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Abstract:

Modern society has become more and more dependent on information services, transferred 
in both public and private network, than ever before. The use o f integration o f computers 
with telecommunications has created a so-called “Information Age”. The advent o f high 
capacity digital telecommunication facilities has made it possible for the huge amount of 
traffic to be carried in an economical and efficient method, in recent years. These facilities, 
which are used to carry much higher capacities than the traditional ones, also result in the 
network’s vulnerability to the failure of network facilities, i.e. a single link failure.

This thesis is concerned with the technology by which the spare capacity on the link of 
mesh networks is placed in order to protect the active traffic from network failure with a 
minimal cost. Although there have been many works to address the issue all o f these works 
have been developed based on the assumption that the link cost with its capacity is linear. 
In fact, the linear cost functions does not reflect the reality that optic fiber cables with the 
specific amount of capacities are only available, in other words, the link cost function is 
stepwise rather than linear. Therefore, all existing algorithms developed for the linear 
assumption may not be applicable properly for the stepwise case.
A novel heuristic algorithm is proposed to solve the problem in this thesis. The algorithm is 
composed o f two parts as follows. In part one, a maximum flow algorithm is employed to 
work out the maximal amount o f feasible spare paths consisting o f spare capacities in the 
network to re-route the disrupted traffic at the event o f network failure. In part two, a newly 
proposed algorithm is used to find an alternative path on which to place the non-rerouted 
traffic on the failed link with the minimum network cost increment. The superiority o f the 
algorithm is presented over other algorithms published in this area.
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Chapter 1 Introduction

1.1 Introduction

Modem society has become more and more dependent on information services, 

transferred in both public and private network, than ever before. The use o f integration 

o f computers with telecommunications has created a so-called “Information Age”. The 

advent o f high capacity digital telecommunication facilities has made it possible for the 

huge amount of traffic to be carried in an economical and efficient method, in recent 

years. These facilities, which are used to carry much higher capacities than the 

traditional ones, also result in the network’s vulnerability to the failure o f network 

facilities, i.e. a single link failure. A single multi-gigabit per second fiber optical cable 

can carry the capacity equivalent of tens of thousands o f individual conversations and 

data connections. So the service disruption is no longer tolerated by industries if  a fiber 

cable failed and there is no means in place to rapidly reroute the traffic which flowed on 

it. For example, a fiber cable cut in the AT&T network, which occurred at Newark in 

January 1991, interrupted 60 percent o f voice and data coming and going out of New 

York, including three major commercial airports, for about 10 hours. The challenging 

issue for a network provider and designer is how to ensure the network continuity at an 

affordable cost and reasonable restoration time.

In the last decade, many approaches have been proposed to design the survivable 

network in the event of a network span failure. These restoration design technologies 

are basically divided into two categories: dedicated spare capacity routing and non­

dedicated spare capacity routing. In dedicated spare capacity routing methods, such as 

automatic protection switching (APS) and self-healing rings (SHRs), a network will 

have spare capacity added to the network which is dedicated to rerouting the disrupted 

working traffic flows. The spare capacity is preset in the extra network facilities (for 

example idle fiber cable). When a network span fails the switching equipment 

automatically reroutes the working traffic by switching the working flow from the failed 

span to the preset spare alternate facilities. In non-dedicated spare capacity routing 

methods, spare capacity is placed on each network span, which the working capacities 

are located on. The spare capacity possibly contributes to the restoration of all possible 

network failures. It is worth noting that this type of network is donated mesh network 

because o f the way they use spare capacity. In the event o f a network failure, working
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flows are rerouted over spans, on which spare capacities exist. In summery, in dedicated 

restoration technologies the working traffic is rerouted through predefined restoration 

paths in the extra network facilities, whereas in non-dedicated restoration technologies 

the network is recovered from a failure by using all the spare capacities available in the 

networks, as needed, to form restoration paths.

The primary advantage of dedicated capacity restoration methods is its speed. The spare 

capacity is effectively hardwired and used only in the event of network failure. The 

transport signals can be rapidly switched to the stand-by paths, which can result in 

restoration times of as little as 50 msec[l]. However, there are some disadvantages to 

this type of restoration, firstly, the total amount o f spare capacity which is required to 

make such a design fully restorable, for all span failures, will be generally greater than 

the total amount of working capacity present in the network. The network will also be 

relatively inflexible in its configuration because all o f its spare capacities are hardwired. 

The implication is that network traffic has to be accurately forecast, at the time of the 

network’s construction, so that the network’s fixed protection configuration will be able 

to support future traffic growth.

The network designed by the non-dedicated technologies, on the other hand, uses non­

dedicated spare capacity and has the primary advantage o f being fully restorable using 

an amount of spare capacity which can be 3 or 6 times less than that required in a 

dedicated network [1]. The reduction occurs because all the spare capacities in a mesh 

network are free to be re-used in the restoration of any span failure, whereas the spare 

capacity in a dedicated network can only be used in the restoration of a specific set of 

spans. An additional advantage which mesh networks offer is that both working and 

spare capacity is fully re-configurable to more easily accommodate future changes in 

offered traffic. The difference between working capacity and spare capacity, in a mesh 

network, is that one is committed to service and the other is simply sitting idle. I f  traffic 

offered to the network should suddenly increase in a certain area it may be carried by 

putting some of the spare capacity into service. However, this may result in the 

reduction of the network survivability. More usually, the benefit lies in placing new 

working capacity only where the growth is actually materialized this allowing a mesh 

network to be less dependent on the actual forecast ordering. Because of the advantages 

of the non-dedicated survivable network over the dedicated one, we will center on the 

non-dedicated survivable network in this thesis, namely, the survivable mesh network.
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1.2 Research Objectives

The objective of this thesis is to find out how to place the spare capacity in mesh 

networks in order to protect the active traffic from network failure with a minimal cost. 

Due to the increasing interest in the survivable network design, there have been plenty 

o f approaches proposed in recent years to address this problem [2] [3] [4]. These 

approaches can basically be classified into two group, standard methods and heuristic 

methods. If  standard methods, such as the Linear Programming (LP), or Integer 

Programming (IP), are applied to the problem of optimal spare capacity planning 

[3][4] [5], then standard methods can be used to obtain the optimal solution to the Spare 

Capacity Placement (SCP) problem. In heuristic methods the greedy algorithm is 

employed to find the near optimal solution. Compared with the heuristic method, the 

standard method would get the optimal result at the expense o f execution time. The 

standard method is more time consuming due to the larger amount o f constraints 

required by LP (or IP) programming.

Almost all methods were developed based on the precondition that the link cost 

function with its capacity is linear. However, the fiber cables with the specific amount 

of capacities are only available in commercial markets, which makes it natural to 

consider solutions from the above methods may not be optimal although it is still giving 

a good approximation. In this thesis, we propose a heuristic approach to address the 

stepwise problem. The approach’s effectiveness in terms of execution time and the costs 

required will be evaluated by comparing it with one standard method and one heuristic 

method respectively.

1.3 Thesis Structure

Chapter 2 is concerned with the introduction of the general background in the area of 

survivable network design, for example, some relevant terms and concepts, and then a 

brief description on the work detailed in current literatures is also given.

Chapter 3 contains an illustration of three algorithms that are used to obtain the 

feasible paths in the survivable network design, i.e. the Ford-Fulkerson’s algorithm, the 

K-Shortest Paths algorithm (KSP) and the Matrix Maximum Flow algorithm (MMF). 

Then a comparison of their effectiveness in terms of the amount of paths found by these 

algorithms is provided.

5



Chapter 4 is concerned with the three algorithms which are applied to solve the SCP 

problem, IP formulation, max-latching algorithm and Stepwise Cost Heuristic algorithm 

(SCH). In addition, in order to solve the survivable network with stepwise cost function, 

the Addition Minimum Increment (AMI) algorithm is also proposed here. It is applied 

to obtain a path where the addition of the specified amount o f traffic causes the 

minimum cost increment. IP formulation is a SCP solver that employs the IP 

programming to optimize the placement o f spare capacity in 100% restorable network. 

The max-latching algorithm is a heuristic method that use the matrix knowledge to 

obtain a near optimal solution to SCP problem. The SCH algorithm is also a heuristic 

method that combines the maximal flow algorithm and the AMI algorithm to address 

SCP with the stepwise cost function.

Chapter 5 presents the results of the three SCP algorithms in terms of execution time 

and cost. Finally, an overall comparison of methods is presented.

Chapter 6 gives a discussion of the results. Finally, we suggestion some future research 

for mesh survivable network.

1.4 Algorithms proposed associated with the thesis

1. MMF algorithm, which is used to obtain the maximum flow between a given pair of 

nodes in a network.

2. AMI, which is used to find a path where adding the specified amount o f traffic 

causes the minimum cost increment. The algorithm is developed based on Dijkstra’s 

algorithm [8].

3. SCH algorithm, which is a heuristic algorithm to address mesh survivable network 

with stepwise cost function.
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Chapter 2 Mesh Network Survivable Technologies

2.1 Introduction

As discussed above, mesh survivable networks are selected for study in this thesis 

because they have many advantages over dedicated survivable networks. The major 

advantages of mesh survivable network are as follows:

1. Flexibility:

Spare capacity is dedicated to almost all-possible failures o f a network rather than any 

specific failure as dedicated survivable networks do. In case an unexpected failure 

occurs, restorable paths would be calculated dynamically according to the spare 

capacities available in order to protect as much interrupted traffic as possible from the 

network failure. Upon network failure, total spare capacities available are composed of 

both spare capacities placed before the failure, and released by traffic affected by the 

failure. All characteristics o f mesh survivable networks contribute to its flexibility.

2. Extensibility:

Another attractive advantage of mesh survivable networks is its extensibility. Due to 

increasing reliance o f our society on telecommunication, the amount of new services 

have been mounting rapidly day by day. Today’s network with 100% survivability 

(introduced in Chapter 3) may no longer guarantee 100% survivability for the coming 

new services, tomorrow. Mesh survivable networks have more capabilities to meet the 

requirement of traffic growth than dedicated survivable networks. When new services 

are coming, spare capacities can temporally be used as working capacities to carry the 

new service although it reduces the network’s survivability. To solve this, new spare 

capacities would be placed where new services occurred in order to keep 100% network 

survivability.

3. Affordable Time Complexity for real time services:

With the deployment o f the powerful network equipment (i.e. DCS explained in the 

section 2.2.3 and ADM detailed in [6]), they have succeeded in speeding up the 

calculation time of SPC algorithm in each node so that the delay of services is 

affordable by users [7]. On the other hand, the fast restoration (50 msec) provided by
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SHR and APS is not, strictly speaking, necessary in most instances. For example, in the 

telephone network, calling would not be dropped in 2 seconds, that means users can not 

perceive it. Therefore, 2 seconds is a very well reasoned and cost effective target for 

restoration times.

In summary, we will focus on studying mesh survivable networks in the following 

chapters. Before further discussion, we would like to illustrate a number o f definitions 

regarding mesh survivable networks firstly.

2.2 Background to Mesh Survivable Networks

2.2.1 Centralized and Distributed Restoration

At the most level o f abstraction, mesh restoration requires three conceptual steps: (a) 

accessing a network description, (b) computing a re-routing plan, and (c) deploying 

cross-connection actions to put the plan into effect. Centralized and distributed 

restoration can be differentiated by examining the steps o f the restoration process.

In step one of the restoration process, centralized mesh restoration accesses a database 

at a central controller that stored information about all network nodes, connectivity 

maps, and spare facilities. In distributed restoration the network itself is the database; 

rather than accessing a central controller, each DCS obtains local network information 

from the links impinging on it.

To fulfil step two o f the restoration process, centralized restoration computes the best 

re-routing paths for all failed signals based on the most recent network information 

available in the controller’s database. Distributed restoration computes the re-routing 

plan is a distributed fashion across the entire network so that DCS only computes the 

part o f the composite routing strategy which it is required to implement. The computed 

set o f restoration paths form the re-routing plan in both cases.

In step three o f the restoration process, centralized restoration requires the downloading 

of the re-routing plan to all DCS machines. However, distributed restoration leaves the 

computed set of restoration paths in place at each DCS node, obviating the need to 

download any re-routing plan.

While centralized and distributed restoration disperses information of the rerouting plan 

differently in step three of the restoration process, both centralized and distributed 

restoration may deploy the cross-connects required to implement a rerouting plan in the



same way. The ways in which cross-connection actions may be deployed at a DCS are 

explained in 2.2.3.

Centralized restoration is challenged with problems related to the size, cost, complexity, 

and vulnerability of the surveillance and control center needed for transport 

management. A centralized system is also dependent on the ability to maintain a 

complete, consistent, and accurate database image of the network which necessities 

redundant high-availability telemetry arrangements. As a result, centralized restoration 

is not only slower in real time than distributed restoration but runs the risk that a failure 

in the network will coincide with downtime at the central control site or a failure in the 

telemetry arrangement.

In a distributed approach there are no dependencies on telemetry or a central control 

site; the network is the computer on which the reconfiguration algorithm run. Therefore, 

the distributed approach is less vulnerable than the centralized approach. Furthermore, 

distributed mesh restoration algorithms have the potential to compute a rerouting plan 

much faster than centralized algorithms because they use the network as their database, 

and perform distributed processing over all DCSs. However, distributed restoration 

algorithms tend to be more complex than centralized algorithms because they must 

ensure that the routing decisions taken by all other nodes. The restoration algorithm 

presented in this thesis is a distributed mesh restoration technique.

2.2.2 SONET Network and its Signal Hierarchy

In this section, we provide background on the networks whose design will be optimized 

and into which the distributed dynamic path restoration algorithm will be deployed. The 

relevant network environment is that of the SONET transport network.

• Synchronous Digital Hierarchy (SDH)

Synchronous Digital Hierarchy (SDH) is a standard technology for synchronous data 

transmission on optical media. It is the international equivalent o f SONET. Both 

technologies provide faster and less expensive network interconnection than traditional 

PDH (Plesiochronous Digital Hierarchy) equipment. In digital telephone transmission, 

"synchronous" means the bits from one call are carried within one transmission frame. 

"Plesiochronous" means "almost (but not) synchronous," or a call that must be extracted 

from more than one transmission frame. SDH uses the following Synchronous
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Transport Modules (STM) and rates: STM-1 (155 megabits per second), STM-4 (622 

Mbps), STM-16 (2.5 gigabits per second), and STM-64 (10 Gbps).

• Plesiochronous Digital Network (PDN) and Plesiochronous Digital Hierarchy 

(PDH)

A Plesiochronous Digital Network (PDN) uses point-to-point transmission systems and 

a layered multiplexing scheme to provide the physical connectivity, establishment, 

maintenance, and release of connections. In a PDN framing occurs at each multiplexing 

step, and each point-to-point transmission system is clocked independently. While all 

the clocks in a PDN are free running, they nominally operate at one o f the standardised 

rate set in the Plesiochronous Digital Hierarchy (PDH) shown in Table 2.1

Digital Signal Level Data rate (Mbps)

DSO 0.064

DS1 1.544
DS2 6.312

DS3 44.736
DS4 274.176

Table 2.lPlesiochronous Digital Hierarchy

Within each rate in the multiplexing hierarchy, the various transmission systems in a 

PDN operate at slightly different frequencies. In order to multiplex signals with slightly 

different bit rates it is necessary to adjust the various input signals to a common rate by 

adding or deleting bits, may be eliminated or added without corrupting the transmitted 

information. While adding and deleting stuff bits in an input signal according to the 

rules stipulated in the PDN does not corrupt the information being transmitted, it does 

render the tributary signal inaccessible after multiplexing. In the PDH it is impossible to 

discern the difference between a stuff bit and an information bit in the payload of any 

digital carrier signal above the DSO level with de-multiplexing the high speed into it 

constituent tributary signals.

• Synchronous Optical Network (SONET)

SONET is a standard in North America that defines both an optical interface, and rate

and format specifications for optical signal transmission. It can support both broadband

and narrow-band services. SONET Phase I specifies transmission rates, signal formats,

optical interface parameters, and some payload mappings, however, it does not
10



standardize the operations and maintenance functions that must also be exchanged 

between Network Elements (NEs). Phase II of SONE defines the message set and 

protocols for using overhead channels for operations, administration, maintenance, and 

Provisioning (OAM&P). Phase II includes four major components: a protocol stack, a 

language, a message structure, and a common view of the data.

The SONET signal hierarchy plays a crucial role in SONET networks. Several factors 

determine the design of the SONET signal hierarchy. These factors include flexibility of 

supporting different services, simplicity in cross-connection, benefits from synchronous 

networks, facility maintenance, modularity for growth, and compatibility with existing 

networks. The basic building block (i.e., the first level) o f the SONET signal hierarchy 

is called Synchronous Transport Signal-Level 1 (STS-1). The STS-1 has a bit rates of 

51.84 Mbps. The traffic in SONET network is the combination of STSn (n = 1, 4, 9, 

12...), currently the STSn is defined, as depicted in Table 2.2

Digital hierarchy Line rate (Mbps)

STS-1 51.84

STS-3 155.52

STS-9 466.56

STS-12 622.08

STS-18 933.12

STS-24 1244.16

STS-36 1866.24

STS-48 2488.32

Table 2.2 SONET Signal Hierarchy with its Line Rate

It is worth noting that network traffic can only be represented by the integer number of 

STSn (for example, STS-1, STS-3 and so on) due to the modularity of the SONET 

signal hierarchy. The following network definitions also play a crucial role in design of 

mesh survivable networks.

In recent decades, increasing deployment o f fiber facilities in telecommunications 

network raises concerns about service efficiency on the end-to-end basis due to the lack 

of signal standards for optical networks. This service efficiency concern, along with the 

need for supporting broadband service, which require bandwidth beyond the DC3 level 

(e.g. High Definition Television [HDTV]), led to the establishment of a national



standard signal format that supports present service and future broadband services. This 

optical signal format has been defined as SONET. So SONET network will become the 

major infrastructure network for the future broadband network (i.e. ATM network). 

Although SDH network is another major infrastructure for the future broadband 

network, the major principles derived from SONET network can also be applied to SDH 

network due to the similarity of SONET and SDH. Therefore, only terminology 

regarding SONET network is given in the following section.

2.2.3 Some Concepts regarding Network Structure

• A span is the collection of point-to-point STSn channels, working and spare, in 

parallel between two DCS nodes.

• A working channel is any channel that is part o f a path bearing live traffic.

• A spare channel is an equipped-but-idle STSn channels terminated on DCSs;

• A working path is an end-to-end (source to sink) concatenation o f channels (e.g. 

STS-1) from a pair of source and destination through the network.

• A spare path is a concatenation of spare channels through the surviving portion o f a 

network that logically substitutes for one failed working path.

• A route is the sequence of spans followed by a working path or spare path; Note that 

each span is composed of both working and spare channels.

