
u s in g

Ob j e c t Orien ted T e c h n iq u e s a n d C++.j

The In tro d u c t io n o f Realism in to SC ADA Mimic D iagram s

A Thesis

by

Mr P Kiernan

Submitted to Dublin City University,

School of Computer Applications

for the degree

of

Master of Science

May 1991

D e d i c a t e d t o S y l v i a w h o s e

u n f a i l i n g l o v e an d p a t i e n c e

made t h i s w o r k p o s s i b l e

Ac kn o w led g em en ts

I would like to thank the staff of the School of Computer

Applications for their cooperation and help during this project

and, m particular Mr J Doyle for his assistance I would like to

thank Mr C Kerr for the financial contribution made on behalf of

Datac Control to the project Most of all I would like to thank Dr

M Scott for his positive encouragement, his many helpful comments

and suggestions, and for his enduring patience

Ab s t r a c t

Supervisor Dr M. Scott PhD

Student Mr P Kiernan B Sc C Eng

This project shows how an interactive object based graphical user
interface for a plant supervision or control application may be
implemented using state-of-the-art software languages and tools In
many current plant supervisory, control and data acquisition
systems (SCADA) data presentation is limited to archaic character
based graphics and text based prompts with little or no use of
pointing devices With the emergence of object-oriented programming
languages and graphics function libraries this project shows how a
decisive upgrade in the graphics for these systems may be achieved,
thereby bringing realism into plant mimic diagrams The mimic
diagrams created in this project consist of a static background,
acquired by the use of scanning devices or paint packages, and a
dynamic background of icons, generated using object-oriented C++
classes The project is an object-oriented application and hence
illustrates the object-oriented paradigm

The thesis introduces the area of supervisory, control and data
acquisition systems It examines graphic standards and operating
system options, and highlights the need for a user friendly
extensible graphic interface to telemetry systems It also shows
how object-orientation should provide for systems that are not only
easier to extend and maintain but may also spawn parts which may be
used for future projects The thesis, based on experience gained
throughout the project, examines C++, classes, inheritance,
problems associated with C++ environments and the dangers of
product incompatibility It discusses graphic elements, such as
bitmaps, icons and menus, and shows how object-orientation may be
applied to them It expounds on real-time considerations and icon
animation and details the full project implementation including
compilation and memory management systems used Finally it points
to the future, to the impact of object-oriented programming on
technical management, to object-oriented databases and the
object-oriented SCADA workstation of the future, and to changes
imminent in C++ itself

De c l a r a t io n

No portion of this work has been submitted in support of an

application for another degree or qualification in Dublin City

University or any other University or Institute of Learning

Co n t e n t s

1 1 INTRODUCTION 2

1.2 THE CURRENT STATUS OF SCADA SYSTEMS 4

1 3 GRAPHICS AND STANDARDS 8

1 4 OBJECT-ORIENTED USER INTERFACES AND REALISM 10

1 5 OPERATING SYSTEMS AND EXECUTIVES 18

2 C++ Tip of th e S ilv e r B u l le t

2 1 INTRODUCTION 20

2 2 OBJECT-ORIENTED VERSUS PROCEDURAL LANGUAGES 21

2 3 CLASSES AND INHERITANCE 26

2 4 MEMORY ALLOCATION 33

2 5 CRITICISMS OF C++ 37

2 6 ZORTECH’S OFFERING 38

3 T he Re s e a r c h a n d De v e l o p m e n t Pa t h .

3 1 MICROSOFT C, GKS AND MEDIA CYBERNETICS 42

3 2 20RTECH C++ AND FLASH GRAPHICS 43

3 3 GLOCKENSPIEL’S ADVANTAGE 44

3 4 PF0RCE++ CLASS LIBRARIES 45

3 5 METAWINDOWS/PLUS AND HALO GRAPHICS 46

3 6 WINDOWS, OPERATING SYSTEMS AND COMMONVIEW. 48

3 7 DEVELOPMENTS UNDER GLOCKENSPIEL C++ 50

3 8 DEVELOPMENTS UNDER ZORTECH C++ 52

3 9 OS/2 AND ZORTECH. 55

3 10 ZORTECH'S REVENGE AND VIRTUAL CODE MANAGEMENT 57

3 11 THE PHAR LAP 80386 LINKER 59

1. O b je c t-O r ie n te d Program m ing and SCADA System s.

i

4. Gr a p h ic s .

4 1 IMAGE AND SCHEMATIC BACKGROUND FILES. 62

4 2 BITMAPS AND OBJECT BACKGROUND FILES 67

4 3 EXTENTS, ICON AUTO-PLACEMENT AND OVERLAPPING 71

4 4 REAL-TIME CONSIDERATIONS 76

4 5 ANIMATION AND ICONS 80

4 6 TEXT, MENU AND MOUSE I/O 94

5. Im p l e m e n t a t io n De t a il s .

5 1 CLASSES AND ICONS 98

5 2 THE CLASS HIERARCHY 117

5 3 THE DESIGN PROGRAM 122

6 The Wa y Fo r w a r d .

6 1 INTRODUCTION 140

6 2 OBJECT-ORIENTED DATABASES AND PERSISTENCE 141

6 3 OPERATING SYSTEMS 144

6 4 TOWARDS THE OBJECT-ORIENTED SCADA WORKSTATION 145

6 5 OBJECT-ORIENTED LANGUAGES AND C++ 147

6 6 THE IMPACT OF OOPS ON TECHNICAL MANAGEMENT 149

6 7 CONCLUSION 151

Ap p e n d ix 1 T he C++ La n g u a g e

A1 1 INTRODUCTION 153

A 1 2 C ENHANCED 153

A1 3 FUNDAMENTALS AND MACROS 158

A1 4 OPERATOR AND FUNCTION OVERLOADING 165

A1 5 C COMPATIBILITY, NEW FEATURES AND CRITICISM 169

il

Ap p e n d ix 2 . Co m p il a t io n , L in k a n d Debug De t a il s .

A2 1 COMPILATION, LINKING AND MEMORY MANAGEMENT SYSTEMS 178

A2 2 DEBUGGING 182

Ap p e n d ix 3 . Bib l io g r a p h y

184

Ap p e n d ix 4- So u r c e Code L is t in g s .

201

lil

L is t of F ig u r es

1.1 Pu m p in g s t a t io n m im ic d ia g r a m .

1.2 Wa ter s u p p l y s y s te m m im ic d ia g r a m .

1.3 Meth a n e g a s p l a n t m im ic d ia g r a m .

1.4 Wa ter tow er m im ic d ia g r a m .

1.5 PUMPHOUSE MIMIC DIAGRAM.

1.6 T r e a t m e n t p l a n t m im ic d ia g r a m .

1.7 Pr o c e s s in g p l a n t m im ic d ia g r a m .

4.1 D is t il l e r y p l a n t m im ic b a c k g r o u n d .

4 2 Ex p a n d e d Z ip f il e .

4 .3 Bma1 Bitmap o b j e c t

4 .4 Fo r e g r o u n d ic o n s

4 5 Fo r e g r o u n d ic o n s

4 6 Ob j e c t s with n o exten t o v e r l a p

4 7 Ob j e c t s w ith e x t e n t o v e r l a p

4 .8 Ov e r l a p p in g o b je c t s

4 .9 Pu m p c o n t r o l p a n e l

5.1 Cla s s h ie r a r c h y d ia g r a m .

5 .2 Method in h e r it a n c e d ia g r a m .

5 3 Win d o w a n d Wind o w tile t e x t i/ o o b j e c t s .

5 .4 Zip, Zpi and F u n c tio n menus.

5 .5 Ic o n m e n u s .

5 .6 Ca d sh a pe id e n t if ie r Win d o w tile o b je c t

5 .7 T e m p la te o b j e c t s .

IV

c

1 O b je c t-O r ie n te d Program m ing and SCADA System s.

1.1 In t r o d u c t io n . 2

1.2 The C u r re n t S ta tu s o f SCADA System s. 4

1 3 Gr a p h ic s a n d S t a n d a r d s . 8

1.4 Ob j e c t -O r ie n t e d User In te r fa c e s a n d Re a l is m 10

1 5 Op e r a t in g S y s t e m s a n d Ex e c u t iv e s 18

l

1.1 In t r o d u c t io n .

The first chapter of this thesis introduces the concepts of

supervisory, control and data acquisition (SCADA) systems and the

role that object-oriented programming plays in development of user

interfaces for such systems It focuses on graphics packages and

standards, and how realism may be introduced into SCADA mimic

diagrams It highlights how this project makes the leap from

procedural development to object-oriented development for SCADA

user interfaces

SCADA systems cover everything from simple lowly data loggers to

large distributed process control systems The underlying factor

being the collection and display of plant data Ireland’s closest

neighbour, the UK, has already 400 telemetry scanners and 5000

outstations assigned to the major utilities Furthermore over the

next five years, the UK Department of Trade and Industry "forecasts

that the number of scanning telemetry systems will more than double

and the number of outstations will quadruple by 1992" [LILL89]

There are also the plethora of data acquisition arrangements that

complement automation operations based on system profiles such els

the Manufacturing Automation Protocol Demand for industrial data

acquisition systems will continue to grow throughout the 1990’s

according to market researchers Frost and Sullivan Despite the

fact that the SCADA industry is quite conservative, migration of

intelligence away from the centralised computer to PCs and

workstations is occurring rapidly The time is ripe for the move

from procedural system development to object-oriented development

Graphics are extremely important to SCADA users and are also an

ideal candidate for object-orientation Moreover users are

demanding friendly obj'ect-oriented and icon based systems

With the graphics packages and object-oriented programming systems

(OOPS) now available a decisive upgrading in the graphics available

for SCADA systems should bring more realistic mimic diagrams to

users screens Object-orientation should provide for systems that

2

are not only easier to extend and maintain but may also spawn

reusable parts for future projects

A telemetry or SCADA system typically consists of a hierarchical

network of data collection stations, communicating over leased

lines, the public switched telephone network or radio This

communications network is generally terminated in a central

station The central station is used for monitoring the real time

data fed through the entire system. Other central station functions

could include data logging, statistical data analysis and plant

control Generally the network topology would be configurable and

would depend on the structure of the system or plant under

supervision Network complexity could range from a single logging

system to a complex tree structure of data collection stations,

communications substations and a central station with a standby

backup system

A project to upgrade an existing central station is m progress A

part of this project [DATA89] may include decentralisation of

certain heretofore central station operator facilities This may be

achieved by the provision of a PC network for the connection of

SCADA graphic workstations Mimic diagrams of plant and machinery

are the key element in plant supervision The mimic diagram realism

project has produced, a number of methods for achieving realistic

static mimic diagram backgrounds, a hierarchy of dynamic object

oriented icons representing plant transducers and actuators, and a

framework for mimic generation It is envisaged that the work

carried out on this project together with network technology,

database facilities and future object-oriented graphics development

may form the basis for a graphic SCADA workstation to be used as an

integral part of a full SCADA system

3

1 2 T he Cu r r e n t St a t u s .

The present generation of SCADA systems with distributed

intelligence allows data access at nodes throughout a telemetry

network However m many systems the data presentation is limited

to character based graphics with a limited character set and text

based prompts with limited or no use of pointing devices Figures

1 1 and 1 2 show character based mimic diagrams from a water supply

monitoring and control system The migration from proprietary

outstations to workstations and PCs, and the use of PC networks now

enables these archaic unfriendly interfaces to be replaced with new

graphics based interfaces Hence the way is clear for the emergence

of the object-oriented SCADA graphics workstation These

workstations to be positioned either at the data acquisition site

or remote from the site and communicating to the site station via a

telemetry network The key elements m the new interface sire

object-orientation and realism

SCADA systems are generally real-time systems and as such the

question of timing and system throughput becomes significant

However “most operations are not time-sensitive and the few most

critical operations are probably going to be done in native machine

language to get the most throughput" [F0RD90] As the message

passing overhead with an object-oriented language is generally no

heavier than an equivalent procedure call in a non-object-oriented

language, according to Thomson of Object Technology International

[FQRD90], then the use of object-oriented languages for real-time

systems should not be a problem

A limited number of icon based SCADA workstation products have just

begun to appear on the market The icons are generally very

primitive with poor animation features They promise a user level

obj'ect-oriented style of environment but are not written in an

object-oriented language and hence do not have some of the inherent

features of a real object-oriented development such as high level

of maintainability and reusability

4

F U MF I N G S T A T I O N

» I— 17

IR

^ ------ x------ x------ x------1----- 1
futCä! m M RKW POTrZ

o o o o o o
T ___________ X ____________X ____________X ____________X _______

a u r a

a u t a u p / s

 ML.D

P W P 3. i PUMP 2 r PUMP 3 F P U M P j J "

^ 3 G
«>#*#*>>

■ M B H

E M M
o o

Figure i.l Pumping Station.

t-l-
O'

O
c

PUMPING STAI[OH
—W i ^ . i M ►

PUNPING STATION

POLVELKCTKOLVTE

Figure 1.2 Water Supply S y s t em.^j^j^j

A major feature with SCADA systems is their inherent commonality

SCADA system developers continually find themselves reusing

procedures from past projects. This situation is ideal for the

object-oriented paradigm which centres around the generation of

libraries of reusable software components which can just be

plugged-in to new applications Coupling the idea of reusable

software components with the new graphics packages now available to

form a library of reusable graphic objects, would be very useful in

the development of SCADA systems

7

1.3 Gr a p h ic s a n d St a n d a r d s

"We are drowning in information and starved for

knowledge computer graphics may be a lifebelt to help us stop

drowning" [MARS87] This is very applicable to data collection

systems Long lists of transducer identifiers and their status or

value do not provide for rapid transfer of information to a plant

operator

Marshall’s book ’Computer Graphics m Application’ outlines many of

the graphic packages available [MARS87] The only d e f a c t o standard

available in computer graphics is the Graphic Kernel System (GKS)

[H0PG83] It was designed over six years by the International

Standards Organisation (ISO) and became a standard m 1983 GKS is

defined independently of programming languages Its main objective

is the production and manipulation of pictures in a way that does

not depend on the graphical device or computer used "GKS is a

device-independent kernel system with all the graphics commands

being stored m a device-independent format in a metafile"

[0C0N89] GKS uses device drivers to convert the device independent

commands into device specific commands, hence input/output devices

can be changed without reprogramming The result is a system which

is device independent but has a slow response [0C0N89] GKS is a

large system because it must cover a very wide range of operations

and devices Recent graphic products which do not conform to the

GKS model have proved themselves to be far superior to the GKS

system

An example of such a product is the Halo graphics package [HAL088]

This package provides a library of graphic primitive commands which

can be called from a C program It also provides the capability of

providing a captured video frame image as a mimic background A

graphic interface could be designed by encapsulating graphic

primitives in segments and using control blocks and linked list

structures to string segments together to form icons

8

The basis for such system development is expounded on by [F0LE84]

Certainly an object style user environment could be constructed m

this way, however it would only approximate the power of a truly

object-oriented graphic development.

Other graphic packages like Zortech’s [Z0RT90b] Flash graphics are

an integral pant of a larger programming environment These

packages provide a more homogeneous interface to the binding

language, and like the Halo package provide a rich set of graphic

primitives Most graphic primitive libraries provide device drivers

for a variety of monitors and pointing devices The use of such

graphics packages negates the necessity of writing low level

routines to draw graphic primitives In addition the Zortech

graphics package is supported by the C++ object-oriented

programming language

The choice of IBM PCs or compatibles as graphic workstations for

SCADA applications has come about because of low hardware cost,

ease of ruggedising the hardware, availability of relatively cheap

software development tools, compatibility with other hardware and

software, and ease of expansion [TINH88] "Because of the true

’open bus’ nature of the architecture, it has become a standard

platform for industrial measurement and control" [GER090] PCs

represent the optimal choice for stand-alone systems with signal

counts of less than a few thousand and as workstations to larger

systems such as DEC VAX under VMS, or VME systems under OS/9 There

is no doubt that whether it is real time monitoring of

instrumentation, transducer control or off-line plant analysis, PC

graphics are the key to low cost automation As seen at the

Birmingham Control and Instrumentation Exhibition [CIEX89] there

are procedural language based products on the market However

these products are likely to be soon surpassed by far more

flexible object-oriented systems

9

1.4 Ob j e c t -O r ie n te d u ser In t e r f a c e s a n d Re a l is m .

Showpieces like The Open Software Foundation (OSF)/Motif Graphical

User Interface [DEIN90] and Hewlett Packard’s NewWave Environment

[SHOW90] bear witness to the power and flexibility of

object-oriented graphical user interfaces Most users are busy

enough maintaining expertise in their own area without having to

become computer experts as well The user interface should be

unambiguous and easy to use even for casual users without

sacrificing flexibility and effectiveness for experienced users

Clever use of pointing devices, menus, windows and information

templates can help achieve this goal Of particular importance in

the SCADA area is that plant information should be imparted

intuitively to the user The traditional system with line-diagram

mimics and values scattered over the screen, or tables of values

failed to achieve this

The graphical interface developed in this application allows the

user to select a background picture or mimic from disc and then to

build up a set of dynamic icons on top of the background The

background would typically represent some plant or part of a plant

The interface is a true OOPS interface programmed m

object-oriented style via C++

Visual realism is introduced by using scanned images from plant

photographs or schematic diagrams using an AT&T scanner [ATTS88]

and the associated SCANWARE software [SCAN88] The scanned images

can be edited by using ZSoft PC-PAINTBRUSH [PCPB88] allowing them

to be enhanced or allowing backgrounds of partial images and

schematic diagrams Alternately the scanned images can be converted

to Media Cybernetics Halo graphics format and can be edited using

the Dr Halo III interactive graphic editor [DRHA87] to produce, as

above, enhanced images or backgrounds of mixed images and schematic

diagrams A program has been developed els part of the project to

convert AT&T scanner files [EXE89] and Media Cybernetics files to

background files compatible with Zortech Flash Graphics

10

Schematic mimic diagrams from other systems can be converted into

Media Cybernetics format using the memory resident GRAB facility of

Dr Halo III, and from this format converted as above into files

compatible with Zortech Flash graphics

The interface uses a two button mouse pointing device and keyboard

for input Menus, windows and templates are used to display data

and for input of data Dynamic icons which mimic real world

transducers can be drawn, erased, dragged across the screen and

overlaid The dynamic mimic is generated by choosing a set of icons

to match signals which would be measured m the plant or part of

plant Operator input icons can also be included for direct plant

control The interface provides a rich set of dynamic icons

implemented in an object-oriented language Typical SCADA

applications in the water, gas, electricity and oil industries

would use a base set of dynamic icons and a customised set for each

different application In true object-oriented system design

fashion the accumulation of a full set of reusable dynamic icons

for a wide range of SCADA applications would occur over several

projects, with the existing set acting as a strong base for further

development

A mimic diagram consists of a fixed background and a set of dynamic

icons Figures 13, 14, 1 5 and 1 6 are screen dumps from the

DESIGN EXE program developed m this project Figure 1 3 shows a

mimic background consisting of a methane gas plant schematic,

scanned with am AT&T scanner and converted to a Flash Graphics

compatible file, with a mimic foreground of various icons Figure

1 4 shows a converted scanned picture of a pumphouse overlaid with

dynamic foreground icons, while the mimics of figures 1 5 and 1 6

are converted scanned pictures of a water tower and treatment plant

overlaid with icons for plant supervision and control In some

instances a simple text background as opposed to a scanned image or

schematic background may be sufficient A mimic of this type is

shown in figure 1 7

11

Gas outlet
ì /Digester

 ^^ W W W * ^

«
W

Fee
pump

Iflttyam g fla ra V - ■— ̂ Energy
output

Gas Mixing Control
holder unit building

Figure 1.3 Methane Gas Plant

û.
H

Valve %open

Inflow 1/hr
e r T ower.

?

F i g u r ë 1.5 P u m p h o g s e .

Ta n k
1

'/. Full

O S

Va l u e

f a i l

f a i l

P u m p

kn
alarm

EZ3
T h e r m a l
o v e r l o a d

St a t u s

run

T h e r m a l
OVERLOAD

St a t u s

+38.80

Y. Full
Figure 1.7 Processing Plant.

The mimic diagram can be animated with simulation data in order to
view the operation of the icons Because this is a real-time
application attention has been paid to ensuring that all icons are
updated within a reasonable length of time with respect to the time
constant of the plant under supervision The typical target
applications for this project have a time constant resolution m
the order of seconds

17

15 Operating System s an d Ex e c u tiv e s .

There are now a wide range of options facing a system developer
when it comes to choosing sin operating system or executive on which
to run the proposed application Possibilities included UNIX style
systems for PCs such as PCUNIX and PC/1X [CHIR87], operating
systems such as FLEX [FLEX88], QNX [QNX88], OS/2 [0S288], and IBM
DOS [D0S88] and DOS executives such as Microsoft WINDOWS [WIND87]
to name but a few The choice depending on cost, availability and
compatibility of object-oriented and graphics software tools for
the various environments, the target hardware configuration,
complexity of implementation and end user requirements

Bearing in mind the requirement to target development for a low
cost SCADA workstation to be run on a non expensive and popular
platform the cost of FLEX and QNX implementations invalidated
their use in this project On the basis of the lack of ready
availability of object-oriented tools and the relatively high cost
of procedural tools for UNIX type systems, PCUNIX was deemed
unsuitable for this application

Decisions made in the course of this project in assessing the
suitability of WINDOWS, MSDOS and OS/2 operating systems were
heavily dependent on the development and the compatibility of
various tools, and will be outlined in the following chapters of
this thesis dealing with the project implementation

User requirements must also feature in the choice of operating
system However the visibility of the operating system depends on
the implementation and on other application programs which may be
required within the context of the overall application These
issues are discussed at length in the forthcoming chapters

18

2. C++ T ip of the S ilver Bullet

2.1 In t r o d u c t io n . 2 0

2 .2 Ob j e c t -O r ie n te d v e r s u s Pr o c e d u r a l La n g u a g e s . 21

2 .3 Classes a n d In h e r it a n c e 2 6

2.4- Mem o r y Al l o c a t io n . 33

2 5 Cr it ic is m s of C++ 37

2 .6 Zo r te c h ' s Off e r in g 38

19

2.1 In tro ductio n

The purpose of this chapter is to highlight the Object-Oriented
paradigm, to illustrate the differences between Object-Oriented and
procedural Languages and to show how C++ classes, inheritance and
memory allocation are used in this project

Criticisms directed towards the C++ language are examined in the
light of experience gained from the project

Finally the focus is turned on Zortech C++, the C++ compiler and
development environment used in the implementation of this project

C++ is defined as a superset of C and "is a general purpose
programming language designed to make programming more enjoyable
for the serious programmer" [STR087]

20

2 .2 Ob je c t -O riented versus Proc ed u ra l Languag es

It is in the very nature of procedural languages to emphasise
procedures and separate data structures Hence although a data
structure may be defined only once, it may be referenced by many
procedures Making a change to that data structure may spawn a
plethora of modifications to those procedures. Procedural language
based systems do not like change However change is essential for
software upgrade or reuse The key idea in the object-oriented
approach is that data and procedure are not separated Data and
object-oriented procedures or methods are encapsulated in a
structure known as a class Classes are the building blocks of an
object-oriented system

"A software industrial revolution based on reusable and
interchangeable parts will alter the software universe" [C0X90]
Everything in the procedural world is composed of routines and
programs that may never have been seen before and may never be seen
again Procedural language based systems generation can be compared
to a cottage industry where everything is custom built Such a
system is time and resource wasteful, and very difficult to
schedule Also [WILS90] suggests that defined requirements may not
be always implemented correctly and that requirements themselves
may be incorrect and are often subsequently changed over time In

t

many cases the cost of maintaining software far exceeds the cost of
writing it

Object-oriented development can be compared to a highly organised
production system where the end product has been constructed from
pre-assembled software units This encapsulation means that
software integrated circuits can be used to produce software cards,
which can be used to produce software racks and hence an entire
system can be assembled This means that the class or basic unit
must be water-tight and used as a black box.

21

Classes encapsulate their data and methods. An instance of a class
is known as an object Communication to and from the object is via
its methods The implementation of the method is invisible to the
outside world, and hence can be changed or modified without
affecting its users The data definition, within the object,
determines whether the object’s data may be private to itself or
public to its users

Key to this software revolution is the idea of reusable objects It
is possible to reuse modules of a procedural system along with new
modules to produce a new system In fact good programmers already
use the principles of object-onentation in structuring their
systems However in most cases the language does not support it,
and this makes it difficult An object-oriented language is no
panacea but it does actively support encapsulation and the class
structure which is essential to the production of reusable software
objects Encapsulation defines a boundary that encompasses the
scope of the objects software, the object interface methods or
protocol and a protected internal implementation Reusability,
maintainability and extensibility may be said to be the key goals
of object-oriented development By utilizing reusable software
components the time and cost of development may be significantly
reduced "Commonality must be actively sought when the system is
designed, both by designing classes specifically as building blocks
for other types and by examining classes to see if they have
similarities that can be exploited in a common base class"
[STR088]

Maintainability costs may be reduced by the ability to localise
modifications to the implementation of one or more classes and by
the ability to inherit facets of one class from another, rather
than re-writing existing classes This inheritance concept becomes
a very powerful tool especially when dealing with object-oriented
languages which support multiple inheritance In this case a class
may inherit facets from many other classes An object-oriented
system will contain many classes in an hierarchical tree structure

22

At the top there will be one or more very general classes, from
which classes may be derived The classes at the bottom will tend
to have specific applications, although they will inherit
characteristics from their respective parent classes

Because of the encapsulation principle an object oriented system
may be tested by carrying out incremental testing of each class to
be used m the overall project When a hierarchy of classes is
used, then parent classes should be completely tested before
derived classes are tested Both structural and functional (black
box) tests are required for objects In a procedural system testing
of a module will typically only start when the module containing
several procedures or functions has been completed, whereas in an
object oriented implementation, testing can commence once the
object is complete Hence unit testing may be considered much
earlier in the object oriented environment

In an ideal situation all classes should be path tested,
particularly for critical applications Typically the class testing
should be carried out by the class developer who will know the
detailed internal implementation of the classes As a result "an
independent tester or developer who is not involved in the design
and generation of code for a specific class may find it difficult
to perform adequate testing of the class" [FIED89] The idea that
classes can be reused as base classes without retesting of
inherited code is contended by [PERR90] Perry and Kaiser describe
criteria for adequate testing and show why inherited code may need
to be retested

Object-oriented software design focuses on the translation of the
physical or logical elements of a real world system into classes
This is the main challenge of object-oriented design Objects lend
themselves easily to the process of mapping the elements of real
world systems to the elements of a software system and hence the
real world problem decomposition is far more intuitive than in a
procedural system design Object-oriented development is
fundamentally different from traditional procedural methods in

23

which the primary criteria for decomposition is that each unit or
module represents a step m the overall process An object is an
element whose behaviour can be characterised by the actions it may
suffer and the actions it may require of other objects Instead of
breaking the proposed system down into units or modules that denote
operations, the system is synthesized into objects that exist in
the real world model of the system In this project the real world
system model is broken down into iconic objects representing
transducers, menus, information I/O windows and mouse models. Among
the examples of object-oriented design available, Booch [B00C86]
shows how a cruise-control system synthesis from objects such as
wheels, brakes, accelerator and engine may be achieved The steps
in object-oriented development consist of

Identifying the objects,

Identifying the operations suffered by and required of each object,

Establishing the visibility of each object to other objects,

Establishing the objects interface, 1 e its methods which form the
objects protocol, and

Implementation of the objects

Methodologies have recently been proposed for object-oriented
systems analysis (OSA) An example of such a methodology which
imposes a natural modularization on the system model through an
emphasis on objects, where the object has a one-to-one
correspondence with an actual object m the system, is given by
Kurtz, Ho and Wall [KURT89]

The concepts of object-oriented programming are quite different
than those of procedural programming It is not just a syntax
difference, there is a completely different philosophy involved
which makes the learning curve quite steep Hybrid languages like
C++ provide a transformation from the procedural world and C to the

24

object-oriented environment With practice comes perfection, and it
is only with practice that obj'ects can be written which properly
utilise the inheritance feature of object-oriented languages
Similarly it is only with experience that objects can be written
for a specific application and simultaneously be written in such a
way as to be useful in future projects The process of developing a
library of reusable components would typically stretch over several
projects

"Of all the monsters that fill the nightmares of our folklore, none
terrify more than werewolves, because they transform unexpectedly
from the familiar into horrors For these, one seeks bullets of
silver that can magically lay them to rest The familiar software
project, at least as seen by the non-technical manager, has
something of this character, it is usually innocent and
straightforward, but is capable of becoming a monster of missed
schedules, blown budgets, and flawed products So we hear desperate
cries for a silver bullet-somethmg to make software costs drop as
rapidly as hardware costs do" [BR0K87] The silver bullet has
arrived in the form of object-oriented programming It is "no
longer the wave of the future" [TAZE90] and is rapidly permeating
into all areas of programming

25

2 .3 Classes a n d In h er ita nc e .

The architecture of an object-oriented system is dependent on the
methods that define the operations that can be performed on the
objects internal data, not on the objects internal structure
itself "The binding of underlaying data with an associated set of
procedures and functions that can be used to manipulate the data is
called encapsulation, the inaccessibility of the internal structure
of the underlying data is called data hiding." [WIEN88]

A class is a user-defined type An example from this project is the
cadshape base class This class is the parent for many other
classes including classes which generate icons representing plant
equipment and measurement devices, and classes which generate text
windows

The cadshape class header file, CADSHAPE HPP, is now expanded with
explanatory text provided between the various sections of the file

To avoid multiple declarations when this class is included in
various programs and other classes

#ifndef CADSHAPE_HPP
M e fine CADSHAPE HPP

The methods of a class
#include <time.h>

#include <stdio.h>

#include <fg h>

#include <dos.h>

#include <stdlib.h>

use various system functions
// system time functions
// standard I/O
// Zortech Flash graphics functions
// Dos functions
// Standard lib functions

The class is declared by placing the keyword class before the class
name required"

class cadshape {

26

A friend function or class has the right to access the private part
of another class Here the template class has access to the private
data of the cadshape class This means that all of template’s
methods or member functions are friends of the class cadshape and
can access its private as well as its public section A friend
declaration can be placed in either the private or public part of a
class declaration The template class was developed m this project
for displaying and editing class data

friend class template;

Access to data in the protected area is restricted to the methods
of this class and derived classes Non-member functions cannot use
this data Part of the protected data section of the cadshape class
is given below It contains data members required by the cadshape
class itself and its derived (or child) classes

protected

unsigned x_center, y_center,
float mul_saved;
fg_box_t max_extent_box,
fg_box_t extent_box,
fg_box_t test_box,
fg_box_t background_box,
float xmintx, ymmtx,
float xmaxtx, ymaxtx,

// (x,y) position
// Expansion factor
// Maximum object area
// Extents box

// Extents test box
// For background behind object
// Test extents
// Test extents

m t xmmtx_outside, xmaxtx_outside; // Outside extents flags
int ymmtx_outside, ymaxtx_out side, // Outside extents flags
int status_extn; // Extents active or off
m t extent_overlap; // Extents overlapping
unsigned int identifier, // Cadshape
int cad_type; // Cadshape type
float pi;

The declaration float pi cannot be defined as a constant as the
class construct only allows declarations, not definitions at this
point A value can be assigned to pi in the class constructor

27

The public section can contain both methods and data. The methods
form the class interface or protocol A struct would be simply a
class where all members are public The public section is defined
as shown below, by using the public keyword

public.

Virtual functions allow declaration of functions m a base class
that cam be redesigned in each derived class The keyword virtual
indicates that the function pdraw(), as given below, can have
different versions for different derived classes and that it is the
task of the compiler to find the appropriate one for each call of
pdraw() The type of the function is declared in the base class and
cannot be redeclared in a derived class A derived class that does
not need its own unique version of the virtual function need not
define one, in which case the base class virtual function is called
for both the base and derived class Virtual functions must have
some definition in the base class, even if it is just empty

virtual void pdraw() {}
virtual void panimate() {}
virtual void perase() {}
virtual void pextent_pgen() {}
virtual void pextent_pdraw() {}
virtual void pextent_perase() {}
virtual void analog_pmput() {}
virtual void digital_pmput() {}

// Draw the object
// Animate the object
// Erase the object
// Generate objects extents
// Draw extents box
// Erase extents box
// Operator analog output
// Operator digital output

A member function with the sajne name as the class is called a
constructor A constructor may not be a friend or virtual function
It is used to construct new instamces or obj'ects of the class type
Where there is a base and derived class, the base class is
constructed first A return value cannot be specified for a
constructor and it cannot use the return statement. The lifetime of
an object is limited to the scope in which it is created. The
constructor for the cadshape class is an empty function and is
shown below

28

cadshape() {}

A member function of a class cadshape named ~cadshape is called a
destructor A destructor cannot take arguments and cannot specify a
return value It is used to deallocate memory from the free store
which is allocated by the constructor A destructor can be called
explicitly, but must make explicit use of the class pointer -> or
class member operators The destructor for derived classes is
executed before the destructor for the base class Care should be
taken in the allocation and deallocation of free store and
generation and deletion of file buffers across base and derived
types This is discussed in the context of the use of these
facilities in the implementation section The destructor for the
cadshape class is shown below

virtual ~cadshape() {}

The implementation for class member functions can be placed in the
hpp header file or m a separate cpp file If it is m the hpp

file then they are compiled as part of the program into which the
hpp file is included The cpp files are compiled separately and
linked into the application

The cadshape header file is now closed as shown below

The #ifndef CADSHAPE_HPP statement from the beginning of the file,
used to avoid multiple declarations, is also closed as shown below

#endif CADSHAPE_HPP

Some examples of class methods defined in the cadshape class header
file are given below

void idmod(int new_id){ identifier=new_id, }

29

unsigned int idinq(){ return identifier, }

unsigned * getcoords(){
coords[0]=x_center, coords[1]=y_center,
return coords,

}

void pextent_set(int extenth_onoff) {status_extn=extenth_onoff;}

int pextent_view() { return status_extn;}

A class may be derived from one or more base classes The derived
class inherits the properties of the base class, including its data
and methods, public and protected The derived class can override
base virtual functions and have its own data and member functions
Classes can be derived from derived classes forming a class
hierarchy The square class has been derived from the cadshape
class in this project The square class header file is now expanded
with explanatory text provided between the various sections of the
file

As for the cadshape class, to avoid multiple declarations, the
square class uses

Kifndef SQUARE_HPP
M e fine SQUARE_HPP
#include "cadshape hpp"

The class declaration takes the form
class derived_class_name • public parent_class_name{}

where the keyword public is optional and parent_class_name must be
previously declared

class square . public cadshape f

30

The protected data section for classes derived from this class

protected:

fg_box_t small_box; // square
float height, width;

Methods (or member functions) with public access form the objects
interface, and are the means by which the object can be manipulated
by non-member functions, non-friends and classes which are not
derived from this class The public section is now opened thus

public

Unless redefined in the derived class, as below, members of the
base class can be referred to as if they are members of the derived
class The scope resolution operator can be used to refer to a
base member explicitly In this case the hpp file contains the
declarations only, the definitions being kept in the cpp file
where an #include square.hpp statement would be used

void pdrawO, // Draw the object
void panimate(), // Animate with raw data
void pextent_pgen(), // Generate objects extents
void pextent_pdraw(), // Draw extents box
void pextent_perase(), // Erase extents box

A constructor is called whenever an object of a class with a
constructor is created An object can be created as a global or
local variable, through explicit call of a constructor or through
the use of the new operator It could also be allocated as a data
member of another class

The base class constructor arguments are specified in the
definition of the constructor for a derived class In this case
the cadshape constructor takes no arguments The constructor for
the square class is given below

square(unsigned x, unsigned y, int id, float m, float raw_value,

31

unsigned state, m t extent_onoff) ; () {

x_center = x; y_center = y;
identifier= id;
cad_type=0,
mul=m;

max+mul=30, mm_mul=0;
conv_zn=l,
conv_c=0;
value=(raw_value*conv_m)+conv_c,

status-state;

// Cadshape 1dent1f i er
// DIP
// mul factor transfer
// Expansion limits
// Conversion multiplier
// Conversion constant
// y=mx+c, Eng units from raw
// transducer data
//Digital status

status_extn=extent_onoff,
height=12, width=12,
actionjiefault=20;
action=action_defauIt,

// Extents testing on/off
// Object minimum size
// Re-run increment timer

Member functions can be called within the constructor

pextent_set(status_extn),

max_extent_box[0]=x_center-(a*max_mul)-width/2,
max_extent_box[1]=y_center-(a*max_mul)-height/2,
max_ex tent_box[2]=x_cen t er+ (a*maxjm l)+widt h/2,
max_extent_box[3]=y_center+(a*maxjml)+height/2, }

Declaration only, definition within cpp file
void peraseO,

Destructors are not inherited. If a base class has a destructor and
no destructor is declared for the derived class then a default
destructor is generated. This generated destructor calls the base
destructor(s) In this case the square class destructor calls the
member function peraseO.

~square() { peraseO,}
tend if SQUARE_HPP

32

2 .4 Memory Allo c a tio n .

An named object may be static or automatic A static object is
allocated at the start of the program Its lifetime extends
throughout the execution of the program and it is deallocated only
when the program ends. An automatic object is allocated each time
the block in which it is declared is entered Its scope is limited
to the block and it is deallocated when the block is exited. In
many cases it is useful to allocate a block of memory at run time,
particularly if the size of the block is not known at compile time
Such allocation is known as dynamic allocation The new operator
can be used to allocate memory on the free store (or heap) and the
delete operator frees the memory allocated by new Memory allocated
by the new operator is not limited to the scope of the block in
which it is created An object created by new exists until it is
explicitly deallocated by the delete operator, at which time it is
free to be reused again by the new operator New returns a pointer
to the object it has allocated When the object is an array a
pointer to its first element is returned Delete takes this pointer
as an argument The free store operators are implemented by the
functions

void* operator new (long),
void operator delete (void#),

The delete operator may be called as
delete (void*),

or
delete [size] (void*),

where size relates to the size of the memory block allocated

A program segment from the project provides an example.

// file, segment from BITMAPGN4 CPP
#include <fg h> // Zortech flash graphic library header file
m a m (argc, argv) {

33

m t argc,
char **argv,

unsigned byte_length; // length of dynamic pixel buffer
fg_box_t part_screen; // viewport
byte_length~sizeof(fg_color_t) * fg_box_area(part_screen);
fg_color_t far *pixel_in=new fg_color_t[byte_length];

/*. */
delete [byte_length] pixel jn;

}

Deleting a zero pointer has no effect However the effect of
applying the delete operator to a pointer not returned by the new
operator is undefined and may be harmful

The new operator may be used to create an instance of a class For
example

// square is a class derived from the cadshape class
cadshape* cs_ 1 = new squareCxl, y 1),
cadshape* cs_2 = new square(x2, y2),
/ * */
delete cs_1;
delete cs_l.

Not deleting the object cs_2 is not an error, but is a waste of
space Deleting cs_l twice is dangerous, the effect is not
specified by the language but by the particular implementation

A dynamic buffer may be allocated within a class definition but
should be deallocated within the destructor. Hence an object can be
created whose size is not known at compile time It is also
possible to use the C memory allocation and deallocation functions
such as mallocO, calloc, freeO, reallocO, farmallocO and
farfreeO The declarations for these functions are kept in most
implementations in the STDLIB H and DOS H header files An example
of allocation in a class constructor and deallocation in a

34

destructor is given by the segment of the valve class shown below
This class is derived from the square class.

// file segment from VALVE HPP
// Second level inheritance

#ifndef VALVE_HPP
M e fine VALVEJ1PP
#include "square.hpp"
class valve :public square {

// data private to valve
fg_box_t max__extent_box, // maximum object area
unsigned long pixel_buffer_length, // length for buffer
fg_color_t * pixel_buffer, // buffer pointer

public:

// Methods implemented in cpp file
void pdraw(),
void peraseO,

// Constructor
valve(unsigned x, unsigned y) ; (x,y) {

x_center=x; y_center=y,
height=10,
width=10;

max_ex tent _box[0]=x_cen ter-width,
max_extent _box[1]=y_center-height,
max_ext ent_box[2]=x_center+wi dth,
max_ext ent_box[3]=y_cent er-hei gh t,

// Determine the size for the dynamic using the sizeof
// operator
pixel_buff er_l ength- (sizeof (fg_co 1 or _t) *
fg_box_area(max_extent_box)) ;

// Allocate memory on the heap

// Pixel_buffer is a
// pointer to this dynamic buffer
pixel_buffer=malloc (pixel_buffer_length),

35

}
// Destructor
~valve() { free (pixel_buffer), // Deallocate
}},

#endif VALVE_HPP

"The allocator used by the new operator stores the size of an
object with the object in order for the delete operator to function
correctly" [STR087] Hence

cadshape* = new square(x,y);
also stores the size of the square cadshape object
If every instance of a class is allocated using the new operator
then that class does not need a destructor since the delete
operator can free the space used by the object In this project it
was found that when delete was used to delete a user defined class
object which was allocated with new then the object destructor was
invoked This conforms to the language version 2 specification
[STR090a] However this can provide some problems for derived
classes and cascading destructor invocation This shall be
discussed m the relevant implementation sections The problem was
overcome by using the free operator instead of the delete operator
The free operator does not invoke the destructor but carries out
the required clean up of the object and heap

36

2 .5 Cr it ic is m s of C++

One of the criticisms directed towards C++ is that "many people
switch to C++ because they want the benefits claimed for
object-oriented programming unfortunately neither C++ nor
any other object-oriented language can deliver these without
support from class libraries, development environments and design
methods" [DANI90] There certainly is some truth in this statement
and to-date class libraries for C++ have been limited and difficult
to use In fact, as seen in this project, up to very recently class
libraries for graphical user interface (GUI) generation were in
very short supply It is still early days in the software
integrated circuit industry However there is still the concept of
reuse of privately produced objects In this case, great care has
to be taken in the development of classes with insight to the
future possible use of classes Reusability is however only one of
the features of object-oriented languages A very valuable feature
is the ability to write code without making irrevocable decisions
about data structures The emergence of object-oriented design
methods would help immensely in the implementation of
object-oriented projects Identification of objects and their
methods is extremely important and comes through experience with
object-oriented design

Daniels also criticises the object interface/implementation
dependency, in that if an objects private section is added to, then
a recompilation of all objects or programs using this object is
required [DANI90] This may take up appreciable amounts of time
Certainly in C++, as was found in this project, if a classes
private section in a header file is modified then all child objects
and programs including the changed object must be recompiled and
the application relinked.

Other criticisms and problems relating to the C++ language are
discussed in appendix 1 section 5

37

2 .6 Zo r te c h ' s Of f e r in g .

Zortech C++ [ZORT90b] is a pure native code compiler as opposed to
other implementations which are hybrid designs Hybrid
implementations use a C++ preprocessor or translator to convert the
C++ code to C which is then compiled by some standard C compiler.
An example of such a system is Glockenspiel’s C++ compiler
[GL0C89] This C++ hybrid compiler uses the AT&T translator to
translate the C++ code to C, along with the Microsoft C compiler to
compile the intermediate C code Both pure and hybrid C++ languages
look to the AT&T translator specifications for the current C++
language standard The American National Standard Institute (ANSI)
set up a committee, named X3J16, to standardise C++ Its first
meeting was held in December 1989 and the AT&T C++ reference manual
[STR090a] has been chosen as the starting point for the formal
standardisation of C++ Jones examines the standardization attempts
being carried out by the ANSI C committee, named X3J11, the C++
committee and compatibility issues between the two languages
[J0NE91] In the course of this project versions of both the
Zortech and Glockenspiel compilers have been used The
compatibility issues in using these products with other graphics
and windowing packages and the integrated environments, tools and
class libraries that accompany these products will be discussed in
the implementation sections of this thesis After in-depth research
into the various C++ compilers and graphics tools available,
Zortech C++ version 2 1 was chosen as the language to implement the
project The reason for this choice is discussed in the
implementation sections

Zortech C++ is a two pass compilation system, with an optional
third pass providing a global optimization facility to provide
tight and efficient object code Zortech C++ supports the language
features of version 2 0 of the C++ language as proposed by AT&T
with the cfront translator version 2 0, including multiple
inheritance and type safe linkage Zortech C++ uses the following
file extensions

38

c C source files
h C header files
cpp C++ source files
hpp C++ header files
asm Assembly source files
obj Object files
lib Library files

Zortech C++ also allows the use of cxx for C++ source files as
used by the Glockenspiel compiler Also if required the h
extension can be used for C++ header files although the hpp
extension is preferred Zortech C++ produces standard object files
which can be linked using normal linkers

In AT&T C++ 2 0 a call to _entry is inserted at the beginning of
main() in order to call all the module constructors In Zortech C++
this call is handled by the C OBJ startup module AT&T C++ 2 0 has
a proprietary revised version of the streams I/O library Zortech
C++ has an enhanced version of the original streams library Hence
Zortech users requiring portability should use the version 1 x
format for stream I/O

There are a number of additional features in Zortech C++ which are
not part of the C++ language These are discussed at length in the
Zortech C++ version 2 0 compiler reference manual [Z0RC89]

The Zortech C++ version 2 1 compiler supports Rational Systems Dos
Extender D0S/16M [RDOS90], as does the Glockenspiel C++ version
2 0c compiler [GL0C90], and a Virtual Code management overlay
system This allows very large programs to be compiled and shall be
discussed in the implementation section

The debugging tools supplied with Zortech C++ version 2.1 allow
debugging of programs of greater than 640Kbytes by virtue of the
Virtual Code Manager (VCM) and Rational DOS extender system. A
window of allocated buffers and classes is provided within the

39

debugger and was found to be of significant value during the
debugging of programs in this project

The Phar Lap DOS Extender system [PHAR89] is used with the DOS 386
Zortech compiler version 2 18 [ZTC90a] The use of these software
tools should open up the full 32 bit flat addressing space of 80386
and i486 microprocessors The details concerning this technology
and its use are discussed in the implementation section

40

3. The Research a n d Development Pa th .

3.1 Mic r o s o ft C, GKS a n d Me d ia Cy b e r n e t ic s . 42

3.2 Zo rtech C++ a n d Fla sh Gr a p h ic s 43

3.3 Gl o c k e n s p ie l ' s Ad v a n t a g e . 44

3.4 PFo r c e++ Cla ss L ib r a r ie s . 45

3.5 Me t a Windo w s /P lu s a n d Ha lo Gr a p h ic s . 46

3 6 Win d o w s , Op e r a t in g S y s t e m s a n d Co m m o n V iew . 48

3.7 De v e lo p m e n ts u n d e r Glo c k e n s p ie l C++. 50

3 .8 De v e lo p m e n ts un d er Zo r tec h C++ 5 2

3.9 OS/2 a n d Zo r tec h . 55

3.10 Zo r te c h 's Re v e n g e a n d V ir t u a l Code Ma n a g e m e n t . 57

3.11 T he Phar La p 80386 L in k e r . 59

41

3.1 M ic ro s o ft C, GKS and Media C y b e rn e tic s .

Initially the Graphics Kernel System was considered for this
project, but due to its primitive nature in comparison to other
graphics packages available it was not used.

Media Cybernetics produce the Halo graphics package [HAL087] and
Dr Halo III [DRHA87], a paint package The Halo graphics package is
a Microsoft C [MICR87] compatible library of graphic primitive
functions with C binding, suitable for a project such as this
Dr Halo III allows the generation of image files, given the PIC
file designation, by use of a pointing device and keyboard It is
ideally suitable for the generation of schematic bitmapped
background files These background files could be diagrams of plant
or parts of plant, and can be loaded to the screen from disc, and
vice-versa by invoking various Halo Graphics functions The Halo
Graphics and Dr Halo III packages use the same image file format
and form a powerful graphics facility

Halo Graphics supports a wide variety of graphic functions, device
drivers, printer drivers, mouse and locator drivers It also has a
learn mode invoked via LEARNMH EXE, from which the various
functions can be called interactively A batch file of graphic
functions with PIX designation, constructed with any text editor,
can also be called from within the learn mode Hence animation
techniques using screen page swapping (for multiple page graphic
modes), rubberband functions and partial screen save and restore
were examined

A C program was written to exercise the various functions available
via Halo Graphics, such as disc image file read and write, line,
point and shape draw, and the animation techniques described above.
The Microsoft C compiler was used to compile the program and
CodeView to debug it [C0DE87], [C0DE89]

42

3 .2 ZORTECH C++ AND FLASH GRAPHICS.

In order that object-oriented programming techniques could be used
to their full potential it was decided to use a C++ compiler
Zortech C++ version 1 07 [Z0RT88] provides a set of graphic
routines and routines to support the Microsoft mouse pointing
device The Zortech example programs were used to examine the Flash
Graphics and C++ combination From this a program was put together
which allowed the user to draw, move and erase some basic
geometrical objects The set of objects were derived from a basic
class called the cadshape class

The Flash Graphics and Halo Graphics functions were compared to
find that even though the Flash Graphics functions are extremely
fast, Halo provides a much richer set of functions The test
programs which were written and alluded to above were rewritten
replacing all Flash Graphic functions with equivalent Halo Graphic
functions However this did not operate correctly as the Zortech
implementation was not compatible with Microsoft compatible
products [Z0RC88] To adopt Zortech’s technology would have meant
leaving the Microsoft compatible environment and using Flash
Graphics instead of Halo Graphics thereby loosing direct image file
support and many other graphic functions

43

3 .3 Glo c k e n s p ie l ' s Ad v a n t a g e .

It was decided to maintain compatibility to mainstream Microsoft
products and therefore all the programs developed under the Zortech
C++ version 1 07 compiler were transformed from the Zortech
environment to the Glockenspiel advantage C++ version 1 2
environment [GL0C88] Hence all CPP and HPP designated files
became CXX and HXX respectively The Glockenspiel C++ compiler
calls three phases in its execution First a Glockenspiel
preprocessor [GCPP88] is called, then the AT&T translator [CFXX88]
converts the C++ code to C code which is compiled by the Microsoft
compiler This means that the Glockenspiel environment is in fact
compatible with other third party libraries which are compatible
with Microsoft C, and that the CodeView Debugger can be used The
compatibility issue of Halo graphics and the C++ environment was
thus resolved

l

The Halo graphics function allowing image file read from file to
screen was included m the programs allowing background files,
which were edited using the Dr Halo III Paint package, to be
displayed The dynamic class shapes could be drawn over these
backgrounds These background files, designated PIC, are in Media
Cybernetics format Backgrounds could also be derived using the
Media Cybernetics Grab facility [GRAB87] This facility is a memory
resident screen grabber which on being invoked transfers the
contents of the screen to a Media Cybernetics image file The file
HK301 PIC, later to become HK301 ZPI, was derived from a
proprietary SCADA system by this method

The cadshape set of classes was expanded However the inclusion of
many C++ classes within the one program was seen to cause heap or
free store exhaustion errors on compilation of the program Also if
a program contained multiple nested conditional statements then the
compiler gave ’parser stack overflow' or 'out of environment space’
errors and terminated the compilation prematurely These error
messages were the first indication of problems associated with
memory space in the project

44

3 .4 PForce++ Class L ibraries

The PForce++ libraries version 1 04 [PF0R87] package provides a set
of general purpose C++ character based classes for screen
windowing, pop-up menus, options and choice lists It also provides)
classes for database facilities

It was decided to examine this package with a view to incorporating
windows into the programs alongside the Halo graphics facilities
There were some initial problems with the software supplied in
archive files in that some of the functions which were supposed to
be included in the PFPAM4L LIB were not, and some of the header
files with the declarations for functions BTR HXX were corrupted
However after these problems were overcome sample programs were
written which included Halo graphics calls to examine the
compatibility of the products, all under Glockenspiel C++ It was
found that the only graphics mode where both of the graphics
packages were compatible were Halo EGA mode 4 and Pforce Mode 3 or
4 and that even at this both packages need to be individually
initialised The initialisation functions of PForce++ crtsetmode()
and Halo initgraphics() or startgraphics() were found to be
mutually exclusive Regardless of which initialisation was called
first neither supported the others graphic mode It was envisaged
that a plant mimic would consist of a dynamic foreground sitting on
top of a passive background image or schematic of plant Hence one
of the key problems is that the background image must be on the
screen most of the time This could be achieved only by using
PForce for menus and option lists, where the background image is
not necessary When the PForce functions were needed the Halo
environment could be exited and the Pforce environment initialised
Therefore it would be possible by use of the Halo ram image save
and restore functions imsaveO and imrest() and continual use of
the respective calls to the initialisation packages to run both
packages together However the overheads of such a scheme would
make it a non-viable option On the basis of compatibility the
PForce++ option was not implemented.

45

3.5 MetaWindows/P lus a n d Halo Gr a p h ic s .

MetaWindows/Plus version 3 4 [META89] provides a general library of
functions for graphics primitives, windows and viewports Sample
programs were written in C++ to test the viability of the
co-existence within the one program of Halo graphics and
MetaWindows/Plus graphics complied under the Glockenspiel compiler
MetaWindows/Plus is a Microsoft C compatible library Both
MetaWindows/Plus and Halo graphics have their own strengths and
weaknesses with respect to each other which will be alluded to
shortly There is no initialisation problem for the packages not
supporting each other as in PForce++ as seen above The test
programs called up a Media Cybernetics background file from disc
using the Halo graphics function gread() and then performed various
Meta viewport, windowing and zoom facilities together with Halo
functions It was seen that Halo screen functions did not observe
Meta viewport boundaries but apart from that the packages could be
used together Therefore it would be possible using this strategy
to use pop-up menus without effecting the underlying background
file and without the overhead of disc or ram image save functions
as was required in the PForce++ implementation above

The sample programs above were first written in C and compiled with
the Microsoft Compiler The programs were then modified for C++ and
compiled under the Glockenspiel C++ compiler However the AT&T
translator reported errors on the MetaWindows/Plus header files
GRCONST H and GREXTERN H and the program WINDSRX C In WINDSRX C
the declaration pointer==NULL caused an error and was replaced by
pointer==0 to form WINDSRX CXX

The essential differences noted between MetaWindows/Plus and Halo
Graphics are outlined below

Halo graphics support for image files generated by the sample
programs, Dr Halo III or via the Media Cybernetics Grab facility is
far superior to that supplied by MetaWindows/Plus

46

Halo graphics supports acquisition of images from a video camera, a
facility not supported by MetaWindows/Plus, which could be of
significant use for generating realistic plant backgrounds for
mimics

Halo graphics has extensive rubberbanding facilities which are not
parallelled by MetaWmdows facilities From the sample programs it
would seem easier to move objects around the screen using Halo
functions

The MetaWindows/Plus viewports and windows facility provides for
protected areas of activity on the screen This facility is not
available in Halo graphics

Changing cursor styles is facilitated more easily by
MetaWindows/Plus than Halo graphics

MetaWindows/Plus supports a Zoom function, allowing parts of a
viewport to be expanded This function does not exist in the Halo
graph1cs 11brar y

The sample programs written showed that both of these packages
could be used together m a trivial application under Glockenspiel
C++, however using two sets of linked-in libraries raised the issue
of link and run-time memory requirements for any sizeable
applicatlon

The Halo’88 graphics package [HAL088] does not add any of the
features that MetaWindows/Plus boasts above the previous Halo
implementation However it does provide for VGA graphics, and the
programs for this project were modified to use this mode The
reader should note that the MetaWindows documentation incorrectly
identifies the graphics modes for VGA, but that they are correctly
specified in the header file GRCONST HXX

47

3 6 Win d o w s , Op e r a t in g S ystem s a n d Co m m o n V iew .

Microsoft Windows provides a method of running several programs
under DOS Version 1 03 [WIND86] does not support multitasking
When one application is called, an already running application is
suspended till the new application is terminated, suspended, or
runs to conclusion Version 2 03 [WIND87] WIN386, claims
multi-tasking operation on a PS/2 or 80386 microprocessor based
machine In order that a program utilises the windowing features of
Windows the program must be written with the Microsoft Windows
Software Development Kit (SDK) [WSDK87] Applications programs,
which are not developed with the SDK can be run in exclusive mode
only This means that the program takes complete control of the
screen regardless of whether the application is text or graphics
based A PIF file must be set up for the application which gives
details of whether the application is text or graphics based and
the amount of memory required for the application In exclusive
mode the program appears as if it is running directly under DOS
When the program is suspended or runs to conclusion the Windows
shell, or the program that was running when the non-windows window
was called, is returned For details on how to write programs
specifically for Windows using the SDK the reader is referred to
Programming Windows by Petzold [PETZ88]

The reasons why it was decided not to use Windows in this project
are outlined below

The Windows environment takes up 300Kbytes of standard system
memory leaving a mere 340Kbytes for the application program, device
drivers and heap or free store for dynamic objects

The multitasking facility would necessitate a 80386 based machine
This would represent quite a leap in hardware requirements for the
eventual end user.

