized composite structures at the molecular 

level, incorporating macromolecules of differing chemistry and/or inorganic 

nanocrystallites, which are difficult to replicate [153] . 

Electrospinning is a simple, cost effective and versatile technique. It is an 

interesting technique for scaffold fabrication, since the resulting fibres may have similar 

diameters to that of certain ECM microstructures, particularly higher-ordered collagen 



79 

 

microfibrils. Furthermore, electrospun fibres exhibit flexibility, due to their very high 

aspect ratio (length/diameter), which is also beneficial inallowing the seeded cells to 

remodel the space in their proximity. The fibre size is important in this instance as one 

cell may adhere to multiple micro and nanoscale fibres instead of many cells adhering 

to one thicker fibre [153]. The electrospinning method uses a high-voltage electric field 

to form solid fibres from a polymeric fluid stream delivered through a millimetre–scale 

nozzle. The electrospinning parameters can be varied in order to produce micro and 

nanofibres with complex and unique three-dimensional shapes. Polymeric and 

composite solutions can be transformed into fibrous structures and, depending on the 

specific polymer being used; a wide range of properties such as strength, weight and 

porosity, surface area can be achieved. 

 This research work aims to mimic the structure of the extracellular matrix of the 

bone by producing a multi–layer fibrous scaffold from a bioactive and non-toxic 

composite material utilising electrospinning. The layout of the work presented in Figure 

7 includes several steps such as: 

 choosing adequate non-toxic, biodegradable materials that show potential for 

this type of application; 

 preliminary characterisation and composite formulation; 

 characterisation of the produced fibrous structures; 

 Chapter 4 presents the results and discussions for each phase of the research 

(Figure 11). Section 4.2 includes the raw powder materials characterisation, such as 

morphology, chemical composition results, and thermal behaviour. Section 4.3 presents 

the morphological and chemical analysis, hydrophilicity and preliminary biological 

results of the electrospun samples produced during the trial and error screening process. 
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Screening tests were carried out in order to identify sets of parameters that allow 

continuous and uniform deposition of fibres. Further, Section 4.4 shows the Design of 

Experiments methodology used for the optimisation of the electrospinning parameters 

and the composition of the electrospinning solution. The Design of Experiments study 

included a more detailed investigation of the process, using as the starting point the sets 

of parameters from Section 4.3. Section 4.5 presents the bioactivity in vitro evaluation 

of the scaffolds, while Section 4.6 presents the biological and physical assessment 

results for the tri-phasic composite scaffolds 

 

Figure 11 Schematic of Step 1 of the research plan 
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4.2  Powder characterisation 

Polyhydroxybutyrate-co-hydroxyvalerate 2% 
 

 Since the early 1980s, various bioactive composites have been developed for 

hard tissue replacement [155, 156]. Due to the matrix polymers used, most of these 

composites were non-biodegradable. A shift in emphasis in biomaterials development in 

recent years has moved attention from materials that will remain completely stable in 

the biological environment to materials that will, in some way, alter their properties or 

degrade in response to the biological environment. Biodegradable materials have the 

advantage of allowing the new tissue, as it grows naturally, to take over their load-

bearing or other functions while minimising the potential chronic problems associated 

with the presence of bio-stable implants [156]. 

 Polyhydroxybutyrate (PHB) is a naturally occurring β-hydroxyacid (linear 

polyester). Its ability to degrade and resorb in the human body environment makes it a 

suitable candidate as the matrix for bioactive and biodegradable composite implants that 

will guide tissue growth and be replaced eventually by newly formed tissue. Its 

usefulness is limited by its brittleness [157]. However, the addition of 

polyhydroxyvalerate (PHV) to the PHB polymer chains can improve the ductility and 

processability of the polymer [158]. Polyhydroxybutyrate-co-hydroxyvalerate (PHB–

PHV) with varying molar ratios of HV has been the subjectof extensive, on-going 

research for biomedical applications [159-161].  Based on the discovery of Reusch 

[162] it is speculated that PHB, its oligomers and monomers are not toxic to the cells 

and, as Doyle et al. [163] demonstrated, materials based on PHB produce a consistent 
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favourable bone tissue adaptation response with no evidence of an undesirable chronic 

inflammatory response after implantation periods up to 12 months. 

 The powder morphology of polyhydroxybutyrate with 2% hydroxyvalerate 

fraction is shown in Figure 12. According to the supplier (Sigma Aldrich, Ireland) the 

powder contains particles of <300μm of size. The powder’s thermal behaviour was 

studied using DTA/TGA and the results are shown in Figure 13. The polymer starts to 

degrade around 278ºC, when the TGA curve starts to drop down. In the literature, it was 

found that the thermal degradation of PHB/PHV is generally considered to be a 

statistical process based on a random chain scission mechanism; however, some 

kinetically favoured scissions occur near the ends of the macromolecules [164]. 

 

Figure 12 Polyhydroxybutyrate-co-hydroxyvalerate 2% morphology 
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Figure 13 DTA/TGA analysis for polyhydroxybutyrate-co-hydroxyvalerate 2% 
powder 

  

 FT-IR chemical analysis is shown in Figure 14, while Table 8  highlights the 

peak assignements. Polyhydroxybutyrate-co-hydroxyvalerate 2% is a 

polyhydroxyalkanoate, more specifically a polyhydroxybutyrate with a 2% valerate 

fraction in its composition. The FT-IR characteristic bands for the polyhydroxybutyrate 

are: C=O stretching at 1720 cm-1, -C-O-C- stretching vibration at 800-900 cm-1 and an 

antisymmetric –C-O-C- stretching band at 1060-1150 cm-1 [165]. The small, almost 

invisible, shoulder positioned at 1743 cm-1, is also attributed to the same C=O 

stretching mode although it arises from the amorphous parts. Because the polymer used 

in this research contained a 2% valerate fraction, the specific bands for  the pure 

polyhydroxybutyrate (PHB) were slightly changed, but there were still found in the 

polymeric powder of polyhydroxybutyrate-co-hydroxyvalerate 2%. 
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Figure 14 FTIR signal for polyhydroxybutyrate-co-hydroxyvalerate 2% powder 

Table 8 Infrared bands assigned for for polyhydroxybutyrate-co-hydroxyvalerate 
2% powder 

Infrared frequency (cm-1) Assignment 

800-900cm-1 C-O-C stretching vibration 

1060-1150cm-1 antisymetric –C-O-C- stretching 

1720 cm-1 C=O stretching 

1743 cm-1 C=O stretching ( from the amorphous 
parts) 

 

Nano-hydroxyapatite  
 

 Around 60 wt% of bone is made of HA Ca10(PO4)6(OH)2 and therefore it is 

evident why HA and related calcium phosphates (e. g. α-TCP, β-TCP) have been 

intensively investigated as the major component of scaffold materials for bone tissue 
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engineering [166]. As expected, calcium phosphates have shown excellent 

biocompatibility due to their close chemical and crystal resemblance to bone mineral. 

Although they have not shown osteoinductive ability, calcium phosphates certainly 

possess osteoconductive properties and may bind directly to bone under certain 

conditions [58]. Particulate hydroxyapatite (HAp) incorporated into PHB forms a 

bioactive and biodegradable composite for applications in hard tissue replacement and 

regeneration [11]. A common characteristic of bioactive glasses and ceramics is a time-

dependent kinetic modification of the surface that occurs upon implantation. The 

surface forms a biologically active hydroxy carbonate apatite (HCA) layer which 

provides the bonding interface with tissues. The HCA phase that forms on bioactive 

implants is chemically and structurally equivalent to the mineral phase in bone, 

providing interfacial bonding [167, 168]. In addition the ceramic phase can improve the 

polymer brittleness and the overall composite properties. 

 The ceramic phase (hydroxyapatite) was supplied in powder form, with particles 

size <200nm. The technique of electrospinning uses a metallic nozzle to produce fibres 

of different diameters and the nozzle could be blocked if particles were too big or they 

form agglomerates larger than the nozzle diameter. Figure 15 shows the powder 

morphology. 
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Figure 15 SEM of the nano hydroxyapatite powder as supplied 

 

 The DTA and TGA (STA: Simultaneous thermal analysis) curves for the 

hydroxyapatite powder are illustrated in Figure 16. The first region ranges from 90ºC to 

295 ºC with a peak at about 200ºC, which corresponds to the dehydration of the 

precipitating complex and the loss of physically adsorbed water molecules of then HAp 

powder. With increasing temperature from 295 ºC to 1200 ºC two peaks have been 

observed that may correspond to the gradual dehydroxylation of nHAp powder [169].

 Figure 17 shows the FT-IR spectra of nHAp powder. The characteristic bands 

(Table 9) exhibited in the sample spectra are assigned as follows: (a) two bands were 

observed at 3455 cm-1 and 622 cm-1 due to the stretching mode of hydrogen-bonded OH 

ions and liberational mode of hydrogen bonded OH- ions, respectively; (b) the band at 
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1040 cm-1 arises from υ3 PO4, the bands at 603 cm-1 and 561 cm-1 arise from υ4 PO4. 

The FT-IR analysis showed all typical absorption characteristics of hydroxyapatite. In 

addition, some carbonate content also was seen (CO3
-2 peak around 1600 cm-1), which 

is an indication of the presence of carbonate apatite. This might have originated through 

the absorption of carbon dioxide from the atmosphere [170]. 

 
 

Figure 16  DTA/TGA of nHAp powder as supplied 

 
 

Figure 17 FT-IR spectrum of nHAp raw powder 
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Table 9 Infrared bands assigned for the supplied hydroxyapatite, nano powder 
[169] 

Infrared frequency (cm-1) Assignment 

461 PO4 bend υ4 

622 OH structural 
1040 PO4 bend υ3 

3455 OH structural 

 

Silk fibroin 
 

 Silk protein was supplied in powder form having been extracted via 

hydrolyzation of the silkworm yarn. Silk fibroin is a white crystallized soluble powder, 

prone to be absorbed by the human body, due to its abundance of aminoacids (glycin, 

alanine, alpha-amino-beta-hydroxyrpropionic acid, beta-parahydroxy-phenylpropionic 

acid (up to 80%)) [171]. 
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Figure 18  DTA/TGA curve for silk fibroin (SF) powder    

 The general appearance of the TGA/DTA thermograms of the dried silk fibroin 

particles depends strongly on relative humidity. Silk fibroin is highly hygroscopic and 

particles rapidly absorb approximately 6% water (20±C, 65% R.H.) [172]. The 

thermogram revealed several thermal transitions, such as a glass temperature transition 

at 174±°C and a sharp fusion peak at 1498±°C (Figure 18). These transition 

temperatures are slightly lower than the literature values [172]. The weight percent 

curve revealed several weight variations during the thermal process and these can be 

attributed to the water content of the powder. 

 Further chemical analysis was performed on silk fibroin powder using FT-IR 

(Figure 19). Silk fibroin characteristic bands (Table 10) are amide A and amide I, amide 

II, and amide III [173]. Amide A was is found at 3294 cm-1 and it represents the –N-H 

stretching vibration. Amide I can be found between 1500-1600cm-1, amide II at 1380-

1400 cm-1 and amide III at 1375 -1390 cm-1. The three amides are attributed to the 

carbonyl )-C-O-  stretching mode, combination peak of the main N-H in plane bending, 
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C-H stretching vibration, coupled peak of the main C-N stretching and the –N-H in 

plane bending vibration. 

 

 
 

Figure 19 FT-IR spectrum for silk fibroin powder 

 

Table 10 Infrared bands assigned for the supplied silk fibroin powder 

Infrared frequency (cm-1) Assignment 
1375-1390 cm-1 amide III  
1380-1400 cm-1 amide II 
1500-1600 cm-1 amide I 
3294 cm-1 Amide A (N-H stretching vibration) 
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4.3 Screening tests and characterisation of electrospun 

samples 
 

 

Figure 20 Schematic of Step 2 of the research plan 

    

 Following the powders characterization phase, screening tests were conducted in 

order to find an optimum set of electrospinning parameters for the preliminary 

polymeric and composite solutions. Table 4 presented the forms of polymeric and 

composite solutions that were used during this research work and the naming 

convention used. Even though the PHB98-PHV2 polymer has previously been 

electrospun, the combination of PHB98-PHV2 and nHAp has not been directly 

electrospun [174, 175]. In earlier studies, polymeric fibres were immersed in solutions 



92 

 

containing Ca2+ to form an apatite layer on the surface of the fibres and improve their 

properties, or else other technique were used to incorporate the ceramic phase in the 

polymeric fibres [176]. 

The stages of the screening tests were as follows: 

 Preparation of the polymeric solution 

 Electrospinning of the polymeric solution 

 Preparation of the composite solution 

 Electrospinning of the composite solution 

 Preliminary characterization tests 

 

4.3.1 Preparation and electrospinning of the polymeric 

solution 
 

The first step taken was to find the optimum concentration of polymer to be 

electrospun, in order to obtain continuous deposition of fibres. Figure 21 shows the 

chart of the pure polymeric solution testing.  For the visual inspection of the deposited 

fibre, a grading scale was used, evidenced in Table 11. The set of parameters to start 

with were 15cm distance tip-collector (D), 5ml/h feed rate (FR), 19 gauge needle and 

polymer concentration of 1%, 4%, 7%, 10%, and 15%. The electrospun fibres were 

collected on an aluminium foil collector. A previous study achieved electrospun fibre 

deposition with a concentration of 1% polymer [177]. This concentration was used as a 

starting point and formulated higher concentrations of solution to work with. 
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Effect of varying polymeric concentration  

 

Initially the solution concentrations were varied, then the voltage and thirdly the 

distance. For higher nanofibre production efficiency at this stage, positive and negative 

voltages were used at the same time (positively charge the needle and negatively charge 

the collector).  