Adjacent nodes are those that are directly connected by a span. Feasible paths are 

defined as those that consist of spare paths between the nodes pair, where the failed 

span starts from and terminates in. Feasible paths can be used to reroute the disrupted 

traffic on the failed span in the event of network failure. In order to make these concepts 

clear we illustrate them in Figure 2.1.
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Spare capacity

  Spare capacity  Working capacity

^  Failed Span V  Market feasible path

I ■ Span

Figure 2.1 Mesh Survivable Network

In Figure 2.1, the span between DCS1 and DCS 4 fails, there are two working paths 

dropped by the failure, i.e. a working path (DCS1 -> DCS5 -> DCS6), the other (DCS1 

-> DCS5 ->DCS3). Two feasible paths are found to restore the failed working path, i.e. 

the feasible path (DCS1 -> DCS6) for the first failed working path, and the other 

(DCS1 -> DCS2 -> DCS3) for the second failed working path.

Digital Cross-Connect (DCS): Provides non-block connections between any o f its ports. 

Offers cross-connection for SONET signal rates, through mapping and multiplexing to 

the various SONET STSn frames. Capable of monitoring allocated section/path 

overhead (management and status information accompanying the data), for enhanced 

flexibility to network management. Allows for the interconnection o f various network 

topologies, i.e. ring and star, thus enhancing overall network flexibility. Its transparent 

switching characteristic offers extensive switching capability for network restoration 

and network re-configurability. In mesh survivable networks, DCS has three basic 

functions as follows:

• DCS can be used to switch the incoming traffic into its destination by identifying its 

header bit when networks stay in order.

• DCS can be used to cross-connect the disrupted traffic into spare paths by router

table at the event of failure of network components.
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•  DCS can be used to work out the spare paths by using the knowledge about network 

topology and spare capacity layout. In distributed restoration scheme, the 

knowledge available to DCS is global. In centered restoration scheme, the 

knowledge comes from the neighbors o f the DCS.

2.2.4 Some Important Parameters Regarding Survivable networks

There are a few major parameters that are used to judge the performance of mesh 

survivable networks, i.e. span survivability, network survivability and spare capacity 

redundancy.

Span survivability SvSj j and network survivability Svn are defined as:

min(w„fc,) _  ,=1SvS; j = ------------ -  Svn =
W,

2
i = i

Where S is the number of spans in networks. Note that Svn is not the average of 

individual span survivability (unless all spans have the same values W j). As defined, Svn 

weights the restorability of each span by the size of each span so that it expresses the 

total fraction o f working capacity that is protected, not the average fraction protected on 

each span. This reflects the importance o f large spans in overall network performance. 

The worse case survivability o f a network (to span failure) is defined as the lowest span 

survivability level o f any span in the network:

Svn,wc = min{Svv,}/e,y ’

In the case of Svn <1 .0 , Svn> wc can be used as part of a determination o f whether many 

spans are slightly below full restorability or, in contrast, one or a few spans are very 

under-protected.

Spare Capacity Redundancy is the ratio o f spare capacities required to working 

capacities for the specified level of network restorability.

2.3 Representative of Network Topology in a Computer

In this section we will present two popular methods to represent a given network 

topology on a computer, Binary Adjacency Matrix (BAM) and its variation, namely, 

Capacity Matrix (CM). BAM is a simple and intuitive network representative where 

entries of this matrix are set 1 if  the span exits between the corresponding nodes pairs, 

and 0 otherwise. The main disadvantage o f BAM is that it may only be used to 

represent the topology of networks rather than the capacity on network spans, so an
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additional matrix is required to store network capacity. Obviously, plenty o f extra 

computer memory will be requested to store them. To solve this problem, we substitute 

BAM matrix by its Capacity Matrix (CM), thanks to the fact that capacity o f a given 

network would be placed on a pair o f nodes if  and only if  a span exist between them. 

We can easily convert the Capacity Matrix (CM) into the BAM if necessary. The BAM 

is therefore regarded as a special Capacity Matrix where the capacity in each span is 1. 

We will present the details of BAM and Capacity Matrix in the following section. Note 

that a Capacity Matrix (CM) is denoted by weight capacity in graph theory [13], where 

“weight” may represent capacity, distance and so on. Here, we will begin computer 

representative o f networks with some graph theories.

2.3.1 Graphical Networks

A graph G = (V, E) consists of a set o f vertices V = {v; V2    v„} with the finite number

of elements and a finite set E of edges E = {e e 2 em}, as seen in Figure 2.2.To each

edge, e, there corresponds a pair of distinct vertices (u, v) where e is said to be incident 

on. When drawing a graph we represent each vertex by a dot and each edge e by a line 

segment joining its two end vertices. A graph is said to be a directed graph (or digraph 

for short), as seen in Figure 2.2, if  the vertex pair (u, v) associated with each edge e is 

an ordered pair. Edge e is then said to be directed from vertex u to vertex v, and the 

direction is shown by an arrowhead on the edge. A graph is undirected if the end 

vertices o f all edges are unordered (i.e. edges have no direction). A network is a 

directed or undirected graph in which a real number is assigned to each edge. This 

number is often referred to as the weight o f that edge. In a practical network this 

number (weight) may represent the driving distance, the construction cost, the transit 

time, the reliability, the transition probability, the carrying capacity, or any other such 

attribute o f the edge.

V3

Figure 2.2 Undirected graph with 5 vertices and 6 edges,
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Two edges are said to be parallel if  they have the same pair o f end vertices (and 

additionally, if  they have the same direction in case of a directed graph). Throughout 

following chapters we assume that the network under consideration has no parallel 

edges. (This assumption gives us some simplicity without any cost in generality). Thus 

we can refer to each edge by its end vertices.

Figure 2.3 Digraph with vertices and 11 edges

We denote the letters n and m as the number of vertices and number o f edges 

respectively in a network. A vertex will be referred to as a node (a term more popular in 

applied fields).

2.3.2 Weight (Capacity) Matrix and Binary Matrix of Networks

The simplest and perhaps the most popular computer representative o f a network is the 

weight matrix (capacity matrix). The weight matrix of an n-node network is an n x n 

matrix W = {wi; j} in which the (i, j)th entry wy is the weight o f (i, j). The edge from 

node i to node j in the network G. If  there is no edge (i, j) in G, the corresponding 

element is set usually to be 0 (in practice, some very large number). The diagonal 

entries are usually set to zero (or to some other value depending on the application and 

algorithm). It is easy to see that the weight matrix of an undirected network is always 

symmetric. A network and its weight matrix are shown in Figure 2.4. Boxed numbers 

next to the edges are their weights.
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18

v °

0 0 35 0

19 0 0 85 0

18 43 0 11 0

0 0 0 0 0

0 16 0 77 V

Figure 2.4 A network and its weight matrix

Based on the network weight matrix we obtain a Binary Adjacency Matrix (BAM) by 

converting non-zero entry to 1 because non-zero entry in the network weight matrix 

indicates that there is a link between the corresponding vertices. In Figure 2.5, the 

binary adjacency matrix of the network in Figure 2.4 is given.

f ° 0 1 0

1 0 0 1 0

1 1 0 1 0

0 0 0 0 0

L° 1 0 1 V
Figure 2.5 Binary Adjacency Matrix o f a Network

All algorithms that will be illustrated in Chapter 3 and 4 works with weight matrix and 

binary adjacency matrix.
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2.4 General Description of Mesh Survivable Networks

In general, the restoration technologies can fall into two categories, traffic restoration 

and facility restoration. Traffic restoration is the circuit level restoration where the 

disrupted circuit is re-routed around failure. A circuit switch, such as AT&T’s 5ESS 

switch, perform traffic restoration by rerouting calls around failed circuit. Facility 

restoration is the transportation level restoration that reroutes the failed traffic in large 

units such as STSn upon failure of the network. As discussed in Chapter 1, facility 

restoration can be divided in two subcategories, dedicated spare capacity (facilities) 

restoration and non-dedicated spare capacity (facilities) restoration. Facility dedicated 

restoration is characterized by using the dedicated facilities for protection including 

Automatic Protection Switch (APS), dual homing, and Self-Healing Rings (SHRs). 

Non-dedicated facility restoration is defined by using DCSs (or ADM) to reroute a 

failure point.

These techniques are also referred to as DCS restoration techniques. DCS restoration 

does not required the dedicated facilities to working systems for restoration. 

Alternatively, it uses spare capacities with working systems to restore disrupted traffic. 

Figure 2.6 shows several examples of facility-dedicated restoration and non-dedicated 

restoration in order to make the above definitions clearer.

Protection Facility with Spare paths
.... r \ _ ,
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W orking Facility with W orking Paths

m
p
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W orking Facility with Working Paths
w

m
P
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•
A

W orking Facility with Working paths

V
i

AW w

(a) 1 :N APS Architecture
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•—  --------  Spare Capacity

DCS Digital Cross-connected Switch

Reroute Path

(c) DCS restoration

Figure 2.6 Facility Restoration: (a) and (b) is referred to as Facility Dedicated 
Restoration and (c) is referred to as Facility non-dedicated Restoration

• 1: N APS Diverse Protection

The APS approach is commonly used to facilitate maintenance and protect working

services, and has the advantage of being totally automatic. The 1: N diverse protection

structure is an alternative to the commonly used 1:N protection strategy, where N

working fiber system share one common protection fiber system. The only difference

between these structures is the location o f the fiber protection system; the 1:N

protection structure places the protection fiber in the same route as that of working

systems, and the 1 :N diverse protection structure places the protection fiber in a diverse
19
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route. In a 1 :N system, a cable cut occurs and a 1 :N diverse protection scheme is used, 

part of the service is lost because only one of the N working systems can be restored. 

Figure 2.7 shows the difference between these structures. This diverse protection 

scheme is attractive because electronics cost dominate total cost and remain unchanged 

when attempting to achieve survivability, a 1:1 diverse protection arrangement, which 

provides 100% survivability for fiber cable cuts, required more facilities and equipment 

than 1 :N diverse protection arrangement

In contrast with facility restoration, traffic restoration is more efficient with respect to 

utilizing network bandwidth at the expense of more complex switch control. Due to the 

popularity of SONET network in the future broadband, our attention will be put on 

facility restoration. Although facility dedicated restoration has several advantages over 

facility non-dedicated restoration, e.g., simpler control and quicker restoration, in the 

thesis facility non-dedicated restoration still has been exploited and studied due to its 

flexibility of coping with unexpected failure and traffic growth and higher effectiveness 

o f utilizing network bandwidth. In fact, real time factor is no longer the most important 

for most o f services provided by the network, e.g., data and even voice [7], since less 

than 2 seconds outage time is not perceived by users in practice. In this chapter, facility 

non-dedicated restoration will be studied as a major technology to produce a survivable 

network.

Non-dedicated facility restoration can be considered at two different levels: path 

restoration and span restoration. Path restoration restores the end-to-end logical path 

affected by the span cut, and span restoration restores all disrupted channels carried by a 

failed span. Figure 2.7 depicts examples of span and path restoration techniques. Table 

2.3 shows a relative comparison between the span and path restoration method. The 

path restoration uses spare capacity more efficiently than span restoration [24]. 

However, span restoration requires a simpler routing decision. Thus, span restoration is 

expected to be faster than path restoration in terms of restoration time.
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Figure 2.6 (a) Span Restoration

Figure 2.6 (b) Path 
Restoration

O rioirm l ^  RrnV pn

■> Restored

Figure 2.7 Span Restoration and Path Restoration

Attribute Span Restoration Path Restoration

Time Complexity lower higher

Spare Capacity redundancy higher lower

Restoration Control simpler complex

Table 2.3 Relative comparison between spans restoration and path restoration
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Technically, span restoration does not have any big difference from path restoration. In 

span restoration, the traffic affected by a failure o f a single cable is the working 

channels between the nodes pair connected by the failed span, so the number o f nodes 

pairs affected is only one for any particular single cable failure. In path restoration, the 

traffic affected by a failure of a single cable is the working paths through the failed 

span. The number o f nodes pairs affected is the number o f the demand pair affected by 

the failed span.

Due to the similarity o f the two restoration technologies, all restoration algorithms for 

path restoration can be applied to span restoration with a small modification. Almost all 

algorithms developed from span restoration can also be applied to path restoration. A 

heuristic SCP algorithm [18] proposed by B.D.Venrable el al in 1993 is an exception. 

The algorithm just works for span restoration, we will discuss the algorithm in detail in 

Chapter 4. So span restoration can be considered as a special case o f the path 

restoration. In the thesis, although the algorithm we proposed can works for both span 

restoration and path restoration, only its span restoration implementation will be given 

because the heuristic algorithm, a span restoration algorithm, will be selected to 

compare with our new algorithm.

As discussed above, the facility non-dedicated restoration is a transport level restoration 

technology, which take advantages of functionality of Digital Cross-Connect Switch 

(DCS) to re-route the failed traffics through spare capacities on other unaffected spans. 

It is not hard to realize 100% survivability if  desired, but a challenging issue is to how 

to obtain a Spare Capacity Placement (SCP) algorithm, which meets not only network 

requirement for real time and minimal cost, but also 100% survivability or any target 

level of specified survivability less than 100%.

2.5 General Description of Spare Capacity Placement problem 
(SCP)

The aim of designing mesh survivable networks is to install the extra backup spare 

capacities to be utilized to reroute the disrupted traffics in the event of network facilities 

failure minimizing the cost. All these kinds of problems have been defined as the SPC 

problem, namely, Spare Capacity Placement (SCP) problem. Here, a general description 

on the problem of mesh survivable network is given.

Spare capacity placement problem can be stated as:
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Min ^ f ( S j  + Wj) such that R (| =l,w-, > 0, s. > 0  /' = 1 S
/=i

Where Sj and Wj are the number o f the spare channels and working channels on span i 

respective ly ,^ ; + wd is the link cost function with its capacities carried on span i. SCP 

problem considered requires following network information as input: the network 

topology, a vector o f working paths, W j, the target level o f network survivability 

R(assumed to be 100 here), and the maximal restoration path length allowed (i.e. Hop- 

Limits). The output is a vector of spare paths, Sj, which meets the survivability target 

within hop-limits set by the maximum allowed restoration path length.

2.6 Review of SCP Approaches in the Literature

Due to the increasing concern of survivable network design, there has been lots o f work 

to address this issue in the last decades. In general, all approaches proposed can fall into 

two groups, heuristic approach and non-heuristic approach. Heuristic approach is 

characterized as the near-optimal algorithm that is used to reduce the higher time 

complexity of non-heuristic approach at the expense o f obtaining the near-optimal 

solution to SCP problem. Non-heuristic approach is the optimal algorithm that is 

employed to obtain the exact solution of SCP problem, but, taking more execution time, 

so it can only be applied to small-scale networks. Note that almost all non-heuristic 

approaches apply Linear Programming (LP) or Integer Programming (LP) to formulate 

SCP problems.

In a 1993 paper [14], Meir Herzberg suggested a decomposition approach for SCP 

problem in order to deal with a single cable failure. The approach is a span restoration 

algorithm that was developed based on a Linear Programming (LP) model. The paper 

assumes study networks can be decomposed into several simpler sub-networks model, 

and then formulate these sub-network SCP problems into Linear Programming model. 

The approach is committed to minimizing spare channels that are used to reroute 

disrupted working channels at the event of failure. For the same purpose, Meir Herberg, 

et al [15] proposed a new model to address SCP algorithm, and explored how hop-limits 

factor affects the optimal result, and eventually the principle to choose proper hop- 

limits was given. This algorithm is composed of two parts: Parti -  relies on a Linear 

Programming (LP) formulation (Min-Max) from which a lower bound solution is found 

for SCP problem; Part2 -  rounds up the solution o f Part 1 and uses a series o f related 

LP, aimed to tightening the round-up assignment to a practical optimal solution. The

23



main disadvantage o f the above two algorithms is that both just can cope with a single 

cable failure, so his 1995 paper [16], a new algorithm was proposed to address multi­

cable failure and node failure. It is also based on a Linear Programming (LP) model.

Based on an Integer Programming mode, R.R.Iraschko el al, [21] developed an 

algorithm that can be used for span restoration and path restoration. The algorithm is 

aimed to minimize the total amount of spare capacities that contributes significantly to 

its costs. To reduce spare capacities further, the algorithm is also designed to re-use the 

working capacity released by affected working paths. So the algorithm is more effective 

in terms of minimizing spare capacities that is necessary to protect networks from 

failure. A detailed description about the algorithm is given in chapter 4 and its C++ 

codes implementation is done in the PC basis as a benchmark.

Due to the higher time consumption of LP or IP based SCP algorithm, recently several 

researchers have addressed the issue by introducing heuristic approaches. In 1991, 

W.D.Grover et al [19] developed an effective approach for this task which heuristically 

first finds a feasible solution (“Forward Synthesis”) and then reduces redundancy while 

maintaining the restoration level achieved (“Design Tightening”). The approach 

provided a full tradeoff curve between survivability and redundancy for a network that 

IP (LP) based algorithm can not give. In practice, the curve is really important for 

network planners and designers because it can provide a guideline for network design. 

In 1997, W.D.Grover et al [18] proposed a more effective heuristic algorithm for SCP 

problem. The heuristic algorithm runs much faster times than the optimal Integer 

Programming (IP) while having big capacity redundancy. These characteristics can 

contribute significantly to the problem of finding the globally best single or multiple 

new span additions in the evolution of large transport networks. The algorithm will be 

also described and implemented on a PC that is benchmarked in Chapter 4.

Both two types of SCP algorithms assumed that the link cost with its capacity is linear, 

however, it is not always true, since only are fiber links with stepwise capacity available 

in commercial market. That means that link cost is no longer continuous but stepwise. 

So it is obvious that the SCP algorithms proposed with the assumption o f linear link 

cost restrict the implementation issue although these algorithms are still a good 

approximation o f the SCP solution. In Chapter 4, we proposed a new SCP algorithm to 

address the issue based on Matrix Maximum Flow (MMF) and Addition Minimum 

Increment (AMI) that will be described in Chapter 3 and in Chapter 4 respectively.
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Chapter 3 Algorithms for Finding Feasible Paths In a 
Network

3.1 Introduction

This chapter focuses primarily on the investigation of several important approaches, 

called Feasible Path Algorithms (FPAs), which are designed to find feasible paths 

between a pair o f nodes in networks. The FPAs are major functions in the Mesh 

Survivable Network (MSN) design. In fact, the MSN design algorithms employ the 

different FPAs to determine restorable paths to re-route the failed traffic upon network 

failure, so FPAs algorithms play a crucial role in improving the effectiveness o f MSN 

design in terms o f cost savings and execution time. In general, the FPAs algorithms 

employed by MSN design take almost 99% o f execution time taken by MSN design 

[10], hence, the effectiveness of FPAs contributes significantly to the reduction of 

MSN’s time complexity.

