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3. ABSTRACT 

FACTORS AFFECTING THE COFFEE-STABILITY OF INSTANT

WHOLE MILK POWDER

Teehan, C.M.,1’2 Kelly, P.M.,1 Devery, R.D.2 and O’Toole, A.2

'Dairy Technology Dept., DPC-Moorepark, Fermoy, Co. Cork.

2School of Biological Sciences, Dublin City University, Glasnevin, Dublin 9.

There are growing markets in developing countries, for instant WMP with the 
additional specification of being stable in coffee. Coffee is considered a harsh 
environment for reconstitution of milk powders owing to high temperatures 
(~80°C) and low pH (~4.8) which may cause protein precipitation or feathering. 
The objective of this study was to explore a range of parameters in order to 
identify some key factors that contribute to instability. Initially, the physico­
chemical conditions in the coffee test were scrutinised. Later, emphasis was 
shifted to the effects of individual process steps during pilot plant manufacture of 
instant WMP. Coffee-stable commercial samples were more resistant to 
feathering and sedimentation under conditions of low pH and high temperatures. 
A model test was developed to simulate the acidic effect of coffee, and to 
examine the sensitivity of WMP over a wider pH range. The resulting 
sedimentation/pH profiles were distinguishable for coffee-stable and coffee- 
unstable samples. Furthermore, the model test proved to be more exacting than 
the coffee itself. Subsequent investigations confirmed that monovalent cations 
such as K+ counteract the negative effects of low pH. Water hardness and powder 
characteristics such as bulk density, particle size and interstitial air volume 
influenced coffee-stability. The low sediment volumes that resulted from prior 
reconstitution before addition to coffee; increased mechanical activity and 
addition of surface active agents suggest that the observed instability may arise 
from the physical behaviour of the powder itself. In an investigation of the 
process parameters affecting coffee-stability, preheating and agglomeration 
conditions were critical to product physico-chemical characteristics and 
functionality. Fat composition of the milk influenced coffee stability more so 
than protein. Storage resulted in a disimprovement in coffee-stability. An 
alternative production method by recombination of cream into skim milk 
concentrate was comparable with the conventional process in terms of powder 
characteristics and coffee-stability as was also the case for butter-oil fat-filled 
powders.
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5. Introduction

The aim of dairy research in many instances is to find new and profitable 

ways to utilise milk in its different forms and lessen the dependence on the 

production of commodity dairy products, such as skim-milk powder and 

butter. On a global scale, whole milk powder production is increasing, 

particularly in Australia where increases of ~6% were recorded in 1995 (IDF, 

1996). In the European Union, where milk production is restricted by quotas, 

WMP production decreased by 4.7% in 1995 (IDF, 1996). During 1995 in 

Ireland the production of whole milk powder achieved a level of 34,100 

tonnes compared to 36,000 in the previous year representing a decline of 

5.3% in output. However, in China where up to 90% of milk is processed into 

milk powder, there is potential for developing markets for WMP (IDF, 1996). 

WMP is used for nutritional and functional purposes and has applications in 

products such as sauces, chocolate, bakery and beverage products. It has an 

advantage over skim milk powder (SMP) in that it does not require 

recombination with fats or oils in order to prepare a milk substitute and so 

only requires packaging for the consumer market. Much of the WMP 

produced is marketed in Third World and developing countries where fresh 

milk is in limited supply. Dried milk also has advantages over fresh milk in 

these situations in that it can be stored for long periods while still retaining its 

high quality and can be transported easily at a lower cost. Many such 

countries also require that WMP meet the additional specification of coffee- 

stability.

The manufacture of instant whole milk powder was not successful 

until the 1970’s and since then, the technology for production of WMP has 

evolved and undergone refinements. The essential elements such as spray 

atomisation of concentrated milk in the form of droplets into a hot air-stream 

in a drying chamber are still fundamental to the technology being used. 

However evolution has focused on the sub-division of drying into 2-stages, 3- 

stages (also known as multi-stage) and development of the straight-through
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method for agglomeration to produce a superior quality product at a low 

energy consumption.

For WMP to be useful as a coffee-whitener, the dried product must have 

instant characteristics. It must also be capable of storage for at least 6 months 

and preferably longer without deterioration in performance or flavour. The 

generally accepted process for producing instant WMP today is based on the 

straight-through process, employing either 2 or 3-stage drying with fines re­

circulation to aid the formation of agglomerates, followed by lecithination to 

improve wettability.

This project aims initially to investigate the factors which contribute to 

poor coffee stability of instant WMP. This was implemented by scrutinising 

the coffee sediment test under various conditions. The second aim of the 

project was to determine the process parameters which affect the coffee 

stability of instant WMP in order to improve the product for this application.
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6. Literature Review

6.1 Coffee Stability

Aqueous coffee solutions create adverse conditions for the reconstitution 

of a whole milk powder (WMP) because of low acidic pH (4.6-5.0) and high

temperature (approximately 85°C). The acid content of coffee which is 

determined by measurement of the pH value, is influenced by the type of 

coffee beans, the method of their processing and the hardness of the water 

used in reconstituting the instant coffee (Geyer and Kessler, 1989).

Much of the literature deals with liquid and powdered coffee creamers, 

while very little research has been carried out on the use of milk powders as 

coffee whiteners. Sweetsur (1976) suggested that the instability of instant 

skim milk powder in hot coffee may be associated with rehydration of protein 

in the powder. It is possible that when skim milk powder is added to hot 

coffee at a low pH, possibly as low as the isoelectric point of casein, 

dispersion and rehydration of the protein must be rapid to allow dilution to 

take place before coagulation occurs. A strong positive correlation (r = +0.81) 

was found between the amount of “coffee” precipitate and the casein number 

(% of the total nitrogen that is precipitated at pH 4.6 by the addition of acetic 

acid and sodium acetate, which includes casein nitrogen and denatured whey 

protein) (Sweetsur, 1976). This suggested that the unstable powders had been 

subjected to a severe heat treatment at some stage of the process with 

resultant dénaturation of much of the whey proteins, which were then able to 

complex with the casein. Sweetsur and White (1975) suggested that the 

greater the complex formation between p-lactoglobulin and casein in heated 

milk, the greater will be the extent of the heat stability curve minimum (the 

pH at which the milk is the least heat stable, c.f. Figure 6.6). Consequently 

there will be a reduction in the coagulation time maximum. Negative 

correlations obtained between the amount of coffee precipitate and maximum 

and minimum coagulation times (r = -0.69 and -0.48 respectively) suggests
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that the more unstable the powder to hot coffee, the greater the amount of 

whey protein complexed with casein (Sweetsur, 1976).

6.2 Coffee Whiteners

WMP is normally manufactured to a specified fat content of 26% or 

28%. Fat-filled milk powders are based on the replacement of milk fat with 

less expensive sources such as vegetable, animal or marine oils. This type of 

product resembles WMP in most physico-chemical characteristics, save 

whatever changes may be brought about by the process of recombining and 

emulsification of the replacement fats into a skim milk base. Imitation coffee 

creamers bear little resemblance to milk and milk powders except where a 

milk protein such as sodium caseinate is used as the main fat emulsifier. The 

fat content of such products is 30-35 %, with the remainder composing of 

sugars such as dextrose or com syrup, emulsifiers and stabilising agents.

If instant WMP is to be used as a coffee whitener, it must be 

competitive with commercial coffee whiteners as regards price, nutrition and 

functionality. It should also meet the same functional specifications as coffee 

whiteners: exhibit good flow properties, avoid clumping and caking, disperse 

easily in hot liquids such as coffee and be non-hygroscopic. It must be 

packaged properly for convenient use and if necessary to protect against 

moisture build-up. (Griffin and Lynch, 1968).

The requirements of a dried coffee whitener when used in coffee at 

extremes of pH 4.8-6.3 and temperature (50-90°C) have been outlined 

(Ortman, 1960, Giddey, 1967). A coffee whitener must dissolve rapidly with 

no insoluble particles evident after brief stirring. There should be no 

coagulation of the whitener or separation from the solution. When instant 

WMP is used as a coffee whitener, performance is based on the solubility of 

the powder in the coffee solution.

Coffee whiteners are used as a substitute for cream, evaporated milk or 

fresh milk in coffee, tea and cocoa products. Spray dried imitation coffee 

whiteners have been readily accepted by consumers due to lower cost, 

convenience, ease of handling, improved shelf life without refrigeration and
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preference of some consumers for vegetable fat products. Also, they are used 

as bodying agents and flavour enhancers in soups, sauces and puddings. 

Greutzmacher and Bradley (1991) reported a formulation for a spray-dried 

coffee whitener as follows:

Tabic 6-1. Formulation for a coffee whitener (Greutzmacher and Bradley,
1991).

Ingredient Levels (% dry basis)

Partially hydrogenated vegetable oil 34.0

Com syrup solids (42DE) 55.4

Sodium Caseinate 3.5

Di potassium phosphate 2.1

Sodium silicoaluminate 0.5

Mono and di-glycerides 1.3

Sodium stearoyl lactylate 0.1

Flavours and Colours 0.1

Moisture 3.0

In addition to the requirements already mentioned, coffee whiteners 

must maintain emulsion stability either as liquid or as a spray-dried powder 

when it is reconstituted in hot coffee solutions. Sodium caseinate is used in 

coffee whiteners for its good emulsifying properties, although it is regarded as 

expensive. Greutzmacher and Bradley (1991) recently used demineralised 

acid whey protein derived from cottage cheese whey, as an acceptable 

replacement for sodium caseinate in spray-dried coffee whiteners.

Thompson and Reniers (1982) used freeze-dried succinylated whey 

concentrate prepared from precipitates obtained by heat coagulation of 

cottage cheese whey, instead of sodium caseinate in a coffee-whitener 

formulation. No feathering or significant flavour differences were noted upon 

the addition of modified whiteners to coffee.

Reformed casein micelles have been developed and used as a complete or 

partial replacement for fat in a variety of food products and particularly in
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coffee whiteners (Melachouris et al., 1992). It is claimed that such coffee 

whiteners have functional and organoleptic properties equivalent to 

conventional coffee whiteners.

6.3 Coffee creamers

Much of the scientific literature refers to liquid coffee-whiteners or 

coffee-creamers. This information while not directly related to instant WMP 

however, does provide valuable background information relating to coffee- 

stability.

A coffee-stable WMP should have the same properties as a liquid 

coffee-whitener namely, stability, limited viscosity effects, whitening ability 

and good flavour. The coffee-whitener must provide uniform whitening 

ability which is controlled by the total amount of solids present and the 

fineness of the dispersed phase. Because of the multitude of applications, the 

coffee-whitener should have a bland flavour and be odour free.

Coffee stability of coffee-cream mainly depends on fat content and 

viscosity of the coffee cream as well as on the acidity and temperature of the 

coffee solution. Visible flocculation (feathering) results from membrane 

surface layer protein-induced aggregation of the homogenised fat globules 

(Hoffman et al., 1996).

Homogenisation causes proteins to adhere to the fat globules in the form 

of additional membrane material and enhance the opportunity for flocculation 

together with the fat globules in the hot coffee (Geyer and Kessler, 1989).

The whitening power of coffee cream is due to the attachment of both 

micellar casein and whey proteins to the fat globule membrane by 

homogenisation. However, whey proteins in their native state are more liable 

to flocculation in hot coffee than the casein fraction (Geyer and Kessler,

1989).

Salt-reduced creams were found to be less stable in coffee (Geyer and 

Kessler, 1989). Since the colloidal stability of milk is based on a dynamic 

equilibrium of milk salts and protein, a reduction in salts concentration is 

likely to cause disturbance. Heating causes a drop in the pH value of the
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cream and without the buffering effect of salts, the pH decreases rapidly 

towards the isoelectric point, resulting in precipitation.

For calcium-reduced creams, the stability to flocculation increases as the 

calcium ion concentration decreases. As the calcium ion concentration 

increases, the size of the casein micelles increases. According to Kirchmeier 

(1966), larger casein micelles are less heat stable and flocculate more easily.

In summary, the combination of fat, protein and salts in the milk in 

addition to processing steps, for example, preheating and homogenisation, 

influence the stability of coffee creamers. Therefore, it is reasonable to 

assume that some similar challenges arise during the application of instant 

WMP, as a coffee whitener.

6.4 Production of Instant Whole Milk Powder

It is difficult to find specific steps or process conditions in the literature 

relating to the production of instant WMP with coffee stable characteristics. 

Most information concerns the key steps in the manufacture of instant WMP: 

(a) preheating to enhance shelf-life and (b) agglomeration to give the powder 

instant properties. Instantization improves the rate and completeness of 

reconstitution of the powder without changing its solubility. The process was 

originally developed for milk powders by Peebles (1956), using rewet 

approaches. A modern two-step process (Westergaard, 1983) for the 

production of instant WMP is shown in Figure 6-1, for the production of the 

basic powder followed by lecithination and packing. The possibility of 

connecting these two process lines into one continuous line is also shown by a 

dotted line.

6.4.1 Standardisation of the milk composition

WMP is usually manufactured to either of two fat specifications: 26% 

or 28% fat in powder. Consequently, the first step is to standardise the milk. 

Because the fat content of the milk varies throughout the manufacturing 

season, it is necessary to standardise it with reference to its non-fat solids 

content (protein, lactose and ash, which may also vary in content). As the 

production of milk falls towards the end of the year, the concentration of
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lactose in the milk decreases, whereas fat and protein increases. Protein 

levels can reach quite high levels (up to 40% of the solids-non-fat content) 

resulting in problems during processing, for example, “bum-on” in 

evaporators and reduced powder solubility.

A proportion of the raw milk is separated into cream and skim milk 

before recombining either phase at the appropriate rate with the bulk milk to 

achieve the desired fat content. It is not normal practice to standardise the 

protein content, although it can be adjusted by addition of permeate 

(containing lactose and non-protein nitrogen) or retentate (containing 

concentrated protein) from ultrafiltered milk.

Figure 6-1. Processing scheme for the production of Instant WMP.
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The heat stability (H.S) of protein-standardised 2.0 % milk does not 

change dramatically and has sensory qualities equivalent to that of normal 

milk (Peter et al., 1996). Unlike fat, protein standardisation during 

manufacture of preserved milk products has not been recognised within the 

Code of Principles of the Codex Commission for Milk and Milk Products. 

However, recent revisions to the Codex standards for preserved milks are 

likely to be adopted in the near future.

6.4.2 Preheat Treatment

Many of the physical, chemical and functional properties of milk 

powders are determined mainly by the preheating conditions used. High 

preheat treatments, which retard the onset of oxidised aroma and flavour, 

produce under similar drying conditions WMP with a higher solubility index. 

The adverse effects on solubility index may be minimised by using a high 

preheat treatment temperature (125°C) with a moderate holding time (20s) 

(Baldwin and Ackland, 1991). WMP is generally classified as a medium-heat 

powder. Over the years a wide range of preheating temperatures have been 

applied, ranging from typical pasteurization (72°C for 15s); long holding-time 

heating known as the ‘Hot Well’ method (e.g. 85°C for up to 30 min) to high- 

temperature, short-time heating (e.g. 120°C for 2 min) using direct (steam 

injection) or indirect (plate heat exchanger) heating (Singh and Newstead, 

1992).

6.4.3 Evaporation

Evaporation refers to the process of heating liquid to temperatures in 

excess of the boiling point to remove water in the form of vapour. Because 

milk is heat sensitive, heat damage can be minimized by evaporation under 

vacuum to reduce the boiling point. The basic components of this process 

consist of heat-exchanger, vacuum, vapour separator and condenser. Falling 

film evaporators are the most widely used in the dairy industry. Milk is 

concentrated to 44-50% total solids by evaporation, before spray-drying. 

Multiple stage evaporation (Figure 6-2) is usually employed to improve the 

energy efficiency, whereby the stages are connected in series and the vapour
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generated from the product in the first stage is used as a heating medium in 

the second. The second and subsequent effects must operate at a higher 

vacuum (and therefore a lower boiling temperature) than the previous. In 

addition, thermocompression increases the efficiency, by recompressing part 

of the vapour from the first vapour separator to heat the first calandria. High 

pressure steam connected to the thermocompressor increases the kinetic 

energy of the vapour from the separator, which is then used as a heating 

medium for the first stage of a multiple effect evaporator (Westergaard, 

1983).

Figure 6-2. Seven effect evaporator with finisher.

A: Feed; B: Boiler steam; C: Condensate outlet; D: product outlet; E: 
vacuum; F: cooling water; 1: first effect; 2: second effect: 3: third effect; 4: 

fourth effect; 5: fifth effect; 6: sixth effect; 7: seventh effect; 8 vapour 
separator; 9: pasteurising unit; 10: heat exchanger; 11: finisher; 12: preheater; 
13: condenser; 14a and 14b: thermocompressor. (Courtesy APY ANHYDRO

A/S Denmark.)

6.4.4 Concentrate heating

Heating of concentrated milk before atomization has two purposes; (a) 

to obtain a final product with good bacteriological quality and (b) to achieve 

better efficiency and easier atomization during the spray-drying process (de 

Vilder et al., 1979).

19



6.4.5 Homogenisation

Homogenisation of milk concentrate is necessary to decrease the free fat 

content of WMP. Fat globules without protective membranes reduce milk 

powder solubility and increase susceptibility to oxidative rancidity. A high 

free fat content in spray-dried WMP adversely affects a number of properties:

• the dispersibility or wettability during reconstitution;

• the rising of cream and foaming or scum formation in the reconstituted 

milk;

• the stickiness of dried whole milk powder (Buma, 1971a).

Homogenisation is the process whereby the size of fat globules is 

reduced from the range of l-10(_im (mean 3.5(am) commonly found in milk to 

less than l(J.m (Banks and Evans, 1985). The newly formed smaller fat 

globules are stabilised by protein absorption onto their surface. The quantity 

of proteins being adsorbed varies with the homogenising pressure and 

temperature. Casein is the major protein adsorbed but whey proteins as well 

as the natural globule membrane are also present (Mulder and Walstra, 1974).

Homogenisation is usually carried out with a high pressure pump, 

composed of a high pressure piston and a special valve. The concentrated 

milk is forced through the valve. This has the effect of reducing the size of the 

suspended particles, increasing the surface area to volume ratio of the 

dispersed phase (fat) in the continuous phase, increasing shelf life of the 

product and increasing the viscosity (Nistri, 1994).

Generally, 2-stage homogenisation (80 bar initially, followed by 20 bar in 

the second stage) of whole milk concentrate before drying is adequate to 

maintain free fat levels of less than 4% in WMP (Singh and Newstead, 1992). 

Typical free-fat levels in instant WMP are in the region of -1.5% (Pisecky,

1990).

6.4.6 Spray-drying

Spray-drying has numerous advantages compared to other drying 

techniques, in that the process proceeds very rapidly and product temperature-
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rise is minimised by exploitation of evaporative cooling effects during the 

primary stages of dehydration. Oxidation does not occur during the actual 

process though it remains to be resolved as to whether the process (for 

example, the preheating stage) gives rise to pro-oxidant as well as antioxidant 

effects. Loss of vitamins, dénaturation of proteins, lactose transformation and 

the other adverse effects of heat are generally low in this process. During 

spray-drying, it is possible to control the final properties of the powder, such 

as moisture, bulk density and powder particle size. It is necessary to be able to 

do this in order to produce powders with different functional specifications 

(Caric, 1994).

The principle of spray-drying (Figure 6-3) is to remove the water from 

the concentrate as fast and at as low a temperature as possible, so as to 

minimise heat damage to the milk solids. This is achieved by spraying the 

milk concentrate in the form of very fine droplets into a hot dry air-stream 

(e.g. 190 °C) and thus exposing a large evaporative surface. The more finely 

dispersed the milk droplets, the larger their specific area will be and the more 

effective the drying. Atomizing the feed increases the specific area of 1 litre 

of milk by approximately 700 times.