For applications to incorporate themselves neatly into the Windows
environment and use its full potential they must be written using

48

the SDK It is questionable whether this would support Halo
graphics or MetaWindows/Plus

The Glockenspiel CommonView Applications Framework [GL0C89]
provides classes of objects for Microsoft Windows and OS/2
Presentation Manager (PM) [PMAN89] These classes can be utilised
by a C++ application program to produce a Windows or PM
application Due to the compatibility issue of graphics packages
such as Halo graphics and the lack of support for the large memory
model, it was decided not to use this application framework
However CommonView was accompanied by the version 1 2E Glockenspiel
C++ compiler which was adopted This implementation directly
supports the CodeView debugger

There are a whole plethora of operating systems on which this
application could be run, but due to cost and mavailability of
OOPS tools for these platforms it was decided to attempt to run the
application under DOS using terminate and stay routines (TSR) for
any future background processes The mechanics of terminate and
stay routines are discussed m the Waite Group’s MSDOS Developer’s
Guide [MSDG89]

49

3.7 Developments under Glockenspiel C++

It was decided to use the programs written to date, to test the
various packages and compilers above, consisting of a small set of
graphic object classes and a CAD program as the base for the
project The CAD program could call background image files to
screen and was capable of drawing, moving and erasing the dynamic
objects

The system design was to consist of the following parts

I The construction of a set of primitive objects, some that could
effect animation and others that would be passive

II A menu generator which could interactively use the primitive
objects to generate a sub-menu of primitive parts

i n A mimic generator which could be used to interactively design
icons from the primitive menu and generate an icon menu The icon
menu could then be used to generate mimics based on these icons

To effect this the set of primitive classes was expanded and the
programs MENUGEN and MIMICGEN were written in C++ with Halo
graphics and compiled under Glockenspiel C++ compiler Version 1 2E
and Microsoft C version 5 1 [MICR88] The programs used the
Microsoft mouse and VGA graphics

The Halo graphics documentation implies that when using the move
functions HOVETO, MOVEFROM, HEMEXP, MEMCOH that segment 0 should be
used in segment, offset format rather than in buffer format This
is in fact incorrect When memory is allocated using the new
operator then FP_SEG() and FPJDFF() should be applied to the far
pointer returned by new

In was seen that fragmentation of free memory or heap due to
multiple new and delete operator intercalls caused significant heap

50

problems These problems were resolved by strictly monitoring the
heap usage

The set of objects consisted of passive and active objects Active
objects could be animated with an analog value or a digital switch
causing their character to change The programs were capable of
carrying out the design features required, and a modulate facility
in MENUGEN when called caused animation of the active objects so
that their animation features could be tested However the C++
environment did not support disc storage for classes and hence the
object foreground was volatile A program was also designed to
allow Media Cybernetics image files to be cut up to form bitmap
files which could be used as icons

Each object was given a set of extents and methods to generate and
test for overlap of extents The extents in each case represented a
boundary around the object, and set this area as a protected area
This meant that objects could not overlap on the screen The move
facilities in all programs used the extents test to ensure a clear
area before moving the object in question into that area

In order to compile the MENUGEN program discussed above without the
compiler error 'INTERNAL - ERROR FREE SPACE EXHAUSTED’, it was
necessary to generate a batch compilation file by running the
compiler with the '0 switch and setting output to the batch file
It was also necessary to remove all drivers from memory during the
compilation stage leaving 550Kbytes available for the compilation
Despite the fact that the program set was restructured memory
problems remained

Memory inadequacies were also detected at run-time The elements
requiring large amounts of memory in the executable program were
the Glockenspiel libraries, the Halo graphics libraries and the
Zortech library (ZLL LIB) used for the Microsoft mouse routines

51

3 8 Developments under Zortech C++

The memory problems discussed in the Glockenspiel implementation
above prompted the examination of the Zortech C++ version 2 0
environment with integral Flash Graphics and Microsoft mouse
support [Z0RT89]

Zortech C++ version 2 0 requires that all functions declare their
prototypes before use Halo Graphics does not supply any header
files of function declarations, hence compilation errors occur
Thus Halo Graphics is not compatible with the Zortech environment

All the programs developed under the Glockenspiel environment
including the CAD objects (icons) were rewritten to use Flash
Graphics functions and Zortech C++ New icon classes were written
and many of the programs were upgraded at this point The details
are set out in the implementation chapter of this thesis The
compiler flag for large programs (-b) had to be set to compile some
of the bigger modules

In order to link the animation of objects to analog and digital I/O
events and real-time, the objects must satisfy a number of criteria
before animation is allowed These criteria, which were designed
into the application at this stage of the development, include a
simple counter decremented on each call to animate an object, a raw
value deadband and an intersample time deadband The details will
be discussed in the implementation section

There were considerable differences between the Flash Graphics and
Halo Graphics libraries Flash Graphics has less functions, than
Halo Graphics, the flash functions available requiring more
parameter passing An example was the fact that Flash Graphics
provided no function for drawing a pie shape It was necessary to
construct a pie from an arc and separate lines The fg_drawarc()
function required the angles in tenths of degrees whereas the s m
and cos functions required angles in radians. No radian to degree

52

transform function was provided While Flash Graphics provides a
limited set of graphic primitives, it is the responsibility of the
user to generate from these a larger set of functions Flash
Graphics defines its own data types like fg_box_t for a box type
It was also seen that whereas Halo Graphics uses a left-hand
graphic system, Flash Graphics uses a right-hand graphic system In
a left-hand system the lowest value coordinates are at the upper
left corner of the screen and the highest value coordinates sire at
the lower right corner of the screen In a right-hand system the
lowest coordinates are at the lower left corner of the screen and
the higher coordinates are at the upper right corner of the screen

The Flash Graphics library provides the function fg_pt_inbox()
which was very useful in the rewrite of the extents testing
methods Zortech Graphics provides a very small set of text
handling functions and no font functions

The dos and bios calls are named slightly differently in Zortech
than in the Glockenspiel C++ environment

It was also found that there is no equivalent function in the
Zortech C++ libraries of the Microsoft stdlib function gcvt which
converts floats into char strings including decimal point and sign
for subsequent output to screen The ecvt function with explicit
decimal point and sign location was used instead where required

It is stated in the Zortech documentation that MetaWindows is
compatible with Zortech C++ The option of including MetaWindows
libraries to complement the Flash Graphics functions was not taken
up because firstly it was found that when MetaWindows functions and
header files were included in test programs that compilation errors
were reported, indicating some incompatibility, and secondly such
an implementation might stiff er the same memory space problems
experienced in the earlier Glockenspiel implementation.

The background image files acquired as detailed above were now in a
format (PIC) that Zortech had no way of dealing with In fact the

53

Zortech Graphics facility provided no direct method of writing or
reading the contents of the screen to or from a screen image file
Also there now existed no function to read to screen the bitmap
files produced by cutting a piece out of a PIC image file These
bitmap files were used in bitmap icons to enable parts of a picture
to be placed over the background image These problems were
overcome by using partial screen reads and writes via fgjce&dboxO
and fg_writebox() functions The use of AT&T scanner files was also
researched and an image code converter was written

The Zortech debugger ZDB EXE allowed easy debugging at C++ source
level Noticeable features with respect to CodeView are the display
of classes and their respective data and methods, and display of
all dynamic buffers and their addresses The latter feature was
particularly helpful in monitoring heap usage and the allocation
and deallocation of class objects

Zortech also provides a library of classes Of interest in this
library were the window, ladder, directory and button classes
However after testing these classes it was found that unfortunately
they are for text mode only It was necessary to call fg_term(),
thereby clearing the screen and terminating the graphics mode,
before using them, and hence they were not used

54

3 .9 OS/2 AND ZORTECH.

During the development of software under Zortech C++ considerable
memory space difficulties were encountered These problems prompted
the use of separately compiled modules which were subsequently
linked into the EXE file However as new classes of objects were
introduced and new features brought into the MENUGEN and MIMICGEN
programs eventually these programs became too big to compile It
was necessary to remove classes from the implementation and carry
out development on an incremental basis

The idea of generating icons interactively was, taking into account
the size and complexity of the project at the time, seen as not
being practically realizable within the environment chosen
Therefore the programs were rewritten so that the primitive classes
became the icons, the MENUGEN was upgraded to become the DESIGN
program and a new program ANIMATE was written for simulating
animation Separately compiled subroutines modules were used
wherever possible This eased the memory problems, but when it was
required to use the debugger ZDB EXE then the application had to be
cut down considerably to provide the required memory at run-time

Apart from the compilation time and run-time debug memory
constrictions difficulties arose from insufficient heap space When
more than a trivial number of objects were constructed the heap
space ran out This was partly due to the fact that all the CAD
objects, to facilitate moving and resizing, stored the part of
screen background which they were covering in a heap buffer

Compilation and run-time memory requirements made it increasingly
difficult to add new feature, such as an object for a status box
indicating when files were being read, into the DESIGN and ANIMATE
programs The application at this point was small and other
features such as database and raw data communications to the active
CAD objects would eventually need to be incorporated DOS and its
constricting 640Kbyte barrier would not facilitate the project any
further OS/2 was considered els an alternative

55

Zortech provide an upgrade pack [Z0RT89b] for OS/2 [0S288] However
it is an upgrade from the DOS environment rather than a new package
specifically for OS/2 It requires some header and library files
and the linker from the Microsoft Presentation Manager Toolkit
[MSPM89] Some modifications are also required to the file 0S2 H
There is no debugger available from Zortech for the OS/2
environment It was noted that Flash Graphics and Presentation
manager were totally incompatible

The programs were initially edited to remove calls to BIOS, DOS and
Flash Graphics commands not supported in OS/2 These included
bios_timeofday() and f g_imt_vgal3() However IOPL errors, system
trap $0 D, system error 1811, were reported on Flash Graphic
initialisation calls, in spite of the fact that the IOPL was
validated for applications running under OS/2 The same error was
reported on exit from the ZCONFIG EXE screen configuration file
After interfacing with Zortech it was decided to examine the
Zortech version 2 1 Virtual Code Management system [Z0RT90b] which,
it was claimed, would overcome the memory problems experienced by
developers with non-trivial applications

At the same time as the OS/2 option was being examined, new dynamic
icons were written and the existing icons and programs were
upgraded

56

3 1 0 Zortech 's Revenge and V ir tu a l Code Man ag em en t

The Zortech VCM system, as shall be expounded on later in this
section, overcame the memory problems intrinsic to this
application However there were other reasons for choosing DOS e l s a
platform over OS/2 which include

1 Some of the VGA graphic modes are not supported by OS/2

n There was no literature available on Flash Graphic applications
under OS/2

i n DOS was a more popular platform and OS/2 represents an extra
level of expense and complexity which may not be required

i v OS/2 equivalents for image and bitmap file compression and
other executables would have had to be sourced or written

Zortech version 2 1 [Z0RT90b] provides support for two methods of
generating large applications, najnely Virtual Code Management and
Rational DOS Extender Technology [RD0S90] Virtual Code Management
was chosen, for reELSons to be illustrated in the relevant
implementation section

This version provides very powerful debugging facilities that did
not require large amounts of memory below the 640Kbyte mark
Therefore application programs could be debugged without cutting
them down to a minimum implementation, which meant in many cases
that dynamic memory problems which were very difficult to trap
could now be trapped with a certain sunount of ease Program
development could have been significantly easier if these tools had
been available from the project start It should be noted that the
latest version of the Glockenspiel compiler [GL0C90] is supported
by CodeView version 3 0 [C0DE90] and thus claims to provide C++
source level debugging

57

It was possible via the VCM system to bring together the DESIGN and
ANIMATE programs in their entirety The DESIGN program allowed the
selection and reading of a background image file from a selected
compressed library of images and the subsequent selection, drawing,
sizing, data editing or erasing of icons from the full available
set to form a foreground The ANIMATE program simulated raw data
coming in from transducers and caused animation of the dynamic
icons These two programs were then amalgamated yielding a single
application for the design and subsequent animation of a mimic
diagram

58

311 Phar La p 80386 L in k e r .

The Phar Lap linker ,386LINK EXE, [LINK89] is a linker for the
Intel 80386 microprocessor Protected mode programs linked by
386LINK can execute under Phar Lap’s 386 DOS Extender RUN386 EXE
[RUN389] and real mode applications can be executed under MSDOS
DOS 386 C++ [Z0RT90a], is a Zortech development environment which
uses the facilities of the 80386 microprocessor together with the
Phar Lap 80386 linker, version 2 2d, to produce an executable file
which may be run in protected, real or mixed mode The Zortech
compiler [ZTC90a] provides the ability to generate 32 bit Phar Lap
compatible object files The Phar Lap linker 386LINK EXE or
FASTLINK EXE [FAST89] produces a EXE DOS or a EXP DOS Extender
executable file Real mode 16-bit object files must follow the
standard Intel/Microsoft OMF-86 file format definition while 32-bit
protected mode object files must follow Phar Lap’s OMF-386 format
[0MF88] The default for the DOS 386 Zortech compiler is a flat 32
bit address space There is no use for overlays in such a model and
hence VCM or other overlay systems are not supported The Phar Lap
linker provides support for full symbolic debugging by appending
CodeView information to the executable Zortech’s 80386 debugger
ZDBPH EXE recodes this information for its own use The protected
mode linked program can be run via RUN386 EXE Alternatively, if a
stand alone executable is required then BIND386 EXE can be used to
produce a file which can be executed from the DOS command line A
protected mode program has access to the virtually unlimited linear
addressing range of Intel 80386 and i486 microprocessors

The tools which make up the Zortech development environment are now
provided as 32-bit protected mode executables and hence can use the
full 4 Gbyte address space

The programs forming the DESIGN application executable file were
recompiled for protected mode and updated as necessitated by
modifications carried out to the C++ compiler The resulting object
files were linked with FASTLINK EXE and run via RUN386.EXE This

59

application is a mixed protected and real mode program The
necessary linker switches were applied to reserve space for real
mode elements below the 640Kbyte barrier and REALMODE OBJ linked
into the program as advised by Zortech It was found that
real/protected mode transfer was not carried out successfully for
file access and object/memory allocation To compound the problem
successful debugging was not possible because within the debug
environment any Zortech file access or Flash Graphic text screen
access functions caused an error thus halting any further progress

Even though the unattractive features discussed above necessitated
the continued use of the VCM system, as expounded upon m section
3 10, they only represent product immaturity The general move to
386 and i486 software technology will m the very near future
represent a significant step forward for large object oriented DOS
applications heretofore cramped by the 640Kbyte barrier imposed by
8086 microprocessor architecture

60

t

4 Graphics

4 1 Im a g e a n d Sc h e m a t ic Ba c k g r o u n d F iles . 6 2

4 2 B it m a p s a n d Ob j e c t Ba c k g r o u n d F iles . 6 7

4 3 Ex t e n t s , Ic o n Au t o -P l a c e m e n t a n d Ov e r l a p p in g . 71

4 4 Re a l - T ime Co n s id e r a t io n s 76

4 5 An im a t io n a n d Ic o n s . 8 0

4 6 T e x t , Men u a n d Mo u se I/O 9 4

61

4 1 Image and Schem atic Backg ro und F iles.

Marshall [MARS87] discusses the vast range of sources for graphics
diagrams which may be employed In this project schematic diagrams
are obtained by using graphics editors or by using various screen
grab facilities In addition plant pictures or schematics may be
obtained by the use of a document scanner [ATTS88]

Schematic diagrams generated directly by the use of the Dr Halo III
paint package [DRHA87] and plant mimics captured from specific
types of proprietary systems, using the Media Cybernetics GRAB
facility [GRAB87], can be converted into a format which is suitable
for Flash Graphics functions The program which converts PIC files
to ZPI files is called TRANSFORM

AT&T scanner files in PCX file format [SCAN88], which may be
edited using PC PAINTBRUSH [PCPB88], may be converted into the
Flash Graphics function compatible file structure using the program
TRPCXZPI Figure 4 1 is a screen dump acquired from the system
while the DESIGN EXE program was executing It shows a picture from
a distillation plant scanned using an AT&T scanner and subsequently
converted into a Flash Graphics file to be used as a mimic
background The Flash Graphics function compatible file may also be
converted back to PCX format by use of the PAINTBRUSH FRIEZE
facility

The Flash Graphics library does not directly support screen file
operations A full VGA screen has 640x480 pixels Hence a screen
save requires 307200 bytes Under DOS the maximum space which can
be allocated for any one buffer is one segment or 64Kbytes DOS
operates on the basis of a 640Kbyte total address space and the
8086 microprocessor architecture, where there are 20 address lines,
16 of which are used for addressing within each segment and the
remaining 4 for addressing the required segment Hence a number of
buffer operations are required for each full screen read or write.
Multiple calls to fgjreadbox and fg_writebox sire used to read the

62

Figure 4 , I Distillery»

screen to and from a heap buffer, which is then appended or read
from a disc file with ZPI designation Thus the background image
is seen to appear on the screen in strips The background disc file
represents a large disc commitment This is overcome by invoking
the DOS product PKZIP [PKWA89] to compress the image file and store
it in a compressed library of images or a ZIP file Imploding
indices of over 90% are possible with typical mimics When a
background image is required it is decompressed from a library of
such images and put to the screen as shown above The routines
responsible for this action are BDISPLAY and SELECTBG

bdisplay (char* argvl, char* argv2),

Bdisplay requires parameters specifying the ZIP image library file
and the ZPI file in this library that is to be displayed The
library files A2 ZIP through A6 ZIP contain various compressed ZPI
picture and schematic files The routine takes care of the ZPI
file decompression via a DOS system call to the PKUNZIP utility It
also allocates and deallocates dynamic memory for the buffers used
and deletes the ZPI file when it is on the screen via a DOS system
call to the DEL DOS utility

Error handling for ZIP and ZPI file read operations is catered
for by opening a window on the screen with an error message As
shall be seen later, this routine is used in the DESIGN program
when the background image library and image file are given on the
command line on call of the DESIGN program

select(),

Select takes no parameters but presents the user with a series of
menus for selecting a library of images and then for choosing a
specific image ZPI file The first menu presented on the
screen takes the form

Zip Search
Zip Entry
No Zip

64

This gives the user the option of searching the disc for all image
library files, selecting a particular image ZIP file or choosing
no background image file

If a ZPI image library file is selected then the next menu is
presented Zip Expand

Zpi Display
Zip menu

The user may choose to view the contents of a library ZIP file, as
shown in figure 4 2, select a particular image ZPI file for
subsequent display, or return to the first menu that was presented
ZPI and ZIP file read errors are catered for and windows
indicating such states are opened on the screen Status reports are
also opened on the screen via windows, for example Searching for
ZIP files is indicated in a window when the Zip Search option is
called m the first menu Status reports are indicated in green,
whilst error reports are indicated in red The entry of text for
file names is protected against invalid characters including an
audible warning and the normal erase facilities are provided Files
do not have to reside on the current directory and menu options are
vertically mouse pointer selected If no image file is selected the
screen is cleared This routine is used in the DESIGN program if no
parameters are specified on the command line in the invocation of
DESIGN

65

PK21P (tn) FAST* Create/Update U t i l i t y Uersion 1 01 07-21-89
Copyright 1989 PKMARE Inc f i l l Rights Reserved PKZIP/h fo r help

Searching ZIP fi6 ZIP

Length Method Size Rat io Date T ime CRC-32 A ttr Name

307200 Implode 19938 9 4 / 04-12-90 15 37 41f 2e014 — w FARUGASI 2PI
307200 Implode 22999 9 3 / 04-12-90 15 38 d9b02d56 — w FARHGAS2 2PI
307200 lap lode 72228 7 7 / 04-12-90 15 41 b2a0f282 — u PUMPHOUS 2PI
307200 lap lode 32721 9 0 / 04-12-90 15 42 59dc376a — u PUPIPHSE2 2PI
307200 lap lode 41931 8 7 / 04-12-90 15 43 d90eae5b — u PUMPHSE3 2PI

1536000 189817 8 8 / 5

Figure 4.2 Expanded Zip file.

4 2 Bitm aps an d Ob je c t Ba ckg ro und F iles.

In some applications it may be advantageous to be able to use
bitmaps as icons This allows pictures of plant or measuring
equipment the flexibility of movement around the screen just like
any other icon As shall be seen later, in section 4 3, it may also
be possible to allow other icons to overlap or reside on top of
bitmaps in order to effect animation

The program BITMAPGN is used to cut a piece of an image ZPI file
from a library of image files and generate a bitmap file this
allows parts of schematic or scanned files to be used as objects
The bitmap file is given the designation ZMP and compressed into a
library of bitmap files BITMAPGN is called from DOS with the
arguments source image library file ZIP, image ZPI file in this
library, destination bitmap image library ZIP and bitmap image
ZMP file in this library The program allows an area on an image

file to be selected and captured to form a ZMP file The image
file is decompressed from its library at the start and deleted at
exit The ZMP file is generated and compressed to a library file,
then the ZMP file is deleted The program uses dynamic buffer
allocation and deallocation DOS system calls for PKWARE compression
utilities and allows subsequent viewing of the bitmap that was
captured

The bitmap image files of maximum size 64Kbytes have the format
{m t xl,yl, // capture area lower left coordinates
m t x2,y2; // capture area upper right coordinates
flByte/Pixel7 // 1 byte /pixel
}

These bitmap image files are used by the CADSHAPE obj'ect BMA1
Figure 4 3 shows a BMA1 bitmap object of a pump obtained as a
screen dump from the system during execution of the DESIGN EXE
program On construction of an instance of this class, the bitmap
image is unzipped and decompressed from the bitmap image library

67

Figure 4.3 B m a 1 Bitmap Object.

and placed in a dynamic buffer allocated in the constructor The
size of the buffer is calculated from the capture area contained in
the first eight bytes of the ZMP file The buffered bitmap pixel
information is passed to a file also generated in the constructor,
which is used subsequently when the bitmap pdraw() function is
called The ZMP file and dynamic buffer are then deleted The new
bitmap file name is designated BM4**** SAV The **** letters come
from a random number generator This file is deleted on destructor
call, or if the destructor is never called then it is implicitly
deleted at the end of the DESIGN program Any file read errors are
flagged to the screen via a window The BMA1 object allows pieces
of image files to be overlaid on top of the background image file
It can be used as any other CADSHAPE type object except that it
cannot be animated in itself However it is possible to overlay
active CADSHAPE objects over the BMA1 object to effect animation
This is discussed in section 4 5, the animation section of this
chapter

Experimental work was carried out to transform 256x256x6 bit video
acquired image files to bitmap file ZMP format Programs were
written to examine this Experimental programs were also written to
expand out the video images with the possibility of forming
background images However it was found that the quality of the
original images were too poor to be of any use in this project

K Porter [P0RT87] describes a method of saving the portion of a
screen obscured by pop-up menus by the use of buffers and direct
access to display memory In this application background files are
used to store areas obscured by icons and graphic routines are used
to capture the required areas Object background files designated
SAV files are used to save the background behind icons and

templates When an icon or template is drawn on the screen then the
bitmap of the background behind the icon or template Is stored in a
dynamic buffer in order to preserve the background If the buffer
is kept active for the life of the object then when an erase or
delete of the object is required, the object is first erased

69

leaving a hole or black rectangle in the background, the object
background buffer which has the saved bitmap is redrawn on the
screen, thus the background is reconstituted When the object is
being moved a new bitmap is saved in the background save buffer and
then the icon is drawn over this area Keeping the background
dynamic buffers open for the life of the icon or template and for
all icons or templates represents quite a strain on heap memory,
which will in fact eventually run out and thus limit the number of
icons that can be active at the one time This problem was overcome
by the use of background SAV files When the bitmap is saved to
the dynamic background buffer it is transferred to the object
background file and the dynamic buffer is deleted This reduces the
requirements for heap memory dramatically but limits the speed or
redraw for an icon due to disc access characteristics This is
overcome to a very large extent by using a Virtual or RAM Disc for
the SAV files which eliminated the disc access delays The
background SAV file names are generated within the object
constructor using two letters from the object name and four
characters from the random integer number generator rand() For
example BM6329 SAV for bitmap background save file

file_rand = randO,
itoa (file_rand, sub_name, 10),

The file is created in the pdraw() method and the portion of the
background, that the object will cover is passed into the file via a
new dynamic buffer The new dynamic buffer is then deleted, freeing
up memory on the heap When the object is erased the background
information is taken out of the file and the file is deleted The
files scope is from pdrawO method to perase() method only

The WINDOW and WINDOWTILE classes still use background dynamic
buffers for their whole lifetime Their load on the heap in quite
low as windows are typically small and there are not generally more
than a few open on the screen at the one time

70

4 3 Exte n ts , Ic o n Au to -P lacement a n d Ov e r la p p in g .

An extent defines a rectangular area about a screen object The
theory and practice of the use of extents is expounded on in great
depth by Foley and Van Dam [F0LE84] All icon objects in the system
that can form part of the mimic foreground have gin extents area
associated with them Other objects such as the TEMPLATE, WINDOW,
WINDOWTILE and MSMENU classes are used in the generation of the
foreground, but do not form part of that foreground They are drawn
on the screen and save the part of the background which they write
over, hence it can be said that they are written non-destructively
over the background Once used they are erased and the background
is restored This is in contrast to foreground icons which form
part of the mimic As these icons give, for the most part,
important plant information, it is crucial that they are visible
and not overwritten by another icon A protective area is defined
around each icon, which is known as the icon’s extent The extent
box enclosing any icon is defined by the extent generation method
of the icon A dashed box corresponding to the extents area may be
drawn and erased by extent methods of each icon This box is drawn
in screen XOR mode to protect the mimic background The screen XOR
and AND draw modes are discussed in more detail in section 4 5
These methods all take into account a multiplication factor in
order to accommodate expansion or reduction of the icon

When am icon is to be moved, a set of extent box coordinates is
generated for the proposed new position The extents box
corresponding to the newly proposed position is then compared to
the extents boxes of all existing objects on the screen If the new
extent box intersects or overlaps with the extents of any other
icon then an extent overlap condition occurs and the move is not
allowed This process is shown in figures 4 6 and 4 7 There is an
exception to this which shall be discussed shortly In the DESIGN
program of this project an icon cam be moved by moving its extents
box and when the final free position is decided upon the icon
itself is moved If no free position can be decided upon then no
move is carried out The entire icon can also be moved and most

71

I f t e e c t e f i i g g e y t a a ; 1 Figure 4.6 C M

4 *S
Figure 4.7 .rig

tH n n m i ii r>7t*t

icons can also be resized larger or smaller. All three facilities
test for extents intersection or overlap and report if extents
transgression conditions exist.

When an icon is selected from the menu it is automatically placed
on the screen in such a way that no extents transgression occurs.
This is achieved by testing for an extents transgression with any
other object. The new extents that would result from the object
being placed at the required position are first tested. If this
fails then the extents are tested at points about concentric
squares built up about the required point till the extents test for
transgression with any other objects extents, is passed. Thereupon
the object is drawn. There is also a facility within the routine
for automatically placing a series of objects, in which case a new
set of concentric squares is utilised for each icon starting one
square before that used for the last automatically placed icon.
Because of the variety of icon shapes this can give a looser set of
icons than if the placement started at the centre on each occasion.
However there is a considerable saving in the time required for
placement of a large set of icons.

Bitmap icons, as seen above in section 4.2, provide a method of
using parts of captured images or schematics as icons. Their
animation depends on using other icons and hence it is required
that other icons can overlap them, as shown in figure 4.8. This
creates two categories of icons, those that allow overlapping on
themselves by other icons, and those that do not. As the animation
effect is to be applied to the bitmap icon other icons are allowed
to overlap it. However it is not allowed to overlap other icons.
Extents testing takes into account these two categories of icons.
An icon is switched from one type to the other by simply switching
its extents protection on or off in the icon constructor. The order
in which moving or deleting overlapping icons is carried out is
important in order to ensure that the integrity of the mimic
background and foreground is maintained. The DESIGN program
protects against illegal icon movement and flags user illegal moves
or deletions with an appropriate message. An example of an illegal

73

Figure 4.8 Overlapping Icons.

deletion would be trying to delete a bitmap object on top of which
resides some other icon, provided for animation purposes If the
bitmap icon deletion were allowed and subsequently the animation
icon was moved then the background behind the animation icon would
not contain the mimic background but in fact the piece of the
bitmap icon which it had covered The program should only allow the
bitmap to be deleted if all icons residing on top of it are deleted
first, in other words operations on overlapping objects must be
carried out in such a way as to support overlapping

The extents of an object being moved or expanded are also checked
against the boundary of the viewport or screen, which in this case
is the Flash Graphics fg_displaybox coordinates This is to ensure
that icons always remain within the visible screen

75

4 .4 Real- T ime Co n sid e r a tio n s .

A real-time monitoring system requires that the screen information,
reflecting plant status, be updated within some time increment so
that the information is updated fast enough compared to the time
constant of the plant under supervision The process by which the
foreground icons impart information about the plant status is known
as animation When an icon is animated it simulates the action of
some physical device, which may be for example a measuring
instrument or a piece of plant or equipment The DESIGN program
animation function tests if the set of foreground icons can be
animated within the increment given by the integer variable
real_time_barrier If the animation of all the icons is within this
value the system outputs the message system wait via a message
window and waits till the increment is up before it starts another
animation run of all the objects in the foreground If it takes
longer than the real_time_barrier to complete the animation run,
then the system outputs the message system too slow via a message
window The animation function of the DESIGN program carries out a
fixed number of foreground animations The percentage of times for
which the animation takes longer than the real_time_barner is
calculated and presented on the screen via a message window The
real_time_barner is set at 5 ticks or approximately 275mSec If
the animation cycle persistently breaks the real_time_barner it
may be necessary to run the system on a faster machine or
alternatively, if the plant time constant allows, increase the
real_time_barrier value Figure 4 9 is a screen dump from the
system during an animation cycle It shows a mimic diagram of a
pump control panel consisting of a text background and icon
foreground At the instant of the screen save all icons have been
updated and the system is waiting till the animation increment has
elapsed before starting another animation run This is indicated by
a message in a window at the lower left corner of the screen

76

PUMP CONTROL PANEL

no . 1

no .2

no . 3

no .4

r e u s / m i n T h e r m a l

S t a t u s

E
8g10

agiw
1*30.00

F

A u t o
s h u t d o w n

7̂ 0
1*60.001

54J2,
?8 g i 0
K-00001
r e u s /m i n

Figure 4.9

The three criteria, which are used to determine whether a

particular foreground object should be animated, are

i an action counter,

I I a change of state or analog value, and

I I I a time deadband

The action counter and the action counter default value, a c t i o n and

a c t i o n _ d e f a u l t , are declared in the CADSHAPE class The

a c t i o n _ d e f a u l t variable is defined and the a c t i o n variable is

initialised to its default value in the constructor for each

object When the animation method of an object is invoked this

a c t i o n counter is decremented If its value is zero then further

animation criteria are tested, otherwise the animation is ended

without any further processing till the next call to this method,

when the a c t i o n counter is once again decremented If the a c t i o n

counter reaches zero, then it is reset The criteria that are

applied following the decrementing of the a c t i o n counter to zero

depend on the type of icon which is being animated

For objects that respond to a digital or analog signal change by a

single non-continuous animation effect, that animation effect is

carried out if there is a change in the digital or value status of

the icon Examples of such objects are the DIGVALUE, STATUSTX,

VALUETX, STATUSTILE and VALUETILE objects which simply output a new

value or text string on the screen within their screen framework

when a digital or analog value change takes place and is

communicated to them by invoking their animation method Other

examples include the SQUARE class, which changes colour on a

digital change of state being communicated to it via its animation

method Another example is the ANIMPIE obj'ect This icon mimics a

pump where the rate of motion of the rotating vanes is proportional

to the analog value

Some objects compare the time since their last full animation, the

inter-sample time, to the analog value that they are required to

78

mimic giving a rate of animation that is dependant on the value In

such cases the animation effect may be constant but carried out at

a variable rate, or the animation effect and the rate both may be

proportional to the analog value that is being simulated In the

latter case the effect of analog value changes is exaggerated

Examples of such icons Eire the ANIMPIPE object which simulates a

pipe, where the liquid flow rate is proportional to the analog

value that is sent to the object via the p a n i m a t e () method Another

example is the ROTSHAFT object In this case the rate of rotation

is controlled by comparing the inter-sample time to the analog

value to be simulated

Finally the ANIMPLOT object carries out a full animation if the

time since the last full animation is greater than a debounce or

deadband time Changing the deadband time changes the frequency

with which full animations are allowed

79

4 5 An im a tio n a n d Ic o n s .

Animation is initiated via the DESIGN animate menu function,

simulating plant activity as described above in section 4 4, or via

user input to a digital or analog input icon

Icons which are used for digital and analog input by the user, via

the mouse, carry out animation when invoked by the user When the

user inputs a digital change of state by clicking on a BUTTON or

BUTTONTILE type object, shown in figure 4 4, then the

d i g i t a l j p m p u t O methods of these animate the icon accordingly to

represent the user action of pressing or releasing a button Such

digital output icons are designated DOP type icons Similarly the

animation for the POT and SLIDER classes, shown in figure 4 4, is

carried out while the user moves the knob or slider bar via the

mouse and the a n a l o g j p i n p u t () method The corresponding value which

the position of the slider or knob indicates is reflected in a

value box m the lower part of the icon These analog input icons

are designated AOP type icons

Some icons have no animation effect The bitmap BMA1 class, shown

in figure 4 3, is an example of such a type As discussed above in

the extents section, 4 3, this object allows other icons, which can

be animated, to overlap it Hence animation can be applied to the

BMA1 bitmap object indirectly Icons which have no inherent

animation are designated as PASSIVE icons

The vast majority of the icons used in a system such as the one

developed by this project are icons which sire animated based on

values or status sent to them from the plant or by simulation

Those icons which reflect analog measurements are designated as

analog input (AIP) icons, whereas those that reflect digital change

of state measurements are digital input (DIP) icons There exist

also a wide set of measurement applications where combinations of

signal type are used For example a motor may have an icon which

not only gives an indication of its speed as an analog quantity but

80

Digvalue Statustile Value tx Value tile

.432 , 100: ■

8g l0
■ “ ■ L I

50=

0—=
EH

L 1 Button Buttontile
Pot

Slider

Animsqr

Figure 4.4 Foreground Icons.

Animvol Chemical

Animpipe Rotshaft

50.0

30

Dial

100-n

50.0'

J

d b
run

Thermom Valve

Figure 4.5 Foreground Icon;

also indicates its thermal cut-out state e l s a digital quantity

Clearly this icon has both an analog and digital function, in which

case it is an AIPDIP type Another interesting type is the analog

multiple digital type (AIPMDIP) This icon accepts both analog and

digital input as above, but it also accepts multiple digital levels

rather than the conventional binary digital signal An example of

this type is the CHEMICAL icon, shown in figure 4 5, which uses the

analog value to set the level of a liquid in a tank and uses the

multiple digital input to select a colour for the liquid This

allows different substances to be distinguished

An icon could be drawn on top of the background picture in either

exclusive-or (XOR) or in and (AND) screen write mode If the

background is a fixed colour, then the interaction that occurs in

XOR screen write mode between the background and the colours used

in the icon, will produce predictable results The routine which

draws the icon over the background could pick colours for the icon

parts to suit the background in order to give the required icon

presentation However if the background is in more than one colour

then the resulting colour appearance of a icon drawn over the

background in XOR mode will be indeterminate For the icon to be

presented in predictable colours, with a multiple gray level

background, the draw method would have to test every pixel and

output the icon pixel by pixel, selecting the correct colour as it

went along This process would represent an unreasonable length of

time to draw an icon or animate some part of the icon The

advantage of the XOR mode is that an icon or part of sin icon can be

ersised simply by redrawing the specific part no longer required

Therefore no background manipulation is required The PIE icon is

an XOR screen write icon This icon is see-through e l s the

background is not processed in any way The efficiency of the

process of facilitating information transfer to a user is highly

dependant on colour The power of using colour for status of plant,

different chemicals, alarms and messages is fELr more important than

the gain attributed to using the XOR screen write mode

83

The AND screen write mode obliterates any background pixels in its

path Hence any icon written in this mode will retain its colour

integrity However if the icon is moved or animated in any way the

’holes’ in the background picture will become apparent This means

that if see-through icons are required then, between each animation

movement of an icon or during any movement of the icon across the

screen, the background pixels that were overwritten must be

replaced This would result in a large delay in the animation and

movement functions However if a bitmap of the background behind

the icon is saved and the background area blacked out then XOR and

AND screen write modes could be applied liberally without the

problem of interaction with the background When the icon is to be

moved it would first be erased and then the background saved bitmap

would be restored, following which the background area

corresponding to the new position would be saved, the new area

blacked out and the icon redrawn This is the method that was

employed for all icons save the PIE icon, shown in figure 4 4,

which remains an example of the XOR method for producing

see-through icons In general it can be observed that the use of a

black background box behind icons enhances Mimics greatly whereas

see-through icons on a multiple gray scale background can be

difficult to read

The simulation effects employed in this project include movement of

substances in pipes, liquid level shifts, meter needle movement,

random movement of particles, rotation of pump parts, light

emitting diode indicators, digital meter and analog text displays,

push buttons and potentiometers The animation techniques to

achieve these effects are discussed below

The ANIMVOL and CHEMICAL icons, shown in figure 4 5, simulate

liquid height in a cylindrical container Animation of level shifts

is achieved by the use of ellipses and colour fill functions If

the height in a container increases, then the ellipses which

represent the surface of the liquid are redrawn at a higher level,

the old surface ellipses are removed and the gap between the old

84

liquid level and the new level is filled using a flood fill

function If the status or composition of the liquid changes then a

colour change may be in order If this is the case then once the

new ellipses representing the new liquid level are drawn then the

old liquid level ellipses are erased and the contents of the

container to the new level are flood erased to black and then flood

filled to the new colour representing the new liquid composition or

status If the liquid level decreases then the gap between the new

level ellipses and the old level ellipses must be erased to black

The area between the new level ellipses and the bottom of the

container may be erased to black and refilled with another colour

if a status change occurs to the liquid The colour filling process

generally is between pixels of a specified colour and therefore

when filling between levels represented by ellipses one or the

other half of an ellipse may need to be erased during the flood

fill and erase processes This is so that the correct concave shape

may be produced for the liquid which rests against the inside of a

cylindrical container

The ANIMPIPE and ROTSHAFT icons, shown m figure 4 5, simulate flow

in a pipe and a rotating shaft A simulated flow effect is achieved

by first drawing a rectangle to represent a pipe and then drawing

a set of dots within the pipe Each dot is separated from the next

in the horizontal and vertical directions by a fixed number of

pixels In the horizontal direction each dot is erased and replaced

by a dot in the next pixel space to the left or right, depending on

the direction of flow required This is repeated at a rate which is

proportional to the rate of flow required, as determined by the

analog value, and its polarity, sent to the object. After a fixed

number of movements of the dots in the one direction, the dots are

erased and a new set drawn at the original pixel locations, and the

process repeats For vertical flow the method is exactly the same

except that the left and right shift are replaced by an upward or

downward shift The flow rate is increased or decreased by

controlling the rate at which the dots are erased and redrawn in

their new pixel positions Rotation is achieved in exactly the same

85

manner, except that dot movement is perpendicular to the sides of

the rectangular structure, which in this case represents a shaft,

rather than parallel to the pipe walls, as in flow simulation. The

rate of rotation and direction, clockwise or anti-clockwise, is

controlled in exactly the same manner as flow in a pipe.

The DIAL icon, shown in figure 4.5, simulates an analog meter.

Meter needle movement is animated by converting the value to be

indicated into a corresponding angle, using trigonometric functions

to calculate points for a line to represent this angle, and drawing

the line. On value change the old line is erased and a new line

redraw at a new angle. If the line representing the needle is drawn

in screen XOR mode then the underlying meter will not be erased by

the needle movement. The meter itself is simulated by two arcs with

dots spaced between them to represent digit points.

The THERMOM icon, shown in figure 4.5, simulates a level meter or

thermometer. A thermometer is simulated by a rectangle. The

movement of the thermometer contents is simulated by placing a

smaller rectangle within the thermometer rectangle, the height of

which depends on the value to be represented. The inner box can

then be flood filled with a colour indicative of some signalled

condit ion.

The VALVE icon, shown in figure 4.5, simulates the opening and

closing of a valve. The valve body, being a complex shape, is drawn

using a polygon draw routine. However this type of shape could also

be derived from a bitmap, this would alleviate the complex polygon

draw otherwise required. Expansion of the valve body shape however

necessitates a polygon draw routine. The animation centres on the

opening and closing of the valve and is simulated by two boxes

inside the valve body that expand towards one another or away from

one smother as the valve closes or opens, the analog value sent to

the object representing the percentage open or closed via the size

of the internal valve boxes. The boxes inside the valve are flood

filled to represent some valve condition. When the two boxes within

86

the valve are touching the shut condition is represented, when they

are furthest apart the open condition is represented, while

in-between conditions represent the run condition A fail condition

is represented with an appropriate colour change of the valve

object if an active digital status is sent to the valve Conditions

are also indicated by text in a text box below the valve

The ANIMPLOT icon, shown in figure 4 4, simulates a chart recorder

The body of the chart recorder is simulated by a rectangle

enclosing an active plot area The active plot area is offset from

the main object by drawing it as an inset into the screen so that

it appears to be set back from the main rectangle which forms the

chart recorder (The inset effect is established by drawing a

boundary about the active plot area in two sections, the upper and

left side m a dark shade and the lower and right in a light shade

This method of insetting areas, and the complimentary method of

making areas stand out, in such a way as to give the impression of

depth by having two physical levels or layers appear on the screen

is used in other objects other than the plot object) Another

scheme also employed, although not in the plot object, is to

establish many layers or levels and hence simulate a gradual

sloping back or sloping out towards another layer on the screen

To animate a plot of points representing analog data being sent to

the plot object, it is necessary to call for a redraw of the plot

points on the time increment for which the plot is required, for

example one plot point per five seconds, or one plot point per

minute The analog values sent to the object are kept in a matrix

as are the times associated with these analog events When a plot

is required then the values are scaled to the pixel range of the

plot to produce a vertical or y coordinate position within the plot

range An attribute matrix is loaded with information regarding the

status of each value, for example whether the value is out of range

or whether no analog value was recorded for the corresponding time

The y coordinate positions, coming from the value matrix, are

matched with a matrix of- x coordinate positions. The x coordinate

87

positions sire produced from scaling the total time for a full set

of points in a plot evenly over the horizontal range available for

the plot This accommodates a variable timebase and expansion of

the plot object A plot is then drawn by drawing lines between the

x,y coordinates The colour of these lines is controlled by the

attribute matrix in order to signal various conditions such out of

range values When a new value is to be plotted, on the next time

increment, the old lines are erased by redrawing them, the matrices

are shifted one place to accommodate the new data, the x and y

scaling is recalculated and finally a new set of lines is drawn

The PLOT object, designed in this project, allows both the number

of samples in a plot and the minimum inter-sample time to be set

The ANIMCONC icon, shown in figure 4 4, simulates Brownian motion

A number of dots, which is proportional to the analog value sent to

the object, are drawn within a rectangle, which represents a

container The x,y coordinates for the dot or pixel are generated

using a random number function and scaled to be within the object

boundary If the value sent to the object increases then new dots

are drawn and all the previous dots are erased and redrawn at new

locations If the value sent to the object decreases then the dots

representing the difference are erased and each of the remaining

dots are erased and redrawn at new locations in turn The colour of

the dots represent some condition for the substance being

simulated The dots or pixels are erased by redrawing them in the

same colour as the background The rate of movement of the dots

depends on how often the animation is carried out It is possible

to have the animation carried out more or less often and this is

controlled by a data element of the ANIMCONC object as discussed in

section 4 4 above

The ANIMPIE icon, shown in figure 4 4, simulates a pump with

rotating vanes The body of the pump is drawn by drawing a circle

with lines for inflow and outflow pipes and a polygon plinth The

vanes are represented by crossed lines The colour of everything

88

except the crossed lines cam be chamged to indicate the pump

status The object is animated at a fixed rate, however the angle

that the crossed lines are drawn at depends on the previous angle

and the new value sent to the pump Hence on each animation the

crossed lines move to a new angle depending on the analog value amd

its polarity With animation at a fixed rate the effect is that

circular movement is faister for larger analog values and slower for

smaller analog values The angles for the crossed lines are

calculated using trigonometric functions amd a constant which

controls the angular movement per analog unit input

The PIE icon, shown in figure 4 4, simulates a pie chart The pie

shape is generated by drawing an arc between zero degrees and an

angle calculated from the analog value sent to the object Line

drawing routines are used to close off the ends of the arc The XOR

mode is used exclusively for this object The amimation is effected

by redrawing the pie for the previous value, thus erasing it, amd

then drawing the pie for the new value This object is not required

to simulate movement and therefore a deadband is applied so that

indiscernible angle changes are not animated No background save

files are used for this object and the object is drawn over the

background in XOR mode, thus producing a see through icon As

mentioned previously, for XOR screen writes, interaction occurs

between the icon colours and that of the background This effect

manifests itself clearly when a multiple gray scale background is

used

The SQUARE icon, shown m figure 4 4, simulates a binary digital

status indicator A digital status signal change causes the colour

of this object to change Such a colour change is employed in many

of the icon objects It is implemented by redrawing the object in

XOR mode, thus erasing it, amd then drawing the object in a new

colour

The ANIMSQR icon, shown in figure 4 4, simulates a variable voltage

light emitting diode. A variable voltage LED gives out a different

89

colour depending on the voltage applied to it. Similarly this

object processes the analog value sent to it to give a different

colour depending on the value. This is achieved by using a colour

fill of a box within an outer box. Additionally an active digital

status sent to the object causes the object to blink. This is

achieved by refilling the box using the XOR mode on every animation

of the object, thus erasing and redrawing the coloured central

portion of the object. If a value change occurs which warrants a

colour change, then the colour of the central portion is examined

by a pixel read. If it is blacked out then the box is filled with

the new colour, whereas if it is in the old colour it is erased and

refilled with the new colour.

The DIGVALUE, VALUETX, and STATUSTX icons, shown in figure 4.4,

simulate various analog and digital text indicators. They all use

the same type of screen framework within which to display their

values or text. The effect is a meter or text indicator sunk into

the screen from a frame attached to the front of the screen. The

frame is generated by filling a rectangular area between two

rectangles, one of which is enclosed within the other. Then lines

are drawn between the corners of the rectangles to shape the

corners of the frame. The sunk-in effect is achieved by drawing a

number of ever decreasing enclosing rectangles in increasingly

darker shades of gray. Again black lines are drawn in the corners

across the gray shading to help achieve a depth effect. The

animation simply consists of erasing the old text associated with

analog or digital signals and redrawing the new text, with

associated colour change for status changes.

The STATUSTILE and VALUETILE icons, shown in figure 4.4, simulate

digital and analog text indicators. They use the same type of

screen framework within which to display their information, as is

used for the WINDOWTILE message and text input icon. This framework

gives the effect of a meter or Indicator panel inset into the

screen. This is achieved by drawing a rectangle filled in a light

gray shade, drawing within this another rectangle in a darker gray

shade with a border. The top and left sides of this border are

90

drawn in a darker shade again, whilst the bottom and right sides

are drawn in white The border gives the impression of a shadow

associated with the inset panel As above the animation simply

consists of erasing the old text associated with analog or digital

signals and redrawing the new text, with associated colour change

for status changes

The POT icon, shown in figure 4 4, simulates a potentiometer

Animation of this icon is initiated by the user via mouse action

Based on the user action an analog value is passed to the system by

the user The icon consists of two concentric circles with ten dots

equally spaced mid way between the circles and at equal angle

increments between two angles at 0 and 300 degrees, as set in the

object Numbers zero to nine sire drawn opposite each dot outside

the outer circle A line simulating the wiper of the potentiometer

is drawn in XOR mode from the centre of the inner circle with a

radius of the inner circle The user via the mouse can rotate the

wiper to any desired angle Only angles within the potentiometer

range, in this case 0 to 300 degrees, are accepted The icon also

has a rectangle which displays the value selected via the wiper

position The wiper and value are drawn in blue to indicate that

they represent user analog input rather than simulated plant

information

The SLIDER icon, shown in figure 4 4, simulates a slide

potentiometer As for the icon above, this icon is utilised for

user input via mouse action The icon is constructed from a long

rectangle with ten equally spaced horizontal dashes to the left and

running the length of the central rectangle or central column Text

strings containing ’O’, ’50’ and ’100’ are drawn to the left of the

dashes A small horizontally elongated rectangle drawn across the

central rectangle represents the slide of the potentiometer A

rectangle below the slide column contains the actual value selected

by the slide position The user can move the slide up and down the

slide column via mouse action The slide moves across the central

column non destructively by the use of the XOR screen write mode

91

and by erasing the slide before redrawing it for each movement

required As with all icons, which allow analog or digital input

via mouse action, the mouse cursor must be on the icon or within an

active field or active distance of the icon to effect an input The

slide and value are drawn m blue to indicate that they represent

user analog input rather than simulated plant information

The BUTTON and BUTTONTILE icons, shown in figure 4 4, simulate

single throw buttons The animation of these icons is initiated by

the user rather than by analog or digital signals from the plant or

via simulation The user via the mouse selects an option to change

the status of the icon The former of the two uses a framework

similar to that employed by the DIGVALUE icon, whereas the latter

uses a framework similar to that used by the STATUSTILE icon There

<are two states associated with these icons which are accompanied by

two corresponding screen presentations of the icon The BUTTON icon

in its off state is drawn as an outer white rectangle enclosing a

black filled rectangle which in turn encloses a number of

rectangles of increasingly lighter shades of gray and finally an

inner green filled rectangle which contains the status word ’off’

The overall effect is that of a curved sided button sitting up from

the screen within a border with a centrally illuminated square

indicating the status of the button The ’on’ state, on the other

hand, has a white outer rectangle enclosing rectangles alternating

between black and ever increasingly darker shades of gray Within

all of this is the same curved sided button simulated by enclosing

rectangles of ever increasingly lighter shades of gray with a red

central rectangle indicating the status as ’on’ In this case the

central button is smaller The effect of switching from the ’off’

to ’on’ state is that the button is perceived to move down into the

screen The movement of the central button inwards is delayed while

the outer shaded rectangles enclosing the smaller inner ’on’ button

are drawn in order to give the effect of spring loaded friction to

the inward movement This is further helped by accompanying the

movement with an elongated click sound The effect of switching

from the ’on’ to the ’off’ state is that the button is perceived to

92

pop out from the screen There are no delays associated with this

movement so as to give the impression that the button is spring

load assisted while being released into the ’off’ state Again a

click sound accompanies the movement

The BUTTONTILE icon in its ’OFF’ state is drawn as a filled outer

light gray rectangle enclosing a smaller inner light gray

rectangle The inner rectangle has a border of which the top and

left sides are drawn in white, while the bottom and right sides are

drawn in black The inner rectangle contains the status text ’OFF’

The overall impression is that of two layers or tiles with the

inner smaller tile or layer sitting on top of the larger outer

tile In its ’ON’ state the inner rectangle is reduced in size and

filled with a dark gray shade, the colours of the sides of the

border are swapped and the text is changed to ’ON’ The inner

filled rectangle appears at a level' behind the large outer filled

rectangle The ’on’ and ’off’ text are in the colours red and green

respectively The effect of switching from one state to another is

that the inner button is perceived to click into the large outer

tile for the ’ON’ state and click out to reside on top of the outer

tile for the ’OFF’ state Both movements are accompanied with a

button click

93

4.6 T e x t, Menu and Mouse I/O

Information may be input to an application in a number of ways In

this project information is input to the application via simple

’y/n’ keyboard input, the WINDOW, WINDOWTILE and TEMPLATE object

icons, and via the MSMENU mouse menu object

The simple ’y/n’ input is called for by the PKUNZIP DOS utility

[PKWA89] invoked via the s y s t e m function call This type of input

method expects a specific key or keys to be inserted to answer a

query It is important to clear the input stream buffer before

accepting new input in order that any extra input from the previous

input session is not used as input for the next session

Another way of providing for text input and output from the

application is via a window The WINDOW and WINDOWTILE icon objects

provide such a framework The WINDOW icon allows a text string or

message of some colour to be put up on the screen in a box which is

background filled with selective colour and surrounded by a user

defined coloured boundary The WINDOWTILE icon provides a two layer

or tile framework, similar to the BUTTONTILE object above, where

the central section appears as an inset into the screen The text

appears on the inset panel The colours can be selected for inset

tile or layer and text Both icons accommodate keyboard input When

the window or layered window is to be drawn tests should ensure

that the required vertices are not twisted, that the window will

not reside outside the violable screen and that the maximum area

for the window is less than the maximum data size for dynamic

buffer allocation The latter requirement stems from the fact that

these icon use a dynamic buffer to store the background which they

write over For text input, deleting past the beginning of the

input area on the icon, inputting illegal characters or giving text

strings greater than the window length should be protected against

and an audible warning sounded Some of the applications of

windowed input in this application cover providing status reports

to the user on disc access functions, input of icon identification

numbers and input of background image or schematic file names

94

A similar framework for inputting or displaying text is via a

TEMPLATE icon This style of icon provides a number of windows

within the one overall icon box As for the window type inputting

past the end of the template window, deleting past the beginning of

the input buffer and illegal input should be protected against and

include an audible warning This type of window structure is

particularly useful for displaying and editing sets of data

Template style icons write non-destructively to the screen This is

implemented m this application by using a background save file for

the TEMPLATE object, as for the other icons

Mouse input is used for selecting menu options, changing the state

of digital output via digital output icons such as the BUTTON and

BUTTONTILE icon, changing the value of analog output via analog

output icons such as the POT and SLIDER icons, or picking icons for

processing from a set on the screen

When used for analog or digital input via icons the mouse cursor

must be on the icon selected or within some active field defined

about the icon Dragging of the mouse cursor may be used, and an

example of this is seen in the SLIDER icon which allows the mouse

to slide the wiper of a potentiometer up or down For digital input

a single mouse button can be used to change a button state

When picking an icon from a field of icons on the screen the

distance from the mouse cursor position to each icon must be

calculated and the nearest icon selected A further check can be

applied to ensure that this is in fact the icon that was meant to

be selected When the mouse cursor is placed near an icon and a

mouse button is depressed, then the icon is erased and redrawn

continually, thus indicating that the icon is to be selected Now

simultaneously depressing the second mouse button indicates that

the icon is to be processed If the second mouse button is not

depressed then the mouse can be moved to select another icon. In

this application the TEMPLATE icon and information option of the

DESIGN program use this method to ensure the TEMPLATE object is

created for the correct icon.

95

A menu can be used to select one of many options or indeed to

select other menus Menus can be highlighted, as in this

application, by colour filling their background When used with the

mouse, a single mouse click beside a menu option can be used to

select the particular option The menus in this application return

an option number which is used in a s w i t c h statement to select the

appropriate action To make selection easy the mouse movement

should be limited to the direction of the options m the menu In

this application, the DESIGN program, the mouse movement rectangle

is the width of the cursor and the length of the menu The

rectangle sits at the side of the vertically arranged options

Movement is restricted to this area, and an option is invoked by

clicking beside it Where more than one menu is used the topology

of the menu structure depends on the application It is usually

convenient to have one m a m menu, only one exit point back to the

operating system and an intuitive flow through the menus in a

system

When the mouse is used for several different types of actions

utilising different cursor styles can avoid confusion In this

application the pointer style mouse cursor is the default style and

is used when selecting icons for processing from the screen The

cross-wire cursor style is used when moving icons and the arrow

style is used for menu input

96

5 2 T he Cla s s Hie r a r c h y 117

5 3 T he De s ig n Pr o g r a m 122

5 Im plem en ta tio n Details

5.1 Classes a n d Ic o n s . 98

97

5.1 C lasses and Icons.

Thirty one classes have been developed for use m the main program,

DESIGN EXE, of this project These classes are shown m the

hierarchy diagram of figure 5 1 The vast majority of these classes

are icon style classes known as c a d s h a p e classes However there are

other classes including the w i n d o w type classes used for

information I/O, the s h a p e l s t classes for generating linked lists

of c a d s h a p e classes, and the msmenu. class for creating interactive

mouse menus

The c a d s h a p e category are icon type objects These icons are

representations of pieces of equipment such as pumps, valves and

pipes, representations of measuring instruments such as

thermometers, digital and analog dial meters, representations of

input devices such as buttons and potentiometers, and pictorial

representations of equipment from plant schematic diagrauns or

photographs The c a d s h a p e classes provide the dynamic and static

icons which maJce up the mimic foreground The animation of these

cadshape icons intuitively imparts the plant status to the user

The full set of c a d s h a p e type object classes which are used as

foreground icons are given below All can be animated with the

exception of the Bitmap icon This icon allows other icons to be

overlaid on top of it so that animation can be performed

Des l gn pro grain Class CPP HPP Description

Menu elements Files

Plot ANIMPLOT Plot of amalog values

Bitmap BMA1 Picture or schematic Bitmap

Gas ANIMCONC Brownian Motion gais container

Pump ANIMPIE Pump schematic.

Pie PIE Pie chart

Square SQUARE Two colour status square

Led ANIMSQR Multi colour Light Emitting Diode.

Text DIGVALUE Value and status meter

98

—(1 ^ ri i p l o k

•aji i m v yi _ _

A n i r r r j q r _]

Pi'-’

A n i m p i ^

'[blrricj_____

“ Ar ii m p Io

"]
L .

i m p i p e

1 h'^rn i o m

~f PöF
-pTficFi
 [A m m c o n c

:

iure U ü:

V a l v e

' O l y Ì l ' : 1 0 J Ì ì I

Veil u e i /

U n s i c t ì k 1

SI -ciLtj s i '

..r

'LI

Vi .1 l u e Li

S i a t u '-X\ l e

C h e m i e a l

P a t s h a f L

Wì n d o w

S h a p e hi

M m e n u

Hi e rare hv.

