Internet Multimedia Search and Mining

Xian-Sheng Hua, Marcel Worring, and Tat-Seng Chua

May 10, 2012






Contents

Contents
List of Figures
List of Tables

1 Weighted Data Fusion for CBMIR
Introduction

Relationship to Internet Media Search
Terminology
Data Fusion . . . . . . . . . .
Experimental Setup . . . . . . . ..
Retrieval Experts
Data Collections . . . . . . . . . . . e
Experimental Methodology . . . .. .. ... ... .. .. .. .. .. ...,
Exploration of Data Fusion Variables
Optimal Distribution of Weights
Combination Levels . . . . . . . . .
Equivalence Transformations
Combination Operators

Discussion

Current Approaches for Weight Generation and Data Fusion
Query Independent Weighting
Query-Class Weighting . . . . . . . . . . . . . . . .
Discriminative Classi cation

Other Methods . . . . . . . . . . e
Relevance Feedback . . . . . . . . . . . ...
Query Performance Prediction

Conclusions

References






List of Figures

1.1
1.2
1.3
14
15
1.6
1.7
1.8
1.9

Early and Late Fusion Approaches . . . . . .. .. .. .. ... ... ... 8
Average Expert Performance . . . . . . . . . . . . ... o 12
Experimental Models . . . . . . . .. .. ... 15
Histogram of weight distribution, all corpora . . . . . ... ... ... ..... 18
Q-Q Plots of Weight Distributions . . . . . ... ... ... ... .. ...... 20
Highly Weighted Pairs, all corpora . . . . . . . . ... ... ... ........ 22
Combination Levels . . . . . . . . . 24
Experimental Results, all corpora . . . . . . .. ... ... ... . ... ..., 28

Query Class Weighting . . . . . . . . . . . . e 37






List of Tables

1.1
1.2
1.3
14
15
1.6
1.7

Example Systemand Query . . . . . . . ... e 6
Central Tendency Measures of Ideal Weights . . . . . .. ... ... ..... 19
Distribution of 1 Weights Amongst Experts . . . . . .. ... ... ...... 21
Normalisation Experimentation, all corpora . . . . . . . ... ... ... .... 30
CombSUM and CombMNZ Evaluation . . . . . . ... ... ... ........ 33
CombSUM vs CombMNZ behaviour . . ... ... ... ... .......... 34

Summary of Major Findings . . . . . . . . . .. ... 41






Internet Multimedia Search and Mining , 1-47 1

Chapter 1. Weighted Data Fusion for CBMIR

Peter Wilkins
CLARITY: Centre for Sensor Web Technologies, Dublin City University, Ire-
land

Alan F. Smeaton
CLARITY: Centre for Sensor Web Technologies, Dublin City University, Ire-
land

Abstract: In this chapter we present an overview ofdata fusion, and how it can be
applied to the task of internet multimedia search, speci cdly content-based multimedia
search. The chapter will primarily be focused on theweighted combination of ranked
results from di erent retrieval experts, to formulate a nal ranking for some given content-
based information need. The types of data under examinationn this chapter are low-level
multimedia features, such as colour histograms, edge detgon etc. The chapter reports
an extensive series of experiments on a sizable collectiorf visual media and from these
experiments a set of interesting and surprising results enrge.

Introduction

The availability of information resources on the internet has ushered in the "Web 2.0’
phenomenon, spearheaded by websites which are "mashups'.hse are websites which
combine forms of data from multiple external sources in orde to ful ll some form of
information need. Often these forms of data will be multimeda, and allow for the creation
of rich, informative sources of information. In many ways, the "mashup’ can be seen as an
extension of an earlier web phenomenon, the meta-search a@ng which still exists today,
as seen in a search service such as “dogpile.com'. The metach engine takes in a single
information query and combines the outputs of multiple other external search services to
formulate a single response to that query. Both of these task mashup and meta-search,
are executing an operation known afata Fusion.

Data fusion is de ned as \the combination of evidence from diering systems" [1] with
the aim of maximizing retrieval performance. In this chapter, we focus on data fusion,
speci cally with reference to multimedia search applications, where the types of data to
be combined are considered to be very noisy. The fundamentadurpose of this chapter is
to demonstrate that even with very poor performing sources bdata which are combined,
retrieval performance through data fusion can achiever fargreater results than over using
single resources alone. Furthermore, the data fusion task evconsider in this chapter is
the combination of results from multiple search engines, tlt is each source of evidence is
a ranked list of results, each of which is generated from somgearch service for the same
information need.

Xian-Sheng Hua, Marcel Worring, and Tat-Seng Chua (Ed)
All rights reserved - ¢ 2009 Bentham Science Publishers Ltd.
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On initial inspection, the data fusion task may appear relatively straightforward, namely
to accept a query, issue it to search service "a' and searchrs&e “b' and merge the results.
However there are many factors which impact upon the qualityof this combination. For
instance, how many results from each search service shouleliaken ? Is there a di erence
in quality between the search services, such that one servcshould be given a greater
weight than another ? If so, how do we determine this weight ? Ae the ranking metrics
of each of the search services equivalent, or will they reqe some normalization rst ?
Should the combination be a summation of the scores assigned each document, or its
rank, and should this be a linear operation ? Each of these sfs can impart signi cant
performance benets or degradations to retrieval performance. This chapter highlights
each of these factors, and demonstrate the performance imiphtions each factor brings.

Speci cally let us de ne the type of system we are exploring n this chapter as a Content-
Based Multimedia Information Retrieval (CBMIR) service, w hich is leveraging multiple
“low-level' search services, otherwise known as retrievaxperts (i.e. each low-level search
service is now referred to as a retrieval expert, or expert).The system will allow for “query-
by-example' (QBE), speci cally multi-example QBE. A QBE qu ery is one which allows a
user to provide an example of what they are trying to nd. For i nstance, in an image search
engine, a QBE query image is submitted to that search engineush that the user's intent
is to nd images which are visually similar to the query image. We are also making the
assumption in this chapter that each of the retrieval experts we use has indexed the same
set of data. For instance if we have 1,000 images, we may havecalor retrieval expert, and
an edge histogram retrieval expert. Both of these experts mvide a di erent interpretation
of the source data, but both are operating over the same 1,000mages. Finally, in this
chapter, our search service will operate over droad domain, rather than a narrow domain
[12]. This means that the system will be generalized and it mkes no speci ¢ assumptions
about the data it is operating on.

Other chapters in this book have used low-level features fotasks such as concept detec-
tion. In this chapter, we are using multiple low-level features directly for retrieval through
weighted data fusion. There are several reasons for this. Fstly, the direct use of low-level
features facilitates the QBE paradigm, which o ers a unigue \ector for a user to search
a collection. Secondly, traditional low-level features hae individually provided very poor
retrieval performance [12], however we will demonstrate tht through ideal weighted com-
bination with data fusion, that excellent performance is adievable. Finally, by using noisy,
low-level features, they act as a proxy for a variety of infomation search services that a
system-builder may wish to incorporate. As this chapter wil not tailor the investigation
towards any individual low-level expert, it means that a researcher or system-builder read-
ing this book can take the approaches discussed and apply the to any form of ranked
information resources which they may wish to combine.
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Relationship to Internet Media Search

Throughout this book the central theme has been the study andapplication of techniques
to assist in internet media search, where we can imagine seopes which interface with
some form of consumer media, such as Flickr. In this chapter @ make a slight divergence
from this area by operating within independent video databases which people may which
to search. That is, we can imagine that we have a silo of digithvideo (for instance,
archive news video) that we wish to search within. Whilst this is the data which is used
in this chapter, the techniqgues and analysis discussed herare of wider application and
indeed can be applied to the more general category of internenedia search. For instance,
new search services are appearing which call themselvesveese search engines', such as
tineye.comt, which are essentially content-based image search engintisat allow for QBE.
Other search services which may be developed could involvemplex media searches, such
as within blogs, where both the text and the images are analysd at a content-level, to
allow for a richer vein of searching. In both of these instanes we can see that the analysis
of the data would involve several di erent types of content-analysis, and therefore for any
retrieval task their successful combination. Such a combiation is the focus of this chapter.
When reading this chapter, the reader may consider each typef “expert' to be atomic
and as such the techniques discussed in this chapter can beridered broadly generic.
The conclusions reached within this chapter however may haw some speci city to the data
which was used, however they will inform the reader of potentl pitfalls to avoid, or at the
very least investigate when constructing their system. Inded the general study of “data
fusion' is widely applicable to many research domains, andlie techniques used in data
fusion can be considered as being independent of any partitar type of data.

Within this book, the techniques described within the chapter titled \Cross-modality
Indexing, Browsing and Search of Distance Learning Media orthe Web (Arnon Amir,
Kobus Barnard, and Alon Efrat)" describe alternative approaches to tackling the content-
based search problems described within the present chapter

The chapter is organized as follows. Following from this se@n, we will brie y examine
data fusion itself providing some context and history for its use. Next in Section 1 we will
provide an overview of the experimental framework used to geerate our observations, and
discuss the datasets, system and its resources used in thisvestigation. Section 1 will
present our examination of data fusion and its variables, decribing the variables which
can be modi ed and their e ect on performance. After this, Sedion 1 will present current
approaches which use data fusion. Finally in Section 1 we wibrie y examine related areas
of research which can bene t from the observations presenttin this chapter, followed by
our conclusions.

http:/lwww.tineye.com
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Terminology

For reasons of clarity we will now formally de ne the terms used throughout the remainder
of this chapter. We assume that a CBMIR system combines mulfple retrieval experts
together for queries which contain multiple components. Fo these de nitions we use set
and matrix notations, however our use of matrix notation is dightly unorthodox, as matrices
typically contain numbers. In our notation, the matrices we de ne will contain ranked lists
of documents. The use of matrix notation is for conceptual rasons to assist the reader in
comprehending the number of variables at work.

Retrieval Expert A Retrieval Expert is treated as a black box, it is a service whch can
process a query and return a ranked set of documents on a givaollection. Formally
our system will have Retrieval Experts E = fexpert; ::: expertig where 16 i 6 jEj.