(Courtesy APV ANHYDRO A/S Denmark).
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Atomization is achieved by either a nozzle or a rotary wheel atomizer, 

and it should ideally produce uniformly sized particles, as smaller particles 

may overheat and larger particles take longer to reach the desired moisture 

level (Singh and Newstead, 1992). With disc atomization, the properties of 

the product are controlled by the speed of rotation of the disc. In a stationary 

nozzle which discharges the milk in the same direction as the airflow, the 

milk feed pressure determines the particle size. The feed can also be presented 

counter-flow to the drying air. With pressure atomization, the powders that 

are produced have higher particle densities than those generated with wheel 

atomization. Higher particle densities contribute to higher bulk densities, 

improved reconstitution properties and better shelf life of fat-filled products 

like whole milk powder (Boersen, 1990).

6.4.6.1 Agglomeration o f  Wh ole Milk Powder

Before use, food in the form of powder is generally dispersed and/or 

dissolved in water or in aqueous liquid. Water wets very fíne powders only 

very poorly because of its high surface tension. In order to improve the 

wettability and accelerate dispersion and dissolution, such powdered products 

are often made instant or are agglomerated. Agglomeration is a process of 

forming larger units or clusters from a number of smaller ones, while still 

retaining the original particles in identifiable form (Figure 6-4). Conditions 

which contribute to the enhanced stability of particles are promoted. 

Reconstitution properties of the powder are also dramatically affected by the 

agglomeration process. It has the effect of shortening the time for capillary 

penetration of the liquid into the powder to wet uniformly without lump 

formation (Schubert, 1993).

Agglomeration is applied to improve the flowability of powders 

(Boersen, 1990). Instantizing or agglomeration of WMP causes an increase in 

the amount of air incorporated in between the powder particles. During 

reconstitution, the air is replaced by water and the powder particles are wetted 

and dispersed before dissolution starts. Incorporated air enables a large 

quantity of water to come in contact with powder particles during
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reconstitution. This prevents formation of a viscous layer around grouped 

particles, which could hinder further water penetration and slow the 

dissolving time (Wulff, 1980).

Figure 6-4. SEM of agglomerated WMP at different magnifications (Caric,
1994).

There are two basic types of instantizing: the “rewet” process, whereby 

instantizing is carried out after the powder is obtained in dry form, and the 

“straight-through” process, where instantization is accomplished during 

drying.

6.4.6.2 “Re wet Process ”

Instantization by the “rewetting” method includes two main 

agglomeration techniques: droplet agglomeration and steam agglomeration. In 

the droplet agglomeration technique, concentrated milk is spray-dried into the 

drying chamber. Some distance below the atomizer, water mist or another 

desired liquid is atomised into the drying chamber to wet the powder 

particles. In the steam agglomeration technique, steam is mixed with the milk 

powder in the drying chamber. The powder is dispersed and wetted in the 

wetting chamber up to a water content of 5-10%, causing the formation of 

powder particle agglomerates (Caric, 1994), which should be in the region of 

100-250( .l in diameter. There should be as few non-agglomerated particles as 

possible (Pisecky and Westergaard, 1972). The choice between droplet and
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steam agglomeration is dependant on the desired final properties of the 

powder.

6.4.6.3 “Straight-Through ”Process

In the “straight-through” instantization process, agglomeration is carried 

out during drying and immediately after powder particles have been formed. 

This process exploits the benefits of recycling fines generated in the final 

stages of drying to the atomisation zone by creating a powder “core” to which 

moisture droplets and wet particles can adhere. Water from the droplets 

evaporates on contact with the hot air stream (~ 190°C). At this stage the 

particle reaches the cooler region (< 90°C) of the dryer where exhaust air 

conditions are adjusted, so that the discharged powder contains a moisture 

level of 6-7 %. If the drier is fitted with an integrated fluid-bed (static bed), 

then a higher moisture content (9-10%) in the powder is permissible. The 

powder is subsequently transferred through a vibrating fluidised-bed drier, 

where excess water is removed, resulting in a powder of 2.8-3.0% moisture. 

The vibrating drier or fluidised-bed drier consists of a casing with a perforated 

bottom (Figure 6-5). The casing is spring mounted and can be vibrated by 

means of a motor. The powder from the drying chamber is admitted into the 

first section where it is humidified. The vibrations convey the powder through 

the drying sections, where air at a gradually decreasing temperature is 

admitted through the powder bed. Agglomeration takes place in the first stage 

of drying, when the particles adhere to each other. The water is evaporated 

from the agglomerates during their passage through the drying sections. The 

screened and instantized particles are conveyed by the cooling air to the 

cyclones, where they are separated from the air and packaged. After 

separation, the fines are fed back to the atomization zone to be agglomerated 

with the wet powder (Singh and Newstead, 1992; Caric, 1994). Excess water 

is removed in the fluidised bed, resulting in a powder of 2.8 - 3.0% moisture. 

Whole milk powder produced by this method produces mechanically more 

stable agglomerates than the rewet-agglomeration process (Woodhams and 

Murray, 1974).
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F-feed, A[H]-hot air, A[C]- cooling air, S-steam, P-Product. Courtesy Alfa
Laval.(Caric, 1994).

6.4.7 Lecithination

A major factor responsible for the low level of acceptability of WMP as 

a consumer product was the difficulty of reconstituting the powder in cold 

water. Considerable mechanical agitation was required to dissolve the powder 

and essentially, warm water was necessary for reconstitution. Therefore there 

was a need for a grade of WMP which was not alone instant but could also be 

readily reconstituted in cold water (Baldwin and Sanderson, 1973).

WMP particles which are covered in a layer of free-fat are water- 

repellent. For a powder to be instant, it should have a good wettable surface, 

which is determined by the free fat content (discussed in section 5.6.5). The 

water-repellency of the particles caused by their fat-coating may be overcome 

by application of a surface active agent such as lecithin dissolved in butter oil. 

As a result, wetting of the powder can take place immediately after a suitable 

interfacial tension has been reached. Lecithin is particularly acceptable, 

because it is a naturally occurring milk component. Lecithin (L-a-lecithin is 

the naturally occurring form, also known as phosphatidyl choline) is a 

phospholipid mixture with hydrophobic and hydrophilic properties and can 

therefore affiliate with both water and lipids. On reconstitution of WMP, it 

acts as an emulsifier (Aurand and Woods, 1973). Lecithin for this purpose is 

sourced from soyabean oil.
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For lecithin to work well in these applications, it must be applied in a 

thin uniform layer to the surface of the powder. Most lecithins are moderate to 

heavy viscous fluids which are difficult to spray in undiluted form at room 

temperature. In such cases, the lecithin can be treated to get a viscosity 

suitable for spraying, by heating or thinning with additional oils such as butter

Lecithination consists of two stages; initially, the lecithin/butter oil 

solution is sprayed onto the powder granules, generally with two fluid 

nozzles, after which the suspension must be spread out to complete the 

coating. This process is called conditioning and is carried out in a fluidised 

bed. A final lecithin concentration and application in WMP should be 0.2% 

(w/w) with a coating of 0.01-0.15 p. in thickness (Pisecky and Westergaard, 

1972).

6.5 Properties of Instant Whole Milk Powder

6.5.1 Particle Size

The particle size distribution of a powder is a measure of the average 

particle diameter and of the spread of sizes on either side of this average 

(Woodhams and Murray, 1974). The particle size of powders affects 

appearance, reconstitution and flow characteristics. It depends on the 

atomization conditions and on viscosity of the concentrate, for example, at 

high atomizing pressures and low viscosities, the particle size decreases 

(Woodhams and Murray, 1974). The average size of particles produced in disc 

atomizer driers is decreased by increasing the peripheral speed of the atomizer 

wheel or by reducing the feed rate of the concentrate. For powders produced 

by spray driers fitted with nozzle atomizers, the average particle size is 

decreased by increasing the pressure at which the concentrate is supplied to 

the nozzle and by increasing the swirl and axial velocities of concentrate 

through the orifice (Woodhams and Murray, 1974). It was also found that 

high inlet air temperatures produced a larger mean particle size and that a high 

atomizing pressure produced a smaller size, for a nozzle atomised feed
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(Bloore and Boag, 1982). The mean particle size for an agglomerated WMP 

should not be smaller than 180(i, the fraction below 125jam not greater than 

20% and the fraction above 500(j, not over 10% (Pisecky, 1990).

6.5.2 Bulk Density

Bulk Density is a measure of the mass of powder which occupies a fixed 

volume. It is normally expressed in grams per millilitre (g/ml). A typical bulk 

density for an agglomerated WMP is ~ 0.45g/ml (1250 taps). The bulk 

density depends on three factors:

1. the density of the milk solids,

2. the amount of occluded air within the particles,

3. the way in which the particles pack together.

The processing variables which have a major effect on the bulk density of the 

powder are (i) the total solids content of the concentrate and (ii) the 

temperature difference between the air and the droplet in the drier 

(Woodhams and Murray, 1974). Inlet air temperature has the greatest effect 

on the bulk density of the powder, with higher temperatures giving rise to 

lower bulk densities. Concentrate flowrate also has a strong influence: high 

flowrates increases bulk density. The effect of increasing the atomizing 

pressure is generally to reduce bulk density but it also increases the effect of 

inlet air temperature and reduces flowrate (Bloore and Boag, 1982).

6.5.3 Particlc Density

Particle density is an expression of the content of occluded air. A high 

content of occluded air may result in the creation of foam on the surface of a 

reconstituted solution. Particle density should be 1.18g/cm3 for instant WMP 

(Pisecky, 1990). The particle density is determined by the drying conditions. 

A high particle density is required because it ensures:

• good sinkability of the particles

• absence of foam or scum

• ease of gas packing (Verhey, 1972).
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The atomization system influences the content of occluded air. Rotary 

atomizers cause a higher occluded air content than pressure nozzles. Other 

factors involved include the feed properties and droplet drying technique. Air 

being whipped into the concentrate is the primary source of occluded air 

(Pisecky, 1990).

6.5.4 Moisture Content

The moisture content of a powder is estimated by evaporating the 

residual water from a known mass of powder in an oven under precisely 

controlled time and temperature conditions or by distilling the water heated in 

toluene (Woodhams and Murray, 1974). Typical values for moisture in instant 

WMP are in the region of 2.7-3.0 %. An excessively low moisture content can 

have an adverse effect on the free fat content while a very high value can 

effect shelf life, especially if the product is being transported to tropical 

countries, as lumps can develop in tins (Pisecky, 1990).

The moisture content of powder is controlled by the relative humidity of 

the exhaust air, which in turn, is controlled by the temperature of the air, or by 

controlling the flowrate of the concentrate into the drier or by adjusting the 

inlet, air temperature. Because there is some gain in moisture due to pneumatic 

conveying and blending and to a lesser extent during storage, it is normal to 

produce powder from the drier at a lower moisture than required, so that the 

final powder is within specification (Woodhams and Murray, 1974). 

According to Bloore and Boag (1982), if the feed flowrate is reduced at the 

same time as inlet temperature is increased, the moisture content of the 

powder drops sharply. Increased inlet temperature reduces the moisture 

content of powders, while increasing the total solids of concentrate also 

causes a slight decrease in moisture levels.

6.5.5 Free Fat Content

The free fat content of WMP is a measure of the amount of fat that can be 

extracted from food powders by an organic solvent. It is meant to represent fat 

on the surface, however, it also includes fat which originates from the pores 

and capillaries within the particle (Buma, 1971b). A technique called Electron
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Spectroscopy for Chemical Analysis (ESCA) was developed by Fadlt et al. 

(1993), which can accurately determine the fat, protein and carbohydrate 

coverage on the outer surface of the powder particles. The chemical 

composition of the surface of whole milk powders produced in laboratory, 

pilot and production plants were similar and consists of 55% fat, 30% protein 

and 15% lactose (Faldt and Sjoholm, 1996).

High levels of free fat are normally caused by abrasion which damages 

the protective coating of phospholipids and protein surrounding the milk fat 

globules. Production of powders with a high free fat content can be avoided 

by reducing pumping of the fluid milk to a minimum, homogenising the 

concentrate prior to drying and handling the powder in a manner which 

minimises abrasion until after the powder temperature has been reduced to 

below 30°C (Woodhams and Murray, 1974). Free fat levels in instant WMP 

vary depending on the type of drying system used. For example, a tall-form 

dryer produces powder of 1.43% free fat compared to a 2.38% for a multi­

stage dryer (Pisecky, 1990).

6.5.6 Flowability

Coarse agglomerated powders have better flowability than powders of 

small mean particle size. Therefore, powders with larger particle sizes are 

preferred. The flowability of marketed powders is between 20-250s, good 

flowability however is less than 80s (Pisecky, 1990).

6.5.7 Heat Classification-Whey Protein Nitrogen Index

This is influenced by the heat treatment prior to concentration. According 

to the ADMI-method, High Heat powders have <1.5 g WPN/ g powder, 

Medium Heat powders have 1.51-5.99g WPN/g powder and Low Heat 

powders have > 6.0g WPN/ g powder. (ADMI, 1971b).

6.5.8 Heat Classification-Heat (Casein) Number

Heat number (also referred to as casein number) is a more accurate 

method than WPNI for determination of the heat classification of milk 

powders. The powder is categorised into one of four heat classes; Low Heat
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(< 80.0), Medium Heat (80.1 - 83.0), Medium-High Heat (83.1 - 88.0) and 

High Heat (^ 88.1). The Heat Number is used as a reference method whereas 

the WPNI is used for routine analysis (IDF, 1982)

6.5.9 Reconstitution Properties

Reconstitutability refers to the ease with which a powder can be 

dissolved in water. Factors affecting reconstitutability include:

1. Structure and physical properties of the powder, for example, particle 

size, shape, density, porosity and specific volume;

2. Chemical properties of the powder, for example, free fat, extent of protein

denaturation;

3. Conditions of reconstitution, for example, temperature and quality of 

water, time and speed of agitation;

4. Age of powder and storage conditions (Walstra and Jenness, 1984a).

The reconstitution properties are also affected by the processing 

conditions e.g. the type of dryer equipment, system of atomization, preheat 

treatment of milk concentrate, total solids and heating, outlet air temperature, 

storage time and temperature (Woodhams and Murray, 1974; Bloore and 

Boag, 1982). Instant WMP should also produce a well reconstituted solution, 

when dissolved in hot water or hot beverages such as tea or coffee (Pisecky, 

1980).

The complete reconstitution of a mass of milk powder is difficult. This is 

because of the wetting of powder particles not only on the water surface but 

also lying above the surface, as water is drawn towards them by capillary 

attraction. The replacement of interstitial air by water through capillary 

penetration is often incomplete, which results in air bubbles between the 

wetted particles. Three phases then co-exist with products of varying 

concentrations. This co-existence is very dangerous, as the space between the 

particles fills with dissolved products. This results in a jelly with islands of 

unwetted powder and residual air. In addition lumps are created, which are 

wet on the outside, dry inside and are impervious to water. This penetration of
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water into the powder can be prevented, when the powder consists of large 

agglomerates and high interstitial air volumes (Wulff, 1980). The process of 

reconstitution involves the following phenomena:

6.5.9.1 Wettability

One the most important properties that instant powder should possess is 

good wettability. Instant milk powders when poured onto cold water, should 

pass the surface at a reasonable rate and produce a liquid equivalent in quality 

and appearance to whole milk, after mixing (Mohr, 1960). Wettability 

depends mainly on the nature of the surface of the particle and the presence of 

fat at the surface inhibits wetting of the particle. It is possible to overcome 

this water repulsion by treating the surface with a surface active agent such as 

lecithin dissolved in pre-butter oil (Pisecky and Westergaard, 1972).

The melting point of fat in the powder also greatly influences the 

wettabilty. Milk powder which contains a butter-fat fraction melting at 19-21 

°C, has better wettability than a powder prepared using butter fat with a 

melting point of 33-35 °C (Baker et al., 1959). Bullock and Winder (1958) 

observed that WMP, when first removed from the drier, exhibits a greater 

wettability than the same powder after storage at room temperature for a short 

period.

6.5.9.2 Penetrability

Penetrability is the ability of powder particles to penetrate the surface of 

the liquid. This property will depend on the structure and porosity of the 

powder and also on the wettability (Wulff, 1980).

Reconstitution Phenomena Milk Powder Properties

Wetting

Penetrating

Dispersing

Sinking

Dissolving

Wettability

Penetrability

Dispersibility

Sinkability

Solubility
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6.5.9.3 Sinkability

Once wetted, the powder particles start dissolving, dispersing and 

simultaneously sinking into the water. Sinkability is the ability of the powder 

particles to overcome the surface tension of the water and sink into the water 

after passing the surface (Singh and Newstead, 1992). In order to achieve 

good sinkability, the density of the particles has to be greater than that of the 

water, so the content of occluded air should be low (Pisecky and Westergaard, 

1972). A large particle size enhances sinkability (Woodhams and Murray, 

1974).

6.5.9.4 Dispersibility

Dispersibility reflects the ability of the wetted, aggregated particles to 

become uniformly dispersed on contact with water. This property decides 

whether or not a powder is instant. It is related to the rate at which lumps and 

agglomerates fall apart. If too much fine material is present, there is a 

tendency for lumps to be cemented by a thick layer of wetted particles. 

Without these fine particles the water penetrates the lumps and causes 

dispersion more readily. In general, large particles are easier to disperse than 

small particles (Baldwin and Woodhams, 1974). The dispersibility of a 

powder can be improved by; (i) keeping the preheat treatment to a minimum; 

(ii) minimising the holding time and heat treatment of the concentrate; (iii) 

increasing the particle size (Singh and Newstead, 1992). Dispersibility was 

also found to improve, if the butter-fat fraction has a melting point of 19- 

21°C, compared to powders produced from butter-fats with higher melting 

points (Baker et al., 1959).

6.5.9.5 Solubility

Solubility is a measure of the final conditions to which the powder 

constituents are brought in a stable suspension. The solubility index is used to 

determine the undissolved residue, which usually consists of denatured whey 

protein, caseins and minerals. Typically, a low solubility index may be the 

result of a high solids concentration or due to excess heat treatment during the 

production process (Singh and Newstead, 1992).
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The solubility index is an indirect measure of the extent of 

denaturation of the proteins and protein-salt complexes in milk powders. The 

greater the solubility index, then the greater the amount of denaturation. The 

solubility index for an agglomerated WMP according to ADMI methods of 

analyses is 0.2ml (ADMI, 1971a). High solubility indices may be caused by:

• Poor Milk Quality,

• Excessive bum-on in the evaporator,

• Excessive holding times for milk concentrates especially at elevated

temperatures,

• Subjecting partly dried powder particles to high temperature air,

• Failure to cool the powder before silo storage or packing,

• Single-stage drying with high exhaust air temperature (Woodhams and 

Murray, 1974).

Inlet air temperature clearly has a dominant effect with higher 

temperatures giving rise to higher solubility values. Higher concentrate 

flowrates and atomizing pressures reduce solubility index, while increasing 

total solids concentration causes only a very small increase. An increase in 

total solids requires an increase in concentrate temperature, if viscosity is to 

be held constant (Bloore and Boag, 1982).

6.6 Compositional Factors that influence the Heat Stability o f Milk and 

Milk Concentrates

There are no reports in the literature relating to the thermal stability of 

instant WMP in coffee. However, much work has been carried out on the heat 

stability of milk and milk concentrates and its influence on powder properties. 

Heat stability refers to the relative resistance of milk to coagulation when it is 

heated to sterilization temperatures (-140 °C). Instant WMP is added to 

coffee at temperatures of ~ 80 °C, which is much lower than sterilization 

conditions. However, the literature dealing with the effects of composition
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and processing (c.f. Sections 6.6 and 6.7) on heat stability may be relevant to 

the production of a coffee stable instant WMP.

pH

Figure 6-6. pH-heat stability of individual milk. (Tessier and Rose,
1964)

6.6.1 pH

Tessier and Rose (1964) found that the milks from individual cows could 

be classified as one of two types (Figure 6-6). Type A milk shows a 

pronounced maximum and minimum in the Heat Stability (H.S.)- pH profile, 

whereas the H.S. of type B milks increases gradually throughout the pH 

range. Most of the milks tested in Ireland are of Type A. The H.S. of 

concentrated milk is much lower than that of unconcentrated milk. However, 

the pH of maximum H.S. for unconcentrated milk is very similar to that for 

concentrated milk, which usually occurs in the pH range 6.4-6.6. However, 

concentrated milk remains unstable at all pH values greater than 6.8 and 

therefore does not possess a H.S. minimum.