W m d n w t i k

F q r i d

Des ign program Class CPP HPP Peserîption

Menu elements Files

Status

Status3D

Value

Value3D

Pot

SI ider

Button

Button3D

STATUSTX

STATUSTI

VALUETX

VALUETIL

POT

SLIDER

BUTTON

BUTTONTI

Status meter

Inset status meter

Value meter

Inset value meter

Linear Potentiometer

Linear slide potentiometer

Push button with click

Inset push button with click

Tank

Chemical

V_Pipe

H_Pipe

V_Shaft

H_Shaf t

Valve

Level

Dial

ANIMVOL

CHEMICAL

ANIMPIPE

ANIMPIPE

ROTSHAFT

ROTSHAFT

VALVE

THERMOM

DIAL

Tank of liquid, two colour

Tajik of liquid, multi colour

Vertical dual direction pipe

Horizontal dual direction pipe

Vertical dual direction shaft

Horizontal dual direction shaft

Valve

Level indicator

Analog meter

The c a d s h a p e class is the base or parent class for all the icon

type classes above The data members of the base c a d s h a p e class

represent the common data elements for all c a d s h a p e type classes

and include pointers for file names, the background save file

pointer, the coordinates for the object position, the object

multiplication factor and limits, extents information, current and

previous digital status, current and previous analog value,

counters for animation timing, c a d s h a p e type and identifier, and

conversion factors for engineering units

The c a d s h a p e class contains the virtual functions indicated below

These virtual functions have an empty definition in the base class

and most of them SLre defined in each child class

100

v i r t u a l v o i d p d r a w () { }

This method is used to draw the c a d s h a p e type icon object

v i r t u a l v o i d p a n i m a t e () { }

This method is used to animate the c a d s h a p e type icon object

v i r t u a l v o i d p e r a s e i) { }

This method is used to erase the c a d s h a p e type icon object

v i r t u a l v o i d p e x t e n t j p g e n O { }

This method is used to generate a set of simulation extents based

on some proposed new screen position for a c a d s h a p e type icon

object

v i r t u a l v o i d p e x t e n t _ p d r a w () { }

This method draws the extent box of a c a d s h a p e type icon object as

a dashed box

v i r t u a l v o i d p e x t e n t _ p e r a s e () { }

This method erases the dashed extent box of a c a d s h a p e type icon

object

v i r t u a l v o i d a n a l o g _ p i n p u t () { }

This method allows the user input analog information to a c a d s h a p e

type icon object

v i r t u a l v o i d d i g i t a l _ p i n p u t () { }

This method allows the user input digital information to a c a d s h a p e

type icon object

v i r t u a l ~ c a d s h a p e () { }

The class destructor If, as in this project, a new derived class

object is created and assigned to a base class pointer, then a

virtual base class destructor must be defined. In this case the

following type of class construction is often used, s q u a r e being a

derived class from the base class c a d s h a p e

c a d s h a p e * c s h a p e = n e w s q u a r e () ;

101

I

The arguments for the s q u a r e class constructor are left out for

simplicity When n e w s q u a r e () is performed it is impossible to be

allocating anything but a s q u a r e object Once the address of this

object has been placed in c s h a p e , that information has been lost

and c s h a p e might be pointing at a c a d s h a p e object or an object of

any class derived from the c a d s h a p e object Subsequently the

statement d e l e t e c s h a p e will cause a problem because the actual

type of the obj'ect addressed by c s h a p e will have been lost, and the

result will be an attempt to delete a c a d s h a p e object unless class

c a d s h a p e has a virtual destructor [K0EN90]

The non virtual member functions of the c a d s h a p e class, which are

derived by all c a d s h a p e child classes are detailed below

c a d s h a p e () { }

An empty constructor Each child class has its own constructor

v o i d ld m o d (i n t n e w _ i d) {

/ /

}

This method allows the c a d s h a p e type object identifier to be

modified

m t i d m q () {

/ . . /

)

This method returns a c a d s h a p e type object’s identifier

u n s i g n e d * g e t c o o r d s () {

/ /

}

This method returns the current coordinates of a c a d s h a p e type

object

void p e x t e n t _ s e t (m t e x t e n t _ o n o f f) {

/ /

}

102

This method allows the s t a t u s _ e x t n flag to be set or reset This

flag is used to determine whether extents are to be checked or not

for a c a d s h a p e type object Relinquishing extent testing for an

object allows overlapping to occur

int p e x t e n t _ v i e w () {

/ /

}

This method returns the status of the s t a t u s _ e x t n flag of a

c a d s h a p e type object

m t p e x t e n t _ t e s t (f l o a t * e x t n _ s i m _ p t r) {

/ /

}

This method tests whether the simulation extents, pointed to by

e x t n _ s i m _ptr, intersect or overlap with the extents of the c a d s h a p e

type object for which this method is called The method returns an

integer flag with value

0 if no intersection or overlapping has taken place,

1 if overlapping has taken place, and

2 if overlapping has taken place on an object that has

extent protection switched off

m t b o u n d a r y _ t e s t (f l o a t * e x t n _ s i m _ p t r) {

/ /

}

This method tests if the extents pointed to by extn_sim_ptr

intersect with, or are outside, the viewport f g _ d i s p l a y b o x [1 The

method returns an integer flag set to

0 if no boundary transgression has occurred, and

1 if a boundary transgression has occurred

f l o a t * p e x t e n t s e n (m t m i l _ s w i t c h , f l o a t m _ s im ,

u n s i g n e d n e w _ x _ s i m , u n s i g n e d n e w _ y _ s i m) {

/ /

i

103

This method generates a set of simulation extents, based on a

proposed new position (n e w _ x _ s i m , n e w _ y _ s i m) for a c a d s h a p e type

object, by calling p e x t e n t j p g e n () for the c a d s h a p e type object for

which this method is called The method returns a pointer to this

set of simulation extents A switch, m u l _ s w i t c h , is provided to

enable the argument m _ s i m to be utilised as an increment to the

object’s multiplication factor to be used in the calculation of the

extents Alternatively the switch can be set so that the object’s

multiplication factor is not modified This enables extent testing

to be carried out when the size, rather than the position, of an

object is being modified

m t e x p a n d p (f l o a t m) {

/ /

}

This method allows a c a d s h a p e type object to be expanded or reduced

to the limits imposed by its data members max_mul and min _m ul

respectively The data members m a x j m l and m in _ n m l are initialised

on object construction The argument m is added to the objects

current multiplication factor, and the method returns an integer

flag to indicate whether the multiplication or reduction has

reached its limits The method calls the object member function

p d r a w () to draw the expanded or reduced object

v o i d m o d u l a t e p (f l o a t r a w _ v a l u e , m t s t a t e , t i m e _ t t i m e s t a m p ,

l o n g r u n _ t i m e) {

/ /

}

This method converts the raw transducer value r a w _ v a l u e to its

engineering units equivalent by the a s s i g n m e n t

v a l u e = (r a w _ v a l u e # c o n v _ m) + c o n v _ c ,

where c o n v j n and c o n v _ c represent the conversion factors for the

object It also transfers the status of a digital transducer and

time information to the objects appropriate member data elements

The method calls the object to animate via the member function

p a n i m a t e i)

104

f l o a t a n a l o g _ i n p u t p (u n s i g n e d n e w _ x , u n s i g n e d n e w _ y) {

/ /

}

This method allows a user input an analog value to an object via

the mouse The user input is calculated by the object’s method

a n a l o g _ p i n p u t () and the coordinates (n e w _ x , n e w _ y) The float value

is returned to the calling program This method is functionally the

opposite of the animation method for digital icons It allows the

user control some piece of plant with the mouse

i n t d i g i t a l ^ i n p u t p (u n s i g n e d n e w j x , u n s i g n e d n e w _ y) {

/ . /

}

This method allows a user to input an digital value to an object

via the mouse The user input is determined by the object’s method

d i g i t a l _ p i n p u t () The digital input state is returned to the

calling program This method is functionally the opposite of the

animation method for analog icons It allows the user control some

piece of plant with the mouse

v o i d p e x t e n t m o v e p (u n s i g n e d n e w _ x , u n s i g n e d n e w _ y) {

/ . /

}

This method allows movement of the extent box of a c a d s h a p e object

v o i d m o v e p (u n s i g n e d n e w _ x , u n s i g n e d n e w _ y) {

/ /

}

This method moves the c a d s h a p e type object, for which it is

called,to the new position (n e v _ x , n e w _ y) It uses the member

function pdrawO

v o i d m o v e p r e l (u n s i g n e d n e w _ x , u n s i g n e d n e w _ y) {

/ / }

This method moves the c a d s h a p e type object, for which it is called,

to a new position which is relative to its old position by the

105

coordinates (n e w _ x , n e w _ y) It uses the member function p d r a w ()

u n s i g n e d l o n g p r a n g e (u n s i g n e d x r , u n s i g n e d y r) {

/ . /

}

This method returns a measure of the distance between the point

(x r . y r) and a c a d s h a p e type object’s position This method is used

when it is required to find the closest c a d s h a p e type object on the

screen to the mouse cursor position

The c a d s h a p e icons in general redefine the functions indicated

below in addition to their own constructor and destructor

v o i d p d r a w ()

v o i d p a m m a t e ()

v o i d p e x t e n t _ p g e n ()

v o i d p e x t e n t _ p d r a w ()

v o i d p e x t e n t _ p e r a s e ()

v o i d p e r a s e ()

Each class defines a private or protected data set The protected

set allows data inheritance to any derived class

There are exceptions to the redefinition of functions as described

above and typical examples from this set of exceptions are now

detailed The b a s i c t i l e class defines a new function, v o i d

b a s i c _ p d r a w , and an empty pera s e () function only The basic_pdraw

function draws the frame of an inset meter or switch The b u t t o n

class defines the function v o i d d i g i t a l _ p m p u t () instead of the

function p a n i m a t e () This is for digital input via the mouse and

the subsequent changes in the icon, instead of animation The

b u t t o n t i l e class defines the functions v o i d p d r a w O , v o i d

d i g i t a l j p i n p u t O and v o i d p e r a s e i) only The v a l v e class does not

define the v o i d p e x t e n t j p e v a s e function The d i g v a l u e class

redefines all the c a d s h a p e virtual functions and in addition

defines the function virtual v o i d b a s i c j p d t a w () The s t a t u s t i l e ,

v a l u e t i l e , s t a t u s t x and v a l u e t x classes only redefine the v o i d

p e r a s e O , v o i d p a n i m a t e and v o i d p e r a s e O methods The p o t class

defines the method v o i d a n a l o g _ p i n p u t () instead of the v o i d

106

p a n i m a t e () method, because an object of this class allows analog

input via the mouse and subsequent icon changes in place of

conventional animation which occurs on a plant status or value

change

In many of the cases above the classes which don’t define functions

that are defined by their parent classes rely on the use of parent

class methods and the inheritance mechanism

Other c a d s h a p e type classes include the t e m p l a t e class, which is

described below, and the b a s i c t l i e class The b a s i c t i l e class is

the base class for the v a l u e t i l e and s t a t u s t i l e classes and is

derived from the d i g v a l u e class It has the following member

functions

b a s i c t i l e () () ,

The constructor creates an instance of the class b a s i c t i l e and

generates a random file name, BT**** SAV, which is used to save the

background behind inset or tile style objects

~ b a s i c t i l e (),

The destructor calls the d i g v a l u e p e r a s e () member function and

deletes the object of class b a s i c t i l e

b a s i c _ p d r a w () ;

This method saves the background, where the inset or tile style

object will reside, to the background save file It then constructs

and draws the frame for inset type objects

The t e m p l a t e class is also a c a d s h a p e class An object of this

class allows the user access to a c a d s h a p e class object’s private

data A t e m p l a t e object can be created for any cadshape icon

object The t e m p l a t e object has a set of fields which hold and

display, within an overall box, selected data items from the

c a d s h a p e These items can be edited, thus editing the private data

associated with a c a d s h a p e This provides a means of changing

107

status textwords, engineering conversion units and icon identifiers

of objects in the mimic foreground The member functions of the

t e m p l a t e class are detailed below

t e m p l a t e (c a d s h a p e * c a d , u n s i g n e d x , u n s i g n e d y) ,

The constructor creates am instance of a t e m p l a t e class The

constructor establishes the number of fields in the t e m p l a t e object

based on the type of c a d s h a p e object, (e g DIP,DOP,AOP, or AIP)

for which the t e m p l a t e is generated The area of screen required to

display the t e m p l a t e object consisting of the various field boxes

is calculated and a random file naune, TP**** SAV, is created This

file is used to store the background behind the t e m p l a t e when the

t e m p l a t e is drawn

~ t e m p l a t e () ,

The destructor deletes the instance of the t e m p l a t e class and

explicitly erases the template, restores the background to the

screen and deletes the background storage file

v o i d v a l u e f l d (i n t vm, f l o a t c o n v) ,

This method converts the float c o n v to a null terminated string and

places the string in the t e m p l a t e field f i e l d [v m] []

v o i d v a l u e f l d _ s (m t vm, f l o a t * c o n v) ;

This method leaves the float pointer c o n v pointing to a float which

has been generated from the null terminated string in the t e m p l a t e

field f i e l d [v m] []

v o i d t e x t f l d (m t vm, m t v n , c h a r * t e x t) ,

This method transfers the null terminated string starting at

t e x t l v n] to a null terminated string starting at f i e l d [v m] [v n] .

v o i d t e x t f i e l d j s (m t vm, m t v n , c h a r * t e x t) ;

This method transfers the null terminated string starting at f i e l d

[v m] [v n] to a null terminated string starting at t e x t [v n] .

108

c h a r t e s t _ i n p u t (c a d s h a p e * c a d , m t f i d) ,

This method is used to ensure that user input type, during the edit

of a t e m p l a t e object field, matches the t e m p l a t e object type If it

does not then the user input character is replaced by an invalid

character with the result that the user must retype the character

The t e m p l a t e object field which contains the c a d s h a p e object t y p e

field is used in a switch statement with the t e m p l a t e object field

number and macros to test if ASCII and digit type characters are

used for the appropriate fields

v o i d p l o a d (c a d s h a p e * l o a d c a d) ,

This method loads the selected c a d s h a p e obj'ect’s data into the

t e m p l a t e objects fields First the c a d s h a p e object type and

identifier are converted to strings and placed in t e m p l a t e object

fields Then depending on the c a d s h a p e type the t e x t f l d O and

v a l u e f l d () member functions are used to convert the c a d s h a p e object

data into strings and place the strings in the appropriate t e m p l a t e

object fields

v o i d p s t o r e (c a d s h a p e * s t o r e c a d) ;

This method stores the data from the t e m p l a t e object fields to the

c a d s h a p e object First the c a d s h a p e identifier t e m p l a t e object

field is converted to sin integer and stored back to the c a d s h a p e

object identifier Then using t e x t f l d _ s () and v a l u e f l d _ s () member

functions the t e m p l a t e object fields are converted from strings to

the appropriate data types and stored back to the

appropriate c a d s h a p e object member data elements

v o i d p d r a w O ;

This method draws the template and its fields First the

coordinates of the box containing the t e m p l a t e object are modified

if necessary so that the t e m p l a t e resides within the viewport The

background, which occupies the area where the t e m p l a t e object is to

be drawn, is stored to the background save file The field boxes

109

for c a d s h a p e t y p e and i d e n t i f i e r are drawn The appropriate fields

are displayed for the c a d s h a p e object for which the t e m p l a t e object

is invoked Finally the e x i t field is drawn

i n t p e d i t (c a d s h a p e * s t o r e c a d , f g _ c o o r d _ t c u r r e n t _ x ,

f g _ c o o r d _ t c u r r e n t _ y) ;

This method allows the user to edit the template field contents

First the member function allows a particular field to be chosen by

mouse cursor action No editing is allowed for either the e x i t or

c a d s h a p e object t y p e fields On all other fields editing of the

field strings is allowed with the usual text input facilities

These edits are applied to the t e m p l a t e fields and could be easily

modified to be stored back directly to the c a d s h a p e object data

members On choosing the e x i t t e m p l a t e field the p e d i t () method is

exited and am integer flag returned to the calling program

v o i d p e r a s e () ,

This method causes the t e m p l a t e object to be erased from the screen

and the contents of the background save file to be restored

The w i n d o w type class objects and the w m d o w t i l e class objects,

derived from the w i n d o w type, provide for display of status or

error messages and input information in a window In addition to

the constructor and destructor the WINDOW class provides the

following methods

v o i d o p e n (u n s i g n e d l l x , u n s i g n e d l l y , u n s i g n e d u r x ,

u n s i g n e d u r y , f g _ c o l o r _ t b _ c o l o r ,

f g _ c o l o r _ t l _ c o l o r) ;

This allows a window to be opened on the screen with lower left

coordinates (l l x , l l y) , upper right coordinates (u r x . u r y) with

boundary of colour l _ c o l o r and background within the window of

colour b _ c o l o r Errors such as twisting of the window coordinates,

box area less than the size of a single character, vertices outside

the f g _ d i s p l a y b o x coordinates and excessively large windows Eire all

110

handled The background behind the window is saved to a dynamic

buffer which is allocated within this method

v o i d t e x t (c h a r * msg, f g _ c o l o r _ t t _ c o l o r) ,

This method allows a message in colour t _ c o l o r to be displayed in the

window

f g _ c o o r d _ t t e x t _ p o s i t i o n () ,

This method returns the current available text position within the

window

void e r a s e () ,

This method erases the text within the window

v o i d c l o s e () ,

This method erases the window and replaces the background that was

overwritten by the window when it was opened This method is not

the destructor The dynamic background buffer is deleted It should

be noted that no background save files are used in this class and

that a dynamic buffer is created for the purpose of saving the

background behind the window This buffer exists for the duration

that the window is open

The w m d o w t i l e class is derived from the w i n d o w class and provides

for a 3D style window

c l a s s w m d o w t i l e . p u b l i c w i n d o w f

/* */}

S h a p e l s t type objects contain a linked list of pointers to c a d s h a p e

type objects and allow pointers to be added to, or deleted from

this list Other functions or methods to search the list, move to

the next pointer and go back to the start of the list are included

The facility to draw and erase all cadshapes in a s h a p e l s t list is

also included. The s h a p e l s t class creates within itself a

s h a p e l s t _ e l class An object of this class holds a pointer to a

cadshape object and a pointer to the next s h a p e l s t _ e l class object.

The s h a p e l s t class is defined as a f r i e n d of the s h a p e l s t _ e l class

111

so that it can have access to s h a p e l s t _ e l private data Virtual

functions must have a definition in the base class S h a p e l s t class

methods include

v i r t u a l v o i d d r a w () {}

v i r t u a l v o i d e r a s e () {>

v i r t u a l v o i d m o v e (u n s i g n e d x , u n s i g n e d y) {>

v i r t u a l v o i d e x p a n d (f l o a t m) {}

s h a p e l s t () ,

The constructor resets the current and head pointers of a linked

list of s h a p e l s t _ e l objects to an ne w instance of the s h a p e l s t _ e l

class All pointers are NULL

~ s h a p e l s t () ,

The destructor frees the memory used for the linked list

v o i d i n s e r t (c a d s h a p e # s) ;

This method inserts a new s h a p e l s t _ e l into the list with a pointer

to a c a d s h a p e object

v o i d r e s e t O ,

This method resets the current s h a p e l s t _ e l pointer to the head

pointer

c a d s h a p e * head s h () ,

This method returns the c a d s h a p e pointer corresponding to the head

s h a p e l s t _ e l

c a d s h a p e * t e s t () ;

This method tests that there exists a c a d s h a p e pointer entry in the

s h a p e l s t object and returns this pointer, otherwise a NULL pointer

is returned

c a d s h a p e * n e x t O ;

This method returns the c a d s h a p e pointer corresponding to the

current s h a p e l s t _ e l object and moves the current pointer on to the

next s h a p e l s t _ e l pointer

112

c a d s h a p e * f i n d i d (m t a) ,

This method finds the c a d s h a p e pointer in the list which points to

the c a d s h a p e with identifier a and returns this pointer

v o i d r e m o v e (c a d s h a p e * s) ;

This method finds the s h a p e l s t _ e l with the cadshape pointer s ,

removes this s h a p e l s t _ e l link from the list and relinks the list

c a d s h a p e * n e a r e s t (u n s i g n e d x , u n s i g n e d y) ;

This method hunts through the list of s h a p e l s t _ e l objects to find

the s h a p e l s t _ e l object whose c a d s h a p e coordinates are closest to

coordinates (x , y) and returns the pointer to this c a d s h a p e object

The f g n d class is a s h a p e l s t type class which is derived from the

s h a p e l s t class and forms the structure to hold the mimic foreground

of icons In addition to the methods it inherits from the s h a p e l s t

class as above, it provides other methods which include

f g n d (u n s i g n e d x , u n s i g n e d y) ,

This is the constructor for am object of class f g n d

~ f g n d () ,

In addition to its role of f g n d destructor the destructor causes

each c a d s h a p e object to be removed from the foreground and

subsequently deleted

v o i d d r a w (u n s i g n e d x , u n s i g n e d y) ;

This method invokes the c a d s h a p e - : p d r a w () function of each c a d s h a p e

object pointed to, via the linked list entries of the f g n d object

As detailed in sections 4 3 and 5 3, precedence is given for

objects which allow other objects to be overlaid on top of them.

v o i d e r a s e O ,

This method invokes the c a d s h a p e - : p e r a s e () function of each

c a d s h a p e object pointed to, via the linked list entries of the f g n d

113

object As detailed in sections 4 3 and 5 3, precedence is given

for objects which allow other objects to be overlaid on top of

them

v o i d move (u n s i g n e d x , u n s i g n e d y) ,

This method is designated for future use where the coordinates

(x , y) may be used to shift the coordinates of each object in the

FGND object and hence move the entire foreground At present it

simply redraws the foreground and does not effect the positions of

the c a d s h a p e objects within the foreground

v o i d e x p a n d (f l o a t m) ,

This method expands all objects in the foreground f g n d object by

calling c a d s h a p e e x p a n d p (w x i l) , for each object, with increasing

values for mul

v o i d m o d u l a t e (i n t i d , f l o a t p e r c e n t , u n s i g n e d s t a t e ,

t i m e _ t t i m e s t a m p , l o n g r u n _ t i m e) ;

This causes the c a d s h a p e m o d u l a t e O , method to be called for each

cadshape in the foreground, effectively animating the foreground

with the given arguments

i n t e x t e n t s _ t e s t (f l o a t # e x t e n t s _ s i m _ p t r ,

c a d s h a p e * m o v i n g _ s h a p e) ;

This method tests if the extents associated with a proposed new

position of the c a d s h a p e object m o v m g _ s h a p e intersect or overlap

on the extents of any other object in the foreground which has

extent protection switched on If this object overlaps with an

object that has extents testing switched off (an overlapping type)

and is itself an overlapping type, then an extents violation is

flagged by the returned integer value A violation is also flagged

if it overlaps with any object that has extent testing switched on

u n s i g n e d l o n g r a n g e (u n s i g n e d x , u n s i g n e d y) ;

This method, intended for future use, returns a measure of the

distance from the point (x , y) to the foreground objects root point,

(x _ c e n t e r , y _ c e n t e r) . This could be utilised, if several foregrounds

114

were scaled and placed on the screen simultaneously, to find the

nearest foreground to a mouse cursor position m order to select a

particular foreground for further processing

The rnsmenu class provides for the construction, destruction,

drawing and erasing of a menu It also saves the background behind

it when it is drawn, maintaining the background integrity, and

allows selection of a menu item via the mouse and the Microsoft

mouse routines included by virtue of the include file MSMOUSE H

There are also methods to convert from the Microsoft mouse

coordinate system to that used by the Flesh Graphics system, to

change mouse cursor styles, and to interpret mouse button commands

There is also a boundary check method to ensure that the entire

menu is always within view on the screen

msmenu (s t r u c t m e n u _ s * m p) ,

The constructor creates a menu based on the s t r u c t m e n u _ s . This

structure gives the menu text and an i t e m j n u m b e r f o r each text item

in a menu There sire some m e n u _ s structures defined at the start of

the program DESIGN CPP The pixel size of the menu is calculated

and a dynamic buffer, used to save the background behind the menu,

is allocated Finally the mouse initialisation routine is called

~ m s m e n u () ,

The destructor explicitly deletes all dynamic buffers allocated by

the msmenu constructor and terminates the mouse

v o i d , drawmenu (i n t x , int y) ,

This is a private method of the msmenu class and is called by the

member function g e t _ s e l e c t i o n (u n s i g n e d x , u n s i g n e d y) . It outputs

each of the menu element names to the screen

m t g e t _ s e l e c t i o n (u n s i g n e d x , u n s i g n e d y) ;

This method ensures that the menu will reside within the viewport

f g _ d i s p l a y b o x [] , saves the background behind the menu to a dynamic

115

buffer and draws the menu via the member d r a w m e r u O The mouse

cursor is changed and a menu element can then be chosen via the

mouse The mouse cursor style is reset, the screen behind the menu

is restored and the item number of the menu element is returned to

the calling program

v o i d t r a n s l a t e _ c o o r d s (u n s i g n e d * x , u n s i g n e d * y) ;

This method translates the mouse coordinates to Flash Graphics

coordinates The mouse coordinate system sees the lowest y

coordinate at the top of the screen, while the Flash Graphics

system sees the highest y coordinate at the top of the screen

void b o u n d a r y _ c h e c k (u n s i g n e d * x , u n s i g n e d * y int t y p e) ,

This method is called by the g e t _ s e l e c t i o n method to ensure that

the menu, regardless of where it is called to be drawn on the

screen, always remains viewable on the screen in its totality The

constants BUFFER_INNER and BUFFER_OUTER can be used to set the

closeness of the menu to the extents of the viewport

f g _ d i s p l a y b o x []

v o i d d e f a u l t _ c u r s o r () ,

v o i d m e n u _ c u r s o r () ,

v o i d c r o s s _ c u r s o r (),

These methods are used to select a particular cursor style for the

mouse Static integer arrays are defined in MSMENU CPP, and are

used within these methods with the Microsoft mouse method

m s m _ s e t g r a p h c u r (i n t h o t _ s p o t _ x , m t h o t _ s p o t _ y , m t * s t y l e _ a r r a y)

v o i d w a i t _ l e f t _ p r e s s e d (u n s i g n e d * x , u n s i g n e d # y) ,

v o i d v a i t _ r i g h t _ p r e s s e d (u n s i g n e d * x , u n s i g n e d * y) ;

v o i d w a i t _ l e f t _ r e l e a s e d (u n s i g n e d * x , u n s i g n e d * y) ;

v o i d w a i t _ r i g h t _ r e l e a s e d (u n s i g n e d * x , u n s i g n e d * y) ;

These methods use the Microsoft mouse method, m s m _ g e t s t a t u s (),

within a while loop to wait for mouse button actions

116

5 2 The C la s s H ie ra rc h y

The set of classes designed and used in this project may be divided

up into four categories based on their parent base class The first

and largest category is made up of the c a d s h a p e type classes The

second category is the w i n d o w type class category The third

category is made up of the s h a p e l s t type classes, and the final

category consists of the msmenu class

As shown m the class hierarchy diagram of Figure 5 1 the msmenu

class has no child classes, the w i n d o w and s h a p e l s t classes both

have a single inheritor, whereas the c a d s h a p e base class is the

parent for many child classes, some of which have their own child

classes and some of which act as parent bases for more than one

child class

An example of an inheritance tree in the c a d s h a p e type category is

the d i g v a l u e class The method inheritance structure of this tree

is shown m figure 5 2 The digvalue class inherits member

functions and data from the c a d s h a p e class, but is also a parent

class for the v a l u e t x , s t a t u s t x and b a s i c t i classes B a s i c t i is in

turn the parent base class for the v a l u e t i l e and s t a t u s t i l e

classes The d i g v a l u e class hats its own definition of the following

virtual functions, which are defined as empty functions in the

c a d s h a p e class The arguments are omitted

v i r t u a l v o i d p d r a w O ,

v i r t u a l v o i d p a n i m a t e O ;

v i r t u a l v o i d p e x t e n t s e n ().

v i r t u a l v o i d p e x t e n t j p d r a w O ,

v i r t u a l v o i d p e x t e n t _ p e r a s e () ;

Additionally the d i g v a l u e class defines the member function.

v i r t u a l v o i d b a s i c _ p d r a w () ;

The classes v a l u e t x and s t a t u s t x only redefine virtually the member

functions p d r a w O and p a n i m a t e () These p d r a w O functions call the

117

class cadshape
public: / / Enpty virtual def

virtual cadshaped ‘)

virtual void p-irawf 1 <}

virtual void pamnate!) 0

virtual void parased 0

virtual void pextent.pgend J)

virtual i'Old patent.pratf! i >

" l r ’ ual void pe/*ent.p9rajai) •'}

virtual void jnalog.pinputfl <>

virtual «■old digital.pinputf) J)

cadshapsU / / inpty constructor

/ / M insd functions
void idnodf...) { / * . . . * / i

void idmq(...J { / * . . ,V>

ursiy'«d * gitcocrdsU </* .•»/>

void pextent_set(...J </*...♦/>

int pextant.uiewO < / * . . . * / >

int pextent_test(...J </•*...*/>

int boundary, test (. . .) </•*.. */>

float* pextent_gen(.)< / * . . * />

int expandp(float n) < / * . . . * / }

void nodulatet.,..)

float analog jn p u tp l...) </*...*/>

int d ig ita l.inpu tp (...j { /* .,.* />

void pextent_novep(...) {/* .,.* />

void novepl...) </*...•*/>

void nov«prel (. . .) </+,,.♦/>

unsigned long prangel...) V)

class digvalue:
public cadshape

. class valuetx:
public digvalue

pubuc:

virtual void basic_pdrawi) V t. .,*■/>

v i r t ^ l void pdrawH

Virasi nd panniate!) '/+...*/>

virtual voia pevtent_pgenf' ■"*...*/>

virtual void Pe/tent.pdra«l) < /*...*/>

virtual void paytentjjorasan V *...* />

digvalue i) : () {/♦...+/)■

vo12 perase U

digvalue () J/ * , , . * / }

puslic:

“oid para«!) ■(/*,,.+/>

void panniate') </+..•+/>■

va lu « tv i.,.): l,,.)

class statustx
public digvalue

p jb lit:

vow ptfawt T//

void panwatef) V * . . .*/>

status*.^,.

“ »3tU3t/ii </*...*/>

class basictile:
public digvalue

class valuetile:
public basictile

public:

void basic.pdraul) </♦...*/>

b a s i c t i l e u . .) { / *, . . * />

“basictileO < / * , . , * / >

public:

void pdrawO </* .,,+/>
void pamnate!) </*...*/>
valutila'.
‘ yaluetileiJ { / * . . . * / t

class statustile'
public basictile

public:

void p^aui) </+...+/>
void panipiateiJ </+...*/>
s t a t u s t i l a ! H / * . . . */>
■statusulel) < /*...*/>

Figure 5.2 Method Inheritance.

function b a s i c j p d r a w O , and as this is not redefined for this class

the function which is called is d i g v a l u e . b a s i c _ p d r a w () The data

member inheritance from the d i g v a l u e class p r o t e c t e d data section

is so strong that no new variables are defined in the v a l u e t x and

s t a t u s t x classes, and the inherited data members are initialised in

the respective constructors The b a s i c _ p d r a w () function draws on

the screen a framework for the presentation of values or digital

status of a transducer There are two frameworks, the d i g v a l u e box

type and the b a s i c t i l e 3D type, which are drawn on the screen by

their respective b a s i c _ p d r a w () functions The class b a s i c t i l e ,

derived from the d i g v a l u e class, redefines the virtual function

b a s i c _ p d r a w () This class does not define any new data members for

itself The v a l u e t i l e and s t a t u s t i l e classes derived from the

b a s i c t i l e class, inheriting all the class members and functions

before them, do not define any new data members but do redefine the

p d r a w () and p a n i m a t e () virtual functions They also use the

b a s i c _ p d r a w () function, in which case the function called is

b a s i c t i l e b a s i c _ p d r a w ()

There are child classes of the c a d s h a p e class that do not have

child classes themselves These are the t e m p l a t e , a n i m s q r , a n i m p i e ,

bma, a n i m p l o t , th e rm o m , p o t , and s l i d e r classes All of these

classes, with the exception of the t e m p l a t e class, define the

functions listed below There is a heavy dependence on data member

inheritance from the c a d s h a p e class

p d r a w ()

p a m m a t e ()

p e x t e n t _ g e n ()

p e x t e n t _ d r a w ()

p e x t e n t _ e r a s e ()

p e r a s e i)

However the p o t and s l i d e r classes also define the function v o i d

a n a l o g j p i n p u t () and, like the bma class, define the p a m m a t e O as

an empty function The t e m p l a t e class redefines the virtual

functions p d r a w () and p e r a s e O and defines some functions of its

own. It also uses inherited data members from the c a d s h a p e class

119

The s q u a r e class inheritance tree is the second largest inheritance

structure in the project The s q u a r e class inherits data and

function members from the c a d s h a p e class The v a l v e and b u t t o n

classes in turn inherit data and functions from the s q u a r e class

Finally the bu t t o n t i l e class inherits data and function members

from the b u t t o n class The valve class has its own data members and

inherits data members from the s q u a r e class However it redefines

all c a d s h a p e virtual functions apart from the function v o i d

p e x t e n t j p e r a s e O which it inherits from the s q u a r e class The

b u t t o n class also inherits this function from the s q u a r e class and

defines, for the first time in this inheritance string, the virtual

function v o i d d i g i t a l _ p m p u t () B u t t o n ’ s own data members, as for

many of the classes in the project, are defined m a p r o t e c t e d

section so that they may be available to any classes derived from

this class m the future The bu t t o n t i l e class inherits data and

function members from the b u t t o n class It defines its own private

data and only redefines the p d r a w () , d i g i t a l j p m p u t O and p e r a s e O

virtual member functions This is because the only differences

between the b u t t o n and b u t t o n t i l e class objects are the look of the

object and the effect on the object when the user, via the mouse,

enters a digital input The b u t t o n t i l e class is strongly dependent

on inherited data members

The w i n d o w category has one child class, the w i n d o w t i l e class The

w i n d o w class has the functions detailed below The arguments are

omitted

v o i d o p e n ()

v o i d t e x t O

v o i d e r a s e ()

v o i d c l o s e ()

The windowtile class inherits data and function members eras e () and

t e x t () from the w i n d o w class These classes facilitate the input

and output of messages to the screen The screen style of the

framework surrounding the text is different and so the only derived

functions are those relating to outputting and erasing of the

actual text

120

The s h a p e l s t class has one child class, the f g n d class As

described in section 5 1 the s h a p e l s t class defines a linked list

of c a d s h a p e type classes, with linked list processing functions

The f g n d class inherits the linked list structures from the

s h a p e l s t class and defines functions to allow the c a d s h a p e objects

pointed to by the linked list entries to be draw on the screen,

erased, moved, expanded, reduced and animated as a set of objects

The foreground class f g n d with its s h a p e l s t inheritance allows a

foreground of dynamic icons to be generated and manipulated m

terms of screen functions via the f g n d functions and in terms of a

linked list via the s h a p e l s t functions The f g n d class defines some

of its own data members as well as inheriting data members from the

s h a p e l s t class

121

5 3 The Design Program .

The DESIGN EXE program allows a search for all background image or

schematic libraries and the subsequent selection of a library and

image, or schematic, from that library as a background for a Mimic

The program then allows chosen icons to be constructed, as objects

on the heap, forming the mimic foreground Icons can be drawn,

erased, moved, expanded or reduced Icons can be moved by extent

movement or by moving the icon m its entirety Expansion or

reduction of an icon is bounded by a minimum and maximum size The

chosen set of icons can be erased and redrawn on mass When the

foreground is chosen the active icons can be animated, thus

animating the mimic The program uses a mouse for selection of menu

options and the keyboard for text input via windows

The program includes various header files for function

declarations These include Flash Graphics, BIOS, DOS, and mouse

functions, which are linked into the application via the libraries

The f g n d , w i n d o w , t e m p l a t e and w i n d o w t i l e object header files are

also included External menu structs and enumerations are defined

Menu and foreground constructors are called generating external

objects

The m a i n (a r g c , a r g v) function is called followed by various data

declarations, definitions and function declarations Menu

constructors are called for menus used within the scope of m a m ()

The graphics mode is initialised by a call to the routine

f g _ i n i t _ p a l e t t e () The program FGINIPAL CPP was written to provide

for palette manipulation and offers routines to initialise the

palette for various resolutions and colour assignments The palette

decided upon for this application has eight shades of gray with

eight colours Essentially the grays are used for the background

and the colours for the icon foreground The f g _ i m t _ p a l e t t e ()

routine initialises this graphics mode and sets the resolution

at the standard VGA specification of 640x480 pixels

122

The boundaries for mouse cursor movement are then set for the

application to within the screen coordinates, as defined by Flash

Graphics f g _ d i s p l a y b o x coordinates

A message window is opened by constructing a window object, and by

invoking one of its methods with a suitable argument, and an

introductory windowed message is output to the screen as shown m

figure 5 3 This message includes the version number of the

program After a suitable length of time the message is erased and

the window is closed

The background ZPI file is chosen from a selected library ZIP

file and subsequently displayed by either specifying these files on

the command line on calling DESIGN, which in turn calls and passes

its arguments to BDISPLAY, or within the DESIGN program via the

routine SELECTBG and its menus as described in section 4 1 The ZIP

and ZPI menus are shown in figure 5 4 The WINDOWTILE objects used

for entry of the required library ZIP file and background ZPI

file are shown in figure 5 3

The program now enters its main processing loop with a menu

presented on the screen This menu is called the function menu,

shown in figure 5 4, and its options are

New I c o n A Construct and draw a new icon

New I c o n B It I ! t l It M

New I c o n C tt t l II II II

New I c o n D It II II II II

Move Move entire selected icon

E_Move Move selected icon by moving its extents

S i z e Expand or reduce a selected icons size

D e l e t e Erase and free memory used by selected icon

W i p e Erase and free memory used by all icons

C l e a r Erase all icons

Sh ow Draw all erased icons

I n f o Display and edit of data for selected icon

A n i m a t e Animate all active icons

A _ I n p u t Allow analog input on selected AOP icon.

123

Cotrt fo I

Program Introductory Message

ì 71« ; «iB . z i d: 1
1

1latae
I| B « Îf ; ;2 p i ^:ÿUBphOUS.Zpi
BS b b b S5b5 S mmmbbwwwwì mibimmmwbmbmwbì8wikwiwwbwww

Text I/O Windowtile objects

Figure 5.3 Window and Windowtile

Objects.

Zip M e n u .

Zp i M e n u .

Ma in Menu.

ure 5.4 Menus.

ü̂ri-nTpi
ÏIBTB:
¡pe

ajiiput
Dos

A j ü i p

D _ I n p u t Allow digital input on selected DOP icon

Dos End application and return to DOS

On selecting New I c o n A, B, C o r D the corresponding m e n u g n s * ()

function is called which displays one of the icon menus shown in

figure 5 5 The MENUGNS* CPP program includes the header file

MENUGNS* HPP which itself includes the header files for the icons

which can be selected within this routine, the foreground class

header and the header files for the window style classes There are

also various data and functions declarations within MENUGNS* HPP

As an example of this set of routines the m e n u g n s 4 () routine will

be expounded upon The routine first sets up data for the icon

which will be selected This includes for example a default

r a w _ v a l u . e for a transducer analog input and default onoff status

for a digital transducer or some status associated with limits

processing for an analog transducer input This achieved, a menu is

presented to the user In this case the menu has the following

opt ions

P l o t Select a PLOT icon

B i t m a p Select a BITMAP icon

G a s Select a GAS icon

Func Menu Return to DESIGN function menu

On selection of any one of the icons, the constructor is called and

an object is generated via the new operator on the heap For

example on selection of the P l o t option

c a d s h a p e # s ; //Declared in MENUGNS# HPP

s = n e w a n i m p l o t (x , y , i d , m u l , r a w _ v a l u e , o n o f f , , , e x t e n t _ o n o f f) ,

Then a function from MENUGNFU CPP is called

c a d s h a p e _ i n s e r t (u n s i g n e d x , u n s i g n e d y , c a d s h a p e # s , m t s e n e s) {

f o r e g r o u n d i n s e r t (s) ,

p l a c e (x , y , s , s e r i e s) ,

i d = i d _ i n p u t () ,

s - > i d m o d (i d) ;

}

126

■

w tllB I
JFgncJgitoJ

....... .

Figure 5.5 Icon Menus

The routines p l a c e () a n d i d _ m p u t () are also defined in

MENUGNFU CPP In c a d s h a p e _ i n s e r t () the icon is inserted into the

foreground object a s a pointer linked list entry, the icon is

autoplaced on the screen and the icon is given a user specified

identifier The auto placement of the new icon so that the extents

of any other object on the screen or the boundary areas are not

overlapped is discussed in section 4 3 The function i d _ m p u t ()

allows user input via the keyboard of an integer value s 65535 for

the icon identifier The input is effected via a w i n d o w t i l e obj'ect

as shown m figure 5 6

On exit from the c a d s h a p e _ i n s e r t () function the application returns

to the m e n u g n s 4 () function and the options to either select an icon

or return to the function menu of DESIGN are presented On choosing

the Func Menu option the routine is terminated and returns to the

DESIGN program function menu loop

On selecting the Move option of the function menu in DESIGN CPP, if

there exist icons m the foreground as tested by f g n d . t e s t O , the

mouse is used to select a particular icon via f g n d • n e a r e s t () and

mouse button press detection routines An extents test is carried

out so that icons allowing overlapping to occur on themselves by

other icons conform to ordered movement of these overlapping icons

and themselves, as seen in the section 4 3 which deals with

extents Provided this test is passed, the icon is moved by

successive calls to the functions c a d s h a p e : : p d r a w () ,

c a d s h a p e _ m o v e p () and c a d s h a p e _ p e r a s e () Mouse coordinate

msm g e t s t a t u s O and coordinate translation m o u se t r a n s l a t e O

functions are used to move the icon about the screen Throughout

the icon movement extent testing is carried out sis detailed in the

extents section The effect of this option is to drag, using the

mouse, an icon across the screen When extent overlapping occurs

movement of the icon is suspended till the mouse is at a position

at which the extents of the selected moving object clears the

stationary icon The exception is stationary objects that allow

overlapping In this case an object can be moved over and placed on

top of the stationary object

128

fe:

Figure 5.6

The E J i o v e option m the function menu is similar to the Move

option except that in this case c a d s h a p e p e x t e n t _ p d r a w () ,

c a d s h a p e . p e x t e n t _ m o v e p () , and c a d s h a p e p e x t e n t _ p e r a s e () are used

instead of c a d s h a p e p d r a w () , c a d s h a p e m o v e p () and

c a d s h a p e p e r a s e i) This results in the extents rectangle being

dragged across the screen by the mouse instead of the entire icon

The second difference between this option and the Move option is

that this option provides a window on the lower left corner of the

screen which gives the overlap status The extents move technique

used in this option means that the icon need only be redrawn when

the destination site is decided upon, unlike the Move option where

the icon is continually being redrawn When an icon is drawn on the

screen then the bitmap of the background behind the icon is stored

in a dynamic buffer in order to preserve the background If the

buffer is kept active for the life of the object then when an erase

or delete of the object is required, the object is first erased

leaving a hole or black rectangle m the background, the object

background buffer which has the saved bitmap is redrawn on the

screen, thus the background is reconstituted When the object is

being moved a new bitmap is saved in the background save buffer and

then the icon is drawn over this area Keeping the background

dynamic buffers open for the life of the icon and for all icons

represents quite a strain on heap memory, which will in fact

eventually run out and thus limit the number of icons that can be

active at the one time This problem was overcome by the use of

background SAV files as seen in section 4 2 When the bitmap is

saved to the dynamic background buffer it is transferred to the

object background file and the dynamic buffer is deleted This

reduces the requirements for heap memory dramatically but limits

the speed of redraw for an icon due to disc access characteristics

This is overcome to a very large extent by using a Virtual or RAM

Disc for the SAV files which eliminated the disc access delays

The speed of dragging an icon in the Move option is to some extent

slower than the extent drag in the E J i o v e option.

The W i p e option in the function menu first calls the f g n d : : e r a s e ()

method which erases all icons in the f o r e g r o u n d instance of the

130

FGND class The order of erasing is such that all objects which are

overlapping on top of other objects are erased first and then the

objects which were underneath are erased

// Precedence for extent overlap types

r e s e t O , / / Start at top of list

w h i l e ((c a d s h = n e x t O) >- 0) {

i f (c a d s h - > p e x t e n t _ v i e w ()) c a d s h - >p e r a s e () ,

}

r e s e t () ,

w h i l e ((c a d s h = n e x t O) >= 0) {

i f (• c a d s h - >p e x t e n t _ v i e w ()) c a d s h - > p e r a s e () ;

}

Then, while there are still icon pointers in the f o r e g r o u n d object,

each icon entry is removed and the memory initially provided by the

new operator when the icon was constructed, is freed

w h i l e ((c l = f o r e g r o u n d t e s t ()) ! = (c a d s h a p e *) 0.) (

f o r e g r o u n d r e m o v e (c l) ,

f r e e (c l) ,

}

It is interesting to note that the f r e e operator was used and that

the d e l e t e operator was not This is because the d e l e t e operator

calls the object destructor explicitly, whereas f r e e does not but

still frees up the heap used by the object when it was allocated

using the ne w operator Because each destructor contains a call to

the p e r a s e O function for the particular object, and some objects

are first level and second level derived, then explicitly invoking

the destructor for an object will call the p e r a s e O not only for

the object in question, which has already been erased, but for all

its parents in line back to the base object from which they were

derived. This clearly is not required as the destructor will be

called on scope resolution anyway and memory can be freed at this

stage by a simple call to f r e e O

131

The C l e a r option tests if the foreground is clear and if not simply

calls a f g n d e r a s e O for the f o r e g r o u n d instance of the f g n d class

and sets a flag to indicate that the foreground is now clear

The Show option tests for a clear foreground and if clear draws all

icons on the screen

i f (1c l e a r) {

f o r e g r o u n d . d r a w (x , y) ;

c l e a r = 1, }

The the f g n d d r a w O method draws objects which allow overlapping

of other objects over themselves first and then draws the other

objects Extracts from this method show how this is achieved

r e s e t () ,

w h i l e ((c a d s h = n e x t ()) r= 0) {

i f (' c a d s h - > p e x t e n t _ v i e w ()) c a d s h - > p d r a w () , }

r e s e t () ,

w h i l e ((c a d s h = n e x t ()) f = 0) {

i f (c a d s h - > p e x t e n t _ v i e w ()) c a d s h - > p d r a w () ; }

The d e l e t e option of the function menu first tests to ensure there

are icons in the foreground which can be deleted, using the method

f g n d ■t e s t () If icons exist the mouse cursor is set to a cross and

can be used to select a particular icon

m o u s e c r o s s _ c u r s o r () ,

m o u s e w a i t _ l e f t _ p r e s s e d (8 > x , & y) ,

m o u s e t r a n s l a t e _ c o o r d s (& x , & y) ,

c a d s h a p e # rm = f o r e g r o u n d n e a r e s t (x , y) ,

The particular icon pointer is removed from the foreground list

and is erased Memory allocated by the ne w operator is subsequently

freed for further use using the free operator

f o r e g r o u n d r e m o v e (r m) ;

r m - > p e r a s e () ;

f r e e (r m) ,

132

The discussion for using the d e l e t e and free operators is as seen

above for the w i p e option The mouse cursor is set back to the

pointer style

m o u s e d e f a u l t _ c u r s o r () ,

The A _ I n p u t option of the function menu allows a particular icon,

given that there are icons in the foreground, to be chosen The

method c a d s h a p e a n a l o g _ m p u t p () is applied for the duration that

one of the mouse buttons is pressed The effect of this method on

the icon depends on the particular method implementation For

example the method s l i d e r a n a l o g _ m p u t p () allows the user position

the slide bar of a slide potentiometer The mouse cursor must be

within a certain distance of the slide bar for mouse movement to

have any effect on its position The overall effect is that the

mouse is used to push up or pull down the slide bar causing the

input to the icon of an analog value proportional to the position

of the slide bar A similar arrangement is used in the method

p o t a n a l o g _ m p u t p () However in this case the knob of a normal

circular potentiometer is mimicked

The D _ I n p u t option of the function menu allows a particular icon,

given that there are in fact icons in the foreground, to be chosen

The method c a d s h a p e d i g i t a l _ i n p u t p () is applied for the duration

that one of the mouse buttons is pressed After each call to this

method a timer is invoked so that the user cam toggle continuously

between states for a digital output type icon The effect that

d i g i t a l _ m p u t p () has on the icon depends on its implementation For

example when this option is invoked for a button object the effect

is that when the mouse is activated on or near the icon then the

status of the button toggles This status change is indicated by a

text change and the button appears to have been pressed in or

released While the mouse is activated on the icon, the status

changes and the button pops in and out continuously

The S i z e option of the function menu allows a particular icon to be

chosen from the foreground, given that icons exist in the

133

foreground The chosen icon is expanded or reduced by the use of

the c a d s h a p e ■ e x p a n d p O method Extents checking for overlap with

other objects or the screen boundary are tested for, as in the

E J i o v e option The resizing of an icon will not take place if it

will result in an extents or boundary infringement The extents

status is shown in a window at the lower left corner of the screen

The method i n t e x p a n d p O returns an integer flagging whether or not

expansion or reduction has reached its limiting values The

limiting values are declared in CADSHAPE HPP, inherited by all the

icons and initialised in their respective constructors No further

resizing is carried out on the object if the limits are reached

unless there is a change in the status of the mouse buttons to

cause resizing in the opposite direction If one of the mouse

buttons is pressed then, depending on the button, the icon is

either expanded or reduced in size If one button is pressed, say

expanding the icon, then holding this button down while the other

is pressed causes the expansion to continue but at a much slower

rate The same type of operation occurs for reduction of the icon

The A n i m a t e option of the function menu causes the p a n i m a t e O

method for each icon in the foreground to be called The animation

effect in each icon depends on the implementation of the method for

the icon as discussed in section 4 5 The animation is carried out

by a call to the method f g n d . m o d u l a t e O

v o i d f g n d . m o d u l a t e (i n t i d , f l o a t p e r c e n t , u n s i g n e d s t a t e ,

t i m e _ t t i m e j s t a m p , l o n g run _ t i m e) {

/ * * /

v a l u e = p e r c e n t ,

s t a t u s = s t a t e ;

t 1 m e s t a m p = t l m e _ s t a m p ;

r u n _ t i m e = r u n t i m e ,

r e s e t () ;

w h i l e ((c a d s h = n e x t ()) ! = 0) {

c a d s h - > m o d u l a t e p (v a l u e , s t a t u s , t i m e s t a m p ,

r u n t i m e) ; } }

134

The full set of icons are animated a predefined number of times

with a set of simulation analog, digital and time data Before an

animation of the full set of icons (an animation cycle) in the

foreground takes place, the time is acquired via the BIOS function

_ b i o s _ t i m e o f d a y i) Thus the time taken for one cycle is calculated

If this time is greater than or equal to a predefined constant,

known as the real-time barrier, then the message ' s y s t e m t o o s l o w ’

is indicated via a window at the lower left corner of the screen

If the time taken is less than the real-time barrier then the

message ’ s y s t e m w a i t ’ is indicated in this window and the program

loops until the real-time barrier period has elapsed The real-time

barrier in this case is 5 clock ticks, which approximates 275mSec

The screen must update itself within some reasonable time with

respect to the time constant of the system under supervision as

seen in section 4 4 When the total number of animation cycles has

finished, or the animation run is aborted by clicking one of the

mouse buttons, the program takes the number of times the animation

was not fast enough (number of ’ s y s t e m t o o s l o w ’ occurrences)

divides by the appropriate total number of animation cycles and

thus forms a percentage of effectiveness of the screen update for

the particular set of icons and real-time barrier chosen

The I n f o option of the function menu allows a particular icon to be

chosen from the foreground, if icons exist in the foreground This

option requires that a particular icon which has been chosen must

be acknowledged by changing the mouse button status if I n f o

operations are to be carried out on it Prior to acknowledgement

the icon is repeatedly erased and redrawn This acknowledgement

system ensures that the correct icon is chosen for I n f o operations

An instance of the t e m p l a t e class, a direct inheritor of the

c a d s h a p e class, is then created, which holds particular data for

the type of object which has been chosen

c a d s h a p e * i n f o e t s = f o r e g r o u n d . n e a r e s t (x , y) ;

/ * * /

t e m p l a t e t e m p l a t e l (i n f o e t s , x , y) ;

135

The template with the information is then displayed via the

INFORMATION HPP function i n f o _ d i s p l a y ()

i n f o _ d i s p l a y (t e m p l a t e _ p t r , i n f o e t s , x , y) ,

This function calls the t e m p l a t e p l o a d i) and t e m p l a t e : p d r a v O

methods The p l o a d O method converts particular icon data into

ASCII strings and loads it into its own field arrays for subsequent

screen output It can access c a d s h a p e base class protected data

inherited by icons because the t e m p l a t e class is a f r i e n d of the

c a d s h a p e class

Any one of the windows within the template can then be chosen via

the i n f o _ e d i t () method This function in turn calls the

t e m p l a t e p e d i t O method The number of windows in the template

depends on the icon type Regardless of the icon type three windows

are always implemented, the icon identifier, the icon type number

and the exit window A window is selected by placing the cursor on

the window and clicking a mouse button Figure 5 7 shows t e m p l a t e

objects being used to change the status textword corresponding to

the off condition for a s t a t u s t l i e object, and the cadshape

identifier for a v a l u e t i l e object

The icon type field cannot be edited and the user is returned to

select some other field if an edit is attempted By editing the

icon identifier field the identifier, given to the icon when it was

chosen from the list of icons, can be changed The number of

windows or fields in a template for a particular icon type is

established in TEMPLATE HPP, a s is the size of windows and the

resulting template size The processing of these fields is carried

out by the t e m p l a t e class methods in TEMPLATE.CPP The number of

fields in a template for any icon class and the processing of these

fields is fully expandable If a digital input or output type is

chosen then its status ’0’ and ’ 1’ texts can be edited If an

analog input type is chosen, then its conversion factors can be

changed For an analog input the conversion factors are used to

convert the raw data from the transducer to engineering units,

136

Figure 5 . 7 Temp1a te O b j e c t s .

whereas for an analog output type the conversion factors convert
the user input, via the A_Input option, to a raw value to be fed
out to some actuator The pedit() method ensures that only the
correct data type is accepted for particular fields For example
only digits are allowed when editing the identifier field, but all
alphanumencs are allowed when editing digital status fields

Selecting the exit window causes the template-.pstore() and the
template perase() method to be called, the edit loop to terminate
and the Info option to end

The pstore() method takes the template fields, converts the ASCII
strings to the correct data type for the icon members where
necessary, and stores the data back to the icon The member
function and call to convert a particular template array member to
a float for storage back to the storecad icon with data member
conv_m looks like

valuefld_s (m, &(storecad->conv_m)),
void template .valuefld_s (int vm,float* conv),

#conv=(float)atof(&(field[vm][0])), }

The pstore method ensures that if parameters for analog conversion
are changed for a particular icon then the stored values in the
icon will be recalculated on the basis of the new parameters and
restored

On selection of the DOS option in the DESIGN function menu, the
while statement enclosing the menu option choice is terminated
Thereafter any remaining BM**** SAV constructor generated files are
deleted, the Flash Graphics mouse modes are terminated and control
is returned to DOS

138

T he Wa y Forw ard

6.1 In t r o d u c t io n . 140

6 2 Ob j e c t -O r ie n t e d Da t a b a s e s a n d Pe r s is te n c e 141

6 3 Op e r a t in g S y s t e m s . 144

6 .4 Tow ards The O b je c t-O r ie n te d SCADA W o rk s ta tio n 145

6 5 Ob j e c t -O r ie n te d La n g u a g e s a n d C++ 147

6 .6 The Im pact o f OOPS on T e c h n ic a l M anagem ent. 149

6 7 Co n c l u s io n . 151

139

6 1 In t r o d u c t io n .

The class hierarchy developed during this project represents a
subset of what would be an evolving class library to be utilized in
an object-oriented workstation The design program highlights the
ease with which realistic mimic diagrams could be assembled by a
plant operator The simulation function within the design program
acknowledges the power of realistic mimic diagrams coupled with
dynamic icons

This chapter looks at the idea of persistence and object-oriented
databases It highlights future enhancements that could be carried
out on this development It points to the future of object-oriented
languages and C++, and finally it focuses on the important issue of
the management and organisational impact of Object-Oriented
development

140

6 2 Ob j e c t -O r ie n t e d Da ta b a s e s a n d Pe r s is te n c e .

In many object-oriented applications an object-oriented database
will be required to store to disc instances of classes as they are
generated or as their internal data is dynamically modified An
object which resides on disc but which can be called to memory and
written back to disc transparent to the user program is known as a
persistent object In other words the transient in-memory objects
map automatically and isomorphically to disc storage Such an
object is non-volatile The user program utilizes the object as if
it were in memory all the time

Object-oriented databases are still at an early stage of
development A set of rules for object-oriented databases "The
Object-Oriented Database System Manifesto A consensus from
Academia" [ATW090] was formulated late in 1989 The role of this
manifesto is not to lead a standardisation effort However it does
represent a convergence of research opinion on the direction of
object-oriented database management systems (OODBMS) The manifesto
consists of thirteen rules, eight covering the object-orientation
of a OODBMS, and the other five covering the database operations of
the system An additional optional five rules are included The set
of object-orientation rules deal with support for classes, for the
notion of building complex objects from other objects, for the
principle of separation of object interface and object
implementation, for the inheritance mechanism, and for no
distinction between system and user defined types The DBMS rules
provide for persistence of data, concurrent users and the ability
to recreate the database in some coherent state after a software or
hardware, processor or disc failure A coherent state is a state in
which the contents of the recovered database reflect the database
status at some point before the failure "The authors are aware
that the Golden Rules will not provide an easy choice between
OODBMS capabilities, because the Golden Rules are likely to be
supported in some fashion by every offering In contrast, the five
optional features will provide more of a basis for comparing
OODBMSs " [ATW090] Those optional features deal with such topics

141

as multiple inheritance, compile time type checking and the
possibility of simultaneous access to users running on different
machines

There are few products available on the market at this point in
time However there is a consensus of opinion that the area of CAD
is an ideal application for OODBMS "CAD/CAM applications with
their complex data requirements and engineering drawings are
natural candidates for this technology" [B0CH89] "The majority of
the object databases are not commercial products, but proprietary
systems built into CAD products by companies like Mentor Graphics "
[ST0N90]

The first high performance, commercially available object database
supporting C++ was the ONTOS system from Ontologic Inc , [0NT089]
This database can be used directly with C++ applications and is
designed to support object data management between memory and disc
It claims support for multi-user database access in a homogeneous
network environment and runs under OS/2 Distributed access is
important particularly if the object database can be modified at
workstation level For future releases it claims support for
clients and servers distributed across platforms of different
types

The database architecture is based on the storage of objects rather
than records Objects that are related are stored in such a way
that they can be retrieved by a single database access Because of
this and the way in which complex data structures like trees can be
read in a single database access, performance is greatly improved
over relational databases Caching techniques are also used to
improve performance The system allows multiple users concurrent
access to the database

ONTOS offers a C++ programmatic Interface, an object SQL interface
and, in the future, a Fourth Generation graphical programming
environment

142
I

The C++ programmatic interface is of particular relevance in this
case The reference facilities of this interface give the user
program direct access to the entire database, containing the
user-defined object instances, in a transparent manner This
facility allows the user to reference persistent objects directly
and transparently, without regard to whether they are on disc or in
memory already ONTOS supports GET/PUT object and GET/PUT CLUSTER
semantics

ONTOS claims much higher performance characteristics than
relational databases This is due to the fact that data elements
are stored as objects and are presented to the program in directly
usable C++ object form with no conversion needed, objects can be
stored on disc in a programmer defined grouping (clustered) thus
allowing objects frequently used to be stored and retrieved in a
single database access, and memory caching is used The particular
implementation of C++ indicated in the ONTOS documentation is
Glockenspiel C++

The recently released Versant Object Technology OODBMS, VERSANT, is
to be ported to OS/2 and Microsoft DOS environments sometime within
the end of 1991 and the middle of 1992 [VERS90]

143

6 3 Op e r a t in g Sy s t e m s .

