
Survivable Network Design With

Stepwise Incremental Cost Function

A thesis submitted as a requirement for the degree of Master o f Engineering

Electronic Engineering.

Author: Hai Wang, B.Sc.

Supervisor: Dr. T. Curran

Dublin City University

School of Electronic Engineering

Sept. 1999

Declaration

I hereby certify that the material, which I now submit for assessment on the programme of

study leading to the award o f Master of Engineering is entirely my own work and has not

been taken from the work o f others save and to the extent that such work has been cited and

acknowledged within the text o f my work.

Signed: tjfli’ W m ID No.: 4617 0175

Date: IBM I / W

Dedicated to my parent

ACKNOW LEDGMENTS

I would like to thank my academic supervisor D r. Tom m y Curran for his unceasing
enthusiasm, interest, constructive suggestions, and for putting up w ith me over the
years. I owe him much gratitude. I also thank him sincerely for facilitating my
entrance to the field of telecommunication.

Thanks are very m uch owing to m y colleague, Sean M urphy for his continual
guidance and assistance during these years. Sean has been a constant source of
encouragement to me and I wish to extend m y sincere thanks to him for always
making himself available to offer advice.

I am grateful to many other friends and colleagues at this time in no particular order:
Dr. Feng Yu, Michael Collins, Liam Ward, Dr. Noel O ’Connor, Eddie Cooke,
Brendan Jennings and Yining Chen.

I would like to thank my special friend D r. Shaestagir Chowdhury for his
encouragement and loving support during these years.

I would like to convey m y sincere thanks to m y family, especially m y m om and dad,
w ithout whose support and encouragement this thesis would not have been written.
Thanks are due to m y brothers, sister-in-law and niece, who continually inspired me
from the family.

There are many, many individuals who have contributed in major and m inor ways to
this work. Thanks are due to them, whose names I forgot to mention.

Title: Survivable Network Design with Stepwise Incremental Cost Function

Author: Hai Wang

Abstract:

Modern society has become more and more dependent on information services, transferred
in both public and private network, than ever before. The use o f integration o f computers
with telecommunications has created a so-called “Information Age”. The advent o f high
capacity digital telecommunication facilities has made it possible for the huge amount of
traffic to be carried in an economical and efficient method, in recent years. These facilities,
which are used to carry much higher capacities than the traditional ones, also result in the
network’s vulnerability to the failure of network facilities, i.e. a single link failure.

This thesis is concerned with the technology by which the spare capacity on the link of
mesh networks is placed in order to protect the active traffic from network failure with a
minimal cost. Although there have been many works to address the issue all o f these works
have been developed based on the assumption that the link cost with its capacity is linear.
In fact, the linear cost functions does not reflect the reality that optic fiber cables with the
specific amount of capacities are only available, in other words, the link cost function is
stepwise rather than linear. Therefore, all existing algorithms developed for the linear
assumption may not be applicable properly for the stepwise case.
A novel heuristic algorithm is proposed to solve the problem in this thesis. The algorithm is
composed o f two parts as follows. In part one, a maximum flow algorithm is employed to
work out the maximal amount o f feasible spare paths consisting o f spare capacities in the
network to re-route the disrupted traffic at the event o f network failure. In part two, a newly
proposed algorithm is used to find an alternative path on which to place the non-rerouted
traffic on the failed link with the minimum network cost increment. The superiority o f the
algorithm is presented over other algorithms published in this area.

Table of Contents

C H A P T E R 1 IN T R O D U C T IO N ..3

1.1 In t r o d u c t io n .. 3
1.2 R esea r ch O b je c t iv e s ...5
1.3 Thesis St r u c t u r e ... 5
1.4 A lgo rith m s pro po sed a sso cia ted w ith th e t h e s is ... 6

C H A P T E R 2 M E S H N E T W O R K SU R V IV A B L E T E C H N O L O G IE S ...7

2.1 In t r o d u c t io n .. 7
2.2 Ba c k g r o u n d to M esh Su rviv able N e t w o r k s ..8

2.2.1 Centralized and Distributed Restoration..8
2.2.2 SONET Network and its Signal Hierarchy... 9
2.2.3 Some Concepts regarding Network Structure..12
2.2.4 Some Important Parameters Regarding Survivable networks...14

2.3 Repr esen ta tiv e of N etw ork To polog y in a Co m p u t e r ..14
2.3.1 Graphical Networks... 15
2.3.2 Weight (Capacity) Matrix and Binary Matrix o f Networks....................... 16

2.4 G en er a l D escriptio n of M esh Su r v iv a b le N etw o r k s ..18
2.5 G en er a l d esc r iptio n of Spa r e Capa c ity P la cem en t pr o b lem (S C P)..................................... 22
2.6 Re v iew of SCP A pproaches in th e L iter a tu r e .. 23

C H A P T E R 3 A L G O R IT H M S F O R F IN D IN G F E A S IB L E P A T H S IN A N E T W O R K25

3.1 In t r o d u c t io n ..25
3.2 Pr e -pla n n ed Surviv able N etw o rk D esig n a n d D y n a m ic Resto r a b le N etw o r k D esign

26
3.3 N etw o rk Sur v iv a b ility and Re s t o r a b il it y ...28

3.3.1 Network Survivability.. 28
3.3.2 Network Restorability... 28
3.3.3 Relationship between Survivability and Restorability...29
3.3.4 Different Requirement ofNetwork Survivability and Restorability for Feasible Path
Algorithms (FPAs)... 30

3.4 F ea sib le Pa t h A lgorithm s (F P A s)..31
3.4.1 Ford-Fulkerson’s Algorithm... 31
3.4.2 K-Shortest Path Algorithm...36
3.4.3 Matrix Maximal Flow (MMF) Algorithm............................ 39

3.5 N etw ork s used to Investigate th e a bo v e A l g o r it h m s ..44
3.6 Resu lts and D is c u s s io n ... 45
3.7 Co n c l u s io n ..51

C H A P T E R 4 O P T IM A L S PA R E C A P A C IT Y P L A C E M E N T IN M E S H S U R V IV A B L E
N E T W O R K S ... 52

4.1 In t r o d u c t io n ..52
4.2 L in k Co st F u n c tio n s ... 53
4.3 IP-B a sed SCP Solu tion Te c h n iq u e s ..55

4.3.1 IP based SCP algorithms... 56
4.3.2 Implementation o f IP Based SCP Algorithm ..59

4.4 A H euristic A lgo rithm for Spa r e Capa c ity P la cem en t (SC P)... 67
4.5 A N ew H euristic A lgo rithm fo r th e SCP pro blem w ith Stepw ise L ink Co st Function

71
4.5.1 The Problem o f the Existing SCP algorithm .. 77
4.5.2 Addition Minimum Increment algorithm (AMI)...73
4.5.3 Stepwise Cost Heuristic (SCH) algorithm on SCP Problems with Stepwise Link Cost
Function 76

C H A P T E R 5 R E S U L T S AND C O M P A R IS O N ..80

1

5.1 INTRODUCTION.. 80
5.2 T e st n e t w o r k s .. 80
5.3 Stepw ise Link C ost Function Sc e n a r io s ...8 i
5.4 Spare Capa c ity Pla cem ent T est Resu lts ..84

5.4.1 Comparison o f time complexities among three SCP algorithms...84
5.4.2 Performance o f three SCP Algorithms in terms o f total Network Cost Savings....................86
5.4.3 Effect o f the Stepwise Cost Function Scenarios on the Network Cost....................................88

C H A P T E R 6 C O N C L U S IO N ...95

6.1 O v era ll Discussion o f Re s u l t s ...95
6.2 A pplica tion a nd Fu r tiier Wo r k ..97

6.2.1 Application to Survivable Network Design... 97
6.2.2 User Interface Development .. 97
6.2.3 Further Refinement o f the SCH A Igorithm...97

R E F E R E N C E S .. 98

Appendix A Test Networks for the Feasible Path Algorithm..................................A-l

2

Chapter 1 Introduction

1.1 Introduction

Modem society has become more and more dependent on information services,

transferred in both public and private network, than ever before. The use o f integration

o f computers with telecommunications has created a so-called “Information Age”. The

advent o f high capacity digital telecommunication facilities has made it possible for the

huge amount of traffic to be carried in an economical and efficient method, in recent

years. These facilities, which are used to carry much higher capacities than the

traditional ones, also result in the network’s vulnerability to the failure o f network

facilities, i.e. a single link failure. A single multi-gigabit per second fiber optical cable

can carry the capacity equivalent of tens of thousands o f individual conversations and

data connections. So the service disruption is no longer tolerated by industries if a fiber

cable failed and there is no means in place to rapidly reroute the traffic which flowed on

it. For example, a fiber cable cut in the AT&T network, which occurred at Newark in

January 1991, interrupted 60 percent o f voice and data coming and going out of New

York, including three major commercial airports, for about 10 hours. The challenging

issue for a network provider and designer is how to ensure the network continuity at an

affordable cost and reasonable restoration time.

In the last decade, many approaches have been proposed to design the survivable

network in the event of a network span failure. These restoration design technologies

are basically divided into two categories: dedicated spare capacity routing and non­

dedicated spare capacity routing. In dedicated spare capacity routing methods, such as

automatic protection switching (APS) and self-healing rings (SHRs), a network will

have spare capacity added to the network which is dedicated to rerouting the disrupted

working traffic flows. The spare capacity is preset in the extra network facilities (for

example idle fiber cable). When a network span fails the switching equipment

automatically reroutes the working traffic by switching the working flow from the failed

span to the preset spare alternate facilities. In non-dedicated spare capacity routing

methods, spare capacity is placed on each network span, which the working capacities

are located on. The spare capacity possibly contributes to the restoration of all possible

network failures. It is worth noting that this type of network is donated mesh network

because o f the way they use spare capacity. In the event o f a network failure, working

3

flows are rerouted over spans, on which spare capacities exist. In summery, in dedicated

restoration technologies the working traffic is rerouted through predefined restoration

paths in the extra network facilities, whereas in non-dedicated restoration technologies

the network is recovered from a failure by using all the spare capacities available in the

networks, as needed, to form restoration paths.

The primary advantage of dedicated capacity restoration methods is its speed. The spare

capacity is effectively hardwired and used only in the event of network failure. The

transport signals can be rapidly switched to the stand-by paths, which can result in

restoration times of as little as 50 msec[l]. However, there are some disadvantages to

this type of restoration, firstly, the total amount o f spare capacity which is required to

make such a design fully restorable, for all span failures, will be generally greater than

the total amount of working capacity present in the network. The network will also be

relatively inflexible in its configuration because all o f its spare capacities are hardwired.

The implication is that network traffic has to be accurately forecast, at the time of the

network’s construction, so that the network’s fixed protection configuration will be able

to support future traffic growth.

The network designed by the non-dedicated technologies, on the other hand, uses non­

dedicated spare capacity and has the primary advantage o f being fully restorable using

an amount of spare capacity which can be 3 or 6 times less than that required in a

dedicated network [1]. The reduction occurs because all the spare capacities in a mesh

network are free to be re-used in the restoration of any span failure, whereas the spare

capacity in a dedicated network can only be used in the restoration of a specific set of

spans. An additional advantage which mesh networks offer is that both working and

spare capacity is fully re-configurable to more easily accommodate future changes in

offered traffic. The difference between working capacity and spare capacity, in a mesh

network, is that one is committed to service and the other is simply sitting idle. I f traffic

offered to the network should suddenly increase in a certain area it may be carried by

putting some of the spare capacity into service. However, this may result in the

reduction of the network survivability. More usually, the benefit lies in placing new

working capacity only where the growth is actually materialized this allowing a mesh

network to be less dependent on the actual forecast ordering. Because of the advantages

of the non-dedicated survivable network over the dedicated one, we will center on the

non-dedicated survivable network in this thesis, namely, the survivable mesh network.

4

1.2 Research Objectives

The objective of this thesis is to find out how to place the spare capacity in mesh

networks in order to protect the active traffic from network failure with a minimal cost.

Due to the increasing interest in the survivable network design, there have been plenty

o f approaches proposed in recent years to address this problem [2] [3] [4]. These

approaches can basically be classified into two group, standard methods and heuristic

methods. If standard methods, such as the Linear Programming (LP), or Integer

Programming (IP), are applied to the problem of optimal spare capacity planning

[3][4] [5], then standard methods can be used to obtain the optimal solution to the Spare

Capacity Placement (SCP) problem. In heuristic methods the greedy algorithm is

employed to find the near optimal solution. Compared with the heuristic method, the

standard method would get the optimal result at the expense o f execution time. The

standard method is more time consuming due to the larger amount o f constraints

required by LP (or IP) programming.

Almost all methods were developed based on the precondition that the link cost

function with its capacity is linear. However, the fiber cables with the specific amount

of capacities are only available in commercial markets, which makes it natural to

consider solutions from the above methods may not be optimal although it is still giving

a good approximation. In this thesis, we propose a heuristic approach to address the

stepwise problem. The approach’s effectiveness in terms of execution time and the costs

required will be evaluated by comparing it with one standard method and one heuristic

method respectively.

1.3 Thesis Structure

Chapter 2 is concerned with the introduction of the general background in the area of

survivable network design, for example, some relevant terms and concepts, and then a

brief description on the work detailed in current literatures is also given.

Chapter 3 contains an illustration of three algorithms that are used to obtain the

feasible paths in the survivable network design, i.e. the Ford-Fulkerson’s algorithm, the

K-Shortest Paths algorithm (KSP) and the Matrix Maximum Flow algorithm (MMF).

Then a comparison of their effectiveness in terms of the amount of paths found by these

algorithms is provided.

5

Chapter 4 is concerned with the three algorithms which are applied to solve the SCP

problem, IP formulation, max-latching algorithm and Stepwise Cost Heuristic algorithm

(SCH). In addition, in order to solve the survivable network with stepwise cost function,

the Addition Minimum Increment (AMI) algorithm is also proposed here. It is applied

to obtain a path where the addition of the specified amount o f traffic causes the

minimum cost increment. IP formulation is a SCP solver that employs the IP

programming to optimize the placement o f spare capacity in 100% restorable network.

The max-latching algorithm is a heuristic method that use the matrix knowledge to

obtain a near optimal solution to SCP problem. The SCH algorithm is also a heuristic

method that combines the maximal flow algorithm and the AMI algorithm to address

SCP with the stepwise cost function.

Chapter 5 presents the results of the three SCP algorithms in terms of execution time

and cost. Finally, an overall comparison of methods is presented.

Chapter 6 gives a discussion of the results. Finally, we suggestion some future research

for mesh survivable network.

1.4 Algorithms proposed associated with the thesis

1. MMF algorithm, which is used to obtain the maximum flow between a given pair of

nodes in a network.

2. AMI, which is used to find a path where adding the specified amount o f traffic

causes the minimum cost increment. The algorithm is developed based on Dijkstra’s

algorithm [8].

3. SCH algorithm, which is a heuristic algorithm to address mesh survivable network

with stepwise cost function.

6

Chapter 2 Mesh Network Survivable Technologies

2.1 Introduction

As discussed above, mesh survivable networks are selected for study in this thesis

because they have many advantages over dedicated survivable networks. The major

advantages of mesh survivable network are as follows:

1. Flexibility:

Spare capacity is dedicated to almost all-possible failures o f a network rather than any

specific failure as dedicated survivable networks do. In case an unexpected failure

occurs, restorable paths would be calculated dynamically according to the spare

capacities available in order to protect as much interrupted traffic as possible from the

network failure. Upon network failure, total spare capacities available are composed of

both spare capacities placed before the failure, and released by traffic affected by the

failure. All characteristics o f mesh survivable networks contribute to its flexibility.

2. Extensibility:

Another attractive advantage of mesh survivable networks is its extensibility. Due to

increasing reliance o f our society on telecommunication, the amount of new services

have been mounting rapidly day by day. Today’s network with 100% survivability

(introduced in Chapter 3) may no longer guarantee 100% survivability for the coming

new services, tomorrow. Mesh survivable networks have more capabilities to meet the

requirement of traffic growth than dedicated survivable networks. When new services

are coming, spare capacities can temporally be used as working capacities to carry the

new service although it reduces the network’s survivability. To solve this, new spare

capacities would be placed where new services occurred in order to keep 100% network

survivability.

3. Affordable Time Complexity for real time services:

With the deployment o f the powerful network equipment (i.e. DCS explained in the

section 2.2.3 and ADM detailed in [6]), they have succeeded in speeding up the

calculation time of SPC algorithm in each node so that the delay of services is

affordable by users [7]. On the other hand, the fast restoration (50 msec) provided by

7

SHR and APS is not, strictly speaking, necessary in most instances. For example, in the

telephone network, calling would not be dropped in 2 seconds, that means users can not

perceive it. Therefore, 2 seconds is a very well reasoned and cost effective target for

restoration times.

In summary, we will focus on studying mesh survivable networks in the following

chapters. Before further discussion, we would like to illustrate a number o f definitions

regarding mesh survivable networks firstly.

2.2 Background to Mesh Survivable Networks

2.2.1 Centralized and Distributed Restoration

At the most level o f abstraction, mesh restoration requires three conceptual steps: (a)

accessing a network description, (b) computing a re-routing plan, and (c) deploying

cross-connection actions to put the plan into effect. Centralized and distributed

restoration can be differentiated by examining the steps o f the restoration process.

In step one of the restoration process, centralized mesh restoration accesses a database

at a central controller that stored information about all network nodes, connectivity

maps, and spare facilities. In distributed restoration the network itself is the database;

rather than accessing a central controller, each DCS obtains local network information

from the links impinging on it.

To fulfil step two o f the restoration process, centralized restoration computes the best

re-routing paths for all failed signals based on the most recent network information

available in the controller’s database. Distributed restoration computes the re-routing

plan is a distributed fashion across the entire network so that DCS only computes the

part o f the composite routing strategy which it is required to implement. The computed

set o f restoration paths form the re-routing plan in both cases.

In step three o f the restoration process, centralized restoration requires the downloading

of the re-routing plan to all DCS machines. However, distributed restoration leaves the

computed set of restoration paths in place at each DCS node, obviating the need to

download any re-routing plan.

While centralized and distributed restoration disperses information of the rerouting plan

differently in step three of the restoration process, both centralized and distributed

restoration may deploy the cross-connects required to implement a rerouting plan in the

same way. The ways in which cross-connection actions may be deployed at a DCS are

explained in 2.2.3.

Centralized restoration is challenged with problems related to the size, cost, complexity,

and vulnerability of the surveillance and control center needed for transport

management. A centralized system is also dependent on the ability to maintain a

complete, consistent, and accurate database image of the network which necessities

redundant high-availability telemetry arrangements. As a result, centralized restoration

is not only slower in real time than distributed restoration but runs the risk that a failure

in the network will coincide with downtime at the central control site or a failure in the

telemetry arrangement.

In a distributed approach there are no dependencies on telemetry or a central control

site; the network is the computer on which the reconfiguration algorithm run. Therefore,

the distributed approach is less vulnerable than the centralized approach. Furthermore,

distributed mesh restoration algorithms have the potential to compute a rerouting plan

much faster than centralized algorithms because they use the network as their database,

and perform distributed processing over all DCSs. However, distributed restoration

algorithms tend to be more complex than centralized algorithms because they must

ensure that the routing decisions taken by all other nodes. The restoration algorithm

presented in this thesis is a distributed mesh restoration technique.

