
RAPID PROTOTYPING USING A

PRECISION ROBOTIC MANIPULATOR

Tang Sai Hong, B. Eng.

A thesis submitted to the Dublin City University in partial

fulfilment for the degree of

Doctor of Philosophy

Sponsoring Establishment:

Universiti Putra Malaysia

September 2000

DECLARATION

I hereby certify that this material, which I now submit for assessment on the

programme of study leading to the award of Doctor of Philosophy is entirely my own

work and has not been taken from the work of others save and to the extent that such

work has been cited and acknowledged within the text of my work.

ID No.: 97970018

Date: September 2000

ACKNOWLEDGEMENT

I am indebted to Professor M. S. J. Hashmi for his excellent supervision,

remarkable guidance, helpful advice and truthful encouragement throughout the

duration of this research.

I would also like to express my sincere gratitude to Dr. Shamsuddin Sulaiman,

who continued to be one of my project mentors after my undergraduate studies.

My special thanks to Dr. Paul Young, who contributed his valuable time in my

project.

The technical assistance provided by Mr. Keith Hickey, Mr. Liam Domican, Mr.

Jim Barry and Mr. Marlin Johnson are much appreciated.

Last but not least, my special thanks to my parents, brothers, friends and all

postgraduates for their constructive suggestions, understanding and support.

DEDICATION

This research work in specially dedicated to my wife, who has been so

supportive and understanding throughout the years of my studies. Thank you for being

extremely patient with me.

ABSTRACT

A rapid prototyping system using a precision robotic manipulator has been

developed. The system is comprised of a latest personal computer (Pentium II, 300

MHz, 128 MB RAM and 5 GB hard disk capacity), interfacing system (PS-23 indexer,

KS-drives and servomotors), a four degrees of freedom precision manipulator and a ball

nosed end milling equipment.

The hardware is integrated with the AutoSurf (CAD software), which is used in

designing engineering models, section cut the surface models and changing graphic file

into DXF files (neutral format files). The AutoLISP (AutoSurf programming language)

has been used to simulate the additive prototyping process. The hardware is also linked

with the self-developed CAM programs for data processing and motion control.

With the above hardware and software configuration, subtractive prototyping

models have been produced successfully. Simple additive prototyping process was also

simulated graphically in AutoSurf environment. The CAM programs were also tested to

be fine with the additive prototyping models’ data files.

Generally, the rapid prototyping system using the precision robotic manipulator

has the advantage of being cheaper, effective, time and space saving, with dual purposes

(subtractive and additive processes) and it is an all in one system.

CONTENTS

DECLARATION i

ACKNOWLEDGEMENT ii

DEDICATION iii

ABSTRACT iv

CONTENTS v

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF PLATES xv

CHAPTER 1: INTRODUCTION 1

1.1 Aim and Objectives 3

1.2 Project Overview 4

CHAPTER 2: LITERATURE REVIEW 6

2.1 Introduction 6

2.2 Robotics 7

2.2.1 Robot Definitions 8

2.3 Classifications of Robots 9

Page

v

2.3.1 Arm Geometry 10

2.3.2 Fixed and Variable Sequence 15

2.3.3 Drive System 16

2.3.4 Point-to-Point and Continuous Path 19

2.4 Applications of Robots 20

2.4.1 Robot Specifications 21

2.5 Computer-Aided Design (CAD) 24

2.6 Computer-Aided Manufacturing (CAM) 26

2.7 Computer-Aided Design and Manufacturing (CAD/CAM) 28

2.7.1 CAD/CAM in a Product Cycle 29

2.7.2 CAD/CAM Data Exchange 33

2.8 Prototyping 40

2.8.1 Subtractive Prototyping 42

2.8.2 Milling 44

2.8.3 Milling Methods 45

2.8.4 Additive Prototyping 50

CHAPTER 3: EQUIPMENT 60

3.1 Introduction 60

3.2 Precision Manipulator 62

3.2.1 Manipulation Around X-Axis 64

3.2.2 Manipulation Along and Around Y-Axis 65

3.2.3 Manipulation Along X-Axis 66

3.3 Interfacing 67

vi

3.3.1 PC-23 Indexer 69

3.3.2 Programming of PC-23 Indexer 73

3.3.3 Personal Computer and PC-23 Indexer 77

3.3.4 Motion Control of PC-23 Indexer 78

3.3.5 KS-Drive 83

3.3.6 Visual Indicators of KS-Drive 85

3.3.7 Servo System of KS-Drive 87

3.3.8 Pushbutton Tuning of KS-Drive 90

3.3.9 RS-232 Interface of KS-Drive 92

3.3.10 A.C. Brushless Servomotors 96

3.4 Subtractive Prototyping Equipment 98

CHAPTER 4; CAD/CAM 103

4.1 Introduction 103

4.2 CAD Tool 104

4.3 CAD for Subtractive Prototyping 105

4.3.1 Surface Modelling and Manipulation 106

4.4 CAD for Additive Prototyping 126

4.4.1 Object Modelling and Manipulation 127

4.4.2 Graphical Simulation 135

4.5 Drawing Interchange Format (DXF) 143

4.6 CAM Tool 146

4.7 CAM for Subtractive Prototyping 147

vii

4.7.1 Extract.c 148

4.7.2 Convert.c 150

4.7.3 Sortadd.c 152

4.7.4 Vd.c 154

4.7.5 VsvMt.c 155

4.8 CAM for Additive Prototyping 158

4.8.1 Group.c and Select.c 159

4.8.2 Deposit.c and DpsSlp.c 160

CHAPTER 5: RESULTS AND DISCUSSION 165

5.1 Introduction 165

5.2 Results of the Subtractive Prototyping Process 167

5.3 Results of the Additive Prototyping Process 185

5.4 Discussion 195

5.4.1 Effectiveness of the Equipment 196

5.4.2 Effectiveness of CAD/CAM 198

5.4.3 Effects of Model Shapes, Size and Feed Rate 201

5.4.4 Effectiveness of CAD Programming Language 203

CHAPTER 6: CONCLUSION AND RECOMMENDATIONS 205

6.1 Conclusion 205

6.2 Thesis Contribution 206

6.3 Recommendations 208

viii

REFERENCES 210

APPENDICES

Appendix A PC-23 Indexer Commands 217

Appendix B KS-Drive Commands 265

Appendix C AutoLISP Simulation Program 278

Appendix D Extract.c Program Source Codes 301

Appendix E Convert.c Program Source Codes 303

Appendix F Sortadd.c Program Source Codes 306

Appendix G Vd.c Program Source Codes 311

Appendix H VsvMt.c Program Source Codes 316

Appendix I ExWax.c Program Source Codes 324

Appendix J Group.c Program Source Codes 326

Appendix K ConWax.c Program Source Codes 328

Appendix L SaWax.c Program Source Codes 331

Appendix M Select.c Program Source Codes 336

Appendix N Deposit.c Program Source Codes 338

Appendix O DpsSlp.c Program Source Codes 345

PAPER PUBLISHED

Tang, S. H.; Sulaiman, S. and Hashmi, M. S. J., Precision Robotic Manipulator based
Rapid Prototyping System, Proceedings o f the IASTED International Conference o f
Robotics and Automation 2000, 17 -23 , August 14 - 16, 2000.

LIST OF TABLES

Table 2.3(a) Advantages and Disadvantages of Various Drive
Systems 18

Table 2.4(a) Robot-Human Charts:
Comparison of Robot and Human Characteristics 23

Table 2.7(a) Data Exchange Standards By Applications 39

Table 2.8(a) Additive Prototyping Methods 52

Table 3.3(a) PC-23 Indexer’s Performance, Physical, Environmental
and Electrical Specifications 70

Table 3.3(b) Assigned Switches Values and Base Address Setting 72

Table 3.3(c) Status Byte Format 74

Table 3.3(d) Control Byte Format 75

Table 3.3(e) MRn Commands with Corresponding Settings 80

Table 3.3(f) KS-Drive’s Physical, Environmental and
Electrical Specifications 83

Table 3.3(g) KS-Drive’s Error Codes with Conditions 86

Table 3.3(h) Pushbutton Tuning Procedures and Conditions 92

Table 3.3(i) A.C. Brushless Servomotors’ Specifications 96

Table 3.4(a) Milling Drive Technical Data 101

Table 4.4(a) Entity Definition Data 136

Table 5.2(a) Dimensional Comparison 185

Page

x

LIST OF FIGURES

Figure 2.3(a) Cylindrical Co-ordinate Robot 11

Figure 2.3(b) Spherical (Polar) Co-ordinate Robot 12

Figure 2.3(c) Cartesian (Rectangular) Co-ordinate Robot 13

Figure 2.3(d) Revolute Co-ordinate (Jointed Arm) Robot 14

Figure 2.3(e) SCARA Robot 15

Figure 2.7(a) Product Cycle (Design and Manufacturing) 30

Figure 2.7(b) Revised Product Cycle with CAD/CAM 32

Figure 2.7(c) Methods of Exchanging Databases 37

Figure 2.8(a) Peripheral Milling 47

Figure 2.8(b) Face Milling 47

Figure 2.8(c) End Milling 48

Figure 2.8(d) Typical End Mills 49

Figure 2.8(e) Stereolithography Technique 53

Figure 2.8(f) Laminated Object Manufacturing Technique 55

Figure 2.8(g) Selective Laser Sintering Technique 56

Figure 2.8(h) Fused Deposition Modelling Technique 58

Figure 2.8(i) Solid Ground Curing Technique 59

Figure 3.1(a) Control System Configuration 61

Figure 3.2(a) Side and Plan View of Manipulator 63

Figure 3.2(b) Manipulation Around X-Axis 64

Page

xi

Figure 3.2(c) Manipulation Along and Around Y-Axis 65

Figure 3.2(d) Manipulation Along X-Axis 67

Figure 3.3(a) Interface System 68

Figure 3.3(b) KS-Drive Servo System 87

Figure 3.3(c) Daisy Chain Wiring 94

Figure 3.3(d) A.C. Brushless Servomotors 97

Figure 3.4(a) Milling Drive Front Panel 100

Figure 3.4(b) Drive Holder and Support 101

Figure 4.3(a) Primitive Cone and Section Cut Surface Models 109

Figure 4.3(b) Primitive Cylinder and Section Cut Surface Models 110

Figure 4.3(c) Revolved and Section Cut Surface Models 112

Figure 4.3(d) Extruded and Section Cut Surface Models 113

Figure 4.3(e) Tubular and Section Cut Surface Models 114

Figure 4.3(f) Swept and Section Cut Surface Models 115

Figure 4.3(g) Ruled and Section Cut Surface Models 116

Figure 4.3(h) Blended and Section Cut Surface Models 117

Figure 4.3(i) Circle to Heart Model 119

Figure 4.3(j) Circle to Complex Model 119

Figure 4.3(k) Circle to Star Model 120

Figure 4.3(1) Heart to Star Model 120

Figure 4.3(m) Complex to Star Model 121

Figure 4.3(n) Circle to Square Model 121

Figure 4.3(o) Complex to Square Model 122

Figure 4.3(p) Star to Pentagon Model 122

xii

Figure 4.3(q) Cross to 45° Rotated Cross Model 123

Figure 4.3(r) Cross to Pentagon Model 123

Figure 4.3(s) Circle to Heart to Complex Model 124

Figure 4.3(t) Circle to Heart to Star Model 124

Figure 4.3(u) Circle to Complex to Star Model 125

Figure 4.3(v) Heart to Complex to Star Model 125

Figure 4.3(w) Circle to Heart to Complex to Star Model 126

Figure 4.4(a) Solid Model in Wireframe Representation 129

Figure 4.4(b) 20 mm Diameter Surface and Section Cut Models 130

Figure 4.4(c) 30 mm Diameter Surface and Section Cut Models 131

Figure 4.4(d) 40 mm Diameter Surface and Section Cut Models 131

Figure 4.4(e) 50 mm Diameter Surface and Section Cut Models 132

Figure 4.4(f) 60 mm Diameter Surface and Section Cut Models 132

Figure 4.4(g) 70 mm Diameter Surface and Section Cut Models 133

Figure 4.4(h) 80 mm Diameter Surface and Section Cut Models 133

Figure 4.4(i) 90 mm Diameter Surface and Section Cut Models 134

Figure 4.4(j) Complete Surface and Section Cut Models 134

Figure 4.4(k) 10 mm Diameter Core Block with Deposition Tool 137

Figure 4.4(1) 20 mm Diameter Product with Deposition Tool 137

Figure 4.4(m) 30 mm Diameter Product with Deposition Tool 138

Figure 4.4(n) 40 mm Diameter Product with Deposition Tool 138

Figure 4.4(o) 50 mm Diameter Product with Deposition Tool 139

Figure 4.4(p) 60 mm Diameter Product with Deposition Tool 139

Figure 4.4(q) 70 mm Diameter Product with Deposition Tool 140

xiii

Figure 4.4(r) 80 mm Diameter Product with Deposition Tool 140

Figure 4.4(s) 90 mm Diameter Product with Deposition Tool 141

Figure 4.4(t) Complete Product with Deposition Tool 141

Figure 4.4(u) Graphic Simulation Program Flow 142

Figure 4.7(a) Subtractive Prototyping CAM Programs Flow 148

Figure 4.7(b) Extract.c Program Flow 149

Figure 4.7(c) Cartesian System to Cylindrical System 151

Figure 4.7(d) VsvMt.c Program Flow 157

Figure 4.7(e) Additive Prototyping CAM Programs Flow 159

Figure 4.7(f) Deposit.c Program Flow 162

Figure 4.7(g) DpsSlp.c Program Flow 164

Figure 5.3(a) Deposition Tool with 10 mm Diameter Core Block 186

Figure 5.3(b) Deposition Tool with 20 mm Diameter Product 187

Figure 5.3(c) Deposition Tool with 30 mm Diameter Product 188

Figure 5.3(d) Deposition Tool with 40 mm Diameter Product 189

Figure 5.3(e) Deposition Tool with 50 mm Diameter Product 190

Figure 5.3(f) Deposition Tool with 60 mm Diameter Product 191

Figure 5.3(g) Deposition Tool with 70 mm Diameter Product 192

Figure 5.3(h) Deposition Tool with 80 mm Diameter Product 193

Figure 5.3(i) Deposition Tool with 90 mm Diameter Product 194

Figure 5.3(j) Deposition Tool with Complete Product 195

xiv

LIST OF PLATES

Plate 3.1 (a) General Layout of Equipment 60

Plate 3.2(a) Four Degrees of Freedom Precision Manipulator 62

Plate 3.3(a) PC-23 Indexer 71

Plate 3.3(b) KS-Drive 84

Plate 3.4(a) Subtractive Prototyping Equipment 98

Plate 5.2(a) Result for Heart to Complex Shaped Model 167

Plate 5.2(b) Result for Circle to Heart Shaped Model 168

Plate 5.2(c) Result for Circle to Complex Shaped Model 169

Plate 5.2(d) Result for Circle to Star Shaped Model 170

Plate 5.2(e) Result for Heart to Star Shaped Model 171

Plate 5.2(f) Result for Complex to Star Shaped Model 172

Plate 5.2(g) Result for Circle to Square Shaped Model 173

Plate 5.2(h) Result for Complex to Square Shaped Model 174

Plate 5.2(i) Result for Star to Pentagon Shaped Model 175

Plate 5.2(j) Result for Cross to 45° Rotated Cross Shaped Model 176

Plate 5.2(k) Result for Cross to Pentagon Shaped Model 177

Plate 5.2(1) Result for Circle to Heart to Complex Shaped Model 178

Plate 5.2(m) Result for Circle to Heart to Star Shaped Model 179

Plate 5.2(n) Result for Circle to Complex to Star Shaped Model 180

Plate 5.2(o) Result for Heart to Complex to Star Shaped Model 181

Page

xv

Plate 5.2(p) Result for Circle to Heart to Complex to Star Shaped Model 182

Plate 5.2(q) Result for Scaled Up Model 183

Plate 5.2(r) Result for Scaled Up and Higher Feed Rate Model 184

xvi

CHAPTER 1: INTRODUCTION

Robots are used in the manufacturing and non-manufacturing environments.

They are either replacing human functions or working together with human operators.

Robots have different skills and capabilities. Some of them are general-purpose robots

that are capable of a wide range of tasks and others have specific applications.

Most of the robots are used in the manufacturing industries. Industrial tasks,

which are categorised as dirty, dangerous, dull, hot, heavy, hazardous and demeaning

but necessary, are best suited for robots. Besides the tasks mentioned above, robots are

also used in other fields for improving productivity, increasing product quality and

reducing labour costs.

Prototyping is one of the important phases in product development cycle. With a

prototyped product, the designer can examine its aesthetic aspect, measure its physical

dimensions, accomplish functionality test, validate its performance and so on. If the

prototype is not up to the standard requirements, the designer will have to redesign the

product and, prototyping will be needed as to check the product properties again.

As a result, the product design and validating cycle will continue as long as the

prototype does not meet the desired product specifications. Hence, reducing the

prototyping time is one of the crucial aspects in speeding up the product development

cycle and increasing a company’s competitiveness in the global market, especially when

globalisation is inevitable.

Rapid prototyping is a popular term for describing any technology that can

reduce the prototyping time drastically. With rapid prototyping technologies, designers

1

and engineers can visualise a real-life prototype part in hours or days instead of weeks

or months if traditional prototyping methods are used.

Rapid prototyping reduce the lead-time needed to complete the design and place

a newly designed product on the production line faster. Because of the prototyping

leadtime is greatly reduced, designers have the luxury of being allowed to have multiple

iterations of a design and the engineers have numerous opportunities for validating the

physical part so as to introduce a right-at-the-first-time product to the production line.

Currently, most people are focusing on new prototyping technologies like

stereolithography apparatus (SLA), selective laser sintering (SLS) and others trying to

minimise the prototyping time. But, improving existing or traditional prototyping

methods can also reduce the prototyping time. In this study, the integration of a

precision robotic manipulator with a traditional subtractive prototyping process (ball

nosed end milling process) was developed in order to materialise the rapid prototyping

concept.

It is not common to have an integrated system of rapid prototyping using a

precision robotic manipulator. But in this information technology age, integration of

various systems into a hybrid system is not impossible since in manufacturing

industries’ computer-aided design and manufacturing (CAD/CAM) technologies are not

scarce.

The computer is particularly important in this integrated system because it is

taking up the role as a brain. A robot has the ability to manipulate objects in the real

world. This unique function when connected to a computer will enable the computer to

interact with the real world. Literally, robots are the arms of the computer. So, with the

2

availability of the CAD/CAM knowledge base, a hybrid system of a precision robotic

manipulator and a subtractive prototyping tool is possible and viable.

Hence, a feasibility study of an integrated system of a personal computer

controlled precision robotic manipulator coupled with CAD/CAM programs and ball

nosed end milling process has been carried out. The results of the study will contribute

to the knowledge base of the vast manufacturing industries.

1.1 AIM AND OBJECTIVES

The aim of the present work is to integrate a four degrees of freedom precision

robotic manipulator, a high specification personal computer, computer-aided design

(CAD) software, self-developed computer-aided manufacturing (CAM) programs and

self-assembled subtractive prototyping equipment to create a rapid prototyping system.

The objectives of the project are:

(1) To interface the precision robotic manipulator with the high specification personal

computer replacing the existing PC/XT microcomputer.

(2) To develop postprocessors for Drawing Interchange File (DXF) format for

subtractive prototyping process.

(3) To develop postprocessors for Drawing Interchange File (DXF) format for additive

prototyping process.

(4) To develop programs for controlling the motion of the precision robotic manipulator

in subtractive prototyping process.

3

(5) To develop programs for controlling the motion of the precision robotic manipulator

in additive prototyping process.

(6) To construct a customised ball nosed end milling equipment for subtractive

prototyping process.

(7) To produce three-dimensional complex shaped objects by subtractive prototyping

process.

(8) To develop a program for simulating the additive prototyping process in a computer

graphic environment.

1.2 PROJECT OVERVIEW

A precision robotic manipulator based rapid prototyping system was built and

evaluated.

In the project, three-dimensional complex shaped models were designed using

commercially available CAD software. Model definition data were then exported out

from the software as neutral format data file. Self-developed CAM programs were used

to extract important data out from the neutral format file and was later processed for

creating the motion parameters for controlling the robotic manipulator in the final stage.

A ball nosed end milling equipment was also built to serve as the subtractive

prototyping process of the system. The robotic manipulator end effector was modified

so that it can clamp a cylindrical polystyrene block for subtractive and additive

prototyping processes.

4

In the system, a personal computer was used to control a four degrees of

freedom precision robotic manipulator. The motion control interfacing system between

the personal computer and the manipulator is comprised of PC-23 indexer and KS

drives with alternate current brushless servomotors.

With the motion parameter available, a self-developed motion control program

can activate and control the motion of the robotic manipulator so as to manipulate the

work material (polystyrene block) to be milled by the ball nosed end milling equipment.

Three-dimensional complex shaped components were produced. Thus, a better

performance traditional prototyping tool was upgraded to the level that is almost similar

to the latest and expensive rapid prototyping tools.

Postprocessors for DXF file and control programs were developed for the

additive prototyping process. The additive prototyping process was also simulated in a

computer graphic environment. A commercially available CAD programming language

was used to develop the simulation program.

5

CHAPTER 2: LITERATURE REVIEW

2.1 INTRODUCTION

The present work is to develop a rapid prototyping system by integrating a

precision robotic manipulator with traditional subtractive prototyping process (ball

nosed end milling) and computer-aided design and manufacturing (CAD/CAM)

software. As a result, the following subsections will consider all the related elements of

the integrated system. The subtopics are:

(1) The origin of the robot, robotics and its various definitions by different

organisations.

(2) Different methods of classifying robots’ physical configurations, power supplies,

motion paths and so on.

(3) Industrial applications and specifications of robots.

(4) Computer-aided design (CAD) and its function in design process.

(5) Computer-aided manufacturing (CAM) and its role in planning and control.

(6) CAD/CAM, its scope in a product cycle development and database exchange.

(7) Prototyping methods - subtractive process (milling) and additive processes (STA,

LOM, FDM, SLS and SGC)

6

2.2 ROBOTICS

The word Robot was added into the English vocabulary with the translation of

Karel Capeks’s play, R. U. R. (Rossum’s Universal Robots) in 1923 [1]. Robot is

derived from a Czech word, ‘robota’, means worker [2] or compulsory (forced) labour

[3] and from ‘robotnik’, meaning ‘serf [4].

Isaac Asimov, the master science fiction writer [4], invented the word ‘robotics’.

He also propounded the famous Three Laws of Robotics [1].

(1) A robot must not harm a human being, nor through inaction allow one to come to

harm.

(2) A robot must always obey human beings, unless that is in conflict with the first law.

(3) A robot must protect itself from harm, unless that is in conflict with the first or

second laws.

The Three Laws are used to ensure that the designed robots are always ‘keeping their

place’ [1] and they remain worthy design standards for roboticists to this day [4].

In the year of 1954, George Devol applied to patent a design for what is

generally considered to be the first ‘industrial’ robot. Later in 1958, his robot was

actually built [4],

Robot technology’s advancement rate is closely related to the computer

technologies. Advancements in computer technology such as the introduction of solid

states’ range of products greatly increase the computational capabilities and reduce the

size of the control system [4].

Assembly is one of the areas where the applications of robotics grow rapidly

nowadays. Robots assemble almost all personal computer boards, and they are moving

7

into assembly applications in other industries. Besides, the industry is emphasising on

flexible and small-lot manufacturing. As a result, computer-controlled robots are

gaining popularity now [5], Major countries that use robots are Japan, USA, Germany,

Sweden, Italy, Britain and France [4],

2.2.1 Robot Definitions

Definition of the word ‘robot’ varies according to the geographical locations and

communities. So far, robotics associations like the International Standards Organisation

(ISO), Robotic Industries Association (RIA) and the British Robot Association are

providing different definitions.

Since late 1970s, the Robotic Industries Association (RIA; formerly the Robot

Institute of America) has defined a robot as “a manipulator, designed to move material,

parts, tools or specialised devices through variable programmed motions for the

performance of a variety of tasks [3].”

The International Standards Organisation (ISO) has a more lengthy definition of

an industrial robot [6]:

“A machine formed by a mechanism including several degrees of freedom, often

having the appearance of one or several arms ending in a wrist capable of holding a tool

or a work piece or an inspection device. In particular, its control unit must use a

memorising device and sometimes it can use sensing or adaptation appliances taking

into account environment and circumstances. These multipurpose machines are

8

generally designed to carry out a repetitive function and can be adapted to other

functions.”

British Robot Association’s robot definition is almost same as the RIA’s

definition of a robot. But, the important of the reprogrammable capability of the robot

has been emphasised. Its definition for an industrial robot is stated as ‘An industrial

robot is a reprogrammable device designed to both manipulate and transport parts, tools

or specialised manufacturing implements through variable programmed motions for the

performance of specific manufacturing tasks’ [7].

Robots should be easily reprogrammed to carry out work on new tasks. By

referring to the previous paragraph’s definition of a robot, a numerical controlled (NC)

machine tool is not a robot since, although it can be reprogrammed easily, but it is not

designed to do anything other than cutting material. Neither is the type of arm used to

handle toxic or radioactive material in the nuclear industry; human operator constantly

controlling the devices remotely, i.e. they are not programmed to operate autonomously

2.3 CLASSIFICATIONS OF ROBOTS

There are various ways of classifying robots, such as structural configurations,

power sources, motion systems and so on. The following subsections will describe some

of the common classification methods of robots.

9

2.3.1 Arm Geometry

The role of robot arm is to move the end effector (grippers or tool) to a given

position in a desired orientation. In order to get to any point in space, an arm needs to

have six degrees of freedom; namely three translational (right or left, forward or

backward, up or down) for reaching the point and three rotational (roll, yaw, pitch) to

get any orientation [4],

A common way of classifying the structural configuration of the arm is by

looking at different co-ordinate systems of the three major axes (translational). The

major axes will provide the vertical lift stroke, the in and out reaching stroke, and the

rotational or traversing motion about the vertical lift axis of the robot [4], Such a

classification can distinguish between five basic types commonly available in

commercial industrial robot [8] and they are described as below.

Cylindrical Co-ordinate Robot. The robot body is a vertical column that swivels

about a vertical axis. The arm consists of a few orthogonal slides that allow it to be

moved up or down and in or out with reference to the robot body [9]. This is illustrated

schematically in Figure 2.3(a) [8], In the figure, types of motions are shown by arrows;

namely two translational motions and one rotational motion. This kind of robot allows

good access into cavities and machining working area [10], Typical manufacturers are

Fanuc, Prab and Seiko [4],

10

Figure 2.3(a) Cylindrical Co-ordinate Robot

Spherical (Polar) Co-ordinate Robot. As shown in Figure 2.3(b) [8], this type of

robot geometry has two rotary axes combined with a linear axis. The base axis is a

rotary axis with a second rotary axis providing vertical motion. The linear axis makes

the radius of the sphere [11]. Unimation is one of the companies that produce this kind

of robot [9]. As shown by the arrows in the figure, it has two rotational motions and one

translantional motion. This kind of configuration can cover a large workspace from a

central support. It can also pick up objects from the ground by bending down its upper

part of the structure [10].

11

Figure 2.3(b) Spherical (Polar) Co-ordinate Robot

Cartesian (Rectangular) Co-ordinate Robot. Other names for this configuration

include rectilinear robot, x-y-z robot [8] and gantry cranes [12]. This robot has joints

that move in rectangular orthogonal direction [12] as illustrated in Figure 2.3(c) [8], As

shown by the arrows in the figure, it can have three translational motions. Examples of

this kind of robot are IBM 7565 (originally RSI) assembly robot, the Olivetti Sigma and

the DEA Pragma [4]. Generally, it has a rigid structure and can use inexpensive

pneumatic drives for pick and place operations [10].

12

Figure 2.3(c) Cartesian (Rectangular) Co-ordinate Robot

Revolute Co-ordinate (Jointed Arm) Robot. Sometimes it is known as

anthropomorphic robot. It is having three rotational motions, as shown by the arrows in

Figure 2.3(d) [8]. It consists of rotary joints called the ‘shoulder’ and the ‘elbow’

(corresponding to the human arm) all mounted on a ‘waist’ consisting of a rotating base

that provides the third degree of freedom [4]. It provides maximum flexibility. It can

cover a large workspace relative to the volume of the robot and can also reach over and

under an object. Electric motor is best suited for this kind of robot [10]. The Cincinnati

Milacron, Asea and Unimation [9] are some of the typical manufacturers of this kind of

robot.

1
13

Figure 2.3(d) Revolute Co-ordinate (Jointed Arm) Robot

SCARA Robot. SCARA is an acronym for Selective Compliance Assembly

Robot Arm. The robot is almost the same as the jointed arm robot except that the

shoulder and elbow rotational axes are vertical. In another word, the arm can be

constructed to be very rigid in the vertical direction, but compliant in the horizontal

direction [8]. Compliance is a desirable property for arms that are used in assembly

processes. The robot can flex its arm to accommodate the small errors in position that

occur when one object is brought into contact with another [10]. Manufacturers of the

robot are Pentel, NEC and IBM [4], to name a few. Figure 2.3(e) [8] is describing the

robot schematically. The arrows in the figure show the two rotational motions and one

translational motion.

14

Cp

Figure 2.3(e) SCARA Robot

2.3.2 Fixed and Variable Sequence

The fixed sequence robot, also called a pick-and-place robot [2] (nicknamed

bang-bang machine [4]), is the least sophisticated end of the robot scale [1], It is

programmed for a specific sequence of operations [2] only. The stroke of the motion

axes is determined by adjusting the mechanical end stops. Limit switches are the typical

sensors that sense the end points, and none of the points in between [4].

Its movements are from point to point, and the cycle is repeated continuously

[2]. Generally, it is very difficult to reprogramme this robot or to execute a different

sequence of operations. This is because its control system and memory, which are all

15

embodied in a complex and interdependent set of limit switches, interlocks, end stops

and electrical connections [1]. Many pneumatic driven robots are fixed sequence robots

Variable sequence robots are usually associated with computer devices. In other

words, their operation motions are controlled digitally. Variable sequence robots can

immediately execute new and different tasks or a sequence of operations by running a

new program [4], Besides, the operator can create new programs offline and input them

into the robot control system right after the old program ends.

Basically, a fixed sequence robot has a lower cost than the variable sequence

robot because its control system is not as complicated as the variable sequence robot.

The variable sequence robot is a general-purpose robot, whereas its counterpart is an

operation-specific robot. One has to consider the requirement and complexity level of

the functions of operations before choosing the appropriate type of robot for industrial

usage.

2.3.3 Drive System

Robots can move because actuators activate their joints. Actuators are in turn

powered by a particular form of drive system [1]. Three basic types of drive systems are

used in commercially available robots, namely hydraulic, electrical and pneumatic [6].

In hydraulic drive system, devices like rotary vane actuators and linear pistons

are used to accomplish the motion of the joint [8]. It uses fluid as the energy transfer

medium. Hydraulically driven robots are usually large in size and take up more floor

16

space than other kinds of robots. But, it has greater strength and higher speed if

compared to the other two kinds of energy sources. Besides, maintenance personnel are

more familiar with hydraulic systems. As a result, this system is considered to have the

advantage of mechanical simplicity [9].

In the early 1980s, robots moved from hydraulic to electrical system and

provided a major upheaval in technical breakthrough [13]. Nowadays, electric drive

systems are becoming more prevalent in commercially available robots [8]. Stepping

motors, servomotor and other kind of a. c. or d. c. electrical motors are used to drive the

system [1]. It requires smaller floor space since it does not have a large hydraulic power

unit [9]. Although it has moderate speed, its accuracy is the highest among all the drive

systems [10]. Besides, its repeatability is better [9] and more readily adaptable to

computer control [10] if compare to other systems. It also provides the cleanest and

quietest actuation [6],

Like hydraulic drive systems, pneumatic drive systems also use fluid as the

energy transfer medium. As a result, it uses devices like linear pistons and rotary vane

actuators to move the joint [8]. But, pneumatic systems use air instead of liquid as in

hydraulic system. Basically, it is only suitable for simpler robots [6] because of its

natural problem like noise, leakage and compressibility property [10]. The advantages

and disadvantages of the drive systems are summarised in Table 2.3(a).

17

Table 2.3(a) Advantages and Disadvantages of Various Drive Systems [10]

Pneumatic Drive System
Advantages
• Relatively inexpensive
• High speed
• Do not pollute work area with fluids
• Can be used in laboratory work
• No return line required
• Common energy source in industry
• Suits modular robot designs
• Actuator can stall without damage
Disadvantages
• Compressibility of air limits control and accuracy aspects
• Noise pollution from exhausts
• Leakage of air can be of concern
• Additional drying/filtering may be required
• Difficulties with control of speeds, take up of loads, and exhausting of lines___
Hydraulic Drive System
Advantages
• Large lift capacity
• High power to weight ratio
• Moderate speeds
• Oil is incompressible, hence once positioned joints can be locked to a stiff structure
• Very good servo control can be achieved
• Self lubricating and self cooling
• Operate in stalled condition with no damage
• Fast response
• Intrinsically safe in flammable and explosive atmospheres
• Smooth operation at low speeds
Disadvantages
• Hydraulic systems are expensive
• Maintenance problems with seals causing leakage
• Not suitable for high speed cycling
• Need of a return line
• Hard to miniaturise because high pressures and flow rates
• Need for remote power source which uses floor space
• Cannot back drive links against valves__________ _____ ________ __ _________

18

Table 2.3(a) Advantages and Disadvantages of Various Drive Systems (Continue)

Electric Drive System (DC motors and stepper motor)
Advantages
• Actuators are fast and accurate
• Possible to apply sophisticated control techniques to motion
• Relatively inexpensive
• Very fast development times for new models
• New rare earth motors have high torque, reduced weight, and fast response times
Disadvantages
• Inherently high speed with low torque, hence gear trains or other power

transmission units are needed
• Gear backlash limits precision
• Electrical arcing may be a consideration in flammable atmospheres
• Problems of overheating in stalled condition
• Brakes are needed to lock them in position__________________ ______________ _

2.3.4 Point-to-Point and Continuous Path

The motion systems of industrial robots can be classified into point-to-point

(PTP) and continuous path (also called contouring) [12].

A point-to-point robot’s movement is controlled from one point location in

space to another. Before the robot executes its sequence of operations, the programmer

key in the points of desired locations into its control memory. Motion parameters like

velocity and acceleration are not controlled when the robot moves from one point to

another [9].

Since the PTP robot axes may move at different velocities and accelerations, or

even different linear or angular distances, each axis may reach its subsequent point

location at different time frame. As a result, the path of motion of its end effector is

unpredictable [12]. Some of the productive operations that are often performed by PTP

19

robots are machine loading, spot welding and pick-and-place tasks [9]. PTP robots also

need a fairly empty working volume because of its unpredictable path of motions [12].

Continuous path (CP) robots are capable of following a closely spaced locus of

points, which describe a smooth compound curve. The memory and control requirement

of a CP robot is greater than PTP robot since it needs to remember the complete path of

motion instead of merely the end points of the motion sequence [9]. The CP robot is

best suited for complex working environment, where it may need to interact

continuously with its surroundings. Examples are paint spraying, continuous welding

processes and picking up objects from a moving conveyor [12].

By looking at the type of tasks that can be accomplished by point-to-point robot

and continuous path robot, one can understand that a CP robot will cost more than a

PTP robot.

2.4 APPLICATIONS OF ROBOTS

Nowadays, almost all industrial robots are applied in manufacturing operations

[8]. It is important to know the reasons behind the selection of robots in the

manufacturing world. Some of the general characteristics of an industrial work

environment which have tended to promote the replacement of human labour with a

robot are described as below:

(1) Hazardous or Uncomfortable Working Conditions. If the working environment has

the potential dangers or health hazards due to heat, radiation, or toxicity, or where

the work area is uncomfortable and unpleasant to human being, then, a robot should

20

be considered doing the task instead of human [9]. Typical job situations that have

the mentioned characteristic are hot forging, spray painting, continuous arc welding

and spot welding [8],

(2) Repetitive Work Cycle. When the sequence of operations are relatively simple and

repeated in every work cycle, a robot will perform better than its human counterpart.

It is because robot has greater consistency and repeatability than human worker [8].

This is especially true if the job is accomplished within a limited work area. Pick-

and-place operations and machine loading are two kinds of repetitive tasks.

(3) Difficult Handling. If the involved work part or tool in the operation is awkward or

heavy, then, a robot might be a better choice in accomplishing the job because some

industrial robots are capable of lifting up payloads that are several hundred

kilograms. A human worker would increase the production cycle time since he or

she will need the assistance of some mechanical devices to accomplish the task [9].

(4) Multishift or Continuous Operation. The labour savings will result in a quicker

payback if the initial investment cost of the robot can be spread over two or three

shifts [9]. Besides, continuous manufacturing process is better because equipment

set up time can be reduced or eliminated. In some cases, machine set up time is

crucial in determining the manufacturing cost of the product.

2.4.1 Robot Specifications

From a company’s point of view, robots can improve the process quality by

providing higher accuracy and repeatability. These can also perform the process under

21

conditions that lead to higher quality but is not conducive for human operation. Besides,

costs can be reduced because of saving labour cost, elimination of some processes and

discarding some safety or extra equipment. Performance can also be improved because

robots can perform tedious, repetitive tasks at greater speeds and with continuous

operation [6],

But, how can it be determined whether a robot can perform the desired task or

not? Or is there any guideline and reference for robot specifications? Bearing in mind

the two questions above, a robot-human chart was developed. The chart is partially

shown in Table 2.4(a). Characteristics like strength and power, consistency, overload -

underload performance and environmental constraints are compared between human

and robot manipulation.

22

Table 2.4(a) Robot-Human Charts: Comparison of Robot and Human
Characteristics [14]

Characteristics Robot Human
Manipulation

Strength and
power

a. 0.1 - 1000 kg of useful load
during operation at normal
speed:
reduced at above normal
speeds

b. Power relative to useful load

a. Maximum arm load: <30 kg;
Varies drastically with type
of movement, direction of
load, etc.

b. Power: 2 hp « 10 s
0.5 hp « 120 s
0.2 hp = continuous 5
kc/min
Subject to fatigue: may
differ between static and
dynamic conditions

Consistency Absolute consistency if no
malfunctions

a. Low

b. May improve with practice
and redundant knowledge of
results

c. Subject to fatigue:
physiological and
psychological

d. May require external
monitoring of performance

Overload-
underload

performance

a. Constant performance up to a
designed limit, and then a
drastic failure

b. No underload effects on
performance

a. Performance declines
smoothly under a failure

b. Boredom under local effects
is significant

Environmental
constraints

a. Ambient temperature from
-10 to 60°C

b. Relative humidity up to 90%

c. Can be fitted to hostile
environments

a. Ambient temperature range
15 to 30°C

b. Humidity effects are weak

c. Sensitive to various noxious
stimuli and toxins, altitude,
and air flow

23

2.5 COMPUTER-AIDED DESIGN (CAD)

A definition for Computer-Aided Design (CAD) is, “the effective use of

computer in creating, modifying, or documenting engineering design in any design

activity” [8]. It is also a technique where man and machine are blended into a problem

solving team, intimately coupling the best characteristics of each [15].

A computer-aided design system is comprised of [16]:

(1) the computer and associated peripheral equipment which are called hardware;

(2) the computer programs which are called software that run on the hardware;

(3) the data structure which is created and manipulated by the software;

(4) human knowledge and activities.

CAD systems often have large and complex computer programs, perhaps using

specialised computing hardware. Normally, the software is comprised of the following

elements that process the data stored in the database in different ways [16].

(1) Model Definition. Adding geometric elements to a model of the form of a

component is a typical example.

(2) Model Manipulation. Moving, copying, deleting, editing or modifying the design

model’s elements.

(3) Picture Generation. Generation of design model images on a computer screen or on

some hardcopy devices.

(4) User Interaction. Handling user’s input commands and presenting output to the user

about the operation of the system.

(5) Database Management. Management of the files that make up the database.

(6) Applications. Generating information of revaluation, analysis or manufacture.

24

(7) Utilities. It is a ‘catch-all’ term for parts of the software that do not directly affect

the design model, but modify the operation of the system in some ways such as

selection of line type, display colour, units and so on.

There are four important reasons for using a computer-aided design system to

support the engineering design operation [9]:

(1) Increasing Designer’s Productivity. Designer can reduce time in operations like

synthesising, analysing, and documenting the design because CAD can help him or

her in conceptualising the product and its components.

(2) Improving Design Quality. Utilising CAD system with suitable hardware and

software capabilities allows the designer to produce a more complete engineering

analysis and to consider a larger quantity and variety of design alternatives.

(3) Improving Design Documentation. The graphical output of a CAD system is better

than manual drafting in terms of quality of documentation. The engineering

drawings are superior, and there is more standardisation among the drawings, fewer

drafting errors, and greater legibility.

(4) Creating Manufacturing Database. Database for manufacturing a product is created

in the process of product design documentation. Important manufacturing data like

geometric specification of the product, dimensions of the components, materials

specifications, bill of materials and others are documented in an engineering design.

Roughly 80 percent of a product’s ultimate cost is determined and fixed during

the design phase. Typically, companies only allocate about 5 percent of their resources

on design and engineering. Contrasting these patterns of expenditure and commitment

of resources over a product’s life cycle, one can see that the 5 percent can have a great

effect on competitive advantage [17]. A CAD system can have a significant effect on

25

that 5 percent by increasing the effectiveness of the design and engineering tasks. CAD

is not really used to reduce the percentage; it is used to come up with a better decision

about the 80 percent of the product’s cost and performance characteristics [18].

Some of the common and commercial available computer-aided design software

programmes are AutoCAD, Microstation 32, I/EMS, CATIA and MENTOR [6]. The

leaders in the mechanical CAD software arena are IBM, Computervision, Hewlett-

Packard, Schlumberger, Autodesk, SDRC, EDS/Unigraphics and Parametric

Technology [19],

CAD programming languages are essential part of modern engineering

activities. During the last decade, AutoLISP programming language has been used in a

few areas such as a surface-climbing robot simulation [20], water pollution simulation

over a river basin [21], geometry simulation in sand mould casting [22], shape similarity

assessment of mechanical parts [23] and fragmentation assessment in blasting [24],

However, AutoLISP has never been used in simulating a rapid prototyping process

before because not many industrial companies are using AutoLISP in their

manufacturing operations. AutoLISP is more common in the education institutions and

home users that rely on low cost personal computers. Its use in helping to simulate an

additive prototyping process would be a novel research project.

2.6 COMPUTER-AIDED MANUFACTURING (CAM)

Computer-aided manufacturing (CAM) is defined as the effective use of

computer technology in the planning, management, and control of the manufacturing

26

functions [8]. Computer-aided manufacturing is the business end of computer graphics,

where all the physical work gets done on the factory floor to actually produce the parts

designed with computer-aided design system. In 1952, the first numerically controlled

machine tool was successfully demonstrated at the Massachusetts Institute of

Technology (MIT). Since then, CAM has played an important role in the manufacturing

industry [25].

The application of CAM can be grouped into two categories. The two categories

represent two different levels of involvement of the computer in plant operations and

they are [8]:

(1) Manufacturing planning. A computer is used indirectly to support the production

function, and there is no direct connection between the process and the computer.

Computer is used “off-line” to provide essential information for the effective

planning and management of production activities. Applications of CAM in

planning are cost estimating, computer-aided process planning, computer-assisted

NC part programming, development of work standards, computer-aided line

balancing and, production and inventory planning.

(2) Manufacturing control. The control function in manufacturing includes individual

processing and assembly operations regulation, and plant-level activities

management. Process level control involves the achievement of certain performance

objectives by proper manipulation of the inputs to the process. Plant level control

includes effective use of labour, equipment maintenance, transferring material in the

factory, shipping good quality products on schedule, and maintaining the lowest

plant operating costs. CAM applications in the manufacturing control aspect are

27

concerned with developing computer systems for managing and controlling the

plant’s physical operations like quality control, shop floor control, and so on.

2.7 COMPUTER-AIDED DESIGN AND MANUFACTURING (CAD/CAM)

CAD/CAM technology brings together two major elements of computerised

manufacture. CAD involves creating a file resemblance of a finished product and

generating the data needed for its manufacture and CAM will use the data to build

programs that run the machine tools that will make the designed product [26].

The origin of computer-aided design and manufacturing (CAD/CAM) can be

traced back to the beginning of civilisation when engineers of ancient Egypt, Greece

and Rome acknowledged graphics communication. A few existing drawings on

Egyptian tombs can be considered as technical drawings. Even today’s graphic

conventions like isometric views and crosshatching are found in Leonardo da Vinci’s

available work and notes.

A French mathematician, Gaspard Monge (1746 - 1818) invented orthographic

projection, who was then working as a government designer. It was the inventions of

computer and xerography that have given graphics, and consequently CAD/CAM

technology, their current dimensions and power [27]. CAD/CAM technology continue

to evolve with the rapid growing of computer capabilities since 1940s, when the first

appearance of the huge, electromechanical machines that used clicking relays to

perform computations that we called digital computer [28].

28

CAD/CAM involves the application of digital computers in completing certain

functions in design and production [8], The combination of CAD and CAM in the

CAD/CAM term symbolised the efforts to integrate the design and manufacturing

functions in an organisation into a continuum of activities, rather than treating them as

two distinct and separate activities, as they have been considered in the past [8],

In fact, the application of microcomputers in design and manufacturing

constitutes the most significant opportunity for substantial gains in industry; namely

higher productivity, better quality, and lower cost [29]. Advances in the hardware and

software of microcomputers have also made it easier to link CAD/CAM system to other

manufacturing processes, so that product design and manufacturing can be integrated

into a single system [30].

One of the aims of a CAD/CAM system for robotics is off-line programming

[31]. Modern methods in robot programming utilise the technology of off-line

programming, where computers are used for programming without the need to connect

physically to the robot or even to be anywhere near its physical presence [32], Off-line

programming is suited to full computer integration of a facility [7].

2.7.1 CAD/CAM in a Product Cycle

Product cycle is the activities and functions that must be accomplished in the

design and manufacture of a product. So, what is the scope of CAD/CAM in the

operations of a manufacturing firm? Figure 2.7(a) shows the various steps in the product

cycle [9], Customers and the markets who drive the product cycle. The customers might

29

activate the cycle if they design the part and later pass it to a different company for

manufacturing. Or, the design and manufacturing of a product might be accomplished

by the same organisation.

Whatever the case, the cycle will begin with a concept, an idea for a product.

The concept is then cultivated, refined, analysed, improved, and translated into a plan

for the product through the design engineering process. Later, a set of engineering

drawings are drafted for documenting the plan to show how a product is made and

providing a set of specifications indicating how the product should perform. Except for

engineering changes that normally follow the product throughout its life cycle, this

completes the design activities in Figure 2.7(a).

Figure 2.7(a) Product Cycle (Design and Manufacturing)

30

The next phase is the manufacture of the product. A process plan that specifies

the required sequence of production operations for making the product is formulated.

Sometimes, new machine and tools must be acquired for producing a new product.

Scheduling activity provides a plan that specifies the correct quantities and dates of

delivery of the final product. Once the plans are ready, the raw materials goes into the

production line, followed by quality testing, and delivery to the customer.

Figure 2.7(b) shows the revised product cycle after the introduction of

CAD/CAM [9]. Computer-aided design and automated drafting are used in the

conceptualisation, design, and documentation of the product. Planning and scheduling

processes are performed more efficiently with the aid of computers. Computers are also

used in monitoring and controlling manufacturing operations. In quality control, the

product and its components are inspected and tested by computers too.

One example where CAD/CAM system has brought significant benefit to the

manufacturing industries happened at Daimler Benz in Germany. This company applied

a CAD/CAM system to its tool making operations for six years. The benefits are 2

percent cast metal savings in pressure die casting, 3 percent in the cast iron foundry and

6 percent in gravity die casting. Moreover, the firm claimed reductions in tooling costs

and reduction of up to 50 percent in delivery times. With a CAD/CAM system, the die

shapes are more consistent. The elimination of the substantial variations in volume

between apparently identical tools could cost as much as 3.5 percent in cast metal

overweight [33].

Another example is the application of CAD/CAM in sheet metal production for

making the Citation III aircraft (product of Cessna). Manual methods for part creation is

about forty hours. If a minicomputer is used, the time of production is about sixteen

31

hours. When high-speed modem linked with a mainframe computer, it needs eight hours

to produce the same part. With CAD/CAM, the production time is approximately one

hour [34],

Figure 2.7(b) Revised Product Cycle with CAD/CAM

32

2.7.2 CAD/CAM Data Exchange

One of the most important aims for CAD/CAM integration is the supply of

interfaces to provide a data structure by which all product definition data can be

transferred between various systems. All entities of the various applications should be

converted without loss of information via the interface [35].

Computer databases are used to define product geometry and non-geometry for

all phases of product design and manufacturing. The complete product description

consists of the four types of modelling data as below [27]:

(1) Shape Data. Geometrical data such as font, colour, layer and other, topological data

applied to solid modelling as well as part or form features which allow high-level

concept communication about parts such as hole, flange, web, pocket, chamfer and

so on.

(2) Non-Shape Data. Graphics data such as shaded images, and model global data as

measuring units of the database and the resolution of storing the database numerical

values.

(3) Design Data. Information generated from geometric models for analysis purposes

such as mass property, finite element mesh data and others.

(4) Manufacturing Data. Production information likes tooling, NC tool paths,

tolerancing, process planning, tool design, bill of materials and so on.

Data need to be transferred from system to system like CAD-to-CAD, CAD-to-

CAM, CAM-to-CAM and CAD/CAM-to-CAD/CAM, when an organisation has many

kind of software in the manufacturing work place. The receiving program cannot

33

interpret streams of binary digits constituting the data unless its format or coding

scheme is known.

Normally, databases exchange is not an issue if only one software house

produces all the programs because the programmers are constrained by their

management to agree a standard. When the programs are from different suppliers,

problems arise because there is no common management and standards among the

software companies [36],

In many cases, program routines pass data to other programs when they call each

other, that is, giving each other work to do. A programmer writing a routine that calls

other programmer’s routine must know precisely what operation the subroutine will

perform and in what form it will present the results.

The programmer also needs to know the kinds of arguments that the subroutine

can accept and what it will do if it is unable to perform the operation for any reason.

Thus, the communication between different routines is complex and requires careful

documentation of the interface between them. It is even more important when a package

of subroutines is supplied as a product by one company and then used by other

companies [36].

There is often a requirement to be able to combine two or more design and

manufacturing systems into an application that shares common data. This requirement

may exist either internally among different departments of an organisation, or externally

as in the case of subcontract manufacturers or component suppliers. As a result, the

need to exchange databases is directly motivated by the need to integrate and automate

the design and manufacturing processes to obtain the maximum benefits from

CAD/CAM systems.

34

A good example describing the importance of having a complete data exchange

process is by looking at the development in JAMA (Japan Automobile Manufacturers

Association). JAMA has set up a task force for standardising the data exchange

procedures. It is because more and more Japanese automobile companies conduct their

business transactions beyond the framework of affiliation such as sharing part

specifications to reduce developmental costs. This tendency was spurred by the

increasing of local procurement of parts and moulds from overseas factories as the

foreign products are cheaper and have equal quality [37],

However, database exchange among CAD/CAM systems is complicated because

of the incompatibilities among entity representations, the complexity of commercial

CAD/CAM systems, varying usage requirements of organisations, restrictions on access

to proprietary database information and rapid pace of technological change [27]. It takes

an expert in mathematics and CAD/CAM systems to understand the translation problem

and develop a solution [38].

In view of the need and challenges described above, two solutions were found;

namely direct and indirect database exchange.

Direct data exchange usually translates the modelling data stored in a product

database directly from one CAD/CAM system’s internal format to another system’s

internal format in one step. On the other hand, indirect data exchange is more general

and adopts the concept of creating a neutral database structure (also called neutral file)

which is independent of any existing or future CAD/CAM systems [27].

The structure of the neutral file is only governed by the minimum required

definitions of any of the modelling data types, and is independent of any vendor format.

Basically, the format of the neutral file is influenced by the structures of existing

35

vendors’ databases and can be considered as the common denominator among them

[27],

Figure 2.7(c) [39, 40] shows the different methods of data exchange between

direct and indirect translators. Direct translators convert data format directly in one step

and are typically written by computer services companies that specialise in CAD/CAM

database conversion. They can be considered as dedicated translator programs, that link

a system pair as shown by the dual direction arrows shown in the figure. Two translators

are needed to transfer data between two systems. For example, one translator transfers

data from system 1 to system 2 and the other from system 2 to system 1.

On the other hand, each system that uses the indirect translation method has its

own pair of processors to transfer data to and from the neutral file. Pre-processor will

transfer a given system’s data format to neutral format and postprocessor will do the

opposite transfer [27],

Direct translators will give satisfactory solutions when the number of involved

systems is small. When the number of involved systems increases, the number of

translators that need to be written becomes prohibitive. In fact, indirect solution does

not need as many translator programs as direct solution when the number of systems

increase.

Let’s look at Figure 2.7(c) again. When the number of systems is three (System

1, 2 and 3), both methods need six translators (dual directions darker arrowheads).

When the systems quantity reaches four (System 4 is added), direct method lose out

because it needs six more translators if compare to the indirect method. When there are

five systems (System 5 is added), indirect solution is a lot better since it only needs to

36

build ten translators instead of making twenty translators as needed by direct method

[27],

Direct
translators

! System 5 !
i ______ !

A

System 2~| j SystemT

Indirect
translators

Figure 2.7(c) Methods of Exchanging Databases

Besides, if one of the systems in Figure 2.7(c) changes, eight of the direct

translators programs need to be updated and re-tested. Currently, there are more than

fifty different CAD/CAM systems on the market. If five of them revise their systems

every year, then, it would require a lot of programming effort just to maintain a status

quo [39].

37

Apart from the advantages mentioned above, indirect translator philosophy also

provides stable communication between CAD/CAM systems, protects against system

obsolescence, and eliminates dependence on a single system supplier (against

monopoly). Neutral file has the potential being archived especially by companies in

aerospace industry that need to keep CAD/CAM databases for twenty to fifty years [27].

There are quite a number of neutral formats available in the CAD/CAM

industry. They can be categorised into three areas as listed below and their respective

standards are shown in Table 2.7(a) [36],

(1) The CAD drawing or product definition itself.

(2) Graphics packages of subroutines that provide standard display and user interaction

facilities to the actual CAD/CAM program independent of the actual hardware used.

(3) Device control languages providing standard commands to control the display,

printer or plotter.

IGES (Initial Graphics Exchange Specifications) was the first widely available

neutral format. It was used as the neutral file for exchanging mechanical engineering

data (i.e. that traditionally presented as engineering drawings) [41]. In U.S., IGES is

recognised as the industry standard and monitored by the National Institute of Standards

and Technology (NIST). IGES is the most widely accepted neutral file format for

transferring complex surfaces like NURBS or trimmed surfaces. In Europe, the VDA2

standard (from Germany) is popular [42], However, the most common used data

exchange standards are IGES and Autodesk Inc.’s DXF [43].

38

Table 2.7(a) Data Exchange Standards By Applications

Product Definition Graphic Package Device Control
Standards Standards Languages

1) IGES (Initial Graphics Exchange 1) GKS ISO 7942 1) The X Window
Specification) (Graphics System

2) SET (Standard d’Echange et de Kernel System) 2) Calcomp plot
Transfert) 2) The CORE calls

3) VDA-FS (DIN 66301) System 3) Tektronix
4) VDA-IS 3) PHIGS graphics
5) STEP (Standard for the Exchange of (Programmer’s commands

Product Model Data) Interactive 4) HPGL (Hewlett
6) PDES (Product Data Exchange Graphics Packard

Specification) System) Graphics
7) EDIF (Electronic Design Interchange Language)

Format) 5) PostScript
8) DMC (Digital Mapping for 6) CGI (Computer

Customers) Graphics
9) DXF (Drawing Interchange File) Interface)
10) ISIF (Intergraph Standard Interchange

Format)
11) CGM (Computer Graphics Metafile)

Since personal computers are becoming more and more popular and powerful

nowadays, DXF format will surely play a more important role in the years to come

because most of the Autodesk software is operated on personal computers. This is

especially true in developing countries where personal computers are more widely used

than workstations.

The feasibility of using DXF as a way to exchange CAD data among

heterogeneous CAD systems in the Pohang and Kwang-yang (both locations are in

South Korea) steelworks has been investigated [44], It shows that DXF is a major player

in the data exchange format world.

39

2.8 PROTOTYPING

Prototyping has been one of the essential processes in the design and

manufacturing cycle. Most of the time, a conceptual design has to be developed into a

physical product so that the designers and engineers can rate its aesthetic features,

validating its functionality, checking for specifications conformance, testing for

performance, and so on.

There are two important challenges for product manufacturing industry at

present. One of it is to find a better way of reducing the product development time

substantially. Another challenge is the improvement in flexibility for manufacturing

small batch size products and a variety of types of product [45], If the product

development time is shorter, then, the lead-time to market will be reduced.

Subsequently, a firm can grab a bigger market share.

In fact, more than 70 percent of senior management staff rate the lead-time to

market as one of the three most important criteria that drive them in the businesses.

Thus, the key to success for most manufacturers is the capability to provide quality

products to market, at the shortest possible lead-time with the right cost [46]. Besides,

the gradual shift from mass production to customised production for satisfying a

growing number of ‘niche markets’ has also push for the reduced time to market [47].

One way of having a shorter time to market for a product is to reduce the

prototyping time. Other benefits of having a shorter prototyping time are [45]:

(1) Visualisation. Conceptual models are very important in the product design phase.

CAD is used to generate computer representations of design concepts. No matter

how good the engineers interpret the blue prints and how well the CAD images of

40

complex shape objects are, it is still very difficult to visualise exactly what the

actual complex shape products will look like. Some errors may escape from the

review of designers and engineers. The touch of the real life objects can reveal

unexpected problems and sometimes lead to a better design modification. Shorter

prototyping time enable the design and manufacturing staff evaluates the design

very quickly.

(2) Verification and Optimisation. Improving the quality of product is always an

important task in the manufacturing. With shorter prototyping time, the design

concept verification and optimisation tasks can be accomplished faster. As a result,

the product quality can be improved within the limited time frame and with

affordable cost.

(3) Iteration. With shorter prototyping time, it is possible to go through numerous

design iterations within a short time and substantially reduce the overall model

development time.

(4) Planning and Tooling. By having the physical product at an earlier design stage,

process planning and tooling design can be sped up. The physical prototype can also

be used to reduce problems in interpreting the blue prints on the shop floor by

describing the complex geometry accurately.

(5) Marketing. Prototypes can be used to demonstrate the concept, design ideas and the

company’s capability in producing it. The reality of the physical model shows that

the design concept is feasible and acceptable. With a faster prototype manufacturing

time, customers can give their valuable feedback faster for design modifications so

that the final product will meet the customers’ requirements. Total customer

satisfaction is one of the key factors in penetrating the market.

41

There are two ways to reduce the prototyping time. Both ways will need

computers to control the processing operations and producing complex shape

components. The computers are able to represent objects in a three-dimensional co­

ordinate system [48],

One way is to develop new prototyping technologies like stereolithography

apparatus, selective laser sintering, fused deposition modelling, and so on [49]. These

methods are categorised under additive prototyping processes. Another method is to

improve the principal existing technique like integrating a precision robotic manipulator

into a conventional machining process like milling, with the aid of CAD/CAM. The

improved system will save as much as 40 percent of floor space with the same size of

workspace [50]. The second method is considered as subtractive prototyping process.

2.8.1 Subtractive Prototyping

Numerical control (NC) systems were commonly available in the 1960s. NC

systems are used in controlling conventional subtractive processes. NC processing

equipment can reduce the prototyping time of producing complex shape objects

compared with the conventional methods that normally takes weeks and was primarily a

job for highly skilled machinists [51]. NC machine tools were the earliest types of

digital controlled subtractive rapid prototyping process [52]. Until now, subtractive

prototyping is still one of the favourite methods at producing prototype because it can

work on virtually any kind of materials.

42

The subtractive prototyping processes are widely used to produce prototype

parts quickly. A subtractive prototyping process involved carving a solid block of

material to reveal the shape of the desired object. In another word, material was

removed from the raw part [53, 54]. Machining is the broad term used to describe

removal of material from a work piece. Machining can be divided into the following

categories [38]:

(1) Cutting. Material is removed from the surface of a work piece by producing chips. It

generally involves a single-point or multi-point cutting tools, each with a clearly

defined geometry. Examples of this category are turning, boring, drilling, milling,

planing, shaping, broaching, sawing and filing.

(2) Abrasive. Material is removed from the surface of a work piece by producing tiny

chips. It is used when the required surface finish and dimensional accuracy for a part

are too fine, or the work piece material is too hard, of the work piece material is too

brittle. Examples of abrasive processes are grinding, sanding, honing, lapping,

buffing, polishing, shot-blasting and ultrasonic machining.

(3) Non-Traditional. It utilised electrical, chemical, thermal, and hydrodynamic to

remove the material from a work piece. It is suitable for materials that are above 400

HB in hardness, very brittle, very flexible or delicate or difficult to be clamped onto

the work holding devices. It is also used when the shape of the part is complex, such

as internal and external profiles or small-diameter holes. If the surface finish and

tolerances required are extremely stringent, non-traditional processes are the

preferred methods. It is also suitable for products in which temperature rise or

residual stresses are undesirable or unacceptable. Examples are chemical machining,

electrochemical machining, electrochemical grinding, electrical-discharge

43

machining, laser-beam machining, hydrodynamic machining, abrasive-jet

machining and electron beam machining.

2.8.2 Milling

Milling is defined as a machining process in which material is removed by the

relative motion between a work piece and a rotating cutter having a single cutting edge

[55] or multiple cutting edges [2]. In some cases, the work piece is held stationary while

the rotating cutter is moved past it at a given feed rate (traversed) [56]. In other

applications, both the cutter and the work piece are moved in relation to each other and

in relation to the milling machine [57], However, in the most common type of

application, the work piece is advanced at a relatively low rate of movement or feed to a

milling cutter rotating at a comparatively high speed, with the cutter axis remaining in a

fixed position [56],

A characteristic feature of the multi-tooth cutter milling process is that each

cutter tooth removes a small amount of metal with each revolution of the spindle [57].

Thus, a number of chips are produced in one revolution [2]. Milling can perform a wide

variety of operations since both its cutter and work piece can be moved relative to one

another, independently or in combination. Production of flat or contoured surfaces,

slots, grooves, recesses, threads, and other configurations can be done by milling

processes [56].

The main differences between milling and other machining processes are [57]:

44

(1) The interruptions in cutting that occur as the cutter teeth alternately engage and

leave the work piece.

(2) The size of milling chips is relatively small.

(3) The thickness variation within each chip.

Chip thickness is different during the cut of each tooth because feed is measured in the

direction of table motion (work piece moving into the cutter), while chip thickness is

measured along the radius of the cutter [57].

Milling is one of the most universal, yet complicated machining process. The

process has more variations in the types of machines used, work piece movements, and

kinds of tooling than any other basic machining method. Important advantages of

milling include high stock removal rates, producing relatively smooth surface finishes,

and the wide variety of cutting tools that are available. Cutting edges of the tools can be

shaped to form any complex or irregular surface [56], Milling is most efficient when the

work piece material’s hardness is less than or equal to 25 HRC. But, steel at 35 HRC is

commonly being milled. Steel with the hardness of 56 HRC has been successfully

milled too [57].

2.8.3 Milling Methods

The major milling methods are peripheral, face and end milling [2], These terms

refer to the kind of cutter used and to the relationship of the milled surface to the

spindle. A milling operation usually consists of a combination of two methods and only

a number of cases where the three methods are clearly defined. The selection of a

45

milling method for a specific application depends largely on the amount of material to

be removed, size and shape of work piece and the configuration to be milled [57].

Peripheral milling is also called slab [2] or plain milling [55], In peripheral

milling, the axis of cutter rotation is parallel to the work piece surface to be machined

[57], Cutting the work piece with the teeth on the periphery of a cutter generates the

milled surface [56]. Cutters applied in peripheral milling may have helical or straight

teeth producing oblique or orthogonal cutting action [2]. Figure 2.8(a) [2] illustrated the

helical teeth cutter in operation. The cutter rotation and work piece movement directions

were also shown in the diagram.

Face milling is a process where the work piece surface is perpendicular to the

axis of the cutter (the cutter axis can be horizontal or vertical) [55]. The milled surface

is generated by the combined action of cutting edges located on the periphery and face

of the cutter [56], It is normally used for machining flat surfaces [57]. The flat surfaces

have no relation to the contour of the teeth, except when milling a shoulder [56]. Face

milling is illustrated in Figure 2.8(b) [2] with cutter rotation and work piece direction of

motion.

Figure 2.8(c) [2] illustrates the end milling methodology. End milling cutters

have cutting edges on the end faces as well as on the periphery [56], Cuts can be

produced with an end mill by using the side and end consecutively or simultaneously

[57]. The cutter can rotate on an axis perpendicular or tilted with regard to the work

piece. Thus, end milling can produce flat surfaces as well as various profiles [2].

46

Cutter Arbour

Figure 2.8(a) Peripheral Milling

Spindle

Figure 2.8(b) Face Milling

47

Figure 2.8(c) End Milling

Because the end faces of some end mills have cutting teeth, they can be used as

a drill to start a cavity. Some of the end mills have hemispherical ends for producing

curved surfaces, as in making dies. Hollow end mills have internal cutting edges and are

also used for machining the cylindrical surface of solid round work pieces [2]. Some of

the typical end milling cutters are shown in Figure 2.8(d) [58].

48

Slot Drill

Ball Nose
Slot Drill

Roughing
Cutter

Figure 2.8(d) Typical End Mills

Based on Figure 2.8(d), end mill is designed for profile milling. A slot drill is

used to produce precision slots and keyways, whereas a ball nosed slot drill (ball nosed

cutter) is meant for producing slots and profiles with a radius form. A roughing cutter is

designed for rapid metal removal rates due to the chip breaking cutting form. Among all

the cutters, ball nosed cutter is the most versatile in application wise. It can be used to

produce almost all kind of surfaces and features if compare to peripheral and face

I 49

milling. As a result, complex surfaces like scupltured or free-form surfaces are normally

produced by ball nosed cutter.

2.8.4 Additive Prototyping

Generally, all the additive prototyping processes are categorised under the term

of rapid prototyping. Nobody really knows the exact person or research group that

invented the subject of rapid prototyping. But, there were researchers in Europe, Japan

and the United States working in this area during the 1970s and early 1980s [59]. There

are also related patent applications that date from 1902 [60]. What is certain is that the

rapid prototyping methodologies did have great impact and will continue to influence

the design and manufacturing processes. Rapid prototyping processes are regarded as

the missing link between design and manufacturing [61].

Rapid prototyping system has played an important role in the manufacturing

industries because of the greater use of several technologies as stated below.

(1) CAD - Once the three-dimensional geometrical shape of the part has been

unambiguously defined, then, the CAD model can be sliced into thin cross-sectional

layers. The data on these layers can then be used by the rapid prototyping system to

build the part in a real material. As a result, it can be claimed that CAD is the key to

rapid prototyping.

(2) Laser or Light Processing of Materials - Most of the pioneers in rapid prototyping

use laser to cut out the profile of individual layer or to activate a material phase

change from a liquid to a solid. The cost and reliability of laser has been improved

50

significantly in the last two decades. Some of the techniques use a flood of

ultraviolet (UV) light to solidify a polymer liquid layer.

(3) Additive Manufacturing - Almost all the rapid prototyping techniques rely on

making objects by adding one layer of material to another until the final shape is

produced [62], This idea is not new since model makers have used this method to

make large wooden models for so many years [63]. The method of building models

from laminated wood avoids the gross distortion and cracking seen in models made

from a single piece of wood. Laminations have also been assembled to make relief

maps [64].

Various methods and machines have been developed to compete in the market.

Five generic additive prototyping methods [65] are listed in Table 2.8(a), together with

the vendors and quantity installed in the market [25]. The market shares in terms of

units sold among different technological companies kept changing for the past few

years. For an example, three years ago fused deposition modelling equipment became as

popular as stereolithography machine in which both of them almost had the same

percentage of market shares.

51

Table 2.8(a) Additive Prototyping Methods

Technology Vendor Installations
Stereolithography 3D Systems 469

Misutbishi - CMET 43
Sony-D M EC 28

EOS GmbH 19
Teijin - Seiki 3

Mitsui Engineering 1
Sub Total: 563

Laminated Object Manufacturing Helisys 52
Sparx 15
Kira 10

Sub Total: 77
Selective Laser Sintering DTM 43

EOS GmbH 4
Sub Total: 47

Fused Deposition Modelling Stratasys 44
Sanders 1

Sub Total: 45
Solid Ground Curing Cubital 18

Sub Total: 18
Total of all additive prototyping system installations as of June 1994: 750

The founder of the additive prototyping market was 3D Sytems [66, 67]. Their

additive prototyping system was called stereolithography and was patented by Charles

Hull in 1984 [68]. In 1987, their first commercial unit, the Stereolithography Apparatus

(SLA-1) was sold [69]. Stereolithography (SLA) is the most widely used additive

prototyping system in the market [25, 70]. The SLA technique is illustrated in Figure

2.8(e) [71].

52

r
UV curable resin

Support Lower down
the model
after each
layer is formed
(to allow the
next layer
to be formed)

X-Y scanning
laser beam
(to solidify
each layer)

Figure 2.8(e) Stereolithography Technique

SLA uses local photocuring of specially developed liquid polymer resins as the

process enabling technology. The solid geometry is defined in an .stl file. The object is

gradually built, layer by layer from a pool of liquid photopolymer. The local

photocuring is facilitated by a 200 micron, focused diameter beam of actinic light in a

low power, He-Cd or Argon ion laser [6], Hence, the SLA process is limited to

producing solids geometry that are originated in specialised photocurable resins [72],

The other disadvantages include parts require support structures, some models can warp

and resin handling needs care. However, the machines can run with unattended

operation, the accuracy is often within ±0.1 mm, and the parts have very good detail and

surface finish.

53

A Chicago company called Hydronetics was formed in 1985 to commercialise a

system of building models by stacking sheets of steel foil and then bonding them

together [73]. This process was known as laminated object manufacturing (LOM). The

earliest patent in this area was filed by Dimatteo [74] where transducers measured a part

and slices were simultaneously produced and stacked to give a model in different

material. Another patent was filed in 1988 that further improved the LOM technique

into producing coloured model by using sheets with coloured edges [75].