DOS was designed as a single user, single tasking operating system
OS/2 was designed for single users with multitasking capability,
while UNIX provides for multi users and multitasking UNIX can now
be run on 80386 and 80486 microprocessor machines OS/2 requires an
80286 or better, while DOS runs on 8088 upwards

The OS/2 option was examined in this project in order to overcome
the 640Kbyte DOS barrier However it was found that the
object-oriented tools required did not support OS/2 satisfactorily
It was also found that, given that this project was essentially a
DOS application, the availability of utilities, the ease of
transfer to and compatibility of DOS overlay and extender
technology was far superior to an OS/2 migration Given the
requirement for a low cost implementation, the use of an overlay
system under DOS requiring only 640K memory and a minimum of a PC
represents an ideal solution

UNIX provides for multiple users sharing information and given its
multitasking capabilities could provide a fine platform for a
graphics application such as this However the financial
implications of using UNIX tools must be taken into account

The Windows environment provides for a flexible user-friendly
system interface Zortech C++ version 2 1 claims support for
Windows versions 2 1 and 3 0 Further research could determine the
level of compatibility between C++ and Windows for non-trivial
systems where extensive use is made of dynamic object allocation
and deallocation For am OOPS graphic project such as this the
level of support for graphics provided within Windows would also be
am important issue as would the compatibility of Windows and the
Flaish graphics library provided under Zortech C++.

144

6 4 Tow ards the O b je c t-O r ie n te d SCADA W o rk s ta tio n

It is envisaged that the set of classes provided in this project
may be the starting point for SCADA projects and that new derived
and new base classes may be created using these classes during the
course of future projects Above and beyond the wide range of
classes supplied here, special types of graphical dynamic objects
would typically be created for different applications

A number of enhancements and additions could be made to the
software developed in this project

A real-time I/O system needs real raw data This project may
eventually form part of a development which may include a network
card and associated software to transfer raw data from data
collection stations via a network to the workstation and onto the
dynamic objects which mimic the behaviour of the machinery and/or
the transducers on site

There is a requirement for a object-oriented database which would
store the particular set of objects chosen for a mimic foreground
The coordinates for each object are part of the data of the object
as are the other object features which the user can change, such sis
the conversion values for raw data to engineering units for analog
transducer objects It would also be a feature to be able to couple
together the particular mimic background with the cluster of
dynamic icons which form the mimic foreground, thereby allowing a
mimic name to be called which would select both the background and
the dynamic foreground to appear automatically The concept of a
distributed database is important if the user can change data
relating to a particular icon An example of this would be if a
user changed the raw value to engineering units conversion factors
on one workstation and it was not changed on another workstation
which was in the same telemetry network Clearly the one transducer
could have different values at different points in a networked
system

145

It would be a very powerful enhancement if dynamic icons could be
created graphically and interactively on screen by a user This
would be achieved by supplying a set of primitive graphic objects
which could be put together to form an icon similar to the dynamic
icons given in this project Some of the primitive graphic objects
would be passive, while others could be active They would all be
classes An example of a passive element could be a square An
example of an active element could be a square whose colour changes
on receiving a particular method The new icon would also be an
instance of a class Clearly such a development as seen from this
project would require excellent software tools and memory
management including dynamic memory associated with classes It is
apparent at this point in time that C++ would not support such a
development on a PC except for trivial applications However it
does remain an interesting development for the future, when it
could be supported by more advanced development and run-time
environments and would allow users to construct their own high
level dynamic icons

146

6 5 O b je c t-O r ie n te d Languages and C++

"There is no language/system in existence that can serve the range
of applications/needs that is currently being served by various OOP
languages" [STR090b] There is a plethora of OOP languages
available depending on the application, from Smalltalk and multi-
lnhentance Eiffel to Flavors for Artificial Intelligence, Turbo
Pascal version 6 0 and various implementations of C++ The
important issue is not how many features does each language have
but does each language have the features required for
object-oriented programming in the required application area

Zortech C++ now has direct competition from Turbo C++ Professional
1 0 Turbo C++ at present does not support Windows or OS/2 giving
Zortech the clear lead Turbo C++ has an overlay system to break
the 640Kbyte DOS memory barrier as does Zortech’s Virtual Code
Manager (VCM) It claims compliance to AT&T C++ 2 0 and uses the
new AT&T lostreams library which is not available in the Zortech
implementation Both environments provide debuggers and the set
provided by Zortech allowing source level debugging of extremely
large programs under VCM was found invaluable during this project

According to Spicer "Zortech has managed to avoid many of the bugs
found in cfront (AT&T’s C++-to-C translator) versions of C++ 2 0"
[SPIC90] According to King of Microsoft UK, Microsoft is
developing a C++ professional development system which will be
offered as an upgrade to existing C customers [KING90] The system
is to provide mechanisms to support persistent objects and object
libraries for graphical environments

C++ is now undergoing standardisation, as previously mentioned
[STR090a] is the ANSI base document for this standardisation As
regards implementations, Zortech C++ version 2 13 should be
upgraded to conform to the AT&T C++ version 2 1 specification
Pointers to members are implemented using a different method to
AT&T’s CFRONT However Zortech claims that its implementation is
more efficient [SMIT90]

147

Criticisms of C++ alluded to in chapter 2 show some of the
directions C++ has to move in now According to Stroustrup there is
more work required on the streams "the concept of a stream is too
underdeveloped I think we need a system that allowed a uniform
mechanism for I/O of both user defined and built-in types There
is a model, and it works well for a lot of cases and it can be
developed further “ [STR090c]

Another improvement would be a virtual function check For example
if in a base class has

func (mt),
and a derived class has

func (char),

and it’s virtual, then the compiler will ask is this really what is
required

Parameterised types, which should make the writing of container
classes easier, have been introduced informally into the language
in the form of the template class The template design is
experimental at this point in time Finally Exception Handling has
been introduced, again informally, into the language as an
experimental design

Up to very recently as seen in this project OOPS software tools
lagged significantly behind the language An example of this was
the inability to debug programs of any significant size This made
development particularly difficult when extensive use was made of
dynamic memory Another example was the lack of any overlay system
to beat the 640Kbyte DOS barrier Even to-date as seen above there
are very few object databases available

One of the most important issues is the usability of object
libraries The vast majority of screen I/O object classes provided
for Zortech C++ are for text mode Building object libraries for
graphics environments that are well designed, reusable and portable
is one of the greatest challenges facing the OOPS community today

148

/

Object-Oriented technology requires a different way of thinking
about system development This is required not only for the
developers but also for their managers, as management issues will
ultimately determine the success or failure of a development The
key issues include management of human resources, budgeting,
project time estimation, system development methods, the OOP
learning curve, and planning for class reuse

"We believe that during the next decade, wholesale migration to
object-oriented applications throughout the software market is
inevitable" [B0CH89] As seen from above it is generally agreed
that there will be a massive move to object-orientation in the near
future The question is whether it is time to move to the
object-oriented world A prudent strategy might be to let others
pioneer the technology and monitor their progress However those in
first are likely, considering the enormous advantages of OOPs, to
gain a significant lead on their competitors Other critical
factors in the OOPS decision include whether the current system is
meeting the demands of its users or not, and the status of OOP
tools for the particular environment in question

When budgeting for OOPs projects it is important that there is
planning for startup costs such as training, external support
expertise and software tools When OOF’S projects are being
developed successfully maintenance costs are not likely to
decrease, because it is likely that more systems will be produced
faster Perhaps the most important asset that a prospective OOPS
developer needs is the ability to change, particularly if coming
from a procedural development environment

The close binding between real world objects and classes will
inevitably lead to closer interaction between designer and user
Task assignment should be clearer due to the coding and testing
modularisation that OOPS facilitates

6 6 T he Im p a c t o f OOPS o n T e c h n ic a l Ma n a g e m e n t

149

Training in OOPS is required for every member of a project team
including managers It is important that managers develop an
understanding of OOPS so that they can work knowledgeably with the
project developers It is natural that faced with the problem of
understanding OOPS that, at difficult points, developers may slip
into procedural design This is compounded by the ability to write
C and use C library calls within C++ This can be avoided by
sufficient technical support on initial projects from external
expertise followed by internal support consultants Project time
estimates should be elongated to take into account the learning
process

It typically takes several projects before the library of reusable
classes begins to grow Classes may also have to be reworked Thus
this is a long term process [LENZ90]

150

6 .7 Co n c l u s io n .

This project shows how an interactive object based graphical user
interface for a SCADA application may be implemented using
state-of-the-art software languages and tools

It shows how mimic diagrams can be transformed from archaic
character based diagrams to realistic schematics and/or plant
pictures with dynamic icons It shows the power, flexibility (and
weaknesses) of C++

It illustrates the object-oriented paradigm

It expounds on how object-oriented programming and graphics can be
combined and the on dangers of product incompatibility

It establishes that the OOPS revolution is a reality today whose
future is balanced on the availability of object libraries

It points to the future, to the enhancements that could be applied
to this project’s software, to changes imminent in C++ itself and
to the learning and mind-set changes that are inevitable if the
object-oriented paradigm is to be used to its full potential

151

APPENDIX 1 The C++ Language

A11 In tro d u c t io n . 153

A1 2 C Enhanced 153

A1.3 F u n d am en ta ls and M acro s 158

A1 4 O p e ra to r an d F u n c tio n O v e rlo a d in g 165

A1.5 C C o m p a tib ility , New F e a tu re s and C ritic ism . 169

152

A11 In t r o d u c t io n .

The purpose of this appendix is to illustrate the differences
between the C++ and C programming languages, to show where C++
enhances C and to set forth the key elements that make C++ the
language that it is Criticisms directed towards the C++ language
and new features that have been implemented recently are also
examined

A1 2 C Enhanced

The most significant difference between C and C++ is the support
for object-oriented programming that C++ provides There are also
many ways that C++ enhances C by the introduction of
non-object-oriented features [WIEN88] A typical example is the way
in which C++ compilers performs type checking to ensure that the
number and type of parameters sent into a function match the number
and type of formal arguments defined for the function The return
type for a function is also checked to ensure it matches the
variable used in the calling expression It is interesting to note
also that C++ functions with the specifier overload can have the
same name within the same scope if they are distinguishable by the
number and type of its parameters The parameters for any function
can have default values and hence a function may be called with
fewer parameters than in its formal definition, the missing
parameters assume the default value C++ presents strict parameter
type checking, although this can be relaxed by using the ellipsis
() in a function call

While on the subject of function calls it is possible within C++ to
have formal parameters of a function declared as reference
parameters using the ampersand operator For example

void decrement (m t & value) {value— ;}
m t 1 ;

decrement (i),

153

Value is defined as a reference parameter and hence the address of
the parameter value is assigned to the address of 1 when the
function decrement is invoked The value of i that is passed is
decremented within the decrement function smd returned to the
variable 1 outside the function Therefore it is not necessary for
the address of 1 to be explicitly passed to the function decrement

Other improvements include the new and delete operators, provided
to handle memory allocation, and the ability to make declamations
within blocks An example of in-block declaration is given by

for (m t q=5,q>0,q—){}

C++ boasts a scope-qualifier operator This operator is used to
resolve scope conflicts and is also used m connection with
classes For example, if an automatic variable sum is declared
within a function amd a global variable sum also exists, then • sum
allows the global variable sum to be specified within the scope of
the automatic variable The reverse is not true in that an
automatic variable cannot be accessed from outside its scope

The type void in C++ is used to indicate that a function returns
nothing A pointer variable which is declared to point to void can
be assigned to any other pointer that points to an arbitrary base
type

The m i m e specifier can be used to instruct the compiler to
provide inline substitution of a given function at the location
where the function is called Function call overhead may be saved
at the expense of increased code size

As an alternative to cast conversion the name of a type can be used
as a function to convert data from one type to another

The const specifier can be used to freeze the value of an entity
within its scope For example the paurauneters of a function can be
declared as constant to freeze the value of those parameters within
the function

154

The o b je c t-o r ien ted fea tu res o f C++ include

Classes, structs and data Encapsulation,
Constructors and Destructors,
Private,Protected and Public sections
Friends,
Overloaded and Virtual functions,
Streams

The class is the basic structure in object-oriented programming
The data for am abstract object, an instance of a class, and the
associated set of routines called methods can be encapsulated in a
class definition "Each instance of a class is an independent
object with its own data (and methods) but it shares identical
methods or procedures with all other objects in the same class"
[K.IER90] The object thus contains its own set of private and
public data and methods Communication to a class object is via its
methods The struct in C++ is a special case of a class with no
private or protected sections, but contains not only data as in C
but also has functions

Constructors and destructors provide guaranteed initialisation and
clean-up of data and memory allocation within an object declared to
be of a given class The declaration of an object calls the
initialisation specified in the class constructor A destructor
provides for automatic deallocation of heap associated with an
object when it goes out of scope

The class has up to three sections private, protected and public
The private section of a class contains data and/or functions and
is accessible only to a classes own methods and friend classes or
functions The protected data and/or methods are accessible to the
class and child classes which are derived from the class The
public data and/or methods of a class are available inside and
outside the class It is these methods that form the communications
protocol by which the object is manipulated A method to draw an

155

object may take the form
obj draw(1, 10J,

to draw the object at coordinates (1,10) The implementation
details are of no interest to the user The object may be a square
or circle or some other geometric shape The particular shape
typically will not have been decided at compile time and will be
decided at run time

The friend construct allows the data encapsulation of the private
section of a class to be broken One or more outside functions or
an entire class may be declared to be a friend of a class and thus
have access to the private functions and data of a given class

A large set of existing operators can be given new meanings by the
overloading facility The responsibility for overloading functions
in an intuitive way is that of the user For example the operators
+ and - could be overloaded to cater for a complex number class
However re-designing + to mean modulus of a complex number is
obscure and should be avoided The definition of new operators is
not allowed

A hierarchy of sub, derived or child classes can be established
Derived classes have access to the protected and public
data/methods of the parent class The derived class may have its
own data and methods which the parent class does not have access
to

A virtual function or method is a method which appears more than
once within a class hierarchy with the same name but with a
different implementation If the object drawO function above were
a virtual function, then for the different geometrical shapes a
different draw() implementation could be called thus allowing
squares or circles or other shapes to be drawn This feature is
called polymorphism This helps the software design process,
because it allows a high degree of abstraction The designer need
only worry about the action, not the implementation

156

The stream classes cm, cout and cerr are provided in C++
implementations for terminal and file I/O The operators in these
classes can be overloaded for newly defined classes thus
facilitating their I/O

157

A1.3 Fu n d a m e n t a l s a n d Ma c r o s .

A definition allocates memory for a variable or constant The data
element may or may not be explicitly initialised For example

double pi,
double pi=3 14159,

whereas
extern double pi,

is a declaration and pi must be defined elsewhere The extern
keyword is a flag to the linker that pi is defined elsewhere

In the following definition the value is permanent
const double pi=3 14159,

For a variable or constant declared in a function the scope of the
variable or constant extends from the point of declaration to the
end of the block in which the declaration occurs For a variable or
constant not declared in a function the scope extends from the
declaration to the end of the file in which the declaration occurs
If the same name is used for a local and a global variable .then
within the scope of a function, which defines the local variable,
the local variable may mask the global variable This is called
name hiding The scope resolution operator may be used to
overcome this problem For example

m t a. // global a

func() {

int a=2, // local a assignment
• a=3; // global a assignment
}

m t *ptr=&a; // ptr points to address of global a

Static variables that are not explicitly initialised are implicitly
initialised to zero

158

In C++ the length of a name, consisting of letters and digits, is
not limited, however the particular compiler implementation may
limit it For example in Zortech C++ the maximum name length is 127
characters Certain keywords cannot be used Examples include

class const double sizeof while virtual

Upper and lower cases are distinct, therefore Square_width is not
the same as square_width

C++ has a set of fundamental types

Integers char

short m t
m t

long m t

Floats float

double

unsigned unsigned char
unsigned short m t
unsigned m t
unsigned long m t

Characters, integers and enumerations are called integral types
Integral and floating types are called arithmetic types The actual
sizes of the types depends on the hardware implementation All that
can be said is that

sizeof(char)<=sizeof(short)<=sizeof(mt)<=sizeof(long)

and

sizeof(float)<=sizeof(double)

159

Implicit type conversion can be carried out in that the fundamental
types can be mixed freely in assignments and expressions, however
assignment of a variable of one type to another with fewer bits is
potentially a source of error Care should be taken

The declaration operators
* pointer,

& reference,

I] vector, and

() function

can be used to derive other types from the fundamental types For
example

m t * a, // pointer to integer a
char* arg[10], // vector of 10 character pointers

The type void is used to specify that a function does not return a
value or as a base type for pointers to objects of unknown type (at
compile time) For example

void funcO, // func doesn’t return a value
void* ptr_void, // pointer to object of unknown type

A program must contain a function called maini) which designates
the start of the program This function cannot be overloaded and
its type is implementation dependent

m t m a m () {}

m t m a m (m t argc, char* argv[]) {}

Argc is the number of parameters passed to the program If it is
non-zero these parameters are supplied as zero terminated strings
in argv[0] through argvfargc-1], where argvfOj is the name used to
cal1 the program

If, switch, while and for statements take the form.

char ch;
if (ch=='a’){}

160

else {}

switch (ch){
case 'a'

/* * /
break,
default

/* * /

break,

}

while (ch!=’a’){}

for (m t i=Q, i<5, i++){}

A function declaration may take the form
ini erase(cadshape*),

returning an integer and talcing a pointer to some user defined type
cadshape
The function definition may take the form

int erase (cadshape* cad_object){
m t all_erased,

/* . */
return all_erased,

}

Typically a C++ program will include many header files containing
declarations and definitions The keyword extern indicates that a
declaration of a name is only a declaration and that a definition
exists in some other file An example of an extern declaration is
given below

extern m t look,

A macro allows a string to be replaced by a token Macros know
nothing about C++ types or scope rules, they simply manipulate
strings

#define NOT_DIGIT(10) (!isdigit(10))

161

An error in a macro will be reported when the macro is expanded not
when it is defined This can lead to very obscure error messages

For a type cadshape
cadshape* // is a pointer to cadshape and

// holds the address of cadshape

Other pointer examples include

char** ch, // pointer to pointer to a character
float (*v)[5], // pointer to a vector of 5 ints

// pointer to a function talcing a pointer to a character, a
// float and returning an integer

m t (*func)(char*, float)

An array is an aggregate of elements of the same type, whereas a
struct may be am aggregate of elements of different types It is
not possible to compute the size of an object of a structure type
simply as the sum of its members, because some machines require
certain types to be allocated on architecture dependent boundaries
For example am integer must typically be allocated on a word
boundary

A reference is an alternative name for an object For example
int b=l;

m t & a=b, // a and b now refer to the same thing

A reference always refers to the object it is initialised to
denote, and it cannot be changed after its initialised To get a
pointer to an object referenced one can write for example

m t * a_ptr=&a;

On many hardware architectures an object can be accessed faster if
placed in a register For example

162

register m t a,

Register declarations should only be used when efficiency is
paramount It is not possible to take the address of a register
object nor can it be global

The keyword const can be used to make an object a constant rather
than a variable Since a constant cannot be assigned to, it must be
initialised There is an alternative to declaring type const For
example

const DRAW = 0, DRAW = 0,
const ERASE = 1,
const END = 2,

could be written
enum choice {DRAW, ERASE, END},

where the name of the enumeration is a distinct integral
type Values can also be explicitly given to enumerators Note that
the type for DRAW, when declaring as const above, is not given If
the type is missing the default is taken as int

A struct can be used with fields to put more than one small object
into a byte For example

struct xreg {
unsigned enable 1;
unsigned page 3,
unsigned 1,
unsigned mode 2;
unsigned 1,

};

// 1 bit
// 3 bits (not used)
// 1 bit padding
// 2 bits
// 1 bit (not used)

This may not save space as the code to manipulate the struct fields
may be larger than if a char were used for each object

The objects in a union use the same space at different times All
the members of a union only take up the space of the largest member
of the union The members of a union have the same address For
example

163

char *ch,
m t a:

},
A union can be named and thus becomes a type in its own right

A full list of operators for C++ is given in [STR087]

union un{

164

A1 4 Op e r a t o r a n d Fu n c t io n Ov e r l o a d in g .

Most operators can be overloaded An overloaded operator may be
declared to accept class objects as operands Overloading allows an
operator to be redesigned as a method within a class or as a
function taking at least one argument of a class or a reference to
a class The precedence of operators cannot be changed, nor can the
meaning of operators applied to non-class objects or the number of
operands of operators Relationships between operators applied to
basic types need not hold for operators applied to class types For
example

— a = a-=l, is not necessarily true for class types

The class member access operator ., scope resolution operator ,
conditional operator 9 , and preprocessor symbol # cannot be
overloaded This is because the class operators above have a
predefined meaning for all class types This makes C++ extensible,
at the same time protecting the programmer from obvious abuses of
operator overloading such as the redefinition of + on floats to
mean subtraction

A typical example is overloading operators for complex numbers

// Class complex file COMPLEX HPP
class complex {

float re,lm;

public

complex (float r, float 1) {
re=r, iob=i,

}
// Redefine + and - as methods of this class
complex operator+ (complex, complex); // Definition in

// cpp file
complex operator- (complex, complex); // Definition in

// cpp file
);

165

complex a = complex (1,2),
complex b = complex (3,4),
complex c = complex (S.S,),

a = b + b; // same as a = operator+(b,c),
a = b - c, // same as a = operator-(b,c),

It is not possible to define new operator tokens Function call
notation should be used when the standard operator set is not
adequate

A number of classes have been designed for stream I/O in C++ and
although they do not form part of the language they are strongly
bound to it These classes provide for I/O of basic and user
defined types The standard input stream cm, standard output
stream cout and standard error stream cerr are provided by the
stream library STREAM HPP For example

#include <stream hpp>
mam()

{

long 1,

double d;

cout «"Streams",

cout « "1=" << 1,

cout « "double=" « d « "\n",
}

where the overloading of the left shift operator is given in the
class ostream For example

class ostream {

/ * * /

public

166

ostreamS, operator<<(char*),
ostrean& operator<<(long),
ostream& operator<<(double),
ostream& operator<<(),

/ * * /

},

Because the operator<< functions return an ostream reference the
left shifts can be stacked as above

cout <<"!=" << 1, is interpreted as
(cout operator«(" 1=") operator«l),

A similar mechanism exists for c m and the class istream with
overloading of the right shift operator >>

A function is overloaded when there are several different
declarations for the function The compiler chooses the relevant
function by matching the number and type of call arguments with
that of the formal arguments Each function that is overloaded must
be uniquely and unambiguously distinguishable An overload
declaration may precede declarations for an overloaded function,
except when the overloaded function is a member or operator
function For example

overload abs,
int abs (mt);
double abs (double);

abs (10), // calls m t abs (mt);
abs ("10 0), // calls double abs (double);

and
class complex {

double re, im;

public:

167

// Overloaded constructors
complex(),
complex (int),
complex (int,int),
complex (double),

complex (double r,double 1) {re=r, im=i,}

double real (complex& z) {return z.re;}
double imag (complex& z) {return z.im;}

},

Since the complex class has constructors it has a public copy
constructor even though none is explicitly declared

complex A, // Using complexO

complex A(10), // Using complex (int)

complex A - 10 0, // Construct complex CIO 0.) using
// complex (double) and copy it into A

complex A = complex (1,1), // Construct complex Cl,U using
// complex (int,int) and
// copy it into A

The left shift operator can be defined for a user defined type such
as this complex class as follows

ostream& operator«(ostrean& s, complex z)

{
return s « "[" « real(z) << imag(z) «"]",
}

and used simply as.

complex A(1 0,10 0),
cout« "A = " « A; to produce A = [1 0,10 07;

168

A1 5 C Co m p a t ib il it y , New Fe a tu r es a n d Cr it ic is m .

C++ is an evolving language, into which new features have been
introduced since the publication of [STR087] Although a particular
implementation of a C++ compiler does not constitute a language
definition, it is common for the features to be referred to
according to the release of the AT&T C++ translator in which the
feature was first introduced Until such time as a standard like
the ANSI C standard becomes available for C++, the various features
will continue to be measured against AT&T compilers [STR090a] has
been selected by ANSI as a starting point for the formal
standardisation of the C++ language

"C++ is (very nearly) a simple superset of the C language"
[SC0T90] It is based on C [KERN88] and has adopted most of the
changes given by the ANSI C standard A few noticeable differences
may prevent an ANSI C program from being compiled with a C++
compiler

The additional C++ keywords cannot be used as C identifiers,
examples include

asm class delete friend virtual protected public

In C++ a function must be declared before it is called Whereas
ANSI C provides an automatic declaration of all undeclared
functions as a function returning an int and with a variable
number of arguments For example

m t f(),

The function f() in C++ means that the function f takes no
arguments, hence in C++ it is seen as f(void) Whereas in C it
means it can take any number of arguments of any type However this
use is deemed obsolescent in ANSI C

In ANSI C a void* may be used as the right-hand operand of an
assignment to or initialisation of any pointer type, in C++ it may
not.

169

If a variable of type const is declared outside a function in C++
it has static linkage, whereas it has extern linkage m C To force
external linkage of const variables m C++ the extern keyword must
be used in the declaration

The type of a character constant is char in C++ and int in C
For example

sizeof (’ a’), // Equals sizeof(mt) in C
sizeof (’ a’), // Equals sizeof(char) in C++

In assignment of a char to an int For example
char ch = m t 1 ,

The most significant bits are lost

In ANSI C sin external name may be defined several times whereas
in C++ is must be defined exactly once

[HANS90] gives some indications as the requirements of a compiler
implementation which may ease the use of C programs as C++
programs

In C++ a structure name declared in an inner scope can hide an
outer scope object, function, enumeration or type For example

int A[IQ],
void func() {

struct A {/* */};

sizeof(A), // size of integer array in C
// size of struct in C++

;

"The primary driving force in the evolution of C++ between 1985 and
1990 has been the desire to produce elegant and efficient libraries
and to allow easy and safe composition of programs out of
separately developed and separately compiled parts " [STR090a]

170

The keyword template was reserved for future use [HANS90] It has
just been introduced by [STR090a] as an experimental design The
template class provides the layout and operations for an unbounded
set of related types It provides a way of providing general
container types such as list, and array where the specific type of
elements is left as a parameter For example a List class might
provide a common definition for a list of ints, a list of floats,
or a list of cadshape classes A single template function Sort
could provide a common definition for sorting all types defined by
the List class template

The exception handling design proposed in [STR090a] is
experimental It does not as yet form part of the C++ version 2 0
reference manual

Multiple inheritance introduced in 1989 allows a class to inherit
data and/or methods from more than one base class For example

class W {/# #/}

class X {/# */}

class Y {/# #/}

class Z public V, public X, public Y {/# #/}

Protected class members were introduced in 1986 A protected class
member can be used only by member functions and friends of the
class in which it is declared, and by member functions and friends
of any class derived from the declaring class
At the same time pointer to member functions was introduced For
example

class X {
public.

int mem(char*),}

The declaration for a pointer to function within X taking a char#
argument and returning an m t

int (X-•pmem)(char#);

171

The assignment of the address of X. mem() to this pointer
pmem = &X mem;

Now the member can be indirectly invoked, if Y is an object of
class X

m t p = (Y #pmem) ("string"),
or directly invoked by

m t p = Y mem("string"),

In 1989 the use of this for control of space in constructors and
destructors was replaced by the capability of user defined
operators new and delete for classes The use of this was
considered very error prone and is to be phased out of the
language When X operator new and X operator delete are defined
for a class X, then all calls to new and delete for that type will
invoke the defined version of new and delete instead of the global
versions

Objects can now be explicitly destroyed This has been expanded on
in the section above dealing with constructors and destructors

The keyword overload is now redundant but may still be used. The
class member operator () and class member pointer operator (->)
may now be overloaded The restriction on having two versions of an
overloaded function differing only in a parameter which is unsigned
in one version and signed in the other was lifted in 1987
Similarly, following the ANSI C change that a float parameter can
now be passed on the stack without being automatically promoted to
a double, it is now possible to declare two versions of an
overloaded function differing in that one has a parameter as a
float and the other as a double Likewise the restriction on
overloading char amd short parameters was lifted in 1989

Following the lead of ANSI C, constants of type float may now be
declared by placing the letter f after the number The number must
have a decimal point For example 1 If
Also the type long double has been introduced, and may be declared

172

for a by placing the letter 1 or L after the number which must
include a decimal point

The size of a long double is guaranteed to be at least as long as a
double Its size depends on the hardware types available on the
particular machine

The abstract class idea was also recently introduced An abstract
class is a class that can be used as a base class for other classes
only An example of this would be a general shape class, from which
square, line and circle classes are derived Virtual functions
declared but not defined in the shape class, for example draw() and
erase() would be defined in the derived classes Defining a
variable of type shape does not make sense since nothing can be
done with it It would be better if the compiler forbade the
declaration of a type shape This is possible by giving null
definitions to at least one of shape’s virtual functions Such a
virtual function with null definition is known as a pure virtual
function An abstract class is one which has at least one pure
virtual function The compiler now prevents any variable of type
shape from being declared A mixture of pure virtual functions and
error definitions could be used All classes derived from an
abstract class are required to provide a definition for the pure
virtual functions or redeclare the functions as pure virtual
functions The cadshape class in this project is very similar in
its construction to the shape class discussed above An example of
an abstract class and a class derived from an abstract class is
given below

class shape {

unsigned x,y,

/ * * /

public:

// Declaration and definition
void move (unsigned x_coord,unsigned y_coord){

x = x_coord; y = y_coord;
draw(), }

173

// Pure virtual declarations
virtual void draw(unsigned,unsigned) = 0,
virtual void erase() = 0,

/* * /

},

class circle public shape {
int radius,

public

void draw() {

/* * /

}
void erase() {

/* * /

}

},

If no definition is given for either of the pure virtual functions
of the parent class then the derived or child class inherits the
respective pure virtual function from the base or parent class and
becomes itself an abstract class Alternatively the pure virtual
class may be redeclared as pure virtual in the derived class and
the derived class becomes an abstract class If all the pure
virtual functions are declared normally (not pure) in the derived
class then the derived class is not abstract

If a class Y is derived from a class X write
class Y X { },

then by default the base class X is private to Y and not accessible
to users of the derived class Y However in future versions of C++
it may be required to make X explicitly private to Y by using

class Y . private X { };

On the other hand, to allow the base class public status then use
class Y : public X { .};

174

This section has given examples of some of the important recent
updates and modifications to the C++ language For examples of
further changes the reader is directed to [HANS90]

Criticisms relating to the current lack of object libraries and
object interface/implementation dependency are discussed in detail
in chapter 2

A number of interesting points were discussed at a question and
answers session attended by leading object-oriented experts and
Stroustrup [STR090c]

On mixing of C++ data structures and C library functions it was
made clear that although one of the primary goals of C++ was to
retain its compatibility with C, data types cannot be passed across
the interface expecting to get C++ protection C++ guarantees
cannot be squeezed out of C

Other questions revolved around the use of operator overloading
According to Stroustrup it was better to provide operator
overloading rather than the capability of creating new operators
Operator overloading should only be used when there is a
conventional use for it, otherwise program obscurity can be
increased quite dramatically The level of obscurity becomes
critical if some new operator is introduced with a totally obscure
name Hence operator overloading was introduced and defining new
operators was not In view of this philosophy of only overloading
operators intuitively one might ask how did the overloading of the
left shift operator to stream operator come about *? [STR087]

A MAKE utility typically accompanies a C++ implementation This
utility automates program maintenance Instead of explicitly typing
in commands to compile and link programs in a project, it is
possible to write all of the steps required in a text file called a
makefile Date and time stamping is used so that only updated files
are recompiled. A problem regarding the makefile was reported

175

" when you start writing large C++ systems, the makefile is more
complicated than the program, and is more difficult to write "
During the development of this project the makefile became so large
that eventually it was more of a hindrance than a help A
dependency analyser that can hook up an incremental compiler so
that the cascading of recompilation does not have to take place is
on the way, but will not be ready in the near future according to
Stroustrup [STR090c]

In response to a query relating to formatting functions and I/O
Stroustrup stated that the tight focusing of I/O on built-in types
as opposed to a uniform mechanism for I/O of both user defined and
built-in types with good formatting functions, is just immaturity
and could be developed further

176

Ap p e n d ix 2 . ' Co m p il a t io n , L ink a n d Debug De t a il s .

A2 1 Co m p il a t io n , L in k in g a n d Mem o r y Ma n a g e m e n t S y s te m s . 178

A2 2 De b u g g in g 182

177

A2.1 Co m p il a t io n , L in k in g a n d Mem o r y Ma n a g e m e n t Sy s t e m s .

The programs were edited using the Z0RTECH editor ZED COM [ZED89]
and from within the ZORTECH C++ Workbench ZWB EXE version 1 03
[ZWB90b] and version 1 12 [ZWB90a]

The programs were compiled with the Zortech C++ Compiler version
2 1 ZTC COM [ZTC90b] The full compilation was carried out via the
batch file Z0R2C0MH BAT The make facility was not used due to the
complexity of the make file resulting from the large number of
programs An example from the compilation batch file is shown
below

ztc -c -mV -R -o+space -b -C animvol cpp

ztc -c -mV -R -o+space -b -C animplot cpp

The flags may be seen from the compiler manual [Z0RC90] to be as
follows

-c Compile only,
-mV Select VCM mode memory model,
-R Place switch tables in code rather than data

segment, this is recommended for VCM [Z0RC90]
-O+space Optimise for Space,
-b Compile large program, and
-C Prevent inline function expansion to aid debugging

The linker used is BLINK COM version 4 06 [ZBLI90] This is called
from the compilation batch file and takes a linker response file as
an argument

BLINK @zor2h rsp

The linker response file gives the names of all the compiled object
files for linkage with a + between them, the name for the linked

178

executable and any libraries used Since Zortech C++ embeds the
standard library names into the object files, it is not required to
specify the names of the libraries explicitly The libraries used
for the large memory model are the standard C library zll lib and
the C++ library pll lib The flash graphics library fg lib is
specified in the linker response file and the linker is given the
flags as specified below

/PAC/F Required for VCM to convert certain types of function
calls as described in the Zortech V2 1 update guide
[Z0RC90]

The VCM system requires that each separate Virtual Code Segment be
contained within parenthesis m the linker response file An
example is given below

(design obj)+(msmenu. obj)+(fgnd obj)+(shapelst.obj)+

(square obj) + (animsqr obj)+(ammpie obj)+(pie obj)+

The two methods generally used to generate large DOS applications
are Virtual Code Management (VCM) and DOS Extender Technology
Virtual code management is essentially an overlay system which
swaps virtual code segments in and out of memory from the disc
executable file as they are required It does not use extended
memory or 80286 or 80386 microprocessor technology Hence an
application developed on the basis of VCM could run on a 8086
microprocessor based machine At link time the modules which are
required to reside in the same virtual code segments are indicated
as shown above The amount of thrashing depends on the number of
virtual code segments that are defined and on the mix of modules
within each virtual code segment Fine tuning of the application’s
performance can be achieved by the selection of modules within the
virtual code segments and the number of segments chosen

The Rational DOS Extender Technology requires the use of extended
memory and a 80286 or 80386 target machine for the application with
the Rational technology installed For this reason the VCM system
was chosen because of its target system advantage

179

Subsequently the Phar Lap DOS Extender system [PHAR89] was tested
with the Zortech C++ version 2 18 compiler for 80386 microprocessor
applications [ZTC90a] Due to incompatibilities m the technology,
as discussed in section 3 11, the VCM implementation was retained

It was found that the farcalloc() memory allocation function does
not work with the Zortech VCM system This problem was isolated
down to a minimal program, ALLQCATI EXE This problem was
consistent with problems encountered with the same function in some
other Zortech versions The Zortech VCM system only claims
compatibility with the mallocO function and hence all farcallocO
calls were replaced by mallocO function calls Furthermore it was
found that, within this application, the VCM system was not capable
of managing memory dynamically allocated from within class objects
Hence the dynamic buffers used to store the background behind icons
were replaced by disc files This was carried out for CADSHAPE type
objects The window and windowtile type objects still use dynamic
buffers, but as the number of such objects constructed and
destructed during this application is small the memory loss
resulting from memory mismanagement by the VCM system is
negligible Moreover these object’s draw and erase member functions
are called with high frequency and the corresponding file accesses,
if a file buffer system was used, would thus consume a lot of time

If it is required to draw a large number of objects on the screen,
and these objects all use files to store the background over which
they will reside, then there will be very heavy disc access and the
application will slow down considerably. This problem is overcome
by installing a RAM or Virtual disc on the machine This is
established by using the DEVICE command and the VDISK. SYS file in
the system CONFIG SYS file The result is that the thrashing effect
disappears and the operation of the application is quite smooth
without any noticeable VCM originated delays

Tuning the performance of a VCM application requires that programs
or objects that are heavily interdependent be in the same virtual

180

code segment However m order that enough memory exists to call
DOS utilities from the application it was found that it was
necessary to make the VCM segments a small as possible The VCM
system does not manage memory for DOS utilities spawned or called
by the application via the spawn(), system() or execO functions
The DOS system and VCM system do not mesh in that if there is not
enough memory to run a DOS system call from the application program
then the VCM system does not unload segments to accommodate this
call and even if forced to do so in a debugging session, via the
vcmjnaxres variable, then the DOS system still does not know that
this has occurred and cannot use the newly released memory The
result is that the DOS call fails This was seen on the call of the
DEL command and other DOS utilities, such as PKUNZIP EXE [PKWA89],
via the system() and spawn() functions within the application
Hence the virtual code segments are kept small and this alleviates
the problem to a large extent

The performance of an application under VCM can be evaluated by
only allowing one VCM segment in memory at any particular time, and
by subsequently monitoring the disc access frequency This is
achieved by defining the variable unsigned vcmjnaxres =1, in one
of the VCM segments

181

A 2.2 De b u g g in g .

The standard Zortech C++ debugger ZDB COM [ZDB90] requires
approximately 250Kbytes of memory and therefore could not fit in
memory while the DESIGN.EXE program was also resident Hence the
virtual debugger ZDBV86 COM [ZDBV90] was used. The virtual debugger
calls the standard mapper ZMAP EXE [ZMAP90], but this could not
cope with the number of symbols To overcome this the DOS Extended
mapper ZMAP286 EXE [ZMP290] was used by first invoking the DOS
Extended debugger ZDB286 COM [ZDB290] which in turn calls ZMAP286
Subsequently the virtual debugger ZDBV86 COM or the DOS Extended
debugger ZDB286 com can be used

The extended and virtual debuggers have the facility to show
dynamic buffer memory allocation and deallocation Hence memory
allocation and deallocation, and object construction and
destruction can be monitored This is a very powerful feature when
compared to the debugging facilities available for a large time
during this project when the debugger could not fit in memory with
the program under test or when dynamic allocation could not be
monitored

It was noted that on running certain code, which ran perfectly
without the debugger, that when single or functioned stepped in the
debugger, the debugger ZDBV86 failed with ’fatal internal error’
messages In accordance with the Zortech Update Guide [Z0RC90] such
occurrences were seen as debugger implementation errors

All programs for debugging must be compiled as detailed in section
A2 1 above, with the additional -g flag specified on the ZTC
command line Additionally the Flash Graphics library FGDEBUG.LIB
may be linked into the application in place of FG.LIB. Debugging
tests are performed on the function calls in this library

The VCM system is fully supported by the virtual debugger
ZDBV86 COM [ZDBV90] and the extended debugger ZDB286 COM [ZDB290]

182

While debugging, a window is provided which shows the segments,
which segments are loaded or not, the number of loads for each
segment and the number of times the each segment is used Fine
tuning of the VCH system can be performed by comparing the number
of loads of a particular segment to the number of times the segment
in question is used A VCM type system imposes a time overhead on
debugging due to the loading and unloading of segments

The Extended debugger uses extended memory and requires a 80286
microprocessor based machine, while the virtual debugger uses the
facility of the 80386 microprocessor to set up a virtual 8086
environment in which to run the program being debugged Both of
these debuggers use a minimum of standard memory and make extensive
use of extended memory Hence a 80386 microprocessor based machine
is required to debug the programs in this project However, because
of the VCM system the target system need only be a 8086 based
machine

183

Ap p e n d ix 3 Bib l io g r a p h y

[ATTS88]

[ATW090]

[B0CH89]

[BOOC86]

[BR0K87]

[CFXX88]

AT&T OVERVIEW Scanner, Model No 640 HGS
AT&T, Audiographic Communications Systems Service,
Room 3E-123,
185 Monmouth Parkway,
West Long Branch, New Jersey 07764, USA.

The Object-Oriented Database System Manifesto
A consensus from Academia"
T Atwood
HOTLINE on Object-Oriented Technology Voi 1, No 3
January 1990

OBJECT-ORIENTED CELLS BRING NEW LIFE TO DBMS
B Bochenski
Software Magazine (International Edition), June 1990

Object-Oriented Development
G Booch
IEEE Transactions on Software engineering, Vol SE-12,
No 2, February 1986

No Silver Bullet Essence and Accidents of Software
Engineering
F Brooks
IEEE Computer, April 1987

CFXX EXE AT&T Translator, release 1 2 Msoft 1 (beta 2)
February 1988, Copyright 1984 AT&T, Inc and
Glockenspiel Limited, Lr Dominick Street,
Dublin, Ireland

184

[CHIR87]

[CIEX89]

[C0DE90]

[C0DE89]

[C0DE87]

[C0X90]

[DANI90]

Unix for the IBM PC An Introduction
P M Chirlian, Stevens Institute of Technology
Merrill Publishing Co , 1987
0-675-20785-1

Control and Instrumentation Exhibition 1989
National Exhibition Centre Birmingham

Microsoft CodeView Version 3 0, 1990
Microsoft Corporation,
16011 NE 36th Way,
Box 97017,
Redmond, WA 98073-9717, USA

Introducing CodeView
A Denning
EXE Magazine, Vol 3, Issue 8, February 1989
EXE Magazine, Vol 3, Issue 9, March 1989

Microsoft CodeView Version 2 10, 1986,1987
Microsoft Corporation,
16011 NE 36th Way,
Box 97017,
Redmond, WA 98073-9717, USA

There Is a Silver Bullet
B J Cox
BYTE, October 1990

OOP is more than using C++
J Daniels

EXE Magazine, Vol 5 Issue 3, August 1990

185

[DATA89]

[DEIN90]

[D0S88]

[DRHA87]

[EXE89]

[FAST89]

Datac LS900/VME Central System Project
Datac Control Ltd ,
IDA Centre, Pearse St ,
Dublin 2

Making Computer Behavior Consistent
The OSF/Motif Graphical User Interface
A 0 Deimnger, C V Fernandez
Hewlett-Packard Journal, June 1990

International Business Machines Corporation Disk
Operating System, Version 3 x
IBM United Kingdom,
International products Limited,
P0 Box 41, North Harbour,
Portsmouth, P06 3AU, England

Dr Halo Version 2 26a
Media Cybernetics,
8484 Georgia Ave ,
Silver Spring, MD 20910, USA

The PCX and PCC file formats
EXE Magazine, Vol 3, Issue 11, May 1989

FASTLINK EXE Phar Lap DOS Extender system
3861 Link Linker,
386 DOS-Extender Software Development Kit Version 2 2d
1989
Phar Lap Software, Inc
60 Aberdeen Ave ,
Cambridge, MA 02138, USA

186

[FIED89] Object-Oriented Unit Testing
S P Fiedler
Hewlett-Packard Journal, April 1989

t FLEX88]

[FOLE84]

[F0RD90]

t GER090]

[GL0C90]

[GLOC89]

FlexOS 286 Operating system
Digital Research Inc
Box DRI
Monterey, CA 93942 USA

Fundamentals of interactive Computer Graphics
J D Foley, A Van Dam
Addison-Wesley Publishing Company 1984
0-201-14468-9

Object-oriented programming will it work for real time
systems 7
W R Ford
Computer Design March 1990

Personal computers in control applications
M Gerow, R Henley, Action Instruments
Control & Instrumentation, February 1989

Glockenspiel C++ version 2 0c compiler , 1990
Glockenspiel Limited, Lr Dominick Street,
Dublin, Ireland

Glockenspiel C++ Programming System 1 2E, 1989
Glockenspiel C++ SDK release 1 2E with CommonView
Applications Framework for Presentation Systems
Glockenspiel Limited, Lr Dominick Street,
Dublin, Ireland

187

[GL0C88]

[GL0C87]

[GCPP88]

[GRAB87]

[HAL088]

Advantage C++ (tm) Programming System, release 1 2
Msoft 1 (beta 2) February 1988
Glockenspiel Ltd , Dublin, Ireland
Published by Lifeboat Associates, Inc , Tarrytown, NY,
USA

Advantage C++ (tm) Programming System, version 1 1,
1987
Glockenspiel Limited, Lr Dominick Street,
Dublin, Ireland

GCPP EXE Glockenspiel System V 3 compatible C
pre-processor, release 6 (beta 1), February 1988
Glockenspiel Limited, Lr Dominick Street,
Dublin, Ireland

GRAB EXE The Halo Frame grabber
Copyright (c) Media Cybernetics Inc 1986,1987
Media Cybernetics,
8484 Georgia Ave ,
Silver Spring, MD 20910, USA

HALO’88 version 1 00 04, and Device drivers Version
1 00 13, 1988
Media Cybernetics,
8484 Georgia Ave ,
Silver Spring, MD 20910, USA

188

[HAL087]

[HANS90]

[H0PG83]

[J0NE91]

[KERN88]

[KIER90]

HALO Graphics Kernel and Device Drivers
Version 2 26a, May 1987
Media Cybernetics,
8484 Georgia Ave ,
Silver Spring, MD 20910, USA

The C++ Answer Book
T Hansen
Addison Wesley Publishing Company, 1990
0-201-11497-6

Introduction to the Graphical Kernel System (GKS)
A P I C studies in Data Processing No 19
F R A Hopgood, D A Duce, J R Gallop, D C Sutcliffe
Computing Division, Rutherford Appleton Laboratory,
Didcot, UK
Academic Press, Inc 1983
0-12-355570-1

C++ or C9X’
D Jones
EXE Magazine, Vol 5, Issue 8, February 1991

The C Programming Language
B W Kernighan, D M Ritchie
Prentice Hall, 1978 & 1988

Object-Oriented Programming Systems - an Overview
P Kiernan
Irish Computer, July 1990

189

[KING90]

[K0EN90]

[KURT89]

[LENZ90]

[LILL89]

[LINK89]

Microsoft Spesiks1
A King
EXE Magazine, Voi 5, Issue 6,

November 1990

Looking Around
A Koenig
Journal of Object Oriented Programming Vol 2, No 5,
January 1990

An Object-Oriented Methodology for Systems Analysis and
Specification
B D Kurtz, D Ho, T A Wall
Hewlett-Packard Journal, April 1989

Adopting Object-Oriented Techniques Management
and Organizational Impacts
M A Lenzi
HOTLINE on Object-Oriented Technology Voi 1, No 3,
January 1990

Keeping Control of Telemetry
J Li1ley
Communications Engineering International April 1989

386LINK EXE Phar Lap DOS Extender system
3861 Link Linker,
386 DOS-Extender Software Development Kit Version 2.2d
1989
Phar Lap Software, Inc
60 Aberdeen Ave , Cambridge, MA 02138, USA

190

[MARS87]

[META89]

[MICR88]

[MICR87]

[MSDG89]

[MSPM89]

Computer Graphics in Application
G R Marshall
Prentice-hall International, Inc 1987
0-8359-0856-9

MetaWindows/Plus version 3 4b, 1989
Metagraphics Softvrare Corporation
4575 Scotts Valley Drive
PO Box 66779
Scotts Valley, CA 95066, USA

Microsoft C Optimising Compiler Version 5 10, 1988
Microsoft Corporation,
16011 NE 36th Way,
Box 97017,
Redmond, WA 98073-9717, USA

Microsoft C Optimising Compiler Version 5 00, 1987
Microsoft Corporation,
16011 NE 36th Way,
Box 97017,
Redmond, WA 98073-9717, USA

Waite Group’s MSD0S Developer’s Guide 2nC* edition, 1989
Howard W Sams 8. Company
0-672-22630-8SSRA

Microsoft OS/2 Presentation Manager Softset Version 1 1
Microsoft Corporation,
16011 NE 36th Way,
Box 97017,
Redmond, WA 98073-9717, USA.

191

[0C0N89]

[0MF88]

[0NT089]

[0S288]

[PCPB88]

Computer Graphics - An Object Oriented Approach
P O’Connell
M Sc Thesis 1989
School of Computer Applications
Dublin City University

Object Module Formats
Appendix C
3861 LINK Reference Manual 2nC* Edition June 1988
386 DOS-Extender Software Development Kit Version 2 2d
1989
Phar Lap Software, Inc
60 Aberdeen Ave ,
Cambridge, MA 02138, USA

ONTOS
Ontologie Inc
Three Burlington Woods
Burlington MA 01803, USA

IBM Operating System/2 Extended Edition Version 1 IE
IBM United Kingdom,
International products Limited,
PO Box 41, North Harbour,
Portsmouth, P06 3AU, England

PC-Paintbrush+ Version 1 54, 1988
ZSoft Corporation,
1950 Spectrum Circle,
Suite A - 495,
Marietts, GA 30067, USA

192

[PERR90]

[PETZ88]

[PF0R87]

[PHAR89]

[PKWA89]

[PMAN89]

Adequate Testing and Object-Oriented Programming
D E Perry, G E Kaiser
Journal of Object-Oriented Programming
January/February 1990

Programming Windows
Petzold
Microsoft Press

PF0RCE++ Libraries version 1 04, 1987
Phoenix Technologies Ltd ,
320 Norwood Park South,
Norwood, MA 02062, USA

386 DOS-Extender Software Development Kit Version 2 2d
1989
Phar Lap Software, Inc
60 Aberdeen Ave ,
Cambridge, MA 02138, USA

PKUNZIP EXE FAST ' Extract Utility Version 1 01,
July 1989
PKWARE Inc ,
7545 N Port Washington Rd,
Glendale, WI 53217, USA

Microsoft OS/2 Presentation Manager Softset Version
1 1, 1989
Microsoft Corporation,
16011 NE 36th Way,
Box 97017, Redmond, WA 98073-9717, USA

193

[P0RT87] A Graphics Toolbox for Turbo C - Part 2
K Porter
Dr Dobb’s Journal, December 1987

[RD0S90] Rational Systems DOS Extender D0S/16M
Rational Systems Inc ,
P 0 Box 480,
Natick, Massachusetts 01760, USA

[QNX88] QNX Operating System
Quantum Software Systems Ltd ,
175 Terrence Matthews Crescent,
Kanata, Ontario, Canada, K2M 1W8

[RUN389] RUN386 EXE 3861 DOS Extender, 1989
386 DOS-Extender Software Development Kit Version 2 2d
1989
Phar Lap Software, Inc
60 Aberdeen Ave ,
Cambridge, MA 02138, USA

[SCAN88] AT&T SCANWARE
AT&T, Audiographic Communications Systems Service
Room 3E-123,
185 Monmouth Parkway,
West Long Branch, New Jersey 07764, USA

[SC0T90] Rolling Your Own Arithmetics in C++
M Scott
DCU School of Computer Applications Working Paper
CA-2090
Dublin City University

194

[SH0W90]

[SMIT90]

[SPIC90]

[ST0N90]

[STR090a]

[STR090b]

[STR090c]

An Object-Based User Interface for the HP NewWave
Environment
Hewlett-Packard Journal, August 1989
P S Showman

The Key to Success
P Smith
EXE Magazine Voi 4, Issue 9, March 1990

C++, Plus
S Spicer
BYTE July 1990

Database Wars Revisited
C M Stone, D Hentchel
BYTE, October 1990

The Annotated C++ reference Manual
M A Ellis, B Stroustrup
AT&T Bell Telephone Laboratories, Incorporated
Addison-Wesley Publishing Company, 1990
0-201-51459-1

On Language Wars
B Stroustrup
HOTLINE on Object Oriented Technology Voi 1, No.3 ,
January 1990

Around the Table with Bj'arne Stroustrup
.EXE Magazine, Voi 5, Issue 6, November 1990.

195

[STR088] What is Object-Oriented programming ?
B Stroustrup AT&T Bell Laboratories
IEEE Software May 1988

[STR087]

[TAZE90]

[TINH88]

[VERS90]

[WIEN88]

[WILS90]

The C++ Programming language
B Stroustrup AT&T Bell Laboratories
Addison Wesley Publishing Company, 1987
0-201-12078-X

Object Lessons
J M Tazelaar
BYTE October 1990

PC graphics are key to low cost automation
B Tinham
Control & Instrumentation, February 1988

Versant Object Technology
4500 Bohannon Drive,
Menlo Park, CA 94025, USA

An introduction to Object-Oriented Programming and C++
R S Wiener, L J Pinson
Addison Wesley Publishing Company, 1988
0-201-15413-7

The Object-oriented approach
S Wilson Praxis Electronic Design
IEE Review, July/August 1990.

196

[WIND87]

[WIND86]

[WSDK87]

[ZBLI90]

[ZDB90]

[ZDB290]

Microsoft WINDOWS/386 Version 2 03
Microsoft Corporation,
16011 NE 36th Way,
Box 97017,
Redmond, WA 98073-9717, USA

Microsoft WINDOWS Version 1 03
Microsoft Corporation,
16011 NE 36th Way,
Box 97017,
Redmond, WA 98073-9717, USA

Microsoft Windows Software Development Kit (SDK)
Version 2 0
Microsoft Corporation,
16011 NE 36th Way,
Box 97017,
Redmond, WA 98073-9717, USA

BLINK COM Version 4 06, 1990
Zortech Incorporated, 1165 Massachusetts, Arlington, MA
02174, USA

ZDB COM Zortech C++ debugger Version 2 10A, 1990
Zortech Incorporated, 1165 Massachusetts, Arlington, MA
02174, USA

ZDB286 COM DOS Extended debugger Version 2 .10A, 1990

Zortech Incorporated , 1165 Massachusetts, A r lin g ton , MA

02174, USA

197

[ZDBV90]

[ZED89]

[ZMAP90]

[ZMP290]

[Z0RC90]

[Z0RC89]

[Z0RC89b]

ZDBV86 COM Zortech Virtual debugger Version 2 10A, 1990
Zortech Incorporated, 1165 Massachusetts, Arlington, MA
02174, USA

ZED COM Version 3 00 Zortech Limited, 1989
Zortech Incorporated, 1165 Massachusetts, Arlington, MA
02174, USA

ZMAP EXE Zortech Standard mapper, 1990
Zortech Incorporated, 1165 Massachusetts, Arlington, MA
02174, USA

ZMAP286 EXE DOS Extended mapper, 1990
Zortech Incorporated, 1165 Massachusetts, Arlington, MA
02174, USA

stZortech C++ Version 2 1 Update Guide 28 May 1990, 1
print
Zortech Incorporated, 1165 Massachusetts, Arlington, MA
02174, USA

Zortech C++ Version 2 0 compiler reference manual
Zortech Incorporated, 1165 Massachusetts, Arlington, MA
02174, USA

Zortech C++ Compiler Vers ion 2 0 Upgrade fo r guide OS/2

Zortech Incorporated , 1165 Massachusetts, A r lin g ton , MA

02174, USA

198

[Z0RC88] Zortech C++ version 1 07 release notes
Zortech Incorporated, 1165 Massachusetts, Arlington, MA
02174, USA

[Z0RT90a] DOS 386 Zortech C++ version 2 18 for 80386
microprocessor applications, 1990
Zortech Incorporated, 1165 Massachusetts, Arlington, MA
02174, USA

[Z0RT90b] Zortech C++ Version 2 1, 1990
Zortech Incorporated, 1165 Massachusetts, Arlington, MA
02174, USA

'Z0RT89] Zortech C++ Version 2 0, 1989
Zortech Incorporated, 1165 Massachusetts, Arlington, MA
02174, USA

[Z0RT88] Zortech C++ version 1 07, 1988
Zortech Incorporated, 1165 Massachusetts, Arlington, MA
02174, USA

[ZTC90a] ZTC COM DOS 386 Zortech compiler version 2 18,
1990
Zortech Incorporated, 1165 Massachusetts, Arlington, MA
02174, USA

[ZTC90b] ZTC COM Zortech C++ Compiler version 2 1, October 1990
Zortech Incorporated, 1165 Massachusetts, Arlington, MA
02174, USA

199

[ZWB90a]

[ZWB90b]

ZWB EXE Zortech C++ Workbench version 1 12, 1990
Zortech Incorporated, 1165 Massachusetts, Arlington, MA
02174, USA

ZWB EXE Zortech C++ Workbench version 1 03, July 1990
Zortech Incorporated, 1165 Massachusetts, Arlington, MA
02174, USA

200

Ap p e n d ix 4 S o u r c e Code L is t in g s .