Lactose is a major source of acidity when milk is heated. Such acidity is 

responsible for approximately half the decrease in pH. The acidity is mainly 

due to the thermal decomposition of lactose. Also, the acidity derived from 

the primary and secondary effects of the Maillard reaction between lactose
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and the s-amino group of lysine residues will contribute to the pH decrease 

(Sweetsur and White, 1975).

6.6.2 Season/Lactation

In dairying countries with seasonal production patterns, e.g. New Zealand 

and Ireland, the problem of low heat stability occurs primarily at the 

beginning and end of lactation. During this period, the pH of the milk may or 

may not coincide with the pH of the maximum in the pH-H.S. profile (Singh 

andNewstead, 1992).

The urea content of milk is known to have an effect on the H.S. of milk 

and it has been suggested that as much as 80% of the seasonal variation in the

H.S. is due to changes in the urea levels (Holt et al, 1978b).

It was observed that milk powder prepared from summer milk is more 

wettable than powder made from winter milks (Bullock and Winder, 1958; 

Baker et al., 1959). This has been attributed to the lower melting point of the 

fats in summer milk.

_Et3b0sl2vlP6.6.3 Milk Salts

For many years, variations in the H.S. of milk were attributed to 

differences in the salt balance (Sommer and Hart, 1919). However, it has 

since been proven that this is not the case, since colloidal salts such as 

colloidal calcium phosphate (C.C.P.) are important for the structure of casein 

micelles and its removal can markedly improve the H.S. of whole milk (Pyne 

and McGann, 1960, Rose, 1962). Soluble salts such as calcium phosphate, 

also influence the H.S. of milk. Newstead (1977), showed that a reduction in 

the concentration of soluble salts increases the H.S. of concentrated milks.

6.6.4 Milk proteins

Newstead et al. (1977) showed that the H.S. of concentrated milk 

decreases with increasing whey protein concentration. Muir and Sweetsur 

(1978) also found that concentrated milks with high levels of p-lactoglobulin 

were significantly less stable than those with less P-lactoglobulin.

35



Rose (1962) demonstrated that the reaction between denatured [3- 

lactoglobulin and K-casein was a major factor responsible for the complex

H.S.-pH pattern of most milks. Further work by Tessier and Rose (1964) 

suggested that the H.S. patterns of milk are controlled by the proportions of 

micellar surface K-casein and soluble P-lactoglobulin.

Muir and Sweetsur (1978) also showed that the addition of K-casein to 

milk before concentration increased the H.S. of the resulting concentrate over 

the entire pH range.

6.6.5 Urea

The ability of urea to increase the heat stability of raw milk is well 

established (Pyne, 1958, Robertson and Dixon, 1969, Muir and Sweetsur, 

1976, 1977, Holt et al, 1978a). Fox et al, (1980) suggested that the most 

likely mechanism by which urea increases the H.S. is via heat-produced 

ammonia from urea which neutralises the acidity produced during heating. It 

has been suggested that as much as 80% of the seasonal variation in H.S. 

could result from changes in the urea level (Holt et al, 1978b). However the 

ability of urea to improve the H.S. of skimmed milk was decreased due to 

increased severity of homogenisation (Sweetsur and Muir, 1983a). However, 

in contrast to normal milks, urea does not increase the heat stability of 

concentrated skim milk (Muir and Sweetsur, 1977).

6.6.6 Lactose

Generally, lactose is considered to be a destabilising factor in the H.S. of 

milk. Also, urea was found to stabilise milk only in the presence of lactose 

(Kudo 1980, Shabali and Fox, 1982a) The effects of lactose on the H.S. of 

concentrated milks, have not yet been reported.
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6.7 Changes in Milk Components during the Manufacture of Milk

Powder 

6.7.1 Standardisation

This has a negligible effect on milk components (Singh and Newstead, 

1992).

6.7.2 Preheating

It has long been known that preheating milk increases the heat stability of 

the resulting concentrate (Webb and Holm, 1932, Webb and Bell, 1942). 

However, Rose (1962) showed that the true effect of preheating on the heat 

stability of unconcentrated milk was due to a shift in the pH of maximum 

stability. Preheating increased stability where the natural pH of milk was 

lower than the pH of the maximum stability but reduced it if the pH of the 

milk was on the alkaline side of the pH of maximum H.S. (Griffin el ah,

1976).

The main factor influencing the H.S. of reconstituted powders is the level 

of heat treatment applied during the preheating stage. Preheat treatments of 

80-90°C for 10-20 min are commonly used. However, it has been shown that 

preheating temperatures in excess of 100°C with shorter holding times 

produce more stable powders. Heat treatments in the region of 110-125°C for 

30-240s are favoured in New Zealand for the manufacture of heat-stable milk 

powders (Singh and Newstead, 1992). Increasing preheat temperatures (> 

110°C) enhanced the heat stability of skim milk powder even more when urea 

levels in the milk were supplemented (total urea content 70-90mg/100ml) 

(Kelly, 1982). Preheating of milk results in many physical and chemical 

changes including: (1) destruction of bacteria, (2) inactivation of enzymes, (3) 

denaturation of whey proteins, (4) formation of a complex between K-casein 

and p-lactoglobulin, (5) transfer of soluble salts to the colloidal phase, (6) 

modification of casein micelle structure, (7) Maillard browning reaction 

between protein and lactose, (8) decrease in pH, (9) development of 

antioxidant activity, (Singh and Newstead, 1992).
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6.7.2.1 Inactivation o f enzymes

Inactivation of enzymes by heat treatment usually depends on conditions 

such as pH, ionic strength and water activity, as well as the time and 

temperature of heating. Milk contains naturally occurring proteases and 

lipases which degrade protein and fat and may contain similar enzymes 

derived from contaminating micro-organisms and thus heat treatment is 

required for their inactivation (Singh and Newstead, 1992).

6.7.2.2 Protein dénaturation

Whey proteins (principally, p-lactoglobulin and a-lactalbumin) which 

account for approximately 20% of the total milk protein, are heat labile, while 

the caseins are less heat sensitive. During heating to temperatures in excess of 

65°C, dénaturation of the whey proteins occurs and they become attached to 

the casein micelles, via K-casein/p-lactoglobulin interaction. During heat 

treatments, the side chains of some amino acids become reactive and combine 

with other proteins or with other constituents of milk. During dénaturation, 

whey proteins complex with the casein micelles, probably via interaction with 

K-casein and a s2-casein. The extent of dénaturation is also dramatically 

affected by pH, ionic strength, and the concentrations of protein and calcium 

(Hillier et a. I, 1979, Park and Lund, 1984; Dannenburg and Kessler, 1988 ).

Apart from the decomposition of casein during heating, polymerisation of 

caseins as a result of condensation reactions e.g. Maillard-type, also occurs 

(O’Brien and Morrissey, 1989)

6.7.2.3 Casein/Whey Interactions

The formation of a complex between (3-lactoglobulin and K-casein has 

long been recognised (Zittle et al, 1962; Long et al, 1963; Sawyer et al., 

1963). Direct interaction between a-lactalbumin and K-casein when heated is 

limited, if it occurs at all, but the complex formed between a-lactalbumin and 

P-lactoglobulin is able to interact with K-casein (Elfagm and Wheelock,

1977). This results in aggregation and precipitation of the protein complexes 

(Singh and Newstead, 1992).

38



When milk is heated above 90°C, whey proteins denature and interact 

with K-casein on the surface of the casein micelles, forming thread-like 

appendages (Creamer and Matheson, 1980; Mohammad and Fox, 1987). The 

extent of association of denatured whey proteins with casein micelles, is 

markedly dependant on the pH prior to heating. If pH < 6.7, a greater quantity 

of denatured whey protein associates with the K-casein micelles. If pH > 6.7, 

whey protein/K-casein dissociate from the micelle surface, apparently due to 

dissociation of K-casein (Singh and Fox, 1985, 1986). The interactions 

between denatured whey proteins and casein micelles markedly affect the

H.S. of reconstituted milk powder.

Newstead et al. (1977) showed that concentrated milk from which the 

whey proteins had been largely removed, was heat-stable irrespective of 

whether the milk was preheated or not. However, the detrimental effect of 

whey proteins on the heat stability of the caseinate system of concentrated 

milk may be reduced by heat treatment of milk prior to concentration. 

Preheating before concentration, probably causes both the complexation of (3- 

lactoglobulin with the casein micelles and some precipitation of calcium 

phosphate. Thus, casein micelles coated with p-lactoglobulin and calcium 

phosphate may be less susceptible to dissociation during subsequent 

concentration and sterilisation than micelles in non-preheated milk.

6.7.2.4 Distribution o f  Salts

Heating milk reduces ionic calcium, soluble calcium and phosphate, by 

converting them to the colloidal phase. Therefore, because of its association 

with casein micelles, precipitated calcium phosphate does not sediment at 

preheating temperatures up to 85°C (Evenhuis and DeVries, 1956). On 

subsequent cooling, some of the precipitate may redissolve (Kannan and 

Jenness, 1961). Heat treatment has little effect on the monovalent ions of 

sodium, potassium or chlorine (Kannan and Jenness, 1961). However, Hardy 

et al., (1984) reported that changes in the mineral equilibria influence the heat 

stability of sterilized concentrated milk, probably by differences in the 

concentrations of soluble calcium.
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6.7.2.5 Modification o f casein micelle structure

Preheat treatment causes the denaturation of whey proteins and their 

interaction with the casein micelles. The extent and type of association 

between whey proteins and casein micelles depends on the severity of heat 

treatment. (Hostettler el al, 1965; Josephson el al., 1967). The increase in 

size of the casein micelles is thought to be due to the deposition of denatured 

whey proteins on to the micellar surfaces of the casein micelles and the 

precipitation of calcium phosphate (Singh et al, 1989).

6.7.2.6 Interactions o f  Lactose and Proteins

Heat treatment catalyses the Maillard reaction in milk, which involves 

the condensation of lactose with the free amino groups of protein, leading to 

the formation of brown pigments. These pigments result in development of 

off-flavour, loss of available lysine, reduced digestibility and solubility in 

addition to discoloration on milk powders. The reaction rate is strongly 

dependent on pH, time and temperature of heating, water activity and 

temperature during storage (Burton, 1983).

6.7.2.7 Decrease in pH

The pH of milk decreases on heating due to release of H+ ions, caused by 

the precipitation of calcium phosphate and the formation of acids from 

lactose. Pyne and McHenry (1955) attributed 50% of total acidity to lactose 

decomposition, approximately 30% to casein dephosphorylation and the 

remainder to changes in phosphate equilibria. Heat induced changes in pH 

due to shifts in milk salt equilibria are largely reversible but re-establishment 

of equilibrium conditions on cooling is slow, especially following severe heat 

treatments.

6.7.2.8 Development o f  antioxidant activity

The development of reducing substances, such as reactive sulphydryl 

groups which may prevent oxidised flavour development, occurs during 

preheating (Gould and Sommer, 1939, Thomas, 1954). Free thiol (SH) groups 

act as free radical scavengers and thus, as antioxidants in biological and other

40



systems. Whole milk powder produced using high preheat treatment in order 

to generate a high level of sulphydryl groups is resistant to oxidation (Harland 

et al., 1952).

6J.2.9 Changes in antigenicity

For milk powders used in baby-milk formulations, the destruction of 

antigenic properties is essential. The antigenic properties of the 

immunoglobulins and serum albumins are destroyed by heating at 70-80°C 

for 15min, but p-lactoglobulin and a-lactalbumin remain active after heating 

up to 100°C/15mins. Caseins retain their antigenicity on heating up to 120°C 

for 15min (Hanson and Mansson, 1961). Thus, it would seem that the 

antigenic properties of the major milk proteins are not destroyed by the 

commonly-used preheat treatments.

6.7.3 Evaporation

In addition to concentration, evaporation causes numerous changes in the 

milk system which is also dependent on preheat treatment, temperature during 

concentration and time elapsed after concentration (Singh and Newstead, 

1992). This process results in : (1) concentration of solids; (2) some further 

denaturation of whey proteins; (3) increase in colloidal salts; (4) increase in 

casein micelle size and (5) further decreases in pH.

The pH of milk decreases during concentration from an average initial 

value of 6.7 to approximately pH 6.3 at 45% solids (Howat and Wright, 

1934). This is partly due to changes in the salt equilibria, as more calcium 

phosphate is transferred from the soluble to the colloidal phase, with a 

concomitant release of hydrogen ions, which lowers the pH.

Concentration of milk causes closer packing of the casein micelles, 

which are themselves about two-thirds water and higher concentrations of 

whey proteins, lactose and colloidal salts. Casein micelles may increase in 

size due to the increase in colloidal calcium phosphate or due to the 

coalescence of micelles (Walastra and Jenness, 1984a). Also the sensitivity of 

casein micelles to heat increases with increasing concentration (Webb and 

Holm, 1932).
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The viscosity of milk increases with increasing concentration and the 

effect is most marked when the concentration of milk solids exceeds 45%. 

Concentrate viscosity can have a major influence on the size of the droplets 

formed during atomization and hence, on the rate of drying and final powder 

particle size distribution. These factors in turn, affect the physical properties 

of the dried product (de Vilder and Marten, 1974; King et al., 1974; Baldwin 

et al., 1980). Generally, raising the preheat temperature increases concentrate 

viscosity and the effect is greater for longer preheat holding times.

6.7.4 Concentrate heating

Concentrate heating (50-80°C) tended to decrease the solubility index 

and viscosity, but had virtually no effect on free fat, volume of occluded air, 

bulk density or particle density of WMP (non-agglomerated) when the dry 

matter content was < 45% TS. At higher dry matter contents, increasing the 

concentrate temperature increased the free fat levels (de Vilder et al., 1979).

6.7.5 Homogenisation

During homogenisation, the surface area of the fat is greatly increased 

and is covered by plasma components, the major material adsorbed being 

protein. The quality of protein adsorbed varies with the homogenising 

conditions such as pressure and temperature. The major protein adsorbed is 

casein but whey proteins as well as the natural globule membrane material, 

are also present (Mulder and Walstra, 1974). Mol (1975) showed that the 

adsorption of casein onto the fat globule during homogenisation of the 

concentrate, adversely influences the solubility of the final powder because 

casein micelles adsorbed onto the fat globules are less stable during drying 

than those normally present in milk plasma (Singh and Newstead, 1992).

Sweetsur and Muir (1982b) confirmed the destabilising influence of 

homogenisation at high pressures on the heat stability of milk concentrates. 

Marked seasonal differences were also shown in the effects of 

homogenisation on the heat stability of non-preheated whole milk before 

concentration. Summer milks (May-July) were found to be more stable than 

winter (October-December) milks and to be more readily stabilised by added
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phosphate or citrate. Soluble salts, especially calcium, rather than seasonal 

variation in fat content, were shown to be a major determinant factor affecting 

the heat stability of concentrated, homogenised whole milks (Sweetsur and 

Muir, 1982a).

Homogenisation of milk is also known to produce sulphydryl 

compounds, denature proteins (Harper, 1976) and effect changes in milk salts 

such as citrate and phosphate (Rose, 1963), factors that can also influence HS. 

Sweetsur and Muir (1983a) investigated the effect of concentrate temperature 

and pressure of homogenisation on the heat stability of milk. Their results 

indicate that milks with better heat stabilities were produced at moderate 

homogenisation pressures, regardless of the temperature of the concentrate.

Snoeren et al., (1984) found that homogenisation of full cream milk 

concentrate increases its viscosity. Increases in homogenisation pressure 

applied to the concentrate resulted in an increase in moisture content and 

decreases in the free fat content and solubility of spray-dried milk obtained 

from it. These effects appeared to be due to the increase in viscosity of the 

concentrate. According to de Vilder et al. (1979) homogenisation of the 

concentrate decreased the free fat content of the powder and also the viscosity 

of the redissolved powder; however, this was true only for concentrates of < 

50% dry matter content.

Ideally, concentrate viscosity should be constant and as low as possible to 

ensure the best quality instant dried whole milk powder. High viscosity may 

be due to poor milk quality, high protein content, high homogenisation 

pressure or preheating of concentrate to >80°C. This, in turn, may lead to 

impaired product quality (Anderson, 1986).

6.7.6 Spray-drying

The native properties of the milk components are essentially unmodified 

by moderate drying conditions. The normal size distribution of the casein 

micelles and their heat stabilities are substantially recovered on reconstitution 

of spray-dried milk (King, 1965). However, Muir et al., (1978) found that
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spray-dried skim milk powder had improved heat stability compared to 

concentrated skim milk.

During spray-drying, an increase in protein denaturation and aggregation 

is likely to depend on the temperature of the air into which the milk is sprayed 

(inlet air temperature), the degree of concentration and the temperature of the 

concentrate prior to drying, the size of the drying droplets and temperature of 

the drying air/powder mixture exiting from the drier (outlet air temperature). 

The temperature of the droplets approaches that of the outlet air as the drying 

process nears completion (Parry, 1974). Therefore, the outlet air temperature 

is a critical parameter controlling heat damage to dry milk products. However, 

modem spray drier designs based on the multi-stage principle are maintaining 

outlet air temperatures as low as possible. At relatively high outlet 

temperatures, the protein may become insoluble. The insoluble components of 

dry milk are mainly casein, denatured whey proteins and calcium phosphate. 

Under normal spray-drying conditions, whey protein denaturation is 

negligible (Walastra and Jenness, 1984a). Some crystallization of lactose 

occurs in addition to a re-orientation of the more soluble milk salts, 

concentrating chlorides and salts of sodium and potassium in particular, in the 

surface layer of the powder (Bockian et al., 1957). The amino-acid 

composition of the milk proteins is not greatly affected by the drying process; 

normal drying conditions cause only small losses of lysine (Renner, 1983).

6.8 Process Improvements for the Production of Instant Whole Milk 

Powder

Sweetsur and Muir (1982b) set up a study to improve the H.S. of 

homogenised concentrated milk and they found that the most effective 

changes were brought about by (a) high temperature forewarming and (b) 

two-stage homogenisation. The heat stability of milk can also be manipulated 

by use of additives to the milk before processing or to the concentrate before 

drying.
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6.8.1 High temperature fore-warming

The effect of forewarming has largely been attributed to serum protein 

denaturation (Rogers et al., 1921; Sommer and Hart, 1926; Ramsdell and 

Hufnagel, 1953) resulting in the formation of a complex with K-casein 

(Davies, 1959) and significant changes in mineral equilibrium (Leighton and 

Mudge, 1923; Sommer and Hart, 1926; Rose and Tessier, 1959). 

Forewarming also enhances the heat stabilising effect of traditional stabilisers 

such as sodium phosphates and citrates. Traditionally forewarming consisted 

of heating milk concentrate to 90°C/10mins, but in later years, it has been 

shown that higher temperatures (140-150°C) result in milks of higher H.S. 

(Sweetsur and Muir, 1981). Sweetsur and Muir (1982b) subsequently found 

that 145°C /5 s was the most effective forewarming method for improving 

heat stability of homogenised concentrated milk.

6.8.2 Two-stage/multiple pass homogenisation

First-stage high homogenisation pressures may result in some of the 

disrupted fat particles re-aggregating to form clumps, which may be broken 

up by a second homogenisation pass at a lower pressure (Jones and Harper, 

1976). It was observed also that two-stage and multiple-pass homogenised 

concentrated milks are more heat stable than single-stage homogensied milks. 

Such milks were more heat-stable if pasteurised (74°C, 15s) rather than 

forewarmed (90°C, lOmin). This is in contrast to single-stage 

homogenisation where forewarming was more effective than pasteurisation, 

in improving heat-stability of concentrated milk (Sweetsur and Muir, 1982b).