Table 11 Marking scale for the visual inspection of the collected fibres 

Mark Observations Sample appearance 

1 No electrospinning present  

2 Electrospitting ( polymeric spots)  

 
3 Electrospraying and scarce 

electrospinning present 

 
4 Electrospinning present, random fibre 

deposition, solidification at the tip 
(every 1 min)  

5 Electrospinning present, slower 
solidification at the tip, smooth and 
uniform fibre deposition  
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Figure 21  Pure polymeric solution screening tests chart 

 

 As indicated in Figure 21 several concentrations of PHB98-PHV2 solutions 

(1%, 4%, 7%, 10%, and 15% polymer in chloroform) have been tested in 

electrospinning and marked accordingly to the scale in Table 11. The same set of 

electrospinning parameters was utilised for all tests (Figure 21 (B)) and after visual 

inspection of the samples collected, further testing was conducted with 10% and 15% 

concentrations (Figure 21 (C)). 

 

Effect of varying voltage 

 

Further, testing the two solution (10% and 15%), the voltage was varied in four 

points (10kV, 15kV, 20kV and 25kV) and the collected samples were again visually 

inspected, using the same marking scale (Table 11). As observed before, for the various 
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voltage values solidification of the polymeric solution at the tip of the needle during 

electrospinning was visible (e.g., 10% PHB/PHV). Table 12 highlights the observations 

made while electrospinning the various polymeric solutions. 

 

Table 12 Marking scale for the visual inspection of the collected fibres 

 

          kV                   

       % 
PHB/PHV 

 

10 

 

15 

 

20 

 

25 

10 0 0 1 
 Solidification at 
the tip 

1 
Solidification at 
the tip 

15 0 0 
Poor fibres 
formation and 
slow 
deposition 

1 
Aligned fibre 
deposition 
Smooth and 
continuous fibres 
deposition 

0 
Flame at the tip of 
the needle 

 

The fibre morphologies were investigated using the SEM. Figure 22 shows that 

using 20 kV and 25 kV, the solvent did not fully evaporate and the deposited fibres 

were discontinuous and irregular shaped. As the voltage increased the fibres appeared 

thicker, more flat and with varying shapes. The fibres collected at 15kV were thin, 

smooth, and continuous, with a much smaller diameter, as compared to the fibres 

obtained using higher voltages. Further to the SEM morphology, 15kV and 15%PHB-

PHV were the chosen voltage and solution concentration for future testing as using this 

voltage uniform deposition and small diameter of the fibres were achieved. 
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Figure 22 SEM images of the P15 fibres deposited at (a) 25kV, (b)   20kV  and (c) 

15Kv 
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Effect of varying collection distance (D) 

 

The next step was to vary the collection distance (5 cm, 10 cm, 15 cm), in order 

to improve the deposition time and fibres morphology. An example of distance 

variation collection plate is shown in Figure 23. Poor deposition and fibre distribution 

was obtained at 5 cm, while at 10 cm the fibres were collected on the same spot, and not 

on the whole collector as expected. When using D = 15 cm the fibres collection time 

was shorter. Combining all the above tests, D =15 cm was chosen to be used for the 

next phases of the research. 

 
Figure 23  Photograph of aluminium foil collector with P15 fibres deposited at 

5cm,   10cm and 15cm needle-collector distance 
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Effect of varying the feed rate (FR) 

 

The feed rate was varied from 2-5 ml/h and as expected, the SEM images 

showed a slight increase in fibre diameter with increasing feed rate (Figure 24). It 

should be noted that the diameter values are not the smallest possible; they represent 

values that were found to produce consistent and useful fibrous membranes. It was 

observed that for low feed rate (2ml/h, 3ml/h) the fibres were discontinuous and more 

fragile when prepared for chemical/ morphological examination. It was evidenced that 

all the fibres exhibited microporosity on their surface (Figure 25). 

 

 

Figure 24  Fibre diameter measurement for feed rate variation from 2ml/h to 
5ml/h (n =20) 
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Figure 25  Electrospun polymeric fibres (P15H0S0) obtained when   using  (A) 
2ml/h feed rate, (B-C) 4ml/h feed rate Both SEM images show   
microporosity of the fibres surface 

  

 Another step of the research was the improvement of the deposition rate and the 

integrity (continuity) of the electrospun fibres. Further it was observed that the fibrous 

samples collected on the aluminium foil collector were very difficult to remove and 

physical damage was incurred when doing so. In order to overcome these drawbacks, 

different collector materials were tested (aluminium plate 2.5 mm, glass slide, copper 
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plate 2.5mm) at D = 15cm, FR = 5ml/h, deposition time of 10 minutes.  Examples of 

different collectors are shown in Figure 26.  

 

Figure 26 Various collectors for the electrospun 15%PHB98-PHV2 fibres collection 

  

As showed by the images, over the period of 10 minutes, the best deposition rate 

was on the Al plate collector. The Cu plate and the Al foil collected fewer fibres during 

the same time period, while on the glass slide the deposition was uniform, but poor. For 

characterisation purposes such as mechanical, chemical and biological testing, samples 
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would need to be removed from the collector without damaging the structure. The glass 

slide and Al foil samples were difficult to remove without physically altering the 

samples (tearing), while the samples collected on Cu plate, and the sample collected on 

the Al plate respectively would peel off easily. Further thickness measurements (Figure 

27) indicated that for the same deposition time the samples collected on the Al plate 

were thicker.  In conclusion, the Al plate was chosen as the collector type for future 

testing. The morphology of the fibres collected on the Al plate was investigated using  

SEM (Figure 28). The fibres were smooth, continuous and no bead defect formation 

was detected. 

On foot of the results so far, it was concluded that in order to obtain smooth and 

continuous fibre deposition, with no bead defect formation on the individual fibres, a 

solution of 15% PHBV in chloroform should be used. Furthermore the electrospinning 

conditions should be as follows: Al plate collector (2.5 mm), collection distance of 

15cm, feed rate of 5ml/h and a deposition time of 10-20 minutes, until full coverage of 

the collector would be achieved. 
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Figure 27 Thickness measurement for samples collected on various collector types 

(n =5) 

 

 

Figure 28 P15 fibres, collected on Al plate (FD= 5ml/h, D= 15cm, 15kV +/-) 
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4.3.2 Preparation and electrospinning of composite solution 
 

 The role of the scaffold is to allow target cells to attach, multiply and exhibit 

specific functions. Further, the cells will recreate the new tissue in vivo while the 

template (scaffold) degrades at an appropriate rate, ideally without toxic degradation 

products being released. The overall goal of this research work is to mimic the 

extracellular matrix of the bone, combining both morphological aspects and mechanical 

features of the fibrous structures with the biocompatibility and biodegradability of the 

materials to be used. While single polymeric scaffolds have been developed using both 

biodegradable and non-degradable polymers [178] a more biomimetic approach would 

be the use of composite materials. Bone itself is a perfect example of composite 

material designed by nature, where minerals are embedded as reinforcing elements 

while the collagen serves as matrix. A composite material contains two or more distinct 

constituent materials or phases, on a scale larger than the atomic. The properties of 

composite material are significantly altered in comparison with those of homogeneous 

materials [179]. 

PHB/PHV is a highly crystalline, brittle and relatively hydrophobic material 

while being a natural and biodegradable polymer [180]. In order to use the benefits of 

its biocompatibility andnon-toxic degradation products, such as D-β-hydroxybutyrate 

(HB, a normal component of the blood and tissue), it was mixed with hydroxyapatite   

nanosized particles [181]. Hydroxyapatite, a major component of mineralised tissue, 

such as bone and teeth has been used several times mainly as coatings, due to its 
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osteoinductivity. At the same time its brittleness and poor mechanical stability limited 

its use on its own for the regeneration of non-load-bearing bone defects [182]. 

Hydroxyapatite is used to modify the mechanical properties of polymeric 

implants for certain medical applications. While the nano sized particles of 

hydroxyapatite have an increased surface area, charge and have the ability to modify the 

absorption of chemical species(properties that can be used to promote cell activity and 

increase mineralization rate), the incorporation of nano sized hydroxyapatite particles 

into the polymeric matrix can also improve the mechanical properties and support 

calcium and phosphate delivery after implantation [183, 184]. Composites of PHB/PHV 

and HA with partial biodegradability and high mechanical strength and 

osteoconductivity were reported to be suitable for fracture fixation [185]. 

 Several difficulties were encountered when adding the nano hydroxyapatite. The 

ceramic, due to its nano size tends to form agglomerates before its addition to the 

solution as well as when in solution. In order to avoid the formation of such 

agglomerates an ultrasonic bath was used. The ceramic phase was sonicated in the 

solvent, prior to addition of the polymeric phase. As a starting point, 1% nHAp and 2% 

nHAp were added to P15 solutions as the lowest reference starting points. Immediately 

after the addition of the ceramic phase, solution conductivity and the dynamic of the 

electrospinning process changed.Electrospinning of this composite solution proved to 

be difficult despite the various attempts to identify optimum sets of parameters.  Figure 

29 shows SEM images of electrospun samples of P15H2 collected over a period of 30 

minutes. The as-electrospun composite fibres varied in size and shape, evidencing 

microporous structure on the surface of the fibre. Further bead formation was shown 

and this was attributed to the agglomeration of nano hydroxyapatite particles, due to 
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insufficient dispersion in the solution. As shown on the cross section of the composite 

construct image in Figure 29 (B) several layers can be identified. The red arrow 

indicates deposition of independent fibres, while the yellow arrow indicated a bundle of 

attached fibres, with no distinct shape. The sample as a whole was not a fibrous and 

porous structure, but bundles of fibres and sprayed polymeric fragments.  

 
Figure 29 SEM images of P15H2 electrospun samples (A) and (B). The red arrow         

indicates deposition of independent fibres, while the yellow arrow 
indicated a bundle of attached fibres, with no distinct shape. The sample 
as a whole was not a fibrous and porous structure, but bundles of fibres 
and sprayed polymeric fragments. 

  

In order to improve the morphology of the fibres and overcome the change in 

the conductivity of the composite solution, a new phase was added to the solution. Silk 

fibroin (SF) essence is a natural protein, rich in aminoacids, such as alanine, glycine, 

sericine and tyrosine grouped in sequences (Gly-Ala-Ser, Gly-Pro-Gly). When 

appropriately purified, silk fibroin is non-toxic, non-immunogenic and has been 

demonstrated to support cell and tissue growth [186, 187]. It is known that SF is 
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characterized by repetitive hydrophobic and hydrophilic peptide sequences. The 

repetitive sequence in hydrophobic residues dominates the β-sheet structure, forming 

crystalline regions in SF fibres and films. The formation of these β-sheets results in 

insolubility in water [188]. Due to its several distinctive biological properties such as 

good biocompatibility, biodegradability, low inflammation reaction, no blood clotting 

effects and good mechanical properties, silk fibroin protein has been extensively studied 

as one of the most promising materials for biomedical applications [189-191]. 

 Silk fibroin essence was added to the solution to balance the effects of the nano 

hydroxyapatite and equal amount of silk fibroin and ceramic were added to the 

polymeric solution, respectively 2% SF. Electrospun samples of the tri-phasic 

composite are shown in Figure 30. Silk fibroin addition changed the dynamic of the 

solution which led to continuous electrospinning, and no beads formation. Silk fibroin, 

as already mentioned contains sequences of aminoacids, 3% of which are acidic 

aminoacids such as aspartate and glutamate. This acidic aminoacids provide active 

surface sites for hydroxyapatite deposition and nucleation, due to their carboxyl groups 

(-COOH). For this reason silk fibroin can also be used for apatite nucleation in the case 

of bone tissue engineering applications [192, 193]. 
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Figure 30 Photograph of Eelectrospun tri-phasic composite solution (P15H2S2) at 

FD=2ml/h, D=   10cm, V=10kV 

After successfully electrospinning the composite solution as already shown, the 

samples were morphologically, chemically, and physically analysed in order to 

determine if they are suitable as bone tissue candidates. The following tests were used: 

SEM/EDX, FT-IR, DTA/TGA, contact angle measurement, fibre diameter, degradation, 

weight and pH measurements, porosity measurement and preliminary qualitative 

biological assessment  

 

SEM/EDX analysis   

 

Tri-phasic composite fibres resemble the electrospun P15H0S0 fibres morphology, 

as shown in Figure 31 (A, B). They are randomly aligned, smooth and continuous, with 
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no beads formation. On a macroscopic scale, the electrospun polymeric sample of P15 

exhibited a less rough surface compared with the tri-phasic membranes P15H2S2 which 

revealed macropores and higher irregularities on the surface. The SEM analysis showed 

that the fibres are randomly aligned which is the result of continuous deposition (no 

breaking was observed for individual fibres). Further single fibres presented a smooth 

surface and no bead formation. EDX verified the presence of Ca2+ and phosphate 

elements, confirming that hydroxyapatite is present both in the fibre structure as well as 

on its surface. The mono-phasic fibres measured 10-15µm in diameter, while the tri-

phasic fibres are 13-17 µm in diameter (n = 20).  The fibre diameter is slightly 

increased for the tri-phasic composites and this could be attributed to the presence of 

nano-hydroxyapatite particles agglomerations within the polymeric fibres. As  

mentioned before it should be noted that the diameter values are not the smallest 

possible; they represent values that were found to produce consistent and useful fibrous 

membranes. Fibre diameter was measured using Image J image processor (see appendix 

A for protocol).  
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Figure 31 SEM fibre morphology and EDX analysis (A) P15 (B) P15H2S2 

 

Thermal behaviour analysis 

 

 Compared to the thermal curve of the PHB/PHV, the one for the composite 

showed a recrystallization peak at ~382 º C which is attributed to the PHB/PHV itself. 