201

I l file animconc cpp
// Vr 5 0 03 07 90 11 30 ?K
// Stores background Dehxnd object m dyramic buffer
ii'clude "animconc hpp"
include <msmouse h>
ffi^ciude <fg h>
¿include <stdlib h>

void aninconc pdrawO (
msm hidecursor (),

anim_conc_outer_box [FG_X1]=x_center,
anim_conc_outer_box [FG_Y1]=y_center,
anim_conc_outer_box [FG_Y2] =y_center+height4- (a’mul) ,
anm_conc_outer_box [FG_X2]=x_center+width+(a*mul) ,

anim_conc_fòox [FG_X1]=anin_conc_outer_box fFG_Xl]+3,
amm_conc_fbox [FG_Y1]= a n i m _ c o n c _ o u t e r _ D o x [FG_Yl]+3,
anim_conc_fbox [FG Y21 =amm_conc_oute r_oox [FG_Y21-3,
anim conc fbox [FG X2]=anim conc outer d o x ÌFG X2]-3,

x_min_extn=anim_conc_outer_box (FG_X1]-1,
y_min_ext-i=anim_conc_outer_box [FG_Y1] -1,
x_max_extn=amm_conc_outer_Dox [FG_X2]+1,
y nax extn=artim conc outer oox [FG Y2j+1,

background_box(FG_X11=x_min_extn,
oackground_box [FG_Y1] =y_min_ext"i,
oackground_oox[FG_X2]=x_max_extn,
oackground_box[FG_Y2!=y_max_extn.

pixel_buffer_length=(sizeof(fg_color_t)* fg_box area(background box)),
oixel_ouffer=malloc (pixel_buf fer_length) ,
fg_readbox (background_box,pixel_buffer),
bytez=(sizeof(int))/2,
d i tmap=total_name,
fptr=fopen (bitmap,"wb"),
f w n t e (pixel_buf fer, bytez, pixel_buf fer_length, fptr) ,
fclose (fptr),
free (pixel_buffer) ,

fg_flllbox (FG^BLACK,FG_MODE_SET,-0,background box),
fg_drawbox(FG_LIGHT_WHITE,FG_MODE_SET,-0,FG_LINE_SOLID,anim_conc_outer_box

,fg_disDlaybox),

fg_flllbox (FG_BLUE,FG_MODE_SET,-O,anim_conc_fbox) ,

if (previous_value>100) previous_dot_value=100,
else previous_dot_value=previous_value,
while (previous_dot_value>0)(

scolor=10+previous_status*2,
randxy (),
xd[previous_dot_value]=dot_x,
yd[previous_dot_value]=dot_y,
fg_drawdot(scoior,FG_MODE_SET,~0,x d [previous dot_value]

,y d [previous_dot value]),

202

)
vo.a

I

void

previous_aot_value— ,
>

if (dot_value>Drevious_dot_value) (
scolor=10+status*2,
randxy (),
xa[dot_value]=dot_x,
yd[dot_valuel=dot_y,
fg_drawdot(scolor,FG_MODE_SET,~0,xd[dot_value],

,ya[dot_vaiue1),
dot_value--,
}

if ((dot_value==previous_dot_value)s&(dot_value>0>) (
scolor=10+previous_status*2,
fg_drawdot(FG_BL(JE, FG_MODE_SET, -0

,xa[previous_dot_value],yd[previous_dot _value]),
scolor=10+statjs*2,
ra’iaxy () ,
xd(aot_value]=dot_x,
yd[dot_value]=dot y,
fg_arawdot(scolor,FG_MODE_SET,'0,xd[dot_value]

,yd[dot_value|),
previous_dot_value-~,
dot_value--,
1

}
orevious_stacus=status,
msm_snowcursor(),

I

anmconc randxy 0 {
in_box=0,
while (m_box==0) 1 // non-zero if pt in box

test = rand () ,
test=test/32767,
dot_x=anim_conc_fbox(FG_X1]+(test)*

(amra_conc_fbox[FG_X2]-amm_conc_fbox [FG_X1]),
test=rand(),
test=test/327 67,
dot_y=anim_conc_fbox[FG_YX] + (test) *

(anim_conc_fbox [FG_Y2]-amm_conc_fbox (FG Y1]),
in_box=fg_pt_inbox(anim_conc_fbox,dot_x,dot_y),

)

ammconc peraseO {
msm_hidecursor(),

fg_fillbox (FG_BLACK,FG_MODE_SET,~0,anim_conc_fbox),
fg_drawbox (FG_LIGHT_WHITE,FG_MODE_XOR,~0, FG_LINE SOLID

, amm_conc_outer_box, fg_disp laybox),
pixel_buffer=malloc (pixel_buffer_length),
bitmap=total_name,
fptr=fopen (bitmap,"rb”) ,

204

min_-nul=0,
conv_-n=l,
cor.v_c=0
value=(raw_vaije'conv_m)+conv_c,
status=state,
status_extn=extent_onoff,
previous_value=value,
dot_value=value,
previous_dot_value=dot_value,
previous_status=status,
a = l,
height=40,
width=40,
action_default=4,
action=action_default,
pextent_set(status_extn) ,
Tiax_ext6’'t_box f 0] =x_cer>ter-l,
max_extenc_box[i 1=y_center-l,
max_extent_box[2] =x_center+width+(a'nax_mul)+1,
"nax_extent_box 13] =y_centerJ-beight + (a’Tiax^ul) +1,

/ / p i x e l _ b u f f e r _ l e " g t h = (s i z e o f (f g _ c o l o r _ t) * f g _ b o x _ a r e a (m a x _ e x t e n t _ b o x))
s i z e = s i z e o f (f g _ c o l o r _ t) ,

// pixel_buffer=farcalloc (pixel_ouffer_length,size) ,
// pixel_buffer=farnalloc (pixel_buffer_length)

file_rard=rand() ,
itoa (file_rand,sub_name,10),
total_name[0)=' a' ,
total_name[1]='c’,
q=2,
rfhile (sub_name(q-2]1='\0')(

total_name[q]=sub_name[q-2] ,
q++, 1

total_name[q]=' ',
total_name[q+1]='s',
total_name[q+21='a',
total_name[q+3]='v',
total_narae[q+4)='\0',
bitmap=total_name,

I

void perase (),
~ammconc() (

// farfree (pixel_buffer) ,
perase() ,

/’ source[0]='d',
source[1]='e',
source[2]='1',
source[3]=' ',
for (alpha=4,»bitmap1=' \0', alpha++)(

source[alpha]=*bitmap++,}
source[alpha]='\0',
system (source),

*/ 1
},
»endif ANIMCONC HPP

206

// set radius
x_radius=x_raddef+ (a'mul) ,
outer_radius=x_radius+3,

x_nn_extn=x_center-l+ (x_radius’r (cos (4 0))) -10-awmul,
y_min_extn=y_center-outer_ radius-ooly_const-a’,mul/2,
x_max_extn=x_center+l+ (x_radius*r (cos (1 0))) +10+a*mul,
y_max_extn=y_center+outer_radius,

background_box[FG_X1]=x_min_extn,
background_box[FG_Y1)=y_min_extn,
background_box[FG_X2]=x_max_extn,
background_box[FG_Y2i =y_max_extn,

pixel_ouffer_length=(sxzeof(fg_color_t)*
fg_box_area(background_DOx)),

pixel_buffer=malloc (pixel_buffer_length),
fg_reaabox (background_box,pixel_ouffer),
Dytez=(sizeof(int))/2,
bit"iap=total_rame,
fptr=focen (bitmap,"wb"),
f w n t e (pixel_buf fer, bytez, pixel_buf fer_length, fotr) ,
fclose (fptr),
free (pixel_buffer),

fg_fi1 lbox (fgeolor,FG_yODE_SET,-0,background_box),

// status colour
scolor=10+(status’2) ,
fg_draware(scolor,FG_MODE_SET,-0,xl,y1,x_radius, angl, ang2,

fg_displaybox) ,

port_botline_right[FG_Xi)=xl + l+(x_radius*(cos(0 5))) ,
port_botline_nght[FG_Y11=yl+(x_radius*(sin (0 5))),
port_bot line_nght [FG_X2] =oort_botline_nght [FG_X1] +5+a*mul,
port_bot line_nght [FG_Y2) =port_bot line_nght (FG_Y1] ,
fg_drawline (scolor, FG_MODE_XCR, '0, FG_LINE_SOLID, port_botlme_nght)

port_topline_nght[FG_X11=xl+1+(x_radius*(cos(1 0))),
port_topllne_nght [FG_Y1) =y 1 f (x_radius* (sin (1 0))) ,
port_topline_right[FG_X2]=port_topl1ne_rlght[FG_X1]+10+a*mul,
port_topline_nght [FG_Y2] = port_topline_nght [FG_Y1] ,
fg_drawlin e (scolor,FG_MODE_XOR,~0,FG_LINE_SOLID,port_topline_nght) ,

port_topline_left(FG_X1]=xl-l+(x_radius*(cos(3 5))),
port_topline_left [FG_Y1] =y 1 (x_radius* (sin (3 5))) ,
port_topline_left[FG_X2)=port_topline_left[FG_X11-5-a*mul,
port_topline_left[FG_Y21=port_topline_left[FG_Y1],
f g_drawlme(scolor,FG_MODE_XOR,~0,FG_LINE_SOLID,port_topline_left) ,

port_botline_left[FG_X1)=xl-l+(x_radius*(cos(4 0))) ,
port_botline_left[FG_Y11»y1 + (x_radius*(sin(4 0))),
port_botline_left[FG_X2]=port_botline_left[FG_X1J-10-a*mul,
port_botline_left[FG_Y2]=port_botline_left[FG_Y1],
fg_drawline(scolor,FG_MODE_XOR, -0,FG_LINE_SOLID,port_botline left).

208

// redraw
scolor=10+(status’2),
fg_draware(scolor,FG_MODE_SET,~0,xl,yl,x_radius,angl, ang2

,fg_disDiayoox),
fg_drawlme(scolor,FG_MODE_XOR,-0, FG_LINE_SOLID

, port_bot 1 ine_nght) ,
fg_drawline(scolor,FG_MODE_XOR,~0,FG_LINE_SOLID

, port_tool ine_right) ,
fg_drawline(scolor,FG_MODE_XOR,-0,FG_LINE_SOLID

, port_ootlme_ieft) ,
fg_drawlire(scolor,FG_MODE_XOR,-0,FG_LINE_SOLID

, port_toolme_ie f ;) ,
fg_fillpolygon(scolor, FG_M0DE_X0R, - 0,4, poly, fg displaybox),
previous_status=status,

}
fg_drawline (color,FG_MODE_XOR, ~0,FG_LINE_SOLID, lir-e) ,
fg_drawlme(color,FG_MODE_XOR,~0,FG_LINE_SOLID

, nght_angle_l m e) ,
ang3=ang3-((value/100)*delta_angle),
if (ang3 <= 0) ang3=3600+ang3,
ang4=ang3-900,
if (ang4 <= 0) ang4 = 3 600 + ang4-,

/* ang3=ang3+((value/100)*delta_angle) ,
if (ang3>=3600) ang3=ang3-3600,
ang4=ang3+900,
if (ang4>=3600) ang4=ang4-3600,

*/
angle=(ang3/fullcir),
angle=angle*2*3 1415926,
angle2=(ang4/fullcir),
angle2=angle2*2*3 1415926,

line [FG_X1]=xl-((0 75*x_radius)* (cos(angle))),
line [FG_Y1]=yl-((0 75*x_radius)* (sin(angle))),
line [FG_X2]=xl+((0 75*x_radius)* (cos(angle))),
line [FG_Y2]=yl+((0 7S*x_radius)*(sin(angle))) ,
fg_drawline(color,FG_MODE_XOR,-0,FG_LINE_SOLID,line) ,

nght_angle_line [FG_X1] =xl-((0 75*x_radius) * (cos (angle2))) ,
right_angle_lme (FG_Y1) =yl-((0 75*x_radius) * (sin (angle2))) ,
right_angle_lme [FG_X2] =xl+((0 75*x_radius) * (cos (angle2))) ,
nght_angle_line [FG_Y2]=yl+((0 75*x_radius) * (sin (angle2))) ,
fg_drawline(color,FG_MODE_XOR,-0,FG_LINE_SOLID

, nght_angle_line) ,
mod=l,
msm_showcursor () ,

\
)

void animpie peraseO (
msm_hidecursor(),

// set radius
x_radius=x_raddef+ (a*mul),

210

float poly_const,
fg_coord_t poiyLlOl,
_"t degrad,
c-sl-c

v o i d p d r a w () ,

v o i d p a n i m a t e () ,

v o i d p e x t e n t _ o g e n () ,
v o ^ d p e x t e n t _ p d r a w () ,

v o i d p e x t e n t _ p e r a s e () ,

animpie(unsigned x,unsigned y,int id,float m,float raw_value,unsigned
state,int extent_onoff) () (

identifier=id, // cadshape id
cad type=4, // DIPAIP type
color=15, // default colour
fgcolor=0, I I default colour
degrad=l, I I degrees - radians falg
delta_angle=250, I I default value for pie increment
fullcir=3600,
x_raddef=10, // default Die radius
poly_const=5, // triangular pedestial constant
a=2, // nultlplication factor
ang3=3600, I I running pie angle for animation
arg2=3600, // default value for oie stoo angle
angl=0, // default value for pie start angle
mod=0, // animation flag
// pass parameters
x_center = x, y_center = y
conv_m=l, // Conversion multiplier
conv_c=0, // Conversion constant
value=(raw_value*conv_m)+conv_c,
status=state,
previous_status=status,
status_extn=extent_onoff,
mul=m,
min_mul=0,
max_mul=10,
action_default=2,
act1 on=action_default
pextent_set(status extn),

// set radius
x_radius=x_raddef+(a*max_mul),
outer radius=x radius+3.

max_extent_box[0]=x_center-l+(x_radius*(cos(4 0)))-10-a*max_mul,
max_extent_box[1]=y_center-outer_radius-poly_const-a*max_mul/2,
max_extent_box[2]=x_center+(x_radius*(cos(1 0)))+10+a*max_mul,
max_extent_box[3]=y_center+outer_radius,

// pixel_buf fer_length=(sizeof(fg_color_t)*
fg_box_area(max_extent_box)),

size=sizeof(fg_color_t),
I I pixel_buffer=farcalloc (pixel_buffer_length, size) ,
// pixel_buffer=malloc (pixel_buffer_length) ,

212

I l file ammpipe cpp
I l V4 3 Flash graphics 19 02 90 18 50
I l V4 8 05 04 90 17 00 PK
I l Pushes background 'behind' object to dynamic buffer on draw
I I Pulls background back to screen on erase
// V5 0 14/06/90 12 00
I I Horizontal and verticle
¡fincluae "animpipe npp"
Include cmsmouse h>
include <bios h>
Include <fg h>

void ammoipe pextent_pgen () (

extents_sim[0)=x_center-l,
extents_sim[1]=y_center-l,
extents_sim[2] =x_center

+ ((length+l+ (a’mul)) 'honzl + ((diameter+1) ’vert) ,
extents_sim[3 j =y_center

+((diameter+1)*horiz)+ ((length+l+(a*mul))'vert),
1

void ani-npipe pextent_pdraw () (
msm_nidecursor(),

x_min_extn=x_center-l,
y_min_extn=y_center-l,
x_max_extn=x_center

+ ((length-t-l* (a’mul)) ’horiz) + ((diameter+1) ’vert) ,
y_max_extn=y_center

+ ((diameter+1) ’horiz) + ((length+l+ (a’mul)) ’vert) ,

extent_box [FG_X1]=x_min_extn,
extent_box [FG_Y1)=y_min_extn,
extent_box [FG_X21=x_max_extn,
extent_box [FG_Y2)=y_max_extn,
if (extent_overlap==0) (extent_color=color,)
else {extent_color=color-2, (
fg_drawbox(extent_color,FG_MODE_XOR,~0,FG_LINE_MEDIUM_DASHED

,extent_box,fg_displaybox),
msm_showcursor() ,

I
void animpipe pextent_perase() (

msm_hidecursor(),
fg_drawbox (extent_color,FG_MODE_XOR,-0,FG_LINE_MEDIUM_DASHED

,extent_box,fg_display box),
msm_showcursor(),

)

void animpipe pdrawl) (
msm_hidecursor(),
flow_box [FG_Xl)=x_center,
flow_box [FG_Y11=y_center,
flow_box [FG_X2)=x_center+((length*(a’mul))’horiz)+ (diameter'vert) ,
flow_box [FG_Y2]=y_center+(diameter’h o n z) + ((lengths(a’mul))’vert),

214

_bios_timeofday (0,&previous_time),
msn showcursor(I,

else)}

}
v m d animpipe resetvarll (

void a nnoipe fillDioe()(

x_length=x_center+length+(a’mul) ,
y_length=y_center+length+(a*mul) ,

if (previous_value>=0)
xx= ((x_center+shi ft)*honz) + ((x_center+l) 'vert) ,

else xx= ((x_length-shi f t) *honz) + ((x_center+l) *verc) ,

if (previous_value>=0)
yy= ((y_center+l) *honz) + ((y_center+shi f t) »vert) ,

else yy= ((y_center+l) 'honz) + ((y_length-shi f t) *vert) ,

x_diameter=x_center+diameter,
y_diameter=y_center+diameter.

while ((xx<x_length) ss (honz==l) ss
(previous_value>=0))(

while (yy<y_diameter){
fg_drawdot(scolor,FG_MODE_XOR,~ 0 , x x , yy) ,
yy=yy+alpha,

}
yy=y_center + l,
xx=xx+beta.

while ((xx>x_center) SS (honz==l) SS (previous_value<0)) (
while (yy<y_diameter){

fg_drawdot(scolor,FG_MODE_XOR, -0, xx, yy) ,
yy=yy+alpha,

)
yy=y_center+l,
xx=xx-beta,

1

while ((yy<y_length)s s (vert==l)s s (previous_value>=0))(
while (xx<x_diameter){

fg_drawdot(scolor,FG_MODE_XOR, - 0, xx, yy) ,
xx=xx+alpha,

xx=x_center+l,
yy=yy+beta.

I

while ((yy>y_center)S S (vert==l)S S (prevlous_value<0)){
while (xx<x_diameter)(

fg_drawdot(scolor,FG_MODE_XOR, -0, xx, yy),
xx=xx+alpha,

I
xx=x center+1.

216

// f i l e a n i m p i p e npD

// Vr 5 0 12/06/90 il 45 ?K
* i f - s e f ANIMPIPE_-?P
i c e f . - e ANIMPI?E_n?P

f t i r c i u d e " c a d s h a p e h o p "

4 - e l u d e < fg h>

c l a s s a n i m p i p e p u b l i c c a d s h a p e (

p r o t e c t e d

c - a r * b i t m a p ,

- i t a , p r e v c o l o r , s h i f t , a l p h a , o e t a , e t a ,
f g _ b o x _ t f l o w _ b o x ,

f g _ c o o r d _ t y y , x x , x x _ s a v e d , y y _ s a v e d ,

.•’ C l e n g t n , d i a m e t e r , y _ l e n g t h , x _ a i a m e t e r , x _ l e n g t h , y _ d i a m e t e r , ,

l o - ' g c u r r e n t _ t . - ,e ,

-o-g p r e v i o u s _ t m e ,

-o~g inter_sairole_t i-ne,
.- i t v e r t , h o n z .

// orivate methods
vo.d resetvar(),
vo.d fillp^pe () ,

CwOllC

void pdraw () ,
void panimate() ,
void oextent_pgen() ,
void pextent_pdraw() ,
void pextent_perase() ,

animpipe(unsigned x,unsigned y,int id,unsigned xref,unsigned yref,float
m,float raw_value,unsigred state,int extent_onoff, int verthorz) ()(

x_center = x, y_center = y,
identlfier=id, // cadshape id
cad_type=4, // DIPAIP type
vert=verthorz,
horiz=0,
if (verthorz==0) horiz=l
mul=m,
max_mul=200,
min_mul=0,
conv_m=l, I I Conversion multiplier
conv_c=0, // Conversion constant
value= (raw_value*conv_m) -t-conv_c,
previous_value=value,
status=state,
status_extn=extent_onof f,
a=l,
fgcolor=0,
color=15,
shift=l, // deafult pixel shift
alpha=4, // y inter dot spacing
beta=4, // x inter dot spacing

218

// f i l e a n i m p l o t cp p

// Vr5 2 20/07/90 15 00 PK
♦ -•’ e l u d e " a n i m p l o t h p p "

¡ (. • ' c lu a e <msmouse h>
♦ i n c l u d e < fg h>

i n c l u d e < t im e h>

♦ i p c l u d e < s t d i o h>

v o i a a n i m D l o t o e x t e n t _ p g e n () (

/ / e x D a n d a r e a i f r e q u i r e d

x _ m i n = x _ c e n t e r - x _ o f f s e t - (a ’ m u l) ,

y _ m i n = y _ c e n t e r - y _ o f f s e t - (a * (m u l / 1 0)) ,

x _ m a x = x _ c e n t e r + x _ o f f s e t + (a ’ m u l) ,

y _ m a x = y _ c e n t e r + y _ o f f s e c + (a * (m u l / 1 0)) ,

// e x t e n t s

e x t e n t s _ s i n [0) = x _ m in - 6 ,

e x t e n t s _ s i m [l] = y _ m i n - 8 - f g _ D o x _ h e i g h t (f g c h a r b o x) ,

e x t e n t s _ s i m [2] = x _ m a x + 6 + 4 ’ f g _ b o x _ w i d t h (f g c h a r b o x) ,

e x t e n t s s im [3]= y _ m a x + 6 .

void annplot sextent_pdraw () (
nsm_hidecjrsor(),

x_nun=x_center-x_of fset- (a’mul) ,
y_mm=y_center-y_of f set- (a* (mul/10)) ,
x_max=x_centerJ-x_of fsett (a’mul) ,
y_"iax=y_center+y_offset+(a’ (mul/10)),

// extents
x_min_extn=x_min-6,
y_trun_extn=y_min-8-£g_box_height(fg charbox),
x_max_extn=x_max+6+4’fg_box_width(fg charbox),
y_max_extn=y_max+fi,

extent_box [FG_X1]=x_min_extn,
extent_box [FG_Y1]=y_min_extn,
extent_box [FG_X2]=x_max_extn,
extent_box [FG_Y2]=y_max_extn,
if (extent_overlap==0) {extent_color=color, }
else (extent_color=color-2,)
fg_drawbox (extent_color,FG_MODE_XOR,~0,FG_LINE_MEDIUM_DASHED

,extent_box,fg_display box),
msm_showcursor 0,

t
void animplot pextent_perase() {

msm_hidecursor() ,
fg_drawbox (extent_color,FG_MODE_XOR,-0,FG_LINE_MEDIUM_DASHED

,extent_box,fg_display box),
msm_showcursor(),

t

void animplot pdraw() (
msm hidecursor () ,

220

ur_linef-G_X1)=anim_plot_obox[FG_X2] ,
u r _ l m e [FG_Y1) =anim_plot_obox [FG_Y1! ,
ur_lire [FG_X2 1 =anni_plot_obox [FG_Xl] ,
ur_line [FG_Y2] =amm_ploC_obox [FG_Yl] ,

ll_line_2[FG_X1]=anim_plot_obox[FG_X1]-1,
11 1ine_2[FG_Y1]=anim_plot_obox[FG_Y1]-X,
ll_line_2 [FG_X2) =anim_olot_obox [FG_X1) -1,
11 1 ine_2 [FG_Y2] = amm_plot_obox [FG_Y2] +1,

ul_line_2[FG_X1]=anim_plot_obox[FG_X1)-1,
ul_line_2[FG_Y11=anim_plot_obox[FG_Y2]+1,
ul_line_2[FG_X2]=artim_plot_obox[FG_X2]+1,
ul_line_2[FG_Y2]=anin_plot_obox(FG_Y2]+1,

1r_lipe_2(FG_X1)=anim_plot_obox[FG_X2]+1,
1r_line_2[FG_Y11=arum_plot_obox[FG_Y21+1,
lr_l-ne_2 [FG_X2] =amm_plot_obox [FG_X2] +1,
lr_lme_2 [FG_Y2] =anim_olot_obox [FG_Y1] -1,

ur_l ine_2 (FG_X1] =amm_plot_ooox [FG_X2] +1,
ur_line_2 [FG_Y1] = a m -n_plot_obox (FG_Y1] -1,
ur_line_2[FG_X2]=anim_plot_obox[FG_X1]-1,
ur_line_2[FG_Y2]=anim_plot_ODox[FG_Y1]-1,

fg_ctrawl m e (FG_BLACK,FG_MODE_SET, -0,FG_LINE_SOLID, ll_line) ,
fg_drawl.ne(FG_3LACK,FG_MODE_SET,- 0 , FG_LINE_SOLID,ul_line),
fg_drawline(FG_WHITE,FG_MODE_SET,-0,FG_LINE_SOLID,lr_line),
fg_drawline (FG_rfHITE, FG_'10DE_SET, - 0, FG_LINE_SOLID, ut_Une) ,

fg_drawlme(FG_3LACK,FG_MODE_SET,-0,FG_LINE_SOLID,ll_line_2),
fg_drawline(FG_BLACK,FG_MODE_SET,-0,FG_LINE_SQLID,ul_lme_2),
fg_drawlme(FG_WHITE,FG_MODE_SET,~0,FG_LINE_SOLID,lr_line_2) ,
fg_drawline(FG_WHITE,FG_MODE_SET,-0,FG_LINE_SOLID,ur_line_2)»

x_text=anim_plot_obox [FG_X2|+4,
y_text=anim_plot_obox [FG_Y2]-0 75*fg_box_height(fg charbox),
valuout[0)='1',
valuout[1]='0',
valuout[2)=’0',
valuout[3]='%',
valuout[4]='\0',
fg_puts (FG_MAGENTA,FG_MODE_XOR,-0,FG_ROTO,x_text,y_text,valuout

,fg_dlsplaybox) ,

y_text=anim_plot_obox [FG_Yl)-0 25*fg_box_height(fg charbox),
valuout(0)=' ’,
valuout[1]=' 0',
valuout[2]=' ',
valuout[3] % ' ,
valuout[4)= '\0',
fg_puts (FG_MAGENTA,FG_MODE_XOR,-0,FG_ROT0,x_text,y_text,valuout

,fg_displaybox) ,

222

vaiuout[m]=' ' ,
valuout[m+1]='5',
vaiuout[m+2]=' e',
valuout[-n+3]='c',
vaiuout[m+4)='\ 0 ' ,
fg_outs (FG_BLACK, FG_MODE_'3ET, - 0, FG_ROTO, x_text, y_text, vaiuout

,fg_displaybox),
total_time=difftime(times[0],times[N-l)),
if (total_time ==0)(

total_time=l,) // avoid div by 0 (delta_time=0) ,
deita_tiTie= (total_time/(x_max-x_min)),

// generate x co-ords
x (.0 1 =x_nax,
for (n=l, n<N, nt +)

{
x[m]=x[m-ll-(dif ftime(times(m-11,times[ml) /delta_t »ne| ,

// time record out of bounds
if ((x[m) > x_max) || (x[ml <= x_min))
{
x[m] = x[m-1] , }

I

// generate corresponding ft y co-ords
for (p=0, p<N, p++)

(
V tp! = (y_min+ ((values [pi /100} * (y_max-y_-nin))) ,
1

// plot waveform
for (q=0, q<(N-l), q+ +)

(
xc=x[q], yc=y[qj,

if (yc > y_max) 1
yc=y_max,t

if (yc < y_min)(
yc=y_mm, \

plotline [FG_Xl]=xc,
plotline [FG_Yll=yc,
xc=x[q+1], yc=y[q+1],

if (attributes[q]==0) scolor=FG_LIGHT_GREEN,
if (attributes[q)==2) scolor=FG_LIGHT_RED,

if (yc > y_max)
(yc=y_max,
scolor=out_of_range_color, \

if (yc < y_min)
(yc=y_min,
scolor=out_of_range_color, I

if ((attnbutes[q]==l) | | (attnbutes[q+l]==l))
scolor=no log color.

224

// shift all raw data array entries
for (1=0, 1<(N-1), 1++)

(
values[(N—1)—1]=values[(N—2)—1],
times[(N-l)-l]=times[(N—2)-1],
attributes [(N-l) -1] =attributes! (N-2) -1] ,
)

// insert current raw data
values[0]=value,
times[0]=current_time,
scolor=10+status*2,
attributes[0]=status*2,

n=0,
while (n==0){

last_valid_log_time=times f1],
for (m=0, m< (N-l) , m++) (

if (times[m]>=last_val.d_log_tine+l 1*
deocunce_time)(

//shift from t[m+ll backwards
for (1 = 0, 1<(N-(m+2)) , 1 + +) (

values!(N-l)-1)=values[(N-2)-11
times!(N-l)-1]= c ̂ mes[(N-2)-1],
attributes[(N-l)-1]=

attributes!(N-2)-11,
)

times[m+l]=times(-i]-debounce_time,
attributes[m+1]=1, // no logging

values[m+l]=0,
}

else {
//if (times[m]>=last_valid_log_time+

1 l’debounce_time)
// discontinuity
// (attriDutes[m]=2,)

m=N-l,
n=l, // break while loop
)

t
}

for (1 = 1, 1<N, 1++) {
if (times[1]==0)(
times[1)=times[1-1J-debounce_time,

attributes[1]=1, // no logging
values[1]=0,)

)

for (1=0, 1<(N-l) , 1++)
(
if (times[l + l] > times[l]){

times[l+l]=times[l]-debounce_time,
attnbutes[l + l) =1, // no logging
values[1+11=0,

226

// plot waveform
// p n n t f ("commencing the plot"),
for (q=0, q< (N—1) , q+ +)

(
xc=x[q], yc=y[q],
l f (yc > y_max)(

yc=y_max,}
if (yc < y_min)(

yc=y_min,)

plotline [FG_Xl]=xc,
plotline (FG_Yl]=yc,
xc=x[q+l], yc=y[q+ll,

if (attributes[q]==0) scolor=FG_LIGrT_GREEN,
if (attributes [q] ==2) scolor=FG_LIGr'T_RED,

if (yc > y_max)
(yc=y_max,
scolor=out_of_range_color, 1

if (yc < y_min)
(yc=y_min,
scolor=out_of_range_color, }

if ((attnbutes[q]==l) I I (attnbutes[q-l]==l))
scolor=no_log_color,

plotline[FG_X2]=xc,
plotline [FG_Y21=yc,

fg_drawlne (scolor,FG_MODE_SET,-0,FG_LINE_SOLID
,plotline) ,

fg_drawdot(FG_BLACK,FG_MODE_SET,~0,xc,(y_minbox-6)),

msm showcursor() ,

void ammplot peraset) (
msm_hidecursor () ,

/* y_text=y_minbox-y_text_offset-fg_box_height(fg charbox),
x_text=x_mmbox+fg_box_width (fg charbox) ,
fg_puts (FG_RED,FG_MODE_SET,~0,FG_ROT0, x_text, y_text, valuout

,fg_displaybox),
y_text=y_minbox-(2*fg_box_height(fg charbox)),
x_text=x_maxbox,
fg_puts (FG_WHITE,FG_MODE_XOR,'0,FG_ROT270,x text,y_text,timemsgO

,fg_displaybox),
x_text=x_minbox,
fg_puts (FG_WHITE,FG_MODE_XOR,~0,FG_ROT270,x_text,y_text,timemsgl

,fg_displaybox),

// plot waveform

228

msm showcursor(),
1

// f.le animDlot hpp
// Vr5 20 20/07/90 14 45
// dasn on time intervals
♦lfndef ANIMPLOT_HPP
♦define ANIMPLOT HPP

♦include "cadsnace hpp"
♦lrclude <time h>
♦ include <st r m g n>
♦include <stdlib h>

class animDlot oublie cadshape (
C"ar ’ bitarrp,
float x_min, y_-nm, x_max, y_max,xc,ye,
fg_coord_t x_f.il, y_fill,
float x_text,y_text,
float x_offset, y_offset,
float y_text offset,
float x_minbox,y^inbox,x_maxDox,y_maxbox,
int l, 1, m, n, p, q, N, M, limit, a,
fg_color_t out_of_range_color,precolor,
fg_color_t no_log_color,
fg_line_t plotlme,
fg_box_t anim_plot_box,
fg_oox_t anim_plot_obox,
float values(1001 ,
t»-ie_t times [100],
-nt attributes(100 1,
t n e _ t last_valid_log_time,
t m e _ t current_time,
long run_debounce_time,
double delta_time,
double total time,
double debounce_time,
double mter_sample_time,
float x(100],
float y [100],
char datetime[26],
char timemsg0[9],
char timemsgl(9],
char * timeptr,
size_t timesize,
int byte_length,
fg_color_t far *pixel_in,
char *valu, // for converted debounce_time
char valuout[ll], // " " "
int dec,sign,digits, // for float -> string conversion
fg_line_t ll_line, ul_line,1r_line,ur_line,
fg_line_t ll_line_2, ul_line_2,lr_line_2,ur_line_2,

public

230

size=sizeof (fg_color_t) ,
// oixel_ouffer=farmalloc (pixel_ouffer_length) ,
// pixel_buffer=farcalloc (pixel_buffer_length, size) ,

flle_rand=rand() ,
ltoa (file_rand,sub_name, 10) ,
total_name[0] = 'a’ ,
total_name[1]=' o' ,
q=2,
while (sub_name[q-2]’='\0')(

total_name[q)=sub_name(q-2],
q+ + ,
}

tocal_name(q)=' ',
total_Tame[q+1]='s',
total_name(q+2)='a',
c.otal_rame [q+3] = ' v' ,
total_name[q+4]='\0',

oitmaD=total narre.

void perase() ,
-anmplot () (
perase (),

/’ source[0]='d',
source(1)='e',
source[2]='1',
source[3]=' ’ ,
f o r (a l p h a = 4 , ’ b i t m a p ' =’ \ 0 ' , a l p n a + +) {

s o u r c e [a l p h a j =’ b i tm a p + + ,)

s o u r c e (a l p h a]= ' \ 0 ' ,

s y s t e m (s o u r c e) ,

’ /
// farfree (pixel_buffer),
// farfree (pixel_in) ,

)
i,
#endif ANIMPLOT HPP

232

if (value<0) scoloralo,
fg_fìllbox (scoi or, FG_MODE_XOR, ~0, anim_sqr_fbox) ,
msm_showcursor () ,

voia animsqr pextent__pgen () (
extents_sim[0]=x_center-l,
excents_sim[l1=y_center-l,
extents_sim[2]=x_center+width+(a*mul)+1,
extents_sim[3] =y__center+height + (a*mul) +1,

}

void animsqr pextent_pdraw() (
msm_hidecursor () ,
x_mm_extn=x_center-l,
y_min_extn=y_center-l,
x_max_extn=x_center+width+ (a*~iul) +1,

y_max_extn=y_center+height+ (a'mul)+1,

extent_box[FG_Xl]=x_min_extn,
extent_box[FG_Y1]=y_min_extn,
extent_box[FG_X21=x_max_extn,
extent_box[FG_Y2]=y_max_extn,

if (extent_overlap==0) (extent_color=color, 1
else textent_color=color-2,)
fg_drawbox (extent_color,FG_MODE_XOR,-0,FG_tINE_MEDIUM_DASHED, extent_box

,fg_display box),
~ism_showcursor () ,

)

voia animsqr pextent_perase() (
nsm_hidecursor() ,
fg_drawbox (extent_color,FG_MODE_XOR,-0,FG_LINE_MEDIUM_DASHED,extent_box

,fg_display box),
'nsm_showcursor (),

)

void animsqr panimateO (
action--,
ìf (action==0)(

action=action_default,
ìf ((status==l)SS(value==previous_value))(//blink

fg_fillbox (scolor,FG_MODE_XOR,-0,anim_sqr_fbox) ,
}

ìf (value1=prevìous_value) (
msm_hidecursor(),
previous_value=value,
test_dot_color=fg_readdot((anim_sqr_fbox[FG_Xl]+1)

, (amm_sqr_fbox [FG_Y1] +1)) ,
ìf (test_dot_color1=0)

fg_fillbox(scolor,FG_M0DE_X0R,~0,anim_sqr_fbox),
scolor=10+value/20,
if <value>99) scolor=14,
if (value<0) scolor=10,
fg_flllbox (scolor,FG_MODE_XOR,-0,anim_sqr_fbox) ,

234

c-bl ic
void pdraw() ,
void panimateO,
void pextent_pgen(),
void Dextent_odraw() ,
void pextent_perase() ,

animsqr (unsigned x, unsigned y, int id, float m, float raw__value, unsigned
state, int extent_onoff) () (

x_center = x, y_center = y,
identifier=id,
cad_type=4, / / DIPAIP type
mul=m,
max_mul=12,
min_nul=0,
conv_Ti=l, // Conversion multiplier
conv_c=0, // Conversion constant
value=(raw_value*conv_n)+conv c,
stacus=state,
status_extn=extent_onof f,
previous_value=value,
previous_status=status,
a=l,
height=15,
width=15,
fgcolor=0,
color=15,
action_default = l,
action=action_default,
pextent_set(status_extn),
max_extent_box[0]=x_center~l,
max_extent_box[1]=y_center-l,
max_extent_box[2] =x_center+width+ (a*max_mul) +1,
max_extent_box[3]=y_center+height+(a*max_mul)+1,

// pixel_buffer_length=(sizeof(fg_color_t)* fg_box_area(max_extent_box)) ,
size=sizeof(fg_color_t),

// pixel_buffer=farcalloc (pixel_buffer_length, size) ,
I I pixel_buffer=malloc (pixel_buffer_length) ,

file_rand=rand () ,
itoa (file_rand,sub_name,10),
total_name[0]=' a’ ,
total_name[1]= 's',
q=2,
while (sub_name[q-2) 1 =■'\0') (

total_name[q]=sub_name[q-2],
q++,
)

total_name[q]=' ',
total_name[q+1]=' s' ,
total_name[q+2]='a',
total_name[q+31=' v',
total name[q-M]=’\0',

bitmap=total name.
)

236

fwrite (pixel_buffer,bytez,pixel_buffer_length,fotr),
fclose (fpt r),
free (pixel_buffer) ,

fg_fillbox (fgcolor, FG_MODE_3E7, ~0, bac)cground_box) ,

fg_drawline(color, FG_MODE_SET,-0,FG_LINE_SOLID,anim_sqr_line_one),
fg_drawline(color, FG_MODE_SET,~0,FG_LINE_SOLID, anim_sqr_line_two) ,

x_radius= (width+a*mul-2) /2 + 1,
y_radius=y_radius_const+a*mul/10,
angl=1800,ang2=3 600,
x_ell_center=x_center+(width+(a’mul))/2,
y_ell_center_bot=y_center,
fg_drawellipse(color,FG_MODE_SET, ~0,x_e1l_center,y_ell_center_bot,x_radius

,y_radius,angl, ang 2,fg_displaybox) ,

angl=0,ang2=3600,
y_ell_cencer_top=y_center+height+(a’mul) +1,
fg_drawel1ipse(color,FG_MODE_XCR,~0,x_ell_ceater,y_e1l_center_top,x_radius

,y_radius,an gl,ang 2,fg_displaybox) ,
scolor = 10+(previous_status*2) ,
level_height=height-2*y_radius-2,
i f (previous_value>100) y_ell_center_level=y_center+height+ (a’-nul) +1,
else y_ell_center_level=y_center+((level_heigh£+(a’mul))*

(previous_value/100))+l,
angl=0,ang2=3600,
fg_drawellipse (color,FG_MODE_SET,-0,x_ell_center,y_ell_center_level

,x_radius,y_radius,
angl,a ng2,fg_displaybox) ,
x_fill=x_center+l,
y_fill=y_center+l,
fg_fill (x_fill,y_fill,scolor, color) ,
msm_showcursor 0 ,
>

void animvol pextent_pgen() (
extents_sim[0]=x_center,
extents_sim(l]=y_center-(y_radius_const+a’mul/10)-4,
extents_sim[2]=x_center+width+(a’mul)+2,
extents_sim[3j=y_center+height+ (a'mul)+ 2 +(y_radius_const+a’mul/10),

}

void animvol pextent_pdraw() (
msm_hidecursor 0 ,

x_min_extn=x_center,
y_min_extn=y_center-(y_radius_const+a’mul/10) -4,
x_max_extn=x_center+width+(a’mul)+2,
y_max_extn=y_center+height+(a’mul)+2+(y_radius_const+a’mul/10),

extent_box[FG_X1]=x_min_extn,
extent_box[FG_Y1] =y_nun_extn,
extent_box[FG_X2|=x_raax_extn,
extent_box[FG_Y2]=y_max_extn,
if (extent_overlap==0) (extent_color=color,)

238

if (status'=previous_status)f
I I Remove second half of old level ellipse
fg_drawellipse(FG_BLACK,FG_MODE_SET,~0,x_ell_center

,prev_y_ell_center_level,x_radius, y _radius,angl,ang2
,fg_displaybox) ,

fg_drawline(colo r,FG_MODE_SET, ~0,FG_LINE_SOLID
, anim_sqr_lme_one) ,

fg_drawlme(color,FG_MODE_SET,~0,FG_LINE_SOLID
, amm_sqr_line_two) ,

fg_fill(x_fill,y_fill,FG_BLACK,color),

fg_fill (x_fill,y_fill, scolor, color) ,

)

else (
fg_drawline(color,FG_MODE_SET,-0,FG_LINE_SOLID

,anim_sqr_line_onel ,
fg_drawline(color,FG_MODE_SET,~0,FG_LIN£_SOLID

, amm_sqr_lne_two) ,
fg_fill (x_fill,y_fill,scolor, color) ,

// Remove second half of old level ellipse
fg_drawellipse(scolor,FG_MODE_SET,-0,x_ell_center

,prev_y_ell_center_level,x_radius,y_radius, angl,ang2
,fg_displayoox) ,

fg_drawline(color,FG_MODE_SET,~0,FG_LINE_SOLID
, amm_sqr_line_one) ,

f g_drawl me(color,FG_MODE_SET, -0, FG_LINE_SOLID
,anim sqr_line two),

}
!

else (// value < previous_value
// draw half new ellipse
angl=1800,ang2=3S00,
fg_drawellipse (color,FG_MODE_SET,-0,x_ell_center

,y_ell_center_level,x_radius,y_radius, angl,ang2
,fg_displaybox) ,

// fill with black between higher previous level and
// lower new level

x_fill=x_ell_center,
y_fill=prev_y_ell_center_level-y_radius-(prev_y_ell_center_level-

y_ell_center_ level)1 2 ,

fg_drawline(color,FG_MODE_SET,-0,FG_LINE_SOLID
,anim_sqr_line_one),

fg_drawline(color,FG_MODE_SET,-0,FG_LINE_S0LI0 *
, amm_sqr_line_two) ,

fg_flll(x_fill,y_fill,FG_BLACK,color),

// Remove old level ellipse
// angl=l,ang2=1799,
angl=0,ang2=1800, 4

240

fciose (fptr),
fg_wntebox (background_box,pixel_buffer) ,
1

free (pixel_buffer) ,

if (fptr'=NULL) (
source[0]=’d',
source[1]='e',
source[2]= ’1’,

source[31=' ' ,
for (alpha=4,»bitmap'=’\0',alpha++){

source[alpha]=*bitmap++,}
source[alpha]='\ 0 ' ,
system (source),
1

/* fg_fill (x_fil1,y_fill,FG_BLACK,color),
ang1=1800,ang2=3 600,
fg_drawel1.Dse (color,FG_MODE_XOR,~0,x_ell_center,y_ell_center_bot

,x_radius,y_radius,angl, ang 2,fg_disolaybox) ,
angl=0,ang2=3600,
fg_drawellipse (color,FG_MODE_XOR,-0,x_ell_center,y_ell_center_too

,x_radius,y_radius,angl,ang 2,fg_displaybox) ,
angl=0,ang2=3600,
fg_drawellipse (FG_3LACK,FG_MODE_SET,~0,x_ell_center,y_ell_center_level

,x_radius,y_radius,ang 1,ang2,fg_displaybox) ,
fg_drawline(color,FG_MODE_XOR,-0,FG_LINE_SOLID,anim_sqr_line_one) ,
fg_arawline (color,FG_MODE_XOR,-0,FG_LINE_SOLID,anim_sqr_line_two) ,

*/

msm_showcursor() ,
>

I I file animvol hpp
// Vr 4 10 28/04/90 12 30 PK
4 lfndef ANIMVOL_HPP
»define ANIMVOL_HPP

♦include "cadshape hpp"

class animvol public cadshape (

protected
float xl,yl,x2,y2,
float height,width,level height,
fg_coord_t x_fill,y_fill,
fg_coord_t x_radius,y_radius, x_ell_center, y_radius_const,
fg_coord_t y_ell_center_bot,y_ell_center_top,y_ell_center_level

,prev_y_ell_center_l evel,
fg_coord_t deadband_level,
fg_line_t anim_sqr_line_one, anim_sqr_line_two,
int a,angl,ang2
public

242

total_name[q+4]=' \0’,

bi tmap=t:otal_name,

void perase() ,
- a m m v o l O (

perase(),
/* source(0]='d',

source[1]='e',
source[2]=' 1' ,
source[3]=' ' ,
for (aloha=4 *bitmaD’= ’\0',alpha++){

source[alpha)=*bitmap++,)
source[alphal='\0',
system (source),

*/)
),

(eiaif ANXMVOL HPP

)

// file basictile cpp
// Vr 5 1 16 07 90 09 40 PK
♦i~clude "basictile hpp"
♦ delude <stdlib h>
♦ i-'clude cmsmouse h>
♦include <fg h>

void basictile basic_pdraw() (

x_center=x_center,
y_center=y_center,

value_box[FG_X11=x_center-0 5*fg_box_width(fg charbox),
value_box[FG_Y1]=y_center,
value_box[FG_X2]=x_center+6 5* (fg_box_width (fg charbox)),
value_box[FG_Y2)=y_center+iterns*(fg_box_height(fg charbox)),

frame_box[FG_X1]=value box[FG_X1]-5,
frame_box[FG_Yl)=value_box[FG_Y1)-5,
frame_box[FG_X21 =value_box[FG_X21 +5,
frame_box[FG_Y2]=value_box[FG_Y2]+5,

frame_box_2[FG_X1]=value_box[FG_Xl]-15,
frame_box_2[FG_Y1J =value_box[FG_Y1J-15,
frame_box_2[FG_X2]=value_box[FG_X2]+15,
frame_box_2[FG_Y2]=value_box[FG_Y2]+15,

ll_line[FG_X1]=frame_box(FG X I J ,

11_1 m e [F G _ Y 1)-frame_box[FG_il! ,
ll_line[FG_X2]=frame_box[FG_Xl],
ll_line[FG_Y21rame_box[FG Y2J ;

244

fg_£illbox(FG_MAGENTA,FG_MODE_SET,~0,frame_box_2) ,
fg_fllloox(FG_CYAN,FG_MODE_SET,-0, frame_box) ,

fg_drawline(FG_BLACK,FG_MODE_SET,~0,FG_LINE_SOLID,ll_line),
fg_drawlxne(FG_BLACK,FG_MODE_SET,~0,FG_LINE_SOLID,ul_line) ,
f g _ d r a w l m e (FG_WHITE, FG_MODE_SET,-0, cG_LINE_SOLID, l r _ l m e) ,
fg_drawline(FG_WHITE,FG_MODE_SET,~0,FG_LINE_SOLID,ur_line),

fg_drawline(FG_BLACK,FG_MODE_SET,~0,FG_LINE_SOLID,11_1ine_2) ,
fg_drawl me(FG_BLACK,FG_MODE_SET,-0,FG_LINE_SOLID,ul_line_2),
fg_drawline(FG_WHITE,FG_MODE_SET,~0,FG_LINE_SOLID,lr_line_2),
fg_drawline(FG_WHITE,FG_MODE_SET,-0,FG_LXNE_SOLID,ur_line_2) ,

// file basicCile nop
// V5 2 17 07 90 09 35 PK
»if-'def 3ASICTILE_HPP
♦def.ne BASICTILE_hPP

tirclude "digvalue hop"

class basictile public digvalue (

i^t nmes,
cnar * Ditmap,

puolic

void basic_pdraw(),

basictile(unsigned x, unsigned y, int id, float m, float raw_value,
unsigned state, int extent_onoff) (x, y, id, m, raw_value, state,

extent_onoff) !

items=l,
offset=15,

max_extent_box[0]=x_center-(fg_box_width(fg charbox))-offset-deadband,
max_extent_box[11=y_center-offset-deadband,
max_extent_box[21=x_center+(7*(fg_box_width(fg charbox)))+offset

+deadband,
max_extent_box[3]=y_center+(items*(fg_box_height(fg charbox)))+offset

tdeadband,

// pixel_buffer_length=(sizeof(fg_color_t)*fg_box_area(max_extent_box)) ,
size=sizeof(fg_color_t),

// pixel_buffer=farcalloc (pixel Jbuffer_length,size),
// pixel_buffer=malloc (pixel_buffer_length),

file_rand=rand (),
itoa (flle_rand,sub_name,10),
total^name[01=’b' ,
total_name[11=’t',
Q=2,
while (sub_name[q-2]1='\0'){

total_name[ql=sub_name[q-2} ,

246

msm_showcursor(),i
v o i d b m a l p e x t e r t _ p e r a s e () (

m s m _ h id e c u r s o r () ,

fg_drawbox (extent_color,FG_MODE_XOR,-0,FG_LINE_MEDIUM_DASHED
, extent_box,fg_display box),

rasm_showcursor() ,
)

void bmal panimateO ()

void bmal pdrawO !
nsm_nidecursor 0,

x_min_extn=x center-1,
y_min_extn=y_center-l,
x_max_extn=x_center+l+abs(co_ord[0]-co_ord[2)),
y_max_extn=y_center+l+abs(co_ora[ll-co_ord[31),

extent_box [FG_Xl]=x min_extn,
extent_box (FG_Y11=y_min_extn,
extent_box [FG_X2]=x_max_extn,
extent_box [FG_Y2]=y_max_extn.

screen_cut (FG_X1]=x_center,
screen_cut (FG_Y1]=y_certer,
screen_cut [FG_X2!=x_center+abs(co_ord[0]-co_ord[2]) ,
screen_cut [FG_Y2)=y_center+abs(co_ord[1]-co ord[3]).

screen_ocut [FG_X11=x_center-l,
screen_ocut [FG_Y1]=y_center-l,
screen_ocut [FG_X2] =x_center-t-abs (co_ord[0] -co_ord[2)) +1,
screen_ocut [FG_Y2]=y_center+abs(co_ord[l]-co_ord[31)+1,

bitmap=total_name_in,
fptr=fopen(bitmap,nrb"),
byte_length=(filesize(bitmap))»size, // bytes
pixel_in=malloc (byte_length),
fread (pixel_in,bytez,byte_lergth, fptr) ,
fclose (fptr),

bitmap=total_name_out,
pixel_buffer_length=(sizeof(fg_color_t) * fg_box_area(screen_cut)),
pixel_buffer=malloc (pixel_buffer_length),
fg_readbox (screen_cut,pixel_buffer) ,
bytez=(sizeof(int))/ 2,
fptr=fopen(bitmap,"wb"),
fwrite (pixel_buffer,bytez,pixel_buffer_length,fptr) ,
fclose (fptr) ,
free (pixel_buffer) ,

fg_wntebox (screen_cut, pixel_in) ,
free (pixel_in),

msm_showcursor () ,

248

ouslic

int co_ord[4], // bitmao file co-ordinate info
int byte_length, // length of dynamic pixel buffers
fg_color t far 'pixel_in,
fg_color_t far *pixel_out,
fg_box_t screen_cut,screen_ocut,

static char messl[19],
static char mess2[19],

float ll_tx,ur_tx,ll_ty,ur_ty, // text window coords
long timer, // message timer

void pdraw () ,
void panimate() ,
void pextent_pgen(),
void oexcent_perase(),
void pextent pdraw(),

bmal (unsigned x,unsigned y, int id, int extent_onoff) () {

x_center=x,
y_center=y,
identifier=id,
cad_type=12,
status_extn=extent_onoff,
bytez=(sizeof(int))/2,
extent_overlap=0,
color=15,
size=sizeof(fg_color_t) ,

ll_tx=10, ur_tx=ll_tx+20*fg_box_width(fg charbox),
ll_ty=02, ur_ty=ll_ty+fg_box_height(fg charbox).

messi 0 1 ='z’,
messi l]='i'.
messi 2] =' p',
messi 3]='
messi 4] =' f ' ,
messi 5] ='ì ' ,
messi 6] »'1',
messi 7]='e',
messi 8]=' ',
messi 9] ='e',
messi 10]=' r'
messi 11]=’ r'
messi 12]='o ’
messi 13]-'r'
messi 14]=' '
messi 15]=' '
messi 161=' '
messi 17]=' '
messi 18]='\0

mess2[0]='b',

// cadshape id
// non-active cad type

250

source[alpha+2]='n',
source[alpha+3]='u',
source[alpha+4]='l',
source[alpha+5]='\0',

// Spawn a child process
// if ((spawnlp(0,"pkunzip exe","-o","b zip" , "bitmaol zmD",">nul"
// ,NULL))==-1)(}

// Call command via Command com
system (source),

)

bitmap="bitmapl znp",
size=sizeof(fg_color_t) ,

if ((fptr=fopen(bitmap,"rb”))==NULL)
(
I I O pen a t e x t w in d o w

w in d o w w i n d o w l , // t e x t w i rd o w

windowl open(ll_tx,ll_ty,ur_tx,ur_ty,FG_BLACK,FG_LIGHT_WHITE),
windowl text(mess2,FG_LIGHT_RED) ,
for (timer=0,timer<80000,tmer+ +) {)
windowl erased,

f c l o s e (f p t r) ,

w i n d o w l c l o s e d ,

// Generate a dummy bitmap
co_ord(0]=100,
co_ord[11=100,
co_ord[2] =199,
co_ord[3]=199,

byte_length=co_ord[2]-co_ord[0)+1, // bytes
byte_length*=co_ord[3]-co_ord[11+1,
byte_length*=sizeof(fg_coord_t),
pixel_in=calloc (byte_length,size),
memset (pixel_in,0x55,byte_length),

}

else {
// Read in bitmap info
byte_length=(filesize(bitmap)-8)»size, // bytes
pixel_in=malloc (byte_length),

fread (co_ord,sizeof(int) , 4, fptr) ,
fread (pixel_in,bytez,byte_length, fptr) ,
fclose (fptr),

// Delete zmp uncompressed bitmap data file
source[0]='d',
source[11='e',
source(21='1',
source(31=>'

252

source[2]=' 1' ,
source[3]=' ' ,
for (alpha=4,*bitmap'='\0’,alpha++)(
source[alpha]=*bitmap++,)
source[alpha]='\0',
system (source),

)
)

I,

♦ e^-dlf 3MA1_HPP
// f-le button cpp
// VrS 1 29/06/90 08 45 PK
// Second level inheritance
// Zortech & Flash Graphics
♦include "button hDO"
♦i~clude <msmouse n>
♦include <fg n>

voia button pextent_pgen() (

extents_sim[0!=x_center-(a*mul)-width-boundary,
extents_sim[1)=y_center-(a*mul)-height-boundary,
extents_sm[2] =x_center+ (a'mul) +width+bounaary,
extents_sim(31=y_center+(a*mul)+height+boundary,

l

void button oextent_pdraw() (
msm_mdecursor () ,

x_min_extr=x_center-(a*mul)-width-boundary,
y_min_extn=y_center-(a’mul)-height-boundary,
x_max_extn=x_center+(a*mul)+width+boundary,
y_max_extn=y_center+(a’mul)+height+boundary,

extent_box[FG_X1]=x_min_extn,
extent_box[FG_Y1]=y_min_extn,
extent_box[FG_X2]=x_max_extn,
extent_box[FG_Y2]=y_max_extn,

if (extent_overlap==0) (extent_color=color,)
else (extent_color=color-2, }
fg_drawbox(extent_color,FG_MODE_XOR,-0,FG_LINE_MEDIUM_DASHED

,extent_box,fg_display box),
msm_showcursor(),
t

void button pdraw() (
msm_hidecursor () ,

small_box [FG_X1]=x_center-(a*mul)-width,
small_box [FG_Y11=y_center-(a*mul)-height,
small_box [FG_X2]=x_center+(a'mul)twidth,
small_box [FG_Y2]=y_center+(a*mul)+height,

small_fill_box (FG_X1]=small_box [FG_Xl]+2,

254

tx_stacjs=small_box[FG_X1j +a*mul,
ty_stat:us=small_box [FG_Y1) +a*niul,
fg_drawDox (FG_WHITE,FG_MODE_SET,-0,FG_LINE_SOLID,outer_box_l

,fg_disolaybox),
if (status==Q)