We will investigate two existing FPAs algorithms, i.e. the Ford-Fulkerson’s algorithm, 

the K-Shortest Paths (KSP) algorithm. The Ford-Fulkerson’s algorithm is a maximal 

flow algorithm that can be used to find the maximal flow between a given pair of nodes 

in a network. Based on the matrix theorem 40 in [11], we developed a new FPAs 

algorithm, which we have termed Matrix Maximum Flow (MMF) algorithm. Finally, 

the relative comparison of these FPAs algorithms is given in terms of total feasible 

paths.

We organize the rest of this chapter as follows. In Section 3.2, The description o f two 

types of MSN design problems, i.e. pre-planned survivable network design and dynamic 

restorable network design, and their different requirement for FPAs. In section 3.3, we 

give two criteria forjudging performance o f MSN design, i.e. network survivability and 

restorability. In Section 3.4, we discuss three FPAs algorithms, i.e. the Maximum Flow 

algorithm (i.e. the Ford-Fulkerson’s algorithm), the K-Shortest Path algorithm and 

MMF. In section 3.5, the test networks over which the FPAs algorithm will be applied 

are given. In section 3.6, Results are presented and discussed. Conclusions are presented 

in section 3.7.
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3.2 Pre-planned Survivable Network Design and Dynamic 
Restorable Network Design

There is an increasing reliance by society on the timely and reliable transfer o f large 

quantities o f information (such as voice, data, and video) across high speed 

telecommunication networks. A network failure, such as the loss o f a link or a node, can 

occur due to a variety of reasons causing service disruptions ranging in length from 

seconds to weeks. Typical network failures are attributed to accidental cable cuts, 

hardware malfunctions, software errors, natural disasters (i.e. fires), and human error 

(i.e. incorrect maintenance). With advent o f high bandwidth optic fiber more and more 

services in networks are being carried on a few optical fiber cables bundle, which 

means even a single fiber outage can affect many services. In the last decades there has 

been an increasing interest in finding approaches to design networks that are resilient to 

failure [2] [15] [28],

In general, the survivable network design can fall into two steps, i.e. pre-planned 

survivable network design and dynamic restorable network design, preplanned networks 

have preset routes for restoration, dynamic restorable networks find routes dynamically 

based on all existing spare capacity in a network, hence, the dynamic restorable network 

design relies significantly on the pre-planned survivable network design. Both the 

preplanned survivable network design and the dynamic restorable network design work 

together to obtain a survivable network.

The aim of the pre-planned survivable network design is to work out an approach, 

called Spare Capacity Placement (SCP) algorithms, to place spare capacity in networks 

in order to enable the network to recover from network failure. It is impossible and 

unnecessary to predict all possible network failures that may happen. If all predictable 

failures were considered large amounts of extra capacity would be required resulting in 

highly over-engineered network. In fact, some network failures are so unlikely to 

happen, for example, multiple links failure, and some other network change is not 

predictable, for example, traffic growth, so only are the most likely network failures, 

e.g. a single link or node failure, can be taken into account in pre-planned survivable 

network design. The SCP algorithm is applied to place spare capacity for all considered 

network failures with minimal network cost. The re-routing tables is generated based on 

the result of the SCP algorithm, and stored in the network DCSs. When a pre-specified

26



failure occurs, the network switches to its outage state, where DCSs in each network 

node have the following functions to perform to restore the failure:

1. Identify the network failure, i.e. which span or node fails.

2. Change the original route table to that o f Outage State corresponding to the occurred 

failure and then switch the affected working paths into the pre-set spare paths that 

were placed by SCP algorithm at design time.

3. Switch back to the normal state when the failure is fixed.

So the pre-planned survivable design has the capability to restore all pre-specified 

network failures but can not recover from failure in the case of unexpected network 

failures and traffics growth. The dynamic restorable network design can be employed to 

address the issue.

The aim of the dynamic restorable network design is to work out a network re-routing 

protocol, called the Restoration Scheme (RS), to extend the network’s flexibility of 

coping with network traffic growth and unexpected network failures based on the 

existing network spare capacity placed by the preplanned survivable network design. 

The RS is a protocol that uses the existing spare capacity available to re-route the newly 

added traffic or failed traffic at the event o f unexpected network failures. For example, 

when an unexpected network failure occurs, DCS will invoke the Restoration Scheme 

(RS) embedded in them, DCSs would perform following functions.

1. Obtain the network knowledge, i.e. network topology, spare capacity layout and 

so forth, as the input to Restoration Scheme

2. Execute the RS to work out the feasible paths for failed or added working paths.

3. Switch the failed or newly added traffics to the feasible paths found by the RS.

Both the pre-planned survivable network design and dynamic restorable network design 

take use of the FPAs to find the “suitable” paths. In the pre-planned survivable network 

design, the term “suitable” paths are those on which the spare capacity is placed to re­

route the failed traffic upon all most-ofiten-happened network failures with the minimal 

network cost. In the dynamic restorable network design, the “suitable” paths are those 

on which the newly added traffics or failed traffics at the unexpected network failure 

can be re-routed as many as possible while considering the real time requirement, 

obviously, two types of MSN design require the FPAs differently. The former is more
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sensitive to network cost, the latter is more sensitive to real time. The difference 

determines the difference on the implementation of FPAs.

3.3 Network Survivability and Restorability

Network survivability and restorability are two important concepts for pre-planned 

survivable network design and dynamic restorable network respectively. The network 

survivability is a network design objective and the network restorability is a criteria to 

measure the flexibility of a network to deal with unexpected network failure or traffic 

growth.

3.3.1 Network Survivability

The definition of network survivability has been given in Chapter 2. Network 

survivability is a network design objective to be reached by network designers. The 

survivability has to be set as an input of a SCP algorithm that is applied to find out the 

placement of spare capacity to prevent the network from failure. The higher 

survivability networks are, more spare capacities are required. In practice, we can set up 

any level of network survivability according to the requirements o f the network 

operator.

3.3.2 Network Restorability

Network restorability is a metric that can be used to measure the network’ ability to use 

the existing spare capacity in the case o f network failure. The layout and number of 

spare capacity found by SCP algorithm in pre-planned survivable network design and 

Restoration Scheme (RS) determine the level of network restorability. It reflects the 

capability of survivable networks to utilize the existing spare capacity to recover from 

network outages by using the restoration protocol (scheme) in the face o f unexpected 

network events. The aim of the restorable network design is to find protocol (scheme) to 

serve as many traffics as possible in order to minimize impact on the network 

performance when an unexpected failure of network facilities occurs or new traffics 

need to be added.

Network restorability has the same mathematical definition as that o f network 

survivability. Before we give the network restorability the network span restorability is 

introduced as follows:
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R
min(w„fc,)

f j w,

and then the network restorability is defined based on the network span restorability.

Where F represents all possible network failures and S network spans, including single 

span failure, Here, R fi  is the single span restorability in the event o f the failure/ ( e  F ).

R n is the network restorability for all unexpected network failures. Because the 

unexpected network failure and traffic growth are not known beforehand the exact 

result of network restorability is not available. We can approximate it by the following 

methods.

In case the new traffic is assumed to take place, we can convert spare capacity in each 

network span to working capacity (one at a time), the Restoration Scheme (RS) is 

applied to re-route these new work capacity, and calculate its restorability. In case two- 

span failure is assumed to be an unexpected network failure, we choose all sets o f two 

spans as failed (one set at a time) and calculate network restorability.

Since network survivability only applies in pre-planned survivable network design, we 

refer to pre-planned survivable network design techniques as survivability techniques 

for simplicity. Similarly, dynamic restorable network design techniques are referred to 

as restorability techniques.

3.3.3 Relationship between Survivability and Restorability

Although there is some similarity between network survivability and restorability they 

reflect the different performance of networks upon their failure. The former is a design 

time objective, the latter is a network performance measure.

100% of network survivability in design time can not guarantee 100% o f network 

restorability. The reason is that the restoration schemes are executed in a distributed 

way, and do not always find desirable paths (optimum paths) which are expected by the

R i=i
n
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Spare Capacity Placement algorithm (SCP) in design time. This is illustrated in 

Figure3.1.

Figure3.1 Network Route for a Single Span Failure

Where the circles are the network nodes and the lines represent the network span 

channels, for example, two span channels in the span between nodes 1 and 2. The 

arrows indicate the routing direction.

Assume the span between node 1 and node 2 fails, two units o f capacity will be 

dropped. In design time, two feasible paths are assigned by a SCP algorithm for a span 

failure as depicted in Figure3.1(b). However, when the network outage occurs, the 

restoration scheme may chooses wrong feasible paths so that the wrong chosen paths as 

depicted in Figure3.1(a) exhaust all spare capacity assigned for the specified failure.

3.3.4 Different Requirement of Network Survivability and Restorability for 
Feasible Path Algorithms (FPAs)

Due to the difference between restorability and survivability techniques, the 

implementations of FPAs regarding network survivability and restorability are not 

always same.

The primary aim of survivability and restorability (S&R) techniques is to recover 

networks from the failure o f network facilities taking account o f their time complexity, 

and minimizing the cost of network construction. Demands for the design of survivable 

and robust networks have been increasing, so there has been plenty o f work done in 

developing SR techniques [2] [3] [27] [29]. As discussed above, finding feasible paths, 

through which the failed working channels are re-routed, is an important issue in SCP 

algorithm, so FPAs play a crucial role in improving the effectiveness of SR techniques 

in terms of cost savings and execution time. Because different FPAs techniques have
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different advantages and disadvantages in practice, some may only be suitable for 

survivability techniques or for restorability techniques, while others can be applied to 

both cases. In some cases, some FPA approaches for survivability techniques that are 

not suitable for restorability techniques can be modified to work for restorability 

techniques. For example, the FPAs is employed in restorability techniques are more 

sensitive to execution time than ones for survivability because they must operate in a 

real network environment, and find solutions very quickly to minimize the disruption to 

the network caused by the network failure: such speed requirements may result in the 

use o f non-optimal solutions. On the contrary, the FPAs algorithms employed by 

survivability techniques can take relatively longer time to get as many feasible paths as 

possible to place spare capacity on in order to minimize the cost o f networks. In the 

following section several FPA algorithms, i.e. Ford-Fulkerson’s algorithm, the K- 

shortest paths algorithm, and the Matrix Maximum Flow algorithms (MMF) will be 

presented and the advantages and disadvantages o f these algorithms will also be 

compared in five test networks. Since Restorability technique is beyond the scope of the 

project, we will focus on the survivability techniques in the rest o f this thesis. But, in 

order to distinguish the different FPA implementation for two types of network design, 

Two implementations o f the K-Shortest Paths algorithm will also be discussed for both 

survivability and restorability techniques respectively.

3.4 Feasible Path Algorithms (FPAs)

In this section the FPAs are discussed: the Ford Fulkerson’s algorithm, the K-Shortest 

Paths (KSP) algorithm and the Matrix Maximum Flow algorithm. We will discuss and 

compare these algorithms in terms of the number of paths found. In addition, we 

describe two types of implementation of K-Shortest Paths (KSP) algorithm, namely, 

non-disjoint KSP and disjoint KSP in order to show survivability and restorability 

techniques impose different restrictions on FPAs?

3.4.1 Ford-Fulkerson’s Algorithm

3.4.1.1 General Theory of Maximal Flow

As the name suggests, the maximal flow algorithm is used to find the maximal flow 

between a given pair o f nodes in a directed network N = G(V, E, C) where V is the set 

of nodes in the network, E is the set of edges in the network, C is a the network capacity 

matrix. In addition, the number of working channels (i.e. traffic flow) is the existing
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traffic flow in the network, it is stored in matrix / .  C tj  and f j ,  the entries (i, j ) of matrix 

C and matrix f  are the maximum traffic flow allowed through edge (/, j) and the 

existing traffic flow that exists in the edge (i, j ) respectively. Note that C i s  always 

greater than or equal to7^-resulting from the stepwise link cost function.

0 < / j  < Cy, for the edge (i, j )  e E

Here, the difference of C tj  minus f j  is the number of the installed-and-idle spare 

channels. In the following section we will describe how to find the maximum number 

of spare paths consisting of these existing spare channels on each o f network edges 

between a given pair o f network nodes which is represented by its source node s and 

destination node d.

For each node j ,  other than source node s and destination node d, The conservation 

law, i.e. the sum of flows into a node equals the sum of flows leaving the node, are 

satisfied,

■'■(/) '(/)
Z  f ,  / -  Yu f u  = 0 1 G s0'),7 e  s(0>
1 I

Where s(i) is a set o f links for which node i acts as a source , s(J) a set o f links for which 

node I acts as a sink. Since the network traffic flow may be used by local users in node s 

and node d, the flow conservation law may not be held.

The sum of edge flows into the destination node d  is f{d),

/(< * )= Z 4 /
i

Where i is the set o f edges incoming to the destination node d.

The maximum-flow problem (max-flow) is to find the values of /ij for all the edges such 

that f(d) is maximised. To find the maximum flow a path augmentation technique can 

be used. An augmenting path is a sequence of pair-wise adjacent edges from the source 

node .s’ to the destination node d, which allows us to increase the value of flow. If  the (/, 

/)th edge orientation coincides with the direction of the path, then in order to push more 

flow through it, must be less than C\ j. I f  the (/', /)th edge points in the opposite 

direction, then in order to push some additional flow through it, we must reduce its 

flow, andTij > 0  is required.

• Labelling Algorithm
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To find an augmenting path from s to d, a labelling procedure is used. The labelling 

algorithm assumes that there exists an initial flow in the network, we may have, for 

instance, all f\] = 0. Then labels of the form (j, s') or (j, - s ) ,  where 6’ is a positive 

number or infinity, are assigned to each other, beginning with the source .v. If  it is 

possible to label the sink d, a change of the flow from s to d  is made and the labelling is 

repeated. If it is impossible to label the sink, the flow is optimal. The procedure uses 

two routines, A and B. During each step of routine A, a node is in one o f three states: 

unlabeled and unscanned, labelled and unscanned, or labelled and scanned. Initially all 

nodes are unlabelled and unscanned.

1. Routine A (Labeling)

Step 1. Label the source with (-, oo). Because the source is the node for labelling and is 

assumed to allow any number of flows to come in its predecessor node is none 

represented by -, and the flow through it is infinite co.

Step 2. For any labelled and unscanned node j  with label (/, £\  (or -£ j)), scan it by 

examining all unlabeled nodes I, adjacent to j .

a. If  (j, I) is an edge and fji < C/7, then label node / with (J, £ ]), where s  \ = min 

Oj> Cji -fji).

b. If (/, j )  is an edge and f j  > 0, then label node / with ( j , - e  \ ), where e / = min

O j  J i j ) -

Step 3. The node / are now labelled and unscanned, and node j  is labelled and 

scanned. Repeat step 2 until either the sink t is labelled or it is impossible to label 

the sink. In the first case we have a breakthrough and route B is initialised. In the 

second case we have a non-breakthrough and the algorithm is terminated, the flow is 

optimal.

2. Routine B (Flow Change)

The sink d has been labelled with (I, s  d). Therefore, the network with the current 

flow admits an augmenting path from s to d, which can increase the flow value by 

e  a. and I is the second last node on this path. Hence se t/]d = / d + s  d- Now look at the 

node I labelled (i, Sj  (or -£])). If the second label is e \ then / has been labelled from 

j  by using the edge (j, I), therefore set /id = /id +e  d- Otherwise, the edge (/, j )  has been
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used, and set f j  = f j  -ed . Continue the flow change indicated by the first element of 

the labels until the node s is reached. Discard the labels and return to routine A. In 

Figure3.2, the diagram for the above Maximum Flow Algorithm (MFA) is given as 

follows.

Figure3.2 Labelling Algorithm:

(a) Initial flow and first labelling; (b) Second Labelling

Where the number in the brackets are f j  and Qj. Initial edge flows are zero. 

According to the above algorithm the following steps can be executed:

1. Label the source [-, oo ].

2. Label nodes 1 and 2 with [5 , 5] and [s, 4], respectively.
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3. Label node 4 with [2, 4],

4. Label nodes 3 and 6  with [4,1] and [4, 2], respectively.

5. Label node 5 with [3, 1].

6 . Label the sink (destination) with [5, 1].

There is a breakthrough and the augmenting path is indicated . The first labelling 

procedure the flow of 1 through the edges [s, 2], [2, 4], [4, 3], [3, 5], and [5, d]. The 

second labelling is shown in Figure3.2 (b). The third labelling is attempted but no 

breakthrough occurs.

The algorithm terminates and produces the final solution: xS2 =xsi =xi3 = *24  = *35= 

X46=X5d=X6d= l, and the flow value is 2 .

Assuming that the algorithm terminates, the last labelling does not reach the sink node d.

Let S be the set of nodes labelled in the last labelling attempt and S  the set o f unlabelled

nodes. If an edge (i, j ) is directed from S to S , it must be saturated, that is, f j  = Cy;

otherwise, j would have been labelled when i was scanned. Also, all edges (j, i) from S

to S must have zero flow; otherwise, j  would have labelled when i was scanned. Observe

that s belongs to S and t belongs to S . It is fairly obvious that the flow value is not 

greater than the sum of capacities o f any set of edges (called a cut) which contains at 

least one edge of every path from .v to d. Hence the flow value j{d) is optimal and equals

the sum of capacities of the edges between S and S . We state this as the max-flow min- 

cut theorem.

3.4.1.2 Ford-Fulkerson’s Algorithm

When the labelling algorithm terminates, the flow /(d) is optimal and equal to the 

capacity o f the minimum cut.

The question o f whether the algorithm always terminates also needs to be considered. 

To see that it does if all initial edge flows and capacities are integer, we need to make 

two observations. First, the algorithm adds and subtracts only and does not introduce 

fractional flows. Second, if  d  is labelled the flow value is increased by at least one unit. 

Since the flow value is bounded from above (e.g. by ^ C ,  d which is finite) the 

labelling algorithm must terminate.

35



However, unless we better define the labelling process (process A) the algorithm can 

be inefficient in some pathological cases. Modify the capacities o f the network in 

Figure3.2 as shown in Figure3.3 and assume that M is a very large number. If  the 

labelling algorithm starts with f[d) = 0  and alternatively uses the same augmenting 

paths as shown in Figure3.2, it will require 2M iterations o f routes A and B to find 

the optimum flow value j{d) = 2M. Here the number o f iterations depends on the 

problem capacities.

Figure3.3 Worst-Case Performance

Edmonds and Karp [1972] corrected this deficiency and showed that if  the labelling 

procedure always uses the augmenting paths as short as possible, its time complexity is 

0(nm2), in an n-node m-edge network. Had we used the shortest augmenting path in the 

example shown in Figure3.3 we would have used routines A and B only twice. The 

Ford-Fulkerson’s algorithm will be implemented by C++ in a PC basis.