2.2.2 SONET Network and its Signal Hierarchy

In this section, we provide background on the networks whose design will be optimized

and into which the distributed dynamic path restoration algorithm will be deployed. The

relevant network environment is that of the SONET transport network.

• Synchronous Digital Hierarchy (SDH)

Synchronous Digital Hierarchy (SDH) is a standard technology for synchronous data

transmission on optical media. It is the international equivalent o f SONET. Both

technologies provide faster and less expensive network interconnection than traditional

PDH (Plesiochronous Digital Hierarchy) equipment. In digital telephone transmission,

"synchronous" means the bits from one call are carried within one transmission frame.

"Plesiochronous" means "almost (but not) synchronous," or a call that must be extracted

from more than one transmission frame. SDH uses the following Synchronous

9

Transport Modules (STM) and rates: STM-1 (155 megabits per second), STM-4 (622

Mbps), STM-16 (2.5 gigabits per second), and STM-64 (10 Gbps).

• Plesiochronous Digital Network (PDN) and Plesiochronous Digital Hierarchy

(PDH)

A Plesiochronous Digital Network (PDN) uses point-to-point transmission systems and

a layered multiplexing scheme to provide the physical connectivity, establishment,

maintenance, and release of connections. In a PDN framing occurs at each multiplexing

step, and each point-to-point transmission system is clocked independently. While all

the clocks in a PDN are free running, they nominally operate at one o f the standardised

rate set in the Plesiochronous Digital Hierarchy (PDH) shown in Table 2.1

Digital Signal Level Data rate (Mbps)

DSO 0.064

DS1 1.544
DS2 6.312

DS3 44.736
DS4 274.176

Table 2.lPlesiochronous Digital Hierarchy

Within each rate in the multiplexing hierarchy, the various transmission systems in a

PDN operate at slightly different frequencies. In order to multiplex signals with slightly

different bit rates it is necessary to adjust the various input signals to a common rate by

adding or deleting bits, may be eliminated or added without corrupting the transmitted

information. While adding and deleting stuff bits in an input signal according to the

rules stipulated in the PDN does not corrupt the information being transmitted, it does

render the tributary signal inaccessible after multiplexing. In the PDH it is impossible to

discern the difference between a stuff bit and an information bit in the payload of any

digital carrier signal above the DSO level with de-multiplexing the high speed into it

constituent tributary signals.

• Synchronous Optical Network (SONET)

SONET is a standard in North America that defines both an optical interface, and rate

and format specifications for optical signal transmission. It can support both broadband

and narrow-band services. SONET Phase I specifies transmission rates, signal formats,

optical interface parameters, and some payload mappings, however, it does not
10

standardize the operations and maintenance functions that must also be exchanged

between Network Elements (NEs). Phase II of SONE defines the message set and

protocols for using overhead channels for operations, administration, maintenance, and

Provisioning (OAM&P). Phase II includes four major components: a protocol stack, a

language, a message structure, and a common view of the data.

The SONET signal hierarchy plays a crucial role in SONET networks. Several factors

determine the design of the SONET signal hierarchy. These factors include flexibility of

supporting different services, simplicity in cross-connection, benefits from synchronous

networks, facility maintenance, modularity for growth, and compatibility with existing

networks. The basic building block (i.e., the first level) o f the SONET signal hierarchy

is called Synchronous Transport Signal-Level 1 (STS-1). The STS-1 has a bit rates of

51.84 Mbps. The traffic in SONET network is the combination of STSn (n = 1, 4, 9,

12...), currently the STSn is defined, as depicted in Table 2.2

Digital hierarchy Line rate (Mbps)

STS-1 51.84

STS-3 155.52

STS-9 466.56

STS-12 622.08

STS-18 933.12

STS-24 1244.16

STS-36 1866.24

STS-48 2488.32

Table 2.2 SONET Signal Hierarchy with its Line Rate

It is worth noting that network traffic can only be represented by the integer number of

STSn (for example, STS-1, STS-3 and so on) due to the modularity of the SONET

signal hierarchy. The following network definitions also play a crucial role in design of

mesh survivable networks.

In recent decades, increasing deployment o f fiber facilities in telecommunications

network raises concerns about service efficiency on the end-to-end basis due to the lack

of signal standards for optical networks. This service efficiency concern, along with the

need for supporting broadband service, which require bandwidth beyond the DC3 level

(e.g. High Definition Television [HDTV]), led to the establishment of a national

standard signal format that supports present service and future broadband services. This

optical signal format has been defined as SONET. So SONET network will become the

major infrastructure network for the future broadband network (i.e. ATM network).

Although SDH network is another major infrastructure for the future broadband

network, the major principles derived from SONET network can also be applied to SDH

network due to the similarity of SONET and SDH. Therefore, only terminology

regarding SONET network is given in the following section.

2.2.3 Some Concepts regarding Network Structure

• A span is the collection of point-to-point STSn channels, working and spare, in

parallel between two DCS nodes.

• A working channel is any channel that is part o f a path bearing live traffic.

• A spare channel is an equipped-but-idle STSn channels terminated on DCSs;

• A working path is an end-to-end (source to sink) concatenation o f channels (e.g.

STS-1) from a pair of source and destination through the network.

• A spare path is a concatenation of spare channels through the surviving portion o f a

network that logically substitutes for one failed working path.

• A route is the sequence of spans followed by a working path or spare path; Note that

each span is composed of both working and spare channels.

Adjacent nodes are those that are directly connected by a span. Feasible paths are

defined as those that consist of spare paths between the nodes pair, where the failed

span starts from and terminates in. Feasible paths can be used to reroute the disrupted

traffic on the failed span in the event of network failure. In order to make these concepts

clear we illustrate them in Figure 2.1.

12

Spare capacity

 Spare capacity Working capacity

^ Failed Span V Market feasible path

I ■ Span

Figure 2.1 Mesh Survivable Network

In Figure 2.1, the span between DCS1 and DCS 4 fails, there are two working paths

dropped by the failure, i.e. a working path (DCS1 -> DCS5 -> DCS6), the other (DCS1

-> DCS5 ->DCS3). Two feasible paths are found to restore the failed working path, i.e.

the feasible path (DCS1 -> DCS6) for the first failed working path, and the other

(DCS1 -> DCS2 -> DCS3) for the second failed working path.

Digital Cross-Connect (DCS): Provides non-block connections between any o f its ports.

Offers cross-connection for SONET signal rates, through mapping and multiplexing to

the various SONET STSn frames. Capable of monitoring allocated section/path

overhead (management and status information accompanying the data), for enhanced

flexibility to network management. Allows for the interconnection o f various network

topologies, i.e. ring and star, thus enhancing overall network flexibility. Its transparent

switching characteristic offers extensive switching capability for network restoration

and network re-configurability. In mesh survivable networks, DCS has three basic

functions as follows:

• DCS can be used to switch the incoming traffic into its destination by identifying its

header bit when networks stay in order.

• DCS can be used to cross-connect the disrupted traffic into spare paths by router

table at the event of failure of network components.
13

• DCS can be used to work out the spare paths by using the knowledge about network

topology and spare capacity layout. In distributed restoration scheme, the

knowledge available to DCS is global. In centered restoration scheme, the

knowledge comes from the neighbors o f the DCS.

2.2.4 Some Important Parameters Regarding Survivable networks

There are a few major parameters that are used to judge the performance of mesh

survivable networks, i.e. span survivability, network survivability and spare capacity

redundancy.

Span survivability SvSj j and network survivability Svn are defined as:

min(w„fc,) _ ,=1SvS; j = ------------ - Svn =
W,

2
i = i

Where S is the number of spans in networks. Note that Svn is not the average of

individual span survivability (unless all spans have the same values W j). As defined, Svn

weights the restorability of each span by the size of each span so that it expresses the

total fraction o f working capacity that is protected, not the average fraction protected on

each span. This reflects the importance o f large spans in overall network performance.

The worse case survivability o f a network (to span failure) is defined as the lowest span

survivability level o f any span in the network:

Svn,wc = min{Svv,}/e,y ’

In the case of Svn <1 .0 , Svn> wc can be used as part of a determination o f whether many

spans are slightly below full restorability or, in contrast, one or a few spans are very

under-protected.

Spare Capacity Redundancy is the ratio o f spare capacities required to working

capacities for the specified level of network restorability.

2.3 Representative of Network Topology in a Computer

In this section we will present two popular methods to represent a given network

topology on a computer, Binary Adjacency Matrix (BAM) and its variation, namely,

Capacity Matrix (CM). BAM is a simple and intuitive network representative where

entries of this matrix are set 1 if the span exits between the corresponding nodes pairs,

and 0 otherwise. The main disadvantage o f BAM is that it may only be used to

represent the topology of networks rather than the capacity on network spans, so an

14

additional matrix is required to store network capacity. Obviously, plenty o f extra

computer memory will be requested to store them. To solve this problem, we substitute

BAM matrix by its Capacity Matrix (CM), thanks to the fact that capacity o f a given

network would be placed on a pair o f nodes if and only if a span exist between them.

We can easily convert the Capacity Matrix (CM) into the BAM if necessary. The BAM

is therefore regarded as a special Capacity Matrix where the capacity in each span is 1.

We will present the details of BAM and Capacity Matrix in the following section. Note

that a Capacity Matrix (CM) is denoted by weight capacity in graph theory [13], where

“weight” may represent capacity, distance and so on. Here, we will begin computer

representative o f networks with some graph theories.

2.3.1 Graphical Networks

A graph G = (V, E) consists of a set o f vertices V = {v; V2 v„} with the finite number

of elements and a finite set E of edges E = {e e 2 em}, as seen in Figure 2.2.To each

edge, e, there corresponds a pair of distinct vertices (u, v) where e is said to be incident

on. When drawing a graph we represent each vertex by a dot and each edge e by a line

segment joining its two end vertices. A graph is said to be a directed graph (or digraph

for short), as seen in Figure 2.2, if the vertex pair (u, v) associated with each edge e is

an ordered pair. Edge e is then said to be directed from vertex u to vertex v, and the

direction is shown by an arrowhead on the edge. A graph is undirected if the end

vertices o f all edges are unordered (i.e. edges have no direction). A network is a

directed or undirected graph in which a real number is assigned to each edge. This

number is often referred to as the weight o f that edge. In a practical network this

number (weight) may represent the driving distance, the construction cost, the transit

time, the reliability, the transition probability, the carrying capacity, or any other such

attribute o f the edge.

V3

Figure 2.2 Undirected graph with 5 vertices and 6 edges,
15

Two edges are said to be parallel if they have the same pair o f end vertices (and

additionally, if they have the same direction in case of a directed graph). Throughout

following chapters we assume that the network under consideration has no parallel

edges. (This assumption gives us some simplicity without any cost in generality). Thus

we can refer to each edge by its end vertices.

Figure 2.3 Digraph with vertices and 11 edges

We denote the letters n and m as the number of vertices and number o f edges

respectively in a network. A vertex will be referred to as a node (a term more popular in

applied fields).

2.3.2 Weight (Capacity) Matrix and Binary Matrix of Networks

The simplest and perhaps the most popular computer representative o f a network is the

weight matrix (capacity matrix). The weight matrix of an n-node network is an n x n

matrix W = {wi; j} in which the (i, j)th entry wy is the weight o f (i, j). The edge from

node i to node j in the network G. If there is no edge (i, j) in G, the corresponding

element is set usually to be 0 (in practice, some very large number). The diagonal

entries are usually set to zero (or to some other value depending on the application and

algorithm). It is easy to see that the weight matrix of an undirected network is always

symmetric. A network and its weight matrix are shown in Figure 2.4. Boxed numbers

next to the edges are their weights.

16

18

v °

0 0 35 0

19 0 0 85 0

18 43 0 11 0

0 0 0 0 0

0 16 0 77 V

Figure 2.4 A network and its weight matrix

Based on the network weight matrix we obtain a Binary Adjacency Matrix (BAM) by

converting non-zero entry to 1 because non-zero entry in the network weight matrix

indicates that there is a link between the corresponding vertices. In Figure 2.5, the

binary adjacency matrix of the network in Figure 2.4 is given.

f ° 0 1 0

1 0 0 1 0

1 1 0 1 0

0 0 0 0 0

L° 1 0 1 V
Figure 2.5 Binary Adjacency Matrix o f a Network

All algorithms that will be illustrated in Chapter 3 and 4 works with weight matrix and

binary adjacency matrix.

17

2.4 General Description of Mesh Survivable Networks

In general, the restoration technologies can fall into two categories, traffic restoration

and facility restoration. Traffic restoration is the circuit level restoration where the

disrupted circuit is re-routed around failure. A circuit switch, such as AT&T’s 5ESS

switch, perform traffic restoration by rerouting calls around failed circuit. Facility

restoration is the transportation level restoration that reroutes the failed traffic in large

units such as STSn upon failure of the network. As discussed in Chapter 1, facility

restoration can be divided in two subcategories, dedicated spare capacity (facilities)

restoration and non-dedicated spare capacity (facilities) restoration. Facility dedicated

restoration is characterized by using the dedicated facilities for protection including

Automatic Protection Switch (APS), dual homing, and Self-Healing Rings (SHRs).

Non-dedicated facility restoration is defined by using DCSs (or ADM) to reroute a

failure point.

These techniques are also referred to as DCS restoration techniques. DCS restoration

does not required the dedicated facilities to working systems for restoration.

Alternatively, it uses spare capacities with working systems to restore disrupted traffic.

Figure 2.6 shows several examples of facility-dedicated restoration and non-dedicated

restoration in order to make the above definitions clearer.

Protection Facility with Spare paths
.... r \ _ ,

__
W orking Facility with W orking Paths

m
p
s

■ -
,

W orking Facility with Working Paths
w

m
P
s'—

•
A

W orking Facility with Working paths

V
i

AW w

(a) 1 :N APS Architecture

18

•— -------- Spare Capacity

DCS Digital Cross-connected Switch

Reroute Path

(c) DCS restoration

Figure 2.6 Facility Restoration: (a) and (b) is referred to as Facility Dedicated
Restoration and (c) is referred to as Facility non-dedicated Restoration

• 1: N APS Diverse Protection

The APS approach is commonly used to facilitate maintenance and protect working

services, and has the advantage of being totally automatic. The 1: N diverse protection

structure is an alternative to the commonly used 1:N protection strategy, where N

working fiber system share one common protection fiber system. The only difference

between these structures is the location o f the fiber protection system; the 1:N

protection structure places the protection fiber in the same route as that of working

systems, and the 1 :N diverse protection structure places the protection fiber in a diverse
19

Work capacity

Link disrupted

route. In a 1 :N system, a cable cut occurs and a 1 :N diverse protection scheme is used,

part of the service is lost because only one of the N working systems can be restored.

Figure 2.7 shows the difference between these structures. This diverse protection

scheme is attractive because electronics cost dominate total cost and remain unchanged

when attempting to achieve survivability, a 1:1 diverse protection arrangement, which

provides 100% survivability for fiber cable cuts, required more facilities and equipment

than 1 :N diverse protection arrangement

In contrast with facility restoration, traffic restoration is more efficient with respect to

utilizing network bandwidth at the expense of more complex switch control. Due to the

popularity of SONET network in the future broadband, our attention will be put on

facility restoration. Although facility dedicated restoration has several advantages over

facility non-dedicated restoration, e.g., simpler control and quicker restoration, in the

thesis facility non-dedicated restoration still has been exploited and studied due to its

flexibility of coping with unexpected failure and traffic growth and higher effectiveness

o f utilizing network bandwidth. In fact, real time factor is no longer the most important

for most o f services provided by the network, e.g., data and even voice [7], since less

than 2 seconds outage time is not perceived by users in practice. In this chapter, facility

non-dedicated restoration will be studied as a major technology to produce a survivable

network.

Non-dedicated facility restoration can be considered at two different levels: path

restoration and span restoration. Path restoration restores the end-to-end logical path

affected by the span cut, and span restoration restores all disrupted channels carried by a

failed span. Figure 2.7 depicts examples of span and path restoration techniques. Table

2.3 shows a relative comparison between the span and path restoration method. The

path restoration uses spare capacity more efficiently than span restoration [24].

However, span restoration requires a simpler routing decision. Thus, span restoration is

expected to be faster than path restoration in terms of restoration time.

20

Figure 2.6 (a) Span Restoration

Figure 2.6 (b) Path
Restoration

O rioirm l ^ RrnV pn

■> Restored

Figure 2.7 Span Restoration and Path Restoration

Attribute Span Restoration Path Restoration

Time Complexity lower higher

Spare Capacity redundancy higher lower

Restoration Control simpler complex

Table 2.3 Relative comparison between spans restoration and path restoration

21

Technically, span restoration does not have any big difference from path restoration. In

span restoration, the traffic affected by a failure o f a single cable is the working

channels between the nodes pair connected by the failed span, so the number o f nodes

pairs affected is only one for any particular single cable failure. In path restoration, the

traffic affected by a failure of a single cable is the working paths through the failed

span. The number o f nodes pairs affected is the number o f the demand pair affected by

the failed span.

Due to the similarity o f the two restoration technologies, all restoration algorithms for

path restoration can be applied to span restoration with a small modification. Almost all

algorithms developed from span restoration can also be applied to path restoration. A

heuristic SCP algorithm [18] proposed by B.D.Venrable el al in 1993 is an exception.

The algorithm just works for span restoration, we will discuss the algorithm in detail in

Chapter 4. So span restoration can be considered as a special case o f the path

restoration. In the thesis, although the algorithm we proposed can works for both span

restoration and path restoration, only its span restoration implementation will be given

because the heuristic algorithm, a span restoration algorithm, will be selected to

compare with our new algorithm.

As discussed above, the facility non-dedicated restoration is a transport level restoration

technology, which take advantages of functionality of Digital Cross-Connect Switch

(DCS) to re-route the failed traffics through spare capacities on other unaffected spans.

It is not hard to realize 100% survivability if desired, but a challenging issue is to how

to obtain a Spare Capacity Placement (SCP) algorithm, which meets not only network

requirement for real time and minimal cost, but also 100% survivability or any target

level of specified survivability less than 100%.

2.5 General Description of Spare Capacity Placement problem
(SCP)

The aim of designing mesh survivable networks is to install the extra backup spare

capacities to be utilized to reroute the disrupted traffics in the event of network facilities

failure minimizing the cost. All these kinds of problems have been defined as the SPC

problem, namely, Spare Capacity Placement (SCP) problem. Here, a general description

on the problem of mesh survivable network is given.

Spare capacity placement problem can be stated as:

22

Min ^ f (S j + Wj) such that R (| =l,w-, > 0, s. > 0 /' = 1 S
/=i

Where Sj and Wj are the number o f the spare channels and working channels on span i

respective ly ,^ ; + wd is the link cost function with its capacities carried on span i. SCP

problem considered requires following network information as input: the network

topology, a vector o f working paths, W j, the target level o f network survivability

R(assumed to be 100 here), and the maximal restoration path length allowed (i.e. Hop-

Limits). The output is a vector of spare paths, Sj, which meets the survivability target

within hop-limits set by the maximum allowed restoration path length.