LOM technology uses gradual lamination of two-dimensional contours cut from

paper sheet feed stock [76]. The method uses an X, Y position controlled mirror

together with a 25 or 50 watt CO2 laser to cut through paper feedstock ranging from 200

microns in thickness [77]. A computer driven platform is used as the working substrate

to control z-position. The part is created by successively gluing together layers of foils

that have been cut to the desired shape. The LOM technique is illustrated in Figure

2.8(f) [71].

54

Heater (to activate the glue)

X-Y laser
beam (to cut
the shape of
each layer)

Support

Roll of
glued paper

Waste material
(is cut into cubes)

Lower down the model after each
layer is stacked (to allow the next
layer to be stacked)

Figure 2.8(f) Laminated Object Manufacturing Technique

LOM process is common in foundry applications. The difficulty in removing the

excess material restricts the range of parts that can be manufactured by LOM [76],

Compared to the other rapid prototyping techniques, it gives a poorer surface finish, the

machine has been reported as unreliable and the parts absorb moisture. Its advantages

are that there is no post-curing, no supports are needed, material will not experience

phase change and it is a simple process.

Carl Deckard and Professor Joe Beaman jointly developed selective laser

sintering technique in 1986 [78]. Deckard started work on that method during his

Masters work [79] and subsequently obtained a PhD in that field. The first laboratory

equipment was made using an abandoned machine and involved equipment costing

55

about US$30,000 [80], The work was commercialised by Nova Automation Corporation

which later became DTM [81, 82], DTM [83] holds the patent right [84] on this

technique [78], The SLS technique is illustrated in Figure 2.8(g) [71].

X-Y laser beam (to solidify
each layer)

Support

J iX y

Piston moves downward
after each layer is sintered
(to allow the next
layer to be sintered)

Roller spreads
powder

Heat-fusable
powder

\
Loose powder (will
be accumulated here)

Packed,
unsintered powder

Figure 2.8(g) Selective Laser Sintering Technique

Selective laser sintering (SLS) method uses modulation of a focused laser to

selectively fuse or sinter powder feed stock materials [85], SLS uses a computer

controlled, high-power laser to sinter thermoplastic powder (partial melting), one layer

56

at a time, and builds the complete part from CAD data of the sliced part-geometry. A

number of different materials like investment castings waxes, nylons, polycarbonate,

metals, and ceramics can be processed by this method.

The drawbacks of SLS are poor product surface finish and the parts are quite

porous [86], Besides, it requires long period of time to heat up and cool down the

material chamber after building and supports are needed on some materials. However,

its main advantages are that post-curing is not needed, nylon or polycarbonate does not

need support, tough parts can be produced and it will be possible to use ceramics or

metals in the future.

S. Scott Crump developed fused deposition modelling (FDM) technique in 1988

and a patent was filed the following year [87]. FDM relies on the CNC extrusion and

rapid cooling of ribbon like, molten thermoplastic materials as its enabling technology

[88]. The thermoplastic filament is fed through a heated extruding head. The filament

which are materials like wax or nylon, melts at a temperature just above its

solidification state before depositing on a platform to produce the part. The FDM

technique is illustrated in Figure 2.8(h) [71].

The accuracy of the process depends on the physical properties of the molten

material. The surface finish capability of FDM is inferior to other additive prototyping

methods [89]. Furthermore, it needs support structures, there is poor strength in the

vertical direction and it is slow on bulky parts. Nevertheless, it is easy to change

materials, it is a simple equipment, is fast on small hollow parts and there are a good

variety of materials which can be used.

57

Head moves
vertically upwards
between layers

Three-axis heated extrusion head
Thermoplastic
filament

Figure 2.8(h) Fused Deposition Modelling Technique

Solid ground curing (SGC) was developed by Itzchak Pomerantz in Israel at

Cubital Limited [90]. SGC also called photomasking. It is a hybrid system that has the

characteristic of both additive and subtractive prototyping technologies. Here, the

selective curing of liquid resins by masked, UV radiation is the enabling technology.

Multiple layers form the product. A photomask is used to cover the photopolymer liquid

in each layer and cured in a few seconds by a strong UV lamp. The unexposed liquid is

then removed and the voids are filled with molten wax to support the next layer. The

steps are repeated until the entire part is made [91]. The SGC technique is illustrated in

Figure 2.8(i) [71].

58

Wax filling

/
and solidified
by rapid
cooling

The model is formed within Milling the wax to the required height
a solid cube of supporting wax and applying a fresh layer of resin

Negative image on
the mask pate

UV curable
resin

Powerful UV light

Vacuum off
uncured resin

Figure 2.8(i) Solid Ground Curing Technique

A major disadvantage with the SGC is that it requires attended operation, there

is excessive waste of resin and wax, and excessive down-times have been reported on

commercial machines. But, this kind of system has a high output, no supports are

needed on the parts, nesting of parts above each other is common and it has predictable

build times.

59

CHAPTER 3: EQUIPMENT

3.1 INTRODUCTION

This chapter is concerned with the basic hardware of the precision robotic

manipulator based rapid prototyping system. The whole system consists of a personal

computer, PC-23 indexer, KS-drives, a. c. brushless servomotors, a four degrees of

freedom precision manipulator and a ball nosed end milling equipment. The general

layout of the equipment is shown in Plate 3.1(a).

Plate 3.1(a) General Layout of Equipment

A personal computer is used to control the system by sending commands and for

receiving responses from the PC-23 indexer. The indexer will in turn communicate with

60

the KS-drives for controlling the a. c. brushless servomotors. The a. c. brushless

servomotors will drive a four degrees of freedom precision robotic manipulator. The

manipulator will feed the work material, polystyrene cylindrical block, to the ball nosed

cutter for milling three-dimensional complex shaped objects. The system can also be

used for additive prototyping since it is a multipurpose precision robotic manipulator.

The control system configuration is shown diagrammatically in Figure 3.1(a).

Figure 3.1(a) Control System Configuration

Thus, the following subtopics will cover:

(1) Precision Manipulator. A four degrees of freedom precision robotic manipulator’s

structural design, capabilities and modification will be elaborated.

61

(2) Interfacing. PC-23 indexer’s general functions, programming aspect, motion

control, and related issues will be discussed. KS-drives’ functions and capabilities

together with the a. c. brushless servomotors will be described.

(3) Subtractive Prototyping Process. The construction and assembly of a customised

ball nosed end milling equipment and the milling material will be illustrated.

3.2 PRECISION MANIPULATOR

The precision manipulator has four degrees of freedom, namely two translational

and two rotational motions [92]. Plate 3.2(a) illustrated the precision manipulator

clearly.

Plate 3.2(a) Four Degrees of Freedom Precision Manipulator

62

The manipulator is described further in Figure 3.2(a). In the diagram, the plan

and side views of the manipulator are shown. The length of the manipulator is 1270

mm. Its width and height are 616 mm and 440 mm respectively. The four degrees of

freedom are y linear motion axis, x linear motion axis, roll (rotation around y-axis) and

pitch (rotation around x-axis). The direction of motion for each motion axis is also

shown in the figure.

Figure 3.2(a) Side and Plan View of Manipulator

63

The precision manipulator is a general-purpose robot. It can be used in

subtractive prototyping processes like wire electro-discharge machining or other kind of

traditional machining process like milling. It can also be used for additive prototyping

process like semi-liquid deposition process. The weight of the manipulator is about 55

kg. Aluminium alloy (BS HE30 TF) that has the tensile strength of 280 MN/m2 was

used to manufacture the main parts of the manipulator. The diameters of the steel shafts

used are 16 mm, 20 mm and 30 mm, having hardness of 60 HRC.

3.2.1 Manipulation Around X-Axis

Figure 3.2(b) shows the plan view of the manipulation unit around x-axis (pitch).

The direction of motion is also shown.

Harmonic drive gearbox

Figure 3.2(b) Manipulation Around X-Axis

64

The manipulation unit around x-axis consists of an a. c. brushless servomotor,

harmonic drive gearbox and a pair of three-pin grippers. The range of the work piece

size that can be held by the grippers is 120 mm to 125 mm in length and 40 mm to 150

mm in diameter. An a. c. brushless servomotor (KS 210) in conjunction with a harmonic

drive gearbox (HDUC 14) having a gear ratio of 100:1 are used to drive the grippers.

The motor resolution is set at 5000 steps per revolution. The motor for the pitch

manipulation can travel an angular distance of 7.2 x 10"4 degrees per full motor step.

3.2.2 Manipulation Along and Around Y-Axis

Figure 3.2(c) shows the side view of the manipulation unit along and around

(roll) y-axis together with motion directions.

Figure 3.2(c) Manipulation Along and Around Y-Axis

65

The manipulation unit along y-axis consists of an a. c. brushless servomotor, a

coupling, a lead screw with pitch of 1.5 mm and two 16 mm diameter steel shafts. An a.

c. brushless servomotor (KS 220) drives this unit. The lead screw is connected to the

motor shaft by means of a flexible coupling (Compumotor No. CPG. 2 - 6). The steel

shafts are used for ensuring the motion is straight and supporting the manipulation unit

around the y-axis (roll). The motor resolution is set at 5000 steps per revolution. The

motor can travel a linear distance of 3.0 x 10'4 mm per full motor step. Total linear

distance that can be travelled by the unit is 130 mm.

The manipulation unit around y-axis (roll) is directly located above the

manipulation unit along the y-axis. It consists of an a. c. brushless servomotor, a

gearbox, a coupling and a 30 mm diameter steel shaft. An a. c. brushless servomotor

(KS 220) in conjunction with a gear box (Drivematic No. SA1002) having gear ratio of

18:1 generated the roll motion around y-axis. The gearbox is attached to a 30 mm

diameter steel shaft by a rigid coupling. The motor resolution is set at 5000 steps per

revolution. The motor for roll motion can travel an angular distance of 4.0 x 10'3

degrees per full motor step. At the end of the steel shaft is the manipulation unit around

x-axis (pitch).

3.2.3 Manipulation Along X-Axis

Figure 3.2(d) shows the plan view of the manipulation unit along x-axis together

with motion direction. This unit consists of an a. c. brushless servomotor, a coupling, a

lead screw with pitch of 1.5 mm and a pair of 20 mm diameter steel shafts. The a.c

66

brushless servomotor (KS 220) is connected to the lead screw through the flexible

coupling (Compumotor No. CPG. 2 - 6). The steel shafts are for supporting the

manipulation unit around x-axis as well as the manipulation units along and around y-

axis. They are also for ensuring straight motion. The maximum distance of 240 mm can

be travelled by this manoeuvring part along x-axis. The motor is set at 5000 steps per

revolution. The motor can travel a minimum linear distance of 3.0 x 10'4 mm per full

motor step.

Figure 3.2(d) Manipulation Along X-Axis

3.3 INTERFACING

One of the important components in producing three-dimensional complex

shaped product from the robotic manipulator based rapid prototyping system is the

67

interface system. The interface system consists of PC-23 indexer, KS-drives and the a.

c. brushless servomotors. They are located between the personal computer and the

precision manipulator. Figure 3.3(a) illustrated the interface system schematically where

the system is bounded by the thickest dotted line.

Figure 3.3(a) Interface System

As shown in Figure 3.3(a), a personal computer was used to send commands and

receive responses from PC-23 indexer. The indexer in turn communicates with three

68

KS-drives. The KS-drives control three a. c. brushless servomotors that drive the

precision robotic manipulator to produce the three-dimensional complex shaped object.

For functional purposes, two external power supply modules are needed for the indexer

and three drives. The KS-drives’ performance can be tuned via the RS-232 link.

Currently, it is still an open-loop system. It can be further improved by implementing a

closed-loop control.

3.3.1 PC-23 Indexer

PC-23 indexer [93] uses a 16-bit microprocessor for controlling the motion of up

to three motor axes, independently or simultaneously. The indexer is used with an IBM

microcomputer (PC, XT or AT) or compatible and suitable for any kind of drive

systems that can accept pulsed control signals. It is used for controlling velocity,

distance and linear acceleration parameters. The indexer’s performance, physical,

environmental and electrical specifications are presented in Table 3.3(a).

The indexer receives acceleration, velocity, position and direction information in

ASCII (American Standard Code for Information Interchange) characters from the

personal computer’s control program, and uses that information to produce motion

profile command signals for the drive system. The drive commands are in the form of

“step” pulses. They can be issued at controlled rates of up to 500000 steps per second to

the drive system.

69

Table 3.3(a) PC-23 Indexer’s Performance, Physical, Environmental and Electrical
Specifications

Parameter Value
Performance

Stepping accuracy:
Velocity accuracy:
Velocity repeatability:
Velocity range:

Acceleration range:

Position range:

± 0 steps from preset total
± 0.02% of maximum rate above 0.01 revolutions/second
± 0.02% of maximum rate
0.01 - 20.00 revolutions/second (25000 steps/revolution)
0.01 - 100.00 revolutions/second (5000 steps/revolution)
0.01 - 999.9 revolutions/second2 (25000 steps/revolution)
0.05 - 4999.95 revolutions/second2 (5000 steps/revolution)
0 - 99999999 steps (all resolutions)

Physical
Main Circuit Board

Length:
Width:

~ 338 mm
« 125 mm

Physical
Adaptor Box

Length:
Width:
Height:

= 323 mm
= 156 mm
» 29 mm

Net weight: » 0.74 kg
Environmental

Operating:
Humidity:
Storage:

0 to 50°C
10 to 95% (non-condensing)
-30 to 85°C

Electrical
Power: 5 VDC (Bus)

The indexer commands enabling the precision control of motor rotation for up to

three axes independently or simultaneously. The motors can be controlled to rotate to a

certain precise position and stop; rotate at a constant velocity and/or acceleration;

alternate back and forth between two angular positions; or use a sequential combination

of such moves.

70

Velocity parameters are expressed as the number of revolutions per second.

Acceleration parameters are expressed as the number of revolutions per second squared.

Distance parameters are given in characters representing motor increments (or

decrements) or steps. The indexer can control motors of virtually any resolution.

The PC-23 indexer consists of two parts, which are a main circuit board and an

adaptor box. The main circuit board is incorporated with the personal computer (PC) via

ISA slot in the motherboard. The cable harness with four flat cable connectors from the

adaptor box run through the slot in the PC’s access panel and plugged into the main

circuit board. The adaptor box is external to the personal computer and connected to the

KS-drives. Plate 3.3(a) shows the adaptor box with wire harness connecting to the main

circuit board which is in turn situated in the personal computer’s motherboard.

Plate 3.3(a) PC-23 Indexer

71

In order to communicate with the PC-23 indexer, the personal computer must

know where to write instructions and read responses. As a result, the indexer must have

an address that does not conflict with typical devices that reside on the PC’s I/O bus

such as graphics adaptors, disk drives and other peripheral devices. The address can be

set to any number that the personal computer will recognise as valid.

The indexer address can be set with the DIP switches on the main circuit board.

The switches consists of eight switches representing a binary number. The switches are

“negative true”. Any switch in the position marked “ON” has a binary value of zero.

Switches that are at “OFF” positions are having a non-zero binary value. The sum of the

binary values of switches 1 through 8 is the main circuit board’s base address.

The base address for the PC-23 indexer is set as 300 Hex. The indexer will

occupy four address locations. However, only two of the address locations are

significant. The data register of the indexer is at the even address locations, namely 300

Hex. Whereas, the control and status register of the indexer is at the odd address

location, which is 301 Hex. The values assigned to the eight switches of the main circuit

board’s switch package are shown in Table 3.3(b). The selected base (board) address for

the PC-23 indexer is also shown in the table.

Table 3.3(b) Assigned Switches Values and Base Address Setting

Switch No. Address “Bit” Binary Value (OFF) PC-23 Indexer
SettingDecimal Hex

8 2 4 4 ON
7 3 8 8 ON
6 4 16 10 ON
5 5 32 20 ON
4 6 64 40 ON
3 7 128 80 ON
2 8 256 100 OFF
1 9 512 200 OFF

72

The adaptor box has three 25-pin connectors for each axis. Only the Motor

Driver connection is absolutely required for controlling any axis. The Motor Driver will

provide the output signals to the KS-drive to step the motor, change direction, de-

energise the motor and so on. All signals connected to the adaptor box are optically

isolated from the computer. As a result, power is required to drive the isolated portion

of the circuit. An external fixed power supply of 5 VDC at 10 Amperes is connected to

one of the Auxiliary connectors of the adaptor box. The positive terminal is wired to pin

23 and the negative terminal is connected to pin 21.

3.3.2 Programming of PC-23 Indexer

Any programming language can be used to program the PC-23 indexer’s

operations. The motion control program only need to have the capabilities of reading

information from and writing digital data to the I/O bus of the personal computer.

Motion control commands and responses are transferred through the Input Data Buffer

(IDB) and Output Data Buffer (ODB) at the indexer’s base address, 300 Hex. Interface

control commands and status information are transferred through the Control Byte (CB)

and Status Byte (SB) at one address location above the base address, 301 Hex.

ODB and SB are read-only registers, whereas IDB and CB are write-only

registers. Indexer commands consists of “string” or sequences of ASCII (American

Standard Code for Information Interchange) characters. A register or buffer is a

temporary storage area for holding only one character (one 8-bit “byte”) at any

73

occasion. As a result, passing a commands to the indexer means transferring each

character in the command one at a time.

Each character transfer requires that the sender notifies the receiver that a

character is ready, and that the receiver notifies the sender that the character has been

received. The notification process involves the 8-bit CB and SB registers. Each bit is a

“flag” with a specific meaning. The CB will allow certain operating conditions to be set

and the SB will report the others. Signalling the indexer involves setting or clearing

(resetting) the control bits or flags, which means forcing them to a binary value of one

or zero, respectively.

The available Status and Control Bytes’ flags and their definitions are shown in

Table 3.3(c) and Table 3.3(d) respectively. Thus, the notification process is making use

of the single bit flags of the 8-bit SB and CB registers being set high (1) or low (0) to

denote the ready or busy condition of the indexer.

Table 3.3(c) Status Byte Format

Bit (Flag) Definition
0 If axis 2 stopped, this bit will be set.
1 When axis 1 stopped, this bit is set.
2 If this flag is set, axis 3 is stopped.
3 This bit is set when the ODB contains an output character for the host,

signalling the host to read the information it contains.
4 This flag is set when the IDB is ready, telling the personal computer it may

write a character to the IDB.
5 Setting this bit will inform the personal computer that the Watchdog Timer

of the indexer has timed out, possibly indicating an internal failure from
which it cannot recover. Resetting the indexer can clear this bit.

6 If this bit is set, the host will be informed that a conditional interrupt has
been “armed” and that the condition has occurred.

7 Reserved

74

Table 3.3(d) Control Byte Format

Bit (Flag) Definition
0 Setting this bit will indicate that the Binary Mode of data input for the TD

mode of contouring is under way.
1 Unused
2 Setting this flag will cause the indexer’s Watchdog Timer to time out and

stop. It forces a reset of hardware. Cycling power or restarting the timer
can clear the reset condition.

3 Setting this bit will tell the indexer that its interrupt signal to the personal
computer has been noted and is no longer required.

4 Setting this flag will inform the indexer that a command character has been
put into the IDB. The indexer then clears the bit 4 of the SB to indicate that
the IDB is not available, reads the IDB’s character, and then sets SB’s bit 4
to indicate to the host that the IDB is ready for new character again.

5 It is for restarting the Watchdog Timer. First, it must be reset, then the
timer will start up when the bit is set again. This bit should never be
toggled unless the timer has timed out.

6 It is for resetting the hardware interrupt latch and thus the interrupt output.
The interrupt output cannot be reset unless the interrupt is first
acknowledged with bit 3 above. These bits should be cleared during reset
or interrupt acknowledged.

7 Setting this bit will tell the indexer that the host has received a response
character that was previously placed in the ODB by the indexer, and a new
character may be placed in the ODB.

The PC-23 indexer is designed to operate motor axes in a fashion largely

independent of the personal computer. It only requires a small number of high level

commands and interaction. The interaction is almost exclusively in the form of strings

and characters rather than numbers. Thus, knowledge of string handling of a particular

programming language is needed when constructing the control program.

Regardless of what the control program’s intended application, it must have the

following subroutines (in order of importance):

(1) Reset the indexer.

(2) Send a command string to the indexer.

(3) Receive a character string from indexer.

75

The step by step procedures for resetting the PC-23 indexer is:

(1) Write 64 Hex to the Control Port.

(2) Read the Status Port until (the Status Byte AND 20 Hex) = 0.

(3) Write 40 Hex to the Control Byte.

(4) Write 60 Hex to the Control Byte.

(5) Read the Status Port until (the Status Byte AND 16 Hex) & 16 Hex.

The step by step procedures for writing a character to the PC-23 indexer is:

(1) Read the Status Port until (the Status Byte AND 10 Hex) = 0.

(2) Write the ASCII character to the Data Port.

(3) Write 70 Hex to the Control Port.

(4) Read the Status Port until (the Status Byte AND 10 Hex) > 0.

(5) Write 60 Hex to the Control Byte.

(6) Read the Status Port until (the Status Byte AND 10 Hex) = 0.

The step by step procedures for reading a character from the PC-23 indexer is:

(1) Initialise the ASCII variable to null (0).

(2) Read the Status Port until (Status Byte AND 8 Hex) = 0.

(3) Read the Data Port into the ASCII variable.

(4) Write EO Hex to the Control Port.

(5) Read the Status Port until (the Status Byte AND 8 Hex) > 0.

(6) Write 60 Hex to the Control Port.

(Note: AND is the bitwise logical and.)

16

3.3.3 Personal Computer and PC-23 Indexer

As stated in section 3.3.1, the PC-23 indexer is meant for PC/XT, AT or any

IBM compatible personal computers. What will happen if the personal computer (PC) is

different from the above stated models? What is the effect of using high-end personal

computer? What are the counter measures to be applied so that powerful PC can be

used? The answers to the above questions are stated in the following paragraphs.

In this project, 3 kinds of PC were tried to link with the indexer and they were

PC/XT, 486DX33 and Pentium II 300 PC. By following the manufacturer’s advice,

using PC/XT is the correct choice. But, its processing speed is only 4.77MHz. Further

more, its memory (RAM) and hard disk capacity are only 640 Kbytes and 20 Mbytes

respectively. As a result, the PC/XT’s processing speed is very slow compare to the

available PC on the market. Besides, such a low memory and hard disk capacity

computer cannot accommodate other software like AutoCAD and Mechanical Desktop

(computer-aided design package). As a result, a 486DX33 PC was used to replace the

PC/XT computer.

Initially, using the 486DX33 PC to link with the indexer proved to be feasible in

functionality and performance aspects. Also, software such as AutoCAD R ll (DOS

version) can be used on this PC. But, further testing revealed the weakness of the

communication between the 486DX33 PC and the indexer. The system began to deviate

from its normal functionality. The motion axes were not moving in a synchronous

manner and the whole system hanged in the middle of the process.

The cause of the problem is the different in microprocessor execution speed. The

indexer main circuit board is using a MC68008P8 microprocessor. This microprocessor

77

is too slow if compared with the 486DX33 microprocessor. As a result, the

communication between the 486DX33 PC and the indexer is not smooth. The solution

was to use a program to slow down the execution speed of the PC. Hence, the PC can be

used for other means beside controlling the manipulator.

A 486DX33 PC was still not quite suitable for the project because of the

limitation in speed, memory and hard disk capacity. It is much better to use a Pentium II

300MHz PC to control the precision manipulator since it has a better microprocessor

and higher speed. Windows based software like Microsoft Office 97, AutoCAD R13,

Mechanical Desktop and Borland C++ 4.5 Programming Language can also be used in

the same computer because the PC has 128 Mbytes of RAM (random access memory)

and about 5 Gigabytes of hard disk space.

However, the PC’s higher execution speed cannot be slowed down using a

program. As a result, the routines for sending commands to the indexer and receiving

responses from the indexer must be changed to solve this problem. The initial routines

had a particular number of loops for communicating with the indexer. The revised

routines will continue to wait until the indexer gives a response. Hence, the latest PC

was successfully integrated with a PC-23 indexer to control the precision manipulator.

3.3.4 Motion Control of PC-23 Indexer

All applications of an indexer axis are either movement of a motor to a precise

position (number of motor steps) or movement of the motor at a prescribed velocity

(steps per second). Output control for both position and velocity can be achieved with a

78

high degree of precision without any additional external feedback. There are

approximately 106 commands for specifying different conditions and operating modes

within the motion control program. Better motion control and responses from the

indexer lies in the selection of suitable commands for any particular set of motion

sequence.

The standard motor resolution setting for all the axes on the PC-23 indexer is

25000 steps per revolution although it supports motor or drive resolutions for up to

50000 steps per revolution. The KS-drives for motors KS 210 and KS 220 are

configured in the range of 1000 to 16384 steps per revolution. For accurate speed

control, each indexer axis needs to know the resolution of its controlled motor and the

settings of the motor resolution on the KS-drives and the PC-23 indexer must match. In

this project, the KS-drives and the indexer motor resolution settings are kept at 5000

steps per revolution.

The MRn commands of the indexer can be used to set the motor resolution, n is

an integer. The MRn commands also controls step pulse width and velocity range. Table

3.3(e) shows the MRn commands with their corresponding settings for motor resolution

(in steps per revolution), velocity range and pulse width.

The PC-23 indexer has two principal modes of operation, namely the preset

(normal) and continuous modes, for controlling the position and speed respectively.

Alternating mode is the third mode that is a special case of the preset mode. The indexer

commands of MN, MC and MA can be used to set the mode to normal, continuous and

alternating respectively.

79

Table 3.3(e) MRn Commands with Corresponding Settings

PC-23
Command

Motor
Resolution

Velocity Max.
(RPS)

Pulse Width
(|lsec)

MRO 200 160 15
MR1 400 80 15
MR2 800 78 7.5
MR3 1000 100 4
MR4 1600 60 4
MR5 3200 78 2
MR6 5000 100 1
MR7 6400 78 1
MR8 10000 50 1
MR9 21600 23 1

MR10 25000 20 1
MR11 25400 19.5 1
MR12 36000 13.8 1
MR13 50000 10 1
MR15 4096 122 1
MR16 12800 39 1
MR17 25600 19.5 1
MR18 12500 40 1
MR19 16384 30 1
MR20 20000 25 1
MR21 25000 80 0.25
MR45 2000 50 4
MR46 4000 125 1

The continuous mode only requires acceleration and velocity values for moving

the motor. Once accepted the G (go) command, the motor will rotate at a constant

velocity until a new velocity (and a new acceleration if desired) are commanded. Issuing

the commands like S (stop) can stop the motion. In alternating mode, the motor shaft

will rotate to the commanded position corresponding to the value set by the D (motor

steps) command upon receiving the G command. After reaching the destination, it will

retrace its path back to the start position. The shaft will continue to rotate back and forth

80

until a stop command like S is received. Then, the motor will complete the cycle and

stop at the start position. Another G command will repeat the same motion pattern.

The normal mode is the default mode. It is also the author-selected operating

mode for the indexer. In this mode, the indexer will drive the motor to a desired position

at a specified velocity. It can be divided into the normal incremental mode, which is a

default mode and the normal absolute mode. MPI command can be used to set the

positioning mode to incremental. In this mode, all move distances are referenced to the

starting position of each move. On the other hand, MPA command can be used to set the

positioning mode to absolute. In this mode, all distances moved are referenced to the

absolute zero position (home position). The normal incremental mode is selected due to

the nature of the motion control program.

An example of constructing a motion command for linear movement is

described below. The desired motion conditions are:

(1) Mode of motion = Normal Absolute

(2) Indexer and drive resolution = 5000 steps per revolution

(3) Motion direction = counter clockwise

(4) Motion distance =10 mm

(5) Velocity = 1 revolution per second

(6) Acceleration = 0.2 revolution per second squared

(7) Pitch of lead screw = 2 mm

The motor step calculation is shown as below.

(10 mm x 5000 steps per revolution) / 2 mm = 25000 motor steps

The motion command is xMN xMPA xA0.2 xV 1 xD-25000 xG

81

Note: x can be 1 or 2 or 3 for specifying the desired motion axis. I fx is not specified, its

default motion axis is 1. A “+” or sign may precede the specified distance. “+ ” =

clockwise motion, = counter clockwise motion, referenced to the motor mounting

face. I f no sign precede the specified steps, its default direction is clockwise. The

maximum number o f character in a command is 1000. All the PC-23 indexer motion

commands are listed in Appendix A.

Synchronised motion means all the motion axes move and stop at the same time.

The motion of the precision robotic manipulator can be synchronised in two ways. One

way is to use pause command, PS and continue command, C. As long as PS command

is located before G command in a sequence of motion commands, then, the indexer will

pause the execution of the motion. The indexer will initiate the motion once the C

command is received.

The PC-23 indexer’s command processor is constantly switching sequentially

from one axis to another for handling command processing. The time sharing process

switches every two milliseconds. Time difference between different motion axes will

affect the accuracy and smoothness of a complex surface since the surface is define by a

large number of motion commands. Thus, the author did not choose that method.

The method of using I command and G123 command is the author-preferred

method since the time difference between each motion axis is only 150 microseconds

(maximum). The I command will enable the function of pre-calculating of motion data

by the indexer. The pre-calculated move data will be sent over to each motor axis

buffer. The buffer can accommodate up to one thousand characters’ command at one

time. Then, sending the G123 command to the indexer will let each motor axis to start

moving within 150 microseconds of one another.

82

3.3.5 KS-Drive

The second part of the interface system is the KS-drive [94]. It is a complete

brushless servo positioning system. The system consists of a brushless servomotor, a

brushless resolver feedback and a microprocessor based closed loop drive amplifier.

The KS-drive accepts digital step and direction inputs from the PS-23 indexer for

controlling the position and velocity. The onboard microprocessor monitors both the

pulse inputs from the indexer and the resolver feedback from the brushless servomotor.

Then, it will determine the proper current levels to apply to the motor. Table 3.3(f)

shows the physical, environmental and electrical specifications of the KS-drive whereas

Plate 3.3(b) illustrated the drive pictorially.

Table 3.3(f) KS-Drive’s Physical, Environmental and Electrical Specifications

Parameter Value
Physical

Height: « 241 mm
Width: = 125 mm
Depth: = 171 mm
Weight: ~ 14.6 kg

Environmental
Operating: 0 to 50°C (with adequate air flow)
Humidity: 0 to 95% (non-condensing)
Storage: - 40 to 85°C

Electrical
Input Power
Voltage: 100- 130 VAC, single phase
Frequency: 47 - 66 Hz
Current: 6.3 amps maximum continuous (RMS)
Output Power (to motor)
Voltage: 170 VDC peak
Frequency: 20 kHz PWM
Current: 5.0 amps continuous per phase

8.0 amps per phase peak
(at 50°C)

83

Compumotor
BRUSHLESS SERVO ORIVE

KS SERIES

POWER

FAU LT

FAULT
O UTPUT

UP D O W N
DANGER!

HIGH
VOLTAGE
O N EXPOSED
TER M IN ALS

P R O P O R T IO N A L GAIN

IN T E G R A L G A IN
rpTO R A (B)

V E L O C ITY G AIN

M OTOR
>TOR B (R)

E A R T H G N O

PO W JB
11 s up- *

N E U TR A L

Plate 3.3(b) KS-Drive

Closed loop performance is simplified by the control of a microprocessor and a

sophisticated servo algorithm. All servo performance parameters are stored in non­

volatile EEPROM memory. As a result, a conventional system analogue potentiometer

is not needed for adjustment purposes. The power amplifier section of the drive utilises

a MOSFET 20 kHz pulse width modulation (PWM) current control. This design will

84

improve the low speed smoothness and resulting in quiet operation. Other features of

the KS-drive are listed as below:

(1) Up to 3000 revolution per minute in speed.

(2) RS-232 serial communication interface with the personal computer.

(3) User programmable resolution in steps per revolution via RS-232.

(4) Simple push button adjustment of servo compensation (Proportional, Integral,

Velocity and Derivative gain).

(5) Adjustment of servo compensation can also be done through RS-232.

(6) High noise immunity due to optical isolation and brushless resolver technology.

(7) LED fault indicators (Power, Regen, Fault, Drive Temp, and Motor Temp).

3.3.6 Visual Indicators of KS-Drive

As shown in Plate 3.3(b), there are five LED indicators at the front panel of the

KS-drive. The indicators are POWER, REGEN, FAULT, DRIVE TEMP and MOTOR

TEMP. Their functions are described as below:

(1) POWER. This is a bicolour LED that will be green under normal operating

conditions. If the microprocessor fails, this LED will be red. Turning the power of

the drive on and off will clear the condition only if the problem is temporary. If the

LED is off, then, it indicates a loss of the low voltage power supply.

(2) REGEN. This is a red LED that is normally off. It will be on when the motor is

generating power that is being dissipated into the power dump resistor. If the LED is

on for more than 5 percent of the time or 10 seconds in duration, then, the motor

85

sizing and duty cycle calculations should be considered. Adding external resistors to

dissipate the generated heat, adding cooling facilities to the internal resistors,

changing motor sizes, changing gear ratio or slowing down the duty cycle can

rectify the problem.

(3) DRIVE TEMP. This red LED is normally off. When the drive is having over

temperature condition, it will be on and causing the FAULT LED to light up too.

Power down the drive for 30 minutes will rectify the problem. If the problem is

recurring, then, using a fan kit is necessary.

(4) MOTOR TEMP. This LED is normally off. When lit, it will be red and indicating an

over temperature condition in the motor. It is derived by the microprocessor based

on the average current being sent to the motor. Lower the peak current setting can

rectify the fault.

(5) FAULT. Under normal operating condition, this LED is off. The LED will be red if

there is a microprocessor detectable error condition like under voltage, short circuit,

over current, over temperature and so on. When the drive is having fault, a

numerical error code will be display at the code display window above the push

buttons. Table 3.3(f) shows the available KS-drive error codes and its conditions.

Table 3.3(g) KS-Drive’s Error Codes with Conditions

Code Condition
11 Over temperature
19 Short on motor circuit.
20 Following error exceeded.
21 Outside allowable deadband.
22 Maximum average current exceeded.
30 EEPROM checksum error.
40 Both limits engaged and indexer commands attempting move.
60 RS-232 command shutdown.
61 Incoming indexer pulses.

86

3.3.7 Servo System of KS-Drive

The KS-drive can be divided into the digital controller board and the analogue

amplifier board. The controller board sends two digitised waveforms from its DAC

(digital to analogue converter) to the analogue amplifier board. These waveforms

represent two commanded motor phase currents. The analogue amplifier board

generates its own third phase command and measures the actual motor current to

determine the correct pulse width of voltage to apply to the motor windings. The KS-

drive servo system is shown in Figure 3.3(b).

DAC = digital to analogue converter
RDC = resolver to digital converter

Figure 3.3(b) KS-Drive Servo System

The controller will command a “desired current” to the amplifier board. Then,

the amplifier boards will attempt to generate that “desired current” in the motor

windings. The resolver that is attached to the motor will sense the position of the motor

shaft and send the information back to the controller. With the positional information,

the controller will generate the “desired current” command to the amplifiers.

The generation of the current command to the amplifier by the controller is

based on several quantities. They are:

(1) Position of the motor shaft from the resolver.

(2) Desired position of the PC-23 indexer command.

(3) Previous current commands of the amplifier.

An indexer will generate a stream of pulses that the controller collects with an

up/down (i.e. clockwise/counter clockwise) counter. The resultant pulse count, at any

given instant of time, is the desired position. The controller will subtract the motor's

actual position from this desired position to determine the positional error. The

positional error is the difference between where we want the motor to be and where it

actually is. This positional error is put into a recursive equation, along with previous

positional errors and previous commands to the amplifier, to generate the current

command for the amplifier.

The recursive equation is a mathematical function that is evaluated at periodic

time intervals. The recursive equation of the KS-drive is an approximation of an

analogue, continuous-time PID network that is used quite often in stabilising

conventional servo systems. The drive’s recursive equation is the discrete-time

equivalent to a continuous-time PID network.

88

It is called a discrete-time PID network because it operates on sampled data and

not on continuous data. The sampling rate of the drive controller is the rate at which the

recursive equation is evaluated and the rate at which the current command to the

amplifier is changed. The sample-rate of the drive controller is 512 microseconds. Such

a fast rate can produce excellent dynamic response.

The digital controller board handles all the positioning compensation like

proportional, integral, derivative and velocity gains. The effects of the PID and V

(proportional, integral, derivative and velocity gain) to the system’s response are:

(1) Proportional Gain. It will affect the system stiffness and accuracy. The influence of

the feedback signal becomes greater if the gain is adjusted higher. If the gain is too

high, the system will oscillate. That is because very small resolver changes are

amplified into very large error signals. The mechanical inertia of the motor and load

will not allow the system to follow the electronic commands fast enough. The

system’s lag time will finally reach a point where the feedback and the command

signals are in phase, then, oscillation occurs.

(2) Integral Gain. It allows the system to compensate for positional errors in static

position. It also works to reduce the velocity ripple. It does that by slowing down the

electronic response time so that it can be more closely resembles the response of the

mechanical components of the loop.

(3) Derivative Gain. It will add damping effects to the system. Increasing the gain will

reduce the ringing if the system is oscillating at the end of a move or around a

change in velocity. The derivative gain will add phase lead to compensate for the

system natural phase lag.

89

(4) Velocity Gain. This gain is used to affect the overall responsiveness of the system. If

the system is too sluggish, then the velocity gain can be increased. If the system is

overshooting badly or there is excessive ringing that the derivative term is not able

to adequately compensate, then, reducing the velocity gain will work.

The most important aspect of a servo system is setting the controller’s “gains”.

The “gains” of the controller are the constant coefficients of the recursive equation. The

form of the recursive equation will determine how many of these “gains” should be

adjusted in order to stabilise the system. The methods of adjusting the KS-drive’s servo

compensation network are

(1) The five pushbuttons on the KS-drive front panel.

(2) The RS-232 serial communication port.

3.3.8 Pushbutton Tuning of KS-Drive

The KS-drive has five pushbuttons on the front panel that provide a simple

pushbutton method of fine tuning the systems performance to a specific attached load.

Before trying to set the gains of the controller, it is important to observe the response of

the system to commands from the indexer and the stiffness of the system at rest.

With the motor at rest, if attempt is made to turn the shaft, it should not be easily

turned from its rest position. If it feels soft, the system gains may need to be increased

since a soft system will not respond very quickly to the motion commands. If it feels

stiff, the system should be checked so that it is not vibrating. The gain may be too high

if there is vibration. Vibration will cause the drive to provide excess current and can

90

shorten the life of mechanical components. In extreme situations, the vibration will

grow in amplitude producing ever more violent motion until the drive faults or

something breaks. As a result, tuning the KS-drive should be done with some caution.

On the front panel of the KS-drive, there are five red colour pushbuttons and a

two-digit LED display. The buttons are labeled UP, DOWN, PROPORTIONAL GAIN,

INTEGRAL GAIN and VELOCITY GAIN. Holding down one of the gain buttons will

cause the display to light up and indicate the present value for the selected term.

Holding down a specific term button and pressing the UP button once will increase the

term value by one count. On the other hand, holding down a term button and pressing

the DOWN button once will decrease the term value by one count. As long as the term

button is held down, repeated pushes on the UP or DOWN button will cause the term to

continue to increase or decrease by one unit for each push of the button.

After the completion of the pushbutton tuning procedure, it will be necessary to

save the selected term values into the non-volatile EEPROM memory. Pressing all three

term buttons and releasing them at the same time will save the setting memory. The

pushbutton tuning procedures and its conditions are shown in Table 3.3(g).

I 91

Table 3.3(h) Pushbutton Tuning Procedures and Conditions

UP DOWN p I V Condition
0 0 0 0 0 Display off/unless error LED is on.
0 0 + 0 0 Display current PROPORTIONAL value.
+ 0 + 0 0 Increase PROPORTIONAL value.
0 + + 0 0 Decrease PROPORTIONAL value.
0 0 0 + 0 Display current INTEGRAL value.
+ 0 0 + 0 Increase INTEGRAL value.
0 + 0 + 0 Decrease INTEGRAL value.
0 0 0 0 + Display current VELOCITY value.
+ 0 0 0 + Increase VELOCITY value.
0 + 0 0 + Decrease VELOCITY value.
0 0 0 + + Display current DIFFERENTIAL value.
+ 0 0 + + Increase DIFFERENTIAL value.
0 + 0 + + Decrease DIFFERENTIAL value.
0 0 + 0 + Display current device address.
+ 0 + 0 + Increase device address (maximum is 15).
0 + + 0 + Decrease device address (minimum is 1).
0 0 + + 0 Return to factory default setting.
0 0 + + + Save the tuning values.
+ + 0 0 0 Reset.

Note: P = Proportional Gain, I = Integral Gain, V = Velocity Gain, + = Pushed, 0 =
Not pushed. Other combinations are ignored.

3.3.9 RS-232 Interface of KS-Drive

The tuning process of the front panel pushbuttons can be duplicated through the

RS-232 serial communication port with an interface program. The KS-drive’s RS-232

connector is a standard 25-pin “D” connector. It has a three-wire implementation of this

interface and provides Receive Data (pin 2), Transmit Data (pin 3) and Ground (pin 7).

No handshaking is required for the interface. The interface program enables the

communication between a personal computer and 1 or multiple KS-drives. The

command and response are strings of characters. It is assumed that:

92

(1) The personal computer's serial card is set as either COM1 (3F8 Hex) or COM2 (2F8

Hex).

(2) The communication protocol is configured as:

(a) Baud rate = 9600

(b) Data bits = 8

(c) Parity =None

(d) Stop bits = 1

(3) The KS-drive/s is connected to the COM1 or COM2 of the personal computer.

(4) Each KS-drive’s device address is set.

Note: In Windows95, the COM1 or/and COM2 communication protocol can be set via

Control Panel's Modem setting.

The connection between the personal computer and the KS-drive is important in

order to make sure that the communication is smooth. The RS-232 connector pinouts for

most computers are:

25 Pin “D” Connector 2 (Transmit Data), 3 (Receive Data), 7 (Ground)

9 Pin “D” Connector---------- 2 (Transmit Data), 3 (Receive Data), 5 (Ground)

As a result, the computer serial port pin 2 must be connected to the pin 3 of the drive

serial port. The drive serial port pin 2 must be linked to the pin 3 of the computer serial

port. The ground of the two serial ports must be connected. As more than one KS-drive

is used, it is necessary to construct a daisy chain cable to connect all the KS-drives to

the personal computer. Figure 3.3(c) shows the daisy chain wiring.

The interface program is a DOS platform software. Upon opening the program,

press Alt-T to access the Terminal menu. The Settings command under the Terminal

menu allows us to verify and set the communication protocol (baud rate, data bit, stop

93

bit, and parity), the selected serial port (COM1 or COM2) and others. Once the settings

are correct, then select Connect command under the Terminal menu. The Connect

command is for checking the RS-232 connection. If the connection is valid, the

Terminal window will be brought up. If an error is detected, a message such as “Device

not ready or echo o ff’ will be displayed.

Computer
or Terminal

f
o

-V
0

o ”30u
°s

s__

0
0

o o o o o o o o o c o o
O O O O O O 070 O 030 02o

o o o o o o o o o c
O O O O O O 070 O 030 020

£
o o

o o o o o o o o o c o o
O O O O O O p70 O 030 020

Drive 1

Drive 2

Drive 3

Figure 3.3(c) Daisy Chain Wiring

After the Terminal window is opened, typing E command will enable the RS-

232 link and disable the pushbuttons functions (except the reset function). Typing F

command will return tuning control to the pushbuttons. Any command that will cause

the drive to transmit information to the RS-232 port must be prefixed with a device

address. This is to prevent several drives from transmitting at the same time in daisy

chain wiring.

Responses and reports from the drive will have an asterisk (*) as a leading

character to prevent the response from being interpreted as a command by other devices

on the communication link. Invalid commands will be ignored by the drives. Upper or

lower case command characters are accepted by the drive but the Echoed characters

94

from the drive will always be upper case. After the setting has been changed, typing SV

command will save the new value into the non-volatile EEPROM memory.

An example of checking and changing the motor resolution is shown as below.

2E (enable the RS-232 link between the PC and the KS-drive 2)

2CMR (checking the current motor resolution of the KS-drive 2)

*MOTOR_RESOLUTION=16384_STEPS/REV (response from the KS-drive 2)

2CMR5000 (changing the KS-drive 2’s motor resolution to 5000 steps per revolution)

2SV (saving the new motor resolution value into KS-drive 2’s non-volatile EEPROM)

2CMR (checking the latest motor resolution of KS-drive 2)

*MOTOR_RESOLUTION=5000_STEPS/REV (response from the KS-drive 2)

IF (return to the pushbutton tuning control)

The motor resolution of KS-drive 2 has been changed from 16384 steps per

revolution to 5000 steps per revolution by following the above steps. The motor

resolution for all the involved motors is set at 5000 steps per revolution. There are about

45 commands available for a KS-drive. All the KS-drive commands are listed in

Appendix B. The commands are categorised into:

(1) General Commands. E, F, SV and so on.

(2) Configuration Commands. CMR (configure motor resolution), FMCA (find motor

commutation angle) and others.

(3) Tuning Commands. CVG, CIG (tuning integral gain), CPG (tuning proportional

gain) and so on.

(4) Display/Report Commands. DCA (periodically displays/reports current in amperes),

DCP (periodically displays/reports peak current) and others.

95

3.3.10 A. C. Brushless Servomotors

Four a. c. brushless servomotors drive the four degrees of freedom precision

manipulator. Three of the motors are KS-220 and another one is KS-210. Two KS-220

motors are used to drive the linear motion along x and y-axis. Another KS-220 motor is

used in driving the rotary motion around y-axis. The KS-210 motor is used for driving

the rotary motion around x-axis. The specifications of the motors are shown in Table

3.3(i).

Table 3.3(i) A. C. Brushless Servomotors’ Specifications

Description KS-210 Motor KS-220 Motor
Static torque (continuous) 0.23 Nm 0.43 Nm
Static torque (peak) 0.70 Nm 1.29 Nm
Top speed 50 revolutions per second 50 revolutions per second
Rotor inertia 7.4x10 * kgm2 13.2xl0‘6 kgm2
Weight 1 kg 1.32 kg
Motor Resolution 1000 to 16384 steps per revolution (programmable)
Repeatability +/- 0.033 degrees (unloaded at 20(>C)
Accuracy +/- 0.35 degrees (unloaded)
Relative accuracy +/- 0.35 degrees (any load)
Operating temperature 130°C (maximum)
Storage temperature -40 to 85°C
Humidity 0 to 95% (non-condensing)

An a. c. brushless servomotor will rotate when the rotor magnetic field tries to

follow the stator turning magnetic field created by the three phase a. c. current. By

changing the three phase current frequency, the motor will achieve different velocities.

Step pulses applied first slowly, and then more quickly have the effect of accelerating

the motor. The advantages of a brushless motor [95] are:

(1) Reduced maintenace.

96

(2) Increased torque/volume ratio.

(3) Increased torque at high speed.

(4) Simplified in protection compare with more conventional motors.

The front and side views of the KS-210 and KS-220 a. c. brushless servomotors

are shown in Figure 3.3(d) with dimensions.

Figure 3.3(d) A. C. Brushless Servomotors

97

3.4 SUBTRACTIVE PROTOTYPING EQUIPMENT

The subtractive prototyping process is a ball nosed end milling cutter. A ball

nosed cutter has cutting edges at the end and around the cutter. As a result, single point

cutting can be accomplished by using the cutting edge at the end of the cutter. The

cutting edges at the periphery of the cutter enable multiple cutting operations to happen

at different interval of time.

The size of the milling chips is relatively small compared to other machining

processes. Hence, the produced surfaces are smoother. Ball nosed end milling can

produce virtually any kind of surface compared to other kinds of milling processes. Ball

nosed end milling has the advantage of making holes compared to the conventional end

milling. The equipment is shown in Plate 3.4(a).

Plate 3.4(a) Subtractive Prototyping Equipment

98

As shown in Plate 3.4(a), the subtractive prototyping equipment consists of the

following components:

(1) Ball nosed cutter.

(2) Digital drive.

(3) Drive holder and support.

Ball nosed slot drill was selected due to its versatility in producing various kinds

of surfaces and features. The available cutters are

(1) 3 mm diameter high strength steel screwed shank standard ball nosed slot drill

(Sherwood, CTL 061 5952C).

(2) 6 mm diameter 8 percent Co screwed shank standard ball nosed slot drill

(Sherwood, CTL 061 5955F).

The ball nosed cutter was mounted onto the clamping chuck of a EUROSTAR

digital d. c. motor [96]. The maximum tool diameter allowed is 10 mm. The ball bearing

equipped d. c. motor has a quiet synchronous belt drive. The motor is controlled via a

computer-controlled speed regulator using pulse width modulated voltage (PWM). The

whole drive unit is maintenance free and suitable for continuous operation. The motor

current is electronically limited and has anti-stall as well as anti-overload system. The

front panel of the drive is shown in Figure 3.4(a).

In normal operation, green signal light at the front panel will be on. If a fault

occurs, a safety circuit immediately switches off the motor permanently through a relay

and indicated with a yellow signal light at the front panel. At the same time, a fault code

will be shown in the LCD display at the front panel. Two of the error codes are:

(1) ER3 - Internal temperature too high. It can only occur when the permitted

environmental temperature is exceeded the limit.

99

(2) ER4 - Speed, fault. Indicating the output shaft is locked or the speed was higher than

permitted. If there are jerky loads that exceed three times the nominal torque, the

machine will switch off as a safety precaution.

(green) (yellow) knob

Figure 3.4(a) Milling Drive Front Panel

The nominal speed value is constantly compared with the actual speed value of

the output shaft and the variations will be corrected. This will ensure a constant speed

during the milling process. The speed is set with the front knob. The actual value is

indicated directly in rpm (1/min) on the LCD display. The nominal value set

corresponds to the actual value.

In overload operation, the drive can deliver doubled output for a short time to

even out load peaks which could, for instance, occur if the milling material is not

homogenous throughout the whole cross section. The possible speed is continually

adapted to operating conditions to ensure that the speed is as close as possible to the

nominal speed set. The technical data of the drive is shown in Table 3.4(a).

100

Table 3.4(a) Milling Drive Technical Data

Parameter Value
Speed range 50 - 2000 rpm (revolution per minute)
Permitted on-time 100%
Speed indicator Liquid crystal display (LCD)
Frequency 50/60 Hz
Input power 75 W
Output power 53 W
Overall efficiency 71%
Ambient temperature 5 to 40°C
Ambient humidity 80%

The entire drive holder unit and half of the support component are from the

Bosch BS45 holder and support equipment. The drive holder is 210 mm in length and

sits on a 535 mm long hollow metal tube. The tube is in turn supported by two

aluminium blocks. The aluminium blocks and the whole unit of precision robotice

manipulator are mount on a 70 mm by 140 mm by 10 mm aluminium base. Part of the

supporting unit is shown in Figure 3.4(b) below.

Clamping lever -
drive

t
Support

Figure 3.4(b) Drive Holder and Support

101

The milling material used in the project is a kind of blue colour extruded

polystyrene [97]. The material is found to be a good choice for milling because minute

chips can be removed during the prototyping process and smooth surface can be created.

Its properties are not the same as the normal white colour polystyrene used to protect

electrical appliance in the packaging industry. The material’s minimum density is 32

kg/m3. Its thermal conductivity is 0.028 W/mK (measured at 10°C). The compressive

strength is 300 kN/m2.

102

CHAPTER 4: CAD/CAM

4.1 INTRODUCTION

Computer-aided design and manufacturing (CAD/CAM) play an important role

in this project. The CAD software used in the project was AutoSurf [98], which is part

of the Mechanical Desktop (product of Autodesk, Inc.) package. The CAM programs

were built by the author using ANSI (American National Standards Institute) C

programming language [99].

In the subtractive prototyping approach, the CAD software was used to create

surface models. The models were sectioned and cut into multiple cross sectional layers.

Then, the section cut models were converted from graphic files into non-graphic files

(neutral format files) for further processing by the CAM programs.

In the additive prototyping approach, the CAD software was used to create solid

models with internal cavities (parent model). Multiple smaller diameter solid models

were then derived from the parent model. The various diameter solid models were

converted into surface models. The surface models were then section cut and later

changed into neutral format files. The various diameter solid models were also used in

the graphic simulation process. AutoLISP [100, 101], the AutoSurf programming

language was used in developing the graphic simulation program.

The CAM programs of the subtractive and additive processes are specially used

for extracting surface co-ordinates from the neutral format files, converting the data into

different co-ordinate system, sorting, creating motion parameters, communicating with

PC-23 indexer and controlling the precision robotic manipulator.

103

4.2 CAD TOOL

AutoSurf is a personal computer based, two and three-dimensional mechanical

design and drafting software. Geometric shapes and figures can be created and modified

for engineering purposes. A reduced instruction set processor (RISC), with a limited

number of instructions is built into the processor to reduce the response time for running

some applications on the software development system [6].

Crosshairs and a computer mouse are used to locate geometric shapes within the

work area. An X-Y construction plane is used for the two-dimensional mode that uses a

three-point origin placed by the user, known as the user co-ordinate system (UCS). In

default setting, the Z-axis is perpendicular to the personal computer screen and pointing

directly to the user.

AutoSurf has an open architecture for easy customisation of menus. The screen

menu is the main menu, which includes the drawing editor, configuration, plot, file

utility, and operating parameters menus. A dialogue box appears when selected item is

chosen from the pull-down menus to assist the user. Besides of using the pull-down

menus, the user can type in the commands into the command prompt to call up the

functions.

The software commands are path dependent. For example, the ‘undo’ command

will remove the screen image and any previous drawing layers up to the earlier drawing

level. AutoLISP is the AutoSurf programming language that enhances the drawing and

editing commands. It is an interpretive system, with instructions being read, interpreted,

validated, and then executed in sequence. It can also be used to simulate the material

processing process.

104

4.3 CAD FOR SUBTRACTIVE PROTOTYPING

It is important to know the physical limitation of the manipulator and the

capability of the ball nosed end milling process before attempting to create the surface

models and the subsequent models modification. The criteria that must be followed in

designing the surface models are:

(1) Shape. Manipulation along the x-axis, y-axis and around the x-axis are used in this

project. Hence, the shapes of all the surface models are in cylindrical forms.

(2) Length. The three-pin grippers of the manipulator can hold a polystyrene cylinder

block with the size ranging from 120 mm to 125 mm in length and 40 mm to 150

mm in diameter. But, due to the pins of the grippers, the length of the surface model

should be less than 110 mm.

(3) Milling Depth. Maximum milling depth is determined by the length of the cutting

edges. The length of the cutting edges along the cutter axis is about 15 mm. As a

result, the distance between the surface model’s highest and lowest co-ordinates

(from the axis of rotation) should be less than 15 mm.

(4) Reference Point. The model is a cylindrical surface form with a rotating axis at the

(100, 100, 0). The x = 100, y = 100 and z = 0 is an important reference point for the

CAM programs in the later stage. Motion parameters are produced based on that

reference point.

105

4.3.1 Surface Modelling anti Manipulation

Some of the important modelling configurations of AutoSurf need to be checked

and set before creating the surface models. The configurations are:

(1) Units. It is for selecting co-ordinates and angle display formats and precision. The

command can be found under the pull down menu of Data or by typing ‘units’ at the

command prompt. The selected type of unit is Decimal and the precision is up to

four decimal point. The selected type of angle is Decimal Degrees and up to 0°

precision. Direction of rotation can be set under this command. East has been set as

0.0° and the direction of rotation is counter clockwise.

(2) Drawing Limits. It is for setting and controlling the two and three-dimensional

drawing boundaries. The command is under the Data pull down menu too and can

be called up by typing ‘limits’ at the command prompt. Currently, the lower left

corner of the drawing limit is set at (0.0000, 0.0000) and upper right corner of the

limit is set to (297.0000, 210.0000). A4 size’s drawing limit was set.

(3) Layers. This command is also under the Data pull down menu and can be called up

by typing ‘layer’ at the command prompt. Under this command, the user can set as

many line types and line colours as possible so that they can be used in the

subsequent modelling.

(4) Drawing Aids. This command is under the pull down menu of Options and can be

called up by typing ‘ddrmodes’ at the command prompt. The command will enable

the setting of Grid spacing and Snap spacing that will make the modelling easier.

(5) Preferences. It is for customising the AutoSurf settings. It can be called up by typing

‘preferences’ at the command prompt or under the Options pull down menu. It can

106

be used to set the types of digitizer input, font type, font size, background colour and

others.

AutoSurf R3.2 is a window based CAD software. It is part of the Mechanical

Desktop package from Autodesk, Inc.. If compare to AutoCAD, AutoSurf has more

features and more user-friendly. Besides, only AutoSurf can be used to modify the

created surface models in the later stage. As a result, AutoSurf was chosen by the author

for the surface modelling process. The AutoSurf modelling system is based on NURBS

(non-uniform rational B-spline) curves. Technically, there is only one type of surface in

AutoSurf, a NURBS surface.

Models can be created and modified by using the commands from the toolbars

like Draw, Modify and Surface Create. Draw and Modify toolbars are under the

Toolbars menu that is in turn under the Tools menu. The Draw toolbar enable the

creation of line, polyline, arc, circle, ellipse, polygon and point. The Modify toolbar has

commands like move, copy object, offset, mirror, array, rotate, scale, trim, extend, edit

polyline, chamfer, fillet, union, subtract, intersection, erase and so on.

The Surface Create toolbar is under the Mechanical Toolbars pull down menu.

Mechanical Toolbars is under the Tools pull down menu. There are various commands

under the Surface Create toolbar. There are four different types of surfaces in terms of

the methods used to construct them:

(1) Surface Primitives. Created directly by the AutoSurf. Examples are cone and

cylinder surfaces.

(2) Motion-based. Surfaces. Produced by moving wires through space. Examples are

revolved, extruded, tubular and swept surfaces.

(3) Skin Surfaces. Constructed by applying over a wireframe such as ruled surface.

107

(4) Derived Surfaces. Generated from the existing surfaces like blended surface.

Primitive surface models do not require a wireframe for their construction but

are instead directly created using the user-specified values. A full or partial primitive

cone surface model can be created by using the Cone Surface command at the Surface

Create toolbar. Typing ‘amprimsf’ and then selecting Cone at the command prompt has

the same effect of activating the modelling task.

A full cone surface model was built by using AutoSurf. The base centre point

was (100, 100, 0). The radius of the cone base was 16 mm. The radius of the cone top

was 22 mm. The height of the cone was 50 mm. The start angle was 0° (default setting).

The included angle was 360° (default angle is a full circle). The primitive cone surface

model is shown in Figure 4.3(a).

The surface model can be verified and viewed at different angles by using the

Rotate View command at the Desktop View toolbar. The Desktop View toolbar is under

the Mechanical Toolbars menu. After creating the surface model, the following step was

to cut it into multiple cross sectional layers. Only the neutral format file (DXF entities

file) of the section cut surface model contains the useful data for subtractive prototyping

process.

The section cut surface model can be created by using the Section Cuts

command at the Surface Create toolbar. The author needed to change the view of the

primitive model into the Front View (from Desktop View toolbar) before activating the

Section Cuts command. Typing ‘amsection’ at the command prompt can also call up the

Section Cuts command.

Upon selecting the primitive surface model, a dialogue box will appear. In order

to cut the surface model, the following information must be provided.

108

(1) Section type. It is for selecting Single, Parallel or Radial sectioning cut.

(2) Initial plane. It is for specifying the initial cutting plane. It can be either from the

user View Direction or UCS (user co-ordinate system) plane.

(3) Multiple cuts. When Parallel or Radial section type is selected, the user needs to

specify the Stop position of the last cut and the Step of each cut (step over).

Primitive Cone Surface Model Section Cut Surface Model

Figure 4.3 (a) Primitive Cone and Section Cut Surface Models

A primitive cone surface model was cut into multiple layers by using Section

Cuts command. The section cut surface model is displayed in Figure 4.3(a) too. Parallel

section type was selected for creating the model. It started to section cut the model from

the UCS plane. The section cut stopped at 49.5 mm and with a step over of 1.5 mm. The

total section cut layers are 34. The step over distance is one of the parameters that will

affect the final product surface smoothness.

109

A full primitive cylinder surface model can be generated by using the Cylinder

Surface command at the Surface Create toolbar. Typing ‘amprimsf’ and then selecting

Cylinder at the command prompt can also activate the function. A primitive cylinder

surface model was built by using (100, 100, 0) as based centre point, radius of 20 mm,

height of 50 mm, start angle was 0° and included angle was 360°. A cylinder section cut

model was produced by using the same method as the cone section cut model described

above. Figure 4.3(b) shows both models.

Primitive Cylinder Surface Model Section Cut Surface Model

Figure 4.3(b) Primitive Cylinder and Section Cut Surface Model

Motion-based surface models are created based on the three-dimensional motion

of wires through space. A revolved surface is one of the motion-based surfaces.

Rotating any number of path curves or profiles, around a selected axis creates surfaces

of revolution. The path curve can be line, arc, spline or polyline. An example of creating

the revolved surface model by using a polyline is presented in the following paragraphs.

110

Before creating the revolved surface model, a polyline has to be drawn. The

Polyline command is under the Draw toolbar. Typing ‘pline’ at the command prompt

has the same effect as calling up the function. The polyline should be drawn within the

boundary of (75, 100, 0), (85, 100, 0), (85, 150, 0) and (75, 150, 0). This is to ensure

that the revolved model will have a minimum diameter of not less than 30 mm and the

maximum diameter of not more than 50 mm.

After the polyline was drawn, the polyline has to be smoothened. Using the Edit

Polyline command on the Modify toolbar or typing ‘pedit’ at the command prompt will

turn sharp edges of the polyline into smooth corners. There are a few options to choose

from the Edit Polyline command such as Fit, Spline and others. Spline was chosen so

that the polyline will become a B-spline curve.

A completely revolved surface model was built by rotating a polyline around the

axis of the model. The Revolved Surface command is under the Surface Create toolbar

and can also be activated by typing ‘amrevolvesf’ at the command prompt. The ‘Start

point of axis’ was (100, 100, 0) and the ‘End point of axis’ was (100, 150, 0). The start

angle was 0° (default setting). The included angle was 360° (default angle is a full

circle). As a result, a revolved surface model that is 50 mm long was created.

For section cut purposes, the revolved surface model has to be rotated about a

three-dimensional axis. The command for rotation is 3D Rotate that is under the Modify

toolbar. Typing ‘rotate3d’ at the command prompt serve the same purpose. The rotating

axis has to be specified as x. The point on x-axis that the model will use as the rotation

based point was (100, 100, 0). The rotation angle was 90°.

Changing the view to Front View and using the Section Cuts command can cut

the revolved surface model into multiple layers. The section cut configurations were

111

same as the primitive cone surface model cutting operation. The revolved surface with

its section cut models are shown in Figure 4.3(c). The total section cut layer is 34.

Polyline (path curve)

50

Revolved Surface Model Section Cut Surface Model

Figure 4.3(c) Revolved and Section Cut Surface Models

An extruded surface model is one of the motion-based surfaces. It can be created

by moving any three-dimensional wire shape along a straight line. The direction can be

specified by a view and giving a value for the total amount of movement, or supplying a

wire to specify both the direction and the distance required for creating the surface. The

command is Extruded Surface that is under Surface Create toolbar. Typing

‘amextrudesf’ at the command prompt can also activate the function.

A polyline was used to create an extruded surface model. The direction of

extrusion was Z, that is normal to the personal computer screen. The extrusion distance

was 50 mm with 0° taper angle. The extruded surface model then underwent the section

112

cut process just like the previous illustrated models. Figure 4.3(d) shows the extruded

surface and section cut surface models.

Polyline

Extruded Surface Model Section Cut Surface Models

Figure 4.3(d) Extruded and Section Cut Surface Models

One of the motion-based surfaces is the tubular surface model. The command to

create the Tubular Surface is under the Surface Create toolbar. Typing ‘amtube’ at the

command prompt can activate the function too. It is used to create a tubular surface

around a selected wire that becomes the axis of the tube.

The information needed for the construction of the tubular surface model is the

tube diameter and the specified wire. The wire can be line, arc, polyline and spline.

Figure 4.3(e) shows the tubular surface and its section cut surface models. The section

cut process is same as the previous models. The model was built by using a three-

dimensional rotated polyline and the tube diameter was 40 mm.

113

50 mm

Tubular Surface Model Section Cut Surface Model

Figure 4.3(e) Tubular and Section Cut Surface Models

Swept surface model is one of the motion-based surfaces. The command is

Swept Surface that is under Surface Create toolbar. Typing ‘amsweepsf’ at the

command prompt can activate the function too. It is used to create a surface by

sweeping cross sections along a rail. Using a polyline cross section and a polyline as a

rail, a swept surface model can be created. The model is shown in Figure 4.3(f) along

with its section cut surface model. The section cut configuration was same all the

previous models.

Skin surface models are created by “skinning over” a wireframe shape. Skin

surface models can be visualised as a surface draped over, or skinned, across an existing

wire structure. Ruled surface model is one of the skin surface models. Ruled surface

models are constructed from only two path curves. The path curves can be line, arc,

40 mm

114

closed or open polylines. The way of creating a ruled surface model by using two closed

polylines is shown in the following paragraphs.

50

Polyline

Swept Surface Model Section Cut Surface Model

Figure 4.3(f) Swept and Section Cut Surface Models

First of all, using the Polyline command at the Draw toolbar for drawing up two

closed polylines. Then, the polylines were edited by using Edit Polyline at the Modify

toolbar so that it became a spline. Then, using Move command at the Modify toolbar or

typing ‘move’ at the command prompt to separate the closed polylines so that the

distance between them is 50 mm.

After that, typing ‘amrule’ at the command prompt or clicking the Ruled Surface

at the Surface Create toolbar to call up the ruled surface creation function. Then,

selecting the two smooth polylines as the path curves. A ruled surface will be created

like the one in Figure 4.3(g). The ruled surface model was later taken through the

section cut operation to produce the multi-layer model. The section cut operation was

115

the same as the previous described models. The section cut model is illustrated in Figure

4.3(g) too.

Top polyline (complex shape)

50

Bottom polyline (heart shape)

Ruled Surface Model Section Cut Surface Model

Figure 4.3(g) Ruled and Section Cut Surface Models

A blended surface is one of the derived surfaces. It is created between two,

three, or even four other surfaces. The blended surfaces is tangent to the surfaces from

which it is created. Blended surfaces may also be created between wires or between

combinations of wires and surfaces. The Blended Surface command is under the

Surface Create toolbar. Typing ‘amblend’ at the command prompt can also call up the

function. Selecting the desired surfaces for the creation of blended surface will construct

the model. Figure 4.3(h) shows the blended surface model. First and second surfaces

116

were used to derive the blended surface. Section cut model is also shown in the figure.

The section cut model was created by using the same procedures as the previous

models.

First
surface

Blended
surface

Second
surface

Blended Surface Model Section Cut Surface Model

Figure 4.3(h) Blended and Section Cut Surface Model

Of all the surface models described above, only the ruled surface model was

selected for the project due to its complexity and versatility. Cone, cylinder and

revolved surface models are symmetrical model. Although extruded, tubular and swept

surface models are not symmetrical, but they are simple. Blended surface model is not

suitable since the distance between the highest and lowest point (from the axis of

rotation) of the surface is unpredictable. The milling depth might need to be more than

10 mm in some cases. Ruled surface model is the best method for creating complex

surface model because its models are asymmetric, complex and have predictable milling

depth. As a result, more ruled surface models were created. The models are shown from

117

Figure 4.3(i) to Figure 4.3(w) with their section cut models. Two or more polylines

were used to create the ruled surface models. The shapes of the polylines are circle,

heart, complex, star, pentagon, cross and square.

118

50

Ruled Surface Model Section Cut Surface Model

Figure 4.3(i) Circle to Heart Model

50

mm

Circle

Heart

Complex

mm

Circle

Ruled Surface Model Section Cut Surface Model

Figure 4.3(j) Circle to Complex Model

Ruled Surface Model Section Cut Surface Model

Figure 4.3(k) Circle to Star Model

Heart

Ruled Surface Model Section Cut Surface Model

Figure 4.3(1) Heart to Star Model

120

Section Cut Surface Model

S tar Model

Ruled Surface Model

Figure 4.3(m) Complex to

Complex

Square

Ruled Surface Model

Circle

Section Cut Surface Model

Figure 4.3(n) Circle to Square Model

121

Square

Complex

Ruled Surface Model
Section Cut Surface Model

Figure 4.3(o) Complex to Square Model

Pentagon

50 mm

Ruled Surface Model
Section Cut Surface Model

Figure 4.3(p) Star to Pentagon Model

Ruled Surface Model Section Cut Surface Model

Figure 4.3(q) Cross to 45° Rotated Cross Model

Ruled Surface Model Section Cut Surface Model

Figure 4.3(r) Cross to Pentagon Model

123

50

Circle

Section Cut Surface Model
Ruled Surface Model

Figure 4.3(s) Circle to Heart to Complex Model

Complex

Heart

Circle

Ruled Surface Model Section Cut Surface Model

Figure 4.3(t) Circle to Heart to Star Model

Heart

124

Complex

Circle

Ruled Surface Model
Section Cut Surface Model

Figure 4.3(u) Circle to Complex to Star Model

Complex

Heart

Ruled Surface Model
Section Cut Surface Model

Figure 4.3(v) Heart to Complex to Star Model

125

50 mm
Complex

Heart

Circle

Ruled Surface Model Section Cut Surface Model

Figure 4.3(w) Circle to Heart to Complex to Star Model

4.4 CAD FOR ADDITIVE PROTOTYPING

It is important to know the physical limitation of the manipulator and the

proposed additive prototyping equipment before attempting to create the solid model

and the subsequent models manipulation. The criteria that must be followed in

designing the solid model are:

(1) Shape. The proposed additive prototyping equipment is a vertical semi-liquid

deposition device. The semi-liquid material will be deposited onto the rotating

cylindrical core material held by the grippers. As a result, only manipulations along

and around x-axis are used in handling the model. Hence, the shapes of the solid

model should be in cylindrical form.

126

(2) Length. The three-pin grippers of the manipulator can hold a cylindrical block with

the size ranging from 120 mm to 125 mm in length and 40 mm to 150 mm in

diameter. But, due to the pins of the grippers, the length of the surface model should

be less than 110 mm.

(3) Reference Point. The model is a cylindrical surface form with a rotating axis at the

(100, 100, 0). The x = 100, y = 100 and z = 0 is an important reference point for the

CAM programs in the later stage. Motion parameters are produced based on that

reference point.