3.4.2 K-Shortest Path Algorithm

In [15], MacGregor, et al proposed the K-Shortest disjoint Paths (KSP) algorithm. The 

algorithm has two advantages over the Ford-Fulkerson’s algorithm; it is much easier to 

control the length of paths found and that it is much easier to implement. However, the 

major disadvantage of the KSP algorithm is that it does not guarantee that the maximum 

amount o f flow is found. The KSP was discussed in detail in [23], The advantages and 

disadvantages o f the KSP when compared with the Ford-Fulkerson’s algorithm were 

discussed and two algorithms were compared in terms o f performance. In [23], it has 

also been shown that the amount o f paths found by the KSP is more than 99.9 % of that 

found by the Ford-Fulkerson’s algorithm. Hence, the KSP can be used in most
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circumstances that the Ford-Fulkerson’s algorithm can be used and it offers the added 

advantages given above.

Flere we introduce all the notation used in the KSP algorithm. In the given network 

G(V, E) where V is denoted a set o f nodes and E a set o f spans, we define two matrices 

R and C, where and Cy, the entries (i, j )of matrix R and matrix C, represent the 

maximum number of channels and the active number o f channels carried on the span (z, 

j )  respectively. R(i/- is always greater than or equal to Cy. Note that there are Ry -  Cy 

spare channels on each span and these can be used to re-route the disrupted working 

paths without any increase in the network cost

The KSP can be implemented in two different methods, i.e. disjoint span KSP and non- 

disjoint span KSP. The disjoint span KSP algorithm finds disjoint paths between node 

pairs, i.e. paths do not share any common spans; the non-disjoint KSP algorithm does 

not have this restriction.

In the disjoint span KSP implementation, the basic idea is to perform Dijkstra’s 

algorithm a number of times, removing spans between each iteration [8 ].

First, the Dijkstra’s algorithm is used to get the shortest path in terms o f the real 

distance between the specified nodes pair (say, s, d)\ Next, all spans on the shortest path 

are removed from the network topology. Based on the updated network, Dijkstra’s 

algorithm is invoked again to find the second shortest path, and then all spans on the 

second shortest path are deleted from the network topology. The procedure continues 

until k shortest paths are found or no more paths can be found, i.e. the network is 

disconnected between nodes s and d. Pseudo-code for disjoint span KSP is given In 

Figure 3.4.

In the non-disjoint span KSP, Dijkstra’s algorithm is again used to find the shortest path 

between nodes s and d.

The network topology is then updated by deleting the spans on which the capacity 

carried is minimal over all spans constitute. The capacity on all other spans that make 

up the shortest path is then reduced by this minimal capacity. Dijkstra’s algorithm is 

again performed followed by the network topology and capacity update until either k 

shortest paths are found or no more path exists between nodes 5 and d. Pseudo-code for 

the non-disjoint form of the KSP algorithm is given in Figure 3.5.
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Variables:

• Cij Entry (i, j ) of capacity matrix C storing the capacity o f link connecting

node i and j .

• E ij Entry (/, j )  o f span adjacency matrix E, where it is a “1 ” if  a link

between nodes i and j  exists and a 0  otherwise.

Given:

•  s Source node.

•  d  Destination node.

•  P An array to store the spans on the recent shortest path.

•  M Number of paths found so far between nodes pair s and d.

•  K Number o f paths expected to find.

Procedure:

Step 1. Call Dijkstra’s algorithm to determine the shortest path between nodes s and d  in 

the network and store the nodes on the path in the array P.

Step 2. Update E by converting the entries in P from 1 to 0.

Step 3 . I fM < K and any path exists between nodes s and d, go to step 1, otherwise, the 

procedure stops.

Figure 3.4 Pseudo-code for the Disjoint Span KSP algorithm

Procedure:

Step 1. Perform Dijkstra’s algorithm to obtain the shortest path between nodes (5 , d) and 

store it in the array P.

Step 2. Compare all the capacity carried on the spans in the array P to find those spans 

with minimum capacity and delete these spans by updating the network adjacency matrix

Step 3. Update C by subtracting the above minimum capacity from the capacity on the 

other spans in the array P.

Step 4. I f K > M and any path exists between nodes s and d, go to stepl, otherwise, the
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Figure 3.5 Non-disjoint span KSP algorithm

Compared with the disjoint span KSP, the non-disjoint span KSP can find the more 

paths. However, the non-disjoint span version of the KSP takes longer to obtain 

solutions. For example, survivability techniques do not require very fast operation since 

they are design time technique, it is used to place the spare capacity in a network to 

meet requirement of restoration of disrupted working traffic upon the most-likely- 

happened network failure minimizing network cost at design time, so it is not very 

sensitive to execution time. Hence, the non-disjoint span KSP is most suitable method 

because it finds more paths to place spare capacity. Conversely, the objective of 

restorability techniques is to determine how to re-route the disrupted working paths 

utilizing the existing spare capacities as quick as possible, so, the disjoint span KSP is a 

better option. Note that the two types of KSP algorithms find almost as many paths as 

the Ford-Fulkerson’s algorithm and offers some extra advantages. The comparison 

between two types of KSP algorithm will be given in terms o f total paths and execution 

time below.

3.4.3 Matrix Maximal Flow (MMF) Algorithm

The Maximal Flow algorithm (Ford-Fulkerson’s algorithm) can be used as an accurate 

approach to find the maximal flows between a pair o f nodes in a network. However, the 

algorithm has the following disadvantages.

a) The maximum length o f paths can not be controlled. It is often useful to be able to 

control the maximum length o f the feasible path because long paths, in general, are 

wasteful of resources and result in losing the synchronization o f traffics in different 

feasible paths.

b) It has high time complexity. Its time complexity restricts it from being applied to 

large-scale network [23].

The KSP algorithm was developed to overcome these problems to some extent, 

However, it does not guarantee the maximum account o f the feasible path other than 

99.9% on average [23],

Here, a new algorithm called the Matrix Maximal Flow (MMF) is proposed. The MMF 

algorithm is easier to implement than the Ford-Fulkerson’s algorithm and it also 

provides a way to limit the length of the feasible path found in terms of hops. It has the

procedure stops.
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higher time complexity than the Ford-Fulkerson’s algorithm in a single processor 

computer. However, it is derived to reduce its time complexity dramatically in a vector 

processor equipped computer from the conclusion of the paper [1 0 ] where the same 

matrix technique is employed. In this project the comparison of their time complexities 

will not be given because the vector processor is not available. But we will give an 

introduction of the Recursive Matrix (RM) algorithm [10], which uses the same basic 

technique, i.e. matrix multiplication, as the MMF algorithm does, in order to show their 

similarity in time complexity.

3.4.3.1 Recursive Matrix algorithm (RM)

In [10], the Recursive Matrix (RM) algorithm was proposed to find a disjoint shortest 

path subject to a particular hop-limit. The algorithm is based on the concept o f the KSP 

algorithm, namely, it is used to find the specified number o f the shortest paths, but 

replaces the shortest distance path as criterion with the minimum hops as criterion 

between a pair of nodes for further matrix calculation.

The theory o f matrix on which the RM algorithm is based is described in [11], namely, 

if  the matrix A is the binary adjacency matrix of a network with n  nodes, the number of 

distinct path of length k in terms of hop between a pair o f nodes (i, j )  is the entry (i, j )  of 

Ak for any positive integer k.

Consider that the number of disjoint paths between nodes (i, j) o f a network will be 

determined by the RM algorithm. The RM works by first setting the entry (i, j ) of the 

network binary adjacency matrix to zero. The matrix is then multiplied by itself until 

resulting matrix has a non-zero entry in the (i, j ) position. The value of this entry 

represents the number of the distinct paths between nodes (i, j ) having hops equal to the 

account of times the binary matrix has been multiplied by itself. Next, the algorithm can 

trace backward from destination j  to source node i to mark one path between the source 

and destination nodes. All spans on this path are then removed by updating the binary 

matrix. These steps are repeated until the number of multiplication reaches the pre-set 

hop-limit or no more feasible paths can be found. Pseudo-code for the algorithm is 

given below.

A network G(V, E) V and E are a set o f nodes and a set of spans in the network 

respectively.

Given:
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• A Binary adjacency matrix.

• H Hop-limit of all searching paths.

• k  Number of times the A has be multiplied by itself so far that is less than or

equal to H.

Procedures:

Step 1.

Copy the adjacency matrix A to the temporary matrix B. Check the entry a,y o f 

matrix A, if  a,y is 1, set the entry b,y o f matrix B to 0.

Step 2.

Let k = 2.

Step 3.

Calculate Bk by multiplying Bk_1 by B. If  b*., the entry of Bk, is 0 and k  is less 

than H, then there are not path from node i to j  with k  hops or less. Go to step 4. If  

b* is 0 and k is equal to H, the procedure ends because no path exists between 

nodes i and j  with hops H or less. If b * is greater than or equal to 1, then b * paths 

between nodes i and j  exist. Go to step 5.

Step 4.

Increase k by 1. If k < H, go to step 3, otherwise, the procedure ends because no 

more paths with H hops can be found.

Step 5.

Decrease & by 1 in order to find a set of p  such that the following equation is 

satisfied.

b i - b * * 0  (1)

The above equation means that at least one path from node i to node p  exist, as 

does the span (p, j ) because Eq. (1) implies b *, > 1 and b pj > 1. Although there 

may be several ps  that satisfy Eq (1), only one of them is selected because one 

path will only be determined during one iteration, the principle o f the selection is 

First-Found-First-Select (FFFS). Since the span (p, j ) is now used in one of the 

paths, b Pj  is set to zero to prevent it being used in other paths and hence results in 

a set o f link disjoint paths. Then j  is replaced by p.  If  k is greater than or equal to 

2, repeat step 5. Otherwise, a path with k  hops is found and the temporary 

adjacency matrix B is updated by deleting all spans constitute the found path, then 

go to step 2  to search for the other possible paths.
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3.4.3.2 Matrix Maximum Flow (MMF) algorithm

In [10], the RM algorithm has been shown to improve significantly its time complexity 

in a vector processor equipped PC over the Ford-Fulkerson’s algorithm. Due to the 

crucial role o f vector processor in reducing the time complexity o f matrix calculation, 

we extend the matrix technique to be used to find maximum flow in a network . So we 

propose the Matrix Maximum Flow algorithm (MMF) based on the same technique. 

The MMF can be employed to find the maximum flow between a given pair o f nodes 

with the specified hop-limit. The detailed algorithm is presented below.

A pseudo-code version of the MMF algorithm is below.

Given:

• A Binary adjacency matrix o f the network.

• C Capacity matrix where Cy  is the amount o f the available capacities on the

span (i, j).

• T An array storing the path found.

• H Hop-limit of all searching paths.

• k  Loop iterator.

Procedures:

Step 1.

Initialize the matrix A by setting its entry (i, j ) to zero.

Step 2.
k k

Increase k b y  1 until a u, the entry o f A , becomes nonzero. Which represents that 

k  distinct paths exist between the node pair (i, j).

Step 3a.

Determine the set o f p  such that

A k-\ i ,p ) .A(p , j )  * 0    (2)

Then choose the p°  such that the capacity on the span (p°, j )  is maximal over the 

set o f span (pw, j ) for all p w (is the element o f p)  and store p°  to the array T.

Step 3b.

Repeat the following procedure:

j = P ° ’> 
k = k - 1 ;

go to step 3 a until k  becomes 1. Then find span (n, m) on which the minimal
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capacity D min exists over all spans constituting the found path by tracing 

backward the array T. Finally update C by subtracting the capacities on the spans 

on the found path by the D min, and A by set its entries, corresponding to these 

spans on the found path carrying the D min capacity to 0. When step 3 ends go to 

step 5.

Step 5:

Go to step 2 until (k > H) or enough capacity found.

As discussed above the MMF algorithm is similar to the RM algorithm in terms of 

using the matrix. Figure 3.6(a) and Figure 3.6(b) give the simplified flowchart version 

of the RM algorithm and the MMF algorithm in order to compare theatrically their time 

complexities. Figure 3.6 (a) and Figure 3.6 (b) show the RM algorithm is almost the 

same flowchart as the MMF algorithm except their third loops. In the RM algorithm the 

procedure jumps out of the third loop once a p  is found whereas the MMF algorithm 

jumps out of the third loop if  and only if  the third loop is completed in order to get the 

p°  from a set o f p,  so in the worse case of the RM algorithm that p  is found when its 

third loop is completed, the RM algorithm takes the same execution time as the MMF 

algorithm does. Here, the relative time complexities o f the two algorithm can be derived 

from two flowchart. Assume that the time complexity of the RM algorithm is TC, and 

then the time complicity of the MMF algorithm is 2 TC, so the execution time of the RM 

algorithm is two times faster than that o f the MMF algorithm.
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(a)The M M F algorithm

(b) The RM algorithm

Figure 3.6 The comparison of two Flowcharts o f the RM algorithm and the MMF
algorithm

In [10] it has been proven that the RM algorithm is 10 times faster than that o f the Ford- 

Fulkerson’s algorithm does in a vector equipped super computer, i.e. Cray-2. It is 

reasonable to believe that the execution time of the MMF algorithm is shorter than that 

of the Ford-Fulkerson’s algorithm in a vector equipped super computer. Our emphasis 

is not on the RM algorithm in this project the only MMF algorithm is implemented 

below.

3.5 Networks used to Investigate the above Algorithms

Five networks with associated demand matrices will be used to test the performances of 

the four algorithms described above, i.e. the Ford-Fulkerson’s algorithm, the disjoint 

KSP algorithm, non-disjoint KSP algorithm and the MMF algorithm. The five test 

networks -  both node location and interconnection capacities -  have been described in 

[30]. The distance between a pair of nodes is given by our measurement in the diagram. 

In Figure3.7, the test network 1 is given. The other test networks are shown in appendix
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Figure3.7 Topology of Test Network 1

In Figure3.7 each line represents a network link, and the two numbers next to each link 

represents that link capacity and the length of the span; the length of the span is in 

brackets. In Table 3.1, the detailed information about the five test networks is given.

No. of Nodes No. of Spans Total Capacity Link Length on Average

Network 1 7 9 45 32

Network 2 8 16 136 37

Network 3 16 28 397 32

Network 4 9 17 153 38

Network 5 9 16 136 37

Table 3.1 Information of the Five Test Networks

3.6 Results and Discussion

All four FPAs, i.e., Ford-Fulkerson’s algorithm, non-disjoint span KSP algorithm and 

disjoint span KSP algorithm and the Matrix Maximum Flow algorithm, will be tested by 

using the five test networks mentioned above in order to determine their relative 

performance. The key performance indicator of interest here is the amount of feasible 

path found. The comparison of the execution time of two types o f KSP algorithms is 

given as well. All algorithms described above are implemented in a standard PC with a 

Pentium II processor operating at 180Mhz. It is worth noting that for the purpose of 

comparison o f the four FPAs algorithms the path hop-limit for the MMF algorithm and 

two types of the KSP algorithms is set to a very large number, say 7, in order that as 

many paths as possible can be found.
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Figure 3.12 Results for Network 5

Ford-
Fulkerson's

Algorithm(FF)

Non-disjoint
KSP

algorithm
(N-KSP)

Ratio FF 
to N- KSP

Disjoint KSP 
algorithm 
(KSP-D)

Ratio of 
FF to 

KSP-D

Matrix
Maximum

Algorithm(MM
F)

Ratio of 
FF to 
MMF

N etw ork 1 173 173 1 162 0 .9 4 173 1

N etw ork 2 6 4 6 646 1 565 0 .8 8 6 4 9 1

N etw ork 3 39 0 9 38 5 8 0 .9 8 2 7 4 7 0 .7 0 3 9 0 9 1

N etw ork 4 896 896 1 723 0 .8 0 896 1

N etw ork 5 846 846 1 6 4 4 0 .7 6 8 4 6 1

Table 3.2 Results Generated by Four Feasible Path Algorithms for Five Test Networks

The results generated by applying each of the FPAs to each o f the test networks are 

shown in the graphs in Figure 3.8 to Figure 3.12. For each node pair in each network, 

the amount o f feasible paths found using each algorithm is determined. These results are 

graphed in aforementioned graphs. The overall results are summarized in Table 3.2. 

The information o f the above figures associated with each test network includes:

1. For all possible nodes pairs between which the FPAs algorithms are executed to find 

feasible paths. The node pairs are ordered in the following principles: the source ID 

is always greater than that o f the destination for one nodes pair and Node Pairs are 

sorted in the increasing order o f the sum of their source ID and destination ID. For 

example, a set o f node pairs is ordered as (1,2), (1 ,3) ... (3, 4), (3, 5) and so on.

2. The number o f the feasible paths between a given pair o f nodes with regard to the 

four FPAs algorithms described above.

In Table 3.3 the execution times for the non-disjoint KSP algorithm and disjoint KSP 

algorithm are shown.

This is seen more easily in the table - The results in Table 3.2 show that the Ford- 

Fulkerson’s algorithm finds the highest amount of feasible paths in each of the five test 

networks. Compared with Ford-Fulkerson’s algorithm the non-disjoint KSP can find 

100% in the test networks 1, 2, 4 and 5 and 97% in the test network 3 o f the maximum 

amount o f the feasible paths. The 3% loss of the feasible paths by the non-disjoint KSP
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algorithm results from the fact that one feasible path found maybe restricts from finding 

the other feasible paths that share some common spans with the former one.

Figure 3.13 illustrates why the KSP algorithm can not find the maximal amount of 

feasible paths in some cases. We assume that each span in Figure 3.13 carries the same 

amount o f capacity. At most, two span-disjoint paths can be found between nodes 1 

and 4. One path is 1-5-3-4 and the other is 1-2-6-4 shown in Figure 3.13 (a). But if  the 

path 1-2-3-4 is chosen, then only one span from nodes 1 and 4 can be found in total 

shown in Figure 3.13 (b). The KSP algorithm operating logic hop distances may make 

the latter choice because it has no basis for preference between the two equal length 

paths choice. And if  the path via 1-5 and 2-6 to node 4 are longer than the 1-2-3-4 path, 

the KSP will always make the sub-optimal choice in the particular topology because it 

must include the shortest route. The issue is therefore how often this trap will arise in 

realistic networks. In the disjoint KSP algorithm the trap will arise if the particular 

network topology occurs where in the non-disjoint KSP algorithm the trap will arise if 

the particular network topology occurs and each spans in the network topology carries 

the same amount of capacity.

Not only does the non-disjoint KSP algorithm find almost as many feasible paths as the 

Ford-Fulkerson’s algorithm, it also has some extra advantages over Ford-Fulkerson’s 

algorithm, i.e. ease of implementation and control of hop-limits, that make it a good 

alternative to the Ford-Fulkerson’s algorithm.
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Figure 3.13 The trap  in  the K SP algorithm

Network 1 Network 2 Network 3 Network 4 Network 5

Time
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paths

Time

(s)
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o f  paths

Time

(s)

N um ber 

o f  paths

Disjoint

KSP

17 167 38 565 187 2743 41 723 39 644

Non-disjoint

KSP

19 173 45 646 328 3858 47 896 52 864

Percentage

difference

10% 3% 15.6% 12.6% 43% 29% 12.8% 20% 25% 25%

Table 3.3 Comparison o f two KSP algorithms with respect to the time complexity

The results from the graphs and Table 3.2 shows that the MMF algorithm finds the 

same amount of paths as the Ford-Fulkerson’s algorithm when the hop-limit of feasible 

paths is large enough, e.g. 7. The MMF algorithm combines the advantages o f the Ford- 

Fulkerson’s algorithm with the advantages o f the KSP algorithm: it can find the same 

number o f feasible paths as the Ford-Fulkerson’s algorithm and it also provides the 

ability to control the number o f hops. Note that the hop-limit we chose for the MMF 

algorithm is large enough in order that the MMF algorithm can find as many paths as 

possible because the smaller hop-limit may result in losing some paths in a network that 

have the larger hops than the preset hop-limit.