Homogenisation usually occurs after evaporation and before spray- 

drying; therefore, it recommended that the contents of the balance tank 

between the evaporator and the dryer be kept at the lowest level possible, in 

order to minimise residence time. If the residence time is prolonged, 

aggregation of protein may occur, due to a rise in temperature of the 

concentrate and a subsequent increase in the concentrate viscosity (Singh and 

Newstead, 1992).
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6.8.3 Use of additives

The H.S. of milk may be modified by several chemical reagents 

although there are only a few legally permitted food grade additives that can 

be used commercially to increase the H.S. Additives that modify the heat 

stability are given below.

6.8.3.1 Detergents

Anionic detergents such as sodium dodecyl sulphate (SDS) increase the 

heat-stability of milk, as do cationic detergents such as 

cetyltrimethylammonium bromide (Fox and Hearn, 1978, Shabali and Fox, 

1982b). Non-ionic detergents such as Triton X and Tween 60 added to milk 

have no significant effect (Shabali and Fox, 1982b).

6.8.3.2 Aldehydes, Ketones and Sugars

Aldehydes such as formaldehyde and other low molecular weight 

aldehydes increase the heat-stability of both concentrated and unconcentrated 

milks throughout the pH range (Nelson, 1954, Holt et ah, 1978b, Singh and 

Fox, 1985b). Urea acts synergistically with aldehydes in stabilising such 

systems (Muir et ah, 1979, Shabali and Fox, 1982a). The increase in H.S. on 

addition of aldehydes is due to modification of the s-amino group of lysine 

(Holt et ah, 1978b) and to cross-linking of polypeptide chains. Arginine 

residues are thought to be important in H.S. (Shabali and Fox, 1982c).

Addition of simple sugars e.g. glyceraldehyde and erythrose, increases 

the heat stability of both normal and concentrated milks, throughout the pH 

range (Holt et ah, 1978b).

6.8.3.3 A ddition o f salts

Sweetsur and Muir (1982b) demonstrated that in order to ensure the heat 

stability of concentrated milk, stabilizing techniques should be employed 

before homogenisation. Traditionally, salts such as sodium phosphates and 

citrates are added to milk concentrates to improve their H.S. (Sweetsur and 

Muir, 1980). They were found to be effective only if the milk has been 

forewarmed. The stabilising effects of such salts is probably due to their
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ability to modify the pH of the concentrated milk to the value at which its heat 

stability is at a maximum (Pouliot and Boulet, 1991).

6.8.3.4 SH-acting compounds

It has been found that addition of sulphydryl blocking agents e.g. N-ethyl 

maleimide (NEM) or oxidising agents e.g. K I03 (Potassium Iodate) cause a 

large increase in the heat stability of homogenised concentrated whole milk 

(Sweetsur and Muir, 1983b). NEM negates the heat-destabilising effect of 

homogenisation. Cu (copper) which is an oxidising agent also prevents 

homogenisation-induced destabilization (Sweetsur and Muir, 1983b). 

Therefore, destabilization of milk concentrates due to homogenisation can be 

counteracted by preventing sulphydryl group interaction between milk 

proteins.

6.8.3.5 Otli er additives

K-carrageenan and soyabean lecithin have both been shown to increase 

the H.S. of full cream concentrated milk (Hardy et al., 1985). Addition of p- 

lactoglobulin to milk before preheating reduces the heat-stability of 

concentrates prepared from it and homogenisation accentuates the 

destabilizing influence of p-lactoglobulin (Muir and Sweetsur, 1983b).

6.9 Alternative Process for the Production of Instant Whole Milk 

Powder

Traditionally, the production of a WMP involves standardising the whole 

milk to a designated fat content (typically 3.6% (w/v)), heat treating and 

concentrating the milk to 45-50 % (w/v) total solids and spray drying to 

produce a powder of approximately 3% moisture (w/w). This method has 

disadvantages in that;

1. The evaporator is subject to fouling, leading to decreased efficiency and 

product loss (Hols and Van Mil, 1991).
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2. High heat treatment before evaporation for several minutes may be 

required. The aim of this treatment is to reduce the autoxidation of the fat in 

WMP during storage by means of the antioxidant activity of the thiol (SH) 

groups (Kirchmeier et al., 1984), whose concentration increases on heating 

milk at 85-90°C for several minutes. These groups are formed in the whey 

proteins (particularly (3-lactoglobulins) but also, in the membrane proteins of 

the fat globules (Walstra and Jenness, 1984a).

Hols and Van Mil (1991) attempted to address these problems by an 

alternative process method, whereby the raw milk was separated into cream 

and skim milk fractions and given a separate heat treatment. Thus, for thiol 

group (SH) protection against oxidation of the fat, the cream is given an 

optimal heat treatment. The skim milk can be given a low heat treatment and 

the whey proteins are not unduly denatured, resulting in a less cooked flavour. 

An additional advantage is that the viscosity of the concentrated milk should 

be lower which would improve the liquid flow in the evaporator pipes and 

calandria. Furthermore, the lower viscosity of the concentrated whole milk 

when atomised in the spray-dryer will give smaller droplets and thus better 

powder quality (Van Mil et al., 1988).

The results show that both the traditional and alternative processes 

produce similar powders except for the whey protein nitrogen index and free 

fat content. The traditional process produced a powder with greater 

denaturation and higher free fat content.

6.10 Fat-Filled Agglomerated Powders

In the 1960’s, fat-filled powders were developed for use in coffee 

creamer formulations. Fat-filled powders are produced by recombining an oil 

e.g. coconut or palm kernel oil with skim milk concentrate. The 

concentrate/oil mixture is then homogenised and dried in a similar fashion to 

whole milk concentrate. They are preferred over WMP as they give better 

dispersion, are acid-stable and have better whitening ability (Hayman, 1995). 

However, whole milk powder does have advantages over fat-filled powders.

48



In whole milk, the natural emulsifying constituents in the milk appear at the 

surface between the fat and other milk components. However, the fat globules 

are covered by proteins in fat-filled powders, which are orientated towards the 

globular surface as a result of homogenising fat in the concentrate. This 

reduces the H.S. of the proteins, causes risk of denaturation in the protein 

fractions when drying and agglomerating and may decrease powder solubility 

(Hansen, 1980). A modification of the normal agglomeration technique where 

fines are recirculated to the cone of the spray-drying plant rather than the 

atomising zone, was successful in achieving powders with improved 

solubility (Hansen, 1980).

Melting point is an important factor when choosing an oil, as it can 

influence powder properties such as free fat, dipersibility and wettability 

(Baker et al, 1959; Baker and Samuels, 1961; Hansen, 1980). A low melting 

point coconut oil causes a higher free fat content than the same oil with a 

higher melting point (Hansen, 1980). Powders with better dispersibility and 

wettabilty were produced from low melting point butterfat (Baker and 

Samuels, 1961; Baker et al, 1959). However, powders produced from low 

melting point fats may have poor flow properties that result in problems 

during handling (Hansen, 1980).
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7. MATERIALS AND METHODS

All reagents used were Analar Grade.

Distilled reverse osmosis-treated water was used for all analysis, unless stated 

otherwise.

7.1.1 New Zealand Dairy Research Institute Coffee Sediment Test

2g of WMP was added to 100ml of coffee (8g/l) at 80°C. A single batch 

of Nescafe Gold Blend reconstituted in distilled deionised water was used 

throughout. The solution was stirred using a spoon for 6 sec (6 turns clockwise 

and 6 turns anti-clockwise) and allowed to stand for 10 min, before transferring 

into the ADMI (American Dry Milk Institute) Solubility Index tubes. After 

standing for a further 5min, the sediment volume (ml) was measured following 

centrifugation (Super-Quatro, Funke Gerber GmbH, Berlin, Germany) at 164g 

(force of gravity) for 5 min (New Zealand Dairy Research Institute, 1983). As a 

general guideline coffee-stable WMPs yielded sediment volumes of < 0 5 ml, 

while coffee-unstable powders yielded volumes of ^ 1.0ml. (Figure 7-1).

Figure 7-1. Coffee-stable WMP (left) and 

coffee-unstable WMP (right).

Test reproducibility was checked using one sample each of coffee-stable 

and coffee-unstable WMP (Appendix A, Table A2). The standard deviations 

were 0.11ml and 0.15ml for the coffee-stable and unstable samples respectively.
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The S.D. values were substantially higher than the figure o f 0.05ml, which was 

quoted within a draft o f the same coffee test for dried milk and milk products, 

soon to be published by the IDF.

7.1.2 Application of the coffee sediment test

Initially, it was decided to assess the application o f the coffee test in 

detail. Twenty instant WMPs, defined by the industrial collaborator, as being 

coffee-stable and coffee-unstable, were subjected to a testing routine involving 

variation of several parameters:

1. Temperature o f the coffee solution/acidified water;

2. pH of the coffee/acidified water;

3. Effects o f surface active agents;

4. Mechanical effects;

5. Particle size classification o f the test powders and

6. Water hardness/effect of NaCl and KC1

7.1.2.1 Temperature o f  Coffee Solution

In order to simulate behaviour in coffee solutions, 2g of WMP was added 

to acidified water at temperatures within the range 20-90°C. The dosage of 1 M 

HC1 used (600 ja.1 ) was based on a measurement o f the volume required to give 

a final pH o f ~ 6.2, which typically resulted from the combination o f WMP and 

coffee. The effect o f reconstitution o f 2g WMP in acidified water (to attain a 

final pH ~  6.2) before heating to temperatures in the 20-90°C range was also 

determined (Teehan and Kelly, 1996b).

7.1.2.2 p H

The effect o f pH on sediment formation was determined directly by prior 

dosage o f 1 M HC1 at incremental levels to the test water at 80°C and indirectly 

by varying the coffee concentration (Teehan and Kelly, 1996b).

7.1.2.3 Surface Active Agents

A variety o f surface active agents were added to the test water along with 

coffee at 80°C, before addition of the WMP. The final pH o f the coffee-WMP
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supernatant was also noted, in addition to the sediment volume. Anionic surface 

active agents used included Lauryl Sulfate (Sodium dodecyl sulfate) supplied 

by Sigma Chemical Co. (USA) and Artodan™ (Sodium stearyl-2-lactylate) 

supplied by Grindsted Products Ltd., (Denmark). Non-ionic surfactants such as 

Tween 60 (polysorbate 60) (Quest International, UK) and SP50 (E473) (Sucrose 

stearate-palmitate ester) Sistema, (Roosendaal, The Netherlands) were also 

assessed for their effect on the coffee stability of samples of WMP with known 

coffee sediment volumes (Teehan and Kelly, 1996b).

7.1.2.4 Mechanical Effects

WMP was combined with the coffee by stirring with a spoon for 6s 

according to the Coffee test. An attempt was made to introduce a more objective 

means of agitation using a mechanical mixer under controlled conditions. A 

laboratory mixer with digitally-controlled propeller speed (Janke and Kunkel, 

Ika Werk, Staufen, Germany) was evaluated initially in a calibration test to 

simulate the degree of sedimentation of the spoon. The stirrer was used instead 

of the spoon over a range of propeller speeds (550-3600rpm) for a 6s duration 

in the test. A Solubility Index Blender (Labinco B.V. Breda, The Netherlands) 

with a programmed propeller speed of 3600 rpm for 90s was also used to 

investigate the effect on dispersion of WMP in coffee (Teehan and Kelly, 

1996b).

7.1.2.5 Prior Reconstitution o f  WMP

2,0g of WMP was added to 14.Og water at 50°C (12.5% milk solids) and 

subsequently combined with the coffee solution (9.3g/l), prepared in the 

remaining 86g test distilled water. Sediments were recorded for coffee-stable 

and coffee-unstable WMPs (Teehan and Kelly, 1996b).

7.1.2.6 Particle Size

A Malvern Mastersizer (Malvern Instruments, Malvern, U.K.) was used 

to estimate the particle size distribution profiles for coffee-stable and coffee- 

unstable WMP. Sieve fractions were also prepared using a Sieve Shaker 

(Endecotts Octagon 200, London, UK) or an Alpine Jet sieve (APV Co. Ltd.,
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Essex, UK). Using the Sieve Shaker, 100 g o f WMP was sieved for 5 min and in 

the case o f the Alpine Jet Sieve 20 g o f WMP was sieved over a 3 min interval. 

The sieves were 45 ji, 106 fi, 160 |i and 250 ¡j. in mesh size (Haver and Boeker - 

DIN 4188 sieves). Powder remaining on the sieves was weighed and 2.0g of 

each fraction was used in the coffee-test to determine the effect o f particle size 

on coffee-stability (Teehan and Kelly, 1996b).

7.1.3 Pilot-scale production of instant WMP

The effect o f the following variables on instant WMP powder 

characteristics and coffee-stability was investigated:

1. Preheat treatments, (a) 94°C x 30s (evaporator), (b) 72°C x 2 min 

(Evaporator), (c) combination heating 85°C x 2min (pasteuriser) followed by 

94°C x 10s (evaporator); (d) 85°C x 2min (pasteuriser), cool (10°C), 94°C x 

10s (evaporator);

2. Fat percentage o f 24%, 26%, 28% and 30% in the powder;

3. Protein percentage o f 25%, 28% and 31% in the powder;

4. Lecithination o f 26% and 30% fat powders at 0.2% (powder basis);

5. Nozzle combinations (No: orifice x core): (a) single nozzle: 56x21, (b) triple 

nozzle combination: 67x20 (c) triple nozzle combination: 69x20. (Spraying 

Systems Ltd., Surrey, England).

Preheat treatment was generally undertaken as an in-line step (Niro- 

direct contact heater) before entry o f milk into the first calandria o f  the 

evaporator. The preheater (Figure 7-4) consisted o f an indirect heater which 

elevated the temperature from 4°C to 65°C. Using a combination o f recovered 

flash vapour

(infusion heating) and direct steam injection, the milk was heated from 65°C to 

the final temperature required. Additional heating was occasionally carried out 

in a regular plate heat exchanger (pasteuriser) when combination heating 

experiments were carried out (Teehan and Kelly, 1996b).
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1. Westfalia Separator MSD 

50-01-071, Germany.

2. Plate and Frame UF-36, DDS, 

Silkeborg, Denmark, (Membrane 

GR61PP Molecular cut off size: 

20,000Da.)

3. Pasteuriser-Eurocal 28MP Ernst P. 

Fischer, Ebriechdorf, Austria.

4. Niro 3-Effect falling-film evaporator 

with thermal compression , Soeborg, 

Denmark.

5. Niro SOAVINS2066P, Parma, Italy. 

2-stage Homogeniser.

6. Niro Consistator 22A, Series 21, 

Soeborg, Denmark.

7. Niro DPS Gas dispenser nozzles, 

Soeborg, Denmark.

8. Niro TFD-0025-N, Soeborg, 

Denmark. C Evaporation capacity 

lOOkgs dry matter/hr.

9. Niro, Soeborg, Denmark (Lecithin: 

Butter Oil; 33% :66%)

Figure 7-2. Schematic for the

experimental production of

lecithinated WMP at Moorepark

Technology Ltd., Fermoy, Co. Cork.
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Figure 7-3. Heat-regeneration 

section of the evaporator in 

Moorepark Technology Ltd., 

Fermoy, Co. Cork.

Figure 7-4. Preheating and holding section 

in the evaporator at Moorepark 

Technology Ltd., Fermoy, Co. Cork, 

Ireland.

Figure 7-5. Homogenizer and High Figure 7-6. Vibrofluidiser, Moorepark

Pressure Pump section of Moorepark Technology Ltd., Fermoy, Co. Cork,

Technology Ltd., Fermoy, Co. Cork, Ireland.

Ireland
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A schematic for the production of instant WMP is shown in Figure 7-2. 

Fresh milk was supplied from Dairygold Co-op, Mallow, Co. Cork and its 

composition analysed (Milkoscan 133B Foss Electric, Denmark). The milk was 

separated at 45°C and the cream or skim was used to standardise the milk to the 

required fat level. Standardisation o f the protein level was achieved by addition 

of ultrafiltration permeate or retentate prepared from the same milk after cream 

separation. A number o f individual preheat temperatures and combination 

heating/cooling/heating regimes were evaluated using the pasteuriser and the 

Direct Contact Heating system of the Niro evaporator (Niro 3-effect falling-film 

evaporator with thermal compression) in Moorepark Technology Ltd. (MTL) 

(Figure 7-3 and Figure 7-4). The milk was concentrated to 43-44% T.S. (w/w) 

(% T.S. measured using Lab wave 9000™ CEM Corporation, Mattews, North 

Carolina 28106, USA ) in the Niro evaporator and heated to 60-65°C using an 

in-line scraped-surface heat exchanger. Following homogenisation in two stages 

at 80/20 bar (Figure 7-5), the concentrate was delivered at 2 bar to the high 

pressure pump and nozzle atomised at 180-220 bar. Spray drying was carried out 

in the Tall-Form drier at MTL, with vibro-fluidising system (Figure 7-6). 

Lecithin was applied using butter oil (55-60°C) (Anhydrous milkfat, Dairygold, 

Cork, Ireland) as a carrier (Figure 7-6).

Table 7-1. Evaporator and Spray-Dryer Operating Conditions.

Processing Parameter Value

Concentrate total solids 43 % (w/w)

Concentrate heater 60°C

Spray Drier

Inlet temperature (chamber) 195°C

Outlet temperature (chamber) 70°C

Temperature fluidised bed No. 1 60°C

Temperature fluidised bed No. 2 30°C
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7.1.4 Small scale production of concentrate

Sixty litres of milk was standardised to produce instant whole milk 

powder with a fat content o f 26%. The milk was preheated using the indirect 

heating section o f an APV heat exchanger (UHT-Pasilac, Silkeborg, Denmark) 

(flowrate=150 1/h), and concentrated in a single-stage evaporator (Type Fl-Lab 

3 (evaporation capacity 45 Kgs/h) Anhydro, Copenhagen, Denmark). 5kg 

batches o f concentrate were adjusted to 43, 44 and 45% TS (% TS measured 

using Labwave 9000™ CEM Corporation, Mattews, North Carolina 28106, 

USA) and homogenised in a two stage homogeniser (APV-Gaulin D2400, 

Liibeck, Germany) at 75/25 bar. A control was prepared at 43% TS and 

homogenised at 80/20 bar for comparison. The homogenised concentrate was 

heated to 60°C in a batch pasteuriser. Samples o f concentrate, homogenised 

concentrate and heated homogenised concentrate were tested for coffee-stability. 

Sufficient concentrate was added to the coffee to yield a final milk solids o f 2% 

in the coffee (Appendix C).

7.1.5 Fat-filled powder

Whole milk powder was produced using an alternative method (Hols and 

van Mil, 1991). Whole milk was separated into skim-milk and cream using the 

system in Figure 7-2. The skim-milk was concentrated to 40% TS. The % fat in 

the cream was determined according to the Irish standard described by the 

Institute o f  Industrial Research and Standards (1968). Cream was heat-treated to 

90 °C x 30s and cooled to 45°C. The cream and skim concentrate (~ 40% TS) 

were recombined to yield the % fat powder required (i.e. 13% fat in the 

concentrate) for a 26%. After confirmation of the desired fat content, the % TS 

was adjusted to 43% and the concentrate homogenised and spray-dried under the 

conditions for instant WMP (Table 1). Similarly butter oil (Dairygold, Mallow, 

Co. Cork. Ireland) at 45°C was recombined with skim concentrate using a 

Silverson Mixer (Model GX -Immersion Type, Waterside, Chesham, Bucks, 

England) and dried as for instant WMP. An instant WMP control containing 26 

% fat was prepared from the same milk.
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7.1.6 Evaluation of powder properties

7.1.6.1 % Moisture

During production, the % moisture was measured using the Dickey John 

(GAC III, Dickey John Corporation, USA). The oven method (A/S Niro 

Atomizer, 1978a) was used to confirm the results: l.Og o f powder was weighed 

into an oven dish and allowed to dry for 4.5 hours at 102°C (Harvard/Lte Vulcan 

Laboratory Oven, Gelman Filtration systems, Oldham, Lancashire, UK). The 

dishes were cooled in a dessicator before weighing. The difference between the 

initial and the dried weights o f the sample is defined as the % moisture.