{
for (i = 4, i>=0, i —) {

shadow_box_var[FG_X1]=outer_box_2[FG_X1]-i,
shadow_box_var[FG_Y1]=outer_box_2[FG_Y1]-l,
shadow_oox_var[FG_X2]=outer_box_2[FG_X2]+1 ,
shadow_box var[FG_Y2]=outer_box_2[FG_Y2]+ 1,
fg_drawbox(FG_BLACK,FG_MODE_SET,-0,FG_LINE_SOLID

,shadow_box_var,fg_displaybox) ,
1 - - ,

)
for (1 = 8 ,i>=0 ,i —)(

shadow_box_var(FG_X1]=small_box[FG_X1]-l,
shadow_box_var[FG_Y1]=small_box[FG_Y1]-i,
snadow_box_var[FG_X2]=small_box[FG_X2]+1 ,
shadow_box_var[FG_Y2]=small_box[FG_Y2 ! +1 ,
3=8 - 1 ,
fg_drawbox(3 ,FG_MODE_SET,-0,FG_LINE_SOLID

, shadow_box_var,fg displaybox),
>

fg_flllbox (scolor, FG_MODE_SET,-0,small_box),
fg_puts(scolor,FG_MODE_XOR,~0,FG_ROTO,tx_stacus,ty_status

,textO,fg_displaybox) ,
// fg_drawbox (FG_WHITE,FG_MODE_SET,~0,FG_LINE_SOLID

,outer_box_l,fg_displaybox),
I

if (status==l)
(

// fg_drawbox (FG_BLACK,FG_MODE_SET,-0, FG_LINE_SOLID
,outer_box_l,fg_displaybox) ,

for (i=4, i>=0 , 1 —) (
shadow_box_var(FG_X1]=outer_box_2[FG_X1]- 1 ,
shadow_box_var[FG_Y1]=outer_box_2[FG_Y1]- 1 ,
shadow_box_var[FG_X2]=outer_box_2[FG_X2]+ 1 ,
shadow_box_var(FG_Y2]=outer_box_2[FG_Y2]+1 ,
fg_drawbox(1 ,FG_MODE_SET,~0, FG_LINE_SOLID

, shadow_box_var,fg_displaybox),
1 — ,
}
for (i=8, i>=0, i —) {

shadow_box_var[FG_X1)=small_fill_box[FG_X1]-1 ,
shadow_box_var[FG_Y1J=small_fill_box[FG_Y1]-1 ,
shadow_box_var[FG_X2]=small_£ill_box[FG_X2]+ 1 ,
shadow_box_var[FG_Y2]=small_fill_box[FG_Y2]+ 1 ,

3=8-1,
fg_drawbox(j,FG_MODE_SET,~0,FG_LXNE_SOLID

,shadow_box_var,fg displaybox),
I

//fg_drawline(FG_BLACK,FG_MODE_SET,~0
,FG_LINE_SOLID,ll_line),

/I fg_drawline(FG_BLACK,FG_MODE_SET,-0

256

fg_fillbox (scolor,FG_MODE_SET,-0,small_DOx) ,
fg_puts(scolor,FG_MODE_XOR,-0,FG_ROTO,tx_status

, ty_status,textO,fg_displaybox),
// fg_arawbox (FG_WHITE,FG_MODE_SET,-0,FG_LINE_SOLID

,outer_box_l,fg_displaybox),
}

if (status==l)
(

// fg_drawbox (FG_BLACK,FG_MODE_SET,~0,FG_LIVE_SOLID
,outer_box_l,fg_displaybox),

for (i=4,i>=0,i—)(
s h a d o w _ b o x _ v a r [F G _ X 1]= o u t e r _ b o x _ 2 [F G _ X 1) - l ,
s h a d o w _ b o x _ v a r [F G _ Y 1]= o u t e r _ b o x _ 2 [F G _ Y 1) - l ,
s h a d o w _ b o x _ v a r [F G _ X 2 1 = o u t e r _ b o x _ 2 [F G _ X 2 1 + i ,

s h a d o w _ b o x _ v a r [F G _ Y 2] = o u t e r _ b o x _ 2 [F G _ Y 2] +i,
k = i + 3,
fg_drawbox(k, FG_MODE_SET,-0,FG_LINE_SOLID

,shadow_box_var,fg_displaybox) ,
i--,
for (]=0,]<7000,] + +)(}
I

for (i=8,i>=0,i--)1
shadow_oox_var[FG_Xl)=small_fill_box(FG_X1]-i,
shadow_oox_var[FG_Y1]=small_fili_box[FG_Y1)- l ,
shadow_box_var[FG_X21=small_fill_box[FG_X21+1 ,
shadow_box_var[FG_Y2]=small_fi1l_box[FG_Y2]+1 ,
3= 8 - 1 ,
fg_drawbox(], FG_MODE_SET, -0,FG_LINE_SOLID

,shadow_box_var,fg_displaybox) ,
}

//fg_drawline(FG_BLACK,FG_MODE_SET,~0,FG_LINE_SOLID
,ll_line),

//fg_drawlme(FG_BLACK,FG_MODE_SET,-0,FG_LINE_SOLID
,ul_line),

//fg_drawline(FG_BLACK,FG_MODE_SET,~0,FG_LINE_SOLID
,lr_line),

//fg_draw1lne(FG_BLACK,FG_MODE_SET,-0,FG_LINE_SOLID
, ur_l me) ,

fg_f11lbox (scolor,FG_MODE_SET,-0,small_fill_box) ,
fg_puts (scolor,FG_M0DE_X0R,~0,FG_ROTO,tx_status

, ty_status,textl,fg_displaybox) ,
)

// Click
for(sound_count=0,sound_count<10,sound_count++) sound_click 0,
msm_showcursor () ,
)
else (}

}

void button peraseO (
msm_hidecursor(),
£g_drawbox (FG_BLACK,FG_MODE_SET,-0,FG_LINE_SOLID, outer_box_l

,fg_displaybox) ,
fg_drawbox (FG_BLACK,FG_MODE_SET,-0,FG_LINE_SOLID,outer_box_2

,fg_displaybox) ,

1

258

button(unsigned x, unsigned y, int id, float m, float raw_value, unsigred
state, int extent_o-off) (x, y, id, m, raw_value,state,extent_onoff) {

cad_type=2, // DOP type
x_nput=x, y_input=y, // initialise input
«iidth=2’fg_box_width (fg charbox) ,// minimum width
height=0 5*width, // minimum height
max_Tiul=10, // maximum expansion factor
boundary=13,

// textO & textl
t e x t O [0]= t

t e x t O (1]= o',
t e x t O [2]= f' ,
t e x t O [31= V .

t e x t O [4]=
t e x t O [5]= \0>

t e x t l [01=
t e x t l [11= o' ,
t e x t l [21= n' ,
t e x t l [31= t

t e x t l [41= t

t e x t l [5)= \0'

max_extent_box(0)=x_center-(a*max_mul)-width-boundary,
max_extent_box[1)=y_center-(a*max_mul)-height-boundary,
max_extent_box [2] =x_center+ (a*max_mul) ■‘•width+boundary,
max_extent_box[3]=y_center+(a*max_mul)+height+boundary,

// pixel_Duffer_length=(sizeof(fg_color_t)* fg_box_area(max_extent_box)),
size=sizeof(fg_color_t),

I I oixel_buffer=farcalloc (pixel_buffer_length,size),
I I pixel_buffer=malloc (pixel_buffer_length) ,

file_rand=rand() ,
itoa (flle_rand,sub_name,10) ,
total_name[0]=' b' ,
total_name(1]=' u',
q=2,
while (sub_name[q-2J1='\0')(

total_name[q]=sub_name[q-2] ,
q+ + ,
)

total_name[q]=' ',
total_name[q+1]='s',
total_name[q+2]=' a',
total_name[q+3]= ’v',
total_name[q+4)='\0',

bitmap=total_name,
I

void peraseO
~button() (

// free (pixel_buffer),
perase (),

260

// file buttontile cpp
// Vr5 1 16/07/90 11 45 PK
// Second level inheritance
// Zortech & Flash Graphics
♦include "buttontile hpp"
♦include <msmouse h>
♦include <fg h>

void buttontile pdraw() {
msm hidecursor() ,

small_box [FG_X1]=x_center-(a*mul)-width,
small_box [FG_Y1]=y_center-(a*mul)-height,
small_box [FG_X2]=x_center+(a*mul)+width,
small_box [FG_Y21 =y_center+ (a*mul) -t-height,

outer_box_l [FG_X1]=sraall_box (FG_X1]-boundary,
outer_oox_l [FG_Y1] =srrall_box [FG_Y1]-boundary,
outer_DOx_l (FG_X21=small_box [FG_X2]+bounaary,
outer_box_l (FG_Y2]=snall_box [FG_Y21+boundary,

ll_line[rG_X1]=small_DOx[FG_X11 ,
11_1ine[FG_Y1]=small_box[FG_Y1] ,
11 _ 1 m e (FG_X2]=small_box[FG_X1] ,
11_1ine(FG_Y21=small_box[FG_Y2) ,

ll_line_2[FG_X1]=small_box[FG_X1)+1,
ll_lme_2 (FG_Y1) =small_box(FG_Yl] +1,
ll_line_2[FG_X2]=small_box[FG_X1j +1,
ll_line_2[FG_Y2]=smali_box(FG_Y2)-1,

ul_line(FG_X1]=small_box[FG_X1] ,
ul_line[FG_Y1]=small_box[FG_Y2],
ul_line[FG_X2]=small_box[FG_X2],
ul_line[FG_Y2]=small_box[FG_Y21,

ul_line_2[FG_X1]=small_box(FG_Xl]+1,
ul_line_2[FG_Y1!=small_box[FG_Y2]-1,
ul_line_2[FG_X2]=small_box(FG_X2]-1,
ul_line_2[FG Y2]=small box[FG Y2]-l,

r_line[FG_X1J =small_box[FG_X2],
r_line[FG_Y1]=small_box[FG_Y2),
r_line[FG_X21=small_box[FG_X2],
r_line[FG_Y2]=small_box[FG_Y11,

r_line_2[FG_X1]=small_box[FG_X2]-1,
r_line_2[FG_Y1]=small_box(FG_Y2]-1,
r_line_2[FG_X2]=small_box[FG_X21-1,
r_line_2[FG_Y2]=small_box[FG_Y1J +1,

ur_line[FG_X1]=small_box[FG_X2),
ur_line[FG_Yl]=sraall_box[FG_Y1],
ur_line[FG_X2)=small_box(FG_Xl] ,
ur line[FG Y2)=small box[FG Yl],

262

void outtontile digital_Dinput() (

// test if x_input,y_input is within input range
small_box [FG_X1]=x_center-(a*mul)-width,
small_box [FG_Y1]=y_center-(a'mul)-height,
small_Dox [FG_X2]=x_center+(a*mul)+width,
small_box [FG_Y2]=y_center+(a*mul)theight,

input_box[FG_X1]=small_box[FG_X11,
input_box(FG_Y1]=small_box[FG_Y1],
input_box[FG_X2)=small_box[FG_X2] ,
input_box[FG_Y2]=small_box[FG_Y2],

// test for mouse click
/ / m a t for click.
inside=fg_pt_inbox(mput_box, x_input, y_input) ,
lf (inside'=0)(

nsm_hidecursor(),

// Invert status and scolor
status='status,
scolor=10+(status*2),

if (status==Q)
{
£g_fillbox (FG_MAGENTA,FG_MODE_SET,-0,small_box) ,
fg_drawline(FG_WHITE,FG_MODE_SET,~0,FG_LINE_SOLID,ll_line) ,
fg_drawline(FG_WHITE,FG_MODE_SET,~0,FG_LINE_SOLID,ul_line),
fg_drawline(FG_BLACK,FG_MODE_SET,-0,FG_LINE_SOLID, lr_line) ,
fg_drawline(FG_BLACK,FG_MODE_SET,~0,FG_LINE_SOLID, ur_line) ,
fg_puts (scolor,FG_MODE_SET,-0,FG_ROTO,tx_status, ty_status

,textO,fg_dlsplaybox) ,
I

if (status==l)
(
fg_fillbox (FG_CYAN,FG_MODE_SET,-0, small_box) ,
fg_drawline(FG_BLACK,FG_MODE_SET,-0,FG_LINE_SOLID, ll_line) ,
fg_drawline(FG_BLACK,FG_MODE_SET,-0,FG_LINE_SOLID, ul_line) ,
fg_drawline(FG_WHITE,FG_MODE_SET,-0,FG_LINE_SOLID,lr_line) ,
fg_drawline(FG_WHITE,FG_MODE_SET,-0,FG_LINE_SOLID,ur_line),
fg_puts (scolor,FG_MODE_SET,~0,FG_ROTO,tx_status,ty_status

, textl,fg_displaybox),
)

// Click
for(sound_count=0,sound_count<10;sound_count++) sound_click(),
msm_showcursor(),
1
else {}

t

void buttontile perasel) {
msm hidecursor (),
fg_fillbox (FG_BLACK,FG_MODE_SET,-0, outer_box_l) ,

264

textO [3] =' f' ,
textO[4] =' ',
textO [5] ='\0' ,

textl[0]=' ’,
textl[11=' o ’ ,
textl[2]='n',
texcl[3]=' ',
textl[41='
textl[5]='\0',

max_extent_box[01=x_center-(a*max_raul)-width-boundary,
max_extent_box[1]=y_center-(a*max_mul)-heignt-boundary,
max_extent_box[21=x_center+(a*max mul)+width+boundary,
max_extent_box[3]=y_center+(a*nax_mul)+heignt+boundary,

size=sizeof(fg_color_t),
file_rand=rand(),
itoa (file_rand,sub_name,10),
total_name[01='b',
total_name[l]='t',
q=2,
while (sub_name[q~2]1='\0’)(

total_name[q)=sub_nameiq-2) ,
q++,
)

total_name[ql='
total_name[q+1]='s',
total_name[q+21='a’,
total_name[q+3J = 'v',
total_name[q+41='\0',
bitmap=total_name,

}
void perase(),
-buttontile () {

perase() ,
)

1,
»endlf BUTTONTILE HPP

// file cadshape hpp Vr 5 4 23/06/90 13 45
»lfndef CADSHAPE_HPP
»define CADSHAPE_HPP

»include <time h>
»include <stdio h>
»include <fg h>
»include <dos h>
»include <stdlib h>

class cadshape (
friend class template,

protected // so derived classes have access
static char source[21).

266

// v i r t u a l f u n c t i o n s m u s t n a v e SOME
I I d e f i n i t i o n i n t h e b a s e c l a s s , e v e n

// i f i t ' s j u s t e m p ty

v i r t u a l - c a d s h a p e () {)

v i r t u a l v o i d c d r a w () ()

v i r t u a l v o i d p a n i m a t e 0

v i r t u a l v o i d p e r a s e () (t

v i r t u a l v o i d p e x t e n t p g e n () 1}

v i r t u a l v o i d p e x t e n t p d r a w () (1

v i r t u a l v o i d o e x t e n t p e r a s e 0 ()

v i r t u a l v o i d a n a l o g p i n p u t O ()

v i r t u a l v o i d d i g i t a l p i n p u t O ()

cadshape () {)

void idmodfint new_id)(
ident1 fier=new_id,
t

unsigned int idinq()(
return identifier,
)

unsigned * getcoords()(
coords f 0]=x_center,
coords(1]=y_center,
return coords,

void pextent_set(m t extenth_onoff) (
status_extn=extenth_onoff,

)

int pextent_view() (
return status_extn,

)

int pextent_test(float* extn_sim_ptr) (
// test extents
xmintx=*extn sm_ptr,
ymintx=*(extn_sim_ptr+1) ,
xmaxtx=*(extn_sim_ptr+2) ,
ymaxtx=*(extn_sim_ptr + 3) ,

overlap=0,
ytest=0,
xmintx_outside=0,
xmaxtx_outside=0,
ymintx_outside=0,
ymaxtx_outside=0,

if ((xmintx<(x_min_extn)) I I (xmintx>(x_max_extn)))
(i f ((x_max_extn<(xmintx)) I I (x_max_extn>(xmaxtx)))

(//printf ("-a").

268

xmaxtx=*(extn_sim_ptr+2) ,
ymaxtx=*(extn_sim_ptr+3) ,
overlap=0,

1 f ((xmintx<fg_displaybox[FG_X1!) I I
(xmmtx>fg_displayDox[FG_X2]) I I
(xmaxtx<fg_disp laybox[FG_X1]) I I
(xmaxtx>fg_displaybox[FG_X2]))

overlap=l,

if (overlap==0)(
lf ((ymintx<(fg_displaybox[FG_Y1]+25)) I I

(ymintx> fg_aisplaybox[FG_Y2]) I I
(ymaxtx<(fg_displaybox(FG_Y1]+25)) I I
(ymaxtx>fg_displaybox[FG_Y2!))

overlap=l,1
return overlap,

)

float* pextent_gen(int mul_switch,float m_sim, unsigned new x_sin,
unsigned new_y sim) {

extents_sim_ptr=&extents_sim(0] ,
if (mul_switch1=0)(

mul_saved=mul,
mul=m_sim+mul,
) // for pre-expand test

else (
x_saved=x_center,
y_saved=y_center,
x_center = new_x_sim,
y_center = new_y_sim,
I

pextent_pgen 0,

if (mul_switch1=0)(
mul=raul_saved,
) // for pre-expand test

else)
x_center=x_saved,
y_center=y_saved,
t

return extents_sim_ptr,
>

int expandp(float m) (
mul=m+mul,
mul_break=0,
if (mul>=max_mul)(mul=max_mul,mul_break=l,}
if (mul<=min_mul)(mul=min_mul,mul break=l,)
pdraw(),
return mul_break,

I

void modulatep(float raw_value, int state, time_t time_stamp, long
run_time) {

status=state.

270

\ ,
?endif CADSHAPE_HPP

// file chemical cpp
I I from animvol
// Vr 1 00 06 05 90 21 00 PK
// Stores background behind object in dynamic buffer
♦.nclude "chemical hop"
♦include <msmouse h>
♦include <stdlib h>
♦include <fg h>

void chemical odrawl) {
msm_hidecursor(),

anim_sqr_lme_one[FG_X1]=x_center,
amm_sqr_l ire_one [FG_Y1] =y_center,
amm_sqr_line_one [FG_X2] =x_center,
anim_sqr_line_one[FG_Y2)=y_center+heignt+(a'mul) ,

anim_sqr_line_two[FG_X1]=x_center+width+(a*mul),
anin_sqr_lire_two[FG_Y1]=y_center,
anim_sqr_line_two [FG_X21 =x_center-*-width-t- (a*mul) ,
anim_sqr_line_two[FG_Y2]=y_center+heignt+(a'mul),

x_min_extn=x_center,
y_min_extn=y_center- (y_radius_const + a*’nul/10) - 4,
x_max_extn=x_center+width+(a’mul)+2,
y_max_extn=y_center+height+(a'mul)+2+(y_radius_const+a*mul/10),

background_box[FG_X1]=x_min_extn,
Dacxground_box[FG_Y1)=y_min_extn,
background_box[FG_X21=x_max_extn,
background_box[FG_Y2]=y_max_extn,

pixel_buffer_length=(sizeof(fg_color_t)*fg_box_area(background box)),
pixel_buffer=malloc (pixel_buffer length),
fg_readbox (background_box,pixel_buffer),
bytez = (sizeof(int))/2,
bitmap=total_name,
fptr=fopen (bitmap,"wb"),
f w n t e (pixel_buf fer, bytez, pixel_buf fer_length, fptr) ,
fclose (fptr),
free (pixel_buffer) ,

fg_fillbox (fgcolor,FG_MODE_SET,-0,background_box) ,

fg_drawline(color,FG_MODE_SET,-0,FG_LINE_SOLID,amm_sqr_line_one),
fg_drawline(color,FG_MODE_SET,~0,FG_LINE_SOLID,anim_sqr_line_two),

x_radius=(width+a*mul-2)/2+1,
y_radius=y_radius_const+a*mul/10,
angl=1800,ang2=3600,
x_ell center=x center*(width+(a'mul))/2,

1

272

/ / f i l l to new level with status colour

x_fill=x_ell_center,
y_fl1l=y_ell_center_level-y_radius-
(y_ell_center_level-prev_y_ell_center level)1 2 .

scolor=8+status,
angl=1800,ang2=3 600,

if (status 1=previous_status) {
// Remove second half of old
//level elliDse
fg_drawelllpse (FG_3LACK,FG_MODE_SET,~Q,x_ell_center

,prev_y_ell_center_level,x_radius,y_radius,angl,ang2
,fg_dispiaybox),

fg_drawlire(color,FG_MODE_SET,'0,FG_LINE_SOLID,
anim_sqr_liPe_one),

fg_drawline(color,FG_MODE_SET,-0,FG_LXNE_SOLID,
anim_sqr_li~e_trfo)

fg_fill (x_f1 11,y_f1 11, FG_3LACK, color) ,

fg_fill (x_fill,y_fill,scolor,color) ,
}

else {
fg_drawline(color,FG_MODE_SET,-0, FG_LINE_SOLID,

anim_sqr_lme_one) ,
fg_drawline(color,FG_MODE_SET,-0,FG_LXNE_SOLID,

a n i m _ s q r _ l n e _ t w o l ,
fg_fill (x_fill,y_fill, scolor, color),

// Remove second half of old level ellipse
fg_drawellipse (scolor,FG_MODE_SET,-0,x_ell_center

,prev_y_ell_center_level,x_radius,y_radius, angl,ang2,
fg_displaybox),

fg_drawlme(color, FG_MODE_SET, , FG_LINE_SOLID,
amm_sqr_line_one),

fg_drawline(color,FG_MODE_SET,-0,FG_LINE_SOLID,
anim_sqr_line_two),

)
}

else {// value < previous_value

// draw half new ellipse
angl=1800,ang2=3600,
fg_drawellipse {color,FG_MODE_SET,-0,x_ell_center,

y_ell_center_level,x_radius,y_radius,angl, ang2
,fg_dlsplaybox),

// fill with black between higher previous level and
// lower new level

274

// file chemical hpp
// Vr 1 00 06/05/90 20 00 PK
♦lfndef CHEMICAL_^PP
»define CHEMICAL_HPP

♦include "animvol hpp"

class chemical public animvol (
char * bitmap,
puDlic

v o i d p a n i m a t e () ,

v o i d p d r a w () ,

chemical (unsigned x, unsigred y, m t id, float m, float raw_value,
unsigned state, int extent_oroff)

(x, y, id, m, raw_value, state, extent_onoff)(

flle_rand=rand(),
itoa (flle_rand,sub_name,10),
total_namel0i ='c',
total_name[1]='h',
q=2-
while (sub_name[q-2]1='\0'){

total_name[q]=' ',
total_name[q+1]='s',
total_name[q+2)='a',
total_name[q+3]='v',
total_name [q-t-4) =' \0' ,

bitmap=total_name,
1

-chemical() (
perase(),
I

♦endif CHEMICAL HPP

// Design cpp
// by PK for MSc project
// V9 00 26/11/90 18 15 Include Simulation, Analog and Digital input

cad_type=ll. // Multi-DIP AIP type

total_name[q)=sub_name[q-2]
q+ + .

♦include
finclude
♦include
♦include
♦include

<bios h>
cstdlib h>
<fg h>
<msmouse h>
<time h>

276

P u m p " ,
P i e " ,
S q u a r e " ,

L e d " ,
T e x t " ,

Status",
Status3D",
Fune Menu"

", -1

ANIMPIE,
PIE,
SQUARE,
ANIMSQR,
DUALTEXT,
STATUSTEXT,
STATUS3D,
EXIT_6,
/* end */

"is~enu mouse6(sub menu 6),

e "u m (A N I M P L O T , B I T M A P l , GAS , E X I T _ 7) ,

strict menu s sub menu 7[] = (
P l o t " ,

3 i t m a p " ,

G a s " ,

Fune Menu",
', -1

A N IM P LO T ,

B I T M A P l ,

GAS,

EXIT_7,
/* end *,

nsie^u mouse7(sub_menu_7) ,

// associate unique integers with the following
enui (NEW_IC0N_1,NEW_IC0N_2,NEW_IC0N_3,NEW_IC0N_4,MOVE,E_MOVE,EXPAND,WIPE,

SHOW,DELETE,CLEAR,INFORMATION,SIMULATE,A INPUT,D INPUT,EXIT DOS),

struct menu s my _menu (] = (
" New Icon A", NEW_ICON_l,
” New Icon B", NEW_ICON_2,

New Icon C", NEW_ICON_3,
" New Icon D", NEW_ICON_4,
" Move", MOVE,
" E Move", E_MOVE,
" Size", EXPAND,
n Delete", DELETE,
n Wipe", WIPE,
" Clear", CLEAR,
" Show", SHOW,
» Info", INFORMATION,
" Animate", SIMULATE,
n A_Input", A_INPUT,
n D_Input", D_INPUT,
" Dos", EXIT_DOS,
", -1 /* end

fgnd foreground (0, 0) ,

main (argc,argv)
int argc,
char* argv[],(
static char messl[
static char mess4[
static char messS[
static char mess6[
static char mess2[
static char mess3[

="OOPS Foreground Designer Vr 9 0 by P Kiernan'’
="Extent overlap ",
»"No extent overlap n,
»"Ordered overlap",
»"System too slow",
»"System wait ”,

278

unsigned minx,
jnsigned miny,
-nsigned maxx,
unsigned maxy.

// mouse cursor coords

// l i n k e d - i n e x t e r n a l r o u t i n e s

v o i d m e n u g n s l O ,

v o i d m e n u g n s 2 () ,

v o i d m e n u g n s 3 () ,

v o i d m e n u g n s 4 () ,

v o i d f g _ i n i t _ p a l e t t e () ,

v o i d w i p e s r c (c h a r *) ,

v o i d b d i s p l a y (c h a r * , c h a r *) ,

v o i d s e l e c t b g () ,

// fill foreground (foreground) with cadshapes
// fill foreground (foreground) with cadshapes
// fill foreground (foreground) with cadshapes
// fill foreground (foreground) with cadsnapes

// flash graphics and palette initialisation
// destroys calling program

// displays background file
// allows selection of zip and zpi mimic file

void info_display(template *, cadshape *, fg_coord_t, fg_coord t),
int info_edit(template *, cadshape *, fg_coord_t, fg_coord_t),

srce=argv[0] ,
wipesrc(srce) ,

msmenu mouse(my_menu) ,
fg_init_palette(), // lnit graphics

m i n x = f g _ d i s p l a y b o x [F G _ X 1]+3,
m i n y = f g _ d i s p l a y b o x [F G _ Y 1] ,

m a x x = f g _ d l s p l a y b o x [F G _ X 2]-3,
m a x y = f g _ d i s p l a y b o x [F G _ Y 2] - 3 ,

// < max to maintain cursor visibility

msm_setareax(minx,maxx),
msm_setareay (mmy,maxy) ,

// Establish message and coordinate counter windows coords ,
ll_ty = 02, ur_ty=ll_ty+fg_box_height(fg charbox),

U _ t x l = 10, ur_txl= 629,
ll_tx2=fg_displaybox[FG_X2]-125,
ur_tx2= ll_tx2+5*fg_box_width(fg charbox),
ll_tx3=fg_displaybox[FG_X2)-80,
ur_tx3= ll_tx3+5*fg_box_width(fg charbox),

// Introductory message
window windowl,
windowl open(ll_txl, ll_ty,ur_txl,ur_ty,FG_LIGHT_BLUE,FG_LIGHT_WHITE) ,
windowl text(messl, FG_LIGHT_WHITE),
for (long wait=0,wait<150000,wait++)()
windowl erase!),
windowl closet).

I I Message window coords ,
ur_txl= ll_txl+19*fg_box_width(fg charbox),

1 1 display background mimic
if (argc<=2)

selectbg () ,
else

280

extent_result=foreground
extent_test(extents_sim_ptr,mv),

extent result+=(mv->boundary_test
(extents_sim_ptr)) ,

if (extent_result<l) {
x_saved=x,
y_saved=y,
rav->movep(x_saved,y_saved),
mv->perase () ,
)

} // drag symbol
msm_showcursor () ,
mv->movep(x_saved,y_saved),
)

t
mouse default_cursor() ,
break,

c a s e INFORM A T ION

cadshape * l-'foets =foreground test(),
if (infoets 1 = (cadshape *)0)(

mouse_button=0,
wnile (mouse_button<2) {

mouse cross_cursor(),
mouse wait_left_pressed(Sx,sy) ,
mouse translate_coords(sx,sy) ,
infoets = foreground nearest (x,y),
infoets->perase() , // pick it up
for (int 1 =0 , K10000, i++) i \
infoets->pdraw () ,
mouse_button=msm_getstatus(sx,sy) ,
mouse translate_coords(sx,sy),

t
template templatel(infoets,x,y),
void * template_ptr,
template_ptr=Stemplatel,
info_display(tempiate_ptr,infoets,x,y),

mouse default_cursor(),
exit_edit=0,
mouse_button=0,
while (exit_edit1 =1) (

mouse wait_right_pressed(Sx,Sy) ,
mouse translate_coords(Sx,Sy),
exit_edit=info_edit(template_ptr,infoets,x,y),

>
msm_showcursor(),

t
break,

case E_MOVE
cadshape * ets =foreground testO,
if (ets ’=(cadshape *)0){

mouse cross_cursor {) ,

mouse wait_left_pressed(sx, sy),
mouse translate_coords(Sx, Sy),

282

windowl erase(),
extent_overlap_status=0,
windowl text(mess5

, F G _ L I G H T _ W H I T E) ,

msm_showcursor 0 ,
t

x_saved=x, // no object overlao
y_saved=y,

)
else (// extent_result > 0

windowl erase(),
extent_overlap_status=l,
valu=itoa(extent_result,valuout

, 10),

mess4[15]=valuout[0],
mess4[16]=valuout[l],
windowl text(messi

, F G _ L IG H T _ W H IT E) ,

I

// Coords message
valu_x=itoa (x_saved,valuout_x, 10) ,
valu_y=itoa (y_saved,valuout_y, 10) ,
window2 text (valuout_x,F G _ L IG H T _ W H IT E) ,

window3 text(valuout_y,F G _ L IG H T _ W H IT E) ,

emv->pextent_movep(x,y,extent result),
emv->pextent_pdraw(),
emv->pextent_perase() , // drag symbol

1

if (extent_overlap_status==l) {
x_saved=*coords,
y_saved=*(coords+1) ,
I

emv->perase(),
emv->movep(x_saved,y_saved) , // place object

// at new destination
}

mouse default_cursor () ,
// restore background
msm_hidecursor() ,
windowl erased,
window2 erased,
window3.erase 0,

windowl closed,
window2 closed,
window3 closed,
msm_showcursor d ,
)

break,

case SHOW
if (' clear)(

284

msm_showcursor (),
}

outside_mul_limits=mv->expandp(mul),
if (outside_mul_limits>0)[mul=0,}

for (int 1=1, KlOO, i + +) (
for (int 3=1, 3<100, 3+-M(11

mv->perase(),
} // expand shape

else
{ // extent_result > 0
wmdowl erase () ,
extent_overlap_status=l,
valu=itoa(extent_result,valuout,10) ,
mess4[151=valuout[0],
mess4[16]=valuout[l],
windowl text(mess4,F G _ L IG r iT _ W H IT E) ,
)

)
if (msm_getstatus(Sx, Sy) & 2) (

msm_hidecursor(),
mul=mul-l,
mul_input=l, // use test mul factor
extents_sim_ptr=mv->pextent_gen(mul_input, mul, x, y) ,
extent_result=foreground extent_test

(extents_sim_ptr,mv) ,
extent_result + =(mv->boundary_test(extents_sim_ptr)) ,

if (extent_result<l)(
if (extent_overlap_status==l){

msm_hidecursor () ,
windowl erase (),
extent_overlap_status=0,

windowl text(mess5,FG_LIGHT_WHITE),
msm_showcursor() ,
>

outside_mul_limits=mv->expandp(mul) ,
if (outside_mul_llmlts>0)(mul=0,I
for (int 1 = 1 , i<100, i++) (

for (int j=l,]<100,]++)() t
m v - > p e r a s e () ,

1
else (// extent_result > 0

windowl erase(),
extent_overlap_status=l,
valu=itoa (extent_result, valuout, 10) ,
mess4[15]=valuout[0],
mess4[16]=valuout[1],
windowl text(mess4,FG_LIGHT_WHITE),
)

)
msm_showcursor (),

1
msm_showcursor();
mv->pdraw(),

// restore background

286

v a l u o u t [61= ' ' ,
v a l u o u t [7] = ' e ' ,

v a l u o u t [8] = ' r ' ,
v a i j o u t [9] = ' r ' ,
v a l u o u t [1 0] = ' o ' ,

v a l u o u t [1 1 1 = ' r ' ,

v a l u o u t [1 2 1 = ' \ 0 ' ,

i f (p e r c e n t _ e r r o r > 0) (

w i n d o w l t e x t (v a l u o u t ,FG_LIGrtT_WHITE) ,
f o r (l o n g _ n = 1 2 0 0 0 0 , l o n g _ n > 0 , l o n g _ n —) (}

w i n d o w i e r a s e () ,

}
w i n a o w l c l o s e 0 ,

m s m _ s h o w c u r s o r () ,

o r e a k .

case A_INPUT
caashaoe ’ a_inp =foreground test 0,
if (a_xnp ,=(caasnape ’)0)(

mouse cross_cursor0,
mouse wait_ieft_oressed(Sx,Sy),
mouse translate_coords(Sx,Sy),
a_inp = foreground nearest (x,y),
mouse cefault cursori).

while (-nsm_getstatus (S x , S y) & 1)
(mouse translate_coords (S x , S y) ,
mu 1 = 1,
input_value=a_inp->analog_inputp (x , y) ,

)
1
break.

case D_INPUT
cadshape * d_inp =foreground testO,
if (d_inp 1 = (caas1'ape ’)0)(

mouse aefault_cursor(),
mouse wa.t _ l e f t_pressed(Sx,sy),
mouse trarslate coords (Sx,Sy),
d_inp = foreground nearest (x,y),

while (ism_getstatus (S x , S y) S 1)

(-nouse t r a n s l a t e _ c o o r d s (S x , S y) ,
mu 1 = 1,

i n p u t _ o n o f f = d _ i n p - > d i g i t a l _ i n p u t p (x , y) ,

f o r (l o n g _ n = 4 0 0 Q 0 , l o n g _ n > Q , l o n g _ n - -) ()

1
} break.

case £XIT_DOS
msm_showcursor(),

// store foreground to disc
quit++,
break.

default

289

I I Erase any bm* sav constructor generated files left by 'free' calls
source[0]=’d',
source [1]='e',
source [2]='1',
source[3]=' ',
source[4] ='b' ,
source[5]='m',
source[6] ,
source[7]=' ',
source[8)='s',
source [9] =' a' ,
source [10] *>' v' ,
source[11]='\0',
system (source),

fg_term() ,
msm_term(),|

break,
)

1
)

290

x_max_extn=x_center+outer_radius+5* (f<3_box_width (fg charbox)) ,
y_max_extn=y_center+outer_radius+fg_box_height(fg charbox),

extent_box[FG_X1J =x_min_extn,
extent_box[FG_Y1]=y_rain_extn,
extent_box[FG_X2]=x_max_extn,
extent_box[FG_Y2]=y_max_extn,

background_box[FG_X1)=x_min_extn,
background_box[FG_Y1]=y_min_extn,
background_box[FG_X2]=x_max_extn,
background_box[FG_Y2]=y_max_extn,

pixel_buffer_length=(sizeof(fg_color_t)*fg_box_area(background_box)),
pixel_buffer=malloc (pixel_buffer_length) ,
fg_readbox (background_box,pixel_buffer),
bytez=(sizeof(int))/2,
bitmap=total_name,
fptr=fopen (bitmap,"wb"),
f w n t e (pixel_buffer,bytez,pixel_buffer_length, fptr) ,
fclose (fptr) ,
free (pixel_buffer),

fg_flllbox (fgcolor,FG_MODE_SET,-0,background_box),
fg_draware(color,FG_MODE_XOR,-0,xl,yl,inner_radius,angl,ang3

,fg_displaybox),
fg_draware(color,FG_MODE_XOR,~0, xl, yl, outer_radius,angl,ang3

,fg_displaybox),

line [FG_X1]=xl-outer_radius,
line [FG_X2]=xl+outer_radius,
line [FG_Yl]=yl,
line [FG_Y2]=yl,
fg_drawline(color,FG_MODE_XOR,-Q, FG_LINE_SOLID,line),

// status colour
scolor=10+(status*2) ,

// angle proportional to 1->100% value
ang2=((value/100)*1800),
angle=(value/100)*3 1415926,
if (angle>3 1415926) angle=3 1415926,
previous_ang2=ang2,
previous_angle=angle,

line [FG_Xl]=xl,
line [FG_X2]=xl+(x_radius*(cos(angle))),
line [FG_Y2]=yl+(x_radius*(sin(angle))),,

// avoid drawing sides of pie with such a small angle
// that xor of adjacent sides occurs

if ((x_radius* (s m (angle)) <1) is (x_radius* (sin (angle)) >-1)) (
if ((x_radius*(cos(angle)))>0)(|
else {fg_drawline(scolor,FG_MODE_XOR,-0,FG_LINE_SOLID,line),)
)

292

t e x t _ a n g l e = t e x t _ a n g l e + d e l t a _ t e x t _ a n g l e .

£g_puts(color, FG_MODE_XOR,-0 ,FG_ROTO, tx , ty , number_out
, fg_displaybox),

}

void dial panimateOf
action--,
if (action==0)(

action=action_default,
if ((value'=previous_value) II (status 1=previous_status))(
// angle proportional to 1->100% value

angle= (value/100)*3 1415926,
if (fabs(previous_angle-angle) > ((3 1415926)/18 0)){

if (angle>3 1415926) angle=3 1415926,
msm_hidecursor () ,
previous_value=value,
orevious_status=status,
// locate centre
xl=x_center,
yl=y_center,

// set radius
x_radius=x_raddef+(a*mul) ,

l i n e [F G _ X l] = x l ,
l i n e [F G _ Y l) = y l ,

line [FG_X2]=xl+(x_radius*(cos(previous_angle))),
line [FG_Y2]=yl+(x_radius*(sin(previous_angle))) ,
// avoid drawing sides of pie with such a
// small angle
// that xor of adjacent sides occurs
if ((x_radius*(sin(previous_angle))<1) &&

(x_radius*(sin(previous_angle))>-1))(
if ((x_radius*(cos(previous_angle)))>0){1
else { fg_drawlme (scolor, FG_MODE_XOR, ~0

,FG_LINE_SOLID, line) , }
t

else fg_drawline(scolor,FG_MODE_XOR, -0
, F G _ L I N E _ S O L I D , l i n e) ,

t x = x l + ((o u t e r _ r a d i u s + (f g _ b o x _ w i d t h (f g c h a r b o x)) *2 5)
* c o s (p r e v i o u s _ a n g l e)) ,

t y = y l + ((o u t e r _ r a d i u s + (f g _ b o x _ h e i g h t (f g c h a r b o x)) / 2)

*sin(previous_angle)),
tx_value=tx-l 5 * (fg_box_width(fg charbox)),
ty_value=ty-(fg_box_height(fg charbox)/2),
fg_put s (scolor,FG_MODE_XOR,-0,FG_ROT 0

,tx_value,ty_value,valuout,fg_displaybox),

// status colour
scolor=10+(status*2) ,

line [FG_X1]=xl-outer_radius,
line [FG_X2]=xl+outer_radius,
line [FG_Y2]=yl,

294

line [FG XI]=xl-outer_radius,
line [FG_X2]=xl+outer_radius,
line [FG_Yl]=yl,
line [FG_Y2]=yl,
fg_draw1me(colo r,FG_MODE_XOR,-0,FG_LINE_SOLID, 11 ne),

// status colour
scolor=10+(status*2),

line [FG_X1]=xl,
line [FG_X2]=xl+(x_radius*(cos(previous_angle))),
line [FG_Y2]=yl+(x_radius*(sin(previous_angle))),,

// avoid drawing sides of pie with such a small angle
// that xor of adjacent sides occurs

if ((x_radius* (s m (previous_angle)) <1) ss (x_radius*
(sin(previous_angle))>-1))(

if ((x_radius*(cos(previous_angle)))>0){ I
else !fg_drawline(scolor,FG_MODE_XOR,~0,FG_LINE_SOLID, line) ,)
}

else fg_drawline(scolor,FG_MODE_XOR, -0, FG_LINE_SOLID, line) ,

scale (0),
pixel_buffer=malloc (pixel_buffer_length),
bitmap=total_name,
fptr=fopen (bitmap,"rb"),

if (fptr1=NULL)(
fread (pixel_buffer,bytez,pixel_buffer_length,fptr) ,
fclose (fptr),
fg_writebox (background_box, pixel_buffer) ,
)

free (pixel_buffer),

if (fptr1=NULL) {
source[0]='d',
source[1]=’e',
source[2]='1',
source[3]='
for (alpha=4,*bltmap'='\0',alpha++)(

source[alpha]=*bitmap++,t
source[alpha]='\0',
system (source),
>

msm_showcursor () ,
}

// file dial hpp flash graphics
// Vr 5 0 19/04/90 09 00 PK
// second level derived class
tifndef DIAL HPP

fg_drawarc(color, FG_MODE_XOR,~0,xl,yl, outer_radlus,angl,ang3
, fg_displaybox),

296

total_name[0]='d',
Cotal_name[l)='1 ',
Q=2/
while (sub_name[q-2]1='\0'){

total_name[q]=sub_name[q-2] ,
q++,
}

total_name[q]=' ',
total_name[q+1]=' s' ,
total_name[q+2]= ' a' ,
total_name[q+3]=' v' ,
total_name(q+4]='\0',

bitmap=total_name,
)

void perase () ,

~dial() (
perase (),

},

// file digvalue cpp
// Vr 5 2 16 07 90 09 10 PK
¡(include "digvalue hpp"
♦include <stdlib h>
♦include <msmouse h>
♦include <fg h>

void digvalue pextent_pgen() (

extents_sim[0]=x_center-0 5*fg_box_width(fg charbox)-offset-deadband,
extents_sim[lJ =y_center-offset-deadband,
extents_sim[2]=x_center+ 6 5*(fg_box_width(fg charbox))+offset+deadband,
extents_sim[3]=y_center+items*(fg_box_height(fg charbox))+offset+deadband,

>

void digvalue pextent_pdraw() (
msm_hidecursor() ,

x_min_extn=x_center-0 5*fg_box_width(fg charbox)-offset-deadband,
y_min_extn=y_center-offset-deadband,
x_max_extn=x_center+6 5 * (fg_box_width(fg charbox))+offset+deadband,
y_max_extn=y_center+items*(fg_box_height(fg charbox))+offset+deadband,

extent_box[FG_X1]=x_min_extn,
extent_box[FG_Yl]=y_min_extn,
extent_box[FG_X2]=x_max_extn,
extent_box[FG_Y2]=y_max_extn,

if (extent_overlap==0) (extent_color=color,}
else (extent_color=color-2,)
fg_drawbox(extent_color,FG_MODE_XOR,~0,FG_LINE_MEDIUM_DASHED

,extent_box,fg_display box),
msm_showcursor() ,

298

y_center=y_center,

value_box[FG_X1]=x_center-0 5*fg_box_width(fg charbox),
value_box[FG_Y1]=y_center,
value_box[FG_X2]=x_center+6 5*(fg_box_width(fg charbox)),
value_box[FG_Y2]=y_center+items*(fg_box_height(fg charbox)),

frame_box[FG_Xl]=value_box[FG_X1]-10,
frame_box[FG_Y1)=value_box[FG_Yl)-10,
frame_box[FG_X2)=value_oox[FG_X2)+10,
frame_box[FG_Y2]=value_box[FG_Y2]+10,

frame_box_2[FG_Xli =value_box[FG_Xl]-7,
frame_box_2[FG_Y1]=value_box[FG_Y1]-7,
frame_box_2[FG_X2]=value_box[FG_X2]+7,
frame_box_2[FG_Y21=value_box[FG_Y2]+7,

ll_line[FG_X1]=frame_box[FG_X1] ,
ll_line[FG_Y1)=frame_box[FG_Y1] ,
ll_line[FGJC2] =value_box[FG_Xl],
Upline[FG_Y2)=value_box fFG_Yl],

ul_line[FG_X1]=frame_box[FG_X1],
ul_line[FG_Y11=frame_box[FG_Y21,
ul_line[FG_X2]=value_box[FG_X1],
u l _ l m e [FG_Y2] =value_box [FG_Y2],

lr_line[FG_X1]=value_box[FG_X2J,
lr_ l m e [FG_Y1] =value_box [FG_Y1] ,
lr_line[FG_X2]=frame_box[FG_X2J,
lr_line[FG_Y2]=frame_box(FG_Y1],

ur_line[FG_X1]=value_box[FG_X2],
ur_line[FG_Y1]=value_box[FG_Y2],
u r _ l m e [FG_X2] = frame_box [FG_X2],
ur_line[FG_Y2)=frame_box[FG_Y2],

ll_lme_2 [FG_X1] =f rame_box_2 [FG_X1] ,
ll_line_2[FG_Y1]=frame_box_2[FG_Y1] ,
ll_line_2[FG_X2J =frame_box[FG_X1],
ll_line_2[FG_Y2J =frame_box[FG_Y1],

ul_line_2[FG_X1]=frame_box_2[FG_X1],
ul_lme_2 [FG_Y1) =frame_box_2 [FG_Y2] ,
ul_llne_2[FG_X2]=frame_box[FG_X1],
ul_line_2[FG_Y2]=frame_box[FG_Y2] ,

1r_l1ne_2[FG_X1]= frame_box[FG_X2],
lr_line_2[FG_Y1]=frame_box[FG_Yl],
lr_line_2[FG_X2]=frame_box_2[FG_X2],
lr_line_2[FG_Y2]=frame_box_2[FG_Y1] ,

u r_llne_2[FG_Xl]=frame_box(FG_X2],
ur_line_2[FG_Y1)=frame_box[FG_Y2],
ur_line_2[FG_X2]= frame_box_2[FG_X2],
ur_line_2[FG_Y2]=frame_box_2[FG_Y2],

300

fg_drawline(FG_BLACK,FG_MODE_XOR,~0,FG_LINE_SOLID,ur_line),

fg_drawline(FG_LIGHT_WHITE,FG_MODE_XOR,~0,FG_LINE_SOLID,ll_line_2>,
fg_drawUne(FG_LIGHT_WHITE,FG_MODE_XOR,~0, FG_LINE_SOLID, ul _ l m e _ 2),
fg_drawline (FG_LIGHT_WHITE, FG_MODE_XOR, ~0, FG_LINE_SOLID, l r j m e j) ,
fg_drawline(FG_LXGHT_WHITE,FG_MODE_XOR,~0,FG_LINE_SOLID,ur_line_2),

)

v o i d d i g v a l u e p a n i m a t e O {

m s m _ h i d e c u r s o r () ,

a c t i o n — ,

i f (a c t i o n = = 0) {

action=action_default,
y3=y_center+fg_box_height(fg charbox),

if ((value 1=previous_value) | | (status'=previous_status)){
fg_puts (scolor,FG_MODE_XOR,~0,FG_ROT0,x_center, y3

,valuout,fg displaybox),
fg_puts (scolor,FG_MODE_XOR,-0,FG_ROTO,x_center

,y_center,blank,fg_displaybox),
previous_status=status,
scolor=10+(status*2),
if (status==0)

1
blank=textO,
fg_puts(scolor,FG_MODE_XOR,~0,FG_ROTO,x_center

,y_center,textO,fg_displaybox),
)

if (status==l)
(
blank=textl,
fg_puts(scolor,FG_MODE_XOR,-0,FG_ROTO,x_center

,y_center,textl,fg_displaybox) ,
)

previous_value=value,
// convert float value to char string valu[],
valu=ecvt (value,digits,Sdec,Ssign),
if (sign'=0)

valuout[0] = ' ,
else valuout[0] ,
m=l,
for (n=0,n<(dlgits+1),n++){

if (dec'=0)
valuout[m]=valu[n],

else{
valuout[m]=* ’,
m=m+1,
valuout[m]=valu[n],1

m++,
dec— , }

// move to 2nd text position
fg_puts (scolor,FG_MODE_XOR,~0,FG_ROTO,x_center, y3

,valuout,fg_displaybox) ,
msm_showcursor(),
)

) 1

302

public

virtual void basic_pdraw() ,
virtual void pdraw (),
virtual void panimate 0,
virtual void pextent pgenO,
virtual void pextent pdraw(),
virtual void pextent peraseO

digvalue(unsigned x, unsigned y, int id, float m, float raw_value,
unsigned state, int extent_onoff) () (

x_center = x, y_center = y,
identifier=id, // cadshape id
cad_type=13, // AIPDIP type 2
mul=m,
max_mul=30,
rain_mul=0,
status_extn=extent_onoff,
status=state,
conv_m=l, // conversion multiplier
conv_c=0, // ’ ’ ' ' constant
value=(raw_value*conv_m)+conv_c,
previous_status=status, // start-up conditions
previous_value=value,
fgcolor=0,
color=15,
digits=4,
fillcolor=8,
deadband=l, // extents to object deadband
items=2,
action_default=12,
action=action_default,
offset=10,
pextent_set(status_extn),

// textO s textl
textO[0]= n' ,
textO[1]= o' ,
textO[2]= r' ,
textO[3]= m' ,
textO[4]= a',
textO[5]= 1' ,
textO[6]= \0',

textl[0]= $

textl[1]= f ' .
textl [2] = a',
textl[3]= u' ,
textl [4] = 1',
textl[5]= t'.
textl[6]= \0',

max_extent_box[0]=x_center-(fg_box_width(fg charbox))-offset-deadband,
n'ax_extent_box [1) =y_center-off set-deadband,
max_extent_box[2J =x_center+ (7 * (fg_box_width(fg charbox)))+offset +

deadband.

304

msm_hidecursor() ,
x_center=new_x,y_center=new_y,
msm_setcurpos (x_center,y_center) ,

reset (),
while ((cadsh = next ()) '= 0) {

if (cadsh->pextent_view()) cadsh->perase(),
}

reset(),
while ((cadsh = next()) '= 0) (

if (1cadsn->pextent_view()) cadsh->perase(),
}

msra_setcurpos (x_center,y_center),
msm_showcursor () ,

I

void fgnd move(unsigned new_x,unsigned new y) (

x_center=new_x,
y_center-new_y,
draw(x_center,y_center),

t

unsigned long fgnd range(unsigned xr,unsigned yr) {
// a measure of the distance between a selected point
// and this fgnds root point
unsigned long xx=

xr > x_center ’
xr-x_center x_center-xr,

unsigned long yy=
yr > y_center 7

yr-y_center y_center-yr,
XX *= XX,

yy *= yy<
return xx+yy,
)

void fgnd expand(float m) {
mul=m+mul,
reset (),
while ((cadsh = next()) '=0){

cadsh->perase(),
cadsh->expandp(mul),}

}

void fgnd modulate(int id,float percent,unsigned state,time_t time_stamp,
long run_time)(

identifier=id,
value=percent,
status=state,
timestamp=time_stamp,
runtime=run time.

306

' void expand(float m) ,
void modulate (mt id, float percent, unsigned state, time_t time_stamp, long

run_time),
int extent_test(float* extents_sim_ptr, cadshape* moving^shape) ,
unsigned long range(unsigned x,unsigned y),

fgnd(unsigned x, unsigned y) () {
x_center = x, y_center = y,

-fgnd() {
// erase () ,

reset(),
while ((cadsh=next()) '= 0) {

remove (cadsh),
delete cadsh,
1

// file information hpp
// by PK for MSc project 20/07/90
♦lfndef INFORMATION_HPP
»define INFORMATION HPP

♦include <fg h>
♦ include <mstnouse h>
♦include "msmenu hpp”
♦include "fgnd hpp"
♦include "template hpp"

int change, // objects data change flag
void info_display(template *, cadshape *, fg_coord_t, fg_coord_t),
int mfo_edit (template, cadshape *, fg_coord_t, fg coord t) ,
♦endif INFORMATION HPP

308

v o i d msmenu d e f a u l t _ c u r s o r () (

m s m _ s e t g r a p h c u r (- 1 , - l , d e f a u l t _ c u r) ,

)

v o i d msmenu m e n u _ c u r s o r () {
msm_setgraphcur(-16,- 8 ,menu_cur) ,

}

void msmenu cross_cursor() {
m s m _ s e t g r a p h c u r (- 8 , - 8 , c r o s s _ c u r) ,

)

m t
msmenu g e t _ s e l e c t i o n (u n s i g n e d x , u n s i g n e d y y) (

u n s i g n e d i n t u , v , s t a r t v ,

u n s i g n e d y = y y ,

f g _ b o x _ t r e a d _ b o x ,

t r a n s l a t e _ c o o r d s (S x , S y) ,

/ / t e s t f o r b o u n d a r y c o n d i t i o n s , s e t menu b ox (x , y)
l f (x < = f g _ d i s p l a y b o x [FG_X1] +BUFFER_OUTER)

x— fg_displaybox[FG_X1)+BUFFER_0UTER+3 5,
if ((x+xsize)>=fg_displaybox[FG_X2]) x=fg_displaybox[FG_X2]-xsize,
if ((y+LINESIZE)>=fg_displaybox[FG_Y2]-BUFFER_OUTER)

y=fg_displaybox[FG_Y2]-LINESIZE-BUFFER_OUTER,
if (y<=ysize-LINESIZE+fg_displaybox[FG_Y1]+BUFFER_OUTER)

y=fg_displaybox[FG_Y1]+BUFFER_OUTER+ysize-LINESIZE,
yy=fg_displaybox[FG_Y2]-y, // update cursor position (MOUSE coords)

read_box[FG_X1] = x,
read_box[FG_Yl] = y - ysize + LINESIZE,
read_box[FG_X2] = x + xsize,
read_box[FG_Y21 = y + LINESIZE,

m s m _ h i d e c u r s o r () ,

/ / u s e s p e c i a l c u r s o r

m e n u _ c u r s o r () ,

// c o l o r _ p = m a l l o c (m s i z e) ,

f g _ _ re a d b o x (r e a d _ b o x , c o l o r p) ,
// blank section out
fg_wntebox (read_box, blank_p) ,
fg_fillbox(FG_LIGHT_BLUE,FG_MODE_SET,~0,read_box),
fg_drawbox (FG_WHITE,FG_MODE_SET,~0,FG_LINE_SOLID,read_box,fg displaybox) ,
// call a private function
drawmenu(x,y),
/ / t n a l - a n d - e r r o r

m s m _ s e t c u r p o s (x - 35 , y y -22),
m s m _ s h o w c u r s o r () ,

m s m _ s e t a r e a x (x -35, x - 35),
m s m _ s e t a r e a y (y y - 22,y y - 22 + y s i z e - LINESIZE) ,
s t a r t v = y y - 26,
w a i t _ l e f t _ p r e s s e d (£ u , S v) ,

w a i t _ l e f t _ r e l e a s e d (S u , S v) ,

310

int count, / / for messages

// private function — can only be called
// by member functions
void drawmenufint x, int y) ,

public
I I constructor called for a new object

msmenu(struct menu_s * mp) (
char buf[15],
count = 0,
// attach the menu pointer to this object
m = mp,
// Store the size of the menu
height = 0,
struct menu_s * mm = m,
// look for end marker
while (mm->item_number ’ = -1) t

height++,
mm+ + ,

)
int ss, i,
for(i = 0, width = 0, l < height, 1 ++)

if ((ss = strlen(mp[i] name)) > width)
// find the largest element
width = ss,

I I graphic width
xsize = width * CHARWIDTH,
// graphic height
ysize = height * LINESIZE,

sizing_box[FG_X1] = 0,
sizing_box[FG_Y1] = 30,
sizing_box[FG_X2) = xsize + LINESIZE,
sizing_box[FG_Y2] = 30+ysize + LINESIZE,
msize = sizing_box[FG_X2]

- sizing_box[FG_X1] + 1,
msize *= sizing_box[FG_Y21

- sizing_box[FG_Y1] + 1,
msize *= sizeof(fg_color_t),
unsigned long size=sizeof(fg_color t),
// allocate memory for graphics storage
color_p=calloc (msize,size) ,
blank_p=calloc (msize,size) ,

// initialize mouse
msm_init () , }

// destructor called when object goes out
I I of scope or delete is used

'msmenu () (
free (color_p),
free (blank_p),
// turn mouse cursor off

312

// file pie cpp
// V4 8 05 04 90 17 00 PK
// Pushes background 'behind' object to dynamic buffer on draw
// Pulls background from buffer on erase
// Zortech and Flash Graphics
// Re-test of 'or' to screen 20/04/90 10 00 PK
tmclude "pie hpp"
((include Cmsmouse h>
((include <math h>

void pie pextent_pgen() (
// set radius
x_radius=x_raddef+(a*mul),
outer_radius=x_radius+3,
extents_sim[0]=x_center-outer_radius,
extents_sim[1]=y_center-outer_radius,
extents_sim[2]=x_center+outer_radius,
extents_sim[3]=y_center+outer_radius,

1 I

void pie pextent_perase() {
msm_hidecursor(),
fg_drawbox(extent_color,FG_MODE_XOR,~0,FG_LINE_MEDIUM_DASHED

,extent_box,fg_display box),
msm_showcursor(),

1

void pie pextent_pdraw() (
msm_hidecursor(),

// set radius
x_radius=x_raddef+(a*mul),
outer_radius=x_radius+3,

x_min_extn=x_center-outer_radius,
y_min_extn=y_center-outer_radius,
x_max_extn=x_center+outer_radius,
y_max_extn=y_center+outer_radius

extent_box[FG_X1]=x_min_extn,
extent_box[FG_Yl)=y_min_extn,
extent_box[FG_X2]=x_max_extn,
extent_box[FG_Y2]=y_max_extn.
If (extent_overlap==0) (extent_color=color,)
else {extent_color=color-2,}
fg_drawbox (extent_color,FG_MODE_XOR,~0,FG_LINE_MEDIUM_DASHED

,extent_box,fg_display box),
msm_showcursor() ,

I

void pie pdraw() {
msm_hidecursor(),

I I locate centre

314

void pie panimate()(
action— ,
if (action==0){

action=action_default,
if ((value'=previous_value) II (status 1=previous_status))

// angle proportional to 1->100% value
ang2 = ((value/100)*3600),
angle= (value/100)*2*3 1415926,
if (fabs(previous_angle-angle) > ((2*3 1415926)/3 6 0))(

(
msm_hidecursor () ,
previous_value=value,
previous_status=status,
// locate centre
xl=x_center,
yl=y_center,

// set radius
x_radius=x_raddef+(a*mul) ,

line [FG_X11=xl+l,
line [FG_X2]=xl+x_radius,
line [FG_Y1]=yl,
line [FG_Y2]=yl,
fg_drawlxne (color,FG_MODE_XOR,-0, FG_LINE_SOLID

,line),

line [FG_Xl]=xl,
line [FG_Y1]=yl,
line [FG_X2j=xl+(x_radius

* (cos(previous_angle))),
line [FG_Y21=yl+(x_radius

* (sin(previous_angle))),
// avoid drawing sides of pie with such a
// small angle
// that xor of adjacent sides occurs
if ((x_radius*(sin(previous angle))<1) ss

(x _ r a d i u s * (s m (p r e v i o u s _ a n g l e)) > - 1)) {
i f ((x _ r a d i u s * (c o s (p r e v i o u s _ a n g l e))) > 0) {)

e l s e (f g _ d r a w l i n e (c o l o r , F G _ M O D E _ X O R , ~ 0

,FG_LINE_SOLID,line),)
)
else fg_drawline(color,FG_MODE_XOR, -0

,FG_LXNE_SOLID,line),
fg_drawarc(scolor,FG_MODE_XOR,~0,xl,yl

,x_radius,angl,previous_ang2,fg_displaybox),

// status colour
scolor=10+(status*2),

line [FG_Xl]=xl+l,
line [FG_X2]=xl+x_radius,
line [FG_Y2]=yl,
fg_drawline (color,FG_MOOE_XOR,-0,FG_LINE_SOLID

,line),

}

316

else fg_drawline(color,FG_MODE_XOR, ~0,FG_LINE_SOLID,line)

fg _ d ra w a rc (s c o lo r ,F G _ M O D E _ X O R ,~ 0 , x l , y l , x _ r a d iu s , a n g l , p re v io u s _ a n g 2
, fg _ d is p la y b o x) ,

i f (f p t r 1= N U LL){
s o u r c e [0] = 'd ’ ,
s o u r c e [1] = 'e ' ,
s o u r c e [2] = '1 ' ,
s o u r c e [3]= ' ' ,
f o r (a lp h a = 4 , ‘ b itm a p 1= '\ 0 ' , a lp h a + +)(

s o u rc e [a lp h a]= * b itm a p + + ,1
s o u r c e [a lp h a]= '\ 0 ',
sys tem (s o u r c e) .

msm s h o w c u rs o r () ,

// f i l e p ie hpp f la s h g r a p h ic s
f t i f n d e f P IE _ H P P
» d e f in e P IE _ H P P
(t in c lu d e "c a d s h a p e hpp"

c la s s p ie p u b l i c cad sh ap e {

p r o te c te d
c h a r * b itm a p ,
i n t a ,
i n t a n g l,a n g 2 ,p r e v io u s _ a n g 2 ,
d o u b le a n g le ,p r e v io u s _ a n g le ,d e a d b a n d _ a n g le , f u l l c i r ,
fg _ c o o r d _ t x l , y l , x _ r a d iu s ,
f g _ l i n e _ t l i n e ,
f l o a t x _ r a d d e f ,
f l o a t o u t e r _ r a d iu s ,
i n t d e g ra d ,

p u b l ic

v o id p d ra w () , v
v o id p a n im a te () ,
v o id p e x te n t_ p g e n () ,
v o id p e x te n t_ p d r a w () ,
v o id p e x t e n t _ p e r a s e () ,

p ie (u n s ig n e d x , u n s ig n e d y , i n t i d , f l o a t m, f l o a t r a w _ v a lu e , u n s ig n e d

s t a t e , i n t e n t e n t _ o n o f f) () (
i d e n t i f i e r = i d
c a d _ ty p e = 4 ,
c o lo r= 1 5 ,
fg c o lo r= 0 ,
d e g ra d = l,
f u l l c i r = 3 6 0 0 ,
x _ ra d d e f= 1 5 ,
a=2,
ang2=0.