4.4.1 Ob ject Modelling and Manipulation

Some of the important modelling configurations of AutoSurf need to be checked

and set before creating the solid model. The configurations are:

(1) Units. It is for selecting co-ordinates and angle display formats and precision. The

command can be found under the pull down menu of Data or by typing ‘units’ at the

command prompt. Direction of rotation can be set under this command.

(2) Drawing Limits. It is for setting and controlling the two and three-dimensional

drawing boundaries. The command is under the Data pull down menu too and can

be called up by typing ‘limits’ at the command prompt. Drawing limits has been set

to A4 size.

(3) Layers. This command is also under the Data pull down menu and can be called up

by typing ‘layer’ at the command prompt. Under this command, the user can set as

127

many line types and line colours as possible so that they can be used in the

subsequent modelling.

(4) Drawing Aids. This command is under the pull down menu of Options and can be

called up by typing ‘ddrmodes’ at the command prompt. The command will enable

the setting of Grid spacing and Snap spacing that will make the modelling easier.

(5) Preferences. It is for customising the AutoSurf settings. It can be called up by typing

‘preferences’ at the command prompt or under the Options pull down menu. It can

be used to set the types of digitizer input, font type, font size, background colour and

others.

A solid cone model was created by using AutoSurf. Then, four internal cavities

were created in the solid cone by using the Boolean operator’s subtract command. The

solid cone with four internal cavities is called the parent model. Later, multiple smaller

diameter solid models were derived from the parent model by using the Boolean

operator’s intersection command. The smaller diameter solid models were then

changed into surface models. The surface models went through the section cut process

to become section cut models. Only the section cut models can be convert into useful

neutral format files. The parent model is shown in Figure 4.4(a) in wire frame format.

There is no one step command in creating a solid cone. A solid cone model can

be created by revolving a closed polyline. Four points were used to create the close

polyline. The co-ordinates of the points were (100, 100, 0), (100, 200, 0), (50, 200, 0)

and (60, 100, 0). The axis of revolution started from (100, 100, 0) and ended at (100,

200, 0). The angle of revolution was a full circle. The revolving command that is under

the Solids toolbar can be called up by accessing the Tools pull down menu’s Toolbars.

Typing ‘revolve’ at the command prompt can also activate the function.

128

100 mm
< — - - - >

Figure 4.4(a) Solid Model in Wireframe Representation

The solid cone model was then rotated in three-dimensional around x-axis at

(100, 100, 0) with 90 degree rotation angle. After that, four solid cylinders were built

inside the solid cone model as shown in Figure 4.4(a). Subtract command was used to

subtract the cylinders from the solid cone model. In the end, the solid cone model was

having four internal cylindrical cavities. The Boolean operators of Union, Intersection

and Subtract can be accessed from the Modify toolbar. Typing ‘union’ or ‘intersect’ or

‘subtract’ at the command prompt will give the same effect.

Eight smaller diameter solid models were derived from the parent model. The

eight derived models’ maximum diameters are 20 mm, 30 mm, 40 mm, 50 mm, 60 mm,

70 mm, 80 mm and 90 mm. Intersecting various diameter solid cylinders with the parent

129

model will create the eight models. Once again, Boolean operator of Intersection was

used in deriving the smaller models.

The derived solid models and the parent model were then be converted into

surface models. The Convert All command in the Surface Edit toolbar was used to

convert all the solid faces into surfaces. Typing ‘am2sf at the command prompt can

activate the function as well. After obtaining the surface models, the top and bottom

surfaces of each model were deleted.

The surface models were then went through the section cut operation. The

section cut type was parallel, UCS was the initial plane, the step over distance is 3 mm

and it will stop at the height of 99 mm. So, every surface model was section cut into 34

layers. The surface models and their respective section cut models are shown in the

following diagrams from Figure 4.4(b) to Figure 4.4(j).

20 mm
4 ------- ►

Surface Model Section Cut Model

Figure 4.4(b) 20 mm Diameter Surface and Section Cut Models

130

Surface Model Section Cut Model

Figure 4.4(c) 30 mm Diameter Surface and Section Cut Models

40 mm
< ►

50 mm

100 mm

Surface Model Section Cut Model

Figure 4.4(d) 40 mm Diameter Surface and Section Cut Models

131

50

50 mm
A--------------- ►

75 mm

100 mm

Surface Model Section Cut Model

Figure 4.4(e) 50 mm Diameter Surface and Section Cut Models

60 mm
< ►

Surface Model

Figure 4.4(f) 60 mm Diameter Surface and Section Cut Models

Section Cut Model

132

70 mm
< ►

Surface Model Section Cut Model

Figure 4.4(g) 70 mm Diameter Surface and Section Cut Models

80 mm
'4 --1>

Surface Model Section Cut Model

Figure 4.4(h) 80 mm Diameter Surface and Section Cut Models

133

Surface Model Section Cut Model

Figure 4.4(i) 90 mm Diameter Surface and Section Cut Models

Figure 4.4(j) Complete Surface

Section Cut Model

and Section Cut Models

134

4.4.2 Graphical Simulation

The additive prototyping process was simulated graphically by a program which

was built by the author using AutoLISP programming language [101]. AutoLISP was

created by the developers of the AutoSurf [100]. It is an integral part of the AutoSurf

package. It is a small subset of the Common LISP programming language. It adheres

closely to the same syntax and conventions, but has many additional functions specific

to AutoSurf.

AutoSurf has a built-in LISP interpreter that the user uses to enter AutoLISP

code at the command line or to load AutoLISP code from external files. AutoLISP

applications or routines can interact with the CAD software in many ways such as

prompting the user for input, access built-in AutoSurf commands directly, and modify

or create objects in the drawing database.

Since no compiling is required, AutoSurf can be used to read the AutoLISP code

directly. The results are shown immediately after typing the code at the command line.

AutoLISP can be used to write macro programs and functions in a powerful, high-level

language suited to graphics applications. Its applications are stored in ASCII (American

Standard Code for Information Interchange) text files.

The making of the solid model in Figure 4.4(a) was simulated graphically by

using AutoLISP in the AutoSurf environment. In the simulation, a simple deposition

tool was created together with nine solid models from Figure 4.4(a) to Figure 4.4(i).

The complete model was first created. The graphical and non-graphical entity

definition data of the model was immediately extracted from the drawing by using

AutoLISP commands like ‘setq’, ‘prin l’, ‘entget’ and ‘entlast’. All the other solid

135

models were created based on the intersection of various diameter solid cylinders with

the complete model. The entity definition data of the models were extracted

immediately upon the creation of each solid model.

The entity definition data are listed in pairs of “key/value” that define the

drawing. The “key” for any of the pairs in the definition data is always an integer,

whose value dictated the interpretation of the “data” part of the pair. The definition data

of a circle entity within the system is shown and explain in Table 4.4(a).

Table 4.4(a) Entity Definition Data

Key/Value Pair Explanation
((-1 . <Entity name: dl3d50>) ; -1 indicates internal identifier for this circle object
(0 . “CIRCLE”) ; 0 indicates type of object
(330 . <Entity name: dl3cc8>) ; 330 indicates internal identifier of the circle’s

container
(5 . “52”) ; 5 indicates the “handle” of the object
(100 . “AcDbEntity”) ; first 100 indicates the most ancestral class of the

object
(67 . 0) ; 67 indicates the circle’s colour
(8 . “0”) ; 8 indicates the circle’s layer
(100 . “AcDbCircle”) ; subsequent 100 indicates more derived class of

object
(10 3.0 5.0 0.0) ; 10 indicates centre of circle
(40. 1.6) ; 40 indicates circle radius
(210 0.0 0.0 1.0)) ; 210 indicates vector normal to plane of circle

The AutoLISP command of ‘entmake’ is used to create and display the solid

models. The entity definition data has to be modified - the first key/value pair of the

data file has to be omitted. The data files can also be changed so that the models have

different sizes, colours and so on. The basic picture frames of the graphic simulation

process are shown from Figure 4.4(k) to Figure 4.4(t).

136

Deposition tool

V

10 mm diameter
core block

Figure 4.4(k) 10 mm Diameter Core Block with Deposition Tool

Deposition tool

V

20 mm diameter
unfinished product

Figure 4.4(1) 20 mm Diameter Product with Deposition Tool

137

Deposition tool

V

30 mm diameter
unfinished product

Figure 4.4(m) 30 mm Diameter Product with Deposition Tool

Deposition tool

V

40 mm diameter
unfinished product

Figure 4.4(n) 40 mm Diameter Product with Deposition Tool

138

Deposition tool

V

50 mm diameter
unfinished product

Figure 4.4(o) 50 mm Diameter Product with Deposition Tool

Deposition tool

V

60 mm diameter
unfinished product

Figure 4.4(p) 60 mm Diameter Product with Deposition Tool

139

M----------------- Deposition tool

V

70 mm diameter
unfinished product

Figure 4.4(q) 70 mm Diameter Product with Deposition Tool

4 --------------- Deposition tool

V

80 mm diameter
unfinished product

Figure 4.4(r) 80 mm Diameter Product with Deposition Tool

140

•4---------------- Deposition tool

V

90 mm diameter
unfinished product

Figure 4.4(s) 90 mm Diameter Product with Deposition Tool

Figure 4.4(t) Complete Product with Deposition Tool

141

The simulation program is illustrated graphically in Figure 4.4(u).

Figure 4.4(u) Graphic Simulation Program Flow

The AutoLISP graphic simulation program is listed in Appendix C. The program

utilised AutoLISP commands like ‘entmake’, ‘setq’, ‘while’, ‘princ’, ‘command’ and

AutoSurf commands like ‘avrender’ and ‘vpoint’.

The command ‘entmake’ is for creating and displaying the solid model on the

screen, ‘setq’ is for setting the program variable, ‘while’ is for constructing the time

delay function and ‘avrender’ is for creating a realistically shaded image of a three-

dimensional solid model. The command ‘vpoint’ is for setting the viewing direction for

a three-dimensional visualisation of the drawing. Four kinds of viewing direction were

provided, namely Southeast (SE), Southwest (SW), Northeast (NE) and Northwest

(NW).

4.5 DRAWING INTERCHANGE FORMAT (DXF)

In this project, only the section cut models in the previous sections can be

converted into useful neutral format files. The subsequent CAM programs can be used

to analyse the neutral format files and generate useful data for subtractive and additive

prototyping processes. Drawing interchange format (DXF) file has been adopted as the

neutral format file in this project.

DXF is written in human-readable character codes - ASCII (American Standard

Code for Information Interchange) text. It contains all the necessary and important

geometry and graphics entities of a model [102]. DXF was originally proposed by

Autodesk Inc. as a method to allow for transferring data between different versions of

143

AutoCAD [43]. It also allows drawings to be exchanged between AutoCAD or

AutoSurf on different types of computer [36],

AutoSurfs DXF file is the best neutral format file in this project because of the

following reasons:

(1) It is easy to be understood since it is quite verbose. It contains strings, integers and

floating-point numbers only.

(2) Its model information is arranged. It uses one line for each data item. It is perfect for

data filtering and extraction in programming.

(3) It is relatively simple and has enormous future prospect since most personal

computer-based CAD software will read and write DXF formatted files.

(4) Its file size is very small because specific entities (drawing objects) can be selected

by the user for producing the neutral format file.

(5) Its data accuracy can be determined by the user up to 16 decimal places.

DXF object file size is larger than the DXF entities file size. It is very hard to

decode the DXF object file. DXF binary file is more compact than the entities file but it

is not written in a human-readable form. Only entities contain the needed data in this

project. As a result, the neutral format file should contain the entities data only.

For producing DXF entities file by using the AutoSurf, the author needed to type

‘dxfout’ at the command prompt. Before producing the DXF file, a statement will be

displayed at the command prompt like this:

“Enter decimal places of accuracy (0 - 16)/Objects/Binary<6>”

The author needed to type ‘entities’ at the end of the statement. Then, the author will

need to select the entities from the drawing file; only those selected will be transferred

into the DXF entities file. The default accuracy is six decimal places.

144

Essentially a DXF file is composed of pairs of codes and the associated values.

The codes, known as group codes, indicate the type of value that follows. Using these

group code and value pairs, a DXF entities file is organised into sections, which are

composed of records, which in turn are composed of a group code and a data item. Each

group code and value are on its own line in the DXF file.

Each section starts with a group code 0 followed by the string, SECTION. This

is followed by a group code 2 and a string indicating the name of the section (for

example, ENTITIES). Each section is composed of group codes and values that define

its elements. A section ends with a 0 followed by the string ENDSEC. For example, a

complete DXF entities file definition of a circle is listed as below (comments in

brackets).

o
SECTION

2
(a new section)

ENTITIES
o

(drawing entities section)

CIRCLE
5

(circle is the entity)

6F (handle)
100 (subclass marker)
A c D b E n t i t y

oO

0 (name of the layer)
100 (subclass marker)
A c D b C i r c l e

10

100 . 0 (x co-ordinate of the centre of the circle)
20

100 . 0 (y co-ordinate of the centre of the circle)
30

0 . 0 (z co-ordinate of the centre of the circle)
40

2 5 . 0
o

(radius of the circle)

ENDSEC
o

(end of entities section)

EOF (end of ASCII text file)

145

4.6 CAM TOOL

AH computer-aided manufacturing (CAM) programs in this project were written

by the author using American National Standards Institute (ANSI) C programming

language. The source codes were compiled in Borland C++ version 4.5.

C language was created by Dennis Ritchie at the Bell Telephone Laboratories in

1972. Initially, It was used for designing UNIX operating system. Then, programmers

around the world started to use C language for other purposes since it is so powerful and

flexible. Different organisations created their own version of C, and subtle differences

between implementation started to give programmers headaches. In response to this

problem, the American National Standards Institute (ANSI) formed a committee in

1983 to establish a standard definition of C, which became known as ANSI Standard C.

With few exceptions, every modern C compiler has the ability to adhere to this standard

[103],

ANSI C programming language was used in this project because of the

following reasons [103]:

(1) It is powerful and flexible. The language itself places no constraints on the user.

(2) It is a portable language. A C program written for one computer system (an IBM

PC, for example) can be compiled and run on another system (a DEC VAX system,

perhaps) with little or no modification.

(3) It is a language of few words. It contains a handful of terms, called keywords, which

serve as the base on which the language’s functionality is built.

(4) It is modular. C code can be written in routines called functions. These functions can

be reused in other applications or programs.

146

4.7 CAM FOR SUBTRACTIVE PROTOTYPING

Five CAM programs were created by the author using ANSI C programming

language for the subtractive prototyping process. With the programs available, the data

processing procedures are computerised, path generation process is automated and so

on. As a result, computer-aided manufacturing in subtractive prototyping (ball nosed

end milling) can be materialised. The programs are listed sequential as below.

(1) Extract.c. It is for extracting all the surface co-ordinates from the DXF entities files.

The DXF entities files were transferred from the section cut models.

(2) Convert.c. It is for converting all the data from Cartesian co-ordinate system to

Cylindrical co-ordinate system to suit the precision robotic manipulator.

(3) Sortadd.c. It is for sorting all the co-ordinates according to the height of the model,

angles and creating the first and last point for each machining section (layer).

(4) Vd.c. It is for converting all the distance from millimetre and degree to motor step. It

is also calculating all the synchronised velocity for each motion axes.

(5) VsvMt.c. It is the ultimate motion control program. Its functions include machining

time estimation, command construction, communication with the PC-23 indexer and

so on.

Figure 4.7(a) illustrates the programs sequence that a data file has to go through

in order to produce a three-dimensional polystyrene model. Further details of the

programs will be explained in the following sections.

147

Sortadd.c

VsvMt.c

3D model

Extract.c

Convert.c

Figure 4.7(a) Subtractive Prototyping CAM Programs Flow

4.7.1 Extract.c

The first CAM program is the Extract.c. It is for extracting the x, y and z co­

ordinates from the DXF files. Part of a DXF file of a section cut model is shown as

below (comments in brackets).

o
VERTEX

5
2 1 7

100
AcDbEntity

8
0
100
A c D b V e r t e x

100
A c D b 2 d V e r t e x

(vertex section begin)

(handle)
(subclass marker)

(name of the layer)
(subclass marker)

(subclass marker)

148

89.35717 (x co-ordinate of the vertex)
20

116.386332 (y co-ordinate of the vertex)
30

o.o (z co-ordinate of the vertex)

10

The program flow is illustrated in Figure 4.7(b).

Figure 4.7(b) Extract.c Program Flow

The Extract.c program will begin by asking the user to input the DXF filename

with the correct path and file extension. DXF file will have ‘.dxf as the file extension.

Then, the program opens the source file (*.dxf) for reading and opens the destination

149

file (*.txt) for writing. The program will scan through the source file in searching for the

subclass markers of ‘AcDb2dVertex’ or ‘AcDb3dPolylineVertex’.

Once the subclass markers are available, the program will continue to look for

group codes 10, 20 and 30. The data item for group code 10 is the x co-ordinate of the

vertex. The y co-ordinate of the vertex will be paired with group code 20, while group

code 30 will pair with the z co-ordinate of the vertex. Once obtaining the vertex co­

ordinates, the program will write them into the destination file.

The program will continue to read through the source file in searching for the

vertex co-ordinates until the end of file. When the program finish, the destination file

will contain all the necessary surface data of a section cut model. The surface data are

arranged according to the height of the model (step over). The Extract.c program source

codes are listed in Appendix D.

4.7.2 Convert.c

Convert.c is the second CAM program. Its function is to convert the data from

Cartesian co-ordinate system to Cylindrical co-ordinate system. The source file for

Convert.c is the product file of Extract.c. Part of a source file is listed as below.

X y z
8 9 . 3 5 7 1 7 0 1 1 6 . 3 8 6 3 3 0 0 . 0 0 0 0 0 0
89 . 5 7 8 2 0 1 1 1 6 . 5 3 6 9 9 5 0 . 0 0 0 0 0 0
89 . 8 0 1 7 2 7 1 1 6 . 6 8 5 6 2 3 0 . 0 0 0 0 0 0
9 0 . 0 2 7 6 2 6 1 1 6 . 8 3 2 1 6 9 0 . 0 0 0 0 0 0
9 0 . 2 5 5 7 5 3 1 1 6 . 9 7 6 5 9 3 0 . 0 0 0 0 0 0

The left column of the source file has x co-ordinates. The middle column of the file has

y co-ordinates. The third column of the file has of z co-ordinates.

150

Initially, the program will ask the user to specify the source file and location.

Then, the program will open the source file for reading and open the destination file for

writing when necessary. The program will convert the data row by row. The base centre

point of each section cut model is (100, 100, 0). As a result, the reference point for

calculation is x = 100 and y = 100.

Only x and y co-ordinates are needed for calculating the radius (r mm) and angle

(Rx degree) from the horizontal axis. Figure 4.7(c) shows the conversion method from

Cartesian co-ordinate system to Cylindrical co-ordinate system in a graphical form.

Y-axis (90)

(270)

Figure 4.7(c) Cartesian System to Cylindrical System

151

By using (100, 100) and (xl, y l), the program can calculate r mm and Rx

degree. The angle will start from the horizontal x-axis. The z value of the source file

will be kept as it is in the destination file except that the locations of the data are

rearranged.

The left column of the destination file consists of the height (z) of the model.

The middle column of the file consists of the angle (Rx degree) values. The right

column of the file consists of the radius (r mm) of the cross sectional profile. Part of a

destination file is listed as below.

z Rx r
0 . 0 1 2 3 . 0 0 3 5 1 0 1 9 . 5 3 9 2 3 2
0 . 0 1 2 2 . 2 1 9 5 8 9 1 9 . 5 4 7 0 2 2
0 . 0 1 2 1 . 4 3 3 3 3 4 19 . 5 5 5 4 2 9
0 . 0 1 2 0 . 6 4 5 0 2 0 19 . 5 6 4 5 1 2
0 . 0 1 1 9 . 8 5 5 0 2 6 1 9 . 5 7 4 3 4 7

The Convert.c program source codes are listed in Appendix E.

4.7.3 Sortadd.c

Sortadd.c is the third CAM program. The source file of Sortadd.c will be the

product file of the Convert.c. Soradd.c program functions are:

(1) Rearranging the data in each cross sectional profile (layer) so that the smallest angle

(~ 0°) will be placed at the beginning of the layer and the largest angle (~ 360°) will

be placed at the end.

(2) Calculating the radius (r mm) of each cross sectional profile (layer) at 0° and 360°.

The points will be added as the first and last points of each layer.

Part of a source file is listed as below (comments in brackets).

152

z Rx r
0 . 0 1 2 3 . 0 0 3 5 1 0 1 9 . 5 3 9 2 3 2 (beginning part of the first layer)
0 . 0 1 2 2 . 2 1 9 5 8 9 19 . 5 4 7 0 2 2
0 . 0 1 2 1 . 4 3 3 3 3 4 1 9 . 5 5 5 4 2 9

0 . 0 1 . 2 9 5 0 7 9 1 9 . 4 2 8 7 1 5 (middle part of the same layer)
0 . 0 0 . 3 3 5 3 7 6 1 9 . 4 2 7 4 0 2
0 . 0 3 5 9 . 3 7 7 5 6 3 19 . 4 2 7 8 0 5

0 . 0 1 2 5 . 2 9 7 7 2 9 1 9 . 5 1 9 0 1 4 (end part of the same layer)
0 . 0 1 2 4 . 5 3 2 5 1 6 1 9 . 5 2 5 3 8 7
0 . 0 1 2 3 . 7 6 7 7 4 6 1 9 . 5 3 2 1 1 6

The left column of the source file consists of the height (z or step over distance)

of the model. The middle column consists of the angles (Rx). The third column consists

of the radius (r) of the cross sectional profile of the model.

Once activated, the program will ask the user for the source filename and

location. The program will then open the source file for reading and open the

destination file for writing (appending) when necessary. The program will sort the data

layer by layer. It will also calculate the radius of the profile at 0° and 360° by using

linear interpolation.

Part of a destination file is listed as below (comments in brackets). The left

column of the file consists of the z values of the model. The middle column consists of

Rx degree. The third column consists of the r values.

z Rx r
0 . 0 0 0 0 0 0

0 . 0 0 0 0 0 0
0 . 0 0 0 0 0 0

0 . 0 0 0 0 0 0
0 . 3 3 5 3 7 6
1 . 2 9 5 0 7 9

1 9 . 4 2 7 5 4 4

1 9 . 4 2 7 4 0 2
1 9 . 4 2 8 7 1 5

(beginning part of the first layer)

0 . 0 0 0 0 0 0
0 . 0 0 0 0 0 0
0 . 0 0 0 0 0 0

1 7 9 . 8 1 5 5 0 6
1 8 0 . 8 0 4 9 1 6
1 8 1 . 7 9 8 5 9 9

1 8 . 4 7 2 0 2 7
1 8 . 4 5 9 4 1 7
1 8 . 4 4 8 0 2 3

(middle part of the same layer)

0 . 0 0 0 0 0 0
0 . 0 0 0 0 0 0
0 . 0 0 0 0 0 0

3 5 8 . 4 2 2 1 8 0
3 5 9 . 3 7 7 5 6 3
3 6 0 . 0 0 0 0 0 0

1 9 . 4 2 9 9 0 5
1 9 . 4 2 7 8 0 5
1 9 . 4 2 7 5 4 4

(end part of the same layer)

The Sortadd.c program source codes are listed in Appendix F.

153

4.7.4 Vd.c

Vd.c is the fourth CAM program. The source file for the Vd.c is the product file

of the Sortadd.c program. Vd.c program has the following functions.

(1) Converting the height (step over distance), angle and radius values of the source file

into motor steps based on the raw material block radius.

(2) Calculating the motor velocity based on the user’s desired feed rate.

(3) Calculating the velocity of each motion axis so as to have a synchronous motion

profile.

Once activated, the program will ask the user to provide the source filename, its

location and the radius of the raw material block. Then, it will open the source file for

reading and open the destination file for writing (appending). The data will be

calculated row by row. The calculated motor steps are either positive (increment) or

negative (decrement) values.

Part of the beginning, middle and the end of the first layer of a destination file is

listed as below. The feed rate chosen by the author is 0.375 mm/sec (manipulation along

x or y-axis).

V e l o c i t y
a l o n g x -

a x i s

M o t o r s t e p
a l o n g x -

a x i s

V e l o c i t y
a r o u n d x -

a x i s

M o t o r s t e p
a r o u n d x -

a x i s

V e l o c i t y
a l o n g y -

a x i s

M o t o r s t e p
a l o n g y -

a x i s
0 . 2 5 0 0 0 0 . 2 5 0 0 1 8 5 7 5 0 . 2 5 0 0 0
0 . 2 5 0 0 0 0 . 0 0 0 3 0 0 . 2 5 0 0 4 6 6
0 . 2 5 0 0 0 0 . 0 0 0 8 - 4 0 . 2 5 0 0 1 3 3 3

0 . 2 5 0 0 0 0 . 0 0 8 4 46 0 . 2 5 0 0 1 3 6 8
0 . 2 5 0 0 0 0 . 0 0 7 6 42 0 . 2 5 0 0 1 3 7 4
0 . 2 5 0 0 0 0 . 0 0 6 9 38 0 . 2 5 0 0 1 3 8 0

0 . 2 5 0 0 0 0 . 0 0 2 4 13 0 . 2 5 0 0 1 3 2 3
0 . 2 5 0 0 0 0 . 0 0 1 3 7 0 . 2 5 0 0 1 3 2 7
0 . 2 5 0 0 0 0 . 0 0 0 3 1 0 . 2 5 0 0 8 6 4

154

The first column from the left of the product file consists of the velocities

(revolution/sec) of the motion axis along x-axis (refer section 3.2.3). The second

column from the left of the file contains all the motor steps of the motion axis along x-

axis. The third column from the left of the product file are the velocities of the motion

axis around x-axis (refer section 3.2.1). The fourth column from the left of the file

contains all the motor steps for the motion axis around x-axis. The fifth column from the

left of the product file are the velocities of the motion axis along y-axis (refer section

3.2.2). The final column contains all the motor steps for the motion axis along y-axis.

The Vd.c program source codes are listed in Appendix G.

4.7.5 VsvMt.c

VsvMt.c is the last CAM program of the subtractive prototyping programs. The

needed source file is the product file of Vd.c. VsvMt.c program functions are:

(1) Calculating the total production time (program execution time and actual machining

time) of the milling process.

(2) Calculating the individual machining time and the motion commands execution

time.

(3) Calculating the remaining production time of the milling process.

(4) Initialising the PC-23 indexer and set the motor resolution of the indexer to match

the KS-drives’ motor resolution.

(5) Constructing motion commands and sending them to the PC-23 indexer.

155

(6) Communicating with the PC-23 indexer so as to write the commands to the indexer

and read the responses from the indexer.

Once activated, the program will ask the user for the source file and location.

Then, it will open the source file for reading. The following task is to calculate the

overall production time of the model. Later, the PC-23 indexer is initialised (refer

section 3.3.2 for the procedures of resetting the indexer). The motor resolution of the

indexer is set by the program to match the KS-drives’ motor resolution too.

The following step of the program is to calculate the production time of a single

command and display it together with the remaining production time. Then, the program

will construct the motion command based on the data of the source file. The complete

command will then be sent over to the PC-23 indexer. The command will be written to

the PC-23 indexer one character at a time (refer section 3.3.2 for the procedures of

sending a command string to the indexer).

When all the motion axes stop, the program will decode the response (refer

section 3.3.2 for the procedures of receiving a character string from indexer) of the

indexer and display the incremental (or decrement) motor steps of each axis. An

example of commands is listed as below.

1VS0.25 1V0.25 1D0 II 2VS0.0084 2V0.084 2D46 21 3VS0.25 3V0.25 3D1368 31 G123

VS command will let the motion axis start and stop at the specified velocity. V

command will set the velocity of the motion axis during the move. The motion will be

more accurate with VS and V are having same value. D command is for setting the

motor steps to be moved. I command allows the indexer to pre-calculate the move data.

G123 command will synchronise axis 1,2 and 3 to start moving together. 1 or 2 or 3 is

156

prefixing the VS, V, D and I commands for specifying the motion axis (refer section

3.3.4 and Appendix A for further detail).

The program flow of the VsvMt.c is shown in Figure 4.7(d). The program source

codes of VsvMt.c are listed in Appendix H.

Figure 4.7(d) VsvMt.c Program Flow

157

4.8 CAM FOR ADDITIVE PROTOTYPING

Seven CAM programs have been created by the author using ANSI C

programming language to facilitate the additive prototyping process. The programs are

listed sequentially as below:

(1) ExWax.c. It is for extracting all the surface co-ordinates from the DXF entities files.

The DXF entities files were transferred from the section cut models.

(2) Group.c. It is for regrouping the data according to the height of the models.

(3) ConWax.c. It is for converting the data from Cartesian co-ordinate system to

Cylindrical co-ordinate system.

(4) SaWax.c. It is for sorting the data according to the angles in each cross sectional

profile (layer) and creating the first and last point of each layer.

(5) Select.c. It is for selecting the data that match with the user-specified radius.

(6) Deposit, c. It is the final control program that controls the motion axes,

communicating with the PC-23 indexer, constructing motion commands and so on.

(7) DpsSlp.c. It is almost same as the Deposit.c. The only difference is the program did

not control the additive prototyping equipment as in Deposit.c.

Figure 4.7(e) illustrates the programs sequence that a data file has to go through

in order to produce a three-dimensional polystyrene model with internal cavities.

ExWax.c, ConWax.c and SaWax.c programs are almost same as Extract.c, Convert.c

and Sortadd.c programs respectively. As a result, only Group.c, Select.c, Deposit.c and

DpsSlp.c programs will be elaborated further in the following sections. Appendix I, K

and L listed the program source codes for ExWax.c, ConWax.c and SaWax.c

respectively.

158

Figure 4.7(e) Additive Prototyping CAM Programs Flow

4.8.1 Group.c and Select.c

Group.c is the second program of the additive prototyping CAM programs.

Group.c is a program that rearranges the data of the source file according to the height

of the models. The source file is the product file of the ExWax.c program. The data file

of a three-dimensional model with internal cavities is different from the data file of a

surface model in the subtractive prototyping process. The co-ordinates of the data file in

the additive prototyping process are not arranged according to the height of the models.

As a result, Group.c is used to produce the desired data file for the following data

processing stages.

The program has two assumptions. The assumptions are:

159

(1) The maximum height of the model is 99 mm.

(2) The step over distance is 3 mm.

Group.c will produce the data file for ConWax.c. ConWax.c will change the data file so

that SaWax.c can utilise it. SaWax.c will in turn provide the data file for Select.c.

Select.c is the fifth program of the additive prototyping CAM programs. Select.c

is a program that selects the data based on the user-specified maximum radius. The user

will need to know the maximum radius of the model. The radius values of the source

file can be checked by opening the SaWax.c program’s product file. The radius values

are stored in the third column from the left of the file. Select.c will produce the source

file for Deposit.c or DpsSlp.c so that a three-dimensional model with internal cavities

can be produced by using additive prototyping equipment. The program source codes

for Group.c and Select.c are listed in Appendix J and M respectively.

4.8.2 Deposit.c and DpsSlp.c

Deposit.c and DpsSlp.c are the last programs of the additive prototyping CAM

programs. Both programs have slight differences in their basic functions due to the

difference in assumptions.

The functions of the Deposit.c program are:

(1) Calculating the incremental motor steps to be travelled by the manipulation units

along and around x-axis.

(2) Reset the PC23 indexer. Assuring that the indexer is ready to accept commands

from the author program.

160

(3) Constructing and sending command string of all motion axes to the PC23 indexer,

getting position response string and display it on the screen.

(4) The model will be transferred back to its original position once it reached 99 mm in

height (total step over distance).

(5) Communicating with the PC-23 indexer so as to write the commands to the indexer

and read the response from the indexer.

The Deposit.c program has a few assumptions. The assumptions are:

(1) The motor of the manipulation unit along y-axis is used to push the semi-liquid

material or wax onto the core cylinder block. The rotational motion of the motor

will be converted to linear motion of the shaft which push the wax or semi-liquid

material. Thus, the motor step is directly proportional to the quantity of the

deposition material.

(2) There is no stoppage or delay time between all the motion axes. Stoppage time will

have to be calculated once the actual processing equipment is ready.

(3) The total step over distance or the height of the model is 99 mm

Once the Deposit.c is activated, it will ask for the filename and location. It will

also ask the number of motor steps required for pushing one drop of semi-liquid

material or wax from the deposition tool. The user will need to calculate the motor steps

by referring to the additive prototyping equipment. Then, it will open and read the

source file.

The program will set the motor resolution of the PC-23 indexer to match with

the KS-drive setting. The program will calculate the required motor step to be travelled

by all the motion axes. Then, the commands for all the axes will be constructed and

send over to the PC-23 indexer for motion control. The response will be decoded and

161

displayed on the personal computer screen. Figure 4.7(f) shows the Deposit.c program

flow.

Figure 4.7(f) Deposit.c Program Flow

The format of the motion commands in Deposit.c is almost same as VsvMt.c

program. The only difference is that Deposit.c uses 1G or 2G or 3G to activate the

162

motion instead of G123 command in VsvMt.c program. As a result, Deposit.c created

the step by step motion. The motion axes will move one after another instead of start

and stop moving at the same time. Appendix N shows the program source codes of

Deposit.c

The DpsSlp.c program is having the same functions as the Deposit.c except that

it did not calculate the motor step to be moved by the deposition equipment. The

assumptions of the programs are almost same as the Deposit.c program except that the

DpsSlp.c assumes that the deposition equipment is controlled by another external

controller. The motion axes of the robotic manipulator will have one-second stoppage

time to accommodate the deposition operation. The format of the motion commands of

DpsSlp.c is the same as Deposit.c program. Figure 4.7(g) shows the program flow of

DpsSlp.c program. Its’ program source codes are listed in Appendix O.

163

Figure 4.7(g) DpsSlp.c Program Flow

164

CHAPTER 5: RESULTS AND DISCUSSION

5.1 INTRODUCTION

A rapid prototyping system using a precision robotic manipulator was built

following the descriptions in the previous chapters.

A latest model personal computer was connected electronically to the PC-23

indexer. The PC-23 indexer was in turn connecting and controlling the KS-drives. The

KS-drives were connected to the a. c. brushless servomotors. The motors were either

connected mechanically to the lead screws or gearboxes of the manipulator to generate

motions. A subtractive prototyping equipment was also built to simulate the ball nosed

end milling process.

The AutoSurf software loaded onto the personal computer was used to produce

the desired three-dimensional ruled surface models for subtractive prototyping process.

The surface models were section cut into multiple cross sectional layers by using

AutoSurf. The AutoSurf was also used for producing solid models with internal cavities

for the proposed additive prototyping process and the graphic simulation program.

The graphic files of the section cut models were converted into DXF entities

files. Then, the DXF files were processed into machining data files by the CAM

programs that were developed by the author. The data files were then fed into the final

control program for controlling the precision manipulator to produce the three-

dimensional ruled surface models. Polystyrene cylindrical blocks were used as the

model material of the milling process. The milled models were based on the ruled

surface models in section 4.3.1.

165

CAM programs were also developed for the additive prototyping process. The

final control programs of the additive process were catered for two situations. The first

situation is - the wax or semi-liquid deposition equipment is controlled by the same

system. The second situation is - the deposition equipment is controlled by an external

system. The additive prototyping process was simulated graphically by using the

simulation program which was built by the author using AutoLISP - the AutoSurf

programming language.

The actual polystyrene products are shown in the following section. The results

of the graphic simulation of the additive prototyping process are also shown in the later

sections. The last few sections of this chapter will be devoted to discussing:

(1) The effectiveness of the personal computer, interfacing system and the manipulator.

(2) The effectiveness of the CAD/CAM programs.

(3) The effects of the model shapes, size and feed rate.

(4) The effectiveness of the graphic simulation programming language.

166

5.2 RESULTS OF THE SUBTRACTIVE PROTOTYPING PROCESS

Plate 5.2(a) Result for Heart to Complex Shaped Model

The milled model in Plate 5.2(a) was based on the section cut surface model

from Figure 4.3(g). The machining parameters are shown as below.

Cutter diameter : 6 mm

Spindle velocity : 1000 revolution per minute

Feed rate : 0.375 mm per second along x-axis
: 0.9° per second (0.0157 radian per second) around x-axis

(The feed rate along y-axis is synchronised with the other two motion axes.)

Step over :1.5 mm

Machining time : 3.82 hours

Production time : 4.69 hours

167

Plate 5.2(b) Result for Circle to Heart Shaped Model

The milled model in Plate 5.2(b) was based on the section cut surface model

from Figure 4.3(i). The machining parameters are shown as below.

Cutter diameter : 6 mm

Spindle velocity : 1000 revolution per minute

Feed rate : 0.375 mm per second along x-axis
: 0.9° per second (0.0157 radian per second) around x-axis

(The feed rate along y-axis is synchronised with the other two motion axes.)

Step over :1.5 mm

Machining time : 3.82 hours

Production time : 4.69 hours

168

Plate 5.2(c) Result for Circle to Complex Shaped Model

The milled model in Plate 5.2(c) was based on the section cut surface model

from Figure 4.3(j). The machining parameters are shown as below.

Cutter diameter : 6 mm

Spindle velocity : 1000 revolution per minute

Feed rate : 0.375 mm per second along x-axis
: 0.9° per second (0.0157 radian per second) around x-axis

(The feed rate along y-axis is synchronised with the other two motion axes.)

Step over :1.5 mm

Machining time : 3.82 hours

Production time : 4.63 hours

169

Plate 5.2(d) Result for Circle to Star Shaped Model

The milled model in Plate 5.2(d) was based on the section cut surface model

from Figure 4.3(k). The machining parameters are shown as below.

Cutter diameter : 6 mm

Spindle velocity : 1000 revolution per minute

Feed rate : 0.375 mm per second along x-axis
: 0.9° per second (0.0157 radian per second) around x-axis

(The feed rate along y-axis is synchronised with the other two motion axes.)

Step over : 1.5 mm

Machining time : 3.82 hours

Production time : 4.82 hours

170

Plate 5.2(e) Result for Heart to Star Shaped Model

The milled model in Plate 5.2(e) was based on the section cut surface model

from Figure 4.3(1). The machining parameters are shown as below.

Cutter diameter : 6 mm

Spindle velocity : 1000 revolution per minute

Feed rate : 0.375 mm per second along x-axis
: 0.9° per second (0.0157 radian per second) around x-axis

(The feed rate along y-axis is synchronised with the other two motion axes.)

Step over :1.5 mm

Machining time : 3.82 hours

Production time : 4.89 hours

171

Plate 5.2(f) Result for Complex to Star Shaped Model

The milled model in Plate 5.2(f) was based on the section cut surface model

from Figure 4.3(m). The machining parameters are shown as below.

Cutter diameter : 6 mm

Spindle velocity : 1000 revolution per minute

Feed rate : 0.375 mm per second along x-axis
: 0.9° per second (0.0157 radian per second) around x-axis

(The feed rate along y-axis is synchronised with the other two motion axes.)

Step over : 1.5 mm

Machining time : 3.82 hours

Production time : 4.90 hours

172

Plate 5.2(g) Result for Circle to Square Shaped Model

The milled model in Plate 5.2(g) was based on the section cut surface model

from Figure 4.3(n). The machining parameters are shown as below.

Cutter diameter : 6 mm

Spindle velocity : 1000 revolution per minute

Feed rate : 0.375 mm per second along x-axis
: 0.9° per second (0.0157 radian per second) around x-axis

(The feed rate along y-axis is synchronised with the other two motion axes.)

Step over : 1.5 mm

Machining time : 3.82 hours

Production time : 4.39 hours

173

Plate 5.2(h) Result for Complex to Square Shaped Model

The milled model in Plate 5.2(h) was based on the section cut surface model

from Figure 4.3(o). The machining parameters are shown as below.

Cutter diameter : 6 mm

Spindle velocity : 1000 revolution per minute

Feed rate : 0.375 mm per second along x-axis
: 0.9° per second (0.0157 radian per second) around x-axis

(The feed rate along y-axis is synchronised with the other two motion axes.)

Step over :1.5 mm

Machining time : 3.82 hours

Production time : 4.57 hours

174

Plate 5.2(i) Result for Star to Pentagon Shaped Model

The milled model in Plate 5.2(i) was based on the section cut surface model

from Figure 4.3(p). The machining parameters are shown as below.

Cutter diameter : 6 mm

Spindle velocity : 1000 revolution per minute

Feed rate : 0.375 mm per second along x-axis
: 0.9° per second (0.0157 radian per second) around x-axis

(The feed rate along y-axis is synchronised with the other two motion axes.)

Step over :1.5 mm

Machining time : 3.81 hours

Production time : 4.83 hours

175

Plate 5.2(j) Result for Cross to 45° Rotated Cross Shaped Model

The milled model in Plate 5.2(j) was based on the section cut surface model

from Figure 4.3(q). The machining parameters are shown as below.

Cutter diameter : 6 mm

Spindle velocity : 1000 revolution per minute

Feed rate : 0.375 mm per second along x-axis
: 0.9° per second (0.0157 radian per second) around x-axis

(The feed rate along y-axis is synchronised with the other two motion axes.)

Step over :1.5 mm

Machining time : 3.82 hours

Production time : 5.03 hours

176

Plate 5.2(k) Result for Cross to Pentagon Shaped Model

The milled model in Plate 5.2(k) was based on the section cut surface model

from Figure 4.3(r). The machining parameters are shown as below.

Cutter diameter : 6 mm

Spindle velocity : 1000 revolution per minute

Feed rate : 0.375 mm per second along x-axis
: 0.9° per second (0.0157 radian per second) around x-axis

(The feed rate along y-axis is synchronised with the other two motion axes.)

Step over :1.5 mm

Machining time : 3.82 hours

Production time : 4.66 hours

177

Plate 5.2(1) Result for Circle to Heart to Complex Shaped Model

The milled model in Plate 5.2(1) was based on the section cut surface model

from Figure 4.3(s). The machining parameters are shown as below.

Cutter diameter : 6 mm

Spindle velocity : 1000 revolution per minute

Feed rate : 0.375 mm per second along x-axis
: 0.9° per second (0.0157 radian per second) around x-axis

(The feed rate along y-axis is synchronised with the other two motion axes.)

Step over : 1.5 mm

Machining time : 3.82 hours

Production time : 4.65 hours

178

Plate 5.2(m) Result for Circle to Heart to Star Shaped Model

The milled model in Plate 5.2(m) was based on the section cut surface model

from Figure 4.3(t). The machining parameters are shown as below.

Cutter diameter : 6 mm

Spindle velocity : 1000 revolution per minute

Feed rate : 0.375 mm per second along x-axis
: 0.9° per second (0.0157 radian per second) around x-axis

(The feed rate along y-axis is synchronised with the other two motion axes.)

Step over :1.5 mm

Machining time : 3.82 hours

Production time : 4.75 hours

179

Plate 5.2(n) Result for Circle to Complex to Star Shaped Model

The milled model in Plate 5.2(n) was based on the section cut surface model

from Figure 4.3(u). The machining parameters are shown as below.

Cutter diameter : 6 mm

Spindle velocity : 1000 revolution per minute

Feed rate : 0.375 mm per second along x-axis
: 0.9° per second (0.0157 radian per second) around x-axis

(The feed rate along y-axis is synchronised with the other two motion axes.)

Step over :1.5 mm

Machining time : 3.82 hours

Production time : 4.83 hours

180

Plate 5.2(o) Result for Heart to Complex to Star Shaped Model

The milled model in Plate 5.2(o) was based on the section cut surface model

from Figure 4.3(v). The machining parameters are shown as below.

Cutter diameter : 6 mm

Spindle velocity : 1000 revolution per minute

Feed rate : 0.375 mm per second along x-axis
: 0.9° per second (0.0157 radian per second) around x-axis

(The feed rate along y-axis is synchronised with the other two motion axes.)

Step over :1.5 mm

Machining time : 3.82 hours

Production time : 4.83 hours

181

Plate 5.2(p) Result for Circle to Heart to Complex to Star Shaped Model

The milled model in Plate 5.2(p) was based on the section cut surface model

from Figure 4.3(w). The machining parameters are shown as below.

Cutter diameter : 6 mm

Spindle velocity : 1000 revolution per minute

Feed rate : 0.375 mm per second along x-axis
: 0.9° per second (0.0157 radian per second) around x-axis

(The feed rate along y-axis is synchronised with the other two motion axes.)

Step over :1.5 mm

Machining time : 3.82 hours

Production time : 4.77 hours

182

Plate 5.2(q) Result for Scaled Up Model

Plate 5.2(q) shows the original model (left) and the scaled up model (right)

based on the model from Figure 4.3(v). The scaling factor is 1.5 (150 percent of the

original model size). The machining parameters are shown as below.

Cutter diameter : 6 mm

Spindle velocity : 1000 revolution per minute

Feed rate : 0.375 mm per second along x-axis
: 0.9° per second (0.0157 radian per second) around x-axis

(The feed rate along y-axis is synchronised with the other two motion axes.)

Step over :1.5 mm

Machining time : 5.73 hours

Production time : 7.63 hours

183

Plate 5.2(r) Result for Scaled Up and Higher Feed Rate Model

Plate 5.2(r) shows the original model (left) and the scaled up model (right) based

on the model from Figure 4.3(w). The scaling factor is 1.5 (150 percent of the original

model size). The feed rate is two times higher the defaults setting. The machining

parameters are shown as below.

Cutter diameter : 6 mm

Spindle velocity : 1000 revolution per minute

Feed rate : 0.75 mm per second along x-axis
: 1.8° per second (0.0314 radian per second) around x-axis

(The feed rate along y-axis is synchronised with the other two motion axes.)

Step over :1.5 mm

Machining time : 2.87 hours

Production time : 4.65 hours

184

Diameter of the first layer for a few milled products had been measured and

compared with the dimension of designed models. Table 5.2(a) listed four types of

models with their design diameters, average measured diameters, percentage of error

and the average percentage of error.

Table 5.2(a) Dimensional Comparison

Model Shape Design Diameter
(mm)

Average Measured
Diameter (mm)

Percentage of
Error

Circle to Complex 37.8972 38.0900 0.51
Circle to Square 31.2566 31.2250 0.10
Circle to Crescent 39.7138 39.6500 0.16
Circle to Star 39.0072 39.2900 0.72

Average Percentage of Error 0.37

5.3 RESULTS OF THE ADDITIVE PROTOTYPING PROCESS

A solid cone model with four internal cavities (parent model) was created by

using AutoSurf. Various smaller diameter models were later derived from the parent

model (refer section 4.4.1.). The additive prototyping process for making the parent

model was simulated graphically by using the AutoLISP programming language.

The simulation can only be done in the AutoCAD or AutoSurf environment. The

results of the simulation are shown as below. All the computer-generated pictures are

presented in isometric view from South-East Angle. The deposition tool is located in the

upper portion of the picture (with sharp end). The tool and the model are normal to each

other.

185

|U£ AutoCAD ((orcnftl] H 0 E J
t?,l fte £rl! View HVn QjAont Xool* £uHanrtn
p'ee|g>'»lx ft El^ ^l^ l^ -sl.. *.\

-igi i

|<S>»a r « o

c .t.A
îvLAYER 3 a &\ al a l; /. r. <a <&. o. '■, -*■ *1

IR e tjen e fatin g d r i v i n g iCoiiHnd; '
jConwand

:>:•? W,l2102fK' MDOtl Till I m'pw

186

M A u ln tA l) | (mmol |

r/vj £3* EiS* V?ew fiate-. Qpirim I«b' Suites*. Bwwr̂t M«P
D g e l # $ 1 X a .c l r> -fel s i a | i ; «,|ig &1 j/t

•BVlAVtR

MODEl TllJE 342 PM

Figure 5.3(b) Deposition Tool with 20 mm Diameter Product

MjAutul AL» - |fui
; f;.1 E*a. E# Vw£!£&< Qptlom Toob iufeatf Dftwtot
p g Bl <9 »l X IE): cl r> Oil -fel IBl S'| ; ; X,| eg &U fill <3 6̂ Cl ©J ffil ? I * ^ O, Z\i~.Cj.J. r .S .A

Q
A
<5
<2
%
<4

<s*

e:
•ft

Irf'ts « V l 0 - •8 Y U Y E R z i ; - t & | : . f t | 1S|, /.-ir.Q.o. Cj, ■. @ R A I

.1-

<
_Li

ii
*
eS

I
ft
i
®j

o
a

' &
&
©
cd
si&

i£^
«S

[R e g e n e ra tin g dr«M»n(j
posiKcmd i)
fco * « u ,d J j j A

3J7.OOU3.MSKa) 5NAP‘‘GBED MOOEt TILE >47PM

Figure 5.3(c) Deposition Tool with 30 mm Diameter Product

188

{foiuiat)

•BYLAYER

jAj I* Qf̂ w. 'ffritMtQi jjejp.
db 91 a »l x ^ el r>^\ ±\ ̂ g.[>,l •r % o. c. •/-, □ j. r, /, A

Id'S « “ ■ 0 kI /. r . q g>. q„ -. i;

=jsi_j

{R e g e n e ra tin g d ra w in gfCoiuwiod:___"
JCannand

373 0000.220 CM# SNAP GRID MODEl TILE iSOPM

189

BOD
- jffl >1£fo £ii! yew [J-sta QpWir.T L«Tc Surface* D{«wnfji Help

p ~ g . a l & ? \ x ta p[»o ^ | ^ ,|g j , s | ; ; *,|m & \
|r? « a ■ 0

______________________ I: » i<>4;:ftiiaiî ie}!Jg!r '̂,.<t|j
"*] g | s I F ^ •cylaver =~ " 5 :a ^vl :alml .-. ^ r . o . ^ . o . -. ® u.,vi

190

[Au IdCAO

\K fto Qjta QpMm looJ: iufsr.«i Oi-v̂ny fct®4>
0~gBl<a»lx ft elm ^I’fcK gl ;: ■*,

•]f5j-ii 3 it 3.1 al at- r / Q gj.O, •. Ig| Al

HIQC

iRegeneratiag droving
JCoanand
jCoanand

J54.0000.I880000 '.HAP i . » 0 ■ M ODEI'TILE 3 6 5 PH

Figure 5.3(f) Deposition Tool with 60 mm Diameter Product

191

fSl £&: £ctt fi.y a J2p6fl.ru Ico^ t $uiEac*rj O i-w n j; Mofc

Q g e l & »1 x j& p | m n.| ■&[Si. s;| r; * . \ A t\\ Q. eto. <r1.ebI ? 1 * °o fa. ^ ^ g j . ^ a \
sa jtfj-151; 't ■ ! - g a j ^ r — — -anAWR : d K <4 1 a 'l'a l' -■'- ®. &. o, -.is.tt AI

Regenerating drawing lotiMond ■ _
Nj hi! rind

3210000.216000 S KIP r»B 0 MODEl r l llE ■■) 57 PM

Figure 5.3(g) Deposition Tool with 70 mm Diameter Product

HC3S
1(9 &* £ i t Viwi flMa QpllOrr. J.ooh Otviww Help

e l a x r b i ^ •»:! y» s i ; ; ■*,
Q]|(y« i r'io- " i i i =] F ■ffYUYEfl

jffegenciratiug drawing

S>iAP GR»D M O & E ll l lE 2 59 P M289 0 0 0 0 i j3 0000

Figure 5.3(h) Deposition Tool with 80 mm Diameter Product

ITTffra
-Iff! I

jRegcnfirating drawingpi>»nd;~ ___ ____________ _____
JCoanand

:>/j o o o o ' « o« k sNiFsnR ib w o o ti n u . <<m p m

Figure 5.3(i) Deposition Tool with 90 mm Diameter Product

194

Figure 5.3(j) Deposition Tool with Complete Product

5.4 DISCUSSION

Sixteen complex shaped models had been produced by using the subtractive

prototyping system. Two scaled up models were also produced with one of them being

machined using a higher feed rate than the default setting. The milled products are

195

shown in Plate 5.2(a) to Plate 5.2(r) (refer section 5.2). The additive prototyping process

result was simulated graphically in a CAD modelling environment. The computer

generated graphic frames are shown in Figure 5.3(a) to Figure 5.3(j) (refer section 5.3).

The following sections will be discussing about the system, product and other related

issues.

5.4.1 Effectiveness of the Equipment

The persona] computer that was used in this project provided satisfactory

performance. It has a Pentium II microprocessor. Its clock speed is 300 MHz. The

random access memory (RAM) is 128 MB. The hard disk capacity is about 5 GB. The

personal computer has the capacity of controlling up to two PC-23 indexer since it has

two ISA slot at the mother board to accommodate the indexer main circuit boards.

The communication problem between the computer and the indexer was solved

(refer section 3.3.3). The system is executing well under the new control program. The

new control program can be used to solve the interfacing problem if any higher end

personal computer is used in the future. Command execution speed difference due to the

difference in the microprocessors of the indexer and the personal computer will not

pose a problem.

The personal computer has a very large RAM and hard disk capacity. A number

of applications can be run at the same time. Its microprocessor and clock speed is so fast

that the executions of all the applications can be carried out smoothly without

sacrificing the speed. As a result, it is suitable for running powerful CAD software like

196

AutoCAD and AutoSurf (part of Mechanical Desktop package). It is also capable of

executing programming software like Borland C++ 4.5.

However, when the control program is executing the commands to produce the

subtractive and additive prototyping product, other applications in the personal

computer cannot be used. It is to ensure that the control program is not interrupted by

the time sharing feature of the microprocessor for producing high precision product.

The interfacing system (PC-23 indexer, KS-drives and motors) is more than ten

years old. But, while it can still be used to communicate with the latest personal

computer, a large amount of work was required by the author to solve the

communication problem. Two indexers are available for the system. But, only one was

needed since it can control up to three drives. As a result, a spare indexer is available for

future development.

Four KS-drives are available. But, only three were used since the subtractive

prototyping process required only three motion axes. The additive prototyping process

will either need three or two motion axes, depending on the situation specified in

section 4.8.2. In general, the interfacing system proved satisfactory in performing the

user-specified tasks in such an accurate way.

The manipulator has four motion axes - manipulation along the x-axis,

manipulation around the x-axis, manipulation along the y-axis and the manipulation

around the y-axis. Due to the nature of the subtractive prototyping control program and

the model definition co-ordinate system, only three axes were used and they were

manipulation the along x-axis, manipulation the around x-axis and the manipulation

along the y-axis. The manipulation unit around the y-axis is not used in the project. It is

197

very stable and not easily moved by external forces. As a result, the manipulation unit

around the y-axis was not locked during the subtractive prototyping process.

The gearbox of the manipulation unit around x-axis was contributing a

maximum backlash of three minutes (3’ = 0.000873 radian). The backlash of 3’ is

negligible. The manipulator provided a fairly high precision motion, and this was

proved by examining the surface roughness and the dimension of the milled polystyrene

models in Table 5.2 (a).

The original ball nosed cutter was attached to a Bosch hand drill. The hand drill

was found to be not suitable because it cannot continuously run for a few hours. As a

result, the IKA drive unit that can stand long machining hours replaced the Bosch hand

drill as the subtractive prototyping tool. The new drive unit has the advantage of

controlling the rotating speed of the cutter.

Generally, the hardware system configuration, which consists of the personal

computer, the interfacing system (indexer, drives and motors), the precision manipulator

and the ball nosed cutter equipment were integrated seamlessly. The system resulted in

a general-purpose precision robotic manipulator, which could be used as a subtractive

and additive prototyping tool for the present, and future projects.

5.4.2 Effectiveness of CAD/CAM

AutoSurf was used in this project for producing ruled surface models and solid

models with internal cavities. AutoSurf was also used in changing the solid models into

198

surface models. And, AutoSurf has the capability to produce the section cut surface

models from the surface models.

AutoSurf is a very powerful and user friendly CAD modelling software. It has

completely outdone the AutoCAD, its predecessor. As far as the project is concern,

AutoSurf provided all the CAD requirements for the project. It has the internal pre­

processor to change the model graphic file into a good and simple neutral format file -

DXF entities file.

The step over distance of the sections cut feature in the AutoSurf will determine

the amount of section cut layer of the model. More than 400 co-ordinates in each section

cut layer were generated by the AutoSurf. The surface roughness is directly proportional

to the amount of co-ordinates in each layer and the quantity of layers. The amount of

data was found to be adequate by examining the quality of the milled product. The

overall model production time and the dimensional accuracy of the models are affected

by the section cut parameter as well.

All the CAM programs used in the project were developed in ANSI C

programming language. The platform used is the Borland C++ 4.5 programming

software. Five CAM programs were developed to facilitate the subtractive prototyping

process. Seven CAM programs were developed to prepare for the additive prototyping

process.

The post-processor programs for the DXF file (Extract.c and ExWax.c) can

extract all the surface co-ordinates from the model in seconds. The post-processor was

found to be very efficient since all the surface co-ordinates of the section cut model can

be extracted out from the section cut models. However, the post-processor programs are

solely for the AutoSurf section cut surface model’s DXF entities file. The product files

199

of the Extract.c and ExWax.c were verified to be correct by plotting the cross sectional

profile data into Microsoft Excel.

Other subsequent programs which were built by the author using the ANSI C

programming language were used to change the co-ordinate system of the data set,

sorting, rearranging and converting the data into machine-readable format for the final

control program. The maximum co-ordinates in each section cut layer (cross sectional

profile) of the section cut model that can be handled by the Sortadd.c and SaWax.c

programs are set at 4000. A higher memory personal computer will be needed for

sorting more co-ordinates.

The final control program contains all the require functions to communicate

effectively with the PC-23 indexer for command transferring and response decoding. It

also has other functions like machining time calculation, command constructions,

initialising the indexer, setting the motor resolution of the indexer and so on. The

maximum height of the model that the subtractive and additive prototyping process can

produce is limited only by the distance of the grippers. However, the height of the

model that the additive prototyping process can handle is set at 99 mm by the author in

Deposti.c and DpsSlp.c programs.

The CAM programs for the additive prototyping process was tested to be fine by

using the data files generated from the section cut models in section 4.4.1.. Once the

additive prototyping tool is ready, the solid cone with internal cavities can be produced.

Generally, the CAD/CAM integration of the system is complete and adequate.

200

5.4.3 Effects of Model Shapes, Size and Feed Rate

Various polystyrene models were produced by using the subtractive prototyping

system with the aid of the precision robotic manipulator. The ruled surface models were

generally composed of two or more polyline profiles. The profiles were circle, heart,

complex, square, cross, star and pentagon. The finished models were shown from Plate

5.2(a) to Plate 5.2(p).

The surface finish of the products is fairly good. Some of the milling chips were

still attached on the model surface due to the natural properties of extruded polystyrene

block. The surface finish can be further improved if the section cut surface models have

more than 34 cross sectional layers - which contribute to smaller step over distance and

longer production time. The thickness of the section cut layer can be as thin as a piece

of A4 paper and its realisation is only limited by the practicality of the machining

facilities available.

Most of the milling starting points (0°) and ending points (360°) were observed

to have a deeper milling depth. The deeper milling depth may be due to the following

causes:

(1) The starting points were created by the author by using linear interpolation, which is

different from the NURBS (non-uniform rational B-spline) surface of the

engineering models.

(2) The cutter was dwelling at the 0° and 360° location of each cross sectional profile

for a longer time. It is due to the nature of the Sortadd.c program that is adding

redundant co-ordinates at the start and end points of each cross sectional layer.

201

(3) The PID gain setting of the KS-drives may not be the best although the shapes of the

milled models were matching the designed models.

The milled polystyrene models were found to have craters. This might be caused

by the vibrations of the ball nosed cutter drive unit and the natural properties of the

polystyrene. The cutter drive can be more stable if its base is supported from the ground

instead of overhang in the air. The cutter drive vibration can also be reduced by fixing

an air cushion to it.

The dimensional accuracy of the product was good. The dimensions of a few

prototypes had been measured and the results were shown in Table 5.2(a). The average

percentage of error is 0.38 percent. The dimensional difference may be due to the

positioning system of the manipulator, the milling vibration and the natural properties of

the polystyrene which tend to have chips attached on the surface or crater. It is expected

that the average percentage of error for all the models of the project will be much lower

if there isn’t any attached chips or crater on the surface of the models.

Referring to Plate 5.2(q), the scaled up model and the original polystyrene

models have the same surface finish. As a result, the scaling factor does not appear to

affect the surface roughness of the models produced using the same machining

parameters. Referring to Plate 5.2(r), the bigger size model was also had the same

surface finish as the original polystyrene model although the feed rate for machining the

big model was twice as high as the default setting.

As a result, the machining time can be reduced significantly by applying higher

feed rates to the future models. In fact, the models from Plate 5.2(a) to Plate 5.2(p) that

had 34 section cut layer were produced in less than five hours each. The bigger size

model in Plate 5.2(q) that had 50 section cut layer was produced in less than eight hours.

202

The large model in Plate 5.2(r) that was also having 50 section cut layer was produced

in less than five hours. The actual machining time is different from the overall

production time because at least 20 percent of the production time was used in

commands transfer and execution. Motion command from the PC and the response from

the indexer are transferred one character at a time between the PC and the indexer. The

indexer has a very low command execution speed as well. It is believed that the

bottleneck of the whole system lies on the two factors mentioned above.

Generally, the system managed to produce complex shaped ruled surface models

with a very good dimensional accuracy and fair surface finish. The milled product

directly matched the shapes of the designed engineering models in the CAD software.

With further improvement, metal products could be produced by using the equipment

developed for the project.

5.4.4 Effectiveness of CAD Programming Language

AutoLISP, the programming language of AutoSurf was used in simulating the

additive prototyping process. The results were shown in section 5.3. AutoLISP is based

on the LISP programming language, which is simple to learn and yet very powerful.

AutoLISP’s programming structure is very similar to C programming language.

The program only used a few simple commands to simulate the additive process.

The commands are for creating and displaying the models, rendering them, rotating

them for different views and so on. The simulation can only be shown in an AutoSurf

environment since the program needs the built-in LISP interpreter of the AutoSurf.

203

A string is a group of characters surrounded by quotation marks (refer Table

4.4(a)). The simulation program cannot create or display the model if one of the string

in the model definition data is more than 132 characters. In order to ensure that the

string length is within the limit, the engineering model should be moved or rotated back

to its original position once it is ready for extraction (using ‘entget’ for extraction).

The simulation program can be executed in any new or existing AutoSurf files.

If the new files don’t have the required layers, line type, line colour and so on, the

program will use the default settings. The default setting will show all the created

models in white colour. As a result, it is better to simulate the program in an existing

file that have all the necessary layers, line type, line colour and so on.

Generally, the AutoLISP program is sufficient in simulating an additive

prototyping process of a solid cone with four internal cavities. Besides using its own

specific commands, AutoLISP can access the built-in commands of the AutoSurf

directly in its programs. AutoLISP program can be written in any text editor. But, the

program must be saved in *.lsp format.

Since AutoSurf read AutoLISP code directly, no compiling is required. By

entering code at the command line, the author can see the result immediately. This

makes the AutoLISP language an easy one with which to experiment, regardless of the

author’s programming experience.

204

CHAPTER 6: CONCLUSION AND RECOMMENDATIONS

6.1 CONCLUSION

A rapid prototyping system using a precision robotic manipulator has been

developed. The system comprises of a latest personal computer, interfacing system (PS-

23 indexer, KS-drives and motors), a four degrees of freedom precision manipulator and

a ball nosed end milling equipment. The hardware is integrated with the commercial

available CAD software (AutoSurf) and self-developed CAM programs (for data

processing and motion control) for producing subtractive prototyping models and

simulating additive prototyping process. The system has the following advantages:

(1) Lower Cost. The hardware and software are cheaper than the market available rapid

prototyping tools.

(2) Effective. The system can produce complex shaped objects with high accuracy.

(3) Dual Purposes. The system can produce subtractive prototyping products and ready

to develop additive prototyping objects once the deposition tool is available.

(4) Time Saving. Complex shaped objects can be produced in hours without sacrificing

the surface roughness and accuracy.

(5) Space Saving. The robotic based rapid prototyping system can save the floor space

compared to the NC or CNC based systems.

(6) All in One. All the CAD/CAM activities can be done in one personal computer.

Although the additive prototyping tool is not available yet, its CAM programs

were tested by using the data files of the section cuts models from section 4.4.1.. The

205

programs were good and the execution was smooth. Once the equipment is ready, the

additive prototyping model can be built.

6.2 THESIS CONTRIBUTION

In the course of this research, it is believed that the following contributions have

been made in the general area of the research topic.

(1) Communication Interface - The author has been able to create smooth interfacing

between a high specification personal computer and low specification PC-23

indexer. The low specification PC-23 indexer was designed for low specification

personal computers such as PC/XT and AT. After considerable investigation, the

author discovered that the execution speed of microprocessor in each interfacing

component plays a vital role in producing smooth data communication. Special

program can be used to slow down the execution speed of the microprocessor in one

component if the speed difference is not large such as the case of the PC-23 indexer

and the 486DX33 personal computer. When the difference between the execution

speed of two interfacing components is large, the communication protocol has to be

changed. As a result, the author has developed a communication program based on

this new protocol. The new communication program will enable the high execution

speed personal computer to wait until it receives the response from the low

execution speed PC-23 indexer, instead of waiting for a short period of time in the

previous communication protocol. In the future, any higher specification personal

computer can be used to interface with the PC-23 indexer.

206

(2) NURBS Surface Data - The author has developed effective procedures for the

production of NURBS surface data from three-dimensional solid and surface

models. The three-dimensional model has to be converted into a surface model (if

the original model is a solid model) before it is section cut into multiple cross

sectional layers. The distance between the section cut layers (step over) will

determine the surface finish of the end product. The precision accuracy of the step

over distance can be set to as high as sixteen decimal points. Then, the section cut

model is changed into DXF entities file for further data processing. Thus, another

way of producing NURBS surface data was developed.

(3) Post-processor of DXF - The author also developed a general post-processor

program for the section cut surface models’ DXF entities files. The surface data of

the DXF entities files can be extracted completely by using the post-processor

program. This has solved the CAD and CAM interface issue for a neutral formal

file, DXF entities file. Thus, the CAD model data can be completely transferred to

the CAM processing programs for producing finished product. This has a significant

effect on developing country like Malaysia since most of the CAD/CAM users are

using AutoDesk products. The Malaysian will realise that it is possible to integrate

CAD/CAM into their traditional manufacturing processes. As a result, achieving the

status of developed country for Malaysia in the year 2020 is not an impossible

dream.

(4) Graphic Simulation with AutoLISP - A graphic simulation program was developed

by the author with AutoLISP programming language to simulate the additive

prototyping process. The attempt by the author in producing a simple graphical

simulation program can be considered as a new contribution towards the usage of a

207

CAD programming language since there is no publication evident stating the usage

of AutoLISP in producing graphical simulation of an additive prototyping process

in a personal computer environment.

(5) Dual-Process System - Development of a single system for both subtractive and

additive rapid prototyping processes is also seen as additional contribution to the

technology. The system can be used to produce three-dimensional complex shaped

object in subtractive prototyping process. The CAD/CAM aspect of the additive

prototyping process is also ready for production as well.

6.3 RECOMMENDATIONS

In the future, the rapid prototyping system using the precision robotic

manipulator can be further improved by implementing the following recommendations:

(1) Replacing the lead screws of the manipulation units along x and y-axis with ball

screw that will provide smoother and backlash free motions.

(2) Reducing the vibration of the ball nosed end milling tool by supporting the base of

the drive with air cushion.

(3) CAM programs can be linked or integrated to become one.

(4) For perfect accuracy, the methods of getting the home position of the manipulator in

subtractive and additive prototyping processes has to be carried out.

(5) If plastic or resin part needs to be produced, then, the ball nosed end milling

equipment will need to be modified to withstand high frictional forces between the

cutter and the new material surfaces. The grippers will need to be modified too.

208

(6) A hybrid rapid prototyping system that comprises of additive and subtractive

processes can be created. A complex shaped objects with internal cavities and out of

line of sights areas can be created layer by layer in additive process. The subtractive

process can smoothen up the surfaces after each layer is built.

209

REFERENCES

1. Engelberger, Joseph F., Robotics in Practice, Kogan Page Ltd., 1981 (reprint).

2. Kalpakjian, Serope, Manufacturing Engineering and Technology, Third edition,
Addison-Wesley Publishing Company, Inc., 1995.

3. Coiffet, Philippe and Chirouze, Michael, Introduction to Robotics, Kogan Page Ltd.,
1983.

4. Scott, Peter B., The Robotics Revolution, Bell & Bain Ltd., Glasgow, 1986.

5. Bekey, George A., Trends in Robotics, Communication o f the ACM, 39(2), 62,
1996.

6. Dorf, Richard C. and Kusiak, Andrew, Handbook of Design, Manufacturing and
Automation, John Wiley & Sons Inc., 1994.

7. Smith, Edward H., Mechanical Engineer’s Reference Book, Twelfth edition,
Butterworth-Heinemann Ltd., 1994.

8. Groover, Mikell P., Automation, Production Systems, and Computer-Integrated
Manufacturing, Prentice-Hall of India Private Ltd., 1992.

9. Groover, Mikell P. and Zimmers, Emory W., Jr., CAD/CAM: Computer-Aided
Design and Manufacturing, Prentice-Hall, Inc., 1984.

10. McKerrow, Philip, Introduction to Robotics, Addison-Wesley Ltd., 1991.

11. Teicholz, Eric, CAD/CAM Handbook, McGraw-Hill, Inc., 1985.

12. Snyder, Wesley E., Industrial Robots: Computer Interfacing and Control, Prentice-
Hall, Inc., 1985.

13. Waurzyniak, Patrick, Robotics Evolution, Manufacturing Engineering, 122(2), 40 -
50, 1999.

14. Nof, S. Y.; Knight, J. L. and Salvendy, G., Effective Utilisation of Industrial
Robotics - A Job and Skill Analysis Approach, AIIE Transaction, 12(3), 126 - 255,
1980.

15. Besant, Colin B., Computer-Aided Design and Manufacture, Second edition, Ellis
HorwoodLtd., 1983.

16. McMahon, Chris and Browne, Jimmie, CAD/CAM - From Principles to Practice,
Addison-Wesley Publishers Ltd., 1993.

210

17. Orr, J. N. and Teicholz, E., Computer Integrated Manufacturing Handbook,
McGraw-Hill, Inc., 1987.

18. Andersen, Marjorie S., Reducing Time to Market with CAD/CAM, SME Technical
Paper (Series), 1 - 10, SME, 1993.

19. Zutshi, Aroop, What is Hot and What is Not, Machine Design, 65(10), 76 - 77,
1993.

20. Li, Wen and Bahr, Behnam, Simulation System for a Surface Climbing Robot,
Computers & Industrial Engineering, 23(1), 275 - 278, 1992.

21. Chen, Sun, Water Pollution Simulation over a River Basin using a Computer
Graphic Model, Water Science and Technology, 24(6), 101 - 108, 1991.