Apart from the above advantages, the MMF algorithm is believed to have the much 

lower time complexity than the other two algorithms in a vector processor equipped 

computer due to the use of matrix techniques. The effect o f the vector processor on the 

reduction o f the time complexity o f matrix multiplication was proven in [10]. Here, The 

execution time of the MMF algorithm is not given because the vector processor is not 

available.

Table 3.3 shows that the non-disjoint KSP algorithm can find 3% - 29% more paths 

than the disjoint KSP algorithm for the test networks studied. However, this is at the 

expense o f processing time; the non-disjoint version of the algorithm takes longer in the 

cases studied. As discussed above, the disjoint KSP algorithm can meet the need of real 

time services, so it is an important algorithm for use in restorability problem [12]. The
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non-disjoint KSP algorithm, on the other hand, is an important algorithm for use in 

survivability problems.

3.7 Conclusion

The results and analysis have been shown in this chapter that the non-disjoint KSP 

algorithm compares well with the Ford-Fulkerson’s algorithm in terms of the number of 

paths. Moreover, it is easier to implement and the number o f hops in the paths can be 

controlled.

The new MMF algorithm combines the advantages of the Ford-Fulkerson’s algorithm 

and the non-disjoint KSP algorithm: the MMF algorithm can find the same amount of 

feasible paths as the Ford-Fulkerson’s algorithm does providing the control over the 

number o f hops in the feasible paths as the KSP algorithm. The execution time taken the 

MMF algorithm in a vector-equipped computer is under investigation although it is 

believed to have less time complexity than the Ford-Fulkerson’s algorithm in theoretical 

point o f view as discussed in section 3.4.3.

Restorability techniques and survivability techniques have different requirement for the 

FPAs, i.e. restorability techniques are more sensitive to its execution time to meet the 

need of real time services whereas survivability techniques is more sensitive to network 

design cost at design time.

To illustrate the different requirements of restorability technologies and survivability 

technologies for the FPAs, the comparison of two types o f the KSP algorithms, i.e. 

disjoint span KSP and non-disjoint span KSP, is given in terms of execution time and 

total feasible paths. It has been shown that the disjoint span KSP algorithm is a better 

option to meet the need of real time services in restorability technologies than the non- 

disjoint KSP algorithm does. However, in survivability technologies, the non-disjoint 

KSP algorithm has an obvious advantage that the disjoint algorithm does not, i.e. the 

amount o f feasible paths found by the former is much more than that by the latter.
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Chapter 4 Optimal Spare Capacity Placement in Mesh 
Survivable Networks

4.1 Introduction

In this chapter, we propose a new algorithm to deal with survivable network design 

problems based on the FPAs described in Chapter 3. In the survivable network design, 

the Spare Capacity Placement (SCP) algorithms are used to place spare capacity in a 

network to prevent them from network failures, e.g. a single span cut, in mesh 

survivable network design. In recent years, much work has been done on this area

[2][4][7][29]. In general, we can divide the SCP algorithms into two categories: Linear 

or Integer Programming (LP/IP) approaches and heuristic approaches. In the LP/IP 

approach, the problem is formulated as a linear or integer problem and standard linear 

or integer programming techniques are used to obtain a solution. In the heuristic 

approach, the problem may be formulated in a complex manner (very non-linear 

discrete state space) and some heuristic approaches are used to solve the problem. These 

approaches often operate quicker than the LP/IP approaches since the heuristics are 

designed specifically for the problem under study and use knowledge o f the structure of 

the problem to obtain good solutions. All the work to date using these two approaches 

assumes that the link cost function is linear. However, modem communications links 

are only available in set standardized capacities. Hence, the link cost function is 

stepwise in capacity rather than linear as described in Figure 4.1(a). Since the previous 

work has used linear approximations to the cost function, it is highly unlikely that they 

would find the optimal solution to the real problem; they may be useful for finding a 

first approximation to the solution. However, previous work has not addressed the non­

linear cost function problem.

The rest of the chapter is organized as follows. In section 4.2 several types of link cost 

functions is described. In section 4.3 an IP based SCP algorithm is discussed. In section 

4.4 a fast heuristic algorithm is illustrated for SCP problems. In section 4.5 a new 

algorithm that can deal with the stepwise cost function is proposed.
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4.2 Link Cost Functions

In [15] [16][31], linear link cost and concave link cost function have been adopted in 

survivable network design and optimal network design.

With the proliferation of high capacity optic fibre, the linear and concave cost functions 

no longer reflect the reality that optic fibre systems with specific capacities are 

available. Hence, the existing SCP algorithms developed for a linear link cost function 

may not applicable properly for the stepwise case. In the following section, several link 

cost functions will be illustrated.

Five models for link cost functions are reasonable, i.e. linear cost function, linear cost 

with fixed cost, concave link cost function, concave link cost function with fixed cost, 

stepwise link cost function all of which are shown in Figure 4.1. As we described 

above, stepwise link cost functions most closely reflects reality. The other four link cost 

functions are approximations o f stepwise link cost functions, It is worth noting that we 

assume that a link cost function is always a non-decreasing function o f its capacity; a 

system in which the cost decreases with increasing capacity does not make sense

In [32], Kemer et al discussed real costs associated with the installation of both metallic 

and optical fiber facilities on an interoffice network. In both cases a large cost is 

associated with channel construction and much of the remainder consists o f link costs, 

which depend on capacity. We can expect to encounter similar cost types when dealing 

with the transmission network.

f  I (Ci)

Ci
fa) Stepwise
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Figure 4.1 Different Types of Link Cost Function

The construction cost is proportional to distance, while acknowledging that this is a 

gross assumption. Digging up streets will be more expensive in urban than rural areas 

and also will depend on the terrain. All we need for our model is a total construction 

cost for a particular link, so we do not need to make that assumption. Links costs will 

depend on distance, but again, as distance is constant for a particular link, this is not so 

important. Link cost will depend on capacity, however, as the capacity determines the 

number, size and type o f links required.

Network optimization problem has been studied for stepwise and concave link cost 

functions [33][34]. However, little work has been done on the Spare Capacity 

Placement (SCP) problem where the link cost function is stepwise. As optic fibres are 

only available with specific capacities, and the amount o f capacity on a link contributes 

significantly to its cost, the stepwise link cost function shown in Figure 4.1(a) is the
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closest to reality. This is why the stepwise link cost function is chosen for the SCP 

model.

As discussed above, all SCP algorithms to date were based the assumption that the link 

cost function is linear in capacity. It is unlikely that the solution found by these SCP 

algorithms using a linear cost function is coincident with the optimal solution to the 

SCP found using the stepwise cost function. However, it is likely that the solutions 

based on the assumption of the linear cost function may be close to the optimal for the 

stepwise cost function problem when the stepwise link cost functions are close to be 

linear. A new heuristic SCP algorithm is proposed here to solve the SCP problem when 

stepwise cost functions are used.

In case the link cost function is assumed to be linear, the LP/IP based SCP algorithm 

can be used to obtain one optimal solution [14][15][16][21]. But, the very large 

execution time o f these algorithms limits their application in large-scale networks. 

Many heuristic algorithms have been proposed for large network SCP problems. While 

these algorithms operate much quicker than the LP/IP based ones, and, hence, they can 

be applied to large networks, the results they obtain for small networks are poor, leading 

us to believe that the results they obtain for large networks can be improved on

[18][19],

First, we describe the IP based SCP algorithm as proposed in [21] and one heuristic 

SCP algorithm as proposed in [18]. Next, a new heuristic algorithm to solve the SCP 

problem for a stepwise is proposed.

4.3 IP-Based SCP Solution Techniques

Mesh survivable networks use Digital Cross-connected Systems (DCS) to minimize the 

amount of spare capacity required to re-route traffic in the case o f failed. In mesh 

survivable networks the spare capacity on one span can contribute to the survivability of 

other spans, network redundancy, on the other hand, is not dedicated to restoration of 

one span. These networks are called “mesh” not to imply that the network is a full 

mesh, but to reflect the ability of the rerouting mechanism to exploit a mesh-like 

topology highly diverse and efficient rerouting of disrupted traffics.

LP/IP solution techniques make it possible to obtain optimal solutions to SCP problems 

in which the link cost function is linear in capacity. Due to the granularity of capacity 

on network spans, the IP formulation of SCP problems is a more realistic formulation



than the LP formulation. However, the LP formulation is still applicable in transport 

networks where the capacities of the spans are so huge that the granularity o f the 

capacity can be neglected.

4.3.1 IP based SCP algorithms

4.3.1.1 Previous works on the LP/IP based SCP algorithm

In the recent decade a lot of the LP/IP based approaches to solve the SCP algorithm 

have been proposed. In [14] one approach has been to develop constraints for the SCP 

problem based on a network’s cutsets after the failure o f a single span. A cutset is a set 

o f spans which when severed divide a connected network into two distinct parts. The 

min-cut max-flow theorem provides constraints on survivability through the set of 

minimum cuts in the network [35]. Which cutsets limit the maximum flow possible 

between those nodes seeking feasible paths after a failure is dependent on the spare 

capacity in the network. It is usually impractical to include all cutsets in the constraint 

set since the number o f cutsets is an exponential function o f the size o f the network. 

Choosing cutsets to populate the constraint set iteratively after intermediate spare 

capacity designs can reduce the size of the constraint set dramatically. Prior work in [3] 

and [20] populates constraint set with cutsets iteratively, choosing cutsets according to a 

heuristic, until the solution provided a spare capacity placement which was 100% span 

restorable and minimized total spare capacity.

A more recent approach has been to specify flow constraints based on a suitable set o f 

predefined routes over which path-sets must be implemented [12] [22], An IP 

formulation using this approach which optimize the placement of spare capacity in 

100% span restorable network was reported in [12]. In such a formulation a fixed 

working capacity layout is given, and the constraint set is based on eligible restoration 

routes between each pair o f nodes terminating a span. When the IP completes, the total 

flow feasible along those restoration routes is adequate to restore the lost capacity o f 

any span cut in [19]. [37].

4.3.1.2 An IP based SCP algorithm

In this section, an IP based SCP algorithm proposed in [21] will be detailed. Unlike the 

IP’s presented in [12] and [22], it uses a highly diverse route set that exploits mesh-like 

topologies to optimize working and spare capacity or only spare capacity, and considers 

both span and path restorable networks. Comparing these basic approaches [12] [
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14][22], it is obvious that when the constraint set is formed using eligible routes instead 

o f cutsets, it only has to be defined once, and a solution will be ensured in a single 

linear or integer program run with no iteration. Moreover, while either approach 

specifies the optimal spare capacity per span, the route-based approach also yields 

details of the actual paths used to restore each span failure. This information is helpful 

when evaluating the performance of a distributed restoration mechanism operating in 

the survivable network design [36], and useful in a centralized restoration paths.

The following notations are used:

• C Cost of a channels (working or spare channels) assigned to span i.

• S Number of network spans in the network.

• H Limit to the number of hops on a path that can be used to reroute traffic

in the case o f failure.

• L ' The survivable level required for demand pair r upon the failure o f span

/. 0 < L ' <1 (for 100% network survivability, L ' =1 for all demand pair r

and all spans i in a network, L ' = 0 represents that the demand r will not be 

recovered upon the failure of span i)

• D The number of node pairs that have nonzero demand between them.

• D Number of demand pairs affected by the failure of span i.
r

• d Number of demand units between node pair r.

•  X r Number o f working channels lost from demand pair r upon the failure o f

span i.

• P r Number of feasible restoration routes for demand pair r upon the failure

of span i that do not violate the pre-set hop-limit.

• f  -r The restoration flow through the p th restoration route for demand pair r

upon the failure of span i.

• s;j Take the value o f 1 if the p h restoration route for demand pair r after the

failure of span i uses span j ,  and 0 otherwise.

• s Number o f spare channels placed on span j  for network failures.

• w . Number of working channels carried on span j.
r

• Q Total number of working routes available to satisfy the demand between

node pair r.
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r,q
The working channels required on the qth working route to satisfy the 

demand between node pair r.

• £ r,q Take the value of 1 if the qth working route for demand pair r using span
^  ./

j-

The objective function is:

M in -<
M

(1)

The constraints to be satisfied are:

1) Restoration flow meets target restoration levels for each demand pair r\

= > [x [x L ^  V r =1,2,...,D. V i = 1,2,..., S. (2)
p=i

2) Span f  s spare capacity is sufficient to meet the simultaneous demands o f all

node pairs affected by any one span failure:

p'
( 3 )

/•=! p=\

3) The total demand lost from demand pair r after the failure o f span i is the sum of
the flows over working routes of the demand pair r traversing span i:

f ] c r q * g r’q = * :  V r =1,2,...,D. V i = 1,2,..., S. (4)

4 )  f i ’p, gr’q ^  0  a n d  i n t e g e r .

5) s . , w  > 0 and integer.

As formulated, the IP formulation can be adapted to optimize spare capacity placement 

for either a span or path restorable network. If a span restoration design is desired, the
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set of all node pairs affected by a failure is restricted to just the single pair o f nodes 

terminating the severed span, i.e. D = 1, and X ' = w .

In a path restorable network it is advantageous to release the surviving portions o f a cut 

working path and make those paths available to the restoration process. This is called 

stub release. Stub release is an option in a path restorable network because span 

restoration only replaces the cut portion o f a connection. The channels occupied by the 

affected demands can be optionally released at the time o f the failure and added to the 

pool o f spare capacity available for restoration. To represent stub release in the IP 

formulation, constraint 2 is replaced with constraint 6 as follows :

6) Span f  s spare dimensioning is sufficient to meet the simultaneous demands of

all node pairs affected by any one span failure (first double sum) after releasing 

the surviving portions of cut paths (second double sum).

r=1 p=1 r=1 q=1

V (i,f)  = 1,2,..., S. i * j.

Figure 4.2 IP-based Formulation o f SCP Problems

4.3.2 Implementation of IP Based SCP Algorithm

This section focuses on how to solve the IP formulation. The Branch and Bound 

algorithm [38] is employed to solve the IP problem. First, we investigate all variables in 

the IP formulation given above.

• Classification of Variables in IP based SCP Formulation

We categorize all variables in the above IP formulation into two groups, i.e. input 

variable and output variable. Input variable is defined as the variable that can be 

obtained beforehand as input of the IP formulation, output variable is characterized as 

the output variable of the IP formulation.

r,q
How the variable w. and g are used depends on the problem being solved. In practice, 

there are two types of networks over which the above IP formulation can be to place 

spare capacity to prevent them from failure. One is that the network has the fixed
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topology and layout of working paths to meet the need o f its demand, the other that the 

network has the fixed topology with layout o f working paths unknown. In the first case

w j and g r'q are the constants as the input values, so the equation (4) can be removed

from the IP formulation in Figure 4.2. In the second case w , and g r'q are the variables, 

which must be determined as output values. In the project the only second case is 

considered for simplicity.

The input variables of the IP formulation include: C, S, H, L [ , D ( , X ' ,  P ' ,  Q r, sf f ,  

w ■;, g r,q. Its output variables include: f \ 'q , g r'q , s ; and w y . The input variable are given 

by users or network designers, for example, X ' is determined by the layout of the 

working channels in a network, P '”, Q r , s'-j can be obtained by the FPAs, e.g. the KSP 

and the MMF algorithms described in Chapter 3.

• The Branch and Bound algorithm

Lots o f approaches have been proposed to solve IP problem. The Branch and Bound 

algorithm and Gomory’s All-Integer Dual Algorithm are two o f the most popular. In 

this project, the Branch and Bound algorithm is chosen to solve the IP problem. In the 

first step o f the Branch-and-Bound method, LP-relaxation of our IP formulation (where 

LP-relaxation is derived by releasing the integer constraints o f IP formulation) is 

solved. It optimal objective value is an upper bound for the optimal objective value of 

its original IP formulation. If the solution o f the LP-relaxation is integer we are done: it 

is also an optimal solution o f the original IP formulation. If  not, the feasible region of 

the LP relaxation is partitioned into two sub-regions giving rise to two new IP- 

formulations, and two sub-formulations are solved respectively. The solutions of two 

sub-formulations are compared. In the case the objective value of one solution is less 

than that o f the other and its solution is integer, the solution is the optimal solution of IP 

formulation. Otherwise, in the case both solutions of two sub-LP formulations are not 

integer, we choose the sub-LP formulation whose objective value is less than that o f the 

other, and partition the sub-LP formulation into two sub-LP formulation further by 

branching any non-integer solution, say Xj. The procedure is repeated until the solution 

of IP formulation is approached. Note that the principle of selection of non-integer 

solution is to choose one that has the smallest index because it is the closest to the 

solution than the others with the larger indices and the Simplex algorithm is used to
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solve the LP relaxation formulation. We illustrate the Branch-and-Bound algorithm by 

drawing a flowchart of the above procedure in Figure 4.3.

The general form of the Branch-and-Bound algorithm can now be formulated as 

follows:

T •max{c x | Ax < b, x > 0, x integer } or

mix {cTx | Ax < b, x > 0, x integer }

We use the set NF to hold the nodes that are not excluded from further consideration; 

the variable z denotes the current lower bound on the optimal solution o f the original 

model. The function f  : F  -»  R with F  the feasible region is the objective function. By
R

F  is denoted the feasible region of a relaxation o f the original model. Optimal 

solutions o f sub-models are denoted by (z, x) with z the objective value corresponding 

to the optimal solution x.

Input:

Values for the parameter o f the optimization model max {/(x) | x e F] ,  with F the 

feasible region.

Out: Either

(i) The message: the model has no optimal solution; or

(ii) The solution of the model.

£tep 0. Initialization. Define F 0 =F , NF = {0}, and z £ = -oo.
A

Step 1. Select a label k eN F. Let max{f(x) x e F }, with F c F  , be the sub-model 

associated with label k\ call this sub-model S . Go to Step 2.

Step 2. Determine, if  exists, an optimal solution (z , x ) o f S k (note that z is an 

upper bound of max { f  (x)| x e F k n  F}). If S has no optimal solution, define z k = 

- o o .  Go to Step 3.

Step 3. S is excluded from further consideration, if  either one o f the following

situations occur:

(a) z k = -co (i.e. s^ has no optimal solution);

G>) z t < z (i.e. Zk is worse than the current best solution);

(c) z > z . If x k e  F (i.e. z k is at least as good as the current best solution),
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then define z L = z k and go to step 5 with NF = NF\{&}; otherwise, go to Step 

4.