2.6 Review of SCP Approaches in the Literature

Due to the increasing concern of survivable network design, there has been lots o f work

to address this issue in the last decades. In general, all approaches proposed can fall into

two groups, heuristic approach and non-heuristic approach. Heuristic approach is

characterized as the near-optimal algorithm that is used to reduce the higher time

complexity of non-heuristic approach at the expense o f obtaining the near-optimal

solution to SCP problem. Non-heuristic approach is the optimal algorithm that is

employed to obtain the exact solution of SCP problem, but, taking more execution time,

so it can only be applied to small-scale networks. Note that almost all non-heuristic

approaches apply Linear Programming (LP) or Integer Programming (LP) to formulate

SCP problems.

In a 1993 paper [14], Meir Herzberg suggested a decomposition approach for SCP

problem in order to deal with a single cable failure. The approach is a span restoration

algorithm that was developed based on a Linear Programming (LP) model. The paper

assumes study networks can be decomposed into several simpler sub-networks model,

and then formulate these sub-network SCP problems into Linear Programming model.

The approach is committed to minimizing spare channels that are used to reroute

disrupted working channels at the event of failure. For the same purpose, Meir Herberg,

et al [15] proposed a new model to address SCP algorithm, and explored how hop-limits

factor affects the optimal result, and eventually the principle to choose proper hop-

limits was given. This algorithm is composed of two parts: Parti - relies on a Linear

Programming (LP) formulation (Min-Max) from which a lower bound solution is found

for SCP problem; Part2 - rounds up the solution o f Part 1 and uses a series o f related

LP, aimed to tightening the round-up assignment to a practical optimal solution. The

23

main disadvantage o f the above two algorithms is that both just can cope with a single

cable failure, so his 1995 paper [16], a new algorithm was proposed to address multi­

cable failure and node failure. It is also based on a Linear Programming (LP) model.

Based on an Integer Programming mode, R.R.Iraschko el al, [21] developed an

algorithm that can be used for span restoration and path restoration. The algorithm is

aimed to minimize the total amount of spare capacities that contributes significantly to

its costs. To reduce spare capacities further, the algorithm is also designed to re-use the

working capacity released by affected working paths. So the algorithm is more effective

in terms of minimizing spare capacities that is necessary to protect networks from

failure. A detailed description about the algorithm is given in chapter 4 and its C++

codes implementation is done in the PC basis as a benchmark.

Due to the higher time consumption of LP or IP based SCP algorithm, recently several

researchers have addressed the issue by introducing heuristic approaches. In 1991,

W.D.Grover et al [19] developed an effective approach for this task which heuristically

first finds a feasible solution (“Forward Synthesis”) and then reduces redundancy while

maintaining the restoration level achieved (“Design Tightening”). The approach

provided a full tradeoff curve between survivability and redundancy for a network that

IP (LP) based algorithm can not give. In practice, the curve is really important for

network planners and designers because it can provide a guideline for network design.

In 1997, W.D.Grover et al [18] proposed a more effective heuristic algorithm for SCP

problem. The heuristic algorithm runs much faster times than the optimal Integer

Programming (IP) while having big capacity redundancy. These characteristics can

contribute significantly to the problem of finding the globally best single or multiple

new span additions in the evolution of large transport networks. The algorithm will be

also described and implemented on a PC that is benchmarked in Chapter 4.

Both two types of SCP algorithms assumed that the link cost with its capacity is linear,

however, it is not always true, since only are fiber links with stepwise capacity available

in commercial market. That means that link cost is no longer continuous but stepwise.

So it is obvious that the SCP algorithms proposed with the assumption o f linear link

cost restrict the implementation issue although these algorithms are still a good

approximation o f the SCP solution. In Chapter 4, we proposed a new SCP algorithm to

address the issue based on Matrix Maximum Flow (MMF) and Addition Minimum

Increment (AMI) that will be described in Chapter 3 and in Chapter 4 respectively.

24

Chapter 3 Algorithms for Finding Feasible Paths In a
Network

3.1 Introduction

This chapter focuses primarily on the investigation of several important approaches,

called Feasible Path Algorithms (FPAs), which are designed to find feasible paths

between a pair o f nodes in networks. The FPAs are major functions in the Mesh

Survivable Network (MSN) design. In fact, the MSN design algorithms employ the

different FPAs to determine restorable paths to re-route the failed traffic upon network

failure, so FPAs algorithms play a crucial role in improving the effectiveness o f MSN

design in terms o f cost savings and execution time. In general, the FPAs algorithms

employed by MSN design take almost 99% o f execution time taken by MSN design

[10], hence, the effectiveness of FPAs contributes significantly to the reduction of

MSN’s time complexity.

We will investigate two existing FPAs algorithms, i.e. the Ford-Fulkerson’s algorithm,

the K-Shortest Paths (KSP) algorithm. The Ford-Fulkerson’s algorithm is a maximal

flow algorithm that can be used to find the maximal flow between a given pair of nodes

in a network. Based on the matrix theorem 40 in [11], we developed a new FPAs

algorithm, which we have termed Matrix Maximum Flow (MMF) algorithm. Finally,

the relative comparison of these FPAs algorithms is given in terms of total feasible

paths.

We organize the rest of this chapter as follows. In Section 3.2, The description o f two

types of MSN design problems, i.e. pre-planned survivable network design and dynamic

restorable network design, and their different requirement for FPAs. In section 3.3, we

give two criteria forjudging performance o f MSN design, i.e. network survivability and

restorability. In Section 3.4, we discuss three FPAs algorithms, i.e. the Maximum Flow

algorithm (i.e. the Ford-Fulkerson’s algorithm), the K-Shortest Path algorithm and

MMF. In section 3.5, the test networks over which the FPAs algorithm will be applied

are given. In section 3.6, Results are presented and discussed. Conclusions are presented

in section 3.7.
25

3.2 Pre-planned Survivable Network Design and Dynamic
Restorable Network Design

There is an increasing reliance by society on the timely and reliable transfer o f large

quantities o f information (such as voice, data, and video) across high speed

telecommunication networks. A network failure, such as the loss o f a link or a node, can

occur due to a variety of reasons causing service disruptions ranging in length from

seconds to weeks. Typical network failures are attributed to accidental cable cuts,

hardware malfunctions, software errors, natural disasters (i.e. fires), and human error

(i.e. incorrect maintenance). With advent o f high bandwidth optic fiber more and more

services in networks are being carried on a few optical fiber cables bundle, which

means even a single fiber outage can affect many services. In the last decades there has

been an increasing interest in finding approaches to design networks that are resilient to

failure [2] [15] [28],

In general, the survivable network design can fall into two steps, i.e. pre-planned

survivable network design and dynamic restorable network design, preplanned networks

have preset routes for restoration, dynamic restorable networks find routes dynamically

based on all existing spare capacity in a network, hence, the dynamic restorable network

design relies significantly on the pre-planned survivable network design. Both the

preplanned survivable network design and the dynamic restorable network design work

together to obtain a survivable network.

The aim of the pre-planned survivable network design is to work out an approach,

called Spare Capacity Placement (SCP) algorithms, to place spare capacity in networks

in order to enable the network to recover from network failure. It is impossible and

unnecessary to predict all possible network failures that may happen. If all predictable

failures were considered large amounts of extra capacity would be required resulting in

highly over-engineered network. In fact, some network failures are so unlikely to

happen, for example, multiple links failure, and some other network change is not

predictable, for example, traffic growth, so only are the most likely network failures,

e.g. a single link or node failure, can be taken into account in pre-planned survivable

network design. The SCP algorithm is applied to place spare capacity for all considered

network failures with minimal network cost. The re-routing tables is generated based on

the result of the SCP algorithm, and stored in the network DCSs. When a pre-specified

26

failure occurs, the network switches to its outage state, where DCSs in each network

node have the following functions to perform to restore the failure:

1. Identify the network failure, i.e. which span or node fails.

2. Change the original route table to that o f Outage State corresponding to the occurred

failure and then switch the affected working paths into the pre-set spare paths that

were placed by SCP algorithm at design time.

3. Switch back to the normal state when the failure is fixed.

So the pre-planned survivable design has the capability to restore all pre-specified

network failures but can not recover from failure in the case of unexpected network

failures and traffics growth. The dynamic restorable network design can be employed to

address the issue.

The aim of the dynamic restorable network design is to work out a network re-routing

protocol, called the Restoration Scheme (RS), to extend the network’s flexibility of

coping with network traffic growth and unexpected network failures based on the

existing network spare capacity placed by the preplanned survivable network design.

The RS is a protocol that uses the existing spare capacity available to re-route the newly

added traffic or failed traffic at the event o f unexpected network failures. For example,

when an unexpected network failure occurs, DCS will invoke the Restoration Scheme

(RS) embedded in them, DCSs would perform following functions.

1. Obtain the network knowledge, i.e. network topology, spare capacity layout and

so forth, as the input to Restoration Scheme

2. Execute the RS to work out the feasible paths for failed or added working paths.

3. Switch the failed or newly added traffics to the feasible paths found by the RS.

Both the pre-planned survivable network design and dynamic restorable network design

take use of the FPAs to find the “suitable” paths. In the pre-planned survivable network

design, the term “suitable” paths are those on which the spare capacity is placed to re­

route the failed traffic upon all most-ofiten-happened network failures with the minimal

network cost. In the dynamic restorable network design, the “suitable” paths are those

on which the newly added traffics or failed traffics at the unexpected network failure

can be re-routed as many as possible while considering the real time requirement,

obviously, two types of MSN design require the FPAs differently. The former is more

27

sensitive to network cost, the latter is more sensitive to real time. The difference

determines the difference on the implementation of FPAs.

3.3 Network Survivability and Restorability

Network survivability and restorability are two important concepts for pre-planned

survivable network design and dynamic restorable network respectively. The network

survivability is a network design objective and the network restorability is a criteria to

measure the flexibility of a network to deal with unexpected network failure or traffic

growth.

3.3.1 Network Survivability

The definition of network survivability has been given in Chapter 2. Network

survivability is a network design objective to be reached by network designers. The

survivability has to be set as an input of a SCP algorithm that is applied to find out the

placement of spare capacity to prevent the network from failure. The higher

survivability networks are, more spare capacities are required. In practice, we can set up

any level of network survivability according to the requirements o f the network

operator.

3.3.2 Network Restorability

Network restorability is a metric that can be used to measure the network’ ability to use

the existing spare capacity in the case o f network failure. The layout and number of

spare capacity found by SCP algorithm in pre-planned survivable network design and

Restoration Scheme (RS) determine the level of network restorability. It reflects the

capability of survivable networks to utilize the existing spare capacity to recover from

network outages by using the restoration protocol (scheme) in the face o f unexpected

network events. The aim of the restorable network design is to find protocol (scheme) to

serve as many traffics as possible in order to minimize impact on the network

performance when an unexpected failure of network facilities occurs or new traffics

need to be added.

Network restorability has the same mathematical definition as that o f network

survivability. Before we give the network restorability the network span restorability is

introduced as follows:

28

R
min(w„fc,)

f j w,

and then the network restorability is defined based on the network span restorability.

Where F represents all possible network failures and S network spans, including single

span failure, Here, R fi is the single span restorability in the event o f the failure/ (e F).

R n is the network restorability for all unexpected network failures. Because the

unexpected network failure and traffic growth are not known beforehand the exact

result of network restorability is not available. We can approximate it by the following

methods.

In case the new traffic is assumed to take place, we can convert spare capacity in each

network span to working capacity (one at a time), the Restoration Scheme (RS) is

applied to re-route these new work capacity, and calculate its restorability. In case two-

span failure is assumed to be an unexpected network failure, we choose all sets o f two

spans as failed (one set at a time) and calculate network restorability.

Since network survivability only applies in pre-planned survivable network design, we

refer to pre-planned survivable network design techniques as survivability techniques

for simplicity. Similarly, dynamic restorable network design techniques are referred to

as restorability techniques.

3.3.3 Relationship between Survivability and Restorability

Although there is some similarity between network survivability and restorability they

reflect the different performance of networks upon their failure. The former is a design

time objective, the latter is a network performance measure.

100% of network survivability in design time can not guarantee 100% o f network

restorability. The reason is that the restoration schemes are executed in a distributed

way, and do not always find desirable paths (optimum paths) which are expected by the

R i=i
n

29

Spare Capacity Placement algorithm (SCP) in design time. This is illustrated in

Figure3.1.

Figure3.1 Network Route for a Single Span Failure

Where the circles are the network nodes and the lines represent the network span

channels, for example, two span channels in the span between nodes 1 and 2. The

arrows indicate the routing direction.

Assume the span between node 1 and node 2 fails, two units o f capacity will be

dropped. In design time, two feasible paths are assigned by a SCP algorithm for a span

failure as depicted in Figure3.1(b). However, when the network outage occurs, the

restoration scheme may chooses wrong feasible paths so that the wrong chosen paths as

depicted in Figure3.1(a) exhaust all spare capacity assigned for the specified failure.

3.3.4 Different Requirement of Network Survivability and Restorability for
Feasible Path Algorithms (FPAs)

Due to the difference between restorability and survivability techniques, the

implementations of FPAs regarding network survivability and restorability are not

always same.

The primary aim of survivability and restorability (S&R) techniques is to recover

networks from the failure o f network facilities taking account o f their time complexity,

and minimizing the cost of network construction. Demands for the design of survivable

and robust networks have been increasing, so there has been plenty o f work done in

developing SR techniques [2] [3] [27] [29]. As discussed above, finding feasible paths,

through which the failed working channels are re-routed, is an important issue in SCP

algorithm, so FPAs play a crucial role in improving the effectiveness of SR techniques

in terms of cost savings and execution time. Because different FPAs techniques have
30

different advantages and disadvantages in practice, some may only be suitable for

survivability techniques or for restorability techniques, while others can be applied to

both cases. In some cases, some FPA approaches for survivability techniques that are

not suitable for restorability techniques can be modified to work for restorability

techniques. For example, the FPAs is employed in restorability techniques are more

sensitive to execution time than ones for survivability because they must operate in a

real network environment, and find solutions very quickly to minimize the disruption to

the network caused by the network failure: such speed requirements may result in the

use o f non-optimal solutions. On the contrary, the FPAs algorithms employed by

survivability techniques can take relatively longer time to get as many feasible paths as

possible to place spare capacity on in order to minimize the cost o f networks. In the

following section several FPA algorithms, i.e. Ford-Fulkerson’s algorithm, the K-

shortest paths algorithm, and the Matrix Maximum Flow algorithms (MMF) will be

presented and the advantages and disadvantages o f these algorithms will also be

compared in five test networks. Since Restorability technique is beyond the scope of the

project, we will focus on the survivability techniques in the rest o f this thesis. But, in

order to distinguish the different FPA implementation for two types of network design,

Two implementations o f the K-Shortest Paths algorithm will also be discussed for both

survivability and restorability techniques respectively.

3.4 Feasible Path Algorithms (FPAs)

In this section the FPAs are discussed: the Ford Fulkerson’s algorithm, the K-Shortest

Paths (KSP) algorithm and the Matrix Maximum Flow algorithm. We will discuss and

compare these algorithms in terms of the number of paths found. In addition, we

describe two types of implementation of K-Shortest Paths (KSP) algorithm, namely,

non-disjoint KSP and disjoint KSP in order to show survivability and restorability

techniques impose different restrictions on FPAs?

3.4.1 Ford-Fulkerson’s Algorithm

3.4.1.1 General Theory of Maximal Flow

As the name suggests, the maximal flow algorithm is used to find the maximal flow

between a given pair o f nodes in a directed network N = G(V, E, C) where V is the set

of nodes in the network, E is the set of edges in the network, C is a the network capacity

matrix. In addition, the number of working channels (i.e. traffic flow) is the existing

31

traffic flow in the network, it is stored in matrix / . C tj and f j , the entries (i, j) of matrix

C and matrix f are the maximum traffic flow allowed through edge (/, j) and the

existing traffic flow that exists in the edge (i, j) respectively. Note that C i s always

greater than or equal to7^-resulting from the stepwise link cost function.

0 < / j < Cy, for the edge (i, j) e E

Here, the difference of C tj minus f j is the number of the installed-and-idle spare

channels. In the following section we will describe how to find the maximum number

of spare paths consisting of these existing spare channels on each o f network edges

between a given pair o f network nodes which is represented by its source node s and

destination node d.

For each node j , other than source node s and destination node d, The conservation

law, i.e. the sum of flows into a node equals the sum of flows leaving the node, are

satisfied,

■'■(/) '(/)
Z f , / - Yu f u = 0 1 G s0'),7 e s(0>
1 I

Where s(i) is a set o f links for which node i acts as a source , s(J) a set o f links for which

node I acts as a sink. Since the network traffic flow may be used by local users in node s

and node d, the flow conservation law may not be held.

The sum of edge flows into the destination node d is f{d),

/(< *)= Z 4 /
i

Where i is the set o f edges incoming to the destination node d.

The maximum-flow problem (max-flow) is to find the values of /ij for all the edges such

that f(d) is maximised. To find the maximum flow a path augmentation technique can

be used. An augmenting path is a sequence of pair-wise adjacent edges from the source

node .s’ to the destination node d, which allows us to increase the value of flow. If the (/,

/)th edge orientation coincides with the direction of the path, then in order to push more

flow through it, must be less than C\ j. I f the (/', /)th edge points in the opposite

direction, then in order to push some additional flow through it, we must reduce its

flow, andTij > 0 is required.

• Labelling Algorithm

32

To find an augmenting path from s to d, a labelling procedure is used. The labelling

algorithm assumes that there exists an initial flow in the network, we may have, for

instance, all f\] = 0. Then labels of the form (j, s') or (j, - s) , where 6’ is a positive

number or infinity, are assigned to each other, beginning with the source .v. If it is

possible to label the sink d, a change of the flow from s to d is made and the labelling is

repeated. If it is impossible to label the sink, the flow is optimal. The procedure uses

two routines, A and B. During each step of routine A, a node is in one o f three states:

unlabeled and unscanned, labelled and unscanned, or labelled and scanned. Initially all

nodes are unlabelled and unscanned.

1. Routine A (Labeling)

Step 1. Label the source with (-, oo). Because the source is the node for labelling and is

assumed to allow any number of flows to come in its predecessor node is none

represented by -, and the flow through it is infinite co.

Step 2. For any labelled and unscanned node j with label (/, £\ (or -£ j)), scan it by

examining all unlabeled nodes I, adjacent to j .

a. If (j, I) is an edge and fji < C/7, then label node / with (J, £]), where s \ = min

Oj> Cji -fji).

b. If (/, j) is an edge and f j > 0, then label node / with (j , - e \), where e / = min

O j J i j) -

Step 3. The node / are now labelled and unscanned, and node j is labelled and

scanned. Repeat step 2 until either the sink t is labelled or it is impossible to label

the sink. In the first case we have a breakthrough and route B is initialised. In the

second case we have a non-breakthrough and the algorithm is terminated, the flow is

optimal.

2. Routine B (Flow Change)

The sink d has been labelled with (I, s d). Therefore, the network with the current

flow admits an augmenting path from s to d, which can increase the flow value by

e a. and I is the second last node on this path. Hence se t/]d = / d + s d- Now look at the

node I labelled (i, Sj (or -£])). If the second label is e \ then / has been labelled from

j by using the edge (j, I), therefore set /id = /id +e d- Otherwise, the edge (/, j) has been

33

used, and set f j = f j -ed . Continue the flow change indicated by the first element of

the labels until the node s is reached. Discard the labels and return to routine A. In

Figure3.2, the diagram for the above Maximum Flow Algorithm (MFA) is given as

follows.