22. Kolodkin, V. M.; Zhukov, O. E. and Zhul’ev, S. I., Computerisation of Sand Mould
Casting Technology Design, Liteinoe Proizvodstvo, 12, 8 - 9, 1992.

23. Sun, T. L.; Su, C. J.; Mayer, R. J. and Wysk, R. A., Shape Similarity Assessment of
Mechanical Parts Based on Solid Models, American Society of Mechanical
Engineers, 83(2), 953 - 962, 1995.

24. Chung, Stephen H. and Ludwig, Glenn, Semi-Automated Fragmentation
Assessment, Proceedings o f the Annual Symposium on Explosives and Blasting
Research, 131 - 140, January 22 - 23, 1992.

25. Machover, Carl, The CAD/CAM Handbook, The McGraw-Hill Companies, Inc.,
1996.

26. Kellock, B., Integration - a Matter of Degree, Machinery and Production
Engineering, 145(3723), 51 - 56, 1987.

27. Zeid, Ibrahim, CAD/CAM Theory and Practice, McGraw-Hill, Inc., 1991.

28. Krouse, John K., What Every Engineer Should Know About Computer-Aided Design
and Computer-Aided Manufacturing, Marcel Dekker, Inc., 1982.

29. Morgan, M. E., Interactive Computer Graphics CAD/CAM Interfaces to Existing
Design and Manufacturing Systems, CAD/CAM Integration and Innovation, edited
by Taraman, K., 99 - 111, Association of Computer and Automation Systems of
SME, 1985.

30. Tseng, A. A.; Kolluri, S. P. and Radhakrishnan, P., Design and Construction of a
CNC Machining System for Hardware and Software Development, Proceedings of
Manufacturing International ’88, American Society of Mechanical Engineers, Vol.
1 ,4 3 -4 9 , 1988.

211

31. Dombre, E.; Fournier, A.; Quaro, C. and Borrel, P., Trends in CAD/CAM Systems
for Robotics, Proceedings o f IEEE International Conference, Vol. 3, 1913 - 1918,
1986.

32. Trostmann, E., CAD-Based Robot Planning and Control, Robot Control - Second
IFAC Symposium’s selected paper, 56.1 - 56.5, 1988.

33. Welbourn, D. B., CADCAM Benefits for the Foundry, The Foundryman, 81(7), 329
-3 3 1 , 1988.

34. Treber, Jerry and Koehn, Mark, Integrated CAD/CAM Sheet Metal Production
Process, Second Biennial International Machine Tool Technical Conference, Vol. 1,
2.93 -2.103, 1984.

35. Joormann, Otto and Teunis, Geert, The Application of CAD/CAM Systems at
Volkswagen, Computers and Graphics, 10(4), 317 - 325, 1986.

36. Jones, Peter F., CAD/CAM: Features Applications and Management, The
Macmillan Press Ltd., 1992.

37. Nagasaka, Junji, JAMA Activities for Promoting the Standardisation of CAD Data
Exchange, JSAE Review, 17(1), 59 - 63, 1996.

38. Sergeant, Roger N., CIM Update, Automotive Engineering, 99(11), 23 - 24, 1991.

39. Wooley, D. J. and Manix, M. L., Development of an Initial Graphics Exchange
Specification Capability, Journal o f Ship Production, 3(4), 264 - 273, 1987.

40. Magoon, G. I. And Pfrommer, C. L., Ironing Out IGES, Computer-Aided
Engineering, 8(1), 52 - 54, January, 1989.

41.Bloor, M. S. and Owen, J., CAD/CAM Product-Data Exchange: The Next Step,
Computer-Aided Design, 23(4), 237 - 243, 1991.

42. Diehl, A., Transferring Files from CAD to CAM, Computer-Aided Engineering, 50
- 52, January 1996.

43. Mufti, Aftab A.; Morris, Michael L. and Spencer, William B., Data Exchange
Standards for Computer-Aided Engineering and Manufacturing, International
Journal o f Computer Applications in Technology, 3(2), 70 - 80, 1990.

44. Byun, Dae-Ho; Suh, Eui-Ho; Lee, Jae-Kwan; Cho, Hyun-Seok; Park, Ki-Sik; Lim,
Chae-Yeon and Koo, Kyung-Cheol, Prioritising Telecommunication Standardisation
Work Areas using the Delphi Analytic Hierarchy Process based on a Spreadsheet
Model, International Journal o f Computer Applications in Technology, 11(1), 45 -
52, 1998.

212

45. Yan, Xue and Gu, P., A Review of Rapid Prototyping Technologies and Systems,
Computer-Aided Design, 28(4), 307 - 318, 1996.

46. Styger, Lee, Rapid Prototyping and Tooling Technologies, Materials World, 1(12),
656-658 , 1993.

47. Styger, Lee, Rapid Prototyping & Tooling: The Enabling Technology of the 90’s,
IEE Colloquium (Digest), 1.1 — 1.5, IEE, Mar 23 1994.

48. Fadel, Georges M. and Kirschman, Chuck, Accuracy Issues in CAD to RP
Translations, Rapid Prototyping Journal, 2(2), 4 - 17, 1996.

49. Kruth, J. P.; Leu, M. C. and Nakagawa, T., Progress in Additive Manufacturing and
Rapid Prototyping, Annals o f the CIRP, 47(2), 1998.

50. Belforte, D. A., Robotic Manipulation for Laser Processing, Proceedings o f the
SPIE-High Power Lasers and Their Industrial Applications, Vol. 650, 262 - 270,
1986.

51.Lerner, Eric J., How Industrial Concepts Become Prototypes Fast, Laser Focus
World, 35(4), 117- 122, 1999.

52. Stucki, Peter; Bresenham, Jack and Earnshaw, Rae, Computer Graphics in Rapid
Prototyping Technology, IEEE Computer Graphics and Applications, 15(6), 17 -
19, 1995.

53. Burns, Marshall, Quick Primer on Rapid Fabrication, Machine Design, 66(5), 150 —
152, 1994.

54. Burns, M., Automated Fabrication, PTR Prentice Hall, Englewood Cliffs, New
Jersey, 1993.

55. Baril, Richard, Modern Machining Technology, Delmar Publishers Inc., 1987.

56. Drozda, Thomas J. and Wick, Charles, Tool and Manufacturing Engineers
Handbook, Fourth edition, Vol. 1: Machining, SME, 1983.

57. Metals Handbook, Ninth edition, Vol. 16: Machining, Metals Park, Ohio: ASM
International, 1989.

58. The Handbook, Dormer Tools, 1995.

59. Jacobs, P. F., Rapid Prototyping and Manufacturing: Fundamentals o f
Stereolithography, SME, Dearborn, Michigan, 1992.

60. Burns, M. Automated Fabrication - Improving Productivity in Manufacturing, PTR
Prentice-Hall, New Jersey, 1993.

213

61. Hull, C., Stereolithography: Plastic Prototypes from CAD Data without Tooling,
Modern Casting, 38, August 1988.

62. Jacobs, P., Rapid Prototyping & Manufacturing, Society o f Manufacturing
Engineers, 397 - 423, 1992.

63. Frontera, E. F., Sculpturing of Art Figures, U. S. Pat. 3301725, September 25, 1963.

64. Meyer, R. M., Relief Models, U. S. Pat. 3539410, November 20, 1967.

65. Styger, Lee, Rapid Prototyping Technologies, IEEE Colloquium (Digest), 77, 6/1 -
6/5, March 23, 1994.

66. Hansel, Bryan, Fundamentals of Product Development Getting to Market in Vi the
Time, Annual Technical Conference - Antec, Conference Proceedings, Vol. 3, 3080
-3083, April 26, 1998.

67. http://www.3dsystems.com

68. Hull, C. W., Apparatus for Production of Three-Dimensional Objects by
Stereolithography, U. S. Pat. 4575330, August 8, 1984.

69. Philbin, Matthew L., Rapid Prototyping: A Young Technology Evolves, Modern
Casting, 86(3), 54 - 57, 1996.

70. Wohlers, T., Future Potential of Rapid Prototyping and Manufacturing Around the
World, Proceedings o f Third European Conference on Rapid Prototyping and
Manufacturing, University of Nottingham, July 6 - 7 , 1994.

71. htl[r//www.delcam.com/info/oroicets/caiT).him

72. Jacobs, P. F., Fundamentals of Stereolithography, Proceedings o f Solid Free Form
Fabrication Sysmposium, 196 — 211, August 3 - 5 , 1992.

73. Belforte, D. A., Laser Modelling Reduces Engineering Time, Laser Focus World,
1 0 3 - 108, June 1989.

74. Dimatteo, P. L., Method of Generating and Constructing Three-Dimensional Bodies,
U. S. Pat. 3932923, October 21, 1974.

75. Kinzie, N. F., Method and Apparatus for Constructing a Three-Dimensional Surface
of Predetermined Shape and Colour, U. S. Pat. 5015312, December 24, 1988.

76. Conley, J. G. and Marcus, H. L., Rapid Prototyping and Solid Free Form
Fabrication, Journal o f Manufacturing Science and Engineering, Transactions o f the
ASME, 119(4B), 811 -8 1 6 , 1997.

214

http://www.3dsystems.com
http://www.delcam.com/info/oroicets/caiT).him

77. Feygin, M., Apparatus and Method for Forming an Integral Object from
Laminations, U. S. Pat. 5354414, October 11, 1994.

78. Bjorke, Oyvind, NOR-SLA Newsletter, 3, 1, Norway, December 1990.

79. Deckard, C. R., Part Generation by Layerwise Selective Sintering, MSc Thesis,
Department of Mechanical Engineering, University of Texas at Austin, May 1986.

80. Colley, D. P., Instant Prototypes, Mechanical Engineering, 68 - 70, July, 1988.

81. Wohlers, T., Creating Parts by Layers, Cadence, 73 - 76, April, 1989.

82. DTM’s SLS Selective Laser Sintering Process and the Sinterstation 2000 System,
DTM Corporation, Austin, Texas, 1994.

83. http://www.dtm-corp.com

84. Deckard, C. R., U. S. Pat. 4863538, 1989.

85. Deng, X. et al., Parametric Study of Selective Laser Sintering of a Sample Polymer
System, Proceedings o f Solid Free Form Fabrication Symposium, 102 - 109,
August 3 - 5 , 1992.

86. McAlea, Kevin; Booth, Richard; Forderhase, Paul and Lakshminarayan, Uday,
Materials for Selective Laser Sintering Processing, International SAMPE Technical
Conference, 949 — 961, October 9 — 12, 1995.

87. http://www.stratasys.com

88. Comb, J. W. and Priedeman, W. R., Control Parameters and Materials Selection
Criteria for Rapid Prototyping Systems, Proceedings o f Solid Free Form
Fabrication Symposium, 8 6 - 9 3 , August 9 - 21, 1993.

89. Ahmad, Luqman; Eckstrand, Lesley and Pantarotto, Jason, Rapid Prototyping &
Solid Freefrom Manufacture, Canadian Ceramic Society Journal, 66(2), 104 - 107,
1997.

90. http://www.cubital.com

91. Dickens, P. M., Research Developments in Rapid Prototyping, Proceedings o f the
Institution o f Mechanical Engineers, Part B: Journal o f Engineering Manufacture,
209(B4),261 -2 6 6 , 1995.

92. Bhatti, M. T. L., Effectiveness o f Computer Controlled Robotic Precision
Manipulator, PhD Thesis, School of Mechanical and Manufacturing Engineering,
Dublin City University, 1991.

215

http://www.dtm-corp.com
http://www.stratasys.com
http://www.cubital.com

93. PC-23 Indexer User Guide, P/N: 88-007015-03E, Compumotor Division, Parker
Hannifin Corporation, U.S.A., 1987.

94. KS-Drive User Guide, P/N: 88-007042-01A, Compumotor Division, Parker
Hannifin Corporation, U.S.A., 1987.

95. Bradley, D. A.; Dawson, D.; Burd, N. C. and Loader, A. J., Mechatronics -
Electronics in Products and Processes, Chapman and Hall, 1991.

96. EUROSTAR Digital User Guide, EUR0ST0795EU, IKA Labortechnik, Germany,
1998.

97. Roofinate SL Extruded Polystyrene, Dow Chemical Company Limited, U.K., 1995.

98. AutoSurf Release 3 - Surface Modelling, P/N: 03704-000000-5010, Autodesk, Inc.,
1996.

99. Holmes, B. J., Programming with ANSI C, B. P. C. Hazell Books Ltd., Aylesbury,
England, 1995.

100. Head, G. O., AutoLISP in Plain English - A Practical Guide for Non-
Programmers, Second edition, Ventana Press, Inc., 1989.

101. AutoCAD Release 13 - Customisation Guide, P/N: 00105-010000-5040,
Autodesk, Inc., 1994.

102. Arnold, J. A. and Teicholz, P., Data Exchange: File Transfer, Transaction
Processing and Application Interoperability, Computing in Civil Engineering,
438 -444 , 1996.

103. Aitken, Peter and Jones, Bradley L., Teach Yourself C in 21 Days, Fourth
Edition, SAMS Publishing, 1997.

216

Appendix A PC-23 Indexer Commands

Command Format Description
The following section describes the format of the command descriptions
used In this chapter. The numbered arrows refer to the numbered sections
below the drawing.

\
Type
Syntax
Units
Range
Default
Responses None
See also D, V, G

Set Acceleration
Motion
<d>An
n is rps2
0.001 to 999.99
100

' Version

Attributes r
[x] Buffered
[] Device specific
[x] Saved independently
[] Saved in sequences

The acceleration command specifies the acceleration rate used for subsequent moves (G command). The
acceleration remains set until you change it again. You do not need to reissue this command for
subsequent Go (G) commands. Acceleration outside the valid range cause the acceleration to remain in
previous valid acceleration setting. The PC23 Indexer uses the same value for deceleration.

 ►Command
A100
V10
010000
G

Description
Set the acceleration rate
Set the velocity
Set the move distance
Start the move

217

© Command Identifier
The letter or letters used to represent the command.

® Command name

® Version

This name used to refer to the command. For example. Acceleration for
the A command.

The revision of software In the PC23 Indexer when the described command
was first Introduced or last modified. If the revision level of the software
you are using Is equal to or greater than the revision level listed here, the
command Is available In your unit. You can determine the level of
software In your PC23 Indexer by Issuing the Revision Level (rv)
command.

© Characteristics

T y p e

S y n ta x

The following sections describe the main characteristics of the command.

This portion of the box contains the command's type. The four command
types are listed below.

Set-Up: These commands define Set-Up conditions for the
application. Set-Up commands Include the following types
of commands:

□ Homing (go home acceleration and velocity, etc.)
□ Input/Output (limits, scan time, ln-positlon time, etc.)
□ Tuning (servo or position tracking)
□ General (set switches, return to factory settings, etc.)

Programming commands affect programming and program
llow. For example, trigger, output, all sequence
commands, quote, time delays, pause and continue, enable
and front-panel. loop and end loop, line feed, carriage
return, and backspace.

Status commands respond (report back) Information.

Motion commands affect motor motion (for example,
acceleration, velocity, distance, go home, stop, direction,
mode, etc.)

Programming:

Status:

Motion:

U n its

This field shows the syntax for the command. PC23 Indexer commands
use the following generic syntax: acspd

Variable a This variable Is the device address. H the address is optional it is shown in
angle brackets: <d>. Only corn mands which require the PC23 Indexer to send
a response require a device address. All commands may use a device address
to designate which unit on a daisy chain the command is intended for.

Variable c This variable is the command identifier, which is one or more letters.

Variable ■ This variable represents a sign. A sign is not allowed for all commands. The a
is not shown in the syntax if not allowed.

Variable p This variable represents the parameters the command requires. There may be
zero or more parameters. If the number of parameters is zero n is not shown in
the syntax

Variable d This variable Is the end of command delimiter. This is always required and is
not shown in the following descriptions for clarity. The delimiter may be a
space character or a carriage return.

This field describes what unit of measurement the parameter in the
command syntax represents.

218

R a n g e

D e fa u lt

R e s p o n s e

S e e A ls o

© Attributes

B u ffe re d

D e v ic e s p e c if ic

S a v e d a lw a y s

S a v e d in
s e q u e n c e s

This la the range of valid values that you can specify for n (or any other
parameter specified).

The default setting for the command Is shown In this box. A command
will perform Its function with the default setting If you do not provide a
value.

The response to the command Is shown in this box. Status commands
report a condition In the indexer. Status commands do not affect the
status they read.

Commands that set parameters report the parameters when the command
is Issued without a parameter. For example. A120 sets the acceleration to
100 rps. but IA returns the current setting. Note: To receive a response, a device address Is required.
Commands that are related or similar to the command described are listed
here.

Each command has attributes as shown below.

Attributes
[X] Buffered
[j Device specific
[x] Independently saved
[] Saved in sequences

If the Buffered box is checked the command Is buffered. If it is not
checked the command Is acted on immediately. Buffered commands are
executed In the order they are received. An Internal buffer, or storage
area, holds the commands In a queue until the previous command has
been executed.

Immediate commands are executed as they are received. Immediate
commands are executed even if the command buffer has commands in it.
For example, the Stop (S) command Is Immediate. When a Stop command
Is received the motor is stopped as soon as the command is received. The
PC23 Indexer does not process the commands in Its command buffer
before stopping the motor.

If the Device specific box Is checked the command requires a device
identifier. If it is not checked the command may be used with or without a
device identifier. Commands which are device specific are normally
Status commands. Device specific commands have a syntax description
with a d by itself before the command. If it is not device specific the
command syntax description has a < d > In angle brackets before the
command.

If the Independently saved box Is checked the parameter controlled by the
command Is always saved. This differs from commands which may only
be saved in sequences and those which are never saved. If neither the
Saved always nor the Saved in sequences box is checked the command is
never saved.

If the Saved In sequences box Is checked the command will be saved only
If it Is In a sequence and you Issue the Save command (sv). If neither the

219

Saved always nor the Saved in sequences box Is checked the command is
never saved.

A description of the command appears In this area along with any special
considerations you should know about.

© Example
An example of how to use the command appears in this area. The left
column contains the commands you would issue to the PC23 Indexer. The
right column contains descriptions of what the commands do in the
program.

Alphabetical Command List__

© Description

A Set Acceleration Verslon A
Type M o tio n Attributes
Syntax a An [x] Buffered
Units n = rps2 [] Device specific
Range 0 .0 1 t o 9 9 9 .9 9 (M ocor d e p e n d a n t) [j Saved independently
Default 100 £ j Saved in sequences
Response None
See also D, v , G
The Acceleration command specifies the acceleration rate to be used upon executing the next Go (G)
command. The acceleration remains set until you change It. You do not need to reissue this command for
subsequent c commands. Accelerations outside the valid range cause the acceleration to remain In
previous valid A setting.

C om m and D escrip tion
>MN S e t to Norma1 mods
>AS S e t acceleration to 5 rps^
> v a S e t velocity to 10 rps
>D 10000 S e t cfetanee to lO.COO steps
>G Execute the m ow (Go)

AB Report Analog Voltage (Binary) Verslon B3X
Type Status Attributes
Syntax aA Bn [] Buffered
Units n - c h a n n e l [l Device specificRange 0-3 [j Saved independentlyDefault N one [j Saved in sequencesResponse nn (tw o A S C II c h a r a c t e r s)See also av

Read the analog Input voltage on channel number n referenced to analog Input ground and respond In
binary value. The analog voltage request responds with two bytes. The first byte Is the A/D channel number
(analog channel 0 through 3). The second byte la the 8 bit number for that channel on the Joystick's A/D
converter.

The 8 bit number corresponds to values between 0 and 255. Since the analog Input voltage ranges between
0-2.5VDC, the binary reading will approximately correspond to the voltage on the Input

This command Is very useful for quickly reading the analog input voltage.

C om m and D e«criptJon/H «*ponM
a b i Reports voltage on Channel 1

220

AV Report Analog Voltage (ASCII)
zzsz

Version A
Attributes
[x] Buffered
[j Device specific
[j Saved independently
j j Saved In sequences

Type S t a t u sSyntax a*vnUnits N one
R a n g e N oneDefault N oneResponse cH»:n.nnv See also ab

Read the analog Input voltage on a channel number (n) referenced to analog Input ground. The response Is
In ASCII. This command is necessary for Joystick setup. After hooking up the Joystick, read each channel
and verify that Channel 0 * Channel 1 and Channel 2 • Channel 3 are both positive. Refer to the Joystick
installation procedure for test and calibration.

C o m m an d
AV0

R as p o n s#
CH0:1.4SV

B Report Buffer Status Version A
Attributes

Buffered
Device specific
Saved indapendenlly
Saved in sequences

Type S t a t u sSyntax aB []Units N one []Range N one []Default N one [jResponse *r o r * b See also N one

The buffer status command will report the status of the command buffer. The command buffer is 1.000
bytes long. The response to this command Is:

*R = More than 31 bytea are free
*B = Less than 32 bytes are free

This command is commonly used when a long series of commands will be loaded remotely. If the buffer
size is exceeded, the extra commands will not be received by the Controller.

C o m m an d
IB

Rea pons*
1:*R (more lhan 31 bytes of Ihe buffer are free)

C Continue
Type P ro g r a m m in gSyntax a cUnits N oneRange N one
Default N oneResponse N oneSee also ps, u
The Continue (c) command ends a pause state. It enables your Indexer to continue executing buffered
commands. After you initiate a pa jse with the Pause (ps) command or the Pause and Walt for Continue (o)
command, you can clear It with a C command. This command Is useful when you want to transmit a string
of commands before you actually need to execute them.

Version A
Attributes
[] Buffered
[] Device specific
[J Saved independently
[j Saved in sequences

C o m m an d
ss
MC
A5
VSa
T10
V0a
c

D escrip tion
P au se execution on axis #1 unS the indexer receives a C com m and
S o t is Continuous mode
S e t acceleration to 5 ip62
S e t velocity to 5 rps
Execute t i e m ove (Go)
W ait 10 seconds after the move
S o t velocity to zero
O ecetorale the m otor to zero velocity
S tart executing com m ands in buffer

221

CG Set Correction Gain Version A
Attributes

Buffered
Device specific
Saved independently
Saved in sequences

Type set-upSyntax a c a n [xUnits n - g a i n [Range' o - a [Default 8 [Response H oneSee a ls o f s b , f s c , cm, mv
This command allows you to set the amount of error (steps) that should be corrected on the Initial position
maintenance (rsci command) correction move (which takes place whenever the motor Is stationary). This
function Is only valid In the Encoder Step mode (rsBl command).
The percentage of error that the Position Maintenance function will attempt to correct on each correction
move Is n/8 • 1 0 0%. If you set n to 1, the system will correct the error slowly (1/8 of the error Is corrected
on each try). This type of correction Is performed smoothly. If you set n to 8, the system will correct the
error faster. However, there may be more overshoot and ringing at the end of this type of correction move.
C om m and D escrip tion
PSB1 S e t to Encoder S e p mode
? s c i Enable position m aintenance while the motor is stationary
CG3 The system corrects 3/8 of the final-position error on the Wdal correction move

Carriage Return
S e t - U p
a C R
N one
N one
N one
N one
N one

Version A
Attributes
[xj Buffered
[j Device specific
[j Saved independently
[j Saved in sequences

CR
Type Syntax Units Range Default Response See also
The Carriage Return (c r) command determines when the Indexer reaches a particular point In the execution
buffer. When the indexer reaches this command In the buffer, It responds by Issuing a carriage return
(ASCII 13) over Its interface back to the host computer. If you place the c r command after a Go (g)
command. It will Indicate when a move Is complete. If you put the cr command after a Trigger (t r)
command, it will Indicate when the trigger condition Is met
C om m and
MN
MPA
AS
V5
D 5000
<3
CR

D escrip tion
Sot to Normal Mode
S e t lo Absolute Position mode
S at acceleration to 5 tps2
SotV e)oci!y to5fp8
S et ck tanca to 5.000 steps
Execute the m ove (Go)
S en d a carnage return at the end of the move

D
TypeSyntaxUnitsRangeDefaultResponseSee also

Set Distance
M o tio n
aD n
n ** s t e p s
0 - ± 9 9 ,9 9 9 /9 9 9
2 5 ,0 0 0
N one
A , V, G , MN

Version A
Attributes
x] B u ffe red

] D e v ic e sp e c if ic
j S a v e d in d e p e n d e n tly
] S a v e d in s e q u e n c e s

The Distance (d) command defines either the number of steps the motor will move or the absolute position
it will seek after a Go (a) command Is entered. In incremental mode (Mil or FSA 0), the value set with the D
command will be the distance (In steps) the motor will travel on all subsequent a (Go) commands.

In absolute mode (msa or rsAl). the distance moved by the motor will be the difference between the current
motor position and the position (referenced to the zero position) set with the d command The Distance (d)
command has no effect on continuous moves (kc).

C om m and D escrip tion
2 MM S e t lo Normal m ode
2A5 S e t acceleration to 5 rps2
zvio S et vokjeity to 10 nps
2D 50003 Sol distance to 50,000 steps
2 0 Execute the m o w (Go)

I

222

Version A
Attributes
[x] Buffered
[j Device specific
[j Saved independently
j j Saved in sequences

D B Set Dead Band
Typ« S e t- U pSyntax <a>DBnUnits n * E n c o d e r C o u n tsRange o - 9 9 9 9 9 9Default 0Response N oneSee also dw, f s

Once the Initial move Is completed, position maintenance will detennlne If a position error condition exists.
The error Is expressed In terms of Encoder Counts. If the error exceeds the DB setting (In either direction)
position maintenance will generate a correction move. In the appropriate direction, based on the DCn and
CMn settings.

Position maintenance will remain active and correction moves will continue to be generated until a FSC0
command Is issued by the host.

The maximum allowable DB setting Is 999999. Any attempt to exceed the maximum will leave the previous
setting unchanged.

DP A Display Position Actual Version A

Attributes
[] Buffered
[] Device specific
[j Saved independently
j j Saved in sequences

Type S t a t u s
Syntax < a> D P A <n>Units n = s t e p sRange N oneDefault NoneResponse N oneSee also PR, p , p x , w

The Display Position Actual (DPA) command displays the actual position In feedback steps. The function is
canceled by sending any single ASCII character to the Indexer.

C om m and D escrip tion
d p a Continually report the actual position of axis #1
2 d p AX Reporte the actual position of axis 2, one lime

Version A

Attributes
[xj Buffered
f] Device specific
(j Saved independently
[j Saved in sequences

DW Set Dead Band Window
Typo s a t - u pSyntax <a>DWnUnits n » M o to r 3 t e p s {FS 30) o r E n c o d e r C o u n ts (FSB1)Range 0 - 9 9 9 9 9 9Default 250Response N oneSee also f s b

This command specifies a backlash deadband. The deadband compensates for mechanical systems with
backlash and allows use of the Stall Detection features. Stall detection occurs when the position error
exceeds the backlash setting.

C om m and D escrip tion
F S B l Enter Encoder Step mode
D 25200 Sotcfctanco to 25,000 otaxSor counts
D w iM Alow 100 counts ol em x
a Execute the m ove (Go)

223

ER Set Encoder Resolution Vers,on A
Type s e t - u p AttributesSyntax aZ R n [x] BufferedUnits n = e n c o d e r s t e p s [J Device specificRange 1 - 50,000 [j Saved independentlyDefault 4 , 0 0 0 (j Saved in sequences
Response NoneSee also FS com m ands

This command defines the number of encoder counts per one revolution of the motor. The number of Unes
on an encoder should be multiplied by 4 (quadrature) to arrive at the correct encoder resolution value per
revolution of the motor. In other words, one line of an encoder produces 4 encoder steps.

If you are not sure what the resolution of the encoder Is, you may do the following to find the encoder
resolution.

© Zero the position counter using the PZ command.

@ Move the motor 1 revolution In motor mode (rsB0).

® Read the encoder position (px) command. This reading indicates what the resolution will be.

Repeat this several times and use the average value as the za command.

A 4:1 ratio of motor steps to encoder steps Is necessary for proper closed-loop operation. If a lower ratio Is used, it may be difficult to tune the position maintenance (Servoing) feature of your indexer.
C om m and D escrip tion
2Z R 8000 S et encoder resolution to 8.000 stops on axis #2.

F R Report Encoder Functions Verslon A
Type S t a t u s AttributesSyntax a F R [x B uffe redUnits H one [] Device specificRange o * f u n c t i o n o f f , 1 - f u n c t i o n o n [Saved independentlyDefault o [j S a v e d in s e q u e n c e sResponse a :n n n n n n n nSee also FS com m ands

This command allows you to request the status of rs command functions. The response contains one
ASCII digit per function (zero [01 or one [1)). The digits (n) correspond to the functions, (A - H, left to right).
One (l) means an rs function Is on. Zero (0) means an f s function is off.

A Incremental = OFF (01, Absolute = ON (1). Defines the m o v e distances (d) as either Incremental from
current position, or as absolute referenced to the absolute 0 position).

B Motor step mode = OFF (0). Encoder step mode = ON (1). Defines the distance In motor steps or encoder
steps.

C Position Maintenance = OFF 10), = ON (1). Enables position maintenance. This causes the Indexer to
servo the motor to the desired position if It is not In the correct position at the end of a move. or. if the
motor is forced out of position while at rest

D Terminate Mow on Stall Detect * OFF (0). * ON (1). Instructs the Indexer to abort a move If it detects a
stall.

E Turn on Output on Stall Detect » OFF (0), = ON (1). Instructs the Indexer to turn an output on If it
detects a stall.

F Multiple cuds stop = OFF (0), = ON (1). Instructs the Indexer to abort any move If a signal Is received on
the TYlgger #6 Input . If output on stall is enabled (rszi), the indexer will also turn on an output when
a trigger Is seen.

G Reserved

H Reserved
C om m and R e sp o n se
1FR 1 :1 1 0 0 0 0 0 0 . Axis 1 is in absolute encoder s tep mode. A! o ther FS functions aro OFF.

224

Set Absolute/Incremental Positioning Mode version a
S e t - U p
aFSAn
n =* f u n c t i o n
0 - o f f , 1 - on
0
N one
FR, M P I, MPA, P Z / PR

Attributes
[x] Buffered
[j Device specific
[j Saved independently
[j Saved In sequences

FSA
Type Syntax Units Range Default Response Sea also
This command sets the Indexer to perform Its moves In either absolute or Incremental positioning mode.

fsass = Incremental mode (equivalent to mpi command)
fsai = Absolute mode (equivalent to MPA command)

In Incremental mode (FSAfl or hp I), all moves are made with respect to the position at the beginning of the
move. This mode Is useful for repeating moves of the same distance.

In Absolute mode (r s A i or h p a) , all moves are made with respect to the absolute zero position. The
absolute zero position la set to zero when you power up the Indexer or execute the Position Zero (p z)
command.

Command D escrip tion
KN S ot to Normal m ode
F SA I Sot Indexer la abschfle mods
PZ R eset the absolute countar to zero
AS Sol acceleration to 5 rps2
VS S ot vetedty to 5 rps
D 2 5 0 0 0 Move motor to absolute p06ttion 25,000
a Execute Hie movo (Go)
D5 0 0 0 0 Move motor to absolute position 50,000a Execute the move (Go)

The motor moves 25,000 steps, and an additional 25,000 steps to reach the absolute position of 50,000.

Set Motor/Encoder Step Mode
S e t - U p
aFSBn
n - f u n c t i o n
0 - o f f , 1 on
0
None
D, ER, FR , FSC , MR

Version A
Attributes
[x] Buffered
[j Device specific
[j Saved independently
[] Saved in sequences

FSB
Type Syntax Units Range Default Response
See also
This command sets up the Indexer to perform moves In either motor steps or encoder steps.

f s b b * Motor step mode
f s b i = Encoder step mode

In Motor Step mode, the distance command (d) defines moves In motor steps.

In Encoder Step mode, the distance command defines moves in post-quadrature encoder steps. You must
set up the Indexer for the correct encoder resolution The Encoder Resolution (e r) command Is used to
define the post-quadrature encoder resolution.

If you enable encoder step mode (F S B l) , without having the encoder connected to the PC23. upon receiving
a Go (<s) command, the motor will drift at low velocity. This drift is a result of the PC23 not receiving
encoder pulses properly.

Enabling Encoder Step mode does not guarantee that your moves will position to the exact encoder step
commanded. Position maintenance (f s c) must be enabled to activate closed loop servolng.

Command Description
SR4 0 0 0 S e te n co d e r resolution to 4,000 posl-quactatue encoder pulses
F S B l S o t to Encoder S tep mode
a s S e t acceleration to 5 rps2
V5 S etve lod ty to 5 rps
D 4 0 0 0 S e t cistance to 4,000 encoder steps
c Execute the move (Go)

225

Version AF S C Enable Position Maintenance
Typ« Set-op
Syntax arscn
Units n = f u n c t i o n
Range o - o f f , 1 - onDefault' oResponse N one
See a ls o e r , f r , f s b , f s d , cm

Hals command enables and disables the position maintenance function.

Attributes
(x] Buttered
[] Device specific
[j Saved independently
[j Saved in sequences

F S C l
F S C 0

= Enable Position Maintenance
= Disable Position Maintenance

Enabling position maintenance will cause the Indexer to servo the motor until the correct encoder position
Is achieved. This occurs at the end of a move (If the final position Is Incorrect) or any time the Indexer
senses a change In position while the motor is at zero velocity. You must have an encoder connected, and
set the Indexer in Encoder Step mode (rssi) in order to enable position maintenance.

If you enabled position maintenance (rsci) and the motor drifts, the encoder may not be connected
properly. The motor will drift at 0.1 rps per revolution.

CAUTION

II you uro m aking ■ m ove w ith p o s itio n m a in te n an ce enab led an d th e e n c o d e r I* d isco n n e c te d , th e PC23 will co n tin u e to o u tp u t p u lses
try ing to find th e desired p o s itio n . C o n se q u e n tly , th e PC23 cou ld conceivab ly o u tp u t p u ls e s fo rever, or until a limit Is en c o u n te red .
For sa fe ty r e a s o n s , you s h o u ld e n a b le S ta ll D etec tion (0SB1) a n d S to p O n S ta ll (FSDlj to e n s u re tha t th e m o to r will s to p It su c h a
s itu a tio n o c c u rs .__

C om m and
E R 4 0 0 0
FSB1
0S E 1
7SD 1
F S C l

D escrip tion
S a t enooder resokjbon to 4.000
S e t to encoder SEp modo
Enable s o l detection
Enable s o p on sia/l
Enable position mamtonanco

F S D Enable Stop on Stall Version A

Type S e t - U p Attributes
Syntax airSD n [x] Buffered
Units n * f u n c t i o n [j Device specific
Range 0 - o f f , 1 - on [j Saved independently
Default 0 [j Saved in sequences
Response N one
See also ER, FR, S S , OSE

This commandenables and disables the Stop on Stall function.

f s d i = Enable Stop on Stall
F SD 0 = Disable Stop on Stall

Entering r s D l will cause the Indexer to stop the move In progress when a stall Is detected. The move is
stopped Immediately; no deceleration. This conunand Is only valid If stall detection has been enabled
(o s e i) . It will have no effect otherwise.

Stall detection will work In either motor step mode (f s b 0) or encoder step mode (f s b i) .

Entering F S D 0 will cause the Indexer to attempt to finish the move when a stall Is detected, even If the load
Is Jammed.

C o m m an d
E R 2 0 0 0
0SB 1
F S D I

D escrip tion
S e t encoder resolution to 2,000 stops/rev
Enable gtnl detact function
Enable slop on stall

226

Version A
Attributes
[x] Buffered
[j Device specific
(j Saved independently
[j Saved In sequences

FSE Enable Output #6 on Stall
Type s e t - o pSyntax a r s c nUnits n ” o u t p u t , o n / o f fRange o o r 1Default oResponse N oneSee al30 ss, e r , f r , f s f

F S E 0 = Do not enable Output #6 on stall
f s e i = Enable Output # 6 on stall

Entering r s E l will cause the Indexer to turn on Output #6 when a stall Is detected. This Is useful for
signaling other components in you system that a stall has occurred. This command will only be valid If
Stall Detect (o s e i) has been enabled.

Output #6 is unaffected by a stall when rsra and osri are entered.

Command
E H 4 0 0 0
O SEI
F S Z 1

D escrip tion
S e t encoder resolution b 4,000 steps/rev
Enable s ta l detect
Turn or, output num ber 4 when a stall Is detected

FSF Enable Stop on Trigger #6
TypeSyntaxUnitsRangeDefaultResponseSee also

S e t - U p
a F S F n
n = f u n c t i o n
0 - o f f , 1 ** on
0
N one
FR, TR, TS

Version A

Attributes
[x] Bulfered
[j Device specific
(] Saved independently
[j Saved in sequences

This command enables and disables the Stop on Trigger function.

F S F 0 = Do not terminate move on Trigger # 6
f s f i = Terminate move when Trigger # 6 Is high

Entering rsrl will cause any move in progress to be stopped whenever Trigger #6 is brought high. For
multiple axis application, setting up another unit to turn on Output #6 when It detects a stall, enables the
user to Implement a multi-axis stop on stall by connecting the output of one axis to the trigger of the other.
The move will be decelerated at the maximum acceleration rate.

Entering F S F 0 causes the indexer to treat Trigger #6 as a standard trigger input

C om m and
F S F 1

Description
Trigger #6 is now dedicated as a remote stop input

Go
M o tio n
aC
N one
N one
None
N one
A, D, V , FSA , F S B , MA, MC, MN

Version A
Attributes

Buffered
Device specific
Saved independently
Saved In sequences

TypeSyntax aC [xUnits Range Default Response See also
The Co (c) command instructs the motor to make a move using motion parameters that you have previously
entered. You do not have to re-enter Acceleration (a) . Velocity (v). Distance (d). or the current mode (m h .
MA, or MC) commands with each a command. In the Incremental Preset mode (m p i), a g command will
Initiate the steps you specified with the d command.

A G command In the Absolute Preset mode (msa) will not cause repeated motion unless you enter a change
in distance (d command).

In the Continuous mode (m c). you only need to enter the Acceleration (A) and Velocity (v) commands prior
to the a command. The system Ignores the Distance (d) command in this mode.

227

No motor motion will occur until you enter the c command In the Normal (kn), the Continuous (mc), or
Alternating (ha) mode.

If motion does not occur with the c command, an activated end-of-travel limit switch may be on. the Indexer
Is waiting for a trigger Input (ir). or the Indexer Is In a pause state (ps, o) and waiting for a continue (c).
Check the limit switches.

C o m m an d
1KN
F s a a
FSB 0
1 A 5

1A5
1VS
1 0 2 5 0 0 0 1C
1A1
1<*

D escrip tion
S e t to Normal mode
S e t to Incremental mods
Sof Motor Stop mode
S e t aocotoralion to 5 rps 2
S e t acceleration to 5 ips2
S etveiod ty to 5 me
Sot defence to 25,000 steps
Execute ihe m o w (Go)
Sot acceleration to 1 rpg2
Execute tho move (Go)

Assuming the indexer Is In Incremental Preset mode, the motor turns 25,000 steps and repeats the 25,000-
step move using the new acceleration value of 1 rps(Total distance moved = 50,000 steps).

Gnnn Go (Synchronized) Version A

Attributes
[x] Buffered
[] Device specific
[j Saved independently
[J Saved in sequences

Type M o tio nSyntax aG n n nUnits n » a x i sRange N oneDefault N oneResponse N oneSea also d , v , g , m n , i

This command allows you to put a special synchronized go command In each specified buffer. Each buffer
will wait until all specified axis buffers have reached the synchronized go command. Each axis should start
within 150 usee of one another. Typically It ts used to synchronize moves between more than one axis but
It may also be used to synchronize two axes buffers (by Issuing a zero distance move). The command may
also be used to do simple multi-axis linear Interpolation.

You should not send a new c or G 1 2 3 command until motion Is completed.

C o m m an d
G12

D escrip tion
Synchronize Axis # I and #2 to start moving together

Go Home Acceleration
M o tio n
aGAn
n = r p s 2
0 .0 1 t o 9 9 9 .9 9
10
None
GH, OS

Version A

Attributes
[x] Buffered
[j Device specific
[] Saved independently
[j Saved In sequences

GA
Type Syntax Units Range Default Response Sea also
The Go Home Acceleration (ga) command sets the linear acceleration value that the motor will use during
any subsequent Go Home (ch) moves.

C o m m an d D escrip tion
2GA5 S ets go home acceteraSon on axis #2 to 5 rps2
2G H -5 The motor accelerates a t 6 rps2 to 5 rps ir the CCW drecdon and se a rc h e s for hom e

228

G H G o H o m e Vafslon A
Type M o tio n AttributesSyntax aG H sn [x] BufferedUnits n - r p s 2 , a - ± [j Device specificRange 0 .0 0 1 - 2 0 (25,ooo s t e p / r e v m o to r) [j Saved independentlyDefault [j Saved In sequences
Response N oneSee also a , g a , os, ?z

The Go Home (cb) command Instructs the controller to search for the home position, either In the motor
step mode or the encoder step mode. When In the motor step mode, the controller looks only at the Home
Limit Input. It will define Home as the CCW edge of the Home Limit signal (the edge closest to the CCW
limit Input).

The process Is the same In encoder step mode, except the controller also looks for the Z channel Input as
well as the Home Limit Input to be active at the same time. This means that the Z channel pulse must be enveloped by the active region of the Home Limit Input When both are active, the Indexer defines that
position as the home position.

The indexer will reverse direction If an end-of-travel limit is activated while searching for Home; however. If
a second end-of-travel limit is encountered in the new direction, the Co Home procedure will stop and the
operation will be aborted.

After the GH command Is Issued, the motor will run In the direction and velocity specified. The motor will
keep running after the home switch is activated until it is deactivated. It will then decelerate and reverse
direction.

The position counter Is set to zero at the conclusion of the go home move.

C om m and D escrip tion
g h - 2 0 T he motor moves In t i e CCW drecticn at 20 rps and looks tor lha Home Umit input to go activs

a h Backspace Verslon A
Type P ro g ra m m in g AttributesSyntax *a [x] BufferedUnits N one [] Device specificRang* N one [j Saved IndependentlyDefault N one [j Saved in sequencesResponse N oneSee also N one

This command allows you to delete the last character that you entered (unless It was a delimiter). The * s
command will not prevent execution of an Immediate command. A new character may be entered at that
position to replace the existing character. (*a Indicates that the Ctrl key Is held down when the h key is
pressed.) This command prompts the Indexer to backup one character In the command buffer, regardless
of what appears on the terminal. On some terminals, the Ctrl and the left arrow <— keys produce the
same character. Pressing the delete key does not delete the previous character.

H Set Direction VersIon A
Type M o tio n AttributesSyntax <a>H<s> (x) BufferedUnite 3 - d i r e c t i o n (Device specificRange ± [] Saved independentlyDefault + [Saved in sequences
Response N oneSee also N one

The Set Direction (h) command changes or defines the direction of the next move that the system will
execute. This command does not effect moves already In progress.

□ B + Sets move to CW direction
Q H- Sets move to CCW direction
□ a Changes direction from the previous setting
Q cw Direction of motor rotation when viewed from the front face

229

In preset moves, a Distance (d) command entered after the h command overrides the direction set by the H
command. In Continuous mode (mc) only the H command can set the direction of motion.

C om m and
MN
A5
V5
D25000
a
B
G
MCH+
G

DescriptionSet to Norma* mode
So* acceleration to 5 rpe2
Sotvokxity to 5 rp e
Sot distance to 25,000 stepeExecute the move (Go) in + drection
Reverse cfiroctionExecute the move (Go) in - direction Set to Continuous mocta Set cfiroction to + cfiroction Move continuously In + cfiroction

Load Move Data Version A

Attr ibutes
x] Buffered
j Device specific J Saved independently
J Saved in sequences

T y p o P ro g ra m m in g
S y n t a x < a > i
Units N one
Range None
Default N one
Respons e N one
See also ssc, Gnnn

The Load Data (I) command allows the Indexer to precalculate move data sent, so that execution of the
move will begin within 10 ms of receiving a Go (g) command. The move profile may be repeatedly executed
with only a 10 ms calculation delay until any one of the three move parameters: Acceleration (a), Velocity
(V), or Distance (o) is changed.

Without use of the I command, a delay of up to 30 ms per axis will occur before execution of the move.

You must keep In mind that If you Issue an Acceleration (A), Velocity (v). and Distance (d) command the
PC23 will take up to 30ms to calculate the open-loop move profile. Therefore, the load data will be useful if
you can send the I command, and go elsewhere to read d a ta , then come back to execute the Go (g)
command.

C om m and
2MN
2A5
2 V I a 21
2TR1XXXXX
2G

D escrip tionSet to Normal mode
Sat acceleration to 6 rps2 Set velocity to 10 rpsLoad move data (precalculates move profile) Wait for trigger *1 to go high Execute the move (Go)

IO Immediate Output Version F

Attr ibutes
[] Buffered
[j Device specific
[j Saved independently
f j Saved in sequences

T y p e S t a t u s
S y n ta x a lO n n n n n n
Units N one
Range o - o f f , 1 - o n , x - d o n ' t c a r e
Default N one
Response a :n n n n n n n n
Sea also o, os, ss
The Immediate Output (xo) command turns the programmable output bits (POBs) on and off. This can be
used for signaling remote controllers, turning on LEDs, or sounding whistles. POS #1 Is controlled by the
first position after the 10, POB #2 Is controlled by the second position, etc.

IS Input Status
T y p e status
S yn t a x ais
Units N one
Range N one
Default N one
Respons e N one
Sea also l d , t r , t s

This command reports the status of the Inputs for the specified axis. The response Is 8 characters
terminated with a carriage return. The first two characters are the axis number followed by a colon. The

Version A

Attr ibutes
'xj Buffered
j Device specific
j Saved independently
] Saved in sequences

230

next characters are the status of 2 trigger bits, the CW limit, CCW limit. Home Input and Z channels
respectively.

Axis #1: TR1G1. TRIG2. CW Limit 1. CCW Limit 1. HOME1, 2 channel 1
Axis #2: TRIG3, TRIG4, CW Limit 2, CCW Limit 2. H0ME2, Z channel 2
Axis #3: TR1G5, TR1G6, CW Limit 3. CCW Limit 3, HOME3, Z channel 3

C o m m an d R esp o n se
u s 1 :0 0 0 0 1 1 Axis 1 h a s #10 homo and I channel active
2ls 2:100100 Axis 2 reports TRIG3 a a iv o an d that its CCW limit is active
3XS 3 : 010010 TRIG6 is active an d the HOME switch is active

Enable/Disable Joystick
TypeSyntax
Units
RangeDefault
ResponseSea also

Set-0p
< a > J n
n = f u n c t i o n
0 - d i s a b l e , 1 e n a b l e

=» I m m e d ia te
N one
J B , JD , J V , J Z , OSF

Version A
Attributes
[] Buffered
[j Device specific
f j Saved independently
[J Saved in sequences

This command allows you to enter and exit the Joystick mode.

J0 = Disable Joystick Mode
J l = Enable Joystick Mode

When you enter the Joystick mode (Jl), the command clears the buffer before entering the mode. The
Joystick Is slew-rate limited by the last acceleration command. If the address preceding the command is
the first to enter the Joystick mode, the differential signal between analog channel 0 and analog channel 1
will serve as the axis reference. In Joystick mode, the last acceleration and velocity rates that you specify
wlU be used to determine both axis* maximum velocity with full deflection and how rapidly the motor will
track the Joystick movements. High velocities will result in coarse velocity resolution. Compumotor
recommends that you set the acceleration rate high to follow the Joystick's movement as stiffly as possible.

The first axis to request a Joystick receives channels 0 and 1. The second axis to request a Joystick receives
channels 2 and 3. To ensure proper assignment of an axis to the different channels, wait at least 25 ms
between J l commands.

C om m and1J1
2 J 1

D escrip tion
Axis 1 uses differential voltage Channels 0& I
Axis 2 uses cfiflerential voltage Channels 2 & 3

JB Set Joystick Backlash Version B
Attributes

Buffered
Device specific
Saved independently
Saved in sequences

Type set-upSyntax < a > jB n [Units n =* s t e p sRange 0 - 9 9 9 [Default 0 [Response N oneSea also j b , j d , j v , j z

This command allows you to set the Joystick backlash compensation distance in steps. If you change the
direction of the Joystick, a corrective move of non steps will be made In the new direction at the velocity you
specified with the {Joystick Backlash Compensation Velocity (j v) command. This command overcomes the
lag time that exists between changing the Joystick's direction (when backlash is present) and actually
moving in the new direction.

C om m and 1JV2
1 J B 2 5 0

D escrip tion
S e t the maximum backlash velocity to 2 rps
S e t the backlash corrective move to 250 steps

231

JD Set Joystick Dead Band Version B

Attributes
[] Buffered
[j Device specific
[j Saved independently
[j Saved in sequences

Type set-upSyntax < a> JD nUnits n * v o l t sRange o . o o o t o o . s o oDefault o . s o oResponse N oneSee also j b , j d , j v , j z

This command allows you to set the the dead band value (In volts). You should se t the Joystick dead band
value to a voltage that allows for the mechanical hysteresis In the resistive Joystick assembly.

There wtll be no movement between zero point set by the JZ command and this dead band voltage.

C om m and
1JZ
1 J D . 05

D escription
S e t joystick's 0 point
Sot the joystick dead bard 50mV above and below the joystick zero point

JV Set Joystick Backlash Compensation Velocity version b
Attributes
[J Buffered

Device specific
Saved independently
Saved in sequences

[1
[]
[]

Type s e t - u pSyntax < a > jv nUnits n = r p sRange o o . o o o - 9 9 . 0 0 0Default 0Response N oneSee also j b , j o , j z

This command allows you to set the joystick's backlash compensation peak velocity. This is the velocity at
which the motor will travel when It corrects a position error (backlash). You can determine the distance of
any Joystick backlash move with the j b command.

Command
1 JV ?
1 JB 2 S 0

D escrip tion
S e t maximum backlash velocity to 2 ips
S e t Ihe joystick backlash move to 250 steps

JZ Set Joystick to Zero Verslon B
Type set-Op AttributesSyntax < a > j v [] BufferedUnits N one [] Device specificRange N one [j Saved independentlyDefault N one [j Saved in sequencesResponse N oneSee also j b , j d , j v

This command allows you to Initialize the current joystick position as the zero or no movement position.
The position must be set with a differential channel voltage (restricted to 1.25 ±0.25V). If you send the
command while the voltage Is greater than the specified range, the PC23 will generate an error message.
Use the following equations to calculate CCW and CW velocity resolution.

L a s t V e l o c i t y S p e c i f i e d
CCW V e l o c i t y R e s o l u t i o n - Z erQ p o i n t _ Q Q 1

L a s t V e l o c i t y S p e c i f i e d
CW V e l o c i t y R e s o l u t i o n = — _ Z e ro

C om m and Description
1 J Z S e t axis #1 zero velocity point
2 j z S e t axis #2 zero velocity point

232

K Kill Motion Version A
Type M o tio n Attributes
Syntax <a> K [] BufferedUnits N one [j Device specificRange N one [j Saved independentlyDefault N one [J Saved in sequencesResponse N oneSee also S

The Kill (x) command la an emergency stop command and should only be used as such. This command
causes Indexing to ceasc Immediately. There Is no deceleration of the motor. If Kill causes the motor to
slip (I.e.. large loads at high speed), the load could be driven past limit switches and cause damage to the
mechanism and possibly to the operation.

In addition to stopping the motor, the K command will terminate a loop, end a time delay and clear the
command buffer.

C om m and D escrip tion
1 * 5 Sot accaloraaon a i axis *1 to 5 rps2
1V2 S e t velocity » 2 tpe
1MC S ot to Continuous mods
1C Execute the move (Go)

Stop the motor instantly

Loop
P ro g ra m m in g
< a> L n
n = n u m b e r o f l o o p s
0 - i n f i n i c e , o t h e r w i s e : 1
0
N one
C, N , U, Y

- 4 ,2 9 9 ,4 6 7 ,2 9 4

Version A
Attributes
[x] Buffered
[j Device specific
f j Saved independently
[j Saved in sequences

Type Syntax Units Range Default Response
See also
When you combine the Loop (l) command with the End-of-Loop (n) command, all of the commands between
L and N will be repeated the number of times Indicated by n. If you enter the L command without a value
specified for n, or with a 0, subsequent commands will be repeated continuously.

The End-of-Loop command prompts the indexer to proceed with further commands after the designated
number of loops have been executed. The Stop Loop (v) command Indicates where execution will stop. The
Immediate Pause (c) command allows you to temporarily halt loop execution. You can use the Continue (c)
command to resume loop execution. Nested loops are allowed up to 8 levels deep.

C om m and
LS
A5
V 10 D10000 S N

Description
Loop 5 times on axis #1.
S e t acceleration to 5 rps
S e tv e to d ty ta 10 rps
S e t dstance to 10,000 steps
Execute the m ove (Go)
SpedSe tie above 10,000-step move to be repealed five times

Version FLA Limit Acceleration
TypeSyntaxUnitsRangeDefaultResponseSee also

S e t - U p
< a> L A n

Attributes
[x] Buffered
[j Device specific
[j Saved independently
[j Saved in sequences

n - r p a ‘
.0 1 - 9 9 9 .9 9
9 9 9 .9 9
N one
A, LD

The Limit Acceleration (la) command allows you to define the deceleration rate that should be used when
an end-of-travel limit Is encountered. This command Is useful If you do not want an abrupt stop upon
encountering a limit However, you should be careful to specify a deceleration rate that will stop the load
before it can do any damage. Normally, limit switches are placed so that the motor has room to safely
decelerate the load.
C om m andLA50 Description

The motor on axis #1 decelerates at 50 rps2 when it encounter* an end-of-travel limit.

233

Version A
Attributes[x] Buffered
(j Device specific
[j Saved Independently [j Saved in sequences

The Limit Disable (u>) command allows you t o enable/disable the end-of-travel limit switch protection. The
Log condition does not allow the motor to turn without properly Installing the limit Inputs, If you want
motion without wiring the limits, y o u must Issue the LD3 command.

Enable CCW and CW limits
Disable CW limits
Disable CCW limits Disable CCW and CW limits

LD Limit Disable
Type S e t- O pSyntax <a>LD n
Units n » e n a b l e / d i s a b l eRange 0 - 3Default 3Response N oneSee also RA

- o
- 1
- 2
- 3 (D e f a u l t)

If you wire the lim it sw itches, these sw itches will be ignored u n less you enable the limit switch inputs using
the l d 0 com m and.
C om m and
1LD0
1LD3

Description
Enables CW and CCW limits on axis #1.
A Jows you to m ake any move, reg ard ess at the limit input state.

Version A
Attributes
[xj Buffered [j Device specific
[j Saved independently
[j Saved in sequences

MA Set Mode Alternate
Type M o tio nSyntax <a>MAnUnits NoneRange NoneDefault NoneResponse NoneSea also a , d , v, g , m c, m n, s s d

The Mode Alternate (ma) command, like the Mode Normal (mn) and the Mode Continuous (mc) commands,
effects the way moves are preformed. In Mode Alternate (ma), a move Is made to a position that you define
with the Distance (d) command. When the motor reaches the specified distance it reverses direction and
returns to the starting position. This cycle will continue until you Issue a Stop (s) or Kill (k) command.

The way the motor stops when a Stop (s) command Is issued can be s e t by using the s s d command. The
default is so Immediately stop.

C om m and
MA
A5
V I
01000
G

Description
S a t to Alternate mode
S e t acceleration to 5 rps2
S o l velocity to 1 ips
S et dslanco to 1,000 stops
Execute the move (Go)

The motor makes a positive move 1.000 units In the CW direction. It then reverses direction and moves
1,000 steps In the CCW direction. This motion continues until you Issue a Stop (s) or Kill (k) command.

Set Mode Continuous
M o tio n
<a>MCn
N one
N one
N one
N one
A, G , H, MA, MN, T , TR, V

MC
TypoSyntax Units Range Default Response See also
The Mode Continuous (mc) command causes subsequent moves to Ignore any distance parameter and move
continuously. You can clear the MC command with the Move Normal (mm) or the Mode Alternate (ma)
command.

Version A
Attributes
[x] Buffered [j Device specific
[j Saved independently
[j Saved in sequences

234

The Indexer uses the Acceleration [x> and Velocity (v) commands to reach continuous velocity. The
direction of the move should be specified with the H+ or H- command. Using the Time Delay (x). Trigger
(t r) , and Velocity (v) commands, you can achieve basic velocity profiling.

C om m and D escrip tion
hc S a t toC oninuou i mods
* 5 S e t acceleration to 5 ip62
VS S o lv o to d ty to 5 rp s
t 2 Move a t 5 ro s ie r 2 seconds
V0 C hange votodty to 0.00 fpa
B+ S a t m ove to CW
a Execute the move (Go)

The motor turns CW at 5 rps until it Is halted by the Stop (s) command, Kill (k) command, a limit switch, or
by a new velocity specification (vg followed by a o command).

M N Set Mode Normal Verslon A
Type M o tio n AttributesSyntax <a>MH M BufferedUnits N one [] Device specificRange N ona t j Saved independentlyDefault N one [j Saved in sequencesResponse N oneSee also a , d , v , g , m c. m p i , mpa

The Mode Normal (k n | command sets the system to mode normal. In Mode Normal, the motor moves the
distance specified with the distance (d) command. To define the complete move profile, you must define
Acceleration (A). Velocity (v), and Distance (D), The mn command is used to change the mode of operation
from Mode Continuous (mc) or Mode Alternating (ma| to the preset mode.

C om m and D escrip tion
2mn S et to Normal mods on axis #2
2AS s e t aoceleraSco to 5 rps*
2V5 S o t velocity o 5 rps
2 D 1000 S et tfctenca to 1.000 steps
2G Execute ihe move (Go)

MPA Set Position Absolute Mode Varslon A
Type set-up AttributesSyntax <Ma>MPA [x] BufferedUnits N one (] Device specific
Range N one [j Saved independentlyDefault None [j Saved in sequencesResponse N oneSee also d , f s a , m c , mn. m p i

This command sets the positioning mode to absolute. In this mode all move distances are referenced to
absolute zero. Note that in Mode Absolute (m p a or rsAl). giving tw o consecutive go (c) commands will
cause the motor to move once, since the motor will have achieved I t s desired absolute position at the end of
the f i r s t m o v e .

Mode Position Absolute (m p a) I s most useful In applications that require moves to specific locations.

You can set the absolute counter to zero by cycling power or issuing a Position Zero (pz) command.

C om m and D escrip tion
MN S e t to Normal m ode
MPA S a t to Absolute Position mcda
A5 S et acceleration to 5 rps2
PZ S et absolute counter to zero
v i a
02500(9

S e t velocity to 10 rps
Sot dstance to 25,000 stops

a Move m o w to absolute position 25,000
D 12500 S et absolute position to +12,500 steps
s Move motor to absolute position +12.500 steps

235

MPI
Typ*Syntax Units Ranga Default Response See also

Set Position Incremental Mode V9r3lon A
Attributes
[xj Buffered
[] Device specific [j Saved independently
[) Saved in sequences

S e t- D p
< a> M P I
N ona
N one
N one
N one

 ____ D, FSA, MN, MPA

This command sets the positioning mode to Incremental. In Incremental mode, all move distances
specified with the Distance (d) command are referenced to the current position. Position Incremental mode
(mpi or 7SA0) Is useful In applications that require repetitive movements, such as feed-to-length
applications.
C om m and
1MN
1MPI
1 A 5

1V10ID10000
1CIS

D escrip tion
S e t to Normal mode
S e t to Portioning Incremental mode
S e t acceleration to 5 rps2
So t votodt/ to 10 rpe
S e t d s tance of move to 10,000 stops
Move 10,000 s tep s CW
Move another 10.000 steps CW

MR Select Motor Resolution Version A

Attributes
[x] Buffered [J Device specific
[] Saved independently
[j Saved in sequences

Type set-upSyntax <a>MRnUnits n * r e s o l u t i o n c o d e sRange o - 46
Default 10Response NoneSee also a , v , e r

The Motor Resolution (MR) command sets the number o f steps per revolution according to the numeric suffix
n (see table below). This command allows the Indexer to control drives of different resolutions while
maintaining the commanded acceleration and velocity.

M otor
R eso lu tion

SCO403
acotooo
too
3200
5000
640010000
21600
25000
25400
36000
50000
50800
4096
13500
25600
125C0
163S4
20000
25000
50000
10X00

V olodty Max (rp»)
160
80
78
100m
78
500
78
93
23
20

195
138

10
9.8
122
39
19.5
■40
30
25
80
40 33

P uU e W. PC23 M otor Velocity Max P ulse W. PC23
(psec) com m and R eso lu tion (rp») (^sec) com m and

IS MR0 101 soo 19 .25 MR24
15 MR1 63488 15 .50 MR25
75 HR! 75800 13 .50 MR2 6
4 HRS 81920 3» 25 MR27
4 MR 4 102400 19 .25 MR 2 a
2 HRS 126978 15 .25 MR29
1 HRS 128000 15 .25 MR3Q
1 KR7 153000 13 .25 MR31
1 HRS 163840 12 .25 MR32
1 HR 9 204800 9.7 .25 MR33
1 KR10 253962 7.8 25 MR 3 4
1 KR11 256003 7B 25 MR35
1 KR12 307200 1.6 1 MR 3 6
1 KR13 327630 ao .50 MR37
1 HR 14 4CG600 24 .50 MR33
1 HR15 507904 1.9 .50 MR39
t KRIS 521000 1.9 .50 MR40
1 KR11 614403 1.6 .50 MR41
1 KR18 6SS360 ao 25 MR 4 2
1 X3U9 819200 24 25 MR43
1 HR20 1024000 1.9 25 MR 4 4

Z HR21 2000 50 4 MR45
.25 MR22 4000 12S 1 MR46
2S MR23

The motor resolution you select does not determine the resolution of the motor. The motor/drive
determines the resolution of the system. You use the MR command to m atch the motor/drive to your system,
so tha t you can program your acceleration (A), and Velocity (v) tn revolutions.
C om m andXXHR1
A5
via
D800a

D escrip tion
S ot to Normal m ode
Sot motor resolution to 400 steps/rov
S ot acceleration lo 5 rps2
S e t velodty to 10 rpe
Sot cfettnea of mcuo to 800 stops
Execute the move (Go)

236

A 400 step per revolution motor/drive will tu rn 800 steps (two revs) CW a t an acceleration of 10 rps^ and a
velocity of 10 rps after the a command.
[f this command set Is sent to a motor/drive with a resolution of 4.000, the motor will still turn 800 steps
(1/5 of a rev). However, the actual acceleration would only be 0.5 rps2 and the actual velocity would only be
1 rps. Indexer resolution and motor/drtve resolution must match to get the commanded velocity and
acceleration. This command does NOT affect dlatance.

Identify Clock Source for Timed Data
Streaming Mode

Version A

S e t-U p
<a>KSLnin2n3
V a lu e f o r e a c h
0 , 1 , 2 , 3 , o r x
None
None
MSS, TD, SD, 0 0 , 0 2 ,

Attributes [1 Buffered
[] Device specific
[] Saved Independently
[j Saved in sequences

Q3

MSL
Type Syntax Units Range Default
Response See also
The Identify Clock Source for Timed Data Streaming Mode (MSI) command sets the Source/Receiver
relationship for clock source for each axis In the timed data streaming mode. The following table defines
the relationship for each axis. Any axis not In timed data streaming mode can still receive and execute
other motion commands.

M ods
Axis #1 is a slave and u ses t ie external rnidk
Ax's #1 Is a m aster and uses its intana) tm dk
Ax's *1 is a slave and u se s axis tm dk
Ax's H1 is a stave and u se s axis *3's tm dk
The X axis is not in the timed data streaming m ode and no master/slave sped licaion is necessary
Axis *2 is a slave and uses t ie external rmdk
Axis *2 is a slave and u ses axis #1's rmdk
Axis *2 is a m aster and uses its internal rm dk
Axis #2 i s a slave and u se s axis *3*3 rmdk
Axis #2 is no* in the timed data steam ing m ode and no master/slave specification is necessary
Axis *3 is a slave and u ses t i e external rmdk
Axis *3 is a slave and u se s axis I t ' s tm dk
Axis *3 is a slave and u se s its internal rmdk
Ax's *3 is a m aster and u se s axis *3 s tm dk
Axis *3 is not in the timed data steam ing m ode and no master&lave spetification is necessary

D escrip tion
Axes *1 and #2 am in Timed Data S team ing mode. Both a re m asters. Axis #3 is independent.
Axis #1 is In Timed Data Streaming modeAxis #1 is a slave to the external RMCLK.

n Value

"1 0

n1 1

"t 2

"1 3

"1 X

°2 0

"2 1

"2 2

"2 3

"2 X

>X3 0

>>3 1

"3 2

°3 3

03 X

C om m and
MSL12X
MSL0XX

MSS
Type Syntax Units Range Default Rasponsa Sea also
The Start Master Clock (mss) command will cause the clocks on any master axes to start (Initiate Motion).
If Profiling (so) commands arc stored In the buffer, entering the m s s command causes execution of these
moves. Subsequent Streaming Data (s d) commands will be executed sequenUally In a buffered manner.
Care must be taken to not overflow these buffers, ff the buffer Is empty, no motion will result during the
particular update interval.

Start Master Clock for Timed Data Streaming
Mode
P ro g ra m m in g
<a>M SS
None
None
None
N one
MSL, TD, SD , Q 0, Q 2, Q3

Version A

Attributes
[] Buffered
(j Device specific
[j Saved independently
(j Saved In sequences

C om m and
102
1TD0S
MSL1XX
S D 9 0 2 8
SD8045
SD8045
SD8028
SD801D
MSS

D escrip tion
S e t axis #1 to Time Distance mods
S et update interval to 6 n s
S e t axis #1 8s a Master, using its internal rate multipier dock. Axis #2 and #3 are not in the lime distance mode.
S et distance to be moved dum g ina f is t update interval
S e t defence to be moved during tie next update interval
S e t distance to be m w e d during tie next update interval
Sot distance to bo moved during tie next update interval.
S et d e s n o e to bo mewed during tie next update intwvsi.
S tart M aster Clock

237

MV
Typo Syntax Unit* Rang® Default Response Sea also

SmShIIwSSSSIAEIKSSEĤ
Version A
Attributes
[x] Buffered
[j Device specific
[j Saved independently [j Saved in sequences

Set Maximum Correction Velocity
S e t - O p
<a>KV n
n “ r p a
0 . 0 1 - 2 0 . 0 0
0 . 2
N one
CG, CM, ER, FS

thisIf the motor Is running with the encoder feedback (fsbi), and position maintenance Is turned on f s c i
command will specify the maximum velocity for correction moves.

The correction move Is performed after the preset move is finished, and only when the motor Is positioned
outside the dead band.

C om m and D escrip tion
MM Set to Normal mode
Mv2 Sot the maximum correction velocity to 2 rps
f s b i S e t motion 'n encoder mode
Fsci Set position maintenance on

N End of Loop
TypoSyntax
Units
RangeDefault
ResponseSea also

P ro g ra m m in g
<a>N
N one
N one
None
N one
C, L , P S , Y

Version A
Attributes
[x] Buffered [j Device specific
[j Saved independently
[j Saved in sequences

This command marks the end of loop. Use this command In conjunction with the Loop (l) com m and. All
buffered commands that you enter between the L and n commands are executed as many times as the
number that you enter following the t command. You may nest loops 8 levels deep.

Command
PS
MN
AS
VS
D10000
LSa

Description
P ause the execution of buffered commands
S e t to Normal m ode
S e t acceleration to 5 rps2
Sot velocity to 5 rps
S e t m o /a distance to 10,000 stops
Loop #10 loHowing ccm m ands (wo times
Execute the m ove (Go)
End the loop
Clear pause and executes a l the buffered commands

Output
TypoSyntax
UnitsRange
DefaultRosponssSeo also

P ro g ra m m in g
< a> O n n n n n n
n = o u t p u t
0 * o f f , 1 =* o n , x =* d o n ' t c h a n g e

N one
N one
IO , FSE

Version A
Attributes
[x] Buffered
[j Device specific
[j Saved independently
| j Saved in sequences

The Output (o) command turns the programmable output bits (POBs) on and off. This Is used for signaling
remote controllers, turning on LEDs, or sounding whistles. The output can Indicate that the motor Is In
position, about to begin Its move, or Is at constant velocity, etc. POB #1 Is controlled by the first position
after the O, POB #2 Is controlled by the second position, etc.

Command
A5
VS
□20000
O01XXXXG
O00XXXX

Description
S et acceleration to 5 rps2
S e t velocity to 5 rps
S o t m w e detanco to 20.000 steps
S o t praspammable output lo fl and output 2 on (output 3 through 6 are the same)
Execute the move (Go)
A Her she movo ends, lum ott output 2

238

^?^?^^«^nrTi^rT^!^T7TT̂TXT̂rTTT!r- 7̂~TrT

0 , D Output on the Fly Version
Type P ro g ra m m a b le AttributesSyntax <a>0p,0n I s e e b e lo w) [x] BufferedUnits s e e b e lo w [j Device specificRange s e e b e lo w [j Saved independentlyDefault. None [J Saved in sequencesResponse NoneSee also 0, D

Syntax: <»aci»>Opppppp, Daaannn Where p ■ b it p a tte rn an d n 3 d istance
Units: p = O (ofl), 1 = (on), or X (don't change) for each of the programmable output bits, n = steps
Range: <a> =■ axis 1, 2, or 3.

p - an y com bination of 0 's , I 's . o r x 's for a to ta l of S bits.
The O.D command allows the user to program a specified bit pattern to appear on the outputs, at a
specified distance.
C om m and D *tcrip tion
A5 Sot acceleration to 5 rps*
vs Satvetocsly to 5 rps
0 2 5 0 0 0 S e t d s la rco 10 25.000 siop6
0 1 0 1 0 1 0 Output tho paasm loioio
0XXXXX1 r D1500 0 C hangs tie output USB cat at 15,000steps
o ExecuB the mem (Go)
o ixx x x x Change the MSB to a 1 when the mow s oomptote
The pattern 1 0 1 0 1 0 wtU appear and remain on the outputs, prior to the move. When 15.000 steps have
been generated the output pattern will change to 101011. When the move Is complete, the pattern will
change to ooioil.