Query A Query within our context is a multi-modal request which describes an informa-
tion need and is processed by the CBMIR system. A query may beamprised of
text, multiple visual examples, etc. Within this context, e ach component of a query
is treated as a separate query to be processed, e.g. a text cpoment would go to the
text expert, each individual visual component would go to visual experts. Therefore
a Query Q is comprised off query, ::: query;g where 16 j 6 jQj. As an example, if
a user is searching for pictures of boats, the query may be th&ext "boats' and two
images of boats, therefore in this case the individual compaents of the query are
f ‘boats® image,; imagepg otherwise referenced ad query;; query,; querysg, each of
which may be individually processed by the retrieval expers available. A multi-QBE
query allows for a degree of query disambiguation. For instace, if a user wants to
nd images of a ower, but does not care about color, s/he can ssue a query for a red
ower and a yellow ower, indicating that they want a ower su rrounded by green,
but that the color of the ower itself is not as important [20] .

Documents Documents in this context are the semantic unit of information that is in-
dexed and retrieved. Typically the term refers to entire text documents or web-pages
for ranking. In the case of MIR, the unit of retrieval can be a video, a “shot' (i.e. a
segment of video which is visually consistent), an audio remrding, etc. The use of the
term “documents' will refer to any retrieval unit that can be handled by a CBMIR
system.

Result Set A result set is the product of a unique pair of Retrieval Expert and Query
hexpert;; query;i, which produces an ordered set of document® such that R =
fdocument; ::: document,gwhere 16 m 6 jRj. Every unique pair hexpert;; query; i
produces a Result Set, which collectively form the matrixRS = [rs;; ]i =1 2 jE];j =
1::j = jQj. The row index i represents experts, while column index represents
query components. Thereforess;; represents the result setR generated by experti
and query componentj .
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Every document,, in R will have associated with it a triple hame; rank; scorei where
name is a unique identi er for the document, rank is in the set N and scoreis in R.

Every value of rank will be unique in the set and it is desirable that everyscorevalue

is also unique, however depending on the ranking function tls may not always hold.

As the setR is ordered, the values of bothrank and score will change monotonically

as one iterates through the set. In order to compute a nal reponse to a query, a set
of coe cients is typically required so that we can give greater weight to those setsR

which are likely to enhance retrieval performance.

Retrieval Coe cients We de ne a matrix of weights which are used to alter the impact
of dierent rs;; when they are combined into a single result. This matrix isRC,
where RC = [rc;; Ji = 1 ::,'DjEj;j =1 ::j = jQj. Individual coe cients have the
propertiesrcij 2 R™ and  rci; = 1. Every result set in matrix RS will have a
corresponding entry in RC . For instance if no weighting was desired, all entries in
RC would be set to the same value, thus providing a uniform weigting.

The nal result set therefore, is some combination of the resilt sets rs;; generated by
pairs hexpert;; query;i from setsE and Q, and application of the retrieval coe cients RC .
Taking our previous example of nding images of boats with anCBMIR system which has
available 3 retrieval experts (one text expert, two visual), we have potentially 5 result sets
to combine into a single result set (one text result and four vsual results), and up to 5
weights that can be applied.

To help illustrate the various approaches that di erent weighting schemes employ and
how they impact upon retrieval, we will refer back to this sedion to help illustrate how
various approaches may work. De ned in this section is an exaaple CBMIR system and a
multi-example query to it, as shown in Table 1.1.

In this example system, there are four retrieval experts E) available within the system
(where each of these experts is considered a black box withsitown index and ranking
function). We have also de ned a query Q) that is issued to the CBMIR system, which
consists of the text \ owers", an image of a red ower and an image of a yellow ower. The
system presented with this query, generates seven result tse(R), one for the text query,
then six more from the two query images against the three visal experts. Technically
there are more instancesR than listed here, such as querying a visual expert with the tet
qguery, however this will produce a null set of results which ér reasons of clarity we do not
show here.

To summarise, we have de ned within our CBMIR system, retrieval experts E, multi-
part queries Q, individual result sets R and the matrix which contains all result sets RS.
To weight each ranked list contained in the matrix RS we have the retrieval coe cients
matrix RC which is used to weight each ranked lists so that they can be ¢obined into
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Example System and Multi-Example Query

E Expert Set Q Query Set

expert; Text Expert query; \Flowers"
_ i o

expert, Colour Expert query, &

expert Edge Expert querys

experty Texture Expert

IE] 4 iQj 3

Result Set matrix RS
By,

rsi1 \Flower" 7! Text Expert | rss:» AR 7! Edge Expert
b ‘Yi":

4

&'

rsao XM 71 Colour Expert | rsa3

sa:3 ® 7! Colour Expert | rsa: SR 7! Texture Expert

rSas W /! Texture Expert
Non-zero entries in matrix RS : 7

Retrieval Coe cients matrix: RC
rowsi expetts, columnsj query components

- IC11 0 0

% 0 ICo:2 r02;3§
0 [C3.2 [IC3:3
0 rcan rcas

Non-zero entries in matrix RC : 7

Table 1.1: Example system and query, where there are 4 expextin the system and the
query has 3 components.
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our nal response to a query.

E = fexpert; ::: expertig

Q = fquery; ::: query; g

R = fdocument; ::: document,g
document,, 7! (name;rank;score)
RS =[rsij lieji oj

RC =Trcij Jigjj oj

Data Fusion

When we refer to Data Fusion we are conducting \the combination of evidence from dif-
fering systems" [1] with the aim of maximizing retrieval performance. This is a distinct
from the Collection Fusion problem, which Voorheeset al. de nes as the combination
of \retrieval runs on separate, autonomous document colletions that must be merged to
produce a single, e ective result” [2]. Fusion is an overloaéd term, within the multime-
dia processing community it can also refer tolnformation Fusion which includes activities
such as the combination of various modalities such as the iofmation from a visible light
camera and an Infra-Red camera into a single signal [3].

Data fusion is the combination of multiple rank lists of documents returned from various
retrieval experts, such that a single ranking is produced. Rsearch into data fusion has
been on-going since 1979, with observations about the ovexps in documents returned from
di erent ranking models [4, 5, 6]. In particular, Saracevic & Kantor found that as result sets
were being combined, that the probability of a document beirg judged as relevant increased
monotonically as it appeared in more result sets. This led inturn to the hypothesis by
Lee as to why data fusion works: \di erent runs might retrieve similar sets of relevant
documents but retrieve di erent sets of nonrelevant documerns” [7]. In other words, when
we combine ranked lists of documents, there should be some giee of overlap in the
relevant documents, but far less overlap in the non-relevandocuments. Therefore when
the scores or ranks of the relevant documents are combinedhéy are promoted higher in a
nal ranking. We can observe early implementations of this in the Garlic system developed
by IBM which combined multiple information systems for retrieval through fuzzy sets [8].
For the interested reader, further texts on the data fusion hypothesis include McCabeet
al. [9] and Beitzel et al. [10].

Within the domain of multimedia search there are two approadies within data fusion
for the combination of data known as early fusion or late fuson [11], these are concep-
tually illustrated in Figure 1.1. Early fusion is essentially the combination of data prior
to indexing, meaning that data is rst somehow aggregated, ad then a ranking model is
placed over this aggregated data. There are multiple exampgls of this type of system, such
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Raw data
s O Y | e Y O |
e Y O | CIIIT 1 LI T IIT ]

S
ws [ i

""""" N

1
2.
3.
4.

Final
Result

Early Fusion Late Fusion

Figure 1.1: Early vs. Late Fusion

as combined document representations, classi cation task or learning to rank applications
(some of which are discussed previously in this book). Thefere the combination of evi-
dence through early fusion is typically handled in an “indeing' phase. Late fusion instead
assumes each source of data has associated with it some forrfhaoranking function, each
of which can be independently queried. Once each source hagdn queried, the outputs
of each of these queries can be aggregated together to form aal response to the initial
query. Examples of late fusion include metasearch, and a majity of the text information
retrieval experiments of combining ranked lists from di erent retrieval systems. Our choice
of employing late fusion for our data fusion experiments meas we do not need to explicitly
model any particular source of data as that is the function ofthe retrieval expert associated
with each source of data. This allows us to add or remove retdval experts at any stage
in the retrieval process, allowing for a relatively free enironment in which to conduct our
data fusion experiments. As such this is a generic approach lvich therefore has wide areas
of application.

Experimental Setup

In this section we discuss our experimental framework for coducting our investigation into

data fusion for multimedia retrieval. We begin rst with a di scussion of the retrieval experts
which we use, followed by an overview of the data on which we eamuct our experiments.
Finally we discuss our experimental framework, which whil$ unorthodox we believe is
appropriate as it allows us to accurately observe the condibns under which weighted
data fusion is successful for multimedia retrieval. First fowever we brie y describe the
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evaluation metrics used in this chapter, more details of whth can be found in [13, 14].

In summary, the two fundamental concepts that underpin most metrics used in the
evaluation of search problems areprecision and recall. Let us assume we have built a
retrieval system, and it processes an incoming query. For tht query we return a subset of
documents to answer that query. In such a scenario we have thentire set of documents
which the system knows about, which we call the "Collection'C. We have the subset of
documents which were returned to the user, which we calh. We have as part of the
collection the complete set of “correct' (i.e. relevant) deuments which answer the query,
which we call R, and nally we have the subset of relevant documents which wee returned
to the user as part of n, which we refer to asr.

Precision is de ned as the proportion of relevant documents containedin the set of
documents which were returned to the user. We can expressedis as ‘the number of
relevant documents returned' divided by ‘the total number of documents returned’, or
using the notation just de ned:

Precision = % (1.2)

So if we returned ve documents to a user, and each of those velocuments is relevant,
then our value for precision would be 1. However, it may be fothat query that there were
in fact twenty documents which were of relevance to the userput we only returned ve.
Precision did not capture this fact, that is the job of recall.

Recall is de ned as the proportion of relevant documents returned b the user, out of
all relevant documents contained in the collection. Using he notation we just de ned:

r
Recall = — 1.2
eca R (1.2)

Using the previous example, if we returned ve relevant documents to the user out of a set
of twenty relevant documents, then our recall value would be0.25.

Both precision and recall can be considered aset based measures. That is there is no
consideration given to the rank order that documents are retirned in. Clearly for search
problems if we are comparing two di erent search outputs, we vould consider as better the
search output which ranks its relevant documents higher in e ranked list.

The main evaluation measure we use is Average Precision (AR)hich is designed with
a bias of providing a better score for retrieval runs which rank relevant documents higher
in a ranked list, over those which place relevant documentsn lower rank positions, and is
de ned in Equation 1.3.