As seen in Figure 32 the thermal behaviour of the composite resembles that of the 

polyhydroxyalkanoate, because more than 80% of the composite was pure polymer. 
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Figure 32 DTA/TGA analysis of the P15H2S2 composite 

 

 FT-IR spectra analysis 

 

        The spectra of the composite and of the P15 revealed several common 

peaks, since the matrix is the same. These absorption peaks were the symmetric 

stretching vibration of C–CH2 at 2845 cm−1, the carbonyl peak at 1647 cm−1, the methyl 

peak at 1385 cm −1 and the stretching vibration of C–O at 1210 cm−1.The FT-IR 

analysis of the composite revealed the presence of the three amides, characteristic for 

the silk fibroin and also the PO4
3 vibration bands v3 and v4 of the hydroxyapatite. As 

can be observed the positions of the amides shifted and the vibration intensity 

apparently decreased with the addition of hydroxyapatite. The Ca2+ presence forced the 

–C-O and –N-H groups from the silk fibroin molecule to be absorbed by the 

hydroxyapatite solution. The PO4
3 vibration bands were found at 1030 cm-1 and 987 cm-
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1, with decreased vibration intensity.  No additional peaks, than those corresponding to 

the PHB/PHV, and nHAp were found, which indicates that there was no chemical 

bonding between the ceramic particles and the polymeric matrix. Figure 33 presents the 

FT-IR spectra of the electrospun composite fibres and Table 13 presents the infrared 

frequency assignments 

 

 
 
Figure 33  FT-IR analysis of P15H2S2 composite 

Table 13 Infrared bands assigned for the P15H2S2 composite 

Infrared frequency (cm-1) Assignment 
2845 cm-1 Symmetric stretching vibration C-CH2 
1647 cm-1 stretching vibration of the C=O bond 
1385 cm-1 C–H rock, methyl 
1210 cm-1 C-O stretching vibration 
1375-1390 cm-1 amide III  
1380-1400 cm-1 amide II 
1500-1600 cm-1 amide I 
3294 cm-1 Amide A (N-H stretching vibration) 
987 cm1, 1030 cm-1 P04

3-  √ 3 and √4 vibrations 
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Contact angle and porosity measurements 

 

The wettability of the P15 electrospun fibres, and P15H2S2 electrospun 

nanocomposites fibres were determined by water contact measurement and the results 

are summarized in Table 14. 

Table 14 Water contact angles of P15 and P15H2S2 electrospun composites 

Composite P15 P15H2S2 
Contact angle    
       (deg) 

78.75±3.14 84.47±0.49 

 

It can be seen from the table that the electrospun P15 is a relatively hydrophobic 

structure. Further, when adding silk fibroin to the P15H2S2, the average contact angle 

is higher than those of the polymeric solution fibres because the surface roughness of 

the pure polymeric fibres is lower than that of the composite structures. The water 

droplet could not easily slip on the rough surface of the hydrophobic fibrous 

nanocomposite membranes, and was almost supported on the semi-solid surface, 

resulting in a higher water contact angle. At the same time, the increase in roughness, 

demonstrated by the water contact angle value offers a higher surface area for cells to 

attach to. 

Porosity measurements employed the helium pycnometer (Micrometirics, AccuPcyc 

1330, USA) and were calculated from replicate measurements of volume and density, 

using the following formula where ρb is the bulk density and ρg is the grain density 

[194]. 
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φ = (1− ρb/ρg) × 100                     (Eqn. 3) 

 

          In addition, the observed decrease in wettability of the composite samples 

could be the results of a decrease in porosity associated with the change in composition, 

as described in Table 15. 

 It was observed that porosity significantly decreased with increasing ceramic and 

proteic phase concentration, from 75% for P15 to 72%-70% for P15H2S2 while 

trabecular bone exhibits a porosity ranging anywhere from 50% to 90% [195]. This 

decrease of porosity could be attributed to the slight change in fibre diameter due to the 

presence of nano hydroxyapatite particles within the fibres [196]. Further, since the 

control of fibre morphology and alignment was not a goal of this preliminary stage of 

research, the random deposition could have been another factor for the change in 

porosity.  

Table 15 Porosity of as-electrospun composite membranes (n= 5, p<0.05) 

Composite P15 P15H2S2 

Porosity (%) 74.78±0.76 72.52±0.66 

 

 Conductivity and pH changes measurements 

 

As seen from the Figure 34 (A-B), the degradation tests were carried out for a 

period of one month. Samples of P15 and P15H2S2 were cut into 1x1 cm pieces, 

weighed and immersed in deionised water at 37⁰C, in a water bath. After 4 weeks 

samples were taken out, dried and weighed, and the weight loss recorded. After one 
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month the composite lost no more than 2% of its initial weight while the P15 lost less 

than 1%.  

 

 
 
Figure 34 Degradation over one month period and pH measurements P15 and 

PH2S2 composites 

 

pH was measurement every day, at the same hour for 31 days. SEM images were 

taken of the left samples, for comparison reason. Figure 35 shows the morphology of 

the 4 weeks degraded fibrous nanocomposite sample. 

A 
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As the ceramic and silk fibroin were added to the polymeric solution in small 

amounts, no general significant difference was recorded in terms of pH changes. In the 

first 7 days, small variations were recorded and they are attributed to the presence of the 

composite phase. 

 

 
 
Figure 35 SEM morphology of P15H2S2 sample (A) prior and (B) after 1 month 

degradation test (magnification 50X) 

A 

B 
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Qualitative preliminary biological evaluation of the fibrous constructs 

 

This qualitative study was done in collaboration with Dr. Joanna Podporska 

Carroll and Dr. Rosalleen Devery from School of Biotechnology DCU. 

As a prerequisite for cell growth in vitro, a surface must support cell adhesion 

and spreading, thus proving to be non toxic to cells [197]. A preliminary qualitative 

biological study performed on the scaffolds showed that attachment and growth of 

human osteoblasts HOB cells was supported and that these cells maintained their 

morphology. The control for this experiment was the polymeric matrix (P15) which has 

been shown in the past that to support osteoblasts attachment and growth [198, 199]. 

Microscopy-based observations (SEM, fluorescent microscope) showed that the same 

trend was observed for modified (P15H2S2) and unmodified (P15) material. After 1 and 

3 days of the experiment, cells were found to be attached to the fibres, demonstrating 

similar morphology with a flattened appearance and elongated shape on the surface of 

fibres (Figures 36 and 37). Additionaly  LIVE/DEAD staining showed no cytotoxic 

effect of the tested materials on HOB. SEM images show that cells were able to 

penetrate cavities between fibres and no significant difference in their behaviour was 

observed between the test sample and control, despite difference in the materials 

composition and morphology . Figure 37(A), shows that After 1 day of culturing there 

are single dead cells visible in the control material (red colour). This can be associated 

with the process of cells seeding rather than with the material related cytotoxicity as 

after 3 days of experiment (Figure 37 B, D) no extra dead cells were observed on all 

tested materials. It can be seen that after 1 day, elongated and single round cells 
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werevisible while after 3 days  all cells were elongated and well distributed within the 

scaffolds structure. 

 
Figure 36  SEM micrographs of HOB cells on the obtained scaffolds. A – P15H2S2 

(3 days) B- control P15 (3 days). 

 
Figure 37 Microscopic micrographs of Live/Dead staining after 1 day (A,C) and 3 

days (B,D): A – control P15 (1 day), B- control P15 (3 days), C – 
P15H2S2 (1 day), D –P15H2S2 (3 days). Live cells are stained green 
and dead/damaged cells are stained red (original magnification 10x) 
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Discussion 
In line with the listed objectives (Section 1.4) the results presented above showed 

that nano-hydroxyapatite can be simultaneously electrospun within the polymeric 

matrix of PHB/PHV. Furthermore random and continuous deposition of smooth fibres 

was obtained for the screened composite formulation (P15H2S2). The collected two 

dimensional fibrous membranes were easy to peel off from the collector and handled for 

further analysis. The fibre diameter values were slightly smaller when compared to the 

pure polymeric fibres ones and this was attributed to the addition of nHAp and silk 

fibroin. EDX analysis confirmed the elements’ presence within and on the fibres. The 

DTA curve also evidenced a ~ 12 % weight residue assumed to be the ceramic phase. 

This confirmed that the nHAp particles were incorporated within the composite fibres. 

In addition, the observed decrease in wettability of the composite samples could be the 

result of a change in porosity associated with the SF and nHAp additives. Significant 

porosity difference was found between the polymeric P15 samples and the composite 

sample, with values of ~75% for P0 and 72% for P15H2S2 (p<0.05), while the 

trabecular bone exhibits a porosity ranging anywhere from 50% to 90%. This change in 

porosity could be attributed to the slight change in fibre diameter due to the presence of 

nano hydroxyapatite particles within the fibres.  Further, since fibre alignment control 

was not a goal of this preliminary stage of research, the random deposition could have 

been another factor for the change in porosity. In order to test the structures 

degradability and its suitability for bone regeneration applications degradation test were 

carried. The pH and conductivity measurement tests over 4 weeks degradation gave 

evidence that the fibrous structures have retained their porous structures with the fibres 

slightly swollen (SEM analysis). The conductivity results evidence a continuous release 

of ions from the samples, with a constant degradation rate for the composite 
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formulation, while the random fibres deposition and nHAp, respectively SF particles 

arrangement within the fibres may have influenced the rate of degradation. 

 

4.4 Optimisation Experimental Design 

 

Figure 38 Schematic of Step 3 of the research plan 

   

The next step in the research work involved the systematic investigation of a wider 

range of composition concentrations and electrospinning parameter values. This study 

offered a wider perspective on the effects these parameters have on the final structures 

and morphologies of the electrospun nanocomposite fibres and also offered information 

on the maximum ceramic, and silk fibroin concentrations respectively that can be 

electrospun simultaneously within the polymeric matrix.  Along with this, fibre 
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smoothness was one of the main features investigated. Fibre smoothness refers to the 

absence of bead formation and uniformity of fibre morphology. To assess the 

interaction and the effects, statistical experimental design methodologies were used. 

This design of experiments approach is an efficient way to determine the effect of 

several parameters on a system’s behaviour while reducing the necessary number of 

experiments. 2n factorial designs are also beneficial for the determination of interaction 

between several parameters changed between two levels. Box-Behnken design is ideal 

for observation and derivation of higher level models around a centralised experimental 

design.  One factorial experimental design schemeand a Box Behnken design were 

developed using DesignExpert 8.0 software (StatEase, USA) for this purpose. Variables 

dealt with were: 

• Ceramic phase concentration (%nHAp) 

• Proteic phase concentration (%SF) 

Three levels of each factor were taken for the experiments and all possible 

combinations of the three levels were checked for determination of the effects on 

sample morphology, particularly bead formation. In order to obtain a solution with 

viscosity characteristics that allow electrospinning a balance had to be kept between the 

concentrations of the two co-phases. A maximum of 6.5 g (poymer + ceramic +  silk 

fibroin) could be added per 100ml chloroform and Table 16 shows the series designed 

and the investigated factors. 
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Table 16  Factors investigated for the observation of the different series (Series 30-
35 % of nHap and Series 5 F – variation of 5 factors) 

Series 30-35 
General factorial 

Factor code Low level 
(-1) 

Centre point 
(0) 

High level 
(+1) 

%nHAp A 30 32.5 35 

%SF B 10 15 20 

Series 5F 
Box-Behnken 

Factor code Low level 
(-1) 

Centre point 
(0) 

High level 
(+1) 

%nHAp A 10 22.5 25 

%SF B 10 25 30 

Feed rate (FD) C 3 4 5 

Needle tip-
collector distance 

(D) 

D 10 15 20 

Voltage (V) E 7 10 13 

 

 Selections of the samples produced during this step of the research are shown in 

Figure 40. It has been observed that for higher nHAp and silk fibroin concentrations, it 

was difficult to initiate electrospinning with the composite solution, which can be 

attributed to the change in viscosity and poor dispersion of the nano particles within the 

polymeric matrix. Further increase in macroporosity was visually observed with 

increased silk fibroin concentration. The electrospun samples displayed continuous 

deposition of fibres and increased bead structure formation with increased ceramic and 

silk fibroin concentration. Samples with high amounts of silk fibroin exhibited a 

weakened matrix and a more elastic texture as opposed to those containing lower silk 

fibroin concentration. Additionally there were combinations of parameter levels (Figure 

39) when fibres deposition was discontinuous or low, or where bulks of solution (Figure 
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39 –P15H15S15 sample) were collected instead of fibrous structures. Due to shape 

inconsistency such sample morphology was not considered suitable for further research 

work as they could not be used for future testing.  

 
Figure 39  Photographs and SEM images s of electrospun samples of varied 

composition 
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Figure 40 Selection of electrospun fibrous membranes and the corresponding SEM 

image 
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 The full factorial design was run in order to investigate all the possible 

combination of the co-phases within the polymeric matrix for high concentration levels, 

with a limit of 6.5g of dry powder in 100 ml chloroform. Fibre diameter was the 

investigated response and Figure 41 presents the analysis. These results suggest an 

increase in fibre diameter with an increase in ceramic and silk fibroin concentration, as 

expected. 

 

Figure 41  Analysis of Design of Experiment results for 30%-35%nHAp and 
10%-20%SF: (a) predicted versus actual response for average fibre 
diameter, (b) 3D surface analysis for fibre diameter response 
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 Furthermore they show a direct correlation between the concentration of nHAp 

and SF within the polymeric matrix and the fibre diameter for the range of 30%-

35%nHAp and 10%-20% SF, with an increase in diameter for increased co-phases 

concentrations.  

 In addition, the Box Benhken design yielded a non significant model when 

investigating the effect of solution parameters (%nHAp, %SF) and electrospinning 

parameters (FD, V, D) (Figure 42- Box Benhken for 3 factors). The model included too 

many interactions between the factors and for future work a reduction in factors should 

be considered. The results obtained during this phase of the research are presented as 

supplementary results. Due to the samples’ morphological appearance (e.g. bead defect 

formation) they have not been usedfurther in the research work . 

 

Figure 42  Analysis of Design of Experiment results. Response surface for fibre 
diameter with respect to %nHAP and %SF at constant value of 
distance (D) and voltage (V), and a feed rate (FD) of 4ml/h 

Characterisation of high nHAp and SF concentration specimens arising 

from DOE 
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In order to assess the effect high contents of nHAp and SF have on the 

morphology, chemical interaction and in vitro biological behaviour of the scaffolds 

additional analysis of a selection of two as-electrospun samples (included FT-IR, 

SEM/EDX and biological evaluation of the constructs cytotoxicity). The SEM/EDX 

analysis revealed that the bead structures contained predominantly Ca2+ and PO4- which 

are attributed to presence of nano hydroxyapatite particles (Figure 43). Figure 44 (a, b) 

shows the FT-IR spectrums for selected as-electrospun composite samples: two with 

varying ceramic concentration (P15H30S10 and P15H32.5S10), two with varying silk 

fibroin concentration (P15H32.5S10 and P15H32.5S15). The characteristics groups of 

all PHB/PHV, silk fibroin and hydroxyapatite were evidenced in the studied 

composites, thus confirming the presence of all the constituents.  
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Figure 43 EDX analysis of (a) P15H30S10, (b) P15H32.5S10 and (c)       
P15H32.5S15 
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Figure 44  FT-IR spectrum for P15H30S10, P15H32.5S10 and P15H32.5S15 

composite samples. 