Step 4. Partition F k into two or more new subsets, say F ^  F ^  . Define, NF =

(N F\{k})u {ki,...,ks}. Go to step 1.

Step 5. Optimality test and stopping rule. If  NF ^  <D, then go to Step 1. Stop the 

procedure when NF = O ; the current best solution is optimal. If  there is no current 

best solution, i.e. z = - o o , then the original model has no optimal solution.

Figure 4.3 The branch and bound algorithm

In Step 3(c) we consider the situation that z k ^ z ; . For z  k = z ; , and x k e F  we could 

exclude sub-model S from further consideration, since further branching may only 

lead to alternative optimal solutions. Note that the above procedure is applied to 

maximizing model. In case of a minimizing model, the Branch-and-Bound Algorithm 

can easily be adapted: e.g. z has to be replaced by the “current upper bound” z w, -  oo 

by o o , and the inequality signs reversed.

• The Solution to LP- Relaxation of IP Formulation

From discussion above, the method to solve the LP-relaxation of IP formulation is o f 

utmost importance. The PSIMPLEX procedure that is based on the revised simplex 

method is employed to solve the LP-relaxation problem. We will illustrate the 

PSIMPLEX procedure by a flowchart in Figure 4.4. The procedure being given is 

applied for minimizing model.

We assume the number of input variables is n and the number o f constraints is m in our 

example, so the standard formulation of LP problem can be given as follows:

Min {cixi +....  + c„xn}

Constraints to be satisfied:

aj]X] + (X1 2 X2 +....+ ainX„ < bj

a2]X] + CI2 2 X2 +....+ Ct2nXn ^

& m l% l  ̂ @m2 %2 ^ ^  Q m ti^n  — &m

andxi, X2,...,x„ >0 and integer.
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To directly apply PSIMPLEX method some modifications o f the above LP formulation 

is required and several artificial variables are introduced, so the above formulation is 

converted into a new and equivalent formulation as follows:

Max xn+m+i (6 )

Subjectto auxi + CI1 2X2 +....+ai„x„ + xn+i = bj

a2ixi + CI2 2 X2 +....+ a2rPCn + xn+2 -  b2

Where

ClmlXl (im2 X2 +— + ClmnXn Xn+m bm

@m+l,]X] H" drn+l,2X2 &m+l,nXn Xn+m+I ~ 0

@m+2,lX] + Um+2,2 X2 @m+2,nXn Xn+m+2 bm+2

andxi, x2,...,xn+m >0.

m
@m+l,j = Cj> flm+2,j @y i J ~ I 5 2, Yl

i=1

m
bm+2 ~ bj,

i=1

We have added the nonnegative artificial variables xn+i, i = 1, m, into the structure 

variables xj,..., x„ to create a simple basis matrix B =1. Since

Xn+m+2 _ (Xn+1 “H.. H” Xn+m)

the variable x n+m +2 is the negative sum of the artificial variables. Clearly, we must have

Xn+m+2 — 0.

The revised problem has m+2 equations in n + m+ 2 variables. The basic feasible 

solution, if  it exists, has m + 2 variables from the set { X i , . . . ,  xn, xn+m, xn+m+2}, with -  

Xn+m+i representing the optimal objective function value and xn+m+2 =0. In the following 

flowchart, the procedure is divided into two phrases. In phase I we maximize xn+m+i 

subject to the constraints o f (6). If  max x „ + m+2 = 0, we begin phase II with the objective 

function

Xn+m+l (  CiXj +   + CnXr\)

While keeping xn+m+2 = 0. We define the matrix A as
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a n i + l , l " ' a m + l j i  

_ a m + 2 , \ - - a m + 2,n  _

Which is A augmented by two last rows. Row m +2 is used to compute the relative 

cost vector p in phase I. row m +1 has the same role in phase II. We also introduce an 

(m+2) x (m  + 2) matrix which initially is:

^  m xm 0

0 ^ 2 x 2

This first m  row and columns of U will contain the inverse o f B. The last two rows of U 

will be used to determine the vector entering the basis (row m +2 in phase I and row m 

+ 1 in phase II).

Using this notation and initial values xn+i = bj, i = 1, ... , m, the computational steps in 

phase I and phase II are as follows:

Phase I:

Step 1. I f  xm+n+2 < 0, calculate

8  j = rowm+2 (U).colj( A )

»i+2

— ^m+2,p flpj, j  ~ 1,2,..., n.
p= l

and continue. If xm+ „+ 2  — 0, go to go phase II, step 1.

Comment: In phase I  the objective function to be maximized is xm + n +2 and all 

cost coefficients except cm+ n +2 — 1 are zero. The values o f  S  j  are the components o f  

the relative cost vector p.

Step 2. I f  all 8  j > 0, then x n+m +2 is at its maximum and no feasible solution to the 

original LP problem exists. If  at least one 0, then the variable to be introduced 

into the basic set is Xk such that
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8  k = min 8  \
1 <j<n 
S:<  0

Step 3. Compute

m+2
yi = roM>i(U).coh(A) = ^  uipapk, i = 1,2,..., m+2

p~i

Step 4. Calculate

mmIS jSmyj< 0 y,

X,
= - L  = e  

y,

if  yi < 0 for all i = 1, 2,..., m, there is no feasible solution. Otherwise, the 

variable x, is eliminated from the basic set

Step 5. Calculate the new values of the variables in the basic solution 

x, = 0

x,. =Xj - 0y-t (i * /)

for z = 1,2, ...., m +2, and

—  U,j

uu = —
y,

-— u,
u ii = u i} - y i   ( 1 * 0

y,

for i = 1, 2,..., m +2, j  = 1,2,..., w. Return to step 1.

Comment: the columns m+1 and m +2 o f  U do not change. The phase I  

iteration are continued until xn+m +2 = 0 or it is determined that no feasible solution 

exists. In the former case we go to phase II.

Phase II:

Step 1. Here we maintain xm+n+2 = 0. Compute 

Yi = rowm+i(U).colj ( A )

65



hi+2
^  , Wm+1jfopj, J 1,2,..., n
p- i

Step 2. Compute

= mm y,
K IS/SH •'

<S; <0

The variable x* is selected to enter the basic set. If all y} >0, then x„+„,+/ is at 

its maximum value and the original problem is solved.

Step 3. Calculate

n i\2

Y, =  2  u‘i>aPk< * =  2>- ’ m +2
p=i

Step 4. Find

nnn!£/£«( 
y,> 0 y,

X ,
= —  = 9

y<

If all yi < 0, the objective function x„+,„+/ can be made arbitrarily large. The 

computation is terminated. Otherwise, proceed to step 5.

Step 5. Calculate

x, = 6

x, = x i - 0 y i (i *1) 

for r =  1 , 2 , m + 1, and

— uu
U(i = ~

y>

U,j
U,J = My- - yi —  (i * / )

y>

for i = 1,2,..., m +1 , j  = 1, 2,..., m.

Return to step 1.

66



The Branch-and-Bound method with PSIMPLEX is very time consuming 0 ( 2N -1), 

where N is the number of variables of the IP based SCP formulation given in Figure 4.2, 

although it can be applied to obtain an good solution to SCP problems. Note that the 

number of variables in the IP based SCP formulation is S*S*D, where S and D are the 

number of network spans, and network connectivity respectively. In practice, it works 

only for small and middle-scale networks, which does not make any practical use. For 

large-scale network (e.g. transportation network), more effective algorithms are 

required. In the following section, we will introduce the algorithm proposed by [18]. 

The algorithm is based on the heuristic principle, which lead dramatically improvement 

in the time complexity compared with IP/LP based SCP algorithms.

4.4 A Heuristic Algorithm for Spare Capacity Placement (SCP)

In [18] an useful and effective heuristic approach termed max-latching to the SCP 

problem has been proposed to find a reasonable solution to SCP problem for large scale 

networks. A straightforward heuristic of average case complexity 0(S), where S is the 

number o f network spans, is faster than the IP based SCP algorithm 0{2N -1). The 

algorithm has two disadvantages; it can only be used for span network restoration and it 

is a local search SCP algorithm.

The main idea of the heuristic algorithm is as follows. When a single span failure occurs 

a FPAs is employed to find feasible paths on which spare capacity is placed to reroute 

the disrupted working paths minimizing network cost.

Assume a network graph G has S spans and N  nodes and a vector w o f working 

capacity (w .) on each span j .  C i s  the cost per channel on span i. The issue is how to 

specify s, the vector storing the amount of spare channels on each span i (s ,■) so that the 

cost of the network, i.e. EC,. . s is minimised.

For every span i (taken one at a time) there is a set o f feasible paths through the rest o f

the network at the event o f the span i failure. The spare capacities on such paths are

greater than or equal to w (. so that the w ,. can fully be recovered at the event of a span i

failure. The paths consist o f circuit-like continuous channels each using an individual

traffic unit (e.g. an STS-1 or STS-3 transport unit) on each span on feasible paths. For

span restoration paths connect the end nodes adjacent to the failed span. The number of
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channels traversing any span cannot exceed s . Working and spare capacities, w a n d  

s , can only be integer numbers. For simplicity, we let all C , = 1 ,  In which case the 

capacity redundancy (X s  , ) /( Iw ,. ), is the design efficiency measure.

Using this algorithm, the problem is solved as follows. Let P . be a binary matrix o f S 

rows, representing spans, by k,. columns each representing a distinct path, not 

exceeding hop-limit H, between the end nodes o f span i, excluding span i itself, k , is 

the number o f eligible distinct (not disjoint) paths for restoration of failed span i. In this 

project the KSP algorithm is employed to determine feasible paths. Columns o f Pj are 

sorted left to right in order of increasing weight (e.g., length in hops). Let a ( w , k ) be 

a vector o f the most-nearly-equal assignment o f the required restoration flow for span i 

over the routes, with placement of the excess allocation (due to whole number 

effects) on the lower numbered paths. For example a(10, 3) = (4, 3, 3), a(l 1, 3) = (4, 4,

3), etc. So the following formulation is obtained.

S(G, w) = rowm ax[(Pi. aT(w;, ki)), (P2 . aJ(w2, k2) ) , .... (Ps . aT(w,. ks))]sxs (7),

is a sufficient (i.e. fully restorable) and reasonably efficient SCP solution. Rowmax 

takes the row-wise maximum of matrix elements. The idea is as follows: each product 

P i . aT() yields a vector of the spare channels quantities required on other spans to 

restore span i, as if  the span i was the only failure to consider. An S x S matrix is 

therefore formed where each column expresses the spare channel requirement on each 

span over all restoration pathsets in which it participates. The principle is that for any 

span j  there will always be some other span i which will require more spare capacity on 

span /  than any other span for realisation of the required pathsets. When this is true, we 

say that span i is the forcer of span j . Several span may equally force another span, so 

the forcer relationships are in general many to one.

Equation. 7 expresses a simple principle through which adequate and reasonably 

efficient SCP solutions can be obtained compared to using IP. By its nature, s will 

always yield a fully restorable network but in general with excess spare capacity. Some 

lines of reasoning suggest, however, that this principle should be reasonably efficient: 

First, where all forcer relationships are 1:1, the heuristic algorithm would equal the IP if
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the flow assignments to routes are also the same. Secondly, in a fully connected graph 

with all w equal, IP and, results of the heuristic algorithm would again be identical.

Herberg et al [16] therefore tested a procedure which each span in turn is considered a 

failure span, observes the spare channels required by the levelling flow assignment to 

routes and latches the maximum spare channels on each span as other spans are allowed 

to force the network spare channels. However, while Equation 7 is an expression of the 

basic max-latching concept. Where each span forces the others in isolation, a practical 

improvement is to allow spans to force the network in sequence and let the flow 

assignment stage for the current span first exploit the spares already forced by prior 

spans. While this improves the algorithm designs, it introduces dependency on the order 

of span selection. Several ordering principles have been investigated in depth in [18]. A 

simple ordering is by decreasing w , /k , , the idea being to let spans with the largest 

working flows relative to the number o f restoration routes go first as they tend to be 

strong forcers. Subsequently spans will find their restorability partly or wholly satisfied 

by routing first to take advantage o f the already forced spares. Only the flows 

requirement that is unroutable through the current state of the s (. maximums, is 

subjected to the flow assignment function a() and is allowed to further force the network 

spare channels. RM algorithm is used to find all feasible routes between a given pair of 

nodes (i.e. the endpoints of a failed span). A pseudo-code of the algorithm is presented 

in Figure 4.5.

• A Binary matrix of a given network topology where a ,y is the entry (/,/) of

the matrix A.

• P Binary matrix where P . is a binary matrix of S rows, representing

spans, by k , columns each representing a distinct route, not exceeding H hops.

• W Matrix storing the number of working channels where w,y is the number

of working channels on the span (ij).

• F Matrix storing the number o f feasible routes for the specified span failure

where k y is the number of feasible paths between the disrupted span (ij).

• S Matrix storing the number o f spare channels for all possible network

failures.

• SS Number of spans.

• N Number of nodes
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H Hops-limit for feasible paths

Initialization:

Initialise S by setting all entries of S to 0.

Procedure:

While (all spans in the network)

{
Comparing w (j I ftJ and rank spans in the order of decreasing wy /fj.

}

For (all spans in the network and assume they fail in the order o f decreasing

WU/fii-)

{
Using the (FPAs) algorithm described in Chapter 

3 to find all feasible paths (k (.) in order to obtain a(w, k). And then

calculate P . .a(w . k .).

}

While ( all spans in a network)

{

Sspan(y) = rowmax[(Pj. aT(wi,ki)), (P2 . aT(w2,k2) ) , .... (Ps . aT(wSj

ks))]sxs

}

Figure 4.5 Pscudo-code for max-latching Algorithm

4.4.1 Time Complexity of the max-latching Algorithm

Complexity analysis in [18] shows that the algorithm procedure, (coded as described, 

not with the matrix operations of Eqn.l) is theoretically 0(S  log S) in its dependence on 

network size. This reflects the succession of (i) finding each spans’ hop limited eligible

path-set, (9(S), (ii) sorting spans in decreasing w . /k . (<9(S log S) with a heap-sort) and

(iii) allowing each span to act as a forcer of other spans, also 0 ( S). These steps are 

consecutive no nested so the theoretical complexity is 0(S  log S). However, the 

coefficients in the 0 (S) terms heavily dominate execution time as the sort is very fast. 

In contrast, finding all eligible routes up to hop length H is 0(H  d,!) in a network of 

effective average node degree d. But H and d are not dependent on the network size;
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they only express the topological diversity o f the network graph and the length limit for 

restoration.

4.5 A New Heuristic Algorithm for the SCP problem with 

Stepwise Link Cost Function

4.5.1 The Problem of the Existing SCP algorithm

Both IP based SCP algorithm and the heuristic algorithm described above was 

developed with the assumption that the link cost function is linear in capacity. In 

Equation 1, C is the cost of one capacity unit, i.e. STS-3, on the span j ,  that is, the cost

o f the span is proportional to the number o f channels it carries on as described Figure 

4.1(b). While the cost of setting the span, i.e. digging for optic fibre setting, and other 

relevant equipment, i.e. DCS, is considered the link cost function is like that described 

in Figure 4.1(c). So the equation (1) can be held if  and only if C . is constant where C J

may not be the same for different spans in the network. Therefore, the equation (1) can 

be used to obtain the minimal cost o f the survivable network while the condition of 

linear link cost function is held.

In addition, the max-latching approach was developed based on the assumption that the 

link cost function is also linear in capacity. If  this assumption is not valid, the minimum 

amount o f spare capacities in the network may not be coincident with the minimum cost 

o f the network. Say, there are two network strategies as described in Figure 4.6 (a) and 

(b), the capacity f  in the network 1 is greater than the c a p a c i t y i n  the network2. In 

network 2, the capacity^ is divided in two, i.e. f%\ and j '22 where /2 1  + f i i  = fi-  The /21 

and f i 2 are placed in two distinct paths respectively as illustrated inFigure 4.6(b) 

whereas the f  in the network 1 is placed in one path in Figure 4.6 (a).
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(a) Network 1 Strategy

D Destination f  f i  Network Traffic

(b) Network 2 Strategy 

Figure 4.6 Two Network Strategies

Figure 4.7 Stepwise Link Cost Function

For simplicity, we assume that the link cost functions o f all spans in two networks are 

the same as described in Figure 4.7, where Q  > C2 . Hence, it is easy to know the cost of 

network 2 with capacity f \  is C2 +Ci whereas the cost of network 2 with capacity /21 and 

f n  is Ci +Ci. Ci +Ci is greater than Ci +C2 , so the cost o f network 1 with capacity f \  is 

lower than that of network 2 with capacity f 2 although the capacity f \  in network 1 is 

greater than the capacity^  in network 2. Hence, the major procedure in max-latching 

algorithm that minimizes the amount o f spare capacities required to minimize the cost 

of survivable network does not work properly in case the link cost function with its 

capacity is stepwise.

In order to address the problem, a new heuristic algorithm named Stepwise Capacity 

Heuristic algorithm (SCH) is proposed here. Before we start to illustrate the SCH 

algorithm the Addition Minimum Increment (AMI) algorithm will be introduced
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because the SCH algorithm was developed based on the FPAs described in Chapter 3 

and the AMI algorithm.

4.5.2 Addition Minimum Increment algorithm (AMI)

Finding “suitable” paths to place the spare capacity for restoring the failed traffic 

minimising the network cost is a crucial issue for survivable network design, the term 

“suitable” is characterised as a path on which placing spare capacity required results in 

the minimum network cost. There have been many works on addressing the issue

[13][39]. The most popular algorithm proposed in 1959 is Dijkstra’s algorithm that is 

used to find the shortest path in distance between a given pair o f nodes. In Chapter 3, 

Dijkstra’s algorithm was applied in the KSP algorithm to find the K shortest paths. 

Since the length o f the paths contributes significantly to their cost, the shortest path is 

always coincident with the minimum path cost in case the link cost function o f a 

network is approximately linear and concave in capacity [31]. But, in case the link cost 

function is stepwise in capacity, the shortest path is no longer coincident with the 

minimum cost path. We propose a new algorithm, AMI (Addition Minimum 

Increment), to find a path on which to place the specified amount o f spare capacities 

with the minimum cost increment.

The basic idea of the AMI algorithm is based on the Dijkstra’s algorithm. We assume 

the AMI path will be searched for between node s and d  with the specified amount of 

capacity c sd. We start by giving a permanent label 0 to the source node because 

capacity between s and itself is always zero. All other nodes get labelled oo, 

temporarily, because they have not been reached yet. Then we label each immediate 

successor i of source s, with temporary label equal to the link cost increment after 

placing capacity c sd on link (s, i). It is obvious that node min with smallest temporary 

label among these immediate successors is the node where there is the minimal 

increment of link cost if  c sd is placed on the link (s, min). Since all labels o f s 

immediate successors i is nonnegative, there can be no smaller label than one of min 

from ,v to i. Therefore we make the label of min permanent. Next, we find all immediate 

successors of node min, and shorten their temporary labels if  the label from s to any of 

them is smaller than by going through min (than it was without going through min). 