Figure3.2 Labelling Algorithm:

(a) Initial flow and first labelling; (b) Second Labelling

Where the number in the brackets are f j and Qj. Initial edge flows are zero.

According to the above algorithm the following steps can be executed:

1. Label the source [-, oo].

2. Label nodes 1 and 2 with [5 , 5] and [s, 4], respectively.
34

3. Label node 4 with [2, 4],

4. Label nodes 3 and 6 with [4,1] and [4, 2], respectively.

5. Label node 5 with [3, 1].

6 . Label the sink (destination) with [5, 1].

There is a breakthrough and the augmenting path is indicated . The first labelling

procedure the flow of 1 through the edges [s, 2], [2, 4], [4, 3], [3, 5], and [5, d]. The

second labelling is shown in Figure3.2 (b). The third labelling is attempted but no

breakthrough occurs.

The algorithm terminates and produces the final solution: xS2 =xsi =xi3 = *24 = *35=

X46=X5d=X6d= l, and the flow value is 2 .

Assuming that the algorithm terminates, the last labelling does not reach the sink node d.

Let S be the set of nodes labelled in the last labelling attempt and S the set o f unlabelled

nodes. If an edge (i, j) is directed from S to S , it must be saturated, that is, f j = Cy;

otherwise, j would have been labelled when i was scanned. Also, all edges (j, i) from S

to S must have zero flow; otherwise, j would have labelled when i was scanned. Observe

that s belongs to S and t belongs to S . It is fairly obvious that the flow value is not

greater than the sum of capacities o f any set of edges (called a cut) which contains at

least one edge of every path from .v to d. Hence the flow value j{d) is optimal and equals

the sum of capacities of the edges between S and S . We state this as the max-flow min-

cut theorem.

3.4.1.2 Ford-Fulkerson’s Algorithm

When the labelling algorithm terminates, the flow /(d) is optimal and equal to the

capacity o f the minimum cut.

The question o f whether the algorithm always terminates also needs to be considered.

To see that it does if all initial edge flows and capacities are integer, we need to make

two observations. First, the algorithm adds and subtracts only and does not introduce

fractional flows. Second, if d is labelled the flow value is increased by at least one unit.

Since the flow value is bounded from above (e.g. by ^ C , d which is finite) the

labelling algorithm must terminate.

35

However, unless we better define the labelling process (process A) the algorithm can

be inefficient in some pathological cases. Modify the capacities o f the network in

Figure3.2 as shown in Figure3.3 and assume that M is a very large number. If the

labelling algorithm starts with f[d) = 0 and alternatively uses the same augmenting

paths as shown in Figure3.2, it will require 2M iterations o f routes A and B to find

the optimum flow value j{d) = 2M. Here the number o f iterations depends on the

problem capacities.

Figure3.3 Worst-Case Performance

Edmonds and Karp [1972] corrected this deficiency and showed that if the labelling

procedure always uses the augmenting paths as short as possible, its time complexity is

0(nm2), in an n-node m-edge network. Had we used the shortest augmenting path in the

example shown in Figure3.3 we would have used routines A and B only twice. The

Ford-Fulkerson’s algorithm will be implemented by C++ in a PC basis.

3.4.2 K-Shortest Path Algorithm

In [15], MacGregor, et al proposed the K-Shortest disjoint Paths (KSP) algorithm. The

algorithm has two advantages over the Ford-Fulkerson’s algorithm; it is much easier to

control the length of paths found and that it is much easier to implement. However, the

major disadvantage of the KSP algorithm is that it does not guarantee that the maximum

amount o f flow is found. The KSP was discussed in detail in [23], The advantages and

disadvantages o f the KSP when compared with the Ford-Fulkerson’s algorithm were

discussed and two algorithms were compared in terms o f performance. In [23], it has

also been shown that the amount o f paths found by the KSP is more than 99.9 % of that

found by the Ford-Fulkerson’s algorithm. Hence, the KSP can be used in most

36

circumstances that the Ford-Fulkerson’s algorithm can be used and it offers the added

advantages given above.

Flere we introduce all the notation used in the KSP algorithm. In the given network

G(V, E) where V is denoted a set o f nodes and E a set o f spans, we define two matrices

R and C, where and Cy, the entries (i, j)of matrix R and matrix C, represent the

maximum number of channels and the active number o f channels carried on the span (z,

j) respectively. R(i/- is always greater than or equal to Cy. Note that there are Ry - Cy

spare channels on each span and these can be used to re-route the disrupted working

paths without any increase in the network cost

The KSP can be implemented in two different methods, i.e. disjoint span KSP and non-

disjoint span KSP. The disjoint span KSP algorithm finds disjoint paths between node

pairs, i.e. paths do not share any common spans; the non-disjoint KSP algorithm does

not have this restriction.

In the disjoint span KSP implementation, the basic idea is to perform Dijkstra’s

algorithm a number of times, removing spans between each iteration [8].

First, the Dijkstra’s algorithm is used to get the shortest path in terms o f the real

distance between the specified nodes pair (say, s, d)\ Next, all spans on the shortest path

are removed from the network topology. Based on the updated network, Dijkstra’s

algorithm is invoked again to find the second shortest path, and then all spans on the

second shortest path are deleted from the network topology. The procedure continues

until k shortest paths are found or no more paths can be found, i.e. the network is

disconnected between nodes s and d. Pseudo-code for disjoint span KSP is given In

Figure 3.4.

In the non-disjoint span KSP, Dijkstra’s algorithm is again used to find the shortest path

between nodes s and d.

The network topology is then updated by deleting the spans on which the capacity

carried is minimal over all spans constitute. The capacity on all other spans that make

up the shortest path is then reduced by this minimal capacity. Dijkstra’s algorithm is

again performed followed by the network topology and capacity update until either k

shortest paths are found or no more path exists between nodes 5 and d. Pseudo-code for

the non-disjoint form of the KSP algorithm is given in Figure 3.5.

37

Variables:

• Cij Entry (i, j) of capacity matrix C storing the capacity o f link connecting

node i and j .

• E ij Entry (/, j) o f span adjacency matrix E, where it is a “1 ” if a link

between nodes i and j exists and a 0 otherwise.

Given:

• s Source node.

• d Destination node.

• P An array to store the spans on the recent shortest path.

• M Number of paths found so far between nodes pair s and d.

• K Number o f paths expected to find.

Procedure:

Step 1. Call Dijkstra’s algorithm to determine the shortest path between nodes s and d in

the network and store the nodes on the path in the array P.

Step 2. Update E by converting the entries in P from 1 to 0.

Step 3 . I fM < K and any path exists between nodes s and d, go to step 1, otherwise, the

procedure stops.

Figure 3.4 Pseudo-code for the Disjoint Span KSP algorithm

Procedure:

Step 1. Perform Dijkstra’s algorithm to obtain the shortest path between nodes (5 , d) and

store it in the array P.

Step 2. Compare all the capacity carried on the spans in the array P to find those spans

with minimum capacity and delete these spans by updating the network adjacency matrix

Step 3. Update C by subtracting the above minimum capacity from the capacity on the

other spans in the array P.

Step 4. I f K > M and any path exists between nodes s and d, go to stepl, otherwise, the

38

Figure 3.5 Non-disjoint span KSP algorithm

Compared with the disjoint span KSP, the non-disjoint span KSP can find the more

paths. However, the non-disjoint span version of the KSP takes longer to obtain

solutions. For example, survivability techniques do not require very fast operation since

they are design time technique, it is used to place the spare capacity in a network to

meet requirement of restoration of disrupted working traffic upon the most-likely-

happened network failure minimizing network cost at design time, so it is not very

sensitive to execution time. Hence, the non-disjoint span KSP is most suitable method

because it finds more paths to place spare capacity. Conversely, the objective of

restorability techniques is to determine how to re-route the disrupted working paths

utilizing the existing spare capacities as quick as possible, so, the disjoint span KSP is a

better option. Note that the two types of KSP algorithms find almost as many paths as

the Ford-Fulkerson’s algorithm and offers some extra advantages. The comparison

between two types of KSP algorithm will be given in terms o f total paths and execution

time below.

3.4.3 Matrix Maximal Flow (MMF) Algorithm

The Maximal Flow algorithm (Ford-Fulkerson’s algorithm) can be used as an accurate

approach to find the maximal flows between a pair o f nodes in a network. However, the

algorithm has the following disadvantages.

a) The maximum length o f paths can not be controlled. It is often useful to be able to

control the maximum length o f the feasible path because long paths, in general, are

wasteful of resources and result in losing the synchronization o f traffics in different

feasible paths.

b) It has high time complexity. Its time complexity restricts it from being applied to

large-scale network [23].

The KSP algorithm was developed to overcome these problems to some extent,

However, it does not guarantee the maximum account o f the feasible path other than

99.9% on average [23],

Here, a new algorithm called the Matrix Maximal Flow (MMF) is proposed. The MMF

algorithm is easier to implement than the Ford-Fulkerson’s algorithm and it also

provides a way to limit the length of the feasible path found in terms of hops. It has the

procedure stops.

39

higher time complexity than the Ford-Fulkerson’s algorithm in a single processor

computer. However, it is derived to reduce its time complexity dramatically in a vector

processor equipped computer from the conclusion of the paper [1 0] where the same

matrix technique is employed. In this project the comparison of their time complexities

will not be given because the vector processor is not available. But we will give an

introduction of the Recursive Matrix (RM) algorithm [10], which uses the same basic

technique, i.e. matrix multiplication, as the MMF algorithm does, in order to show their

similarity in time complexity.

3.4.3.1 Recursive Matrix algorithm (RM)

In [10], the Recursive Matrix (RM) algorithm was proposed to find a disjoint shortest

path subject to a particular hop-limit. The algorithm is based on the concept o f the KSP

algorithm, namely, it is used to find the specified number o f the shortest paths, but

replaces the shortest distance path as criterion with the minimum hops as criterion

between a pair of nodes for further matrix calculation.

The theory o f matrix on which the RM algorithm is based is described in [11], namely,

if the matrix A is the binary adjacency matrix of a network with n nodes, the number of

distinct path of length k in terms of hop between a pair o f nodes (i, j) is the entry (i, j) of

Ak for any positive integer k.

Consider that the number of disjoint paths between nodes (i, j) o f a network will be

determined by the RM algorithm. The RM works by first setting the entry (i, j) of the

network binary adjacency matrix to zero. The matrix is then multiplied by itself until

resulting matrix has a non-zero entry in the (i, j) position. The value of this entry

represents the number of the distinct paths between nodes (i, j) having hops equal to the

account of times the binary matrix has been multiplied by itself. Next, the algorithm can

trace backward from destination j to source node i to mark one path between the source

and destination nodes. All spans on this path are then removed by updating the binary

matrix. These steps are repeated until the number of multiplication reaches the pre-set

hop-limit or no more feasible paths can be found. Pseudo-code for the algorithm is

given below.

A network G(V, E) V and E are a set o f nodes and a set of spans in the network

respectively.

Given:

40

• A Binary adjacency matrix.

• H Hop-limit of all searching paths.

• k Number of times the A has be multiplied by itself so far that is less than or

equal to H.

Procedures:

Step 1.

Copy the adjacency matrix A to the temporary matrix B. Check the entry a,y o f

matrix A, if a,y is 1, set the entry b,y o f matrix B to 0.

Step 2.

Let k = 2.

Step 3.

Calculate Bk by multiplying Bk_1 by B. If b*., the entry of Bk, is 0 and k is less

than H, then there are not path from node i to j with k hops or less. Go to step 4. If

b* is 0 and k is equal to H, the procedure ends because no path exists between

nodes i and j with hops H or less. If b * is greater than or equal to 1, then b * paths

between nodes i and j exist. Go to step 5.

Step 4.

Increase k by 1. If k < H, go to step 3, otherwise, the procedure ends because no

more paths with H hops can be found.

Step 5.

Decrease & by 1 in order to find a set of p such that the following equation is

satisfied.

b i - b * * 0 (1)

The above equation means that at least one path from node i to node p exist, as

does the span (p, j) because Eq. (1) implies b *, > 1 and b pj > 1. Although there

may be several ps that satisfy Eq (1), only one of them is selected because one

path will only be determined during one iteration, the principle o f the selection is

First-Found-First-Select (FFFS). Since the span (p, j) is now used in one of the

paths, b Pj is set to zero to prevent it being used in other paths and hence results in

a set o f link disjoint paths. Then j is replaced by p. If k is greater than or equal to

2, repeat step 5. Otherwise, a path with k hops is found and the temporary

adjacency matrix B is updated by deleting all spans constitute the found path, then

go to step 2 to search for the other possible paths.

41

3.4.3.2 Matrix Maximum Flow (MMF) algorithm

In [10], the RM algorithm has been shown to improve significantly its time complexity

in a vector processor equipped PC over the Ford-Fulkerson’s algorithm. Due to the

crucial role o f vector processor in reducing the time complexity o f matrix calculation,

we extend the matrix technique to be used to find maximum flow in a network . So we

propose the Matrix Maximum Flow algorithm (MMF) based on the same technique.

The MMF can be employed to find the maximum flow between a given pair o f nodes

with the specified hop-limit. The detailed algorithm is presented below.

A pseudo-code version of the MMF algorithm is below.

Given:

• A Binary adjacency matrix o f the network.

• C Capacity matrix where Cy is the amount o f the available capacities on the

span (i, j).

• T An array storing the path found.

• H Hop-limit of all searching paths.

• k Loop iterator.

Procedures:

Step 1.

Initialize the matrix A by setting its entry (i, j) to zero.

Step 2.
k k

Increase k b y 1 until a u, the entry o f A , becomes nonzero. Which represents that

k distinct paths exist between the node pair (i, j).

Step 3a.

Determine the set o f p such that

A k-\ i ,p) .A(p , j) * 0 (2)

Then choose the p° such that the capacity on the span (p°, j) is maximal over the

set o f span (pw, j) for all p w (is the element o f p) and store p° to the array T.

Step 3b.

Repeat the following procedure:

j = P ° ’>
k = k - 1 ;

go to step 3 a until k becomes 1. Then find span (n, m) on which the minimal

42

capacity D min exists over all spans constituting the found path by tracing

backward the array T. Finally update C by subtracting the capacities on the spans

on the found path by the D min, and A by set its entries, corresponding to these

spans on the found path carrying the D min capacity to 0. When step 3 ends go to

step 5.

Step 5:

Go to step 2 until (k > H) or enough capacity found.

As discussed above the MMF algorithm is similar to the RM algorithm in terms of

using the matrix. Figure 3.6(a) and Figure 3.6(b) give the simplified flowchart version

of the RM algorithm and the MMF algorithm in order to compare theatrically their time

complexities. Figure 3.6 (a) and Figure 3.6 (b) show the RM algorithm is almost the

same flowchart as the MMF algorithm except their third loops. In the RM algorithm the

procedure jumps out of the third loop once a p is found whereas the MMF algorithm

jumps out of the third loop if and only if the third loop is completed in order to get the

p° from a set o f p, so in the worse case of the RM algorithm that p is found when its

third loop is completed, the RM algorithm takes the same execution time as the MMF

algorithm does. Here, the relative time complexities o f the two algorithm can be derived

from two flowchart. Assume that the time complexity of the RM algorithm is TC, and

then the time complicity of the MMF algorithm is 2 TC, so the execution time of the RM

algorithm is two times faster than that o f the MMF algorithm.

43

(a)The M M F algorithm

(b) The RM algorithm

Figure 3.6 The comparison of two Flowcharts o f the RM algorithm and the MMF
algorithm

In [10] it has been proven that the RM algorithm is 10 times faster than that o f the Ford-

Fulkerson’s algorithm does in a vector equipped super computer, i.e. Cray-2. It is

reasonable to believe that the execution time of the MMF algorithm is shorter than that

of the Ford-Fulkerson’s algorithm in a vector equipped super computer. Our emphasis

is not on the RM algorithm in this project the only MMF algorithm is implemented

below.

3.5 Networks used to Investigate the above Algorithms

Five networks with associated demand matrices will be used to test the performances of

the four algorithms described above, i.e. the Ford-Fulkerson’s algorithm, the disjoint

KSP algorithm, non-disjoint KSP algorithm and the MMF algorithm. The five test

networks - both node location and interconnection capacities - have been described in

[30]. The distance between a pair of nodes is given by our measurement in the diagram.

In Figure3.7, the test network 1 is given. The other test networks are shown in appendix

44

Figure3.7 Topology of Test Network 1

In Figure3.7 each line represents a network link, and the two numbers next to each link

represents that link capacity and the length of the span; the length of the span is in

brackets. In Table 3.1, the detailed information about the five test networks is given.

No. of Nodes No. of Spans Total Capacity Link Length on Average

Network 1 7 9 45 32

Network 2 8 16 136 37

Network 3 16 28 397 32

Network 4 9 17 153 38

Network 5 9 16 136 37

Table 3.1 Information of the Five Test Networks

3.6 Results and Discussion

All four FPAs, i.e., Ford-Fulkerson’s algorithm, non-disjoint span KSP algorithm and

disjoint span KSP algorithm and the Matrix Maximum Flow algorithm, will be tested by

using the five test networks mentioned above in order to determine their relative

performance. The key performance indicator of interest here is the amount of feasible

path found. The comparison of the execution time of two types o f KSP algorithms is

given as well. All algorithms described above are implemented in a standard PC with a

Pentium II processor operating at 180Mhz. It is worth noting that for the purpose of

comparison o f the four FPAs algorithms the path hop-limit for the MMF algorithm and

two types of the KSP algorithms is set to a very large number, say 7, in order that as

many paths as possible can be found.

45

Nod* Paii»

Figure 3.8 Results for Network 1

Node Pairs

Figure 3.9 Results for Network 2

46

80

70

o
W£
Ql

■Ford-Fulkerson

'Non-disjoint KSP

Disjoint KSP

-MM F

*

* *

Node Pairs

Figure 3.10 Results for Network 3

Node Pairs

Figure 3.11 Result for Network 4

40

35

T3 30
C3
* 25

♦ ■ Ford-Fulkerson
W ■ Non-disjolnl KSP

Disjoint KSP
—H — MMF

20

_§ 15

E
10

* * 53
* * *

* * * * * * * * * * Cojt *■■■

*

a

IP
* O * 1-3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

Node Pair

47

Figure 3.12 Results for Network 5

Ford-
Fulkerson's

Algorithm(FF)

Non-disjoint
KSP

algorithm
(N-KSP)

Ratio FF
to N- KSP

Disjoint KSP
algorithm
(KSP-D)

Ratio of
FF to

KSP-D

Matrix
Maximum

Algorithm(MM
F)

Ratio of
FF to
MMF

N etw ork 1 173 173 1 162 0 .9 4 173 1

N etw ork 2 6 4 6 646 1 565 0 .8 8 6 4 9 1

N etw ork 3 39 0 9 38 5 8 0 .9 8 2 7 4 7 0 .7 0 3 9 0 9 1

N etw ork 4 896 896 1 723 0 .8 0 896 1

N etw ork 5 846 846 1 6 4 4 0 .7 6 8 4 6 1

Table 3.2 Results Generated by Four Feasible Path Algorithms for Five Test Networks

The results generated by applying each of the FPAs to each o f the test networks are

shown in the graphs in Figure 3.8 to Figure 3.12. For each node pair in each network,

the amount o f feasible paths found using each algorithm is determined. These results are

graphed in aforementioned graphs. The overall results are summarized in Table 3.2.