 

Qualitative biological toxicity evaluation  

 

 Qualitative biological evaluation of the produced samples toxicity was 

performed on a selection of as-electrospun samples (P15H17.5S10 and P15H25S10). 

Results show that attachment and growth of HOB cells is supported and cell maintain 

their morphology. Under SEM the cells were hard to detect due to the presence of bead 

structures. The control for this observation were the cells cultured on the polymeric 

matrix (P15) which has been shown in the past that to support osteoblasts attachement 

and growth [198, 199].  After 1 and 3 days of the experiments, cells were attached to 

the fibres, demonstrating similar morphology with a flattened appearance and elongated 
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shape on the surface of fibres (Figures 45). Additionaly LIVE/DEAD staining showed 

no cytotoxic effect of the tested materials on HOB. Cells were able to penetrate cavities 

between fibres and no significant difference in their behaviour was observed between 

the test sample and control, despite difference in the materials composition and 

morphology. It can be seen that after 1 day, elongated and single round cells are visible 

while after 3 days  all cells are elongated and well distributed within the scaffolds 

structure. Further quantitative evaluation is needed to determine cell activity on the 

composite electrospun samples. 
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Figure 45 Microscopic micrographs of Live/Dead staining after 1 day (A,C,D) and 
3 days (B,D,E): A – control P15 (1 day), B- control P15 (3 days), C – 
P15H17.5S10  (1 day), D - P15H17.5S10  (3 days), E - P15H25S10 (1 
day), F - P15H25S10 (3 days). Live cells are stained green and 
dead/damaged cells are stained red (original magnification 10x). 

 

 

A B 
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Discussion 
 

As mentioned above the samples obtained during this step of the research work 

were not used for future work or more indepth analysis. The DOE approach was taken 

in order to investigate the influence of various combinations of electrospinning 

parameters, different composite formulations and their influence on the samples and 

individual fibre morphology and diameter. In line with the aims and objectives listed in 

Chapter 1 it was observed that for higher percentages of nHAp and  SF (% nHAp > 5, 

% SF>5) bead defect formation occurs and electrospinning can be hard to initiate. At 

visual inspection samples with increased SF content evidenced higher macroporosity, 

rugosity and elasticity. Some of the samples were too delicate to be handled and were 

not considered suitable for prospective load bearing applications, but could be suitable 

for soft tissue engineering. The chemical and biological analysis evidenced the samples 

composition (PHBV, nHAp and SF), with nHAp found to be present within the 

composite matrix and on the fibres surface, while the SEM revealed a fibrous structure, 

with random deposited fibres exhibiting  non-uniform fibre diameter and bead defect 

formation. Furthermore the 3 days biological assessment of the selected samples ( 

various composite formulations) showed that the osteoblasts attached and spread on the 

fibrous mats, with cells exhibiting filopodia elongations after 3 days in cultures. These 

results proved that the samples are biocompatible and can sustain cell attachement and 

proliferation, while further and more in depth test are needed to prove phenotype 

preservation and bone marker expression. Despite the wide range of parameters tested 

using DOE, the results proved  that in order to obtain no bead defect formation with 
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smooth fibrous surface, smaller percentage of the composite phases should be used for 

the given set of parameters.  

 

4.5 In vitro bioactivity test using Simulated Body Fluid 

(SBF) 
 

 

Figure 46  Schematic of in vitro bioactivity test and fibrous electrospun 
biocomposite construction research plan 

  

 Further to the Design of Experiment analysis (Step 3) and preliminary Trial and 

Error analysis (Step 2) it was observed that solutions containing more than 5% ceramic 

(nHAp), respectively 5% proteic (SF) phases within the polymeric (P15) matrix will 

lead to the formation of bead structures when used in combination with the following 

F C E D 
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set of electrospinning parameters (FR = 5ml/h, D = 15cm, V= 10 kV). In order to obtain 

a smooth and continuous fibrous structure, with no bead structures and uninterrupted 

fibre deposition, it was decided to further investigate solutions with a content of 2% 

nHAp- 2%SF, and 5%nHAp- 5%SF respectively within the polymeric matrix (P15). 

The results for samples produced using this set of constituent concentrations 

were presented in Section 4.2 and included sample morphology and chemical analysis, 

fibre diameter and porosity measurements, wettability characterization and preliminary 

biological assessment (cell adhesion and cytotoxicity).  

Following the concept of incorporating bioactive ceramic particles within the 

polymeric matrix in order to improve mechanical properties and bioactivity synthetic 

nHAp was used, which is similar to the main mineral phase of the bone, and has been 

widely used as a bone substitute material due to its biocompatibility and bone-bonding 

ability [200]. Further it is commonly believed that when bioactive materials are 

implanted in the body, they spontaneously bond to bone via an apatite layer deposited 

on their surface without forming the fibrous tissue around them [201]. However, the in 

vivo results are normally difficult to obtain and to interpret due the complexity of 

cellular responses. In vitro methods to assess the bioactivity of biomaterials include the 

use of Simulated Body Fluid (SBF), which specifically evaluates the substrate ability of 

apatite formation, protein adsorption or osteoblast cell culture studies. 

In order to characterise the apatite formation ability of the electrospun samples 

the standard acellular in-vitro procedure as described by Oyane et al. [202] was used.  

For this purpose P15H2S2 nanocomposite fibrous pieces (1cm x1cm) were immersed in 

100ml of acellular SBF (pH 7.30 at 37ºC, prepared in-house) in plastic flasks. The 

plastic flasks were placed in a water bath at 37ºC. The SBF solution was refreshed twice 

a week. The samples were removed from SBF solution after 7, 14, 21 and 28 days. 
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After removal from SBF, the samples were gently rinsed with deionised water and left 

to dry at room temperature for 24 h. Apatite formation was assessed using SEM/EDX 

and HATR-FT-IR analysis.  

Figure 47 shows the SEM images of electrospun P15H2S2 fibrous membranes, 

after 7 days and 28 days in 1x SBF, while Figure 48 shows the apatite crystals formed 

on the surface of the fibres, at higher magnification. After 7 days no visible apatite 

crystals were formed. Instead after 28 days in SBF, a precipitated apatite layer was 

visibly covering the composite fibres. EDX analysis proved that the white layer formed 

on the surface of the fibres consists of Ca2+ and PO4
3-, as shown in Figure 47 d and 

Figure 48. Elements, such as Mg2+, Cl- and Na+ were present on the surface of the 

fibres, elements that are present in SBF composition too (see Table 17). This in vitro 

test shows that the composite is bioactive, and can initiate bone formation. 

 

Table 17  Ion concentrations of simulated body fluid and human blood plasma 

Ion Concentration (mmol/dm3) 

Simulated body fluid (SBF) Human blood plasma [202] 
Na+ 142.0 142.0 
K+ 5.0 5.0 
Mg2+ 1.5 1.5 
Ca2+ 2.5 2.5 
Cl- 147.8 103.0 
HCO3- 4.2 27.0 
HPO42- 1.0 1.0 
SO42- 0.5 0.5 
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Figure 47  SEM/EDX images of P15 (A), P15H2S2 (C) prior to immersion in SBF 

and P15 (B), P15H2S2(D) after 28 days in 1x SBF (37 ºC, pH = 7.30). 
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The FT-IR spectra of the P15H2S2 composite scaffolds (Figure 49) displayed the 

expected vibrational bands for the PHB/PHV polymer (a C O stretch at 1720 cm−1, 

various aliphatic C–H vibrational modes in the regions 1227–1478 and 979–826 cm−1 

and C–O vibrational modes at 1183, 1133 and 1057 cm−1) [203], as well as a significant 

vibrational band at 563 cm−1 (characteristic of HAp).  After 28 days in SBF, spherical 

particles, ranging from 1 to 5 μm in size, were observed to be deposited within the 

composite scaffold (Figure 47 (D), Figure 48). The particles observed display similar 

morphology and size to those previously reported on the surfaces of scaffolds after 

immersion in SBF and are characteristic of HA deposited in SBF [204, 205].  

The apatite phase was also identified on the Raman spectra (Figure 10) with a 

characteristic peak at 960 cm -1, due to the v1 PO4
3mode and a strong band at 1035 cm-1 

and 1076 cm-1 corresponding to the symmetric stretching vibration (PO4
3- v3). In 

addition, three other PO4
3- modes are present in the region of 450-400 cm-1 (PO4

3- v2)  

and 610-579 cm-1 (PO4
3- v4) [52,53]. Table 18 summarizes the Raman peak positions 

and their assignments. Furthermore the presence of carbonate group on the spectra was 

confirmed from the molar Ca/P ratios which had values corresponding to non-

stoichiometric biological apatite. This in vitro test shows that the composite is 

bioactive, and has the potential to initiate bone formation. 

Table 18 Peak assignment of Raman spectra for P2 after immersion in SBF  

Wave number (cm-1) Assignment 

430, 446 PO4
3- mode v2 

578, 594, 610 PO4
3- mode v4 

960 PO4
3- mode v1 

1035, 1076 PO4
3- mode v3 

720 CO3
2- mode v4 
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Figure 48  SEM of P15H2S2 after 28 days in SBF (a) 800x (b) 1000x 

A 

B 
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Figure 49 Raman spectra of P15H2S2 composite prior and after 28 days in SBF 

 

4.6 Three dimensional scaffold assessment 

 
 

Figure 50 Schematic of Step 5 of the research plan 
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4.6.1. Scaffolds manufacturing 
 

 Results have shown that the composite fibrous structures have the ability to 

initiate and support bone-like apatite formation on their surface (Figure 48). 

Furthermore, the two dimensional structures support cell attachment on their surface 

and cell infiltration within the porous structure (Figure 45).  

A goal of using engineered tissue in biomedical research is to bridge the gap 

between traditional two-dimensional (2D) cell culture and the in vivo settings with an 

approach that places cultured cells in an environment that more closely represents the 

complex 3D structure of native tissue. In particular, 3D models have the potential to 

provide powerful information regarding the expression of genes that interact with the 

extracellular matrix and predict in vivo integration of the tissue engineered construct 

[206]. 

Depending on the location of implantation, a scaffold can vary in shape and 

thickness, from membrane-like scaffolds to thick 3D blocks. With this structure cells 

can then adhere to the scaffold, proliferate and initiate bone formation (in vitro and in 

vivo). At the same time electrospinning has been limited by an inability to produce large 

three-dimensional scaffolds, as it typically produces a flat sheet of material that is 

approximately 200–500 μm in thickness [207]. As the construct increases in size, 

greater amounts of polymer are needed to attain a similar size increase because the 

density of the construct increases. In addition, as deposition of polymer increases, the 

polymer begins to shield the electrode from the newly deposited polymer, which can 

negatively impact fibre deposition [207-209]. Improving electrospinning’s capability to 
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produce unique three-dimensional architectures is a vital step for the process to become 

a valuable tissue-engineering scaffold-fabrication technique because it will allow 

production of scaffolds for large tissues, including bone and muscle [210]. 

Various techniques for generating 3D porous structures (hydrospinning, 

stacking, laser welding, sintering) were attempted and the viable ones were further 

tested according to research plan in Figure 50.   

Previous research has shown that 3D electrospun structures have been created 

using the hydrospinning method [211]. Using roughly the same set-up, 3D porous 

constructs have been produced in our laboratory. The fibres were collected on the 

surface of the liquid (deionised water), where a thin layer was rapidly formed, and was 

kept afloat. This thin layer was picked from the surface of the liquid on a glass at 

certain time intervals, eventually creating a hydrospun scaffold composed of many 

fibrous layers. Despite their 3D structure, the scaffolds were very delicate when 

manipulated and were time consuming to produce. Each layer was spun for 20 minutes 

and each 3D construct was composed of 5-10 hydrospun layers. 

Another method employed to produce prototype 3D structures used laser 

welding. The laser welding trials were performed by Blueacre Technology. The laser 

used to weld the sample was a Synrad CO2 laser operating at 10.6µm wavelength. Laser 

power was modulated to 4W at 5kHz, laser spot size was approximately 300 um at the 

1/(e^2) point, laser was scanned across samples using galvanometer moving at 

200mm/s, with 3 passes being made in total. SEM images of the welded samples are 

shown in Figure 51. As can be observed, the polymeric fibres were melted by the laser 

beam, and thus the fibrous structure was destroyed. For future work several 

recommendations could be made: a) an inert atmosphere, b) higher densities at the 
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points where welded as the material tends to collapse when heated, c) a method of 

holding the layers firmly together without crushing the scaffold. 

 

Figure 51 Laser welding of two as-electrospun composite membranes. Arrows 
indicate the melted polymer when laser treated. 

Another attempt of building 3D constructs was made by using sintering to weld 

2-5 composite sheets (T = 60ºc, t = 5min, 10min, 20min). For samples sintered for 5 

minutes no welding was observed, while for samples heated for 10 min, 20 min a 

brownish layer attributable to silk fibroin degradation was observed. Figure 52 shows 

sintered fibrous composite constructs. As can be observed, the fibrous morphology had 

been replaced by a beaded rough surface. It was assumed that the polymer melted and 

then re-arranged itself within the matrix. The round edges on the surface appear to be 

the nano- hydroxyapatite particles, which form clusters together with melted polymer. 
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Figure 52 SEM images of two sintered electrospun composite membranes in an 

attempt to buuild a three dimensional construct. (a) 20x (b) 100x 

 
 Another further attempt was made to build thicker 3D structures by folding, or 

rolling one single membrane. Wright et al.[210] have successfully built thicker 3D 

constructs by rolling and heat-sintering the composite electrospun samples, but no work 

on folded electrospun membranes has been reported  to our knowledge. Figure 53 

presents the folded 3D constructs. It could be observed that after manipulating the 

membrane the fibrous network was maintained and thickness increased. 