Report Function Set-Ups
S t a t u s
aO R
N one
N one
N one
a r n n n n n n n n (a = a x i s n u m b e r , n = 0 , 1)
OS

O R
T y p e
S y n t a x
Units Range Default Response See also
This command results In a report of which software switches have been set by the os command. The reply
is eight digits. This command reports o s a through o s f setup status In binary format

Version A
Attributes
(x) Buffered [j Device specific
(j Saved independently
[j Saved in sequences

n n n n n n a n

Invert encoder direction (c s l) -
Backup to hom e (csa)-

C hange polarity of home switch (0SC) ■
C hange Z channel polarity (OSD)-

Enable stall d e tec t (0 3 1) -
Establish max. joystick velocity (o s r) -

S e t final Go Home direction (Obq) -
S elect final hom e position edga (o s a) •

The digits (n) correspond to OS* through osh commands (left to right). One (1) means an os function is on.

OSA: E n c o d e r D ire c tio n = N o rm al (0), = In v e rted (1).
0S3; B ac k u p to H o m e M D isab le d (0), a E n a b le d (1).
O sc : A ctive S ta te o f H o m e In p u t * H f g h (0) , » L o w (l) .
0S0: A ctive S ta te o f Z C h a n n e l » H ig h (0), ■ L o w (l) ,
CSK: E n a b le S ta l l D e te c t * D isab le d (0) , " E n a b le d (1).
o s ? : S e t M ax. J o y s t ic k V eloc ity = U se m ax . velocity [0). * U se l a s t sp ec ified velocity (1).
OSG: F in a l G o H om e D ire c tio n » CW (0). « CCW (1).
OSB: S e le c t F in a l H o m e P o s itio n E d g e = CW (0). = CCW (1).
C om m and D escription
i o s a i Inverts the encoder direction for axis#!.
1 0R Response is 1 :1 0 0 0 0 0 0 0

239

OSA Set Encoder Direction Version A
Type S e t- D p AttributesSyntax < a> O S A n [x] BufferedUnits N one [j Device specificRange 0 o r 1 [j Saved independentlyDefault 0 [j Saved in sequences
Response N oneSee also F SB , OR

Entering o s a i Inverts the up/down count direction o f the encoder. It causes the motor to expect encoder
pulses back In the opposite direction of the motor pulses being sent out This Is useful If the encoder Is on
the load and Is turning In the opposite direction of the motor due to the mechanical configuration of the
system. A typical symptom of the encoder counting In the opposite direction is. if the motor drifts at a low
velocity In encoder mode (f s b i) .

Entering O S A 0 will change the up/down count of the encoder back to normal If It has been Inverted with the
o s a i command.

C o m m an d
1 0 S A 1
F S B I

Description
Invert Ihe encoder d rec jkn for axis #1.
Enable encoder mode

O S B Backup to Home Switch Version A

Attributes
[xl Buffered [j Device specific
[j Saved independently
[j Saved in sequences

Type s e t - u pSyntax < a > o s B nUnits MoneRange 0, l

Default 1Response N oneSea also f s , g h , o r

OSE0 = Do not back up to home switch
o s b i = Back up to home switch

If this function is disabled (O SB0) . the PC23 will consider the motor at Home If the home input is active at
the end of deceleration after encountering the active edge of Home region. If this function is enabled
(o s b i) , the PC23 will decelerate the motor to a stop after encountering the active edge of the Home region,
and then move the motor In the opposite direction of the initial Go Home move at .1 rev/sec until the active
edge of the Home region is encountered. The PC23 will then consider the motor at Home. This will occur
regardless of whether or not the home Input is active at the end of the deceleration of the initial Go Home
move.

osc Define Active State of Home Switch Version A
Type S e t - U p Attributes
Syntax < a> O S C n [x] BufferedUnits n - a c t i v e s t a t e , h i g h / l o w [J Device specificRange 0 o r 1 j j Saved independentlyDefault 0 [] Saved in sequencesResponse N one

See also GH, OSD, OR

osoa = Active state of home Input Is high
osci = Active state of home Input is low

This command Inverts the active state of the home Input It enables you to use either a normally closed or
a normally open switch for homing, o s c b requires that a normally closed switch be connected to the home
limit Input

osci requires that a normally open switch be connected to the home limit Input.

Com m and Description
o s c i S e t the active state of the home Input t low

240

OSD Define Active State of Z Channel
Typa s a t - O pSyntax <a>osonUnits n - a c t i v e s t a t e h i g h / l o wRang* 0 o r IDefault oResponse N oneSee also g h , o s c , o r

Version A
Attributes
[xj Buffered
[j Device specific [] Saved Independently
() Saved In sequences

OSD0
OSDl

Active state of Z Channel ts high
Active state of Z Channel Is low

This command Inverts the active state of the encoder Z channel input osca requires that the Z Channel
Input be an active high input OSDl requires that the encoder Z Channel Input be an active low.

The Z channel Input can be used for encoder based homing (gh) only. In encoder mode, you must have the
home switch and the Z channel active at the same time to successfully home the motor.

C om m and
OSDl

D escrip tion
S et the active state of the encoder 2 Channel to low

OSE Enable Stall Detect Version A

Type S e t- U p Attributes
Syntax <A>OSEn [x] Buffered
Units n = e n a b l e / d i s a b l e (] Oevics specificRange 0 o r 1 [] Saved independently
Default 0 [j Saved in sequencesResponse N one
See also FSB 1, F S C 1 , FSD , FDE, OR OSH

O SE0 = Stall detect disabled
o s e i = Stall detect enabled
When enabled (o e s i) , a stall Is detected If the Indexer receives no encoder pulses after moving the motor
l/50th of a rev (corresponds to 1 mechanical pole of a 50-pole motor). Thus, when the Indexer and
motor/drive system resolution Is 25,000 steps/rev, 500 steps (25.000 ♦ 50) are output before a stall Is
detected.

To stop motor on a stall (f s d i) , or to turn on output on stall (f s e i) , enable stall detection (o s e i) .

C om m and D escrip tion
OSE0 Disable Stall Detection

O S F Establish Maximum Joystick Velocity Varslon A
Typo s e t - u pSyntax <a>osrnUnits H oneRang* o o r lDefault lResponse noneSee also o r , v

O S T 0 m Use the maximum system velocity as the Joystick maximum velocity
osrl = Use the previously defined velocity (v) as the Joystick maximum velocity

Attributes
[x] Buffered
[j Device specific
j J Saved independently [j Saved in sequences

' ' ■ :7T̂.. :: ■ •.....*. ■ . ! ...

OSG Set Final Go Home Direction
Type s e t - u pSyntax <a>osenUnits N oneRange o, lDefault lResponse N oneSee also g h , o r , o s b , o s c
OSG0 - Sets the final portion of the go home move sequence to CW
ossl = Seta the final portion of the go home move sequence to CCW

Version A
Attributes
[x] Buffered
j j Device specific
[j Saved independently
[j Saved in sequences

241

OSH Reference Edge of Hom e Switch
TypeSyntaxUnitsRang#DefaultResponseSee also

S e t - U p
<a>OD H n
N one
0, 1
1
N one
OR, OSG

Version A
Attributes

Buffered
Device specific
Saved Independently
Saved in sequences

OSH0 * Selects the CW side of the Home signal as the edge on which the final approach will stop
o s h i = Selects the CCW skie of the home signal as the edge on which the final approach will stop

The CW edge of the Horae switch Is defined as the first switch transition seen by the Indexer when traveling
off of the CW limit In the CCW direction. If n = 1, the CCW edge of the Home switch will be referenced as
the Home position. The CCW edge of the Home switch Is defined as the first switch transition seen by the
indexer when traveling off of the CCW limit In the CW direction.

Report Incremental Position
S t a t u s
aP
N one
N one
N one
a :± n r \n n n n n n (n = 0 - 9)
PB , PR , PX, PXB, W l, W3

Version A

Attributes
[x] Buffered
[] Device specific
[j Saved independently
[j Saved in sequences

Type Syntax Units Range Default Response See also
Reports Incremental distance traveled during the last move In dcclmai format. The command reports
positions in an 8 -digit number preceded by sign (+/-), and followed by a carriage return. The range for the
position report Is 0 - ±99.999.999. If the Indexer Is In the encoder mode, the report Is In encodcr steps. If
the indexer is in motor mode, the report Is In motor steps.

C o m m an d D s s u tp t to n
KN S e t to Normal m ode
FSB 0 S ot to Motor S top m ods
A 10 S at decoloration to 10 (ps^
VS S ot velocity to 5 rpe
D 2 5 0 0 0 S e t move distance to £5.000 slaps
3 Execute tho m ove (Go)
I P R equest Position

R esp o n se - 1 :+mse2 S0 0 0

PB Report Incremental Position (Binary)
Typo S t a t u sSyntax aPBUnits N oneRange N one
Default N oneResponse n n n n nSee also h i , H 3 , p , p r , f x , p x b

This command reports back the encoder's (In fsbi mode) or the motor's (In rsaa mode) Incremental
position In binary mode. The binary response corresponds to a decimal range of 0 - ±2.147.483.647. The
response format is five bytes (nin2 *13 04113). The first byte (nj.) is the axis number (Axis 1 - 3). The next four
bytes (112113114115) are the most significant bit to the least significant bit In 2's compliment notation. These
four bytes give the 32-bit encoder position.

Convening 2's Compliment to Decim al
If the most significant byte is In the range 0 0 - it, the result Is positive. If the most significant byte Is In
the range 80 - IT, the result is negative.

For positive results, use the following conversion procedure:

© Convert each byte (ASCII character) to decimal.
@ Multiply each decimal number by the following:

a2 x 16,777.216
113 X 65,536

Version A

Attributes
[x] Buffered
[j Device specific
[j Saved independently
[j Saved in sequences

242

n< X 256
as X 1

(3 Add together the products of step 2.
Response from the 1FB command Is as follows:

o r a

© 02 = 00 hex * 00 decimal
nj = 00 hex = 00 decimal
n4 ■ 61 hex - 97 decimal
ng » AS hex ■ 168 decimal

® n2 (00) x 16,777.2X6 - 0
n3 (00) X 65.536 = 0
n« (97) X 256 » 24,832
n5 (168) x 1 - 168

® 0 + 0 + 24,832 + 168 « 25,000. Thus, the last move was 25,000 steps In the CW direction.

Binary Approach

© Convert the hexadecimal response to binary form.
@ Complement the binary number.
0 Add 1 to the binary number,
® Convert the binary result to a decimal value.
The response from the 1PB command Is 01EFFE2710. 01 Is the axis number and EFFE2710 is the negative
Incremental position report.

1 2 3 4
E = 1110 1110 = 0301 0 0 0 1 = 0 0 0 1 0001 = 1
F = 1111 1 1 1 1 -0 0 0 0 0 0 0 0 = 0 0 0 0 0 0 0 0 = 0
F = 1111 1 1 1 1 = 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 - 0
E = 1110 1110 . 0001 0 0 0 1 - 0 0 0 1 0 0 0 1 .1
2 = 0 0 1 0 0 0 1 0 -1 1 0 1 11 01-1101 1101 = D
7 = 0111 0111 = 1000 1 0 0 0 - 1 0 0 0 1000 . 8
1 = 0 0 0 1 e001 = 1110 1110-1111 1110 = F

0 = 0 0 0 0 0 0 0 0 .1 1 1 1 1 1 1 1 -0 0 0 0 11 11=0

1001D8F0 hex =■ 268.556,528 decimal. The last move was 268.556,528 steps In the CCW direction.

Computer Approach

© Convert the hexadecimal number to a decimal number.
@ Subtract 168 (= 232 - 4,294,967,296) from the decimal number derived from step 1.

The response from the ip b com m and Is 01EFFE2710. 01 Is the axis n u m b er and EFFE2710 Is the negative
Incremental position re p o r t

© EFFE2710 hex => 4,026,410,768 decim al
@ 4.026.410,768 - 4,294,967.296 - 268,556,528

The last move was 268,556,528 steps In the CCW direction.

243

Version A
Attributes
[x] Buffered [j Device specific [j Saved indapendantly [j Saved In sequences

P R Report Absolute Position
Typ. S t a t u sSyntax aP RUnits N oneRange N oneDefault N oneResponsa a : ± n n n n n n n n tn - 0 - 9)

Sea a l s o d , mn, m pa , m p i, p , p s , b z . w

This la an absolute position counter. It reports motor position with respect to power-up position. The
absolute position counter can track up to ± 99,999,999 steps. If the counter la overrun In the relative
position mode, the absolute position will be Invalid.

If in the encoder mode, position will be reported In encoder steps. If you are In motor mode, position will
be reported In motor steps. In preset mode, response to this command will be reported after the move Is
done. In continuous mode, the response to this command will be reported after the motor reaches constant
velocity.

The Position Report (PR) command responds with the cumulative position of the motor with respect to the
zero position. The zero position can be defined by the position of the motor after a Position Zero Ipz)
command Is Issued or by the successful completion of a Co Home (oh) command.

This command can only respond when the motor Is not being commanded to move. Should you need
relative positional Information when the motor Is moving, see the Report Position Relative to Start of
Current Move (n) command.

C om m and D escription
PZ S et current position id absolute zero
WN S e tto Normarf mode
FSB0 S et to Motof S tep mode
A10 S et acceleration to to rps2
V5 S et velocity to 5 rps
0 2 5 0 0 0 S et nxwe distance to 25,000 steps
G Execute the move (Go)
G Execute the move (Go)
1PR Roquest Position

R esponse ■ 1 : +00050000

The motor on axis #1 will move 50,000 motor steps, then the indexer will report the distance moved since
the last PZ command.

PS Pause
P ro g ra m m in g

< a > P S

None
N one

None

None

C, 0

Version A
A t t r i b u t e s
[x] Buffered
[] Device specific
[J Saved independently [j Saved in sequences

Type Syntax Units Range Default Responsa Sea also
This command pauses execution of a command string or sequence following the Pause (ps) command until
the Indexer receives a Continue (c) command. This command Is useful if you need to enter a complete
string of commands before you can execute your other commands.

This command is useful for Interactive tests and In synchronizing multiple Indexes that have long command
strings.

C om m and
ps
A.5
VS
D 250 0 0a 12 e
c

D escription
P ause execution of Mowing commands un8 axis # 1 receives the Continue (C) command
S et aooeteration to 5 rp62
S e t velocity to 5 rps
S et rncvs distance to 25,000 steps
Execute the move (Go)
Deiay the move to r2 seo
ExsqjU tfw move (Go)
Continue Exocutbn

When axis #1 receives the c command, the motor moves 25,000 steps twice with a two second delay
between moves.

244

PX Report Encoder Absolute Position (ASCII) version a

Type S t a t u s AttributesSyntax a P X [x] BufferedUnit* N one (j Devica specificRange N one [j Saved independentlyDefault N one [j Saved in sequencesResponse a : ± n n n n n n n n (n - 0 - 9)See also h i , « 3 , p , p b , p r , p x a

This command reports encoder position with respect to power-up position. The absolute position counter
can track up to ±99.999.999 encoder steps. If the counter Is overrun In the relative position mode, the
absolute position will be Invalid.

Whether In encoder step or motor step mode position will be reported In encoder steps. In preset mode,
response to this command will be reported after the move Is done. In continuous mode, the response to
this command will be reported after the motor reaches constant velocity.

The Position Report (px) command responds with the cumulative position of the encoder with respect to the
zero position. The zero position can be defined by the position of the encoder after a Position Zero (pz)
command Is Issued or by the successful completion of a Go Home (ch) command.

Thl3 command can only respond when the motor Is not being commanded to move. Should you need
relative positional Information when the motor Is moving, see the Report Position Relative to Start of
Current Move (w) command or the absolute encoder position binary (p x b Jcommand below.

C om m and D escrip tion
MN S a t to Normal mods
* 1 0 S e t acceleration to lOrpŝ
VS S e t velocity U S rps
0 4 0 0 0 S o t m o /e distance to 4,000 encoder steps
a Execute the move (Go)
IPX R equest position of axis 1

H esp o n se = 1 : +CW0<£500

Axis 1# moves move 4,000 encoder steps, then the indexer reports the distance that axis #1 Just moved.

Report Encoder Absolute Position (Binary) version 83
S t a t u s
aP X B
N one

N one

N one

n n n n n

H I , W3, P B , PR, PX

Attributes
[x] Buffered
[] Device specific
[j Saved independently
[j Saved in sequences

PXB
Type Syntax Units Range Default Response See also
This command reports back the encoder absolute position In binary mode. The binary response
corresponds to a decimal range of 0 ■ ±2,147,483,647. The response format Is five bytes (nin^n^s). The
first byte (nj) Is the axis number tAxIs 1 - 3). The next four bytes (n2n3B4n5) are the most significant bit to
the least significant bit In 2's compliment notation. These four bytes give the 32-blt encoder position.
Refer to the p b command for procedures and examples of how to convert the binary position report.

PZ Set Zero Position
TypeSyntaxUnitsRangeDefaultResponseSee also

S t a t u s

< a > P Z

N one

N one
N one

N one

D, MN,

Version A
Attributes
K Buffered

Device specific
Saved independently
Saved in sequences

M P I, MPA, PR, GH

This command sets the absolute position counter to zero. When your Indexer powers up, the absolute
counter sets to zero. After moving the motor, the pz command Is used to reset the absolute counter to zero.

In Absolute Mode (m pa), all the moves will be made with respect to the absolute counter. When you execute
tills command, the Position Report (PR), Pause (p), and Report Absolute Encoder Position (px) commands
will report the zero position.

245

C om m and
PZ
MPA.X5
V5
D2500G
IP R

PZ
IP R

D escrip tion
S e t 9>e absolute counter to zero
S et to P reeet m ode with naspoct to Absolute zero position
So t aocoteraSon to 5 rps2
S e t votodty to 5 rps
Sot move d b lance to 2.500 stop*
Execute t i e move (Go)
Report Absolute Position
R esp o n se » 1 : +0002300*3
Set Die absd u te counter to zero
Report absolute position
R esponse > 1 : + 0 0 0 0 0 0 0 0

Q Complete Current Command an d C lear Buffer Version A

Type P r o g r a m m in g Attributes
Syntax <a> Q [1 B u ffe re d
Units NOne j j D e v ic e sp e c if ic
Range H one [j Saved i n d e p e n d e n t
Default N one [j S a v e d in s e q u e n c e s
Response N oneSee also K, S

The q command completes the current command being executed and clears the remainder of the command
buffer on the specified axis.

This command is useful if you do not wish to Interrupt the current move, or any other command being
executed.

The Kill (k] command will stop any command being executed and clears the remainder of the commands In
the buffer on the specific axis.

C om m and Description
Q Com pletes current com m and an d cteare com m and buffer

Q0 E xit S tre a m in g M o d e V e r s i o n A

Type S e t - U p Attributes
Syntax < a> Q 0 [] Buffered
Units N one [] Device specific
Range N one [j Saved independently
Default N one [j S a v e d in s e q u e n c e sResponse N oneSee also Q l , 0 2 , Q 3, RM

The Q0 command Is an exit command for all streaming modes. The motor will stop when Q0 Is issued.

Refer to Q1 and Q2 examples.

Q 1 Enter Immediate Velocity Streaming Mode Version A

Type S e t - U p Attributes
Syntax < a > Q l [] Buffered
Units N one [j Device specific
Range N one [j Saved independently
Default N one [j Saved In s e q u e n c e s
Response N one
See also 0 0 , RM

The Q1 command enters the Immediate velocity streaming mode. The command buffer Is cleared and any motion is killed o n the specified a x is . Subsequent RM commands will cause an immediate change In motor
velocity. Use 0 0 to exit this mode.

C om m and
Q1
RM0011
HM0055Rjwiaa
RM00S5
RH0011

Description
Entef velocity Profiing m ode
G o to rm velocity of (11 hex) rm rps
G otoR K V otod lyo[j5S hex) UK rpe
Go to r h velocity of (100 he*) RKrpe
G o to SH velocity of (5S hex) RH rps
G o tom e velocity o< (11 hex) FH rps
Gxit Velocity Profiling m ode

Motor movement will stop when the 00 command Is entered. See RM command for more details.

246

Q 2 Enter Time-Distance Streaming Mode vision a
Typa se t-o p AttributesSyntax <a>oi [] BufferedUnits N one [j Device specificRange N one [j Saved independentlyDefault N one [j Saved in sequencesResponse N oneSea also <20, msl, mss, to, sd

The Enter Tlme-Dlstance Streaming mode (Q2) command caus«3 the Indexer to enter the Tlme-Dlstance
Streaming mode for the specified axis. The Tlme-Dlstance Streaming mode will Interpret values entered
with the sd command as the number of motor steps to be output In the update Interval specified by the id
command. The command bujjers are cleared and motion ts killed on the specified axis when the Q2 command Is Issued.
This mode Is useful In applications that require multi-axis contouring, synchronization, or custom move
profiles.

Refer to Chapter 4, Application Design, for a detailed discussion of the Tlme-Dlstance Streaming mode.

Q 3 Enter Time Velocity Streaming Mode version a
Type set-D p AttributesSyntax <a>Qi [] BufferedUnits N one [j Device specificRange Nona [j Saved independentlyDefault None [j Saved in sequences
Response N one
See a lso ©3, msl, mss, to , so

The Enter Time-Velocity Streaming mode (q3) command causes the indexer to enter the Tlme-Velocity
Streaming mode for the specified axis. The Ttme-Veloclty Streaming mode will Interpret values entered with
the so command as the velocity In motor steps to be output In the update interval specified by the TD
command. Note that the command buffers are cleared and motion is killed on the specified axis when the Q3
command is entered.
Refer to Chapter 4. Application Design, for a detailed discussion of the Velocity Streaming mode.

Q | Interrupt Status Report Version A
Type s e t - o p AttributesSyntax <a>Qi [] BufferedUnits N one [j Device specificRange N one [j Saved independentlyDefault N one [j Saved In sequencesResponsa n n n n n n n n (n - 0 o r X)See also q s
qz command Indicates any active Interrupt conditions. The response is the address followed by 8 bits (A
through H) as described In the table below. The bits do not need to be enabled with the q s commands. For
example, bit A will be high I f trigger 1 Is active, whether or not q s a ! w a s entered.

Bit Function Options Valua
A Trigger 1 active NO (0) or YES (1) nB Move Complete NO (0) or YES (1) n
C Not Used 0 0
D Limit Encountered NO (0) or YES (1) n
E Ready to Respond* 0 0
F Not Used 0 0
G Command Buffer Full NO (0) or YES (1) n
H Motor Stall NO (0) or YES (1) n

•The ODBRDY bit In the status register Is set. Refer to Chapter 4, Application Design, for more on
communication.

Move complete will always display a result, even if the QSB command is not enabled.
C om m and R ea p o n M
I q i R equest so u rce interrupt s ta tu s tor a w s # i . R esponse * 1:01000000

247

QIB Interrupt Status Report (Binary)
TypeSyntaxUnits
Rang*DefaultResponseSee also

S e t - O p
< a > Q IB
N one
N one
N one
a : n
01

Version A
Attributes
[] Bulfered
{] Device specific
[] Saved Independently | j Saved In sequences

The Interrupt Status Report (qib) command responds with two bytes. The first byte Is axis number (1-3).
The second byte Is the binary equivalent of the q i response (range Is 0 - 255). The format for the second
byte functions are shown below.

Since the response In In the binary format, the user must convert the binary value to ASCII value of you
wish to print the value to the monltor.

Function Options ViA Trigger 1 active NO/YES (n-0.1) n
8 Wove Complete NO/YES (n-0,1) n
C Mot Used (0) 0
D Limit Encountered NO/YES (n-0,1) n
E Ready to Respond* (0) 0
F Not Used (0) 0
G Command Buffer Full NO/YES (n - 0,1) n
H Motor Stall NO/YES (n-0,1) n
*The OD8RDY bit in the status register Is set. Refer to Chapter 4, Application Design for more on
communication.

Mooe complete will always display a result, even If the a SB command is not enabled.

Report QS Command Function Enable Status version aQR
Type Syntax Units Range Default Response See also
Request for the functions enabled or disabled by the q s a through qsh commands. The reply is eight digits,
indicating which signal functions are active, as shown below:

S t a t u s
aQ R
N one
N one
N one
a : n n n n n n n n {n
Q S, QI

0 o r 1)

Attributes
[x] Buffered
[] Device specific j j Saved independently
[j Saved in sequences

Function Options ValuA Trigger 1 high OFF/ON (0) n
B Move Complete OFFjON (n-0,1) nC Not Used (0) 0D Limit Encountered OFF/ON (n-0,1) nE Ready to Respond (0) 0
F Not Used (0) 0G Transmit on Command Buffer Full OFF/ON (n-0,1) nH Motor Stall OFF/ON (n-0,1) n

QS
Type Syntax Units Range Default Response See also

Interrupt on Signal Commands
S e t - U p
< a> Q S x n
x - f u n c t i o n
x - A, B , C , Dr E , F ,
N one
N one
QR

Version A
Attributes
K

o n / o f f

Buffered
Device specific
Saved independently
Saved in sequences

The QS commands allow the PC23 to send an Interrupt to the host computer when attention Is required.
Once enabled. QS commands reside In the PC23's background during normal operation. When the condition
that prompts the Interrupt Is met, the interrupt Is generated. The interrupt is determined by the host
computer via the Q I or Q IB command. The Interrupt will be generated each time the condition occurs, until

248

the function Is disabled (Refer to the parameter a In the description box above. When n - e (off). When n
- 1 (on). If more than one Interrupt la pending, the rest are Ignored (If one Is buffered, the rest are lost).

Refer to Chapter 4, Application Design, for Information on setting hardware Interrupts on the PC bus.

Bit FunctionA Trigger 1 activeB Interrupt on Move CompleteC Not Used0 Interrupt on Limit EncounteredE Interrupt on Ready to RespondF Not UsedG Interrupt on Command Buffer FullH Interrupt on Motor Stall

QSA Interrupt on Trigger #1 High Version A
Type S e t - O p Attributes
Syntax <a>QSAn [x BufferedUnits n » f u n c t i o n o n / o f f [Device specific
Range 0 o r 1 [Saved independently
Default 0 [Saved in sequencesResponse N o n eSee also TR, T S , QR

qsm = Do not send Interrupt on Trigger #1 being high
osai = Interrupt signal on Trigger #1 being high

Entering q s a i causes the indexer to transmit an interrupt signal to the host computer whenever trigger #1
goes high. How the Interrupt is handled is dependent upon the host computer and your Interrupt routine
within the host.

Q S B Interrupt on Move Com plete
TypeSyntaxUnitsRangeDefaultResponseSee also

S e t - U p

< a > Q S B n

n - f u n c t i o n o n / o f f

0 o r 1

0
N one

QR

Version A
Attributes
[x] Buffered
[j Device specific
j j Saved independently
f j Saved in sequences

Q SB3 = Do not send Interrupt on move complete
f lS B i = Interrupt signal on move complete

Entering q s b i causes the Indexer to transmit an Interrupt signal to the host computer whenever a move has
been completed. How the Interrupt Is handled fs dependent upon the host computer and your Interrupt
routine within the host.

Q S D Interrupt on Limit Encountered
TypeSyntaxUnitsRangeDefaultResponseSee also

S e t - O p

<a>QSDn
n “ f u n c t i o n o n / o f f

0 o r 1

0
N o n e
QR

Do not interrupt signal upon reaching a limit
Interrupt signal upon reaching a limit

Version A
Attributes
[x] Buffered
[J Device specific
[j Saved independently
[j Saved in sequences

Q SD 0
Q SD l

Entering q s d i causes the Indexer to transmit an Interrupt signal to the host computer whenever a CW or
CCW limit has been reached. How the Interrupt Is handled Is dependent upon the host computer and your
Interrupt routine within the host

249

QSE Interrupt on Ready to Respond
Typ*SyntaxUnitsRangeDefaultHesponseSea also

S e t - D p
<a> Q S X n
n - f u n c t i o n o n / o f f
0 o r 1
0
N one
QR

Version A
Attributes
[x] Buffered
[] Device specific
[j Saved Independently
[j Saved in sequences

QSE0 » Do not Interrupt when Indexer Is ready to respond
qsei = Interrupt when Indexer la ready to respond

Entering QSBl causes the Indexer to transmit an Interrupt signal to the host computer whenever the Indexer
Is ready to respond from a status command. How the Interrupt Is handled Is dependent upon the host
computer and your Interrupt routine within the host.

QSG Interrupt on Command Buffer Full
TypoSyntaxUnitsRangeDefaultResponse
See also

S e t - U p

< a> Q S G n

n * f u n c t i o n o n / o f f

0 o r 1

0
N one
QR

Version A
Attributes
[x] Suffered
[Device specific
[Saved Independently
[Saved in sequences

Do not Interrupt on buffer full (less than 32 bytes free)
Interrupt on buffer full

QSG0
QSG1

Entering q s g i causes the Indexer to transmit an Interrupt signal to the host computer whenever the
command buffer Is full. How the Interrupt Is handled is dependent upon the host computer and your
interrupt routine within the host

QSH Interrupt on Motor Stall Version A
Type S e t - U p AttributesSyntax < a > 0 S A n [x] BufleredUnits n " f u n c t i o n o n / o f f [] Device specificRange 0 o r 1 [j Saved independently
Default 0 [j Saved in sequencesResponse N oneSee also DQ, O S E I, OR

Q SH 0 * Do not Interrupt on stall
OSEI « Interrupt on stall detect

Entering qshi causes the Indexer to transmit an Interrupt signal to the host computer whenever a stall is
detected. How the Interrupt is handled Is dependent upon the host computer and your own program within
the host

This command is functional only if you enable stall detection with the o e s i command. When enabled, a
stall Is detected If the indexer receives no encoder pulses after moving the motor l/50th of a rev
(corresponds to 1 mechanical pole of a 50-pole motor). Thus, when the Indexer and motor/drive system
resolution is 25.000 steps/rcv, 500 steps (25.000 + 50) are output before a stall is detected.

Entering QSfla causes no interrupt to be transmitted by the Indexer when a stall Is detected.

C o m m an d D escrip tion
q s h i An interrupt will be transmitted to the h06t when a stafl occurs.

250

Version A
Attributes[] Buffered
[] Device specific
[j Saved independently
[j Saved in sequences

R Report Indexer Status
Typ* StatusSyntax aRUnits N oneRang a H oneDefault N oneResponse *x ix = r , b , s , o r cjSee also r a , r b , r c

You can use the Request Indexer Status (R) command to review the status of the Indexer. Possible
responses are:

Response Definition
* r Ready
* s Ready, Attention Needed
* B Busy
« c Busy, Attention Needed

When the Indexer is prepared to execute an immediate command, the following conditions delay the
execution:

□ Performing a preset move
□ Accelerating/decelerating during a continuous move
□ A time delay is in progress (t command)
□ Paused (ps)
□ Waiting on a Trigger (t r)
□ Going Home
□ Executing a loop

The following conditions cause error responses.

□ A feedback error condition exits.
□ Go home failed
□ Limit has been encountered

You c a n o b ta in fu r th e r d e ta i ls o n th e e r ro r c o n d itio n w ith th e r a , r b , o r r c co m m an d s. Compumotor d o e s
not recommended that you use this command in tight polling loops. It may overload the microprocessor. Time delays can alleviate this problem.
Do not use this command to determine if a move is complete. Use It after a move Is complete to determine
if other errors or faults exist Use a buffered status request command such as a cr (Carriage Return) or a
programmable output to verify move completion.

Command
1R

R e s p o n s e
1 : » r Axis #1 is ready to accep t a com m and—no error conditions require attention

Report Limit Switch StatusRA
Type Syntax Units Range Default Response Sea also
The Limit Switch Status Report (ra) command responds with the status of the end-of-travel limits during the
last move as well as the present condition. This is done by responding with one of 16 characters
representing the conditions listed below.

S t a t u s
aR
N one
N one
N one
*x (x - 3 , A, B , C , D, E, F , G, H, X, J , K, L , M, N, o r O)

Version A

Attributes
[) Buffered
[] Device specitlc
[1 Saved independently
[j Saved in sequences

R, RB, RC, LD

251

Reaponaa
Character

Laal Hava Terminated By
CW Limit CCW Limit

C urrent U ove Limited By
CW Umlt CCW Limit

* 1 NO NO NO NO
* 1 YES NO NO NO*B NO YES NO NO»e YES YES NO NO
* 0 NO NO YES NO
* z YES NO YES NO
* r NO YES YES NO*c YES YES YES NO
*H NO NO NO YES*1 YES NO NO YES

NO YES NO YES• It YES YES NO YES
*L NO NO YES YES

YES NO YES YES
NO YES YES YES

*0 YES YES YES YES

The r a command I s useful -when the motor w ill not move In either or both directions. The report back will
Indicate whether or not the last move was terminated by one or both end of travel limits.

If you wish to disable the limit Inputs, you may Issue the LD3 (Disable both limits) command.

Command
2RA

Reaponaa
2 :*«

This response Indicates that the last move on axis 2 was not terminated by a limit and that no limits are
currently active.

Version A

Attributes
[] Buffered
[) Device specific [j Saved independently
[j Saved in sequences

R B Report Loop, Pause, Shutdown, and Trigger
Status

T y p e S t a t u s

Syntax a * B
Units N o n e
Range N o n e
Default N o n e
Response * x (x - 0 , a , b , c , d , e , f , g , h , i , j , k , l , m, n , o r o)

See also L , P S , R , r a , r c , s t , t r

The r b command responds with the status of the command buffer If It is presently executing a Loop (L) or a
Shutdown (si) command. It will also Indicate If a Pause (rs) command Is being executed or If a Trigger (t r)

condition Is presently being waited on.

The controller responds with one of 16 different characters, each of which represents one of the conditions
listed below.

R ssporue
C haracter

*A*B
*C
*D

*r
*G

* J‘K
*L*K
*0

Loop
Active
NO
YES
NO
YES
NOYES
NO
YES
NO
YES
NO
YES
NO
YES
NO
YES

Pauae Shutdown Trigger
Active AcUve Active
NO NO NO
NO NO NO
YES NO NO
YES NO NO
NO YES NO
NO YES NO
YES YES NO
YES YES NO
NO NO YES
NO NO YES
YES NO YES
YES NO YES
NO YES YES
NO YES YES
YES YES YES
YES YES YES

This command Is useful to determine the present status of the execution buffer, especially when execution
is held up or the response is unclear.

When you send a buffered command and the indexer does not execute the command, you may execute this
command to receive a status of the Indexer.

Command
1RB

Reaponae1:*A Axis#1 is currently executing a loop

252

 — ,........................— ■. -a': i.A<<«;i- .w...~

R C Report Closed Loop and Go Home Status version a
Type s t a t u s AttributesSyntax aR C [] BufferedUnits N one [] Device specificRange N one | j Saved independentlyDefault N one [j Saved In sequencesResponsa *x (x - 0 , a , 9 , o r c iSea also r , r b , o s e , g h , l , f s c
The Report Closed Loop And Go Home Status (rc) command responds with a character that represents one

of the conditions described below.

□ H om ing F unction F a ilure — In this condition, the controller reaches both end-of-travel limits or one
of several possible Stop commands or conditions. The Co Home motion was concluded, but not at
home.

□ S ta l l — In this condition, the controller detects either a deviation between motor and encoder position
that is larger than one pole of the motor while running, or a deviation larger than one pole of the motor
plus the backlash parameter following a direction change.

Responsa Stall Go Home Static LossCharacter Detected Unauccesaful Datactad
* 8 NO NO NO
• A YES NO NO
* B NO YES NO
* C YES YES NO
* 1 NO NO YES* I YES NO YES
* J NO YES YES* X YES YES YES

C om m and R e sp o n se

This means that while attempting Its last move, axis 1 detected a stall.

RM Rate Multiplier in Immediate Velocity Streaming version a

Mode
Type set-up AttributesSyntax < a> R M xxxx [] BufferedUnits x x x x - r a t e m u l t i p l i e r v a l u e (h e x a d e c im a l) [j Device specificRange 0000 - f f f f [j Saved independentlyDefault 0000 [j Saved in sequencesResponse N oneSee also q i , q b

The rm command, followed by 4 hexadecimal digits, represents an Immediate velocity setting. The variable
nnnn Is a hex value (In ASCII format) ranging from 0000 - FFFF which corresponds to 15.259 Hz - 500 kHz
In Increments of 15.259 Hz. The velocity change is Instantaneous. There Is no acceleration/deceleration
ramp between velocities. A limit swltch-closure stops movement while In the axis Is In velocity profiling
mode, but does not cause the PC23 to exit Immediate velocity streaming mode. Hex values 0000 - 7FF3
result In CCW rotation. Hex values 8000 to FFF3 result In CW rotation. Hex values 7FF4 - 7FFF and FFF4 -
FFFF are special values that you can use to set POBs (refer to Chapter 4, Application Design for detailed
Information on contouring).

C om m and D escrip tion
qi Enter Vetodty Streonwig mods on axis #1RM2S66 Jump 10 t rps in the CCW droction
RM0CCC Jump to 2 rp6RM1332 Jump to 3 rpsRM1998 Jump to 4 rps
RM 1332 JumptoSips
RMaccc Jump to 2 rp6RM06S6 Jump to 1 rps
RM0000 Jump to 0 rpsQO Exit Velocity Streaming mods
The motor Jumps to 1 rps when you Issue the first rm value. The velocity Increases by 1 rps when you Issue
the next three RM commands. The subsequent rm commands decrease the motor velocltyln 1 rps
Increments until the motor stops. The amount of time that elapses between the Issuance of each r m
command determines the exact motion profile.

253

Report Software Part Number Version A
Attributes [] Buffered [j Device specific
[j Saved independently
[j Saved in sequences

RV
S t a t u s
<a>RV
N one
N one
N one
9 2 - n n n n n n - n n (x n) { n
N one

0 - 9 , x - A - Z)

Typa Syntax Unit*Rang*Default Response Se* also
The RV command responds with the software part number and its revision level. The response Is In the
form shown below.

9 2 - n n n a n n - n n < x a >
p a r t n u m b e r < r e v i s i o n l e v e l >

The part number identifies which product the software is written for. as well as any special features that the
software may include. The revision level identifies when the software was written. You may want to record
this Information tn your own records for future use. This Information Is useful when you consult Parker
Compumotor’s Applications Engineering Department.

C om m and
1RV

Rea port**
9 2 -0 0 6 8 8 7 -0 1 X

The product Is identified by 92-006887. The revision level Is Identified by OIK.

Stop Version A
Attributes
[] Buffered
j j Device specific [j Saved independently
[] Saved in sequences

Type M o tio nSyntax <a>sUnits N oneRange NoneDefault N oneResponse N oneSe* a ls o k, s s d , ssh , a

Tills command decelerates the motor to a stop using the last defined Acceleration (a) command. This
command normally clears any remaining commands in the command buffer, unless prevented from doing so
by the Save Command Buffer On Stop (SSHl) command. When the SSHl command is executed, the s
command stops only the current move and goes on to the next command in the buffer.

C om m and
MC
A1
via
s
s

D escrip tion
S e t a Continuous mode
S e t acceleration to 1 rps2
S e t velocity to 10 rps
Execute the m ove (Go)
Stop motor— motoreomestoO rps at a deceleration rats of 1 rps2

The s command cannot be put Into the buffer since it is an Immediate command. As soon as the Indexer
receives the s command, It stops motion.

SA Stop All Version A
Typ* M o tio n Attributes
Syntax < a> S A [] Buffered
Units N one [j Device specific
Rang* N one [j Saved independently
Default Rssponsa Saa also

N one
N one
S , X

[j Saved in sequences

The Stop All conunand Is equivalent to a IS, 2S, 3S.

254

Define Timed Data Mode Streaming Data Verslon
P ro g ra m m in g
< a> S D n
n - h e x d i g i t u p t o 3 s e t s o f 4
0 - F
N one
N one
Q 2, 03# TD, MSL, MSS

Attributes[x] Buttered
[j Device specific
[j Saved independently [j Saved in sequences

SD
Type Syntax Units Range Default Response See also
This command allows you to define streaming data. In the tlme-dlstance (02) mode, you can specify the
number of steps that the motor will move per Interval with this command. In the tlme-velocity (Q3) mode,
you can specify the velocity that the motor will move per Interval. You can set the time interval with the T D
command.

You may define streaming data with one or two or three four-digit hexadecimal numbers. If only one axis Is
In a timed data streaming mode, only one four-digit hex number Is required (sDnnnn). If two axes are in a
timed data streaming mode, two four-digit hexadecimal numbers are required (S D n n n n n n n n). If you have a 3

axis system, you need to send 3 four digit hexadecimal numbers (s D n n n n n n n n n n .m) You can define data for
all three axes with a single so command. Each so command I s onfy executed during a single i d Interval.

If you want to define data for one axis in a
timed data streaming mode, use the
configuration sonnnn. If you want to define data
for Iwo axes In a timed data streaming mode,
use the configuration S D n n n n n n n n . The first four
hex numbers define data for the lower numbered
axis. The next four hex numbers define data for
the higher numbered axis.

Dir/MSB Data
*1

2nd MSB
■2

3rd MSB

*3

USB

MSS - most significant bil

LS8 - least significant bit

The function of each byte (*1. *2. *3. and *4) Is
described below.

•1 sets the direction In which the axis will move. A 0 In the most significant bit (MSB) specifies CCW
motion. A 1 In this position Indicates CW motion. The remaining three bits of ihis byte are the 3 MSBs to
define the magnitude of distance (Q2 mode) or velocity lQ3 mode). *2 is the most significant full byte of
segment data. *3 is the next most significant full byte of segment data. *4 Is the least significant Jull byte
of segment data. The weight of each bit In bytes *1. *2. *3, and *4 is as follows:

In Q2 mode, this byte Indicates the number of steps the motor will move per time interval. In Q3 moda,
this byte Indicates the velocity that the motor will move per time interval. You can set the time interval
with the i d command. In the Q3 mode, the velocity desired per update Interval Is related to the four hex
digits as follows (disregarding the most significant bit which Is the direction bit):

V e l (i n r p s f o r a 2 5 0 0 0 s t e p / r e v m o to r) =• (n n n n * 1 5 .2 5 9 1 /2 5 0 0 0

Com m and Re»pon»a
1SD 90 64 Assuming that axis 11* in a tin ed data streaming mode, this com m and specifies a d istance ol 4,196 CW slaps

far a n 1. Refer to the graphic depiction below.

255

S D

Direction"
• 1 - CW, 0 - CCW

S eg m en t Oata |

9 011 0 0 11 |o 0 0 I 6 4|0 1 [0 1 0 0|

4,096 ♦ 0 [♦) 96 » 4 - 4.196

Certain 8 0 data points allow you to turn on
outputs, wait on triggers, and loop. Refer to
Chapter 4, Application Design, for more
Information.

Version A
Attributes

Report Configuration Status
[X

a x i s n u m b e r , n - 0 o r 1)

Buffered
Device specific
Saved Independently
Saved in sequences

SR
Type Syntax Units Range Default Rssponsa Sea also
The s» command Is a special status request command. This command provides Information on the status
of up to 5 software switches that you use to turn configuration options on and off. You can set these
options with the ss commands.

The table below lists the response functions that you can receive status Information on.

S t a t u s
a S R
H one
N one
N one
a : n n n n n n n n (a
SS

C ode Function
A Not Used
B Not UsedC LoadandGo Mode0 Alternate Mods Slop
E Not Used
F Velocity RangeG Command Buffer on LimitH Command Buffer on Stop

O n/Off S ta tu s
N/A
N/A0 = Disabled, 1 » Enabled 0 - C y d e End, 1 ■ Im m edatem0 . Normal, 1 ■ Low 0 - Purge, 1 -Save 0 - Purge, f = Save

Command
1 S R

Rssponsa
1 : 0 0 0 0 0 1 0 0 This Indicates that axis #1 Is In the low-veloclty range.

SSD Mode Alternate Stop Mode Version A
S e t - U p

< a> S S D n
n - f u n c t i o n (o n / o f f)
0 o r 1
0
N one
MA, SR

Attributes
[x] Buffered
[] Device specific
[j Saved independently
[j Saved in sequences

Typa Syntax Units
Range Default Responss Saa also
This command determines the method of stopping when In the ma move mode.

S SD 0 = Stop Immediately
ssoi = Stop at the end of the current loop

If you enable ssnl, upon receiving the Stop (s) command, the motor will move back to the starting position
then stop motion. If you use the ssca command, the motor will decelerate to a stop Immediately.

Com m and Description
s s d i Stop at e n d ol loops in mode atemata

256

S S F Normal/Low Velocity Range Version A
Type S e t-Op AttributesSyntax < a > S S rn [x] BufferedUnite n - f u n c t i o n (o n / o f f) j j Device specificRange 0 o r 1 [j Saved independentlyDefault ■ 0 [j Saved in sequencesResponse NoneSee also SR, V

This command sets the velocity range for the Velocity (v) command. The normal range (ssra) for a 25,000-
step/rev motor Is .01 - 20 rps. The low range (ssri) for a 25,000-step/rev motor Is .001 - 2.00 rps.

Com m and Description
SSF1 Set low velocity range for a x * ff1

S S G Clear/Save the Command Buffer on Limit Version A

Type S e t-O p Attributes
Syntax < a> S S G n [x] Buffered
Units n - f u n c t i o n (o n / o f f) (j Device specificRange 0 o r 1 [j Saved independently
Default 0 [j Saved in sequencesResponse N one
See also LD, SR
In most cases. It Is desirable that upon activating an end of travel limit Input, all motion should c e a s e until
the problem causing the over-travel Is rectified. This will be assured If all commands pending execution In
t h e command buffer are cleared when hitting a limit. This Is the case if s s g 0 i s specified. If s s g i Is
specified and a limit Is activated, the current move Is aborted, but the remaining commands In the buffer
continue to be executed.

Com m and Doacrtptlon
s s s i Soto buffer on limit
* s S e t aosoleraBon lo 5 (ps2
VS So! velocity to 5 rps
0 2 5 2 0 0 S a t cfctoncs b 25.000 step#
s Exscute tfio rnovc (Go)
O H Turn on outputs 1 and 2

If a limit switch Is encountered while executing the move, outputs 1 and 2 will still go on.

S S H Clear/Save the Command Buffer on Stop
S e c - u p

< a> S S H n

n - f u n c t i o n (o n / o f f)

0 o r 1

0
N one
S , SR

Version A
Attributes
K Buffered

Device specific
Saved independently
Saved in sequences

Type Syntax Units Range Default Response See also
SSH 0 = Cleara command buffer on stop
SSH1 => Saves command buffer on stop

In Normal Operation (s s h b) the Stop (s) command will cause any commands In the command buffer to be
cleared. If you select the Save Command Buffer On Stop (ssfll) command,a Stop (s) command will only
stop execution of a move In progress. It will not stop execution of any commands that remain In the buffer.

Command
SSH0
AS
VS
D 25000
L50a1.5 N
S

D oicripU on
C t e r command buffer on s b p
S e t accetofafcn to 5 rps2
S etvefotity to 5 rps
S e t cfctance to 25.000 stops
Loop 50 Timas
Execute the move (Go)
P au se Jw motor 500 rrs
End Loop
Stop motion

When you Issue the s command, the Indexer will clear the buffer and stop the move.

257

ST Shutdown
S e t - O p
< a > S T n
n - f u n c t i o n (o n / o f f)
0 o r 1
0
N one
N one

Version A
Attributes
[x] Buffered [j Device specific [j Saved independently [j Saved in sequences

Typt Syntax Units Range Default Response See also
The Shutdown (sti) command rapidly decreases the motor current to zero. The system Ignores move
commands that you lsaue after the sil command. Torque on the motor Is not maintained after you Issue
the sil command.

The ST0 command ra p id ly Increases the motor current to normal level. Once you restore the current, you
c a n execute moves.

This command Is useful for reducing motor heating and allows you to manually position the load. The
motor position counter la set to zero when you re-energlze the motor using the s ts> command.

Most Compumotor drives have a Shutdown Input along with Step and Direction inputs. The sil command
activates the shutdown input of the drive, disabling the current going through the motor.

C om m andsil Description
S huts off current to the motor

TypeSyntaxUnitsRangeDefaultResponseSee also

Tim e Delay
P ro g ra m m in g
< a> T n
n - s e c o n d s
0 .0 1 t o 9 9 9 .9 9
N one

N one
N one

Version A
Attributes
[x] Buffered
[J Device specific
[] Saved independently
[j Saved in sequences

The Time Delay (l) command causes the indexer to wait the number of seconds that you specify before it
executes the next command In the buffer. This command Is useful whenever you need to delay the motor's
actions.

C om m and
HN
A S

V5
D2 5 0 0 0
T 1 0aiss

D escriptionSet to Normal mode
S e t acceleration to 5 ips2Sol velocity » SipsSol cfctarce to 25,000 slopsPause mow mwemer* 10 secontJsExecute the move (Go)Pauso the motor lor 5 seconds after the mcvo ends Execute the move (Go)

TD Set Tim e Interval for Timed Data Streaming
Mode

Version A

Typ# M o tio n Attributes
Syntax < a> T D n n [] Buffered
Units nn - ms [] Device specificRangs 02 - 50 [j Saved independently
Default 10 f j Saved in sequencesResponse N oneSea also MSL, MSS, SD, Q0 , 0 2 , Q3

This command sets the time Interval for execution of segments defined with the so command. Each sd
command will be executed during one time interval only. In Q2 mode, the segment profile will be derived
from the time (In milliseconds—ms) specified by nn, where nn = 02 to 50 (2 to 50 ms In increments of 2
ma) , and the segment distance specified with an SD command (I.e., the motor will move the distance—In
steps— specified with the SD command In the time set with the t d command). In Q3 mode, the segment
profile will be derived from the time specified by nn, and the velocity (in steps per second) specified by the
s d command. I.e. The motor will achieve the velocity specified with the s d command in the time set with
the t d command.

258

C o m m an d
02
TD04
KSL11X
S D 0 0 0 0 8 0 2 8
S D 0 1 0 0 0 0 2 8
MSS

Description
Enter Time Distance mods
S ets upddffl *mo Id 4 mitiseoonds
Axis *1 and mbs #2 are in Time Distance modo
M ow axis *2 40 step* within the update time
Move axis i t 2 5 6 steps, axis #2 4 0 slap s wilhin 4 m s
Start m aster clock (Upon entering this com mand, m oves defined by sd com m and will start)

TR W ait for Trigger Version A
Type P ro g ra m m in g Attributes
Syntax < a > T R n n n n n n [x] BufferedUnits n - f u n c t i o n [] Device specificRangs (0 - o p e n - o n / o f f , 1 c l o s e d , x - d o n ' t c a r e) (j Saved independentlyDefault Response See also

0
N one
I S , TS

[j Saved in sequences

Triggers are used to synchronize Indexer operations with external events. They can be used to implement a
handshaking function with other devices. There are six triggers (see below).

When i r command is used in a buffer, th e Indexer will get to this co m m an d a n d w ait u n ti l th e in p u t p a tte rn
is matched before going on to the next command.

C om m and
TR10XXXX

AS
VS
D 2S 0 0 0S

D escrip tion
Wait tor input #1 to be grxinded and input #2 to be opened before going on to the next command. Inputs #3 - #6
are ignored.
S e t acceleration to 5 rps2
S etv e lo a ty to 5 rps
S e t defence to 25,000 steps
Execute the m ove (Go)

TS Report Trigger Input Status
Type s t a t u sSyntax a T sUnits N oneRange N oneDefault N one
R s s p o n s a a : n n n n n n (a - a x i s n u m b e r , n - o , 1)Sss also i s , t r

The Trigger Status command retrieves the status of the trigger inputs.

• n= 1 (Input is ON)
• n = 0 (Input is OFF)

Version A
Attributes
[Buffered

Device specific
Saved independently
Saved in sequences

Since the IS command Is Immediate, the host controller can determine the status of the trigger Inputs at
any time, even during execution of other commands. You can use this command to make sure that your
trigger pattern Is met. when you have Issued the Trigger (t r) command.

259

Command Retponulrs 1:101011
Trigger bits 1, 3, 5 & 6 are active. Trigger blta 2 and 4 are Inactive.

Version Au Pause and Wait for Continue
TypeSyntax
UnitsRangaDefaultResponsaSee also

P ro g ra m m in g

<a>D
None

Hone

None
None

C, PS

Attributes] Buffered] Device specific j Saved independently
[j Saved in sequences

This command causes the Indexer to complete the move In progress, then wait until It receives a Continue
(c) to resume processing. Since the buffer Is saved, the Indexer continues to execute the program (at the
point where it was interrupted). The Indexer continues processing when It receives the c command. This
command Is typically used to stop a machine while It is unattended.

C om m andHHis
vsL0
D 2 5 6 2 3
S
110N0

Description
Sat to Normal modo
Sat otxotorabon to 5 rps2
Solvotodty to 5 rps
Loop indennrtGty
Setdstanco to 25,600 slaps
Execute Hie move (Go)
Wait 10 seconds a fe rtho move
End loop
Halt execution unffl the indexer receives the Continue command.

This command string pauses at the point where the a command Is entered. A Continue (c) command
causes execution to resume at the |x>lnt where It was paused. In this example, the loop stops at the end of
a move, and resumes when the indexer receives the c command.

U R Report Scale Factor Status Version A
Type S t a t u s AttributesSyntax atJR [x j BufferedUnits None [j Device specificRanga N one [j Saved independently
Default None [j Saved in sequencesResponse a : n n n (n n n =* 0 0 1 t o 2 5 5)See also CS

Reports the scale factor set using us command. The actual number of steps sent to the motor drive during
a Preset move will be the current distance parameter setting multiplied by this scale factor. The range for
nnn Is 001 to 255.

C om m and
MM
110
V5
O S20
l i r a
D 2 0 0 0 0a

Qajcripiion
Setto Continuous mode
Set acceleration to 10 rps2
Setvetodw to S rpe
Sof scste factor to 20
Request scale factor. The response is 1 £ 2 0 (verifies that scale factor s sot to 20)
Sot dstance to 20.000 stops
Execute the move (Go)

Axis #1 sends out 20.000 • 20 = 400,000 steps.

U S
iyp*SyntaxUnits
Ranga
DefaultResponsaSea also

Set Position Scale Factor
s e t - O p

< a > 0 S n
n - d i s t a n c e m u l t i p l i e r

1 - 2 5 5

1
None

DR

Version A
Attributes
[x] Buffered
f] Device specific
[j Saved independently [j Saved in sequences

This command sets the distance scale factor from 1 to 255. Any distance value set with the D command will
be multiplied by the value set by os command. This value will remain valid until the Indexer Is reset or
until a new us value 1s defined.

260

For the OS command to be effective, you m ust laaue a distance (d) com m and after the o s command.

If 200 steps will yield 0.001 Inches of rotary movement, you can Issue a OS200 command a n d program
distance In 0.001-lnch Increments.

C o m m a n d
MM
A10
vs
O S 2 0 0
010000

TypeSyntaxUnits
RangeDefaultResponseSea also

Description Set to Ccndntioos mods
Set acceleration to 10 rps2 Setvetody to S rps Set scale lacier to 200 Sotcfctanceto 10.000 steps) the move (Go)

Set Velocity
M o tio n
<a> V n
n - r p s
0.01 t o 1 6 0 .0 0 0

Version A
Attributes
K

{ M o to r d e p e n d a n t)

Buffered
Device specific
Saved independently
Saved in sequences

N one
A, D, G, MR

The Velocity (v) command defines the maximum speed at which the motor will run when given the Go (g)

command. The actual speed of the motor or output frequency of the Indexer will vary, depending on the
motor drive resolution. The following formula Is used to determine the output frequency of the Indexer:

The motor resolution Is a function of the motor/drive. However, you may match the PC23 to the
motor/drive's resolution using the Motor Resolution (MR) command.

F r e q u e n c y - (n) • (M o to r R e s o l u t i o n) i n s c e p s / r a v .

The top speed of the motor drive Is limited by the motor type. Entering a velocity higher than the top speed
of a motor drive system will cause the motor to stall and may cause the drive to fault

C o m m a n d
MC
AS

V5Q

D e s c r ip t io n
S o t to Continuoos m ods
S e t acceleration io 5 r j s 2
S e ! velocity » 5 rps
Exocute the m ove (Go)

In preset mode, Mode Normal (mn) the maximum velocity may also be limited when the resulting move
profile Is triangular. In Mode Continuous (m c) , a Go (a) command Is completed—the Indexer moves on to
the next command In the buffer once the specified velocity Is reached.

w Report Im m ediate Position
S t a t u s
aWn
a - f o r m o f r e s p o n s e
1 ■ b i n a r y , 3 * h e x A S C II
1
iW l - a : n n n n n o r x x x x x x x x (n - p o s i t i o n i n b i n a r y)
1W3 - a : x x x x x x x x (n =* a x i s n u m b e r , x ” p o s i t i o n i n h e x A S C II)
FSB , P , P B , PR , PX, PXB

Version A

Attributes
[] Buffered
[J Device specific
[j Saved independently
[j Saved in sequences

Typa Syntax Units
Range Default Response
See also
The Immediate Position Request (w) command provides a position report of a specified axis while the motor
Is moving. The report Indicates position relative to the start of the current move or the completion of the
last move. This command works in both encoder step mode (FSBI) and motor step mode (FSB0).

If you specify the variable n as 1, the response format will be a 5-byte binary number (with no carriage
return). The first byte is the axis number and the remaining bytes is the position In 2's compliment
notation.

If you specify the variable n as 3. the response format will be an optional axis number, a colon, and eight
hex ASCII characters In two's complement signed notation (with a carriage return).

Interpreting Hexadecimal Position Reports
This form of position report (a : x x x x x x x x) Is generated by the W3 command. It consists of an an optional
axis number and a colon, followed by eight hexadecimal characters; 0 - 9 and A - F. The position report Is
followed by a carriage return.

261

The decimal value of the hexadecimal expression can be determined using the technique demonstrated In
Tables 5-1 and 5-2. The response la In 2's complement notation reflecting direction; negative numbers
Imply CCW motion. Both commands are designed for computer controlled situations where the computer
can translate the hexadecimal.

Interpreting Binary Position Reports
This form of position report (nanan), consists of five bytes. The first Is the axis number, followed by four
bytes that must be linked together (concatenated) to form a 32-blt binary number. A typical PC23
communications algorithm expects to handle characters rather than binary numbers and may have
problems with this kind of response. Assume that a response equivalent to the ASCII characters *8. t, o.
and / (A 8 refers to the CTRL key and i, an unprintable character) Is given. The binary code for this
response should be:

A* # 0 /
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 1 1 1

This code has to be Interpreted by the computer. The four characters must be converted to their ASCII
code numbers and multiplied by the appropriate power of 256. The first character received Is the most
significant byte. Refer to the following table for a conversion technique for A8 # 0 /. The formula used
for the binary conversion Is:

A S C I I V a l u e • C h a r a c t e r M u l t i p l i e r • C h a r a c t e r V a l u e

R esp o n se ASCS Hex Value ASCII Decimal Value C haracter Multiplier C onversion (s te p s)

» g 0 0 1 6 , 7 7 7 , 2 1 6 (2S 6 3) 0
23 35 6 5 , 5 3 6 (2 5 6 2) 2, 2 9 3 , 7 6 0
0 30 48 256 (2 5 S 1) 1 2 , 2 a a
/ 2F 47 1 (2 5 6 °) 47

P o s i t i o n T o t a l : 2 , 3 0 6 , 0 9 5

If the position total Is 22.147,483,648. then the position total Is showing a 2's compliment negative number.
To establish the correct position total, subtract 4, 294, 967, 296 (= 2 3 2 = 1 6 8) from your result to receive the
correct negative number. For example. If the response Is 1 (smiley face)+£a8, the conversion would be
as follows:

R esp o n se ASCII Hex Value ASCII Decimal Value C haracter Multiplier Conversion (s te p s)

+ F6 2 4 6 1 6 , 7 7 7 , 2 1 6 (2 5 6 3) 4 , 1 2 7 , 1 9 5 , 1 3 6
£ E4 2 2 8 6 5 , 5 3 6 (2 5 6 2] 1 4 , 9 4 2 , 2 0 8
a 61 97 2 5 6 (2 5 6 1) 2 4 , 8 3 2
8 38 5 6 I (2 5 6 °) 56

P o s i t i o n T o t a l : 4 , 1 4 2 , 1 6 2 , 2 3 2

To establish the correct position, subtract 4, 294, 967, 296 from 4,142,162.232. The result Is -152,805,064.
Therefore, the last position total Indicated 152,805,064 steps were moved In the CCW direction.

Positive rr3 Response Interpretation
The system provides responses In the following format:

MSD LSD
X X X X X X X X

The first digit Is the most significant digit (msd) . The last digit Is the least significant digit (l s d) . Refer to
the following table for the value of each digit

Digit Digit Multiplier
X (MSD) x • 1 6 7 - h • 2 6 8 , 4 3 5 , 45 6 - _______________

x x - 1 6 6 - h ■ 1 6 , 7 7 7 , 2 1 6 - _______________
x X - 16s - h ■ 1, 048,576 - __________________

X x *16^ =■ h ’ 65,536 =* __________________

x X - 1 6 3 - h • 4 ,0 9 6
X x - 1 6 2 - h • 2 5 6
x X ' 1 6 * = h • 16

h (L S D) x - 1 6 ° - h • 1

262

The decimal (h) may have one of the values shown In Table 5-3.
Decimal
Value

Hexadecimal Value Decimal
Value

Hexadecimal Value

0 0 8 a
1 1 9 9
2 2 10 A
3 3 11 a
4 4 12 C
S 5 13 D
6 6 14 E
7 7 15 F

Using the previous tables, review the decimal value that would be calculated !
was 0 0 0 4 3 3 X 1 .

Hexadecimal C haracter Multiplier C onveralon (atepa)0 0 • 2 6 3 , 4 3 5 , 456 0
0 0 • 1 6 , 7 7 7 , 2 1 6 00 0 - 1 , 0 4 8 , 5 76 0
4 4 • 6 5 , 5 3 6 2 6 2 , 2 8 83 3 • 4 , 0 9 6 1 2 , 2 3 83 3 • 2 5 6 763X (- 10) 10 • 16 160

g <» 14) 14 • 1 14
T o t a l S t e p s :

Negative w3 Response Interpretation

2 7 5 , 3 7 4

If the first digit of the position portion of th e response a :x x x x x x x x Is a, 9. A. s , c . d, e . o r «. th e response
represents a turn's complement negative number. Any other response should be interpreted per Table 5-1.
There are several ways to convert an 8-dlglt two's complement hexadecimal number to decimal.

The Binary Approach

© Convert the hexadecimal response to binary form.

© Complement the binary number.

<$ Add 1 to the binary result.

© Convert the binary result to decimal value.

Response to 1W3 Is i : e f f e 2 710 .

© S F F E 2 7 1 0
1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 0

© 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 1 1
® 0001 oooo 0000 0001 1101 1000 1111 oooo
© 1 0 0 1 D 8 F 0 1001D3F0 hex = 2 6 8 , 5 5 6 , 5 2 3 d e c im a l.

Therefore, the result Is 268,556,528 steps in the CCW direction.

The Computer Approach
© Convert the hexadecimal response to decimal.
© Subtract 4,294,967,296 (=* 232 = 168) from the decimal number.

Response to 1W3 Is 1 :E F F E 2 7 1 0 .
© Convert hex to decimal as follows:

Hexadecimal C haracter Multiplier Conversion (s te p *)

S (- 14) 14 • 2 6 8 , 4 3 5 , 4 5 6 3 , 7 5 8 , 0 9 6 , 3 8 4
v <- is) 1 5 ■ 1 6 , 7 7 7 , 2 1 6 2 5 1 , 6 5 8 , 2 4 0
r (- 15) 15 • 1 , 0 4 8 , 5 7 6 1 5 , 7 2 8 , 6 4 0
a <» 14) 14 • 6 5 , 5 3 6 9 1 7 , 5 0 4

2 2 • 4 , 0 9 6 8 , 1 9 2
7 7 • 2 56 1 , 7 9 2
1 1 • 16 16
0 0 • 1 0

T o t a l S t e p s : 4 , 0 2 6 , 4 1 0 , 7 6 3

© 4,026,410,768 - 4,294,967,296 = '268,556,528. Therefore, the result is 268.556,528 steps in the
CCW direction.

263

Y Stop Loop Version A

Type ?ro<j ramming AttributesSyntax <a>X [] BufferedUnits None [] Device specific
Range None (j Saved independently
Default Hone [j Saved in sequences
Responsa HoneSee also L, N

The Stop Loop (*) command takes you out of Inner loop when the loop completes its current pass. This
command does not halt processing of the commands In the loop until the Indexer processes reach the last
command of the current loop. At that time, the Indexer executes the command that follows the End Loop l!i)
command.

C om m and Descriptioni> Loop inosfrutaly
A3 Sat acceleration to 5 rps2
VS Sctvetady t>5 rps
025000 Sot cfetanco to 25,000 stopa
T2 Wait 2 seconds
e Execute he move (Go)
H End loopr Stop bop

The loop requires the motor to move 25.000 steps and then wait for two seconds. The loop terminates at
the end of the loop cycle It is executing when it receives the * command.

264

Appendix B KS-Drive Commands

All of the commands may be prefixed with a device address. Any
command that will cause the drive to transmit information to the RS-232
port MUST be prefixed with a device address. This is to prevent several
units from transmitting at the same time.

Responses and reports from the drive will have a * as a leading
character to prevent the response from being interpreted as a command
by other drives on the communication link.

Invalid commands will be ignored by the drive.
You may send either upper or lower case characters to the K

drive, However the Echoed characters from the drive will always be
Upper case. Thus in practice it is best to use Upper case to avoid
confusion.

GENERAL COMMANDS
4c ***** *************** ******
E Enable the RS-232.

NOTE: IF YOU DO NOT GET ANY RESPONSE ON THE RS-232 LINK YOU
PROBABLY DID NOT ISSUE THE E COMMAND.

The E command may be preceded by a device address 1 to 15,
for example IE will enable only device number one. Sending
an E without a device address will enable all of the RS-232
ports on all of the drives on the daisy chain at the same
time,
Enabling the RS-232 tuning function will disable the
pushbutton tuning.

SV Save new values.
SAVE

This is the same as pushing all three mode buttons down and
releasing them. The "SV" command will cause the controller
to save the gains as they are now adjusted and exit the
tuning process, meaning the tuning mode will be exited.
The save command will save any new values you have given
the drive. For those values that were not changed the last
value to have been saved will be resaved.

265

F Exit the RS-232 mode and return to front panel control.

The F command will return control to the front panel
pushbuttons. Any changes that have been made to the
controller's gains are retained In volatile memory. However
if a SAVE command is not issued the values will be lost on
the next power loss or reset.

OFF
STO Turns the power amplifier off.

No current flows through the motor. AC power to the
amplifier remains on.

ON
ST1 Turns the power amplifier on.

Allows current to flow through the motor.
RFS Returns the drive to factory .gettings.

All settings are as they were when the drive was shipped
from the factory. This Is the same as pushing the P and I
buttons at the same time.

HELP Returns help menu
Provides a list of commands and a brief description of each
command. Note that the Help command is the only command
that Is not device specific. It will respond without a
device address. If you have several units on a daisy chain
and you type HELP the result will be that all of the units
on the chain will transmit at the same time. You will have
a great deal of confusion. Don't do it!

ESCAPE KEY Will take you to the out of the help menu.
DFS Display all of the servo status flags

Syntax: <a>DFSd
Type: Status, Immediate, Device Specific

Description: Returns all servo status flags as 32 bits
where the response is
bbbb_bbbb_bbbb_bbbb_bbbb_bbbb_bbbb_bbbb[cr] where the
order of the bits is
* 3 1 , 3 0 , 2 9 , 2 8 _ _ 3 , 2 , 1 , 0 *

266

b i t

31 27 23 19 15 these bits are all reserved for future use
30 26 22 18 14 they all return zero's
29 25 21 17 13
29 24 20 16 12
bit
11 enable circuit 0 - enabled 1 - disabled
10 high voltage problem no - 0 yes - 1
9 indexer sending pulse at power up no - 0 yes - 1
8 failed crc check no - 0 yes - 1
7 power dump overtejnp no - 0 yes - 1
6 average current exceeded no - 0 yes - 1
5 max position error exceeded no - 0 yes —1
4 remote shutdown from indexer (non X version) no - 0 1 — yes
3 driver error undefined 0 - no error 1 - pwm hardware shutdown
2 drive over temp 0 - no 1 - yes/shutdown
1 overcurrent 0 - no. 1 - yes/shutdown-error..
0 RS 232 CMD 0 - on/stl 1 - off/stO

RSE Reports Servo Errors.
If an error condition in the servo drive exists, such as
excessive following error or an EEPROM failure, it will be
reported. Errors are "soft errors" that are indicated with
the ERROR LED and display codes. To clear an error one
must reset the drive. The possible error messages are
listed below
#ll_amplifier_overheating___
#16_amplifer_off__
#17 indexer shutdown
#18
#19_amplifier_overcurrent___
#20_exessive_position_error___
#2 2_exce s s ive_average_curr ent___
#2 3_drive_enab1e_plug not_inserted___
#24 regen overheating__
#30~faile d_CRC_in_EE PROM___
6 0_rs 23 2_command___
#61_indexer incoming pulses___

267

z Resets the drive. ("IE" must be entered after a "Z")
The drive will act as if power was cycled. This command
implements a software reset of the system. Any changes
that have not been saved before issuing this command will
be lost.

RV Software Revision level reported.
This command is for determining the software revision level
of the controller software. It will report the part number
that is written on the label of the controller's EPROMs.
Using this command means it is not necessary to open the
Drive amplifier's box in order to determine the revision
level of the software.

KILL
K STOP POWERING THE MOTOR
STOP
S

Issuing this command will cause the microprocessor to stop
commanding power to the motor until the ON, ST1, or Z
command is received. All pulses/position will be lost.
These commands remove power from the amplifier and allow
the motor to freewheel. These commands were added so that
if during the tuning procedure over the RS-232 link the
user makes the servo go unstable he has some means of
stopping the system. This will normally be a panic
situation so the commands were selected to be those most
likely to be selected in this situation. The commands
function exactly the same as the OFF or STO command.
It should be noted that In the KX versions the S and Stop
commands are controlled by the acceleration settings. So
the function of these commands change between the indexer
and non indexer versions.

CONFIGURATION COMMANDS

The following configuration commands are designed to let you the
user set up the system to meet your requirements. Normally the factory
settings for the motor driver combination are all that you would need.
However, to allow for your special situation we have added the
following commands. In the event that you have to replace a. motor the
first command that you would execute is the CMTR if and only if you
have changed the type of motor that the drive was origionally set up
for. After the drive is properly set up for the motor size, The FMCA
command will £ind the fiotor Commutation Angle of the no tor/resolver
combination for the particular motor you have. This is seldom a
requirement but It is necessary before any of the other commands can be

268

expected to execute In a normal fashion. CAUTION THE FMCA COMMAND
CAUSES MOTION, SEE COMMAND LIST.