7.1.6.2 Bulk Density

100 g of powder was weighed into the glass graduated cylinder and 

tapped using the Engelsmann Ludwigshafen tapping device (Germany). The 

bulk density was recorded as Kg/m3 at 100 and 625 taps (IDF, 1995).

7.1.6.3 Wettability

lOg o f instant WMP was evenly spread on the surface o f distilled 

water at 25°C, using the apparatus shown in Figure 7-7. The time taken for all 

the particles o f the sample to become wetted was observed and recorded (IDF, 

1979).

Perspex Tubing

r <—  Perspex
Plate

^ — Glass Beaker

Figure 7-7 Apparatus for determination of wettabilty of instant WMP 

(IDF, 1979).
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7.1.6.4 Dispersibility

In order to determine the ability o f milk powder to disperse in 

water at 80°C, 26g of WMP was added to 200ml water at 80°C and stirred with 

a fork for approximately 30 turns over a 15 s period. The solution was then 

immediately passed through a 160 |j. wire guage sieve o f  diameter 50mm. The 

number o f lumps was then compared with the dispersibilty standard scale. On a 

scale ranging from 1-9 the high values, indicate poor powder dispersibility. 

(The chart and method was sourced from industry and therefore cannot be 

referenced for reasons of confidentiality).

7.1.6.5 Solubility Index

According to the ADMI method, 13g of WMP was added to 100ml of 

water at 24°C. This was mixed in a Solubility Index mixer (Labinco B.V., 

Breda, The Netherlands) at 3600rpm for 90sec. After standing for 15min, the 

solution was transferred to 2 solubility index tubes (50ml) and centrifuged 

(Funke Gerber GmbH, Berlin, Germany) at 164 g (g force gravity) for 5 min. 

Using a vacuum pump the sediment-free liquid was removed from above the 

5ml mark and the tube refilled with 24°C water up to the 50ml mark. The 

sediment was dispersed into the water phase and re-centrifuged. The sediment 

volume was recorded per 100ml. (ADMI, 1971a)

7.1.6.6 Particle Density, Occluded air and Interstitial air

The particle density (expressed as mass in g having a total volume of 1 

cm3) was calculated by measuring the air-free volume o f a known weight of 

powder using the Accupyc 1330 (Micromeritics, USA). Using this data and the 

bulk density (100 taps) o f the powder, the volume of occluded air and interstitial 

air was derived (A/S Niro Atomizer, 1978b). The occluded air represents the 

volume o f air within powder particles, while the interstitial air refers to that 

trapped between the particles.
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7.1.6.7 Vacuum packing and C 0 2 equilibration o f  WMP

WMP (2g) was vacuum packed into sachets, which were opened under 

the level o f the coffee using a scalpel blade so as to prevent contact with the 

atmosphere. The air was removed by vacuum-packaging (Swissvac Transmatic, 

Transvac-Maschein AG, Luzern, Switzerland).

lOg o f WMP was equilibrated in a balloon o f carbon dioxide overnight. 

The 12 x 26cm bags (vacuum-pack quality) were heat sealed on introduction of 

the carbon dioxide. The bags were then shaken with the carbon dioxide for 1 

min and stored overnight before testing for coffee-stability. The sachets were 

opened under the level o f the coffee, during the coffee-test

7.1.6.8 Analysis o f  the surface composition o f  WMP

Electron spectroscopy for chemical analysis (ESCA) is a 

technique used to analyse the surface composition o f complex powder surfaces 

(Faldt et al. 1993). Using this technique the percentage coverage of components 

such as protein, fat and carbohydrate can be determined. 4 samples o f instant 

WMP (2 industrial WMPs-one coffee-stable and one coffee-unstable WMP; and 

2 experimentally produced WMPs-one coffee-stable and one coffee-unstable 

WMP) were analysed using ESCA analysis, by YKI (Swedish Institute for 

Surface Chemistry), Stockholm, Sweden.

7.1.7 Evaluation of powder chemical properties

7.1.7.1 % Fat

Fat content o f the powder was determined according to the Rose 

Gottliebe Method (IDF, 1987): lg  o f powder was dispersed into 10ml distilled 

water at 50 °C. The fat was extracted from the powder using 2ml NH3 -solution 

(35% specific gravity 0.88, BDH Laboratory Supplies, Poole, England), 10ml 

absolute ethanol (extra pure, Merck, Darmstadt, Germany), 25ml diethyl ether 

(Alkem Chemicals, Dublin, Ireland) and 25ml Petroleum ether (boiling point 

40-60 °C, Alkem Chemicals, Dublin, Ireland) for the first extraction. Solutions 

were mixed with a vortex for 30s after addition o f each solvent. For the second 

and final extraction, 5 ml o f ethanol, 15ml diethyl ether and 15ml petroleum
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spirits were used. After each extraction the contents o f the Rose Gottliebe tubes 

were centrifuged for 5 min at 600rpm and the ether (top) phase siphoned into a 

weighed beaker. The ether was evaporated over a boiling water bath. The 

beakers were placed in an oven at 102°C for 1 h after the final extraction and 

then weighed after cooling. The fat remaining in the beaker was weighed and 

calculated as % total fat o f the powder.

7.1.7.2 % Free Fat

The content o f free fat on the surface o f milk particles was 

defined as the evaporation residue remaining after 15min extraction with carbon 

tetrachloride (BDH Laboratory Supplies, Poole, England): 10 g o f WMP was 

added to 50ml o f carbon tetrachloride and shaken for 15min (Griffin flask 

shaker, Griffin and George Ltd., England). This solution was filtered through 

Whatman No. 1 filter paper (Whatman International Ltd., Maidstone, England) 

and the filtrate evaporated on a hot plate. The content o f surface fat was 

expressed as a % of the powder (A/S Niro Atomizer, 1978c).

7.1.7.3 % Protein

Total Protein in the powder was determined by a modification o f the 

Kjedahl method. 1 g o f a 10% TS solution of the WMP reconstituted at 50°C 

was used for the analysis (IDF, 1993). The sample was digested (Kjeltec 2020 

digestor, Tecator, Perstorp Analytical Ltd., Bristol, England) with concentrated 

sulphuric acid (98% nitrogen free, Alkem Chemicals, Dublin, Ireland.) using 

potassium sulphate and copper sulphate as a catalyst (1000 Kjeltabs CX, 

Thompson & Capper Ltd., Cheshire, England). Organic nitrogen is converted to 

ammonium sulphate which is not volatile at the digestion temperature (450°C). 

Treatment o f the digest with 40% NaOH results in the conversion o f ammonium 

sulphate to ammonium hydroxide which is distilled (Kjeltec 1002 distillation 

unit, Tecator, Perstorp Analytical Ltd., Bristol, England) over into 50ml o f a 

4% boric acid, where it is converted into ammonium borate. The ammonium 

borate is then back titrated with HC1 to determine the concentration o f N. The % 

crude protein is given by the % nitrogen x 6.38.
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Total Protein was also evaluated using the Leco® FP428 (Leco 

Instruments, USA).

7.1.7.4 Determination o f  lecithin

In order to evaluate the % lecithin, the fat in the WMP was initially extracted 

using cellulose extraction thimbles (25 mm x 80 mm) (Whatman International 

Ltd., Maidstone, England) petroleum ether (38 °C- 48 °C) (Alkem Chemicals 

Ltd., Dublin, Ireland), and a Quick-Fit Soxhlet extractor (AGB Scientific, 

Dublin, Ireland). 20ml o f the extract was evaporated to dryness in a crucible and 

dried in an oven for lhr, before charring with MgO and ashing in a muffle 

furnace at 800°C for 2 hrs. The ash was dissolved in 5N HC1 and brought to 

100ml in a volumetric flask. The phosphorus content o f the solution was 

determined spectrophotometrically. All glassware for the analysis was acid 

washed in a 10% nitric acid bath overnight. The % lecithin is given by mg 

phosphorus/L x 0.007926. (Wewala and Baldwin, 1982).

7.1.7.5 Assessment o f  Heat Class- Whey Protein Nitrogen Index

The heat classification of the powder was determined by a modification of 

the WPNI method (ADMI, 1971b) (2.7g WMP was reconstituted in 10ml 

distilled water at 50°C. 1ml filtrate was added to 10ml saturated NaCl and two 

drops 10% HC1 added, before measuring % transmission on the Hitachi U-1100 

Spectrophotometer, Tokyo, Japan). See Table 7-2 for heat classification of milk 

powder (ADMI, 1971b).

7.1.7.6 Assessment o f  heat class-Heat Number reference method.

The casein and heat-denatured milk serum protein in 30ml o f 10% TS 

solution o f WMP (reconstituted at 50°C) was precipitated at a final pH of 

approximately 4.8 by adding acetic acid (10% w/v) and sodium acetate (1 M) 

solution. The total nitrogen o f the filtrate and that o f the original reconstituted 

WMP solution were determined by the Kjeldahl method (as for 1.2.53 %

protein above). The heat number can be calculated from these results and its heat 

classification determined (Table 7-2) (IDF, 1982).
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Table 7-2. Heat classification of milk powders

Heat Number Heat Class

WPNI 

(mg WPN dried milk)

80.0 or less Low Heat >6.0

80.1 to 83.0 Medium Heat 4.5 to 5.9

83.1 to 88.0 Medium-High Heat 1.5 to 4.4

88.1 or more High Heat <1.4

7.1.7.7 Determination o f  Total Calcium in WMP

Following precipitation of a 10 % TS solution of WMP (reconstituted at 

50°C) using 15% trichloroacetic acid (BDH Laboratory Supplies, Poole, 

England), the filtrate was analysed for calcium using atomic absorption 

spectroscopy (Spectra AA-20, Varian Techtron Pty. Ltd., Mulgrave, Victoria, 

Australia) (IDF, 1984). All glassware for the analysis was acid washed in a 10% 

nitric acid bath overnight.

7.1.7.8 Determination o f  Ionic Calcium in WMP

Total and ionic calcium levels were measured in the same WMP sample 

solution (10% TS). Ionic calcium was measured with an Orion Calcium 

electrode (ATI Orion Research Inc., Boston, USA). The electrode was 

calibrated with standards of 20 mg/1 and 100mg/l C a '' (Calcium standard 

922006, Orion Research Inc., Boston, USA). All standards and samples were 

kept in a water bath at 25°C, before measurement. Glassware for the analysis 

was acid washed in a 10% nitric acid bath overnight.

7.1.7.9 Determination o f  total water hardness

Total water hardness was determined according to the Standard 

method of the American Public Health Association (1992): 25ml of sample were 

initially diluted to 100ml with distilled water; 2ml of ammonia buffer and an 

indicator tablet were added and the mixture titrated with 0.02N EDTA until the 

end point was reached (purple to blue colour change).
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To investigate the effect of variation in water hardness on the coffee 

stability of instant WMP, different dilutions were prepared using a stock 

solution of MgCl2-6H20  and CaCl2 (Greutzmacher and Bradley, 1991).

7.1.7.10 Buffering capacity

The buffering capacity of 30 ml samples of 10% TS solution of WMP at 

20°C was determined by titration from the natural pH of the solution to pH 2.0 

with 0.5 M HCL and then back titrated with 0.5M NaOH to pH 11.0 (Lucey,

1992). Acid or base was added in 1 ml increments by a Mettler DL21 

Autotitrator (Mettler, Greifensee, Switzerland). A computer programme was 

developed to calculate buffer indices, according to Van Slyke (1922), for each 

addition of titrant and buffering curves were prepared by plotting these indices 

as a function of pH (Lucey, 1992). The buffering capacity (dB/dpH) was 

calculated by the following equation (Van Slyke, 1922):

dB = (ml of acid or base added') x (normality of acid or base) 

dpH (average volume of sample) x (pH change produced)

7.1.7.11 p H  measurements

All pH measurements were carried out using a Corning 240 pH 

Meter. (Corning Science Products, Corning Glassworks, Corning, NY 14831, 

USA).

7.1.7.12 Effect o f  Storage

The coffee sediment and the bulk density of the powders were after 

storage at 15°C and for 1 month.

7.1.7.13 Note on drawing o f  graphs

In the case of Figures 8-9 and 8-10 and in Appendices A, E and G, an 

attempt was made using Microsoft Excel software, to produce more smooth-line 

curves. However, manipulation of the data tended to misrepresent the findings, 

therefore the data has been plotted using the experimental values found.
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8. AIMS AND RESULTS

8.1 Aims

The aims of this project were (a) to examine the influence of factors such 

as temperature, pH and water hardness, which are directly associated with the 

coffee environment, on the stability of instant WMP; and (b) to investigate the 

effects of individual steps in the production process on powder properties and 

subsequently coffee-stability. The results of the investigation are divided into 

two sections. The first sections deals with data relating to the application of the 

coffee sediment test i.e. measurement of flocculation associated with instability 

upon addition of WMP to hot coffee. Follow-up studies at pilot processing level 

and their effects are considered in the second section.

8.2 Part A; Application of the Coffee Sediment Test

8.2.1 Temperature of reconstitution

8.2.1.1 Solvent pre-heated before reconstitution o f  WMP

The stability of WMP when added to acidified water at increasing 

temperatures is shown in Figure 8-1. The sediment volumes for coffee-stable 

and unstable powders were <0.5 ml at temperatures up to 50°C. Above 50°C, 

higher sediments were produced with increasing temperature for both coffee- 

stable and -unstable, but sediment levels were consistently higher at all 

temperatures for the unstable WMP (Teehan et al., 1995; Teehan and Kelly, 

1996b). The % protein in the supernatant following centrifugation of the 

solution, decreased with increasing temperature and sediment (Figure 8-1).

8.2.1.2 Heating after reconstitution o f  WMP

WMP was reconstituted at 24°C in acidified water and heated to various 

temperatures. Sediment volumes were recorded. Both coffee-stable and coffee- 

unstable WMPs yielded very low sediments (<0.1ml) at temperatures up to 75°C 

(Figure 8-2). However, a coffee-unstable WMP produced a sediment volume of
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3.0 ml at 90°C compared to <0.1 ml for a stable WMP (Teehan et al., 1995; 

Teehan and Kelly, 1996b).
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Figure 8-1. The effect of reconstitution temperature on sediment 

formation and supernatant protein when coffee-stable and coffee- 

unstable WMP were added to acidified water (final solution pH ~

Temperature (°C)

Figure 8-2 The effect of heating on sediment formation, following 

reconstitution of coffee-stable and coffee-unstable WMP in acidified 

water (final solution pH -6.2).
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The acidity of coffee solutions challenges the stability of milk powder 

when reconstituted. The typical pH value of an aqueous coffee solution 

containing 0.8 % Nescafe Gold Blend coffee solution is 4.8 at ambient 

temperature. After reconstitution, the coffeeAVMP mixture has a pH of ~ 6.2. 

Thus, milk powder exerts a strong buffering effect on the coffeeAVMP solution. 

The sensitivity of WMP to pH on addition to coffee was simulated by replacing 

coffee with different levels of acid (1 M HC1) in water at 80°C.

Coffee-unstable WMP showed a gradual increase in sediment as the pH 

of the mixture decreased from 7.0 to 6.6 at 80°C (Figure 8-3) (Teehan et al., 

1995). However, sediment formation increased rapidly from < 1.0 ml to ~ 4.0 

ml when pH was lowered from 6.5 to 6.2 for coffee-unstable powder compared 

to a maximum sediment of -2.5 ml at the lower pHs for coffee-stable samples. 

The % protein in the supernatant decreased as the pH was decreased (Figure 8-

3).

Acidified water did not distinguish between coffee-stable and coffee- 

unstable WMP at pH 6.0 or below as sediment levels reached > 5.0 ml. An 

alternative means of pH manipulation such as increasing the level of coffee 

during reconstitution gave rise to lower amounts of sediment formation (Figure 

8-4) compared with those obtained with acidified water (Figure 8-3). Sediment 

levels in coffee increased steadily as pH was lowered, but at all times were much 

lower than in acidified water. For example at pH 6.2, the coffee-stable WMP 

formed a sediment of 0.5 ml compared with 2.0 ml for the coffee-unstable 

WMP. However, in acidified water at pH 6.2, the sediments for the coffee-stable 

and coffee-unstable WMP were 2.0 ml and 4.5 ml respectively (Teehan et al, 

1995; Teehan and Kelly, 1996b). Therefore, it would appear that some of the 

constituents of coffee may contribute to stabilising the system against the 

adverse pH effects, as the sediments for both coffee-stable and coffee-unstable 

WMP are lower in reconstituted coffee than in acidified water at pH 6.2.

8.2.2 pH
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- ♦ —Coffee-stable WMP Coffee-unstable WMP
—* — Coffee-stable supernatant — Coffee-unstable supernatant

Figure 8-3 The effect of pH on sediment formation and 

supernatant protein for coffee-stable and coffee-unstable 

WMP added to acidified water at 80°C

pH

Figure 8-4 The effect of pH change (due to incremental 

addition of coffee) on sediment formation of coffee-stable and 

coffee-unstable WMP at 80°C.
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In comparing sediment volumes produced with different agitation speeds 

for 6s, it was found that a propeller speed of 550 rpm was equivalent to hand 

mixing using a spoon over a similar time. Increasing propeller speed from 500 

to 1500 rpm decreased sediment volumes significantly (Figure 8-5). The 

reduction was greater for coffee-unstable WMP. On the other hand, high speed 

agitation at 3600 rpm for 90s in a Blender (Labinco Solubility Index Mixer) 

completely dispersed both stable and unstable WMP into coffee. For example, 

agitation at 3600 rpm for 90s reduced sediment formation of an unstable WMP 

from 1.0 ml to < 0.1ml (Teehan and Kelly, 1996b).

8.2.3 Mechanical Effects

STIRRER SPEED (RPM)

Figure 8-5 The effect of stirrer speed on sediment formation for 

coffee-stable and coffee-unstable WMP

8.2.4 Surface Active Agents

The objective of using surface active agents was to determine whether 

solvent repellent conditions prevailed at the interface between the surface of the 

powder particles and the coffee solution. Both ionic and non-ionic surfactants 

were explored. Anionic surfactants such as sodium stearyl-2-lactylate (SS-2-L) 

and sodium dodecyl sulphate (SDS) improved the stability of an unstable WMP 

in coffee. Addition of 0.4% (w/v) SDS reduced sediment values from 3.8 to
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0.1ml (Table 8-1) while 1.0% (w/v) SS-2-L reduced sediment from 3.8 to 0.2ml. 

A shift in pH to higher values (pH 6.06-6.55) resulted from incorporation of 

SDS, and may have contributed to the improvement. Polysorbate 60, applied at 

0.25% (w/v), reduced sediment values by 50%. Further increases in the addition 

level did not improve the stability of a coffee-unstable WMP (Table 8-1). When 

sucrose stearate-palmitate ester (SS-PE) was added (0.2% w/v) to cold water 

before heating to 80°C, sediment was reduced from 1.4 to 0.5ml (Table 8-1). 

Addition of the same levels of SS-PE to the reconstituted coffee had little effect 

on the sediment level of the WMP (Teehan and Kelly, 1996b). As expected, no 

significant change in pH was observed as a result of adding non-ionic 

surfactants.

Table 8-1. The effect of surfactant addition on the sediment volumes 

of coffee-stable and coffee-unstable WMP.

Sample Addition Sediment pH

Code Surfactant % (w/v) (ml)

Control: A 3.8 6.06

coffee-unstable

A SDS 0.4 <0.1 6.55

A SS-2-L 1.0 0.2 5.87

A Polysorbate

60

0.25 2.0 6.14

Control: B 1.4 6.19

coffee-unstable

B SS-PE 0.2 0.45 6.25

Control: C 0.2 6.21

coffee-stable

C SDS 0.4 <0.1 6.23
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It was necessary to establish if WMP behaved differently in terms of 

sediment formation when added in liquid or powder form to coffee solution. 