Now, from among all temporarily nodes we pick the one with the smallest label, say 

node y, and make its label permanent. The node y  is the second smaller label node from 

s. Thus, at each iteration, we reduce the values o f temporary labels whenever possible
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(by selecting the most recent permanently labelled node), then select the node with 

smallest temporary label and make it permanent. We continue in this fashion until the 

target node d gets permanently labelled. In order to distinguish the permanently labelled 

nodes from the temporarily labelled ones. We will keep a Boolean array State o f order 

n. When the z'th node becomes permanently labelled, the zth element of this array 

changed from false to true. Another array, D, o f order n will be used to store labels of 

nodes. A variable recent will be used to keep track of most recent node to be 

permanently labelled. In Figure 4.8, a pseudo-code of the AMI algorithm to find the 

minimal cost increment path to place the demand left unassigned is presented:

Variables used in the algorithm are given below:

• A Binary adjacency matrix storing the network topology where if  the span

exists between node pair (z, j) , set the entry a ,., o f the matrix A to 1, otherwise, 0.

• C Capacity matrix storing the number o f working capacity, where the entry

c . o f matrix C is the number o f working capacity on the span (i, j).

• s Source node.

• d  Destination node.

• State Array of the type Boolean, when node i is to be permanently labelled,

the entry State[i\ of the State is true, otherwise, false.

• Recent The most recent node permanently labelled

• P Predecessor array, where the elements P[z']of array P store the

predecessor node ID of node i, for example, P [Recent] is predecessor o f node 

Recent.

• INF Upper bound of the amount of capacities carried on an optic fibre.

• D[z] Minimal sum of the cost increment of spans resulting from placing the

specified amount o f capacity on the spans from z to source s, measured so far.

• F(C, z) Optic fibre span stepwise cost function with capacity C carried on the

span z. For simplicity, we assume the span cost function of all spans in the network 

is the same, so the function F(C, z) can be simplified to the function F(C). It is worth 

noting that the assumption of the same span cost function is not necessary for the 

AMI algorithm.

• E Array to store all nodes to have been permanently labeled measured so

far.

Initialization:
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While ( for all nodes in a given netw ork)

{
State[i] = false 

P[/] = -l 

D[z] = oo

}

= 0 

Recent = s 

E = { 4

Procedure:

State[s\ = true 

D [s] = 0

While ( if there still are nodes that do not belong to E or Recent node is disconnected 

from the other part of the network or State[d\ != true )

{
While ( for all nodes i ,the immediate successors o f the node Recent, which 
have been not labelled permanently and update D[/])

{

TempC = c v rf + c RcccillJ 

Cost =  F(TempC) -  F (cR£CW),,)  

if (Cost < D[/])

{
D[/] =Cost 

P[/] = Recent

}

}

For ( All immediate successors i o f the node Recent)

{
Find the node with the smallest value among D[/], say _y 

State\}>] = true 

Recent = y  

E = {Recent}

}

}
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Figure 4.8 Addition Minimal Increment Algorithm

Note that the array P[] keep track o f the immediate predecessor o f a node in the AMI 

path from node s to d. At the end of the execution, the AMI path cost for the amount of 

the disrupted capacities, c sd, is given by D(d). The actual path can be obtained by

tracing backward the predecessors o f the nodes in the P array from node d  to s. That is 

the sequence o f nodes

5 , P(P[...]),..., P(P[c(]), P M , d,

is an AMI path from s to d. In case there is no path from s to d  in a given network, D[<f] 

will remain oo. This condition will occur if  and only if at some point all the temporarily 

labeled nodes of the point have oo label. Upon detecting this condition, we must exit 

from the outer loop in the “while” loop step and stop.

4.5.3 Stepwise Cost Heuristic (SCH) algorithm on SCP Problems with 
Stepwise Link Cost Function

The SCH is developed based on the FPAs and the AMI algorithm. In networks there are 

always some spare capacities in the spans o f the network resulting from stepwise cost 

function (explained below). The issue is how to utilize these spare capacities? The SCH 

algorithm uses a maximum flow algorithm, the Ford-Fulkerson’s algorithm, to find the 

maximal amount of feasible spare paths consisting of these spare capacities to re-route 

the disrupted traffic at the event of network failure. The AMI algorithm is then used to 

determine the AMI path for the disrupted traffic left that is not rerouted to minimize the 

network design cost.

• Spare Capacity resulting from the Stepwise Cost Function

In a given network G(V, E) where V is denoted a set o f nodes and E a set o f spans o f 

the network G, we define two matrices C and R storing the amount of working channels 

and the maximal capacity on each optic-fiber cable respectively. Since the link cost

function is stepwise in capacity, the entry R (. . of matrix R, storing the number of

channels on span (i, j ), is always less than or equal to the entry C u  of matrix C, storing

the maximal capacity on span (i, j), as explained in Figure 4.9. In Figure 4.9, there is a 

STS-9 span where 7 STS-Is are the working channels and 2 extra STS-1 channels.
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  Working Channels  Spare Channels

Figure 4.9 Structure of Spans

In practice, 7 STS-1 capacities are active to transform the network services, but we have 

to install 9 STS-1 (i.e. STS-9) span for this purpose because STS-9 spans are only 

available in markets. Therefore, two STS-2 channels in the STS-9 are installed but idle. 

It is obvious that using these extra channels would not result in any more cost of 

networks.

In case no SCP algorithm is applied to place spare capacity in the network, 2 extra 

channels can still be used to reach some level of network survivability because the 

failed traffic at the event o f network failure can be re-routed through these extra 

channels. The SCH algorithm can effectively take the advantage of these extra channels 

to restore the part of the disrupted traffic. Since the granularity of capacity o f network 

links, as described in Figure 4.9, results in these extra channels in a network, using 

these extra channels in this manner will not incur any extra network design cost. The 

SCH algorithm can be implemented as follows. The algorithm only considers single 

span failure;

• Description of the Stepwise Cost Heuristic (SCH) algorithm

The algorithm only considers single span failure -  the algorithm generates a network

design which is resilient to a single span failure; the network design will not be resilient

to multiple span failures. First, to avoid reaching local optimal solution to the SCP

problem, we take a span in turn as failed in a random order (take one at a time). Second,

determine all demand pairs affected by the span failure and release all affected working

paths through the failed span which can be put into the pool o f extra channels and make

those available to the restoration process. Third, the Ford-Fulkerson’s algorithm is

applied to obtain the maximum number o f extra paths, consisting o f extra channels,

between each pair of affected demand in turn. In case the number of extra paths is

greater than or equal to the affected paths, only the actual number of the extra paths is
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labeled temporarily as the occupied paths that will no longer be available for the other 

demand pairs affected by the same span failure. In case the number o f the extra paths 

obtained by the Ford-Fulkerson’s algorithm is less than the affected paths, all extra 

paths found is labeled temporarily as the occupied paths. Fourth, the AMI algorithm 

will be employed to find an AMI path to place the same the number o f spare paths as 

the affected paths left unsaved in order to recover them with the minimal cost 

increment. And then the newly placed spare capacities are labeled temporarily as the 

occupied paths and update the extra channels available by the stepwise link cost 

function. When all affected demand pairs by the span failure is examined all 

temporarily occupied paths will be converted to the extra paths available for other span 

failure in the network; Repeat the above procedure in the fashion until all spans in the 

network are examined. To make the above description clearer, a pseudo-code o f the 

SCH algorithm is given below.

Given:

• A Network binary adjacent matrix.

• C Network capacity matrix for link capacity

• R Network capacity matrix for actual working capacity

• LC Number o f working paths left un-restored after using the Ford-

Fulkerson’s algorithm

• TO A matrix, where its entry TO f/ stories the number of extra channels

available so far on the span (i, j).

Procedure:

WhiIe(All spans in a network)

{
(1) Randomly choose one span failed which starts from node i and terminates at 

node j ,  and then remove it by setting a i; to zero.

(2) Determine all demand pairs affected by the single span failure and the 

corresponding amount o f working paths failed.

(3) Release the network capacities occupied by the working paths failed at the 

event of the span failure and makes those available to following restoration 

process.

While (All demand pairs affected)

{
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(a) Using the Ford-Fulkerson’s algorithm to find the maximum number o f the 

extra paths between demand pair (i, j).

(b) If the number o f extra paths is greater than or equal to the working paths 

failed between the demand pair (i, j ) and then update the matrix TO by 

subtracting the actually used extra channels, making up the extra paths 

found, from the spans which these extra paths pass through. And then go to 

the end of the “while” loop, otherwise go to step (c).

(c) Use the AMI algorithm to find the AMI path on which to place the failed 

working paths left unsaved (i.e. LC), and update the matrix C and TO by 

using the stepwise link cost function.

}
(4) Update the matrix TO by subtracting matrix R by matrix C.

}

Figure 4.10 Pseudo-code of the Stepwise Cost Heuristic (SCH) algorithm

The version of the SCH algorithm described above is o f path restoration, but it can also 

work for span restoration with a small modification. For span restoration there is only 

one demand pair affected when a span fails in a network, i.e. the demand on the failed 

span, so the step (2) o f the first “while” loop in Figure 4.11 can is simplified as follows:

(2 ) Determine the amount o f demand in the failed span.

So, it can be seen that the version of the SCH algorithm for span restoration is a special 

case for path restoration.

Like IP based SCP algorithm the SCH algorithm also takes stub release into account in 

order to minimize the amount o f spare capacity required.
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Chapter 5 Results and Comparison

5.1 Introduction

In chapter 4, three SCP algorithms, i.e. the IP based SCP algorithm, the max-latching 

algorithm and the SCH algorithm, have been illustrated. In this section the results with 

regard to execution time and network cost from the three SCP algorithms will be

presented

Here, the SCH algorithm and the IP based SCP algorithm can be applied to both the 

path restoration design and span restoration design. But they are only implemented for 

span restoration in this chapter because they will be compared with the max-latch 

algorithm, an only span restoration algorithm.

We will apply the above three SCP algorithms over 10 test networks described in 

section 5.2 with 4 different scenarios o f link cost function introduced in section 5.3. The 

results, presented in section 5.4, help us to figure out the performances o f these three 

SCP algorithms in terms of execution time and network cost required by a single 

network span failure scenario, and effect of the different link cost scenarios on the 

network cost obtained by three SCP algorithms.

5.2 Test Networks

Ten networks are used as the test networks in this chapter. Three o f them, i.e. the test 

networks 1, 7 and 2, with their associated demand matrices, detailed in Error! 

Reference source not found., Error! Reference source not found, and Error! 

Reference source not found, of the Appendix A, have been used in Chapter 3. Figure

5.1 shows the architecture of the test network 6 that many literatures [ 12][ 14][ 15][20] 

adopted to test their SCP algorithms, where the numbers next to the network links 

represent their working capacities. The rest o f test networks are generated in random, 

the number of nodes o f these test networks ranges from 8 to 40. Table 5.1 shows the 

detailed information o f these test networks,

No. of Nodes Nodes of Spans Network Working Capacity

Network 1 8 16 136

Network 2 9 17 153

Network 3 9 19 813

Network 4 10 21 920
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Network 5 11 23 1252

Network 6 16 28 397

Network 7 20 44 2158

Network 8 19 52 2078

Network 9 31 97 4324

Network 10 39 128 6210

Table 5.1 The Information of ten Test Networks

Figure 5.1 Test Network 6 Architecture

5.3 Stepwise Link Cost Function Scenarios

The chapter 4 introduced five types of link cost function, i.e. linear cost function, linear 

cost with fixed cost, concave link cost function, concave link cost function with fixed 

cost, stepwise link cost function. As described above, optic fibers carrying the specific 

amount o f capacity are only available in modern markets, so stepwise link cost function 

most reflects the reality. Hence, we have designed four link cost scenarios where the 

link cost function is stepwise in capacity described in Figure 5.2 and Table 5.2. The four 

stepwise links cost functions are based on the SONET network signal hierarchy, for 

example, STS-1 and STS-3, as described in Chapter 2. When the capacity required is 

bigger than the maximum capacity that can be carried by a single link available in the
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markets. To solve this problem, several optic fibres are placed in parallel. In our case, 

the maximum capacity in a single optic fibre is STS-48. In this project, we bind several 

STS-12, STT-18, STS-24 and STS-48 optic fibres with a STS-48 link together to obtain 

more than STS-48 capacity span respectively as described in Figure 5.2 (a) through (d) 

and Table 5.2.

(a) Link Cost Function 1

(c) Link Cost Function 3
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(d) Link Cost Function 4 

Figure 5.2 Four Link Cost Function Scenarios

Cost Function 1 Cost Function 2 Cost Function 3 Cost Function4
Capacity
(STS-N)

Cost Capacity
(STS-N)

Cost Capacity
(STS-N)

Cost Capacity
(STS-N)

Cost

1 1 1 1 1 1 1 1
3 2 3 2 3 2 3 2
9 8 9 8 9 8 9 8
12 11 12 11 12 11 12 11
18 16 18 16 18 16 18 16
36 30 36 30 36 30 36 30
48 39 48 39 48 39 48 39
60 50 66 55 84 75 96 78
72 61 84 85 120 105 144 117
84 69 102 101 156 135 192 159
96 78 120 117 192 165
108 89 138 133
120 100 156 149
132 111 174 165
144 122 192 181
156 133
168 144
180 155
192 166

Table 5.2 Four Scenarios o f Link Cost Function

The link cost function 1 in Figure 5.2(a) has the smallest capacity “jum p” among four 

link cost function scenarios whereas the link cost function 4 in Figure 5.2(d) has the 

largest capacity “jump”. In other words, the link cost function 1 is the closest to linear 

compared with the others, so the IP based SCP algorithm is expected to get the closest 

solution to the optimal one to SCP problems when the link cost function 1 is employed.
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In section 5.4.1, we will conclude the performance of three SCP algorithms with four 

link cost functions scenarios.

5.4 Spare Capacity Placement Test Results

It is important to be clear on what we are looking for from our results. The following 

two criteria are considered most important in evaluating the SCP algorithms.

(i) Cost; our objective function is a representation of monetary cost and this must be 

minimized.

(ii) Speed; as computation time is limited, the length o f time is very important for the 

application o f the SCP algorithms over large-scale networks.

In the following section, three SCP algorithms will be applied over ten test networks, 

described above, to obtain their execution time and total cost while the survivability is 

set to 100 %. The effect of different link cost functions on the total network cost for 

each SCP algorithm is also investigated. To ensure the comparison is valid, all SCP 

algorithms are performed on the same machine, i.e. a computer with Pentium processor 

operating 180Mhz.

5.4.1 Comparison of time complexities among three SCP algorithms

In this section, we are interested in seeing the performance o f three SCP algorithms in 

terms of execution time. Table 5.3 gives the results. Note that the sum of the numbers of 

network nodes and spans represents the size o f the test networks.

Test

Networks

Network 

Size (Nodes 

+ Spans)

Execution Time (sec)

SCH Algorithm Max-latching

Algorithm

IP based SCP algorithm

Network 1 24 0.25 0.4 358

Network 2 26 0.2 0.525 684

Network 3 28 0.2 0.55 1028

Network 4 31 0.2 0.625 2301

Network 5 34 0.2 0.525 4543

Network 6 44 0.25 0.775 uncompleted

Network 7 64 0.3 1.325 uncompleted

Network 8 71 0.2 2.05 uncompleted

Network 9 128 0.6 5.725 uncompleted

Network 10 205 0.8 7.575 uncompleted
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Table 5.3 Execution time of three SCP algorithms over ten test networks 

Observations:

(i) The SCH algorithm is by far the fastest in all cases, and its execution time 

increases very slowly while the network size increases.

(ii) The IP based SCP algorithm has the longest execution time among the three 

SCP algorithms, and the time taken is increasing exponentially when the 

network size increases, even worse, the algorithm can not be completed when 

the network size is over 44.

Figure 5.3 displays a comparison o f three SCP algorithms with respect to their 

execution time. In Figure 5.3 (a) displays a comparison o f how much time is taken by 

the SCP algorithm with those by the IP based SCP algorithm and the max-latching 

algorithm over ten test networks. In Figure 5.3 (b), a comparison of execution times 

taken by the SCH algorithm and the max-latching algorithm is given.

The execution time, taken by the IP based algorithm, is the longest compared with those 

taken by the max-latching algorithm and the SCH algorithm due to its highest time 

complexity. The time complexity o f this algorithm is o f the order O (2s*s*d -1) [8], 

where s*s*d, s and d are the number o f the variables in the SCP formulation, given in 

Figure 4.2, the number of spans and the network connectivity respectively, and the 

execution time taken by the IP based SCP algorithm increases dramatically when the 

network size increases. So the IP based algorithm is not suitable to deal with the large- 

scale network, whereas the SCH algorithm and the max-latching algorithm can work 

effectively for this case.
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(a) Execution Time of three SCP algorithms

(b) Execution Time of SCH Algorithm and Max-Latching algorithm 

Figure 5.3 Execution Time of three SCP Algorithms over ten Test Networks

5.4.2 Performance of three SCP Algorithms in terms of total Network 
Cost Savings

In this section, we wish to examine the performance of three SCP algorithms in terms of 

network cost. Here, we consider the results from the SCH algorithm as the reference, its 

relative network cost savings (percentage) with the other two SCP algorithms can be 

derived from the following equation.

Network cost savings = ( (Cip (orCh ) - C r) / C r ),
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Where C r, C jp and C /( represent the network costs from the SCH algorithm, the IP 

based SCP algorithm and the max-latching algorithm respectively.

As mentioned in Chapter 4, the IP based SCP algorithm and the max-latching algorithm 

can only work on the SCP problem with the linear cost function scenario. To make it 

valid comparing the network cost C from the SCH algorithm with the network costs, 

i.e. C and C h from the other two SCP algorithms, the C.p and C h must be recalculated 

based on the stepwise link cost function scenario. The following reasons make the 

recalculation reasonable:

1) All three SCP algorithms are applied to determine the number o f spare capacity and 

their layout required for the same level o f network survivability, say, 100% network 

survivability.

2) The results from the IP based algorithm and the max-latching algorithm are 

independent from the linear cost C . per span channel, given in Figure 4.2 and 

section 4.4.1.

Table 5.4 displays the following results:

1) Costs for 100% network survivability from the three SCP algorithms over ten test 

networks. The cost for each SCP algorithm is the average cost over four stepwise 

link cost function scenarios.

2) The relative cost saving (percentage) of the SCH algorithm compared with those of 

the other two SCP algorithms.