The information o f the above figures associated with each test network includes:

1. For all possible nodes pairs between which the FPAs algorithms are executed to find

feasible paths. The node pairs are ordered in the following principles: the source ID

is always greater than that o f the destination for one nodes pair and Node Pairs are

sorted in the increasing order o f the sum of their source ID and destination ID. For

example, a set o f node pairs is ordered as (1,2), (1 ,3) ... (3, 4), (3, 5) and so on.

2. The number o f the feasible paths between a given pair o f nodes with regard to the

four FPAs algorithms described above.

In Table 3.3 the execution times for the non-disjoint KSP algorithm and disjoint KSP

algorithm are shown.

This is seen more easily in the table - The results in Table 3.2 show that the Ford-

Fulkerson’s algorithm finds the highest amount of feasible paths in each of the five test

networks. Compared with Ford-Fulkerson’s algorithm the non-disjoint KSP can find

100% in the test networks 1, 2, 4 and 5 and 97% in the test network 3 o f the maximum

amount o f the feasible paths. The 3% loss of the feasible paths by the non-disjoint KSP

48

algorithm results from the fact that one feasible path found maybe restricts from finding

the other feasible paths that share some common spans with the former one.

Figure 3.13 illustrates why the KSP algorithm can not find the maximal amount of

feasible paths in some cases. We assume that each span in Figure 3.13 carries the same

amount o f capacity. At most, two span-disjoint paths can be found between nodes 1

and 4. One path is 1-5-3-4 and the other is 1-2-6-4 shown in Figure 3.13 (a). But if the

path 1-2-3-4 is chosen, then only one span from nodes 1 and 4 can be found in total

shown in Figure 3.13 (b). The KSP algorithm operating logic hop distances may make

the latter choice because it has no basis for preference between the two equal length

paths choice. And if the path via 1-5 and 2-6 to node 4 are longer than the 1-2-3-4 path,

the KSP will always make the sub-optimal choice in the particular topology because it

must include the shortest route. The issue is therefore how often this trap will arise in

realistic networks. In the disjoint KSP algorithm the trap will arise if the particular

network topology occurs where in the non-disjoint KSP algorithm the trap will arise if

the particular network topology occurs and each spans in the network topology carries

the same amount of capacity.

Not only does the non-disjoint KSP algorithm find almost as many feasible paths as the

Ford-Fulkerson’s algorithm, it also has some extra advantages over Ford-Fulkerson’s

algorithm, i.e. ease of implementation and control of hop-limits, that make it a good

alternative to the Ford-Fulkerson’s algorithm.

49

Figure 3.13 The trap in the K SP algorithm

Network 1 Network 2 Network 3 Network 4 Network 5

Time

(s)

Num ber

o f paths

Time

(s)

Num ber

o f paths

Time

(s)

N um ber o f

paths

Time

(s)

Num ber

o f paths

Time

(s)

N um ber

o f paths

Disjoint

KSP

17 167 38 565 187 2743 41 723 39 644

Non-disjoint

KSP

19 173 45 646 328 3858 47 896 52 864

Percentage

difference

10% 3% 15.6% 12.6% 43% 29% 12.8% 20% 25% 25%

Table 3.3 Comparison o f two KSP algorithms with respect to the time complexity

The results from the graphs and Table 3.2 shows that the MMF algorithm finds the

same amount of paths as the Ford-Fulkerson’s algorithm when the hop-limit of feasible

paths is large enough, e.g. 7. The MMF algorithm combines the advantages o f the Ford-

Fulkerson’s algorithm with the advantages o f the KSP algorithm: it can find the same

number o f feasible paths as the Ford-Fulkerson’s algorithm and it also provides the

ability to control the number o f hops. Note that the hop-limit we chose for the MMF

algorithm is large enough in order that the MMF algorithm can find as many paths as

possible because the smaller hop-limit may result in losing some paths in a network that

have the larger hops than the preset hop-limit.

Apart from the above advantages, the MMF algorithm is believed to have the much

lower time complexity than the other two algorithms in a vector processor equipped

computer due to the use of matrix techniques. The effect o f the vector processor on the

reduction o f the time complexity o f matrix multiplication was proven in [10]. Here, The

execution time of the MMF algorithm is not given because the vector processor is not

available.

Table 3.3 shows that the non-disjoint KSP algorithm can find 3% - 29% more paths

than the disjoint KSP algorithm for the test networks studied. However, this is at the

expense o f processing time; the non-disjoint version of the algorithm takes longer in the

cases studied. As discussed above, the disjoint KSP algorithm can meet the need of real

time services, so it is an important algorithm for use in restorability problem [12]. The

50

non-disjoint KSP algorithm, on the other hand, is an important algorithm for use in

survivability problems.

3.7 Conclusion

The results and analysis have been shown in this chapter that the non-disjoint KSP

algorithm compares well with the Ford-Fulkerson’s algorithm in terms of the number of

paths. Moreover, it is easier to implement and the number o f hops in the paths can be

controlled.

The new MMF algorithm combines the advantages of the Ford-Fulkerson’s algorithm

and the non-disjoint KSP algorithm: the MMF algorithm can find the same amount of

feasible paths as the Ford-Fulkerson’s algorithm does providing the control over the

number o f hops in the feasible paths as the KSP algorithm. The execution time taken the

MMF algorithm in a vector-equipped computer is under investigation although it is

believed to have less time complexity than the Ford-Fulkerson’s algorithm in theoretical

point o f view as discussed in section 3.4.3.

Restorability techniques and survivability techniques have different requirement for the

FPAs, i.e. restorability techniques are more sensitive to its execution time to meet the

need of real time services whereas survivability techniques is more sensitive to network

design cost at design time.

To illustrate the different requirements of restorability technologies and survivability

technologies for the FPAs, the comparison of two types o f the KSP algorithms, i.e.

disjoint span KSP and non-disjoint span KSP, is given in terms of execution time and

total feasible paths. It has been shown that the disjoint span KSP algorithm is a better

option to meet the need of real time services in restorability technologies than the non-

disjoint KSP algorithm does. However, in survivability technologies, the non-disjoint

KSP algorithm has an obvious advantage that the disjoint algorithm does not, i.e. the

amount o f feasible paths found by the former is much more than that by the latter.

51

Chapter 4 Optimal Spare Capacity Placement in Mesh
Survivable Networks

4.1 Introduction

In this chapter, we propose a new algorithm to deal with survivable network design

problems based on the FPAs described in Chapter 3. In the survivable network design,

the Spare Capacity Placement (SCP) algorithms are used to place spare capacity in a

network to prevent them from network failures, e.g. a single span cut, in mesh

survivable network design. In recent years, much work has been done on this area

[2][4][7][29]. In general, we can divide the SCP algorithms into two categories: Linear

or Integer Programming (LP/IP) approaches and heuristic approaches. In the LP/IP

approach, the problem is formulated as a linear or integer problem and standard linear

or integer programming techniques are used to obtain a solution. In the heuristic

approach, the problem may be formulated in a complex manner (very non-linear

discrete state space) and some heuristic approaches are used to solve the problem. These

approaches often operate quicker than the LP/IP approaches since the heuristics are

designed specifically for the problem under study and use knowledge o f the structure of

the problem to obtain good solutions. All the work to date using these two approaches

assumes that the link cost function is linear. However, modem communications links

are only available in set standardized capacities. Hence, the link cost function is

stepwise in capacity rather than linear as described in Figure 4.1(a). Since the previous

work has used linear approximations to the cost function, it is highly unlikely that they

would find the optimal solution to the real problem; they may be useful for finding a

first approximation to the solution. However, previous work has not addressed the non­

linear cost function problem.

The rest of the chapter is organized as follows. In section 4.2 several types of link cost

functions is described. In section 4.3 an IP based SCP algorithm is discussed. In section

4.4 a fast heuristic algorithm is illustrated for SCP problems. In section 4.5 a new

algorithm that can deal with the stepwise cost function is proposed.

52

4.2 Link Cost Functions

In [15] [16][31], linear link cost and concave link cost function have been adopted in

survivable network design and optimal network design.

With the proliferation of high capacity optic fibre, the linear and concave cost functions

no longer reflect the reality that optic fibre systems with specific capacities are

available. Hence, the existing SCP algorithms developed for a linear link cost function

may not applicable properly for the stepwise case. In the following section, several link

cost functions will be illustrated.

Five models for link cost functions are reasonable, i.e. linear cost function, linear cost

with fixed cost, concave link cost function, concave link cost function with fixed cost,

stepwise link cost function all of which are shown in Figure 4.1. As we described

above, stepwise link cost functions most closely reflects reality. The other four link cost

functions are approximations o f stepwise link cost functions, It is worth noting that we

assume that a link cost function is always a non-decreasing function o f its capacity; a

system in which the cost decreases with increasing capacity does not make sense

In [32], Kemer et al discussed real costs associated with the installation of both metallic

and optical fiber facilities on an interoffice network. In both cases a large cost is

associated with channel construction and much of the remainder consists o f link costs,

which depend on capacity. We can expect to encounter similar cost types when dealing

with the transmission network.

f I (Ci)

Ci
fa) Stepwise

53

Figure 4.1 Different Types of Link Cost Function

The construction cost is proportional to distance, while acknowledging that this is a

gross assumption. Digging up streets will be more expensive in urban than rural areas

and also will depend on the terrain. All we need for our model is a total construction

cost for a particular link, so we do not need to make that assumption. Links costs will

depend on distance, but again, as distance is constant for a particular link, this is not so

important. Link cost will depend on capacity, however, as the capacity determines the

number, size and type o f links required.

Network optimization problem has been studied for stepwise and concave link cost

functions [33][34]. However, little work has been done on the Spare Capacity

Placement (SCP) problem where the link cost function is stepwise. As optic fibres are

only available with specific capacities, and the amount o f capacity on a link contributes

significantly to its cost, the stepwise link cost function shown in Figure 4.1(a) is the

54

closest to reality. This is why the stepwise link cost function is chosen for the SCP

model.

As discussed above, all SCP algorithms to date were based the assumption that the link

cost function is linear in capacity. It is unlikely that the solution found by these SCP

algorithms using a linear cost function is coincident with the optimal solution to the

SCP found using the stepwise cost function. However, it is likely that the solutions

based on the assumption of the linear cost function may be close to the optimal for the

stepwise cost function problem when the stepwise link cost functions are close to be

linear. A new heuristic SCP algorithm is proposed here to solve the SCP problem when

stepwise cost functions are used.

In case the link cost function is assumed to be linear, the LP/IP based SCP algorithm

can be used to obtain one optimal solution [14][15][16][21]. But, the very large

execution time o f these algorithms limits their application in large-scale networks.

Many heuristic algorithms have been proposed for large network SCP problems. While

these algorithms operate much quicker than the LP/IP based ones, and, hence, they can

be applied to large networks, the results they obtain for small networks are poor, leading

us to believe that the results they obtain for large networks can be improved on

[18][19],

First, we describe the IP based SCP algorithm as proposed in [21] and one heuristic

SCP algorithm as proposed in [18]. Next, a new heuristic algorithm to solve the SCP

problem for a stepwise is proposed.

4.3 IP-Based SCP Solution Techniques

Mesh survivable networks use Digital Cross-connected Systems (DCS) to minimize the

amount of spare capacity required to re-route traffic in the case o f failed. In mesh

survivable networks the spare capacity on one span can contribute to the survivability of

other spans, network redundancy, on the other hand, is not dedicated to restoration of

one span. These networks are called “mesh” not to imply that the network is a full

mesh, but to reflect the ability of the rerouting mechanism to exploit a mesh-like

topology highly diverse and efficient rerouting of disrupted traffics.

LP/IP solution techniques make it possible to obtain optimal solutions to SCP problems

in which the link cost function is linear in capacity. Due to the granularity of capacity

on network spans, the IP formulation of SCP problems is a more realistic formulation

than the LP formulation. However, the LP formulation is still applicable in transport

networks where the capacities of the spans are so huge that the granularity o f the

capacity can be neglected.

4.3.1 IP based SCP algorithms

4.3.1.1 Previous works on the LP/IP based SCP algorithm

In the recent decade a lot of the LP/IP based approaches to solve the SCP algorithm

have been proposed. In [14] one approach has been to develop constraints for the SCP

problem based on a network’s cutsets after the failure o f a single span. A cutset is a set

o f spans which when severed divide a connected network into two distinct parts. The

min-cut max-flow theorem provides constraints on survivability through the set of

minimum cuts in the network [35]. Which cutsets limit the maximum flow possible

between those nodes seeking feasible paths after a failure is dependent on the spare

capacity in the network. It is usually impractical to include all cutsets in the constraint

set since the number o f cutsets is an exponential function o f the size o f the network.

Choosing cutsets to populate the constraint set iteratively after intermediate spare

capacity designs can reduce the size of the constraint set dramatically. Prior work in [3]

and [20] populates constraint set with cutsets iteratively, choosing cutsets according to a

heuristic, until the solution provided a spare capacity placement which was 100% span

restorable and minimized total spare capacity.

A more recent approach has been to specify flow constraints based on a suitable set o f

predefined routes over which path-sets must be implemented [12] [22], An IP

formulation using this approach which optimize the placement of spare capacity in

100% span restorable network was reported in [12]. In such a formulation a fixed

working capacity layout is given, and the constraint set is based on eligible restoration

routes between each pair o f nodes terminating a span. When the IP completes, the total

flow feasible along those restoration routes is adequate to restore the lost capacity o f

any span cut in [19]. [37].

4.3.1.2 An IP based SCP algorithm

In this section, an IP based SCP algorithm proposed in [21] will be detailed. Unlike the

IP’s presented in [12] and [22], it uses a highly diverse route set that exploits mesh-like

topologies to optimize working and spare capacity or only spare capacity, and considers

both span and path restorable networks. Comparing these basic approaches [12] [

56

14][22], it is obvious that when the constraint set is formed using eligible routes instead

o f cutsets, it only has to be defined once, and a solution will be ensured in a single

linear or integer program run with no iteration. Moreover, while either approach

specifies the optimal spare capacity per span, the route-based approach also yields

details of the actual paths used to restore each span failure. This information is helpful

when evaluating the performance of a distributed restoration mechanism operating in

the survivable network design [36], and useful in a centralized restoration paths.

The following notations are used:

• C Cost of a channels (working or spare channels) assigned to span i.

• S Number of network spans in the network.

• H Limit to the number of hops on a path that can be used to reroute traffic

in the case o f failure.

• L ' The survivable level required for demand pair r upon the failure o f span

/. 0 < L ' <1 (for 100% network survivability, L ' =1 for all demand pair r

and all spans i in a network, L ' = 0 represents that the demand r will not be

recovered upon the failure of span i)

• D The number of node pairs that have nonzero demand between them.

• D Number of demand pairs affected by the failure of span i.
r

• d Number of demand units between node pair r.

• X r Number o f working channels lost from demand pair r upon the failure o f

span i.

• P r Number of feasible restoration routes for demand pair r upon the failure

of span i that do not violate the pre-set hop-limit.

• f -r The restoration flow through the p th restoration route for demand pair r

upon the failure of span i.

• s;j Take the value o f 1 if the p h restoration route for demand pair r after the

failure of span i uses span j , and 0 otherwise.

• s Number o f spare channels placed on span j for network failures.

• w . Number of working channels carried on span j.
r

• Q Total number of working routes available to satisfy the demand between

node pair r.

57

r,q
The working channels required on the qth working route to satisfy the

demand between node pair r.

• £ r,q Take the value of 1 if the qth working route for demand pair r using span
^ ./

j-

The objective function is:

M in -<
M

(1)

The constraints to be satisfied are:

1) Restoration flow meets target restoration levels for each demand pair r\

= > [x [x L ^ V r =1,2,...,D. V i = 1,2,..., S. (2)
p=i

2) Span f s spare capacity is sufficient to meet the simultaneous demands o f all

node pairs affected by any one span failure:

p'
(3)

/•=! p=\

3) The total demand lost from demand pair r after the failure o f span i is the sum of
the flows over working routes of the demand pair r traversing span i:

f] c r q * g r’q = * : V r =1,2,...,D. V i = 1,2,..., S. (4)

4) f i ’p, gr’q ^ 0 a n d i n t e g e r .

5) s . , w > 0 and integer.

As formulated, the IP formulation can be adapted to optimize spare capacity placement

for either a span or path restorable network. If a span restoration design is desired, the

58

set of all node pairs affected by a failure is restricted to just the single pair o f nodes

terminating the severed span, i.e. D = 1, and X ' = w .

In a path restorable network it is advantageous to release the surviving portions o f a cut

working path and make those paths available to the restoration process. This is called

stub release. Stub release is an option in a path restorable network because span

restoration only replaces the cut portion o f a connection. The channels occupied by the

affected demands can be optionally released at the time o f the failure and added to the

pool o f spare capacity available for restoration. To represent stub release in the IP

formulation, constraint 2 is replaced with constraint 6 as follows :

6) Span f s spare dimensioning is sufficient to meet the simultaneous demands of

all node pairs affected by any one span failure (first double sum) after releasing

the surviving portions of cut paths (second double sum).

r=1 p=1 r=1 q=1

V (i,f) = 1,2,..., S. i * j.

Figure 4.2 IP-based Formulation o f SCP Problems

4.3.2 Implementation of IP Based SCP Algorithm

This section focuses on how to solve the IP formulation. The Branch and Bound

algorithm [38] is employed to solve the IP problem. First, we investigate all variables in

the IP formulation given above.

• Classification of Variables in IP based SCP Formulation

We categorize all variables in the above IP formulation into two groups, i.e. input

variable and output variable. Input variable is defined as the variable that can be

obtained beforehand as input of the IP formulation, output variable is characterized as

the output variable of the IP formulation.

r,q
How the variable w. and g are used depends on the problem being solved. In practice,

there are two types of networks over which the above IP formulation can be to place

spare capacity to prevent them from failure. One is that the network has the fixed

59

topology and layout of working paths to meet the need o f its demand, the other that the

network has the fixed topology with layout o f working paths unknown. In the first case

w j and g r'q are the constants as the input values, so the equation (4) can be removed

from the IP formulation in Figure 4.2. In the second case w , and g r'q are the variables,

which must be determined as output values. In the project the only second case is

considered for simplicity.

The input variables of the IP formulation include: C, S, H, L [, D (, X ' , P ' , Q r, sf f ,

w ■;, g r,q. Its output variables include: f \ 'q , g r'q , s ; and w y . The input variable are given

by users or network designers, for example, X ' is determined by the layout of the

working channels in a network, P '”, Q r , s'-j can be obtained by the FPAs, e.g. the KSP

and the MMF algorithms described in Chapter 3.

• The Branch and Bound algorithm

Lots o f approaches have been proposed to solve IP problem. The Branch and Bound

algorithm and Gomory’s All-Integer Dual Algorithm are two o f the most popular. In

this project, the Branch and Bound algorithm is chosen to solve the IP problem. In the

first step o f the Branch-and-Bound method, LP-relaxation of our IP formulation (where

LP-relaxation is derived by releasing the integer constraints o f IP formulation) is

solved. It optimal objective value is an upper bound for the optimal objective value of

its original IP formulation. If the solution o f the LP-relaxation is integer we are done: it

is also an optimal solution o f the original IP formulation. If not, the feasible region of

the LP relaxation is partitioned into two sub-regions giving rise to two new IP-

formulations, and two sub-formulations are solved respectively. The solutions of two

sub-formulations are compared. In the case the objective value of one solution is less

than that o f the other and its solution is integer, the solution is the optimal solution of IP

formulation. Otherwise, in the case both solutions of two sub-LP formulations are not

integer, we choose the sub-LP formulation whose objective value is less than that o f the

other, and partition the sub-LP formulation into two sub-LP formulation further by

branching any non-integer solution, say Xj. The procedure is repeated until the solution

of IP formulation is approached. Note that the principle of selection of non-integer

solution is to choose one that has the smallest index because it is the closest to the

solution than the others with the larger indices and the Simplex algorithm is used to

60

solve the LP relaxation formulation. We illustrate the Branch-and-Bound algorithm by

drawing a flowchart of the above procedure in Figure 4.3.