WMP samples were, therefore, dissolved at typical liquid milk solids 

concentration of 12.5% TS (w/v), in an aliquot of the test water prior to addition 

to the remaining water containing coffee. Reconstitution and subsequent 

addition to the coffee solution resulted in a reduction in sediment formation for 

both stable and unstable WMPs. Values were reduced from 0.5ml and 1.0ml, to 

<0.1ml (Table 8-2) (Teehan et a/,1995; Teehan and Kelly, 1996b).

Table 8-2. Coffee sediment volumes for instant WMP reconstituted prior

to addition to coffee.

8.2.5 Prior Reconstitution of WMP

Sample

Control

Sediment

(ml)

Reconstituted WMP 

Sediment

(ml)

Coffee-stable

WMP 0.5 <0.1

Coffee-

unstable WMP 1.0 <0.1

8.2.6 Water hardness

The New Zealand Dairy Research Institute Coffee Test was 

adapted to incorporate minerals typically associated with water hardness, such as 

CaC03 and M gC03. Sediment volumes increased from 0.5 to 3.5ml per 100ml 

for coffee-stable WMP and from 1.5 to 4.0ml per 100ml for coffee-unstable 

WMP, with increasing water hardness from 0 to 260 mg/1 CaC03 (Figure 8-6) 

(Teehan and Kelly, 1996a). The sediment volumes were higher for both coffee- 

stable and unstable WMPs, when added to acidified water, which was used to 

simulate the pH effect of coffee. Sediment volumes increased also in acidified 

water of increasing water hardness (0 to 260 mg/1 CaC03) (Teehan and Kelly, 

1996a). This suggested that constituents of the coffee contributed to stabilising
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the WMP in an acidic environment. The stabilising effects of potassium were 

investigated given that potassium accounts for 3.62-5.91 % (w/w) of Brazilian 

instant coffee (Angelucci, 1973). Addition of 2 g/1 KC1 to acidified water 

reduced sediment values in the 0 to 100 mg/1 CaC03 range (Figure 8-7). 

Altering the cation form to sodium (2g/l NaCl) was also found to have a similar 

effect in reducing the sediment for a coffee-unstable WMP, when added to the 

coffee (Appendix D).

The pH effect on WMP stability (at constant water hardness, 260 mg/1 

CaC03) was assessed by acidification using (a) 1 M HC1 or (b) increased coffee 

concentration (8 to 32 g/1). Increasing the coffee concentration lowered the pH 

and yielded much lower sediments than when the pH was altered using HC1 

(Figure 8-8) (Teehan and Kelly, 1996a).

WATER HARDNESS (mg/l CaC03)

Figure 8-6 The effect of water hardness on sediment volumes for 

industrial samples of coffee-stable and coffee-unstable instant WMP.
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WATER HARDNESS mg/l C a C 0 3

-coffee+WMP 
Acidified water+ WMP  
Acidified water+ 0.1% (w/v) KCI 
Acidified water + 0.2% (w/v) KCI

WATER HARDNESS mg/l CaCC^

^ -C o ffe e + W M P  
— Acidified water + WMP

Acidified water + 0.1% (w/v) KCI 
— Acidified water+ 0.2% (w/v) KCI

Figure 8-7 The effect of water hardness on coffee sediments for coffee-stable and coffee- 

unstable WMP in coffee, acidified water, acidified water + 0.1% KCI and acidified 

water + 0.2% KCI.

pH

— Acidified Water+WMP 
-m— Acidified Water+0.2% (w/v) KCI+WMP 

Coffee+WMP

pH

—•—Acidified water+WMP 
_ _  Acidified Water+0.2% (w/v) KCI + WMP 

Coffee+WMP

Figure 8-8 The effect of variation in pH (indirectly due to coffee concentration and 

directly due to HCL) on sediment volumes for coffee-stable and coffee-unstable 

WMP in coffee, in acidified water and acidified water + 0.2% KCL (at constant 

water hardness-260 mg/l CaC03.

73



8.2.7 Influence of physical properties of WMP on coffee-stability

8.2.7.1 Particle Size

Since the main objective of instant powder manufacture is to produce 

larger particles by means of agglomeration, it seemed reasonable to examine the 

particle size distribution of the powders in order to establish whether differences 

existed in their profiles. Significant differences were not found between the 

particle size distribution profiles, measured using the Malvern Mastersizer for 

experimental coffee-stable and unstable powders (n = 20 WMP samples, 

Appendix F). Coffee-stable and unstable WMPs with sediment values of 0.3ml 

and 1.2ml respectively, possessed the same proportion of particles (-71.2 %) <

163.8 (X. (163.8 (x was chosen from data as the nearest point to 160 (i). There 

was no correlation between the proportion of smaller particles and sedimentation 

values. For example, powders with sediments of 0.3 and 3.0ml had 13.11 and 

13.41 % of the powder particles < 53.3 (i, respectively (Appendix E). A 

limitation with the estimation of particle size distribution, using the Malvern 

Mastersizer, is that the powder feeder system may give rise to some breakdown 

of fragile agglomerates. Some alternative feeding approaches were attempted 

without success (Teehan and Kelly, 1996b).

Coffee-stable and unstable WMPs were classified according to regular 

sieve fractions, with a sieve shaker in an alternative attempt to determine the 

effects of particle size. Contrary to expectations, the results indicated that 

smaller particles were more stable in coffee. However, test reproducibility was 

poor, possibly due to ‘blinding’ of the sieves by the fat-containing powder.

Size classification of experimentally produced powders (n =14), using 

the Alpine Jet Sieve gave more reproducible results for the amount of powder 

remaining on the sieve. The coffee-stable WMP had 39.5% of the particles >106 

(j. compared to 24.0 % for the unstable WMP. The coffee test sediments for the 

fractions (Table 8-3) indicated that fines <106 \x contribute to higher sediment 

values as once they were removed by sieving, the sediment values decreased for 

the coffee-unstable WMP. An overall decrease in coffee sediment volume was
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observed for experimental powders, as the proportion of the powder particles 

>160|0. increased (Figure 8-9) (Teehan and Kelly, 1996b).

Table 8-3. Coffee sediment volumes for size-classified WMP and 

particle size distribution profiles (Alpine Jet Sieve).

Sample Sediment

(ml)

Control

Sediment

(ml)

> 45p,

Sediment

(ml)

>106|x

Sediment

(ml)

>160(1

Sediment

(ml)

>250^

A: coffee-stable 0.4 1.0 0.55 0.95 0.65

B: coffee-unstable 1.3 1.6 0.95 0.9 1.0

% WMP % WMP % WMP % WMP

>45 >106|i >160(j. >250(1

A: coffee-stable 90.95 39.55 9.60 3.35

B: coffee-unstable 88.80 24.00 5.30 1.80

% POWDER PARTICLES >160 H

Figure 8-9. Relationship between coffee sediment and % WMP particles > 

160 fi, as measured using the alpine jet sieve. Samples were prepared in 

MTL Ltd., Cork, Ireland.
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8.2.7.2 ESCA Analysis o f  the surface composition o f  instant WMP

Electron spectroscopy for chemical analysis (ESCA) is a technique used 

to analyse the surface composition of complex powder surfaces. By this method 

the atomic concentration of each element other than hydrogen can be estimated 

on the powder surface. The method is very sensitive; the analysing depth is 

approximately 90 A. The surface composition of 2 experimentally produced 

unlecithinated samples A, B and 2 lecithinated industrial samples C, D is given 

in Table 8-4. The analysis was performed at three different locations on the 

powder surface. The analysed area is a circular spot of 1.3 mm in diameter. 

Whole milk consists of several components on the powder surfaces, but for 

calculation purposes it is regarded as composing of fat, protein and 

carbohydrate.

Sample B (coffee-unstable) had a higher coverage of fat than sample A 

(coffee-stable) (Table 8-4). Sample B had a lower protein coverage value while 

the coverage of carbohydrate on the surface was similar for both samples. The 

two industrial samples (C, D) had a large proportion of their surfaces covered in 

lecithin. Fat coverage on the surface of the two powders were 16.5% for C 

(coffee-stable) and 6.0% for D (coffee-unstable). However, it should be noted 

that it is quite difficult to distinguish between lecithin and fat, due to the fact 

that only 1.9 % of lecithin is pure phosphorus which is detected by the analyser. 

This results in a large variance in the calculated coverages when phosphorus is 

used to calculate the coverage of components.

Table 8-4. ESCA analysis of the surface composition of coffee-stable 

and coffee-unstable instant WMP

Sample

Coffee

sediment

(ml)

carbohydrate

%

Protein

%

Fat

%

Lecithin

%

A 0.2 17.5 28.6 53.9 -

B 1.7 18.1 21.2 60.7 -

C 0.4 21.6 5.5 16.5 56.4

D 1.45 25.8 5.9 6.0 62.3
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8.2.7.3 Effect o f  air and carbon dioxide on coffee-stability

Air is more hydrophobic than fat and therefore may inhibit powder 

particles from dispersing adequately into coffee. Industrial samples of coffee- 

stable and coffee-unstable WMP were vacuum packed in an effort to remove all 

the air from the powder and then tested for coffee-stability (Table 8-5). Coffee- 

sediments for vacuum packed coffee-stable and coffee-unstable WMPs were 

high (approximately 3ml), compared with the untreated powders. The pH values 

for the coffee/vacuum-packed WMP solutions (pH 5.7-5.9) were lower than the 

control powders (~ pH 6.2). On observing the vacuum packed WMP being 

added to the coffee, it was noted that the powder formed clumps which sank to 

the bottom of the beaker and did not seem to disperse into the coffee.

Carbon dioxide is soluble in water and if the concentration of C 02 in the 

air in the WMP was higher, it was speculated that the WMP may disperse more 

readily into the coffee and thus contribute to better coffee stability. Samples of 

both coffee-stable and unstable WMP were equilibrated with C 02 overnight. The 

results are compared with the control in Table 8-6. Samples G, H and J showed 

a slight reduction in coffee sediment volumes; however the sediments for 

samples I, K and L marginally increased. Therefore, it is difficult to determine if 

the treatment with C 02 favourably or adversely affected the coffee-stability of 

the sample. For all treated samples, the pH of the combined coffee and WMP 

solution decreased compared to the corresponding control.

Table 8-5. The effect of vacuum-packing on coffee-sediment volumes

and pH

Sample Control

Sediment

(ml)

Vacuum-

packed

Sediment

(ml)

Control

pH

Vacuum-

packed

PH

A 1.4 3.0 6.26 5.78

B 1.7 2.8 6.24 5.94

C 0.6 2.5 6.23 5.95

D 0.65 3.25 6.21 5.79
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Table 8-6. The effect of equilibration of instant WMP in C 02 on coffee

sediment volumes and pH

Sample

Control 

Sediment (ml)

c o 2-w m p

sediment (ml)

Control

pH

c o 2-w m p

pH

E 1.2 1.0 6.18 5.92

F 1.0 0.7 6.14 5.94

G 0.5 0.35 6.24 6.00

H 0.25 0.4 6.19 6.04

8.2.7.4 Particle Density, Occluded A ir and Interstitial A ir in instant WMP

The particle density was measured and from this the occluded air and 

interstitial air content of samples of coffee-stable and unstable WMP were 

calculated. For the industrial samples analysed, no significant correlation was 

found between particle density and volume of occluded air (Appendix A, Table 

A3). However, as the coffee-sediment volumes increased from 0 to 1ml, the 

volume of interstitial air also seemed to increase, suggesting that higher 

interstitial air values contribute to higher coffee sediments. It was also observed 

that above 1ml sediment, the relationship was not as obvious (Figure 8-10).

158 
156 

g 154 
§ 152r>
§ 150
S' 148<
1  146 
■| 144 
|  142 

140 
138 

0 1 1.5 2 2.5 3 3.5

Coffee Sediment Volume (ml)

Figure 8-10. Relationship between Interstitial Air (cm3/100g ) and 

Coffee Sediment (ml) for industrial samples of instant WMP.

78



8.3 Results Part B: Investigation of processing conditions for the

production of coffee-stable WMF

The manufacture of agglomerated WMP was investigated to identify the 

contribution of individual processing steps to the physical and physicochemical 

powder properties, particularly those relating to coffee stability.

8.3.1 The effect of preheat treatment on agglomerated WMP coffee 

stability and powder properties.

Various temperature and holding time combinations were performed on 

the milk feed in the pasteuriser and evaporator preheaters prior to concentration 

and drying. All powders may be classified (according to the ADMI WPN index, 

c.f. section 1.1.1.5), as medium heat, except for the powder produced from milk 

heat-treated at 75°C x 2 min, which was low heat. The results show that 

agglomerated WMPs were produced with bulk densities of 0.43 kg/m3 or less 

(lOOtaps) and typical moistures of 3.0-3.2 %, irrespective of whether preheat 

treatment (c), (d) or (e) is applied (Table 8-7). While combination (a) produced 

powder of bulk density 0.43 kg/m3 , the coffee sediment was 0.75 ml, which is 

above the desired value of <0.5 ml. In an exceptional case where milk was 

preheated to a higher temperature (b) (97.5°C x 2 min), the bulk density (0.46 

kg/m3) and coffee sediment (1.15ml) values of the resulting powder increased 

slightly. Interstitial air volumes decreased as the preheat treatment was 

intensified (Table 8-7) (Teehan and Kelly, 1996b).

Peak buffering capacity (dB/dpH) for raw milk occurs at approximately 

pH 5.1 during the acidification and at pH 6.5 when the acidified milk is back 

titrated (Lucey, 1992). The buffering capacity curves for 10 % solutions of 

WMPs produced using combination (c), (d) and (e), shows a shift in the pH 

values at which maximum buffering occurs (Figure 8-11).
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Table 8-7. The effect of preheat treatment on the physico-chemical properties of

agglomerated WMP.

Coffee WPNI Heat Bulk Interstitial
Heat Treatment Sediment (mg Number Density Air

(ml) WPN) (kg/m3
lOOtaps)

cm3/100g

(a) 75°C x 2 0.75 Low - 0.43 150.79
min (> 7.0 )

(b) 97.5°C x 2 1.15 Medium - 0.46 133.98
min (2.3)

(c) Combination 0.35 Medium 87.13 0.4 169.41
• 85°Cx 2min (3.2)
• 94°Cx 10s
(d) Combination 0.4 Medium 86.74 0.4 168.57
• 85°C x 2 min (3.4)
• Cool (10°C)
• 94°C x 10s
(e) 94°C x 30s 0.35 Medium 86.63 0.41 162.90

(4.3)

pH

Figure 8-11. Buffering curves from initial pH (6.6) to pH 2.0 with 

HC1 and back titrated to pH 11.0 with NaOH for 10% solutions of 

WMP prepared from milks preheated at 94°C x 30secs (Control - 

Trl), 85°C x 2 mins + 94°C at minimum holding time (Tr2) and 

85°C x 2 mins.

Moisture
%

3.52

3.11 

3.06

3.11 

3.01
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8.3.2 The effect of individual process steps (prior to drying) on the coffee- 

stability of Whole Milk Concentrate

Concentrates with varying levels of total solids produced from pre­

heated milk were coffee-stable and caused no feathering. Subsequent 

homogenisation and heating of the concentrate to 60°C did not affect the coffee- 

stability of the concentrate. A slight drop in pH of the coffee and concentrate 

supernatant was noted for the homogenised concentrate, but pH values were 

restored to original values once the concentrate was heated to 60°C (Table 8-8).

Table 8-8. Coffee sediment volumes for concentrate, homogenized concentrate 

and heated homogenized concentrate.

% Unhomogenized Homogenised Homogenised Homogenization

TS concentrate Concentrate Concentrate Pressures

Sediment pH before heating after heating (Bar)

(ml) (ml) PH (ml) pH

43 <0.1 6.28 <0.1 6.19 <0.1 6.27 80/20-control

43 <0.1 6.28 <0.1 6.18 <0.1 6.24 75/25

44 <0.1 6.24 <0.1 6.21 <0.1 6.25 75/25

45 <0.1 6.26 <0.1 6.23 <0.1 6.24 75/25

8.3.3 The effect of variation in fat levels on the coffee stability WMP

Having adopted a preheat treatment of 94°C x 30s as a reference heat 

treatment (control), the effect of increasing fat level during milk standardisation 

so as to yield WMPs with various fat-in-powder levels was investigated. 

Increasing the fat from 24-30%, contributed to higher bulk densities and coffee- 

sediments. All powders produced were in the medium heat classification 

according to the WPNI and had moistures of 3.0 to 3.2%. Interstitial air volumes 

decreased with increasing fat content in the powder (Table 8-9). The % free fat 

was also found to increase with increasing fat levels in the powder, except in the 

case of the 30% fat powder (Appendix F, Table F2) (Teehan and Kelly, 1996b).
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Table 8-9. The effect of variation in powder fat levels on coffee-stability

and bulk density.

Interstitial Bulk Density

Fat Coffee Moisture WPNI Air (kg/m3

% Sediment

(ml)

% (mg WPN) Volume

cm3/100g

100 taps)

24.2 0.2 3 3 Medium

(3.8)

147.13 0.44

25.7 0.5 3.20 Medium

(3.5)

141.51 0.45

28.1 0.6 3.10 Medium

(4.2)

135.96 0.46

30.9 1.25 3.11 Medium

(4.8)

131.33 0.47

8.3.4 The effect of variation in milk protein content on coffee-stability

The protein content of milk was standardised to different levels by the 

addition of either ultrafiltration (UF) permeate or retentate, prepared from the 

same milk after cream separation. The fat content was maintained at the 26 % 

level in powder. An initial trial indicated that powders with lower protein levels 

were less coffee-stable. However, on repeating the trial, it was found that there 

were only marginal differences in the respective sediment values of 0.5, 0.35 

and 0.5ml for powders of 29.3 % (Control), 34.0 % (High protein) and 25.8 % 

(Low protein). The volume of interstitial air was similar at -181 cm3/100g for 

the control and high protein powder, but decreased for the low protein powder 

(Table 8-10) (Teehan and Kelly, 1996b).

The buffering capacity curves for 10% solutions of the powders in Table 

8-10 are shown in Table 8-12. As the protein level increases, the peak intensity 

for maximum buffering capacity increased at pH 5.0 and 6.3. The buffering 

capacity peaks heights were 0.026, 0.030 and 0.034 at ~ pH 5.0, and 0.021,
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0.023 and 0.036 at ~ pH 6.4 for low protein, control and high protein powders 

respectively.

Table 8-10. The effect of variation in milk protein content on WMF

properties.

Protein Protein Coffee Bulk Interstitial Air

Sample Leco Kjeldahl Sediment Density cm3/100g

% % (ml) (kg/m3

lOOtaps)

Volume

Control 28.2 29.3 0.5 0.40 181.32

High Protein 30.8 34.0 0.35 0.40 181.04

Low Protein 24.9 25.8 0.5 0.42 157.58

pH

Figure 8-12 Buffering curves for 10% solutions of WMP of various 

protein levels titrated from the initial pH (6.6) to pH 2.0 with HC1 

and back titrated to pH 11.0 with NaOH.
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Table 8-11. The effect of Lecithination of WMP on coffee-stability and powder

properties.

Bulk

Sample Fat Coffee Density Wettability Dispersibility Interstitial

% Sediment kg/m3 (Seconds) (Scale Air

(ml) (100

taps)

1-9) Volume

cm3/100g

Control A 26.5 0.1 0.45 >60 9 139.17

A + Lecithin 28.3 0.5 0.49 6 9 120.61

Control B 30.6 1.45 0.46 >60 9 134.96

B + Lecithin 31.6 1.15 0.54 15 9 103.37

Control C 25.44 0.6 0.43 >60 9 152.48

C + Lecithin 26.02 1.55 0.52 9 9 112.09

8.3.5 The effect of Lecithination on coffee stability and powder properties

Lecithination of 26% and 30% fat WMP contributed to increases in the 

overall fat level, powder bulk density and coffee sediments. Powder lecithin 

levels were 0.29% and 0.25% for samples A and B respectively. Wettability 

improved with lecithination but no change was recorded for dispersibility 

values. Interstitial air volumes decreased when the WMP was lecithinated. In 

order to compensate for the increase in powder fat level due to lecithination, the 

milk was standardised to produce a powder of 25.5% fat, to which the lecithin 

was applied, resulting in a final fat content of 26%. However, bulk density and 

coffee sediment still increased after addition of lecithin, compared to the values 

for the same powder before lecithination (Table 8-11) (Teehan and Kelly, 

1996b).