The next command needed vlll be the CMR command. This selects
the motor resolution that you desire to work with. (The drive must be
in shutdown mode before the CMR can be executed). The motor resolution
will affect any command or report that is in motor steps. Therefore you
should choose the motor resolution before you do ouch else.
CMTR Configure/report Motor Type
Use this command to configure the drive to the motor size that is being
used with the drive. Normally this is done for you at Compumotor's
factory. This command selects the proper current values and factory
defaults for the various motor sizes used with the drive. The possible
configurations are:
Example: 1CMTR This will report the present set up as *CMTR

1CMTR210 Sets the drive up for the KS210 motor
1CMTR220 Sets the drive up for the KS220 motor
1CMTR230 Sets.the drive up for the.K5230 motor
1CMTR240 Sets the drive up for the KS240 motor
1CMTR250 Sets the drive up for the KS250 motor
1CMTR260 Sets the drive up for the K5260 motor

Like the FMCA (see below) command it is not necessary to do a save
after issuing *'>CMTR command with■» parameter as it will automatically
save the new motor type vhan -the command la Issued.
FMCA Find Motor Commutation Angle
Use this command if a new motor is being used or if a new resolver has
been mounted on the motor, or if a resolver has been re-mounted on the
motor. The use of this command is highly unusual, it will cause the
motor to rotate under program control in the drive. TOTLF. IT IS
ROTATING THE USER EAS HO CONTROL OVER THE MOTOR. ONCE TOU START THIS
SEQUENCE OF EVENTS TOU UILL HAVE TO CUT OFF THE AC POWER IF TOU VISH TO
STOP THE MOTOR BEFORE THE COMKDTATION PROCEDURE IS COMPLETED. (For
safety reasons you would normally find the connutatlon angle with the
motor disconnected from the load). It is not necessary to save after a
this command as the offsets are automatically aaved.
CMR Configure Motor Resolution definition/report numeric

parameter expected (1000 to 32,768 for KS250 and 260
motors, 1000 to 16,384 for all other RS-Serlas motors).
The drive must be shut down bafore the CMR cmd can be
executed.

269

Define/report motor resolution. Enter a number between 1000 and the
maximum allowable resolution for the particular motor size (32,768,
16,384, or 8,192 depending on resolver configuration) the value entered
represents the number of steps of resolution you want the resolver
reading to have per revolution of the motor. If you choose a binary
value the positioning vlll be slightly more accurate than a non binary
value will provide. The math is done as an interger value so truncation
error within a single revolution can occur. This error is not
cumulative.
If a valid integer number is sent then the new resolution will be that
number of steps per motor revolution. If no value is sent then the
current resolution is reported. Factory Default is 16384 (KS210 - 240)
or, 25000 (KS250.260) steps per revolution.
The 250 and 260 motors actually function at 32,768 steps per rev, and
the 210 through 240 at 16,364 steps per rev, in all cases. So changing
the motor resolution does not affect dynamic performance. The
microprocessor simply converts the number of incoming Indexer pulses to
the appropriate absolute resolver position mathematically. Thus a. .
binary number converts to an exact resolver position> whereas a non
binary number may be rounded off for a given position. However since
the KS converts the absolute Indexer count into the position there is
no accumulation of error.

TOR EXAMPLE^-: If the resolution-is set to 5000 steps per rev we
compute the scale factor as (32,768*65536)/5000 — 429496.7296 but
because we have 16 bit precision the .7296 is truncated.

If you command a move with D500000 Then the conversion from user
friendly units back to resolver units is done as follows:

(500,000 *429496)/65536 - 3276794.434 but because we can't move
to a fractional position the motor actually moves to 3276794 counts of
the resolver. So where you would expect the motor to go axactly 100
revolutions (500,000 / 5000) for this move the motor will actually go
3276794/32768 - 99.99981689 revolutions. This error does not accumulate
because if you gave a second move of the same distance the calculation
will use the absolute distance to calculate the next move.

If all of this turns out to be a bother and the truncation error
is a problem to you. You can simply choose a resolution that does
Divide evenly into (32,768 * 65536) or 2147483648. a.g. 4096, 8192,
16384 etc.

 ̂This example assumes the use of a KS260

270

Since a change in resolution could cause major dynamic
discontinuities the motor resolution can not be changed while the
system is active. You must issue the STO or OFF command to disable the
drive before you can change the motor resolution.
Be certain to save any changes you vish to retain before cycling power
to the drive. NOTE:THIS COMMAND CHANGES THE VALDES AND RESPONSES OF
ANY OTHER COMMAND THAT USES MOTOR STEFS. TOU SHOULD CONFIGURE MOTOR
RESOLUTION BEFORE USING ANY OF THE OTHER CONFIGURE COMMANDS.
Before the CHR command is active you must Issue either the OFF or STO
command to shut down the drive. This Is to prevent the motor from
making large unexpected moves when the Resolution is changed. After the
CKR is implimented you will need to issue the ON or 5T1 to reenable the
drive. The new Resolution you have just issued will not take effect
until you issue a Distance command after the CHR command.
CCA Configure Current, Average, limit* Definition/report.

Numeric parameter expected.(0 to 10.000 Amps)
If no parameter is supplied this.command will report the currently
defined maximum allowed average current,' in-amps. If « parameter Is
supplied that approximate number will be used as the new maximum
average current. The acutal resolution of the control is .00122 amps
so integer values are rounded to the nearest approximation. The
controller continuously computes an average current to the amplifiers
over a 2.56 second time span. If the average current command exceeds
the value defined by the this command the controller will disable the
Amplifier and indicate an error. The factory default setting is motor
dependant.
CCP Configure Current Peak definition/report.

Numeric parameter expected.(0 to 20.000 Amps)
Define/report the peak current limit. This number defines the maximum
current command that will be sent to the motor. This command is
included for diagnostic and other special purposes. If a valid number
in amperes is entered, the approximation will become the new peak
current limit.The actual resolution of the value is .1568 amps so
integers are rounded to the nearest value. If no value Is sent this
command will report the present value defined for the maximum peak
current, in amps. The maximum current is the absolute maximum current
that will be sent to the motor, It is not the maximum average current
command but the maximum transient current. It Is the upper limit of
how large the current can ever be. The Factory setting will depend upon
the motor size. This is not an error er shutdown limit. This command
sets the maximum current that the drive will put out. In effect It Is a
torque limit.

271

CDB Configure DeadBand definition/report.
Numeric parameter expected.(0 to 32,767)

If no parameter is supplied this command will report the current value
of the deadband, In motor steps. If a number Is supplied that number
becomes the new deadband. The slip fault line to the Indexer is used
to indicate when the absolute value of the following error is within
the deadband region. The slip fault line to the indexer connector will
be on to indicate that the following error exceeds the deadband and off
to indicate that the absolute value of the following error Is within
the deadband. (The slip fault line is active high). The default
factory setting is zero. This Is useful In situations when you n«ed to
know if the motor rotor is within a certain tolerance range with
respect to the Indexer command. If you wish to use this output to an
external computer, you will need to connect wires from pin 10 and pin
22 of the indexer connector on the KS to your computer.
CPE Configure Position Error definition/report

Numeric parameter expected (0 to 65,535 Steps)
j.

Define/report maximum following error. If the absolute position error
is greater than this number, the amplifier will shut itself off. If a
valid number in steps is entered, it will become the new maximum
following error. Otherwise, the current setting is reported.
Exceeding the maximum following error is an error condition that will
cause the amplifier to be shutdown. If the aexiaum following error is
defined as zero the "shutdown motor on following error exceeded’’
function is disabled and no amount of following error will generate an
error condition or shutdown the motor. The factory default setting is
one revolution of the motor.
The value of the following error is only ealulated when the CPE command
is given. The stored number Is in terms of motor revolutions. So that
Changes of the CMR resolution will leave the following error actual
distance unchanged unless a new CPE command is issued.
This command differs from the CDB command in that being outside
deadband only affects the slip fault output. The CPE settings will shut
off the drive.
You should be certain to SAVE your settings to the EEPROM If you wish
it to be permanent.
Example: 1CMR5000 1CPE1000 will set the following error to one fifth of
a revolution of the motor, issuing 1CKR25000 1CPE will get a response
of *position error 5000 since it is still one fifth of a rev. 1CPE1000

272

issued after the 1CMR25000 would set the position error to l/25th of »
rev.

TONING COMMANDS
********* * *********

The following tuning commands are accessed via pushbutton
tuning or the RS-232 communication link. The values represent a
percentage of the maximum value that the term is allowed to achieve.
The following commands change the percentage only and the range is
limited from 1 to 99.To change the maximum value of the term it is
necessary to use the configuration maximum commands, push buttons allow
only integer values of the percentage. The display will show only the
integer.

the form of the equation for the tuning set up is:
Gain value — term maximum x term percentage

CVG Configure Velocity Gain definition/report.
numerical parameter expected (0 to 99)

The velocity gain is related to the error in the motor speed with
respect to the commanded velocity from the indexer. If a valid
numerical parameter is enter then the Velocity gain will be
recalculated using the new percentage of the maximum. Otherwise, the
current setting will be reported.
CDG Configure* Differential Cain definition/report,

numerical parameter expected (0 to 99)

The differential gain is related to position error changes with respect
to time. If a valid number is entered, a new differential gain will be
calculated using the percentage of the maximum. Otherwise, the current
setting is reported.

CIG Configure Integral Gain definition/ report.
numerical parameter expected (0 to 99)

The integral gain is related to position error with respect to time.
If a valid number is entered, a new integral gain will be calculated
using the percentage. Otherwise, the current setting is reported.
CFG Configure Proportional Cain Definition/report,

numerical parameter expected (0 to 99)
The proportional gain is related to the position error. If a valid
number is entered, a new proportional gain will be calculated baaed on
the percentage. Otherwiae, the current eetting is reported.

273

CONFIGURE TERM MAXIHUHS
+ic is+ icirtt'k'kicirk'iri: k A A A A"A k

The following tuning commands are accessed only via the RS-232
communication link. The values:
CVM Configure Velocity Maximum. Definition/report,

numerical parameter expected (1 to 32767)
This command allow you to change the factory value for the Maximum gain
that the Velocity term can achieve. This would normally be changed only
if the values provided for your motor were not satisfactory for your
application.The default values are motor dependant. If a valid
parameter is sent that value will become the new maximum, otherwise the
current setting is reported.
CDM Configure Differential Maximum Definition/report,

numerical parameter expected (1 to 32767)
This is the gain of the portion of the controller which amplifies the
derivative of the position error with respect to time. If a valid
number is entered, it will become the new differential gain maximum.
Otherwise, the current setting is reported.
CIM Configure Integral Maximum Definition/report.

numerical parameter expected (1 to 32767)
Defines the maximum of the integral of the position error with respect
to time. If a valid cumber is entered, it will become the new integral
gain maximum. Otherwise, the current setting la reported.
CPM Configure Proportional Maximum Definition/report,

numerical parameter expected (1 to 32767)
Defines the maximum of the term which amplifies the position error. If
a valid number is entered, it will become the new proportional gain
maximum. Otherwise, the current Betting is reported.

NOTES:
If you supply an invalid parameter to a command the command will
not be performed. Invalid commands are simply ignored.

Any changes made to parameters using these commands are NOT
permanent UNTIL THEY ARE SAVED. To make a change permanent the SAVE
command (SV) must be Issued. The SAVE command will save all changes

274

that have been made into the EEPROM. Thu*, if changes are Bade with
these commands and then the machine is reset the changes are lost
unless the SAVE command was Issued before resetting the machine.

DISPLAT/REPORT COMMANDS
Each of the display/report commands results in the drive

periodically reporting the appropriate parameter to the terminal where
it is displayed Approximately every 130 milliseconds as the value is
reported to the terminal. When any of these conmands is issued no
other command may be issued until the reporting is terminated. To
terminate a report hit any key to send a character to the drive. All
display report commands must be prefixed with a device address. This is
to prevent several units from trying to report at once. These commands
do MOT display values to the two number display on the pushbutton
tuning panel.
DCA periodically Displays/reports Current (average) in Amperes.
The average current flowing through the motor is reported and
repeatedly updated until a key is pressed. To get this number 128 data
points of the instantaneous current are read at 512 microsecond
intervals. These 128 points•are averaged to provide a value computed at
65 millisecond intervals. This value is averaged with the last 256
similar values to provide the average current over the last 16.67
seconds. The new average current is reported on every other calculation
to be displayed at 130 millisecond intervals.
DCI periodically Displays/reports Current on an Instantaneous basis
This number is reported in Amperes and is repeatedly updated until a
key is pressed. This number is a single sampling of the current at
read and reported at a 128 millisecond rate.
DCP periodically Displays/reports the Peak Current
This number is reported in Amperes and is repeatedly updated until a
key is pressed. This command samples the instantaneous current at 500
microsecond intervals. Each reading is compared to the largest previous
reading, if the new value is larger then it will become the new value.
This value is reported at 128 millisecond Intervals. This reading
accumulates from the time the command is sent, so that the highest
Instantaneous current ever seen by the motor over long periods of time
may be captured.
DFA periodically Displays/reports the Position Actual

This number is reported in steps and is repeatedly updated until a key
is pressed. This number is the absolute rasolver position scaled in

275

motor steps since the drive was enabled. The resolver of the KS
actually counts at 32,768 counts per revolution of the aotor shaft. The
value that is displayed Is calculated by creating a scale factor when
the CMR command is issued. (32,768*65536)/CMR - scale factor. The scale
factor is carried out to 16 bits. The rest is truncated, this can cause
a small non cumualative error in position if the CMR resolution does
not evenly divide into 2147483648.
The value is read and reported at about 150 millisecond intervals
DPE periodically Displays/reports Position Error.
This command reports the difference between setpoint and actual
position in steps. This number is used by the position control
algorithm to determine what sort of current should be sent to the
motor.The difference between the command setpoint and the actual
position is also used to determine if the motor is within the Deadband
specified in the CDB command. This number Is reported In motor steps
and is repeatedly updated until a key is pressed. This number is a
single instantaneous value read and reported at about 150 millisecond
intervals.
DPR periodically Displays/reports -the -Position Resolver. .
This number is reported in steps and is repeatedly updated until a key
is pressed.This value is the resolver position in aotor steps within a
single revolution of the motor shaft. This is an absolute value with
the zero referenced to how the resolver is mounted on the shaft. This
data would be useful to diagnose a resolver problem. This number is a
single data point read and displayed at about 150 millisecond intervals
DPS periodically Displays/reports the Position Setpoint
This number is reported in steps and is repeatedly updated until a key
is pressed. This number is the absolute number of pulses cent to the
drive from the indexer since the drive was enabled (or reset). This
counter is read and reported at about a 150 Billisecond rate.
DIC periodically Displays/reports Indexer Counter
Periodically reports the contents of the Indexer counter In steps.
This number is reported and repeatedly updated until a key is pressed.
This is the raw number of pulses sent to the drive from the Indexer. It
differs from the setpoint in that the Indexer counter only displays the
last 4096 counts from the Indexer. This command is used to detect
problems in the Indexer to drive Interface. The counter is read and
reported at about a 150 millisecond rate.
DVA periodically Displays/reports Velocity Actual

276

This number is reported in steps per second end is repestedly updated
until a key is pressed. This value is the actual velocity being read
from the resolver, it is the actual shaft velocity over a 500
microsecond period. It is displayed every 28 miliseconds.

DVS periodically Displays/reports Velocity Setpolnt

This number is reported in steps per second and is repeatedly updated
until a key is pressed.This number Is calculated at 500 microsecond
intervals, and reported at 28 millisecond intervals. This value is the
velocity being sent to the velocity part of the servo loop by the PID
loop.

277

Appendix C AutoLISP Simulation Program

; This AutoLISP program is used to simulate the additive protoyping process in
; AutoCAD/AutoSurf environment.
; The radius of the initial cylinder core is 5 mm.
; The solid model is a cone with four internal cylindrical cavities.

; Creating the 10 mm diameter cylindrical core.
(entmake
'((0 . "3DSOLID") (5 . "9A") (100 . "AcDbEntity") (67 . 0) (8 . "CENTRE") (100 .
"AcDbModelerGeometry") (70 . 1) (1 . "noi lo n o ") (1 . "=0;& {n {m {rn {rn I") (1 .
:9@)+r3(;r>++-6= {rn {rn {rn {o {1 {k I") (1 . "3*2/ {rn {rn {j {o I") (1 . "-:961:2:1+ {rn o o o o
oqknfffffgiggifhgnj o o o m I") (1 . "):-+:'@+:2/3>+: {rn l o n g I") (1 . ",7:33 {rn {rn {rn {i {m I") (1 .
"9><: {rn {h {g {j {rn {f 90-(>-; ,6183 :1") (1 . "9><: {no {nn {nm {j {rn {nl 90-(>S ,6183: I") (1 . "300/
{rn {nk {nj {i 1") (1 . "<01:r,*-9><: {rn noo n j o o o n o j o o n V V o n o V V V V I") (1 .
:9@)+r3(;r>++-6= {rn {rn {rn {h {1 {rn I") (1 . "9><: {ni {rn {nh {j {rn {ng 90-(>-; ,6183: I") (1 . "300/
{rn {rn {nf {h I") (1 . "/3> 1 :r,Hs-9><: {rn noo noo o o r n o r n o o o V V V V I") (1 . "300/ {rn {in {mo {i
I") (1 . "<0:;8: {rn {nj {nj {nf {mn n {g {rn I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn {nn {1 {rn I") (1 .
"300/ {rn {rn {mm {nn I") (1 . 73>l:r,*-9><: {rn noo moo o o n o n o o o V V V V I") (1 . "<0:;8: {rn {nf
{nf {nj {mn o {nm {rn I") (1 . "<0:;8: {rn {mo {mo {mm {ml n {nk {rn I") (1 . ":;8: {rn {mk {mk {nf {mj
o I") (1 . "<0:;8: {rn {mm {mm {mo {ml o {nh {rn I") (1 . ":;8: {rn {mi {mi {mm {mh o I") (1 . {rn
{mn {mg I") (1 . ":336/,:r<*-): {rn noo noo o o r n o j o o n V V I") (1 . {rn {ml {mf I") (1 .
":336/,:r<*-): {rn noo moo o o n o j o o n V V I") (1 . "/061+ {rn noj noo o I") (1 . 7061+ {rn noj moo o
I"))

; Creating additive prototyping tool head.
(entmake
’((0 . "3D.snT.TD") (5 . "A2") (100 . "AcDbEntity") (67 . 0) (8 . "TEXT") (100 .
"AcDbModelerGeometry") (70 . 1) (1 . "noi jo n o ") (1 . "=0;& {n {m {rn {rn I") (1 .
"9@=0;&r3(;r>++-6= {rn {1 {rn {o I") (1 . "3*2/ {k {rn {j {o I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {n {o {i
{h I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn {m {i {h I") (1 . ",7:33 {g {rn {rn {f {m I") (1 . "-:961:2:1+ {rn
o o o o oqhmjgigfkoljllfljj o o o m I") (1 . "):-+:'@+:2/3>+: {rn l o n g I") (1 . "-:9@)+r3(;r>++-6= {rn {rn
{rn {j {i {h I") (1 . "9><: {no {nn {nm {j {rn {nl 90-(>-; ,6183:1") (1 . "99><:r3(;r>++-6= {rn {nk {rn {f
I") (1 . "9><: {nj {ni {nh {j {rn {ng 90-(>-; ,6183:1") (1 . "300/ {rn {nf {mo {f I") (1 . "< 01 :r,* -9x : {rn
noo moo imqj o o rn mqj o o n V V roqlnimmhhiioniglhfk oqfkgiglmfgojojnlhh o V V V V I") (1 .
:9@)+r3(;r>++-6= {rn {rn {no {f {i {rn I") (1 . "99><:r3(;r>++-6= {rn {mn {rn {nn I") (1 . "9><: {mm
{rn {ml {j {rn {mk 90-(>-; ,6183: I") (1 . "300/ {rn {mj {mi {nn I") (1 . "<01:r,*-9><: {rn noo moo tj o o
r n j o o n V V o n o V V V V I") (1 . "300/ {rn {rn {mh {f I") (1 . "<0:;8: {mg {mo {mo {mf {lo o {nm
{rn I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {nj {nn {i {rn I") (1 . "99><:r3(;r>++-6= {rn {In {rn {ni I") (1 .
"300/ {rn {rn {lm {ni I") (1 . 73>l:r,*-9><: {rn noo moo nmo o o n r n o o o V V V V I") (1 . "300/ {rn
{rn {mf {nn I") (1 . "<0:;8: {11 {mi {mi {lm {lk n {nh {rn I") (1 . "<0:;8: {lj {mh {mh {rn {li n {nf {rn I")
(1 . "<0/>-r3(;r>++-6= {rn {rn {rn {mo I") (1 . "<0:;8: {lh {mf {mf {mo {lo n {mj {rn I") (1 . ":;8: {lg {If
{If {mf {ko o I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {mm {ni {i {rn I") (1 . "<0:;8: {kn {lm {lm {mi {lk o
{ml {rn I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {mi I") (1 . ":;8: {km {kl {kl {lm {kk o I") (1 . "<0/>-
r3(;r>++-6= {rn {rn {rn {mh I") (1 . ":;8: {kj {ki {ki {mh {rn o I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {mf
I") (1 . ":/>-r3(;r>++-6= {rn {rn {rn {lo I") (1 ."):-+:' {rn {lo {kh I") (1 . ":336/,:r<*-): {rn noo moo ho o o
rn j o o n V V I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {lm I") (1 . ":/>-r3(;r>++-6= {rn {rn {rn {lk I") (1 .
"):-+:' {rn {lk {kg I") (1 . ":336/,:r<*-): {rn noo moo nmo o o n j o o n V V I") (1 . ":/>-r3(;r>++-6= {rn
{rn {rn {li I") (1 . "):-+:’ {rn {li {kf I") (1 . "/061+ {rn noj moo ho I") (1 . '7061+ {rn noj moo nmo I") (1 .
7061+ {rn noo moo jj I"))
)

; Pause for about 3.5 seconds.

278

)
(princ) ;l The function will not return the 500001 at the command line upon completion. I;

; Render the objects.
(command "_avrender")

; Pause for about 2 seconds.
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1+ counter))
)
(princ) ;l The function will not return the 300001 at the command line upon completion. I;

; Change to South-West isometric view.
(command "vpoint" "-1,-1,1")

; Render the objects
(command "_avrcnder")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1+ counter))
)
(princ)

; Change to South-East isometric view.
(command "vpoint" "1,-1,1")

; Render the objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1 + counter))
)
(princ)

; Change to North-East isometric view.
(command "vpoint" "1,1,1")

; Render the objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1 + counter))
)
(princ)

; Change to North-West isometric view.
(command "vpoint" "-1,1,1")

(setq counter 1.0)
(while (<= counter 500000)

(setq counter (1 + counter))

279

; Render the objects
(command "_avrender")

; Pause for about 3.5 seconds
(setq counter 1.0)
(while (<= counter 500000)

(setq counter (1+ counter))
)
(princ)

; Creating the 20 mm diameter unfinished model.
(entmake
'((0 . "3DSOLID") (5 . "99") (100 . "AcDbEntity") (67 . 0) (8 . "CENTRE") (100 .
"AcDbModelerGeometry") (70 . 1) (1 . "noi fk n o ") (1 . "=0;& {n {m {rn {rn I") (1 .
"9@=0;&r3(;r>++-6= {rn {1 {rn {o I") (1 . "3*2/ {k {rn {j {o I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {n {o {i
{h I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn {m {i {h I") (1 . ",7:33 {g {rn {rn {f {m I") (1 . "--.961:2:1+ {rn
o o o o oqknfffffgiggifhgnj o o o m I") (1 . @+:2/3>+: {rn l o n g I") (1 . "-:9@)+r3(;r>++-6= {rn
{rn {rn {j {i (h I") (1 . "9><: {no {nn {nm {j {rn {nl ,6183:1") (1 . "99><:r3(;r>++-6= {rn {nk {rn
{f I") (1 . "9><: {nj {ni {nh {j {rn {ng ,6183 :1") (1 . "300/ {rn {rn {nf {f I") (1 . 73>l:r,*-9><: {rn
nniqollmlllhglhmfn njo r a k o n n n o o o V V V V I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {no {f {i {rn I") (1
. "99><:r3(;r>++-6= {rn {mo {rn {nn l")(l . "9><: {mn {mm {ml {j {rn {mk90-(>-; ,6183: I") (1 . "300/
{rn {rn {mj {nn I") (1 . "<01:r,*-9><: {rn non noo mk o n o njqollmfilhglhmfog o o n V V o n o V V V V
I") (1 . "<0:;8: {mi {mh {mh {mg {mf o {nm {rn I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {nj {nn {i {rn I") (1 .
"99><:r3(;r>++-6= {rn {lo {rn {ni I") (1 . "9><: {In {lm {11 {j {rn {lk 90-(>-; ,6183: I") (1 . "300/ {rn {rn
{lj {ni I") (1 . "/3>l:r,*-9><: {rn noo noo o o r n o r n o o o V V V V I") (1 . "<0:;8: {li {lh {lg {If {ko o
{nh {rn I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {nf I") (1 . "<0:;8: {kn {nf {nf {lh {km o {nm {rn I") (1 .
"<0:;8: {kl {If {kk {nf {mf n {11 {rn I") (1 . ":;8: {kj (ki {kh {mg {kg o I") (1 . "-:9@)+r3(;r>++-6= {rn
{rn {mn {ni {i {rn I") (1 . "99><:r3(;r>++-6= {rn {kf {rn {mm I") (1 . "9><: {jo {rn {jn {j {rn {jm 90-(>-;
,6183 :1") (1 . "300/ {rn {jl {jk {mm I") (1 . "<01:r,*-9><: {rn noo njo o o n o no o o n V V o n o V V V V
I") (1 . "<0:;8: {jj {ji {ji {lg fjh n {ml {rn I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {mj I") (1 . "<0:;8: {jg {jf
{mj (mh {km n {nh {rn I") (I . "<0:;8: {io {mj {jf {lj {jh o {nh {rn I") (1 . "<0:;8: {in {jk {mg {mj {ko n
{II {rn I") (I . ":;8: {im {il {ki {If {iko I") (I . "<0/>-r3(;r>++-6= {rn {rn {rn {mh I") (1 . ":;8: {ij {kh {ki
{lh {ii o I") (1 . ”<0/>-r3(;r>++-6= {rn {rn {rn {mg 1") (1 . "<0:;8: {ih {mg {jk {jf {ig n {11 {rn I") (1 .
":/>-r3(;r>-H-6= {rn {rn {rn {mf I") (1 ."):-+:' {rn {ko {if I") (1 ."):-+:' {rn {ig {ho I") (1 . ":336/,:r<*-):
{rn noo njo o o rn o no o o n V V I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {In {mm {i {rn I") (1 .
"99><:r3(;r>++-6= {rn {hn {rn {lm I") (1 . "300/ {rn {rn {hm {lm I") (1 . "/3>l:r,*-9><: {rn noo moo o o
n o n o o o V V V V I") (1 . "300/ {rn {rn {hi {mm I") (1 . "<0:;8: {hk {kk {If {ji {hj n {11 {rn I") (1 .
"<0/>-r3(;r>++-6= {rn {rn {rn {lj I") (1 . "<0:;8: {hi {lj {lj {jk {hj o {ml {rn I") (1 . ":;8: {hh {hg {il {lj
{hfo I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {lh I") (1 . "<0:;8: {go {lg {lh {kk {igo {nh {rn I") (1 . "<0/>-
r3(;r>++-6= {rn {rn {rn {lg I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {If I") (1 . ":/>-r3(;r>++-6= {rn {rn {rn
{ko I") (1 . "):-+:' {rn {hj {gn I") (1 . ",+->687+r<*-): {rn nolqglllojliklmnnl noo fqmlinnmmhikgiimmk o
n o V V I") (1 . ":/>-r3(;r>++-6= {rn {rn {rn {km I") (1 . ":336/,:r<*-): {rn non njo mk o rn o
njqollmfilhglhmfog o o n V V I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {kk I") (1 . ":;8: {gm {kh {hg {kk {gl
o I") (1 . 7061+ {rn nolqglllojliklmnnl njo fqmlinnmmhikgiimmk I") (1 . 7061+ {rn fiqfkglmlhjnhfihlj
njo fqjmmfgijnolknhfj I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {jo {lm {i {rn I") (1 . "<0:;8: {gk {hm {hm {hi
{gj o {jn {rn I") (1 . "<0:;8: {gi {hi (hi {hm {gj n {jl {rn I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {jk I") (1 .
":;8: {gh {hg {il {ji {gg o I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {ji I") (1 . ":/>-r3(;r>++-6= (rn {rn {rn
{jh I") (1 . "):-+:' {rn {ig {gf I") (1 . ":336/,:r<*-): {rn non noo mk o rn o njqollmfilhglhmfog o o n V V I")
(1 . "<0/>-r3(;r>++-6= {rn {rn {rn {jf I") (1 . 7061+ {rn nolqglllojliklmnnl noo fqmlinnmmhikgiimmk I")
(1 . ":/>-r3(;r>++-6= {rn {rn {rn {ig I") (1 . ",+->687+r<*-): {rn fiqfkglmlhjnhfihlj noo fqjmmfgijnolknhfj
o r n o V V I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {hm I") (1 . ":;8: {fo {fn {fn {hm {fm o I") (1 . "<0/>-
r3(;r>++-6= {rn {rn {rn {hi I") (1 . ":/>-r3(;r>++-6= {rn {rn {rn {hj I") (1 . ":336/,:r<*-): {rn noo noo o o
rn o n o o o n V V I") (1 . 7061+ {rn fiqfkglmlhjnhfihlj noo fqjmmfgijnolknhfj I") (1 . ":/>-r3(;r>++-6=
{rn {rn {rn {gj I") (1 . "):-+:’ {rn {gj {fl I") (1 . ":336/,:r<*-): {rn noo moo o o n o n o o o n V V I") (1 .
7061+ {rn nno moo o I"))
)

; Pause for about 3.5 seconds

280

)
(princ)

; Render the objeds
(command "_avreiuler")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1+ counter))
)
(princ)

; Change to South-West isometric view,
(command "vpoint" * '-l,-I.l")

; Render the objects
(command ,l_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1 + countcr))
)
(princ)

; Change to South-East isometric view,
(command "vpoint’1 "1,-1,]")

; Render the objects
(command "_avrender”)

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1 + counter))
)
(princ)

; Change to North-East isometric view,
(command "vpoint" "1,1,1")

; Render the objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1+ counter))
)
(princ)

; Change to North-West isometric view,
(command "vpoint" "-1,1,1")

(setq counter 1.0)
(while (<= counter 500000)

(setq counter (1 + counter))

; Render the objects
(command "_avrender")

; Pause for about 3.5 seconds
(setq counter 1.0)
(while (<= counter 500000)

(setq counter (1+ counter))
)
(princ)

; Creating the 30 mm diameter unfinished model.
(entmake
'((0 . "3DSOLID") (5 . "9A") (100 . "AcDbEntity") (67 . 0) (8 . "CENTRE") (100 .
"AcDbModelerGeometry") (70 . 1) (1 . "noi fk n o ") (1 . "=0;& {n {m (rn {rn I") (1 .
:9@)+r3(;r>++-6= {rn {rn {rn {o {1 {k I") (1 . "3*2/ {j {rn {i {o I") (1 . "-:961:2:1+ {rn o o o o
oqknfffffgiggifhgnj o o o m I") (1 . "):-+:'@>+:2/3>+: {rn l o n g I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn
{m {1 (k I") (1 . ",7:33 {h {rn {rn {g {in I") (1 . ”-:9@)+r3(;r>++-6= {rn {rn {rn {i {1 {k I") (1 . "9><: {rn
{f {no {i {rn {nil ,6183 :1") (1 . "9><: {nm {nl {nk {i {rn {nj ,6183:1") (1 . "300/ {rn {rn {ni
{g 1") (1 . "<0I:r,*-9><: {rn non noo ink o n o njqoHmfilhglhmfog o o n V V o n o V V V V I") (1 .
:9@)+r3(;r>++-6= {rn {rn (rn {f {1 {rn I") (I . "9><: {rn {nh {ng {i {rn {nf ,6183 :1") (1 . "300/ {rn
(rn {mo {f I") (1 . "<01:r,*-9><: {rn hh njo o o n o rnl o o n V V o n o V V V V I") (1 . "<0:;8: {rn {mn
{mm {ml {mk o {no {m I") (1 . "9><: {rn (mj {mi {i {rn {mh 90-(>-; ,6183: I") (1 . "300/ {rn {rn {mg
{nl I") (1 . 7 3 > l:r ,* -9 x : {rn nniqollmfilhglhmfn njo mk o n o n o o o V V V V I") (1 . "<0:;8: {rn {mf
{Io {In {1m o {nk {rn I") (1 . "<0:;8: {m {II (ni {Ik {lj o {no {rn I") (1 . "<0:;8: {rn {ni {11 {li {lh n {no
{rn I") (1 . "<0:;8: {rn {lg {If {ni {mk n {mi {rn I") (1 . ":;8: {rn {ko {kn {ml {km o I") (1 . "9><: {kl {kk
{kj {i {rn {ki 90-(>-; ,6183 :1") (1 . "300/ {rn {rn {ml {nh I") (1 . "<01:r,*-9><: {rn noo njo o o n o nj o o
n V V o n o V V V V I") (I . "<0:;8: {rn {li {li {lg {kh o {ng {rn 1") (1 . "<0:;8: {kg {kf {mo {jo {jn o {nk
{rn I") (1 . "<0:;8: {jm {mo {kf {jl {jk o {nk {rn 1") (1 . "<0:;8: {rn {If {jj {mo {lm n {mi {rn I") (1 . ":;8:
{rn {ji {jh {In {jgo I") (1 . "<0:;8: (rn (mm {ran (jT {io o {no {rn I") (1 . "<0:;8: {rn {in {im {mn {lj n
{kj (rn I") (1 . ":;8: {rn {kn {il {Ik {ik o I") (1 . "<0:;8: {rn {mg {mg {mm {lh o {ng {rn I") (1 . ":;8: {rn
{ko {ij {mm (ii o I") (I . "<0:;8: {rn (jf {ml {mg {kh n {mi {rn 1") (1 . "<0:;8: {rn {ml {In {in {ihn {mi
{rn I") (1 . "):-+:' {rn {ink {ig I") (1 . "):-+:' {rn {lj {if I") (1 . ",+->687+r<*-): {rn fnqkfloflikihjhfgk noo
nmqljkkjkklnlgjohf o rn o V V I") (1 . " :9@)+r3(;r>++-6= {rn {rn {rn {mj {1 {rn 1") (1 . "9><: {ho {rn
{hn {i {rn {hm 90-(>-; ,6183:1") (1 . "300/ {rn {rn {lk {mj I") (1 . 73>l:r,*-9><: {rn noo noo o o rn o rn
o o o V V V V I") (1 . ":;8: {rn {ij {ko {lg {hi o I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {mf I") (1 . "<0:;8:
{rn {lo {mf {hk {hj o {nk {rn I") (1 . "<0:;8: {rn {hi {hi {mf {jn n {hn {rn I") (1 . ":;8: {rn {jh {hh {jo
{hg o 1") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {lo 1") (1 . "<0:;8: {rn {im {in {lo {jk n {kj {rn I") (1 . ":;8:
{rn {hf {ji {jl {go o I") (1 . "<0:;8: {rn {In {hk {hi {gn n {mi {rn I") (1 . "):-+:' {rn {ih {gm I") (1 . "):-+:'
{rn {in {gl I") (1 . ",+->687+r<*-): {rn ghqmgmiogifjijmngi njo hqfjknnjgnjgjgffg o n o V V I") (1 .
"<0:;8: {rn {gk {Ig {II {io n {mi {rn I") (1 . ":;8: {rn {il {ij {jf {gj o I") (1 . "<0:;8: {rn {jl {lk {If {ih o {kj
{rn 1") (1 . "<0:;8: {rn {lk {jl {gk {gi o {kj {rn I") (1 . "):-+:' {rn {gi {gh I") (1 . ":336/,:r<*-): {rn non noo
mk o rn o njqollmfilhglhmfog o o n V V I") (1 . "):-+:' {rn {io {gg I”) (1 . ”:336/,:r<*-): {rn non njo mk o
rn o njqollmfilhglhmfog o o n V V I") (1 . ":;8: {rn {kn {ji {in {gf o I") (1 . 7061+ {rn fnqkfloflikihjhfgk
njo nmqljkkjkklnlgjohf I") (1 . 7061+ {rn fnqkfloflikihjhfgk noo nmqljkkjkklnlgjohf I") (1 .
:9@)+r3(;r>++-6= {rn {rn {rn {kk {1 {rn I") (1 . "300/ {rn {rn {jo {kk I") (1 . "/3>l:r,*-9><: {rn noo moo
o o n o n o o o V V V V I") (1 . ":336/,:r<*-): {rn noo njo o o rn o nj o o n V V I") (1 . "<0:;8: {rn {jj {gk
{kf {hj n {mi {rn I") (1 . ":;8: {rn {hh {hf {hk {fo o I") (1 . "<0:;8: {rn {jo {jo {jj {gn o {hn {rn I") (1 . "):-
+:' {rn {gn {fn 1") (1 . ":336/,:r<*-): {rn hh moo o o n o rnl o o n V V I") (1 ."):-+:' {rn {hj {fm I") (1 .
":336/,:r<*-): {rn hh noo o o rn o rnl o o n V V I") (1 . ":;8: {rn {jh {hh {hi {fl o I") (1 . "/061+ {rn
ghqmgmiogifjijmngi noo hqfjknnjgnjgjgffg 1") (1 . "/061+ {rn ghqmgmiogifjijmngi moo
hqfjknnjgnjgjgffg I") (1 • "<0:;8: {rn {hk {jf {im {gi n {mi {rn I") (1 . ",+->687+r<*-): {rn
nofqjojnhlmjofgf noo nnqiolfjnnnkjkmnmh o n o V V I") (1 . ":;8: {rn {hf {il {im {gf o I") (1 . 7061+ {rn
nofqjojnhlmjofgf noo nnqiolfjnnnkjkmnmh I") (1 . 7061+ {rn nofqjojnhlmjofgf njo nnqiolfjnnnkjkmnmh
I") (1 . ":336/,:r<*-): {rn noo noo o o rn o nj o o n V V I") (1 . ",+->687+r<*-): {rn ghqmgmiogifjijmngi
njo rhqfjknnjgnjgjgffg o rn o V V 1") (1 . 7061+ {rn ghqmgmiogifjijmngi moo rhqfjknnjgnjgjgffg I") (1 .
7061+ {rn ghqmgmiogifjijmngi noo rhqfjknnjgnjgjgffg I") (1 . ":336/,:r<*-): {rn noo moo o o n o n j o o n
V V I"))
)

282

; Pause Tor about 3.5 seconds
(setq counter 1.0)
(while (<= counter 500000)

(setq counter (1+ counter))
)
(princ)

; Render ihe objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1 + counter))
)
(princ)

; Change to South-West isometric view,
(command "vpoint" "-1,-1,1”)

; Render the objects
(co m m an d av ren d e r")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1 + counter))
)
(princ)

; Change to South-East isometric view,
(command "vpoint" "1,-14 ")

; Render the objects
(command "_avrender'1)

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1+ counter))
)
(princ)

; Change to North-East isometric view,
(command "vpoint" "1,1,1")

; Render the objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1 + counter))
)
(princ)

; Change to North-West isometric view.

(command "vpoint" "-1,1,1")

; Render the objects
(command "_avrender")

; Pause for about 3.5 seconds
(setq counter 1.0)
(while (<= counter 500000)

(setq counter (1+ counter))
)
(princ)

; Creating the 40 mm diameter unfinished model.
(entmake
'((0 . "3DSOLID") (5 . "9C") (100 . "AcDbEntity") (67 . 0) (8 . "CENTRE") (100 .
"AcDbModelerGeometry") (70 . 1) (1 . "noi nlm n o ") (1 . "=0;& {n {m {rn {rn I") (1 .
:9@)+r3(;r>++-6= {rn {rn {rn {o {1 {k I") (1 . "3*2/ {j {rn {i {o I") (1 . "-:961:2:1+ {rn o o o o
oqknfffffgiggifhgnj o o o m I") (1 . "):-+:'@+:2/3>+: {rn 1 o n g I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn
{ill {I {k I") (1 . ",7:33 (h {rn {rn {g {m I") (I . "-:9®)+r3(;r>++-6= {rn {rn {rn {i {1 {k I") (1 . "9><: {rn
{f {no {i {rn {nn ,6183:1") (1 . " 9 x : {rn {nm {nl {i {rn { n k , 6183: 1") (1 . "300/ {rn {rn {nj
{g I") (1 . 7 3 > I:r ,* -9 x : {rn nniqollmfilhglhmfn njo mk o n o n o o o V V V V I") (1 . " 9 x : {ni {nh {ng
{i {rn {n f , 6183: 1") (1 . "300/ {rn {rn {mo {f I") (1 . "< 01 :r,* -9x : {rn non noo m k o n o
njciollmi'ilhglhmt'og o o n V V o n o V V V V I") (1 . "<0:;8: {rn {mn {mn {mm {ml o {no {rn I") (1 .
:9@)+r3(;r>++-6= {rn {rn {rn {nm {1 {rn I") (1 . " 9 x : {mk {mj {mi {i {rn {mh ,6183:1") (1 .
"300/ {rn {rn {mg {nm I") (1 . "< 01 :r,* -9x : {rn nmm njo o o r n o i o o n Y V o n o V V V V I") (1 .
"<0:;8: {rn {mf {lo {In {lm o {nl {rn I") (1 . "<0:;8: {rn {nj {nj {mf {11 o {no {rn I") (1 . "<0:;8: {rn {In
{lk {nj {ml n {1 j (rn I") (1 . ":;8: {rn {li {lh {ram {Ig o I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn {nh {1 {rn
I") (I . " 9 x : {If {ko {kn {i {rn {km 90-(>-; ,6183 :1") (1 . "3 0 0 /{rn {rn {kl {nh I") (1 . "< 01 :r,* -9x : {rn
hh njo o o ii o rnl o o n V V o n o V V V V I") (1 . "<0:;8: {rn {kk {kj {ki {kh o {ng {rn I") (1 . "<0:;8: {rn
{kg {mo {mn {11 n {nl {rn I") (1 . "<0:;8: {rn {mo {kg {kf {jo o {nl {rn I") (1 . "<0:;8: {rn {jn {mm {mo
{lm n {lj {rn I") (1 . ":;8: {rn {jm {li {In {jl o I") (1 . ":;8: {rn {lh {li {mf {jk o I") (1 . "<0:;8: {rn {mm {jj
{kg {jt n {lj {rn I") (1 . "300/ {rn {rn {In {jh I") (I . "):-+:’ {rn {lm {jg 1") (1 . "):-+:' {rn {ji {jf I") (1 .
":336/,:r<*-): {rn noo njo o o rn o mo o o n V V I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn {mj {1 {rn I") (1 .
"9><: {io {in {im {i {rn {il 90-(>-; ,6183 :1") (1 . "300/ {rn {rn {ik {mj I") (1 . " /3 > l:r ,* -9 x : {rn noo
moo o o n o n o o o V V V V 1") (1 . "<0:;8: {rn {ij {ii {ill {ig o {mi {rn I") (1 . "<0:;8: {if {ho {mg {hn
{hm o {ng {rn I") (1 . "<0:;8: {hi {mg {ho {ik {hk o {ng {rn I") (1 . "<0:;8: {rn {hj {jn {mg {kh n {lj {rn
I") (1 . ":;8: {rn {hi {hh {ki {hg o I") (1 . "<0:;8: {rn {lo {mf {lk {ji o {nl {rn I") (1 . "<0:;8: {rn {hf {go
{lo {jo n {im {rn I") (1 . ":;8: {rn {gn {jm {kf {gm o I") (1 . "<0:;8: {rn {ki {In {go {gl n {lj {rn I") (1 .
"):-+:' {rn {gl {gk I") (1 . ",+->687+r<*-): {rn nnlqnnjmmimlgmjinn noo njqofflijjhlkoiook o n o V V I")
(1 . ":336/,:r<*-): {rn non njo mk o rn o njqollmfilhglhmfog o o n V V I") (1 . "<0:;8: {rn {lk {ih {hf {gj n
{lj {rn I") (1 . ":;8: {rn {lh {gn {lk {gi o I") (1 . " 9 x : (rn {rn {lj (J {rn (gh 90-(>-; ,6183:1") (1 . "/061+
{rn nnlqnnjmmimlgmjinn njo njqofflijjhlkoiook I") (1 . '7061+ {rn ggqngillljjlhhniok njo
niqnlgoifkljmjfjmkI") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn (ko (1 {rn I")(I . " 9 x : {rn {jh {gg {i {rn {gh
90-(>-; ,6183 :1") (1 . "300/ {rn {rn {kf {ko I") (1 . 7 3 > l:r ,* -9 x : {rn noo noo o o rn o rn o o o V V V V
I") (1 . "<0:;8: {rn {gf {fo {kj {hk n {kn {rn I") (1 . "<0:;8: {fn ffln {kl {11 {iko {mi {rn I") (1 . "<0:;8: {fj
{kl {fm {fi { ft o {mi {rn I") (1 . "<0:;8: {rn {jj {hj {kl {ig n {lj {rn I") (1 . ":;8: {rn {fg {ff {ih {noo o I")
(1 . "<0/>-r3(;r>++-6= {rn {rn {rn {kk I") (1 . "<0:;8: {rn {kj {kk {non {nom o {ng {rn I") (1 . "<0:;8: {rn
{go {noi {kk {hm n {im {rn I") (I . ":;8: {rn {hh (nok {hn (noj o I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn
(kj I") (1 . ":;8: (rn (noi {hi {ik (noh o I") (1 . "<0:;8: {rn {ih {ki {fo {nog n {lj {rn I") (1 . "):-+:' {rn
{nog (nof I") (1 ."):-+ :' {rn {hm {nno I") (1 . ",+->687+r<*-): {rn nnfqmhmhmhmhmhmhmh njo
jqlkklknmjifgnklifh o rn o V V I") (1 . "<0:;8: {rn {fi {kf {jj {gj o {im {rn I") (1 . "<0:;8: {rn {kf {hn {jn
{gl o (im {rn 1") (I ."):-+ :' {rn (ji {nnn I") (1 . ":336/,:r<*-): {rn non noo mk o rn o njqollmfilhglhmfog o
o n V V I") (1 . ":;8: {rn {hh {jm {go {nnm o I") (1 . "/061+ {rn nnlqnnjmmimlgmjinn noo
njqofflijjhlkoiook I") (1 . ":;8: {rn {gn {fg {hf {nnm o 1") (1 . ",+->687+r<*-): (rn ggqngillljjlhhniok noo
niqnlgoifkljmjfjmk o rn o V V I") (1 . "< 01 :r,* -9x : {rn noo njo o o n o mo o o n V V o n o V V V V I")
(1 . "300/ {rn {rn {non {in I") (1 . "<0:;8: {rn {fl {ik {nnl {nnko {kn {rn I”) (1 . "<0:;8: {rn {ik {fl {hj
{nog o {kn {rn I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {ij I") (1 . "<0:;8: {rn {ii {ij {nnj {nni o {mi {rn I")
(1 . "<0:;8: {rn {fo {gf {ij {fk n {kn {rn I") (1 . ":;8: {rn {ff {nnh {fl {nng o I") (1 . "<0/>-r3(;r>++-6= {rn

284

{rn {rn {ii I") (1 . "<0:;8: {rn {nol {hf {ii {fir n {im {rn I") (1 . ":;8: {rn {nnf {fg {fi {nmo o I") (1 .
{rn {gj (nmn I") (1 . {rn {fk {nmml") (1 . ",+->687+r<*-): {rn glqkhgmiogifjijmnf njo
nnqmhogjllggjljknk o n o V V I") (1 . "<0:;8: {rn {nml {nnl {ho {nom n {gg {rn I") (1 . ":;8: {rn {nok
{noi {non {nmk o I") (1 . "<0:;8: {rn {hn {fi {nml {nmj o {im {rn I") (1 . {rn {nmj {nmi I") (1 .
":336/,:r<*-): {rn nmm noo o o r n o i o o n V V I") (1 . {rn {nom {nmh I") (1 . ":336/,:r<*-): {rn
nmm moo o o n o i o o n V V I") (1 . ":;8: {rn {ff {hi {fo {nmg o I") (1 . 7061+ {rn
nnfqmhmhmhmhmhmhmh moo jqlkklknmjifgnkhfh I") (1 . "/061+ {rn nnfqmhmhmhmhmhmhmh noo
jqlkklknmjifgnkhlh I") (1 . "/061+ {rn ggqngillljjlhhniok noo niqnlgoifkljmjfjmk I") (1 . ":336/,:r<*-): {rn
noo noo o o rn o mo o o n V V I") (1 . "<0:;8: {rn {non {nnj {gf {nnk n {gg {rn I") (1 . ":;8: {rn {noi {nnh
{gf {nmg o I") (1 . "<0:;8: {rn {nnl {nml {fm {nni n {gg {rn I") (1 . ":;8: {rn {nnh {nnf {nnj {nmf o I") (1
."):-+:' {rn {nnk {nlo I") (1 . ":336/,:r<*-): {rn hh moo o o n o r n l o o n V V I") (1 . "):-+:' {rn {nni {nln
I") (1 . ":336/,:r<*-): {rn hh noo o o rn o rnl o o n V V I") (1 . 7061+ {rn glqkhgmiogifjijmnf noo
nnqmhogjllggjljknk I") (1 . 7061+ {rn glqkhgmiogifjijmnf moo nnqmhogjllggjljknk I") (1 . "<0:;8: {rn
{nnj {non {nol {nmj n {gg {rn I") (1 . ",+->687+r<*-): {rn nnfqmhmhmhmhmhmhmh njo
rjqlkklknmjifgnkhfh o n o V V I") (1 . ":;8: {rn {nnf {nok {nol {nnm o I") (1 . 7061+ {rn
nnfqmhmhmhmhmhmhmh noo rjqlkklknmjifgnkhfh I") (1 . 7061+ {rn nnfqmhmhmhmhmhmhmh moo
rjqlkklknmjifgnkhfh I") (1 . ":336/,:r<*-): {rn noo moo o o n o m o o o n V V I") (1 . ”,+->687+r<*-): {rn
glqkhgmiogitjijmnf njo rnnqmhogjllggjljknk o rn o V V I") (1 . 7061+ {rn glqkhgmiogifjijmnf moo
rnnqmhogjllggjljknk I") (1 . 7061+ {rn glqkhgmiogifjijmnf noo rnnqmhogjllggjljknk I"))
)

; Pause for about 3.5 seconds
(setq counter 1.0)
(while (<= counter 500000)

(setq counter (1+ counter))
)
(princ)

; Render the objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1+ counter))
)
(princ)

; Change to South-West isometric view.
(command "vpoint" "-1,-1,1")

; Render the objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1+ counter))
)
(princ)

; Change to South-East isometric view.
(command "vpoint" "1,-1,1")

; Render the objects
(command "_avrender")

; Pause for about 2 seconds

285

)
(princ)

; Change to North-East isometric view.
(command "vpoint" "1,1,1")

; Render the objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1+ counter))
)
(princ)

; Change to North-West isometric view.
(command "vpoint" "-1,1,1")

; Render the objects
(command "_avrender")

; Pause for about 3.5 seconds
(setq counter 1.0)
(while (<= counter 500000)

(setq counter (1+ counter))
)
(princ)

; Creating the 50 mm diameter unfinished model.
(entmake
'((0 . "3DSOLID") (5 . "9E") (100 . "AcDbEntity") (67 . 0) (8 . "CENTRE") (100 .
“AcDbModelerGeometry") (70 . 1) (1 . "noi nif n o ") (1 . "=0;& {n {m {rn {rn I") (1 .
:9@)+r3(;r>++-6= {rn {rn (rn {o {1 {k i") (I . "3*2/ {j {rn {i {o I") (1 . "-:961:2:1 + {rn o o o o
oqknffflfgiggifhgnj o o o m I") (1 . "):-+:'@+:2/3>+: {rn l o n g I") (1 . "-:9@)+r3(;i>++-6= {rn {rn {rn
{m {I {k I") (1 . ",7:33 {h {rn {rn {g {m I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn {i {1 {k I") (1 . "9><: {rn
{f {no {i (rn {nil ,6183 :1") (1 . ”9><: (rn {nm {nl {i {rn {nk ,6183:1") (1 . "300/ {rn {rn {nj
(g I") (1 . 73>l:r,*-9><: {rn nniqollmfilhglhmfn n j o m k o n o n o o o V V V V I") (1 . "9><: {rn {ni {nh
{i (rn {ng ,6183:1") (1 , "300/ {rn {rn {nf {F I") (1 . "<01:r,*-9><: {rn nno noo rm f o n o h o o n V
V o n o V V V V I") (1 . "<0:;8: (rn {mo (mo {mn {mm o {no {rn I") (1 . "9><: {rn {ml {mk {i {rn {mj -
:):-,:; ,6183:1") (1 . "300/ {rn {rn (mi {nm I") (1 . "/3>l:r,*-9><: {rn nnh nhj rm f o n o n o o o V V V V
I") (1 . "<0:;8: (rn (mb (mg {mf {lo o (nl (rn I") (I . "<0:;8: {rn {nj {nj {In {lm o {no {rn I") (1 . "<0:;8:
{rn {11 {lk {nj {ram n {lj {rn 1") (I . ":;8: (rn {li {lh {mn {lg o I") (1 . "9><: {If {ko {kn {i {rn {km
,6183 :1") (1 . "3 0 0 /(rn (rn (kl (ni l")(l . "<01:r,*-9><: {rn non noo mk o n o njqollmfilhglhmfog o o n
V V o n o V V V V I") (I . "<0:;8: {rn {kk {kk (kj (ki o {nh {rn I") (1 . "<0:;8: {rn {kh {nf {kg {kf o {nl
(rn I") (I . "<():;8: {rn (nf (kh {kk (jo n {nl {rn I") (1 . "<0:;8: {rn {kj {jn {nf {lo n {jm {rn 1") (1 . ":;8:
{rn (jl {jk {mf {jj o I") (I . "<0:;8: {rn {ji [kl {mo {lm n {mk {rn I") (1 . ":;8: {rn {lh {li {In {jh o 1") (1 .
"<0:;8: {rn (jg (mn (kl {jf n (Ij {rn I") (I . "<0:;8: {rn {mn {io {ji {in n {lj {rn I") (1 . "300/ {rn {rn {11
{im 1") (I . "):-+:' (rn (jf (il I") (I ."):-+ :' {rn {in {ik I") (1 . ":336/,:r<*-): {rn noo njo o o r n o m j o o n V
V I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn {ml {I {rn I") (1 . "9><: {ij {ii {ih {i {rn {ig -:):-,:; ,6183 :1") (1
. "300/ {rn {rn {if {ml I") (1 . "<01 :r,*-9><: {rn nmm n j o o o r n o i o o n V V o n o V V V V I") (1 .
"<0:;8: {rn {In {ho {11 {jf o {mk {rn I") (1 . "<0:;8: {rn {mi {mi {mg {jo o {nh {rn I") (1 . "<0:;8: {rn {hn
{mf {mi {ki n {jm {rn I") (1 . ":;8: {rn {hm {jl {kj {hi o I") (1 . "<0:;8: {rn {mg {mh {hn {hk o {nl {rn I")
(1 . "<0:;8: {rn {hj {hi {mh {kf n {hh {rn I") (1 . ":;8: {rn {jk {hg {kg {hf o 1") (1 . ":;8: {rn {jl {hm {mg
{go o I") (1 . "<0:;8: {rn {mf {gn {hj {gm n {jm {rn I") (1 . "300/ {rn {rn {mf {gl I") (1 . "):-+:' {rn {lo

(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1+ counter))

286

(gk I") (1 . {rn {kf {gj I") (1 . ",+->687+r<:|i-): {rn nnnqjkhilgjifflffg noo rmmqnhlmmgohfllnolf o
rn o V V I") (1 . "<0:;8: {rn {ho {In {lk {in o {mk {rn I") (1 . ":336/,:r<*-): {rn non njo mk o rn o
njqollmfilhglhmfog o o n V V I") (1 . "<0:;8: {rn {gi {11 {gh {gg n {lj {rn I") (1 . ":;8: {rn {gf {li {11 {fo o
I") (1 . "<0:;8: {rn {lk {fn {fm {fl n {lj {rn I") (1 . ":;8: {rn {lh {fk {lk {fj o I") (1 . "9><: {rn {rn {lj {i {rn
{fi 90-(>-; ,6183 :1") (1 . 7061+ {rn nnjqkomiglhgggjnnf njo nfqifnjjkgkmnlnnfh I") (1 . 7061+ {rn
giqmgggmkononogfjk njo moqfokilmllmfnmnmf I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn {ko {1 {rn I") (1
. "9><: {fh {fg {ff {i {rn {noo 90-(>-; ,6183:1") (1 . "300/ {rn {rn {non {ko I") (1 . "<01:r,*-9><: {rn hh
njo o o n o rnl o o n V V o n o V V V V I") (1 . "<0:;8: {rn {nom {nol {gi {noko {kn {rn I") (1 . "<0:;8:
{rn {kl {ji {noj {noi o {mk {rn I") (1 . "<0:;8: {rn {noh {kj {kh {hkn {jm {rn I") (1 . "):-+:' {rn {hk {nog
I") (1 . ":336/,:r<*-): {rn noo nhj o o rn o mj o o n V V I") (1 . ":;8: {rn {hg {hm {hn {nof o I") (1 . "<0:;8:
{rn {nno {kg {jn {gm o {hh {rn I") (1 . "<0:;8: {rn {kg {nnn {noh {nnm o {hh {rn I") (1 . "300/ {rn {rn
{noj {fg I") (1 ."):-+ :' {rn {nnm {nnl I") (1 . ":336/,:r<*-): {rn nno noo rm f o rn o h o o n V V I") (1 .
":336/,:r<*-): {rn nno nhj rm f o m o h o o n V V I") (1 . "<0:;8: {rn {jn {nnk {nnj {nni n {jm {rn I") (1 .
":;8: {rn {jk {nnh {hj {nng o I") (1 . "9><: {rn {im {jm {i {rn {fi 90-(>-; ,6183: I") (1 . 7061+ {rn
nnnqjkhilgjifflffg nhj rmmqnhlmmgohfllnolf I") (1 . 7061+ {rn nnnqjkhilgjifflffg noo
rmmqnhlmmgohfllnolf I") (1 . "<0:;8: {rn {nnf {jg {if {nok n {lj {rn I") (1 . "<0:;8: {rn {noj {nno {jg {gg
o {hh {rn I") (1 . ":;8: {rn {nmo {gf {gh {nng o I") (1 . "):-+:' {rn {gg {nmn I") (1 . ",+->687+r<*-): {rn
nnjqkomiglhgggjnnf noo nfqifnjjkgkmnlnnfh o n o V V I") (1 . "<0:;8: {rn {io {nnf {non {nmm n {lj {rn
I") (1 . "<0:;8: {rn {nnn {noj {io {11 o {hh {rn I") (1 . ":;8: {rn {fk {nml {fm {nng o I") (1 . "):-+:' {rn {in
{nmk I") (1 . ",+->687+r<*-): {rn giqmgggmkononogfjk noo moqfokilmllmfnmnmf o rn o V V I") (1 .
"<01:r,*-9><: {rn noo njo o o n o m j o o n V V o n o V V V V I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn {ii
{1 {rn I") (1 . "9><: {nmj {gl {hh {i {rn {nmi 90-(>-; ,6183:1") (1 . "300/ {rn {rn {nmh {ii I") (1 .
"/3>l:r,*-9><: {rn noo moo o o n o n o o o V V V V I") (1 . "<0:;8: {rn {nmg {nmf {fn {nmm o {ih {rn
I") (1 . "<0:;8: {nlo {nnj {if {nno {nln o {kn {rn I") (1 . "<0:;8: {nlm {if {nnj {nmh {nil o {kn {rn I") (1 .
":;8: {rn {nlk {nmo {gi {nlj o I") (1 . "<0:;8: {rn {fm {gh {ho {noi n {hh {rn I") (1 . ":;8: {rn {fk {gf {noj
{nli o I") (1 . "<0:;8: {rn {nlh {hn {hi {nnm n {jm {rn I") (1 . 7061+ {rn nokqjhljofnkjmjiim nhj
rmkqjhgnoomfkhlfnom I") (1 . ",+->687+r<*-): {rn nokqjhljofnkjmjiim noo rmkqjhgnoomfkhllnom o n o
V V I") (1 . "<0:;8: {rn {gh {hj {nom {nln n {hh {rn I") (1 . "<0:;8: {rn {hi {fm {nmf {nig n {hh {m I") (1
. ":;8: {rn {nlf {hg {hi {nng o I") (1 . 7061+ {rn nokqjhljofnkjmjiim noo rmkqjhgnoomfkhlfnom I") (1 .
"<0:;8: {rn {gn {nlh {nko {nkn n {jm {rn I") (1 . "<0:;8: {rn {nol {nom {gn {nni o {kn {rn I") (1 . ":;8:
{rn {nnh {nkm {gn {nkl o I") (1 . "):-+:' {rn {gm {nkk I") (1 . ":336/,:r<*-): {rn noo noo o o rn o mj o o n
V V I") (1 . "<0:;8: {rn {fn {gi {nkj {nki n {lj {rn I") (1 ."):-+:' {rn {nln {nkh I") (1 . 7061+ {rn
nnjqkomiglhgggjnnf noo nfqifnjjkgkmnlnnfh I") (1 . ":;8: {rn {nml {nkg {fn {nkfo I") (1 ."):-+:' {rn {fl
{njo I") (1 . 7061+ {rn giqmgggmkononogfjk noo moqfokilmllmfnmnmf I") (1 . "-:9@)+r3(;r>++-6= {rn
{rn {rn {fg {1 {rn I") (1 . "/3>l:r,*-9><: {rn noo noo o o r n o r n o o o V V V V I") (1 . "<0:;8: {rn {nko
{nkj {nol {nil n {ff {rn I") (1 . "<0:;8: {njn {njm {non {njl {njk o {ih {rn I") (1 . "<0:;8: {njj {non {njm
{nnn {nig o {ih {rn I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {nom I") (1 . ":;8: {rn {nmo {nnh {nno {nji o
I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {nol I") (1 . ":;8: {rn {nkm {nlk {nmh {njh o I") (1 ."):-+:' {rn {nki
{njg I") (1 . ",+->687+r<*-): {rn nmkqlgilililililil njo jqjojommnmkgkjhii o rn o V V I") (1 . ":336/,:r<*-):
{rn non noo mk o rn o njqollmfilhglhmfog o o n V V I") (1 . "<0:;8: {rn {nnk {noh {njm {njf n {jm {rn I")
(1 . ":;8: {rn {nlf {nml {nnn {nio o I") (1 . "):-+:' {rn {njf {nin I") (1 . "<0:;8: {rn {njl {nmh {nnk {nkn o
{ff {rn I") (1 . ":;8: {rn {nkm {nim {nko {nil o I") (1 ."):-+:' {rn {nni {nik I") (1 . ",+->687+r<*-): {rn
nmkqlgilililililil njo rjqjojommnmkgkjhii o n o V V I") (1 . '7061+ {rn nmkqlgilililililil noo
rjqjojommnmkgkjhii I") (1 . "<0:;8: {rn {nmh {njl {nnf {nki o {ff {rn I") (1 . ":;8: {rn {nkg {nlk {nkj {nil
o I") (1 . 7061+ {rn nmkqlgilililililil noo jqjojommnmkgkjhii I") (1 ."):-+:' {rn {njk {nij I") (1 . ",+-
>687+r<*-): {rn hgqjgifjijmnhlfnmj njo nmqfomhhliflfgngmg o n o V V I") (1 . '7061+ {rn
hgqjgifjijmnhlfnmj noo nmqfomhhliflfgngmg I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {nmg I") (1 . "<0:;8:
{rn {nmf {nmg {nlh {njf o {ih {rn I") (1 . "<0:;8: {rn {nkj {nko {nmg {njk n {ff {rn I") (1 . ":;8: {rn {nkg
{nim {njl {nii o I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {nmf I") (1 . ”:336/,:r<*-): {rn nmm noo o o rn o i o
o n V V I") (1 . ":336/,:r<*-): {rn nmm moo o o n o i o o n V V I") (1 . 7061+ {rn nmkqlgilililililil moo
jqjojommnmkgkjhii I") (1 . ":;8: {rn {nim {nlf {nlh {nih o 1") (1 . ":336/,:r<*-): {rn hh noo o o rn o rnl o o
n V V I") (1 . 7061+ {rn hgqjgifjijmnhlfnmj noo rnmqfomhhliflfgngmg I") (1 ."):-+ :' {rn {nkn {nig I") (1
. ":336/,:r<*-): {rn noo moo o o n o m j o o n V V I") (1 . 7061+ {rn nmkqlgilililililil moo
rjqjojommnmkgkjhii I") (1 . 7061+ {rn hgqjgifjijmnhlfnmj moo nmqfomhhliflfgngmg I") (1 . ":336/,:r<*-
): {rn hh moo o o n o rnl o o n V V I") (1 . ",+->687+r<*-): {rn hgqjgifjijmnhlfnmj njo
rnmqfomhhliflfgngmg o rn o V V 1") (1 . 7061+ {rn hgqjgifjijmnhlfnmj moo rnmqfomhhliflfgngmg I"))
)

287

; Pause for about 3.5 seconds
(setq counter 1.0)
(while (<= counter 500000)

(setq counter (1 + counter))
)
(princ)

; Render the objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1+ counter))
)
(princ)

; Change to South-West isometric view,
(command "vpoint" " -1 ,-U ")

; Render the objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1 + counter))
)
(princ)

; Change to South-East isometric view,
(command "vpoint" "] ,- l , l")

; Render the objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1 + counter))
)
(princ)

; Change to Norih-East isometric view,
(command "vpoint" "1,1,1")

; Render the objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1+ counter))
)
(princ)

; Change to North-West isometric view,
(command "vpoint" "-1,1,1")

288

; Render the objects
(command "_avrender")

; Pause for about 3.5 seconds
(setq counter 1.0)
(while (<= counter 500000)

(setq counter (1+ counter))
)
(princ)

; Creating the 60 mm diameter unfinished model.
(entmake
'((0 . "3DSOLID") (5 . "9D") (100 . "AcDbEntity") (67 . 0) (8 . "CENTRE") (100 .
"AcDbModelerGeometry") (70 . 1) (1 . "noi njm n o ") (1 . "=0;& (n {m {rn {rn I") (1 .
:9@)+r3(;r>++-6= {rn {rn {rn {o {1 {k I") (1 . "3*2/ {j {rn {i {o I") (1 . "-:961:2:1+ {rn o o o o
oqknfffffgiggifhgnj o o o i n I") (1 . "):-+:'@+:2/3>+: {rn l o n g I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn
{m {1 {k I") (1 . ",7:33 {h {rn {rn {g {m I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn {i {1 {k I") (1 . "9><: {rn
{f {no {i {rn {nn ,6183 :1") (1 . "9><: {rn {nm {nl {i {rn {nk ,6183 :1") (1 . "300/ {rn {rn {nj
{g I") (1 . "/3>l:r,*-9><: {rn nniqollmfilhglhmfn njo mk o n o n o o o V V V V I") (1 . "9><: {ni {nh {ng
{i {rn {nf ,6183:1") (1 . "300/ {rn {rn {mo {f I") (1 . "<01:r,*-9><: {rn nno noo rm f o n o h o o n V
V o n o V V V V I") (1 . "<0:;8: {rn {mn {mn {mm {ml o {no {rn I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn
{nm {1 {rn I") (1 . "9><: {rn {mk {mj {i {rn {mi ,6183:1") (1 . "300/ {rn {rn {mh {nm I") (1 .
"<01:r,*-9><: {rn hh njo o o n o rnl o o n V V o n o V V V V I") (1 . "<0:;8: {rn {mg {mf {lo {In o {nl
{rn I") (1 . "<0:;8: {rn {nj {nj {lm {11 o {no {rn I") (1 . "<0:;8: {rn {lk {lj {nj {ml n {li {rn I") (1 . ":;8: {rn
{lh {lg {mm {If o I") (1 . "9><: {rn {ko {kn {i {rn {km-:):-,:; ,6183: I") (1 . "300/ {rn {rn {kl {nh I") (1 .
"/3>l:r,*-9><: {rn nnh nhj rm f o n o n o o o V V V V I") (1 . "<0:;8: {rn {kk {kj {ki {kh o {ng {rn I") (1 .
"<0:;8: {rn {kg {mo {kf {jo o {nl {rn I") (1 . "<0:;8: {rn {mo {kg {jn {jmn {nl {rn I") (1 . "<0:;8: {rn {jl
{jk {mo {In n {li {rn I") (1 . ":;8: {rn {jj {ji {lo {jh o 1") (1 . "<0:;8: {rn {jg {jf {mn {11 n {kn {rn I") (1 .
":;8: {rn {lg {lh {lm {io o I") (1 . "<0:;8: {rn {jk {mm {jf {in n {li {rn I") (1 . "<0:;8: {rn {mm {im {jg {il
n {li {rn I") (1 . "300/ {rn {rn {lk {ik I") (1 . "):-+:' {rn {in {ij I") (1 . "):-+:' {rn {il {ii I") (1 . ":336/,:r<*-):
{rn noo njo o o rn o lo o o n V V I") (1 . "9><: {ih {ig {if {i {rn {ho ,6183 :1") (1 . "300/ {rn {rn {jf
{mk I") (1 . "<01:r,*-9><: {rn non noo mk o n o njqollmfilhglhmfog o o n V V o n o V V V V 1") (1 .
"<0:;8: {rn {jn {jn {jl {hn o {mj {rn I") (1 . "<0:;8: {hm {hi {mh {hk {hj o {ng {rn I") (1 . "<0:;8: {hi {mh
{hi {hh {hg o {ng {rn 1") (1 . "<0:;8: {rn {im {hf {mh {kh n {li {rn I") (1 . ":;8: {rn {go {gn {ki {gm o I")
(1 . "<0:;8: {rn {mf {mg {gl {gk o {nl {rn I") (1 . "<0:;8: {rn {gj {gi {mg {jo n {gh {rn I") (1 . ":;8: {rn {ji
{gg {kf {gf o I") (1 . "< 0 :;8 : {rn {kl {kl {mf {jm o {mj {rn I") (1 . " :;8 : {rn {jj {fo {mf {fn o I") (1 .
"<0:;8: {rn {gl {lo {kl {hn n {li {rn I") (1 . "<0:;8: {rn {lo {lk {gj {fm n {li {rn I") (1 . "):-+:’ {rn {In {fl
I") (1 . "):-+:' {rn {jo {fk I") (1 . ",+->687+r<*-): {rn nnjqffmkkfiiglonif noo rmjqlgnfnlfohkgmnhm o rn o
V V I") (1 . "<0:;8: {rn {fj {lm {lj {il o {kn {rn I") (1 . "<0:;8: {rn {lm {fj {lk {in o {kn {rn I") (1 .
":336/,:r<*-): {rn non njo mk o rn o njqollmfilhglhmfog o o n V V I") (1 . ":;8: {rn {fi {lh {lk {fh o I") (1 .
"<0:;8: {rn {lj {ki {fg {ff n {li {rn I") (1 . ":;8: {rn {lg {noo {lj {non o 1") (1 . "9><: {rn {rn {li {i {rn
{nom 90-(>-; ,6183: I") (1 . 7061+ {rn nnjqfigmlnkllijlki njo mjqlfhnjhomljfhhhn 1") (1 . 7061+ {rn
giqnffghfkgkgfohmf njo miqilhjojomnkimggi I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn {ko {1 {rn I") (1 .
"9><: {nol {nok {noj {i {rn {noi 90-(>-; ,6183:1") (1 . "300/ {rn {noh {nog {ko I") (1 . "<01:r,*-9><: {rn
nmm njo o o r n o i o o n V V o n o V V V V I") (1 . ":;8: {rn {fo {jj {jl {nof o I") (1 . "<0/>-r3(;r>++-6=
{rn {rn {rn {kk I") (1 . "<0:;8: {rn {kj {kk {nno {nnn o {ng {rn I") (1 . "<0:;8: {rn {nnm {nnm {kk {hj n
{nnl {rn I") (1 . ":;8: {rn {gn {nnk {hk {nnj o I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {kj I") (1 . "<0:;8: {rn
{gi {fg {kj {hg n {gh {rn I") (1 . ":;8: {rn {nni {go {hh {nnh o I") (1 . "<0:;8: {rn {ki {nno {nnm {nng n
{li {rn 1") (1 . "):-+:' {rn {ff {nnf I") (1 . "):-+:' {rn {hj {nmo I") (1 . ",+->687+r<*-): {rn
hmqiogifjijmnhlfoh njo nmqmljgihnffjlflgj o n o V V I") (1 . "<0:;8: {rn {nmn {jl {kg {gk n {li {rn I") (1 .
":;8: {rn {gg {fo {gl {nmm o I") (1 . "<0:;8: {rn {nml {kf {jk {fm o {gh {rn I") (1 . "<0:;8: {rn {kf {hh
{nmn {nm ko {gh {rn I") (1 . "300/ {rn {rn {nml {ig I") (1 ."):-+:' {rn {nmk {nmj 1") (1 . ":336/,:r<*-):
{rn nno noo rm f o r n o h o o n V V I") (1 . "):-+:' {rn {gk {nmi I") (1 . ":336/,:r<*-): {rn nno nhj rmf o rn o
h o o n V V I") (1 . ":;8: {rn {ji {fi {gj {nmh o I") (1 . "/061+ {rn nnjqffmkkfiiglonif nhj
rmjqlgnfnlfohkgmnhm 1") (1 . "/061+ {rn nnjqffmkkfiiglonif noo rmjqlgnfnlfohkgmnhm I") (1 . "<0:;8:
{rn {jf {jg {nml {nmg o {kn {rn I") (1 . "):-+:' {rn {fm {nmf I") (1 . ",+->687+r<*-): {rn
nnjqfigmlnkllijlki noo mjqlfhnjhomljfhhhn o n o V V I") (1 . "<0:;8: {rn {hh {nml {im {ff o {gh {rn 1") (1