N_, Precision(n) Relevancen)
jRelevantj

AveragePrecision = (1.3)
In AP the function Precision(n) is the precision value atn documents andRelevancgn)
is a binary function which indicates if document n is relevant, variable N is the size of
the ranked list and jRelevantj is the total number of relevant documents in thecollection
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under consideration. AP is the most common metric used in theevaluation of IR systems,
however it provides a pertopic score. Mean Average Precision (MAP) is a single scored
metric which provides an indication of performance over an atire retrieval run, where a
retrieval run consists of the results of multiple topics. MAP is simply the mean of all the
AP scores in a retrieval run.

Alternative measures to AP exist, each of which has various dvantages and disadvan-
tages. A complete discussion of the evaluation metrics whit could be used to evaluate
search systems is out of the scope of this chapter, however éhchapter \Evaluation of
Multimedia Retrieval Systems" in Blanken et al. [14] provides a good overview.

Fundamental to all of these measures however, is the concepif a “ground truth' oth-
erwise known as ‘relevance judgements'. A relevance judgemt is a pairing of a query to
a list of documents that are considered as relevant to that gery. For instance, we may
want to evaluate our system on how well it can nd cats. That means we need to de ne
the query “cat' and manually label our search collection forpositive instances of cats. Once
done, we can then run repeated experiments where we can measuhe performance of our
system in nding “cats'. The creation of relevance judgemets is a research area within
itself, for instance if you are searching over the entire webit is clearly impossible to man-
ually annotate every web page to determine if it is relevant b a query or not. However,
that is the advantage of using “test collections' such as wedve used in this chapter for the
purposes of system building and evaluation (see 1).

Retrieval Experts

The extraction of low-level features from multimedia data is analogous to the extraction
of terms from text documents and can be considered as part of rmindexing phase in
a CBMIR system. Low-level feature extraction is typically a fully automatic process.
We use the phrase ‘low-level' to describe these features akey impart no semantic or
higher level understanding of the data, but rather they output either data patterns or

statistics about the data being analysed. Low-level featues are the foundation of most
CBMIR systems upon which either more advanced features candobuilt or retrieval systems
constructed from. Their independent use for retrieval howeer, particularly ad-hoc retrieval

in unconstrained domains illicit poor performance [12]. Ingeneral there are three major
types of multimedia data, images, audio and video. Images & a static form of data, whilst

both audio and video have a temporal component.

In this chapter, we make use of both visual experts, and text eperts whose data
has been obtained either through transformations of an aud signal of some video data
(through Automatic Speech Recognition (ASR)), or from attached annotations to some
visual data. The majority of the visual experts we employ in this work are derived from the
MPEG7 XM (eXperimentation Model), a reference implementation of features described
in the MPEG7 standard [21]. The visual features we used inclde Color Layout, Color
Moments, Color Structure, Scalable Color, Edge Histogram ad Homogeneous Texture
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descriptors. Each of these also has an associated ranking trie which allows for the

querying and generation of ranked lists by each of these feates. Complete descriptions
of these visual features can be found in Manjunathet al. [15]. For our text data we used a
vector space model over this data to provide for retrieval functions, more details of which
can be found in van Rijsbergen [13].

For illustrative purposes we conduct a simple experiment hee where we measure the
performance of each individual expert against each of our & corpora (discussed in the
following subsection). The speci cs of this test are that fa each expert if there are multi-
ple query components (e.g. the query contains multiple visal examples), then the results
of these are uniformly weighted and combined to provide an asrage indication of that
expert's performance. The results of this experiment are pesented in Figure 1.2, with the
X-axis representing the di erent test corpora which we will be using, and the y-axis repre-
senting Mean Average Precision (MAP). These results were gerated by using MinMax
normalization and CombSUM for combining multiple query-components within the one
expert (i.e. as our queries are typically made up of three or rare images, the result for a
single expert is the aggregation of the results of those thme queries for the one expert, the
operators introduced here will be discussed in detail in thenext section).

From this graph we can observe that individual retrieval experts perform very badly in
terms of MAP across the majority of evaluation corpora, eching previous research [12].
This is demonstrated by the majority of the results for each pert residing in the range
0.001 - 0.03 of MAP, which are very poor scores. Furthermoreye also note the performance
variations which exist between experts, so whilst we have far color experts, in di erent
retrieval scenarios, di erent experts perform better, indicating that it is bene cial to have
multiple experts on hand and to combine their outputs.

We also note that there is signi cant performance shifts acoss corpora with di erent
experts, demonstrating our motivation for experimenting on multiple corpora so as to gain
more generalised knowledge of the behaviour of data fusiorceoss a wide range of retrieval
environments. This variation in performance though highlights the need for e ective data
fusion strategies, including the generation of appropriaé weights for combination.

Data Collections

For our experiments we are using what are known as “test coli¢ions'. Test collections
are standardized aggregations of data, queries and relevaa judgements that allow for a
uniform experimental environment. Basically, a standardized test collection allows us to
more directly compare di erent systems, because it removeshe impact that the data or
the queries may have on performance. For instance, | may repbthat my system achieves
excellent performance, but if my data collection consistedonly of images of dogs, and my
gueries were about dogs, then it is not unexpected that | woud achieve good performance.
Standardized test collections provide a way in which multide systems can be compared,
by having all systems execute on the same data and the same sedf queries, and as such
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Average Expert Performance
0.15
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Figure 1.2: Average Individual Expert Performance

have lead to fundamental improvements in the evaluation of sarch systems. Of course
guestions remain that systems may become biased towards pagular test collections (i.e.
over tting). In this work, we perform our experiments over six di erent test collections
(which we refer to as experimental corpora), in an attempt to generalize our work.

The data on which we are experimenting comes from either cadctions of digital video,
or annotated still photographs. As discussed earlier, we westhe phrase "document' to refer
to any multimedia artifact used for retrieval. Digital vide o however introduces a temporal
element into the retrieval process, and thus requires convsion into some discrete form to
allow for retrieval. The element we use in this work is known & a “shot’, which is de ned
as a visually homogeneous segment of video which is of at leéaso seconds in duration.
From the shot, “keyframes' have been extracted, which are 8t images which represent the
shot.

For our investigation into weighted data fusion for multimedia retrieval, we make ex-
tensive use of several benchmarking data collections. Fivef these test corpora came from
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TRECVid [22] and are digital video collections, and one fromlmageCLEF [23], a collec-
tion of travel photographs. These two campaigns share simdlr objectives as both seek to
promote research in content-based retrieval by utilising ommon test collections and open,
metrics-based evaluations. Within the ve TRECVid corpora however we also have varia-
tion, with the data including mono and multilingual video, v ideo from broadcast news and
news magazine video. TRECVid also de ned the de nition of the “shot' and the meaning of
extracted keyframes RKF and NRKF, details of which can be found in [22]. The following
is a summary of our experimental corpora:

TRECVid 2003 : Approx. 60 hours of monolingual English news broadcasts. fiere
are 72,624 total keyframes, of which 37,104 are 'NRKF' keyfames and 35,220 are
"RKF' keyframes. There are 138 topic images spread across 28pics. Text evidence
is provided through ASR transcripts. Abbreviated to "TV2003'.

TRECVid 2004 : Approx. 70 hours of monolingual English news broadcasts. fiere
are 48,818 total keyframes, of which 33,367 are 'RKF' keyfrmes and 15451 are
'NRKF' keyframes. There are 160 topic images across 24 tops; and text evidence
is provided through ASR transcripts. Abbreviated to "TV2004'.

TRECVid 2005 : Approx. 80 hours of trilingual news broadcasts in Arabic, Chinese
and English, represented as 78,206 keyframes. Of these 4657are 'RKF' keyframes
and 32,215 are 'NRKF' keyframes. Topics are represented byZB topic images, across
24 topics. Text evidence is provided through ASR transcrips for English, whilst for
the additional languages the ASR is run through an MT system. Abbreviated to
"TV2005'.

TRECVid 2006 : Approx. 160 hours of trilingual news broadcasts in Arabic, Chi-
nese and English, represented as 146,497 keyframes. 'RKFceounts for 79,848
keyframes whilst there are 66,844 'NRKF' keyframes. There se 169 topic images
across 24 topics, text evidence is provided through ASR trascripts for English, whilst
for the additional languages the ASR is run through an MT sysiem. Abbreviated to
"TV2006'.

TRECVid 2007 : Approx. 50 hours of Dutch news magazine video, represented
as 295,350 keyframes in total. Of these 19,702 are 'RKF' imags, whilst for this
collection we took the aggressive sampling strategy of exacting 'K-Frames', which
make up the remaining 275,648 images. For the topics there we 205 topic images
across 24 topics. The audio for this video was nearly all Dute, so all text was rst
detected by ASR which was then run through an automatic Machne Translation
(MT) process. Abbreviated to "TV2007"'.

ImageCLEFPhoto 2007 : 20,000 natural still images which form the IAPR TC-12
Benchmark and 180 topic images across 60 topics. Text evidee comes from well-
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formed, noise free text annotations which accompany each iage. Abbreviated to
1C2007'.

By using these multiple corpora, we introduce a degree of gamality to our results and
observations, as the data collections used in this chapterannot be characterized as being
of a mono-type, as we have observed in the performance of thetrieval experts in the
previous subsection.

Experimental Methodology

Given that the success or failure of any data fusion retrieva system is dependent upon
the optimal generation of weights, and the manner in which ttose weighted documents
are combined, it is essential that we know something about wat the ideal distribution of
weights for a query is, and what is the most e ective manner in which to combine these
documents.

In order to gain insights into what the ideal form of weighting for CBMIR data fusion is,
and indeed how ranked lists should be combined, we need to dexe from the traditional
empirical model typically used to evaluate new algorithmic advances. Traditionally we
have some form of training data, either topics, data or both,some proposed model which
we want to test and some form of parameters which require turmg and a set of evaluation
metrics and relevance assessments. Also included in this rdel is a test set from which
nal results will be reported. The common sequence of eventss that a model is rst
optimised on training data, then the optimised model is usedon the test data. The nal
result typically reported is the outcome of the evaluation metrics run on the output of the
model on the test data, where presumably the model has not beeover tted.