8.3.6 The effect of nozzle combinations on powder properties

The number of nozzles and orifice/core combinations were varied to 

determine the effect on powder properties, based on a concentrate at 43 to 44 % 

T.S. (w/w). Atomisation pressure varied depending on the combination of
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nozzle size and number. However, for agglomeration of a 26% fat WMP, 

atomisation pressures of 180-220 bar were needed. Using a single large nozzle 

(56 x 21), agglomeration was poor and resulted in high powder bulk density 

(0.52 kg/m3), low interstitial air volumes and high coffee sediment (1.9ml). 

Using a three-nozzle combination (67 x 20) the powders produced were lower in 

bulk density (0.42-0.46 kg/m3), higher in interstitial air volumes (139-158) and 

had lower coffee sediment (0.1 to 0.6ml). An alternative triple nozzle 

combination of 69 x 20 was slightly better in terms of bulk density, interstitial 

air volumes and coffee-stability (Table 8-12) (Teehan and Kelly, 1996b).

Table 8-12 The effect of nozzle combination on bulk density and coffee

sediment volumes.

Nozzle Combination 

(No. nozzles /orifice/core)

Bulk Density 

(kg/m3, lOOtaps)

Interstitial Air 

cm3/100g

Coffee Sediment 

Volume (ml)

1 x 56 x 21 0.52 129.0 1.9

3 x 67 x 20 0.42-0.46 139-158 0.1-0.6

3 x 69 x 20 0.40-0.41 162-169 0.3-0.4

Table 8-13 The effect of protein variation and powder storage on coffee sediment 

and bulk density of agglomerated WMP

Bulk Density Bulk Density

Sample Protein % 

(Kjeldahl)

Coffee

Sediment

(24hrs)

Coffee 

Sediment 

(1 month)

(kg/m3, 

100 taps, 

24hrs)

(kg/m3, 

lOOtaps 

1 month)

Control 29.3 0.5 0.9 0.38 0.45

High Protein 34.0 0.35 0.9 0.38 0.44

Low Protein 25.8 0.5 0.35 0.42 0.43

Control (C) 26.44 0.6 0.85 0.43 0.47

(C) + Lecithin 25.88 1.55 1.4 0.52 0.52

85



8.3.7 The effect of storage on coffee stability and powder properties.

All powders were stored at 15°C and analysed after one month to 

investigate the effect of storage on bulk density and coffee-sediment values. 

Generally, these parameters increased slightly on storage (Table 8-13). 

However, for lecithinated powders, the bulk density and coffee sediments 

remained similar to original values (Teehan and Kelly, 1996b).

8.3.8 Fat-filled powders

Fat-filled powders were produced by combining cream or butter oil with 

skimmed milk concentrate (Table 8-14). The % fat in the control and cream- 

filled powders was lower than the required 26% fat due to inaccuracies in % fat 

determination in the concentrate. However, given that the powders are both ~ 

24% fat, they can be compared. The cream-filled powder had higher bulk 

density and coffee sediment volume compared to the control. The butter oil- 

filled powder is comparable with other ~26% fat controls (e.g. 25.7% powder in 

Table 8-9) and produced higher sediment values. The results however are based 

on a single experimental trial which should be repeated to validate the results.

Table 8-14. Properties of fat-filled powders

Bulk

Sample Fat Coffee WPNI Density Free Moisture

% Sediment

(ml)

(mg WPN) (100 taps) 

(kg/m3)

Fat

%

%

Control 24.6 0.5 3.6 0.45 2.09 3.05

Cream 24.09 0.8 4.47 0.46 2.43 2.82

Butter Oil 25.51 0.8 4.3 0.42 1.9 2.75
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9. DISCUSSION

Investigation of the coffee sediment test

Sediment Formation as a measure o f coffee-stability

It is generally recognised that the challenges of temperature and low pH 

which prevail when coffee creamers are added to coffee combine to push the 

stability of such products near the limits of their colloidal stability. Failure to 

withstand such a test usually results in the formation of particles which either 

float on the surface or sink to the bottom and contribute to a visually 

unacceptable beverage to the consumer. It was found during this study that 

centrifugation of the dissolved coffee/WMP solution provided an objective 

means of qualifying the insoluble material or particles that arise. Sweetsur 

(1976) found that the coagulated particles which formed on addition of instant 

skim milk powder to coffee, consisted of casein and some denatured whey 

protein. In the present study, it was possible to observe this in another way by 

following the pattern of protein depletion in the supernatants, as the sediment 

volumes increased under conditions of varying temperature and pH (Figure 8-1 

and Figure 8-3). For example, at sediments of 0.5ml, % protein in the 

supernatant was ~0.5 %, which was reduced to -0.25% at higher sediment values 

(~5ml) (Figure 8-1).

In this study, the ionic calcium levels were higher in reconstituted 

solutions (10% T.S.) of commercial coffee-unstable WMP compared to coffee- 

stable powders (Appendix A, Table Al). Apart from pH and temperature effects, 

calcium has been recognised as a major destabilising factor in the heat stability 

of milk generally (Pyne and Me Henry, 1955; Pyne, 1958; Morrissey, 1969; Fox 

and Morrissey, 1977) and more specifically in the case of coffee whiteners 

(Vakaleris and Sabharwal, 1972) and coffee creams (Geyer and Kessler, 1989). 

Studies by Geyer and Kessler (1989) demonstrated that coffee cream was less 

stable to feathering at higher calcium concentrations. In coffee-whitening 

applications, calcium effects are posed by the salts of milk or milk powder and



any hardness content associated with the water used for reconstitution (see 

separate discussion).

In addition there would appear to be some suggestion that whey protein 

denaturation has an affect on coffee-stability according to Sweetsur (1976) who 

found that a higher level of denaturation was associated with greater coffee- 

instability in instant skim milk powders. Whey protein denaturation reflects the 

degree of heat treatment, particularly at the preheating stage, that milk is exposed 

to during processing. In the present study, no relationship could be established 

between WPNI and coffee sediment volume of industrially-produced instant 

WMP (Appendix A, Figure Al). However, as a measure of denaturation, WPNI 

is a less sensitive technique than the Heat Number Method used by Sweetsur 

(1976).

Appraisal o f the Coffee Simulation Test

Useful information was obtained as a result of developing a model test to 

simulate the pH effect of coffee. By using acidified aqueous solutions, it was 

possible to extend the pH range about the typical value (e.g. pH 4.8) of a coffee 

solution. The resulting approximately curvilinear relationships based on 

sediment volumes and end-point pH values (acidified water/WMP solutions) in 

the range pH 5.0 to 7.0 for industrially produced powders highlighted interesting 

distinctions between coffee-stable and unstable samples. Coffee-stable samples 

produced lower sediments (2.0 to 0.1ml) in the pH range 6.2-7.0 compared with 

the unstable samples (5.0 to 0.5ml) (Figure 8-3) (Teehan et al., 1995; Teehan 

and Kelly, 1996b).

However, when the pH was manipulated by increasing the concentration 

of coffee, it was interesting to note that sediment values were considerably less 

than at the corresponding pH values obtained with the model system. For 

example, a coffee-stable WMP yielded a sediment volume of 0.5ml in the coffee 

compared to 2.0.ml in acidified water at the endpoint pH of 6.2. The effect was 

even more dramatic in the case of the coffee-unstable sample where sediment 

values of 2.0 and 4.5ml correspond to the coffee and model tests, respectively 

(Teehan et al., 1995; Teehan and Kelly, 1996b) (Figure 8-4). This raised a
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question as to why the model system should be more severe than the coffee 

itself. The subsequent line of investigation speculated on a potential contribution 

by the relatively high ash (9-10% according to Clifford, 1975) content of the 

coffee in countering its negative acidic effect. Potassium was reported to range 

from 3.62 to 5.91 % for instant coffees manufactured in Brazil (Angelucci, 

1973). Addition of potassium to the model solutions succeeded in reducing 

considerably the sediment values of the coffee-stable powders (Teehan el al., 

1995; Teehan and Kelly, 1996b).

The model system was also useful to study the effect of reconstitution 

temperature on sediment formation. Both coffee-stable and -unstable WMP 

produced increasing sediment volumes at T > 50°C. Again, there was a distinct 

curvilinear relationship between temperature and sediment formation especially 

in the temperature range 59-90°C, with the coffee-stable samples displaying 

greater resistance to feathering at the higher temperatures (Figure 8-1). 

Interestingly, where WMP was reconstituted in the acidified water under ambient 

conditions before heating of the simulated coffee/milk solution, the sediment 

values were virtually undetectable (< 0.1ml) (Figure 8-2) (Teehan et al., 1995; 

Teehan and Kelly, 1996b). This observation led to the speculation that the 

rapidly dissolving powder is more exposed to a type of ‘acid shock’ at 

temperatures prevailing in hot coffee and thereby results in increased 

sedimentation.

Buffering effects

A strong buffering effect by the WMP was evident when a final pH of 6.2 

was obtained, after addition to a coffee solution with an initial pH of 4.8. 

Application of buffering tests typically used for milk (Lucey, 1992) proved 

challenging: the concentration of milk in a mixed coffee solution was at a much 

lower concentration (2% milk solids) compared to milk (typically 12-13% total 

solids) and thus made it more difficult to detect buffering peaks during 

acidification and back-titration with NaOH. For this reason, it was necessary to 

run the titrations at much higher solids (10% total milk solids) to compare 

buffering capacity curves for coffee-stable and -unstable WMP. No significant
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relationship was established between buffering capacity peaks and coffee 

sediment values due to conflicting evidence (Appendix B).

Physical effects associated with coffee-whitener reconstitution

A number of different approaches succeeded in distinguishing between 

the physical effects of whole milk powder and the thermostabilty of the milk 

itself in relation to coffee-stability: (a) Prior reconstitution of WMP before 

addition to hot coffee, reduced sediments for both coffee-stable (value 0.5ml) 

and coffee-unstable WMP (value 1.0ml) to < 0.1ml; (b) Increasing the 

mechanical activity by means of controlled stirring of the mixed coffee/WMP 

solution demonstrated a sizeable reduction in sediment formation, as well as 

providing comparable results with the rather subjective spoon stirring technique 

that is a feature of the coffee test; (c) The success (ionic > non-ionic) of surface 

active agents added to the test water of the coffee solution, in reducing 

sedimentation suggested a possible reduction in the water repellent forces on the 

surface of WMP particles e.g. free fat (Teehan and Kelly, 1996b).

Surface active agents also feature in imitation coffee-whitener 

formulations where their stabilising role is attributed to complex formation with 

protein (Greutzmacher and Bradley, 1991; Leo and Betscher, 1970) or fat 

emulsification (Doan, 1931; Tracy and Ruehe, 1930).

Because the number of WMP samples analysed by the ESCA technique 

(Faldt et al., 1993) at the Institute for Surface Chemistry (Stockholm, Sweden) 

was limited, some observations of a general nature were noted: (a) the 

percentage coverage of fat on the surface of coffee-stable powder was lower (by 

6.8%) than for the unstable sample; (b) there were only slight differences in the 

surface content of carbohydrate and protein; (c) it was difficult to distinguish 

accurately between fat and lecithin; and (d) the total chemical composition of the 

surface of the experimentally-produced unlecithinated WMP was similar to that 

found by Faldt and Sjoholm, (1996) - 55% fat, 30% protein and 15% lactose.
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Influence o f water hardness on coffee-stability

Sedimentation in both coffee-stable and -unstable WMP increased as 

water hardness was raised in coffee solutions (Teehan and Kelly, 1996b). This 

was consistent with the findings of Greutzmacher and Bradley (1991) who 

encountered similar problems during the development of whey based coffee 

whiteners. At constant temperature and pH, increasing the level of water 

hardness resulted in higher sedimentation levels and thus supported the views of 

Vakaleris and Sabharwal (1972) that calcium concentration is a significant 

additional factor associated with feathering.

Water hardness manifested itself even more severely in model test 

studies. Again, it was possible to demonstrate in the simulated coffee system, the 

positive effects of added K+ (0.2% KC1) in stabilising WMP against feathering, 

especially at low levels of water hardness (Figure 8-7). Examination of the end­

point pH sensitivity at high levels of water hardness resulted in very high 

sediments (~ 5.0ml). (Figure 8-8). One exception was a slight reduction in 

sediment volumes for both coffee-stable and -unstable WMP, as pH was lowered 

(Teehan and Kelly, 1996a). A possible explanation may be a decrease in casein 

micelle voluminosity with falling pH (Walstra and Jenness, 1984b) giving rise to 

a more dense sediment.

Influence o f Particle Size on the coffee-stability o f instant WMP

The Alpine Jet Sieve was used to successfully estimate particle size 

distribution profiles, and to also classify coffee-stable and unstable WMP 

according to a range of particle size fractions for further testing. The fraction 

containing particles > 106ja contributed to lower coffee sediment volumes for 

coffee-unstable WMP. Coffee-stable WMP had a greater proportion of particles 

>106 than the coffee-unstable, suggesting that a high proportion of fines <106 

)_i in size, contributed to the instability of WMP in coffee. Also, it was found that 

experimentally-produced WMP with a higher proportion of particles > 160p., had 

lower coffee sediment volumes (Figure 8-9) (Teehan and Kelly, 1996b). 

Therefore, from these results, it appeared that WMP should have a high 

proportion of particles > 160p,m and a low % < 106(4, in size, for coffee-stability.
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Baldwin and Sanderson (1973) reported that if the amount of fine particles less 

than 90 p was greater than 15-20% by weight, lumps would form during 

reconstitution which decreased the dispersibility of WMP. The mean particle 

size for agglomerated WMP should not be smaller than 180 p, the fraction below 

125 p. not greater than 20% and that above 500 p not in excess of 10% (Pisecky, 

1990).

Modifying WMP atmosphere and its effect on coffee-stability

The particle density or volume of occluded air could not correlated with 

coffee-stability (Appendix A, Table Al). However, the industrial samples with 

high coffee sediments had high interstitial air values (Figure 8-10). In addition, it 

should be noted that for industrial WMP samples with sediment volumes > 1ml, 

the increase in interstitial air volume was less consistent with increased sediment 

volumes. On the otherhand, experimentally produced powders which had low 

sediments had high interstitial air volumes (See Results Section-Part B).

Comparisons between the commercial and experimental WMP samples 

analysed in this study, should recognise the differences in the respective 

processes i.e. preheating: 94°C (no holding time) v. 94°C x 30s; disc v. nozzle 

atomization, compact spray dryer v. tall form design and integrated fluidised bed 

v. standard chamber. The values for the interstitial air ranged from 138-157 

cm3/100 g for the commercial powders and 130-170 cm3/ 100 g for the 

experimental powders. Wulff (1980) reported that reconstitution begins when 

interstitial air is replaced by the solvent and for a well agglomerated powder with 

high interstitial air volumes, the liquid can penetrate and hasten this process. 

Lump formation and incomplete reconstitution of milk powder is prevented by 

ensuring high interstitial air volumes (Wulff, 1980). Overall there is some 

tentative evidence from the study, suggesting that the volume of interstitial air in 

powder influences its ability to disperse in coffee.

It has already been shown that industrial samples of coffee-stable WMPs 

had a higher proportion of larger particles compared to coffee-unstable WMP 

(Table 8-3). The content of interstitial air is influenced by the particle size 

distribution, agglomeration conditions and the flowability of the powder
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(Pisecky, 1978). Bigger particles do not pack as tightly and therefore there is 

more air between the particles. Therefore it may be expected that powders with 

high proportions of large particles should have both higher interstitial air values 

and lower coffee sediments. This was true for the limited number (n = 24) of 

experimentally produced powders but not for the commercial samples, but as 

already explained these powders are difficult to compare given that they were 

made under different conditions.

Vacuum packing of WMP caused coffee sediment values to increase 

dramatically and pH of the coffee/WMP supernatant to decrease. The decrease in 

pH was probably due to the inability of the WMP to disperse adequately in the 

coffee and buffer its acidic effect. This suggests that the air content of the instant 

WMP is of importance in order for the powder to disperse and dissolve in the 

coffee.

An attempt to displace the powder’s air content by increasing the carbon 

dioxide concentration resulted in both slight increases and decreases in the 

sediment volumes of the treated powders compared to the controls. Therefore, no 

definite conclusions can de drawn as to the influence of carbon dioxide in the air 

within the powder, on the coffee stability. The slight decrease in the supernatant 

pH was probably due to dissolution of C 02 into the aqueous phase producing 

carbonic acid.

Effect of processing parameters on coffee-stability

Attempts at replicating the performance of an industrial scale plant used 

for instant WMP manufacture was achieved successfully in a state-of-the-art 

pilot plant facility. The effects of preheating, concentration, homogenisation, 

concentrate heating, drying and lecithination were examined. Optimum 

conditions for the production of coffee-stable instant WMP were established. 

Using these processing parameters, the effect of variation in fat and protein 

content of the powder on coffee-stability was determined.

93



Influence o f milk preheat-treatment on the coffee-stability o f instant WMP

A number of preheat temperature and holding time combinations in 

single and multiple steps were evaluated and found to produce WMP of the 

required characteristics. However, a single-stage heating step involving a 

temperature of 94°C for 30 s proved to be satisfactory and more economical for 

application during subsequent pilot processing trials involving WMP (Teehan 

and Kelly, 1996b). The selection of an appropriate preheating regime for whole 

milk powder is influenced usually by the need to enhance the antioxidant 

potential of the milk. Temperatures above 90°C are usually applied in order to 

activate sulphydryl groups which are believed to contribute to better heat 

stability, lower solubility index and increased shelf stability of the powders 

(Baldwin and Ackland, 1991).

Two preheating combinations (e.g. 94°C x 30s and 85°C x 2min + 94°C 

x 10s) successfully produced powders with low coffee sediments and bulk 

densities, and higher volumes of interstitial air (Table 8-7). The high- 

temperature-long-time combination (97.5°C x 2 min) yielded powders with poor 

instant properties and coffee stability (Teehan and Kelly, 1996b). Other research 

has shown that higher preheat temperatures and longer holding times of the milk 

tend to be counter-productive in terms of producing powders with instant 

characteristics. The resultant higher viscosity of the concentrate contributes to an 

increase in powder bulk density, solubility index and % moisture (Mol, 1976; 

Andersen, 1986). The results of this study suggested an optimum preheat 

treatment of 94°C x 30s or 85°C x 2min + 94°C x 10s for the production of 

coffee-stable instant WMP.

The powders produced from milk preheated at 85°C x 2 min had higher 

buffering peaks (dB/dpH = 0.029) compared to those prepared at 94°C x 30s 

(dB/dpH = 0.027) (Figure 8-11). According to the WPNI and Heat Number 

reference method, both powders are classified as medium-high heat. The 94°C x 

30s powders has a slightly higher WPNI and a lower heat number, than the 85°C 

x 2 min powders, suggesting that there was less protein denaturation during 

processing. The intensity of the buffering peak at ~ pH 5.0 was stronger with 

increasing heat treatment of the milk, which is in agreement with Lucey (1992).
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The 85°C x 2 min powders also had buffering peaks at slightly higher 

pH values compared to the 94°C x 30s. Other researchers (Evenhuis and de 

Vries, 1956; Rose and Tessier, 1959) also found that moderate heating, e.g. 

pasteurisation caused small shifts in pH and buffering by the expulsion of C 0 2 

and precipitation of calcium phosphate, which is less soluble at high 

temperatures. According to Lucey (1992), the pH of maximum buffering of raw 

milk shifted from pH 5.1 for raw milk to pH 4.4 during acidification, for milk 

heated at 120°C x 10min.