// c ad sh a p e id
// D IP A IP ty p e
// d e f a u l t c o lo u r

// d e f a u l t p ie r a d iu s

I I m u l t i p l i c a t i o n f a c t o r
I I d e f a u l t v a lu e f o r p ie s to p a n g le

I I d e g re e s - r a d ia n s f a lg

318

// f i l e p o t cpp
// V4 8 06/04/90 10 15 Z o r te c h and F la s h G ra p h ic s
♦ in c lu d e "p o t hpp"
» in c lu d e Cmsmouse h>
» in c lu d e cm ath h>
» in c lu d e < s t d l ib h>

v o id p o t p e x te n t_ p g e n () {
// s e t r a d iu s
r a d iu s 2 = ra d d e f2+ (a *m u l) ,

e x t e n t s _ s im [0]= x _ c e n te r - r a d iu s 2 - 2 * (f g _ b o x _ w id th (f g c h a r b o x)) ,
e x t e n t s _ s im [l] = y _ c e n t e r - r a d iu s 2 - 3 * (f g _ b o x _ h e ig h t (fg c h a r b o x)) ,
e x te n t s _ s im [2]= x _ c e n te r+ ra d iu s 2 + 2 * (fg _ b o x _ w id th (fg ch a rb o x)) ,
e x t e n t s _ s im [3]= y _ c e n te r + r a d iu s 2 + (fg _ b o x _ h e ig h t (f g c h a r b o x)) ,

1
v o id p o t p e x te n t_ p d ra w () {

m s m _ h id e c u rs o r () ,

// s e t r a d iu s
ra d iu s 2 = ra d d e f2 + (a * m u l) ,
x _ m in _ e x tn = x _ c e n te r- r a d iu s 2 - 2 * (fg _ b o x _ w id th (fg c h a r b o x)) ,
y _ m in _ e x tn = y _ c e n t e r - r a d iu s 2 - 3 * (fg _ b o x _ h e ig h t (fg c h a r b o x)) ,
x _m a x _e x tn = x _c e n te r+ ra d iu s 2 + 2 * (fg _ b o x _ w id th (fg c h a r b o x)) ,
y _ m a x _ e x tn = y _ c e n te r+ ra d iu s 2 + (f g _ b o x _ h e ig h t (fg c h a r b o x)) ,

e x te n t_ b o x [F G _ X 1] = x _m in _ex tn ,
e x te n t_ b o x [F G _ Y 1] = y_m in _ex tn ,
e x te n t_ b o x [F G _ X 2] =x_m ax_extn,
e x te n t_ b o x [F G _ Y 2] = y_m ax_extn ,
i f (e x te n t_ o v e r la p = = 0) { e x t e n t _ c o lo r = c o lo r ,)
e l s e { e x t e n t _ c o lo r = c o lo r - 2 , }
fg _ d r a w b o x (e x te n t _ c o lo r , FG_M ODE_XOR,- 0 ,FG_LINE_M ED IUM _D ASHED

, e x t e n t _ b o x , f g _ d is p la y b o x) ,
m sm _sh o w cu rso r() ,

)
v o id p o t p e x t e n t _ p e r a s e () {

m s m _ h id e c u rs o r () ,

fg _d raw b o x (e x t e n t _ c o lo r , FG_M ODE_XOR,~0, FG _LIN E_M ED IUM _D AS HED
, e x t e n t _ b o x , f g _ d is p la y b o x),

m sm _sh o w cu rso r() ,
)
v o id p o t pd raw () (

m s m _ h id e c u rs o r () ,
// l o c a t e c e n t r e
x l= x _ c e n t e r , y l= y _ c e n t e r ,

I I s e t r a d iu s
r a d iu s l= r a d d e f l+ (a * m u l) ,
r a d iu s 2 = ra d d e f2 + (a * m u l) ,

x _ m in _ e x tn = x _ c e n te r- ra d iu s 2 - 2 * (fg _ b o x _ w id th (fg c h a r b o x)) ,
y _ m in _ e x tn = y _ c e n te r- r a d iu s 2 - 3 * (f g _ b o x _ h e ig h t (fg c h a r b o x)) ,
x_m ax_extn= x_ c e n te r + r a d iu s 2 + 2 * (fg _ b o x _ w id th (fg c h a r b o x)) ,

320

v a lu e _ b o x [F G _ Y 1] = t y _ v a lu e ,
v a lu e _ b o x [F G _ X 2]= tx _ v a lu e + 6 * (fg _ b o x _ w id th (fg c h a r b o x)) ,
v a lu e _ b o x [F G _ Y 2]= ty _ v a lu e + (fg _ b o x _ h e ig h t (fg c h a r b o x)) ,
fg _d raw b o x (FG_GRAY,FG_M O D E_XO R,- 0 ,F G _ L IN E _ S O L ID , v a lu e _ b o x

, fg _ d is p la y b o x) ,

m sm _sh ow curso r() ,

)
v o id p o t p a n im a te O {)

v o id p o t a n a lo g _ p m p u t () (
// t e s t i f x _ m p u t , y _ m p u t i s w i t h in in p u t range
in p u t_ b o x [F G _ X 1]= e x te n t_ b o x [F G _ X 1]- 5 ,
in p u t_ b o x [F G _ Y 1] = e x te n t_ b o x [F G _ Y 1]- 5 ,
in p u t_ b o x [F G _ X 2] = e x te n t_ b o x [F G _ X 2]+5,
in p u t_ b o x [F G _ Y 2] = e x te n t_ b o x [F G _ Y 2]+5,

in s id e = fg _ p t _ in b o x (in p u t_ b o x , x _ m p u t , y _ in p u t) ,
l f (i n s id e 1=0) (

x l= x _ c e n t e r , y l= y _ c e n t e r ,
d e l t a _ x = x _ in p u t- x l ,d e l t a _ y = y _ in p u t - y l ,
if (d e lta _y= = 0 SS d e lta _x = = 0) (a n g le = 0 , l
e l s e (a n g le = a ta n 2 (d e l t a _ y , d e l t a _ x) , }
i f ((a n g le < s t a r t _ a n g le)s s (a n g le > s t o o _ a n g le)) { }
e l s e (

m s m _ h id e c u rs o r () ,
fg _d ra w lin e (F G _L X G H T _B L U E ,F G _yO D E _X O R ,~ 0

,F G _ L IN E _ S O L ID , l in e) ,
fg _ p u ts (FG _L IG H T _BLU E ,FG _M O D E_X O R ,- 0 ,FG_ROTO

, t x _ v a l u e , t y _ v a lu e , v a lu o u t , f g _ d is p la y b o x) ,
l i n e [F G _ X l]= x l ,
l i n e [F G _ Y l]= y l ,
l i n e [F G _ X 2] = x l+ (r a d iu s l * (c o s (a n g le))) ,
l i n e [F G _ Y 2) = y l+ (r a d iu s l * (s i n (a n g le))) ,
fg _d ra w lin e (F G _L IG H T _B L U E ,F G _M O D E _X O R ,~ 0

, F G _ L IN E _ S O L ID , l in e) ,
i f (a n g le > = 0)(v a lu e = ((a n g le - s t a r t _ a n g l e) /

(2 * p i+ s t o p _ a n g le - s t a r t _ a n g le)) * 1 0 0 ,)
i f (a n g le < 0) (v a lu e = ((p i - s t a r t _ a n g l e) /

(2 * p i+ s t o p _ a n g le - s t a r t _ a n g le))*1 0 0 0,
v a lu e = v a lu e + ((- p i- a n g le) / (- p i- s t o p _ a n g le)) *

(100 0 - v a lu e) ,)

// g e n e ra te o u tp u t v a lu e f o r t r a n s d u c e r
o u tp u t_ v a lu e = (v a lu e * c o n v _ m)+ c o n v _ c ,

// c o n v e r t f l o a t v a lu e t o c h a r s t r i n g v a l u [] ,
v a lu = e c v t (v a l u e , d i g i t s , S d e c , S s i g n) ,

i f (s ig n < 0)
v a l u o u t [0] ,

e l s e v a lu o u t [0] = '+ ',

m=l,
f o r (n=0 n < (d ig i t s + 1) , n+ +)(
i f (d e c '= 0)

322

s o u r c e [0] = 'd ' ,
s o u r c e [1]= ' e ' ,
s o u r c e [2]= '1 ' ,
s o u r c e [3]= ' ' ,
f o r (a lp h a = 4 , 'b i tm a p 1= '\ 0 ' , a lp h a + +)(

s o u rc e [a lp h a]= * b itm a p + + ,t
s o u r c e [a lp h a]= '\ 0 ' ,
system (s o u r c e) ,

}
m sm _sh ow curso r() ,

1
// f i l e p o t hpp
// V4 9 10/04/90 12 00 PK
t t i f n d e f POT_HPP
((d e f in e POT_HPP
((in c lu d e "c a d s h a p e npp"

c la s s p o t p u b l ic cad sh ap e [
c h a r * b itm a o ,
i n t d e c , s i g n ,n , m ,d ig i t s ,
i n t a , a n g l , a n g 2 , in s id e ,
d o u b le a n g le , s t a r t _ a n g le , s t o p _ a n g l e , f u l l c i r , t e x t _ a n g l e , d e l t a _ t e x t _ a n g le ,
f g _ c o o r d _ t x X , y X , t x , t y , t x _ v a l u e , t y _ v a lu e , r a d i u s 1 , r a d iu s 2,
f g _ l i n e _ t l i n e ,
f l o a t r a d d e f l , r a d d e f2 .
double delta_x,delta_y,
int step,max_steD,
char *valu,
char v a l u o u t [9] ,
char ’nun,
char number o u t [3] ,

I I p o t g r a d u a t io n s
// f o r v a lu e

// f o r s te p draw
I I f o r s te p draw

p u b l ic

v o id pdraw () ,
v o id p a n im a te () ,
v o id a n a lo g _ p in p u t () ,
v o id p e x te n t_ p g e n () ,
v o id p e x te n t_ p d ra w () ,
v o id p e x t e n t _ p e r a s e () ,

p o t (u n s ig n e d x ,u n s ig n e d y , i n t i d , f l o a t m , in t e x t e n t _ o n o f f) () {
i d e n t i f i e r = i d , // cad sh a p e id
cad _ typ e = 3 , // AOP t y p e
d ig i t s = 4 , // f o r v a lu e f l o a t -> a s c i i c o n v e r s io n
v a l u o u t [0] = '\ 0 ' ,/ / t e r m in a te s t r i n g f o r p d ra w () c a l s b e fo re

// p in p u t () ,
// d e f a u l t c o lo u r

// d e f a u l t c o lo u r
// d e f a u l t in n e r r a d iu s

// d e f a u l t o u te r r a d iu s
// m u l t i p l i c a t i o n f a c t o r

// d e f a u l t v a lu e f o r p ie s to p a n g le
// d e f a u l t v a lu e f o r p ie s t a r t a n g le

first

co lo r= 1 5 ,
fg c o lo r= 0 ,
ra d d e f l= 7 ,
rad d e f2 = 1 4 ,
a = l,
ang2=3600,
an g l= 0 ,
x _ c e n t e r = x, y _ c e n t e r = y .

324

s o u r c e [a l p h a] =*bitmap++,)
s o u r c e [a lp h a]= '\ 0 ' ,
sy s te m (s o u r c e) ,

*/)
),
e n d if POT_HPP

// f i l e r o t s h a f t cpp
I l V4 3 F la s h g r a p h ic s 19 02 90 18 50
I l V4 8 05 04 90 17 00 PK
// P u sh e s b ack g ro u n d 'b e h in d ' o b je c t to d ynam ic b u f f e r on draw
I I P u l l s b a ck g ro u n d b ack to s c re e n on e r a s e
I l V5 0 14/06/90 12 00
// H o r iz o n t a l and v e r t i c l e
¡ (in c lu d e " r o t s h a f t hpp"
¡ ¡ in c lu d e <msmouse h>
♦ in c lu d e < b ios h>
♦ in c lu d e <fg h>

v o id r o t s h a f t p d ra w O {
m s m _ h id e c u rs o r () ,

f lo w _ b o x [F G _X 1] = x _ c e n te r ,
f lo w _ b o x [F G _ Y 1]= y _ c e n te r ,
f lo w _ b o x [F G _ X 2]= x _ c e n te r+ ((le n g th * (a * m u l)) * h o r iz) + (d ia m e t e r * v e r t) ,
f lo w _ b o x [FG _Y2] = y_ce n te r+ (d ia m e te r * h o n z) + ((le n g t h * (a *m u l)) * v e r t) ,

x _ m in _ e x tn = x _ c e n te r- l ,
y _ m m _ e x t n = y _ c e n t e r - l ,
x _m ax _ex tn = x _cen te r+ ((le n g th + l+ (a *m u l)) * h o n z) + ((d iam e te r+ 1) * v e r t) ,
y_m a x _e x tn = y_ce n te r+ ((d iam e te r+ 1) * h o n z) + ((le n g th + l+ (a *m u l)) * v e r t) ,

b a ck g ro u n d _b o x [F G _X 1] = x_m in_ex tn ,
b a ck g ro u n d _b o x [F G _Y 1] = y_m in _ex tn /
b ack g ro u n d _b o x [FG _X 2]= x _m a x _e x tn ,
b a c k g ro u n d jb o x [F G _ Y 2] = y_m ax_extn ,

p i x e l _ b u f f e r _ l e n g t h = (s i z e o f (f g _ c o l o r _ t) * f g _ b o x _ a r e a (b a c k g r o u n d _ b o x)) ,
p ix e l_ b u f f e r = m a l lo c (p ix e l_ b u f f e r _ l e n g t h) .
f g_ re a db ox (b a c k g r o u n d _ b o x , p i x e l _ b u f f e r) ,
b y t e z = (s i z e o f (i n t)) /2 ,
b i t m a p = to t a l_ n a m e ,
fp tr= fo p e n (b i tm a p , ” w b ") ,
f w n t e (p i x e l _ b u f f e r , b y t e z , p i x e l _ b u f f e r _ l e n g t h , f p t r) ,
f c l o s e (f p t r) ,
f r e e (p i x e l _ b u f f e r) ,

f g _ f i l l b o x (FG_BLACK,FG_MODE_SET,-O,background_box),

s c o l o r = 1 0 + (p r e v i o u s _ s t a t u s * 2) ,
fg _d ra w b o x (s c o lo r ,F G _ M O D E _ X O R ,~ 0 ,F G _ L IN E _ S O L ID ,f lo w _ b o x

, f g _ d i s p l a y b o x) ,
r e s e t v a r () ,
f i l l p i p e () ,
r e s e t v a r () ,

326

y y = yy+ a lp h a , // in c re m e n t y
x x = x _ c e n te r+ l, // r e s e t x

w h i le ((y y > y _ c e n t e r) s s (h o r iz = = l) s s (p r e v io u s _ v a lu e < 0)) {
w h i le (x x < x _ le n g th) {

fg _ d ra w d o t (s co lo r ,FG _M O D E_X O R ,~ 0 , xx , y y) ,
xx= xx+ beta, // in c re m e n t x

)
y y = y y - a lp h a , // in c re m e n t y
x x = x _ c e n te r+ l, // r e s e t x

}
w h i l e ((x x < x _ d ia m e te r)s s (v e r t= = l)S S (p r e v io u s _ v a lu e > = 0))

{
w h i le (y y < y _ le n g t h) (

fg _d ra w d o t (s c o lo r ,F G _ M O D E _ X O R ,~ 0 ,x x ,y y) ,
yy= yy+ a lp h a ,

)
y y = y _ c e n te r + l ,
xx= xx+ beta,

)

w h i le ((x x > x _ c e n t e r) s s (v e r t= = l) S S (p r e v io u s _ v a lu e < 0))1
w h i le (y y < y _ le n g t h) (

fg _d ra w d o t (s co lo r ,FG _M O D E_X O R , - 0 , xx, y y) ,
y y —y y + a lp h a ,

)
y y = y _ c e n te r+ l ,
xx= xx-b eta ,

}
v o id r o t s h a f t p e r a s e O (

m s m _ h id e c u rs o r () ,
y y _ s a v e d = (y y * h o r iz) ,
x x _ s a v e d = (x x * v e r t) ,

w h i le ((x x < x _ le n g th)S S (h o r iz = = l)) (
w h i le (y y < y _ d ia m e te r) (

fg _ d ra w d o t (s c o lo r ,F G _ M O D E _ X O R ,~ 0 ,x x ,y y) ,
y y= yy+ a lp h a ,
)

y y = y y _ s a v e d .
xx= xx+ beta,

)
w h i le ((y y < y _ le n g t h)S S (v e r t = = l)) (

w h i le (x x < x _d ia m e te r) {

fg _d ra w d o t (s c o lo r FG_M ODE_XOR,- 0 ,x x , y y) ;
xx= xx+ alpha,
)

xx=xx s a ve d .

xx=xx+beta, // increment x
)

f-
328

cad _ typ e= 4 ,
s h i f t= 2 ,
a lp h a= 6 ,
b e ta= 6 , // x
len g th = 4 0 ,
d iam ete r= 8 ,
s t a tu s = s ta t e ,
p r e v io u s _ s t a tu s = s t a t u s .

// D IP A IP ty p e
// d e a f u l t p ix e l s h i f t
// y i n t e r d o t s p a c in g

i n t e r d o t s p a c in g
// d e f a u l t box le n g th
// d e f a u l t box d ia m e te r

// d e f a u l t s t a t u s

m a x _e x te n t_b o x [0] = x _ c e n te r - l ,
m a x _e x te n t_b o x [1] = y _ c e n t e r - l ,
m a x _e x te n t_b o x [2] = x _ c e n te r+ ((le n g th + (a * m a x _ m u l)+ l)* h o r iz)+

((d i a m e t e r + 1)* v e r t) ,
m a x _e x te n t_b o x [3] = y _ c e n te r+ ((d ia m e t e r + 1)* h o r iz)+ ((len g th +

(a*m ax_m ul) +1) * v e r t) ,
s i z e = s i z e o f (f g _ c o l o r _ t) ,
f i l e _ r a n d = r a n d () ,
i t o a (f i l e _ r a n d , s u b _n a m e ,10) ,
t o t a l_ n a m e (01 =' r ' ,
t o t a l_ n a m e [1]= ' o ' ,
q=2,
w h i le (sub_nam e[q-2 J 1= '\ 0 ') {

to ta l_ n a m e [q l= s u b _ n a m e [q - 2] ,
q++,

I
t o t a l_ n a m e [q]=' ' ,

to ta l_ n a m e [q + 1 1 =' s ' ,
to ta l_ n a m e [q + 2]=' a ' ,
t o ta l_ n a m e [q + 3)=' v ' ,
to ta l_ n a m e [q + 4]= ' \ 0 ' ,

b itm a p = to ta l_n a m e .

v o id p e r a s e () ,
- r o t s h a f t () {

p e r a s e () »
1,
S e n d i f ROTSHAFT HPP

// f i l e s h a p e ls t cpp Z o r te c h C++
((in c lu d e " s h a p e ls t hpp"

cad sh ap e * s h a p e l i s t n e x tO (
c ad sh ap e * r = c u rre n t- > s h p ,
i f (r 1= (ca d sh a p e *)0)

c u r r e n t = c u r r e n t- > n e x t ,
r e tu r n r ,

t
cad sh ap e * s h a p e l i s t p r e v () (

c ad sh ap e * r = c u r re n t- > s h p ,
if (r '= (cad sh ap e *)0)

c u r r e n t = c u r r e n t- > n e x t ,
r e tu r n r ,

)

330

s h a p e l i s t f in d id (i n t a)

(
i n t l d i q ,
cad sh a p e * cshape= 0,
cad sh ap e * k k ,
r e s e t () , // s t a r t a t to p o f s h a p e ls t
w h i le ((kk = n e x t O) ' = 0) {

i f ((l d i q = k k - > i d i n q ()) == a) {c s ha p e= kk , I

}
r e tu r n c sh ap e ,

)

// f i l e s h a p e ls t hpp

/*
A s h a p e l i s t c o n ta in s a l i s t o f s h a p e l i s t e le m e n ts (s h a p e l i s t _ e l s) , w h ich
in t u r n h o ld a cad sh ap e and a l i n k t o th e n ex t s h a p e l i s t e lem en t

*/

i f n d e f SH APELST_H PP
« d e f in e SH APELST_H PP
f f in c lu d e "c a d sh a p e hpp"
c la s s c ad sh a p e ,
// in fo rm c o m p ile r t h a t th e c l a s s e x i s t s
c la s s s h a p e l i s t ,

c l a s s s h a p e l i s t _ e l {
cad sh ap e * shp,
s h a p e l i s t _ e l * n e x t ,

p u b l ic
// a l lo w s h a p e l is t a c c e s s to th e
I I p r i v a t e e l s o f t h i s c l a s s
f r i e n d s h a p e l is t ,
s h a p e l is t _ e l (c a d s h a p e * s ,

s h a p e l i s t _ e l * hd) (
shp = s,
n ex t = hd,

)
),
c la s s s h a p e l i s t (

p r o te c te d
s h a p e l i s t _ e l * h ead , * c u r r e n t ,

p u b l i c
// v i r t u a l f u n c t io n s must h ave a d e f i n i t i o n m th e b a se c la s s

v i r t u a l v o id d ra w () { }
v i r t u a l v o id e r a s e () [}
v i r t u a l v o id move (u n s ig n e d x , u n s ig n e d y) {)
v i r t u a l v o id e x p a n d (f lo a t m) (}

s h a p e l i s t 0 (c u r r e n t = head =
new s h a p e l i s t _ e l (

(cad sh ap e *)0 , (s h a p e l i s t e l *) 0) ,

332

x _ m a x _ e x tn = x _ c e n te r+ b a r_ w id th / 2 + 2 * (fg _ b o x _ w id th (f g c h a r b o x)) ,
y _ m a x _ e x tn = y _ c e n te r+ s lo t_ h e ig h t/ 2 + fg _ b o x _ h e ig h t (fg c h a r b o x) ,

e x te n t_ b o x [F G _ X 1] = x _m in _ex tn ,
e x te n t_ b o x [F G _ Y 1] = y_m in _e x tn ,
e x te n t_b o x [F G _X 2]= x _m a x _e x tn ,
e x te n t_ b o x [F G _ Y 2] = y_m ax_extn ,
i f (e x te n t_ o v e r la p = = 0) { e x t e n t _ c o lo r = c o lo r ,)
e l s e (e x t e n t _ c o lo r = c o lo r - 2 ,)
fg _d raw b o x (e x t e n t _ c o lo r , FG_MODE_XOR, ~ 0 , FG_LINE_M ED IUM _D ASHED

, e x t e n t _ b o x , f g _ d is p la y b o x) ,
m sm _show cursor () ,

1
v o id s l i d e r p e x te n t_ p e ra s e () (

m s m _ h id e c u rs o r () ,
fg _d raw b o x (e x t e n t _ c o lo r , FG_MODE_XOR, -0 , FG_LINE_M ED IUM _D ASHED

, e x t e n t _ b o x , f g _ d is p la y b o x) ,
m sm _sh o w cu rso r() ,

}
v o id s l i d e r p d ra w () (

m s m _ h id e c u rs o r () ,
// lo c a t e c e n t r e
x l= x _ c e n t e r , y l= y _ c e n t e r ,

b a r _ w id th = b a r _ w id th _ re f+ (a * m u l) ,
b a r _ h e ig h t = b a r _ h e ig h t _ r e f ,
d a s h _ w id th = d a s h _ w id th _ re f+ (a * m u l) ,
s lo t _ h e ig h t= s lo t _ h e ig h t _ r e f+ (a * m u l) ,
s lo t _ w id t h = (b a r _ w id t h _ r e f / 3) + (a *m u l) ,

x _ m in _ e x tn = x _ c e n te r- b a r_ w id th / 2 - d a s h _ w id th / 2 - 4 * (fg _ b o x _ w id th
(fg c h a r b o x)) ,

y _ m in _ e x tn = y _ c e n t e r - s lo t _ h e ig h t / 2 - 2 * (fg _ b o x _ h e ig h t (f g c h a r b o x)) ,
x _ m a x _ e x tn = x _ c e n te r+ b a r_ w id th / 2 + 2 * (fg _ b o x _ w id th (fg c h a r b o x)) ,
y _ m a x _ e x tn = y _ c e n te r+ s lo t_ h e ig h t/ 2 + fg _ b o x _ h e ig h t (fg c h a r b o x) ,

e x te n t_ b o x [F G _ X 1] = x _m in _ex tn ,
e x t e n t _ b o x [F G _ Y l) = y_m in _e x tn ,
e x te n t_ b o x (F G _ X 2] = x_m ax_extn,
e x te n t_ b o x [F G _ Y 2] = y_m ax_extn ,

b ackg ro u n d _b o x [FG _X 1] = x _m m _ex tn ,
b a ck g ro u n d _b o x [F G _Y 1]= y _m in _e x tn ,
b a ck g ro u n d _b o x [F G _X 2] = x_m ax_extn,
b a ck g ro u n d _b o x [F G _Y 2] = y_m ax_extn ,

p ix e l_ b u f f e r _ le n g t h = (s iz e o f (f g _ c o lo r _ t) * f g _ b o x _ a r e a (b a c k g r o u n d _ b o x)) ,
p ix e l_ b u f f e r = m a l lo c (p i x e l _ b u f f e r _ l e n g t h) ,
fg _ re a d b o x (b a c k g r o u n d _ b o x ,p ix e l_ b u f f e r) ,
b y t e z = (s i z e o f (i n t)) /2 ,
b itm a p = to ta l_ n a m e ,
fp t r= fo p e n (b i t m a p , " w b ") .
f w n t e (p ix e l_ b u f f e r , b y te z , p ix e l_ b u f f e r _ l e n g t h , f p t r) ,
f c l o s e (f p t r) ,
f r e e (p ix e l_ b u f f e r) ,

334

I

v o id s l i d e r a n a lo g _ p in p u t () {
// t e s t i f x _ in p u t , y _ in p u t i s w i t h in in p u t ran g e
in p u t_ b o x [F G _ X 1] = e x te n t_ b o x [F G _ X 1] ,
in p u t_ b o x [F G _ Y 1] = e x te n t_ b o x [F G _ Y 1] ,
in p u t_ b o x [F G _ X 2]= e x te n t_ b o x [F G _ X 2]+ 5,
in p u t_ b o x [F G _ Y 2]= e x te n t_ b o x [F G _ Y 2]+5,

in s id e = fg _ p t _ in b o x (in p u t _ b o x ,x _ in p u t , y _ in p u t) ,
i f (i n s i d e '= 0) {

i f ((y _ in p u t< = y _ c e n te r + s lo t _ h e ig h t/ 2 - b a r _ h e ig h t)S S (y _ m p u t> =
y _ c e n t e r - s lo t _ h e ig h t / 2 + b a r _ h e ig h t)) (

m s m _ h id e c u rs o r () ,
fg _d raw b o x (FG _L IG H T _BL U E ,FG _M O D E_X O R ,- 0 ,F G _L IN E _S O L ID

, b a r _ b o x , f g _ d i s p la y b o x) ,
fg _ p u t s (FG _L IG H T _BLU E ,FG _M O D E_XO R ,- 0 ,FG_ROTO, t x _ v a lu e

, t y _ v a lu e , v a lu o u t , f g _ d is p la y b o x) ,
b a r _ b o x [F G _ Y 1]= y _ in p u t- b a r _ h e ig h t/ 2 ,
b a r_ b o x [F G _ Y 2]= y _ in p u t+ b a r_ h e ig h t/ 2 ,
fg _d raw b o x (FG _L IG H T _BLU E,FG _M O D E_X O R ,~ 0 , F G _L IN E _S O L ID

, b a r _ b o x , f g _ d is p la y b o x) ,

v a lu e _ o f f s e t = y _ in p u t - (y _ c e n t e r - s lo t _ h e ig h t / 2 + b a r _ h e ig h t) ,
v a lu e = (v a lu e _ o f f s e t / (s lo t _ h e ig h t - (2 * b a r _ h e ig h t))) * 1 0 0 ,

// g e n e ra te o u tp u t t r a n s d u c e r v a lu e
o u tp u t_ v a lu e = (v a lu e * c o n v _ m)+ c o n v c ,

// c o n v e r t f l o a t v a lu e to c h a r s t r i n g v a l u [] ,
v a lu = e c v t (v a l u e . d i g i t s , s d e c , S s i g n) ,

i f (s ig n < 0)
v a l u o u t [0] = ' ,

e l s e v a lu o u t [0] = '+ ',

m=l,

f o r (n = 0 ,n < (d ig its + 1) ,n + +)(
i f (d e c '= 0)

v a lu o u t [m j = v a lu [n] ,
e l s e (

v a lu o u t [m]= ' ' ,
m=m+1 ,

v a lu o u t [m]= v a lu [n] , }
m++,
d e c — , }

fg _ p u t s (F G _L IG H T _B LU E ,FG _M O D E _X O R ,- 0 ,FG _R O T O ,tx _v a lu e
/ t y _ v a lu e , v a lu o u t , f g _ d is p la y b o x) ,

m sm _show cursor () ,
1

m sm _sh o w cu rso r() ,

e l s e { }
>

v o id s l i d e r p e r a s e () {
m s m _h id e cu rso r () ,

336

// f i l e s l i d e r hpp
// V4 9 10/04/90 11 30 PK
l f n d e f SL ID ER _H P P
» d e f in e S L ID ER _H PP
♦ in c lu d e "c a d sh a p e hpp"

c la s s s l i d e r p u b l ic cad sh a p e {
c h a r * b itm a p ,
i n t d e c , s ig n , n , m , d ig i t s ,
i n t a , i n s i d e ,

fg _ c o o rd _ t x l , y l , t x , t y , t x _ v a l u e , t y _ v a lu e ,

f l o a t b a r _ w id t h ,b a r _ h e ig h t ,
f l o a t d a s h _ w id th ,
f l o a t s l o t _ w id t h , s lo t _ h e ig h t ,
f l o a t b a r _ w id t h _ r e f , b a r _ h e ig h t _ r e f ,
f l o a t d a s h _ w id t h _ r e f ,
f l o a t s l o t _ w id t h _ r e f , s l o t _ h e i g h t _ r e f ,

fg _ b o x _ t s lo t _ b o x ,
fg _ b o x _ t b a r_b o x ,
f g _ l i n e _ t l i n e ,

i n t s t e p , s t a r t _ s t e p , m a x _ s te p ,m u l_ s te p , //

f l o a t d e l t a _ t e x t _ s t e p ,
d o u b le s te p _ d o u b le ,

i n t d ig i t _ s p a c e s ,

f l o a t v a lu e _ o f f s e t ,
c h a r * v a lu ,
c h a r v a lu o u t [9] ,
c h a r *num,
c h a r n u m b e r_o u t[3] ,

// f o r f l o a t -> s t r i n g c o n v e r s io n
// mul c o n s ta n t and in p u t box f l a g

// s l i d e r b a r
// d a sh es f o r v a lu e

// s l i d e r s l o t
// s l i d e r b a r d e f a u l t

// d a sh e s f o r v a lu e d e f a u l t
// s l i d e r s l o t d e f a u l t

// box f o r s l o t
// box f o r s l i d e r b a r
// dash to c e n te r o f s te p

s te p c o u n te r , f i r s t , max s te p s and
/ / mul s te p f a c t o r

// i n t e r s te p s p a c in g
// lo g a l l o c a t i o n o f d i g i t sp a ce f o r

/ / s te p s

// y _ in p u t - s t a r t _ s t e p p o in t
// f o r v a lu e

// f o r s te p draw
// f o r s te p draw

p u b l ic

v o id pdraw () ,
v o id p a n im a t e () ,
v o id a n a lo g _ p in p u t () ,
v o id p e x te n t_ p g e n () ,
v o id p e x te n t_ p d ra w () ,
v o id p e x te n t_ p e ra s e () ,

s l i d e r (u n s ig n e d x ,u n s ig n e d y , i n t id , f l o a t m ,m t e x te n t o n o f f) 0 {
i d e n t i f i e r = i d . I I
cad _ typ e= 3 . I I
b a r_ w id th _ re f= 1 5 . I I
b a r _ h e ig h t _ r e f= 2 .
d a s h _ w id th re f= 5 . I I t
s lo t _ w id t h re f= 5 . I I i
s lo t _ h e ig h t re f= 6 0 .

d e f a u l t

338

// f i l e v a lu e C i l e cpp
// V r 5 2 17 07 90 09 40 PK
((in c lu d e " v a l u e t i l e hpp"
((in c lu d e < s t d l ib h>
» in c lu d e <msmouse h>
» in c lu d e < fg h>

v o id v a l u e t i l e p d ra w () {
m sm _h id ecu rso r () ,
b a s ic _ p d ra w () ,
s c o lo r = 1 0 + (p r e v io u s _ s t a tu s * 2) ,

// c o n v e r t f l o a t v a lu e to c h a r s t r i n g v a l u U ,
v a lu = e c v t (p r e v io u s _ v a lu e , d ig i t s , sd e c , S s i g n) ,

i f (s ig n '= 0)
v a lu o u t [0]= * - ' ,

e l s e v a lu o u t [0] = '+ ',
m=l,
f o r (n = 0 ,n < (d ig its + 1) , n+ +){

i f (d e c '= 0)
v a lu o u t [m]= v a lu [n] ,

e l s e {
v a lu o u t [m)=' ' ,
m=m+l,
v a lu o u t [m]= v a lu [n] ,1

m+ + ,
d e c — ,)

fg _ p u t s (s c o lo r ,F G _ M O D E _ S E T ,- 0 ,F G _ R O T O ,x _ c e n te r ,y _ c e n te r ,v a lu o u t
, f g _ d is o la y b o x) ,

m sm _sh o w cu rso r() ,
}
v o id v a l u e t i l e p a n im a te O (

m s m _ h id e c u rs o r () ,
a c t i o n — ,
i f (a c t io n = = 0)(

a c t io n = a c t io n _ d e f a u l t ,

i f ((v a l u e 1= p re v io u s _ v a lu e) I I (s t a t u s 1= p r e v io u s _ s t a t u s)) (
fg _p u t s (FG_CYAN, FG_M O D E_SET , - 0 , FG_ROTO, x _ce n t e r

, y _ c e n t e r , v a lu o u t , f g _ d i s p l a y b o x) ,
p r e v io u s _ s t a tu s = s t a t u s ,
s c o lo r= 1 0 + (s ta tu s * 2) ,
p r e v io u s _ v a lu e = v a lu e ,
// c o n v e r t f l o a t v a lu e to c h a r s t r i n g v a l u [] ,
v a lu = e c v t (v a l u e , d i g i t s , S d e c , S s i g n) ,
i f (s ig n '= 0)

v a l u o u t [0] ,
e l s e v a l u o u t [0] ,
m=l,

f o r (n = 0 ,n < (d ig i t s + 1) , n + +){
i f (d e c '= 0)

v a lu o u t [m]= v a lu [n] ,
e l s e {

v a lu o u t [m]= ' ' ,

340

t o ta l_ n a m e [q + 2]= 'a ' ,
t o ta l_ n a m e [q + 3]= 'v ' ,
to ta l_ n a m e [q + 4] = '\ Q ' ,
b itm a p = to ta l_n a m e ,

}
~ v a l u e t i l e () i

p e ra s e () ,

e n d if V A LU ET ILE_H PP

// f i l e v a lu e t x cpp
// V r 5 1 20 06 90 08 40 PK
S in c lu d e " v a lu e t x hpp"
S in c lu d e < s t d l ib h>
¡(in c lu d e <msmouse h>
((in c lu d e < fg h>

v o id v a lu e t x p d ra w () (
m sm _h id ecu rso r 0 ,
b a s ic _ p d r a w {) ,
s c o lo r= 1 0 + (p re v io u s _ s ta tu s * 2) ,

// c o n v e r t f l o a t v a lu e to c h a r s t r i n g v a l u [] ,
v a lu = e c v t (p r e v io u s _ v a lu e , d ig i t s ,& d e c , S s ig n) ,

i f (s ig n '= 0)
v a lu o u t [0] = '- ' ,

e l s e v a l u o u t [0] ,
m =l,

f o r (n = 0 ,n < (d ig it s + 1) , n+ +)(
i f (d e c ’ =0)

v a lu o u t [m]= v a lu [n] ,
e l s e {

v a lu o u t [m]= ' ' ,

m=m+1 ,

v a lu o u t [m] = v a lu [n] ,)
m+ + ,
d e c — ,)

fg _ p u t s (s c o l o r , FG_M ODE_XOR,- 0 ,FG_ROTO, x _ c e n t e r , y _ c e n t e r , v a lu o u t
, fg _ d is p la y b o x) ,

rasra_show curso r() ,
t
v o id v a lu e t x p a n im a te () {

m s m _ h id e c u rs o r () ,
a c t i o n — ,
i f (a c t io n = = 0){

a c t io n = a c t io n _ d e f a u l t ,

i f <(v a l ue 1= p r e v i o u s _ v a l u e) | | (s t a t u s ’= p r e v i o u s _ s t a t u s)) (
f g _ p u t s (s c o l o r , FG_M ODE_XOR,~ 0 , FG_RO TO ,x _ c e n t e r

, y _ c e n t e r , v a l u o u t , f g _ d i s p l a y b o x) ,
p r e v i o u s _ s t a t u s = s t a t u s ,
s c o l o r = 1 0 + (s t a t u s * 2) ,
p r e v i o u s _ v a l u e = v a l u e ,
// c o n v e r t f l o a t v a lu e to c h a r s t r i n g v a l u [] ,
v a lu = e c v t (v a l u e , d i g i t s , S d e c , S s i g n) ,

342

while (sub_narae[q-2] 1='\0'){
to ta l_ n a m e [q]= s u b _ n a m e [q - 2] ,

q++,
)

total_name[q]=' ',
total_name[q+1]= 's',
total_name[q+2]='a ' ,
total_name[q+3]='v ' ,
total_name[q+4]='NO',
bitmap=total_name,

)
~ v a lu e t x () {

p e ra s e () ,

I,
#endif VALUETX_HPP

// file valve cpp
// V r5 0 05/05/90 09 50 PK
// Second level inheritance
// Zortech s Flash Graphics
ftinclude "valve hpp"
ffinclude <msmouse h>
¿include <fg h>

v o id v a l v e p e x te n t_ p g e n () (

e x t e n t s _ s im [0]= x _ c e n t e r - l 2 5 *w id th ,
e x t e n t s _ s im [l]= y _ c e n t e r - l 2 5 * h e ig h t- 2 * fg _ b o x _ h e ig h t (fg c h a r b o x) ,
e x t e n t s _ s im (2]= x _ c e n te r + l 2 5 *w id th ,
e x te n t s _ s ir a [3]= y _ c e n te r + 3 2 5 * h e ig h t ,

1
v o id v a l v e p e x te n t_ p d ra w () {

m s m _ h id e c u rs o r () ,

x _ m in _ e x tn = x _ c e n te r- l 2 5 *w id th ,
y _ m in _ e x tn = y _ c e n te r- l 2 5 * h e ig h t- 2 * fg _ b o x _ h e ig h t (fg c h a rb o x) ,
x _m a x _e x tn = x _ce n te r+ l 2 5 *w id th ,
y_m a x _e x tn = y_ce n te r+ 3 2 5 * h e ig h t ,

e x te n t_ b o x [F G _ X 1]= x _ m in _ e x tn ,
e x te n t_ b o x [F G _ Y 1] = y_m in _ex tn ,
e x te n t_ b o x [F G _ X 2]= x _ m a x _ e x tn ,
e x te n t_ b o x [F G _ Y 2]= y _ m a x _ e x tn ,

i f (e x te n t_ o v e r la p = = 0) { e x t e n t _ c o lo r = c o lo r , }
e l s e (e x t e n t _ c o lo r = c o lo r - 2 , }
fg _d raw b o x (e x te n t_ c o lo r ,F G _ M O D E _ X O R ,-0 , FG_LINE_M ED IUM _D ASHED

,e x t e n t _ b o x , f g _ d is p la y b o x) ,
m sm _sh o w cu rso r() ,
}

v o id v a l v e .p d r a w l) (
m s m _ h id e c u rs o r () ,

h e ig h t= v a lv e _ h e ig h t+ (a * m u l) ,

344

p o l y _ v a l v e [1 6]= s m a ll_b o x [FG _X 2] ,
p o l y _ v a l v e [1 7]= s m a ll_ b o x [F G _ Y 2] - 3 * h e ig h t/ 4 ,
p o l y _ v a l v e [1 8]= s m a ll_ b o x [F G _ X 2]+0 2 5 *w id th ,
p o ly _ v a l v e [1 9]= s m a ll_ b o x [F G _ Y 2]-0 7 5 * h e ig h t ,
p o l y _ v a l v e [2 0]= s m a ll_ b o x [F G _ X 2]+0 2 5 *w id th ,
p o l y _ v a l v e [2 1]= s m a ll_ b o x [F G _ Y 1]+0 7 5 * h e ig h t ,
p o l y _ v a l v e [2 2]= s m a ll_b o x [FG _X 2] ,
p o l y _ v a l v e [2 3]= s m a ll_ b o x [F G _ Y 1]+0 7 5 * h e ig h t ,
p o l y _ v a l v e [2 4]= la rg e _ b o x [F G _ X 2] ,
p o l y _ v a l v e [2 5]= la rg e _ b o x [F G _ Y 1] ,
p o l y _ v a l v e [2 6]= s m a ll_ b o x [F G _ X 2] - w id th / 6,
p o l y _ v a l v e [2 7]= s m a ll_ b o x [F G _ Y 1] ,
p o l y _ v a l v e [2 8]= b o t_ c ro s s _ b o x [F G _ X 2]+1,
p o l y _ v a l v e [2 9]= s m a ll_b o x [FG _Y 1] ,
p o l y _ v a l v e [3 0]= b o t_ c ro s s _ b o x [F G _ X 2]+1,
p o l y _ v a l v e [3 1]= b o t_ c ro s s _ b o x [F G _ Y l]- 1 ,
p o l y _ v a l v e [3 2]= b o t_ c ro s s _ b o x [F G _ X l]- 1 ,
p o l y _ v a l v e [3 3]= b o t_ c ro s s _ b o x [F G _ Y 1]- 1 ,
p o l y _ v a l v e [3 4]= b o t_ c ro s s _ b o x [F G _ X 1]- 1 ,
p o ly _ v a l v e [35] ^ s m a l l^ o x [FG _Y1] ,
p o l y _ v a l v e [3 6]= s m a ll_b o x [F G _X 1]+ w id th / 6 ,
p o l y _ v a l v e [3 1]= s m a ll_b o x [FG _Y 1] ,
p o l y _ v a l v e [3 8]= la rg e _ b o x [F G _ X 1] ,
p o l y _ v a l v e [3 9]= la rg e _ b o x [F G _ Y 1] ,
p o l y _ v a l v e [4 0]= s m a ll_b o x [F G _X 1] ,
p o l y _ v a l v e [4 1]= s m a ll_ b o x [F G _ Y 1]+0 7 5 * h e ig h t ,
p o l y _ v a l v e [4 2]= s m a ll_b o x [FG _X 1]- 0 2 5 *w id th ,
p o l y _ v a l v e [4 3]= s m a ll_ b o x [F G _ Y 1]+ 3 * h e ig h t/ 4 ,
p o l y _ v a l v e [4 4]= s m a ll_ b o x [F G _ X 1]-0 2 5 *w id th ,
p o ly _ v a lv e [4 5]= s m a l l_ b o x [F G _ Y 2]-0 7 5 * h e ig h t , v
p o l y _ v a l v e [4 6]= s m a ll_ b o x [F G _ X 1],
p o l y _ v a l v e [4 7]= s m a ll_ b o x [F G _ Y 2]- 0 75‘ h e ig h t ,
p o l y _ v a l v e [4 8]= la rg e _ b o x [F G _ X 1] ,
p o l y _ v a l v e [4 9]= la rg e _ b o x [F G _ Y 2],
x _m in_ e x t n= x _ c e n te r- l 2 5 *w id th ,
y _ m in _ e x tn = y _ c e n te r- l 2 5 * h e ig h t- 2 * fg _ b o x _ h e ig h t (fg c h a r b o x) ,
x _m a x _e x tn = x _ce n te r+ l 2 5 *w id th ,
y_m a x _e x tn = y_ce n te r+ 3 2 5 * h e ig h t ,

b a c k g ro u n d _ b o x [F G _ X l] = x _m in _ex tn ,
b a ck g ro u n d _b o x [F G _Y 1] = y_m ln _ex tn ,
b a ck g ro u n d _b o x [F G _X 2] = x_m ax_extn,
b a ck g ro u n d _b o x [FG _Y 2]= y_m a x _e x tn ,

p ix e l_ b u f f e r _ le n g t h = (s lz e o f (f g _ c o lo r _ t) * f g _ b o x _ a r e a (b a c k g r o u n d _ b o x)) ,
p ix e l_ b u f f e r = m a l lo c (p i x e l _ b u f f e r _ l e n g t h) ,
fg _ re a d b o x (b a c k g r o u n d _ b o x ,p ix e l_ b u f f e r) ,
b y t e z = (s i z e o f (i n t)) 12,
b ltm a p = to ta l_ n a m e ,
fp tr= fo p e n (b i tm a p , " w b ") ,

f w n t e (p i x e l _ b u f f e r , b y t e z , p ix e l _ b u f f e r _ l e n g t h , f p t r) ,
f c l o s e (f p t r) ,
f r e e (p i x e l _ b u f f e r) ,

f g _ f i l l b o x (fg c o lo r ,F G _ M O D E _ S E T ,~ 0 , b ack g ro u n d b o x) .