289

. ":;8: {rn {noo {go {fg {nmh o I") (1 . {rn {il {nlo I") (1 . ",+->687+r<*-): {rn giqnffghfkgkgfohmf
noo miqilhjojomnkimggi o rn o V V I") (1 . "<01 :r,*-9><: {rn noo njo o o n o l o o o n V V o n o V V V V
I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn {ig {1 {rn I") (1 . "9><: {nln {ik {nlm {i {rn {nil 90-(>-; ,6183:1")
(1 . "300/ {rn {gh {nlk {ig I") (1 . "/3>l:r,*-9><: {rn noo noo o o r n o r n o o o V V V V I") (1 . "300/ {rn
{rn {nlj {ko I") (1 . "<0:;8: {nli {nog {nog {nlh {nig o {if {rn I") (1 . ":336/,:r<*-): {rn noo nhj o o rn o lo
o o n V V I") (1 . "<0:;8: {rn {hf {nmn {hi {nnn n {li {rn I") (1 . ":;8: {rn {nnk {nni {nno {nlf o I") (1 .
"<0:;8: {rn {hk {hk {hf {nng o {nnl {rn I") (1 . "300/ {rn {rn {hk {nok I") (1 . {rn {nng {nko I") (1 .
":336/,:r<*-): {rn hh moo o o n o nil o o n V V I") (1 . {rn {nnn {nkn I") (1 . ":336/,:r<*-): {rn hh
noo o o rn o rnl o o n V V I") (1 . ":;8: {rn {gn {nnk {nnm {nkm o I") (1 . 7061+ {rn hmqiogifjijmnhlfoh
noo nmqmljgihnffjlflgj I") (1 . 7061+ {rn hmqiogifjijmnhlfoh moo nmqmljgihnffjlflgj I") (1 . "<0:;8: {rn
{nno {gl {gi {nmk n {li {rn I") (1 . ",+->687+r<*-): {rn nolqojnnmnoonnfggk noo rmfqgkkkknolkoiflhi o
n o V V I") (1 . "<0:;8: {rn {fg {gj {fj {nmg n {gh {rn I") (1 . ":;8: {rn {nni {gg {gi {nmh o I") (1 . 7061+
{rn nolqojnnmnoonnfggk noo rmfqgkkkknolkoiflhi I") (1 . 7061+ {rn nolqojnnmnoonnfggk nhj
rmfqgkkkknolkoiflhi I") (1 . ":336/,:r<*-): {rn noo noo o o r n o l o o o n V V I") (1 . ":;8: {rn {noo {fi
{nml {nkl o I") (1 . 7061+ {rn nnjqfigmlnkllijlki noo mjqlfhnjhomljfhhhn I") (1 . 7061+ {rn
giqnffghfkgkgfohmf noo miqilhjojomnkimggi I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn {nok {1 {rn I") (1 .
"300/ {rn {nnl {nlh {nok I") (1 . "/3>l:r,*-9><: {rn noo moo o o n o n o o o V V V V I") (1 . "<0:;8: {rn
{nlk {nlk {nlj {nkk n {noj {rn I") (1 . "<0:;8: {nkj {nlj {nlj {nlk {nkk o {noh {rn I") (1 . "<0/>-r3(;r>++-
6= {rn {rn {rn {nog I") (1 . "<0:;8: {rn {nlh {nlh {nog {nig n {nlm {rn I") (1 . ":;8: {rn {nki {nki {nlh
{nkh o I") (1 . ",+->687+r<*-): {rn hmqiogifjijmnhlfoh njo rnmqmljgihnffjlflgj o rn o V V I") (1 . 7061+
{rn hmqiogifjijmnhlfoh moo rnmqmljgihnffjlflgj I") (1 . 7061+ {rn hmqiogifjijmnhlfoh noo
rnmqmljgihnffjlflgj I") (1 . ":336/,:r<*-): {rn noo moo o o n o l o o o n V V I") (1 . ":336/,:r<*-): {rn non
noo mk o rn o njqollmfilhglhmfog o o n V V I") (1 . ":;8: {rn {nkg {nkg {nlk {nkf o I") (1 . "<0/>-
r3(;r>++-6= {rn {rn {rn {nlj I") (1 . "):-+:' {rn {nig {njo I") (1 . ":336/,:r<*-): {rn ninm m oo o o n o i o o n
V V I") (1 . "):-+:' {rn {nkk {njn I") (1 . ":336/,:r<*-): {rn nmm noo o o r n o i o o n V V I") (1 . 7061+ {rn
nni moo kqmilmjiknkjioionn:ronk I") (1 . 7061+ {rn nni noo rkqmilmjiknkjioionn:ronk I"))
)

; Pause for about 3.5 seconds
(setq counter 1.0)
(while (<= counter 500000)

(setq counter (1+ counter))
)
(princ)

; Render the objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1+ counter))
)
(princ)

; Change to South-West isometric view.
(command "vpoint" "-1,-1,1")

; Render the objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1+ counter))
)
(princ)

290

; Change to South-East isometric view.
(command "vpoint"

; Render the objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1+ counter))
)
(princ)

; Change to North-East isometric view.
(command "vpoint" "1,1,1")

; Render the objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1+ counter))
)
(princ)

; Change to North-W est isometric view,
(command "vpoint" "-1,1,1")

; Render the objects
(command "_avrender")

; Pause for about 3.5 seconds
(setq counter 1.0)
(while (<= counter 500000)

(setq counter (1+ counter))
)
(princ)

; Creating the 70 mm diameter unfinished model.
(entmake
'((0 . "3DSOLID") (5 . "9F") (100 . "AcDbEntity") (67 . 0) (8 . "CENTRE") (100 .
"AcDbModelerGeometry") (70 . 1) (1 . "noi njm n o ") (1 . "=0;& {n {m {rn {rn I") (1 .
:9@)+r3(;r>++-6= {rn {rn {rn {o {1 {k I") (1 . "3*2/ {j {rn {i {o I") (1 . "-:961:2:1+ {rn o o o o
oqknfffffgiggifhgnj o o o m I") (1 . "):-+:’@+:2/3>+: {rn l o n g I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn
{m {1 {k I") (1 . ",7:33 {h {rn {rn {g {m I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn {i {1 {k I") (1 . "9><: {rn
{f {no {i {rn {nn ,6183 :1") (1 . "9><: {nm {nl {nk {i {rn {nj ,6183 :1") (1 . "300/ {rn {rn {ni
{g I") (1 . 73>l:r,*-9><: {rn nniqollmfilhglhmfn njo mk o n o n o o o V V V V I") (1 . "-:9@)+r3(;r>++-
6= {rn {rn {rn {f {1 {rn I") (1 . "9><: {rn {nh {ng {i {rn { n f , 6183: 1") (1 . "300/ {rn {rn {mo {f I")
(1 . "<01:r,*-9><: {rn hh njo o o n o rnl o o n V V o n o V V V V I") (1 . "<0:;8: {rn {mn {mn {mm {ml o
{no {rn I") (1 . "9><: {rn {mk {mj {i {rn {mi ,6183: I") (1 . "300/ {rn {rn {mh {nl I") (1 . "<01:r
9><: {rn nno noo rm f o n o h o o n V V o n o V V V V I") (1 . "<0:;8: {rn {mg {mf {lo {In o {nk {rn I")
(1 . "<0:;8: {rn {ni {ni {lm {11 o {no {rn I") (1 . "<0:;8: {rn {lk {lj {ni {ml n {li {rn I") (1 . ":;8: {rn {lh {lg
{mm {If o I") (1 . "9><: {rn {ko {kn {i {rn {km-:):-,:; ,6183: I") (1 . "300/ {rn {rn {kl {nh I") (1 .
"/3>l:r,*-9><: {rn nnh nhj rm f o n o n o o o V V V V I") (1 . "<0:;8: {rn {kk {kj {ki {kho {ng {rn I") (1 .
"<0:;8: {kg {kf {mo {jo {jn o {nk {rn I") (1 . "<0:;8: {jm {mo {kf {jl {jk o {nk {rn I") (1 . "<0:;8: {rn {jj
{ji {mo {In n {li {rn I") (1 . ":;8: {rn {jh {jg {lo {jf o I") (1 . "<0:;8: {rn {io {in {mn {11 n {kn {rn I") (1 .
":;8: {rn {lg {lh {lm {im o I") (1 . "<0:;8: {rn {il {mm {in {ik n {li {rn I") (1 . "<0:;8: {rn {mm {jj {io {ij

291

n (li (rn I") (1 . "300/ {rn {rn {Ik {ii I") (1 . {rn {ik {ih I") (1 . {rn {ij {ig I") (1 . ":336/,:r<*-
): {rn noo njo o o rn o Ij o o n V V I") (1 . "9><: {if {ho {hn {i {rn {hm ,6183:1") (1 . "300/ {rn {rn
{in (m k l")(l . "<01:r,*-9><: {rn non noo mk o n o njqollmfilhglhmfog o o n V V o n o V V V V I") (1 .
"<0:;8: {rn (hi {hi (hk {hj o {mj {m I") (1 . "<0:;8: (rn (hi (mh {hh {hg o {ng {rn I") (1 . "<0:;8: {rn {mh
{hi {hi (hf n {ng {rn I") (1 . "<0:;8: {rn {hk (ii {mh {kh n (li (rn I") (1 . ":;8: {rn {go {gn {ki {gm o I") (1
. "<0/>-r3(;r>++-6= {rn {rn {rn {mg I") (1 . "<0:;8: (rn {mf {mg {gl {gk o {nk {rn I") (1 . "<0:;8: {rn {gj
{gj {mg (jn n (gi {rn I") (I . ":;8: (rn (jg (gh (jo {gg o I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {mf I") (1 .
"<0:;8: {rn {gf {fo (m f {jk n {fn (rn I") (I . ":;8: {rn {fin {jh {jl {fl o I") (1 . "<0:;8: {rn {lj {lo {fo {fkn
{li {rn I") (I . "<0:;8: {rn {lo {gl {gj {lj n (li (rn I") (1 . {rn {fk {fi I") (1 . {rn {jn {lh I") (1 .
”,+->687+r<*-): {rn ijqjklkhgmiogifjil njo iqnklfkfomijkgfiih o n o V V I") (1 . "<0:;8: {rn {fg {lm {lj {ij
o {kn {rn 1") (I . "<0:;8: {rn {Im {fg {lk (ik o {kn {rn I") (1 . ":336/,:r<*-): {rn non njo mk o rn o
njqollmfilhglhmfog o o n V V I") (1 . "<0:;8: {rn (ki (lk {ff {noo n {li {rn I") (1 . ":;8: {rn {non {lh {lk
{nom o I") (I . ":;8: {rn (Ig {noi {lj (nok o I”) (1 . "9><: {rn {rn {li {i {rn {noj 90-(>-; ,6183 :1") (1 .
7061+ {rn nnlqjjjnlohhiioohf njo Imqmigjlimnhiknilf I") (1 . '7061+ (rn gfqnhimlglhknhfohf njo
llqmgklmlkonohjggn I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn {ko (1 {rn I") (1 . "9><: {noi {noh {fn {i {rn
(nog 90-(>-; ,6183:1”) (1 . "300/ (rn (nor {nno (ko I") (1 . "<01:r,*-9><: {rn nmm njo o o rn o i o o n V
V o n o V V V V I") (1 . "<0:;8: {rn (kl {kl {kj {hf o {mj {rn I") (I . "<0:;8: {rn {nnn {ki {kl (hj n (li {rn
I”) (I . ":;8: (rn {nnm {go (hk {nnl o I”) (1 . "<0:;8: {rn {kj (kk {nnn {nnk o {ng {rn I") (1 . "<0:;8: {rn
(1T (gf {kk (hg n {fn {rn I") (I . ":;8: (rn (gn {nnj (hh {nni o I") (1 . ”:;8: {rn {go {nnm (kj (nnlio I") (1 .

{rn {kh (nng I") (1 . (rn {hg {nnf I") (1 . ",+->687+r<*-): {rn nniqhghilomhognglj noo
rloqhnnninllijjhfgh o rn o V V I") (1 . "<0:;8: {rn {ji {nmo {kf {gk n {li {rn I") (1 . ":;8: {rn {gh {fm {gl
(nnm o I") (1 . "<0:;8: (rn (jo {jo (ji (fj o (gi {rn I") (1 . "300/ {rn {rn {jo {noh I") (1 . {rn {fj
{nmm I") (1 . ”:336/,:r<*-): (rn hh moo o o n o r n l o o n V V I") (1 . "<0:;8: {rn {hh {jl {nmo {nml o {fn
{rn I") (I . "<0:;8: (rn (jl (nmk (jj {fko (fn {rn I") (I . "300/ {rn {nmj {nmk {ho I") (1 . {rn {gk
{ntrii I") (1 . ":336/,:r<*-): {rn hh noo o o rn o ml o o n V V I") (1 . ":;8: {rn {noi {jh {fo {nmh o I") (1 .
":;8: {rn (jg {gh {gj {rang o I") (1 . 7061+ (rn ijqjklkhgmiogifjil noo iqnklfkfomijkgfiih I") (1 . 7061+
{rn ijqjklkhgmiogifjil moo iqnklfkfomijkgfiih I") (1 . "<0:;8: {rn {in {io {nmk {nmf o {kn {rn I") (1 .
"<0:;8: {rn {nmk {hh {il {noo o {fn (rn I") (1 . ":;8: {rn {gn {non {ff {nmh o I") (1 ."):-+:' {rn {noo {nlo
I") (1 . ",+->687+r<*-): (rn nnlqjjjnlohhiioohf noo Imqmigjlimnhiknilf o n o V V I") (1 . "):-+:' {rn {ij
(nln I") {I . ”,+->687+r<*-): {rn gfqnhimlglhknhfohf noo llqmgklmlkonohjggn o rn o V V I") (1 .
"<01 :r,*-9><: {rn noo njo o o n o lj o o n V V o n o V V V V I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn {ho
{1 {rn I") (1 . "9><: {nlm {ii {nil {i {rn {nlk 90-(>-; ,6183:1") (1 . 73>1 :r,*-9><: {rn noo noo o o rn o rn
o o o V V V V I") (1 . "300/ {rn {rn {nlj {ko I") (1 . "<0:;8: {nli {nno {nno {nlh {nig o {hn {rn I") (1 .
"<0:;8: {rn {nmo {hk {hi {nnkn {li {rn I") (1 ."):-+:' {rn {nnk {nlf I") (1 . ":336/,:r<*-): {rn noo nhj o o
rn o lj o o n V V I") (1 . ":;8: (rn {nnj {nnm {nnn {nko o I") (1 . "):-+:' {rn {nml {nkn I") (1 . ":336/,:r<*-):
{m nno noo rm f o r n o h o o n V V I") (1 . ":336/,:r<*-): {rn nno nhj rm f o r n o h o o n V V I") (1 . 7061+
(rn nniqhghilomhognglj nhj rloqhnnninfhjjhfgh I") (1 . 7061+ {rn nniqhghilomhognglj noo
rloqlinnninfiijjhfgh I") (1 . "<0:;8: {rn (gl {nnn (gf (nml n {li {rn I") (1 . ",+->687+r<*-): {rn
ijqjklkhgmiogifjil njo riqnklfkfomijkgflgl o rn o V V I") (1 . 7061+ {rn ijqjklkhgmiogifjil moo
riqnklfkfomijkgflgl I") (I . ":;8: {rn {fm (nnj (gf (nmh o I") (1 . "<0:;8: {rn {fo {ff {fg {nmf n {fn {rn I")
(I . "300/ {rn (rn {nkm {ho I") (1 . 7061+ (rn ijqjklkhgmiogifjil noo riqnklfkfomijkgflgl I") (1 .
":336/,:r<*-): {rn noo noo o o r n o l j o o n V V I") (1 . ":336/,:r<*-): {rn noo moo o o n o l j o o n V V I")
(1 . ":;8: {rn {noi {non {nmk {nki o I") (1 . 7061+ {rn nnlqjjjnlohhiioohf noo Imqmigjlimnhiknilf 1") (1 .
7061+ {rn gfqnhimlglhknhfohf noo llqmgklmlkonohjggn I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn {noh {1
{rn I") (1 . "300/ {rn {gi {nlh {noh I") (1 . "/3>l:r,*-9><: {rn noo moo o o n o n o o o V V V V I") (1 .
"<0:;8: {nkk {nlj {nlj {nkm {nkj o {nof {rn I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {nno I") (1 . "<0:;8: {rn
{nlh {nlh (nno (nig n (nil {rn I") (1 . ":;8: {rn {nki {nki {nlh {nkh o I”) (1 . 7061+ {rn
nojqhofhnmfgnoknlf nhj rlkqjlnnllkjkgnllmf I") (1 . ",+->G87+r<*-): {rn nojqhofhnmfgnoknlf noo
rlkqjlnnllkjkgnllmf o n o V V I") (1 . 7061+ {rn nojqhofiinmfgnoknlf noo rlkqjlnnllkjkgnllmf I") (1 .
"<0:;8: {rn (nkm {nkm {nlj (nkj n {nmj {rn I") (1 . ":336/,:r<*-): (rn non noo mk o rn o
njqollmfilhglhmfog o o n V V I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {nlj I") (1 . ":;8: (rn (nkg {nkg {nkm
{nkf o I") (1 ."):-+:' {rn {nig {njo I") (1 . ":336/,:r<*-): {rn nmm moo o o n o i o o n V V I") (1 . "):-+:' {rn
{nkj {njn I") (1 . ":336/,:r<*-): {rn nmm noo o o r n o i o o n V V I") (1 . 7061+ {rn nni moo
kqmilmjiknkjioionn:ronk I") (1 . 7061+ {rn nni noo rkqmilmjiknkjioionn:ronk I"))
)

; Pause for about 3.5 seconds
(setq counter 1.0)

292

(while (<= counter 500000)
(setq counter (1+ counter))

)
(princ)

; Render the objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1 + counter))
)
(princ)

; Change to South-West isometric view,
(command "vpoint"

; Render the objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1 + counter))
)
(princ)

; Change to South-East isometric view,
(command "vpoint" ”1,-I,1")

; Render ihe objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (I + counter))
)
(princ)

; Change to North-East isometric view.
(Command "vpoint" "1,1,1")

; Render the objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1+ counter))
)
(princ)

; Change to North-West isometric view,
(command "vpoint" "-1,1,1")

; Render Ihe objects

; Pause for about 3.5 seconds
(setq counter 1.0)
(while (<= counter 500000)

(setq counter (1+ counter))
)
(princ)

; Creating the 80 mm diameter unfinished model.
(entmake
'((0 . "3DSOLID") (5 . "A l") (100 . "AcDbEntity") (67 . 0) (8 . "CENTRE") (100 .
"AcDbModelerGeometry") (70 . 1) (1 . "noi nnk n o ") (1 . "=0;& {n {m {rn {rn I") (1 .
:9@)+r3(;r>++-6= {rn {rn {rn {o {1 {k I") (1 . "3*2/ {j {rn {i {o I") (1 . "-:961:2:1+ {rn o o o o
oqknfffffgiggifhgnj o o o m I") (1 ."):-+:' @+:2/3>+: {rn 1 o n g I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn
{m {1 {k I") (1 . ",7:33 {h {rn {rn {g {m I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn {i {1 {k I") (1 "9><: {rn
{f {no {i {rn {nn ,6183: I") (1 . "9><: {rn {nm {nl {i {rn {nk ,6183:1") (1 . "300/ {rn {nj {ni
{g I") (1 . "<01:r,*-9><: {rn nno noo rm f o n o h o o n V V o n o V V V V I") (1 . "9><: {rn {nh {ng {i
{rn {nf ,6183: I") (1 . "300/ {rn {rn {mo {f I") (1 . "/3>l:r,*-9><: {rn nnh nhj rm f o n o n o o o V V
V V I") (1 . "300/ {rn {rn {mn {g I") (1 . "<0:;8: {rn {ni {ni {mo {mm n {no {rn I") (1 . "9><: {rn {ml
{mk {i {rn {mj ,6183:1") (1 . "300/ {rn {mi {mh {nm I") (1 . "<01:r,*-9><: {rn non noo mk o n o
njqollmfilhglhmfog o o n V V o n o V V V V 1") (1 . "<0:;8: {rn {mo {mo {ni {mm o {nl {rn I") (1 .
"<0:;8: {rn {mn {mn {mg {mf o {nj {rn I") (1 . ":;8: {rn {lo {lo {ni {In o I") (1 . "9><: {lm {11 {lk {i {rn
{lj ,6183:1") (1 . "300/ {rn {rn {li {nh I") (1 . "/3>l:r,*-9><: {rn nniqollmfilhglhmfn njo mk o n o n
o o o V V V V I") (1 . "300/ {rn {rn {lh {nm I") (1 . "<0:;8: {rn {mh {mh {li {lg n {ng {rn I") (1 . "<0:;8:
{rn {mg {mg {mn {mf n {If {rn I") (1 . ":;8: {rn {ko {ko {mg {kno 1") (1 . "):-+:' {rn {mm {km I") (1 .
":336/,:r<*-): {rn nno nhj rm f o r n o h o o n V V I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn {ml {1 {rn I") (1 .
"9><: {kl {kk {kj {i {rn {ki ,6183: I") (1 . "300/ {rn {kh {kg {ml I") (1 . "<01:r,*-9><: {rn nmm
njo o o r n o i o o n V V o n o V V V V I") (1 . "<0:;8: {rn {li {li {mh {lg o {mk {rn 1") (1 . "<0:;8: {rn {lh
{lh {kf {jo o {mi {rn 1") (1 . ":;8: {rn {jn {jn {mh {jm o I") (1 . "300/ {rn {jl {mg {kk I") (1 ."):-+:' {rn
{mf {jk I") (1 . ":336/,:r<*-): {rn nno noo rm f o r n o h o o n V V I") (1 . "/061+ {rn nnh nhj rm f I") (1 .
:9@)+r3(;r>++-6= {rn {rn {rn {11 {1 {rn I") (1 . "9><: {jj {ji {If {i {rn {jh 90-(>-; ,6183: I") (1 . "300/ {rn
{jg (jf {11 I") (1 ■ "<01:r,*-9><: {rn hh njo o o n o rnl o o n V V o n o V V V V I") (1 . "300/ {rn {rn {io
{ml I") (1 . "<0:;8: {in {kg {kg {im {il o {lk {rn I") (1 . "<0:;8: {rn {kf {kf {lh {jo n {jl {rn I") (1 . ":;8:
{rn {ik {ik {kf {ij o I") (1 ."):-+ :’ {rn {lg {ii I") (1 . ":336/,:r<*-): {rn non njo mk o rn o
njqollmfilhglhmfog o o n V V I") (1 . "300/ {rn {ih {kf {kk I") (1 . 7061+ {rn nnh noo rm f I") (1 .
:9@)+r3(;r>++-6= {rn {rn {rn {kk {1 {rn I") (1 . "9><: {ig {if {ho {i {rn {hn 90-(>-; ,6183: I") (1 .
"/3>l:r,*-9><: {rn noo noo o o rn o rn o o o V V V V I") (1 . "300/ {rn {rn {hm {111") (1 . "<0:;8: {hi {jf
{jf {hk {hj o {kj {rn I") (1 . "<0:;8: {hi {io {io {hh {hg o {kh {rn I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn
{kg I") (1 . "<0:;8: {rn {im {im {kg {il n {ho {rn I") (1 . ":;8: {rn {hf {hf {im {go o I") (1 . "):-+:' {rn {jo
{gn I") (1 . ":336/,:r<*-): {rn non noo mk o rn o njqollmfilhglhmfog o o n V V I") (1 . 7061+ {rn
nniqollmfilhglhmfn njo mk 1") (1 . "300/ {rn {gm {hh {kk I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn {ji {1
{rn I") (1 . "9><: {rn {rn {gl {i {rn {gk 90-(>-; ,6183:1") (1 . "300/ {rn {gj {im {ji I") (1 . "/3>l:r,*-9><:
{rn noo moo o o n o n o o o V V V V 1") (1 . "<0:;8: {gi {hm {hm {gh {gg o {jg {rn I") (1 . "<0/>-
r3(;r>++-6= {rn {rn {rn {jf I") (1 . "<0:;8: {rn {hk {hk {jf {hj n {gj {rn I") (1 . ":;8: {rn {gf {gf {hk {fo o
I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {io I") (1 . "<0:;8: {rn {hh {hh {io {hg n {ih {rn I") (1 . ":;8: {rn {fn
{fn {hh {fm o I") (1 . "):-+:' {rn {il {fl I") (1 . ":336/,:r<*-): {rn nmm moo o o n o i o o n V V I") (1 .
7061+ {rn nniqollmfilhglhmfn noo mk I") (1 . "300/ {rn {fk {gh {kk I") (1 . "300/ {rn {fj {fi {if I") (1 .
"<01:r,*-9><: {rn noo njo o o n o ko o o n V V o n o V V V V 1") (1 . "300/ {rn {fh {hk {ji I") (1 . "<0/>-
r3(;r>++-6= {rn {rn {rn {hm I") (1 . "<0:;8: {rn {gh {gh {hm {gg n {gm {rn 1") (1 . ":;8: {rn {fg {fg {gh
{ff o I") (1 . "):-+:' {rn {hj {noo I") (1 . ":336/,:r<*-): {rn hh moo o o n o rnl o o n V V I") (1 . "):-+:' {rn
{hg {non I") (1 . ":336/,:r<*-): {rn nmm noo o o rn o i o o n V V I") (1 . 7061+ {rn nni moo
kqmilmjiknkjioionn:ronk I") (1 . "300/ {rn {rn {nom {kk I") (1 . "300/ {rn {rn {noi {if I") (1 . "<0:;8: {rn
{fi {fi {nom {nokn {gl {rn I") (1 . "300/ {rn {rn {noj {ji I") (1 . "):-+:' {rn {gg {noi I") (1 . ":336/,:r<*-):
{rn hh noo o o rn o rnl o o n V V I") (1 . 7061+ {rn fo moo rgqjmijnmgmfnmnmomm:ronk I") (1 . 7061 +
{rn nni noo rkqmilmjiknkjioionn:ronk I") (1 . "<0:;8: {rn {nom {nom {fi {nok o {fk {rn I") (1 . "<0:;8: {rn
{noi {noi {noj {noh n {fj {rn 1") (1 . ":;8: {rn {nog {nog {nom {nof o I") (1 . "<0:;8: {rn {noj {noj {noi
{noh o {fh {rn I") (1 . 7061+ {rn fo noo gqjmijnmgmfnmnmomm:ronk I") (1 . ":;8: {rn {nno {nno {noj

(command "_avrender")

294

(nnn o I") (I . {rn (nok {nnm I") (1 . ":336/,:r<*-): (rn noo noo o o r n o k o o o n V V I") (1 .
(rn {noli {nnl I") (1 . ":336/,:r<*-): {rn noo moo o o n o k o o o n V V I") (1 . '7061+ {rn io noo o I") (1 .
"/061+ {rn nko moo o I"))
)

; Pause for about 3.5 seconds
(setq counter 1.0)
(while (<= counter 500000)

(setq counter (1+ counter))
)
(princ)

; Render the objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1+ counter))
)
(princ)

; Change to South-West isometric view.
(command "vpoint" "-1,-1,1")

; Render the objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1 + counter))
)
(princ)

; Change to South-East isometric view.
(command "vpoint" "1,-1,1")

; Render the objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1+ counter))
)
(princ)

; Change lo North-East isometric view.
(command "vpoint" "1,1,1")

; Render the objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1 + counter))

295
I

)
(princ)

; Render the objects
(command "_avrender")

; Pause for about 3.5 seconds
(setq counter 1.0)
(while (<= counter 500000)

(setq counter (1+ counter))
)
(princ)

; Creating the 90 mm diameter unfinished model.
(entmake
'((0 . "3DSOLID") (5 . "A3") (100 . "AcDbEntity") (67 . 0) (8 . "CENTRE") (100 .
"AcDbModelerGeometry") (70 . 1) (1 . "noi nmi ti o ") (1 . "=0;& {n {m {rn {rn I") (1 . "-
:9@)+r3(;r>++-6= {rn {rn {rn {o {1 {k I") (1 . "3*2/ {j {rn {i {o I") (1 . "-:961:2:1+ {rn o o o o
oqknfffffgiggifhgnj o o o m I") (1 . "):-+:'@+:2/3>+: {rn 1 o n g I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn
{m {1 {k I") (1 . ",7:33 {h {rn {rn {g {m I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn {i {1 {k I") (1 . "9><: {rn
{f {no {i {rn {nn ,6183: I") (1 . "9><: {rn {nm {nl {i {rn {nk -:):-,:; ,6183:1") (1 . "300/ {rn {nj {ni
(g I") (1 . "<01 :r,*-9><: {rn nno noo rmf o n o h o o n V V o n o V V V V I") (1 . "9><: {rn {nh (ng (i
(rn { n f , 6183: 1") (1 . ”300/ (rn {rn (mo {f I") (1 . "/3>l:r,*-9><: {rn nnh nhj rm f o n o n o o o V V
V V 1") (I . "300/ {m (rn (mn {g I") (1 . "<0:;8: (rn (ni {ni {mo (mm n {no {rn I") (1 . "9><: {rn {ml
{mk (i (rn {mj ,6183 :1") (1 . "300/ {rn {mi {mh {nm I") (1 . "<01:r,*-9><: {rn non noo mk o n o
njqollmfilhglhmfog o o n V V o n o V V V V 1") (1 . "<0:;8: {rn {mo {mo {ni {mm o {nl {rn I") (1 .
"<0:;8: (rn (mn (mn (mg (m f o (nj (rn 1") (1 . ":;8: {rn {lo {lo {ni {In o I") (1 . "9><: {lm {11 {lk {i {rn
{lj -:):-,:; ,6183 :1") (1 . "300/ {rn {rn {li {nh I") (1 . 73>l:r,*-9><: {rn nniqollmfilhglhmfn njo mk o n o n
o o o V V V V I") (1 . "300/ (rn {rn {lh {nm I”) (1 . "<0:;8: {rn {mh {mh {li {lg n {ng {rn I") (1 . "<0:;8:
{rn {mg {mg {mn {mf n {If {rn 1") (1 . ":;8: {rn {ko {ko {mg {kn o I") (1 . "):-+:' {rn {mm {km 1") (1 .
":336/,:r<*-): {rn nno nhj rm f o r n o h o o n V V I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn {ml {1 {rn I") (1 .
"9><: {kl {kk {kj {i {rn {ki -:):-,:; ,6183: I") (1 . "300/ {rn {kh {kg {ml 1") (1 . "<01:r,*-9><: {rn nmm
n j o o o r n o i o o n V V o n o V V V V I") (1 . "<0:;8: {rn {li (li (mh {lg o (mk (rn I") (1 . "<0:;8: {rn {lh
{lh {kf {jo o {mi {rn I") (1 . ":;8: {rn {jn {jn {mh {jm o 1") (1 . "300/ {rn (rn {mg {jl 1") (1 ."):-+:' {rn
{mf {jk I") (1 . ":336/,:r<*-): {rn nno noo rm f o r n o h o o n V V I") (1 . 7061+ {rn nnh nhj nnf I") (1 . "-
:9@)+r3(;r>++-6= {rn {rn {rn {11 {1 {rn I") (1 . "9><: {jj (ji (jh {i {rn (jg 90-(>-; ,6183:1") (1 . "300/ {rn
{jf {io {II I") (I . "<01:r,’"-9><: {rn hh njo o o n o rnl o o n V V o n o V V V V I") (1 . "300/ {rn {rn {in
{ml I") (1 . "<0:;8: {im (kg (kg {il {ik o (lk (rn I") (1 . "<0:;8: {rn {kf {kf {lh {jo n {ij {rn I") (1 . ":;8:
{rn {ii {ii {kf {ill o I") (1 ."):-+ :' (rn {lg (ig I") (1 . ":336/,:r<*-): {rn non njo mk o rn o
njqollmfilhglhmfog o o n V V I") (I . "9><: {if {rn (ho {i {rn {hn 90-(>-; ,6183:1") (1 . 7061+ {rn nnh
noo rm f I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn {kk {1 {rn I") (1 . "9><: {hm {hi {hk {i {rn {hj 90-(>-;
,6183: I") (1 . "300/ {rn {hi {hh {kk I") (1 . "<01:r,*-9><: {rn noo njo o o rn o rkj o o n V V
roqoffjolhnfomoffgfnj oqffjolhnfomoffgfnj o V V V V I") (1 . "300/ {rn {rn {hg {111") (1 . "<0:;8: {hf {io
{io {go {gn o {kj {rn I") (1 . "<0:;8: {gm {in {in {gl {gko {kh {rn 1") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn
{kg I") (1 . "<0:;8: {rn {il {il {kg {ik n {hk {rn I") (1 . ":;8: {rn {gj {gj {il {gi o 1") (1 . "300/ (rn {If {kf
{jl I") (1 ."):-+ :' {rn {jo {gh I") (1 . ":336/,:r<*-): {rn non noo mk o rn o njqollmfilhglhmfog o o n V V I")
(1 . 7061+ {rn nniqollmfilhglhmfn njo mk I") (1 . ”-:9@)+r3(;r>++-6= {rn (rn (rn {jl {1 {rn I") (1 . "300/
{rn {gg {gf {jl I") (1 . 73>l:r,*-9><: {rn noo noo o o r n o r n o o o V V V V I") (1 . "-:9@)+r3(;r>++-6=
{rn {rn {rn {ji {1 {rn I") (1 . "9><: {rn {jl {fo (i {rn {fn 90-(>-; ,6183 :1") (1 . "300/ {rn {fm {il {ji I") (1 .
73>l:r,*-9><: {rn noo moo o o n o n o o o V V V V I") (1 . "300/ {rn {rn {fl {kk I") (1 . "<0:;8: {rn {hh
{hh {fk {fj o {jh {rn I") (1 . "<0:;8: {fi {hg {hg {fh {fg o {jf {rn I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {io
1") (1 . "<0:;8: {rn {go {go {io {gn n {fm {rn I") (1 . ":;8: {rn {ff (ff {go {noo o I") (1 . "<0/>-r3(;r>++-6=
{rn {rn {rn {in I") (1 . "<0:;8: {rn {gl {gl {in {gk n {non {rn I") (1 . ":;8: {rn {nom {nom {gl {nol o I") (1 .
"):-+:' {rn {ik {nok I") (1 . ":336/,:r<*-): {rn nmm moo o o n o i o o n V V I") (1 . 7061+ {rn
nniqollmfilhglhmfn noo mk I") (1 . "300/ {rn {non {fh {jl I") (1 . "<0:;8: {rn {gf {gf {fl {noj n {ho {rn I")

; Change to North-West isometric view.
(command "vpoint" "-1,1,1")

296

(1 . "300/ {rn {noi {noh {hi I") (1 . "<01:r,*-9><: {rn noo njo o o n o k j o o n V V o n o V V V V I") (1 .
"300/ {rn {nog {go {ji I") (1 . "<0:;8: {nof {fi {fl {gf {noj o {hi {rn I") (1 . "<0:;8: {rn {fk {fk {hh {fj n
{noi {rn I") (1 . ":;8: {rn {nno {nno {fk (nnn o I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {hg I") (1 . "<0:;8:
{rn {fh {fh {hg {fg n {gg {rn I") (1 . ":;8: {rn {nnm {nnm {fh {nni o I") (1 . {rn {gn {nnk I") (1 .
":336/,:r<*-): {rn hhm oo o o n o r n l o o n V V I") (1 . "300/ {rn {ij {gl {jl I") (1 . {rn {gk {nnj I")
(1 . ":336/,:r<*-): {rn nmm noo o o r n o i o o n V V I") (1 . "/061+ {rn nni moo kqmihnjiknkjioionn:ronk
I") (1 . ":;8: {rn {nni {nni {gf {nnh o I") (1 . "300/ {rn {rn {fk {hi I") (1 . "<0:;8: {rn {noh {noh {nng {nnf
n {fo {rn I") (1 . "300/ {rn {rn {nng {ji I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {fl I") (1 . {rn {fj
{nmo I") (1 . ":336/,:r<*-): {rn noo njo o o rn o kj o o n V V I") (1 . {rn {fg {nmn I") (1 .
":336/,:r<*-): {rn hh noo o o rn o rnl o o n V V I") (1 . "/061+ {rn fo moo rgqjmijnmgmfnmnmomm:ronk
I") (1 . "/061+ {rn nni noo rkqmilmjiknkjioionn:ronk I") (1 . {rn {noj {nmm I") (1 . ":336/,:r<*-):
{rn noo noo o o n o rko o o n V V I") (1 . "<0:;8: {rn {nng {nng {noh {nnf o {nog {rn I") (1 . ":;8: {rn
{nml {nml {nng {nmk o I") (1 . "/061+ {rn jj njo lqnmilggolhlkkkkog:ronl I") (1 . "/061+ {rn fo noo
gqjmijnmgmfnmnmomm:ronk I") (1 . 7061+ {rn io noo o I") (1 ."):-+ :' {rn {nnf {nmj I") (1 . ":336/,:r<*-
): {rn noo moo o o n o k j o o n V V I") (1 . 7061+ {rn nkj moo o I"))
)

; Pause for about 3.5 seconds
(setq counter 1.0)
(while (<= counter 500000)

(setq counter (1+ counter))
)
(princ)

; Render the objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1+ counter))
)
(princ)

; Change to South-West isometric view.
(command "vpoint" "-1,-1,1")

; Render the objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1+ counter))
)
(princ)

; Change to South-East isometric view.
(command "vpoint" "1,-1,1")

; Render the objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1+ counter))
)

297

(princ)

; Render the objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1+ counter))
)
(princ)

; Change to North-West isometric view.
(command "vpoint" "-1,1,1")

; Render the objects
(command "_avrender")

; Pause for about 3.5 seconds
(setq counter 1.0)
(while (<= counter 500000)

(setq counter (1+ counter))
)
(princ)

; Creating the complete model.
(entmake
'((0 . "3DSOLID") (5 . "A5") (100 . "AcDbEntity") (67 . 0) (8 . "CENTRE") (100 .
"AcDbModelerGeometry") (70 . 1) (1 . "noi njj n o ") (1 . "=0;& {n {m {rn {rn I") (1 .
"9@=0;&r3(;r>++-6= {rn {1 {rn {o I") (1 . "3*2/ {k {rn {j {o I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {n {o {i
{hi") (1 . "-:9@)+r3(;r>++-6= {rn {rn {rn {m {i {hi") (1 . ",7:33 {g {rn {rn {f {ml") (1 . "-:961:2:1+ {rn
o o o o oqknfffffgiggifhgnj o o o m I") (1 . "):-+:'@+:2/3>+: {rn 1 o n g I") (1 . "-:9@)+r3(;r>++-6= {rn
{rn {rn {j {i {h I") (1 . "9><: {no {nn {nm {j {rn {nl -:):-,:; ,6183 :1") (1 . "99><:r3(;r>++-6= {rn {nk {rn
{f I") (1 . "9><: {nj {ni {nh {j {rn {ng ,6183: I") (1 . "300/ {rn {nf {mo {f I") (1 . "<01:r,*-9><: {rn
nno noo rm f o n o h o o n V V o n o V V V V I") (1 . ”-:9@)+r3(;r>++-6= {rn {rn {no {f {i {rn I") (1 .
"99><:r3(;r>++-6= {rn {mn {rn {nn I") (1 . "9><: {mm {ml {mk {j {rn {mj -:):-,:; ,6183:1") (1 . "300/ {rn
{rn {mi {nn I") (1 . "/3>l:r,*-9><: {rn nnh nhj rm f o n o n o o o V V V V I") (1 . "300/ {rn {rn {mh {f I")
(1 . "<0:;8: {mg {mo {mo {mi {mf n {nm {rn I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {nj {nn {i {rn I") (1 .
"99><:r3(;r>++-6= {rn {lo {rn {ni I") (1 . "9><: {In {lm {11 {j {rn { lk -:):-,:; ,6183:1") (1 . "300/ {rn {lj
{li {ni I") (1 . "<01:r,*-9><: {rn non noo mk o n o njqollmfilhglhmfog o o n V V o n o V V V V I") (1 .
"<0:;8: {lh {mi {mi {mo {mf o {nh {rn I") (1 . "<0:;8: {lg {mh {mh {If {ko o {nf {rn I") (1 . "<0/>-
r3(;r>++-6= {rn {rn {rn {mo I") (1 . ":;8: {kn {km {km {mo {kl o I") (1 . "-:9@)+r3(;r>++-6= {rn {rn
{mm {ni {i {rn I") (1 . "99><:r3(;r>++-6= {rn {kk {rn {ml I") (1 . "9><: {kj {ki {kh {j {rn {kg-:):-,:;
,6183: I") (1 . "300/ {rn {rn {kf {ml I") (1 . "/3>l:r,*-9><: {rn nniqollmfilhglhmfn njo mk o n o n o o o V
V V V I") (1 . "300/ {rn {rn {jo {ni I") (1 . "<0:;8: {jn {li {li {kf {jm n {mk {rn I") (1 . "<0/>-r3(;r>++-6=
{rn {rn {rn {mi I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {mh I") (1 . "<0:;8: {jl {If {If {mh {ko n {jk {rn I")
(1 . ":;8: {jj {ji {ji {If {jh o I") (1 . ":/>-r3(;r>++-6= {rn {rn {rn {mf I") (1 ."):-+:' {rn {mf {jg I") (1 .
":336/,:r<*-): {rn nno nhj rmf o r n o h o o n V V I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {In {ml {i {rn I") (1 .
"99><:r3(;r>++-6= {rn {jf {rn {lm I") (1 . "9><: {io {in {im {j {rn {il -:):-,:; ,6183:1") (1 . "300/ {rn {ik
{ij {lm I") (1 . "<01:r,*-9><: {rn nmm njo o o r n o i o o n V V o n o V V V V I") (1 . "<0:;8: {ii {kf {kf
{li {jm o {11 {rn I") (1 . "<0:;8: {ih {jo {jo {ig {if o {lj {rn I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {li I") (1 .
":;8: {ho {hn {hn {li {hm o I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {If I") (1 . "300/ {rn {rn {If {hi I") (1 .
":/>-r3(;r>++-6= {rn {rn {rn {ko I") (1 . "):-+:' {rn {ko {hk I") (1 . ":336/,:r<*-): {rn nno noo rm f o rn o h
o o n V V I") (1 . "/061+ {rn nnh nhj rm f I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {kj {lm {i {rn I") (1 .
"99><:r3(;r>++-6= {rn {hj {rn {ki I") (1 . "9><: {hi {hh {hg {j {rn {hf 90-(>-; ,6183: I") (1 . "300/ {rn

; Change to North-East isometric view.
(command "vpoint" "1,1,1")

298

{go {gn {ki I") (1 . "<01:r,*-9><: {rn hh njo o o n o m l o o n V V o n o V V V V I") (1 . "300/ {rn {rn
{gm {lm I") (1 . "<0:;8: {gl {ij {ij {gk {gj o {kh {rn I") (1 . "<0/>-r3(;r>++-6= {rn {rn (rn {kf I") (1 .
"<0/>-r3(;r>++-6= {rn {rn {rn {jo I") (1 . "<0:;8: {gi {ig {ig {jo {if n (gh {rn I") (1 . ":;8: {gg {gf {gf {ig
{fo o I") (1 . ":/>-r3(;r>++-6= {rn {rn {rn {jm I") (1 . {rn {jm {fn I") (1 . ":336/,:r<*-): {rn non njo
mk o rn o njqollmfilhglhmfog o o n V V I") (1 . "9><: {fm {rn {fl {j {rn {fk 90-(>-; ,6183:1") (1 . "/061+
{rn nnh noo rm f I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {io {ki {i {rn I") (1 . "99><:r3(;r>++-6= {rn {fj {rn
{in I") (1 . "9><: {fi {hi {fh {j {rn {fg 90-(>-; ,6183:1") (1 . "300/ {rn {ff {noo {in I") (1 . "<01:r,*-9><:
{rn noo njo o o rn o rkj o o n V V roqoffjolhnfomoffgfnj oqffjolhnfomoffgfnj o V V V V I") (1 . "300/ {rn
{rn {non {ki I") (1 . "<0:;8: {nom {gn {gn {noi {noko {im {rn I") (1 . "<0:;8: {noj {gm {gm {noi {noho
{ik {rn I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {ij I") (1 . "<0:;8: {nog {gk {gk {ij {gj n {fh {rn I") (1 . ":;8:
{nof {nno {nno {gk {nnn o I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {ig I") (1 . "300/ {rn {jk {ig {hi I") (1 .
":/>-r3(;r>++-6= {rn {rn {rn {if I") (1 . {rn {if {nnm I") (1 . ":336/,:r<*-): {rn non noo mk o rn o
njqollmfilhglhmfog o o n V V I") (1 . "/061+ (rn nniqollmfilhglhmfn njo mk I") (1 . "99><:r3(;r>++-6=
{rn {nnl {rn {hi I") (1 . "300/ {rn {nnk {nnj {hi I") (1 . "/3>l:r,*-9><: {rn noo noo o o rn o rn o o o V V V
V I") (1 . "-:9@)+r3(;r>++-6= {rn {rn {hi {in {i {rn I") (1 . "99><:r3(;r>++-6= {rn {nni {rn {hh I") (1 .
"300/ {rn {nnh {gk {hh 1") (1 . 73>l:r,*-9><: {rn noo moo o o n o n o o o V V V V I") (1 . "300/ {rn {rn
{nng {in I") (1 . "<0:;8: {nnf {noo {noo {nnj {nmo o {hg {rn I") (1 . "<0:;8: {nmn {non {non {nmm {nml
o {go {rn I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {gn I") (1 . "<0:;8: {nmk {noi {noi {gn {nokn {nnh {rn
1") (1 . ":;8: {nmj {nmi {nmi {noi {nmh o I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {gm I") (1 . "<0:;8: {nmg
{noi {noi {gm {noh n {nmf {rn 1") (1 . ":;8: {nlo {nln {nln {noi {nlm o I") (1 . "<0/>-r3(;r>++-6= {rn {rn
{rn {gk I") (1 . ":/>-r3(;r>++-6= {rn {rn {rn (gj I") (1 . {rn {gj {nil I") (1 . ":336/,:r<*-): {rn nmm
moo o o n o i o o n V V I") (1 . 7061+ {rn nniqollmfilhglhmfn noo mk I") (1 . "-:9@)+r3(;r>++-6= {rn
{rn {fm {hi {i {rn I") (1 . "300/ {rn {nmf {nmm {hi I") (1 . "<0:;8: {nlk {nnj {nnj {noo {nmo n {fl {rn I")
(1 . "-:9@)+r3(;r>++-6= {rn {rn {fi {hh {i {rn I") (1 . "300/ {rn {nlj {noi {hh I") (1 . "<0:;8: {nli {nng
{nng {nlh {nig n {ff (rn I") (1 . "<0/>-r3(;r>++-6= {rn {rn (rn {noo I") (1 . ":;8: {nlf {nko {nko {nnj (nkn
o I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {non 1") (1 . "<0:;8: {nkm {nmm {nmm {non {nml n {nnk {rn I")
(1 . ":;8: {nki {nkk {nkk {nmm {nkj o I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {noi I") (1 . ":/>-r3(;r>++-6=
{rn {rn {rn {nok I") (1 ."):-+:' {rn {nok {nki I") (1 . ":336/,:r<*-): {rn hh moo o o n o ml o o n V V I") (1 .
"<0/>-r3(;r>++-6= {rn (rn {rn {noi I") (1 . "300/ {rn {gh {noi {hi I") (1 . ":/>-r3(;r>++-6= {rn {rn {rn
{noh I") (1 . "):-+:' {rn {noh {nkh I") (1 . ":336/,:r<*-): {rn nmm noo o o r n o i o o n V V I") (1 . 7061+
{rn nni moo kqmilmjiknkjioionn:ronk 1") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {nnj I") (1 . "300/ {rn {rn
{nlh {hh I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {nng I") (1 . "<0:;8: {nkg {nlh {nlh {nng {nig o {nlj {rn
I") (1 . ":;8: {nkf {njo {njo {nlh {njn o I") (1 . ":/>-r3(;r>++-6= {rn {rn {rn {nmo I") (1 ."):-+:' {rn {nmo
{njm I") (1 . ":336/,:r<*-): {rn noo noo o o n o rko o o n V V I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {nmm
I") (1 . ":/>-r3(;r>++-6= {rn {rn {rn {nml I") (1 . "):-+:' {rn {nml {njl I") (1 . ":336/,:r<*-): {rn hh noo o o
rn o rnl o o n V V 1") (1 . "/061+ {rn fo moo rgqjmijnmgmfnmnmomm:ronk I") (1 . 7061+ {rn nni noo
rkqmilmjiknkjioionn:ronk I") (1 . "<0/>-r3(;r>++-6= {rn {rn {rn {nlh I") (1 . ":/>-r3(;r>++-6= {rn {rn {rn
{nig 1") (1 . "):-+:' {rn (nig {njk I") (1 . ":336/,:r<*-): {rn noo moo o o n o j o o o n V V I") (1 . 7061+ {rn
io noo o I") (1 . 7061+ {rn fo noo gqjmijnmgmfnmnmomm:ronk I") (1 . 7061+ {rn jo moo o I"))
)

; Pause for about 3.5 seconds
(setq counter 1.0)
(while (<= counter 500000)

(setq counter (1+ counter))
)
(princ)

; Render the objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1+ counter))
)
(princ)

299

; Render tlie objects
(command "_avrender")

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1 + counter))
)
(princ)

; Change to South-East isometric view,
(command "vpoint" "I,-1,1")

; Render the objects
(command "_avrender'‘)

; Pause for about 2 seconds
(setq counter 1.0)
(while (<= counter 300000)

(setq counter (1+ counter))
)
(princ)

; Change to North-East isometric view,
(command "vpoint" "1,1,1")

; Render the objects
(command "_avrender")

; Pause for about 2 seconds
(selq counter 1.0)
(while (<= counter 300000)

(setq counter (1+ counter))
)
(princ)

; Change to North-West isometric view,
(command "vpoint" "-1,1,1")

; Render the objects
(command "_avrender")

; Change lo Souih-West isometric view,
(command "vpoint" "-1,-1,1")

Appendix D Extract.c Program Source Codes

/* Extract.c is a program that extracts 3D surface points from a dxf file. The extracted points are then
stored inside another text file. All the points in the destination tile are consist o f X, Y and Z coordinates.
*1

#include<stdio.h>
#include<stdlib.h>
#include<errno.h>
#include<slring.h>

#define OUTPUT_FILE "c:\\temp\\extract.txt"
#definc READ ”r"
#define WRITE "w"
#define STRING_LENGTH 81
#define STRIKE_2D "AcDb2dVertex"
#define STRIKE_3D "AcDb3dPoly line Vertex"
#define TEN "10"
#derine TWENTY "20"
#define THIRTY "30"

main()
{

FILE *data;
char filename[STRING_LENGTH];
FILE *new_data;
char axis [STRINGJLENGTH];
float x_coor, y_coor, z_coor;
char string[STRING_LENGTH];
int counter;

printf("Please specify the file with correct path such as\n”);
printf("c:\\foIderl\\folder2\\filename.txt\n\n");
gels(filename);

/* attempt to open files */
data = fopen(filename, READ);
new_data = fopen(OUTPUT_FILE, WRITE);

if (data == NULL II new_data == NULL)
{

printff'file cannot be opened\n");
exit(errno);

}

counter —0;

while (! feof(data))
{

fscanf(data, "%s", suing);

if ((strcmp(string, STR1KE_2D)) == 0 II (strcmp(string, STRIKE_3D)) == 0)
{

fscanf(data, "%s", axis);

301

if (counter != 0)
{

fprintf(new_data, ”\n");
}
else
{

counter ++;
}

if ((sircmp(axis, TEN)) = 0)
{

f s c a n f (d a l a ,& x _ c o o r) ;
)

fscanf(dala, "%s", axis);

if ((strcmp(axis, TWENTY)) == 0)
t

fscanf(data, "% f& y _ co o r);
}

fscanffdata, "%s", axis);

if ((strcmp(axis, THIRTY)) == 0)
{

fscanf(data, "% f& z_ co o r);
}

/* the x, y & l value will have 6 decimal point */
fprintf(ncw_data, "% 10.6f% 10.6f% 10.6f, x_coor, y_coor, z_coor);

1
}

felose(data);
lclose(ncw_data);

printf("The 3D data file is in c:\\tcinp\\extract.txt");

return 0;

302

Appendix E Convert.c Program Source Codes

/* Convert.c is a program thal extracts points from an external text file. The extracted points are then
converted from x_coor, y_coor and z_coor into x mm, r mm and Rx degree (from Cartesian co-ordinate
system to Cylindrical co-ordinate system). Assume thal the XY plane reference point is (100,100). Z
value will be converted into float number with 1 decimal places. */

#include<stdio.h>
#include<stdlib.h>
#include<errno.h>
#include<math.h>

#define OUTPUTJ7TLE "c:\MempWcoiiveri.ixi"
#define READ "r"
#define W RITE "w"
#define STR IN G J.EN G TH 81
#define PI 3.141593
#define XREF 100
#define YREF 100

maiil()
{

FILE *xyz_data;
char filename[STEUNG_LENGTH J;
FILE *xrRx_data;
float x_coor, y_coor, z_coor;
float x, r, Rx;
int counter;

printf("Please specify the file with correct path such as\n");
printf("c:\\folderl\\folder2\\filename.txt\n\n");
gets(filename);

I* attempt to open files */
xyz_data = fopen(filename, READ);
xrRx_data = fopen(OUTPUT_FILE, WRITE);

if (xyz_data == NULL II xrRx_data == NULL)
{

prinlf("file cannot be opened\n");
exit(errno);

}

counter = 0;

while (! feof(xyz_data))
(

fscanf(xyz_data, " % f , &x_coor);
fscanf(xyz_data, " % f , &y_coor);
fscanf(xyz_data, "%f", &z_coor);

if (counter != 0)
I

fprintf(xrRx_data, "\n");

303

else
{

}
cotinLer -

x = z_coor;

if (x_coor==XREF II y_coor==YREF)
(

if (y_coor==YREF && x_cooi->XREF)

Rx = 0;

if (x_coor==XREF && y_coor>YREF)

Rx = 90;

f (y_coor==YREF && x_coor<XRBF)

Rx = 180;

if (x_coor==XREF && y_coor<YREF)

Rx = 270;

else
{

Rx = ((atan((y_coor-YREF)/(x_coor-XREF)))/PI)* 180;

if (x_coor>XREF && y_coor>YREF)

Rx = Rx;

1' (x_coor<XREF && y_coor>YREF)

Rx = 180+ Rx;

f (x_coor<XREF && y_coor<YREF)

Rx = 180 + Rx;

(x_coor>XREF && y_coor<YREF)

Rx = 360 + Rx;

r = sqrt(((y_coor-YREF) * (y_coor-YREF)) + ((x_coor-XREF)*(x_coor-XREF)));

/* x will have 1 decimal place */

304

fprintf(xrRx_data, "%5.1f %10.6f %10.6f", x, Rx, r);
}

fclose(xyz_data);
fclose(xrRx_data);

printf("The 3D data file is in c:\\temp\\convert.txt");

return 0;

305

Appendix F Sortadd.c Program Source Codes

/* Sortadd.c is a program that rearrange the x mm, Rx degree and r mm so that the Rx will always start at
the lowest angle in each layer(cross sectional profile) o f the 3D model. I extra point is added at the
beginning and at the end of of each layer so that the 1st point starts at Rx = 0 degree and the last
point ends at Rx = 360 degree.
Assumption - maximum points in each layer are 4000

- data will be sorted layer by layer
The data will be arranged so that the motion will be continuous from the !sl point to the last point.
The r mm at 0 and 360 degree will be calculated (linear interpolation) based on the 1st and last r mm of
the sorted layer. *t

#include <stdio.h>
^include <sldlib.h>
#include <errno.h>

#define OUTPUT_FILE "c:\\tempttsorted.txt"
#define READ V
#define APPEND "a"
#defme STR1NGJLENGTH 81
#define FIRST_POINT 0.000000 /* 0 degree */
#define LAST_POINT 360.000000 /* 360 degree */

void insertion_sort(int size);

float x[4000];
float Rx[4000];
float r[4000];

main()
{

FILE *xRxr_data;
char fiIename[STRING_LENGTH];
int index;

printf("Please specify the file with correct path such as\n");
printf("c:\\folderl\\folder2\\filename.txt\n\n");
gets(filename);

/* attempt to open files */
xRxr_data = fopen(filename, READ);

if (xRxr_data == NULL)
{

printf("%s cannot be opened\n", filename);
exit(errno);

index = 0;

while (! feof(xRxr_data))
{

fscanf(xRxr_data, "%f", &x[index]);
fscanf(xRxr_data, "%f", &Rx[index]);

306

fscanf(xRxr_data, "%f", &r[indcx]);

if(x[0] != xfindex]) /* compare subsequent x with the 1st x of the same layer *1
[

/* when the subsequent x is not equal to the 1 si x then, start
sorting */

inserlion_sort(index);

/* assign the array’s last element value lo the subsequent layer's
array's 1st clement value */

x[0) = x[index];
Rx[0] = Rxfindex];
r[0] =r[index];

index = 0;
)
else

iT (feof(xRxr_data) && x[0] == xlindex)) /* if ii is end o f file */
{ /* and the 1st x same as */

insertion_sort(index); /* the last x */

index ++;
}

iclo.sc(xRxr_da(a);

printfC'The sorted file is in c:\\teinp\Ysoried.txl.\n");

return 0;
J

/* Sorting the x, Rx and r into ascending order(from less to more) and save the sorted data into another
external file. '*/
void insertion sorl(int size)
{

FILE *sorted_data;
int counter, location, idx;
float current_x, cunent_Rx, current_r;
float alpha, beta, distance, angle, dist_per_deg, z, incr_decr„dist;

sorted_data = fopen(OUTPUT_FILE, APPEND);

if (sorted_data == NULL)
{

printf("sorted_data.txl cannot be opened\n");
exit(errno);

}

if (xfO] !=x[sizej)
{

/* sorting procedures for the 1st layer until the 2nd last layer */

for (counter = 1; counter <= size - 1; counter ++)
{

current_x =x[eounter];

307

current_Rx = Rx[counter];
current_r = rfcounter];

location = counter;

while (location > 0 && Rx[location - 11 > current_Rx)
{

x[location] = x[location - 1];
Rx[location] = Rxflocation -1 J;
r[location] = rflocation - I];

location
}

x[localion] = currcnt_x;
Rx [location] = current_Rx;
relocation] = current_r;

}
1
else
{

/* sorting procedures for tlie last layer */

for (counter = 1; counter <= size; counter ++)
{

current_x = x[counter];
current_Rx = Rx [counter];
current_r = rfcounter];

location = counter;

while (location > 0 && Rx [location - 1] > current_Rx)
I

x[iocation] = x |location- 1];
Rx[location] = Rx[location - 1];
r[location] =r[location- 11;

location —;
}

x[location] =currcnt_x;
Rx[iocation] =current_Rx;
r[location] =current_r;

}

if (x[0] !=x[size])

distance = r[0] - rfsize - 1];

else

distance = r[0] - r[size];

if (distance < 0)

distance = (-1) * distance;

308

if (x[0] != xfsize])
{

alpha = 360.000000 - Rx[si/.e - I J;
)
else
{

alpha = 360.000000 - Rx[size];
)

angle = alpha + bela;

if(x[0) !=x[sizej)
{

if ((angle = 0) && (Rx[0| == 0.000000))
{

z = r[0];
}
if ((angle = 0) && (Rxfsize - I j = 360.000000))
{

z = r|size - 1];
}

}
else
{

if ((angle == 0) &&, (Rx[0| == 0,000000))
{

z = r[0];
}
if ((angle == 0) && (Rx[si/.e) == 360.000000))
{

z = r|si/.c];
}

)

dist_per_deg = distance / angle;

incr_decr_dist = dist_per_deg * beta;

if (x[0] !=x[size])
{

if (r[0] > r[size- 1])
{

z = r[size - I] + incr_decr_dist;
}
if (r[size- I] > i'[0J)
(

z = r[0] + incr_decr_dist;
)
if (rlsize- 1] = r[0])
{

z = r[0];
)

}
else

beta = Rx[0] - 0.000000;

309

{
if (r[0] > r[size])
{

z = r[size] + incr_decr_dist;
}
if (r(size] > r|0])
{

z = ii OJ + incr_decr_disl;
}
if (r[size] == r[0])
{

7. = r[0];
}

}

fprintf(sorted_data, "% 10.6f% 10.6f% 10.6An", x[0], FIRST_P01NT, z);

if (x[0J != x[size])
{

for (idx = 0; idx <= size - I ; idx ++)
{

fprinlf(sorted_data, "%10.6f %10.6f %10.61\n", x |idx |, Rx[idx], r[idxl);
}

)
else
{

for (idx = 0; idx <= size; idx ++)
{

fprintf(sorled_data, "%10.6f %10.6f %10.6An", xlidx], Rx[idx], rfidx]);
}

}

if(x[0] !=x|sizc))
{

fprintf(sorted data, "%10.6f %10.6f %10.6l\n", x[0], LAST_POINT, z);
}

{
fprinif(sorted_dala, "%10.6f %10.6f%10.6f", x[0], LAST_POINT, z);

}

fclose(sorted_data);

310

Appendix G Vd.c Program Source Codes

/* Vd.c will convert axis l's (x mm), axis 2's (r mm) and axis 3's (Rx degree) into their respective velocity
and incremental or decremental motor step. The new data will be stored into another external text file.
The program will ask the user to key in the file location, file name, desired feed rate and radius
o f the raw material block, */

#include<stdio.h>
#include<stdlib.h>
#include<errno. h>
#include<string.h>

#define OUTPUTJFILE "c:\\temp\\vd.txt"
#define STRING_LENGTH 162
#define READ "r"
#define APPEND "a"

float axis_l_incremental_step(float x_mm);
float axis_3_incremental_step(float Rx_deg);
float axis_2_inde_step(float r_mm);

float axis_l_step; /* axis l's incremental steps to be moved */
float axis_3_step; /* axis 3's incremental steps to be moved */
float axis_2_step; /* axis 2's incremental or decremental steps to be moved */

float radius; /* radius of the raw material block *1

main ()
{

float feed_rate, RX_V; /* RX_V is in rev/sec */
float axis_l_m m ; /* absolute distance from reference point */
float axis_3_deg; /* absolute angle of rotation */
float axis_2__mm; /* 3D model thickness at certain angle */
FILE *data;
char filename[STRING_LENGTH];
FILE *vd;
float r_v, x_v;
int counter;
float x_step, r_step, Rx_step;

printf("Please specify the file with correct path such as\n");
printf("c:\\folderl\\folder2\\filename.txt\n\n");
gets(filename);

printf("\nPlease specify the desired feed rateAn");
printf("The feed rate is ranging from 0.015 mm/sec to 0.75 mm/sec\n");
scanf("% f'\ &feed_rate);

RX_V = feed_rate / (0.0003 * 5000); /* 0.0003 step/mm, 5000 step/rev */

printf("\nPlease specify the radius of the raw material block in mm.\n");
scanf("%f", &radius);
printf("\n");

311

data = fopen(filename, READ);

if (data == NULL)
{

prinlf("%s cannot be opened\n", filename);
exil(crmo);

}

/* assumptions : axis 1 coordinate is 011 the left side of the table
axis 3 coordinate is on the middle o f the table
axis 2 coordinate is on the right side of the table */

counter = 0;

while (! feof(data))
(

fscanf(data, “%f", &axis_J_mm);
axis_l_incremental_step(axis_!_mm);

fscanf(data, ”%f", &axis_3_deg);
ax is_3_i ncremen la I _s tep(a x is_3_deg);

fscanf(data, ”%f", &axis_2_mm);
axis_2_inde_step(axis_2_mm);

x_step =axis_l_step;
r_step = axis_2_stcp;
Rx_step = axis_3_step;

vd = fopen(OUTPUT_FILE> APPEND);

if (vd == NULL)
(

printf("%s cannot be opened\n", vd);
exit(errno);

}

if(Rx_step !=0)
(

if (r_step != 0 && x_step != 0)
{

r_v = (r_step/Rx_step)*RX_V;

x_v = (x_step/Rx_slep)*RX_V;
}

if (r_step != 0 && x_slep == 0)
(

r_v = (r_step/Rx_step)*RX_V;

x_v = RX_V;
}

if (r_step == 0 && x_step 1= 0)
{

r_v = RX_V;

312

e i e

{
‘•A XH = a x

}
(o =j dais x^i o =i dojs .1 q = dais x) jt

•A X*1 = a x
}

(0 = dais xy o == dais J 797? 0 = i dais x) j |

{

{
‘•A XH = a J

;A_ XH = a_ x

}
(0 = =dais x) j;

‘.A- X*(d0]S~X/d01S~.l) = A- J

:A~X*I = a~x

3S|0

}
(0 =i dojs x) ji

(0 = = d o is j) j i

(

0S|0

■A X*I = a J

!A~XH = a“ x
}

(0 ==dois x) ji

1a x*(dois x/dois .i) = a j

■A“ x y = a“ x

asja

}
(0 =i dais x) ji

}
(0 =j dais .i) ji

}
(0 = dais xh) JI

‘•A XH = a x

:a “ x h = a"J
}

(0 == dais x TgTg o == dais j) j |

a sp

■A XiU(da)s xy/dais x) = a x

if (x_v < 0)
{

}

if (x_v >= 5)
{

x_v = 5;
}

if (r_v < 0)
{

r_v = r„v*(-l);
}

if (r_v >= 5)
(

r v = 5;
}

if (r_v > 0 && r_v < 0.0001)
{

r_v = 0.0001;
}

if (r_step = 0 && Rx_step — 0)
(

r_v = RX_V;
}

if (counter != 0)
{

fprintf(vd, "\n");
}
else
{

counter ++;
}

fprintf(vd, "%10.4f %10.0f % l0 .4f %10.0f %10.4f %10.0f", x_v, x_step, r_v, r_step,
RX_V, Rx_step);

fclose(vd);

x_v = x_v*(-l);

fclose(dala);

printf("The file is in cA\lenipWvd.txt");

return 0;
)

/* Convert axis l's absolute distance to incremental motor step */
float axis_l_jncremental_step(float x jn m)
{ /* assumption : axis 1 's reference point is on the other end of the rotary shaft o f axis 3

: the 1st value for axis_l_mm is 0 */

static float prev_x_mm = 0;

314

axis l_step = (x jn m - prev_x_mm)/(0.3E-03);

prev_x_mm = x_mm;

return (axis_l_step);
}

/* Convert axis 3's absolute angle to incremental motor step */
float axis_3_ineremental_step(float Rx_deg)
{ /* assumption : axis 3's reference point(or axis) is the axis itself */

static float prev_Rx_deg = 0;

if (Rx_deg == 0)
{

axis_3_step = 0;
}
else
{

axis_3_step = (Rx_deg - prev_Rx_deg)/(0.72E-03);
}

prev_Rx_deg = Rx_deg;

return (axis_3_stcp);
}

I* Calculating machining distance(incremental or decremental motor steps) */
float axis_2_inde_step(float r_mm)
{ /* assumptions : axis 2's reference point is on the axis 3

axis_2_step is the incremental or decremental steps to be move by the motor */

sialic float prev_r_mm = 0;
sialic float counter = 0;

if (counter == 0)
{

prev_r mm = radius;
}

axis_2_step = (prev_r_mm - r_mm)/(0.3E-03);

prev_r_mm = r jn m ;

counter = counter ++;

return (axis_2_step);
}

315

Appendix H VsvMt.c Program Source Codes

/* VsvMt.c send the commands of axis 1, 2 and 3 together in one time. The motions of all the axes are
synchronised. Us functions arc to construct commands and send them out to the PC-23 indexer for
execution. It is calculating the total production time as well as each individual machining time. The
remaining time o f the production is also calculated.*/

#include<stdio .h>
#include<stdlib.h>
#include<conio.h>
#include<errno.h>
#include<string.h>

#define FAIL 0X20
#define BIT2MASK 0X04
#define READY 0X16
#define CB 0X60
#define IDB_M 0X10
#define CHAR_READY 0X70
#define ODB 0X8
#define ACK 0XE0
#define ALDONE 0X02
#define HALT (CB I BIT2MASK)
#define RESTART 0x40 /* byte to restart the pc23 */
#define BADADDR 0XFF

#define ADDRESS 0X300 /* PC23's address */
#define STCTRL_ADDR 0X301 /* Status and Control byte address */

#define STRJNG_LENGTH 162
#define READ "r"

#define CMD_TRSF_TIME 0.2 /* 0.2 sec for transferring 1 command line */

void initialise(void);

void single_machining_time(float x_step, float r_step, float Rx_step);
void send_axis_123_cmd(float x_v, float x_step, float r_v, float r_step, float Rx_v, float Rx_step);

void write_command(char *c);
void write__character(char gamma);

void read_answer(char *a);
char read__character(void);

float speed; /* steps per second */
float total_time; /* total seconds needed to produce a model */

main()
{

FILE *data;
char filename[STRING_LENGTH];
char *message;
float step = 0;

316

float counter, total_cmd_lrsf_time, m achiningjim e, total_hour;
float axis_l_v, axis_l_step, axis_2_v, axis_2_step, axis_3_v, axis_3_step;

pi intf("Please specify the file with correct path such as\n");
printf("c:\\folderl\\folder2\\filename.txt\n\n");
gets(filename);

data = fopen(filenamc, RI2AD);

if (data = NULL)
{

printf("%s cannot be opened\n", filename);
exit(enno);

}

/* T!ie source codes below are for calculating total machining time */

counter = 0;

while (! feof(data))
{

fscanf(data, "% f‘, &axis_l_v);
fscanr(data, " % f , &axis_l_step);
fscanf(data, "% f't &axis_2_v);
fscanf(data, "% f\ &axis„2_step);
fscanf(data, "%f", &axisJ3_v);
fscanf(data, " % f , &axis_3_step);

if (counter == 0)
{

step = axis_2 step;
}
else if (axis_l_slep == 0)

{
step = step + axis_3_step;

)
else if (axis_3_step = 0)

{
step = step + axis_l_step;

)

counter = counter ++;
}

printf("\n\nTotal step = %!0.0!\n", step);
printf("Total command line = %10.0J\n", counter);

totaLcmd_trsf_lime = counter * 0.2; /* 0.2 seconds per 1 command transfer */
printf("Command transfer time = %10.0f secondsW , total_cmd_trsf_time);

speed = axis_3_v * 5000; /* 5000 steps/rev */ /* speed in steps/sec. */
printf("Machining speed = %10.0f steps/revolution\n", speed);

machining_time = step / speed;
printf("Machining time = %10.0f seconds\n", machining_time);

total_time = totai_cmd_trsf_time + machining_time;
printf("Total time to produce the model = %10.2f seeondsVn", total_time);

317

total J io u r = tolal_time / 3600; /* 3600 see = 1 hr */
printf'("Toial time to produce the model = %IO,4f hours\n", total_hour);

fclose(data);

!* The above source codes are for calculating total machining time *1

data = fopenffilename, READ);

if (data = NULL)
{

printf(”%s cannot be opened\n”, filename);
exit(crrno);

}

initialise();

message=” 1MR6 2MR6 3MR6 "; /* matching the motor resolution of PC23 and KS drive */
wri te_comm and (message);

while (! feof(data))
{

fscanf(data, "%f", &axis_l_v);
fscanf(data, "%f", &axis_l_slep);
f s c a n f (d a t a ,& a x i s _ 2 _ v) ;
fscanf(data, "%f", &axis_2_step);
fscanf(data, &axis_3_v);
fscanf(data, "% f\ &axis_3_step);

single_machining_time(axis_l_step, axis_2_step, axis_3_step);
send_axis_123_cmd(axis_l_v, axis_I_step, axis_2_v, axis_2_step,axis_3_v,

axis_3 step);
)

fclose(data);

return 0;
}

/* Reset the PC23 board. Assuring that the board is ready to accept commands from the user program. */
void initialise(void)
{

unsigned char statbyte;

oulp(STCTRL_ADDR, HALT); /* initialise procedure */
while (’((statbyte = inp(STCTRL_ADDR)) & F A IL));
if(statbyte == BADADDR)
I

printf ("\n\nlnvalid address, check PC-23 dipswitches\n\n");
exit(I);

}
outp(STCTRL_ADDR, RESTART);
outp(STCTRL_ADDR, CB);
while(((statbyte=inp(STCTRL„ADDR)) & READY) != READY);

)

/* Calculating individual machining/motion lime *!