The major problem with the established empirical model is that of evaluation, where
what we want to determine is not the comparison of competing models and their associ-
ated performance, but rather given a maximally performing nodel, what parameters were
associated with it ? In data fusion tasks we will have a range binput sources of evidence,
which we will then combine in some manner in order to compute anal response. The
fundamental problem is that using the established empirichmodel, we could evaluate two
di erent fusion systems, and after executing both having rst trained on the training col-
lection we can make the observation that system "a' outperfoms system "b' by 15%. On
the surface this seems ne, system "a' has achieved a good p@mance improvement over
system "b'. However, this 15% is aelative increase, it is only meaningful when comparing
the two systems under observation, and far less important wen we do not know when
given a xed set of inputs, what the maximum achievable perfamance is. For instance, if
system "a' scored a MAP of 0.2, but the theoretical maximum atainable given the same
inputs was 0.8, then the relative importance of system "a's 8% improvement is diminished
as there is clearly room for greater improvement. However fithe maximum was determined
to be 0.21, then that 15% improvement is very signi cant.
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Figure 1.3: Experimental Models, traditional model on the left, our empirical model on
the right.

A better use when determining what is the maximum performane for a xed set of
inputs, is to study the properties of this maximally performing model. Rather than being
primarily concerned with the maximum performance MAP value, to ip this around such
that given we have a model which achieves excellent perfornmece, what are the properties of
this model that led to this performance. In order to achieve tis it necessitates optimisation
directly on the test data. We are in fact not proposing any particular model for data fusion
in this chapter, but rather we have created and observed the ptimal model for this retrieval
problem such that we can report on the properties of this modewhich future systems
should seek to leverage. We illustrate these di erence in Figre 1.3, where the traditional
model for algorithmic development is on the left, and the mockl used for these experiments
where the objective is to study the optimal model and what palameters comprised it, on
the right.

The objective of this chapter therefore is to study what are te variables which generate
a maximally performing CBMIR data fusion system, and if there are any commonalities to
these that can be discovered so as to inform the development aew data fusion algorithms
and systems. The performance of these models is in themsetvémmaterial, it is these
factors which we wish to identify and examine. In particular in this chapter, we examine
the impact of combinational hierarchies upon performancethe distribution that an ideal
form of weighting takes, the e ect of di erent normalization s trategies and the operators
used for combining the ranked results. In other words we:
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1. establish for any given query, what the ideal form of linea weighting is for that query.
This allows us to identify and observe what form of weightinga data fusion algorithm
should seek to emulate.

2. determine the capability of nding the ideal set of weights for any given query or set
of retrieval factors which allows us to essentially freezehe impact that the weighting
scheme has on retrieval performance. Therefore we can rohilstest factors such as
combination operators, normalisation approaches and comibation levels, where for
each as the ideal set of weights has been used we can cross-pane results knowing
that the performance achieved is the best performance podde using that particular
combination of factors.

No doubt at this point after mention of optimizing directly o n the test set, alarm
bells are ringing in several readers’ minds, however we bele we have good justi cation
for doing this. Whilst we have laboured the point as to why we ae examining models
optimized on the test data, we believe this is necessary as &approach is unorthodox, and
inadequately justi ed can lead to the the results presentedin this paper being dismissed
out of hand. Furthermore, we emphasize at this point that the results presented here
are empirically generated observations as to what constittes ideally-weighted data fusion.
We believe that these observations in several cases are umeected and should form the
foundation of the continued development of data fusion algathms. This method however
is clearly not appropriate for the testing of any new derivedalgorithm itself, as in so doing
such an algorithm would be prone to over tting.

Fundamental to implementing this experimental framework is the implementation of
an appropriate optimisation framework. Several approache were considered including
standard grid searches and statistical approaches such asxgectation Maximisation. We
selected the approach known asoordinate ascent This approach was recently adapted
for linear combination IR tasks, with direct optimisation o n the relevance assessments by
Metzler et al. [16], in whose work a complete description of the method can é found.

Exploration of Data Fusion Variables

In this section we discuss and examine weighted data fusiomidetail. This section will
identify the various components of a data fusion framework,and test each component to
determine its impact upon retrieval performance. A dicult y in this explanation is that
to test certain attributes, we have to lock down on others bebre we have explained them.
Therefore if the reader is unfamiliar with some of the appro@hes used, s/he should jump
to the appropriate sub-section to familiarise themselves.In each case, where one variable
is being tested, the other variables were set to that which maimized performance except
where otherwise noted.

The framework we are using for processing a weighted data fiem query is as follows:
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1. Issue multi-part multi-expert query (i.e. fquery; ::: query;g) against our retrieval
experts (i.e. fexpert; ::: expert;g).

2. For each generated result setrs;; , normalize the documents within that set.

3. Determine what form of a combinational hierarchy is to be wsed, i.e. will result set
be combined into a single set for each expert, for each quenomponent, or will they
be directly combined.

4. Based upon the previous step, apply an appropriate weighteither rc;, rcj or rcj; )
to the candidate result sets.

5. Using the combination operators (either CombSUM or CombMNZ) combine the con-
stituent parts into the nal result.

This is a very high level overview of the data fusion operatio, and as can be found in an
implementation, several loops of this procedure may resulin the nal computation of a
result. The order in which we iterate through these steps in his section is that rst, we
examine the ideal distribution of weights generated in optmal data fusion. Following this,
we examine the impact of combinatorial hierarchies on retréval performance. Next we
examine the impact of the use of either CombSUM or CombMNZ, nishing by examining
the impact di erent normalization strategies, based upon usng the score or the rank, have
on retrieval performance.

Optimal Distribution of Weights

In this sub-section we explore the form of an ideal weightingscheme so as to determine
if any unique properties exist within it which may guide future data fusion algorithm
development. In this experiment, we use score-based normation through MinMax, with
CombSUM for combining results, and we use a direct level of gabination. As previously
stated our mechanism for doing this is the execution of the cordinate ascent optimisation
technique directly on our test corpora and relevance judgemants. The rst results of this
process are presented in Figure 1.4, which is a histogram ohe distribution of the ideal
weights generated over all corpora. The y-axis representgdquency, whilst on the x-axis,
the assigned weights have been transformed into Z-Scoresp tallow for cross-comparison
between topics and corpora. Z-Scores (also known as standahscore) shift and scale values
to have a mean score of 0 and standard deviation of 1 allowingato express a value in terms
of how many standard deviations it is away from the mean. Theefore this normalisation
allows us to examine how clustered the assigned weights areFor clarity, each topic's
weights were normalized, meaning for each topic the averageeight after normalization is
0. The results of the Z-Score's for each topic are aggregatedto the presented graph and
data.
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Figure 1.4: Histogram of weight distribution, all corpora
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From the histogram we can see demonstrated a highly positivg skewed distribution,
with a long tail of values extending up to Z-Score values of narly 8 . The shape of
this distribution closely resembles that of a log-normal dstribution, characterised by the
extended positive tail. To further examine the skewness of e ideal weight distribution,
we present various measures of central tendency in Table 1.Z=rom this we can see that
whilst the mean of the weights is approximately 0 and the stamlard deviation has a value
of 1, that the median value is less than the mean value, corraking with our positive skew
observation. Furthermore, an examination of the quantilesreveals a very high degree of
clustering with an extended tail, as the 78" quantile has a value of only 0.0036, whilst it
isn't until the 90 " quantile that values exceed 1.

Mean | Median 75 Quantile | 90 Quantile
0.0004 | -0.2978 | 1.0004 0.0036 1.1192

Table 1.2: Measures of central tendency for ideal weight disibution, all corpora.

This implies rstly, that whilst the distribution of weight s has some properties of that
of a normal distribution, such as a majority of the data points clustered around the mean
and within the range 3 , there does exist a very de nitive positive skew. Secondlyas
part of this positive skew, approximately 10%-11% of the wajhts were assigned values
> 1 . This indicates that a minority of the pairs hExpert;; Query;i received the majority
of a topic's weight.

The histogram presented is an amalgamation of the weights foall topics over all cor-
pora. Without other evidence there remains the possibility that the e ect presented is
a corpora-speci ¢ event and that the weights are indeed morenormally distributed. To
account for this we present in Figure 1.5 corpora-speci ¢ pbts of the weight distributions
in the form of quantile-quantile (Q-Q) plots. In each of these gures, the x-axis represents
a theoretical normal distribution of weights, whilst the y- axis is the actual weight which
was assigned. The dashed line displays the trend line of theaights if they were normally
distributed.

Examining each of the six Q-Q plots, we can see that all of ourgperimental corpora
follow the same distributional pattern, as each demonstraés a signi cant departure from
a normal distribution, particularly once the normalised weights values exceed 1. The
pattern shown in each plot is similar to what would be expecteal if the distribution of the
weights was log-normal, again we can also see demonstrated @ach plot, a positive skew.

Therefore, the evidence presented suggests that from the @misation process, the
ideal weighting form for data fusion constitutes a majority of pairs hExpert;; Query;i being
assigned relatively low weights, whilst a handful of selecpairs being aggressively weighted.
Once again there remains the possibility that this observaion whilst corpora-independent
may be topic dependent. To explore this, we examined the distbution of weights within
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each topic for each corpora, the results of which are preseat in Figure 1.6.

In this gure there is a graph for each of our experimental copora. We examined for
every topic what proportion of pairs hExpert;; Query;i were assigned normalised weights
greater that 1 , and for these highly-weighted pairs, what the sum of their veights was,
or in other terms, what proportion of the total weight did the se highly-weighted pairs
constitute.

Within each graph, the x-axis represents individual topics for each corpora. For
every topic there are two bars, a yellow bar which representghe proportion of pairs
FExpert;; Query;i which received weight greater that 1 , and a blue bar which demon-
strates what percentage of the total weighting did that represent. Taking as an example
the rsttopic in corpora TRECVid 2003, we can see a yellow barat approximately 16% and
a blue bar at approximately 78%. This indicates that for topic "0100' in TRECVid 2003,
16% of the pairshExpert;; Query;i used for that topic received 78% of the total weighting.
From these graphs we can see that generally across topics thpattern remains the same,
that between 10%-20% of the pairdExpert;; Query;i used for that topic attracted between
60%-80% of the weight. Unlike our previous observations, tese graphs were also generated
from an optimisation process which used visual-only exped. This was selected so as to
further determine if just one modality, i.e. text, was having a signi cant impact upon the
distributions. From these results we can see that the geneta ect holds, that a minority
of pairs attract a majority of the weight. The possibility do es exist that even in this case, it
may be one particular visual expert which is dominating the weighting and thereby causing
the skewed weighting distribution. Table 1.3 shows the brekdown of visual experts and
the proportion of the weight assigned. There is a slight biagowards the Edge Histogram
and to a lesser extent the Homogeneous Texture experts, hower as there are only two
texture but four colour experts, this bias can be accounted dr. Taken together, the data
presented in Figure 1.6 and Table 1.3 shows that highly weigled hExpert;; Query;i are
distributed across di erent experts.