The general form of the Branch-and-Bound algorithm can now be formulated as

follows:

T •max{c x | Ax < b, x > 0, x integer } or

mix {cTx | Ax < b, x > 0, x integer }

We use the set NF to hold the nodes that are not excluded from further consideration;

the variable z denotes the current lower bound on the optimal solution o f the original

model. The function f : F -» R with F the feasible region is the objective function. By
R

F is denoted the feasible region of a relaxation o f the original model. Optimal

solutions o f sub-models are denoted by (z, x) with z the objective value corresponding

to the optimal solution x.

Input:

Values for the parameter o f the optimization model max {/(x) | x e F] , with F the

feasible region.

Out: Either

(i) The message: the model has no optimal solution; or

(ii) The solution of the model.

£tep 0. Initialization. Define F 0 =F , NF = {0}, and z £ = -oo.
A

Step 1. Select a label k eN F. Let max{f(x) x e F }, with F c F , be the sub-model

associated with label k\ call this sub-model S . Go to Step 2.

Step 2. Determine, if exists, an optimal solution (z , x) o f S k (note that z is an

upper bound of max { f (x)| x e F k n F}). If S has no optimal solution, define z k =

- o o . Go to Step 3.

Step 3. S is excluded from further consideration, if either one o f the following

situations occur:

(a) z k = -co (i.e. s^ has no optimal solution);

G>) z t < z (i.e. Zk is worse than the current best solution);

(c) z > z . If x k e F (i.e. z k is at least as good as the current best solution),

61

then define z L = z k and go to step 5 with NF = NF\{&}; otherwise, go to Step

4.

Step 4. Partition F k into two or more new subsets, say F ^ F ^ . Define, NF =

(N F\{k})u {ki,...,ks}. Go to step 1.

Step 5. Optimality test and stopping rule. If NF ^ <D, then go to Step 1. Stop the

procedure when NF = O ; the current best solution is optimal. If there is no current

best solution, i.e. z = - o o , then the original model has no optimal solution.

Figure 4.3 The branch and bound algorithm

In Step 3(c) we consider the situation that z k ^ z ; . For z k = z ; , and x k e F we could

exclude sub-model S from further consideration, since further branching may only

lead to alternative optimal solutions. Note that the above procedure is applied to

maximizing model. In case of a minimizing model, the Branch-and-Bound Algorithm

can easily be adapted: e.g. z has to be replaced by the “current upper bound” z w, - oo

by o o , and the inequality signs reversed.

• The Solution to LP- Relaxation of IP Formulation

From discussion above, the method to solve the LP-relaxation of IP formulation is o f

utmost importance. The PSIMPLEX procedure that is based on the revised simplex

method is employed to solve the LP-relaxation problem. We will illustrate the

PSIMPLEX procedure by a flowchart in Figure 4.4. The procedure being given is

applied for minimizing model.

We assume the number of input variables is n and the number o f constraints is m in our

example, so the standard formulation of LP problem can be given as follows:

Min {cixi +.... + c„xn}

Constraints to be satisfied:

aj]X] + (X1 2 X2 +....+ ainX„ < bj

a2]X] + CI2 2 X2 +....+ Ct2nXn ^

& m l% l ̂ @m2 %2 ^ ^ Q m ti^n — &m

andxi, X2,...,x„ >0 and integer.
62

To directly apply PSIMPLEX method some modifications o f the above LP formulation

is required and several artificial variables are introduced, so the above formulation is

converted into a new and equivalent formulation as follows:

Max xn+m+i (6)

Subjectto auxi + CI1 2X2 +....+ai„x„ + xn+i = bj

a2ixi + CI2 2 X2 +....+ a2rPCn + xn+2 - b2

Where

ClmlXl (im2 X2 +— + ClmnXn Xn+m bm

@m+l,]X] H" drn+l,2X2 &m+l,nXn Xn+m+I ~ 0

@m+2,lX] + Um+2,2 X2 @m+2,nXn Xn+m+2 bm+2

andxi, x2,...,xn+m >0.

m
@m+l,j = Cj> flm+2,j @y i J ~ I 5 2, Yl

i=1

m
bm+2 ~ bj,

i=1

We have added the nonnegative artificial variables xn+i, i = 1, m, into the structure

variables xj,..., x„ to create a simple basis matrix B =1. Since

Xn+m+2 _ (Xn+1 “H.. H” Xn+m)

the variable x n+m +2 is the negative sum of the artificial variables. Clearly, we must have

Xn+m+2 — 0.

The revised problem has m+2 equations in n + m+ 2 variables. The basic feasible

solution, if it exists, has m + 2 variables from the set { X i , . . . , xn, xn+m, xn+m+2}, with -

Xn+m+i representing the optimal objective function value and xn+m+2 =0. In the following

flowchart, the procedure is divided into two phrases. In phase I we maximize xn+m+i

subject to the constraints o f (6). If max x „ + m+2 = 0, we begin phase II with the objective

function

Xn+m+l (CiXj + + CnXr\)

While keeping xn+m+2 = 0. We define the matrix A as

63

a n i + l , l " ' a m + l j i

_ a m + 2 , \ - - a m + 2,n _

Which is A augmented by two last rows. Row m +2 is used to compute the relative

cost vector p in phase I. row m +1 has the same role in phase II. We also introduce an

(m+2) x (m + 2) matrix which initially is:

^ m xm 0

0 ^ 2 x 2

This first m row and columns of U will contain the inverse o f B. The last two rows of U

will be used to determine the vector entering the basis (row m +2 in phase I and row m

+ 1 in phase II).

Using this notation and initial values xn+i = bj, i = 1, ... , m, the computational steps in

phase I and phase II are as follows:

Phase I:

Step 1. I f xm+n+2 < 0, calculate

8 j = rowm+2 (U).colj(A)

»i+2

— ^m+2,p flpj, j ~ 1,2,..., n.
p= l

and continue. If xm+ „+ 2 — 0, go to go phase II, step 1.

Comment: In phase I the objective function to be maximized is xm + n +2 and all

cost coefficients except cm+ n +2 — 1 are zero. The values o f S j are the components o f

the relative cost vector p.

Step 2. I f all 8 j > 0, then x n+m +2 is at its maximum and no feasible solution to the

original LP problem exists. If at least one 0, then the variable to be introduced

into the basic set is Xk such that

64

8 k = min 8 \
1 <j<n
S:< 0

Step 3. Compute

m+2
yi = roM>i(U).coh(A) = ^ uipapk, i = 1,2,..., m+2

p~i

Step 4. Calculate

mmIS jSmyj< 0 y,

X,
= - L = e

y,

if yi < 0 for all i = 1, 2,..., m, there is no feasible solution. Otherwise, the

variable x, is eliminated from the basic set

Step 5. Calculate the new values of the variables in the basic solution

x, = 0

x,. =Xj - 0y-t (i * /)

for z = 1,2,, m +2, and

— U,j

uu = —
y,

-— u,
u ii = u i} - y i (1 * 0

y,

for i = 1, 2,..., m +2, j = 1,2,..., w. Return to step 1.

Comment: the columns m+1 and m +2 o f U do not change. The phase I

iteration are continued until xn+m +2 = 0 or it is determined that no feasible solution

exists. In the former case we go to phase II.

Phase II:

Step 1. Here we maintain xm+n+2 = 0. Compute

Yi = rowm+i(U).colj (A)

65

hi+2
^ , Wm+1jfopj, J 1,2,..., n
p- i

Step 2. Compute

= mm y,
K IS/SH •'

<S; <0

The variable x* is selected to enter the basic set. If all y} >0, then x„+„,+/ is at

its maximum value and the original problem is solved.

Step 3. Calculate

n i\2

Y, = 2 u‘i>aPk< * = 2>- ’ m +2
p=i

Step 4. Find

nnn!£/£«(
y,> 0 y,

X ,
= — = 9

y<

If all yi < 0, the objective function x„+,„+/ can be made arbitrarily large. The

computation is terminated. Otherwise, proceed to step 5.

Step 5. Calculate

x, = 6

x, = x i - 0 y i (i *1)

for r = 1 , 2 , m + 1, and

— uu
U(i = ~

y>

U,j
U,J = My- - yi — (i * /)

y>

for i = 1,2,..., m +1 , j = 1, 2,..., m.

Return to step 1.

66

The Branch-and-Bound method with PSIMPLEX is very time consuming 0 (2N -1),

where N is the number of variables of the IP based SCP formulation given in Figure 4.2,

although it can be applied to obtain an good solution to SCP problems. Note that the

number of variables in the IP based SCP formulation is S*S*D, where S and D are the

number of network spans, and network connectivity respectively. In practice, it works

only for small and middle-scale networks, which does not make any practical use. For

large-scale network (e.g. transportation network), more effective algorithms are

required. In the following section, we will introduce the algorithm proposed by [18].

The algorithm is based on the heuristic principle, which lead dramatically improvement

in the time complexity compared with IP/LP based SCP algorithms.

4.4 A Heuristic Algorithm for Spare Capacity Placement (SCP)

In [18] an useful and effective heuristic approach termed max-latching to the SCP

problem has been proposed to find a reasonable solution to SCP problem for large scale

networks. A straightforward heuristic of average case complexity 0(S), where S is the

number o f network spans, is faster than the IP based SCP algorithm 0{2N -1). The

algorithm has two disadvantages; it can only be used for span network restoration and it

is a local search SCP algorithm.

The main idea of the heuristic algorithm is as follows. When a single span failure occurs

a FPAs is employed to find feasible paths on which spare capacity is placed to reroute

the disrupted working paths minimizing network cost.

Assume a network graph G has S spans and N nodes and a vector w o f working

capacity (w .) on each span j . C i s the cost per channel on span i. The issue is how to

specify s, the vector storing the amount of spare channels on each span i (s ,■) so that the

cost of the network, i.e. EC,. . s is minimised.

For every span i (taken one at a time) there is a set o f feasible paths through the rest o f

the network at the event o f the span i failure. The spare capacities on such paths are

greater than or equal to w (. so that the w ,. can fully be recovered at the event of a span i

failure. The paths consist o f circuit-like continuous channels each using an individual

traffic unit (e.g. an STS-1 or STS-3 transport unit) on each span on feasible paths. For

span restoration paths connect the end nodes adjacent to the failed span. The number of
67

Figure 4.4 PSIMPLEX algorithm for LP problem

channels traversing any span cannot exceed s . Working and spare capacities, w a n d

s , can only be integer numbers. For simplicity, we let all C , = 1 , In which case the

capacity redundancy (X s ,) /(Iw ,.), is the design efficiency measure.

Using this algorithm, the problem is solved as follows. Let P . be a binary matrix o f S

rows, representing spans, by k,. columns each representing a distinct path, not

exceeding hop-limit H, between the end nodes o f span i, excluding span i itself, k , is

the number o f eligible distinct (not disjoint) paths for restoration of failed span i. In this

project the KSP algorithm is employed to determine feasible paths. Columns o f Pj are

sorted left to right in order of increasing weight (e.g., length in hops). Let a (w , k) be

a vector o f the most-nearly-equal assignment o f the required restoration flow for span i

over the routes, with placement of the excess allocation (due to whole number

effects) on the lower numbered paths. For example a(10, 3) = (4, 3, 3), a(l 1, 3) = (4, 4,

3), etc. So the following formulation is obtained.

S(G, w) = rowm ax[(Pi. aT(w;, ki)), (P2 . aJ(w2, k2)) , (Ps . aT(w,. ks))]sxs (7),

is a sufficient (i.e. fully restorable) and reasonably efficient SCP solution. Rowmax

takes the row-wise maximum of matrix elements. The idea is as follows: each product

P i . aT() yields a vector of the spare channels quantities required on other spans to

restore span i, as if the span i was the only failure to consider. An S x S matrix is

therefore formed where each column expresses the spare channel requirement on each

span over all restoration pathsets in which it participates. The principle is that for any

span j there will always be some other span i which will require more spare capacity on

span / than any other span for realisation of the required pathsets. When this is true, we

say that span i is the forcer of span j . Several span may equally force another span, so

the forcer relationships are in general many to one.

Equation. 7 expresses a simple principle through which adequate and reasonably

efficient SCP solutions can be obtained compared to using IP. By its nature, s will

always yield a fully restorable network but in general with excess spare capacity. Some

lines of reasoning suggest, however, that this principle should be reasonably efficient:

First, where all forcer relationships are 1:1, the heuristic algorithm would equal the IP if

68

the flow assignments to routes are also the same. Secondly, in a fully connected graph

with all w equal, IP and, results of the heuristic algorithm would again be identical.

Herberg et al [16] therefore tested a procedure which each span in turn is considered a

failure span, observes the spare channels required by the levelling flow assignment to

routes and latches the maximum spare channels on each span as other spans are allowed

to force the network spare channels. However, while Equation 7 is an expression of the

basic max-latching concept. Where each span forces the others in isolation, a practical

improvement is to allow spans to force the network in sequence and let the flow

assignment stage for the current span first exploit the spares already forced by prior

spans. While this improves the algorithm designs, it introduces dependency on the order

of span selection. Several ordering principles have been investigated in depth in [18]. A

simple ordering is by decreasing w , /k , , the idea being to let spans with the largest

working flows relative to the number o f restoration routes go first as they tend to be

strong forcers. Subsequently spans will find their restorability partly or wholly satisfied

by routing first to take advantage o f the already forced spares. Only the flows

requirement that is unroutable through the current state of the s (. maximums, is

subjected to the flow assignment function a() and is allowed to further force the network

spare channels. RM algorithm is used to find all feasible routes between a given pair of

nodes (i.e. the endpoints of a failed span). A pseudo-code of the algorithm is presented

in Figure 4.5.

• A Binary matrix of a given network topology where a ,y is the entry (/,/) of

the matrix A.

• P Binary matrix where P . is a binary matrix of S rows, representing

spans, by k , columns each representing a distinct route, not exceeding H hops.

• W Matrix storing the number of working channels where w,y is the number

of working channels on the span (ij).

• F Matrix storing the number o f feasible routes for the specified span failure

where k y is the number of feasible paths between the disrupted span (ij).

• S Matrix storing the number o f spare channels for all possible network

failures.

• SS Number of spans.

• N Number of nodes

69

H Hops-limit for feasible paths

Initialization:

Initialise S by setting all entries of S to 0.

Procedure:

While (all spans in the network)

{
Comparing w (j I ftJ and rank spans in the order of decreasing wy /fj.

}

For (all spans in the network and assume they fail in the order o f decreasing

WU/fii-)

{
Using the (FPAs) algorithm described in Chapter

3 to find all feasible paths (k (.) in order to obtain a(w, k). And then

calculate P . .a(w . k .).

}

While (all spans in a network)

{

Sspan(y) = rowmax[(Pj. aT(wi,ki)), (P2 . aT(w2,k2)) , (Ps . aT(wSj

ks))]sxs

}

Figure 4.5 Pscudo-code for max-latching Algorithm

4.4.1 Time Complexity of the max-latching Algorithm

Complexity analysis in [18] shows that the algorithm procedure, (coded as described,

not with the matrix operations of Eqn.l) is theoretically 0(S log S) in its dependence on

network size. This reflects the succession of (i) finding each spans’ hop limited eligible

path-set, (9(S), (ii) sorting spans in decreasing w . /k . (<9(S log S) with a heap-sort) and

(iii) allowing each span to act as a forcer of other spans, also 0 (S). These steps are

consecutive no nested so the theoretical complexity is 0(S log S). However, the

coefficients in the 0 (S) terms heavily dominate execution time as the sort is very fast.

In contrast, finding all eligible routes up to hop length H is 0(H d,!) in a network of

effective average node degree d. But H and d are not dependent on the network size;

70

they only express the topological diversity o f the network graph and the length limit for

restoration.

4.5 A New Heuristic Algorithm for the SCP problem with

Stepwise Link Cost Function

4.5.1 The Problem of the Existing SCP algorithm

Both IP based SCP algorithm and the heuristic algorithm described above was

developed with the assumption that the link cost function is linear in capacity. In

Equation 1, C is the cost of one capacity unit, i.e. STS-3, on the span j , that is, the cost

o f the span is proportional to the number o f channels it carries on as described Figure

4.1(b). While the cost of setting the span, i.e. digging for optic fibre setting, and other

relevant equipment, i.e. DCS, is considered the link cost function is like that described

in Figure 4.1(c). So the equation (1) can be held if and only if C . is constant where C J

may not be the same for different spans in the network. Therefore, the equation (1) can

be used to obtain the minimal cost o f the survivable network while the condition of

linear link cost function is held.

In addition, the max-latching approach was developed based on the assumption that the

link cost function is also linear in capacity. If this assumption is not valid, the minimum

amount o f spare capacities in the network may not be coincident with the minimum cost

o f the network. Say, there are two network strategies as described in Figure 4.6 (a) and

(b), the capacity f in the network 1 is greater than the c a p a c i t y i n the network2. In

network 2, the capacity^ is divided in two, i.e. f%\ and j '22 where /2 1 + f i i = fi- The /21

and f i 2 are placed in two distinct paths respectively as illustrated inFigure 4.6(b)

whereas the f in the network 1 is placed in one path in Figure 4.6 (a).

71

(a) Network 1 Strategy

D Destination f f i Network Traffic

(b) Network 2 Strategy

Figure 4.6 Two Network Strategies

Figure 4.7 Stepwise Link Cost Function

For simplicity, we assume that the link cost functions o f all spans in two networks are

the same as described in Figure 4.7, where Q > C2 . Hence, it is easy to know the cost of

network 2 with capacity f \ is C2 +Ci whereas the cost of network 2 with capacity /21 and

f n is Ci +Ci. Ci +Ci is greater than Ci +C2 , so the cost o f network 1 with capacity f \ is

lower than that of network 2 with capacity f 2 although the capacity f \ in network 1 is

greater than the capacity^ in network 2. Hence, the major procedure in max-latching

algorithm that minimizes the amount o f spare capacities required to minimize the cost

of survivable network does not work properly in case the link cost function with its

capacity is stepwise.

In order to address the problem, a new heuristic algorithm named Stepwise Capacity

Heuristic algorithm (SCH) is proposed here. Before we start to illustrate the SCH

algorithm the Addition Minimum Increment (AMI) algorithm will be introduced

72

because the SCH algorithm was developed based on the FPAs described in Chapter 3

and the AMI algorithm.

4.5.2 Addition Minimum Increment algorithm (AMI)

Finding “suitable” paths to place the spare capacity for restoring the failed traffic

minimising the network cost is a crucial issue for survivable network design, the term

“suitable” is characterised as a path on which placing spare capacity required results in

the minimum network cost. There have been many works on addressing the issue

[13][39]. The most popular algorithm proposed in 1959 is Dijkstra’s algorithm that is

used to find the shortest path in distance between a given pair o f nodes. In Chapter 3,

Dijkstra’s algorithm was applied in the KSP algorithm to find the K shortest paths.