318

void single_machining_lime(float x_step, float r_slep, float Rx_stcp)
{

static float pre_remaining_time = 0;
static float counter = 0;

float step = 0;
float machining_timc, rem ainingjiour, remaining_time;

if (r_step < 0)
{

r_step = r_step * (-1);

if (x_step == 0)
{

if (r_step != 0)
(

if<Rx_step !=0)

else
{

}
else
I

}

step = Rx_step;

step = r_step;

else
{

}
step = Rx_step;

if (r_step != 0)
(

if (Rx_step != 0)
{

e ls e

{

}

step = Rx_step;

step = x_step;

else
{

if (Rx_step != 0)
{

step = Rx_step;

else
{

}
step = x_step;

)

m aehin ingjjm e = step / speed;
prinlf("\n\nThe machining time for this segment is %10.2f seconds\n", machining_lime);

319

if (counter == 0)
{

pre_remaining_time = total_time;
}

remaining_time = (pre_remaining_time - machining_time) - CM DJTRSFJTIM E;
printf("The remaining time for producing the model is %10.2f seconds\n", remaining_time);

remaining_hour = remaining__time / 3600; I* 3600 seconds per hour */
printf("The remaining time for producing the model is %10.4f hours\n\n", remaining_hour);

pre_remaining_time = remaining_time;
counter = counter ++;

}

/* Constructing and sending command string o f axis 1, 2 and 3 to PC23 and getting position response
string and display it on the screen. The axis 2 motor step is incremental or decremental */
void send_axis_123_cmd(float x_v, float x_siep, float r_v, float r_step, float Rx_v, float Rx_step)
{

int sig = 7;

char axis_123_cmd[STRING_LENGTH];

char *axis_l_vs = " 1VS";
char axis_l_vs_str[81]; /* axis l's initial velocity */
char *axis_l_v = " IV";
char axis_l_v_str[81]; /* axis l 's velocity */
char *axis_l_d = " ID";
char axis_l_step_str[81]; /* axis l 's integer motor step in char/string form */
char *axis_l_i = " II";

char *axis_2_vs = " 2VS";
char axis_2_vs_str[81]; /* axis 2's initial velocity */
char *axis_2_v = " 2V";
char axis_2_v_str[81]; /* axis 2's velocity */
char *axis_2_d = " 2D";
char axis_2_step_str[81]; I* axis 2's integer motor step in char/string form */
char *axis_2_i = " 21";

char *axis_3_vs = " 3VS";
char axis_3_vs_str[81]; I* axis 3's initial velocity */
char *axis_3_v = " 3V";
char axis_3_v_str[81]; /* axis 3's velocity */
char *axis_3_d = " 3D";
char axis_3_step_str[81]; /* axis 3's integer motor step in char/string form */
char *axis_3_i = " 31";

char *axis_123_end = " G123 ";

char *message, *answer;
answer =

/* constructing axis l's motion commands */

strcpy(axis_123_cmd, axis_l_vs);
gcvt(x_v, sig, axis_l_vs_str);
strcat(axis_123_cmd, axis_l_vs_str);

320

strcal(axis_123_cmcl, axis_l_v);
gcvt(x_v, sig, axis_l_v_slr);
strcat(axis_ 123_cmd, axis_ 1 _v_str);

strcat(axis_123_cmd, axis_l_d);
gcvl(x_siep, sig, axis_l_step_str);
slrcat(axis_123_cmd, axis_l_step_str);

strcat(axis_ 123_cmd, axis_ I _i);

/* constructing axis 2's motion commands */

strcat(axis_123_cmd, axis_2_vs);
gcvt(r_v, sig, axis_2_vs_str);
strcat(axis_123_cmd, axis_2_vs_str);

strcat(axis_123_cmd, axis_2_v);
gcvt(r_v, sig, axis_2_v_str);
strcat(axis_123_cmd, axis_2_v_str);

strcat(axis_123_cmd, axis_2_d);
gcvt(r_step, sig, axis_2_step_str);
strcat(axis_123_cmd, axis_2_step_str);

strcat(axis_I23_cmd, axis_2_i);

/* constructing axis 3's motion commands */

strcat(axis_123_cmd, axis_3_vs);
gcvt(Rx_v, sig, axis_3_vs_str);
strcat(axis_123_cmd, axis_3_vs_str);

strcat(axis_123_cmd, axis_3_v);
gcvt(Rx_v, sig, axis_3_v_str);
strcat(axis_123_cmd, axis_3_v_str);

strcat(axis_123_cmd, axis_3_d);
gcvt(Rx_step, sig, axis_3_step_str);
strcat(axis_l23_cmd, axis_3_step_str);

strcat(axis_123_cmd, axis_3_i);

strcat(axis_123_cmd, axis_l 23_end);

write_command(axis_123_cmd);

printf("\ri The motion command is :\n");

printf("%s\n", axis_123_cmd);

while((inportb(STCTRL_ADDR) & ALDONE) != ALDONE);
/*■ Waits for the axes to stop */

printf("\n The axes positions are :\n ”);

message=" IP "; /* AXIS 1 POSITION */
write_command(message);

32!

read_answer(answer);
printf(answ er,"\n\n");

message=" 2P /* AXIS 2 POSITION */
wrile_command(message);
read_answer(answcr);
printf("\n ");
printf(answer);

m essaged’ 3P /* AXIS 3 POSITION */
write_command(message);
read_answer(answer);
prin tf("\n");
printf(answer);
printf("\n\n");

}

/* Wrilcs a command string to the PC23 */
void write_command(char *c)
{

while (*c)
{

write_character (*c++);
}

write_character (13);

return;
}

/* Writes a single character to the PC23. PC23 commands arc generated by sending multiple characters to
it */
void write_character (char gamma)
{

while (!(inp(STCTRL_ADDR) & IDB_M));
outp (ADDRESS,gamma);
outp (STCTRL_ADDR, CHAR_READY);
while (inp(STCTRL_ADDR) & IDB_M);
outp(STCTRL_ADDR,CB);
while (!(inp(STCTRL_ADDR) & IDB_M));
return;

}

/* Reads a complete PC23 status request response string */
void read_answer (char *a)
{

while ((*a++ = read_character()) != 13);
*a = *\0’;
return;

}

/* Reads one character of a PC23 response to a status request and returns the character response. */
char read_character()
{

char gamma=0;
while (!(inp(STCTRL_ADDR) & ODB));
gamma = inp(ADDRESS);
outp (STCTRL.ADDR, ACK);

322

while ((inp(STCTRL_ADDR) & ODB));
outp (STCTRL_ADDR, CB);
return(garama);

323

Appendix I ExWax.c Program Source Codes

/* ExWax.c is a program that extract points from a dxf Hie. The extracted poinls are then stored inside
another text file. All the points in the destination file are consist of X, Y and Z coordinates. The
destination file contains all the internal and external points of a three-dimensional surface model with
internal cavities. */

#include<stdio.h>
#include<stdlib.h>
#include<ermo.h>
#include<string.h>

#define OUTPUT_FILE "c:\\temp\\exlract,txt"
#define READ "r"
#define WRITE "w"
#define STRING_LENGTH 8 1
#deline STRIKE_2D "AcDh2dVertex"
#define STRIKE_3D "AcDb3dPolylineVertex"
#define TEN "10"
#define TWENTY "20"
#define THIRTY "30"

main()
(

FILE *data;
char filename! STRING_LENGTH];
FILE *new_data;
char axis[STRING_LENGTH];
float x_coor, y_coor, z__coor;
char string[STRING_LENGTHJ;
int counter;

printf("Please specify the file with correct path such as\n");
printf("c:\\folderl\\folder2\\filename.txt\n\n");
gets(filename);

/* attempt to open files */
data = fopen(filename, READ);
new_data = ropen(OUTPUT_FILE, WRITE);

if (data == NULL II new_data == NULL)
{

printf("fi)e cannot be openedW);
exit(errno);

}

counter = 0;

while (I fcof(data))
{

fscanf(data, "%s", string);

if ((stremp(string, STRIKE_2D)) - = 0 II (strcmp(string, STRIKE_3D)) == 0)
{

324

fscanf(data, "%s", axis);

if (counter != 0)
(

fprinlf(new_data, "\n");
}
else
{

counter ++;
}

if ((strcmp(axis, TEN)) = 0)
{

fscanf(data, "%f", &x_coor);

fscanf(data, "%s", axis);

if ((strcmp(axis, TW ENTY)) == 0)
{

fscanf(data, "%f", &y_coor);

fscanf(data, "%s", axis);

if ((strcmp(axis, THIRTY)) == 0)
{

fscanf(data, "% f', &z_coor);
}

fprintf(new_data, ”%10f %10f % 10.lf", x_coor, y_coor, z_coor);
}

>

fclose(data);
fclose(ncw_data);

printf("The 3D data file is in c:\\temp\\cxtract.txt");

return 0;

325

Appendix J Group.c Program Source Codes

!* Group.c is a program that group the x, y, z coordinates based on z coordinates because the arrangement
o f the data in the extracted text file is not base on z coordinates.
Assumptions: 1) The model is 100 mm in height.

2) The step over in the section cuts model is 3 mm .
3) The last layer is at 99mm. */

#include<sldio.h>
#include<stdlib,h>
#i ncl ude<errno.h>

#define OUTPUT_FILE "c:\\temp\\group.txt"
#define READ V
#dcfine APPEND "a"
#dcfine STRING.LENGTH 81

mainQ
{

PILE *xyz_data;
char filename[STRING_LENGTH];
FILE *group_data;
float x_coor, y_coor, z_coor, z;
int counter;

printf(”Please specify the file with correct path such as\n");
printf("c:\\folderl\\folder2\\filename.txt\n\n");
gets(filename);

for (z = 0.0; z <= 99.0; z += 3) /* 0 is the 1st layer value */
{ /* 99 is the last layer value */

/* each step over is 3 */
/* attempt to open files */
xyz_data = fopenffilename, READ);
group_data = fopen(OUTPUT_FlLE, APPEND);

if {xyz_data = NULL II group_data == NULL)
{

printf("file cannot be openedV');
exit(errno);

}

counter = 0;

while (! feof(xyz_data))
{

fscanf(xyz_data, "% f, &x_coor);
fscanf(xyz_data, "%V\ &y_coor);
fscanf(xyz_data, " % f , &z_coor);

if (z_coor == z && z != 99.0) /* 99.0 is the largest z value */
{

fprintf(group data, "%10f %10f %5.1 i\n”, x_coor, y_coor. z_coor);
}

326

z_coor);

else
{

if (z_coor == z && z == 99.0)
{

if (counter != 0)
{

fprintf(group__data, "\n");
}
else
{

counter ++;
}
fprintf(group_data, "%10f %10f %5.1f", x_coor,

fclose(xyz_data);
fclose(group_data);

printf("The 3D data file is in c:\\temp\\group.txt");

return 0;

y_coor,

327

Appendix K ConWax,c Program Source Codes

/* ConWax.c is a program that extract points from an external text file. The extracted points are then
converted from x_coor, y_coor and z_coor into x nun, r mm and Rx degree. Assume that the XY plane
reference point is (100,100). */

#include<sldio.h>
#include<stdlib.h>
#include<ermo.h>
#include<math.h>

#define OUTPUT_FILE "c:\\temp\\convert.txt"
tfdefine READ "r"
#define WRITE "w"
#dcfine STRING_LENGTH 81
#define PI 3.141593
#define XREF 100
#dellne YREF 100

main()
{

F1LH *xyz_data;
char filename[STRlNG_LENGTH];
FILE *xrRx_data;
float x_coor, y_coor, z_coor;
float x, r, Rx;
int counter;

printf("Please specify the file with correct path such as\n");
printf("c:\\folderl\\folder2\\filcname.txt\n\n");
gets(filename);

/* attempt to open files */
xyz_data = fopen(filename, READ);
xrRx_data = fopen(O U TPU TJ’lLE, WRITE);

if (xyz_data == NULL II xrRx_data == NULL)
{

printf("file cannot be openedW);
exit(errno);

}

counter = 0;

while (! feof(xyz_data)J
{

fscanf(xyz_data, "%f", &x_coor);
fscanf(xyz_data, "%f", &y_coor);
fscanf(xyz_data, "% f', &z_coor);

if (counter != 0)
{

fprintf(xrRx_data, "\n");
}

328

countcr ++;
}

x = z_coor;

if (x_coor=X R E F II y_coor=Y R E F)
(

if (y co o r= Y R E F &.& x_coor>XREI7)
{ '

Rx = 0 ;

else
{

if (x_coor=X R E F && y_coor>YREF)
{

Rx = 90;
}

if (y_coor=Y R E F && x_coor<XREF)
[

Rx = 180;
}

if (x_coor==XREF && y_coor<YREF)
{

Rx =270;
)

}
else
{

Rx = ((atan((y_a>iM-YREF)/(x_coor-XREF)))/PI)*180;

if (x_coor>XREF && y_coor>YREF)
{

Rx = Rx;

if (x_coor<XREF && y_coor>YREF)

Rx = 180+ Rx;

if (x_coor<XREF && y_coor<YREF)

Rx = 180 + Rx;

if (x_coor>XREF && y_coor<YREF)
{

Rx = 360 + Rx;
)

}

r = sqrt(((y_coor-YREF)*(y_coor-YREF)) + ((x_coor-XREF)*(x_coor-XREF)));

fprintf(xrRx_data, "%5.1f % l0 .6f %10.6f", x, Rx, r);

329

fclose(xyz_data);
fclose(xrRx_data);

printf("The 3D data file is in c:\\temp\\convert.txt");

return 0;
}

330

Appendix L SaWax.c Program Source Codes

/* SaWax.c is a program that re-arrange the x mm, Rx degree and r mm so that the Rx will always start at
the lowest angle in each layer (cross section profile) of the 3D surface model. 1 extra point is added in the
beginning and the end of of each layer so that the 1st point starts at Rx = 0 degree and the last point ends
at Rx = 360 degree.
Assumption - maximum points in each layer are 4000.

- data will be sorted layer by layer.
The r mm at 0 and 360 degree will be calculated (linear interpolation) based on the 1st and last r mm of
the sorted layer, r mm will be stored as zero decimal point float value. */

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

#define OUTPUT JFILE "c:\\temp\\sorted.txt"
#define READ "r"
#define APPEND "a"
#define STRINGJLENGTH 81
#define FIRST_POINT 0.000000
#define LAST_POINT 360.000000

void insertion_sort(int size);

float x[4000];
float Rx[4000];
float r[4000];

main()
{

FILE *xRxr_data;
char filename[STRING_LENGTH];
int index;

printf("Please specify the file with correct path such as\n");
pri ntf("c :\\folderl Wfolder2\\filename. txt\n\n");
gets(filename);

/* attempt to open files */
xRxr_data = fopen(filename, READ);

if (xRxr_data == NULL)
{

printf("%s cannot be opened\n", filename);
exit(errno);

index = 0;

while (! feof(xRxr_data))
{

fscanf(xRxr_data, "%f", &x[index]);
fscanf(xRxr_data, "%f", &Rx[index]);
fscanf(xRxr_data, "%f", &r[index]);

331

if (x[0| != x[index]) I* compare subsequent x with the 1st x *!
{

i n sertion_so rt(index);

x|0] =x[indexj;
Rx[0] = Rx[index);
r[0] =r[index];

index = 0;
}
else if (feof(xRxr_data) && x[0| == xtindexj) /* if it is end ol file and */

{ /* and the 1 st x same as */
inseriion_sorl{index); /* the last x */

}

index ++;
}

fc lose(xR x r_data);

printf("VnThe sorted file is in c:\\temp\\sorted.lxtAn");

return 0;

/* Soiling the x, Rx and r into ascending order(from less to more) and save the sorted data into another
external file. */
void insertion_sort(int size)
{

FILE *sorted_data;
int counter, location, idx;
float current, x, current_Rx, current_r;
float alpha, beta, distance, angle, dist__per_deg, z, incr_decr_dist;

sorted.data = fopen(OUTPUT_F!LE, APPEND);

if (sorled_dala == NULL)
(

printf("sorted_data.lxt cannot be openedW);
exit(errno);

}

if (xfOJ != x[size])
{

for (counter = 1; counter <= size - 1; counter ++)
{

current_x = x[counter];
current_Rx = Rx [counter];
current_r = r[counter);

location = counter;

while (location > 0 && Rx[location - I] > current_Rx)
{

x[locationl =x[location -1];
Rx [location] = Rx [location - I];
r[location] =r[location * I];

332

>

x[location] = currenl_x;
Rx[location] = current_Rx;
rllocation] = currenl_r;

location

else
{

for (counter = 1; counter <= size; counter ++)
{

current_x = x| counter];
current_Rx = Rx [counter];
current_r = r[counter];

location = counter;

while (location > 0 && R elocation - 1] > current_Rx)
{

x[Iocation] = x[location- IJ;
Rx[Iocation] = Rx[location - 1];
rflocation] = ('[location - 1];

location —;
}

x[location] =current_x;
Rx(location| = current_Rx;
(■[location] = current_r;

}
}

if (x[0] != x[size])
{

distance = r[0] - rlsize - 1];
1
else
{

distance = r[0] - r[size];
}

if (distance < 0)
{

distance = (-1) * distance;
)

beta = Rx[0| - 0.000000;

if (x[0] != x[size])
{

alpha = 360.000000 - Rx[size - I];
}
else
f

alpha = 360.000000 - Rx[si/.e];
}

333

angle = alpha + beta;

ii'(xlO! !=x[size])

else
{

{
z = r[OJ;

}
if ((angle == 0) && (Rx[size - 1] = 360.000000))
{

z = r[size - 1];
}

if ((angle = 0) && (RxIO] = 0.000000))

if ((angle = 0) && (Rx[0] == 0.000000))
{

z = r[0];
)
if ((angle == 0) && (Rx[sizeJ = 360.000000))
{

z = r[size];

}

disl_pcr_deg = distance / angle;

incr_decr_dist = dist_per_deg * beta;

if (x|0] != xfsizel)
{

if (r[0] > r[size - 1])
{

z = r[size - 1] + incr„decr_dist;
}
if (r[size- I] > r[0])

z = r[0] + incr_decr_dist;
}
if (r(size - IJ == r[OJ)
{

z = r[0];

else
{

if (r[0] > rtsize])
{

z = r[sizel + incr_decr_dist;
}
if (r[size] > r[01)
{

z = rfO] + iricr_decr_dist;
1
if (r[size] = r[0J)
{

z = r[0];

334

}
}

fprintf(sorted_data, "%5.1f %10f % 5.0(V \ x[0], FIRST_POINT, z);

if (xfOJ !=x[size])
{

for (idx = 0; idx <= size - 1; idx ++)
{

fprintf(sorled_data, "%5.1f %10f %5.0l\n", x[idx], Rx[idx], r[idxj);
}

}
else
{

for (idx = 0; idx <= size; idx ++)
{

fprintf(sorted_data, "%5.1f %10f %5.0f\n", x[idx], Rx[idxl, r[idxj);
}

}

if(x[0] != xfsize])
{

fprintf(sorted_data, "%5.1f %10f %5.0i\n", xJO]. LAST_PO!NT, z);
)
else
1

fprintf(sorted_data, "%5.1f %10f %5.0f", xlO], LAST_P01NT, z);
}

fclose(sorted_data);

335

Appendix M Select.c Program Source Codes

/* Select.c is a program that select points from an external text file. Only the specified radius value data
set(3 values in a row) will he selected.
Assumption - the largest radius of the model is an integer */

#include<stdio.h>
#include<stdlib.h>
#include<errno.h> *

#define OUTPUT.FIIJE "c:\\temp\\selccl.lxt"
#define READ "r"
#define WRITE "w"
#define STR1NG_LENGTH 81

main()
{

I-ILE *sorted_data;
char filename[STRING_LENGTH 1;
f il l ; *selecled_data;
lloat x, Rx;
int radius, r, counter;

printf("Please specify the file with correct path such as\n");
prinlf("c:\\folderl\\foIder2\\filename.txt\n\n");
gets(filename);

printf("\nPlease specify the largest radius of your data file in integer An”);
printf("(radius is ihe third column value of the data file.)\n\n");
soanf("%d", Aradius);

/* attempt lo open files */
sorted_data = fopen(filcname, READ);
,selected_data = lopen(OUTPUT_FILE, WRITE);

if (sorted_data = NULL II selected_data == NULL)
{

printf("file cannot be opened\n");
exit(errno);

}

counter = 0;

while (! feof(S0ited_data))
{

fscanf(sorted_data, "%f\ &x);
fscanf(sorted_data, "% f\ &Rx);
fscanf(sorted_data, "%d", &r);

if (r == radius)
1

if (counter != 0)
{

fprintf(selected_dala, "\n");

336

else
{

counter

fprintf(selected_data, "%5.1f % 1 Of %5d", x, Rx, r);
}

}

fclose(sorted_data);
fclose(selected_data);

printf("\nThe 3D data file is in c:\\temp\\select.txt");

return 0;

337

Appendix N Deposit.c Program Source Codes

I* Deposit.c contains a lot o f functions. The functions are for
(1) Reading data from a file. The data is consists of axis l 's travel distance(mm), axis 3‘s rotational
angle(degree) and axis 2’s travel distance(mm). They are the absolute distance and angle.
(2) Calculating incremental motor step to be travelled by axis 1.
(3) Calculating incremental motor step to be travelled by axis 3.
(4) Reset the PC23 board. Assuring that the board is ready to accept commands from the user program.
(5) Constructing and sending command string of axis 1 to PC23 and getting position response string and
print it on the screen.
(6) Constructing and sending command string of axis 3 to PC23 and getting position response string and
print it on the screen.
(7) Constructing and sending command string of axis 2 to PC23 and getting position response string and
print it on the screen.
(8) The model will be transferred back to its original position once it reached 99 mm in height (total step
over distance).
(9) Writes a command string to the PC23.
(10) Writes a single character to the PC23. PC23 commands are generated by sending multiple characters
to it.
(11) Reads a complete PC23 status request response string.
(12) Reads one character of a PC23 response to a status request and returns the character response.

Assumption: Motor at axis 2 is used to push the semi-liquid material/wax onto core cylinder block.
The rotational motion of the motor will be converted to linear motion of the shaft which
push the wax/semi-liquid material. Thus, the motor step of axis 2 is directly
proportional to the quantity of the deposition material.

There is no stoppage time between axis 3 and axis 2. Stoppage time will have to be
estimated once the actual process works.

The total step over distance is 99 mm */

#include<stdio.h>
#include<stdlib.h>
#include<conio.h>
#i n clude<errno. h>
#include<string.h>

#define FAIL 0X20
#define BIT2MASK 0X04
#define READY 0X16
#define CB 0X60
#define IDB_M 0X10
#define CHAR_READY 0X70
#define ODB 0X8
#define ACK 0XE0
#define ALDONE 0X02
#define HALT (CB I BIT2MASK)
#define RESTART 0x40 /* byte to restart the PC23 */
#define BADADDR 0XFF

#define ADDRESS 0X300 /* PC23's address */
#define STCTRL_ADDR 0X301 /* Status and Control byte address */

338

#define STRING_LENGTH 81
#define READ "r"

float axis_l_incremental_slep(float x_mm);
float axis_3_incremenlal_step(float Rx_dcg);

void initialise(void);

void scnd_axis_l_cmd(floal x_step);
void send_axis_3_cind(float Rx_step);
void send_axis_2_cmd(void);
void send_retract_axis_l_cmd(void);

void write_command(ehar *c);
void write_character(char gamma);

void read_answer(char *a);
char read_character(void);

float axis_l_step; /* axis l's incremental steps to be moved */
float axis_3_step; /* axis 3's incremental steps to be moved */
float axis_2_stcp; /* steps arc directly related to the size of droplet o f the semi-liquid/wax */

main()
{

float axis_l_m m ; /* absolute distance from reference point */
float axis_3_deg; /* absolute angle of rotation */
float radius_mm; /* 3D model thickness at certain angle */
FILE *data;
char filename[STRING_LENGTH];
int radius;
char ^message;

printf("Please specify the file with correct path such as\n");
printf("c:\\folderl\\folder2\\filename.txt\n\n");
gels(filename);

printf("\nPlease specify the largest radius(mm) of your data file in integerAn");
printf("(radius is the third column value o f the data file.)\n\n");
scanf("%d", &radius);

printf("\nPlease specify the steps that you want the motor to move so th a l");
printf("\nthe plunger will push out the desired droplet size/amount onto ");
prinlf("\nthe core cylinder blockAn\n");
scanf(”% f , &axis_2_step);

data = fopen(filename, READ);

ir (data == NULL)
{

printf("%s cannot be opened\n", filename);
exit(errno);

}

/* assumptions : axis 1 coordinate is on the left side of the table
axis 3 coordinate is on the middle of the table
axis 2 coordinate is on the right side of the table */

339

initialiseQ;

message=" 1MR6 2MR6 3MR6 /* matching the motor resolution of PC23 and KS drive */
write_command(mcssagc);

while (! feof(data))
{

fscanf(data, ”%f", &axis_l_mm);
ax is_ 1 _i ncrementa1_step(ax is_ 1 _mm);
send_axis_l_cmd(axis_l_step);

fscanf(data, "%f", &axis_3_deg);
axis_3_incremental_step(axis_3_deg);
send_axis_3_cmd(axis_3_step);

fscanf(data, "% f& rad ius_m m);
send_axis_2_cmd(); /* the motor at the deposition equipment will rotate */

}

fclose(data);

scnd_relract_axis_l_cmd();

printf("\n\nYour %dmm radius cylinder block has been built by deposition\n", radius);
printf("process");

return 0;
}

/* Convert axis l's absolute distance to incremental motor step */
float axis_l_incremental_step(flbat x_mm)
{ /* assumption : axis 1 's reference point is on the other end of the rotary shaft o f axis 3

: the 1st value for axis_l_mm is 0 */

static float prev_x_mm = 0;

axis_l_step = (x_mm - prev_x_mm)/(0.3E-03);

prev_x_mm = x.m ra;

return (axis_l_step);
}

/* Convert axis 3's absolute angle to incremental motor step */
float axis_3_incremental_step(float Rx_deg)
{ /* assumption : axis 3's reference point(or axis) is the axis itself */

static float prev_Rx_deg = 0;

if (Rx_deg == 0)
{

axis_3_slep = 0;
)
else
(

axis_3_step = (Rx_deg - prev_Rx_deg)/(0.72E-03);
)

340

prev_Rx_deg = Rx_deg;

return (axis_3_step);
}

/* Reset the PC23 board. Assuring that the board is ready to accept commands from the user program. */
void initialise(void)
{

unsigned char statbyte;

outp(STCTRL_ADDR, HALT); /* initialise procedure */
while (!((statbyte = inp(STCTRL_ADDR)) & F A IL));
if(statbyte == BADADDR)
{

printf ("\n\nlnvalid address, check PC-23 dipswitches\n\n");
exit(l);

}
outp(STCTRL_ADDR, RESTART);
outp(STCTRL_ADDR, CB);
while(((statbyte=inp(STCTRL_ADDR)) & READY) != R E A D Y);

}

/* Constructing and sending command string of axis 1 to PC23 and getting position response string and
print it on the screen. */
void send_axis_l_cmd(float x_step)
{

int dec = 0;
int sign = 0;
int ndig = 0;

char axis_l_cmd[STRING_ LENGTH];
char *axis_l_front = " 1VS10 1V10 ID";
char *axis_l_step_str; /* axis l's integer motor step in char/string form */
char *go_axis_l = " I I IG ";

char *answer, *message;
answer =

s trcpy (axis_ 1 _cm d, axis_ 1 _front);
axis_l_step_str = fcvt(x_step, ndig, &dec, &sign);
strcat(axis_l_cmd, axis_l_step_str);
strcat(axis_l_cmd, go_axis_l);

write_command(axis_l_cmd);

printf("\n The motion command is :\n\n");
printf("%s\n", axis_l_cmd);

while((inportb(STCTRL_ADDR) & ALDONE) != ALDONE);
/* Waits for the axis to stop */

printf("\n The axis 1 position is :\n\n ");

message=" IP "; /* AXIS 1 POSITION *1
wri te_command(mess age);
read_answer(answer);
printf(answer,"\n\n ");

341

}

/* Constructing and sending command string of axis 3 to PC23 and getting position response string and
print it on the screen. */
void send_axis_3_cmd(float Rx_step)
{

int dec = 0;
int sign = 0;
int ndig = 0;

char axis_3_cmd[STRING_LENGTH];
char *axis_3_front = " 3VS 10 3V10 3D";
char *axis_3_step_str; /* axis 3's integer motor step in char/string form */
char *go_axis_3 = " 31 3G ";

char *answer, *message;
answer =

strcpy(axis_3_cmd, axis_3_front);
axis_3_step_str = fcvt(Rx_step, ndig, &dec, &sign);
strcat(axis_3_cmd, axis_3_step_str);
strcat(axis_3_cmd, go_ax is_3);

write_command(axis_3_cmd);

printf("\n The motion command is :\n\n");
printf("%s\n", axis_3_cmd);

whi!e((inportb(STCTRL_ADDR) & ALDONE) != ALDONE);
/* Wails for the axis lo stop */

printf("\n The axis 3 position is :\n\n ");

mcssage=" 3P "; /* AXIS 3 POSITION */
write_command(message);
read_answer(answer);
printf(answer,"\n\n ");

)

/* The motor will rotate. Hence, the lcadscrew will move downward and push the droplet o f the semi­
liquid material/wax onto the core cylinder block */
void send_axis_2_cmd(void)
{

int dec = 0;
int sign = 0;
int ndig = 0;

char axis_2_cmd [STRINGJLENGTH];
char *axis_2_fronl = " 2V S10 2 V 10 2D";
char *axis_2_step_str; /* axis 2's integer motor step in char/string form */
char *go_axis_2 = " 21 2G ";

char * answer, *mcssage;
answer = "";

strcpy(axis_2_cmd, axis_2_front);
axis_2_step_slr = fcvl(axis_2_step, ndig, &dec, &sign);
strcat(axis_2_cmd, axis_2_step_str);

342

strcat(axis_2_cmd, go_axis_2);

write_command(axis_2_cmd);

printf("\n The motion command is :\n\n");
printf("%s\n", axis_2_cmd);

whilc((inportb(STCTRL_ADDR) & ALDONE) != ALDONE);
/* Waits for the axis to stop */

printf("\n The axis 2 position is :\n\n ");

m essage^’ 2P /* AXIS 2 POSITION */
write_command(message);
read_answer(answer);
printf(answer,"\n\n ");

}

/* Sending command string of axis I lo PC23 to retract to the original position and getting position
response su ing and print il on the screen. */
void send_retract_axis_ 1 _cmd(void)
{

char ^answer, * message, *axis_ 1 _retract_cmd;
answer =

axis_ 1 _relract_cmd = " 1VS10 1V10 ID-330000 II IG
write_command(axis_l_retract_cmd);

printf("\n The motion command is :\n\n");
printf("%s\n", axis_l_retract_cmd);

while((inportb(STCTRL_ADDR) & ALDONE) != ALDONE);
/* Waits for the axis lo stop *1

printf("\n The axis 1 position is :\n\n ");

message=" IP "; /* AXIS 1 POSITION */
write_command(message);
read_answer(answer);
printf(answer,"\n\n ");

}

/* W rites a command string lo ihe PC23 */
void write_command(char *c)
{

while (*c)
write_character (*c++);

return;
}

I* Writes a single character io the PC23. PC23 commands are generated by sending multiple characters to
it */
void write_character (char gamma)
{

while (!(inp(STCTRL_ADDR) & IDB_M));
outp (ADDRESS,gamma);
oulp (STCTRL_ADDR, CHAR_READY);
while (inp(STCTRL_ADDR) & IDB_M);

343

oulp(STCTRL_ADDR,CB);
while (!(inp(STCTRL_ADDR) & IDB_M));
return;

}

/* Reads a complete PC23 status request response string *1
void read_answer (char *a)
{

while ((*a++ = read_character()) != 13);
*a = '\0';
return;

}

/* Reads one character of a PC23 response to a status request and returns the character response. */
char read character()
{

char gamma=0;
while (!(inp(STCTRL_ADDR) & ODB));
gamma = inp(ADDRESS);
oulp (STCTRL_ADDR, ACK);
while ((inp(STCTRL_ADDR) & ODB));
outp (STCTRL._ADDR, CB);
return(gamma);

}

344

Appendix O DpsSlp.c Program Source Codes

/* dpsslp.c contains a lot of functions. The functions are for
(1) Reading data from a file. The data is consists of axis l's travel distance(mm), axis 3's rotational
angle(degrce) and axis 2's travel dislance(mm). They are the absolute distance and angle.
(2) Calculating incremental motor step to be travelled by axis 1.
(3) Calculating incremental motor step lo be travelled by axis 3.
(4) Reset the PC.23 board. Assuring that the board is ready lo accept commands from the user program.
(5) Constructing and sending command string of axis 1 lo PC23 and getting position response string and
print it on the screen.
(6) Constructing and sending command string of axis 3 to PC23 and getting position response string and
print it on the screen.
(7) W rites a command string to the PC23.
(8) Writes a single character to the PC23. PC23 commands are generated by sending multiple characters
to it.
(9) Reads a complete PC23 status request response string.
(10) Reads one character of a PC23 response to a status request and returns the character response.
(11) The model will be transferred back to its original position once it reached 99 mm in height (total step
over distance).

It will enable axis 3 to stop for over 1 second between each motion. So that the external control wax
depostion equipment can do the deposition task by dropping a specific amount/size of semi-liquid
material/wax onto the core cylinder block.

Assumption: The deposition equipment is not control by the same program. The program will need
further integration with the program had handle the deposition equipment.

The maximum step over distance is 99 mm */

#include<stdio.h>
#include<stdlib.h>
#include<conio.h>
#include<errno. h>
#include<string.h>

#define FAIL 0X20
#define BIT2M ASK 0X04
#define READY 0X16
#define CB 0X60
#define IDB_M 0X10
#define CHAR. READY 0X70
#define ODB 0X8
#define ACK 0XE0
#define ALDONE 0X02
#define HALT (CB I BIT2MASK)
#define RESTART 0x40 /* byte to restart the pc21 */
#define BADADDR 0XFF

#define ADDRESS 0X300 /* PC23's address */
#define STCTRL_ADDR 0X301 /* Status and Control byte address */

#define STRING_LENGTH 81

345

#define READ "r"

float axis_l_incremental_step(float x_mm);
float axis_3_incremental_step(float Rx_deg);

void initialise(void);

void send_axis_l_cmd(float x_step);
void send_axis_3_cmd(float Rx_step);
void send_relract_axis_l_cmd(void);

void write_cbmmand(char *c);
void write_character(char gamma);

void read_answer(ehar *a);
char read_character(void);

float axis_l_step; /* axis l ’s incremental steps to be moved */
float axis_3_step; /* axis 3's incremental steps to be moved */

printf("Please specify the file with correct path such as\n");
printf("c:\\folderl\\folder2\\fllename.lxt\n\n");
gets(filename);

printf("\nPlease specify the largest radius(mm) of your data file in integer An");
printf("(radius is the third column value of the data file.)\n\n");
scanf("%d", &radius);

data = fopen(filename, READ);

if (data == NULL)
{

printf("%s cannot be opened\n", filename);
exit(errno);

/* assumptions : axis I coordinate is on the left side of the table
axis 3 coordinate is on the middle of the table
axis 2 coordinate is on the right side of the table */

initialise();

message=" 1MR6 3MR6 "; /* matching the motor resolution of PC23 and KS drive *7
write_command(message);

while (! feof(data))

main()

unsigned long
char

float
float
float
FILE
char
int

axis_l_m m ; /* absolute distance from reference point */
axis_3_deg; /* absolute angle of rotation */
axis_2_mm; /* 3D model thickness at certain angle */
*data;
fi lenamel STRING_LENGTH];
radius;
i;
^message;

346

{
fscanf(data,“%f", &axis_l_mm);
axis_l_incremental_step(axis_l_mm);
send_axis_l_cmd(axis_l_step);

fscanf(data, "% f’, &axis_3_dcg);
axis_3_incremental_step(axis_3_deg);
send_axis_3_cmd(axis_3_step);

/* stop the motion for over 1 second in a Pentium II 300MHz PC */
for (i = 0; i < 30000000; i ++)

fscanf(data, "%f", &axis_2_mm);
}

fclose(dala);

send_retract_axis_l_cmd();

printf("\n\nYour %dmm radius cylinder block has been built by deposition\n", radius);
printf("process");

return 0;
}

/* Convert axis l's absolute distance to incremental motor step */
float axis_l_incremental_step(floal x_mtn)
{ I* assumption : axis l's reference point is on the other end of the rotary shaft of axis 3

: the 1st value for axis_l_m m is 0 */

static float prev_x_mm = 0;

axis_l_step = (x .m ni - prev_x_mm)/(0.3E-03);

prev_x_mm = x_mm;

return (axis_l_step);
}

/* Convert axis 3's absolute angle to incremental motor step */
float axis_3_incremental_step(float Rx_deg)
{ /* assumption : axis 3's reference point(or axis) is the axis itself */

static float prcv_Rx_deg = 0;

if (Rx_deg == 0)
{

axis_3_step = 0;
}
else
(

axis_3_step = (Rx_deg - prev_Rx_deg)/(0.72Ii-03);
}

prev_Rx_deg = Rx_deg;

return (axis_3_step);

347

/* Reset the PC23 board. Assuring that the board is ready to accept commands from the user program. */
void initialise(void)
{

unsigned char statbyte;

ouip(STCTRL_ADDR, HALT); /* initialise procedure */
while (!((statbyte = inp(STCTRL_ADDR)) & F A IL));
if(statbyte = BADADDR)

{
printf ("\n\nlnvalid address, check PC-23 dipswitches\n\n");
exit(l);
}

outp(STCTRL_ADDR, RESTART);
outp(STCTRL_ADDR, CB);
while(((statbyte=inp(STCTRL_ADDR)) & READY) != READY);

}

/* Constructing and sending command siring o f axis 1 to PC23 and getting position response string and
print it on the screen. */
void send_axis_l_cmd(float x_stcp)
{

int dec = 0;
int sign = 0;
int ndig = 0;

char axis_l_cmd[STRING_LENGTH];
char *axis_l_front = " 1 VS 10 IV 10 ID";
char *axis_J_step_str; /* axis l ’s integer motor step in char/string form */
char *go_axis_! = " II IG ";

char * answer, ^message;
answer =

strcpy(axis_l_cmd, axis_l_front);
axis_l_step_str = fcvt(x_step, ndig, &dec, &sign);
strcat(axis_l_cm d, axis_ 1 _step_str);
sticat(axis_I_cmd, go_axis_l);

write_command(axis_l_cmd);

printf("\n The motion command is :\n\n");
prinlf("%s\n", axis_I_cmd);

while((inporlb(STCTRL_ADDR) & ALDONE) != ALDONE);
/* Waits for the axis to stop */

printf("\n The axis 1 position is :\n\n ");

message=" i p /* AXIS 1 POSITION */
wrile_command(message);
read_answer(answer);
prinlf(answer,"\n\n ");

}

/*■ Constructing and sending command string of axis 3 to PC23 and getting position response string and
print it on the screen. */

348

void send_axis_3_cmd(fioat Rx_step)
{

ini dec = 0;
ini sign = 0;
ini ndig = 0;

char axis_3_cmd [STR1NGJLENGTH];
char *axis_3_fronl = " 3VS10 3V10 3D";
char *axis_3_step_str; /* axis 3's integer motor step in char/string form */
char *go_axis_3 = " 31 3G

char *answer, ^message;
answer =

strcpy(axis_3_cmd, axis_3_fronl);
axis_3_step_str = fcvt(Rx_step, ndig, &dec, &sign);
strcat(axis_3_cmd, axis_3_slep_str);
strcat(axis_3_cmd, go_axis_3);

write_command(axis_3_cmd);

printf("\n The motion command is :\n\n");
printf("%s\n", axis_3_cmd);

while((inportb(STCTRL^ADDR) & ALDONE) != ALDONE);
/* Waits for the axis to stop */

printf("\n The axis 3 position is :\n\n ");

message=" 3P "; /* AXIS 3 POSITION */
write_command(message);
read_answer(answer);
printf(answer,"\n\n ");

/* Sending command string of axis 1 lo PC23 to retract to the original position and getting position
response string and print it on the screen. */
void send_retract_axis_l_cmd(void)
(

char *answer, *message, *axis_l_retract_cmd;
answer =

axis_l_relract_cmd = " 1VS10 1V10 ID-330000 II IG ";
write_command(axis_l_rctract_cmd);

printf("\n The motion command is :\n\n");
pri nlf(" %s\n ", axis_ 1 _retract_cmd);

while((inporlb(STCTRL_ADDR) & ALDONE) != ALDONE);
/* Waits for the axis to stop */

printf("\n The axis 1 position is :\n\n ");

m essaged' IP "; /* AXIS 1 POSITION */
write_command(message);
read_ans wer(ans wer);
printf(answer,"\n\n ");

349

/* Writes a command string to the PC23 */
void writc_command(char *c)
{

while (*c)
write_characier (*c++);

return;
}

/* Writes a single character to the PC23. PC23 commands are generated by sending multiple characters to
it *1
void write_character (char gamma)
{

while (!(inp(STCTRL_ADDR) & IDB_M));
outp (ADDRESS,gamma);
outp (STCTRL_ADDR, CHAR_READY);
while (inp(STCTRL_ADDR) & IDB_M);
outp(STCTRL_ADDR,CB);
while (!(inp(STCTRL_ADDR) & IDB_M));
return;

}

/* Reads a complete PC23 status request response string */
void read_answer (char *a)
{

while ((*a++ = read_character()) != 13);
*a = '\0';
return;

}

/* Reads one character of a PC23 response to a status request and returns the character response. */
char read_character()
{

char gamma=0;
while (!(inp(STCTRL_ADDR) & ODB));
gamma = inp(ADDRESS);
outp (STCTRL_ADDR, ACK);
while ((inp(STCTRL_ADDR) & ODB));
outp (STCTRL_ADDR, CB);
return(gamma);

}

350

Proceedings of the IASTED International Conference
Robotics and Automation 2000
August 14-16, 2000 - Honolulu, Hawaii, USA

Precision Robotic Manipulator based Rapid Prototyping System
Tang, S. H.*, Sulaiman, S.# and Hashmi, M. S. J.*

* School of Mechanical & Manufacturing Engineering, Dublin City University, Ireland, 97970018 @ tolka.dcu.ie or
saihong5 @ vahoo.com.

Department of Mechanical & Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Malaysia,
suddin@eng.upm.edu.mv.

School of Mechanical & Manufacturing Engineering, Dublin City University, Ireland, HashiniS@DCU.IE.

ABSTRACT

Prototyping technologies can be categorised into
subtractive and additive processes. Additive prototyping
processes are stereolilhography (SLA), fused deposition
modelling (FDM), selective laser sintering (SLS), and
others. NC subtractive prototyping process was created in
1960s and continues to evolve into CNC processes.
Additive prototyping technologies can reduce the
prototyping time. However, introducing a robotic-based
subtractive prototyping process can also shorten the
prototyping time significantly. Moreover, the new
configuration is more versatile, cheaper and occupies less
floor space than the conventional CNC process.

The present paper describes the hardware and software
design of a robotic manipulator based subtractive
prototyping system. A four degrees of freedom robotic
manipulator was powered by a. c. brushless servomotors,
which are controlled by separate drives. The drives accept
direction and distance signals from an indexer, which in
turn is controlled by the user-developed software through
a high specification PC. The manipulator is used lo hold
and manipulate the model material (polystyrene) for ball
nosed end milling process. A commercial CAD software
is used lo develop the NURBS surface engineering
models. User-developed C programs are used to
communicate and control the robotic manipulator. Several
prototypes produced using this facility have shown
satisfactory results.

Keywords: Manufacturing, Mechatronics, Robot Control,
Rapid Prototyping.

1. IN TR O D U C TIO N

There are two important challenges for product
manufacturing industry at present. One of it is lo find a
better way in reducing the product development lime
substantially. Another challenge is ihe improvement on
flexibility for manufacturing small batch size products and
a variety of types o f product II]. Decreasing product
development time will shorten the lead-time to market and
subsequently, an organisation can secure a bigger market
share earlier than its competitors. In fact, more than 70%
of senior management staffs rale the lead-time lo market
as one of the three most important criteria that drive them
in the businesses. Thus, the key lo success for most o f the

manufacturers is the capability to provide quality products
to market, at the shortest possible lead-time with the right
cost [2].

One of the ways to shorten the product lead-time to
market is to reduce the prototyping time. Some of the
advantages of having a shorter prototyping time are:
1) Visualisation. The touch of the real life objects can

reveal unexpected problems and sometimes lead lo a
better design modification.

2) Verification and Optimisation. With shorter
prototyping time, the design concept verification and
optimisation tasks can be accomplished faster.

3) Iteration. With shorter prototyping lime, it is possible
to go through numerous design iterations within a
short time.

4) Planning and Tooling. By having the physical
product at an earlier design stage, process planning
and tooling design can be speeded up.

5) Marketing. A prototype can be used lo demonstrate lo
the customers regarding the concept, design ideas and
the company’s capability in producing it.

There are two ways of reducing product prototyping
lime significantly. One of it is to develop new prototyping
technologies like stereolilhography apparatus (SLA),
selective laser sintering (SLS), fused deposition modelling
(FDM), and so on [3]. These methods are categorised
under additive prototyping processes. Another method is
to improve ihe principal existing technique like
integrating a precision robotic manipulator into
conventional machining process like ball nosed end
milling. The latter method is considered as subtractive
prototyping process.

This paper is concerning about Ihe improvement o f the
CNC based machining method by introducing a precision
robotic manipulator into the prototyping system. The
improved system will save as much as 40% of floor space
with the same size of workspace [8], The rig is a general-
purpose robotic system suitable for additive and
subtractive prototyping processes. However, the current
research is focusing in the subtractive prototyping aspect.
The hardware of the rig includes a ball nosed end milling
equipment, a four degrees of freedom precision robotic
manipulator [6], a. c. brushless servomotors, KS-drives
[5], PC-23 indexer [4] and a high specification PC. The
major software used in the project includes the AutoSurf

318-018 - 17-

mailto:suddin@eng.upm.edu.mv
mailto:HashiniS@DCU.IE

and the ANSI C programming tool. High density extruded
polystyrene is used as the model material in the
prototyping process. W ith the above hardware and
software configurations, various three-dimensional
complex shaped objects were produced.

2. H ARDW ARE

Figure 1. General layout o f the rig

General layout of the rig is shown in Figure 1. A
Pentium II 300 M Hz personal computer is used to control
the system by sending commands and receiving responses
from the PC-23 indexer. The indexer will in turn
communicate with the KS-drives for controlling the a. c.
brushless servomotors. The a. c. brushless servomotors
drive a four degrees of freedom precision robotic
manipulator. The manipulator feeds the polystyrene
cylindrical block to the ball nosed cutter for milling three-
dimensional complex shaped objects.

2.1 Precision Manipulator

Figure 2. Side and Plan View o f the Precision Robotic M anipulator

The precision robotic manipulator is shown
schematically in Figure 2. In the diagram, the plan and

side views of the manipulator are shown. The length of
the manipulator is 1270 mm. Its width and height are 616
mm and 440 mm respectively. The four degrees of
freedom are y linear motion axis, x linear motion axis, roll
(rotation around y-axis) and pitch (rotation around x-axis).
The directions of motion for each motion axis are also
shown in the figure by the double arrowhead lines. The
weight of the manipulator is about 55 kg. Aluminium
alloy (BS HE30 TF) that has the tensile strength of 280
MN/m2 was used to manufacture the main parts of the
manipulator. All the shafts used have hardness of 60
HRC.

The manipulation unit around the x-axis consists of an
a. c. brushless servomotor (KS 210) in conjunction with a
harmonic drive gearbox (HDUC 14) having a gear ratio of
100:1 for driving a pair of three-pin grippers. The motor
for the pitch manipulation can travel an angular distance
of 7.2 x 10"4 degrees per full motor step at a maximum
torque of 15 Nm. The range of the work piece size that
can be held by the grippers is 120 mm to 125 mm in
length and 40 mm to 150 mm in diameter.

The manipulation unit along the y-axis consists of an a.
c. brushless servomotor (KS 220), a flexible coupling
(Compumotor No. CPG. 2 - 6), a lead screw with pitch of
1.5 mm and two 16 mm diameter steel shafts. The motor
can travel a linear distance of 3.0 x 10'4 mm per full motor
step. The total linear distance that can be travelled by the
unit is 130 mm.

The manipulation unit around the y-axis (roll) consists
o f an a. c. brushless servomotor (KS 220) in conjunction
with a gear box (Drivematic No. SA1002) having a gear
ratio of 18:1 for generating the rotational motion around
y-axis. The gearbox is attached to a 30 mm diameter steel
shaft by a rigid coupling. The motor for roll motion can
travel an angular distance of 4.0 x 10'3 degrees per full
motor step at a maximum torque of 17 Nm. The maximum
rotational angle around y-axis is 130 degrees.

The manipulation unit along the x-axis consists o f an a.
c. brushless servomotor (KS 220), a flexible coupling
(Compumotor No. CPG. 2 - 6), a lead screw with pitch of
1.5 mm and a pair of 20 mm diameter steel shafts. A
maximum distance of 240 mm can be travelled by this
manoeuvring part along x-axis. The motor can travel a
minimum linear distance of 3.0 x 10'4 mm per full motor
step.

All the prototypes are of cylindrical shapes. As a result,
three motion axes are sufficient at the moment. The
required motion axes are the manipulation unit along the
y-axis, along and around the x-axis.

2.2 Interface System

The successful control of the robotic manipulator based
rapid prototyping system requires appropriate interfacing

-18-

of the machine/device with the PC. The interface system
consists of a PC-23 indexer, three KS-drives and three a.
c. brushless servomotors. Figure 3(a) illustrated the
interface system schematically where the system is
bounded by the thickest dotted line.

(a) Interface System

PC ’s High Level
Commands

(b) Indexer System Diagram

Figure 3. Interface System and Indexer System Diagram

2.2.1 PC-23 Indexer

Figure 3(b) shown the PC-23 indexer system diagram.
The indexer uses a 16-bit microprocessor for controlling
the motion of up lo three motor axes, independently or
simultaneously. The indexer is used with an IBM
microcomputer (PC, XT or AT) or compatible and
suitable for any kind of drive systems that can accept
pulsed control signals. There is an indexer main circuit
board incorporated into the ISA slot o f ihe PC’s
motherboard. The indexer operates as an intelligent
peripheral in which the onboard microprocessor interprets
the PC’s high level commands and generates the
necessary pulse stream to control the motor velocity,
acceleration, position and direction. There are
approximately 106 commands for specifying different
conditions and operating modes for generating any
complex shaped models. Better motion control and
responses from the indexer lies in (he selection of suitable
commands for any particular set o f motion sequence.

2.2.2 KS-Drive

The KS-drive consists of an analogue amplifier board
and a digital control board. The digital control board
handles all the positional compensation PID (proportional,
integral and derivative) and V (velocity) gains. The digital
control board sends two digitised waveforms from its
DAC to the analogue amplifier board. The analogue
amplifier board generates its own third phase command
and measures (he actual motor current lo determine the
correct pulse widlh of the voltage to be applied to the
motor windings. The drive can be tuned by using either
the front panel pushbuttons or the RS-232 port that is link
with the PC’s serial communication port. There are about
45 commands available for checking, setting, performance
optimising and saving the desired parameters into the non­
volatile EEPROM memory. Figure 4 illustrated the KS-
drive schematically.

For accurate speed control, each indexer axis needs to
know the resolution of its controlled motor. The settings
of the motor resolution on the KS-drives and the PC-23
indexer must match. The standard motor resolution setting
for all the axes on the PC-23 indexer is 25000 steps per
revolution. Whereas, the KS-drives for motors KS 210
and KS 220 are configured in the range of 1000 to 16384
steps per revolution. In this project, the KS-drives settings
are kept at 5000 steps per revolution. The indexer motor
resolution is also set at 5000 steps per revolution although
it supports motor or drive resolutions up to 50000 steps
per revolution. As a result, the indexer and drives offer the
flexibility to change the motor resolutions to suit any
particular application.

-RS-232..
link to
the PC

P C -2 3

Indexer
commands

Non-volatile
EEPROM
memory

Power supply

Power
am plifie r

DAC

M icroprocessor

Power
amplifier

Power
amplifier

RDC

Positional
fe e d b a c k

Pushbuttons Display

LLU LU C ~ T Z

Motor

Resolver

DAC = digital to analogue converter
RDC = resolver to digital converter

Figure 4. KS-Drive Servo System

2.2.3 A. C. Brushless Servom otor

The a. c. brushless servomotor rotates when the rotor
magnetic field tries to follow ihe stator mining magnetic
field created by the three phase a. c. current. By changing
the three phase current frequency, the motor achieves
different velocities. Step pulses applied first slowly, and
then more quickly have the effect of accelerating the
motor. The advantages of a brushless motor are:
1) Reduced maintenance.
2) Increased torque/volume ratio.
3) Increased torque at high speed.
4) Simplified in protection compare

conventional motors.
with more

2.3 Ball Nosed End Milling

The selected subtractive prototyping process is a ball
nosed end milling process. A ball nosed cutter has cutting
edges at the end and around the cutter. As a result, single
point cutting can be accomplished by using the cutting
edge at the end of the cutter. The cutting edges at the
periphery of the cutter enable multiple cutting operations
to be carried out at different intervals of time. The size of
the milling chips is relatively small if compare to other
machining processes. Hence, the produced surfaces are
smoother. The ball nosed end milling can produce
virtually any kind of surface if compares to other kind of
milling processes. It has the advantage of making holes if
compare to the conventional end milling.

The milling material used in the project is an extruded
polystyrene. The material is found to be a good choice for
milling because minute chips can be removed during the

prototyping process and a smooth surface can be created.
Its property is not the same as the normal white colour
polystyrene that is used in protecting electrical appliances
in ihe packaging industry. The material’s minimum
density is 32 kg/m3. Its thermal conductivity is 0.028
W/mK (measured at I0°C). The compressive strength is
300 kN/m2.

3. SO FTW A RE

The AutoSurf package is used to create complex
shaped surface models that are section cut into multiple
cross sectional layers. The section cut models are then
converted from graphic files into neutral formal files. The
CAM programs are specially devised for extracting
surface co-ordinates from the neutral format files,
converting the data into different co-ordinate system,
sorting, creating motion parameters, communicating with
PC-23 indexer and controlling the precision robotic
manipulator.

3.1 Surface Modelling

The AutoSurf R3.2 is a window-based, two and three-
dimensional mechanical design and drafting software
from Autodesk, Inc. Its’ modelling system is based on
NURBS (non-uniform rational B-spline) curves. A
reduced instruction set processor (RISC), with a limited
number of instructions is built into the processor to reduce
the response time for running some applications on the
software development system [7|. Crosshairs and a
computer mouse are used to locate geometric shapes
within the work area. An X-Y construction plane is used
for the two-dimensional mode that uses a three-point
origin placed by the user, known as the user co-ordinate
system (UCS). In default setting, the Z-axis is
perpendicular to the personal computer screen and
pointing directly to the user.

AutoSurf has open architecture for easy customisation
of menus. The screen menu is the main menu, which
includes the drawing editor, configuration, plot, file
utility, and operating parameter menus. A dialogue box
appears when the selected item is chosen from the pull­
down menus to assist the user. Besides using the pull­
down menus, the user can type in the commands into the
command prompt to call up the functions. The software
commands are path dependent. For example, the ‘undo’
command will remove the screen image and any previous
drawing layers up to the earlier drawing level. If
compared to the AutoCAD, the AutoSurf has more
features and is user-friendlier. In addition, only the
AutoSurf can be used to modify the created surface
models at a later stage. As a result, the AutoSurf was
chosen for the surface modelling process.

There are four different types of surfaces in terms of
the methods used to construct them in AutoSurf:

-20-

1) Surface Primitives. Created directly by the AutoSurf
like cone and cylinder surfaces.

2) M otion-based Surfaces. Produced by moving wires
through space. Examples are revolved, extruded,
tubular and swept surfaces.

3) Skin Surfaces. Constructed by applying over a
wireframe such as ruled surface.

4) D erived Surfaces. Generated from the existing
surfaces like blended surface.

Ruled surface modelling is chosen since it is the best
method for creating complex shaped surface models. Its
models are asymmetric, complex and have predictable
bump height and saddle depth (contributed to the
predictable milling depth). The created surface models can
be section cut into multiple cross sectional layers and
converted into DXF (drawing interchange format) entities
files. Figure 5(a) and 5(b) illustrates the surface model
that was built by using a square and a circle polylines, and
its section cut model respectively.

Square

Circle

(a) Ruled Surface

34 cross
sectional layers
with stepover

distance of
1.5 mm

(b) Section Cut Surface Model

Figure 5. Ruled Surface and Section Cut Surface Model

The stepover distance of the section cut process
determines the amount of layers of the model. At least 400
co-ordinates are generated in each section cut layer. The
surface roughness is directly proportional to the amount of
co-ordinates in each layer and the number of layers of the
models.

3.1 CAM Programs

All computcr-aidcd manufacturing (CAM) programs in
this project were written in American National Standards
Institute (ANSI) C programming language. The source
codes were compiled in Borland C++ version 4.5. ANSI C
programming language was used in this project because of
the following reasons:
1) It is powerful and flexible. The language itself places

no constraints on the user.
2) It is a portable language. A C program written for one

computer system (an IBM PC, for example) can be
compiled and run on another system (a DEC VAX
system, perhaps) with little or no modification.

3) It is a language of few words. It contains a handful of
terms, called keywords, which serve as the base on
which the language’s functionality is built.

4) It is modular. C code can be written in routines called
functions. These functions can be reused in other
applications or programs.

Five programs were created so that the data processing
procedures can be computerised; path generation process
is automated and so on. The programs are listed
sequentially as below. All data files have to be processed
according to the sequence.
1) Extract.c. It is for extracting the entire surface co­

ordinates from the DXF entities files. The DXF
entities files were transferred from the section cut
models.

2) Convert.c. It is for converting all the data from
Cartesian co-ordinate system to cylindrical co­
ordinate system to suit the precision robotic
manipulator.

3) Sortadd.c. It is for sorting all the co-ordinates
according to the height of the model, angles and
creating the first and last point for each machining
section (layer).

4) Vd.c. It is for converting all the distance from
millimetre and degree to motor step. It is also
calculating all the synchronised velocity for each
motion axes.

5) VsvMt.c. It is the ultimate motion control program. Its
functions include machining time estimation,
command construction, communication with the PC-
23 indexer, sending commands and receiving
responses.

4. RESULT

A number of polystyrene prototypes were produced by
using the system. One of the them is shown in Figure 6
together with its milling parameters, time and
measurements.

Square

Circle
(1st layer)

M ach in in g P aram eter & R esu lts

Cutter diam eter : 6 mm
Spindle velocity : 1000 rev/ sec
Feed rate : 0.375 mm/sec along x-axis

: 0.9 degree/see around x-axis
(The feed rate along y-axis is synchronised with
the other two motion axes)
Step over :1 .5 mm
Machining time : 3.82 hours
Production time : 4.39 hours

Properties o f Circle’s 1st layer

Designed diameter : 31.2566 mm
M easured diameter : 31.225 mm

(average)
Error : 0.1 %

Figure 6. M illed Prototype with M achining Parameter, Time and
M easurements

5. D ISCUSSION

Various polystyrene prototypes were produced by
using the subtractive prototyping system with the aid of
the precision robotic manipulator. The ruled surface
models were generally composed of two or more polyline
profiles. The profiles were circle, heart, complex, square,
cross, star and pentagon. The surface finish of the
products is fairly good. Some of the milling chips were
still attached on the model surface due to the natural
properties of extruded polystyrene block. The surface
finish can be further improved if the section cut surface
models have more than 34 cross sectional layers - which
will contribute to smaller stepover distance and longer
production time.

M ost o f the milling starting points (0°) and ending
points (360°) were observed to have a deeper milling
depth. The deeper milling depth may be due to the
following causes:
1) The starting points were created by the author by

using lineal' interpolation, which is different from the
NURBS curve of the engineering models.

2) The cutter was dwelling at the 0° and 360° location of
each cross sectional profile for a longer time. It is due
to the nature of the Sortadd.c program that may add

redundant co-ordinates at the start and end points of
each cross sectional layer.

3) The PID and V gains setting of the KS-drives may
not be the optimum although the shapes of the milled
models were matching the designed models.

The milled polystyrene models were found to have
craters. It might be caused by the vibrations of the bail
nosed cutter drive unit. The cutter drive can be made more
stable if its base is supported from the ground instead of
being overhung in the air as at the moment. Fixing an air
cushion to it can also reduce the cutter drive vibration.
The dimensional accuracy of the product is very good.
The dimension of the circle to square shape has been
measured and the result is shown in Figure 6. The
percentage of error is only 0.1%. The dimensional
difference may be due lo the positioning system of the
manipulator, ihe milling equipment and the machining
vibration. The actual machining time is different from the
overall production time because at least 20% of the
production time was used in commands transfer and
execution.

The difference in command execution speed between
the microprocessors of the indexer and the Pentium II PC
has affected the interface smoothness in the initial stage.
An evaluation program, Mo'Slo v l.32 was used to slow
down the execution speed of the PC to be at par with the
indexer, but it failed. The issue was later solved by
changing the control program so that the PC will wait
until it gets the answer from the indexer before continuing
to execute its commands.

The original ball nosed cutter was attached to a Bosch
hand drill. The hand drill was found to be not suitable
because it cannot continuously run for a few hours. As a
result, the IKA drive unit that can stand long machining
hours was used to replace the Bosch hand drill as the
subtractive prototyping tool. The new drive unit has the
advantage of controlling the rotating speed of the cutter.

The postprocessor program (Extract.c) for the DXF file
can extract all the surface co-ordinales from the model in
seconds. The postprocessor was found to be very efficient
since all the surface co-ordinates of the section cut model
can be extracted out from the section cut models.
However, the post-processor programs are solely for the
AutoSurf section cut surface model’s DXF entities file.
The product files of the Extract.c were verified to be
correct by plotting the cross sectional profile data into
Microsoft Excel. Due to the memory limitation of the PC,
the maximum co-ordinates thal can be handled by the
Sortadd.c program is set at 4000.

6. CONCLUSION

On the whole, a rapid prototyping system using a
precision robotic manipulator has been created. The
system is comprised of a personal computer, interfacing

-22-

system (PS-23 indexer, KS-drives and motors), a four
degrees of freedom precision manipulator and a ball nosed
end milling equipment. The hardware is integrated with
the commercial available CAD software (AutoSurf) and
self-developed CAM programs (for data processing and
motion control) for producing subtractive prototyping
models.

[8] D. A. Belforte, Robotic Manipulation for Laser
Processing, Proceedings o f the SPIE-High P ow er Lasers
and Their Industrial Applications, Vol. 650, 1986, 262 -
270.

The system has the following advantages:
(1) Low Cost. The hardware and software configuration

is cheap.
(2) Effective. The system can produce complex shaped

objects with high accuracy.
(3) Time Saving. Complex shaped objects can be

produced in hours without sacrificing the surface
roughness and accuracy.

(4) Space Saving. The needed space is much less than the
CNC based machines.

(5) A ll in One. All the CAD/CAM activities can be done
in one personal computer.

The system can be further improved by:
(1) Replacing the lead screws with ball screw that will

provide backlash free motions.
(2) Reducing the vibration of the ball nosed end milling

equipment with air cushion.
(3) CAM programs can be linked or integrated to reduce

data processing time and error.
(4) For perfect accuracy, the methods of getting the home

position of the manipulator in subtractive and additive
prototyping processes has to be carried out.

A hybrid rapid prototyping system that comprises of
additive and subtractive processes can be created. Objects
with internal cavities and out of line of sight areas can be
created layer by layer in additive process. The subtractive
process can smoothen up the surfaces after each layer is
built.

7. R EFE R E N C E S

[1] X. Yan and P. Gu, A Review of Rapid Prototyping
Technologies and Systems, Com puter-Aided Design,
28(4), 1 9 9 6 ,3 0 7 -3 1 8 .
[2] L. Styger, Rapid Prototyping and Tooling
Technologies, M aterials World, 1(12), 1993, 656 - 658.
[3] J.P. Kruth; M.C. Leu and T. Nakagawa, Progress in
Additive Manufacturing and Rapid Prototyping, Annals o f
the CIRP, 47(2), 1998.
[4] Compumotor Division, PC-23 Indexer User Guide
(U.S.A.; Parker Hannifin Corporation, 1987)
[5] Compumotor Division, KS-Drive U ser Guide (U.S.A.;
Parker Hannifin Corporation, 1987)
[6] M.T.L. Bhatti, Effectiveness o f Com puter Controlled
R obotic Precision M anipulator (Ireland; Dublin City
University, 1991)
[7] R.C. Dorf and A. Kusiak, H andbook o f Design,
Manufacturing and Automation (New York; John Wiley
& Sons Inc., 1994)

-23-