CL |CM | CS| SC | EH | HT
15% | 17% | 13% | 13% | 24% | 18%

Table 1.3: Distribution of Retrieval Experts in hExpert;; Query;i with rcij > 1

We have observed that the key to maximising AP is to correctly identify the salient
pairs hExpert;; Query;i and ensure that these are highly weighted, rather than weigting
the overall performance of any given retrieval expert. Theefore the task now is to test this
observation to determine how robust it is. We devised a serie of experiments that use only
the highly weighted pairs hExpert;; Query;i to see if we still achieve good performance, or
if the remaining lowly-weighted pairs contribute to maximising performance by boosting
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recall. For clari cation, a highly-weighed pair hExpert;;Query;i is a pair whose weight
rci is greater than +1 of the mean weight for that topic.

However, before conducting these experiments, we rst exame the impact of combina-
tion levels on retrieval performance, so that these obsertans can be tested and contrasted
against the combination level experiments.

Combination Levels

As previously illustrated, the CBMIR system which we are usihng in our work is capable
of handling multiple retrieval experts and multi-example multi-modality queries. We have
seen that each unique paitexpert;; query; i is able to generate a ranked result sets;; . The
objective of the CBMIR system is to combine all of these into acoherent single response.
The nature of this setup is that it allows for hierarchical partitioning of the ranked results
to facilitate this nal combination. That is, systems may em ploy a multi-stage combination
process, either to allow for easier training of weights to ppulate the weighting matrix RC ,
or because employing a combination hierarchy was acceptedractice. For a late fusion
CBMIR system, there are three basic levels of combination wikth could be employed,
which we refer to as “query level' combination, “expert levecombination and “direct level'
combination. Each of these levels is illustrated in Figure 17.

Earlier in our de nitions of terminology, we stated that a CB MIR system could handle
multi-example multi-modality queries, Q. The set Q de ned a single search topic which
the CBMIR system is to process. The example as given in Figurd.7, is that our query
may be comprised of a yellow ower image and a red ower image @ad the intent of this
query may be to nd images of owers regardless of colour [20]In the example in Figure
1.7 there are also two visual experts present, a colour expeand an edge expert. Applying
our queries to the experts generates 4 result lists to be conied. Using our notation the
four result set we have generated are:

E = fcolour;edge
Q = fyellowflower;redlower g
RS colour; yellowflower edge;yellowflower

colour; redflower edge; redlower

Expert Level Combination

The rst of the three levels we'll discuss is “expert level' ombination. For a speci ¢ expert
(expert;) we query against it all query components inQ, merging the results to produce for
each expert, a single ranked list. Typically the combination of the individual results from
an expert into a single result for that expert are uniformly weighted. Therefore, for every
expert; we have one combined result setr6;). The nal merger therefore is to combine each
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result setrs; into a single response. In systems which implement this st@ of combination,
it is at this level of aggregation that weighting would occur, that is each rs; would be
assigned a weight. This means that the number of weights whit must be determined
using this level of aggregation isjEj. To illustrate this with the example from Figure
1.7, the result sets from pairshcolour; yellowflower i, hcolour; redflower i form one merged
result set which is then weighted, whilst pairshedge; yellowfloweri, hedge; redfloweri form
the other result set to be weighted. As there are two expertsjEj = 2), then two weights
are used to calculate this query. Referring back to our restilset matrix RS with individual
elementsrs;; , we can think of this approach as rst aggregating the result sets in each
column i, weighting each of these, then combining all instances of th columnsrs; into a
single response.

Query Level Combination

If "expert level' combination is the processing of the colums of the result set matrix RS,
then “query level' combination is the same processes excefitat we instead process the
rows of matrix RS. Given a set of query componentsQ with members query;, we combine
with uniform weights the results of query; queried against every expert inE. Similarly
to “expert level' weighting, the aggregated result set for ach query; is then weighted and
combined to compute the nal response to the query. Therefoe, eachrs; is weighted, and
the total number of weights used in tuning the system isjQj. lllustrating this with our
example from Figure 1.7, there are two result setgs;, the rst generated from a merger
of the pairs hcolour; yellowflower i, hedge; yellowfloweri, and the second from the pairs
hcolour; redflower i, hedge; redfloweri.

Direct Level Combination

Finally we have the \direct" level of combination, where if the “expert level' of combi-
nation was the aggregation and weighting of columngs;, and “query level' combination
was the aggregation and weighting of rowsrs;, then “direct level' is the direct weight-
ing of each individual result setrs;; , in other words, processing the matrixRS directly
without any intermediate levels of aggregation. This level speci es weights for every
coupling of a query component and retrieval expert, meaningthat using this approach,
JEj | Qj weights are required. Applying this to our example from Figue 1.7, this means
that the four pairs hcolour; yellowflower i, hedge; yellowfloweri, hcolour; redflower i and
hedge; redfloweri each have their own weight.

Experiments with Highly Weighted Pairs and Combination Levels

To test our observations we devised three experiments in oml to (1) determine to what
extent the highly-weighted pairs hExpert;; Query;i impact upon performance; (2) deter-
mine if the weighting of these pairs needs to be exact or if mely identi cation is enough;
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and nally, (3) determine the impact the remainder of the pairs hExpert;; Query;ji which
do not have much weight allocated to them have on performanceAs a comparison we have
also included two optimizations, \Query" level and \Expert " level optimizations. These
represent the best performance achievable if we use existindata fusion methods (such as
Query-Class approach, or single feature machine learning24],[25]), and allow us to de-
termine if our suggested strategies of targeted weighting fopairs hExpert;; Query;i rather
than expert level weighting o ers improvement.

(1 ) 1 : For each topic, only use highly-weighted pairshExpert;; Query;i (i.e.
pairs hExpert;; Query;i whose assigned value from optimization was +1 for the
mean weight). The value of w; will be the value determined during optimiza-
tion. This test will examine the impact of precisely weighted high-performing pairs
hExpert;; Query;i. It can be thought of as a high-precision experiment as for ezh
topic we will be using only 5%-20% of the available ranked lits for that topic.

(I U)1 Uniform : Using only the highly-weighed pairshExpert;; Query;i, assign
each a uniform weight. This will examine if just the identi ¢ ation of high-performing
pairs hExpert;; Query;i is su cient to yield performance increases, speci cally de
termining if accurate weighting of pairs is required, or if they can be assigned a
binary weight [0,1]. As the task of determining the optimal set w; is realistically
only viable post-experiment, this experiment tests if reaistic fusion approaches can
be developed, as it does not require perfect weights, only @hti cation of likely high
performing pairs hExpert;; Query;i.

(L U-T)1 & Tail : We extend experiment 1, by taking the remaining weight
mass that isn't assigned to high-performing pairs and alloate it uniformly amongst
the remaining pairs in RC . This experiment complements the previous, we assign a
large weight to the high-performing pairs, whilst a low weight to the remainder. As
the high-performing pairs constitute only 5%-20% of availdle pairs for a topic, this
experiment is testing the impact of recall, i.e. can we inclde the remainder of the
data without accurate weighting so as to increase our recall

Expert Optimized : We implement the \Expert" level of combination as is imple-
mented by several data fusion approaches. Here we use the apization approach
as previously described so as to determine the near-optimadet of weights RC; for
\Expert" level combination. This demonstrates the best performance that can be
expected using the same query images and experts as the preus experiments if we
impose a combination hierarchy at the \Expert" level.

Query Optimized : This experiment is as for \Expert" optimized, except that t he
weight set we are optimizing isRCj, and demonstrates the best performance that
can be achieved if we combine at the \Query" level.
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For each experiment we include the minimum and maximum achieed for that corpus.
The minimum is a “Uniform' run, where all pairs hExpert;; Query;i are equally weighted,
demonstrating the performance achieved if no weighting satme at all is employed. The
maximum is the fully optimized result, demonstrating the best performance that can be
theoretically achieved. These two gures provide a lower ad upper bound for data fusion
performance comparisons, allowing us to make decisions ug absolute observations with
regard to the bounds, rather than relative observations by omparing only to existing data
fusion approaches.

Our results are presented in Figure 1.8. Each table presentthe minimum (Uniform
All), maximum (All Optimized) and results of the 5 experiments using MAP. For every
experiment's MAP, we show in brackets how close that approat came to achieving the
optimal performance. The MAP of each of the experiments, alag with the maximum
MAP, is graphed in Figure ??. For each of our 5 runs we ran signi cance tests (partial ran-
domization) with  0.05. For the TRECVid benchmarks we found no signi cant di er ence
between the "Query' and "Expert' levels of hierarchical corhination, indicating that if hier-
archical combination is employed and optimally weighted, tere is no di erence in between
them. (However for ImageCLEF "Expert' was signi cantly die rent.) For benchmarks
TRECVid 2003 to 2006, all runs using highly weighted (1 ) pairs performed signi cantly
better than the hierarchical combination approaches. For TRECVid 2007, only run 1 was
signi cantly di erent.

The graph presents a clear strati cation of the results, patticularly for benchmarks
TRECVid 2003 to 2006. We can clearly see the very large discpancy in performance
between the hierarchical fusion approaches (at the bottom bthe graph) versus the targeted
weighting approaches in the middle. This separation illustates the performance gains
achievable by moving away from hierarchical combinations. Of exception is TRECVid
2007 and ImageCLEF 2007, where there is less of a di erence inegpformance. These two
benchmarks exhibit the greatest ratio of topic images to cdection images { in the case
of ImageCLEF one topic image for every 112 collection imagesThis indicates that recall
plays a more prominent role in these evaluations, and that tle selection of highly-weighted
pairs may have been too restrictive to provide adequate topi coverage. This is reinforced
by the run 1 U-T, which included all pairs hExpert;; Query;i: it performed the best even
though it used non-speci c weights.