A 

B 

A 

B 
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Based on the posibility of creating a thick 3D structure that would retain its porous 

fibrous structure as shown in Figure 53, from the above mentioned techniques the 

chosen one was the flat membrane rolling/ folding. While the other two were time 

consuming/ laborious techniques, the folding one was easy to use, economic from a 

time point of view and could be used to create samples of various shapes and sizes. 

Furthermore if proven that the created scaffolds support bone formation using specific 

in vitro tests, this technique can be improved and extended to be used for other tissue 

engineering applications. 

 

 
 
Figure 53 (a) Folded 3D construct from one single electrospun composite 

(P15H2S2) membrane (b) SEM image of the same 3D sample 

A 
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The SEM analysis of all of the electrospun samples produced during the entire 

research programme has shown an increase in bead structure formation associated with 

an increase in silk fibroin content. The 5% silk fibroin, 5%nHAp composition has been 

shown to be the lower limit for bead formation within the matrix. Since our work aims 

to produce non- beaded fibrous structures, it was decided to include the P15H5S5 

composite samples together with the P15 control and the P15H2S2 samples in the 

further programme of biological and physical assessment (P15 as control, P15H2S2 and 

P15H5S5 as test cases).   

The further physical assessments of the selected three-dimensional constructs 

consisted of tensile and compressive strength evaluation. The initial biological 

evaluation included qualitative and quantitative bone-specific gene expression, such as 

osteopontin, collagen type I and bone phosphatase alkaline.  

 

4.6.2 Uni-axial tensile and compressive test of the 3D 

composite fibrous constructs. FT-IR and EDX 

chemical analysis  
 

 Tensile tests were applied to the PHB/PHV electrospun matrix (P15), as well 

as to composite fibres with 2 wt% each and 5 wt% each of nHAp and silk fibroin in 

PHB/PHV (P15H2S2, P15H5S5 respectively). 

 The tensile strength (Figure 54) and Young's modulus (Figure 55) of the 

composite fibres decreased with increased content of nHAp and SF phase. This can be 

attributed to the lack of sufficient interfacial interaction between the nHAp and SF 
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phases respectively and the polymeric matrix. The presence of polar groups on the 

hydroxyapatite particles and the abundant moderate polar groups in the chemical 

makeup of PHB/PHV lead to an expectation of some interfacial interaction between the 

two; although from the FTIR analysis, no chemical or hydrogen bond interactions 

between the moderately polar groups of the two components were observed [212]. 

According to the results, the P15H2S2 composite samples revealed increased ultimate 

tensile strength and Young modulus when compared to the pure polymeric sample 

(control) ( p<0.05). The P15H5S5 composite exhibited significantly lower values for 

UTS when compared to the control samples, while the tensile strength did not change 

too much. It could be assumed that the addition of the nHAp and silk phases had a 

significant effect on the tensile properties of the P15H2S2, while increasing the 

concentration of these co-phases above 2% wt leads to no improvement of the 

mechanical properties of the composite samples.  

 The compressive mechanical properties were measured as well for the 

PHB/PHV electrospun matrix and forthe composite fibres with 2 wt% and 5 wt% of 

nHAp, respectively silk fibroin in PHB/PHV. The secant modulus is shown in Figure 

59. The secant modulus is useful in describing the behaviour of materials that have been 

stressed beyond the elastic region. It was shown that with increasing ceramic 

concentration, the secant modulus decreased from 3.32 MPa for P15 to 0.48 MPa for 

the P15H5S5 composite. Even so, the compressive mechanical properties of the 

composites are comparable to some load-bearing tissues. Kurkijarviet al [213] 

measured elastic and dynamic moduli of full-thickness, cartilage-bone cylinders of 

human (nonarthritic) knees to range from 0.15 to 2.14 MPa and 0.8–15.58 MPa. 
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Therefore, electrospun materials such as the one presented do have possibilities in terms 

of tissue engineering of large load-bearing tissues.  

 
 
Figure 54  Ultimate tensile strength for P15, P15H2S2 and P15H5S5 electrospun 

composites (p<0.05, n=6) 
 

 
 

Figure 55 Young modulus in tension for P15, P15H2S2 and P5H5S5 electrospun 
composites (p<0.05, n=6) 
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Figure 56  (a) Compressive secant modulus of P15, P15H2S2 and P15H5S5 

electrospun composite samples (b) secant modulus representative 
(p<0.05,  n=6) 

  

It can be hypothesised, based on previous research that the inclusion of silk fibroin 

could reduce the solubility of composite samples in the cell culture medium and 

improve the mechanical properties by changing the configuration of the protein, from 

A 

B 
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random coil conformation to β –sheet and insolubility in water by immersion in 

methanol [214, 215]. In order to induce a change in the configuration of the protein as 

mentioned above samples P15H2S2 and P15H5S5 were immersed in pure methanol for 

10 min and once taken from the liquid left to dry at room temperature for 24 h. Figure 

57 shows the Young modulus in tension for methanol treated samples (M) and non- 

methanol treated samples (NAM). The results show a significant increase in tensile 

strength for the composite sample of P15H2S2 and P15H5S5 after methanol treatment 

suggesting that this led to conformation changes of silk fibroin from amorphous to β-

sheet. FT-IR spectra of the composite before methanol treatment support these results 

(Figure 58).  

 

Figure 57  Young modulus in tension for composite sample before (NAM) and 
after treatment (M) with methanol (n = 6, p <0.05) 
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Figure 58 FT-IR spectra of P15H2S2 composite before and after immersion in 
pure methanol for 10min at room temperature 

 

The non-methanol treated P15H2S2 spectrum reveals the silk fibroin characteristic 

amide as follows: amide A at 3294 cm-1, amide I between 1500-1600 cm-1, amide II at 

1380-1400 cm-1 and amide III at 1375 -1390 cm-1 while the methanol treated spectrum 

reveals an increase in transmittance and shifted peaks for amide II and III  suggesting β-

sheet conformation change was induced for the samples treated with methanol.. 

Compressive tests of methanol treated samples (M) evidence a significant increase 

in the secant modulus for P15H2S2 only versus P15 samples (Figure 59) and this could 

be attributed to the silk content of the composite samples. It could be suggested that the 

difference between secant modulus values for P15H2S2 and P15H5S5 could be the 

result of the random distribution of the ceramic and proteic phases within the polymeric 

matrix, as reinforced by the element mapping EDX analysis (Figure 60).  
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Figure 59  Compressive secant modulus of methanol treated P15, P15H2S2 and 

P15H5S5 electrospun samples (n = 6, p <0.05) 
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Figure 60  EDX element mapping analysis of (A) P15H0S0, (B) P15H2S2 and (C) 
P15H5S5 
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 In order to prepare the electrospun samples for in vitro biological 

assessment the methanol treated constructs needed to be sterilised prior to cell seeding. 

The chosen method of sterilisation was autoclaving at 121ºC for 20 min, which is a 

standard for this technique. In order to assess if samples chemical conformation and 

mechanical properties have changed after autoclaving, FT-IR and mechanical analysis 

were used to characterise the sterilised samples (MA). Figure 61 shows the FT-IR 

spectrum of samples after autoclaving (MA). It can be observed that the main signal 

was given by methanol which indicated that a high amount of alcohol was present on 

the samples. This residue was so strong that might have been masking the sample bands 

in the spectra. Methanol spectrum has been included in Figure 61 for comparison 

reasons. At this stage a washing step using distilled water was included in order to 

remove traces of methanol. In this direction methanol treated samples were washed 3 

times, 10 minutes each with distilled water and left to dry for 24 hours in the fume 

hood, followed by the autoclaving step the next day [216]. Figure 62 shows the FT-IR 

spectra of the washed and autoclaved samples. The results showed that the traces of 

methanol have been removed and that autoclaving did not affect the chemical 

conformation of the samples. 
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Figure 61 FT-IR spectra of methanol treated -autoclaved samples and methanol 

samples as control 

 
 

Figure 62 FT-IR spectra of methanol treated-autoclaved samples after methanol 
the washing step 

 

Figure 63 shows the Young modulus results for the non-methanol treated (NAM), 

methanol treated (M) and autoclaved samples (MA) and Figure 64 the results for secant 

modulus for the same group of samples. It has been evidenced that Young modulus of 
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P15H2S2 – M samples decreased significantly after sterilisation in the autoclave. 

Further the Young modulus of P15H2S2 - MA samples were the same as those of the 

NAM ones, while P15- MA samples showed a significant increase in their Young 

modulus after sterilisation compared to the non – methanol treated (NAM) and 

methanol treated (M) ones.  

Compressive tests results showed that autoclaving causes a decrease in the secant 

modulus of all the samples as opposed to the secant modulus of the methanol – treated 

ones. Furthermore the secant modulus of the P15H2S2 and P15H5S5- MA samples are 

higher than those of the NAM ones, suggesting that both the methanol immersion and 

autoclaving treatements improved the secant modulus of the composite samples. As 

opposed to the composite samples, P15 constructs exhibited a decrease in the secant 

modulus when compared to the NAM P15 samples, results that suggest that both 

treatement led to conformational changes of the polymeric material that can not 

withstand the same amount of compressive force as the non treated and sterilised 

composite fibres.  
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Figure 63 Young modulus of P15, P15H2S2 and P15H5S5 methanol treated and 
methanol treated -autoclaved samples (n = 6, p <0.05) 

 
 

Figure 64 Compressive secant modulus of P15, P5H2S2 and P15H5S5 methanol 
treated (M) and methanol treated-autoclaved (MA) samples (n = 6, p 
<0.05) 

* 
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4.6.3 Biological evaluation of the electrospun three-

dimensional scaffolds 
 

Tissue engineering ultimate goal is to applythe fundamentals and innovations of 

biology, medicine and engineering to develop andmanipulate viable, three dimensional 

physiologic substitutes that are capable of rebuilding, sustaining, or recovering 

thefunction of tissues and organs. The composition and architecture of a tissue 

engineered scaffoldresult in cell environment interactions thatdetermine the structure’s 

fate. The main goal is to enable the body (cellular components) to heal itself by 

introducing a tissue engineered scaffold that the body recognizes as “self”, and in turn, 

uses to regenerate “neo-native” functional tissues [217].  

Repair of bone tissue by autogenous osteoblast transplantation is one of the most 

definitive treatments for bone defects.The success of this new type of treatment for 

bone defects partly relies on a scaffold of these cells.  The appropriate carrier should 

fulfil the following conditions while mimicking the natural bone matrix: to be 

biocompatible and degradable in vivo so that it can be absorbed and metabolized; to 

offer the scaffolds for osteoblasts; and to maintain or enhance the phenotype of 

osteoblasts [218, 219]. Natural bone is a biocomposite compose ofinorganic (mainly 

hydroxyapatite crystals) andorganic (mainly Type I collagen matrix) materials. To 

mimic the matrix, electrospinning is known as a promising technique due to its facile 

method for producing ultrafine and continuous sub-micron fibres and/or nanofibres.

 Recent studies have shown that nanofibrous structures developed by 

electrospinning technology provide attractive extracellular matrix conditions for the 

anchorage, migration, and differentiation of tissue cells, bone cells in particular. While 
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osteoblast-like cell lines and bone marrow stromal cells were shown to favor the 

nanofibre/microfibre scaffold for their proliferation and production of alkaline 

phosphatise, the materials used in the development of electrospun nanofibres are 

considered to have properties that are specifically suitable for the calcified hard tissues 

[219]. 

Ito et.al [220] used biodegradable and abiocompatible poly (3-hydroxybutyrate-

co-3-hydroxyvalerate) (PHB/PHV) copolymer from a microbial polyester and 

electrospun it to a nanofibrous web and composited with hydroxyapatite (HAp) by 

soaking in simulated body fluid (SBF). In this work, nanofibrous film was compared 

with a cast film. The surface of the nanofibrous film showed enhanced cell adhesion 

over that of the flat film, although cell adhesion was not significantly affected by the 

combination with HA. Kim and coworkers [221] electrospun silk fibroin (SF) and 

applied it as a device in bone and periodontal regenerative therapy because of its 

favorable biological properties. This study was done to evaluate the biocompatibility of 

the SF nanofibre membrane. Cell proliferation, morphology, and differentiation were 

investigated to examine the biocompatibility of the electrospun SF membrane. Results 

showed that the cell numbers and osteocalcin level were significantly increased in 

accordance with culture period.Cells (human bone marrow stromalcells (BMSCs)) had 

a star-like shape and broad cytoplasmic extensions on the membrane. In in vivo tests, a 

complete bony union across the defects was observed after 8 weeks and complete bone 

formation with defect healing at 12 weeks. Based on these results it was suggested that 

SF membranes should be useful as a tool for guided boneregeneration. 

Yoshimoto and coworkers [222] fabricated microporous, non-woven poly-

caprolactone (PCL) scaffolds. For biological study, mesenchymal stem cells (MSCs) 
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derived fromthe bone marrow of neonatal rats were cultured, expanded and seeded on 

electrospun PCL scaffolds. Scanning electron microscopy (SEM), histological and 

immunohistochemical examinations were performed. Scaffold penetration of cells and 

abundant extracellular matrix were observed in the cell-polymer constructs after 1week. 

SEM results demonstrated that the surfaces of the cell-polymer constructs were covered 

with cell multilayers at 4 weeks. In addition, mineralization and type I collagen were 

observed at 4 weeks. 

Further Ngiam et al [223] prepared poly-L-lactic acid (PLLA) and 

PLLA/collagen (50% PLLA+50% collagen; PLLA/Col) nanofibres using 

electrospinning. They mineralized these nanofibres using a modified alternating soaking 

method. To assess the biological properties of the nanofibrous composites, human 

bone–derived osteoblasts (HOB) were cultured on the materials for up to 1 week. 