346

v o id v a l v e p a n im a te O {
a c t i o n — ,
i f (a c t io n = = 0)(

a c t io n = a c t io n _ d e f a u l t ,
i f ((v a lu e 1= p r e v io u s _ v a lu e) I I (s t a t u s 1= p r e v io u s _ s t a t u s)) {

i f (v a lu e> 1 0 0) va lu e = 1 0 0 ,
i f (v a lu e < 0) v a lu e = 0 ,
p r e v io u s _ s t a tu s = s t a t u s ,
p r e v io u s _ v a lu e = v a lu e ,
m s m _ h id e c u rs o r () ,
f g _ d r awbox (co lo r,FG _M O D E _X O R , ~0 , F G _L IN E _S O L ID

, t o p _ c r o s s _ b o x , f g _ d is p la y b o x) ,
fg _d raw b o x (c o l o r , FG _M O D E_X O R ,~ 0 ,FG _L IN E_SO L ID

, b o t _ c r o s s _ b o x , f g _ d is p la y b o x) ,
fg _ p u ts (s c o l o r , FG_M ODE_XOR,~0, FG_ROTO, t x _ s t a t u s

, t y _ s t a t u s , b la n k , f g _ d i s p l a y b o x) ,
f g _ f i l l b o x (s c o lo r ,F G _ M O D E _ X O R ,~ 0 ,to p _ c ro s s _ b o x) ,
f g _ f l l l b o x (s c o lo r ,F G _ M O D E _ X O R ,~ 0 ,b o t_ c ro s s _ b o x) ,

to p _ c ro s s _ b o x [F G _ Y 1] = to p _c ro s s_b o x [FG _Y 2]- 0 25*
h e ig h t - h e ig h t * (p r e v io u s _ v a lu e / 1 0 0) ,

b o t_ c ro s s _ b o x [F G _ Y 2] = b o t_ c ro s s_b o x [F G _Y 1]+0 25*
h e ig h t + h e ig h t * (p r e v io u s _ v a lu e / 1 0 0) ,

fg _d raw b o x (c o lo r ,F G _M O D E _X O R ,- 0 ,FG _L IN E _S O L ID
, t o p _ c r o s s _ b o x , f g _ d is p la y b o x) ,

fg _d raw b o x (co lo r,FG _M O D E_X O R , - 0 , F G _L IN E _S O L ID
, b o t _ c r o s s _ b o x , f g _ d is p la y b o x) ,

s c o lo r = 1 0 + (s t a t u s * 2) ,
f g _ f i l l b o x (s c o lo r ,F G _ M O D E _ X O R ,~ 0 ,to p _ c ro s s _ b o x) ,
f g _ f i l l b o x (s co lo r ,F G _ M O D E _ X O R ,- 0 ,b o t_ c ro s s _ b o x) ,
i f (s ta tu s = = 0) // o p e n ,s h u t o r run

{
i f (va lu e< = 1 0) b la n k = te x t0 , //open
i f (va lu e> = 9 0) { b l a n k = t e x t l ,) // sh u t

e l s e b la n k = te x t2 , //
t

e l s e {b la n k = te x t3 ,) // f a i l
fg _ p u t s (s c o lo r ,F G _ M O D E _ X O R ,~ 0 ,F G _ R O T O ,tx _ s ta tu s

, t y _ s t a t u s ,b la n k , f g _ d is p la y b o x)
m sm _sh o w cu rso r() ,

1
1

)

v o id v a l v e p e r a s e O {
m s m _h id e cu rso r () ,

fg _ d ra w p o ly g o n (c o lo r ,F G _ M O D E _ X O R ,- 0 ,F G _ L IN E _ S O L ID ,2 4 ,p o ly _ v a lv e

, fg d is p la y b o x) ,
fg _d raw b o x (c o lo r , F G _M O D E _X O R ,~ 0 ,F G _L IN E _S O L ID ,to p _c ro s s _b o x

, fg _ d is p la y b o x) ,
fg _d raw b o x (c o lo r ,F G _ M O D E _ X O R ,~ 0 ,F G _ L IN E _ S O L ID ,b o t_ c ro s s _ b o x

, fg _ d is p la y b o x) ,
f g _ f i l l b o x (s co lo r ,F G _M O D E _X O R ,- 0 , t o p _ c r o s s _ b o x) ,
f g _ f i l l b o x (s c o lo r ,F G _ M O D E _ X O R ,~ 0 ,b o t_ c ro s s _ b o x),
fg _d raw b o x (c o lo r ,F G _ M O D E _ X O R ,~ 0 ,F G _ L IN E _ S O L ID ,a c tu a to r_ b o x

run

348

// e l l i p s e s t a r t and s to p a n g le s
// e l l i p s e c lo s in g l i n e

p u b l ic
v o id p d ra w () ,
v o id p a m m a te O ,
v o id p e x te n t_ p g e n () ,
v o id p e x te n t_ p d ra w () ,

i n t a n g l,a n g 2 ,
fg l i n e t h a n d le _ l in e .

v a l v e (u n s ig n e d x ,u n s ig n e d y , m t id , f l o a t m, f l o a t r a w _ v a lu e ,u n s ig n e d s t a t e ,
i n t e x t e n t _ o n o f f) (x , y , id , m , r a w _ v a lu e , s t a t e , e x t e n t _ o n o f f) (

c ad _ typ e = 4 , // D IP A IP ty p e
max_mul=5, // maximum e x p a n s io n f a c t o r
v a lv e _ h e ig h t= 5 , v a lv e _ w id th = 2 0 ,
h e ig h t= v a lv e _ h e ig h t+ a * m a x _ m u l,
w id th = va lve _w id th + a *m ax _m u l,
a c t io n _ d e f a u lt= 3 ,
a c t io n = a c t io n _ d e f a u l t ,
m a x _e x te n t_b o x [0] = x _ c e n te r- l 2 5 *w id th ,
m a x _e x te n t_b o x [1] = y _ c e n t e r - l 2 5 * h e ig h t- 2 * fg _ b o x _ h e ig h t (fg c h a r b o x) ,
m a x _e x te n t_b o x [2] = x _ c e n te r+ l 2 5 * w id th ,
m a x _ e x te n t_ b o x [3] = y_cen te r+ 3 2 5 * h e ig h t ,
s i z e = s iz e o f (f g _ c o l o r _ t) ,
f i le _ r a n d = r a n d () ,
i t o a (f i le _ r a n d ,s u b _ n a m e ,1 0) ,
t o t a l_ n a m e [0] = 'v ' ,
t o t a l_ n a m e [1]= ’ a ' ,
q = 2 ,

w h i le (s u b _ n a m e [q - 2]1= '\ 0 ') (
to ta l_ n a m e [q]= s u b _ n a m e [q - 2] ,
q+ + ,

}
t o t a l_ n a m e [q !=' ' ,

' s ' ,
a ' ,
v ' ,
\ 0 ' ,

to ta l_ n a m e [q + 1]=
to ta l_ n a m e [q + 2]=
to ta l_ n a m e [q + 3]=
t o t a l nam e[q+4]=
b itm a p = to ta l_n a m e ,

)
void p e r a s e (),
- v a lv e () (

p e ra s e () ,

t e n d i f VALVE_H PP

// f i l e v e r t p ip e cpp
// V4 3 F la s h g r a p h ic s 19 02 90 18 50
// V4 8 05 04 90 17 00 PK

// P u s h e s b ack g ro u n d 'b e h in d ' o b je c t t o d ynam ic b u f f e r on draw
// P u l l s b a ck g ro u n d b ack t o s c r e e n on e r a s e
// H o r iz o n t a l o n ly
♦ in c lu d e " v e r t p ip e hpp"
♦ in c lu d e <msmouse h>
♦ in c lu d e < b io s h>
♦ in c lu d e < fg h>

350

f c l o s e (f p t r) ,
f r e e (p ix e l_ b u f f e r) ,

f g _ f i l l b o x (fg c o lo r ,F G _ M O D E _ S E T ,~ 0 ,b a c k g ro u n d _ b o x) ,
s c o lo r= 1 0 + (s ta tu s * 2) ,
y y = y _ c e n te r + s h i f t ,
x x = x _ ce n te r+ l,
y _ le n g th = y _ c e n te r+ le n g th + (a * m u l) ,
x _ d ia m e te r= x _ c e n te r+ d ia m e te r ,
w h i le (y y < y _ le n g t h) {

w h i le (x x < x _ d ia m e te r)f
fg _d ra w d o t (s c o l o r , FG _M O D E_X O R ,~ 0 ,x x ,yy) ,
xx= xx+ alpha,

}
x x = x _ ce n te r+ l,
y y= yy+ b e ta ,

1
y y = y _ c e n t e r + s h i f t ,
x x = x _ ce n te r+ l,
y _ le n g th = y _ c e n te r + le n g th + (a * m u l) ,
x _ d ia m e te r= x _ c e n te r+ d ia m e te r ,

fg _d raw b o x (c o lo r ,F G _M O D E _X O R ,- 0 ,F G _ L IN E _ S O L ID ,f lo w _ b o x
, f g _ d is p la y b o x) ,

m sm _sh o w cu rso r() ,
I
v o id v e r t p ip e p a m m a te O {

m sm _h id e cu rso r () ,
a c t i o n — ,
i f (a c t io n = = 0)(

a c t io n = a c t io n _ d e f a u l t ,
_ b io s _ t im e o f d a y (0 , S c u r r e n t _ t im e) , // mode 0 re a d ,
in t e r _ s a m p le _ t im e = c u r r e n t_ t im e - p r e v io u s _ t im e ,
i f ((in t e r _ s a m p le _ t im e) > (2 5 0 / (v a lu e + 1)))

(
y y = y _ c e n te r + s h i f t ,
x x = x _ ce n te r+ l,

y _ le n g th = y _ c e n te r + le n g th + (a * m u l) ,
x _ d ia m e te r= x _ c e n te r+ d ia m e te r ,
w h i le (y y < y _ le n g t h) (

w h i le (x x < x _d ia m e te r) {
fg _ d ra w d o t (s c o lo r ,F G _ M O D E _ X O R ,~ 0 ,x x ,y y) ,
xx= xx+ alpha ,
)

x x = x _ c e n te r+ l,
y y= yy+ b e ta ,

}
s h if t+ + ,
i f (s h i f t > 4) { s h i f t = l ,)
s c o lo r= 1 0 + (s ta tu s * 2) ,
/ / p r e v c o lo r = s c o lo r ,

y y = y _ c e n t e r + s h i f t ,
x x = x _ ce n te r+ l,
y _ le n g th = y _ c e n te r + le n g th + (a * m u l) ,

352

// f i l e v e r t p ip e hpp
// V r 4 9 12/06/90 10 45 PK
♦ i f n d e f V E R T P IP E _H P P
♦ d e fin e V E R T P IP E _H P P

in c lu d e "c a d s h a p e hpp"
♦ in c lu d e < fg h>

c la s s v e r t p ip e p u b l i c c ad sh a p e {
c h a r * b itm a p ,
i n t a , p r e v c o l o r , s h i f t , a l p h a , b e t a ,
fg _ b o x _ t f lo w _b o x ,
fg c o o r d _ t y y , x x ,x x _ s a v e d ,
i n t le n g th ,d ia m e t e r , y _ le n g t h ,x _ d ia m e t e r , ,
lo n g c u r r e n t _ t im e ,
lo n g p r e v io u s _ t im e ,
lo n g in t e r _ s a m p le _ t im e ,
p u b l ic

v o id p d ra w () ,
v o id p a n im a te () ,
v o id p e x te n t_ p g e n () ,
v o id p e x te n t_ p d ra w () ,
v o id p e x t e n t _ p e r a s e () ,

v e r t p ip e (u n s ig n e d x ,u n s ig n e d y , i n t id ,u n s ig n e d x r e f ,u n s ig n e d y r e f , f l o a t
m , f lo a t r a w _ v a lu e ,u n s ig n e d s t a t e , i n t e x t e n t _ o n o f f) 0 (

x _ c e n t e r = x , y _ c e n t e r = y ,
i d e n t i f i e r = i d , // cad sh ap e id
mul=m,
max_mul=120,
m in_m ul= 0,
conv_m = l, // C o n v e rs io n m u l t i p l i e r
con v_c= 0 , // C o n v e rs io n c o n s ta n t
v a lu e = (r a w _ v a lu e * c o n v _ m)+ c o n v _ c ,
s t a tu s = s t a t e ,
s t a tu s _ e x t n = e x t e n t _ o n o f f ,
a = l,
fg c o lo r= 0 ,
c o lo r= 1 5 ,
s h i f t = l ,
a lp h a= 4 ,
b eta= 4 ,
len g th = 5 0 ,
d ia m e te r= 7 ,
a c t io n _ d e f a u l t = l ,
a c t io n = a c t io n _ d e f a u l t ,
p e x te n t s e t (s t a t u s e x t n) ,

I I d e a f u l t p ix e l s h i f t
// y i n t e r d o t s p a c in g
// x i n t e r d o t s p a c in g

// d e f a u l t box le n g th
// d e f a u l t box d ia m e te r

m a x _ e x t e n t_ b o x [0] = x _ c e n t e r - l ,
m a x _ e x t e n t_ b o x [1] = y _ c e n t e r - l ,
m a x _ e x t e n t _ b o x [2] = x _ c e n t e r + d i a m e t e r + l ,
max_ex t en t_box [3J = y _e e n t e r + l en g t h +(a* m a x_ m ul) +1,

s i z e = s i z e o f (f g _ c o l o r _ t) ,
f i l e _ r a n d = r a n d () ,

354

l o w e r _ le f t _ x = f g _ d is p la y b o x [F G _ X 1] ,
i f (lo w e r _ le f t _ y < f g _ d is p la y b o x [F G _ Y 1])

lo w e r _ le f t _ y = f g _ d is p la y b o x [F G _ Y 1] ,
i f (u p p e r _ n g h t _ x > fg _ d is p la y b o x [F G _ X 2])

u p p e r _ n g h t _ x = fg _ d is p la y b o x [FG _X 2] ,
i f (u p p e r _ n g h t _ y > fg _ d is p la y b o x [F G _ Y 2])

u p p e r _ n g h t _ y = fg _ d is p la y b o x [FG _Y 2] ,

I I E n s u re maximum a r e a f o r W indow < 64k p o in t s
// by r e d u c t io n o f y t i l l a r e a < 64k
w h i le (((u p p e r _ n g h t _ x - lo w e r _ le f t _ x) * (u p p e r _ n g h t _ y - lo w e r _ le f t _ y)) >=

m ax_w ind o w _a rea)

u p p e r _ n g h t _ y - - ,

w indow _box [F G _ X 1] = lo w e r _ le f t _ x ,
w indow _box [F G _ Y 1] = lo w e r _ le f t _ y ,
w indow _box [FG _X 2] = u p p e r _ n g h t_ x ,
w indow _box [FG _Y2] = u p p e r _ n g h t _ y ,

b ackg ro u n d_b o x [FG _X1] =wm dow_box [FG _X1] ,
b a ck g ro u n d _b o x [F G _Y 1] = w indow_box [F G _ Y 1] ,
b ack g ro u n d _b o x [FG _X 2]= w in d o w _b o x [F G _ X 2] ,
b ack g ro u n d _b o x [FG _Y 2]= w in d o w _b o x [F G _ Y 2] ,

p ix e l_ b u f f e r = m a l lo c (p ix e l _ b u f f e r _ l e n g t h) ,
fg _ re a d b o x (b a c k g r o u n d _ b o x ,p ix e l_ b u f f e r) ,

f g _ f i l l b o x (b a c k g ro u n d _ c o lo r ,F G _ M O D E _ S E T ,~ 0 ,b a c k g ro u n d _ b o x) ,
fg _d raw b o x (b o u n d a r y _ c o lo r , FG_M ODE_XOR,- 0 ,F G _L IN E _S O L ID ,w in a o w _b o x

, fg _ d is p la y b o x) ,
m sm _sh o w cu rso r() ,
I

v o id w indow t e x t (c h a r * msg, f g _ c o lo r _ t t _ c o l o r) (
m s m _ h id e c u rs o r () ,

t e x t_ b o x [F G _ X 1] = w in d ow _b o x [FG _X 1]+ fg _ b o x _ w id th (fg c h a r b o x) ,
te x t_ b o x [F G _ Y 1]= w in d o w _ b o x [F G _ Y l] ,

te x t_ b o x [F G _ X 2]= w in d o w _ b o x [F G _ X 2]- fg _ b o x _ w id th (fg c h a rb o x),
te x t_ b o x [F G _Y 2) = w ind ow _box [FG _Y2] ,

m e ssa g e _s tn n g = m sg ,
t e x t _ c o lo r = t _ c o lo r ,
m e s s a g e _ le n g t h = s t r le n (m e s s a g e _ s t r m g)* fg _ b o x _ w id t h (f g c h a r b o x) ,
w h i le (m e s s a g e _ le n g th > fg _ b o x _ w id th (te x t _ b o x))

m e s s a g e _ le n g th - = fg _ b o x _ w id th (fg c h a r b o x) ,
t e x t_ x = te x t _ b o x [F G _ X 1] ,
t e x t _ y = te x t _ b o x [F G _ Y 2] ,
fg _ p u ts (te x t_ c o lo r ,F G _ M O D E _ X O R ,~ 0 ,F G _ R O T O ,te x t_ x , t e x t _ y

,m e s s a g e _ s t r in g , t e x t _ b o x) ,
/ /m essag e_strin g = *m sg + m essag e le n g th
t e x t_ y = te x t _ b o x [F G _ Y 2] - f g _ b o x _ h e ig h t (fg c h a r b o x) ,
fg _ p u t s (t e x t_ c o lo r ,F G _ M O D E _ X O R ,- 0 ,F G _ R O T 0 ,te x t_ x , t e x t _ y

, m e s s a g e _ s tn n g , te x t_ b o x) ,
m sm _sh o w cu rso r() ,
)

356

u n s ig n e d lo n g s iz e ,
f g _ c o lo r _ t * p ix e l _ b u f f e r
c h a r * m e s s a g e _ s tn n g ,
s i z e _ t m e s s a g e _ le n g th .

// e le m e n t s iz e f o r f a r c a l l o c
// b ack g ro u n d b u f f e r p o in t e r

// w indow m essage
// w indow m essage le n g th

f g _ c o lo r _ t b a c k g ro u n d _ c o lo r ,
f g _ c o lo r _ t b o u n d a ry _ c o lo r ,
f g _ c o lo r _ t t e x t _ c o lo r .

// w indow box f i l l c o lo u r
// window b o u n d a ry c o lo u r

// t e x t c o lo u r

u n s ig n e d m ax_w m d ow _area . // maximum w indow box a r e a (64k)

p u b l ic

v o id open (u n s ig n e d l lx , u n s ig n e d l l y , u n s ig n e d u rx ,u n s ig n e d u r y , f g _ c o l o r _ t
b _ c o l o r , f g _ c o l o r _ t l _ c o l o r) ,

v o id t e x t (c h a r * m s g , f g _ c o lo r _ t t _ c o l o r) ,
f g _ c o o r d _ t t e x t _ p o s i t io n () ,
v o id e r a s e () ,
v o id c lo s e () ,

t ex t_box [FG_X1]=0,
me ss age _ l e ng th= 0 ,
max_window_area=15360,
p i x e l _ b u f f e r _ l e n g t h = (m a x _ w m d o w _ a r e a) * s i z e o f (f g _ c o l o r _ t) ,
s i z e = s i z e o f (f g _ c o l o r _ t) ,
f i l e _ r a n d = r a n d () ,
i t o a (f i l e _ r a n d , s u b _ n a m e , 10) ,
t o t a l _ n a m e [0)= ' w ' ,
t o t a l _ n a m e (1]= ' l ' ,

total_name[q]=' ',
total_name[q+1]='s',
total_name[q+2]=' a' ,
total_name[q+3)=' v' ,
total_name[q+ 4]=' \ 0 ' ,
bitmap=total_name.

t e n d i f WINDOW_HPP

// f i l e w in d o w t i le cpp
// V5 20 Z o r te c h & F la s h G ra p h ic s
// 17/07/90 10 20 PK

¡ (in c lu d e " w in d o w t i le h p p "
« in c lu d e cmsmouse h>

fg _ c o o r d _ t w in d o w t i le t e x t _ p o s i t i o n () {

c u r r e n t _ t e x t _ p o s i t io n = t e x t _ b o x [F G _ X 1] + m e s s a g e _ le n g th + fla n g e ,
r e t u r n c u r r e n t _ t e x t _ p o s i t i o n .

w in d o w () (

q=2.
w h i le (su b _n am e [q - 2] 1= '\ 0 ') (

t o t a l_ n a m e (q] =sub nam e[q-2]
q++-

~ w in do w () (

358

l_ l in e _ 2 [F G _ X 1]= w in d o w Jb o x [F G J Q] -1,
l_ lin e _ 2 [F G _ Y 1]= w in d o w _ b o x [FG _Y 1]- 1 ,
l _ lm e _ 2 [FG _X2] =wm dow_box [FG _X1] -1,
l _ lm e _ 2 [F G _ Y 2] =w indow_box [F G _ Y 2]+1,
t _ l x n e _ l [FG _X1] = wm dow_box [FG _X1] ,
t _ l m e _ l [FG _Y 1 1 =wm dow_box [FG _Y2] ,
t _ l m e _ l [FG _X2] = wm dow_box [FG _X2] ,
t _ lm e _ _ l [FG _Y2] =w indow_box [FG _Y2] ,

t _ X in e _ 2 [FG_X11 =w indow_box [FG_X11 -X ,
t _ l in e _ 2 [F G _ Y 1] =w indow_box [FG _Y2]+ X ,
t _ l in e _ 2 [F G _ X 2 1= window_box [F G _X 2 1+1»
t _ l in e _ 2 [F G _ Y 2]= w in d o w _ b o x [FG _Y2]+ X ,
r _ l m e _ l [FG_X1] =wm dow_box [FG _X2] ,
r _ l in e _ l [F G _ Y 1 J =w indow_box [F G _Y 2) ,

r _ l i n e _ l [FG _X2]= w indow _box [F G _ X 2] ,
r _ X in e X [F G _ Y 2] =w indow_box [F G _ Y X],
r _X in e _2 [FG _X 1]= w in d o w _b o x [FG _X2]+ X,
r _ X m e _ 2 [FG _YX] =window_box [FG _Y2] +X,
r _ X in e _ 2 [FG _X2] =window__box [FG__X2] +X,
r _ lm e _ 2 [FG _Y2] =w indow_box [FG _YX] -X,
b _ X in e _ X [F G _ X 1] =window_box [F G _ X 2] ,
b _X in e _X [FG _Y X]= w in d o w _b o x [F G _ Y X] ,
b _X x n e _X [FG _X 2] =w indow_box [F G _X X] ,
b _ X in e _ X [F G _ Y 2] =w indow_box [F G _Y X] ,
b _ Ix n e_2 [FG _X X]= w xn d o w _b o x [FG _X2]+ X ,
b _X x n e _2 [F G _Y X] =w indow_box [F G _Y 1] - X ,
b _ lx n e _ 2 [F G _ X 2] =w indow_box [F G _X X] -X ,
b _X x n e_2 [FG _Y 2]= w ind o w _b o x [F G _Y X] -X,

bacJcground_box [FG_X1] =out er_window_box [FG_Xl),
background_box[FG_YX] =outer_wxndow_box [FG_Y1],
background_box[FG_X2] =outer_window_box [FG_X2],
background_box[FG_Y2] =outer_wxndow_box [FG_Y2],

p ix e l _ b u f f e r = m a l l o c (p ix e l_ b u f f e r _ l e n g t h) ,
fg _ re a d b o x (b a c k g r o u n d _ b o x ,p ix e l_ b u f f e r) ,

f g _ f lX lb o x (FG_M AGENTA,FG_M ODE_SET, ~0, o u te r_w in d o w _b o x) ,
f g _ f i l l b o x (b a c k g ro u n d _ c o lo r ,F G _ M O D E _ S E T ,- 0 ,w indow _box) ,

fg _ d ra w lin e (F G _ B L A C K ,F G _ M O D E _ S E T ,- 0 ,F G _ L IN E _ S O L ID , X _ l in e _ X) ,
fg _d ra w X m e (F G _ B L A C K , FG_M ODE_SET, - 0 ,F G _ L IN E _ S O L ID , t _ l x n e _ l) ,
fg _ d ra w lin e (F G _ W H IT E ,F G _ M O D E _ S E T ,- 0 ,F G _ L IN E _ S O L ID , r _ lx n e _ l) ,
fg _ d ra w lin e (F G _ W H IT E ,F G _ M O D E _ S E T ,~ 0 , F G _ L IN E _ S O L ID ,b _ l in e _ l) ,

fg _ d ra w lin e (F G _ B L A C K ,F G _ M O D E _ S E T ,-0, F G _ L IN E _ S O L ID , l _ l i n e _ 2) ,
fg _ d ra w X m e (FG J3 LA C K ,FG _M O D E_SET , ~ 0 , F G _ L IN E _ S O L ID , t _ lx n e _ 2) ,
fg _ d ra w lin e (F G _ W H IT E ,F G _ M O D E _ S E T , '0 , F G _ L IN E _ S O L ID , r _ l in e _ 2) ,
fg _ d ra w lin e (F G _ W H IT E ,F G _ M O D E _ S E T , ~0 , F G _ L IN E _ S O L ID , b _ lm e _ 2) ,

msra_showcursor () ,
}

v o id w in d o w t i le c l o s e d {
m s m _ h id e c u rs o r () ,

f g _ f l l l b o x (FG_BLACK,FG_MODE_SET,--O,background_box) ,
f g _ w n t eb ox (backg round_box , p i x e l _ b u f f e r) ,

360

I I f i l e v a l u e t i l e cpp
// V r 5 2 17 07 90 09 40 PK
« in c lu d e " v a l u e t i l e hpp "
« in c lu d e < s t d l ib h>
« in c lu d e <msmouse h>
« in c lu d e < fg h>

v o id v a l u e t i l e p d ra w () {
m s m _ h id e c u rs o r () ,
b a s ic _ p d r a w () ,
s c o lo r = 1 0 + (p r e v io u s _ s t a tu s * 2) ,

// c o n v e r t f l o a t v a lu e to c h a r s t r i n g v a l u t] ,
v a lu = e c v t (p r e v io u s _ v a lu e ,d i g i t s , Sd ec , S s ig n) ,

i f (s ig n '= 0)
v a l u o u t [0] = ' ,

e l s e v a lu o u t [0] = '+ ',
m=l,
f o r (n = 0 ,n < (d ig i t s + 1) , n+ +){

i f (d e c '= 0)
v a lu o u t [m]= v a lu [n] ,

e l s e f
v a lu o u t [m]= ' ' ,
m=m+1,
v a lu o u t [m]= v a lu [n i , l

m++,
d e c — , }

fg _ p u t s (s c o lo r , FG _M O D E_SET ,- 0 ,F G _ R O T O ,x _ c e n te r ,y _ c e n te r , v a lu o u t
, f g _ d is p la y b o x) ,

m sm _sh o w cu rso r() ,
>
v o id v a l u e t i l e p a n im a te O (

m s m _ h id e c u rs o r () ,
a c t i o n — ,
i f (a c t io n = = 0)(

a c t io n = a c t io n _ d e f a u l t ,

i f ((v a lu e 1= p re v io u s _ v a lu e) I 1 (s t a t u s 1= p r e v io u s _ s t a t u s)) (
f g _ p u t s (FG _C Y A N ,FG _M O D E_SET ,~0 , F G _R O T O ,x _ce n te r

, y _ c e n t e r , v a l u o u t , f g _ d i s p l a y b o x) ,
p r e v io u s _ s t a tu s = s t a t u s ,
s c o lo r = 1 0 + (s t a tu s * 2) ,
p r e v io u s _ v a lu e = v a lu e ,
I l c o n v e r t f l o a t v a lu e to c h a r s t r i n g v a l u [] ,
v a lu = e c v t (v a l u e , d i g i t s , S d e c ,S s ig n) ,
i f (s ig n '= 0)

v a l u o u t [0] = ' ,
e l s e v a lu o u t [0] = '+ ',
m=l,

f o r (n = 0 ,n < (d ig it s + 1)< n+ +){
i f (d e c '= 0)

v a lu o u t [m]= v a lu [n i ,
e l s e f

v a lu o u t [m]= ' ' ,

362

to ta l_ n a m e [q + 2]= 'a ' ,
to ta l_ n a m e [q + 3]= 'v ' ,
to ta l_ n a m e [q + 4] = ' \ 0 ' ,
b itm a p = to ta l_n a m e ,

}
- v a l u e t i l e () {

p e r a s e () ,

e n d if V A LU ET ILE_H PP

// f i l e v a lu e tx cpp
// V r 5 1 20 06 90 08 40 PK
¿ in c lu d e " v a lu e t x hpp"
¿ in c lu d e < s t d l ib h>
¿ in c lu d e <msmouse h>
¿ in c lu d e < fg h>

v o id v a lu e t x p d ra w () (
m s m _ h id e c u rs o r () ,
b a s ic _ p d r a w () ,
s c o lo r = 1 0 + (p r e v io u s _ s ta tu s * 2) ,

// c o n v e r t f l o a t v a lu e to c h a r s t r i n g v a l u [] ,
v a lu = e c v t (p r e v i o u s _ v a l u e , d i g i t s , S d e c , S s ig n) ,

i f (s ig n '= 0)
v a l u o u t [0] = ' ,

e l s e v a l u o u t [0] = '+ ',
m=l,
f o r (n = 0 ,n < (d ig i t s + 1) , n+ +){

i f (d e c 1=0)
v a lu o u t [m]= v a lu [n] ,

e l s e {
v a lu o u t [m]=' ' ,
ra=m+l,
v a lu o u t [m]= v a lu [n] , }

m++,

d e c — ,)
fg _ p u t s (s c o l o r , F G _ M O D E _ X O R ,~ 0 ,F G _ R O T 0 ,x _ c e n te r ,y _ c e n te r ,v a lu o u t

, f g _ d is p la y b o x),
m sm _sh o w cu rso r!) ,

t
v o id v a lu e t x p a m m a te O (

m s ra _ h id e c u rs o r () ,
a c t i o n — ,
i f (a c t io n = = 0){

a c t io n = a c t io n _ d e f a u l t ,

i f ((v a l u e 1= p r e v io u s _ v a lu e) I I (s t a t u s 1= p r e v io u s _ s t a t u s)) {
f g _ p u t s (s co lo r ,FG _M O D E_X O R ,~ 0 ,FG _R O T O , x _ c e n t e r

, y _ c e n t e r , v a l u o u t , f g _ d i s p l a y b o x) ,
p r e v io u s _ s t a tu s = s t a t u s :
s c o lo r = 1 0 + (s t a t u s * 2) ,
p r e v io u s _ v a lu e = v a lu e ,
// c o n v e r t f l o a t v a lu e to c h a r s t r i n g v a l u [] ,
v a lu = e c v t (v a l u e , d i g i t s , s d e c , s s i g n) .

364

w h i le (s u b _n a m e [q - 2 1 1= '\ 0 ') (
to ta l_ n a m e [q)= s u b _ n a m e [q - 2] ,

q ++'
}

t o t a l_ n a m e [q]=' ' ,
to ta l_ n a m e [q + 1] = ' s ' ,
to ta l_ n a m e [q + 2]= ' a ' ,
to ta l_ n a m e [q + 3] = 'v ' ,
t o ta l_ n a m e [q + 4] = ' \ 0 ' ,
b itm a p = to ta l_ n a m e ,

>
' v a l u e t x O (

p e r a s e () ,
).
e n d if VALUETX_HPP

// f i l e v a l v e cpp
// V r5 0 05/05/90 09 50 PK
// Second l e v e l i n h e r i t a n c e
// Z o r te c h S F la s h G ra p h ic s
♦ in c lu d e " v a l v e hpp"
((in c lu d e <msmouse h>
in c lu d e <fg h>

v o id v a l v e p e x te n t_ p g e n () {

e x t e n t s _ s im [0]= x _ c e n t e r - l 25’ w id th ,
e x t e n t s _ s im [1] = y _ c e n t e r - l 2 5 *h e ig h t- 2 * fg _ b o x _ h e ig h t (fg c h a r b o x) ,
e x t e n t s _ s im [2]= x _ c e n te r + l 2 5 *w id th ,
e x te n t s _ s im [3]= y _ c e n te r + 3 2 5 * h e ig h t ,

)
v o id v a l v e p e x te n t_ p d r a w () {

m s m _ h id e c u rs o r () ,

x _ m in _ e x tn = x _ c e n te r- l 2 5 *w id th ,
y _ m in _ e x t n = y _c e n te r - 1 2 5 * h e ig h t- 2 * fg _ b o x _ h e ig h t (fg c h a rb o x) ,
x _ m a x _e x tn = x _c e n te r+ l 2 5 * w id th ,
y_m a x _ex tn = y_ce n te r+ 3 2 5 * h e ig h t ,

e x te n t_ b o x [F G _ X 1] = x _m in _ex tn ,
e x te n t_ b o x [F G _ Y 1] = y_m in _ex tn ,
e x te n t_ b o x [F G _ X 2] = x_m ax_extn ,
e x te n t_ b o x [F G _ Y 2]= y _ m a x _ e x tn ,

i f (e x te n t_ o v e r la p = = 0) { e x t e n t _ c o lo r = c o lo r , t
e l s e (e x t e n t _ c o lo r = c o lo r - 2 , }

fg _d raw b o x (ex ten t_co lo r,FG _M O D E_X O R ,~ 0 ,FG _L IN E_M ED IU M _D A SH ED
,e x t e n t _ b o x , f g _ d is p la y b o x) ,

m sm _sh o w cu rso r() ,
}

v o id v a l v e p d ra w O {

m s m _h id e cu rso r () ,

h e ig h t= v a lv e _ h e ig h t+ (a * m u l) ,

366

p o l y _ v a l v e [1 6]= s m a ll_ b o x [F G _ X 2],
p o ly _ v a l v e [1 1]= s m a ll_ b o x [F G _ Y 2]- 3 * h e ig h t/4,
p o ly _ v a l v e [1 8]= s m a ll_ b o x [F G _ X 2]+0 2 5 *w id th ,
p o ly _ v a l v e [1 9]= s ra a ll_ b o x [F G _ Y 2]- 0 75‘ h e ig h t ,
p o l y _ v a l v e [2 0]= s m a ll_ b o x [F G _ X 2]+0 25‘ w id th ,
p o l y _ v a l v e [2 1]= s m a ll_ b o x [F G _ Y 1]+0 75‘ h e ig h t ,
p o l y _ v a l v e [2 2]= s m a ll_ b o x [F G _ X 2],
p o l y _ v a l v e [2 3]= s m a ll_ b o x [F G _ Y 1]+0 75‘ h e ig h t ,
p o l y _ v a l v e [2 4]= la rg e _ b o x [F G _ X 2] ,
p o l y _ v a l v e [2 5]= la rg e _ b o x [F G _ Y 1] ,
p o l y _ v a l v e [2 6]= s m a ll_ b o x [F G _ X 2] - w id th / 6,
p o l y _ v a l v e [2 7]= s m a ll_ b o x [F G _ Y 1] ,
p o l y _ v a l v e [2 8]= b o t_ c ro s s _ b o x [F G _ X 2]+1,
p o l y _ v a l v e [2 9]= s m a ll_b o x [F G _Y 1] ,
p o l y _ v a l v e [3 0]= b o t_ c ro s s _ b o x [F G _ X 2]+1,
p o l y _ v a l v e [3 1]= b o t_ c ro s s _ b o x [F G _ Y 1]- 1 ,
p o l y _ v a l v e [3 2]= b o t_ c ro s s _ b o x [F G _ X 1]- 1 ,
p o l y _ v a l v e [3 3]= b o t_ c ro s s _ b o x [F G _ Y 1]- 1 ,
p o l y _ v a l v e [3 4]= b o t_ c ro s s _ b o x [F G _ X 1]- 1 ,
p o ly _ v a l v e [3 5]= s m a ll_ b o x [F G _ Y 1] ,
p o ly _ v a l v e [3 6]= s m a ll_ b o x [F G _ X 1] + w id th /6 ,
p o l y _ v a l v e [3 7]= s m a ll_ b o x [F G _ Y 1] ,
p o l y _ v a l v e [3 8]= la rg e _ b o x [F G _ X 1] ,
p o l y _ v a l v e [3 9]= la rg e _ b o x [F G _ Y 1] , »
p o l y _ v a l v e [4 0]= s m a ll_ b o x [F G _ X 1] ,
p o l y _ v a l v e [4 1]= s m a ll_b o x [FG _Y 1]+ 0 7 5 * h e ig h t ,
p o l y _ v a l v e [4 2]= s m a ll_ b o x [F G _ X 1]- 0 2 5 * w id th ,
p o l y _ v a l v e [4 3]= s m a ll_ b o x [F G _ Y 1] +3‘ h e ig h t/ 4 ,
p o l y _ v a l v e [4 4]= s m a ll_ b o x [F G _ X 1]- 0 2 5 * w id th ,
p o l y _ v a l v e [4 5]= s m a ll_ b o x [F G _ Y 2]- 0 75‘ h e ig h t ,
p o l y _ v a l v e [4 6]= s m a ll_ b o x [F G _ X 1] ,
p o l y _ v a l v e [4 7]= s m a ll_ b o x [F G _ Y 2]- 0 75‘ h e ig h t ,
p o ly _ v a l v e [4 8]= la rg e _ b o x [F G _ X 1] ,
p o ly _ v a l v e [4 9]= la rg e _ b o x [F G _ Y 2] ,
x _ m in _ e x tn = x _ c e n te r- l 25‘ w id th ,
y _ m in _ e x tn = y _ c e n te r- l 2 5 * h e ig h t- 2 ‘ f g _ b o x _ h e ig h t (fg c h a r b o x) ,
x _m a x _ex tn = x _ce n te r+ l 25 ‘ w id th ,
y _m ax _ex tn = y_cen te r+ 3 25 ‘ h e ig h t ,

b a ck g ro u n d _b o x [F G _X 1] = x _m in _ex tn ,
b a ck g ro u n d _b o x [F G _Y 1] = y_m in _e x tn ,
b ack g ro u n d _b o x [FG _X 2]= x _m a x _ex tn ,
b a ck g ro u n d _b o x [F G _Y 2]= y_m a x _e x tn ,

p ix e l_ b u f f e r _ le n g t h = (s iz e o f (f g _ c o lo r _ t) * f g _ b o x _ a r e a (b a c k g r o u n d _ b o x)) ,
p ix e l_ b u f f e r = m a l lo c (p i x e l _ b u f f e r _ l e n g t h) ,
fg _ re a d b o x (b a c k g r o u n d _ b o x ,p ix e l_ b u f f e r) ,
b y t e z = (s i z e o f (i n t)) /2 ,
b itm a p = to ta l_n a m e ,
fp tr= fo p e n (b i tm a p , "w b ") ,

f w n t e (p i x e l _ b u f f e r , b y t e z , p ix e l _ b u f f e r _ l e n g t h , f p t r) ,
f c l o s e (f p t r) ,
f r e e (p ix e l_ b u f f e r) ,

f g _ f i l l b o x (fg c o lo r ,F G _ M O D E _ S E t ,~ 0 ,b a c k g ro u n d _ b o x) ,

368

v o id v a l v e p a n im a te O (
a c t i o n —
i f (a c t io n = = 0)f

a c t io n = a c t io n _ d e f a u l t ,
i f ((v a lu e 1= p r e v io u s _ v a lu e) | | (s t a t u s 1= p r e v io u s _ s t a t u s)) f

i f (v a lu e> 1 0 0) va lu e = 1 0 0 ,
i f (v a lu e < 0) va lu e = 0 ,
p r e v io u s _ s t a tu s = s t a t u s ,
p r e v io u s _ v a lu e = v a lu e ,
m s m _ h id e c u rs o r () ,
fg _d raw b o x (c o lo r , FG_M ODE_XOR,~0, F G _ L IN E _ S O L ID

, t o p _ c r o s s _ b o x , fg _ d is p la y b o x) ,
fg _d raw b o x (co lo r ,F G _ M O D E _ X O R ,~ 0 ,F G _ L IN E _ S O L ID

,b o t _ c r o s s _ b o x , f g _ d is p la y b o x) ,
fg _ p u t s (s c o lo r ,F G _ M O D E _ X O R ,~ 0 ,F G _ R O T O ,tx _ s ta tu s

, t y _ s t a t u s ,b la n k , f g _ d is p l a y b o x) ,
f g _ f i l l b o x (s c o l o r , FG _M O D E_X O R ,~ 0 ,to p _c ro ss_b o x) ,
f g _ f i l l b o x (s co lo r ,F G _M O D E _X O R ,- 0 ,b o t_ c ro s s _ b o x) ,

to p _ c ro s s _ b o x [FG _Y 1 1= to p _ c ro s s _ b o x [F G _Y 2]- 0 25*
h e ig h t - h e ig h t * (p r e v io u s _ v a lu e / 1 0 0) ,

b o t_ c ro s s _ b o x [F G _Y 2] = b o t_ c ro s s _ b o x [F G _ Y 1]+0 25*
h e ig h t + h e ig h t * (p r e v io u s _ v a lu e / 1 0 0) ,

fg _d raw b o x (c o lo r ,F G _M O D E _X O R ,- 0 ,F G _L IN E _S O L ID
, t o p _ c r o s s _ b o x , fg _ d is p la y b o x) ,

fg _d raw b o x (co lo r ,F G _M O D E _X O R ,~ 0 , FG _L IN E_SO LX D
, b o t _ c r o s s _ b o x , f g _ d is p la y b o x) ,

s c o lo r = 1 0 + (s t a t u s * 2) ,
f g _ f l l l b o x (s c o lo r ,F G _ M O D E _ X O R ,- 0 , t o p _ c r o s s _ b o x) ,
f g _ f i l l b o x (s c o lo r ,F G _ M O D E _ X O R ,~ 0 ,b o t_ c ro s s _ b o x) ,
i f (s ta tu s = = 0) // o p e n ,s h u t o r run

(
i f (va lue< = 10) b la n k = te x tO , //open
i f (va lue> = 90) { b la n k = te x t1 , } // sh u t

e l s e b la n k = te x t2 , //
}

e l s e (b la n k = te x t3 ,) // f a i l
fg _ p u t s (s co lo r ,F G _ M O D E _ X O R ,~ 0 ,F G _ R O T O ,tx _ s ta tu s

, t y _ s t a t u s , b la n k , f g _ d i s p l a y b o x) ,
m sm _sh o w cu rso r() ,

}
}
v o id v a l v e p e r a s e O (

m s m _ h id e c u rs o r () ,

fg _ d ra w p o ly g o n (c o lo r ,F G _ M O D E _ X O R ,- 0 ,F G _ L IN E _ S O L ID ,2 4 ,p o ly _ v a l v e
, fg d is p la y b o x) ,

fg _d raw b o x (c o lo r ,F G _ M O D E _ X O R ,~ 0 ,F G _ L IN E _ S O L ID ,to p _ c ro s s _ b o x

, f g _ d is p la y b o x) ,
fg _d raw b o x (c o lo r ,F G _ M O D E _ X O R ,~ 0 ,F G _ L IN E _ S O L ID ,b o t_ c ro s s _ b o x

, fg _ d is p la y b o x) ,
f g _ f l l l b o x (s c o lo r ,F G _ M O D E _ X O R ,~ 0 ,to p _ c ro s s _ b o x) ,
f g _ f i l l b o x (s c o lo r ,F G _ M O D E _ X O R ,~ 0 ,b o t_ c ro s s _ b o x) ,
fg _d ra w b o x (c o lo r ,F G _ M O D E _ X O R ,~ 0 ,F G _ L IN E _ S O L ID , a c t u a t o r box

run

370

// e l l i p s e s t a r t and s to p a n g le s
// e l l i p s e c lo s in g l i n e

public
v o id p d ra w () ,
v o id p a n im a t e () ,
v o id p e x te n t_ p g e n () ,
v o id p e x te n t_ p d ra w () ,

m t a n g l,a n g 2 ,
fg l i n e t h a n d le l i n e .

v a lv e (u n s ig n e d x ,u n s ig n e d y , i n t i d , f l o a t m , f lo a t raw v a lu e ,u n s ig n e d s t a t e ,
i n t e x t e n t _ o n o f f) (x , y , i d , m , r a w _ v a l u e , s t a t e , e x t e n t _ o n o f f)■

cad _ typ e = 4 , // D IP A IP ty p e
max_mul=5, // maximum e x p a n s io n f a c t o r
v a lv e _ h e ig h t= 5 , v a lv e _ w id th = 2 0 ,
h e ig h t= v a lv e _ h e ig h t+ a * m a x _ m u l,
w id th = v a lv e _w id th + a *m a x _m u l,
a c t io n _ d e f a u lt = 3 ,
a c t io n = a c t io n _ d e f a u l t ,
m a x _ e x te n t_ b o x [0] = x _ c e n te r- l 2 5 * w id th ,
m a x _ex ten t_b o x [1] = y _ c e n t e r - l 2 5 * h e ig h t- 2 * fg _ b o x _ h e ig h t (f g ch a rb o x) ,
m a x _ e x te n t_ b o x [2] = x _ c e n te r+ l 25*w id th ,
m a x _ e x te n t_ b o x [3] = y_cen te r+ 3 25‘ h e ig h t ,
s i z e = s i z e o f (f g _ c o l o r _ t) ,
f i l e _ r a n d = r a n d () ,
i t o a (f i le _ r a n d , s u b _ n a m e ,1 0),
t o t a l_ n a m e [0]= ' v ' ,
t o t a l_ n a m e [1]= ' a ' ,
q=2,
w h i l e (su b _n am e [q - 2] ' = ' \ 0 ') (

to ta l_ n a m e [q]= s u b _ n a m e [q - 2] ,
q++,
)

t o t a l_ n a m e [q]=' ' ,
t o ta l_ n a m e [q + 1]= ' s ' ,
t o ta l_ n a m e [q + 2]= ' a ' ,
to ta l_ n a m e [q + 3]= ' v ' ,
to ta l_ n a m e [q + 4]= ' \ 0 ' ,
b itm a p = to ta l_ n a m e ,

v o id p e r a s e () ,
- v a lv e () (

p e r a s e () ,
},
e n d if VALVE_H PP

/ f i l e v e r t p ip e cpp
/ V4 3 F la s h g r a p h ic s 19 02 90 18 50
/ V4 8 0 5 .04 90 17 00 PK

/ P u sh e s b a ck g ro u n d 'b e h in d ' o b je c t t o d yn am ic b u f f e r on draw
/ P u l l s b a ck g ro u n d b ack to s c r e e n on e r a s e
/ H o r iz o n t a l o n ly

in c lu d e " v e r t p ip e hpp"
t in c lu d e cmsmouse h>
t in c lu d e c b io s h>
l i n c l u d e < fg h>

372

f c l o s e (f p t r) ,
f r e e (p ix e l _ b u f f e r) ,

f g _ f i l l b o x (f g c o l o r , FG _M O D E_SET ,~0 , b a ck g ro u n d _b o x) ,
s c o lo r= 1 0 + (s ta tu s * 2) ,
y y = y _ c e n te r + s h i f t ,
x x = x _ c e n te r+ l,
y _ le n g th = y _ c e n te r+ le n g th + (a * m u l) ,
x _ d ia m e te r= x _ c e n te r+ d ia m e te r ,
w h i le (y y < y _ le n g t h) {

w h i l e (x x < x _d ia m e te r) (
fg _d ra w d o t (s co lo r ,F G _ M O D E _ X O R ,~ 0 , x x , y y) ,
xx= xx+ alpha,

)
x x = x _ c e n te r+ l,
yy= yy+ b e ta ,

t
y y = y _ c e n t e r + s h i f t ,
x x = x _ c e n te r+ l,
y _ le n g th = y _ c e n te r + le n g th + (a ’ m ul) ,
x _ d ia m e te r= x _ c e n te r+ d ia m e te r ,

fg _d raw b o x (co lo r ,F G _M O D E _X O R ,-0, F G _ L IN E _ S O L ID ,f lo w _ b o x
, f g _ d is p la y b o x) ,

m sm _sh o w cu rso r() ,
V
v o id v e r t p ip e p a n im a te O {

m s m _ h id e c u rs o r () ,
a c t i o n — ,
i f (a c t io n = = 0)(

a c t io n = a c t io n _ d e f a u l t ,
_ b io s _ t im e o f d a y (0 , s c u r r e n t _ t im e) , // mode 0 re a d ,
in t e r _ s a m p le _ t im e = c u r r e n t _ t im e - p r e v io u s _ t im e ,
i f ((in t e r _ s a m p le _ t im e) > (2 5 0 / (v a lu e + 1)))

(
y y = y _c e n te r+ s h i f t ,
x x = x _ c e n te r+ l,
y _ le n g th = y _ c e n t e r + le n g th + (a * m u l) ,
x _ d ia m e te r= x _ c e n te r+ d ia m e te r ,
w h i le (y y < y _ le n g t h) {

w h i le (x x < x _ d ia m e te r) {
fg _ d ra w d o t (s c o l o r , F G _M O D E_X O R ,~ 0 ,x x ,yy) ,
xx= xx+ alp ha ;
}

x x = x _ c e n te r+ l,
y y= yy+ b e ta ,

s h lf t+ + ,

i f (s h i f t> 4) { s h i f t = l ,)
s c o lo r = 1 0 + (s t a t u s * 2) ,
/ / p r e v c o lo r = s c o lo r ,

y y = y _ c e n t e r + s h i f t ,
x x = x _ ce n te r+ l,
y _ le n g th = y _ c e n t e r + le n g th + (a * m u l) ,

374

// f i l e v e r t p ip e hpp
// V r 4 9 12/06/90 1 0 .45 PK
f t i f n d e f V E R T P IP E _H P P
» d e f in e V E R T P IP E _H P P

#in c lu d e "c a d s h a p e hpp"
in c lu d e <fg h>

c la s s v e r t p ip e p u b l ic cad sh ap e {
c h a r * b itm a p ,
i n t a , p r e v c o l o r , s h i f t , a l p h a , b e t a ,
fg _ b o x _ t f lo w _b o x ,
fg _ c o o r d _ t y y , x x ,x x _ s a v e d ,
i n t l e n g t h ,d ia m e t e r , y _ le n g t h , x _ d ia m e te r , ,
lo n g c u r r e n t _ t im e ,
lo n g p r e v io u s _ t im e ,
lo n g in t e r _ s a m p le _ t im e ,
p u b l ic

v o id p d ra w () ,
v o id p an im a te () ,
v o id p e x te n t_ p g e n () ,
v o id p e x te n t_ p d ra w () ,
v o id p e x t e n t _ p e r a s e () ,

v e r t p ip e (u n s ig n e d x ,u n s ig n e d y , i n t id ,u n s ig n e d x r e f ,u n s ig n e d y r e f , f l o a t
m , f lo a t r a w _ v a lu e ,u n s ig n e d s t a t e , i n t e x t e n t _ o n o f f) () i

x _ c e n t e r = x , y _ c e n t e r = y ,
i d e n t i f i e r = i d , // cad sh ap e id
mul=m,
max_mul=120,
m in_m ul= 0,
conv_m = l, // C o n v e rs io n m u l t i p l i e r
con v_c= 0 , // C o n v e rs io n c o n s ta n t
v a lu e = (r a w _ v a lu e * c o n v _ m)+ c o n v _ c ,
s t a tu s = s t a t e ,
s t a tu s _ e x t n = e x t e n t _ o n o f f ,
a = l,
fg c o lo r= 0 ,
co lo r= 1 5 ,
s h i f t = l ,
a lp h a= 4 ,
b eta= 4 ,
len g th = 5 0 ,
d ia m e te r= 7 ,
a c t lo n _ d e f a u l t = l ,
a c t io n = a c t io n _ d e f a u l t ,
p e x t e n t _ s e t (s t a t u s e x t n) ,

// d e a f u l t p ix e l s h i f t
// y i n t e r d o t s p a c in g
// x i n t e r d o t s p a c in g

// d e f a u l t box le n g th
// d e f a u l t box d ia m e te r

m a x _ e x te n t_ b o x [0] = x _ c e n t e r - l ,
m a x _ e x te n t_ b o x [1] = y _ c e n t e r - l ,
m a x _ e x te n t_ b o x [2] = x _ c e n te r+ d ia m e te r+ l,
tn ax _ex ten t_b o x [3] = y _ c e n te r+ le n g th + (a*m ax_m u l) +1,

s i z e = s i z e o f (f g _ c o l o r _ t) ,
f i l e _ r a n d = r a n d () ,

376

lo w e r _ le f t _ x = f g _ d is p la y b o x [F G _ X 1] ,
i f (lo w e r _ le f t _ y < f g _ d is p la y b o x [F G _ Y 1])

lo w e r _ le f t _ y = f g _ d is p la y b o x [F G _ Y 1] ,
i f (u p p e r _ n g h t_ x > fg _ d is p la y b o x [F G _ X 2 1)

u p p e r _ n g h t _ x = fg _ d is p la y b o x (FG_X2] ,
i f (u p p e r _ r ig h t _ y > fg _ d is p la y b o x [F G _ Y 2])

u p p e r _ n g h t _ y = fg _ d is p la y b o x [FG_Y2] ,

// E n s u re maximum a re a f o r W indow < 64k p o in t s
// by r e d u c t io n o f y t i l l a r e a < 64k
w h i le (((u p p e r _ n g h t _ x - lo w e r _ l e f t _ x) * (u p p e r _ r ig h t _ y - lo w e r _ le f t _ y))> =

m ax_w ind ow _area)
u o p e r _ r ig h t _ y — ,

w indow _box [F G _ X 1] = lo w e r _ le f t _ x ,
w indow _box [F G _ Y 1 1= lo w e r _ le f t _ y ,
window_box [FG _X 2) = u p p e r _ n g h t_ x ,
w m dow_box [FG _Y 2] = u p p e r _ n g h t_ y ,

b a ck g ro u n d _b o x [F G _X 1] =window_box [F G _X 1] ,
b a ck g ro u n d _b o x [F G _Y 1] =window_box [F G _Y 1] ,
b a ck g ro u n d _b o x [F G _X 2] =window_box [F G _ X 2] ,
backg rou n d_b ox [FG _Y 2 1 = w in d ow _b ox [F G _ Y 2] ,

p ix e l_ b u f f e r = m a l lo c (p ix e l_ b u f f e r _ l e n g t h) ,
fg _ re a d b o x (b a c k g r o u n d _ b o x ,p ix e l_ b u f f e r) ,

f g _ f i l l b o x (b a ck g ro u n d _co lo r ,F G _M O D E _S E T , ~0 , b a ck g ro u n d _b o x) ,
fg _d raw b o x (b o u n d a ry _ c o lo r ,F G _M O D E _X O R ,- 0 ,F G _L IN E _S O L ID ,w in d o w _b o x

, fg _ d is p la y b o x) ,
m sm _show cursor 0 ,
)

v o id w indow t e x t (c h a r * msg, f g _ c o lo r _ t t _ c o lo r) {
m sm _h id e cu rso r 0 ,

t e x t_ b o x [F G _ X 1]= w in d o w _ b o x [F G _ X 1]+ fg _ b o x _ w id th (fg ch a rb o x) ,
t e x t_ b o x [F G _ Y 1] = w indow _box [FG _Y1 J ,
t e x t_ b o x [F G _ X 2] = w in d ow _bo x [FG _X 2] - fg _ b o x _ w id th (fg c h a rb o x),
t e x t_ b o x [FG _Y 2 J = w in d o w _b o x [FG _Y 2 J,

m e ssa g e _s tn n g = m sg ,
t e x t _ c o lo r = t _ c o lo r ,
m e s s a g e _ le n g th = s t r le n (m e s s a g e _ s t r in g)* fg _ b o x _ w id th (f g c h a r b o x) ,
w h i le (m e s s a g e _ le n g th > fg _ b o x _ w id th (te x t _ b o x))

m e s s a g e _ le n g th - = fg _ b o x _ w id th (fg c h a r b o x) ,
t e x t _ x = t e x t _ b o x [F G _ X l] ,
t e x t_ y = te x t _ b o x [F G _ Y 2] ,

fg _ p u ts (te x t_ co lo r ,F G _M O D E _X O R ,~ 0 ,FG _R O T O , t e x t _ x , t e x t _ y
, m e s s a g e _ s tn n g , t e x t_ b o x) ,

/ / m e ss ag e_s trm g = *m sg + m es sa g e _ len g th
t e x t _ y = te x t _ b o x [F G _ Y 2]- fg _ b o x _ h e lg h t (fg c h a rb o x)
fg _ p u ts (te x t_ c o lo r ,F G _ M O D E _ X O R ,~ 0 , FG_ROTO, t e x t _ x , t e x t _ y

, m e s s a g e _ s tn n g , t e x t_ b o x) ,
m sm _sh o w cu rso r() ,
)

378

u n s i g n e d l ong s i z e ,
f g _ c o l o r _ t * p i x e l _ b u f f e r ,
c h a r * m e s s a g e _ s t n n g ,
s i z e _ t m e s s a g e _ l e n g th .

/ / e l em e n t s i z e f o r f a r c a l l o c
/ / b a c kg ro u n d b u f f e t o o i n t e r

/ / window message
/ / window message l e n g t h

f g _ c o l o r _ t b a c k g r o u n d _ c o l o r ,
f g _ c o l o r _ t b o u n d a r y _ c o l o r ,
f g _ c o l o r _ t t e x t _ c o l o r .

/ / window box f i l l c o l o u r
/ / window bounda ry c o l o u r

/ / t e x t c o l o u r

u n s i g r e d max window a r e a . / / maximum window box a r e a (64<)

p u b l i c

v o id ooen (un s i gn ed l l x , u n s i g n e d l l y , u n s i g n e d u r x , u n s i g n e d u r y , £ g _ c o l o r _ t
b _ c o l o r , f g _ c o l o r _ t l _ c o i o r) ,

v o i d t e x t (cha r * m s g , f g _ c o l o r _ t t _ c o l o r) ,
f g _ c o o r d _ t t e x t _ p o s i t i o n () ,
v o i d e r a s e ()
v o i d c l o s e () ,

t e x t_ b o x [F G _ X 1]=0,
m e s s a g e _ le n g tv'=0,
m ax_w indow _area = l 53 60,
p ix e l_ b u f fe r _ le n g th = (m a x _ w in d o w _ a re a)* s i z e o f (f g _ c o l o r _ t) ,
s i z e = s i z e o f (f g _ c o l o r _ t) ,
f i le _ r a n d = r a n d () ,
l t o a (f i l e _ r a n d , s u b _ n a m e ,10)
t o t a l_ n a m e [0 | = ' w' ,
t o t a l_ n a m e (11 = ' l ' ,

t o t a l_ n a m e [q)=’ ' ,
to ta l_ n a m e [q + 1] = 's ' ,
to ta l_ n a m e [q + 2 1 = 'a ' ,
to ta l_ n a m e [q + 3] = 'v ' ,
to ta l_ n a m e [q + 4] = '\ 0 '
b itm a p = to ta l_ n a m e .

-window () {
1,
t e n d i f WINDOW_HPP

/ / f i l e w i n d o w t i l e cpp
/ / V5 20 Z o r t e c h 6 F l a s h G r a p h i c s
/ / 1 7 / 0 7 / 9 0 10 20 PK

¡ (inc lude "w i n d o w t i l e hpp"
¡ (inc lude <msmouse h>

fg _ c o o r d _ t w i n d o w t i l e t e x t p o s i t i o n !) (

c u r r e n t _ t e x t _ p o s i t i o n = t e x t _ b o x [F G _ X l] + m e s s a g e _ l e n g t h + f l a n g e ,
r e t u r n c u r r e n t _ t e x t _ p o s i t i o n .

« iin ao w () (

q=2 ,
while (sub name[q-2] 1='\0 ')(

total_name[ql=sub_name(q-2],
q+ + .

380

l _ l i n e _ 2 [F G _ X 1] = w indow_box [F G _ X 1]-1,
l _ l i r t e _ 2 [FG _Y 1] =wir\dow_box [FG _Y1] -1,
l _ l in e _ 2 [F G _ X 2 1 =w indow_box [F G _ X 1)-1,
l_ l in e _ 2 [F G _ Y 2]= w in d o w _ b o x [F G _ Y 2]+1,
t _ l i n e _ l [F G _ X 1] =w indow_box [FG _X 1] ,
t _ l i n e _ l [F G _ Y 1] =w indow_box [F G _ Y 2] ,
t _ l i n e _ l [F G _X 2] =wm dow_box [FG _X 2] ,
t _ l i n e _ l [FG_Y2] =wm dow_box [FG_Y2] ,
t _ l in e _ 2 [F G _ X 1] = w indow_box [F G _X 1]- 1 ,
t l in e _ 2 [F G _ Y 1)= w in d o w _ b o x [FG _Y 2]+ 1 ,
t _ lin e _ 2 [F G _ X 2]= w in d o w _ b o x [F G _ X 2]+1,
t _ l in e _ 2 [F G _ Y 2]= w in d o w _ b o x [F G _ Y 2]+ 1,
r _ l in e _ l [F G _ X 1]= w in d o w _ b o x [F G _ X 2] ,
r _ l m e _ l [FG_Y1] = w indow_box [F G _Y 2] ,
r _ l m e _ l [FG _X2] =window_box [FG _X 2 J ,
r _ l i n e _ l [F G _ Y 2] =window_box [FG _Y 1] ,
r _ l in e _ 2 [FG_X1] =wm dow_box [FG_X2] +1,
r _ l l n e _ 2 [FG _Y 1] =wi ndow_box [FG _Y 2]+ 1 ,
r _ l in e _ 2 [F G _ X 2] =w indow_box [FG _X 2]+ 1,
r _ l in e _ 2 [FG _Y2] =w indow_box [FG_Y1] -1,
b _ l i n e _ l [FG _X 1] = wm dow_box [FG_X2] ,
b _ l i n e _ l [F G _ Y 1] =window_box [F G _Y 1] ,
b _ lin e _ l [F G _ X 2]= w in d o w _ b o x [F G _ X 1] ,
b _ l i n e _ l [FG _Y 2] =wmdovi_box [FG _Y 1] ,
b _ l in e _ 2 [F G _ X 1] =window_box [F G _X 2]+1,
b _ l in e _ 2 [F G _ Y 1] =window_box [FG _Y 1]- 1 ,
b _ l in e _ 2 [F G _ X 2] =w indow_box [FG _X 1 1-1,
b _ l in e _ 2 [F G _ Y 2] =window_box [F G _Y 1]- 1 ,

b a ck g ro u n d _b o x [F G _X 1] = ou te r_w in do w _b o x [F G _ X 1] ,
b a ck g ro u n d _b o x [F G _Y 1]= o u te r_w in d o w _b o x [FG _Y 1 1 ,
b a ck g ro u n d _b o x [F G _X 2] = o u te r_w in do w _b o x [F G _ X 2] ,
b a ck g ro u n d _b o x [F G _Y 2] = ou te r_w in do w _b o x [F G _ Y 2] ,

p ix e l_ b u f f e r = m a l lo c (p ix e l _ b u f f e r _ l e n g t h) ,
fg _ re a d b o x (b a c k g r o u n d _ b o x ,p ix e l_ b u f f e r) ,

f g _ f l l l b o x (FG _M A G EN T A ,FG _M O D E_S ET ,~ 0 ,o u te r_w in d o w _b o x),
f g _ f l l l b o x (b a c k g ro u n d _ c o lo r , FG _M O D E_SET ,- 0 ,w in d o w _b o x),

fg _ d ra w lin e (F G J3 L A C K ,F G _ M O D E _ S E T , - 0 , F G _ L IN E _ S O L I D , l _ l i n e _ l) ,
fg _ d ra w lin e (F G _B L A C K ,FG _M O D E _S E T , - 0 ,F G _ L IN E _ S O L ID , t _ l i n e _ l) ,
fg _ d ra w lin e (F G _ W H IT E ,F G _ M O D E _ S E T , ~ 0 , F G _ L IN E _ S O L ID , r _ l i n e _ l) ,
fg _ d ra w lin e (F G _ W H IT E ,F G _ M O D E _ S E T , ~ 0 , F G _ L IN E _ S O L ID ,b _ l in e _ l) ,

fg _d ra w lin e (F G _B L A C K ,F G _M O D E _S E T , ~ 0 ,F G _ L IN E _ S O L ID , l _ l i n e _ 2) ,
fg _d ra w lin e (F G _B L A C K ,F G _M O D E _S E T , ~ 0 , F G _ L IN E _ S O L ID , t _ l in e _ 2) ,
fg _ d ra w lm e (F G _ W H IT E ,F G _ M O D E _ S E T ,-0, F G _ L IN E _ S O L ID , r _ l in e _ 2) ,
fg _ d ra w lin e (F G _ W H IT E ,F G _ M O D E _ S E T ,~ 0 , F G _ L IN E _ S O L ID ,b _ l in e _ 2) ,

m sm _sh o w cu rso r() ,
)

v o id w in d o w t i l e c lo s e t) {
m s m _h id e cu rso r () ,

f g _ f l l l b o x (FG _B LA C K ,FG _M 0 D E_SET ,~ 0 ,b a ck g ro u n d _b o x) ,
f g _ w n te b o x (b a c k g r o u n d _ b o x ,p ix e l_ b u f f e r) ,

382