Therun1 highlights that using a subset of the highly weighted pairshExpert;; Query;i,
very good performance can be achieved despite a reduction potential recall by not using
all pairs. Far more encouraging is the performance of runs 1U and 1 U-T. Whilst run 1
had value as an illustrative run, it is hard to conceptualize a data fusion algorithm that
would create the exact optimal weights for these pairs. Howeer, as runs 1 U and 1 U-T
did not use the optimal weights, but rather only identi ed wh at the high-performing pairs
1 Uand 1 U-T were (essentially a binary weighting), and still achieved excellent perfor-
mance, it provides a clear direction for development of datdusion algorithms. These runs
demonstrate that if methods can be developed to identify pais hExpert;; Query;i that are
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Legend TRECVid 2003 |[ TRECVid 2004 | [ TRECVid 2005
Run MAP MAP MAP
Uniform All 0.0593 0.0288 0.0646
Expert Level 0.0752 (61%) || 0.0519 (47%) 0.0827 (59%)
Query Level 0.0776 (63%) || 0.0543 (50%) 0.0850 (60%)
1 Uniform 0.0966 (79%) || 0.0738 (68%) 0.1037 (74%)

1 Uniform & Tail
1

0.0958 (78%)
0.0989 (80%)

0.0764 (70%)
0.0770 (71%)

0.1109 (79%)
0.1108 (79%)

All Optimized 0.1224 0.1084 0.1407
Legend TRECVid 2006 |[ TRECVid 2007 || ImageCLEF 2007
Run MAP MAP MAP
Uniform All 0.0164 0.0422 0.1283
Expert Level 0.0299 (53%) || 0.0655 (56%) 0.1648 (76%)
Query Level 0.0262 (47%) || 0.0700 (60%) 0.1544 (71%)

1 Uniform 0.0460 (82%) || 0.0680 (58%) 0.1404 (65%)

1 Uniform & Tail
1

0.0453 (80%)
0.0496 (88%)

0.0762 (65%)
0.0772 (66%)

0.1715 (80%)
0.1439 (68%)

All Optimized

0.0563

0.1175

0.2156

Figure 1.8: Experimental Results, all corpora

likely to be highly weighted, then exact weighting is not required to obtain performance
superior to that of methods which employ hierarchies.

Equivalence Transformations

In this sub-section we examine the role of equivalence trarfisrmations and their impact

on retrieval performance. To re-cap, equivalence transfanations, or more generally “nor-
malisation’, can be de ned into two broad classes, score- ahrank-based transformations.
The objective of any of the normalisation approaches examied is to perform transforma-
tions on the set ofrs;; which are being combined, such that the e ects of di erent factors

like score ranges, numbers of retrieved results or score difutions does not adversely
impact upon performance. Recall that in our candidate resul sets to be combined (s;;; ),

each is comprised of documentm, wheredocument,, 7! (name;rank; score). Score-based
normalisation approaches alter the scores of documents toebcombined, thereby allowing
combination to occur utilising scores, whilst conversely ank-based transformations alter
the ranks such that the rank of a document is what is used for cmbination.

Z-Score Score-based transformation converts the score of a documeimto the Standard
Score [26] (Z-Score) within thers;; from which it came, the Standard Score being a
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measurement of how many standard deviations a score is fromhe mean score. This
approach has no range restriction [27, 28].

scorg,
NOrMgeorex) = ————— (1.4)

Min-Max  MinMax normalisation considers the best and worst scoring dcuments of a
givenrs;; and assigns these scores of 1 and 0 respectively. Scores drertnormalised
within the range [0:1] [30].

Scorg,  ScOrémin
Scor@nax  Scorémin

NOrm score(x) = (1.5)

Borda Borda ranked based transformation, given a set size dfl the Borda transformation
assigns a score oN X, wherex is the rank. As N is the size of the result set being
transformed, it produces lower scores for result sets whicldo not contain many
documents [19, 29, 27].

Normgeore(x) = N ranky (1.6)

BordaMAX  Extends Borda, whereN becomes the value of the size of the largest result
set being combined, which is then used for all result sets. Tis is to discount the bias
against small result sets present in the standard Borda appwach.

RankMM  MinMax normalisation based upon ranks. Conceived as a mid@ ground be-
tween Borda and BordaMAX, RankMM normalises the range of rarks between [0:1].

Reciprocal Reciprocal rank is a rank transformation which is heavily biased towards the

top ranked documents. The rank transformation is —ranlkx

For these experiments, documents were combined using Comh®1, CombSUM being
a linear combination operator. With the exception of the Z-Score approach, all approaches
combined both text and visual experts. Because the Z-Scorepproach does not perform
any range restriction, we restricted this approach to visuad expert only combination so that
result set sizes would not be a factor. The results of our expéanent are presented in Table
1.4.

From these results we can infer that rank-based approachesegerally outperform any
of the score-based approaches. The Z-Score method is a digtt failure with these data
sets, and is excluded from further analysis. Likewise for tk rank-based approaches, the
Reciprocal method performs poorly, although nowhere nearsbad as the Z-Score approach.
The failure of the Z-Score approach is likely due to the lack bany range restriction of the
scores being combined. This would have made the optimisatio process problematic, as
there would be no equivalence between the documents to be cdimed, meaning that any
weight generated would be required to factor this in. In the ase of the reciprocal method,
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Score-Based Rank-Based
Year Z-Score Min-Max | Borda BordaMAX RankMM Reciprocal
TV2003 | 0.0095 0.1958 | 0.2127 0.2232 0.2206 0.1462
TV2004 | 0.0040 0.1524 | 0.1655 0.1774 0.1673 0.0892
TV2005 | 0.0117 0.1554 | 0.1654 0.1668 0.1670 0.1069
TV2006 | 0.0089 0.0846 | 0.0962 0.0989 0.0969 0.0645
TV2007 | 0.0195 0.1338 | 0.1433 0.1562 0.1459 0.0808
IC2007 | 0.0093 0.3148 | 0.3480 0.3678 0.3491 0.2503

Table 1.4: Normalisation Results Comparison. n.b. values for approach Z-Score are based
on visual experts only.

its failure, whilst less severe than that of the Z-Score appwach, highlights that the in-built
aggressive weighting of the top ranked documents of any re#tuset was too severe. Given
that earlier we established that the ideal weights for expet combination take the form of a
log-normal distribution, the optimisation process would have had to devise a weight which
appropriately scaled the result sets to be combined whilst tscounting against the heavily
weighted top documents of each result set.

From our remaining four approaches, MinMax and the three Boda variants, we can
see demonstrated that the score-based approach of MinMax isutperformed by all of the
Borda based approaches. To compare the three Borda varianisve can observe that in
terms of performance the standard Borda approach is the wotsperformer of the three.
Given that the text expert often would not have returned the full 1,000 results, the standard
Borda approach would have penalised this evidence. In termef signi cance, the standard
Borda approach is signi cantly worse than the BordaMAX appr oach, whilst for TRECVid
corpora 2003-2006 there is no signi cant di erence betweentiand the RankMM approach.

The BordaMAX approach appears to generally be the best perfoner, however there is
no statistical di erence between it and the RankMM approach for TRECVid corpora 2003
to 2006. Indeed in the case of TRECVid 2005 RankMM claims the op result. The main
interpretation of this result is that rank-based approaches produce very successful results,
but should not penalise result sets being combined which aref smaller size.

Whilst not a bad performer in itself, across all collectionsthe MinMax approach is
signi cantly worse than all of the Borda based approaches (vMth the exception of the
standard Borda approach for TRECVid 2003, however in raw peformance terms standard
Borda is still superior). We note that the combination of results in this experiment used
CombSUM. The question of why the score-based approach is lesuccessful than the rank-
based approaches we believe is due to the non-linear naturd scores and the application
of linear weighting.
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Given a result setrs;;, the sorted scores of this set are unlikely to exhibit a linea
progression, and as such introduce a large degree of varidibi between the relative perfor-
mance of individual documents. That is, given any two adjacet ranked documents inrsj;
the di erence between the scores will vary considerably betwen pairs, whilst for ranks the
di erence between pairs will always be constant. Once a lineaweight is then introduced,
the impact of this weight will vary dependent on the value of the score to which it is being
applied, whereas for rank approaches the impact of the weidhs constant and predictable.
This e ect has been previously identi ed by [7], which termed the \independent weighting
e ect" which e ectively introduces a second weight for combination. Upon re ection we
can see that this observation is equally relevant for both tke Z-Score and reciprocal ap-
proaches. In the case of the Z-Score approach, the indepentteveighting e ect is present
in the variation of the range which scores can take, whilst fo the reciprocal approach it is
evidenced in the aggressive weighting of highly ranked docuents.

The question of the use of score or rank for data fusion is oneich is not always fully
considered by researchers. Many papers suggest that the usé scores is better than rank
as they provide more information, such as the distribution d values or other variables [27],
[31], [32], whilst many others would provide no justi cation at all, as described by Lee
[7]. One reason for this is that much of the work in data fusion particularly in the text
domain, has been the non-weighted combination of similarlyperforming retrieval experts,
where the scores (similarity values) once normalised have degree of cross-comparability,
as the experts from which they came are using similar retrieal techniques on the same
types of index [10]. CBMIR alternatively combines experts d wildly varying performance
from completely di erent indexing representations, and as sich perhaps too much value is
inferred onto the bene t of using scores from research exp@nce found in text IR applica-
tions. Indeed as authors such as Robertson [33] and Dworé&t al. [29] note that the score
in many cases is just an artifact which is used for generatinghe ordering of a ranked list,
the value of a score itself beyond this function is meaningkes.

In Lee's work on data fusion he hypothesized that rank combimtion rather than score
combination should perform better, given that scores are impacted by the \independent
weighting e ect". However experimentally he found that this is not the case [7], his work
using normalised scores provides the better results. Crdf82] provides an interpretation of
Lee's result:

\This can be interpreted as evidence that the normalised scre is usually a
better estimator for the probability of relevance than the rank. Using the ranks
is a more drastic form of smoothing that appears to increasereor except when
the systems being combined have very di erent scoring charaeristics" [32].

This interpretation ts exactly to the characteristics of C BMIR, where as previously es-
tablished we have very noisy sources of evidence being comed which vary wildly in
performance.
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Combination Operators

Once the results from multiple ranked lists rs;; have been normalised, they can then be
combined to form a single ranked result for a given informaton need. In our discussion of
the combination operators that can be used, we are assuminghait one of the previously
discussed transformations have been applied. If this is thease, then the combination
approaches which we will now discuss can be applied to eithéhe scores of a ranked list
or to the rank of a ranked list. For convenience we will refer b a document's score when
discussion combination approaches, however the normalideank can be easily substituted
and take the place of a score. The linear weighting of rankedidts and their subsequent
combination has been proposed several times, with early wérin linear weighting completed
by Vogt et al. [34].