Results showed that, the bonelike nanohydroxyapatite (nHAp) was successfully 

deposited on the PLLA and PLLA/Col nanofibres. They observed that the formation of 

nHAp on PLLA/Col nanofibres was faster and significantly more uniform than on pure 

PLLA nanofibres. Based on these observations, the authors demonstrated that nHAp 

deposition on nanofibres is a promising strategy for early cell capture [217]. 

The cell adhesion behaviour and the proliferation rates on the functionally graded 

scaffolds are important and determine the quality and suitability of the scaffold for the 

targeted application. The present biological study evaluated the in vitro biocompatibility 

of the electrospun novel composite scaffolds.  In the past, the mouse pre-osteoblast cells 

from bone-calvaria (MC3T3-E1) have been extensively used to investigate the change 

in morphology, bone matrix formation, mineralization, and expression of bone related 

proteins [224]. Generally, the initial cell attachment and a rapid cell division period are 



159 

 

followed by a transitional period of formation of type I collagen-rich extracellular 

matrix (ECM) as evidenced in Figure 65. In the final stage achieved after the elapse of 

approximately 2 weeks upon cell seeding, the expression of bone related proteins and 

mineral deposition further promote the osteoblastic differentiation [224]. The cells 

progress through three general phases: (i) proliferation, (ii) extracellular matrix 

deposition and maturation, and (iii) mineralization. High-level expression of genes 

thought to contribute to the differentiated state of osteoblasts occurs at discrete time 

points during the differentiation process. Alkaline phosphatase (ALP), a1-collagen 

(COL I), and osteonectin (OSN) are expressed at high levels near the end of the 

proliferative period and during the period of extracellular matrix deposition and 

maturation. Genes expressed at or near the time of mineralization include osteopontin 

(OSPN) and osteocalcin (OSC) [225]. 

 

 

Figure 65 Temporal expression pattern of markers typical of osteoblast 
development in MC3T3-E1 cells. 
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Cell attachment and proliferation –DAPI staining 

 

Cultivation of MC3T3-E1 on electrospun fibrous scaffolds proved successful 

and osteogenic differentiation was observed. The MC3T3-E1cells were able to attach 

and propagate on and in the fibrous structure (Figure 66a). Counting of DAPI stained 

cell nuclei indicates a statistically significant increase in cell number for all types of 

electrospun composite constructs (P15, P15H2S2, P15H5S5) from an average of 

45.33±3.51 cells per visual field (P15), 73.66±5.85 cells per visual field (P15H2S2), 

68.33±6.11 cells per visual field (P15H5S5) on day 1 to 183±11.53 cells per visual field 

(P15), 200.66±11.93 cells per visual field (P15H2S2), 84±3.60 cells per visual field 

(P15H5S5) on day 5. The cell number decreased on day 3 and this can be attributed to 

cell proliferation in the depth of the scaffold as confirmed by the DAPI staining/ 

confocal microscopy image of the fibrous structure at day 1 and 3 after seeding. On day 

1 cell nuclei could be visible in bigger number on the surface of the fibres while on day 

3 nuclei were visible in the depth of the fibrous scaffold too (Figure 66). Further the 

number of cells stayed more constant after day 5 and even decreases (Figure 68; day 7 

(190.66±13.57, p <0.05) and 28 (182.33± 9.29, p <0.05), indicating that the cells are 

differentiating (terminally differentiated/mature cells do not divide) rather than 

propagating at later time points in co-culture. The immunocytochemistry results 

indicated that the MC3T3-E1 cultured on/in the fibre structure have stained positive for 

the bone markers osteopontin and Collagen type I and expressed increased bone marker 

expression starting with day 3 for osteopontin and with day 7 for Collagen type I 

according to Figure 65 [225]. 
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Figure 66 DAPI staining/ confocal microscope image of P15H2S2 at (a) day 1 (b-d) 

day 3 after seeding with arrows showing cells (a) attached on the outer 
fibrous layer of the scaffold and (b-d) cells infiltrated within the fibrous 
structure. (a-c) 10X magnification  (d) 20X magnification 
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Figure 67 Representative microscopy images of electrospun P15H2S2 construct 
(A) before seeding the empty fibrous structure is evidenced; (B) after 1 
day in culture the fibrous matrix (C) at 3 days  in culture ;(D)  after 14 
days in culture ( DAPI-blue nuclei, all  images are taken at 10X 
magnification). White arrows evidence (a) empty fibre (b-d) DAPI 
stained nuclei 
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Figure 68 Total cell number per visual field (10x magnification) (n = 5, p< 0.05) 

The cell number increased dramatically from day 1 to day 5 of co-culture, and after 

that the cell number stabilizes or slightly decreases indicating the generation of a more 

mature cell population that does not proliferate (divide). The total number of 

cells/visual field (10× magnification) is presented here. The cell number in three 

separately cultured fibrous constructs pieces was counted per time point and at least 5 

fields of view were counted per fibrous construct. The cell number is presented as the 

mean ± SD. 

 

Cell morphology –SEM 
 

Figures 69-74 present SEM micrographs showing the morphology and proliferation 

of MC3T3-E1 on composite (P15H2S2, P15H5S5) and polymeric (P15) fibrous 

* 
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membranes after 1, 3, 7, 14, 21 and 28 days of culture. It can be seen that cells have 

attached to and proliferated on the surface of membranes for the duration of the 28 

days.  Few osteoblast cells adhered to the composite and polymeric scaffolds after 1 day 

of incubation for P15, P15H2S2 and P15H5S5 membranes (Figure 69) and some cell 

spreading was observed after 3 days of incubation (Figure 70) as the membranes were 

partially covered with MC3T3-E1 cells. Further after 3 days in culture P15H2S2 and 

P15H5S5 membranes evidenced good cellular interaction and integration as shown in 

Figure 70. On day 7 there was a pronounced difference between the composite 

P15H2S2, P15H5S5 membranes (test) and the polymeric P15 membrane (control) 

(Figure 71 a). More cells had attached to the test materials, the cells had spread well and 

the pseudopodia were stretched on the test membranes as opposed to the cells on the 

polymeric control membrane, while higher magnification discloses the cells penetrating 

the pores (Figure 71 b). Furthermore, on both test scaffolds the cells had started to form 

sheets, indicating good attachment. On the control scaffold, cells were fewer and more 

widely separated. On day 14, 90% of the surface area of the P15H2S2 membrane was 

covered with a thick layer of MC3T3-E1 cells (Figure 72). The membranes cultured 

with cells evidenced a confluent and full coverage of the surface at 14 days (Figure 72) 

for the P15H2S2 composite and at day 21 for the P15H5S5 composite (Figure 73), 

while the P15 membrane evidenced partial coverage on day 28 (Figure 74). 

Furthermore ECM had formed on both test scaffoldsby day 21. Results indicate a 

slower rate of proliferation on P15 polymeric membrane as compared to the P15H2S2 

and P15H5S5 composite membranes. This may suggest an influence of the fibres 

composition on the cells proliferation rate, in particular for the P15H2S2 composite as 

indicated by the cell number results (Figure 68). 
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Figure 69 SEM micrographs of MC3T3-E1 cells grown on composite and 

polymeric fibrous membranes after 1 day in culture. Cell seeding 
density was 5 x 104  cells/ml. 
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Figure 70 SEM micrographs of MC3T3-E1 cells grown on composite and 

polymeric fibrous membranes after 3 days in culture. Cell seeding 
density was 5 x 104  cells/ml. Arrows and dashed line show cells 
attached and spreaded on the surface of the fibrous construct. 
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Figure 71 (A) SEM micrographs of MC3T3-E1 cells grown on composite and 
polymeric fibrous membranes after 7 days in culture;  (B)  MC3T3-E1 
cells grown on  P15H2S2 composite after 7 days and penetratingthe 
pores (yellow arrows) . Cell seeding density was 5 x 104  cells/ml. 
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Figure 72  SEM micrographs of MC3T3-E1 cells grown on composite and 
polymeric fibrous membranes after 14 days in culture. Cell seeding 
density was 5 x 104  cells/ml. Arrows evidence the spreaded cells that 
on P15 and P15H2S2 constructs have formed a covering sheet. 
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Figure 73 SEM micrographs of MC3T3-E1 cells grown on composite and 
polymeric fibrous membranes after 21 days in culture.Cell seeding 
density was 5 x 104  cells/ml. 
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Figure 74 SEM micrographs of MC3T3-E1 cells grown on composite and 
polymeric fibrous membranes after 28 days in culture.. Cell seeding 
density was 5 x 104  cells/ml 
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Osteopontin and Collagen type I expression  
 

Osteopontin (OSPN), known as bone sialoprotein I,  is a highly phosphorylated 

sialoprotein that is a prominent component of the mineralized extracellular matrices of 

bones and teeth. Regulation of the osteopontin gene is incompletely understood. 

Different cell types may differ in their regulatory mechanisms of the OSPN gene. 

OSPN expression in bone predominantly occurs by osteoblasts and osteocyctes (bone-

forming cells) as well as osteoclasts (bone-resorbing cells) [226].  Osteopontin has been 

implicated as an important factor in bone remodelling such as playing a role in 

anchoring osteoclasts to the mineral matrix of bones.  

Collagen type I alpha (COL I) is a human gene that encodes the major 

component of type I collagen, the fibrillar collagen found in most connective tissues. 

The COL I gene produces a component of type I collagen, called the pro-alpha1(I) 

chain. Collagen is a protein that strengthens and supports many tissues in the body, 

including cartilage, bone, tendon and it is expressed during the initial period of 

proliferation and extracellular-matrix biosynthesis [227]. 

In order to prove bone formation by osteoblasts the production of osteopontin 

and collagen type I, which are two of the bone markers for osteoblasts, were evaluated 

[228-230]. OSPN and COL I expression was visualized by targeting the 

specific protein antigen in the cell via specific epitopes (red colour – OSPN, green 

colour – COL I). As presented in Figure 75 the results showed that the osteopontin 

production increased in accordance with time up to day 28 for the MC3T3-E1 cells 

cultured on the P15H2S2 membranes. The same trend was evidenced for the cells 

cultured on the P15H5S5 membranes, as opposed to the ones cultured on the P15 

membranes where the OSPN expression increased gradually up to day 7 and decreased 
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in the following period up to day 28. OSPN levels were low at day 1, day 3, day 14, day 

21 and day 28 for P15 membrane, at day 1, day 3, and day 7 for P15H2S2 and P15H5S5 

membranes, which followed typical development for osteoblasts cultures [231]. In 

addition, there was a significant difference in OSPN production between P15 and 

P15H2S2, P15H5S5 membranes at day 21 and day 28 (p < 0.05). Furthermore as 

evidenced in Figure 77 COL I expression was low at day 1, day 3 and day 7 for all 

types of membranes followed by an increase in expression up to day 28 for P15H2S2 

and P15H5S5 fibrous membranes. Figure 76 and Figure 78 present the control staining 

of non seeded composite fibrous scaffold in order to exclude primary, secondary 

antibody and DAPI staining binding on the fibres. Further representative merged and 

split images of OPN and DAPI, respectively COL I and DAPI are presented. 
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Figure 75 Osteopontin expression on P15_control, P15H2S2 and P15H5S5 fibrous 
polymeric and composite membranes after 1, 3, 7, 14, 21 and 28 days in 
culture. Cell seeding density was 5 x 104  cells/ml. Magnification 4X 
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Figure 76  (a) control staining of fibrous scaffolds (P15, P15H2S2, P15H5S5) 
without cells that shows no primary and secondary antibody or DAPI 
staining of the composite fibres; (b) representative merged and split 
images of OPN antibody and DAPI staining of P15H2  composite, day 
7. Magnification 4X 
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Figure 77 Collagen type I expression on P15_control, P15H2S2 and P15H5S5 
fibrous polymeric and composite membranes after 1, 3, 7, 14, 21 and 
28 days in culture. Cell seeding density was 5 x 104  cells/ml. 
Magnification 4X 
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Figure 78  (a) control staining of fibrous scaffolds (P15,P15H2S2,P15H5S5) 
without cells that shows no primary and secondary antibody or DAPI 
staining of the composite fibres; (b)  representative merged and split 
images of COL I antibody and DAPI staining of  PO composite, day 
28. Magnification 4X 
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Quantitative real time-PCR  

 

To further evaluate osteogenic differentiation on scaffold surfaces quantitative 

real time RT-PCR measurements were performed. The expression of OSPN and COL I 

were determined using primers and probes specificfor each osteogenic marker gene and 

were normalised tothe housekeeping gene GAPDH. Gene expression levels were 

expressed as fold changes relative tothe expression of the control sample (cells seeded 

on TCPS). Figure 79 and Figure 80 present the results as (a) comparison between 

control, P15 and P15H5S5 and (b) P15H2S2 fibrous membranes. Statistical analysis 

disclosed that at day 14, 21, and 28 MC3T3-E1cells cultured on the P15 and P15H2S2 

scaffolds expressed significantly higher mRNA levels for OSPN gene (p < 0.05) 

examined than cells cultured on the  control and P15H5S5 scaffolds (Figure 79 a). 