Since the length o f the paths contributes significantly to their cost, the shortest path is

always coincident with the minimum path cost in case the link cost function o f a

network is approximately linear and concave in capacity [31]. But, in case the link cost

function is stepwise in capacity, the shortest path is no longer coincident with the

minimum cost path. We propose a new algorithm, AMI (Addition Minimum

Increment), to find a path on which to place the specified amount o f spare capacities

with the minimum cost increment.

The basic idea of the AMI algorithm is based on the Dijkstra’s algorithm. We assume

the AMI path will be searched for between node s and d with the specified amount of

capacity c sd. We start by giving a permanent label 0 to the source node because

capacity between s and itself is always zero. All other nodes get labelled oo,

temporarily, because they have not been reached yet. Then we label each immediate

successor i of source s, with temporary label equal to the link cost increment after

placing capacity c sd on link (s, i). It is obvious that node min with smallest temporary

label among these immediate successors is the node where there is the minimal

increment of link cost if c sd is placed on the link (s, min). Since all labels o f s

immediate successors i is nonnegative, there can be no smaller label than one of min

from ,v to i. Therefore we make the label of min permanent. Next, we find all immediate

successors of node min, and shorten their temporary labels if the label from s to any of

them is smaller than by going through min (than it was without going through min).

Now, from among all temporarily nodes we pick the one with the smallest label, say

node y, and make its label permanent. The node y is the second smaller label node from

s. Thus, at each iteration, we reduce the values o f temporary labels whenever possible

73

(by selecting the most recent permanently labelled node), then select the node with

smallest temporary label and make it permanent. We continue in this fashion until the

target node d gets permanently labelled. In order to distinguish the permanently labelled

nodes from the temporarily labelled ones. We will keep a Boolean array State o f order

n. When the z'th node becomes permanently labelled, the zth element of this array

changed from false to true. Another array, D, o f order n will be used to store labels of

nodes. A variable recent will be used to keep track of most recent node to be

permanently labelled. In Figure 4.8, a pseudo-code of the AMI algorithm to find the

minimal cost increment path to place the demand left unassigned is presented:

Variables used in the algorithm are given below:

• A Binary adjacency matrix storing the network topology where if the span

exists between node pair (z, j) , set the entry a ,., o f the matrix A to 1, otherwise, 0.

• C Capacity matrix storing the number o f working capacity, where the entry

c . o f matrix C is the number o f working capacity on the span (i, j).

• s Source node.

• d Destination node.

• State Array of the type Boolean, when node i is to be permanently labelled,

the entry State[i\ of the State is true, otherwise, false.

• Recent The most recent node permanently labelled

• P Predecessor array, where the elements P[z']of array P store the

predecessor node ID of node i, for example, P [Recent] is predecessor o f node

Recent.

• INF Upper bound of the amount of capacities carried on an optic fibre.

• D[z] Minimal sum of the cost increment of spans resulting from placing the

specified amount o f capacity on the spans from z to source s, measured so far.

• F(C, z) Optic fibre span stepwise cost function with capacity C carried on the

span z. For simplicity, we assume the span cost function of all spans in the network

is the same, so the function F(C, z) can be simplified to the function F(C). It is worth

noting that the assumption of the same span cost function is not necessary for the

AMI algorithm.

• E Array to store all nodes to have been permanently labeled measured so

far.

Initialization:

74

While (for all nodes in a given netw ork)

{
State[i] = false

P[/] = -l

D[z] = oo

}

= 0

Recent = s

E = { 4

Procedure:

State[s\ = true

D [s] = 0

While (if there still are nodes that do not belong to E or Recent node is disconnected

from the other part of the network or State[d\ != true)

{
While (for all nodes i ,the immediate successors o f the node Recent, which
have been not labelled permanently and update D[/])

{

TempC = c v rf + c RcccillJ

Cost = F(TempC) - F (cR£CW),,)

if (Cost < D[/])

{
D[/] =Cost

P[/] = Recent

}

}

For (All immediate successors i o f the node Recent)

{
Find the node with the smallest value among D[/], say _y

State\}>] = true

Recent = y

E = {Recent}

}

}

75

Figure 4.8 Addition Minimal Increment Algorithm

Note that the array P[] keep track o f the immediate predecessor o f a node in the AMI

path from node s to d. At the end of the execution, the AMI path cost for the amount of

the disrupted capacities, c sd, is given by D(d). The actual path can be obtained by

tracing backward the predecessors o f the nodes in the P array from node d to s. That is

the sequence o f nodes

5 , P(P[...]),..., P(P[c(]), P M , d,

is an AMI path from s to d. In case there is no path from s to d in a given network, D[<f]

will remain oo. This condition will occur if and only if at some point all the temporarily

labeled nodes of the point have oo label. Upon detecting this condition, we must exit

from the outer loop in the “while” loop step and stop.

4.5.3 Stepwise Cost Heuristic (SCH) algorithm on SCP Problems with
Stepwise Link Cost Function

The SCH is developed based on the FPAs and the AMI algorithm. In networks there are

always some spare capacities in the spans o f the network resulting from stepwise cost

function (explained below). The issue is how to utilize these spare capacities? The SCH

algorithm uses a maximum flow algorithm, the Ford-Fulkerson’s algorithm, to find the

maximal amount of feasible spare paths consisting of these spare capacities to re-route

the disrupted traffic at the event of network failure. The AMI algorithm is then used to

determine the AMI path for the disrupted traffic left that is not rerouted to minimize the

network design cost.

• Spare Capacity resulting from the Stepwise Cost Function

In a given network G(V, E) where V is denoted a set o f nodes and E a set o f spans o f

the network G, we define two matrices C and R storing the amount of working channels

and the maximal capacity on each optic-fiber cable respectively. Since the link cost

function is stepwise in capacity, the entry R (. . of matrix R, storing the number of

channels on span (i, j), is always less than or equal to the entry C u of matrix C, storing

the maximal capacity on span (i, j), as explained in Figure 4.9. In Figure 4.9, there is a

STS-9 span where 7 STS-Is are the working channels and 2 extra STS-1 channels.

76

 Working Channels Spare Channels

Figure 4.9 Structure of Spans

In practice, 7 STS-1 capacities are active to transform the network services, but we have

to install 9 STS-1 (i.e. STS-9) span for this purpose because STS-9 spans are only

available in markets. Therefore, two STS-2 channels in the STS-9 are installed but idle.

It is obvious that using these extra channels would not result in any more cost of

networks.

In case no SCP algorithm is applied to place spare capacity in the network, 2 extra

channels can still be used to reach some level of network survivability because the

failed traffic at the event o f network failure can be re-routed through these extra

channels. The SCH algorithm can effectively take the advantage of these extra channels

to restore the part of the disrupted traffic. Since the granularity of capacity o f network

links, as described in Figure 4.9, results in these extra channels in a network, using

these extra channels in this manner will not incur any extra network design cost. The

SCH algorithm can be implemented as follows. The algorithm only considers single

span failure;

• Description of the Stepwise Cost Heuristic (SCH) algorithm

The algorithm only considers single span failure - the algorithm generates a network

design which is resilient to a single span failure; the network design will not be resilient

to multiple span failures. First, to avoid reaching local optimal solution to the SCP

problem, we take a span in turn as failed in a random order (take one at a time). Second,

determine all demand pairs affected by the span failure and release all affected working

paths through the failed span which can be put into the pool o f extra channels and make

those available to the restoration process. Third, the Ford-Fulkerson’s algorithm is

applied to obtain the maximum number o f extra paths, consisting o f extra channels,

between each pair of affected demand in turn. In case the number of extra paths is

greater than or equal to the affected paths, only the actual number of the extra paths is
77

labeled temporarily as the occupied paths that will no longer be available for the other

demand pairs affected by the same span failure. In case the number o f the extra paths

obtained by the Ford-Fulkerson’s algorithm is less than the affected paths, all extra

paths found is labeled temporarily as the occupied paths. Fourth, the AMI algorithm

will be employed to find an AMI path to place the same the number o f spare paths as

the affected paths left unsaved in order to recover them with the minimal cost

increment. And then the newly placed spare capacities are labeled temporarily as the

occupied paths and update the extra channels available by the stepwise link cost

function. When all affected demand pairs by the span failure is examined all

temporarily occupied paths will be converted to the extra paths available for other span

failure in the network; Repeat the above procedure in the fashion until all spans in the

network are examined. To make the above description clearer, a pseudo-code o f the

SCH algorithm is given below.

Given:

• A Network binary adjacent matrix.

• C Network capacity matrix for link capacity

• R Network capacity matrix for actual working capacity

• LC Number o f working paths left un-restored after using the Ford-

Fulkerson’s algorithm

• TO A matrix, where its entry TO f/ stories the number of extra channels

available so far on the span (i, j).

Procedure:

WhiIe(All spans in a network)

{
(1) Randomly choose one span failed which starts from node i and terminates at

node j , and then remove it by setting a i; to zero.

(2) Determine all demand pairs affected by the single span failure and the

corresponding amount o f working paths failed.

(3) Release the network capacities occupied by the working paths failed at the

event of the span failure and makes those available to following restoration

process.

While (All demand pairs affected)

{

78

(a) Using the Ford-Fulkerson’s algorithm to find the maximum number o f the

extra paths between demand pair (i, j).

(b) If the number o f extra paths is greater than or equal to the working paths

failed between the demand pair (i, j) and then update the matrix TO by

subtracting the actually used extra channels, making up the extra paths

found, from the spans which these extra paths pass through. And then go to

the end of the “while” loop, otherwise go to step (c).

(c) Use the AMI algorithm to find the AMI path on which to place the failed

working paths left unsaved (i.e. LC), and update the matrix C and TO by

using the stepwise link cost function.

}
(4) Update the matrix TO by subtracting matrix R by matrix C.

}

Figure 4.10 Pseudo-code of the Stepwise Cost Heuristic (SCH) algorithm

The version of the SCH algorithm described above is o f path restoration, but it can also

work for span restoration with a small modification. For span restoration there is only

one demand pair affected when a span fails in a network, i.e. the demand on the failed

span, so the step (2) o f the first “while” loop in Figure 4.11 can is simplified as follows:

(2) Determine the amount o f demand in the failed span.

So, it can be seen that the version of the SCH algorithm for span restoration is a special

case for path restoration.

Like IP based SCP algorithm the SCH algorithm also takes stub release into account in

order to minimize the amount o f spare capacity required.

79

Chapter 5 Results and Comparison

5.1 Introduction

In chapter 4, three SCP algorithms, i.e. the IP based SCP algorithm, the max-latching

algorithm and the SCH algorithm, have been illustrated. In this section the results with

regard to execution time and network cost from the three SCP algorithms will be

presented

Here, the SCH algorithm and the IP based SCP algorithm can be applied to both the

path restoration design and span restoration design. But they are only implemented for

span restoration in this chapter because they will be compared with the max-latch

algorithm, an only span restoration algorithm.

We will apply the above three SCP algorithms over 10 test networks described in

section 5.2 with 4 different scenarios o f link cost function introduced in section 5.3. The

results, presented in section 5.4, help us to figure out the performances o f these three

SCP algorithms in terms of execution time and network cost required by a single

network span failure scenario, and effect of the different link cost scenarios on the

network cost obtained by three SCP algorithms.

5.2 Test Networks

Ten networks are used as the test networks in this chapter. Three o f them, i.e. the test

networks 1, 7 and 2, with their associated demand matrices, detailed in Error!

Reference source not found., Error! Reference source not found, and Error!

Reference source not found, of the Appendix A, have been used in Chapter 3. Figure

5.1 shows the architecture of the test network 6 that many literatures [12][14][15][20]

adopted to test their SCP algorithms, where the numbers next to the network links

represent their working capacities. The rest o f test networks are generated in random,

the number of nodes o f these test networks ranges from 8 to 40. Table 5.1 shows the

detailed information o f these test networks,

No. of Nodes Nodes of Spans Network Working Capacity

Network 1 8 16 136

Network 2 9 17 153

Network 3 9 19 813

Network 4 10 21 920

80

Network 5 11 23 1252

Network 6 16 28 397

Network 7 20 44 2158

Network 8 19 52 2078

Network 9 31 97 4324

Network 10 39 128 6210

Table 5.1 The Information of ten Test Networks

Figure 5.1 Test Network 6 Architecture

5.3 Stepwise Link Cost Function Scenarios

The chapter 4 introduced five types of link cost function, i.e. linear cost function, linear

cost with fixed cost, concave link cost function, concave link cost function with fixed

cost, stepwise link cost function. As described above, optic fibers carrying the specific

amount o f capacity are only available in modern markets, so stepwise link cost function

most reflects the reality. Hence, we have designed four link cost scenarios where the

link cost function is stepwise in capacity described in Figure 5.2 and Table 5.2. The four

stepwise links cost functions are based on the SONET network signal hierarchy, for

example, STS-1 and STS-3, as described in Chapter 2. When the capacity required is

bigger than the maximum capacity that can be carried by a single link available in the

81

markets. To solve this problem, several optic fibres are placed in parallel. In our case,

the maximum capacity in a single optic fibre is STS-48. In this project, we bind several

STS-12, STT-18, STS-24 and STS-48 optic fibres with a STS-48 link together to obtain

more than STS-48 capacity span respectively as described in Figure 5.2 (a) through (d)

and Table 5.2.

(a) Link Cost Function 1

(c) Link Cost Function 3

82

(d) Link Cost Function 4

Figure 5.2 Four Link Cost Function Scenarios

Cost Function 1 Cost Function 2 Cost Function 3 Cost Function4
Capacity
(STS-N)

Cost Capacity
(STS-N)

Cost Capacity
(STS-N)

Cost Capacity
(STS-N)

Cost

1 1 1 1 1 1 1 1
3 2 3 2 3 2 3 2
9 8 9 8 9 8 9 8
12 11 12 11 12 11 12 11
18 16 18 16 18 16 18 16
36 30 36 30 36 30 36 30
48 39 48 39 48 39 48 39
60 50 66 55 84 75 96 78
72 61 84 85 120 105 144 117
84 69 102 101 156 135 192 159
96 78 120 117 192 165
108 89 138 133
120 100 156 149
132 111 174 165
144 122 192 181
156 133
168 144
180 155
192 166

Table 5.2 Four Scenarios o f Link Cost Function

The link cost function 1 in Figure 5.2(a) has the smallest capacity “jum p” among four

link cost function scenarios whereas the link cost function 4 in Figure 5.2(d) has the

largest capacity “jump”. In other words, the link cost function 1 is the closest to linear

compared with the others, so the IP based SCP algorithm is expected to get the closest

solution to the optimal one to SCP problems when the link cost function 1 is employed.

83

In section 5.4.1, we will conclude the performance of three SCP algorithms with four

link cost functions scenarios.

5.4 Spare Capacity Placement Test Results

It is important to be clear on what we are looking for from our results. The following

two criteria are considered most important in evaluating the SCP algorithms.

(i) Cost; our objective function is a representation of monetary cost and this must be

minimized.

(ii) Speed; as computation time is limited, the length o f time is very important for the

application o f the SCP algorithms over large-scale networks.

In the following section, three SCP algorithms will be applied over ten test networks,

described above, to obtain their execution time and total cost while the survivability is

set to 100 %. The effect of different link cost functions on the total network cost for

each SCP algorithm is also investigated. To ensure the comparison is valid, all SCP

algorithms are performed on the same machine, i.e. a computer with Pentium processor

operating 180Mhz.

5.4.1 Comparison of time complexities among three SCP algorithms

In this section, we are interested in seeing the performance o f three SCP algorithms in

terms of execution time. Table 5.3 gives the results. Note that the sum of the numbers of

network nodes and spans represents the size o f the test networks.

Test

Networks

Network

Size (Nodes

+ Spans)

Execution Time (sec)

SCH Algorithm Max-latching

Algorithm

IP based SCP algorithm

Network 1 24 0.25 0.4 358

Network 2 26 0.2 0.525 684

Network 3 28 0.2 0.55 1028

Network 4 31 0.2 0.625 2301

Network 5 34 0.2 0.525 4543

Network 6 44 0.25 0.775 uncompleted

Network 7 64 0.3 1.325 uncompleted

Network 8 71 0.2 2.05 uncompleted

Network 9 128 0.6 5.725 uncompleted

Network 10 205 0.8 7.575 uncompleted

84

Table 5.3 Execution time of three SCP algorithms over ten test networks

Observations:

(i) The SCH algorithm is by far the fastest in all cases, and its execution time

increases very slowly while the network size increases.

(ii) The IP based SCP algorithm has the longest execution time among the three

SCP algorithms, and the time taken is increasing exponentially when the

network size increases, even worse, the algorithm can not be completed when

the network size is over 44.

Figure 5.3 displays a comparison o f three SCP algorithms with respect to their

execution time. In Figure 5.3 (a) displays a comparison o f how much time is taken by

the SCP algorithm with those by the IP based SCP algorithm and the max-latching

algorithm over ten test networks. In Figure 5.3 (b), a comparison of execution times

taken by the SCH algorithm and the max-latching algorithm is given.

The execution time, taken by the IP based algorithm, is the longest compared with those

taken by the max-latching algorithm and the SCH algorithm due to its highest time

complexity. The time complexity o f this algorithm is o f the order O (2s*s*d -1) [8],

where s*s*d, s and d are the number o f the variables in the SCP formulation, given in

Figure 4.2, the number of spans and the network connectivity respectively, and the

execution time taken by the IP based SCP algorithm increases dramatically when the

network size increases. So the IP based algorithm is not suitable to deal with the large-

scale network, whereas the SCH algorithm and the max-latching algorithm can work

effectively for this case.

85

(a) Execution Time of three SCP algorithms

(b) Execution Time of SCH Algorithm and Max-Latching algorithm

Figure 5.3 Execution Time of three SCP Algorithms over ten Test Networks

5.4.2 Performance of three SCP Algorithms in terms of total Network
Cost Savings

In this section, we wish to examine the performance of three SCP algorithms in terms of

network cost. Here, we consider the results from the SCH algorithm as the reference, its

relative network cost savings (percentage) with the other two SCP algorithms can be

derived from the following equation.

Network cost savings = ((Cip (orCh) - C r) / C r),

86

Where C r, C jp and C /(represent the network costs from the SCH algorithm, the IP

based SCP algorithm and the max-latching algorithm respectively.

As mentioned in Chapter 4, the IP based SCP algorithm and the max-latching algorithm

can only work on the SCP problem with the linear cost function scenario. To make it

valid comparing the network cost C from the SCH algorithm with the network costs,

i.e. C and C h from the other two SCP algorithms, the C.p and C h must be recalculated

based on the stepwise link cost function scenario. The following reasons make the

recalculation reasonable:

1) All three SCP algorithms are applied to determine the number o f spare capacity and

their layout required for the same level o f network survivability, say, 100% network

survivability.

2) The results from the IP based algorithm and the max-latching algorithm are

independent from the linear cost C . per span channel, given in Figure 4.2 and

section 4.4.1.

Table 5.4 displays the following results:

1) Costs for 100% network survivability from the three SCP algorithms over ten test

networks. The cost for each SCP algorithm is the average cost over four stepwise

link cost function scenarios.