The more common approaches to combination of ranked lists i¢0 use variants of
linear interpolation. Fox and Shaw[30] in early work de ned six approaches for linear
combination, of which two have seen the most success, Comb3Uand CombMNZ.

CombSUM

CombSUM is de ned as the weighted sum of a documents score's ieach of the result lists
in which it appears. For instance, if we have our multi-part query Q and set of retrieval

experts E, we will generate the matrix of result sets (ranked lists)RS and have along side
it our weighting matrix RC . Given a documentx, we examine each individual ranked list,
rsij , obtain the score of documentx and apply the weight rc;; to this score. The nal

score for documentx therefore is the sum of each weighted instance of occurring in the

matrix RS. Formally this is described in Equation 1.7.

RS
CombSUM(scoregy) = (score 2 rsij)  rcj; 1.7)

ISi;j

CombMNZ

An alternative implementation developed by Fox et al. [30] is CombMNZ. CombMNZ
extends CombSUM by introducing a variable which heavily weghts documents that appear
in more than one result set. This variable is the number of times that a document appears
in result sets, i.e. the number of non-zero entries that a doement has in the set of ranked
lists to be combined (hence MNZ). In our terminology, this equates to the number of times
a document x appears in a ranked list {s;; ) in our result list matrix RS. We de ne
weighted CombMNZ in Equation 1.8, where the weight has alredy been incorporated as
part of the calculation of CombSUM.

CombMNZ (score) = CombSUM(score) (1.8)
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CombMNZ CombSUM
Year Score Borda| Score Borda
TV2003 | 0.1720 0.1458 0.1958 0.2127
TV2004 | 0.1321 0.1258 0.1524 0.1655
TV2005 | 0.1329 0.1230 0.1554 0.1654
TV2006 | 0.0770 0.0701] 0.0846 0.0962
TV2007 | 0.1157 0.1131] 0.1388 0.1433
IC2007 | 0.2991 0.2861] 0.3148 0.3480

Table 1.5: CombSUM vs. CombMNZ for score & rank-based approehes.

where is the number of result sets in which a document was found, and 6 6 jRS]j.
Similar to some of the previous tools that we have examined,te choice of CombSUM versus
CombMNZ is down to the intention of the system designer and tte type of behaviour they
would like present in the search system. CombMNZ aggressile promotes documents
which occur in a majority of ranked lists to be combined, wheeas CombSUM can be seen
as a linear addition.

For this experiment, we will investigate the impact of CombSUM and CombMNZ on
both score- and rank-based normalisation approaches. To & the score-based approach
we use the MinMax score normalisation technique. For rank weuse the standard Borda
approach. The experts used for combination involve both texand visual experts and result
setsrsj; are truncated to 1,000 results. The results of this experimet are presented in
Table 1.5.

There is little ambiguity in the presented results as we can qite clearly observe a
constant ordering across all corpora with regards to perfamance. CombSUM using Borda
normalisation is the most e ective combination operator, whilst CombMNZ using ranks is
consistently the worst performer.

However there is one curious artifact, which may explain thepreponderance of data
fusion literature which advocates the use of CombMNZ. From ar results we observe that
when scores (MinMax) rather than ranks are used, CombSUM adeves greater perfor-
mance than CombMNZ once fully optimised. When CombMNZ is comsidered in isolation,
score-based CombMNZ consistently outperforms rank-base@ombMNZ, reversing the ob-
servation found with CombSUM. This result is of interest particularly when coupled with
our previous observations about the popularity of using scees for data fusion in the re-
search literature [7, 32]. In terms of signi cance, we foundhat for all instances, CombSUM
performed better than CombMNZ with statistical signi canc e.

Of interest however is this result of CombSUM and CombMNZ, paticularly given the
popularity that CombMNZ holds in data fusion, whilst in our e xperiments performing
empirically worse. Lee's motivation for demonstrating the e ectiveness of CombMNZ was
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Doc. | E1 E2 E3| CombSUM CombMNZ
a |08 00 09 1.7 3.4
b 06 03 0.6 15 4.5
CombSUM ranking a>b
CombMNZ ranking b>a

Table 1.6: CombSUM vs CombMNZ behaviour

an extension of the work of [6] where they observed that a doguent which appears in
multiple ranked lists should be ranked higher. Lee saw CombMZ as a mechanism which
gave a boost in ranking to documents which appeared in moresdis.

Thinking of CombMNZ in terms of providing a boost to documents which appear in
multiple lists gives an impression of a function which is pogive, that it promotes documents
up a ranked list. An alternative way however when thinking of CombMNZ is negative, that
in fact the function's purpose is to penalise documents which do not appear inall ranked
lists. We can illustrate this with a toy example given in Table 1.6.

In this table we have two documents, "a' and "b', and three exprts "E1 ... E3'. Doc-
ument “a' is only found in two of our three experts, however itis highly ranked positions
in both of these experts. Document “b' on the other hand is fond in all three experts,
but it appears around the middle of each experts result set. ie combination behaviour of
CombSUM and CombMNZ in this case produces two quite di erent aderings. CombSUM
will rank document “a' before document “b’, whereas CombMNZwill reverse the ranking
putting “b' before "a' as it appears in all three of our resultsets. The question for system
builders becomes what sort of behaviour do they want presenin their retrieval system ?

We believe that the CombSUM behaviour is more desirable, pdicularly considering
that once any large number of result sets are to be combined ttough data fusion, that the
probability of a document being found in every, or a majority of result sets, must decrease.
This has been empirically justi ed in the results we have presented in this chapter for
CombSUM and CombMNZ.

Discussion

In this section we explored the di erent ways data fusion can ke implemented when com-
bining multi-part queries from multiple retrieval experts . We observed that the best levels
of performance can be achieved when speci ¢ instances of;; can be identi ed and given
greater weight. Two important caveats need to be mentioned tthis point. Firstly, whilst
we identi ed this attribute, the development of any techniq ue to identify these instances
of rs;; at query-time is a non-trivial and signi cant research problem. Secondly, there
remains the possibility that these observations may be morgronounced with the experi-
mental corpora used in this investigation, speci cally the news video collections. We could
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speculate that performance is more pronounced with these dections because there is a
degree of redundancy in these collections (attributes suclas advertisements), which may
be having some form of an impact in our observations. We canrtadiscount this without
further experimentation on more diverse corpora, however w believe that by using the six
experimental corpora that we have, that a strong case can be ade at the very least for
further robust investigation.

Current Approaches for Weight Generation and Data Fusion

Here we present related work which currently addresses theata fusion problem and weight
generation for multimedia applications. However, before poceeding we mention of two pre-
vious studies which have examined several of the issues wegsented in this chapter, specif-
ically work by McDonald and Smeaton [31] and by Yan and Hauptmann [35]. McDonald
and Smeaton empirically compare combination approaches fascore, rank and probability
techniques. Their work evaluated these approaches by optilming Mean Average Precision
(MAP) on a training collection with multiple topics, then ap plying these generalized opti-
mized parameters to a test set. Our work di ers as our optimizaions occur at the topic
level (Average Precision), rather than the topic set level MAP). Furthermore the fusion
approaches detailed in [31] use a hierarchical approach witi is likely to obscure the e ect
individual query images have on performance. Yan and Hauptrann [35] conduct exper-
iments with TRECVid 2002 data to construct a theoretical fra mework for studying the
upper bounds of combination functions. They found that linear forms of combination may
be too restrictive for large numbers of experts to be combing e ectively. However, like
McDonald and Smeaton, this work examined combination at theexpert level and as such
did not delve down to the granularity of pairs hexpert;; query;i. Whilst there could be little
argument that linear weighting could not be improved upon by non-linear weighting, the
evidence we have presented in this chapter which uses lineareighting certainly indicates
that very good performance could be extracted through linea weighting schemes.

Query Independent Weighting

Query Independent Weighting is one of the simplest methodshat can be employed when
combining retrieval experts. Popular in earlier researchm CBMIR [17, 18, 19] because of
its simplicity, query independent weighting is an empiricd method which requires either a
training corpus or domain knowledge of the collection beingndexed. Weights are statically
assigned for each expert in the system and do not change, regiess of the query being
issued. For all queries being processed by the system, thisngle weight matrix, which
weights only experts, is always used. Whilst relatively sinple to execute, this method is
only suitable when indexing data from a narrow domain [12].
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Query-Class Weighting

Query-Class weighting can be seen as an evolution of query independent vghting as it
directly addresses many of the failings of query independénwveighting and as such has
proven popular in the multimedia community. The central concept of this approach is
that given a training collection and an appropriate set of training queries, query clusters
(i.e. query-classe$ can be found such that queries within each cluster share soensimilar
“properties' which di erentiate them from other queries in t he collection (where “properties'
may be artifacts such as semantic similarity, performance imilarity, distance etc). By
partitioning a set of training queries into discrete query classes it is then possible to
optimize for eachquery-classan instance of the weighting matrix RC , such that each class
should have a dierent set of weights for combining retrieval experts. When a test/live
qguery is then processed, it is rst mapped to aquery-classso that the relevant matrix
RC can be applied for the retrieval experts used. As such, this mvides a considerable
improvement over query independent weighting, notably in the granularity of how experts
can be weighted as everyguery-class has an associated weight matrixRC . Whilst the
guery independent approach only has one instance d®C to weight queries, in the query-
class approach there arejquery-classep available for weighting. However like the query
independent approach, our weighting matrix only weights atthe expert level, not at the
level of hexpert;; query; i, therefore we refer to these matrices again aRC ;. Figure 1.9
provides a high level overview of thequery-classapproach.

The query-class approach was initially developed by [36] closely followed ¥ [37] for
content-based video retrieval on the TRECVid corpora. Both share a degree of similarity in
implementation as both statically de ne a priori the query-classego be used by the system.
[38] extend the initial approaches by automatically discoering query classesn a training
set, free of any manual involvement. Their approach is basedn the observation that the
intent of query classweighting is to group queries together such that they sharelie same set
of expert weights to achieve good performance. Therefore Kmedy et al. hypothesize that
given a set of retrieval experts and training queries, that tiose queries which share similar
performance variations between experts (where performarecis measured by an evaluation
metric, i.e. average precision) should belong to the samgquery class One of the latest
evolutions in the query classapproach is provided by [53], whose work concentrates on
creating dynamic query-classweighting during system operation, rather than the previously
described approaches which learned classes from trainingath.