Buffering capacity curves for samples of commercial instant WMP did 

not show significant differences between coffee-stable and unstable powders 

(Appendix B), thus leading to the conclusion that the coffee-stability problem is 

not related to buffering capacity.

Effect o f  process steps prior to drying on coffee-stability

Concentrate prepared from preheated milk or non-preheated milk was 

coffee-stable (sediment volumes < 0.1ml). Subsequent homogenisation of these 

concentrates did not effect the stability of the concentrate in coffee. Heating of 

homogenised concentrates did not effect sediment values. Dilution of the 

concentrates to 20% TS before addition to the coffee did not alter the coffee- 

stability (Appendix C, Table C3). Therefore, it would seem that the individual 

process steps of preheat-treatment, concentration and homogenisation of the 

milk, have little influence on coffee stability of concentrate as such and that the 

most critical part of the process is the drying of the milk itself. This result 

strengthens earlier investigations (c.f. section 8.2.5-Prior reconstitution) that 

distinguish between coffee stability of milk in liquid and powder forms. 

However the effects of some individual steps e.g. preheating, influences 

indirectly coffee-stability and ‘instant’ characteristics for the reasons as already 

outlined in relation to optimum agglomeration.
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Influence o f atomisation conditions on instant WMP properties and coffee- 

stability

An atomisation pressure in the region of 180-200 bar with a three nozzle 

combination of 20 x 69 orifice/core was found to be most effective in producing 

agglomerated WMP with high interstitial air volumes, low bulk densities and 

coffee sediments. Other nozzle combinations resulted in slightly lower interstitial 

air values, higher bulk densities and higher coffee sediment volumes (Teehan 

and Kelly, 1996b). In general, nozzle atomisation produces powders with higher 

particle densities than wheel atomisation. This contributes to high bulk densities 

and improved reconstitution properties, better shelf life and a reduction in stack 

losses of spray dryers (Boersen, 1990). Tracy et al. (1951) found that for a 

constant nozzle size, bulk density increased with increasing atomisation pressure 

and decreased with increasing nozzle size at constant pressure. However, 

concentrate viscosity influences various parameters of the drying process and 

physico-chemical properties of the powders as a result of influencing droplet size 

distribution (Andersen, 1986). Unfortunately, viscosity monitoring and control 

is not yet a feature of modern milk drying processing plants, as numerous 

situations can give rise to changes e.g. preheat temperatures, protein variation 

and other seasonal-based compositional changes to milk, concentrate solids, age 

thickening and concentrate heating. Much more research is needed in this area to 

determine the effects of atomisation and drying conditions on the coffee-stability 

of instant WMP.

Effect oflecithination o f  instant WMP on coffee-stability

Lecithin application to WMP during manufacture caused a dramatic 

increase in the powder bulk density, coffee sediments and also increased the fat 

level in the powder. Even though WMP was subsequently produced to the 

correct fat specification (26%) by compensating in advance for the contribution 

by lecithin, bulk densities and coffee sediment volumes remained high (Teehan 

and Kelly, 1996b). Lump formation observed during the test is explained by 

Wulff (1980), as resulting from poor agglomeration and low interstitial air 

values, which prevent adequate penetration of the liquid to disperse and dissolve
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the powder. Wettabilty improved on addition of lecithin but dispersibility values 

remained poor and unchanged. Lecithin was used to prevent feathering in an 

acid-whey-based coffee creamer powder (Greutzmacher and Bradley, 1991) and 

improve reconstitution properties such as wettability and dispersibility of 

agglomerated WMP (Pisecky, 1980). Present investigations show that there was 

no significant correlation between wettability or dispersibility and the coffee 

stability of experimentally-produced or industrial instant WMP (Appendix F and 

G). However, further investigation may be required to study the efficacy of the 

lecithin application system used in experimental trials, given that industrial 

samples of lecithinated WMP were coffee-stable.

Influence o f variation in milk composition on the coffee-stahility

Increasing the fat-in-powder levels resulted in increased bulk densities 

and coffee sediments. For the 24% and 26% fat containing powders, sediments 

were within specification (i.e. < 0.5ml). However, increasing fat levels above 

26% fat resulted in poor coffee-stability (Teehan and Kelly, 1996b). This may be 

due to free fat on the surface giving rise to water repelling forces at the interface 

between the powder particles and the coffee, thus preventing the WMP from 

dispersing adequately into the coffee. The increase in % free fat with increasing 

fat levels would suggest that this was the case. Free fat is defined as the amount 

of fat that can be extracted from food powders by a solvent in a designated time, 

and it is meant to represent that fat on the powder surface. However is has be 

shown that the free fat value also includes fat which originates from the interior 

of the particles. (Buma, 1971b, de Vilder et al., 1977, Bucheim, 1982). ESCA 

analysis (Faldt et al., 1993) of these powders would be required to accurately 

determine surface fat values.

Increasing the protein level in the milk by addition of skim milk retentate 

had no significant effect on bulk density or coffee-stability of the WMP 

produced from it (Teehan and Kelly, 1996b). This was surprising given that 

increased protein levels in the concentrate tend to increase viscosity and this, in 

turn, influences bulk density, % moisture, solubility index and dispersibility of 

instant WMP (Andersen, 1986; Snoeren et al., 1983). Decreasing the % protein
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in the milk by addition of skim milk permeate produced powder with similar 

properties to the control, although there was a slight decrease in interstitial air 

volume (Table 8-10) and % free fat (Appendix F, Table F3).

The buffering capacity peaks at pH 5.1 and pH 6.5 increased with 

increasing protein content in the powder. Srilaorkul et al., (1989) estimated that 

the contribution of casein, whey proteins and milk salts to the buffering of skim 

milk was 36.0, 5.4 and 58.6% respectively. These values are comparable to those 

reported by Kirchmeier (1980b) i.e. 26.3, 8.3 and 65.1%. Therefore, it is 

reasonable to assume that an increase in the % protein was responsible for the 

increased buffering capacity, given that casein and whey proteins have a 

considerable influence on buffering capacity of milk.

Effect o f  storage

After storage of the powders at 15°C for one month, both the bulk 

density and the coffee sediment increased (Teehan and Kelly, 1996b). Baldwin 

and Ackland (1991) found that during storage for 12 months, moisture and 

solubility index of WMP increased and the -SH group concentration decreased 

probably due to oxidation. Schubert (1981) reviewed the mechanisms of particle 

bonding in agglomerates. Usually, more rapid drying produced agglomerates 

with higher bonding strengths; however, drying rates which are too high can lead 

to crack formation in the agglomerates and reduce their strengths. It would 

appear that the forces holding agglomerates together degenerate during storage, 

resulting in the disaggregation of larger agglomerates into smaller particles and a 

resultant increase in bulk density. It was speculated that this, in turn, may cause 

higher coffee sediments. Lecithinated WMP did not change in coffee sediment or 

bulk density after one month storage, suggesting that lecithin may prevent 

destabilisation of agglomerates during storage. The relationship between 

mechanical stability of agglomerates and coffee-stability may be an important 

property requiring further examination.
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Fat-filled agglomerated powders

Powder produced from concentrated skim-milk where the fat content was 

standardised by addition of heat-treated cream, had slightly higher bulk density, 

WNPI and coffee sediment compared to instant WMP produced by the 

traditional process with the same milk. Hols and van Mil (1991) produced WMP 

by this alternative process of recombining skim milk concentrate and cream and 

it was comparable with WMP produced by the traditional process in terms of 

physical properties, flavour and product losses.

The butter oil fat-filled powder was less coffee-stable (0.8ml) than instant 

WMP (0.5ml), although wettability and dispersibility were similar to instant 

WMP (Appendix G). The fat melting point is considered most important when 

choosing an oil for fat-filled powders and influences wettability (Baker and 

Samules, 1961, Hansen, 1980) and dispersibility (Baker et al., 1959). In 

particular, fats with lower melting points have better wettabilities (Baker et al., 

1959) and dispersibilities. Other research (Kelly, 1996, unpublished data) has 

shown that agglomerated fat-filled powders produced with coconut oil or 

hardened palm oil were superior in terms of bulk density and coffee-stability 

compared to instant WMP. The melting points of the coconut oil and hardened 

palm oil were ~ 28°C and ~ 43°C, respectively. The precise melting point of the 

butteroil used is unknown however, it was summer butter oil (Irish) which 

according to literature would have a melting point of 30-33°C (Keogh and 

Higgins, 1986). Hardened palm oil which has a higher melting point than the 

butter oil, yielded a more coffee-stable fat-filled powder. Therefore, the melting 

point of the fat would not seem to influence the coffee-stability of fat-filled 

powder although it does affect its instant properties.
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10. CONCLUSIONS

The development of a simulation test which established a relationship 

between pH and sediment volume for both coffee-stable and coffee-unstable 

powder may prove useful when examining the behaviour of unknown samples. 

Although coffee creates adverse circumstances for the stability of WMP through 

a combination of low pH and high temperature, simulated conditions using acid 

would appear to be more exacting. Thus, coffee would seem to possess some 

stabilising factors. Potassium may well be the important coffee constituent given 

its beneficial effects when added in the model tests. The fact that increased 

mechanical agitation and prior reconstitution of WMP tend to reduce the amount 

of sediment formation suggest that the physical characteristics of the powder 

have a major bearing on coffee-stability. Forces governing the re-wetting 

behaviour of instant powders may be at play under conditions where acid shock 

could be taking place. As expected high levels of water hardness adversely 

influence coffee-stability.

The individual process steps of concentration, homogenisation and 

concentrate heating did not affect coffee-stability. Various combinations of 

temperature and holding time during the preheat treatment of milk affected 

powder properties, in particular; coffee sediments, bulk densities and interstitial 

air volumes. Powders produced by preheating to 94°C for 30s had good coffee 

stability and were characterised by low bulk density, high interstitial air volume, 

and a particle size distribution with a high proportion of larger particles. Instant 

properties were also affected by nozzle atomizer combinations. Therefore, it 

seems that preheating and atomisation can affect agglomeration and instant 

powder properties, which are critical to the coffee-stability of instant WMP. 

Variation in fat composition of the milk more so than protein, affected coffee- 

stability and instant powder properties. This was surprising, given that increased 

protein has previously been shown by other researchers, to adversely influence 

powder properties, due to increased concentrate viscosity. Further research may 

be desirable to investigate the relationship between fortified levels of milk
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protein, concentrate viscosity and instant powder properties which affect coffee- 

stability.

In this study, a system was established for the production of coffee-stable 

instant WMP. However, further research is necessary. Preliminary analysis of 

some samples of coffee-stable and -unstable powders showed differences in 

surface fat coverage as determined by ESCA. Analysis of a larger number of 

samples is required to validate the theory that higher surface fat coverage 

contributes to higher coffee sediments. Further pilot plant trials are required to 

determine if alteration in the milk salts and whey protein content influence the 

coffee-stability and properties of instant WMP. Further investigations are also 

required to study the efficacy of the lecithin application system and the use of 

different types of powdered and liquid lecithin.
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Figure A.1 Relationship between coffee sediment volume and WPNI for 

industrial instant WMP.

Table A -l Coffee sediment volumes and ionic calcium levels for 

industrial samples of coffee-stable and coffee-unstable WMP

Sample Coffee sediment 

volume (ml)

Ionic Calcium 

mg/1

A 4.0 80.0

B 4.0 82.4

C 0.4 69.9

D 0.5 70.9
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Table A2- Statistics for Coffee Test

Sample Sediment
(ml)

x-av x-avA2 (x-av)A2/n Std Dev

41 0.6 0.11 0.0121 0.013 0.114018
0.6 0.11 0.0121
0.3 -0.19 0.0361
0.4 -0.09 0.0081
0.5 0.01 0.0001
0.3 -0.19 0.0361
0.6 0.11 0.0121
0.5 0.01 0.0001
0.6 0.11 0.0121
0.5 0.01 0.0001

Average: 0.49 Sum: 0.13

Sediment
(ml)

Sample 1.2 -0.025 0.000625 0.021875 0.147902
30 1.4 0.175 0.030625

1.2 -0.025 0.000625
1 -0.225 0.050625

1.4 0.175 0.030625
1.1 -0.125 0.015625
1.4 0.175 0.030625
1.1 -0.125 0.015625

Average: 1.225 Sum: 0.175
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Table A-3. Particle density, occluded air volume and interstitial air volume for coffee-stable

and coffee-unstable instant WMP.

SAMPLE

COFFEE

SEDIMENT

(ml)

BULK

DENSITY

g/cm3

PARTICLE

DENSITY

g/cm3

VOLUME

OCCLUDED

AIR

g/cm3

VOLUME

INTERSTITIAL

AIR

g/cm3

1 0.4 0.427 1.1937 5.48 138.45

2 0.5 0.405 1.1983 5.25 143.82

3 0.5 0.446 1.2109 4.31 144.69

4 0.6 0.416 1.1691 7.26 147.02

5 0.7 0.45 1.2079 4.44 147.63

6 0.8 0.438 1.1978 5.16 144.82

7 1.5 0.416 1.1229 10.84 157.86

8 2.9 0.434 1.2089 4.36 151.47

9 3.0 0.434 1.2058 4.75 157.45

10 3.8 0.44 1.1875 5.90 156.17

11 4.0 0.43 1.2088 4.47 141.49

12 4.0 0.44 1.2139 3.99 148.04

Sample Calculations 
A ccupvc1330 :

Sample: No. 10

Weight: 2.0977g

Temperature : 23.4°C

Equilibration rate: 0.05 psig/min

Mean Volume: 1.7665 cm3 
Mean Particle Density: 1.1875 g/ cm3

Run Volume (cm3) Density (g/cm3)

1 1.7660 1.1878

2 1.7658 1.1879

3 1.7657 1.1880

4 1.7671 1.1871

5 1.7678 1.1866

Standard Deviation: 0.0009cm3 
Standard Deviation: 0.0006g/cm3
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Appendix B
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Figure B l. Buffering capacity curves for 10% coffee-stable and 

coffee-unstable WMP, acidified from initial (pH 6.63) to pH 2.0 

with HC1 and back titrated to pH 11.0 with NaOH.
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Figure B2. Buffering capacity curves for 10% coffee-stable and 
coffee-unstable WMP, acidified from initial (pH 6.63) to pH 2.0 
with HC1 and back titrated to pH 11.0 with NaOH.
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Appendix C

Table C -l Adaptation of the Coffee Test to correct for the water content of

Whole Milk Concentrate

% TS DM WMP*

g

Concentrate Equivalent 

= (DM -WMP)/%TS x 

100

Weight of added water 

= (102-Conc. 

Equivalent) (g)*

45 1.94 4.31 97.69

44 1.94 4.41 97.59

43 1.94 4.51 97.49

42 1.94 4.62 97.38

41 1.94 4.73 97.27

40 1.94 4.85 97.15

♦Assume 3% moisture in 2g powder, as per coffee test. 
* 102g = 100ml water + 2g WMP

Table C-2 Coffee sediment for concentrate, homogenised concentrate and heated 

homogenised concentrate prepared from non-preheated milk

% TS Unhomogenized Homogenised Homogenised Homogenization

concentrate Concentrate Concentrate Pressures

(ml) PH before heating after heating (Bar)

(ml) pH (ml) pH

43 0.1 6.25 0.1 6.28 <0.1 6.17 80/20-control

43 0.1 6.27 <0.1 6.30 <0.1 6.22 75/25

44 0.1 6.24 <0.1 6.28 <0.1 5.96* 75/25

45 0.1 6.25 <0.1 6.27 <0.1 5.96* 75/25

* 43% 80/20 and 75/25 did not have as effective whitening power as the 45% and 44%
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Table C-3 Coffee sediment for concentrate, homogenised concentrate and heated 

homogenised concentrate, diluted to 20% TS and prepared from preheated milk

% TS Unhomogenized Homogenised Homogenised Homogenization

concentrate Concentrate Concentrate Pressures

(ml) pH before heating after heating (Bar)

(ml) pH (ml) pH

43 <0.1 6.20 <0.1 6.19 <0.1 6.30 80/20-control

43 <0.1 6.18 <0.1 6.20 <0.1 6.30 75/25

44 <0.1 - <0.1 6.17 <0.1 6.29 75/25

45 <0.1 - <0.1 6.07 <0.1 6.24 75/25
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Appendix D

Table D -l Influence of NaCl /KCI addition on coffee sediments

Water Sediment

Sample Hardness 

(mg/1 CaC03)

Control + 0.2% KC1 + 0.2% NaCl

A distilled 3.6 3.3 2.7

A 240 4.0 4.0 4.0
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Appendix E
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Figure E l. % of particle size WMP < 163.8 jj, versus coffee 

sediment volume (ml) for 20 samples of commercially 

produced coffee stable (s) and coffee unstable WMP (us).

Table E -l Malvern Mastersizer Particle Size Analyses and Coffee Test Sediments of

some WMP samples

WMP Sample Code 16 20 9 2

Coffee-Sediment (ml) 0.3 3.0 0.6 0.6

Particle Size less Proportion of particles

than (%)

53.25n.rn 13.11 13.41 7.98 18.78

76.32|i.m 24.32 25.93 14.89 31.57

103.58|xm 41.28 42.52 25.97 48.24

163.77(xm 71.09 72.06 48.59 74.73

258 95(j,m 91.93 91.58 71.6 91.92

351.44(j,m 97.86 97.08 83.46 97.19

555.71|xm 100 99.47 94.87 99.83

50 60 70

% WMP OF PARTICLE SIZE < 163.8^
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Appendix F

Table F -l Effect of preheat treatment on the physico-chemical properties of agglomerated

WMP

Heat Treatment
Coffee

Sediment
(ml)

Bulk
Density
(kg/m3

625
taps)

Wettability
(seconds)

Dispersibility 
Scale 1-9

Calcium
(mg/1 Ca+)

Ionic Total

Free
Fat
%

powder

(a) 75°C x 2 
min

0.75 - >1 min 7/8 72.7 817.75 1.28

(b) 97.5°C x 2 
min

1.15 - >1 min 9 74.0 832.25 2.61

(c) Combination
• 85°Cx 2min
• 94°C x 10s

0.35 0.43 >1 min 8 65.8 822.50 0.99

(d) Combination
• 85°C x 2 min
• Cool (10°C)
• 94°C x 10s

0.4 0.42 >1 min 9 71.4 802.75 1.16

(e) 94°C x 30s 0.35 0.43 >1 min 7 62.4 831.0 1.22

Table F-2 Effect of variation in powder fat levels on coffee-stability and other physico­

chemical characteristics

Fat
%

Coffee
Sediment

(ml)

Bulk 
Density 
(kg/m3 

625 taps)

Wettability
(seconds)

Dispersibility 
Scale 1-9

Solubility
Index
(ml)

Free
Fat
%

powder
24.2 0.2 0.44 > 1 min 8 <0.1 1.29
25.7 0.5 0.45 > 1 min 9 <0.1 1.58
28.1 0.6 0.46 > 1 min 9 <0.1 2.82
30.9 1.25 0.47 > 1 min 9 <0.1 1.24
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Table F-3 Effect of variation in Milk Protein content on WMP properties.

Sample Coffee

Sediment

(ml)

Bulk 

Density 

(kg/m3 

625 taps)

Wettability
(seconds)

Dispersibility 
Scale 1-9

Free
Fat
%

powder

Calcium 
(mg/1 Ca+)

Ionic Total

Control 0.5 0.42 > lmin 9 1.49 61.0 792.3

High Protein 0.35 0.42 > 1 min 8 1.47 61.0 872.3

Low Protein 0.5 0,43 > 1 min 9 1.21 58.7 733.0
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Table G -l Physico-chemical properties of fat-filled powders

Sample

Coffee

Sediment

(ml)

Dispersability

Scale

(1-9)

Wettability

seconds

Control 0.5 8 > 1 min

Cream 0.8 9 > 1 min

Butter Oil 0.8 8 > 1 min
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