Cost from 

My 
Algorithm

Cost from 

max-latching 

Algorithm

Relative Cost 

Savings 

(percentage)

( C „ ) - C , . ) /C r

Cost from 

IP based 

algorithm

Relative Cost 

Savings 

(percentage)

(Clp- C r)/C.r

Network 1 60 93 55% 64 6.7%
Network 2 65 131 102% 102 56.9%
Network 3 461 588 28% 447 -3.03%
Network 4 427 635 48.7% 431 0.94%
Network 5 599 707 18% 578 -3.5%
Network 6 148 421 178.4% N/A N/A
Network 7 796 1364 71.4% N/A N/A
Network 8 704 1080 53.5% N/A N/A
Network 9 1180 2224 100% N/A N/A

Network 10 1675 3100 85% N/A N/A

Table 5.4 The Performance o f three SCP algorithms in terms of Network Cost Savings
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Observation:

(1) The SCH algorithm is the most effective approach to solve the SCP problems in 

terms of total network cost, where the link cost function is stepwise in capacity, in 

most cases. Compared with the max-latching algorithm, its relative cost savings 

ranges from 18% to 178% (80% on average). Compared with the IP based SCP 

algorithm, its relative cost savings of the SCH algorithm ranges from -3.5%  to 

56.9% (11.6% on average).

(2) No results from the IP based SCP algorithm are available when the size of the test 

networks is over 44 due to the high time complexity o f the algorithm (2N -1), where 

N is the number o f the variables o f the formulation given in Figure 4.2.

From the above results, we could see that the SCH algorithm produces the best solution 

in most cases, as we have expected. The SCH algorithm is a local search algorithm, and 

maybe reach hence a local optimal result, but it is designed to utilize o f  the spare 

channels resulting from the step cost function which the other two SCP algorithms do 

not, which covers most o f its disadvantage, a local search. Therefore, the SCH 

algorithm, in general, gets the better solution than the IP based SCP algorithm, a global 

search algorithm. The reason why the IP algorithm gets the better result than the SCH 

algorithm in some cases will be explained in the following section.

5.4.3 Effect of the Stepwise Cost Function Scenarios on the Network 
Cost

In this section, we look at the effect o f the different stepwise cost function scenarios on 

the performance o f three SCP algorithms in terms of the network cost and see how 

much benefit the SCH algorithm can obtain from the four stepwise cost function 

scenarios. Figure 5.4 (a) through (j) shows the network costs from three SCP algorithms 

with four stepwise cost function scenarios over ten test networks.
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(d) Cost for Network 4

(e) Cost for Network 5
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(f) Cost for Network 7
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(g) Cost for Network 8

(h) Cost for Network 9
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Figure 5.4 Network Cost with Four Link Cost Scenarios

It is worth noting that the four stepwise link cost scenarios is sorted in the order of 

increasing in terms of capacity “gap”, for example, the function 1 has STS-12 capacity 

gap whereas the function 4 has the STS-48 capacity. Hence, the function 1 is the closest 

to linear among the other cost function scenarios.

Observation:

(1) The SCH algorithm always obtains the minimal network cost compared with the 

other two SCP algorithms when the stepwise cost function 3 and 4 are applied.

(2) Compared with the max-latching algorithm, the SCH algorithm always obtains the 

better results for four stepwise link cost function scenarios.

(3) Compared with the IP based SCP algorithm the IP based SCP algorithm obtains the 

better results than the SCH algorithm does in the test network 3, 4 and 5 when the 

cost function 1 and 2 are applied. However, the cost savings (percentage) o f the 

SCH algorithm over the IP based SCP algorithm for all cases still reach 11.6% on 

average given in section 5.4.2.

(4) With the capacity “gap” bigger the result from the SCH algorithm become better 

relatively compared with those from the other two SCP algorithms, in other words, 

the SCH algorithm can get most from the stepwise link cost function scenarios.

From the results, we see the SCH algorithm get the most benefit, as we have expected, 

while the capacity “gap” o f the stepwise link cost function increases from the function 1



to the function 4. As a whole, the SCH algorithm obtains the better results than that 

from the IP based SCP algorithm does because the SCH algorithm is designed to utilize 

spare channels on each network span resulting from the stepwise link cost function, 

which the IP based SCP algorithm is not. However, the disadvantage o f the SCH 

algorithm is that it is a local optimal (search) algorithm whereas the IP based SCP 

algorithm is a global one, as a result, the results from the IP based SCP algorithm are 

better than those are from the SCH algorithm in some cases. When the stepwise link 

cost function is close to linear, the spare channels o f network spans resulting from it get 

little, so the SCH algorithm loses its advantage o f using the spare channels so that the 

results from it become worse than that from the IP based algorithm.
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Chapter 6 Conclusion

This chapter is concerned with summarizing the observations that arise from this 

research work. Firstly, section 6.1 is concerned with a discussion of experimental 

results. Section 6.2 discuses possible directions for applications and further research. 

Finally, section 6.3 sums up the principal conclusion.

6.1 Overall Discussion of Results

In Chapter 3, four Feasible Path Algorithms (FPAs) algorithms have been illustrated, 

i.e. the Ford-Fulkerson’s algorithm, the disjoint KSP algorithm, the non-disjoint KSP 

algorithm and the Matrix Maximum Flow (MMF) algorithm. The Ford-Fulkerson’s 

algorithm is the best in terms of total feasible paths, however, its major disadvantage is 

that it can not control the hops of the feasible paths. As to the non-disjoint KSP 

algorithm, it can find up to 98% of the feasible paths that the Ford-Fulkerson’s 

algorithm does, and easily control the length o f the feasible paths, so the KSP algorithm 

is a good alternative to the Ford-Fulkerson’s algorithm in many cases. The MMF 

algorithm is a newly proposed FPAs. It has the following advantage: 1) Obtain the same 

amount of the feasible paths as the Ford-Fulkerson’s algorithm does when hop-limit of 

feasible paths is large enough. 2) Be o f control o f hop-limits as the KSP algorithm is, 

and moreover it is believed to take less execution time than the Ford-Fulkerson’s 

algorithm does in a vector-equipped computer as discussed in Chapter 3.

Restorability techniques and survivability techniques have different requirement for the 

FPAs, i.e. restorability techniques are more sensitive to its execution time to meet the 

need o f real time services whereas survivability techniques is more sensitive to network 

design cost at design time.

Two types o f the KSP algorithms have been implemented to find feasible paths in this 

project: the disjoint KSP algorithm and the non-disjoint KSP algorithm. The disjoint 

KSP algorithm is faster than the non-disjoint KSP algorithm, but, find the less account 

of feasible paths, so the disjoint KSP algorithm is a better option for restorability 

technique than the non-disjoint KSP algorithm, but the non-disjoint KSP algorithm is 

more suitable for survivability techniques than its counterpart.

Our primary concerns in evaluating the three SCP algorithms are network cost and 

execution time. In Chapter 4, three Spare Capacity Placement (SCP) algorithms have



been introduced, i.e. the IP based SCP algorithm, the max-latching algorithm and the 

SCH algorithm.

The best solution in terms o f execution time is consistently the SCH algorithm. The 

execution time of the IP based SCP algorithm is longest among the three SCP 

algorithms and increases dramatically when the size of networks increases due to its 

higher time complexity 0 (2 s*s*d), where s and d are the number o f network spans and 

connectivity, so the IP based SCP algorithm is not suitable to design large-scale 

survivable networks. The max-latching algorithm and the SCH algorithm are the local 

search algorithms, therefore, they have much less time complexity than the IP based 

SCP algorithm. Both the SCH algorithm and max-latching algorithm can be applied to 

large-scale networks, for example, transport networks.

Our second evaluation criteria is network cost. Here, the SCH algorithm obtains the best 

results in most cases. Compared with the max-latching algorithm, the results from the 

SCH algorithm is always better, as we have expected. In principle, The SCH algorithm 

should always have obtained the better results than the IP based SCP algorithm does 

because the SCH algorithm can take use o f the spare channels resulting from the 

stepwise link cost function, which the IP based SCP algorithm can not. However, the IP 

based algorithm is a global search algorithm whereas the SCH algorithm is a local 

search algorithm; if  the stepwise cost function is close to linear (e.g. the stepwise link 

cost function 1 in Figure 5.2) the IP based SCP algorithm may get a better solution than 

the SCH algorithm does. When the stepwise link cost function is close to linear, the 

spare channels resulting from it get little, so the SCH algorithm will lose its advantage 

of using spare channels so that the results from it become worse than that from the IP 

based algorithm. In this project, no exact linear cost function was chosen because it 

does not exist.

In summary, the SCH algorithm is the best choice to design the survivable network, 

especially, large-scale transport network due to its excellent performance in terms of 

execution time and network cost. The IP based SCP algorithm is a better choice for the 

small-scale network design in case the stepwise link cost function is close to linear. We 

do not recommend use o f the max-latching algorithm in survivable network design due 

to its bad performance in network cost.
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6.2 Application and Further Work

In this section, we discuss applications arising from this project and potential for further 

development.

6.2.1 Application to Survivable Network Design

The SCH algorithm is designed to solve Spare Capacity Placement (SCP) problems in 

mesh-type survivable networks in case stepwise link cost functions are applied. The 

SCH algorithm can quickly determine the networks that have a capability to prevent 

them from a single span failure, so it can be applied for large-scale networks, e.g. 

transport networks.

6.2.2 User Interface Development

It is generally useful in computer-aides design to have some user interaction with the 

design process as, for many problems, humans have a superior ability to visualize what 

a good solution should look like.

6.2.3 Further Refinement of the SCH Algorithm

In this project, we implemented the SCH algorithm for span restoration and a single 

span failure, we can also refine the SCH algorithm to work for restoration path and 

other network failure i.e. multiple span failure and node failure. In addition, we can 

develop a dynamic scheme (i.e. restorability technique) corresponding to the SCH 

algorithm to deal with the unexpected network failure or traffic growth. Furthermore, 

we can apply the SCH algorithm in the VP level o f ATM networks with some 

modifications as in [40].

We could say that this project is successful by looking at the result analysis, since the 

SCH algorithm is the fastest among the other two SCP algorithms, and obtain the best 

result in terms of network cost in most cases.

97



References

[1] Tsong-Ho Wu, Fiber Network Service Survivability, ARTECH HOUSE, INC. 1992.

[2] Hideki Sakauchi, Yasuyo Nishimura and Satoshi Hasegawa, “A Self-Healing 

Network With An Economical Spare-Channel Assignment”, GLOBECOM 90 1990. pp 

438-443, 1990.

[3] Hiroaki Komine, Takafumi Chujo, Takao Ogura, Keiji Miyazaki, and Tetsuo 

Soejima, “A Distribution Restoration Algorithm For Multiple-Link And Node Failures 

of Transport Networks”, Proc. IEEE GLOBECOM 90, pp459-463, 1990.

[4] C. Han Yang and Satoshi Hasegawa, “Fitness: Failure Immunization Technology 

For Network Service Survivability”, IEEE Globecom 88, 1988.

[5] W. D. Grover, B. D. Venables, M. H. MacGregor, “Performance studies o f a self 

healing network protocol in Telecom Canada long haul networks”, IEEE Global Conf. 

Commun., Dec. 1990. pp. 452-458, 1990.

[6] Martin De Prycker, Asynchronous Transfer Mode: Solution For Broadband ISDN, 

Ellis Horwood Limited 1993.

[7] Demetrios Stamatelakis, (M.Sc.), NSERC Scholar, "Theory and Algorithms for 

Preconfiguration o f Spare Capacity in Mesh Restorable Networks," Department of 

Electrical & Computer Engineering, University o f Alberta, Spring 1997.

[8] Maciej M. Syslo, Narsigh Deo and Janusz S. Kowalik, Discrete Optimization 

Algorithm with Pascal programs, Prentice-Hall, Inc., 1983.

[9] Mike Sexton, Andy Reid, Braodband Networking: ATM, SDH, and SONET, 

ARTECH HOUSE, 1997.

[10] E.Oki, N.Yamanaka, “A recursive matrix-calculation method for disjoint path 

search with hop link number constraints”, EICE Transactions Communications, Vol. 

E78-B, no.5, pp769-774, May 1995.

[11] Peter V. O ’Neil, Advanced Engineering Mathematics, Wadsworth, Inc. 1987.

[12] M.H Macgregor and W.D.Grover, “Optimized K-shortest-paths Algorithm for 

Facility Restoration”, Software-Practise And Experience 1994 Vol. 24 PT 9. Pp823- 

834, 1994.

[13] M. Gondran, M. Minoux, Graphs and Algorithms, John Wiley & Sons Ltd. 1984.

[14] Meir Herzberg, “A decomposition Approach to Assign Spare Channels in Self- 

Healing Networks”, GLOBECOM 93 1993. pp 1601-1605, 1993.

98



[15] Meir Herzberg and Stephen J. Bye, “An Optimal Spare-Capacity Assignment 

Model for Survivable Networks with Hop Limits”, GLOBECOM 94 1994. ppl601- 

1606, 1994

[16] Meir Herberg, Stephen J. Bye, and Anthony Utano, “The Hop-Limit Approach for 

Spare-Capacity Assignment in Survivable Networks”, IEEE/ACM Transactions on 

Networking. Vol. 3. NO. 6, December 1995.

[17] M. T. Busche, C. M. Lockhart, and C. Olszewki, “Dynamic K-Shortest Path 

(DKSP) Facility Restoration Algorithm”, IEEE Globecom’94, 1994.

[18] W.D. Grover, V.Rawat and M.H. MacGregor, “Fast Heuristic Principle for spare 

capacity placement in mesh-restorable SONET/SDH”, Electronics Letters 1997 Vol. 33 

PT 3 ppl95-196, 1997.

[19] W.D.Grover, T.D. Bilodeau and B.D.Venables, “Near Optimal Spare Capacity 

Planning In a Mesh Restorable Network”, GLOBECOM 91 1991, pp 2007-2012, 1991.

[20] B.D.Venables, W.D.Grover, and M.H.MacGregor, “Two Strategies for Spare 

Capacity Placement in Mesh Restorable Networks”, IEEE Int. Conf On 

Communications ICC93 Conf Record Vol. 1 Geneva May 1993.

[21] R.R.Iraschko, M.H.MacGregor and W.D.Grover, “Optimal Capacity Placement for 

Path Restoration in Mesh Survivable Networks”, 1996 IEEE INT. CONF. On 

Communication, Dallas Texas, 1996.

[22] Kazutaka Murakami and Hyong S. Kim, “Joint Optimization o f Capacity and Flow 

Assignment for Self-Healing ATM Networks”, Proc. IEEE ICC 95 JUNE 1995.

[23] D.Antony Dun, Wayne D. Grover, and Mike H. MacGregor, “Comparison of k- 

Shortest Paths and Maximum Flow Routing for Network Facility Restoration”, IEEE 

Journal on Selected Areas in Communications, Jan. 1994, vol. 12, no. 1, pp.88-99.

[24] Rainer R. Iraschko, NSERC Scholar, (Ph.D.), "Path Restorable Networks," 

Department o f Electrical & Computer Engineering, University o f Alberta, fall 1996.

[25] W.D.Grover and M.H.Macgregor, “Potential for Spare Capacity Preconnection to 

Reduce Crossconnection WorkLoads in Mesh-Restorable Network”, Electronics 

Letters, vol. 30, No. 3, 3rd Feb. 1994.

[26] Jiro Yamada and Akiya Inoue, “Intelligent Path Assignment Control For Network 

Survivability And Fairness”, IEEE ICC’91.

[27] Takafumi Chujo, Hiroaki Komine, Keiji Miyazaki, Takao Ogura and Tetsuo, 

“Distributed Self-Healing Network and Its Optimum Spare Capacity Assignment 

Algorithm”, Electronics and Communications In Japan, Part 1, Vol. 74, No. 7 1991.

[28] Takafumi Chujo, Hiroaki Komine, Keiji Miyazaki, Takao Ogura and Tetsuo

99



Soejima, “The design And Simulation of An Intelligent Transport Network With 

Distributed Control ”, Network Operation and Management Symp. SAN Diego, Feb

1990.

[29] Hideki Saauchi, Yasuyo Okanoue and Satoshi Hasagawa, “Spare Channel Design 

Schemes For Self-Healing Network”, IEICE Transaction Communication 1992 Jul. Vol. 

E75-B PT 7.

[30] B.C.Hturton and M Bentall, “Benchmark Networks For Both Physical And Virtual 

Networks”, IEE Electronics and Communications Fifteenth UK Tele-traffic 

Symposium, On Performance Engineering In Information Systems. 1998.

[31] James McGibney, (M.Sc.), Modern Global Optimization Heuristics in the Long 

Term Planning of Telecommunication Networks, School o f Electronic Engineering, 

Dublin City University, 1995.

[32] M. Kerner, H. L. Lemberg and D. M. Simmons, “An Analysis o f Alternative 

Archectures for the Interoffice Network”, IEEE J. Select. Areas Commun., vol. SAC-4, 

pp 1404-1413, December 1986.

[33] B. Gavish et al, “Fiberoptic Circuit Network Design Under Reliability 

Constraints”, IEEE J. Select. Areas Commun., vol. SAC-7, pp 1181-1187, October 

1989.

[34] A. Kershenbaum, P. Kermani and G. A. Grover, “Mentor: An Algorithm for Mesh 

Network Topological Optimization and Routing”, IEEE Transactions on 

Communications, Vol. 39, No. 4, April 1991.

[35] T. C. Hu, Integer Programming and Network Flows, Reading, MA: Addison- 

Wesley, 1969.

[36] Grover, W. D., “The selfhealing network: a fast distributed restoration technique 

for network using digital cross-connect machines,” Proc. IEEE GLOBECOM ’87, Dec. 

1987, pp. 28.2.2-28.2.6.

[37] Chao, C. W., Dollard, P. M., Weythman, J. E, Nguyen, L. T., Eslambolchi, H., “ 

FASTAR-a robust system for fast DS3 restoration,” Proc. IEEE GLOBECOM’91, Dec.

1991, pp.39.1.1-39.1.5.

[38] Gerard Sierksma, Linear And Integer Programming: Theory and Practice, Marcel 

Dekker, Inc., 1996

[39] S.D Nikolopoulos, A.Pitsillides, “Towards Network Survivability by Finding the 

K-best paths through a Trellis Graph”, International Conference on 

Telecommunications (ICT’96), Istanbul, Turkiye, pp817- 821, April 1996.

100



[40] R. R. Iraschko, M. H. MacGregor and W. D. Grover, “Optimal Capacity Placement 

for Path Restoration in STM of ATM-Mesh Survivable Networks,” IEEE/ACM 

Transactions on Networking, vol. 6, no. 3, June 1998.

101



Appendix A Test Networks for the Feasible Path Algorithm

In this section, five test networks used in chapter 3 and chapter 4 are depicted below.

In these diagrams, each line represents a network link, and the two numbers next to each 

link represents that link capacity and the length of the span; the length of the span is in 

brackets. Note that the length of network links is given by our measurement in these 

diagrams.

Figure A. 2 Topology of Test Network 2
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Figure A. 1 Topology o f Test Network 3

Figure A. 2 Topology of Test Network 4
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Figure A. 1 Topology of Test Network 5
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