OSPN expression by MC3T3-E1 grown on the P15 scaffold increased more than 50 

fold on day 14 and more than 200 fold on 21 day. As shown in Figure 79 b MC3T3-E1 

cells cultured on P15H2S2 composite membranes evidenced an increase in OSPN gene 

expression. Further higher mRNA levels for Col I gene (p<0.05) were evidenced for 

MC3T3-E1 cells cultured on P15 (Figure 80 a) and P15H2S2 scaffolds (Figure 80b) as 

compared to P15H5S5 levels for day 21 and day 28. Further COL I  expression 

increased 120 fold on day 21 and 28 on P15 fibrous membrane and almost 35 fold on 

P15H2S2 composite membrane when compared to gene expression for cells cultured on 

TCPS plate. It has to be noted that the medium used for these studies was not 

supplemented with ascorbic acid, which was shown to initiate the formation of a 

collagenous extracellular matrix and synthesis of several osteoblast-related proteins 

[232, 233].  
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Figure 79   Messenger RNA expression levels of OSPN bone marker after 0, 1, 3, 7, 

14, 21 and 28 days of culture MC3T3-E1 cells on : (a) TCPS, P15, 
P15H5S5 scaffolds, (b) P15H2S2 scaffold . Data have been normalized 
to the housekeeping gene GAPDH using TCPS as control sample. The 
results are shown as 2 -ΔΔCT. *p < 0.05 compared with the TCPS 
(control); 0 day accounts for prior to seeding cells on scaffolds/TCPS 
plate 
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Figure 80 Messenger RNA expression levels of Col I bone marker after 0, 1, 3, 7, 

14, 21 and 28 days of culture MC3T3-E1 cells on (a) TCPS, P15, 
P15H5S5 scaffolds, (b) P15H2S2 scaffold.Data have been normalizedto 
the housekeeping gene GAPDH using TCPS as control sample. The 
results are shown as 2-ΔΔCT. *p < 0.05 compared with the TCPS 
(control); 0 day accounts for prior to seeding cells on scaffolds/TCPS 
plate 
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Bone alkaline phosphatise (BALP) activity  (ELISA assay) 

 

Differentiation on the various substrates was characterised using BALP as an 

early bone differentiation marker.  Bone alkaline phosphatase, an ectoenzyme produced 

by osteoblasts, is believed to involve in the degradation of inorganic pyrophosphate 

providing a sufficient local concentration ofphosphate or inorganic pyrophosphate for 

mineralization toproceed. Among the various biological functions of osteoblasts, 

secretion of alkaline phosphatase (ALP) is an important indicator determining the 

activity of the cells on a scaffold [234]. Cells adhering to P15H2S2 scaffolds exhibit 

significantly higher activity of the enzyme than on the P15H5S5 and the control (P15) 

on days 21 and 28, while P15H5S5 scaffolds exhibit higher activity levels on days 1 3,5 

and 14 (Figure 81). ALP kinetics show asignificant increase in specific activity of the 

enzyme on P15 and P15H5S5 porous scaffolds at each time point for days 1 and 3 

followed by a decrease for days 5 and 7. In contrast, the pattern of ALP activity on 

P15H2S2 does not resemble the other two constructs, which consists of a slow increase 

over the first week (days 1, 3, 5, 7), with significantly increase for days 14, 21 and 28. 

We observed two peaks in activity at day 3 and day 14 for the P15H5S5 scaffolds, 

while P15H2S2 scaffolds exhibit one peak in activity at day 28. 
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Figure 81 Alkaline phosphatase activity of electrospun composite scaffolds seeded 

with MC3T3-E1 over 28 days. Enzyme activity was measured from 
release from constructs into cell culture medium. Experimental groups 
were P15, P15H2S2 and P15H5S5 Data represent means±standard 
deviation for n=3. 

 

Discussion 

 

After successfully electrospinning a flat membrane exposing continuous and smooth 

fibres entagled in a porous structure resembling the ECM, thicker 3D scaffolds were 

manufactured by a simple and time effective method, that is folding/rolling of the flat 

membrane. The thick structures were further assessed from a physico-chemical and 

biological point of view, in order to determine their suitability as prospective bone 

tissue substitutes, in line with the listed aims and objectives. The results from this 
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section of Chapter 4 proved that thicker electrospun structures can be created and that 

these can support bone regeneration, by sustaining cell attachement and proliferation, 

while preserving cells phenotype for over a 28 days culture period. Furthermore the  

composite fibrous supports show good mechanical properties, supporting their 

applicability for load bearing applications. It has been evidenced that silk fibroin 

inclusion improves the ceramic electrospinning within the polymeric PHB/PHV matrix. 

Furthermore the proteic phase leads to improved mechanical properties under 

compression, after methanol treatement; this treatement induces changes in the 

chemical conformation of the silk fibroin as shown by previous research [Ref if 

possible]. Additionally the in vitro biological evaluation has proven that the thick 

structures are able to support osteoblasts attachement and proliferation over a period of 

4 weeks. After an initial period of cell number increase, the osteoblasts are able to 

penetrate into the depth of the scaffolds (as shown by the ICC images), evidencing 

filopodia extensions. Cells have been shown to present their characteristic stellar and 

elongated shape, while increased levels of BALP, COL I and OSPN have been 

evidenced for the composite scaffolds ( P15H2S2 predominantly). 

 

4.6.4 Summary 
 

Overall, this project was successful in defining novel composite solutions that can 

be electrospun into biocompatible, bioactive, biodegradable and non – toxic fibrous 

membranes. Further it has been proven that the chosen ceramic phase can be 

electrospun as part of the composite solution. Finally, the two dimensional membranes 
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were used for the construction of three-dimensional structures and these were fully 

characterised in order to prove their suitability for bone tissue regeneration applications. 

The relevance of these results is not only in the fact that the structures obtained were 

comparable to the natural extracellular matrix, mimicking its morphology, but also that 

their physico-chemical and biological properties allow their use as potential bone- cells 

supports. Table 19 highligths the various composite samples produced during this study 

and their properties ranked. Values from 1-3 were used to  score the samples potential 

applicability as bone tissue scaffolds, with 1 - not suitable, 2 average/ further 

improvement needed, 3- good/ suitable. Based on the ranking it could be concluded that 

the P15H2S2 was found to be best suited for the chosen application, achieving a score 

of 32 out of potential 36, followed by the P15H5S5 composite with a total 28 and the 

control P15 construct with a total of 27. 

Table 19 Tests results ranking 

Sample P15 P15H2S2 P15H5S5 

Morphology 3 3 3 
Porosity 3 3 3 

Hydrophilicity 2 2 2 
Bioactivity 2 3 3 
UTS 2 2 1 

Young’s modulus 2 2 1 
Compressive secant 
modulus 

1 3 1 

Cell attachement 3 3 3 
Cell proliferation 3 3 3 

OSPN  2 3 2 
COL I 2 3 2 

BALP 2 3 3 
TOTAL 27 32 28 



184 

 

CHAPTER 5 CONCLUSIONS AND 

RECOMMENDATIONS 
 

5.1 Conclusions 
 

 Large bone defects caused by injuries or pathological lesions are a major 

challenge for the reconstructive surgery. While bone can be regenerated by auto- and 

allograft, both alternatives present drawbacks such as donor site infection and 

morbidity, graft rejection or disease transmittance. A promising approach currently 

under investigation is tissue engineering (TE). For bone regeneration tissue engineering 

uses three-dimensional structures of large surface area and high porosity as constructs 

(scaffolds) on which cells with osteogenic properties are seeded and further implanted 

into the area of interest.  However, several disadvantages have been observed with these 

structures, including weak structural integrity, non biodegradability and host immune 

reactivity. In our study, resorbable composite membranes were prepared as a fibrous 

mesh by electrospinning to overcome these disadvantages and improve applicability for 

guided bone regeneration. Electrospinning is a polymer fabrication technique with 

promising application in the fieldof tissue engineering. The process offers a relatively 

simple method of creating polymer scaffolds with micron fibre diameters in a highly 

porous network similar to the ECM of native tissue. The high surface per unit volume 

ratio achieved in electrospun constructsis ideal for encouraging cellular attachment, 

proliferation and migration [221].  
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The outcomes of this project have largely contributed to the field of composite 

electrospinning and fibrous scaffold manufacturing for bone tissue regeneration, in 

particular electrospinning nano hydroxyapatite powder simultaneously with the 

polymeric solution. In fact, the main challenges identified at the start of this project 

were successfully overcome. 

The research work questioned if nHAP can be electrospun simultaneously within 

a polymeric matrix. Furthermore it questioned if thick fibrous structures evidencing 

adequate mechanical and biological features as to support bone regeneration could be 

manufactured using such a composite solution.In other words the designed and 

fabricated three- dimensional fibrous composite scaffolds were intended to mimic the 

extracellular matrix of the bone in terms of chemistry and morphology, while 

supporting bone cell attachment, proliferation and bone cells phenotype expression. 

 The first phase of the study was to select an appropriate polymer to be studied as 

the basis of the composite solution. PHB/PHV is a copolymer of polyhydroxyalkanotes 

(PHA).This group of polymers are aliphatic polyesters produced by micro-organism 

under unbalanced growth conditions. The major advantages of using this natural 

copolymer is that it presents no toxic effects when implanted in the body,  has a lower 

flexural modulus or level of crystallinity, which makes ittougher and more flexible than 

the other polymers of the PHA family. The crystallinity and mechanical properties of 

PHB/PHV can change with the variation of the percentage ratio of the respective 

monomers. Knowles and Hastings [235] reported that the copolymer PHB/PHV 

degrades slowly andtherefore can be suitable for implant device applications in bone 

replacement applications. When it is reinforced with bioactive ceramics particles such 

as HAp was found to have improved osteointegrative properties and interaction with 

tissue and this was due to the excellent physical-mechanical characteristics of these 
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composites, which are similar to those of bone tissue [236]. Luklinska and 

Schluckwerder [237] showed that, after one month of implantation, lamellar bone 

structure has well developed around the HAp/PHB/PHV implant surface. At three 

months, marrow cells were observed in the new bone structure. At six months, the bone 

layer was compact and continuous around the composite implants. PHB/PHV is very 

particular for the bone tissue engineering applications. It has been demonstrated that a 

potential component bone tissue adaptation response can be produced with no 

verification of an undesirable chronic inflammatory response after implantation for 

periods of up to 12 months [87]. Another unique property of PHB/PHV is its 

piezoelectricity, whichwas claimed to induce bone reformation in load-bearing sites 

[237]; this makes it a potential candidate for orthopaedic applications since electrical 

stimulation has been knownto promote bone healing [237]. 

 In order to investigate the potential for in-house production of electrospun 

PHB/PHV/nHAp based scaffolds, the second phase of this thesis included the 

development and optimisation of a composite solution electrospinning protocol. The 

first task of protocol optimization was to screen different solution concentrations of 

PHB/PHV in CHO and assess the resultant effects on electrospun fibre morphologies. 

Further variations of electrospinning parameters were investigated and their effect on 

the fibres morphology and electrospinning process continuity. Results have indicated 

that PHB/PHV/nHAp electrospinning is difficult to initiate and continuous fibre 

deposition almost impossible to achieve. For this reason a third phase was added to the 

composite solution, that of silk fibroin (SF). Silk fibroin (SF), a protein extracted from 

the silk produced by culture silkworms and spiders, is composed of 17 amino acids thus 

being biocompatible and biodegradable. When appropriately purified, SF is non-toxic, 

non-immunogenic and has been demonstrated to support cell and tissue growth. At the 
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same time, silk is a thermally stable material, allowing processing over a wide range of 

temperatures (up to about 250°C), which makes it a good candidate for autoclave 

systems without loss of functional integrity [69].  The addition of the proteic phase lead 

to electrospinning initiation and continuous fibre deposition for composite solution of 

P15, P15H2S2 and P15H5S5 for settings of 15kV (P15) and 10kV (P15H2S2, 

P15H5S5), 15cm distance and 5ml/h feed rate.  Once a protocol was set up and 

prototype fibrous composite membranes were produced a third phase of optimisation 

was employed, using the DoE approach to investigate broader ranges of variations of 

electrospinning parameters and composite solution concentrations.The additional DoE 

study phase indicated that electrospinning of higher concentration of ceramic and 

proteic phases lead to bead defects formation within the fibrous structure and increase 

in membrane fragility when handled. At the same time preliminary biological in vitro 

assessment using HBO showed that the produced fibrous samples sustained cell 

attachment and proliferation for up to 3 days in culture. Future investigation and 

optimisation of the samples physical properties with higher concentration nano 

hydroxyapatite and silk fibroin is necessary for potential use as bone tissue engineering 

constructs. 

 Analysing all the obtained results samples of P15, P15H2S2 and P15H5S5 in 

compositions were considered further. The fourth step of the research investigated if the 

electrospun samples are bioactive, thus sustaining apatite formation on their surface 

while immersed in simulated body fluid (SBF) over 28 days. Results have shown that 

the produced fibrous construct are bioactive, supporting apatite formation on their 

surface. As stated before it is commonly believed that when bioactive materials are 

implanted in the body, they spontaneously bond to bone via an apatite layer deposited 

on their surface without forming the fibrous tissue around them [201]. However, the in 
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vivo results are normally difficult to obtain and to interpret due the complexity of 

cellular responses. In vitro methods to assess the bioactivity of biomaterials include the 

use of Simulated Body Fluid (SBF), which specifically evaluates the substrate ability of 

apatite formation, protein adsorption or osteoblast cell culture studies. 

 The next step of this research was to produce thicker constructs, such as three 

dimensional scaffolds that can sustain cell culture and bone regeneration. Several 

techniques have been assessed in this direction, such as hydro-spinning, sintering, laser 

welding, and stacking/folding. As opposed to the other techniques which either 

destroyed the fibrous structure (laser welding, sintering) or were time consuming 

(hydrospinning), stacking/ folding technique allowed the production of three-

dimensional constructs that retained their fibrous morphology and porosity. These 

three-dimensional scaffolds were assessed in terms of their physical and biological 

properties and the results were presented in the fifth and sixth step of the research study. 

It was evidenced that the ultimate tensile strength and Young's modulus of the 

composite fibres decreases with increased content of nHAp and SF phase. This can be 

attributed to the lack of sufficient interfacial interaction between the nHAp and SF 

phases respectively and the polymeric matrix. Further it could be assumed that the 

addition of the nHAp and silk phases had a significant effect on the tensile properties of 

the P15H2S2, while increasing the concentration of these co-phases above 2%wt led to 

no significant improvement of the mechanical properties of the composite samples. In 

terms of compressive strength the properties of the composites were comparable to 

some load-bearing tissues as shown by Kurkijarvi et al [213].  Furthermore, it was 

hypothesized that that the inclusion of silk fibroin could reduce the solubility of 

composite samples in the cell culture medium and improve the mechanical properties 

by changing the configuration of the protein, from random coil conformation to β –
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sheet by immersion in methanol [214, 215]. Results showed a significant increase in 

tensile strength for the composite sample of P15H2S2 and P15H5S5 after methanol 

treatment suggesting that the methanol treatment led to conformation changes of silk 

fibroin as hypothesized. 