Discriminative Classi cation

Machine learning applications can be considered as technigs which discover structural
patterns in data that allow us to explain and make predictions from that data [39]. They
provide us with tools to help make sense of and to organize dat The eld of machine
learning is incredibly broad and a general review is outsidgéhe scope of this chapter. In
this section, we restrict ourselves to a brief review of appsaches which can be characterized
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Figure 1.9: Query Class Weighting

as supervisedand discriminative, that is approaches which require training data which has
been manually labelled, and models which learn directly onhe data provided to them.

Some of the challenges which apply to the use of machine leany approaches are
the class imbalanceproblem and the curse of dimensionality [40]. These two problems
are interrelated for the application of search. Put simply, the class imbalance problem for
search is that often there are far more irrelevant than releant items in a corpus, hampering
classi cation as the classi er can be biased towards the lager of the imbalanced classes.
Similarly, when learning from data, such as using visual feture vectors, that as the size
of the feature vector grows, an exponential increase occutia the size of the feature space,
correspondingly requiring an increase in the number of exaples we require in order to
achieve a stable model [41, 42, 43].

[25] explicitly addresses the issue of multi-example, muitfeature search, such as the
scenario de ned by our example CBMIR system and query, makiig use of machine learning
methods, speci cally the use of Support Vector Machines (SW1) [49]. Natsev et al. con-
duct retrieval experiments using the TRECVid 2003 corpus arl topics, where each topic
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contains not only a statement of the information need but al® relevant visual examples.
However, as traditional SVMs conduct discriminative class cation, they require not only
positive training samples (e.g. the visual example querigsbut also negative training sam-
ples. Natsevet al. propose several mechanisms for generating “pseudo-negatiexamples,
however the best approach was a random sampling of the collean. As TRECVid search
topics are typically relatively complex information needs (e.g. nd shots of George Bush
walking versus a classi cation task of nd outdoor shots), the actual number of relevant
shots in a collection is relatively small. Natsevet al. refer to this as bagging however it dis-
tinguishes itself from traditional machine learning baggingapproaches as only the negative
examples are randomly sampled, whereas in traditionabagging approaches, both classes
are randomly sampled and multiple classi ers are built and areraged from these random
samples. Therefore for each query, a modi ed bagging apprah is conducted, where 10
"bags' are de ned, each of which shares the same positive exgles, but a random selection
of negative examples. This learning process is conducteaer expert

[43] also address the issue of imbalanced and sparse leamiimstances for visual retrieval
in multimedia search, by extending the work of [25]. Tesc et al. examine the modi ed
bagging approach of [25] o ering improvements to both the bagjing approach itself and to
the selection of the pseudo-negative examples.

Other Methods

In this section we brie y review other methods which have apgication for data fusion. We
list these approaches under “other methods' as they eitherazur after the initial retrieval
process, or leverage aspects of the underlying data which weannot for CBMIR.

Relevance Feedback

Relevance Feedback has long been an area of active researdthin the information science
community [44], dating back nearly 40 years [45]. The idea b@nd relevance feedback is
that it can be di cult for a user to formulate a query to an Info rmation System which will
e ectively capture what is being sought, but that a user presented with relevant information
will recognize it. A system can use these user judgements toditer re ne the ranking
presented to a user, typically in an iterative process. As soh it is a valuable technique for
bridging the information need of a user to a form that the sysem can better exploit.
Typically however, relevance feedback is an interactive pocess, or at the very least
occurs after an initial ranking by an information system. Therefore for the purposes of
this thesis, we do not consider relevance feedback as one difet approaches which we will
examine in depth, as we are concerned with data fusion with rgard to the generation of the
best initial ranking. Whilst the study of relevance feedbadk does have some applicability
to data fusion, as often multiple forms of evidence need to be&ombined, we state that
the insights we obtain in this thesis can be applied to relevace feedback as a separate
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activity in order to improve it, and indeed relevance feedbak can be applied to any of our
techniques explored here in order to improve retrieval peidrmance.

[44] conduct a thorough review of relevance feedback approhes in image retrieval,
whilst [46] in their general review of image retrieval provides some additional updates to
this work.

MARS, an early content-based multimedia retrieval system B7], implemented relevance
feedback similar to what is found in many text retrieval systems. Using textures as the
content-based feature, it uses a vector space representati and investigates bothtf.idf and
Gaussian normalization for determining the weight vector.

Machine Learning approaches feature prominently in image elevance feedback litera-
ture, their popularity due in part in being able to explicitl y label non-relevant images, so as
to achieve a better separation between relevant and non-relant items [46]. [48] implement
relevance feedback using a Support Vector Machine (SVM) [49 Their paper demonstrates
the usefulness of SVMs for the relevance feedback problemubthey highlight the need for
multiple positive and negative examples to achieve good acecacy. [54] use an SVM with
active learning. Rather than after each round of relevance dedback presenting to the user
the top ranked relevant images from a static classi er, ther approach is to present images
for which the classi er is most uncertain and after each rourd the classi er determines new
decision boundaries. This approach o ered improvement overthe use of regular SVMs.
[50] addresses the class imbalance problem, that is for a tygal relevance classi cation
task there are far more non-relevant than relevant images. ey build a modi ed SVM
referred to as BSVM (Biased Support Vector Machine) which ugs spherical hyperplanes
to encompass relevant images. [51] also address the classhatance problem, through us-
ing Semi-Supervised Learning (SSL) and dimensionality redction in a method they term
\Relevance Aggregation Projection (RAP)". The authors refer to the asymmetry problem
in subspace CBIR machine learning, which is that images laded as ‘relevant' share some
semantic properties, whilst “non-relevant' images have na@ommon properties, only that
they dier from the relevant images. By performing dimensionality reduction and SSL
they are able to capture nearby unlabeled data points to relgant points, thus leveraging
the unlabeled data to improve classi cation accuracy. For darity, the di erence between
active learning and SSL, is that in active learning, the useris required to annotate after
each iteration, unlabeled data which a classi er is most unsre of, whilst in SSL, unla-
beled data is assigned to relevant and non-relevant labelshtough transduction. The two
approaches can be complimentary.

Query Performance Prediction

Query Performance Prediction is a related area of work whicmay have application in the
task of weighted data fusion. The objective of query perfornance prediction is for any
given query to a search service, determine how likely it is tgrovide good results to a user.
The typical application for this is to identify queries which may perform poorly and are
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therefore good candidates for query re-formulation [52]. Tie potential application for these
approaches is that as they have some discriminating power taletermine good from poor
performing queries, they may be able to provide a good estinten for values of RCj; .

Conclusions

In this chapter we conducted an empirical investigation into weighted data fusion and
its impact on CBMIR retrieval performance. To achieve our observations we employed a
non-conventional experimental model, which directly optimised retrieval performance on
test corpora which were being examined. The major bene t of his approach was that for
every subsequent experiment that was run within this framevork, the ideal set of linear
weights for data fusion was always used. This in e ect held costant the e ect of weighting
on retrieval performance and allowed us to make robust obsegations as to the impact of
di erent factors which e ect the data fusion process.
The following observations were made in this chapter:

The ideal weighting form for data fusion is a highly positivdy skewed distribution,
where speci crsj; in a topic are highly weighted, whilst the remaining resultsreceive
the remainder of the weight. We found that approximately 10%-20% of the result sets
being combined in a query attracted 60%-80% of the weight whe ideally weighted.

Normalisation plays a crucial component in putting evidence into a form which allows
it to be easily combined. For score-based normalisation weotind that MinMax
normalisation produces the best results. For rank-based rmonalisation we found that
our BordaMAX or RankMM approaches produced the best performance. Overall
we found that when ideal weighting is used, rank-based normiaation out-performed
score-based normalisation.

We examined the performance of the two most common combinatin operators,
CombSUM and CombMNZ. Whilst CombMNZ is the most popular form of com-
bination operator in text retrieval data fusion literature , we found that CombSUM
clearly outperformed CombMNZ.

Combination levels are often employed in data fusion approehes to make the task of
combining evidence from sources more manageable. We foundat combining at the
“expert' or “query' level produced no di erence in retrieval performance. Combining
at the “direct' level though produced a very large performarce gain over combining
results at any arbitrary level, greater than what was anticipated. Typically imposing
a combination level restricted retrieval performance to béween 50%-75% of what
could be achieved with direct combination. This level of peformance is better when
we consider the rst point of this list, that specic pairs co rrectly weighted drive
retrieval performance. The direct level of combination is he only level of combination
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Summary of Major Findings

Ideal Weight Distribution Highly Positively skewed Log-Normal.
Equivalence Transformations

Score-based MinMax

Rank-based BordaMAX or RankMM

Overall Rank superior with ideal weights.
Combination Operators CombSUM outperforms CombMNZ.
Combination Levels Direct-level far superior to alternatives.
High Impact Queries Approx. 10% of query-components

provide 80% of performance.

Table 1.7: Summary of Major Findings

which allows for the speci ¢ weighting of pairs, and therefae is the most e ective
level of combination.

We re-examined the early data fusion experiments of Lee, antbund that contrary to
reported results from text retrieval, when linearly weighted, CombSUM outperforms
CombMNZ.

This chapter has explicitly examined many data fusion variebles to a very ne level of
detail and discovered several properties of data fusion whh were masked by sub-optimal
weighting being employed. Notable was the assumption that @mbMNZ is the ideal form
of evidence combination. From these observations, we nd tht many of the earlier ex-
amined algorithms for data fusion do not have properties whith would allow for the full
exploitation of the ideal data fusion form which we have obseved in this chapter. Notably,
none of the examined data fusion algorithms allows for the diect weighting of individ-
ual pairs hExpert;; Query;i at query time, with most data fusion approaches employing a
combination level approach which aggregates results at théexpert' level.

This indicates that signi cant gains can be made through the application of approaches
such as saliency analysis to query images, so as to determiifi¢here is a correlation between
qguery images, and those which have been empirically shown tattract the most weight.
Development of algorithms which are capable of identifyingwhich pairs hExpert;; Query; i
are likely to perform well, will generate retrieval performance which surpasses current
unsupervised approaches.
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