2) The relative cost saving (percentage) of the SCH algorithm compared with those of

the other two SCP algorithms.

Cost from

My
Algorithm

Cost from

max-latching

Algorithm

Relative Cost

Savings

(percentage)

(C „) - C , .) /C r

Cost from

IP based

algorithm

Relative Cost

Savings

(percentage)

(Clp- C r)/C.r

Network 1 60 93 55% 64 6.7%
Network 2 65 131 102% 102 56.9%
Network 3 461 588 28% 447 -3.03%
Network 4 427 635 48.7% 431 0.94%
Network 5 599 707 18% 578 -3.5%
Network 6 148 421 178.4% N/A N/A
Network 7 796 1364 71.4% N/A N/A
Network 8 704 1080 53.5% N/A N/A
Network 9 1180 2224 100% N/A N/A

Network 10 1675 3100 85% N/A N/A

Table 5.4 The Performance o f three SCP algorithms in terms of Network Cost Savings

87

Observation:

(1) The SCH algorithm is the most effective approach to solve the SCP problems in

terms of total network cost, where the link cost function is stepwise in capacity, in

most cases. Compared with the max-latching algorithm, its relative cost savings

ranges from 18% to 178% (80% on average). Compared with the IP based SCP

algorithm, its relative cost savings of the SCH algorithm ranges from -3.5% to

56.9% (11.6% on average).

(2) No results from the IP based SCP algorithm are available when the size of the test

networks is over 44 due to the high time complexity o f the algorithm (2N -1), where

N is the number o f the variables o f the formulation given in Figure 4.2.

From the above results, we could see that the SCH algorithm produces the best solution

in most cases, as we have expected. The SCH algorithm is a local search algorithm, and

maybe reach hence a local optimal result, but it is designed to utilize o f the spare

channels resulting from the step cost function which the other two SCP algorithms do

not, which covers most o f its disadvantage, a local search. Therefore, the SCH

algorithm, in general, gets the better solution than the IP based SCP algorithm, a global

search algorithm. The reason why the IP algorithm gets the better result than the SCH

algorithm in some cases will be explained in the following section.

5.4.3 Effect of the Stepwise Cost Function Scenarios on the Network
Cost

In this section, we look at the effect o f the different stepwise cost function scenarios on

the performance o f three SCP algorithms in terms of the network cost and see how

much benefit the SCH algorithm can obtain from the four stepwise cost function

scenarios. Figure 5.4 (a) through (j) shows the network costs from three SCP algorithms

with four stepwise cost function scenarios over ten test networks.

88

100
Network 1

— an

80

fin

C
o

st » ~ -v------ ▼

40

20 ♦ SCH Algorithm

0
—■ — Max-Latching

IP based Algorithm 1
C 1 2

Function
3 4 5

(a) Cost for Network 1

Network 2

« ------------------------f -----------------------♦ --------- ------- *

♦ - SCH Algorithm

■ Max-Latching Algorithm

IP based Algorithm

0 1 2 3 4 5

Function

(b) Cost for Network 2

(c) Cost for Network 3

89

(d) Cost for Network 4

(e) Cost for Network 5

90

(f) Cost for Network 7

91

(g) Cost for Network 8

(h) Cost for Network 9

92

Figure 5.4 Network Cost with Four Link Cost Scenarios

It is worth noting that the four stepwise link cost scenarios is sorted in the order of

increasing in terms of capacity “gap”, for example, the function 1 has STS-12 capacity

gap whereas the function 4 has the STS-48 capacity. Hence, the function 1 is the closest

to linear among the other cost function scenarios.

Observation:

(1) The SCH algorithm always obtains the minimal network cost compared with the

other two SCP algorithms when the stepwise cost function 3 and 4 are applied.

(2) Compared with the max-latching algorithm, the SCH algorithm always obtains the

better results for four stepwise link cost function scenarios.

(3) Compared with the IP based SCP algorithm the IP based SCP algorithm obtains the

better results than the SCH algorithm does in the test network 3, 4 and 5 when the

cost function 1 and 2 are applied. However, the cost savings (percentage) o f the

SCH algorithm over the IP based SCP algorithm for all cases still reach 11.6% on

average given in section 5.4.2.

(4) With the capacity “gap” bigger the result from the SCH algorithm become better

relatively compared with those from the other two SCP algorithms, in other words,

the SCH algorithm can get most from the stepwise link cost function scenarios.

From the results, we see the SCH algorithm get the most benefit, as we have expected,

while the capacity “gap” o f the stepwise link cost function increases from the function 1

to the function 4. As a whole, the SCH algorithm obtains the better results than that

from the IP based SCP algorithm does because the SCH algorithm is designed to utilize

spare channels on each network span resulting from the stepwise link cost function,

which the IP based SCP algorithm is not. However, the disadvantage o f the SCH

algorithm is that it is a local optimal (search) algorithm whereas the IP based SCP

algorithm is a global one, as a result, the results from the IP based SCP algorithm are

better than those are from the SCH algorithm in some cases. When the stepwise link

cost function is close to linear, the spare channels o f network spans resulting from it get

little, so the SCH algorithm loses its advantage o f using the spare channels so that the

results from it become worse than that from the IP based algorithm.

94

Chapter 6 Conclusion

This chapter is concerned with summarizing the observations that arise from this

research work. Firstly, section 6.1 is concerned with a discussion of experimental

results. Section 6.2 discuses possible directions for applications and further research.

Finally, section 6.3 sums up the principal conclusion.

6.1 Overall Discussion of Results

In Chapter 3, four Feasible Path Algorithms (FPAs) algorithms have been illustrated,

i.e. the Ford-Fulkerson’s algorithm, the disjoint KSP algorithm, the non-disjoint KSP

algorithm and the Matrix Maximum Flow (MMF) algorithm. The Ford-Fulkerson’s

algorithm is the best in terms of total feasible paths, however, its major disadvantage is

that it can not control the hops of the feasible paths. As to the non-disjoint KSP

algorithm, it can find up to 98% of the feasible paths that the Ford-Fulkerson’s

algorithm does, and easily control the length o f the feasible paths, so the KSP algorithm

is a good alternative to the Ford-Fulkerson’s algorithm in many cases. The MMF

algorithm is a newly proposed FPAs. It has the following advantage: 1) Obtain the same

amount of the feasible paths as the Ford-Fulkerson’s algorithm does when hop-limit of

feasible paths is large enough. 2) Be o f control o f hop-limits as the KSP algorithm is,

and moreover it is believed to take less execution time than the Ford-Fulkerson’s

algorithm does in a vector-equipped computer as discussed in Chapter 3.

Restorability techniques and survivability techniques have different requirement for the

FPAs, i.e. restorability techniques are more sensitive to its execution time to meet the

need o f real time services whereas survivability techniques is more sensitive to network

design cost at design time.

Two types o f the KSP algorithms have been implemented to find feasible paths in this

project: the disjoint KSP algorithm and the non-disjoint KSP algorithm. The disjoint

KSP algorithm is faster than the non-disjoint KSP algorithm, but, find the less account

of feasible paths, so the disjoint KSP algorithm is a better option for restorability

technique than the non-disjoint KSP algorithm, but the non-disjoint KSP algorithm is

more suitable for survivability techniques than its counterpart.

Our primary concerns in evaluating the three SCP algorithms are network cost and

execution time. In Chapter 4, three Spare Capacity Placement (SCP) algorithms have

been introduced, i.e. the IP based SCP algorithm, the max-latching algorithm and the

SCH algorithm.

The best solution in terms o f execution time is consistently the SCH algorithm. The

execution time of the IP based SCP algorithm is longest among the three SCP

algorithms and increases dramatically when the size of networks increases due to its

higher time complexity 0 (2 s*s*d), where s and d are the number o f network spans and

connectivity, so the IP based SCP algorithm is not suitable to design large-scale

survivable networks. The max-latching algorithm and the SCH algorithm are the local

search algorithms, therefore, they have much less time complexity than the IP based

SCP algorithm. Both the SCH algorithm and max-latching algorithm can be applied to

large-scale networks, for example, transport networks.

Our second evaluation criteria is network cost. Here, the SCH algorithm obtains the best

results in most cases. Compared with the max-latching algorithm, the results from the

SCH algorithm is always better, as we have expected. In principle, The SCH algorithm

should always have obtained the better results than the IP based SCP algorithm does

because the SCH algorithm can take use o f the spare channels resulting from the

stepwise link cost function, which the IP based SCP algorithm can not. However, the IP

based algorithm is a global search algorithm whereas the SCH algorithm is a local

search algorithm; if the stepwise cost function is close to linear (e.g. the stepwise link

cost function 1 in Figure 5.2) the IP based SCP algorithm may get a better solution than

the SCH algorithm does. When the stepwise link cost function is close to linear, the

spare channels resulting from it get little, so the SCH algorithm will lose its advantage

of using spare channels so that the results from it become worse than that from the IP

based algorithm. In this project, no exact linear cost function was chosen because it

does not exist.

In summary, the SCH algorithm is the best choice to design the survivable network,

especially, large-scale transport network due to its excellent performance in terms of

execution time and network cost. The IP based SCP algorithm is a better choice for the

small-scale network design in case the stepwise link cost function is close to linear. We

do not recommend use o f the max-latching algorithm in survivable network design due

to its bad performance in network cost.

96

6.2 Application and Further Work

In this section, we discuss applications arising from this project and potential for further

development.

6.2.1 Application to Survivable Network Design

The SCH algorithm is designed to solve Spare Capacity Placement (SCP) problems in

mesh-type survivable networks in case stepwise link cost functions are applied. The

SCH algorithm can quickly determine the networks that have a capability to prevent

them from a single span failure, so it can be applied for large-scale networks, e.g.

transport networks.

6.2.2 User Interface Development

It is generally useful in computer-aides design to have some user interaction with the

design process as, for many problems, humans have a superior ability to visualize what

a good solution should look like.

6.2.3 Further Refinement of the SCH Algorithm

In this project, we implemented the SCH algorithm for span restoration and a single

span failure, we can also refine the SCH algorithm to work for restoration path and

other network failure i.e. multiple span failure and node failure. In addition, we can

develop a dynamic scheme (i.e. restorability technique) corresponding to the SCH

algorithm to deal with the unexpected network failure or traffic growth. Furthermore,

we can apply the SCH algorithm in the VP level o f ATM networks with some

modifications as in [40].

We could say that this project is successful by looking at the result analysis, since the

SCH algorithm is the fastest among the other two SCP algorithms, and obtain the best

result in terms of network cost in most cases.

97

References

[1] Tsong-Ho Wu, Fiber Network Service Survivability, ARTECH HOUSE, INC. 1992.

[2] Hideki Sakauchi, Yasuyo Nishimura and Satoshi Hasegawa, “A Self-Healing

Network With An Economical Spare-Channel Assignment”, GLOBECOM 90 1990. pp

438-443, 1990.

[3] Hiroaki Komine, Takafumi Chujo, Takao Ogura, Keiji Miyazaki, and Tetsuo

Soejima, “A Distribution Restoration Algorithm For Multiple-Link And Node Failures

of Transport Networks”, Proc. IEEE GLOBECOM 90, pp459-463, 1990.

[4] C. Han Yang and Satoshi Hasegawa, “Fitness: Failure Immunization Technology

For Network Service Survivability”, IEEE Globecom 88, 1988.

[5] W. D. Grover, B. D. Venables, M. H. MacGregor, “Performance studies o f a self

healing network protocol in Telecom Canada long haul networks”, IEEE Global Conf.

Commun., Dec. 1990. pp. 452-458, 1990.

[6] Martin De Prycker, Asynchronous Transfer Mode: Solution For Broadband ISDN,

Ellis Horwood Limited 1993.

[7] Demetrios Stamatelakis, (M.Sc.), NSERC Scholar, "Theory and Algorithms for

Preconfiguration o f Spare Capacity in Mesh Restorable Networks," Department of

Electrical & Computer Engineering, University o f Alberta, Spring 1997.

[8] Maciej M. Syslo, Narsigh Deo and Janusz S. Kowalik, Discrete Optimization

Algorithm with Pascal programs, Prentice-Hall, Inc., 1983.

[9] Mike Sexton, Andy Reid, Braodband Networking: ATM, SDH, and SONET,

ARTECH HOUSE, 1997.

[10] E.Oki, N.Yamanaka, “A recursive matrix-calculation method for disjoint path

search with hop link number constraints”, EICE Transactions Communications, Vol.

E78-B, no.5, pp769-774, May 1995.

[11] Peter V. O ’Neil, Advanced Engineering Mathematics, Wadsworth, Inc. 1987.

[12] M.H Macgregor and W.D.Grover, “Optimized K-shortest-paths Algorithm for

Facility Restoration”, Software-Practise And Experience 1994 Vol. 24 PT 9. Pp823-

834, 1994.

[13] M. Gondran, M. Minoux, Graphs and Algorithms, John Wiley & Sons Ltd. 1984.

[14] Meir Herzberg, “A decomposition Approach to Assign Spare Channels in Self-

Healing Networks”, GLOBECOM 93 1993. pp 1601-1605, 1993.

98

[15] Meir Herzberg and Stephen J. Bye, “An Optimal Spare-Capacity Assignment

Model for Survivable Networks with Hop Limits”, GLOBECOM 94 1994. ppl601-

1606, 1994

[16] Meir Herberg, Stephen J. Bye, and Anthony Utano, “The Hop-Limit Approach for

Spare-Capacity Assignment in Survivable Networks”, IEEE/ACM Transactions on

Networking. Vol. 3. NO. 6, December 1995.

[17] M. T. Busche, C. M. Lockhart, and C. Olszewki, “Dynamic K-Shortest Path

(DKSP) Facility Restoration Algorithm”, IEEE Globecom’94, 1994.

[18] W.D. Grover, V.Rawat and M.H. MacGregor, “Fast Heuristic Principle for spare

capacity placement in mesh-restorable SONET/SDH”, Electronics Letters 1997 Vol. 33

PT 3 ppl95-196, 1997.

[19] W.D.Grover, T.D. Bilodeau and B.D.Venables, “Near Optimal Spare Capacity

Planning In a Mesh Restorable Network”, GLOBECOM 91 1991, pp 2007-2012, 1991.

[20] B.D.Venables, W.D.Grover, and M.H.MacGregor, “Two Strategies for Spare

Capacity Placement in Mesh Restorable Networks”, IEEE Int. Conf On

Communications ICC93 Conf Record Vol. 1 Geneva May 1993.

[21] R.R.Iraschko, M.H.MacGregor and W.D.Grover, “Optimal Capacity Placement for

Path Restoration in Mesh Survivable Networks”, 1996 IEEE INT. CONF. On

Communication, Dallas Texas, 1996.

[22] Kazutaka Murakami and Hyong S. Kim, “Joint Optimization o f Capacity and Flow

Assignment for Self-Healing ATM Networks”, Proc. IEEE ICC 95 JUNE 1995.

[23] D.Antony Dun, Wayne D. Grover, and Mike H. MacGregor, “Comparison of k-

Shortest Paths and Maximum Flow Routing for Network Facility Restoration”, IEEE

Journal on Selected Areas in Communications, Jan. 1994, vol. 12, no. 1, pp.88-99.

[24] Rainer R. Iraschko, NSERC Scholar, (Ph.D.), "Path Restorable Networks,"

Department o f Electrical & Computer Engineering, University o f Alberta, fall 1996.

[25] W.D.Grover and M.H.Macgregor, “Potential for Spare Capacity Preconnection to

Reduce Crossconnection WorkLoads in Mesh-Restorable Network”, Electronics

Letters, vol. 30, No. 3, 3rd Feb. 1994.

[26] Jiro Yamada and Akiya Inoue, “Intelligent Path Assignment Control For Network

Survivability And Fairness”, IEEE ICC’91.

[27] Takafumi Chujo, Hiroaki Komine, Keiji Miyazaki, Takao Ogura and Tetsuo,

“Distributed Self-Healing Network and Its Optimum Spare Capacity Assignment

Algorithm”, Electronics and Communications In Japan, Part 1, Vol. 74, No. 7 1991.

[28] Takafumi Chujo, Hiroaki Komine, Keiji Miyazaki, Takao Ogura and Tetsuo

99

Soejima, “The design And Simulation of An Intelligent Transport Network With

Distributed Control ”, Network Operation and Management Symp. SAN Diego, Feb

1990.

[29] Hideki Saauchi, Yasuyo Okanoue and Satoshi Hasagawa, “Spare Channel Design

Schemes For Self-Healing Network”, IEICE Transaction Communication 1992 Jul. Vol.

E75-B PT 7.

[30] B.C.Hturton and M Bentall, “Benchmark Networks For Both Physical And Virtual

Networks”, IEE Electronics and Communications Fifteenth UK Tele-traffic

Symposium, On Performance Engineering In Information Systems. 1998.

[31] James McGibney, (M.Sc.), Modern Global Optimization Heuristics in the Long

Term Planning of Telecommunication Networks, School o f Electronic Engineering,

Dublin City University, 1995.

[32] M. Kerner, H. L. Lemberg and D. M. Simmons, “An Analysis o f Alternative

Archectures for the Interoffice Network”, IEEE J. Select. Areas Commun., vol. SAC-4,

pp 1404-1413, December 1986.

[33] B. Gavish et al, “Fiberoptic Circuit Network Design Under Reliability

Constraints”, IEEE J. Select. Areas Commun., vol. SAC-7, pp 1181-1187, October

1989.

[34] A. Kershenbaum, P. Kermani and G. A. Grover, “Mentor: An Algorithm for Mesh

Network Topological Optimization and Routing”, IEEE Transactions on

Communications, Vol. 39, No. 4, April 1991.

[35] T. C. Hu, Integer Programming and Network Flows, Reading, MA: Addison-

Wesley, 1969.

[36] Grover, W. D., “The selfhealing network: a fast distributed restoration technique

for network using digital cross-connect machines,” Proc. IEEE GLOBECOM ’87, Dec.

1987, pp. 28.2.2-28.2.6.

[37] Chao, C. W., Dollard, P. M., Weythman, J. E, Nguyen, L. T., Eslambolchi, H., “

FASTAR-a robust system for fast DS3 restoration,” Proc. IEEE GLOBECOM’91, Dec.

1991, pp.39.1.1-39.1.5.

[38] Gerard Sierksma, Linear And Integer Programming: Theory and Practice, Marcel

Dekker, Inc., 1996

[39] S.D Nikolopoulos, A.Pitsillides, “Towards Network Survivability by Finding the

K-best paths through a Trellis Graph”, International Conference on

Telecommunications (ICT’96), Istanbul, Turkiye, pp817- 821, April 1996.

100

[40] R. R. Iraschko, M. H. MacGregor and W. D. Grover, “Optimal Capacity Placement

for Path Restoration in STM of ATM-Mesh Survivable Networks,” IEEE/ACM

Transactions on Networking, vol. 6, no. 3, June 1998.

101

Appendix A Test Networks for the Feasible Path Algorithm

In this section, five test networks used in chapter 3 and chapter 4 are depicted below.

In these diagrams, each line represents a network link, and the two numbers next to each

link represents that link capacity and the length of the span; the length of the span is in

brackets. Note that the length of network links is given by our measurement in these

diagrams.

Figure A. 2 Topology of Test Network 2

A-1

Figure A. 1 Topology o f Test Network 3

Figure A. 2 Topology of Test Network 4

A-2

Figure A. 1 Topology of Test Network 5

A-3