 Viable biodegradable thick PHB/PHV - based composite scaffolds were 

obtained (utilising various composite formulations); these composites are very 

promising candidates to act as bone scaffolds, either for in vitro or in vivo use (to 

support bone formation outside the body for an initial period of time or in vivo, post 

implantation). 

The chemical functionality of PHB/PHV-based composites was retained 

following the electrospinning process, with polymer-characteristic peaks remaining 

visible throughout the spectra. Even though, the exact mechanism of interaction 

between surface properties and cells is not fully understood; it is broadly recognised 

that the chemistry and topography of scaffold surfaces determine to a large extent the 

biological performance of the implanted devices. This furthermore confirms that the 

rough, hydrophilic and chemically stable constructs obtained, are ideal candidates for 

bone tissue applications.The degradation by-products of the pure polymeric membrane 

and of the composite nHAp integrated (various concentrations) were not acidic in 

nature and did not generate a hostile implantation environment in vitro with regards to 

pH levels. 

 The conductivity measurements of PHB/PHV-based composites showed that 

composite samples had a much larger conductivity potential than pure polymeric 

ones. It was assumed that the conductivity of the fibrous membranes was enhanced 

by the addition of an nHAp and / or silk fibroin phases. 
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 The degradation of the composite nHAp integrated constructs was minimal 

during the first month of the in vitro analysis, which guarantees the mechanical 

integrity of the scaffolds post-implantation, when the desired application is load-

bearing orthopaedic  implants, and could provide a system with a long-lasting 

integrity. 

 The preliminary biological assessment showed that the performance of 

composite constructs after 1 day and 3 days in culture was superior to the pure 

polymeric ones in terms of cell attachement and scaffold penetration, suggesting a 

faster osteointegration post-implantation. While the integration of inert 

implant/scaffolds in orthopaedic applications is a passive process that results in 

mechanical fixation only, which may lead to its loosening and anchorage failure, the 

bioactive polymer (PHB/PHV) will therefore increase the biointegration of the 

implant and the bone tissue. 

 The SBF immersion test results confirmed that the composite structures are 

bioactive, thus they can induce and support bone formation in  vivo. Over a  period 

of 4 weeks samples were exposed to a concentrated solution resembling the human 

body’s plasma composition. The chemical conformation of the composite structures 

led to an apatite layer formation on their surface, with Ca/P ratio similar to the 

hydroxyapatite found in the body.  

As a final step, scaffolds were evaluated for cellular attachment, 

proliferation and bone marker expression using a MC3T3-E1 cell line over a period 

of 28 days. All the scaffolds supported cellular attachment, as indicated by the cell 

count number and DAPI staining. Also, over the period of 28 days, values for every 

group of scaffolds increased indicating cellular proliferation.  
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 Initially more cells attach to the composite scaffolds (P15H2S2 and P15H5S5) 

and after 14 days more extensive ECM formation and cell growth were seen. There 

were significant differences between P15H2S2 and P15H5S5 groups after the day 7 

point.  

 Enhanced osteoblast proliferation and differentiation were demonstrated by 

increased mRNA expression of the BALP, COL I and OSPN genes by the cells 

cultured on the P15H2S2 composite fibrous construct as opposed to the P15 

polymeric fibrous structure.  Particular interest was paid to whether or not these 

fibrous scaffolds could support the osteoblastic phenotype expression of MC3T3-E1 

and analyses of the expression levels of bone-related markers (OPN, COL I and 

BALP) were conducted in this direction.  

 Results showed that the cells adhering to P15H2S2 scaffolds exhibited 

significantly higher activity of BALP than on the P15H5S5 and the control (P15) on 

days 21 and 28. This can be attributed to the higher number of cells attached and 

proliferated on P15H2S2 as compared to P15 and P15H5S5 on the indicated time 

points. On the contrary, the BALP activity of the cells grown on P15 (control) was 

the lowest at any given time point, despite the relatively high number of cells 

attached on its surface. 

 MC3T3-E1 cultured on the surface of P15H2S2 composite exhibited the 

greatest amount of OPN gene for all given time points after cell culturing when 

compared to those cultured on the P15 and P15H5S5. This translated to the greatest 

extent of mineralization for the cells grown on the surface of P15H2S2, followed by 

that for the cells grown on P15H5S5 and P15, respectively.Compared to the control 

scaffolds (P15), the test materials supported osteoblast maturation, increasing the 

secretion of bone matrix, which aids in bone regeneration. The findings of this work 
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support the hypothesis that the proposed composite scaffolds enhance the osteoblast 

phenotype and suggest that P15H2S2 and P15H5S5 scaffolds are appropriate cell 

carriers for osseous tissue engineering when compared to the PHB/PHV polymer 

scaffolds (P15). 

5.2 Future recommendations 
  

Due to the novelty of the composite solution formulation and the technique 

implemented, the work presented in this thesis has significant potential to be developed 

as a scaffold for bone regeneration. In order to achieve this aim, future work needs to be 

carried out in terms of cell proliferation assessment (e.g. histology) in order to 

determine how far the cells travel in the depth of the scaffold and if they are viable 

when reaching the middle of the construct. A further step can be made with in vitro 

dynamic analysis of the seeded scaffolds, to investigate if they maintain their phenotype 

when placed in an environment more appropriate to the in vivo one, while investigating 

if the fibrous structures support neovascularisation would be another potential direction 

to follow. Extending application to other tissues regeneration, such as cartilage could 

also be viable. 
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 APPENDIX A 
Table 20 Materials and chemicals use din the research work 

Name Product code Source Application 
polyhydroxybutyrate 
(98%)/ 
polyhydroxyvalerate 
(2%) (PHB/PHV) 

 Good Fellow, 
UK 

Main constituent of 
the fibrous 
structure 

Silk fibroin (SF)  Huzhou 
Sunergy World 
Trade Co. Ltd, 
China 

Composite 
formulation 

nano-hydroxyapatite 
(nHAp)  with particles 
of <200nm,   

12167-74-7   Sigma –
Aldrich, Ireland 

Composite 
formulation 
 

Chloroform (CHO) 67-66-3 Sigma Aldrich, 
Ireland 

Solvent 

Sodium chloride (NaCl) S6014 Sigma Aldrich, 
Ireland 

SBF formulation 
 
 

Potassium chloride 
(KCl) 

P3911 Sigma Aldrich, 
Ireland 

SBF formulation 

Name Product code Source Application 
Potassium phosphate 
dibasis trihydrate 
(K2HPO4*3H2O) 

M2670 Sigma Aldrich, 
Ireland 

SBF formulation 

Hydrochloric acid- 1M 
(HCl) 

HYAC-1041-22 Reagent, UK SBF formulation 

Calcium chloride 
(CaCl2) 

120-95-1KG-R Sigma Aldrich, 
Ireland 

SBF formulation 

Name Product code Source Application 
Sodium sulphate  
(Na2 SO4) 

238597 Sigma Aldrich, 
Ireland 

SBF formulation 

Dulbecco’s Phosphate 
buffer solution (PBS) 

D8537 Sigma Aldrich, 
Ireland 

Cell culture 

Fetal Bovine Serum , 
Heat Inactivated (FBS) 

16140-071 Bio-Sciences, 
Ireland 

Cell culture 

MEM-Alpha Medium  A1049001 Bio-Sciences, 
Ireland 

Cell culture 

Antibiotic/ 
Antimycotic 

15240-062 Bio-Sciences, 
Ireland 

Cell culture 

Phalloidin-FITC P5282 Sigma-Aldrich, 
Ireland 

Immunocytochemi
stry technique 
(ICC) 
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AlexiFluor 546 labelled 
Anti Mouse IgG 
antibody 

 Invitrogen, Ca, 
USA 

Immunocytochemi
stry technique 
(ICC) 
 

Monoclonal Anti-
Osteopontin 

SAB4200018 Sigma-Aldrich,  
Ireland 

Immunocytochemi
stry technique 
(ICC) 

Collagen I antibody –
FITC 

Orb15142 Biorbyt, UK Immunocytochemi
stry technique 
(ICC) 

Alkaline phosphatise, 
Bone ELISA Kit 

ABIN627592 Antibodies, 
Germany 

ELISA assay 

Mm_Spp1_1_SG 
QuantiTect Primer 
Assay (200) 

QT00157724 Qiangen, 
Ireland 

qRT-PCR 

Mm_Col1a1_1_SG 
QuantiTect Primer 
Assay (200) 

QT00162204 Qiangen, 
Ireland 

qRT-PCR 

Sterile pipettes,  24 
well cell culture plates, 
96 well ELISA reader 
plates,75 cm2cell 
culture flasks,  

 Applied 
Biosystems, 
USA 

Cell culture 
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APPENDIX B 
 

The following scientific instruments were used in the study: 

• Gamma High Voltage Research power supply 

• Infusion Syringe pump, (KDS KDS100, kd Scientific) 

• Magnetic stirrer (Bibby, HB502, Sterilin UK) 

• YDK 01 LP Density Measurement Kit ( Sartorius AG, Germany) 

• Zwick Z005 Test Machine (Zwick-Roell, Germany) equipped with a 20N 

load cell (tensile tests) and 5 kN load cell (compressive tests) 

• DTA/TGA STA 1500 (PL Thermal Sciences Ltd, UK) 

• EVO LS15 Scanning Electron Microscopy (Zeiss, Germany) 

• Bx51 Olympus Microscopy ( Olympus, Japan) 

• Edwards Pirani 501 Scancoat sputtering coater (Edwards Laboratories, 

USA) 

• Surftest‐402 profilometer (Mitutoyo, Japan) 

• FTA 200 angstrom sessile drop measuring machine equipped with a 

ArtCAM 130 MI BW monochrome camera (First Ten Ångstroms, USA) 

• Hanna HI 9813 Handheld pH, EC and TCS Meter with Probe (Hanna 

Instruments, Inc.) 

• Water bath (Clifton, Nickel Electro LTD, UK) 

• Spectophotometer NanoDrop 

• Rotor-Gene Cycler 
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APPENDIX C 
 

Image J Protocol for fibre diameter measurement 

(adapted from Tiffany Richelle Peña,  PREPARATION AND CHARACTERIZATION 

OF ELECTROSPUNPOLY(D,L-LACTIDE-CO-GLYCOLIDE) SCAFFOLDS FOR 

VASCULARTISSUE ENGINEERING AND THE ADVANCEMENT OF AN IN 

VITRO BLOOD VESSEL MIMIC, Faculty of California Polytechnic State University, 

San Luis Obispo,June 2009) 

 

This set of instructions allows one to count cells by drawing a straight line between the 

two transverse sides of one single fibre. 

 

1. Open program ImageJ. 

2. Select File > Open. Open a saved SEM image. 

3. Select ‘straight line’ and draw a line along the SEM image’s scale bar. Visually 

ensure the line is as close to the length of the scale bar as possible as this will 

affect the outcome of fibre diameter measurements. 

4. On the tool bar, select Analyze > Set Scale.  

5. Insert known image scale bar distance (ex. 20 μm). Set pixel aspect ratio to 1.0 

and set appropriate unit length (ex. μm). Select OK. ImageJ is now calibrated to 

the image.  

6. From Plugins>Analyze>Grid insert grid. Use the same numbers of grids for all 

the images to be used for measurement. 

7. From the tool bar, select ‘straight line’. Draw a line across the diameter of a 

single fibre to be measured. (Figure 82) 

8. From the toolbar select Analyze > Measure. ImageJ will open a new window 

reporting Results. Fibre diameter is reported as Length in the Results window in 

proper units (ex. μm). ( see Figure  82) 

9. Leave the Measure window open and repeat Step 6 for all Fibre measurments 

for that image. 
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10. Repeat for all images. NOTE: Calibration is only necessary for the first image 

ONLY if all images being analyzed are at the SAME magnification. Re-

calibration will be necessary for images taken at different magnifications. 

 

 
Figure 82  SEM image used for fibre diameter measurement using Image J 

protocol 
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APPENDIX D  
Image J Protocol for Manual Cell Counting and Marking (plugin required) 

( adapted from Integrated Light Microscopy Core,  University of Chicago) 

http://www.unige.ch/medecine/bioimaging/tricks/imagejtutorials/CellCounting.pdf 

 

This set of instructions allows one to count cells by clicking in the cell image. Each 

click marks the cell with a colored square and adds the cell to a tally sheet.  

 

1) First, the Cell Counter plugin must be installed. After plugin installation Image J 

must be re-started for the analysis folder containing the Cell Counter plugin to appear 

under the Plugins menu. 

 

2) Open the image you want to count. Cell counter only works on single images, not 

stacks. One can use Image - Stacks - Stack to Images to convert a .tiff stack or .stk to 

single .tif files. It does not matter if the image is greyscale, single color or multiple 

colors. However, if the image is in greyscale  and one wants the clicked squares to be in 

color, one must convert the image to an RGBcolor image with Image -Type - RGB 

color. Greyscale images are supported by the counter plugin, but the squares are white 

or black, so difficult to distinguish between types.  

 

3) Select Plugins - Analysis – Cell Counter (or Plugins - Cell Counter). Two new 

windows will open a counter window with the image on top of a row of buttons, and a 

results window where cells will tally. Select Plugins- Analyze-Grid (lines) and click ok. 

A minimum of 5 visual fields will be used for cell counting ( see Figure 83). 

 

 

4) To begin counting, click one of the buttons at the bottom of the counter window. 

Then click directly on a cell/object one wishes to count. A white square will be left 

behind on the object, and a tally will start in the results window. If one clicks on an 

object by mistake, this can be undone by selecting Edit - Undo. One must undo right 

away, as no more than one object in a row can be undone. Use Results - Save as to save 

your counts as Excel formatted files. 
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5) If one does not see the marker squares in colour, one needs need to make the image 

an RGB image. To do this, close Cell Counter by closing the image window. Open the 

image again and use Image -Type - RGB color. It’s okay if your image is still greyscale. 

Now when the image will open in Cell Counter and click for a marker, the markers will 

be in colour.  

6) When the counting is finished, click the Results button. A total for each cell type plus 

a grand total of all clicks at the bottom of the Results window.  

 

 
Figure 83  Example of  DAPI image (10x) used for cell counting 
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